Mari Carmen Suadrez-Figueroa
Asuncion Gomez-Pérez
Enrico Motta

Aldo Gangemi Editors

Ontology
Engineering in a
Networked World

@ Springer

Ontology Engineering in a Networked World

Mari Carmen Suarez-Figueroa
Asuncion Gomez-Pérez ¢ Enrico Motta
Aldo Gangemi

Editors

Ontology
Engineering in a
Networked World

@ Springer

Editors

Mari Carmen Suarez-Figueroa
Universidad Politécnica de Madrid
Facultad de Informatica

Ontology Engineering Group
Campus de Montegancedo sn.
Boadilla del Monte

Madrid

Spain

mcsuarez@fi.upm.es

Enrico Motta

The Open University
Knowledge Media Institute
Milton Keynes

United Kingdom
e.motta@open.ac.uk

ISBN 978-3-642-24793-4
DOI 10.1007/978-3-642-24794-1

Asunciéon Gomez-Pérez
Universidad Politécnica de Madrid
Facultad de Informatica

Ontology Engineering Group
Campus de Montegancedo sn.
Boadilla del Monte

Madrid

Spain

asun@fi.upm.es

Aldo Gangemi

Semantic Technology Lab,
Institute for Cognitive Sciences
and Technology, CNR

Via Nomentana 56

Rome

Italy

aldo.gangemi@cnr.it

e-ISBN 978-3-642-24794-1

Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011945419

© Springer-Verlag Berlin Heidelberg 2012

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

To our families

Foreword

I am very pleased that this book has seen the light. I have been involved in the NeOn
project from its early beginning: first, during the proposal writing and project
negotiation phase, then as a project member responsible for one of the use cases
and the exploitation of the results and, finally, when I moved on to a different
professional challenge, as a member of the Advisory Board. Whatever the collabo-
ration form, it has always been a pleasure to work with this excellent consortium.

Even after my leave from the NeOn project, I remained active in semantic
research, but then from a technology transfer point of view. During the past
5 years, I have monitored the impact of European research projects on the economic
competitiveness of Europe. Results show that although there is much investment in
EU research, tangible results — at least in ICT — in terms of economic impact are
more the exception than the rule. It is therefore with great pleasure that I can write
the foreword to this NeOn book, more than a year after the end of the project, which
is a clear manifestation that NeOn has turned into an initiative beyond its initial
funding of the European Commission, a necessary step towards economic impact.

The first time I heard the term ‘ontology’ was in the early 1990s, when — in
computer science — it was merely an academic concept. Now, 20 years later, the
term ontology and more general, semantic technology, is penetrating increasingly
more applications and areas, spearheaded by areas such as life sciences. This book
contributes to putting ontological engineering in a more realistic environment: out
of the labs and into the real world (wide web), where reuse and interrelationships
are more the rule than exceptions.

Of course, there is still a long way to go for ontologies and semantic technology
to be fully taken up by mainstream markets, but this book certainly will help to
speed up the process.

Dr. V. Richard Benjamins

Director User Modelling
Telefonica Digital

vii

Preface

The Semantic Web is characterized by the existence of a very large number of
distributed semantic resources, which subscribe to alternative but often overlapping
modelling schema (i.e. ontologies). Together these resources define a network of
ontologies. This emerging scenario is radically different from the relatively narrow
contexts in which ontologies have been traditionally developed and applied. Thus,
there is a need for new practical methodologies and technologies to support
effectively the development of a new kind of network-oriented semantic
applications. This new support should assist a variety of users, dealing with a
variety of ontology engineering tasks.

To address this methodological need, this book describes the NeOn Methodology
Framework, which includes a set of nine scenarios for collaboratively building
ontologies and ontology networks, a glossary of processes and activities potentially
involved in ontology development and a collection of ontology life cycle models.
Other important aspects of this framework include (a) a pattern-based design
approach and (b) the provision of various models which can be used to represent
information about ontology networks. In addition, the framework provides a set of
methodological guidelines for the different processes and activities relevant to the
development of networked ontologies. These guidelines are presented in a prescrip-
tive way to facilitate their adoption by students and practitioners. The guidelines are
supported by a comprehensive software environment, which provides effective and
integrated support for all the processes and activities described in the book. Hence,
the book also includes (a) an overview of the NeOn Toolkit, focusing in particular
on the user interaction side, and (b) a detailed description of several plugins, which
are most critical to the ontology development process.

Finally, the book shows how the NeOn methods and tools have been applied in
three real-world case studies in the fishery and pharmaceutical domains. These
descriptions reveal effectively the value of the proposed methods and tools.

ix

X Preface

This book aims to be a self-contained compendium of material for students
and practitioners in ontology engineering. We aim to provide the necessary
level of detail to allow readers to adopt the proposed methods and tools in practi-
cal ontology engineering projects. This book can be used as a textbook for under-
graduate and postgraduate courses on ontology engineering, together with other
books which focus specifically on the use of OWL for ontology engineering.

The content presented in this book is the result of the work done in the NeOn
project (life cycle support for networked ontologies), which was funded by the
European Commission’s Sixth Framework Programme under grant number FP6-
027595. Several dozens people collaborated on the NeOn project, and the research
described in this book would have not been possible without such massive collabo-
rative effort. Hence, we would like to thank all the people who collaborated in the
project for the excellent contribution to advancing research in ontology engineering
and for making this book possible.

In addition, we are extremely thankful to our colleagues, Nathalie Aussenac-
Gilles, Vadim Ermolayev, Mouna Kamel, Pierluigi Miraglia, Sofia Pinto, Elena
Simperl, Vojtech Svéatek and Valentina Tamma, who provided very interesting
comments and feedback and helped unselfishly to improve the quality of this book.

We are also grateful to Ralf Gerstner, Frank Holzwarth, Viktoria Meyer and
Tanja Jager at Springer-Verlag for their support and assistance during the produc-
tion of the manuscript.

Finally, we are very thankful for the love and support from our families without
which we could not have finished this book.

Mari Carmen Suarez-Figueroa
Asunciéon Gomez-Pérez
Enrico Motta

Aldo Gangemi

Contents

1 Introduction: Ontology Engineering in a Networked World 1
Mari Carmen Suarez-Figueroa, Asuncion Gémez-Pérez,
Enrico Motta, and Aldo Gangemi

Part I NeOn Methodology Framework
2 The NeOn Methodology for Ontology Engineering 9

Mari Carmen Suarez-Figueroa, Asuncion Gémez-Pérez,
and Mariano Fernandez-Lopez

3 Pattern-Based Ontology Design. 35
Valentina Presutti, Eva Blomqvist, Enrico Daga, and Aldo Gangemi
4 The NeOn Ontology Models. 65

Alessandro Adamou, Raul Palma, Peter Haase, Elena Montiel-Ponsoda,
Guadalupe Aguado de Cea, Asuncion Gémez-Pérez, Wim Peters,
and Aldo Gangemi

Part I Ontology Engineering Activities

5 Ontology Requirements Specification. 93
Mari Carmen Suarez-Figueroa and Asuncion Gomez-Pérez

6 Reusing and Re-engineering Non-ontological Resources
for Building Ontologies. 107
Boris Villazon-Terrazas and Asuncion Gomez-Pérez

7 Ontology Development by Reuse 147
Mariano Fernandez-Lopez, Mari Carmen Suarez-Figueroa,
and Asuncion Gomez-Pérez

8 Ontology Localization. 171
Mauricio Espinoza Mejia, Elena Montiel-Ponsoda,
Guadalupe Aguado de Cea, and Asuncion Gomez-Pérez

xi

Xii Contents

9 Ontology (Network) Evaluation.
Marta Sabou and Miriam Fernandez

10 Modularizing Ontologies.
Mathieu d’Aquin

11 Ontology Evolution.
Raiil Palma, Fouad Zablith, Peter Haase, and Oscar Corcho

12 Methodological Guidelines for Matching Ontologies.
Jérome Euzenat and Chan Le Duc

Part II' The NeOn Toolkit

13 Overview of the NeOn Toolkit.
Michael Erdmann and Walter Waterfeld

14 Scheduling Ontology Engineering Projects Using gOntt.
Mari Carmen Suarez-Figueroa, Asunciéon Gomez-Pérez,
and Oscar Mufioz-Garcia

15 Customizing Your Interaction with Kali-ma..................
Alessandro Adamou and Valentina Presutti

16 Visualizing and Navigating Ontologies with KC-Viz............
Enrico Motta, Silvio Peroni, José Manuel Gomez-Pérez,
Mathieu d’Aquin, and Ning Li

17 Reasoning with Networked Ontologies.
Guilin Qi and Andreas Harth

Part IV Case Studies

18 Knowledge Management at FAO: A Case Study on Network
of Ontologies in Fisheries.
Caterina Caracciolo, Juan Heguiabehere, Aldo Gangemi,
Claudio Baldassarre, Johannes Keizer, and Marc Taconet

19 Electronic Invoice Management in the Pharmaceutical Sector:
The Pharmalnnova Case
José Manuel Gomez-Pérez, Victor Méndez, Joan Candini,
and Juan Carlos Mufioz

20 Integrating Product Information in the Pharmaceutical Sector . . .
Tomas Pariente Lobo and German Herrero Carcel

Chapter 1

Introduction: Ontology Engineering
in a Networked World

Mari Carmen Suarez-Figueroa, Asuncion Gomez-Pérez,
Enrico Motta, and Aldo Gangemi

Abstract While ontology engineering is rapidly entering the mainstream, expert
ontology engineers are a scarce resource. Hence, there is a need for practical
methodologies and technologies, which can assist a variety of user types with
ontology development tasks. To address this need, this book presents a scenario-
based methodology, the NeOn Methodology, which provides guidance for all main
activities in ontology engineering. The context in which we consider these activities
is that of a networked world, where reuse of existing resources is commonplace,
ontologies are developed collaboratively, and managing relationships between
ontologies becomes an essential aspect of the ontological engineering process.
The description of both the methodology and the ontology engineering activities
is grounded in a comprehensive software environment, the NeOn Toolkit and its
plugins, which provides integrated support for all the activities described in the
book. Here we provide an introduction for the whole book, while the rest of the
content is organized into 4 parts: (1) the NeOn Methodology Framework, (2) the set
of ontology engineering activities, (3) the NeOn Toolkit and plugins, and (4) three
use cases. Primary goals of this book are (a) to disseminate the results from the
NeOn project in a structured and comprehensive form, (b) to make it easier for
students and practitioners to adopt ontology engineering methods and tools, and

M.C. Suarez-Figueroa (<) » A. Gomez-Pérez

Ontology Engineering Group, Facultad de Informatica, Universidad Politécnica de Madrid,
Campus de Montegancedo sn., 28660 Boadilla del Monte, Madrid, Spain

e-mail: mcsuarez@fi.upm.es; asun@fi.upm.es

E. Motta

Knowledge Media Institute (KMi), The Open University, Walton Hall, Milton Keynes
MK7 6AA, UK

e-mail: e.motta@open.ac.uk

A. Gangemi

Semantic Technologies Lab, Institute of Cognitive Sciences and Technologies (National Research
Council — CNR), Via Nomentana 56, 00161 Rome, Italy

e-mail: aldo.gangemi@cnr.it

M.C. Suarez-Figueroa et al. (eds.), Ontology Engineering in a Networked World, 1
DOI 10.1007/978-3-642-24794-1_1, © Springer-Verlag Berlin Heidelberg 2012

mailto:mcsuarez@fi.upm.es
mailto:asun@fi.upm.es
mailto:e.motta@open.ac.uk
mailto:aldo.gangemi@cnr.it

2 M.C. Suarez-Figueroa et al.

(c) to provide a textbook for undergraduate and postgraduate courses on ontology
engineering.

1.1 Introduction

The Semantic Web is characterized by the existence of a very large number of
distributed semantic resources, which subscribe to alternative but often overlapping
modeling schema (i.e., ontologies). Together these resources define a network of
ontologies related through a variety of different meta-relationships such as
versioning, inclusion, inconsistency, similarity, and others. This emerging scenario
is radically different from the relatively narrow contexts in which ontologies have
been traditionally developed and applied, and calls for new methods and tools to
support effectively the development of a new kind of network-oriented semantic
applications.

Hence, ontologies on the Web are not stand-alone artifacts. They relate to
each other in ways that might affect their meaning, and are inherently distributed
in a network of interlinked semantic resources. More precisely, a network of
ontologies or an ontology network is a collection of ontologies related together
via a variety of relationships, such as alignment, modularization, version, and
dependency. Accordingly, a networked ontology is an ontology included in such
anetwork, sharing relationships with a potentially large number of other ontologies.

Intuitively, this aspect of considering ontologies as included in a network
implies that they are defined not only through their content but also in terms of
ontology metadata, which provide information about their provenance, purpose,
and the relations with other ontologies and semantic resources, among other things.

One of the most common ways for two ontologies to relate is to be dependent on
each other. More precisely, it is often the case that in order to define its own model,
an ontology refers to the definitions included in another ontology. The OWL
language includes a primitive (owl:imports) allowing an ontology developer to
declare such a relationship, merging the definitions of the imported ontology with
those from the importing one.

Aligning ontologies is a way to put different models in correspondence by
declaring which entities in one ontology are the same as those in another ontology,
or a generalization or specialization. The main purpose of alignments is to ensure
semantic interoperability, making it possible to merge ontologies in a meaningful
way by representing information in one ontology in terms of the entities in another.

Large, monolithic ontologies are hard to manipulate, use, and maintain. Modular
ontologies on the contrary divide the ontological model in self-contained,
interlinked components, which can be considered independently, while at the
same time participate to the definition of a specific aspect of an ontology. Therefore,
modules share the relation that they are common components of a larger ontology,
and often include dependencies and alignments to other modules.

1 Introduction: Ontology Engineering in a Networked World 3

Finally, versioning relates to the activity of keeping track of the different
versions of an ontology. This is of particular importance in a collaborative ontology
engineering environment, where the ontology evolution process needs to be care-
fully monitored and managed. The OWL language includes primitives to declare
versioning relations between ontologies, but these do not consider fine-grained
changes and are not often used in practice.

In this networked world, ontology practitioners need both methodological and
technological support for the development and use of ontology networks. We aim to
provide such a support in this book.

1.2 NeOn Methodology Framework

One of the main contributions of this book is the NeOn Methodology framework,
which is described in the first part of this book. Although methodological
approaches already exist in the literature — e.g., METHONTOLOGY, On-To-
Knowledge, and DILIGENT, they do not provide the comprehensive set of methods
described in the NeOn Methodology, especially with respect to key activities in
a network-centric scenario, such as those related to reusing and managing the
dynamics of ontologies.

The NeOn Methodology (Chap. 2) uses a scenario-based approach to ontology
development and provides a comprehensive set of methods and guidelines for
carrying out the variety of activities required when developing ontologies in
a networked world.

The NeOn Methodology includes (1) a set of nine scenarios that involve
different activities for collaboratively building ontologies and ontology networks,
(2) a glossary of processes and activities relevant to ontology development, (3) a
collection of ontology life cycle models, and (4) a set of methodological guidelines.
The NeOn Methodology defines each process or activity in a precise manner,
stating its purpose, inputs and outputs, the actors involved, when its execution is
more appropriate, and a set of proposed methods, techniques, and tools to be used.
The methodology is presented in a prescriptive way to facilitate its adoption by
students and practitioners.

Current methodologies for ontology engineering, such as METHONTOLOGY,
On-To-Knowledge, and DILIGENT, mainly include guidelines for single ontology
construction, ranging from ontology requirements specification to ontology imple-
mentation, and they are mainly targeted to ontology researchers. In contrast to the
aforementioned approaches, the NeOn Methodology does not prescribe a rigid
workflow but instead suggests pathways and activities for a variety of scenarios.
The nine scenarios described in the book cover commonly occurring situations,
e.g., when existing ontologies need to be reengineered, aligned, modularised,
localized to support different languages and cultures, or integrated with non-
ontological resources (NORs), such as folksonomies or thesauri.

http://dx.doi.org/10.1007/978-3-642-24794-1_2

4 M.C. Suarez-Figueroa et al.

Another important aspect of the NeOn Methodology is the pattern-based design
approach described in Chap. 3. In this chapter, different types of ontology design
patterns (ODPs) are presented as well as an associated method (named eXtreme
Design) to assist in ontology development. Ontology design patterns provide
modeling solutions which can be applied to solve recurrent ontology design
problems. The availability of a library of ontology design patterns is an important
step toward achieving the ultimate goal of turning ontology design into a structured
and reproducible engineering process. The pattern library also includes patterns for
reengineering non-ontological resources (such as thesauri, classification schemas,
etc.) into ontologies.

In addition, as part of the methodological framework, three models are proposed
to represent information about ontology networks. They play a critical role, as they
allow keeping track of the provenance, purpose, and design of ontologies, as well as
covering multilinguality issues. The three models are:

» The Ontology Metadata Vocabulary (OMV). An ontology that defines classes
and relations to describe authoring aspects, ontology type, purpose, etc.

e The Collaborative Ontology Design Ontology (C-ODQO). An ontology network
that enables designers to describe design entities (ontologies, modules, ontology
elements, requirements, activities, tools, reusable knowledge, teams, people, etc.).

e The Linguistic Information Repository (LIR). An ontology that defines a set of
linguistic classes, whose nature accounts for the localization of ontology terms
in a particular language.

1.3 Ontology Engineering Activities

The second part of the book provides the reader with a description of the key
activities relevant to the ontology engineering life cycle in a networked world. For
each activity, a general introduction, methodological guidelines, practical examples
(where possible), and the technological support within the NeOn Toolkit (if avail-
able) are provided. Methodological guidelines are explained using a common
structure, which includes process or activity definition, goal, input and output,
actors involved, and a graphical workflow, which describes how the process or
activity should be carried out. This structured way of explaining the guidelines
maximizes the pedagogical value of the book.

The starting point to develop an ontology network is the gathering of the
requirements the ontology should fulfill. This activity is called ontology
requirements specification and is described in Chap. 5.

Once requirements are collected, ontology practitioners are encouraged to fol-
low a reuse approach in the ontology building process, which allows speeding up
the ontology network development process, saving time and money, and promoting
the application of good practices. In this context, both non-ontological resources
(Chap. 6) and ontological resources (Chap. 7) can be reused.

http://dx.doi.org/10.1007/978-3-642-24794-1_3
http://dx.doi.org/10.1007/978-3-642-24794-1_5
http://dx.doi.org/10.1007/978-3-642-24794-1_6
http://dx.doi.org/10.1007/978-3-642-24794-1_7

1 Introduction: Ontology Engineering in a Networked World 5

An important aspect in a networked world, which involves different natural
languages and cultures, is the localization of the ontologies. This activity is
described in Chap. 8.

Another key aspect in the ontology network development is the ontology
evaluation activity, which is performed at different levels and according to different
criteria, as explained in Chap. 9.

Additionally, modularization also needs to be taken into account in the ontology
network development according to three different aspects: (1) designing modular
ontologies, (2) modularizing existing ontologies, and (3) reusing ontology modules.
Methodological guidelines for modularizing existing ontologies are presented in
Chap. 10.

Ontology networks need to be kept up to date in order to reflect changes and
updates. To this purpose, methodological guidelines for ontology evolution are
provided in Chap. 11.

Finally, finding alignments between ontologies is an important task for ontology
engineering in a networked world, and is covered in Chap. 12, which provides
methodological guidelines for this activity.

1.4 The NeOn Toolkit

The third part of the book presents an overview of the NeOn Toolkit (Chap. 13),
focusing in particular on the user interaction side and a detailed description of the
plugins, which are most critical to the ontology development process.

Proper management of ontology engineering projects in a networked world
requires careful planning, and to this purpose it is recommended that an ontology
project plan and schedule is defined. To support this activity, a NeOn Toolkit
plugin, called gOntt, has been developed, which is described in Chap. 14.

The tasks of locating, selecting, and accessing NeOn Toolkit plugins are
supported by the Kali-ma plugin (Chap. 15). This plugin, which exploits the
versatility of the C-ODO Light model, assists ontology engineers and project
managers in carrying out such tasks through a unified, shared interaction mode.

Visualizing and navigating ontology networks is a key issue for ontology
engineering. In this sense, the NeOn Toolkit provides a novel plugin called KC-Viz
(Chap. 16), which exploits an innovative ontology summarization method to support a
“middle-out ontology browsing” approach, where it becomes possible to navigate
ontologies starting from the most information-rich nodes (key concepts).

Finally, reasoning with ontology networks is another key activity in ontology
engineering. Chapter 17 presents (a) the NeOn Toolkit query plugin, which allows
users to query ontologies in the NeOn Toolkit via the RDF query language
SPARQL, (b) the NeOn Toolkit reasoning plugin, which allows for standard
reasoning tasks, such as materializing inferences and checking consistency in
ontologies, and (c) the RaDON plugin, which supports users in diagnosing and
resolving inconsistencies in networked ontologies.

http://dx.doi.org/10.1007/978-3-642-24794-1_8
http://dx.doi.org/10.1007/978-3-642-24794-1_9
http://dx.doi.org/10.1007/978-3-642-24794-1_10
http://dx.doi.org/10.1007/978-3-642-24794-1_11
http://dx.doi.org/10.1007/978-3-642-24794-1_12
http://dx.doi.org/10.1007/978-3-642-24794-1_13
http://dx.doi.org/10.1007/978-3-642-24794-1_14
http://dx.doi.org/10.1007/978-3-642-24794-1_15
http://dx.doi.org/10.1007/978-3-642-24794-1_16
http://dx.doi.org/10.1007/978-3-642-24794-1_17

6 M.C. Suarez-Figueroa et al.

1.5 Case Studies

The fourth and last part of the book describes how the NeOn methods and tools have
been applied in three real-world case studies in the fishery and pharmaceutical
domains.

* Knowledge management at FAO (Chap. 18). This case study is centered on
fisheries data' and aims to build a system to enable fisheries experts to have
a unified view of the distributed data relevant to fisheries stocks. The result is
a prototype of a Fisheries Stock Depletion Assessment System (FSDAS), which
illustrates the advantages derived from enriching data with explicit semantics.

» Electronic invoice management in the pharmaceutical sector: the Pharmalnnova
case (Chap. 19). This chapter deals with the development of an ontology
network for automating the exchange of electronic invoices in the pharmaceuti-
cal sector.

» Integrating product information in the pharmaceutical sector (Chap. 20). This
case study focuses on the development of a network of interconnected pharma-
ceutical ontologies to provide an integrated view of different drug terminologies.

! http://www.fao.org/fishery/en

http://dx.doi.org/10.1007/978-3-642-24794-1_18
http://dx.doi.org/10.1007/978-3-642-24794-1_19
http://dx.doi.org/10.1007/978-3-642-24794-1_20
http://www.fao.org/fishery/en

Part I
NeOn Methodology Framework

Chapter 2
The NeOn Methodology for Ontology
Engineering

Mari Carmen Suarez-Figueroa, Asuncion Gomez-Pérez,
and Mariano Fernandez-Lopez

Abstract In contrast to other approaches that provide methodological guidance for
ontology engineering, the NeOn Methodology does not prescribe a rigid workflow,
but instead it suggests a variety of pathways for developing ontologies. The nine
scenarios proposed in the methodology cover commonly occurring situations, for
example, when available ontologies need to be re-engineered, aligned, modular-
ized, localized to support different languages and cultures, and integrated with
ontology design patterns and non-ontological resources, such as folksonomies or
thesauri. In addition, the NeOn Methodology framework provides (a) a glossary of
processes and activities involved in the development of ontologies, (b) two onto-
logy life cycle models, and (c) a set of methodological guidelines for different
processes and activities, which are described (a) functionally, in terms of goals,
inputs, outputs, and relevant constraints; (b) procedurally, by means of workflow
specifications; and (c) empirically, through a set of illustrative examples.

2.1 Introduction

Given the large increase in the number of ontologies, which are available online,
ontology development is more and more becoming a reuse-centric process (Simperl
2009). In particular, the level of reuse may vary significantly, depending on whether

M.C. Suarez-Figueroa (<) » A. Gomez-Pérez

Ontology Engineering Group, Facultad de Informatica, Universidad Politécnica de Madrid,
Campus de Montegancedo sn., 28660 Boadilla del Monte, Madrid, Spain

e-mail: mcsuarez@fi.upm.es; asun@fi.upm.es

M. Fernandez-Lépez

Escuela Politécnica Superior, Universidad San Pablo CEU, Urbanizacién Monteprincipe sn.,
28668 Boadilla del Monte, Madrid, Spain

e-mail: mfernandez.eps@ceu.es

M.C. Suarez-Figueroa et al. (eds.), Ontology Engineering in a Networked World, 9
DOI 10.1007/978-3-642-24794-1_2, © Springer-Verlag Berlin Heidelberg 2012

mailto:mcsuarez@fi.upm.es
mailto:asun@fi.upm.es
mailto:mfernandez.eps@ceu.es

10 M.C. Suarez-Figueroa et al.

it concerns (a) other ontologies, such as DOLCE!, SUMO (Pease et al. 2002), and
Kowien?; (b) ontology modules (Cuenca-Grau et al. 2007); (c) ontology statements
and ontology design patterns (Gangemi 2007; Presutti and Gangemi 2008); and
(d) non-ontological resources (Jimeno-Yepes et al. 2009), such as thesauri, lexicons,
DBs, UML diagrams, and classification schemas (e.g., NAICS? and SOC4).

Thus, in this context ontology development can be then characterized as the
construction of a network of ontologies, where the different resources may be
managed by different people, possibly in different organizations.

Given this new vision of ontology engineering by reuse, it then becomes
important to provide strong methodological support for the collaborative develop-
ment of ontology networks.

Methodological frameworks are widely accepted in different mature fields
(Fernandez-Lopez 1999), like Software Engineering and Knowledge Engineering.
Such methodological frameworks cover aspects, such as development process, life
cycle models, as well as the methods, techniques, and tools that can be used to
support the development process. Accordingly, a mature methodology for develop-
ing ontologies should also cover these aspects.

This chapter describes the NeOn Methodology for building ontologies and
ontology networks, a scenario-based methodology that supports different aspects
of the ontology development process, as well as the reuse and dynamic evolution of
networked ontologies in distributed environments, where knowledge is introduced
by different people (domain experts, ontology practitioners) at different stages of
the ontology development process.

This methodology includes the following components:

e The NeOn Glossary (Sect. 2.2), which identifies and defines the processes and
activities potentially involved in the ontology network construction.

e A set of nine scenarios for building ontologies and ontology networks, which are
described in Sect. 2.3. Each scenario is decomposed in different processes and
activities taken from those included in the NeOn Glossary.

» Two ontology network life cycle models (Sect. 2.4) that specify how to organize
the processes and activities of the NeOn Glossary into phases’.

e A set of prescriptive methodological guidelines for processes and activities
(Sect. 2.5).

Uhttp://www.loa-cnr.it/DOLCE.html

2Skill Ontology from the University of Essen, which defines concepts representing the
competencies required to describe job position requirements and job applicant skills. Available
at http://www .kowien.uni-essen.de/publikationen/konstruktion.pdf

?North American Industry Classification System, which provides industry-sector definitions for
Canada, Mexico, and the United States to facilitate uniform economic studies across the
boundaries of these countries. Available at http://www.census.gov/epcd/www/naics.html
*Standard Occupational Classification, which classifies workers into occupational categories
(23 major groups, 96 minor groups, and 449 occupations). Available at http://www.bls.gov/soc/
5 A phase is a distinct period or stage in a process of development.

http://www.loa-cnr.it/DOLCE.html
http://www.kowien.uni-essen.de/publikationen/konstruktion.pdf
http://www.census.gov/epcd/www/naics.html
http://www.bls.gov/soc/

2 The NeOn Methodology for Ontology Engineering 11

In addition to applying the NeOn Methodology to the development of the
ontology networks associated with use cases of the NeOn project as shown in
Chaps. 18, 19, and 20. This methodology has been used to build ontology networks
in different domains and areas and by people with diverse background, for example,
and just to name a few, in e-employment (Villazén-Terrazas et al. 2011), in
education (Clemente et al. 2011), in tourism (Lamsfus et al. 2009), and in mobile
environments (Poveda-Villalon et al. 2010).

Finally, it is worth mentioning that the NeOn Methodology can also be used
within the Linked Data initiative (Bizer et al. 2009) since this is based on knowl-
edge resource reused and re-engineering as well as on mapping resources. Publish-
ing Linked Data is a process that involves a high number of activities, design
decisions as well as a wide range of technologies. The main activities are (1) identi-
fication of the data sources, (2) vocabulary modeling, (3) generation of the RDF
data, (4) publication of the RDF data, and (5) linking the RDF data with other
datasets in the cloud. In the vocabulary modeling activity, ontologies to model the
data contained in the selected sources should be developed. The most important
recommendation here is to reuse as much as possible available knowledge
resources that model the knowledge needed. In this regard, the NeOn Methodology
provides precise guidelines to help practitioners to create the vocabularies needed.
One example of the use of the NeOn Methodology in this initiative can be found in
(Vilches-Blazquez et al. 2010).

2.2 The NeOn Glossary

The NeOn Glossary identifies and defines the processes and activities potentially
involved in the ontology network construction. This glossary has been established
by a consensus reaching process among ontology experts and is a first step in
addressing the lack of a standard glossary in Ontology Engineering — in contrast
with the Software Engineering field that can claim the IEEE Standard Glossary of
Software Engineering Terminology (IEEE 1990). The NeOn Glossary of Processes
and Activities (Suarez-Figueroa 2010)° includes 59 processes and activities listed
in Table 2.1.

2.3 Nine Scenarios for Building Ontology Networks

In the NeOn Methodology framework, a set of nine flexible scenarios
for collaboratively building ontologies and ontology networks, placing special
emphasis on reusing and re-engineering knowledge resources (ontological and
non-ontological), has been identified.

S http://mayor2.dia.fi.upm.es/oeg-upm/files/pdf/NeOnGlossary.pdf

http://dx.doi.org/10.1007/978-3-642-24794-1_18
http://dx.doi.org/10.1007/978-3-642-24794-1_19
http://dx.doi.org/10.1007/978-3-642-24794-1_20
http://mayor2.dia.fi.upm.es/oeg-upm/files/pdf/NeOnGlossary.pdf

12

M.C. Suarez-Figueroa et al.

Table 2.1 NeOn Glossary of processes and activities

Processes

Ontology aligning

Ontology design pattern reuse
Ontology module reuse
Ontology re-engineering
Non-ontological resource re-engineering
Activities

Ontology annotation
Ontology assessment
Ontology comparison
Ontology conceptualization
Ontology configuration management control
Ontology customization
Ontology diagnosis

Ontology documentation
Ontology elicitation

Ontology enrichment
Ontology environment study
Ontology evaluation
Ontology evolution

Ontology extension

Ontology feasibility study
Ontology formalization
Ontology forward engineering
Ontology implementation
Ontology integration
Knowledge acquisition for ontologies
Ontology learning

Ontology localization
Ontology mapping

Ontology matching

Non-ontological resource reuse
Ontological resource reuse
Ontology reuse

Ontology statement reuse
Ontology validation

Ontology merging

Ontology modification

Ontology modularization

Ontology module extraction
Ontology partitioning

Ontology population

Ontology pruning

Ontology quality assurance
Ontology repair

Ontology requirements specification
Non-ontological resource reverse Engineering
Non-ontological resource transformation
Ontology restructuring

Ontology reverse engineering
Scheduling

Ontology search

Ontology selection

Ontology specialization

Ontology summarization

Ontology translation

Ontology update

Ontology upgrade

Ontology verification

Ontology versioning

Figure 2.1 presents the set of the nine most plausible scenarios for building
ontologies and ontology networks. Directed arrows with associated numbered
circles represent the different scenarios. Each scenario is decomposed into different
processes or activities. Processes and activities are represented with colored circles
or with rounded boxes and are defined in the NeOn Glossary of Processes and
Activities presented in Sect. 2.2. Figure 2.1 also shows (as dotted boxes) the
existing knowledge resources to be reused, and the possible outputs that result
from the execution of some of the presented scenarios.

This section includes, as independent subsections, the most common scenarios
that may unfold during the ontology network development. However, the reader
should keep in mind that this list is not meant to be exhaustive.

» Scenario 1: From specification to implementation. The ontology network is
developed from scratch, that is, without reusing available knowledge resources.

2 The NeOn Methodology for Ontology Engineering 13

KnowledgeResources

©@©©

1

I

1

1

I

1

1

1

! .

! Ontological Resource
! Reuse
1

1

]

Non Ontological Resources

I
1
1
1
[|
| |
1 - 1
I I Glossaries| |Dictionaries| |Lexicons |
| |
H '
| |
|
[

Classification Flogic
L i RDF(S
:

Non Ontological Resource
Reengineering

Alignments

A

—0——0 O O @— |roro

io. Specification Scheduling O. Conceptualization O. Formalization O. Implementation }

. @ Ontology Restructuring

H . Leellbatm (Pruning, Extension,
, . Specialization, Modularization) &

1,2,3,4,5,6,7,8,9
— Ontology Support Activities: Knowledge Acquisition (Elicitation); Documentation;

Configuration Management; Evaluation (V&V); Assessment

5

s

Fig. 2.1 Scenarios for building ontologies and ontology networks

e Scenario 2: Reusing and re-engineering non-ontological resources. This scenario
covers the case where ontology developers need to analyze non-ontological
resources and decide, according to the requirements the ontology should fulfill
which non-ontological resources can be reused to build the ontology network. The
scenario also covers the task of re-engineering the selected resources into
ontologies.

» Scenario 3: Reusing ontological resources. Here, ontology developers reuse
ontological resources (ontologies as a whole, ontology modules, and/or ontology
statements).

e Scenario 4: Reusing and re-engineering ontological resources. Here, ontology
developers both reuse and re-engineer ontological resources.

e Scenario 5: Reusing and merging ontological resources. This scenario unfolds
only in those cases where several ontological resources in the same domain are
selected for reuse and when ontology developers wish to create a new ontologi-
cal resource from two or more ontological resources.

» Scenario 6: Reusing, merging, and re-engineering ontological resources. This
scenario is similar to Scenario 5; however, here developers decide not to use the
set of merged resources as it is, but to re-engineer it.

e Scenario 7: Reusing ontology design patterns (ODPs). Ontology developers
access ODPs repositories to reuse them.

14 M.C. Suarez-Figueroa et al.

e Scenario 8: Restructuring ontological resources. Ontology developers restruc-
ture (modularizing, pruning, extending, and/or specializing) ontological
resources to be integrated in the ontology network being built.

e Scenario 9: Localizing ontological resources. Ontology developers adapt an
ontology to other languages and culture communities, thus producing a multi-
lingual ontology.

Knowledge acquisition, documentation, configuration management, evaluation,
and assessment should be carried out during the whole ontology network develop-
ment, that is, in any scenario used for developing the ontology network. The
intensity of such support activities depends on the concrete phase of the develop-
ment progress.

It is worth mentioning that these scenarios can be combined in different
and flexible ways, and that any combination of scenarios should include Scenario 1
because this scenario is made up of the core activities that have to be performed in
any ontology development. Indeed, as Fig. 2.1 shows, the results of any other
scenario should be integrated in the corresponding activity of Scenario 1.

The following subsections present the various scenarios identified; each subsec-
tion includes (a) motivation for the scenario; (b) sequence of processes, activities,
and tasks to be carried out, where the processes and activities included are taken
from the NeOn Glossary of Processes and Activities (Sect. 2.2); and (c) outcomes
for the scenario.

2.3.1 Scenario 1: From Specification to Implementation

This scenario refers to the development of ontologies from scratch. The scenario is
made up of the core activities that have to be performed in any ontology develop-
ment and should be combined with the rest of scenarios.

In this scenario, ontology developers’ should specify first the requirements that
the ontology should fulfill, by means of the ontology requirements specification
activity. The objective of this activity is to output the ontology requirements speci-
fication document (ORSD) that includes the purpose, the scope, and the implemen-
tation language of the ontology network, the target group, and the intended uses of
the ontology network, as well as the set of requirements that the ontology network
should fulfill, mainly in the form of competency questions (CQs)® and a pre-glossary
of terms. Prescriptive methodological guidelines for this activity are provided
in Chap. 5.

"In this book, ontology developers refer to software developers and ontology practitioners
involved in the development of ontologies.

8 An example of CQ can be “where is located the device Z? The device Z is at coordinates X, Y.

http://dx.doi.org/10.1007/978-3-642-24794-1_5

2 The NeOn Methodology for Ontology Engineering 15

After the ontology requirements specification activity, it is recommended to
carry out a look for candidate knowledge resources (ontologies, non-ontological
resources, and ontology design patterns) to be reused in the development, using as
input terms included in the ORSD. These candidate resources provide clues for the
identification of the scenarios to be followed during the ontology development.
Then, the scheduling activity must be carried out, using the ORSD and the results of
such a look for resources. During the scheduling activity, the team establishes the
ontology network life cycle and the human resources needed for the ontology
project. Chapter 14 presents guidelines and a tool for performing the scheduling
of ontology development projects.

Then, the ontology developers assigned to the ontology project should carry out
(1) the ontology conceptualization activity, in which knowledge is organized and
structured into meaningful models at the knowledge level; (2) the ontology
formalization activity, in which the conceptual model is transformed into a semi-
computable model; and (3) the ontology implementation activity, in which a
computable model (implemented in an ontology language) is generated.

The principal output is a network of ontologies that represents the expected
domain implemented in an ontology language (OWL’, F-Logic, etc.). In addition, a
broad range of documents, such as the ontology requirements specification docu-
ment, the ontology description document, and the ontology evaluation document,
will be generated as output by the different activities.

2.3.2 Scenario 2: Reusing and Re-engineering Non-Ontological
Resources

Currently, ontology developers are realizing the benefits of “not reinventing the
wheel” at each ontology development. They are starting to reuse as much as
possible non-ontological resources, such as classification schemes, thesauri,
lexicons, and folksonomies, built by others that already have reached some degree
of consensus, with the aim of speeding up the ontology development process
(Villazon-Terrazas et al. 2010). The reuse of such resources involves necessarily
their re-engineering into ontologies. Therefore, this scenario unfolds in those cases
in which ontology developers wish to reuse the non-ontological resources at their
disposal.

As Fig. 2.1 shows (by arrows with the number 2), ontology developers should
accomplish first the non-ontological resource reuse process and then choose the
most suitable non-ontological resources (thesauri, glossaries, databases, etc.) to be
used for building the ontology network. Such non-ontological resources cover to
some extent the domain of the ontology network being built. If ontology developers

° http://www.w3.org/TR/owl-ref/

http://dx.doi.org/10.1007/978-3-642-24794-1_14
http://www.w3.org/TR/owl-ref/

16 M.C. Suarez-Figueroa et al.

decide that one or more resources are useful for the ontology network development,
then the non-ontological resource re-engineering process should be carried out to
transform the selected non-ontological resources into ontologies. After this process,
ontology developers should use the resultant ontologies as input of some of the
activities included in Scenario 1 (explained in Sect. 2.3.1), as shown in Fig. 2.1.

The activities for carrying out the non-ontological resource reuse process are
briefly explained below; prescriptive methodological guidelines for this activity are
described in Chap. 6:

1. Activity 1. Search non-ontological resources. The goal of the activity is to find
non-ontological resources in highly reliable websites, domain-related sites, and
resources within organizations. The input for this activity is the ontology
requirements specification document (ORSD).

2. Activity 2. Assess the set of candidate non-ontological resources. The goal of
this activity is to assess the set of candidate non-ontological resources obtained
in Activity 1. To carry out this activity, the following criteria should be used:
coverage, precision, and consensus about the knowledge and terminology used
in the resource, which is a subjective criterion.

3. Activity 3. Select the most appropriate non-ontological resources. The goal of
this activity is to select the most appropriate non-ontological resources from
those candidates obtained in Activity 2.

As mentioned before, the goal of the non-ontological resource re-engineering
process is to transform a non-ontological resource into an ontology. This process
can be divided into the following activities, and prescriptive methodological
guidelines for performing them are included in Chap. 6:

1. Activity 1. Non-ontological resource reverse engineering. The goal of this
activity is to analyze a non-ontological resource in order to identify its underly-
ing components and create representations of the resource at the different levels
of abstraction (design, requirements, and conceptual).

2. Activity 2. Non-ontological resource transformation. The goal of this activity is
to generate a conceptual model from the non-ontological resource.

3. Activity 3. Ontology forward engineering. The goal of this activity is to output a
new implementation of the ontology on the basis of the new conceptual model
identified in Activity 2.

The principal output is an ontology network that represents the expected domain
implemented in an ontology language (OWL, F-Logic, etc.). Furthermore, a broad
range of documents containing the requirements specification, the ontology docu-
mentation, the ontology evaluation, etc. will be generated as output of different
activities. Additionally, the non-ontological resources selected to be reused have
been “ontologized” by means of the non-ontological resource re-engineering
activity.

http://dx.doi.org/10.1007/978-3-642-24794-1_6
http://dx.doi.org/10.1007/978-3-642-24794-1_6

2 The NeOn Methodology for Ontology Engineering 17
2.3.3 Scenario 3: Reusing Ontological Resources

As more ontological resources are available in ontology repositories and on the
Internet'’, ontology developers are starting to reuse them not only with the idea of
“not reinventing the wheel”, but also with the aim of taking advantage of them.
Thus, this scenario unfolds in those cases in which ontology developers have at
their disposal ontological resources useful for their problem and that can be reused
in the ontology development.

As Fig. 2.1 shows (by arrows with the number 3), ontology developers should
perform the ontological resource reuse process, which is composed of the follow-
ing activities:

1. Activity 1. Ontology search. Ontology developers search for candidate onto-
logical resources that satisfy the requirements in repositories and registries
like Swoogle1 l, Watsonlz, and Sindice'?. These ontological resources could be
implemented in different languages or could be available in different ontology
tools.

2. Activity 2. Ontology assessment. Ontology developers must inspect the content
and granularity of the ontological resources obtained in Activity 1. The goal of
this activity is to find out if such resources satisfy the needs identified in the
ORSD.

3. Activity 3. Ontology comparison. Ontology developers should compare the
ontological resources assessed in Activity 2, taking into account a set of criteria
identified by developers (e.g., reuse economic cost, code clarity, and content
quality).

4. Activity 4. Ontology selection. Ontology developers should select the set of
ontological resources that are the most appropriate for their ontology network
requirements, based on the comparisons obtained in Activity 3.

After selecting the most appropriate ontological resources, ontology
developers should define the reuse mode; that is, ontology developers need to
decide how they will reuse the selected ontological resources. There are three
possible modes:

» The ontological resources selected will be reused as they are.

» The ontology re-engineering activity should be carried out with the onto-
logical resources selected.

» Some ontological resources will be merged to obtain a new ontological
resource.

19See, for example, a list of novel ontology search engines described at: http://esw.w3.org/topic/
TaskForces/CommunityProjects/LinkingOpenData/Semantic WebSearchEngines

1 http://swoogle.umbc.edu/
12 hitp://watson.kmi.open.ac.uk/WatsonWUI/
'3 http://sindice.com/

http://esw.w3.org/topic/TaskForces/CommunityProjects/LinkingOpenData/SemanticWebSearchEngines
http://esw.w3.org/topic/TaskForces/CommunityProjects/LinkingOpenData/SemanticWebSearchEngines
http://swoogle.umbc.edu/
http://watson.kmi.open.ac.uk/WatsonWUI/
http://sindice.com/

18 M.C. Suarez-Figueroa et al.

Before reusing the selected ontological resources by means of any reuse
mode, it is also convenient to evaluate these resources through the ontology
evaluation activity.

5. Activity 5. Ontology integration. Ontology developers should include, as they
are, the ontological resources selected (the code) in Activity 4 into the ontology
network being built following the activities of Scenario 1 (Sect. 2.3.1).

Prescriptive methodological guidelines to reuse general ontologies are provided
in Chap. 7.

The principal output is an ontology network that represents the expected domain
implemented in an ontology language (OWL, F-Logic, etc.). Additionally, a broad
range of documents including the requirements specification, the ontology docu-
mentation, the ontology evaluation, etc. will be generated as output of different
activities.

2.3.4 Scenario 4: Reusing and Re-engineering Ontological
Resources

This scenario unfolds in those cases in which ontology developers have at their
disposal ontological resources useful for their problem, which can be reused in the
ontology network development. However, such resources are not exactly useful as
they are, so they should be modified (i.e., re-engineered) to serve to the intended
purpose or problem.

As Fig. 2.1 shows (by arrows with the number 4), ontology developers should
perform first the ontological resource reuse process to select the most suitable
ontological resources to be used for building the ontology network. Then, they
should carry out the ontological resource re-engineering process to modify the
selected ontological resources. Finally, they should use the resultant ontological
resources as input to some of the activities included in Scenario 1 (explained in
Sect. 2.3.1), as shown in Fig. 2.1.

Specifically, ontology developers should carry out some activities as part of the
ontological resource reuse process; such activities are the following: ontology
search, ontology assessment, ontology comparison, and ontology selection as
already explained in Scenario 3 (Sect. 2.3.3).

After the ontology selection activity, ontology developers should decide how
they will reuse the ontological resources. They should also decide whether to
perform the ontological resource re-engineering process with the selected ontolog-
ical resources because these resources may not absolutely correct for the concrete
use case as they are and they need to be transformed in some way.

The ontological resource re-engineering process proposed here has been created
taking as inspiration the software re-engineering process (Byrne 1992). It is com-
posed of the following activities: ontological resource reverse engineering, onto-
logical resource restructuring, and ontological resource forward engineering.

http://dx.doi.org/10.1007/978-3-642-24794-1_7

The NeOn Methodology for Ontology Engineering 19

Specification

Conceptualization

Formalization

Implementation

Fig. 2.2 Levels of abstraction for the ontological resource re-engineering process

Additionally, this process is related to the levels of abstraction shown in Fig. 2.2

that are based on (Byrne 1992) and are described below.

Specification is the highest level of abstraction. In this level, requirements,
purpose, and scope, among other components of the specification, are described.
In the conceptualization level, ontology characteristics such as structure and
components are described. The knowledge that the ontology represents is
organized following a set of knowledge representation primitives (concepts,
relations, etc.). In this level, the knowledge is structured in meaningful models
at the knowledge level (Newell 1982). To organize the knowledge, intermediate
representations based on tabular and graphical notations (Gomez-Pérez et al.
2003), which can be understood by ontology practitioners, can be used.

In the formalization level, the formal or semi-computable model that was used to
transform the conceptual model is described.

The implementation level is the lowest abstraction level. Here, the ontology
description focuses on implementation characteristics and is represented in an
ontology language understandable by computers and usable by automatic reasoners.

Figure 2.3 presents the ontological resource re-engineering model. This model

suggests different paths to re-engineer an ontological resource, taking into account
the levels of abstraction presented in Fig. 2.2. Examples of these paths are:

At implementation level: from ontological resource 1 code to ontological
resource 2 code

At formalization level: reverse engineering (from code 1 to formalization 1),
restructuring formalization 1 to obtain formalization 2, and forward engineering
to obtain code of resource 2

At conceptualization level: reverse engineering (from code 1 to conceptualiza-
tion 1), restructuring conceptualization 1 to obtain conceptualization 2, and
forward engineering to obtain formalization or implementation 2

20 M.C. Suarez-Figueroa et al.

Ontological Resource Restructuring

(alteration)

Ontological Resource [e Ontological Resource
Reverse Engineering & Forward Engineering
(a bmac“on}% Re-Specification <\\treﬂ nement)

e B L o \\

Vol 9, N\

i i ,

/// Re-Conceptualization \\'\

/! p== == mmmmeeem——ao e ——
---------------- == . “
Conceptualization Conceptualization b
e N
Re-Fommalization Q
Formalization R it ikt L s Formalization \\
Re-Implementation
Implementation L e 1o Implementation
Ontological Resource 1 Ontological Resource 2

Fig. 2.3 Ontological resource re-engineering model

» At specification level: reverse engineering (from code 1 to specification 1),
restructuring specification 1 to obtain specification 2, and forward engineering
to obtain conceptualization, formalization, or implementation 2

The choice of a concrete path depends on the ontological resource characteristics
that have to be changed. Thus, in Fig. 2.3 the following types of changes can be
distinguished:

» Re-specification. If the ontology developer restructures the requirements speci-
fication, she changes requirements, purpose and scope, among other elements of
the requirements specification. For example, changes in requirements, addition
or deletion of requirements, etc.

» Re-conceptualization. If she restructures the conceptualization, changes might
refer to modification of ontology structure, modification of granularity and
richness of the knowledge, removal or addition of axioms, restructuration of
ontology architecture (modularization), inclusion of new concepts, use of ontol-
ogy design patterns, etc.

» Re-formalization. If she restructures the formalization level, the changes refer to
formalization characteristics (such as changing the ontology paradigm from
description logic to frames).

» Re-implementation. If she restructures the implementation level, the changes are
focused on implementation characteristics that are tightly related to the ontology
implementation language (e.g., translation from RDF(S) to OWL). Other
changes could be conforming to coding standards, improving code readability,
renaming code items, etc.

Ontology developers should decide at which level they need to carry out the
ontological resource re-engineering process. Once ontology developers have
decided the level, they should carry out the ontological resource re-engineering
process, and then they should integrate the result of such a process (code,

2 The NeOn Methodology for Ontology Engineering 21

formalization, conceptualization, or specification) into the corresponding activity of
Scenario 1 (Sect. 2.3.1).

The principal outcome is an ontology network that represents the expected
domain implemented in an ontology language (OWL, F-Logic, etc.). Additionally,
a broad range of documents including requirements specification, ontology docu-
mentation, ontology evaluation, etc. will be generated as output of different
activities. Furthermore, new ontological resources from those selected for their
reuse are generated through the ontological resource re-engineering process. Such
new resources can be considered as new versions of the ontological resources after
the re-engineering process.

2.3.5 Scenario 5: Reusing and Merging Ontological Resources

This scenario unfolds in those cases where several ontological resources in the same
domain can be selected for reuse and when the ontology developer wishes to create
a new ontological resource from two or more, possibly overlapping, ontological
resources. It could also occur that the ontology developer wishes only to establish
alignments among the ontological resources selected in order to create the ontology
network.

As Fig. 2.1 shows (by arrows with the number 5), ontology developers should
perform first the ontological resource reuse process to select the most suitable
ontological resources that will be used for building the ontology network. Con-
cretely, ontology developers should carry out the activities presented in Scenario 3
(Sect. 2.3.3) as part of the ontological resource reuse process. After the ontology
selection activity, ontology developers should decide how they will reuse the
ontological resources selected. In this scenario, ontology developers decide to
perform the following activities because the selected resources are valid as they
are, but not in a complete way, if they were reused in a separate fashion. The
activities to be performed are the following:

1. Activity 1. Ontology aligning. Ontology developers carry out this activity with
the aim of obtaining a set of alignments among the selected ontological
resources. Prescriptive methodological guidelines for this activity are described
in Chap. 12.

2. Activity 2. Ontology merging. Ontology developers can merge the selected
ontological resources using the alignments (output of Activity 1) to obtain a
new ontological resource from the overlapping selected ones.

Ontology developers have here two different possibilities: (1) to establish the
mappings among such selected resources and (2) to establish the mappings and also
to merge the selected resources.

After this activity, ontology developers should use the resultant merged onto-
logical resource as input of some of the activities included in Scenario 1 (explained
in Sect. 2.3.1), as shown in Fig. 2.1.

22 M.C. Suarez-Figueroa et al.

The principal outputs are (a) a set of alignments among the selected ontological
resources and (b) a set of new ontological resources to be integrated as they are in
the ontology network.

2.3.6 Scenario 6: Reusing, Merging, and Re-engineering
Ontological Resources

This scenario unfolds in those cases in which several ontological resources in the
same domain can be selected to build the ontology network. Ontology developers
decide to create a new ontological resource merging two or more, possibly
overlapping, ontological resources. Such a merged ontological resource is not
useful as it is, so it should be modified (i.e., re-engineered) to serve to the intended
purpose.

As Fig. 2.1 shows (see arrows with number 6), ontology developers should
perform first the ontological resource reuse process to select the most suitable
ontological resources for building the ontology network (as explained in Scenario 3
(Sect. 2.3.3)). Then, they should decide how they will reuse the selected ontological
resources. It is in this scenario where ontology developers decide to perform the
ontology aligning and ontology merging activities because the selected resources
are valid but not in a complete way for the concrete case if they are considered
separately, as explained in Scenario 5 (Sect. 2.3.5). After merging the selected
resources, they should carry out the ontological resource re-engineering process as
described in Scenario 4 (Sect. 2.3.4). After that, they should use the resultant
ontological resource as input of some of the activities included in Scenario 1
(explained in Sect. 2.3.1), as shown in Fig. 2.1.

The principal output is an ontology network that represents the expected domain
implemented in an ontology language (OWL, F-Logic, etc.). Additionally, a broad
range of documents including the requirements specification, the ontology docu-
mentation, the ontology evaluation, etc. will be generated as output of different
activities.

Furthermore, a merged ontological resource, taken from those selected for reuse,
and a re-engineered merged ontological resource are generated. Alignments bet-
ween the ontological resources selected are also outputs of this scenario.

2.3.7 Scenario 7: Reusing Ontology Design Patterns

Recently, within the Ontology Engineering field, ontology design patterns (ODPs)
have emerged as (1) a way of helping ontology developers to model OWL
ontologies (Gangemi 2005; Pan et al. 2007) and (2) a new mode of encoding best
practices, based on experiences and knowledge of “good” solutions. As any other

2 The NeOn Methodology for Ontology Engineering 23

type of patterns, ODPs are perceived as having three kinds of benefits (Blomqvist
et al. 2009): (1) reuse benefits, (2) guidance benefits, and (3) communication
benefits. ODPs can be found in online libraries that include both the description
and the OWL code associated to the patterns as, for example, “the Ontology Design
Pattern Wiki”'*, or they can be obtained from the “Semantic Web Best Practices
and Deployment”'” working group. Thus, this scenario unfolds in those cases where
best practices can be applied to the development of ontology networks.

Ontology developers work on the development of an ontology network and very
often encounter problems regarding the way in which certain knowledge should be
modeled. This may happen during the ontology conceptualization activity, the
ontology formalization activity, or during the ontology implementation activity.
In these situations, ontology developers can access on-line libraries in order to find
modeling solutions.

Ontology developers should perform the ontology design pattern reuse process
to select the most suitable ODPs for building the ontology network. The principal
output of this reuse process is a set of ontology design patterns integrated into the
ontology network being developed. Guidelines to perform this reuse are provided in
Chap. 3.

2.3.8 Scenario 8: Restructuring Ontological Resources

This scenario unfolds in those cases where the knowledge contained in the concep-
tual model of the ontology network should be corrected and reorganized to obtain
the network that covers the ontology requirements.

Ontology developers should perform the ontology restructuring activity to
modify the ontology network being built, after the ontology conceptualization
activity. The ontology restructuring activity can be performed by executing any
of the following sub-activities, combining them in any manner and order:

e Ontology modularization activity. Ontology developers create different ontology
modules in the ontology network, which facilitates the reuse of the knowledge
included in the network. Prescriptive methodological guidelines to carry out this
activity are presented in Chap. 10.

* Ontology pruning activity. Ontology developers prune those branches of the
taxonomies included in the ontology network that are considered not necessary
to cover the ontology requirements.

* Ontology enrichment activity. This activity can be carried out by performing any
of the two sub-activities that follow:

14 http://ontologydesignpatterns.org/
' http://www.w3.0rg/2001/sw/BestPractices/

http://dx.doi.org/10.1007/978-3-642-24794-1_3
http://dx.doi.org/10.1007/978-3-642-24794-1_10
http://ontologydesignpatterns.org/
http://www.w3.org/2001/sw/BestPractices/

24 M.C. Suarez-Figueroa et al.

— Ontology extension activity. Ontology developers extend the ontology net-
work, including (in width) new concepts and relations.

— Ontology specialization activity. Ontology developers specialize those
branches of the ontology network that require more granularity and include
more specialized concepts and relations.

Note that this activity (ontology restructuring) can be performed (1) in an
independent way as explained in this scenario or (2) as part of the ontological
resource re-engineering process, as described in Scenario 4 in Sect. 2.3.4.

The principal output is a conceptual model of the ontology network that
represents the expected domain.

2.3.9 Scenario 9: Localizing Ontological Resources

Although access to top-quality ontologies (e.g., Galen, CYC, or AKT) is, in many
cases, free and unlimited for users all around the world, most of these ontologies are
available only in English. Due to the language barrier, non-English users therefore
often encounter problems when trying to access ontological knowledge in their own
languages. Moreover, more and more ontology-based systems are being built for
multilingual applications (e.g., multilingual machine translation or multilingual
information retrieval). For these reasons, the need for multilingual ontologies has
increased. Thus, this scenario unfolds in those cases in which the ontology network
to be developed should be written in different natural languages.

Ontology developers should perform the ontology localization activity once the
ontology has been conceptualized and restructured. This activity requires the
translation of all the ontology terms into another natural language (Spanish, French,
German, etc.) different from the language used in the conceptualization, using
multilingual thesauri and electronic dictionaries (e.g., EuroWordNeth). This ontol-
ogy localization activity is composed of the following tasks (Espinoza et al. 2009):

1. Task 1. Selecting the most appropriate linguistic assets. The goal of this task is to
select the most appropriate linguistic assets that help to reduce the cost, to
improve the quality of the localization, and to increase the consistency of the
localization activity.

2. Task 2. Selecting ontology label(s) to be localized. The goal of this task is to
select the ontology label(s) to be localized.

3. Task 3. Obtaining ontology label translation(s). The goal of this task is to obtain
the most appropriate translation in the target language for each ontology label.

4. Task 4. Evaluating label translation(s). The goal of this task is to evaluate the
label translations in the target language.

'® http://www.illc.uva.nl/EuroWordNet/

http://www.illc.uva.nl/EuroWordNet/

2 The NeOn Methodology for Ontology Engineering 25

5. Task 5. Updating the ontology. The goal of this task is to update the ontology
with the label translations obtained for each localized label. The task output is an
ontology enriched with labels in the target language associated to each localized
term.

Prescriptive methodological guidelines for localizing ontologies are presented in
Chap. 8.

After this localization activity, the resulting conceptual model should be
integrated in the conceptualization activity of Scenario 1 (Sect. 2.3.1).

The principal outcome is a conceptual model of the ontology network in
different natural languages (i.e., a multilingual conceptual model) that represents
the expected domain.

2.4 Two Ontology Network Life Cycle Models

Ontologies are artifacts designed for the purpose of satisfying certain requirements
and needs that are emerging in the real world.

Thus, the ontology network development process is defined as the process by
which user’s needs are translated into an ontology network. This means that the
ontology network development process can be seen as a specific case of the
software development process.

An ontology network life cycle model is defined as a model to describe how to
develop (and maintain) an ontology network project; in other words, how to
organize the processes and activities of the NeOn Glossary into phases or stages.

This section includes the two ontology network life cycle models, which include
the waterfall model (Sect. 2.4.1) and the iterative-incremental model (Sect. 2.4.2).
Additionally, it is worth mentioning that these two models are intrinsically related
to the set of nine flexible scenarios for collaboratively building ontologies and
ontology networks, presented in Sect. 2.3. Such a relation is due to the creation of
both models and scenarios, taking into account the importance of reusing and re-
engineering knowledge resources and merging resources.

2.4.1 Waterfall Ontology Network Life Cycle Models

The main characteristic of the waterfall life cycle model family proposed for the
ontology network development is the representation of the stages of an ontology
network as sequential phases. This model represents the stages as a waterfall. In this
model, a concrete stage must be completed before the following stage begins, and
no backtracking is permitted except in the case of the maintenance phase.

The main assumption for using the waterfall ontology network life cycle model
proposed is that the requirements are completely known, without ambiguities, and
unchangeable at the beginning of the ontology network development.

http://dx.doi.org/10.1007/978-3-642-24794-1_8

26 M.C. Suarez-Figueroa et al.

This model could be used in the following situations:

» In ontology projects with a short duration (e.g., 2 months)

¢ In ontology projects in which the goal is to develop an existing ontology in
a different formalism or language

* In ontology projects in which the requirements are closed, for instance, to
implement an ontology based on an ISO standard, or based on resources with
previous consensus in the included knowledge

« In ontology projects when ontologies cover a small, well-understood domain

Taking into account the characteristics of the ontology development scenario,
this model includes a set of support activities that should be performed in all of the
phases. This set of support activities includes the acquisition of knowledge in the
domain in which the ontology network is being developed, the evaluation (from
a content-oriented perspective) and the assessment (from user and need perspec-
tives) of the different phase outputs, project and configuration management, and
documentation.

Because of the importance of reusing and re-engineering knowledge resources
and merging ontological resources, the following five significantly different
versions of the waterfall ontology network life cycle model have been defined.
These versions have been created incrementally (i.e., the four-phase is the basis for
the five-phase, the five-phase is the basis for the six-phase, etc.).

Before detailing the different versions, they can be summarized in the following
way:

¢ The four-phase waterfall model. It represents the stages of an ontology network,
starting with the initiation phase and going through the design phase and the
implementation phase to the maintenance phase.

¢ The five-phase waterfall model. It extends the four-phase model with the reuse
of ontological resources as they are.

» The five-phase + merging phase waterfall model. It is a special case of the five-
phase model. It includes the merging phase to obtain a new ontological resource
from two or more ontological resources previously selected in the reuse phase.

¢ The six-phase waterfall model. It extends the five-phase model with re-engineering
phase. It allows the re-engineering of knowledge resources (ontological and non-
ontological). It could happen that several knowledge resources are transformed
into ontologies in the re-engineering phase.

» The six-phase + merging phase waterfall model. It extends the six-phase model
by including the merging phase after the reuse phase.

2.4.1.1 The Four-Phase Waterfall Ontology Network Life Cycle Model

This model represents the stages of an ontology network, starting with the initiation
phase and going through the design phase, the implementation phase to the mainte-
nance phase.

2 The NeOn Methodology for Ontology Engineering 27

Initiation Phase
———| Design Phase

—»[Implementation Phase]

—»[Maintenance Phase]—

Fig. 2.4 The four-phase waterfall ontology network life cycle model

The model proposed is shown in Fig. 2.4, and the main purposes and outcomes

for each phase in the model are the following:

Initiation phase. In this phase, it is necessary to produce an ontology require-
ment specification document (ORSD) (explained in Chap. 5), including the
requirements that the ontology network should satisfy and taking into account
knowledge about the concrete domain. Also in this phase, the approval or
rejection of the ontology network development should be obtained. This phase
has also as requisite to identify the development team and to establish the
resources, responsibilities, and timing (i.e., the scheduling for the ontology
project).

Design phase. The output of this phase should be both an informal model and
a formal one that satisfy the requirements obtained in the previous phase. The
formal model cannot be used by computers, but it can be reused in other
ontology networks.

Implementation phase. In this phase, the formal model is implemented in an
ontology language. The output of this phase is an ontology implemented in
RDF(S), OWL, or other language that can be used by semantic applications or by
other ontology networks.

It is worth mentioning that the last two phases (design and implementation

ones) are normally performed together when ontology development tools (such
as NeOn Toolkit, Protégé, etc.) are used.
Maintenance phase. If, during the use of the ontology network, errors or missing
knowledge are detected, then the ontology development team should go back to
the design phase. Additionally, in this phase the generation of new versions for
the ontology network should also be carried out.

2.4.1.2 The Five-Phase Waterfall Ontology Network Life Cycle Model

This model extends the four-phase model with a new phase in which the reuse of
already implemented ontological resources is considered. The main purpose in the
reuse phase is to obtain one or more ontological resources to be reused in the

http://dx.doi.org/10.1007/978-3-642-24794-1_5

28 M.C. Suarez-Figueroa et al.

ontology network being developed. The output of this reuse phase could be either an
informal model or a formal one to be used in the design phase, or an implemented
model (in an ontology language) to be used in the implementation phase.

For the other phases, the purposes and outcomes are the same as those presented
in the four-phase model.

2.4.1.3 The Five-Phase + Merging Phase Waterfall Ontology Network
Life Cycle Model

This model is a special case of the five-phase model. Now, a new phase (the
merging phase) is added after the reuse one. This merging phase has as a main
purpose to obtain a new ontological resource from two or more ontological
resources selected in the reuse phase.

For the other phases, the purposes and outcomes are the same as those presented
in the five-phase model.

2.4.1.4 The Six-Phase Waterfall Ontology Network Life Cycle Model

In this model, the five-phase model is taken as general basis, and a new phase
(re-engineering phase) is included after the reuse one. This model allows the reuse
of knowledge resources (ontological and non-ontological) and their later re-
engineering. In this model, the reuse phase has as output one or more knowledge
resources to be reused in the ontology network that is being developed. After this
phase, the non-ontological resources are transformed into ontologies in the re-
engineering phase; the ontological resources, on the other hand, can or cannot be
re-engineered, a decision that should be taken by the ontology development team.

For the other phases, the purposes and outcomes are the same as those presented
in the six-phase model.

2.4.1.5 The Six-Phase + Merging Phase Waterfall Ontology Network
Life Cycle Model

This model, extended from the six-phase model, includes the merging phase after
the reuse phase. For the other phases, the purposes and outcomes are the same as
those presented in the six-phase model.

2.4.2 Iterative-Incremental Ontology Network Life Cycle Model

The main feature of this model is the development of ontology networks
organized in a set of iterations (or short mini-projects with a fixed duration).
Each individual iteration is similar to an ontology network project that uses any

2 The NeOn Methodology for Ontology Engineering 29

lteration 1
Initiation
o ()
| (Ciartenance Prese)
Iteration n
(CosimPrme]
~{imolemereation Phese |
< biskvommce Prese)

Fig. 2.5 Schematic vision of the iterative-incremental model

type of waterfall model from those presented in Sect. 2.4.1, as shown schematically
in Fig. 2.5.
This model could be used in the following situations:

« In ontology projects with large groups of developers having different profiles
and roles

* In ontology projects in which the development involves several different
domains that are not well understood

» In ontology projects in which requirements are not completely known or can
change during the ontology development

Ontology requirements specified in the ORSD can be divided in different
subsets. The result of any iteration is a functional and partial ontology network
that meets a subset of the ontology network requirements. Such a partial ontology
network can be used, evaluated, and integrated in any other ontology network.

This model is based on the continuous improvement and extension of the
ontology network resulted from performing multiple iterations with cyclic feedback
and adaptation. In this way, the ontology network grows incrementally along the
development. Generally, in each iteration new requirements are taken into account,
but, occasionally, in a particular iteration, the partial ontology network could be
only enhanced.

This model focuses on a set of basic requirements; from these requirements,
a subset is chosen and considered in the development of the ontology network. The
partial result is reviewed, the risk of continuation with the next iteration is analyzed
and the initial set of requirements is increased and/or modified in the next iteration
until the complete ontology network is developed.

30 M.C. Suarez-Figueroa et al.

The main benefit of this model is to identify and alleviate the possible risks as
soon as possible. Other benefits are:

¢ The development team is motivated by rapidly producing an adequate ontology.

* Some priorities can be established in the set of requirements.

* The development can be possibly adapted to changes in the requirements.

e The scheduling of each iteration can be adapted based on the experience of
previous iterations.

It is worth mentioning that at the beginning of the ontology network project, the
number of iterations during the ontology project is influenced by:

¢ The decision of performing a more complete and detailed ontology requirements
specification. In this case, the number of iterations will be lower.

¢ The decision of carrying out a simpler and less complete requirements specifi-
cation, in which case more number of iterations and more revisions will be
needed.

Figure 2.5 shows the schematic vision of the iterative-incremental model. The
first initiation phase shown in the figure has as main outcomes the ontology network
requirements and the general and global plan for the whole ontology network
development. Regarding the different iterations, as mentioned before, each iteration
in the iterative-incremental model can follow a different version of the waterfall
model from those presented in Sect. 2.4.1. However, any version of the waterfall
model to be used in the iterative-incremental model should be modified in the
following way:

* No backtracking is allowed between phases in a particular iteration, because the
refinement should be performed in the next iterations.

¢ Revising the ontology network requirements and the global plan should be
carried out in the initiation phase of each iteration. Additionally, a detailed
plan for the particular iteration should be performed.

2.4.3 Relation Between Scenarios and Life Cycle Models

The set of nine flexible scenarios for building ontologies and ontology networks
presented in Sect. 2.3 and the two proposed ontology network life cycle models
presented in this section are intrinsically related because both scenarios and life
cycle models have been created (1) taking into account the importance of reusing
and re-engineering knowledge resources (ontological and non-ontological) and
merging ontological resources and (2) assuming a controlled setting for ontology
engineering in which approaches such as mining ontologies from tags are not
considered.

Table 2.2 summarizes the relationships between scenarios for building ontology
networks and ontology network life cycle models. These relationships have been
established based on the following:

2 The NeOn Methodology for Ontology Engineering 31

Table 2.2 Relation between scenarios and life cycle models

Four- Five- Five- Six- Six-phase + merging
phase phase phase + merging phase phase model
model model phase model model

Scenario 1 X

Scenario 2 X

Scenario 3 X

Scenario 4 X

Scenario 5 X

Scenario 6 X

Scenario 7 X

Scenario 8 X

Scenario 9 X

* Scenario 1 (as stated in Sect. 2.3.1) is for building ontology networks from
scratch. The scenario mainly includes core activities such as specification,
conceptualization, and implementation. This way of building ontologies fits
with the stages represented in the four-phase waterfall model (initiation phase,
design phase, implementation phase, and maintenance phase).

» Scenario 2 (as stated in Sect. 2.3.2) is for building ontology networks by reusing
and re-engineering non-ontological resources, which is represented in the
six-phase waterfall model.

* Scenario 3 (as stated in Sect. 2.3.3) is for building ontology networks by reusing
ontological resources. This way of building ontologies is represented by the
five-phase waterfall model.

* Scenario 4 (as stated in Sect. 2.3.4) refers to the development of ontology
networks by reusing and re-engineering ontological resources. This way of
building ontologies is represented by the six-phase waterfall model.

» Scenario 5 (as stated in Sect. 2.3.5) is for building ontology networks by reusing
and merging ontological resources, which is represented by the five-phase +
merging phase waterfall model.

e Scenario 6 (as stated in Sect. 2.3.6) refers to the development of ontology
networks by reusing, merging, and re-engineering ontological resources. This
way of building ontology networks is represented by the six-phase + merging
phase waterfall model.

» Scenario 7 (as stated in Sect. 2.3.7) is for building ontology networks by reusing
ontology design patterns, which is represented by the five-phase waterfall model.

e Scenario 8 (as stated in Sect. 2.3.8) is for building ontology networks by
restructuring ontological resources. This is mainly related to the core activities
already mentioned in Scenario 1. Thus, this Scenario 8 is also represented by the
four-phase waterfall model.

* Scenario 9 (as stated in Sect. 2.3.9) refers to the development of ontology
networks by localizing ontologies. This way of building ontologies is mainly
related to Scenario 1 and thus represented by the four-phase waterfall model.

32 M.C. Suarez-Figueroa et al.

As explained in Sect. 2.4.2, the iterative-incremental model is basically formed
by a set of iterations that can follow any version of waterfall ontology network life
cycle model. Thus, the relation between scenarios and the iterative-incremental
model depends on the different versions of waterfall model used in the iterative-
incremental one, and for this reason, the relations presented in Table 2.2 are also
valid for this model.

2.5 Methodological Guidelines for Processes and Activities

In the second part of this book (called Ontology Engineering Activities), methodo-
logical guidelines for a subset of the processes and activities included in the NeOn
Glossary are provided. To describe each of the processes and activities included in
the NeOn Methodology presented in this book, the following content is provided for
most of the cases:

* A general introduction to the process or activity, where the value of the process
or activity is discussed.

e The detailed guidelines proposed for carrying out the process or the activity,
including the following fields: (a) definition, which is taken from the NeOn
Glossary of Processes and Activities and included in Sect. 2.2; (b) goal, which
explains the main objective intended to be achieved by the process or the
activity; (c) input, which includes the resources needed for carrying out the
process or the activity; (d) output, which includes the results obtained after
carrying out the process or the activity; (e) who, which identifies the people or
teams involved in the process or the activity; and (f) when, which explains in
which stage of the development the process or the activity should be carried out.

All the aforementioned information is provided in the so-called filling cards.
These filling cards explain the information of each process and activity of the
NeOn Methodology in a practical and easy way. Each card is filled according to
the filling card template shown in Table 2.3.

e A graphical workflow that shows how the process or the activity should be
carried out is also included. This workflow contains the inputs, outputs, actors
involved, and details for carrying out a process or activity in a prescriptive
manner. Additionally, methods, techniques, and tools supporting the process or
activity are proposed.

« Examples explaining the guidelines proposed are also given.

It should be noted that in the framework of the NeOn Methodology, there are
a wide range of prescriptive methodological guidelines for carrying out different
processes and activities. Along this book, the reader can find guidelines for Scenario 1,
particularly for ontology requirements specification (Chap. 5) and scheduling
(Chap. 14), Scenario 2 (Chap. 6), Scenario 3 (Chap. 7), Scenario 5 (Chap. 12),
Scenario 7 (Chap. 3), Scenario 8, for ontology modularization (Chap. 10), and
Scenario 9 (Chap. 8). In addition, there are also guidelines for ontology evaluation
(Chap. 9) and for ontology evolution (Chap. 11).

http://dx.doi.org/10.1007/978-3-642-24794-1_5
http://dx.doi.org/10.1007/978-3-642-24794-1_14
http://dx.doi.org/10.1007/978-3-642-24794-1_6
http://dx.doi.org/10.1007/978-3-642-24794-1_7
http://dx.doi.org/10.1007/978-3-642-24794-1_12
http://dx.doi.org/10.1007/978-3-642-24794-1_3
http://dx.doi.org/10.1007/978-3-642-24794-1_10
http://dx.doi.org/10.1007/978-3-642-24794-1_8
http://dx.doi.org/10.1007/978-3-642-24794-1_9
http://dx.doi.org/10.1007/978-3-642-24794-1_11

2 The NeOn Methodology for Ontology Engineering 33

Table 2.3 Template for the process and activity filling card

Process or Activity Name

Definition

Goal

Input Output

Who

When

References

Bizer C, Heath T, Berners-Lee T (2009) Linked data — the story so far. Int J Semant Web Inf Syst 5
(3):1-22

Blomgqvist E, Gangemi A, Presutti V (2009) Experiments on pattern-based ontology design. In:
Proceedings of the Sth international conference on Knowledge Capture (K-CAP 2009),
Redondo Beach, CA, USA, 14 Sept 2009. ISBN: 978-1-60558-658-8

Byrne EJ (1992) A conceptual foundation for software re-engineering. In: Proceedings of the
international conference on software maintenance and reengineering. IEEE Computer Society
Press, Orlando, pp 226-235

Clemente J, Ramirez A, de Antonio A (2011) A proposal for student modeling based on ontologies
and diagnosis rules. Expert Syst Appl 38(7):8066-8078

Cuenca-Grau B, Horrocks I, Kazakov Y, Sattler U (2007) Just the right amount: extracting
modules from ontologies. In: Proceedings of the 16th international conference on world
wide web, Banff, Alberta, Canada, pp 717-726. ISBN: 978-1-59593-654-7

Espinoza M, Montiel-Ponsoda E, Gomez-Pérez A (2009) Ontology Iocalization. In: Proceedings
of the fifth international conference on Knowledge Capture (KCAP 2009), Redondo Beach,
CA, USA, pp 33-40. ISBN: 978-1-60558-658-8

Fernandez-Lépez M (1999) Overview of methodologies for building ontologies. In: Proceedings
of the IJCAI-99 workshop on ontologies and problem-solving methods: lessons learned and
future trend, Stockholm, Sweden, August 1999. http://oa.upm.es/5480/

Gangemi A (2005) Ontology design patterns for semantic web content. In: Musen M et al (eds)
Proceedings of the fourth international semantic web conference, Galway, Ireland. Springer,
Berlin

Gangemi A (2007) Design patterns for legal ontology construction. In: Casanovas P, Noriega P,
Bourcier D, Galindo F (eds) Trends in legal knowledge: the semantic web and the regulation of
electronic social systems. European Press Academic Publishing, Florence

http://oa.upm.es/5480/

34 M.C. Suarez-Figueroa et al.

Gomez-Pérez A, Fernandez-Lopez M, Corcho O (2003) Ontological engineering. Advanced
information and knowledge processing series. Springer, Heidelberg, ISBN 1-85233-551-3
IEEE Standard Glossary of Software Engineering Terminology (1990) IEEE Std. 610.12—-1990

(Revision and redesignation of IEEE Std. 792—-1983)

Jimeno-Yepes A, Jimenez-Ruiz E, Berlanga-Llavori R, Rebholz-Schuhmann D (2009) Reuse of
terminological resources for efficient ontological engineering in life sciences. BMC Bioinfor-
matics 10:S4. ISSN: 1471-2105

Lamsfus C, Alzua-Sorzabal A, Martin D, Salvador Z, Usandizaga A (2009) Human-centric
ontology-based context modelling in tourism. In: Proceedings of KEOD 2009 Proceedings
of the International Conference on Knowledge Engineering and Ontology Development, Funchal -
Madeira, Portugal, October 6-8, 2009. INSTICC Press 2009, ISBN 978-989-674-012-2,
pp 424434

Newell A (1982) The knowledge level. Artif Intell 18(1):87-127

Pan JZ, Lancieri L, Maynard D, Gandon F, Cuel R, Leger A (2007) Knowledge web deliverable
D1.4.2.v2. Success stories and best practices. Available at http://knowledgeweb.semanticweb.
org/semanticportal/deliverables/D1.4.2v2.pdf

Pease RA, Niles I, Li J (2002) The suggested upper merged ontology: a large ontology for the
semantic web and its applications. In: Workshop on ontologies and the semantic web at the
AAAI 2002, Edmonton

Poveda-Villalon M, Suarez-Figueroa MC, Garcia-Castro R, Gomez-Pérez A (2010) A context
ontology for mobile environments. In: Workshop on Context, Information and Ontologies
(CIAO 2010) co-located with EKAW 2010, Lisbon

Presutti V, Gangemi A (2008) Content ontology design patterns as practical building blocks for
web ontologies. In: Proceedings of the 27th international conference on conceptual modeling
(ER2008), Barcelona, Spain

Simperl E (2009) Reusing ontologies on the Semantic Web: A feasibility study. Data Knowledge
Engineering 68(10):905-925

Sudrez-Figueroa MC (2010) NeOn Methodology for building ontology networks: specification,
scheduling and reuse. PhD thesis, Universidad Politécnica de Madrid, Espafia. Available at
http://oa.upm.es/3879/

Vilches-Blazquez LM, Villazon-Terrazas B, Saquicela V, de Leon A, Corcho O, Gémez-Pérez A
(2010) GeoLinked data and INSPIRE through an application case. In: 18th ACM
SIGSPATIAL international conference on Advances in Geographic Information Systems
(ACM SIGSPATIAL GIS 2010), San Jose, CA, 2-5 Nov 2010

Villazén-Terrazas B, Suarez-Figueroa MC, Gomez-Pérez A (2010) A pattern-based method
for re-engineering non-ontological resources into ontologies. Int J Semant Web Inf Syst
6(4):27-63

Villazon-Terrazas B, Ramirez J, Suarez-Figueroa MC, Goémez-Pérez A (2011) A network
of ontology networks for building e-employment advanced systems. Expert Syst Appl
38(11):13612-13624

http://knowledgeweb.semanticweb.org/semanticportal/deliverables/D1.4.2v2.pdf
http://knowledgeweb.semanticweb.org/semanticportal/deliverables/D1.4.2v2.pdf
http://oa.upm.es/3879/

Chapter 3
Pattern-Based Ontology Design

Valentina Presutti, Eva Blomqyvist, Enrico Daga, and Aldo Gangemi

Abstract In this chapter, we present ontology design patterns (ODPs), which are
reusable modeling solutions that encode modeling best practices. ODPs are the
main tool for performing pattern-based design of ontologies, which is an approach
to ontology development that emphasizes reuse and promotes the development of
a common “language” for sharing knowledge about ontology design best practices.
We put specific focus on content ODPs (CPs) and show how they can be used within
a particular methodology. CPs are domain-dependent patterns, the requirements of
which are expressed by means of competency questions, contextual statements, and
reasoning requirements. The eXtreme Design (XD) methodology is an iterative and
incremental process, which is characterized by a test-driven and collaborative
development approach. In this chapter, we exemplify the XD methodology for
the specific case of CP reuse. The XD methodology is also supported by a set of
software components named XD Tools, compatible with the NeOn Toolkit, which
assist users in the process of pattern-based design.

3.1 Introduction

One of the most challenging and neglected areas of ontology design is reusability,
which is getting more and more important partly due to the increased spread of the
Linked Data concept (Bizer et al. 2009). The notion of “pattern” has proved useful
in design, as exemplified in diverse areas, such as software engineering (Gamma
et al. 1994). In this chapter, we introduce the notion of ontology design patterns
(ODPs) along with a description of their different types and characteristics.

V. Presutti (><) « E. Blomqvist « E. Daga ¢ A. Gangemi

Semantic Technologies Lab, Institute of Cognitive Sciences and Technologies (National Research
Council — CNR), Via Nomentana 56, 00161 Rome, Italy

e-mail: valentina.presutti@cnr.it; eva.blomqvist@istc.cnr.it; enrico.daga@cnr.it;
aldo.gangemi@cnr.it

M.C. Suarez-Figueroa et al. (eds.), Ontology Engineering in a Networked World, 35
DOI 10.1007/978-3-642-24794-1_3, © Springer-Verlag Berlin Heidelberg 2012

mailto:valentina.presutti@cnr.it
mailto:eva.blomqvist@istc.cnr.it
mailto:enrico.daga@cnr.it
mailto:aldo.�gangemi@cnr.it

36 V. Presutti et al.

Then we focus on content ODPs (CPs), which are domain-dependent practices of
modeling, encoded as reusable computational components.

ODPs have recently been the subject of a series of workshops (Blomgqyvist et al.
2009b, 2010b), and they are collected in online repositories such as the ODP
portal'. Section 3.2 defines and describes ODPs, their types and characteristics,
while in Sect. 3.3, we describe how CPs can be reused by means of a set of
operations, such as import, specialization, and composition. In the second part of
the chapter, i.e., Sect. 3.4, we introduce a pattern-based ontology design approach
and describe a particular iterative and incremental method named eXtreme Design
(XD), supporting this practice with a collaborative and test-driven approach. At the
end of Sect. 3.4, we show a set of tools that provide software support to XD in the
NeOn Toolkit environment, before we summarize some conclusions in Sect. 3.5.

3.2 What Are Ontology Design Patterns (ODPs)?

During the past decade, as remarked by (Gangemi and Presutti 2009), an average
user that is trying to build or reuse an ontology, or an existing knowledge resource,
has typically been left with very limited assistance in using unfriendly logical
structures, some large, hardly comprehensible ontologies, and a bunch of good
practices that must be discovered from the literature. A typical usage scenario
includes, for instance, a large set of web ontologies that are evaluated (usually in
an implicit way, e.g., by inspecting them) against the intended domain and tasks of
the ontology that is needed. The selected ontology (if any) is reused, and then an
adaptation process is started in order to cope with the implicit requirements
underlying the ontology project that originally created the reused ontology?®. This
scenario is costly in many cases. As noted by (Rector and Stevens 2008), usability
of large OWL ontologies from a human perspective is often low, and automatic
selection mechanisms do not help with the adaptation process.

Another typical scenario includes so-called “reference” or “core” ontologies that
are supposed to be directly reused and specialized. Unfortunately, even if well
designed, they are usually large and cover more knowledge than what a designer
might need. In this case, it is hard to reuse only the “useful pieces” of the ontology,
and consequently, the cost of reuse can be higher than developing a new ontology
from scratch. On the other hand, the success of very simple and small ontologies,
such as FOAF® and SKOS (Miles and Bechhofer 2009), shows the potential of

!http://www.ontologydesignpatterns.org

2 Even in cases when ontology requirements are explicitly expressed, e.g., as described in Chap. 5,
there are commonly other implicit domain assumptions that need to be addressed at reuse time. In
our experience, it is also quite rare that explicit requirements are distributed together with their
corresponding ontology.

?See the FOAF project website: http://www.foaf-project.org/

http://www.ontologydesignpatterns.org
http://dx.doi.org/10.1007/978-3-642-24794-1_5
http://www.foaf-project.org/

3 Pattern-Based Ontology Design 37

really portable or “sustainable” ontologies. These lessons learned support a new
approach to ontology design, which is sketched here.

Under the assumption that there exist classes of problems that can be solved by
applying common solutions (as has been experienced in software engineering), it is
suggested to support reusability on the design side specifically. We need a way to
express commonly applicable solutions and “best practices” and what ontological
requirements they solve (see Chap. 5); this is where ODPs come into play. An ODP
is a modeling solution to a recurrent ontology design problem (Gangemi and
Presutti 2009). However, with the term ODP we refer to a wide range of modeling
solution types. ODPs can be grouped into six types, or families, each addressing
different kinds of modeling problems:

Structural ODPs include Logical ODPs and Architectural ODPs. Logical ODPs are
compositions of logical constructs that solve a problem of expressivity. They
help solving design problems when the used representation language does not
directly support certain logical constructs, such as representing n-ary relations in
OWL (Noy and Rector 2004). Architectural ODPs are defined in terms of
compositions of Logical ODPs and affect the overall shape of the ontology,
e.g., a certain OWL 2 profile could be viewed as an Architectural ODP.

Correspondence ODPs include Re-engineering ODPs and Alignment ODPs. Re-
engineering ODPs provide designers with solutions to the problem of
transforming a conceptual model, which can be either an ontology or a non-
ontological resource®. to an ontology, e.g., transforming an OWL ontology in
order to make it comply with a certain vocabulary, transforming a classification
scheme to an OWL ontology, and so on. Alignment ODPs are patterns for
creating semantic associations between two existing ontologies. They provide
designers with solutions to align two ontologies without changing the logical
types of the ontology entities involved, e.g., relating two ontologies both defin-
ing the concept “author,” one by a class and the other by a property (Scharffe and
Fensel 2008).

Reasoning ODPs are procedures that perform automatic inference. Examples of
Reasoning ODPs are so-called normalizations (Vrandeci¢ and Sure 2007).
Other Reasoning ODPs include common reasoning tasks, such as classification,
subsumption, inheritance, materialization, de-anonymizing, etc.

Presentation ODPs deal with usability and readability of ontologies from a human
perspective. They are best practices facilitating ontology evaluation and selec-
tion, hence supporting reuse. Examples of Presentation ODPs are so-called
Naming ODPs, which identify best practices for naming, i.e., naming con-
ventions (Svatek et al. 2009).

Lexico-Syntactic ODPs are linguistic structures consisting of a sequence of types of
words associated with an assessment of the meaning they express (Aguado de
Cea et al. 2009). For example, the sequence of two noun phrases connected by

* For further details, and a definition of “non-ontological resource”, see Chap. 6 of this book.

http://dx.doi.org/10.1007/978-3-642-24794-1_5
http://dx.doi.org/10.1007/978-3-642-24794-1_6

38 V. Presutti et al.

owl:DatatypePrope
startDate exactly 1 xsd:date typebroparty
m“““—-h___ /:fmm]rul type
Timelnterval —% xsd:date hasDats

hasDate
endDate
dfs:subP f dfs:subP f
endDate exactly 1 rdfs:subPropertyOf rdfs:subPropertyo
xsd.date

startDate endDate

Fig. 3.1 UML-like diagram showing the OWL encoding of the time interval CP taken from the
online catalog of CPs (http://www.ontologydesignpatterns.org/wiki/Submissions: Timelnterval)

the verb be such as “Dolphins are warm blooded mammals” often identifies a
“subClassOf” relation between a class that represents dolphins and a class that
represents warm-blooded mammals.

Content (or domain) ODPs (CPs) are instantiations (and compositions) of Logical
ODPs. They have an explicit non-logical vocabulary for a specific domain of
interest, i.e., they are content (domain) dependent, although the domain might be
very general. An example of a Content ODP is depicted in Fig. 3.1. It represents
the concept of a “time interval” as a class of things characterized by an arbitrary
number of “dates” (i.e., points in time), but which has exactly one start date and
one end date.

Much more important than the type of a pattern is its nature of being a reusable
modeling solution. Ideally, an ontology project can be completely developed by
reusing existing solutions, i.e., ODPs, by appropriately combining them — however,
this ideal situation will most likely be very rare in practice, whereby we need to
combine the approach presented here with the ones targeted in other chapters of this
book. An interesting question is nevertheless: How can we make ODP reuse as easy
and useful as possible? In order to identify candidate ODPs for reuse in a certain
ontology project, ODPs and the specific ontology design problems to be addressed
have to be comparable, i.e., need to be described in a similar way. For instance, we
need to know what requirements a certain ODP helps us to solve, as well as what
requirements are present in our current ontology design project.

Figure 3.2 depicts the idea of pattern-based design. The ontology development
project is divided into two spaces: (1) the problem space, which contains a set of
requirements (explicitly represented, e.g., as competency questions (CQs), as
discussed in Chap. 5) that describe the ontology design problems to be addressed,
and (2) the solution space, which contains all available ODPs, where each ODP
should be well documented, e.g., described through what ontological requirements
it solves. First, the requirements of the current project (problem space) are com-
pared with the requirements of the available ODPs (solution space), and a set of
candidate matching ODPs are identified. Second, the most appropriate ODPs
among the candidate ones are selected for reuse, as illustrated by “dropping them
into the project basket” in Fig. 3.2.

http://dx.doi.org/10.1007/978-3-642-24794-1_5
http://(http://www.ontologydesignpatterns.org/wiki/Submissions:TimeInterval)

3 Pattern-Based Ontology Design 39

Step 1

Matching Problem Space Solution Space
Step 2

Selecting Problem Space @

ntologv Project Basket
\—>(%) -O
P X

Fig. 3.2 The idea of pattern-based design. The ontology project is divided into the problem and
solution spaces. The problem space contains a set of requirements (see Chap. 5), while the solution
space contains a set of ODPs. The two spaces are compared in order to identify ODPs matching the
requirements (matches are illustrated by arrows). A number of those ODPs are selected for reuse in
the ontology project, i.e., dropped in the project basket

One of the most important raison d’étre of ODPs is to enable this matching and
selection task for supporting reuse. Hence, regardless of its type, an ODP is
associated with a set of requirements, explicitly represented, which describes the
problem it provides a solution for. For example, the requirements associated with
the CP shown in Fig. 3.1 refer to the problem of representing time intervals, their
start and end points. If expressed in the form of CQs, the requirements of that CP
include “What is the starting point of a particular interval?” and “What is the end
point of a particular interval?”. Another example is the Logical ODP for expressing
“n-ary relations,” the requirements of which indicate the issue of representing
relations with n arguments through a logical language including only primitives
for expressing binary relations, e.g., a language such as OWL. The format and
extent of formality of requirement representation depends on the type of ODP. In
this chapter, we will focus on content ODPs (CPs) and how to use them for
developing ontologies through the application of a particular pattern-based method,
as well as its specific tool support.

3.3 Content Ontology Design Patterns (CPs)

CPs solve design problems for the domain classes and properties that populate an
ontology; therefore, they solve content — domain-specific — problems (Gangemi and
Presutti 2009). According to the general notion of ODP (see Sect. 3.2), each CP is

http://dx.doi.org/10.1007/978-3-642-24794-1_5

40 V. Presutti et al.

associated with a set of requirements, which represents the problem it provides a
solution for. Such requirements are usually represented in three different forms: (1)
competency questions (CQs), i.e., based on work by (Gruninger and Fox 1994),
(2) contextual statements, i.e., general axioms that hold within the domain, and (3)
reasoning requirements. CQs indicate typical queries that a knowledge base will be
able to answer if it is based on that CP. Contextual statements are general axioms
that apply within the domain, which indicate conditions that hold for (and between)
certain concepts encoded by the CP. Finally, reasoning requirements indicate what
inferences are enabled by the CP, e.g., if it perhaps allows some form of classifica-
tion or consistency checking of facts.

The time interval CP shown earlier, in Fig. 3.1 (Sect. 3.2), which is a very simple
but useful CP, is associated with the following competency questions:

o When does a certain time interval start?
o When does a certain time interval end?
o What are the points in time that belong to a certain time interval?

Typically, a CP can also be associated with a set of SPARQL queries that
formally encode its competency questions. This is very useful for an ontology
designer who wants to test an ontology containing a CP against sample data since
the SPARQL queries can be used to test the coverage of the CQs.

The time interval CP (see Fig. 3.1, Sect. 3.2) is also associated with the following
contextual statement:

e A time interval always has exactly one starting point and exactly one end point.

This requirement is, in the OWL realization of the CP, addressed by cardinality
restrictions on the data type properties that identify the start and the end of a time
interval.

Finally, this CP is also associated with the following reasoning requirements:

e The start and end dates of a time interval belong to the interval.
e Two time intervals with the same start and end dates should be recognized to be
the same interval.

The first reasoning requirement is, in the OWL realization of the CP, addressed
by defining the two data type properties startDate and endDate as sub-
properties of hasDate, which is the property indicating that something belongs
to the interval. This enables ontologies reusing the CP to also include the start and
end date of an interval, when the model is queried for dates belonging to the
interval, using the hasDate property. The second reasoning requirement is
addressed by defining a hasKey[startDate, endDate] axiom, on the
class TimeInterval. This enables an inference engine to infer that the owl :
sameAs property holds between two instances of TimeInterval whenever they
have the same start and end date values.

Where do CPs come from? This is a highly relevant question since we need a
considerable catalog of CPs in order for them to be useful in practice. A CP can
emerge from existing conceptual models as well as from data. It can be extracted

3 Pattern-Based Ontology Design 41

from foundational (Masolo et al. 2005), core (Gangemi and Borgo 2004), or
domain ontologies, re-engineered from other conceptual models (e.g., data model
patterns (Hay 2000)). Informally, the distinction between foundational, core, and
domain ontologies relates to the generality of the domain they address and to the
extent of domain coverage: (1) foundational ontologies, e.g., DOLCE?® and SUMO
(Niles and Pease 2001), axiomatize general concepts and relations and are reusable
across any domain; (2) core ontologies (Masolo et al. 2005), such as the Core
Ontology of Fishery (Gangemi et al. 2004) and the Core Legal Ontology (Gangemi
et al. 2005), focus on a specific domain without being restricted to specific
applications or specific sub-areas. The latter can be built as extensions of founda-
tional ontologies or based on general principles and well-founded methodologies;
and (3) domain ontologies, such as the Gene ontology® and the Unified Medical
Language System (UMLS)’, deal extensively with a specific domain of interest,
deepen the coverage of a certain area of a domain or address a specific use case
within a domain. Informally, such general ontologies can be viewed as com-
positions of numerous CPs, and by modularizing such ontologies, i.e., decoupling
certain “pieces” from the rest of their often large overall structure, the formal
representation of those CPs can be extracted.

CPs can also be extracted from Linked Data (Bizer et al. 2009), i.e., in a more
bottom-up fashion, where they emerge from the way data is actually modeled. By
analyzing recurring semantic structures (if any) within the same, as well as across
different, datasets addressing some domain of interest, CPs may be detected.

CPs can also be created by composing or specializing other CPs or by expanding
them (see Sect. 3.3.1 describing operations on CPs). Figure 3.3 shows a composed
CP. This CP allows to represent the relation between an information object, such as
a novel, and its realizations, e.g., a book, an HTML page, etc., and to index this
relation based on the place where and time when it holds. This CP reuses the time
interval CP shown in Fig. 3.1 (Sect. 3.2) and combines it with two other CPs, the
information realization CP® and the place CP°. The composition is realized by
specializing a fourth CP, the situation CP'’. which is a CP corresponding to the
n-ary relation Logical ODP.

Since CPs can be represented as reusable building blocks, e.g., OWL modules, a
natural question is how they are distinguished from any other small ontology. CPs
show a number of pragmatic characteristics that allow to distinguish them from
other ontologies. CPs are:

5 DOLCE - Project Home Page: http://dolce.semanticweb.org

6 See http://www.geneontology.org/

7 See http://www.nlm.nih.gov/research/umls/

& http://ontologydesignpatterns.org/wiki/Submissions:Information_realization
% http://ontologydesignpatterns.org/wiki/Submissions:Place

1% http://ontologydesignpatterns.org/wiki/Submissions:Situation

http://dolce.semanticweb.org
http://www.geneontology.org/
http://www.nlm.nih.gov/research/umls/
http://ontologydesignpatterns.org/wiki/Submissions:Information_realization
http://ontologydesignpatterns.org/wiki/Submissions:Place
http://ontologydesignpatterns.org/wiki/Submissions:Situation

4

V. Presutti et al.

atPlace min 1 involvesinformationObject exactly 1 involvesinformationRealization exactly 1
V\x T

Timepl
atflace
ject

T
MTimatenal ™ Timeinterval ———» xsd.date
Envobve sinformationOb) e
imolvesinformationRealization
endDate - hasDate

L4
InformatienObject e xsd:date

. atTimeinterval exactly 1
Place

.-“’/"-

InformationRealization

Fig. 3.3 UML-like diagram showing the OWL encoding of the time and place indexed informa-
tion realization CP present in the online catalog of CPs

Computational components. They are represented and encoded in a computa-
tional logic language, e.g., OWL, so that they can be processed and reused as
building blocks in ontology design, e.g., through the OWL import construct.
Small, autonomous components. Smallness and autonomy of CPs facilitate the
design of ontology networks, because they enforce modularization; by compos-
ing CPs, designers can better govern the complexity of the whole resulting
ontology as opposed to governing a monolithic ontology.

Inference enabling components. Each CP allows some logical conclusions to be
drawn from the model. This means that a single element, e.g., a single class
without any associated axioms, cannot be a CP since it does not enable any
inferences (even simple ones) to be made.

Hierarchical components. All CPs participate in a partial order, where the
ordering relation is called specialization (see Sect. 3.3.1). Specialization requires
that at least one entity of the more specific pattern, e.g., a class or property, is
subsumed by at least one entity of another, more general, pattern. Figure 3.4
shows an example of CP specialization: (a) shows the part-of CP'', which
defines a transitive property between objects for representing parthood rela-
tionships between them; (b) shows the componency CP'?, which specializes
part-of by defining object properties for representing direct parts of objects as
sub-properties of the transitive parthood relation.

Cognitively relevant components. CP visualization must be intuitive and com-
pact and should catch relevant, “core” notions of a domain".

Best practices of ontology modeling. How to evaluate the quality of a CP, e.g., to
determine if it is truly a best practice is currently an open issue (Hammar and
Sandkuhl 2010); hence at the moment, the quality of a CP can only be assessed
through the personal experience of ontology designers and through its prove-
nance. Additional criteria are evidence from reusability across different projects
and large-scale applications such as Linked Data.

' http://ontologydesignpatterns.org/wiki/Submissions:PartOf

12 http://ontologydesignpatterns.org/wiki/Submissions:Componency

13 Independently of the generality at which a CP is singled out, it must contain the central notions
that “make rational thinking move” for an expert in a given domain for a given task.

http://ontologydesignpatterns.org/wiki/Submissions:PartOf
http://ontologydesignpatterns.org/wiki/Submissions:Componency

3 Pattern-Based Ontology Design 43

a owl:TransitiveProperty

partOf .
| rdf:type rdf:type
e Object [—

hasPart partOf hasPart
b owl:TransitiveProperty
directPartOf
1 rdf:type rdf:type
— Object :I
hasDirectPart partOf ' hasPart
rdfs:subPropertyOf rdfs:subPropertyOf
directPartOf I hasDirectPart

Fig. 3.4 Example of CP specialization: (a) depicts the part-of CP, which is specialized by the
componency CP, shown in (b)

Additionally, CPs often match linguistic structures called frames. This could be
formulated as an additional characteristic of being linguistically relevant, and the
essence of most CPs can be expressed quite straightforward in natural language.
The richest repository of frames is FrameNet (Baker et al. 1998). Informally,
a frame is a lexically founded ontology design pattern. Frames typically
encode argument structures for verbs, e.g., the frame Desiring defines associations
between elements (or “semantic roles”) such as Experiencer, Event,
FocalParticipant, LocationOfEvent, etc. Frames can be used for
validating CPs with respect to lexical coverage, for lexicalizing them, and can be
re-engineered in order to populate a CP catalog such as the ODP portal.

As opposed to the concept of CP, there is that of AntiCP. AntiCPs are ontologies
that implement wrong modeling practices, e.g., examples of bad practices or
common mistakes. In other words, they are based on erroneous assumptions or
rationales. For example, modeling transitive parthood relationships through sub-
sumption, e.g., City rdfs:subClassOf Country, is considered an AntiCP.
AntiCPs produce the side effect of inferring wrong or undesired knowledge, e.g.,
Rome rdf: type Country, or of preventing the capability to infer the desired
knowledge. It is important to distinguish between ontologies that are not CPs and
AntiCPs, i.e., only a subset of ontologies that are not CPs are AntiCPs.

44 V. Presutti et al.
3.3.1 Operations on Content Patterns

CPs are a special kind of ontologies, as discussed above, and their creation and
usage rely on a set of operations that can be summarized as follows:

Cloning consists of duplicating an ontology entity (possibly into a new namespace),
which can be reused in a CP or used as a prototype for the definition of a new
ontology entity defined in a CP. This operation is, for instance, used when
extracting CPs from foundational and core ontologies, i.e., a part of the larger
structure becomes a CP through being cloned and given a new namespace.

Composition relates two CPs and results in a new ontology (which could in turn be a
CP — as seen in Fig. 3.3, Sect. 3.3). The resulting ontology includes the union of
the sets of ontology entities and axioms from the two CPs plus the ontology
entities and axioms that are defined locally in the new ontology in order to relate
the two CPs, e.g., disjointness axioms. Figure 3.5 depicts an example of a CP
composition. At the left of the figure, the two CPs are shown separately, one CP
(top left) represents membership relationships between persons and music
bands, the other CP (bottom left) models objects and the roles they play. The
axioms that are added for composing the two CPs are shown at the right side of
the figure. The class Person is defined to be subclass of Object, and both
Person and Band are defined to be disjoint with Role.

Specialization defines a new ontology (which could in turn be a CP) by specializing
entities of an existing one, e.g., a CP. Specialization introduces a partial order
between CPs, based on subsumption relations holding between their respective
ontological entities. Specialization relies on rdfs:subClassOf and owl :
subPropertyOf constructs. Figure 3.4 in Sect. 3.3, as mentioned previously,
shows an example of specialization: the component CP (Fig. 3.4b) specializes
part-of (Fig. 3.4a) by defining the object properties directPart and
directPartOf as sub-properties of hasPart and partOf, respectively.

Import is the basic mechanism for explicit CP reuse, as well as a way to reuse
ontologies in general. It is also the only operation described here that is directly

owl:disjointWith
1 1
Person - Band Person Band
hasMember "y T
| |
memberOf T !
~._ owl:disjointwitt owl:disjointWith
~, 1
h ™ I
~ 1
Object - Role Object Role
roleOf T
hasRole

Fig. 3.5 Example of CP composition: A CP representing membership relationships between
persons and bands (fop left) is composed with the CP object-role (bottom left), which represents
objects and the roles they play, and the result can be seen to the right

3 Pattern-Based Ontology Design 45

supported in the OWL vocabulary, through owl : imports. By importing a CP,
the ontology includes all the axioms of the CP and hence ensures the set of
inferences that the CP enables in its corresponding knowledge base.

3.4 eXtreme Design: An Agile Methodology for Pattern-Based
Ontology Development

With the name eXtreme Design (XD), we refer to a family of methods that support
the pattern-based design approach as depicted in Fig. 3.2 (Sect. 3.2), i.e., the
matching between problem and solution spaces in order to reuse solution
components, such as ODPs (Presutti et al. 2009). When XD is based on CPs, the
problem space is expressed by means of competency questions (CQs), contextual
statements, and reasoning requirements, as described at the beginning of Sect. 3.3,
and the solution space contains CPs and their associated requirements, i.e., simi-
larly expressed through CQs, contextual statements, and reasoning requirements.
Hence, the matching process is performed through finding similarities between CQs
as well as between the other two types of requirements, as exemplified in Fig. 3.6.

In the following sections, we describe the XD method, inspired by software
engineering’s eXtreme Programming (XP) (Shore and Warden 2007) and experi-
ence factory (Basili et al. 1994), for building ontologies through intensive CP reuse.
XD is test-driven, i.e., testing is a central part of the development; it applies a
divide-and-conquer approach similarly to XP and promotes pair design, which is
analogous to pair programming.

3.4.1 eXtreme Design Principles

Similarly to XP, XD has evolved around a set of main principles. The principles
both describe the essence of XD and act as guidelines when performing the design
process.

The first principle is named customer involvement and feedback. 1deally, the
customer should be involved in the ontology development team continuously.

Problem Space Solution Space

I
O

A “p* V‘\n -

“;-“ CJEV Q({A cQ -

Fig. 3.6 The XD (eXtreme Design) approach with CPs, exemplified for CQ matching

E ; E%C 7ok
Content‘Pitern

46 V. Presutti et al.

This means that the customer should identify representatives that can be easily
contacted during the development for quick feedback. Such representatives have to
be aware of all parts, and needs, of the project. Here, depending on the project
configuration, the “customer” could be either the organization containing the end
users of the system to be built (including the ontology) or simply the software
developers needing the ontology in order to perform some particular functionality
in the overall system.

The second principle states that all requirements should be based on customer
stories, from which CQs, contextual statements, and reasoning requirements are
derived. The customer representatives describe the ontology requirements and the
ontology tasks in terms of small stories. Designers work on those small stories and
transform them into more rigorous and precise requirements, e.g., in the form of
CQs, contextual statements, and reasoning requirements.

Next, an important principle is that of iterative development. XD is an iterative
and incremental process. Each iteration produces a number of modules that con-
tribute to an incremental release, produced through an integration phase.

Test-driven design means, in the case of XD, that testing is used as an integrated
means for completing the modules. Stories, CQs, reasoning requirements, and
contextual statements are used in order to develop unit tests, e.g., CQs can be
transformed into SPARQL queries. By deciding how the query should be formed, a
developer is actually partly designing the model, hence, the notion “test-driven”
design. The ontology module representing a customer story can be passed to the
integration phase, i.e., to be included in the next release, only if all its associated
unit tests run successfully. This principle also enforces the task-oriented approach
of the method, i.e., the principle that modules should realize exactly what is
required (their intended task), nothing more and nothing less.

It has to be noted that ontology unit testing, first introduced by (Vrandeci¢ and
Gangemi 2006), has a different meaning than software unit testing. An ontology
module developed for addressing (part of) a user story is tested by developing unit
tests, i.e., dedicated ontology modules containing sample facts and appropriately
documented with testing metadata, each importing the ontology module to be
tested, based on one of the following three approaches: (1) through verification
tests to test the fulfillment of basic requirements, i.e., SPARQL queries based on
CQs that are run against valid sample data in order to check if expected results are
returned by the SPARQL engine, (2) inference tests, i.e., through inference materi-
alization performed on sample data which is expected to cause certain inferences to
be materialized in accordance with the reasoning requirements and (3) through
stress tests, e.g., through consistency checking performed on invalid sample data
violating the contextual statements, thus expecting to provoke inconsistencies.
While (1) and (2) are mainly intended for verifying the correct implementation of
requirements, (3) could be viewed as more similar to the kind of software testing
when a system is fed random or erroneous data, to make sure such cases are handled
correctly, and there are no unexpected side effects or crashes.

One of the core principles of XD is ODP reuse, which inherently leads to a
modular design. Iterations are based on identifying reusable CPs through matching

3 Pattern-Based Ontology Design 47

CQs and other requirements. Every time there is a positive match, the identified CPs
are considered for reuse. If the solution space does not provide an adequate ready-
to-use CP, a specific solution is developed in a modular way, preferably in the form
of anew CP so that it can be shared with the team (and ideally on the web) for future
reuse. This principle favors the creation of a common “language” based on shared
patterns and eases both the understandability and the integration of developed
modules. In addition, the divide-and-conquer paradigm leads to a natural
modularisation of the problem, which facilitates a distributed ontology develop-
ment, and assists in scoping the modeling issues that are addressed within a single
iteration.

To handle this incremental ontology development, collaboration and integration
are two essential principles. Integration is a key aspect of XD, as the ontology is
developed in a distributed, modular, and collaborative way. Collaboration and
continuous sharing of knowledge is needed when running an XD project. The result
of each iteration, i.e., one or more ontology modules, is integrated with the rest of
the ontology modules before releasing an increment. Typically, a sub-team of
designers is devoted to the integration task.

As mentioned previously, task-oriented design is another main principle. The
XD approach is based on developing a task-oriented ontology, covering only part of
a domain of knowledge according to a specific application task. This is opposed to
the more philosophically oriented approach of formal ontology design, where the
aim is to comprehensively cover a certain domain of knowledge. XD proposes to
provide solutions to the exact requirements stated, in the sense that the concepts
should be defined according to the intended task of the ontology, rather than in
some common sense notion of their “true” nature. Each XD iteration focuses on a
specific part of the domain requirements, expressed in terms of a user story.

On the more organizational side, XD promotes pair design. The team of
designers is organized in pairs. This practice is analogous to the pair programming
of XP. While pair programming has empirically been proven efficient in software
development, it still remains to rigorously test the efficiency for ontology engineer-
ing. Currently, this has to be considered a hypothesis, based on experience and
observations made through collecting feedback of trainees and developers, through
informal discussions and questionnaires after the execution of XD with different
teams. Most of them felt that they benefit from on-the-fly brainstorming, and
perceived to improve the effect of learning-by-doing within the pair design setting.

3.4.2 The eXtreme Design Process

Figure 3.7 shows the complete XD process for CP reuse. The process starts with the
XD team, including the customer representatives, making themselves familiar with
the knowledge domain, with the aim of identifying the scope of the ontology
project, based on the desired application tasks (Step I. Project initiation and
scoping). The objective is twofold: (1) to make the customer representatives

48 V. Presutti et al.

(domain experts) aware of what the XD team expects from them and (2) to provide
the ontology design team with an overview of the problem from a domain expert
perspective, its scope, and agree on initial terminology. The result of this step is the
setup of a collaborative environment where the customer representatives and
ontology designers will share documentation and collect argumentation and
motivations of modeling issues, including terminology, e.g., through deploying a
wiki for the project. Following this starting activity, the XD team identifies the
sources of CPs to be used during the ontology project (Step 2. Identify CP catalogs);
however, such a set can be extended during the process.

The customer representatives are then invited to write stories, preferably from
real, documented scenarios, which act as samples of the typical facts that should be
stored in the resulting ontology, and exemplify how these facts are connected and
used (Step 3. Collecting requirement stories). All stories are organized in terms of
priority, and possible dependencies between them are identified and made explicit.
Each story is described by means of a small card, like the one depicted in Table 3.1,
which includes the unique title of the story, a list of other stories that it depends on,
a description in natural language, i.e., the story itself, and a priority value. The
customer can add stories during the whole project life cycle, depending on how
formal contracts and other commitments are formulated. Nevertheless, if a new
requirement emerges, new stories can be written.

Once a sufficient number of stories for starting the development have been
collected, each pair of designers selects a story that will be the focus of their
work for the next iteration (Step 4. Eliciting requirements and constructing mod-
ule(s) from CPs). The selection is based on the experience and competencies of the
design pair and on the priority of the story. A new wiki page for the story is created,
and its content is set up based on the information reported on the card. By
performing this task, a pair enters a development iteration (the dashed rectangle
in Fig. 3.7, which is detailed in Fig. 3.8).

Once a story has been completely modeled, it is carefully documented and released
internally for integration into the next release (Step 5. Releasing module(s)). This
task constitutes the end of a story iteration for a pair, and the result is one or
more ontology modules, i.e., small ontologies. Before releasing a module, it is
important to make sure that all tests run successfully and that the module is well
documented, both in the shared wiki as well as through annotations in the module
itself. All ontological elements have to have appropriate labels, they have to be
commented (as well as the module itself), and the module should be associated with
a description of its purpose, the requirements it solves, and even links to the unit

Table 3.1 A requirement story card, here exemplified through a story from the fishery domain

Title Tuna observation
Depends on Exploitation values, tuna areas
Description In 2004, the resource of species “tuna” in water area 24 was observed

to be fully exploited in the tropical zone at pelagic depth
Priority High

3 Pattern-Based Ontology Design 49

Project W@ q Projectinitiation
and scoping

Semantic

. 2 Identifying CP
catalogues catalogues

~ 1;5»
3 Collecting \
requirement stories

Customer

Web

Eliciting requirements
and constructing
module(s)

Desngr: palr from CPs
I
I No
| S o
: Releasing All stories
i module(s) covered?
I

Integrating partial
solutions, evaluating
and revising

Releasing
7 new version of
Ontology Network

Integration team Ontology ygiy
Network ’ l

Customer

Fig. 3.7 The overall XD process, for CP reuse

tests that have been used. The modules are assigned a URI and are shared by the
whole team. If a module can be publicly shared, and is considered highly reusable,
it can be published in open web registries, such as the ODP portal.

Once a new module is released, it has to be integrated with all the others that
constitute the current version of the ontology network (Step 6. Integrating partial
solutions, evaluating, and revising). Usually, one pair is in charge of performing the
integration and related tests. New unit tests are defined for the integrated ontology
network, and all existing ones (unit tests of individual modules) are again executed

50 V. Presutti et al.

Eliciting
requirements

" Select
set

!

I

1

I

1

I

I

1

I

1

1

1

i

1

I

1

I

I j

: Matching and
| selecting patterns
I
1
I
f
1
1
1
1
i
1
I
1
|
I
]
1
!
1
I
]
]

Reusing and

integrating CPs

Testing "~ A”r;ee‘ml"e'

module covered?

Releasing § Al stories
module(s) covered?

Fig. 3.8 Detailed breakdown of sub-steps in the design pair iteration (steps 4-5 in Fig. 3.7)

as regression tests before moving to next task. All contextual statements and
reasoning requirements are taken into account, and all necessary alignment axioms
are defined. The modules are now under the complete control and editing of the
team in charge of the integration, and refactoring of the ontology modules may
be performed in case inconsistent modeling choices are discovered. Integration can
be done in multiple fashions, and an integration policy should be defined at the start
of the project. For instance, if decoupling of modules is an essential feature of the
resulting ontology network, then a minimum of refactoring should be performed in

3 Pattern-Based Ontology Design 51

order to remove overlap between modules, instead integration should simply align
the modules. On the other hand, in some cases, a coherent and non-redundant model
is desired, whereby an alternative policy would be to refactor the modules, remove
as many redundant definitions as possible and instead add import dependencies
between them. The products of this step are new unit tests and alignment axioms,
and possibly a set of changes to the ontology modules (results of refactoring), all
properly documented in the wiki.

When all unit tests run successfully during the integration step, a new incremen-
tal version of the ontology network can be released (Step 7. Releasing new version
of ontology network). The ontology is given a new version number, it is appropri-
ately documented, and it is associated with its own version of the wiki documenta-
tion. It is important to note that the process depicted in Fig. 3.7 is usually not a
sequential one, i.e., in most cases the arrows indicate an input/output dependency
rather than a sequence of actions. For instance, the integration and release steps will
be ongoing activities during the complete project (as soon as the first modules are
ready); hence, integration will be performed in parallel with Steps 4-5 where new
modules are produced, to create a series of incremental releases.

Step 4 of the XD process identifies the core iteration performed by a design pair,
which is focused on the development of the ontology module(s) representing one
user story. Figure 3.8 depicts the main steps of a single iteration (i.e., a detailed
breakdown of the steps within the dashed rectangle of Fig. 3.7).

First, the development pair analyzes the selected user story and derives a set of
CQs, contextual statements and reasoning requirements from it (Step 4.1. Eliciting
requirements). In order to do that, designers could involve the customer for having
feedback and clarifications. For example, the story “Tuna observation” (see
Table 3.1) can be transformed into the following CQs, which are added to the
story’s wiki page:

» CQ;: What is the exploitation state observed and the vertical distance in a given
climatic zone for a certain resource?

* CQ;: What resources have been observed during a certain period in a certain
water area?

Additionally, assume that the following contextual statements and reasoning
requirements are derived based on a discussion with the customer representative:

* A resource contains one or more species.
» Species are associated to vertical distances. As a consequence, the vertical
distance of a resource is inferred through the vertical distance of its species.

The iteration continues by further breaking down the task, before starting to
address it through modeling. This is done by selecting one of the competency
questions, or a small set of them that constitutes a coherent modeling issue, and
then start matching them to the competency questions associated with available CPs
in order to identify candidates for reuse (Step 4.2. Matching and selecting patterns).
In our example, let CQ; and CQ, be the selected competency questions. Candidate
CPs for reuse would be situation and time interval. The competency question of

52 V. Presutti et al.

situation — “What entities are in the setting of a certain situation?” — can be said to
match the observation of the resource and the parameters that are in the setting of
that observation. Additionally, the time interval CP may be seen as matching the
question of what period a certain observation was made (CQ,), although this could
also be solved with just a simple data type property.

The following step is to select which of those patterns should actually be used for
solving the modeling problem. In our case, there are only two patterns, and neither
is an alternative solution to the other, but in many cases, this step involves making
some modeling choices, i.e., deciding which pattern is most suitable for the
particular case. Nevertheless, in our example, we still need to decide if both patterns
are really needed or if they add too much overhead to our model. For instance, we
may decide that time interval adds too many extra elements to the model since
perhaps our customer simply wants to store the year of the observation, rather than
an exact period of dates, in which case we will only select situation.

After selecting a set of CPs, it is time to start modeling, i.e., reusing the CPs
(Step 4.3. Reusing and integrating CPs). The term “reuse” here refers to the
application of typical operations that can be applied to CPs, i.e., import, specializa-
tion and composition (see Sect. 3.3.1). In some cases, one may also decide to clone a
CP, e.g., if it is desirable not to rely on imports external to the project, which would
result in replicating the modeling solution, but without importing the available
building block. The latter has both advantages, e.g., reducing the size of the module
in case the complete transitive closure of CP imports is not cloned, and
disadvantages, e.g., the loss of a common “language” by not referring to the pattern
explicitly and reduced support for automatic alignment with other pattern-based
modules.

In our example, we import and specialize situation in order to address CQy, as
shown in Fig. 3.9. Our particular situation is an “observation,” and the thing
observed is an “aquatic resource.” Additionally, the exploitation state, climatic
zone, and vertical distance of the observation are also involved in the setting.
Thereby, we add a subclass of situation:Situation named AquaticRe-
sourceObservation and add the other entities as subclasses of owl : Thing.
In addition, we define sub-properties of the situation:isSettingFor and

isSertingFor min 1
-
> Sisation - ~~ AguaticResourceObservation

A

hassaming Vi

Vi,

isSemingFor abeutAcauatichEsource ,:II.-' owkObjectProperty

! |
owtThing /f
. v /: /

VerticalDistance <

AquaticResource

7,

hasverncalDistince,/

hasCimaticZone

/

ExploitationState =

PaslapketanonState

|

rdts subbropernyOl__—

hasClimaticZons

I.,,,.,.

—__rdlfs subropertyOt

hasverticalDistance

Pty SubProparyOf %, refs subPropertyOl

Fig. 3.9 Specialization of the situation CP for modeling aquatic resource observations, as for

addressing CQ,

3 Pattern-Based Ontology Design 53

its inverse, for connecting the observations to the resources and the different
parameters. After iterating over all selected CPs (in our example, only one pattern
was selected) and integrating them into the current module, the module also has to
be extended to cover the complete set of CQs. In our example, no pattern was
selected to solve the time period issue in CQ,; hence, a data type property has to be
added to the module in order to cover the complete CQ.

The goal of the following task (Step 4.4. Testing module) is to validate the
ontology module against the requirements it is supposed to address, i.e., CQs,
contextual statements, and reasoning requirements, through developing and
executing verification tests, inference tests, and stress tests (see description of test
types in Sect. 3.4.1). The ontology modules are revised until all unit tests run
successfully. All unit tests are documented in the project wiki and are properly
linked to their motivating user story, and requirement(s), in order to document the
testing activity as well as to preserve the unit tests for the integration process. In our
example, a unit verification test associated with CQ, could be the following
SPARQL query, retrieving the exploitation state (?exp), vertical distance (?dist),
climatic zone (?zone), and resources (?resource) of available observations (?0bs):

SELECT ?exp ?dist ?resource ?zone
WHERE {

?0bs a:AquaticResourceObservation.
?0bs aboutAquaticResource ?resource.
?0obs hasClimaticZone ?zone

?0bs hasExploitationState ?exp.

?0bs hasVerticalDistance ?dist

If all requirements derived from the story have been solved, and all tests run
successfully, the design pair proceeds to internally release the module(s) (Step 5.
Releasing module(s)), which are then ready for integration in the current overall
increment iteration.

3.4.3 Example: A Music Industry Ontology

To illustrate the process of creating ontologies through XD, a small hypothetical
project is described in this section. The domain, which is music industry, should be
intuitive to most readers. The example is not intended as a case for validating the
methodology, but merely as an illustration how it could be used in practice.

Step 1 — Project initiation and scoping. Let us assume that an ontology is needed in
an online community platform for people who want to discuss music, share
news, playlists, and music recommendations. The ontology will be used to store
and retrieve information about music recordings and artists, as well as to reason

54 V. Presutti et al.

over musical genres. As ontology developers, we are working closely together
with the software developers, implementing the online community software;
however, we also have access to some future administrators of the community,
who are used as the “customer representatives”, i.e., domain experts, during the
project. A wiki is set up for the development project, where all information is
stored and shared, both between developers and with the customer
representatives.

Step 2 — Identifying CP catalogs. Let us assume that we decide to focus on CP reuse
and to mainly reuse CPs from the ODP portal.

Step 3 — Collecting requirement stories. As soon as the project environment is set
up, we ask the customer representatives to start entering their stories into the
wiki. Some stories become examples of typical information that is to be stored
by the ontology, while other stories focus more on reasoning tasks of the
ontology, depending on how the customer representatives formulate them.
Each story is entered into the story template, e.g., given a title and priority,
and as soon as several stories are in place, they can be related to each other.
A collected story can be seen in Table 3.2, and another one in Table 3.3. The
“Albums”-story depends on the “Recordings of songs” story, since the notion of
recorded track appears also in the story about albums but is the main focus of
“Recordings of songs.”

Step 4 — Eliciting requirements and constructing modules from CPs. At this point,
the design team is divided into pairs, in order to develop the ontology modules
using pair design. One pair is dedicated to the integration task, i.e., proceed
directly to prepare Steps 6—7, while the rest of the pairs choose their first stories
from the pool of collected ones. Each story with high priority has to be solved
before the lower priority ones are addressed. Each pair then starts to elicit
requirements from their chosen story, i.e., tries to derive CQs, contextual
statements, and reasoning requirements.

Table 3.2 A requirement story from the music domain concerning albums
Title Albums

Depends on Recordings of songs

Description An album is a collection of recorded tracks. The genre(s) of an album should be
derived based on the genres of the tracks it contains

Priority High

Table 3.3 A requirement story from the music domain concerning songs and recordings

Title Recordings of songs
Depends on
Description Songs are recorded by artists. Many artists can record the same song. In the

web interface, users will click on songs and get to see the artists that have
recorded them and links to information on those recordings
Priority High

3 Pattern-Based Ontology Design 55

Let us imagine that you are part of the design pair who picks up the story in
Table 3.2. First, you start analyzing the story itself, to see if there are any
obvious CQs, indicating information that should be stored and retrieved. The
most obvious CQs are:

1. What are the tracks of this album?
2. What is the genre of this track or album?

There could however be other CQs possible; hence, the final list needs to be
agreed with a customer representative, in order to ensure appropriate coverage of
the domain and task and to avoid misinterpretations of the story. In addition, it is
evident from the way the story is written that a reasoning requirement is needed,
i.e., the following:

* An album should be automatically assigned all the genres of it contained
tracks.

In other cases, it may not be as self-evident what needs to be possible to infer;
however, in many cases, software requirements and interactions with the cus-
tomer can clarify such issues.

Additionally, contextual statements can be proposed based on common sense
knowledge, e.g., in our case:

* An album always has at least one track.

Other contextual statements may be given by the customer representative or
be implicit in the software requirements, e.g., limitations set by the way the
software will use the ontology. We have thus collected two CQs, one contextual
statement and one reasoning requirement, based on the story in Table 3.2 and our
interaction with the customer representatives.

Next, the pair proceeds to select a subset of the requirements, which represent
some particular modeling issue. When analyzing the CQs, we note that the first
one is focused on the album as a collection of tracks, while the second one adds
the notion of genre. These are actually quite separate concerns, and in order to
decouple these modeling issues, we decide to create one module for each CQ.

Choosing to start with the first CQ and the contextual statement, we now need
to match the CQ to the requirements covered by the CPs in the ODP portal.
When searching the portal’s CP submission table'*, we find that there are several
interesting CPs, e.g., there is the collection CP" for representing membership,
and the part of CP for part-whole relations. In this case, both patterns have
matching CQs, so the choice is instead based on how we wish to view the album,
i.e., as an object divided into parts or as a collection that is the sum of its
members. One of the main differences between the patterns is that the part of CP

% http://ontologydesignpatterns.org/wiki/Submissions:ContentOPs
'3 http://ontologydesignpatterns.org/wiki/Submissions:Collection

http://ontologydesignpatterns.org/wiki/Submissions:ContentOPs
http://ontologydesignpatterns.org/wiki/Submissions:Collection

56 V. Presutti et al.

defines the part-whole relation as transitive, while the membership relation in the
collection CP is not. Since we are not interested in creating a hierarchy of parts,
we decide on the collection CP and document this choice in the project wiki
(including our argumentation).

Then it is time to start modeling. Since we are creating a new module each
time, we start by creating an empty ontology, with a new namespace (following a
namespace convention agreed in Step 1). Next, we import the OWL building
block of the collection CP into our empty ontology and start specializing it. As a
subclass of collection:Collection, we create a new class Album, and
then another new class called Track (subclass of owl : Thing). To complete
the specialization, we create sub-properties of the pattern properties, with more
domain-specific names, e.g., containsTrack and containedInAlbum,
set them to be inverses, and define domain and range axioms. Figure 3.10
illustrates the result of this process. Each entity we create is commented, and
given a label, and we additionally extend the specialized CP, by adding the
contextual statement as a cardinality restriction over the containsTrack
property on the Album class.

When the design pair is satisfied, it is time to test the module they have
created. First, we formulate the CQ as a SPARQL query. Most often, missing
parts are discovered already when formulating the query since the query formu-
lation involves an inspection of the model. However, a new ontology (i.e., a “test
case”) is created, importing the ontology to be tested, and some test instances are
added in the test case ontology. If the SPARQL query gives the expected result,
based on our test data, then the test is successful. We can proceed to perform
some stress testing. In this case, we should add data that violates some con-
straint, e.g., a contextual statement, and see that the ontology is able to detect the
problem, e.g., through finding an inconsistency, and that there are no undesired

owl:Thing owl:ObjectProperty
rdf:type T
. rdf:type
collection:hasMember
collection:Collection
[E collection:isMemberOf
Track rdfs:subPropertyOf
Album
A T containsTrack
containsTrack/
containedInAlbum rdfs:subPropertyOf

containedinAlbum

Fig. 3.10 Specialization of the collection CP

3 Pattern-Based Ontology Design 57

side effects. In our case, however, the open-world assumption of OWL makes it
hard to detect violations of our contextual statement.

When all tests run successfully, and the module is fully annotated and

documented in the wiki, it is time to proceed with the next set of requirements,
i.e., the second CQ and the reasoning requirement. Similarly as before, we start
by matching the requirements to the list of CPs in the ODP portal. This time, we
do not immediately find a match, i.e., there is no pattern for music genres;
however, there are patterns for expressing descriptions and parameters of a
concept. Nevertheless, let us assume that we find these too abstract for our
case, and instead choose to create the model on our own.
Just as in the previous iteration, we start by creating a new empty ontology with
its own namespace. However, this time we realize that we need the tracks and
albums that we just modeled in the previous module; hence, we import it into our
new ontology module. Then we add the class Genre and a property hasGenre
(including its inverse genreOf). The domain of hasGenre is set to the union
of Track and Album, while the range is set to the Genre class. In addition, to
solve the reasoning requirement, we add a property chain definition to the
hasGenre property, stating that hasGenre can be derived from the combi-
nation of the hasTrack and hasGenre properties, meaning that if an album
has a track which in turn has a certain genre, then that album should also be
directly connected to the same genre.

Testing this time involves testing the CQ using one or more SPARQL queries
but also to test the inferences produced based on the property chain, i.e., to
confirm that the reasoning requirement is fulfilled. To do the latter, we create a
new empty ontology, import our module to be tested and add some test data that
should produce the correct inference. For instance, an album instance can be
added, then associated to a track (through hasTrack), and the track’s genre set
to rock (through hasGenre). When the inferences are materialized, we
expect to see that the album is now also associated with the genre rock. As
soon as all tests run successfully, and the ontology module is appropriately
commented, we are now ready to release the complete solution of the customer
story in Table 3.2, consisting of our two ontology modules.

Step 5 — Releasing module(s). The modules, and all their wiki documentation, are
now made available to the pair in charge of integration.

Step 6 — Integrating partial solutions, evaluating, and revising. As soon as the
integration team have more than one solution to work with, i.e., more than one
story is covered, they start integrating the modules. Integration is a crucial part
and involves a trade-off between refactoring, to reduce overlap between
modules, and keeping the decoupling of modules to facilitate later changes
and reusability of individual modules. In some cases, integration is quite easy,
e.g., the modules can directly be imported into one new ontology, and tested
together, without any additional modeling, while in other cases, the integration
means to add some “glue” to resolve conflicts and make sure that the
requirements of the stories treated so far can be covered all together. However,
the use of CPs facilitates the integration since it makes explicit the modeling

58 V. Presutti et al.

choices made, assures that the development team has a shared vocabulary for
talking about modeling choices, and in some cases even makes the integration
semi-automatic, i.e., if the same CP is imported in several modules they are
inherently aligned.
While the integration pair starts their task, our design pair can now go back to the
list of remaining user stories, and select a new one, to start another development
iteration. This process is continued until no more stories are to be covered.
Step 7 — Releasing new version of ontology network. After each new module has
been integrated into the resulting ontology (i.e., ontology network), a new
release is created, letting the customer and other parties, e.g., software
developers, review and test the ontology at all stages of development.

3.4.4 Tool Support

In this section, we briefly present the ODP portal'® and the eXtreme Design Tools
(XD Tools), two resources that support XD. The ODP portal is a semantic wiki
dedicated to best practices of ontology design for the semantic web, with particular
focus on ODPs. The ODP portal supports the life cycle of ODPs, i.e., from their
proposal to their evaluation and possible certification. CP wiki pages can be created
automatically in the wiki by providing, as input, the CP OWL file properly
annotated. Currently, the ODP portal supports the life cycle of Content ODPs,
Re-engineering ODPs, Alignment ODPs, Logical ODPs, Architectural ODPs, and
Lexico-syntactic ODPs. The ODP portal is associated with a registry of CPs'’.

While the ODP portal is meant to give community support to XD, the XD
Tools are meant to assist the execution of the XD methodology. XD Tools are a
set of software components released as an Eclipse plugin, accessible through a
perspective — eXtreme Design — compatible with Eclipse-based ontology design
environments, such as the NeOn Toolkit. Currently, XD Tools are comprised of five
main components that allow a user to browse a registry of CPs, search and import
them into a local ontology project. Although specialization is possible through
native NeOn Toolkit functionalities, XD Tools feature a wizard for specializing a
CP, for usability reasons. As a special feature, a service for analyzing an ontology
with respect to general modeling best practices is also included.

Figure 3.11 gives an overview of the XD Tools interface as it appears in the
NeOn Toolkit. The ODP Registry view (bottom left of Fig. 3.11 — enlarged view in
Fig. 3.12) exposes a tree-like view of a CP registry that can be browsed by a user.
The default registry used is the ODP portal registry, but others can be added
through customizing the plugin. When a CP is selected, the ODP Details view

16 The ODP portal main page, http://www.ontologydesignpattern.org

""The ODP Portal pattern registry can be downloaded at: http://ontologydesignpatterns.org/
schemas/registry.owl

http://www.ontologydesignpattern.org
http://ontologydesignpatterns.org/schemas/registry.owl
http://ontologydesignpatterns.org/schemas/registry.owl

3 Pattern-Based Ontology Design 59

(to the right of the registry view in both figures) shows a description of it, based on
the annotations stored in the CP’s OWL file. By right clicking on a CP, its OWL
file can be downloaded through the “Get” command and put in a local ontology
project. The ODP Selector view (bottom right of Fig. 3.11 — enlarged view in
Fig. 3.13) provides a search service over the CP registry. By clicking on the
“Search” icon (highlighted by a small circle in Fig. 3.13), a user can type a natural
language query, e.g., a competency question, in a text field, and submit it to a set of
search services that return ranked lists of CPs, from which the user can select the
most appropriate one(s).

£ Omclogy Navigator B = O || fa Entiey Properties | | [DProject] hitp:/ owd.man.ac.uk/2005 /07 [sssw/people.cwt B 8| v=0
* gl Bologra201 1 [owLz2) + | Project: XDProject
+ i TestPluginProject IOWL2] S -
i XDProject [OWLZ] Doy, bl o]
» o cpamnctationschema.owl Tiene: Thu Aug 18 16:57:10 CEST 2011
¥ & people.owl Description Message
¥ _|Classes B4 Missing comment (1) Al entities should have 3t least one rdfs comment. -
* @ aduit ¥ & Missing label (1) All entities should have at least one rdfs label.
» @ animal & Missing label The ontology itselfl meeds at least a rdfs label
@ bone & Missing inverse (%) Each object property should have an inverse fexcept symmetric properties).
Bonain * i tiolaned entity (1) Each entity must be related at least to anather one through some ontolegy axiom.
* @ company * | Missing domains or ranges 22} Each property should have its domain and range property defined. .
@ Wl 3 .
o OOF Registry 51 & | @7 = 0 o oorDetais 13 =0\ iR gav=o
v} Content OOP Submissions 3 1l e e e P ¥ 2} Lucens search (3) 3
* G Submissions m Location: hitpe/# [T Iy T — il
o ActingFor = ol fsemicn.owl Thito. [fwww cntclogydesign
ol Action === Propary e > owd [htep: i
Y Agentole) coversRequinements x‘""‘“" pay L gcet ¥ (), Semantic vectors search (80)
4 AOS_ACRONOC_ Concept_Server_fun || vl v [hiep:J fwn
o R ._Jiﬂtf “This CP allows designers to make assertions on ‘“f’mi_umﬂ[""ﬂ'il entelo
o AquaricResources - hasiatent “To represent agents and the roles they play.” 4/ ol faquaticresources.owl [hEtp. | fwww.ontology
% - ok e > hatp:
BB oasi ._J relatedCPs “The time indexed person role CP available at bt ol persons.owd [Mp:/ fwww.ontologycesignps
o8 BasicPlantxecution o scenarios “She greeted us all in her various roles of mother > il
ol Biciogical_Entities ._J wersioninfo *1.1 added rdfs:isDefinedBy for all named entitie: ol frimeindexedpersonrole.owl [MID: fwaw.on
ot CatehRecord —J versiorinio “Created by Aldo Cangemi and Valenting Presutti »
o Classification £ tabet “agent role” A A PlainLiteral Bz |t 1
off ClimaticZone v -ggm.mﬂmm [hetp: [fwwew. ontologydes
e/ - DY i E] . | l— .
- 40
Fig. 3.11 Screenshot overview of XD Tools
-
> @ publication | EY
o ODP Registry 52 @,i@hvﬂn ol ODP Details 52
v o Content ODP Submissions o || URE hip:f fwwn. logydesig gfcpfowl/ag le.owl
¥ @ submissions Location: http:/ fwww aiepl ol
off ActingFor
& Action — Property Value
o ik L)1 2 coversRequirements “which agent does play this role?
o ‘m AGROVOC_Concept_Server_fundation :'__)ex:ta:ndl‘rom “http:/ fwww.ontologydesignpatterns.orgfont/dul /DUL.owl™ 4 A Plail
o ‘qu;k&swm‘wbuw‘;m = = —J hasConsequences “This CP allows designers to make assertions on roles played by age
b Vi ek) hasiatent “To represent agents and the roles they play.” A A PlainLiteral
o .m B of “hip: / fweew. ns.org/fcp/owl fobj le.owl® A 4
o2 BasicPlan .__) relatedCPs “The time indexed person role CF available at hitp:/ fwww_ontologyt
& BasicPlanExecution '_J scenarios “She greeted us all in her various roles of mother, friend, and daugh
off Biological_Entities '_Jvu;imlntu "1.1 added rdfs:isDefinedBy for all named entities®
g) versioninfo “Created by Aldo Gangemi and Valentina Presutti®
o CatchRecord
E 4 " A A PlainLi
off Classification —J label ‘agent role’ PlainLiteral
offf ClimaticZone
o Co-participation
W Collection
o8 CommunicationEvent L
off Communities v
«C . «C y

Fig. 3.12 Screenshot depicting the ODP Registry view (left) and the ODP Details view (right)

60 V. Presutti et al.

The XD Analyzer view (top right of Fig. 3.11 —enlarged view in Fig. 3.14) can be
run through a contextual menu on a selected ontology and shows a list of messages,
each associated with a best practice criterion. A message indicates whether the
ontology satisfies a certain criterion or not. The XD Analyzer has a pluggable
architecture, allowing for easy extension of the set of heuristics that express “best
practices.” Three levels of messages can be produced: errors, warnings, and
suggestions (i.e., proposals for improvement). An error is, for instance, a missing type,
i.e., all instances should have an explicit class as its type (could be owl : Thing).

= 0O||[] xo Selector £3 |,_,;_|Z§:;;V='ﬂ
'%Lucene search (3) A
> ﬁ,‘ac’tingfor,ml [http:/ /www.ontologydesignpatterns.org/cp/owl /actingfor.owl]
> ﬁ.-'semion .owl [http:/ /www.ontologydesignpatterns.org/cp/owl/semion.owl]

> #fintensionextensinn,nm [http:/ /www.ontologydesignpatterns.org/cp/owl/intensionexten
V-%Semantlc vectors search (80)

Liter > ﬁ /salespurchaseordercontracts.owl [http: / /www.ontologydesignpatterns.org/cp/owl/sales
W > ﬁfspecles_:axonomlc,owl [http:/ fwww.ontologydesignpatterns.org/cp/owl /fsdas /species_
| > # faquaticresources.owl [http:/ /www.ontologydesignpatterns.org/cp/owl/fsdas/aguaticres:
Plair —~ £
i) Pattern quick search pocy.on
er.’ ! Enter your search query below. You can use keywords or a competency question, jpeci es
| for example: "What agent plays a specific role?” ¥l ftimeindexe
| Who wrote this book? . Eﬂtiﬂn‘WH
| esignpatterns

dinterfaces.on
| adinteraction.

e 3,
Fig. 3.13 Screenshot depicting the ODP Selector view and its search query interface
£ Ontclogy Kavigator B = O A Entiry Properties | | DDProject] http:/jowl.man.ac.uk/2005/07 /sssw/people.owl 5T o=t
¥ (i BolognaZ011 [OWL2] o || project: xDPraject
:Em::m; o Ontclogy: p:{fowl.man ac uk/ 2005 /07 /sssw/people.owl
w) osinsiiianscharniiia Time: Thu Aug 18 16:57:10 CEST 2011
¥« peopit.ond Deseripticn Metsage
¥ _jClasses * 0 Missing comment (1) Al entities should have at least one rdfs comment
* @ agult ¥ & Missing label (1) Al entities should have at least one rdfs label.
» @ animal 1, Missing label The ontology itself needs at least a rdfs label
@ bane * & Missing inverse (9) Each object property should have an inverse [except symmetric properties).
brain * & Isolated entity (1) Each entity must be related at 163t to Anather ane through some ontology dxiom.
* @ company * | Missing domains or ranges 22} Each property should have its domain and range properly defined.
@ dog i Architectural import notice (0] Most of the locally defined entities do not specialize imparted entities.
* (@ female " Domain or range intersection (01 Domain or range of a property contain an intersection of classes.
IE hautage_worker % Unused imported ontalogy (93 All imparted entologies should have at least ene entity referenced locally,
& et " Missing type (0) Each entity must be the instance of something. This is valid for entities of the T-Box
* @ male
(@ ranticipation »

Fig. 3.14 Screenshot depicting the XD Analyzer, showing the results of the analysis in the list to
the right. Yellow triangles indicate warnings, while “i” stands for suggestion. The number of
occurrences is given within brackets

3 Pattern-Based Ontology Design 61

(] [—— an

Dubon peraaTabes spet a4 enet

Fig. 3.15 Part (a) shows the XD Specialization wizard and (b) the XD Annotation dialog

Examples of warnings are missing labels and comments, as well as proposals to
create an inverse for each object property that has no inverse so far in the
analyzed ontology. A suggestion could be a message to check the object
properties that lack domain and range definitions, i.e., such definitions are not
mandatory in a well-designed ontology, since they could be replaced by other
axioms; however, if they are missing, it could also indicate that the developer
has forgot to add them.

XD Tools also include a wizard for guiding users in the process of specializing a
CP. Figure 3.15a shows the Specialization wizard. CP specialization, as the primary
step of their reuse, can be challenging for an inexperienced user if it is done one
element at a time, without guidance. From a user perspective, CP specialization has
the following steps: (1) import the pattern into the working ontology, (2) define
subclasses/sub-properties for each of the (most specific) pattern entities needed and
(3) add any additional appropriate axioms. The specialization wizard provided
by XD Tools guides the user through this process. Finally, XD Tools provide a
so-called Annotation dialog — depicted in Fig. 3.15b — which supports annotation,
i.e., documentation, of an ontology based on customizable annotation vocabularies.

In addition, XD Tools provide several help functions, such as inline info boxes,
help sections in the Eclipse help center and “cheat sheets” describing the XD
methodology for CP reuse.

3.5 Conclusion

In this chapter, we have presented ontology design patterns (ODPs), which are
reusable modeling solutions that encode modeling best practices, by briefly
discussing their different types and characteristics. ODPs are the main tool for

62 V. Presutti et al.

performing pattern-based design of ontologies, which is an approach to ontology
development that emphasizes reuse and promotes the development of a common
“language” for sharing knowledge about ontology design best practices. ODPs are
associated with a set of requirements that are explicitly expressed in order to favor
their selection through a matching procedure. Content ODPs (CPs) have been the
main focus of this chapter, which has shown through some examples how they can
be used for building an ontology according to a set of elicited requirements. CPs are
domain-dependent patterns, the requirements of which are expressed by means of
competency questions, contextual statements, and reasoning requirements. In order
to reuse CPs, we have defined a set of operations that include importing, speci-
alizing, and composing them to the aim of building a new ontology (or ontology
network).

In the second part of the chapter, we have described an agile methodology for
pattern-based ontology design named eXtreme Design (XD), an iterative and
incremental process, which is characterized by a test-driven and collaborative
development approach. The XD methodology is supported by a set of software
components named XD Tools, which assist users in the process of pattern-based
design.

The XD methodology has been tested in numerous ontology development
projects, including user-based experiments conducted in controlled environments.
The results of those experiments have been reported by Blomqvist and colleagues
(2009a) and by Blomgqvist and colleagues (2010a). The participants were, for
instance, asked to assess how useful ODPs and XD were and how much overhead
it added to their work processes, as well if XD felt like a natural way of working,
i.e., if they were already working in a similar way before being introduced to the
methodology. Overall, the methodology was received well, and the participants felt
that it was a very natural way of working, without adding any unnecessary
restrictions to the process. Nevertheless, the objective evaluation of their modeling
results showed that the quality increased drastically, in particular with respect to a
number of common mistakes, when introducing the methodology. This could be
attributed to the testing focus of the methodology that enforces a rigorous evalua-
tion of each solution before its release. So even though the participants felt that the
methodology added nothing new, it actually helped them to structure their work and
provide better and more rigorously tested ontologies.

References

Aguado de Cea G, Gomez-Pérez A, Montiel-Ponsoda E, Suérez-Figueroa MC (2009) Using
linguistic patterns to enhance ontology development. In: Dietz J (ed) Proceedings of the
international conference on knowledge engineering and ontology development (KEOD),
Funchal, pp 206-213

Baker CF, Fillmore CJ, Lowe JB (1998) The Berkeley FrameNet project. In: Boitet C, Whitelock P
(eds) Proceedings of the 36th annual meeting of the Association for Computational Linguistics

3 Pattern-Based Ontology Design 63

and 17th international conference on computational linguistics, vol 1. Association for Compu-
tational Linguistics, Stroudsburg, PA, USA, pp 86-90

Basili V, Caldiera G, Rombach D (1994) The experience factory. In: Marciniak J (ed) Encyclope-
dia of software engineering. Wiley, New York, pp 469476

Bizer C, Heath T, Berners-Lee T (2009) Linked data — the story so far. Int J Semant Web Inf Syst 5
3):1-22

Blomgvist E, Gangemi A, Presutti V (2009a) Experiments on pattern-based ontology design. In:
Proceeding of K-CAP 2009, Los Angeles. ACM, New York

Blomgqvist E, Sandkuhl K, Scharffe F, Svatek V (2009b) Proceedings of the workshop on ontology
patterns (WOP 2009), collocated with the 8th international semantic web conference (ISWC-
2009), Washington, DC, USA, 25 Oct, 2009, vol 516. CEUR

Blomgqvist E, Presutti V, Daga E, Gangemi A (2010a) Experimenting with eXtreme design. In:
Proceedings of EKAW2010 — knowledge engineering and management by the masses, LNCS
6317. Springer, Berlin/Heidelberg/New York

Blomgvist E, Chaudhri V, Corcho O, Presutti V, Sandkuhl K (2010b) Proceedings of the 2nd
international workshop on ontology patterns — WOP2010, vol 671. CEUR

Gamma E, Helm R, Johnson R, Vlissides J (1994) Design patterns: elements of reusable object-
oriented software. Addison-Wesley, Reading

Gangemi A, Borgo S (2004) Core ontologies in ontology engineering 2004. (Un) Successful cases
and best practices for ontology engineering: reusing well-founded ontologies for domain
content specification. In: Proceedings of the EKAW*04 workshop on core ontologies in
ontology engineering, Northamptonshire (UK), 8 Oct, 2004, vol 118. CEUR

Gangemi A, Presutti V (2009) Ontology design patterns. In: Staab S, Studer R (eds) Handbook on
ontologies, 2nd edn. Springer, Berlin, pp 221-243

Gangemi A, Fisseha F, Keizer J, Lehmann J, Liang A, Pettman I, Sini M, Taconet M (2004) A core
ontology of fishery and its use in the FOS project. In: EKAW 2004 workshop on core
ontologies in ontology engineering, Northamptonshire. CEUR

Gangemi A, Sagri MT, Tiscornia D (2005) A constructive framework for legal ontologies. In: Law
and the semantic web. Legal ontologies, methodologies, legal information retrieval, and
applications. 3369. Springer, Berlin/Heidelberg/New York

Gruninger M, Fox MS (1994) The role of competency questions in enterprise eEngineering. In:
IFIP WG5.7 workshop on benchmarking — theory and practice, Trondheim

Hammar K, Sandkuhl K (2010) The state of ontology pattern research: a systematic review of
ISWC, ESWC and ASWC 2005-2009. In: Blomgqvist E, Chaudhri VK, Corcho O, Presutti V,
Sandkuhl K (eds) Proceedings of the 2nd International workshop on ontology patterns —
WOP2010. Workshop at the 9th international semantic web conference (ISWC2010) —
ISWC 2010 workshops, vol VIII. Shanghai, China, 8 Nov, 2010, vol 671. CEUR

Hay DC (2000) Data model patterns: conventions of thought. Dorset House Publishing, New York

Masolo C, Borgo S, Gangemi A, Guarino N, Oltramari A (2005) The wonderweb library of
foundational ontologies. Wonderweb deliverable D18. Laboratory for applied ontology (ISTC-
CNR)

Miles A, Bechhofer S (2009) SKOS simple knowledge organization system reference. W3C

Niles I, Pease A (2001) Towards a standard upper ontology. In: Welty C, Smith B (eds) 2nd
international conference on formal ontology in information systems (FOIS-2001), Ogunquit

Noy N, Rector A (2004) Defining N-ary relations on the semantic web: use with individuals. W3C

Presutti V, Daga E, Gangemi A, Blomqvist E (2009) eXtreme design with content ontology design
patterns. In: Blomqvist E, Sandkuhl K, Scharffe F, Svatek V (eds) Proceedings of the workshop
on ontology patterns (WOP 2009), collocated with the 8th international semantic web confer-
ence (ISWC-2009), Washington, DC, USA, 25 Oct 2009, vol 516. CEUR

Rector A, Stevens R (2008) Barriers to the use of OWL in knowledge driven applications. In:
Dolbear C, Ruttenberg A, Sattler U (eds) Proceedings of the fiftth OWLED workshop on OWL.:
experiences and directions collocated with the 7th international semantic web conference
(ISWC-2008) Karlsruhe, Germany, 26-27 Oct 2008, vol 432. CEUR

64 V. Presutti et al.

Scharffe F, Fensel D (2008) Correspondence patterns for ontology alignment. In: Gangemi A,
Euzenat J (eds) Proceedings of the 16th international conference, EKAW 2008, Acitrezza,
Italy. 5268. Springer, Berlin/Heidelberg/New York, pp 83-92

Shore J, Warden S (2007) The art of agile development. O’Reilly, Farnham

Svatek V, Svab-Zamazal O, Presutti V (2009) Ontology naming pattern sauce for (human and
computer) gourmets. In: Workshop on ontology patterns at ISWC’09, Washington DC, 2009.
516. CEUR

Vrandeci¢ D, Gangemi A (2006) Unit tests for ontologies. In: Proceedings of the 1st international
workshop on ontology content and evaluation in enterprise. Springer, Berlin/Heidelberg/New York

Vrandeci¢ D, Sure Y (2007) How to design better ontology metrics. In: May W, Kifer M (eds) 4th
European semantic web conference (ESWC’07). Springer, Berlin/Heidelberg/New York

Chapter 4
The NeOn Ontology Models

Alessandro Adamou, Raiil Palma, Peter Haase, Elena Montiel-Ponsoda,
Guadalupe Aguado de Cea, Asuncion Gomez-Pérez, Wim Peters,
and Aldo Gangemi

Abstract Interoperability on multiple levels, concerning both the ontologies them-
selves and their engineering activities, is a key requirement for ontology networks
to be efficient, with minimal redundancy and high reuse. This requirement has
a strict binding for software tools that can support some interoperability levels, yet
they can be hindered by a lack of shared models and vocabularies describing the
resources to be handled, as well as the ways of handling them. Here, three examples
of metalevel vocabularies are proposed, each covering at least one peculiar

A. Adamou (0<)
Semantic Technologies Lab, Institute of Cognitive Sciences, and Technologies (National Research
Council — CNR), Via Nomentana 56, 00161 Rome, Italy

Department of Computer Science, Alma Mater Studiorum Universita di Bologna, Mura Anteo
Zamboni 7, 40126 Bologna, Italy
e-mail: alessandro.adamou@istc.cnr.it; adamou@cs.unibo.it

R. Palma
Poznan Supercomputing and Networking Center, ul. Dabrowskiego 79a, 60-529 Poznan, Poland
e-mail: rpalma@man.poznan.pl

P. Haase
fluid Operations AG, Altrottstr. 31, 69190 Walldorf, Germany
e-mail: peter.haase@fluidops.com

E. Montiel-Ponsoda « G. Aguado de Cea » A. Gomez-Pérez

Ontology Engineering Group, Facultad de Informatica, Universidad Politécnica de Madrid,
Campus de Montegancedo sn, 28660 Boadilla del Monte, Madrid, Spain

e-mail: emontiel@fi.upm.es; lupe@fi.upm.es; asun@fi.upm.es

W. Peters
University of Sheffield, Sheffield, UK
e-mail: w.peters@dcs.shef.ac.uk

A. Gangemi

Semantic Technologies Lab, Institute of Cognitive Sciences, and Technologies (National Research
Council — CNR), Via Nomentana 56, 00161 Rome, Italy

e-mail: aldo.gangemi@cnr.it

M.C. Suarez-Figueroa et al. (eds.), Ontology Engineering in a Networked World, 65
DOI 10.1007/978-3-642-24794-1_4, © Springer-Verlag Berlin Heidelberg 2012

mailto:alessandro.adamou@istc.cnr.it; adamou@cs.unibo.it
mailto:rpalma@man.poznan.pl
mailto:peter.haase@fluidops.com
mailto:emontiel@fi.upm.es
mailto:lupe@fi.upm.es
mailto:asun@fi.upm.es
mailto:w.peters@dcs.shef.ac.uk
mailto:aldo.gangemi@cnr.it

66 A. Adamou et al.

interoperability aspect: OMV for modeling the artifacts themselves, LIR for man-
aging a multilingual layer on top of them, and C-ODO Light for modeling collabo-
ration-supportive life cycle management tasks and processes. All of these models
lend themselves to handling by dedicated software tools and are all being employed
within NeOn products.

4.1 Introduction

Authoring ontologies and modeling domains of interest are only part of an ontology
life cycle management process. If these activities are carried out in a monolithic
fashion, from scratch and without reusing readily available knowledge models, this
may lead to costly “reinventions of the wheel” and contradicts the Semantic Web
philosophy of an open knowledge world. On the other hand, even when the
intention and sentiment to follow this philosophy are present, they might not be
encouraged by appropriate tool support. This, in turn, depends on the availability of
formal models of processes and artifacts in ontology design, i.e., their metalevel.
This model may sometimes be implicitly hardwired in the software itself, but if it is
not, then it may be useful to share and exploit it for the sake of interoperability, be it
conceptual, linguistic, functional, or social.

This chapter focuses on three contributions to the practice of ontology design by
metalevel handling. Each contribution, presented itself as an ontology network,
covers a specific design perspective, i.e., reuse (OMV), localization (LIR), and
collaborative engineering (C-ODO Light). By the end of the chapter, the reader will
have a practical insight as to how a model of the ontology metalevel can be
employed to build effective software tools to automate engineering tasks.

4.2 Ontology Metadata Vocabulary (OMYV)

Ontologies have undergone an enormous development and have been applied in
many domains within the last years, especially in the context of the Semantic
Web. Currently, however, efficient knowledge sharing and reuse, a prerequisite
for the realization of the Semantic Web vision, is a difficult task. It is hard to find
and share existing ontologies because of the lack of standards for documenting
and annotating ontologies with metadata information. Without ontology-specific
metadata, developers are not able to reuse existing ontologies, which leads to
interoperability problems, as well as duplicate efforts. In order to provide a basis
for an effective access and exchange of ontologies across the web, it is necessary
to agree on a standard for ontology metadata. This standard then provides a
common set of terms and definitions describing ontologies and is called metadata
vocabulary.

4 The NeOn Ontology Models 67

Limitations. The need for a metadata vocabulary for describing ontologies has
been acknowledged in the past by previous efforts (e.g., Dublin Core 1998, Reference
Ontology 2000, Ontology Metaontology (OMO) 2003, and DogmaModeler
Ontology 2005). However, at the moment, most of the current ontologies exist in
pure form without any additional information, e.g., domain of interest, authorship
information, and statistic information (Ungrangsi and Simperl 2008). This is due in
part to the lack of standards or community-accepted vocabularies for documenting
and annotating ontologies with metadata information. Moreover, most of the
previous efforts carried out on this issue provide only a list of property-value
pairs for describing ontologies (e.g., Arpirez et al. 2000; Jarrar 2005), limiting
the processing capabilities and the related relevant information that can be
described. Similarly, ontology metadata are in many of the existing systems
and repositories (e.g., DAML Ontology Library', SchemaWeb Directory?, and
SWOOGLE3), not based on agreed standards, which makes them difficult to
integrate or reuse. Finally, general-purpose standards, such as Dublin Core, are
not appropriate for capturing information about ontologies because of the
differences between arbitrary information sources and ontologies. For instance,
aspects related to the application scenario, scope, purpose, or evaluation results are
essential when describing ontologies. Additionally, besides structural and technical
information, ontologies have to be described in terms of descriptive metadata, such
as provenance information, ontology categorizations, underlying methodologies, or
knowledge representation paradigms that are specific for ontologies.

Thereupon, in this chapter we describe our contribution to the alleviation of this
situation: the ontology metadata standard OMV (Ontology Metadata Vocabulary),
which specifies reusability-enhancing ontology features for human- and machine-
processing purposes. It allows to clarify the relations between the available ontologies
so that they are easy to search, to characterize, and to maintain. Moreover, it provides
the means for making explicit the virtual and implicit network of ontologies.

Ontology Metadata Requirements. As a result of a systematic survey of the state
of the art in the area of ontology reuse, we have elaborated an inventory of
requirements for the metadata model. Besides analytical activities, we conducted
extensive literature research focused on theoretical methods (Pinto and Martins
2001; Gangemi et al. 1999; Lozano-Tello and Goémez-Pérez 2004) and also on case
studies on reusing existing ontologies (Uschold et al. 1998; Russ et al. 1999; Paslaru
Bontas et al. 2005). Our aim was to identify the real-world needs of the community
with respect to a descriptive metadata format for ontologies. Further on, the
requirement analysis phase was complemented by a comparative study of existing
(ontology-independent) metadata models and tools such as ontology repositories
and libraries that (implicitly) make use of some form of ontology metadata.

! http://www.daml.org/ontologies/
2 http://www.schemaweb.info/
? http://swoogle.umbc.edu/

http://www.daml.org/ontologies/
http://www.schemaweb.info/
http://swoogle.umbc.edu/

68 A. Adamou et al.

Several aspects to be considered in ontology metadata representation are defi-
nitely similar to those of other more general metadata standards such as Dublin
Core. Differences arise, however, if we consider the semantic nature of ontologies,
which are much more than plain web information sources. The main requirements
identified in this process are the following:

Accessibility. Metadata should be accessible and processable for both humans and
machines. Whereas the human-driven aspects are ensured by the usage of natural
language concept names, the machine-readability requirement can be
implemented by the usage of web-compatible representation languages (such
as XML or Semantic Web languages, see below). Furthermore, having metadata
in processable format will facilitate the implementation of tools that use or
manage ontology-related metadata (e.g., ontology changes).

Usability. A metadata model should (1) reflect the needs of the majority of ontology
users, as reported by existing case studies in ontology reuse, but at the same time (2)
allow proprietary extensions and refinements in particular application scenarios (e.
g., ontology change management). From a content perspective, usability can be
maximized by taking into account multiple metadata types, which correspond to
specific viewpoints on the ontological resources and are applied in various appli-
cation tasks. Despite the broad understanding of the metadata concept and the use
cases associated to each definition, several key aspects of metadata information
have already been established across computer science fields (NISO 2004):

e Structural metadata relate to statistical measures on the graph structure under-
lying an ontology. In particular, we mention the number of specific ontological
primitives (e.g., number of classes and individuals). The availability of struc-
tural metadata influences the usability of an ontology in concrete application
scenarios, because size and structure parameters constrain the type of tools
and methods that are applied to aiding the reuse process. For instance, as it has
been analyzed in the past (e.g., Gardiner et al. 2006), most ontology reasoners
have still scalability issues when dealing with large ontologies. Furthermore,
structural metadata provide core information to identify when an ontology
changes (e.g., a different number of classes or individuals).

e Descriptive metadata relate to the domain modeled in the ontology in the
form of keywords, topic classifications, textual descriptions of the ontology
contents, etc. This type of metadata plays a crucial role in the selection of
appropriate reuse candidates, a process that includes requirements with
respect to the domain of the ontologies to be reused. Moreover, descriptive
metadata are highly useful when identifying ontology changes from a high-
level point of view (e.g., the domain has been specialized and the description
has been updated).

» Administrative metadata provide information to help manage an ontology,
such as when and how it was created, rights management, file format,
and other technical information. Obviously, information like the date of modi-
fication of the ontology is also useful to identify when an ontology has
changed.

4 The NeOn Ontology Models 69

Interoperability. Similar to the ontology it describes, metadata information should
be available in a form that facilitates metadata exchange among applications.
While the syntactical aspects of interoperability are covered by the usage of
standard representation languages (see ‘Accessibility’), the semantic interopera-
bility among machines handling ontology metadata information can be ensured
by means of a formal and explicit representation of the meaning of the metadata
entities (by conceptualizing the metadata vocabulary itself as an ontology).

4.2.1 OMYV Overview

This section presents the ontology metadata vocabulary (OMV); the first part
provides an overview of the core design principles applied to the development of
the OMV metadata model; then, we describe in detail the core of such a model;
next, we present implementation and practical aspects; finally, we provide an
introduction to the OMYV extensions.

4.2.1.1 Core and Extensions

Following the usability constraints identified during the requirements analysis,
we decided to design the OMV schema modularly, distinguishing between the
OMV core and various OMYV extensions. The former captures information that is
expected to be relevant to the majority of ontology reuse settings. However, in order
to allow ontology developers and users to specify task-or application-specific
ontology-related information, we allowed for the development of OMV extension
modules, which are separated from the core schema while remaining compatible to
it. That is, the terms are supposed to mean the same thing in the core and the exten-
sions. Essentially, extensions reuse the core knowledge and provide specialized
information for different ontology aspects.

4.2.1.2 Metadata Organization and Categorization

In the following, we present the organization and categorization of metadata
(entities) in two dimensions, which provide a structured overview of the OMV
ontology:

Property Appropriation. We organize metadata entities according to the impact on
the prospected reusability of the described ontological content as presented in
the following list:

* Required — mandatory metadata elements. Any missing entry in this category
leads to an incomplete description of the ontology.
e Optional — important metadata facts, but not strongly required.

70 A. Adamou et al.

» Extensional — specialized metadata entities, which are not considered to be
part of the core metadata schema.

Property Categorization. Orthogonal to the previous classification, we organize the
metadata elements according to the type and purpose of the information
contained as follows:

¢ General — elements providing general information about the ontology.

» Availability — information about the location of the ontology (e.g., its URI or
the URL where the ontology is published on the web).

» Applicability — information about the intended usage or scope of the
ontology.

e Format — information about the physical representation of the resource.
In terms of ontologies, these elements include information about the repre-
sentation language(s) in which the ontology is formalized.

« Provenance — information about the organizations contributing to the creation
of the ontology.

» Relationship — information about relationships to other resources. This cate-
gory includes versioning, as well as conceptual relationships such as
extensions, generalization/specialization, and imports.

 Statistics — various metrics on the underlying graph topology of an ontology
(e.g., number of classes).

¢ Other — information not covered in the categories listed above.

Note that the classification dimensions introduced above (appropriation and
categorization) are intended to be considered when implementing several metadata
support facilities. The first dimension is relevant for a metadata creation service,
since it ensures a minimal set of useful metadata entries for each of the described
resources. The second can be used in various settings, mainly to reduce the user-
perceived complexity of the metadata schema, whose elements can be structured
according to the corresponding categories.

4.2.1.3 OMYV Core Metadata Entities

The main classes and properties of the OMV ontology are illustrated in Fig. 4.1°.
Besides the main class Ontology, the metadata model contains elements describ-
ing various aspects related to the creation, management, and usage of an ontology.
We will briefly discuss these in the following text. In a typical ontology engineering
process, person(s) or organization(s) develop ontologies. We group these two
classes under the generic class Party by a subclass-of relation. A Party can have
several locations by referring to a Location individual and can create and contribute

“Please notice that not all classes and properties are included. The ontology is available for
download in several ontology formats at http://omv.ontoware.org/

http://omv.ontoware.org/

4 The NeOn Ontology Models 71

0:n specifiedBy

Class Name
0:n definedBy DatatypeProperty
Li Model KnowledgeRepresen-
icenseMode tationParadigm OntologyType Domein
« name * name « name ObjeciEopart)
= acronym * acronym « acronym Range
» description * description « description = MIN:MAX Cardinality
2
. ation * docy + documentation 5B o
g7 a
Y 3 Y ® 8D
e 0
0:1 haslLi 0:n conforms- 0:1)is0fType a3 8
toKRParadigm w0 g
L
s Location
FormalityLevel oo
“ 0:1 hasFor- Ontolo S22 .
malityLevel ay i land, state
« name i P L] = city, street
« acronym ;—: i =l x
dasditiiien % = version “
s pesaw =3 « resourceLocator %D Party
» documenation it} « name mu 0:n|islocatedAt
§% 8 -
= E . @ <
wa o acronym o9
woow e o
g 7 a E * description subclass—of.." “..suhclass—of
SRR E :
HeEm + keywords Organisation Person
W oo w0
b =g g i
Ontol Task [—— + creationDate * name « firstName:
ogy SS oo « modificationDate « acronym * lasiName
* eMail
“hatne « naturalLanguage « phoneNumber
* acronym 0:n designed- p » faxNumber
« description ForOntologyTask| numberOfClasses
+ documenation * + numberGfProperties
* numberOfindividuals 0:n hasContactPersen
* numberOfAxioms
0:n]hasDomain I 1:1 hasOntologylanguage
O:n .
usedontologyEngin- 0:1 hasOntologySyntax
eeringMethodology 0:n usedOntology
EngineeringTool
y R 4
OntologyDomain| [OntologyEnginee- | | OntologyEngi- | gntologySyntax| |OntologyLanguage
ringMethodology neeringTool
= name * name * name
* name * name
+ acronym « acronym + acronym
s « acronym « acronym i R
*description it « description * description
" P i * description « description i Pl i » ¥ _
+documentation . i +documentation * documentation
documenation < Bacranation

O:n [...)developedBy OMV v.2.4

Fig. 4.1 OMV core overview

to ontological resources, i.e., Ontology class. Review details and further informa-
tion can be captured in an extensional OMV module. Further on we provide
information about the engineering process the ontology originally resulted from in
terms of the classes OntologyEngineeringMethodology, OntologyEn-
gineeringTool, and the attributes version, status, creationDate, and
modificationDate. Again these can be elaborated as an extension of the core
metadata schema. The usage history of the ontology is modeled by classes such as

72 A. Adamou et al.

the OntologyTask and LicenceModel. The scheme also contains
a representation of the most significant intrinsic features of an ontology. Details
on ontology languages are representable with the help of the classes
OntologySyntax, OntologyLanguage, and KnowledgeRepresenta-
tionParadigm. Ontologies might be categorized along a multitude of
dimensions. One of the most popular classifications differentiates among applica-
tion, domain, core, task, and upper-level ontologies. A further classification relies
on their level of formality and types of Knowledge Representation (KR) primitives
supported, introducing catalogs, glossaries, thesauri, taxonomies, frames, etc., as
types of ontologies. The former categories can be modeled as individuals of the
class OntologyType, while generic formality levels are introduced with the help
of the class FormalityLevel. The domain the ontology describes is represented
by the class OntologyDomain that references a predefined topic hierarchy such
as the DMOZ hierarchy. Further content information can be provided as values of
the attributes description, keywords, and documentation. Moreover, the metadata
schema provides information about the imported ontologies (useImports) and
versioning relations (hasPriorVersion, isBackwardCompatibleWith,
and isIncompatibleWith) — analogously to the OWL ontology properties.
Finally, OMV gives an overview of the graph topology of an Ontology with the help
of several graph-related metrics represented as integer values of the attributes
numberOfClasses, numberOfProperties, numberOfAxioms, and
numberOfIndividuals.

4.2.1.4 Ontological Representation

Following the accessibility and interoperability requirements, as well as the nature
of the metadata, which are intended to describe ontologies, the conceptual model
designed in the previous steps was implemented in OWL2°. With OWL being
established as the standard to represent ontologies, it was only logical to opt for
representing ontology metadata using the same language. As a consequence, the
same tooling for processing the ontologies can also be used for processing the
ontology metadata.

Additionally, a metadata element is modeled either by means of classes and
individuals or by means of valued properties. The former alternative, represented
using additional classes linked by object properties, was chosen to model those
metadata elements representing entities that can be referred to. The latter alter-
native, represented using datatype properties, was chosen to model metadata
elements with value/content that can be easily mapped to conventional data types
(numerical, literal, list values).

5 In the remainder of this chapter, when OWL appears without any version information, it refers to
OWLI. As opposed, when referring to OWL2, we explicitly note it.

4 The NeOn Ontology Models 73

Finally, OMV implements the appropriate properties of metadata entities by
different means: The required and optional metadata entities are implemented in
OMYV core with the appropriate cardinality restrictions, while the extensional
metadata entities are implemented in the different OMV extensions.

4.2.1.5 OMYV Extensions

The OMV core metadata is intended to evolve toward a commonly agreed schema
for Semantic Web ontologies. In contrast to this ambitious goal, we are aware that
for specific domains, tasks, or communities, extensions in any direction might be
required. These extensions should be compatible to the OMV core, but at the same
time, they should fulfill the requirements of a domain-, task-, or community-driven
setting.

The character of an OMV extension is a metadata ontology itself that imports the
OMYV core ontology. There are no restricting modeling guidelines to be met.
However, developers are encouraged to follow the design principles described
above (see Sects. 4.2.1.2 and 4.2.1.3), as well as to follow a basic set of guidelines
for naming ontology terms (Palma et al. 2008).

Some of the existing OMV extensions were developed in collaboration with
different institutions. The available extensions® are: the generic change ontology,
which models changes to an ontology (Palma 2009); the lexOMV extension
(Montiel-Ponsoda et al. 2007) that models the linguistic or multilingual data
contained in the ontology; the modules extension that represents the description
of ontology modules (d’Aquin et al. 2008); the peer extension that captures
information of peers sharing metadata about ontologies and related entities
(e.g., mappings and modules) (Wang et al. 2007); and the mapping extension that
describes mappings between heterogeneous ontologies.

4.2.2 Uses and Benefits

OMYV plays an important role in the ontology reuse task by facilitating the discov-
ery and exchange of ontologies, fostering the widespread dissemination of ontol-
ogy-driven technologies and the development of full-fledged ontology repositories
and registries on the web. Furthermore, applications that work with the creation or
(re)use of ontologies can benefit from having a standard schema for ontology
metadata. By using the same vocabulary to describe ontology metadata, applications
can exchange this information easily.

S OMV extensions are also available at http://omv.ontoware.org

http://omv.ontoware.org

74 A. Adamou et al.

Several applications are already using OMV to describe ontology metadata. In
this section, we present a selection of these applications that use OMYV at various
stages of the ontology development life cycle. First, the NeOn Toolkit’ (c.f. Part IIT
of this book) includes a set of OMV-related plugins that either use OMV or provide
access to OMV-enabled registries (e.g., Oyster, Centrasite). Oyster® is an open-
source ontology registry that uses the metadata for retrieval and selection tasks and
can also export OMYV data for other applications. Similarly, the commercial registry
Centrasite’ provides an OMV-specialized web service to support the management
of ontology metadata. Also, BioPortal' and Cupboard'' are two ontology
repositories that use OMV for the description of ontologies. The Semantic Web
gateway Watson'> can generate OMV annotations for the ontologies discovered.
Finally, applications such as the Protege MetaAnalysis plugin'® allow to calculate
various metadata for ontologies and facilitate the export of that metadata to the
OMV.

Opyster (Palma and Haase 2005) is a distributed registry that exploits Semantic
Web techniques in order to provide a solution for exchanging and reusing onto-
logies and related entities (e.g., ontology developers, ontology mappings, ontology
changes, etc.). To achieve this goal, Oyster uses OMV to describe ontologies and
related entities.

Moreover, Oyster uses ontologies extensively to provide its main metadata
management functions (registry metadata, formulating queries, routing queries,
and processing answers). The ontology metadata entries are aligned and formally
represented according to two ontologies: (1) the OMYV that describes the properties
of the ontology and (2) a topic hierarchy to define the domain of the ontology
(c.f. Sect. 4.3).

NeOn Applications. The NeOn Toolkit includes different OMV-related plugins.
The Oyster-API plugin enables programmatic access to all Oyster registry
functionalities within any other NeOn Toolkit plugin. This plugin can either use
a local or remote Oyster instance. Similarly, the Oyster-GUI plugin provides
a graphical user interface to interact with Oyster servers and other OMV-enabled
servers (e.g., Centrasite) implementing the OMV-based web service. This plugin
allows submitting, updating, and removing instances of OMV core classes, submitting
queries to search ontologies based on different criteria and importing from the Internet
ontologies matching the search criteria. Furthermore, the change-capturing plugin
implements methods and strategies for the capturing and synchronization of ontology
changes that are formally represented as instances of the change ontology (an OMV

7 http://www.neon-toolkit.org/

8 http://oyster2.ontoware.org

o http://www.infoq.com/zones/centrasite/

10 http://bioportal.bioontology.org

" http://cupboard.open.ac.uk:808 1/cupboard

12 http://watson.kmi.open.ac.uk/

13 http://protegewiki.stanford.edu/wiki/MetaAnalysis

http://www.neon-toolkit.org/
http://oyster2.ontoware.org
http://www.infoq.com/zones/centrasite/
http://bioportal.bioontology.org
http://cupboard.open.ac.uk:8081/cupboard
http://watson.kmi.open.ac.uk/
http://protegewiki.stanford.edu/wiki/MetaAnalysis

4 The NeOn Ontology Models 75

extension). This OMV extension is also used by several other plugins, such as Cicero
plugin (to enable discussions on changes), Evolva plugin (to represent the changes
proposed by the plugin based on background knowledge) and GATE Web service
plugin (to represent the changes generated from textual sources).

Additionally, the Cupboard system produced in NeOn for ontology publishing,
sharing, and reuse also relies on OMV to implement some of its features. Besides
letting users add their ontologies in a personal space — hosting, indexing, linking,
and exposing them through APIs and SPARQL — Cupboard is designed to be
a community tool. It helps ontology users and practitioners (including ontology
developers) in finding and reusing ontologies, through the use of rich ontology
metadata (thanks to Oyster and OMV) and advanced ontology review mechanisms.

Finally, the latest update produced in NeOn of the collaborative ontology design
ontology (C-ODO), called codolight (c.f. Sect. 4.4), has been aligned with OMV.
Compared to the original C-ODO ontology design metamodel, codolight is now
linked to requirements and application tasks, has been used for tool descriptions, is
aligned to external vocabularies, is lighter in complexity, and improves association
between the social and software layers of ontology design aspects. From a design
viewpoint, the metadata provided by OMV have a semantics that is potentially
compatible to that of other metamodels, and this alignment helps with metadata
interoperability.

Protege Plugin. The Protege MetaAnalysis plugin calculates various metadata
for ontologies and facilitates the export of those metadata to the OMV. The plugin
is a tab widget consisting of four panels: the numbers panel, the design panel, the
OWL panel, and the extras panel. The plugin computes metadata for a given
ontology and displays them in these panels. The ontology metadata can be exported
to an extension of the OMV. If the ontology already exists in OMYV, the metadata
for that ontology are updated. Otherwise, a new instance of the ontology is created
in OMV and populated with the computed metadata.

BioPortal. While Oyster is a distributed ontology repository, BioPortal is
a centralized repository of biomedical ontologies, where authors submit their
ontologies. As part of the submission process, authors also fill in the form to
describe their metadata. In the future, it is planned to add the capability for the
authors simply to point to the location of an OWL file that has the OMV individuals
and to have BioPortal import the information from that file.

BioPortal uses the ontology metadata in ontology search and navigation. Users
can specify, e.g., whether they want their search term to appear only in concept
definitions or in metadata as well. BioPortal will also use OMV extensions. For
example, one of the functions of BioPortal is to be a repository of mappings
between concepts in biomedical ontologies. Each mapping comes with its own
set of metadata (e.g., the mapping author, the algorithms used, the application
context in which the mapping is valid, etc.) (Fridman Noy et al. 2008). It is planned
to represent the mapping metadata as an OMV extension.

Another feature of BioPortal is the use of peer reviews for ontology evaluation.
Ontology users can rate BioPortal ontologies along different dimensions, such as
coverage and degree of formality, based on their experience with the ontology in

76 A. Adamou et al.

their own applications (Fridman Noy et al. 2005). The evaluation extension will
also be an OMYV extension.

The Watson Semantic Web gateway contains a repository of ontologies and
provides export of their metadata in the OMV format. When Watson users search
for ontologies, they can click on an ontology URI from the search results, and then
on the overview page for that, click on “Get OMV” for the metadata export.

OMEGA 1is an algorithm that addresses the problem of populating metadata
elements (Ungrangsi and Simperl 2008). It generates automatically metadata
about arbitrary ontologies on the web and is available as a web application and
a REST web service. It takes an ontology as input and automatically populates
certain metadata information such as domain, level of formality, and statistics,
using an ontology metadata schema, which is part of the OMV standard.

4.3 Linguistic Information Repository (LIR)

The symbiosis between ontologies and natural language has proven more and more
relevant in the light of the growing interest and use of Semantic Web technologies.
Ontologies that are well-documented in a natural language not only provide humans
with a better understanding of the world model they represent, but also a better
exploitation by the systems that may use them. This “grounding in natural lan-
guage” is believed to provide improvements in tasks such as ontology-based
information extraction, ontology learning, and population from text or ontology
verbalization (Buitelaar et al. 2009).

Nowadays, there is a growing demand for ontology-based applications that need
to interact with information in different natural languages, i.e., with multilingual
information. This is the case of numerous international organizations currently
introducing semantic technologies in their information systems, such as the Food
and Agriculture Organization or the World Health Organization, to mention just
a few. Such organizations have to manage information and resources available
in more than a dozen of different natural languages and have to customize the
information they produce to a similar number of linguistic communities.

For all these reasons, solutions have to be provided to model multiple natural
language descriptions in ontologies. Such an undertaking needs to consider several
requirements imposed by the characteristics of the domain of knowledge modeled
in the ontology and by the type of linguistic descriptions that are required by the
final application.

Requirements. Although the number of multilingual ontologies is still quite
small compared with the total amount of ontologies available in the web'*, we
have conducted a survey of the state of the art of modeling options to represent
multilingual information in ontologies (Montiel-Ponsoda et al. 2010). This survey

'“The Semantic Web search engine Watson provides data about the language of ontology labels
that shows that around 80% of ontologies have literals only in English (http://watson.kmi.open.ac.
uk/blog/2007/11/20/1195580640000.html)

http://watson.kmi.open.ac.uk/blog/2007/11/20/1195580640000.html
http://watson.kmi.open.ac.uk/blog/2007/11/20/1195580640000.html

4 The NeOn Ontology Models 77

has revealed the existence of three modeling options, which are briefly explained in
the following:

¢ Including multilingual labels in the ontology model

« Combining the ontology model with a mapping model between different natural
languages or a common interlingua

» Associating the ontology model with an external linguistic model

The first modeling option relies on the RDF(S) and OWL properties rdfs:
label and rdfs: comment to associate word forms and descriptions to ontology
elements. The main disadvantage of this option is that it is not possible to define any
relation among the linguistic annotations, so that the linguistic information is
restricted and the model is difficult to scale. The second option assumes the
existence of several ontologies in the same domain with labels expressed in
different natural languages, which are mapped to each other in a pairwise fashion,
or through a common conceptualization or interlingua. This option has been
considered in projects such as EuroWordNet (Vossen 1998). The risk of this option
is that a lot of effort has to be put in developing one conceptualization per language
and also in establishing mappings or links among conceptualizations. Finally, the
third modeling option allows the association of an external model of linguistic
descriptions to the ontology. The main advantages of this modeling option have to
do with the capability of the linguistic model of evolving into a complex model of
linguistic descriptions that can be accommodated to account for the needs of the
final applications. Models that follow this approach include Linglnfo (Buitelaar
et al. 2006), LexOnto (Cimiano et al. 2007) or LexInfo (Buitelaar et al. 2009).

Whereas some models have been explicitly designed to enrich ontologies with
linguistic information, such as the ones mentioned above, they mainly focus on
morphosyntactic descriptions of ontological entities and have not handled multilin-
gualism issues, as the ones that arise when aiming at reusing the same ontology in
different linguistic and cultural settings. This is particularly relevant in the case of
ontologies that represent categorizations of reality that are not completely valid for
all the cultures and languages involved. In this context, we have to consider the
possibility of providing relations among the linguistic descriptions in different
languages associated to the same ontology elements.

Finally, we refer to the need for encoding the linguistic descriptions captured in
the linguistic model according to standard models in order to guarantee interopera-
bility, reuse, and commitment to best practices. The potential integration of termi-
nological and lexical knowledge bases into our model requires interoperability with
existing and proposed standards. In this sense, we have analyzed some
standardization initiatives that have been developed in order to capture linguistic
information that can be reused for various purposes. As the most important
initiatives, we mention a number of standards from the International Organization
for Standardization (ISO) and the World Wide Web Consortium (W3C) that
capture terminological and lexical information. We are referring to Terminological
Markup Framework (TMF) (ISO 2003), the Lexical Markup Framework (LMF)
(ISO 2006), and Simple Knowledge Organization Systems (SKOS) (Miles et al.

78 A. Adamou et al.

2005). After the analysis of the state of the art and considering the needs of a model
that aims at providing ontologies with multilingual information, we identified the
following set of requirements:

Independence: the possibility for providing independent and complex models of
linguistic information that can be self-contained and from which information can
be inferred. The independence between the ontology and the linguistic model
guarantees the full development of both without one restricting the other.
In particular, in the case of the linguistic model, this allows the existence of a
complex model that contains as much linguistic information as required by the
final application and, additionally, in different languages.

Localization: the capability for providing a subset of linguistic descriptions to
account for the linguistic realization of an ontology in different natural
languages and representing term variants within one language and cultural
specificities among different languages.

Interoperability: the flexibility of interoperating with existing standards for the
representation of lexical and terminological information. By interoperating with
standard models, there also exists the possibility for the model of interchanging
knowledge with the standards and being extended with further linguistic descrip-
tion elements, if so required by the final application.

Accessibility: the fact of being implemented in a syntax or representation language
that can provide tool support available to manage it, as well as access to external
resources from which information can be obtained to semi-automatically support
the model.

4.3.1 LIR Overview

This section presents the Linguistic Information Repository or LIR, a model that has
been created with the twofold purpose of fulfilling the needs of portability and
association of multilingual information to domain ontologies, on the one hand, and
adapting ontologies to the needs of the languages involved in the localization
activity, on the other.

The LIR has been implemented as an ontology in OWL. Its main purpose is not
to provide a model for a lexicon of a language but to cover a subset of linguistic
description elements that account for the linguistic realization of a domain ontology
in different natural languages. A complete description of the current version of the
LIR can be found in (Montiel-Ponsoda et al. 2008; Montiel-Ponsoda 2011).

The lexical and terminological information captured in the LIR is organized
around the LexicalEntry class. Lexical entry is considered a union of word
form (Lexicalization) and meaning (Sense). This ground structure has been
inspired by the Lexical Markup Framework (LMF). The compliance with this
standard is important for two main reasons: (a) Links to lexicons modeled
according to this standard can be established, and (b) the LIR can be flexibly

4 The NeOn Ontology Models 79

hasSynonym

hasCommonName
hasTranslation
N hasScientificNamej
hasAntonym *
LexicalEntry *
= belongsToLanguage > hd
= 211D : int o
* -partOfSpeech : String = {noun, adjective, verb...} P name : String
hasLexicdlization asSense hasLangyageCode
hasVariant « isRelatedTo ¢ 4
ﬁ 1.%
L ode
Lexicalizati
_ exicalization 1 code - smng
/\ |rdfs:label : String
-xml:lang
hasSpellingVariant —grammalica!Number : Stri_ng = {siqg_u\ar, plural} hasDefinition
-gender : String = {masculine, feminine, neuter}
i " . St 3 N To
hasAbbreviation belonggToDialect : String q ()
term[Type
— subsumes
hasShortForm Definition
hasNote hagSource [definition/gloss : String [IsSubsumedBy ||
hasAcronym «enumeration» [xmllang
TermType hasCéntext hasSpurce isDisjointWith
hasTransliteration [+mainEntry * *
+fullForm
hasEquation +shortForm Note N Source
+abbreviation - _
m +acronym oteText : Sting | [-sourceType : Object = {r tifier,
+logicalExpression -xml:lang bibliographicReference, sourceldentifier, text}
* -xml:lan,
hasLogicalExpression +equation . 9
+forml;|\z|=1 * hasSource bel L
[+symbol N elongsTqLanguage
hasDialectalVariant +czmmonName UsageContext P g guag
- asSource
[+scientificName -context : String
+transliteration -xml:lang
+multiWordExpression [hl
| +dialectalVariant

Fig. 4.2 Diagram of LIR ancillary classes

extended with modular extensions of the LMF (or standard-compliant) modeling
specific linguistic aspects, such as deep morphology or syntax, not dealt by LIR in
its present stage. For more details on the interoperability of the LIR with further
standards see (Peters et al. 2010).

The rest of the classes that make up the LIR are Language, Definition,
Source, Note, and UsageContext (see Fig. 4.2). These can be linked to the
Lexicalization and Sense classes. Each lexicalization is associated to one
sense. The sense class represents the meaning of the ontology concept in a given
language. It has been modeled as an empty class because its purpose is to point to
other resources in which that sense is captured. The meaning of the concept in a
certain language (which may not completely overlap with the formal description of
the concept in the ontology) is “materialized” in the definition class, i.e., is
expressed in natural language. The UsageContext gives us information about
how a word behaves syntactically in a certain language by means of examples.
Source information can be attached to any class in the model (Lexicalization,
Definition, etc.), and, finally, the Note class has been meant to include any
information about language specificities, connotations, style, register, etc., and can
be related to any class. By determining the Language of a lexical entry, we can
ask the system to display only the linguistic information associated to the ontology
belonging to a given language.

80 A. Adamou et al.

C21: Class

hasLexicaleftry - hasLexicalEntry hasiexicalEntry
hagTranslation
hasTranstation

i§SynonymOf *

belongsToLangua&e

| 02:LexicalEntry | | 03:LexicalEntry |
[partOfSpeech = noun | [-partOfSpeech = noun |

longsToLanguage

hasLexiqalization hasLexicalization

Language
e B

Language

011:Lexicalization B 021:Lexicalization 031:L
-rdfs:label = FAO 6 %-rdfs:label =FAO of the UN -rdfs:label = OAA *
-grammaticalNumber = singular -grammaticalNumber = singular | -grammaticalNu_mber = singular 6
-gender = neuter -gender = neuter -gender = feminine
ermllype termType termfType hasFullForm
hasFullForm hasAgronym hasAcronym
«enumeration» hasAcronym «enumeration» hasFullForm «enumeration»
TermType TermType TermType
+mainEntry = true +mainEntry = true +mainEntry = true
. +acronym = true +acronym = true +acronym = true
+commonName = true +commonName = true +commonName = true
0111:Lexicalization 0211:Lexicalization 0311:Lexicalization
-rdfs:label = Food and Agriculture Organization -rdfs:label = Food and Agriculture -rdfs:label = Organisation des Nations
-partOfSpeech = noun Organization of the United Nations < Unies pour I'Alimentation et I'Agriculture
-grammaticalNumber = singular -grammaticalNumber = singular -grammaticalNumber = singular
-gender = neuter -gender = neuter -gender = feminine
termfType -
«enumeration» . term[Type «enumeration» termType «enumeration»
TermType TermType TermType
+fullForm = true * |+fullForm = true +fullForm = true
+commonName = true +commonName = true « [+commonName = true
+multiWordExpression = true +multiWordExpression = true +multiWordExpression = true

Fig. 4.3 LIR example usage within a single language

4.3.2 Uses and Benefits

The main benefit of the LIR model is that it provides a very granular specification
of relationships between elements of an ontology. In particular, it identifies
well-defined relationships among the linguistic descriptions used to represent
ontological concepts, specifically:

* Well-defined relations within lexicalizations in one language
¢ Well-defined relations within lexicalizations across languages

Both cases are illustrated in the following. The example in Fig. 4.3 concerns the
establishment of relations among term variants belonging to the same language.
Specifically, this case exemplifies the use of various acronyms and full forms
attached to one and the same concept. Three lexical entries (01:LexicalEntry, 02:
LexicalEntry, and 03:LexicalEntry) are associated with the same concept (C21:
Class), which means that they are terms that identify one and the same concept.
Two lexical entries (Ol:LexicalEntry and 02:LexicalEntry) belong to English,
whereas the third lexical entry (03:LexicalEntry) belongs to French. The two
English lexical entries are considered synonyms, and both are translations of the

4 The NeOn Ontology Models 81

French lexical entry. Each lexical entry contains two lexicalizations. For example,
Ol:LexicalEntry includes O11:Lexicalization and O0111:Lexicalization, whose
labels are FAO and Food and Agriculture Organization, respectively. FAO is the
acronym for Food and Agriculture Organization, and, moreover, it is considered the
main entry. FAO of the UN and Food and Agriculture Organization of the United
Nations are deemed synonyms of FAO and Food and Agriculture Organization.
Both lexical entries (01:LexicalEntry and 02:LexicalEntry) are translations of OAA
and Organisation des Nations Unies pour I’Alimentation et I’Agriculture in the
French language. Thanks to LIR it is possible to retrieve synonyms within the same
language associated with the same concept and distinguish different term types
such as acronyms and full forms.

The second example highlights the possibility given by the LIR model to
represent scientific names and use them across languages (scientific names are in
Latin and are internationally accepted over scientific communities). Variants in the
same language (e.g., Buffaloes (syncerus)) can therefore be connected to the same
scientific term, such as the English and Japanese translations. We have illustrated in
Fig. 4.4 how the concept buffaloes (C133:Class) has four lexical entries associated
(01:LexicalEntry, 02:LexicalEntry, 03:LexicalEntry, and 04:LexicalEntry). Two of
them belong to the English language and contain synonymous lexicalizations (011:
Lexicalization and 021:Lexicalization).

Then, we have a lexicalization in Latin that represents the scientific name, and it
is accordingly related with the rest of lexical entries by means of the object property
hasScientificName. Finally, 04:LexicalEntry belongs to the Japanese language,
which is also the common denomination in Japanese of the Syncerus caffer scientific
name and, at the same time, the translation of the two lexicalizations in English.

To conclude, we refer to the LabelTranslator NeOn plugin, a translation-
supporting tool (Espinoza et al. 2008) that provides semi-automatically translations

C133: Class

hasScientificName

. ys‘yl onym . / -

hasScientificName
belongsTolLanguage

i Y v
belongsTolLanguage 01:LexicalEntry 02:LexicalEntry 03:Lexi y * 04:Lexi y
partOfSpeech = noun -partOfSpeech = noun -partOfSpeech = noun -partOfSpeech = noun | «
xml:lang = en -xml:lang = en -xml:lang = la -xml:lang = ja
‘ hasTrans\%tion 1\ \ Language
Language hasLexicalization hasLexicalization hasl Yalizati n hasLexigalization
1. 1 1 1.
011:Lexicalization 021:Lexicalization 031:Lexicalization 041:Lexicalization

-rdfs:label = African buffaloes -rdfs:label = Buffaloes (syncerus) -rdfs:label = Syncerus caffer -rdfs:label = 7 71) hk4
-grammaticalNumber = plural -grammaticalNumber = plural -grammaticalNumber = singular | |-grammaticalNumber = plural
-gender = neuter -gender = neuter -gender = masculine -gender = masculine

Fig. 4.4 LIR example of cross-language usage

82 A. Adamou et al.

for ontology lexicalizations. Currently, the languages supported by the plugin are
Spanish, English, and German. Once translations are obtained for the labels of the
original ontology, they are stored in the LIR. However, if the system does not
support the language combination in which we are interested, we can still use this
system to take advantage of the LIR application programming interface or API
implemented in the NeOn Toolkit. In this sense, the needed linguistic information
can be introduced manually.

4.4 Collaborative Ontology Design Ontology (C-ODO) Light

Authoring and maintaining Semantic Web ontologies is generally not an individual,
monolithic activity but is intrinsically grounded on social and collaborative pro-
cesses, more so when ontologies are configured in a networked architecture.
Continuous interaction between knowledge engineers and domain experts is key
and so is that with resource providers whenever reuse or re-engineering enters the
life cycle.

However, without dedicated tool support, collaboration may occur across gen-
eral-purpose software tools and communication channels, in which case a manual
effort is required to coordinate and bring the outcome of these activities together.
Thus, on one hand, tool support to ontology engineering activities (e.g., reusing
existing ontologies and design patterns; re-engineering thesauri, lexica, and data-
base schemas; validating the outcome) is required. On the other hand, tools are
often unable to support these activities in a collaborative setting, e.g., aiding the
discussion and consensus-based assessment of an ontology element and the ratio-
nale behind it. Among other reasons, this can also be ascribed to an inadequate
requirement analysis describing the actual processes and data involved therein, and
the lack of a conceptual framework that formally expresses these notions so that
they can be unified and reasoned upon.

4.4.1 C-ODO Light Overview

C-ODO Light (aka codolight) is one such formal knowledge framework. It is a
pattern-based OWL-DL ontology network that provides a metamodel for describing
collaborative ontology projects (Gangemi et al. 2007). C-ODO Light was designed
so as to take into account requirements deriving from the experience with formal
models for describing ontology projects and tools, as well as existing controlled
vocabularies.

In particular, the network displays the following features:

1. The ability to formalize ontology design tool descriptions in terms of input/
output data (knowledge types), functionalities, interface objects, and interaction
patterns

4 The NeOn Ontology Models 83

2. Smooth integration between human-oriented and tool-oriented descriptions of
ontology design aspects
. Alignment to existing vocabularies such as DOAP, OMYV, etc.
. Light axiomatization, e.g., no use of anonymous classes in restrictions
5. Modular development by pattern-based design (cf. Chap. 3), in compliance with
the ontologydesignpatterns.org practices

W

Additionally, the codolight core is extended to support specific ontology appli-
cation tasks, such as:

1. Browsing semantic data about ontology projects, tools, data, repositories,
solutions, discussion, evaluation, etc.

2. Searching and selecting design components based on design aspects, knowledge

types, individual needs, user profiles, etc.

. Creating design configuration interfaces that aid or automate task 2

4. Help collecting ontology requirements, design functionalities, and ontology
application tasks for an ontology project

5. Providing a shared network of vocabularies to create/query/reason on
annotations and data related to ontology projects, including integration between
annotations of heterogeneous provenance, such as those coming from collabora-
tive discussions and change

(O8]

It is here anticipated that part of these tasks are implemented within NeOn in the
form of the Kali-ma tool, to be described in Chap. 15.

4.4.2 Structure

The C-ODO Light network of ontologies is organized as a layered architecture,
where these layers are connected with different types of bindings. Besides the two
bottom layers that define the main structure, there are three additional layers that
bridge it with existing applications, vocabularies, and functionalities:

Pattern layer: It contains reusable content ontology design patterns (Content ODP)
(Presutti and Gangemi 2008) that include, e.g. sequence, partof, situation,
collectionentity, and so on. The patterns are reused in the design of the
ontologies constituting the core architecture of codolight.

Core codolight layer: It contains the nine modules of the codolight core network of
ontologies, centered around the codkernel module in the center, along with
modules coddata, codprojects, codworkflows, codarg, codsolutions, codtools,
codinterfaces, and codinteraction importing codkernel.

Plugin layer: It consists of the modules containing the descriptions of the NeOn
Toolkit plugins related to ontology design, formalized in OWL by reusing the
codolight vocabulary and some of the alignment modules.

Categorization layer: It consists of the modules containing the definition of the
design aspects according to which tools, knowledge types, and functionalities
are organized, as well as the closure of inferences derived by the application of
reasoners to the previous layers.

http://dx.doi.org/10.1007/978-3-642-24794-1_3
http://dx.doi.org/10.1007/978-3-642-24794-1_15

84 A. Adamou et al.

[Cgcodprojects.owl }
ﬁ coddata.owl [d codworkﬂows‘ole
|

[@ codinterfaces.owl }_—P{ ‘3 codkernel.owl ‘3 codtools.owl
7'}

T‘[G@ codsolutions.owl]
[C@ codinteral:tion.owl]
4 codarg.owl I

Fig. 4.5 Core C-ODO Light corolla architecture

Alignment layer: It consists of the modules containing mapping axioms between
codolight and related vocabularies, currently: OMV, DOAP, FOAF, NeOn
Access Rights model, NeOn OWL metamodel, NeOn OWL2 metamodel, and
the Software Ontology Model.

Each layer is in its turn an ontology network with its own architecture. In
particular, the core codolight layer network encodes the main aspects of ontology
design by following an architectural ontology design pattern called corolla. The
floral metaphor for the corolla pattern, shown in Fig. 4.5, suggests an overall shape
for the network composed of a kernel module, which includes the definition of core
concepts of the domain of interest, and a set of petal modules, each defining a
specific aspect of the same domain.

The corolla pattern minimizes dependencies and enforces loose coupling
between the modules of an ontology network: In the codolight core example, all
modules, but codinteraction (described below), directly depend on the kernel
module exclusively. Also, the modules are built so that their structure suggests an
organization of the network, by which different aspects of the domain of interest are
represented by each petal module. The criterion by which an ontology network can
be broken apart into a corolla can be: What are the main aspects of the domain
described by the ontology network?

The kernel module defines core concepts, shared by all aspects. As shown in
Fig. 4.6, axiomatization is minimal at the kernel level, i.e., although the basic
classes of collaborative ontology design are defined, only a minimum set of new
properties, or restrictions holding between them, is asserted. It is up to petal
modules to refine the axiomatization of at least one of the core concepts each,
thus adding details for at least one aspect.

All classes defined in the kernel module are specializations of classes from the
pattern layer (such as DesignFunctionality subsuming Task from the
taskrole pattern15 or KnowledgeResource, FormalExpression,

I3 http://www.ontologydesignpatterns.org/cp/owl/taskrole.owl

http://www.ontologydesignpatterns.org/cp/owl/taskrole.owl

4 The NeOn Ontology Models 85

ginoerings ayProj DesignWorkflow InformationObject

T 5 7aN

InteractionPattern

ession IconicObject

% ! 1| I
L 1 1
Project g ter
i’l_ 1.. : isParcof |
Sign W DesignSolution DesignTool
Situation Task Concept Action Object
I 1.. i hasParticipant ?

Fig. 4.6 C-ODO Light kernel class diagram

IconicObject all subsuming InformationObject from the intensio-
nextension pattern'®), thus inheriting the structure defined by equality over
shared classes.

The following petal modules are defined for codolight:

Data (coddata): contains the main notions that classify the data managed when
designing an ontology: ontologies, ontology elements, Knowledge Organization
Systems (KOS), KOS elements, rules, modules, encoding syntaxes, and more. For
each class of knowledge resources, a knowledge-type instance is provided.

Projects (codprojects): contains the minimal vocabulary for representing ontology
design projects and their executions. An ontology project is here taken as a social
entity, whose computational counterpart (e.g., a project created in the NeOn
Toolkit) is a software entity that collects resources and descriptions related to an
ontology project.

Workflows (codworkflows): contains classes and properties to represent workflows
from within ontology projects: collaborative workflows, accountable agents,
need for an agent or a design functionality, etc.

'® http://www.ontologydesignpatterns.org/cp/owl/intensionextension.owl

http://www.ontologydesignpatterns.org/cp/owl/intensionextension.owl

86 A. Adamou et al.

Argumentation (codarg): contains the basic classes and properties to represent
argumentation concepts: arguments, threads, ideas, positions, rationales, etc.
Solutions (codsolutions): contains classes and properties to represent ontology
design solutions: competency questions, ontology design patterns, ontology

requirements, unit tests, etc.

Tools (codtools): contains classes and properties to represent ontology design tools:
tools, pieces of code, code entities, computational tasks, input and output data
relations, etc.

Interfaces (codinterfaces): contains classes and properties that represent some
typical user interface entities, such as interface objects, panes, and windows.
Interaction (codinteraction): contains classes and properties that represent some
typical entities related to human-computer and human-ontology interaction, e.g.,
user types, computational tasks, and workflows. These can in turn be combined

S0 as to construct interaction pattern models.

One advantage of employing this aspect-oriented architecture is selective exten-
sibility. A software application intended to exploit only a given subsystem of
ontology life cycle management, such as reasoning on the usage of interaction
patterns and user interface widgets, can import only the codinterfaces and
codinteraction modules. Possibly, they can also extend these modules with
ontologies that model further additional interaction patterns or GUI elements
originally not intended for the application domain at hand.

4.4.3 Alignments

This section provides an insight on some alignments that hold between codolight
and other vocabularies that are widely used on the Semantic Web or are introduced
as part of the methodology described by this book (c.f. Chap. 2), such as OMV that
is described in this very chapter.

OWL"". The alignments between codolight and the OWL language constructs
consider three different vocabularies:

» The original RDF, RDFS, and OWL vocabularies from the W3C
¢ The OWLI1 metamodel designed for NeOn
e The OWL2 metamodel also designed for NeOn

The reason why so many different vocabularies represent entities from a same
language is mainly due to the pragmatic evolution of semantic technologies.
The original vocabularies by W3C are not extremely detailed in distinguishing
the constructs available in OWL (and RDF, RDFS); e.g., it is difficult to describe
existential restrictions explicitly, because these are just instances of owl:
Restriction. On the other hand, W3C vocabularies are implemented in all
APIs and tools for ontology engineering, so in order to maximize interoperability,

"7 http://www.ontologydesignpatterns.org/cpont/codo/owl22codo.owl

http://www.ontologydesignpatterns.org/cpont/codo/owl22codo.owl

4 The NeOn Ontology Models 87

an ontology design vocabulary like codolight must be aligned to the main data
vocabularies. The OWL metamodels developed in NeOn try to overcome the
referential coarseness of OWL constructs, e.g., by providing the class
owlodml :ExistentialRestriction. On the other hand, these metamodels
are not intended to be a replacement for the W3C OWL data model.

Ontology Metadata Vocabulary (OMV)"®. The OMV described in this chapter is
a vocabulary for annotating ontologies with time, authors, tools, languages, etc.,
and it is used to provide support for ontology registries. However, from a design
viewpoint, the semantics of OMV metadata are potentially compatible with those of
other metamodels, so this alignment aids metadata interoperability. Only subsump-
tion alignments occur, i.e., OMV classes and properties are subclasses or
subproperties of those from the codolight pattern and core layers. Aligned OMV
classes of interest include omv:OntologySyntax, omv:FormalityLevel,
omv:0OntologyEngineeringTool, and omv:OntologyTask. Aligned
OMV properties of interest include omv:hasContributor, omv:
hasCreator, omv:useImports, and omv:isIncompatibleWith.

Description of a Project (DOAP)". DOAP is a vocabulary for creating profiles
of software projects20 with time, authors, FOAF (Friend of a Friend) vocabulary
profiles, etc. The doap:Project notion addressed here is computational and
not social; therefore, it has been aligned as equivalent to codkernel:
Project. Subsumption mappings occur between doap:Repository and
collectionentity:Collection, and between doap:Version and
coddata:Annotation. Direct mappings occur between FOAF and the
codolight pattern layer, either by equivalence (foaf: Agent and agentrole:
Agent) or by subsumption (foaf:topic and topic:hasTopic; foaf:
Document and intensionextension:InformationObject; foaf:
member and collectionentity:hasMember).

NeOn Access Rights Model*'. This ontology representing access control policies
and related entities uses three different vocabularies, i.e., accessRightszz,
ar-entities23, and ar-agents24. Entities from these vocabularies, such as Action,
Agent, and Content, map to codolight via subsumption alignments. The
Right class, being a conceptualization of its holder in the access policies context,
subsumes the Description class from the description design pattern.

Software Ontology Model (SOM)*. The SOM is designed to represent entities in
the object-oriented programming model (Tappolet et al. 2010). Given the class

'8 hitp://www.ontologydesignpatterns.org/cpont/codo/omv2codo.owl

1% hitp://www.ontologydesignpatterns.org/cpont/codo/doap2codo.owl

2 hitp://trac.usefulinc.com/doap

2! http://www.ontologydesignpatterns.org/cpont/codo/accessrights2codo.owl
22 http://www.uni-koblenz.de/~bercovici/owl/2008/7/accessRight.owl

23 http://www.uni-koblenz.de/~bercovici/owl/2008/7/entity.owl

24 http://www.uni-koblenz.de/~schwagereit/owl/agents.owl

2 http://www.ontologydesignpatterns.org/cpont/codo/som2codo.owl

http://www.ontologydesignpatterns.org/cpont/codo/omv2codo.owl
http://www.ontologydesignpatterns.org/cpont/codo/doap2codo.owl
http://trac.usefulinc.com/doap
http://www.ontologydesignpatterns.org/cpont/codo/accessrights2codo.owl
http://www.uni-koblenz.de/~bercovici/owl/2008/7/accessRight.owl
http://www.uni-koblenz.de/~bercovici/owl/2008/7/entity.owl
http://www.uni-koblenz.de/~schwagereit/owl/agents.owl
http://www.ontologydesignpatterns.org/cpont/codo/som2codo.owl

88 A. Adamou et al.

subtree for the som:Entity class, which includes functions, methods,
classes, and packages, the parent class aligns to codtools:CodeEntity by
equivalence.

4.5 Conclusions

A methodology for managing ontology networks is best designed if formal models
of the resources and processes involved come along with it. To that end, the NeOn
Methodology proposes three stand-alone models, i.e., the OMV, LIR, and C-ODO
Light ontologies, that can nonetheless be interconnected in order to represent and
reason on the structural, linguistic, and engineering aspects of ontology life cycle.
Ontology alignments are provided across these models to ensure logic interopera-
bility, without hampering their stand-alone usage possibilities. These ontologies
also serve as a back end for software applications provided as plugins for the NeOn
Toolkit (see Chaps. 13, 14, 15), which treat each ontology separately to serve
dedicated phases and processes in ontology management.

References

Arpirez J, Gomez-Pérez A, Lozano-Tello A, Pinto HS (2000) Reference ontology and (ONTO)
2 agent: the ontology yellow pages. Knowl Inf Syst 2:387-412

Buitelaar P, Declerck T, Frank A, Racioppa S, Kiesel M, Sintek M, Engel R, Romanelli M,
Sonntag D, Loos B, Micelli V, Porzel R, Cimiano P (2006) Linginfo: design and applications of
a model for the integration of linguistic information in ontologies. In: Proceedings of the
OntoLex 2006 workshop: interfacing ontologies and lexical resources for semantic web
technologies, Genoa

Buitelaar P, Cimiano P, Haase P, Sintek M (2009) Towards linguistically grounded ontologies.
In: Proceedings of the 6th annual European semantic web conference (ESWC2009), Heraklion,
pp 111-125

Cimiano P, Haase P, Herold M, Mantel M, Buitelaar P (2007) LexOnto: a model for ontology
lexicons for ontology-based nlp. In: Proceedings of the OntoLex07 workshop at the ISWCO07,
Busan

d’Aquin M, Haase P, Rudolph S, Euzenat J, Zimmermann A, Dzbor M, Iglesias M, Jacques Y,
Caracciolo C, Buil-Aranda C, Gémez-Pérez J (2008) NeOn formalisms for modularization:
syntax, semantics, algebra. Technical report D1.1.3, Open University

Espinoza M, Gémez-Pérez A, Mena E (2008) Enriching an ontology with multilingual informa-
tion. In: Proceedings of the 5th annual of the European semantic web conference (ESWC
2008), Tenerife, pp 333-347

Fridman Noy N, Guha RV, Musen MA (2005) User ratings of ontologies: who will rate the raters?
In: Proceedings of the AAAI 2005 spring symposium on knowledge collection from volunteer
contributors, Stanford, CA, USA

Fridman Noy N, Griffith N, Musen MA (2008) Collecting community-based mappings in an
ontology repository. In: Proceedings of 7th international semantic web conference 08.
Springer, Karlsruhe

http://dx.doi.org/10.1007/978-3-642-24794-1_13
http://dx.doi.org/10.1007/978-3-642-24794-14
http://dx.doi.org/10.1007/978-3-642-24794-1_15

4 The NeOn Ontology Models 89

Gangemi A, Pisanelli DM, Steve G (1999) An overview of the ONIONS project: applying
ontologies to the integration of medical terminologies. Data Knowl Eng 31(2):183-220

Gangemi A, Lehmann J, Presutti V, Nissim M, Catenacci C (2007) C-ODO: an OWL meta-model
for collaborative ontology design. In: Fridman Noy N, Alani H, Stumme G, Mika P, Sure Y,
Vrandecic D (eds) CKC, CEUR-WS.org

Gardiner T, Horrocks I, Tsarkov D (2006) Automated Benchmarking of Description Logic
Reasoners. In Parsia B, Sattler U, Toman D (eds) Proc. of the Int. Workshop on Description
Logics (DL’06), Windermere Lake District, UK. Volume 189 of CEUR., Lake District, UK
167-174

ISO 16642 (2003) Terminological markup framework in computer applications in terminology.
Technical report, International Organization for Standardization (ISO). URL http://www.loria.
fr/projets/TMF/

ISO 24613 (2006) Lexical markup framework in language resource management. Technical
report, International Organization for Standardization (ISO). URL http://lirics.]loria.fr/
doc_pub/LMF%20rev9%?2015March2006.pdf

Jarrar M (2005) Towards methodological principles for ontology engineering. PhD thesis, Vrije
Universiteit Brussel, Brussels

Lozano-Tello A, Gémez-Pérez A (2004) ONTOMETRIC: a method to choose the appropriate
ontology. J Database Manag 15(2)

Miles A, Matthews B, Beckett D, Brickley D, Wilson M, Rogers N (2005) SKOS: a language to
describe simple knowledge structures for the web. In: Proceedings of the XTech conference
2005, Amsterdam

Montiel-Ponsoda E (2011) Multilingualism in ontologies: multilingual lexico-syntactic patterns
for ontology modeling and linguistic information repository for ontology localization. PhD
thesis, Universidad Politécnica de Madrid, Madrid

Montiel-Ponsoda E, Aguado de Cea G, Suarez-Figueroa MC, Palma R, Peters W, Gomez-Pérez A
(2007) LexOMV: an OMV extension to capture multilinguality. In: 6th international semantic
web conference. In Workshop Ontolex(07, Busan

Montiel-Ponsoda E, Peters W, Aguado de Cea G, Espinoza M, Goémez-Pérez A, Sini M (2008)
Multilingual and localization support for ontologies. Technical report, D2.4.2 NeOn project
deliverable

Montiel-Ponsoda E, Aguado de Cea G, Gomez-Pérez A, Peters W (2010) Enriching ontologies
with multilingual information. J Nat Lang Eng 17(3):283-309

NISO (2004) Understanding metadata. NISO Press, National Information Standards Organization.
Available at http://www.niso.org/publications/press/UnderstandingMetadata.pdf

Palma R (2009) Ontology metadata management in distributed environments. PhD thesis,
Universidad Politécnica de Madrid

Palma R, Haase P (2005) Oyster — sharing and re-using ontologies in a peer-to-peer community.
In: International semantic web conference, Galway, pp 1059-1062

Palma R, Hartmann J, Haase P (2008) OMV — ontology metadata vocabulary for the semantic web.
Technical report, Universidad Politécnica de Madrid, University of Karlsruhe. Version 2.4.
Available at http://omv.ontoware.org/

Paslaru Bontas E, Mochol M, Tolksdorf R (2005) Case studies on ontology reuse. In: Proceedings
of the IKNOWOS international conference on knowledge management, Graz

Peters W, Gangemi A, Villazon-Terrazas B (2010) Modelling and re-engineering linguistic/
terminological resources. Technical report, D2.4.4 NeOn project deliverable

Pinto HS, Martins JP (2001) A methodology for ontology integration. In: Proceedings of the
international conference on knowledge capture K-CAPO1, Victoria

Presutti V, Gangemi A (2008) Content ontology design patterns as practical building blocks for
web ontologies. In: ER ‘08: proceedings of the 27th international conference on conceptual
modeling. Springer, Berlin/Heidelberg, pp 128-141

http://www.loria.fr/projets/TMF/
http://www.loria.fr/projets/TMF/
http://lirics.loria.fr/doc_pub/LMF%20rev9%2015March2006.pdf
http://lirics.loria.fr/doc_pub/LMF%20rev9%2015March2006.pdf
http://www.niso.org/publications/press/UnderstandingMetadata.pdf
http://omv.ontoware.org/

90 A. Adamou et al.

Russ T, Valente A, Macgregor R (1999) Practical experiences in trading off ontology usability and
reusability. In: Proceedings of the 12th workshop on knowledge acquisition, modeling and
management (EKAW’99), Banff, pp 16-21

Tappolet J, Kiefer C, Bernstein A (2010) Semantic web enabled software analysis.] Web Semant
8(2-3):225-240

Ungrangsi R, Simperl E (2008) OMEGA: an automatic ontology metadata generation algorithm.
In: 16th international conference on knowledge engineering, knowledge management and
knowledge patterns. Springer, Berlin/Heidelberg/New York

Uschold M, Healy M, Williamson K, Clark P, Woods S (1998) Ontology reuse and application. In:
Proceedings of the international conference on formal ontology and information systems
FOIS98, Trento

Vossen P (1998) Introduction to EuroWordNet. In Ide N, Greenstein D, Vossen P (eds) Special
issue on EuroWordNet, vol 32(2-3), pp 73-89

Wang Y, Haase P, Palma R (2007) D1.4.1: Prototypes for managing networked ontologies.
Technical report D1.4.1, University of Karlsruhe; NeOn deliverable. URL http://www.
neon-project.org/

http://www.neon-project.org/
http://www.neon-project.org/

Part 11
Ontology Engineering Activities

Chapter 5
Ontology Requirements Specification

Mari Carmen Suarez-Figueroa and Asuncion Gomez-Pérez

Abstract The goal of the ontology requirements specification activity is to state
why the ontology is being built, what its intended uses are, who the end users are,
and which requirements the ontology should fulfill. This chapter presents detailed
methodological guidelines for specifying ontology requirements efficiently. These
guidelines will help ontology engineers to capture ontology requirements and
produce the ontology requirements specification document (ORSD). The ORSD
will play a key role during the ontology development process because it facilitates,
among other activities, (1) the search and reuse of existing knowledge resources
with the aim of reengineering them into ontologies, (2) the search and reuse of
ontological resources (ontologies, ontology modules, ontology statements as well
as ontology design patterns), and (3) the verification of the ontology along the
ontology development.

5.1 Introduction

One of the key processes in software development is software specification
(Sommerville 2007), whose aim is to understand and define what functionalities
are required from the software product. It has been proved that a detailed software
requirements document provides several benefits (IEEE 1993), such as (a) the
establishment of the basis for agreement between customers and suppliers on
what the software product is supposed to do, (b) the reduction of the development
effort, (c) the provision of a basis for estimating costs and schedules, and (d) the
offer of a baseline for validation and verification.

M.C. Suarez-Figueroa (0<) » A. Gomez-Pérez

Ontology Engineering Group, Facultad de Informatica, Universidad Politécnica de Madrid,
Campus de Montegancedo sn., 28660 Boadilla del Monte, Madrid, Spain

e-mail: mcsuarez@fi.upm.es; asun@fi.upm.es

M.C. Suarez-Figueroa et al. (eds.), Ontology Engineering in a Networked World, 93
DOI 10.1007/978-3-642-24794-1_5, © Springer-Verlag Berlin Heidelberg 2012

mailto:mcsuarez@fi.upm.es
mailto:asun@fi.upm.es

94 M.C. Suarez-Figueroa and A. Gémez-Pérez

When a software application based on ontologies is being developed, ontology
requirements should be identified in addition to the application requirements. Our
experience in building ontology-based applications, in domains as diverse as
satellite data processing’, finding funding programs?, fishery stocks’, user context”,
and e-employment’, has shown that more critical than capturing software
requirements was the efficient and precise identification of the knowledge that the
ontology should contain. Up to now, application developers already have precise
methodologies (Sommerville 2007; IEEE 1993; Wiegers 2003) that help them to
define application requirements. However, the guidelines included in current
methodologies for building ontologies are not enough for defining ontology
requirements.

For this reason, this chapter presents detailed methodological guidelines for
specifying ontology requirements as part of the NeOn Methodology (see Chap. 2).
Such methodological guidelines are based on the use of the so-called competency
questions (CQs) (Griininger and Fox 1995) and are inspired by how methodologies
for building ontologies propose to perform the ontology requirements specification
activity (Staab et al. 2001; Uschold 1996; Noy and McGuinness 2001). These
guidelines are also inspired by available practices and previous experiences in
different national and European funded projects. These methodological guidelines
help to capture knowledge from users and to produce the ontology requirements
specification document that will be used by ontology developers to develop
an ontology that will fulfill the requirements identified.

5.2 Methodological Guidelines for Ontology Requirements
Specification

The ontology requirements specification activity has a main goal to state why the
ontology is being built, which its intended uses are, who the end users are, and what
specific requirements the ontology should fulfill are. For specifying the specific
ontology requirements, the competency questions technique proposed in
(Gruninger and Fox 1995) is used. Before identifying the set of competency
questions, the purpose and scope of the ontology should be identified, as well as
its level of formality, and its intended uses and end users.

1 http://www.ontogrid.net

2 http://esperonto.net/fundfinder

3 http://www.neon-project.org/nw/Ontology-driven_fish_stock_depletion_assessment_system
“http://www.isoco.com/ontologies/mio/index.html

5 http://www.seemp.org

http://dx.doi.org/10.1007/978-3-642-24794-1_2
http://www.ontogrid.net
http://esperonto.net/fundfinder
http://www.neon-project.org/nw/Ontology-driven_fish_stock_depletion_assessment_system
http://www.isoco.com/ontologies/mio/index.html
http://www.seemp.org

5 Ontology Requirements Specification 95

The NeOn Methodology framework for building ontology networks proposes
the filling card, for the ontology requirements specification activity, as it is shown
in Fig. 5.1. The card includes the definition, goal, inputs, and outputs, who carries
out the activity and when the activity should be performed.

The tasks for carrying out the ontology requirements specification activity can be
seen in Fig. 5.2. The result of this activity is the ontology requirements specification
document that should be written following the ORSD template shown in Table 5.1.

The tasks for carrying out the ontology requirements specification activity are
explained in detail next.

Task 1. Identifying the purpose, scope, and implementation language. The
objective is to determine the main goal of the ontology, its coverage and foreseeable

Ontology Requirements Specification

Definition

Ontology Requirements Specification refers to the activity of collecting the requirements
that the ontology should fulfil (for example, reasons to build the ontology, identification of
target groups and intended uses). Such requirements may be reached through a
CONSensus process.

Goal

The activity states why the ontology is being built, what its intended uses are, who the end-
users are, and what the requirements the ontology should fulfil are.

input Output
A set of ontological needs. %néosl%g)ly Requirements Specification Document

Who

Software developers and ontology practitioners, who form the ontology development team
(ODT), in collaboration with users and domain experts.

When

This activity must be carried out at the beginning of the ontology project and in parallel
with the knowledge acquisition activity.

Fig. 5.1 Ontology requirements specification filling card

96 M.C. Suarez-Figueroa and A. Gémez-Pérez

Set of
ontological
needs

Task 1. Identifying the purpose,
scope and implementation
Users, Domain Experts and language

Ontology Development Team (ODT) l

Task 2. Identifying the intended
end-users

Users, Domain Experts and ODT l

Task 3. Identifying the intended
uses
Users, Domain Experts and ODT l

ﬁ% Task 4. Identifying requirements

Users, Domain Experts and ODT

¥

Task 5. Grouping functional
requirements

Users, Domain Experts and ODT l N

Task 6. Validating the
set of requirements

Users, Domain Experts and ODT

Are they valid?

Yes

ﬁ@ Task 7. Prioritizing requirements

Users, Domain Experts and ODT

A

Task 8. Extracting terminology and
its frequency

Ontology Development Team

Fig. 5.2 Tasks for ontology requirements specification

5 Ontology Requirements Specification 97

Table 5.1 Template for the OSRD
Ontology Requirements Specification Document Template

1 Purpose
The general goal of the ontology. In other words, the main function or role that the
ontology should have
2 Scope
The general coverage and the degree of detail that the ontology should have
3 Implementation language
The formal language that the ontology should have
4 Intended end users
The intended end users expected for the ontology
5 Intended uses
The intended uses expected for the ontology
6 Ontology requirements
(a) Non-Functional requirements
The general requirements or aspects that the ontology should fulfill, including
optionally priorities for each requirement
(b) Functional requirements: Groups of competency questions
The content specific requirements that the ontology should fulfill, in the form of
groups of competency questions and their answers, including optionally priorities
for each group and for each competency question
7 Pre-glossary of terms
(a) Terms from competency questions
The list of terms included in the competency questions and their frequencies
(b) Terms from answers
The list of terms included in the answers and their frequencies
(c) Objects
The list of objects included in the competency questions and in their answers

granularity, and its implementation language (e.g., OWL, RDFSG, WSML7). The
ontology development team holds a set of interviews with possible users and
domain experts in order to carry out this task, taking as input a set of ontological
needs, that is, the necessity of having the knowledge represented in the form of an
ontology. The users and domain experts are crucial to identify the purpose and
scope of the ontology; on the other hand, the ontology developers should decide the
formal language to be used for implementing the ontology.

The task output is included in slots 1-3 of the template shown in Table 5.1.

Task 2. Identifying the intended end users. The goal of this task is to establish
who the intended main end users of the ontology are. The ontology development
team holds a set of interviews with the users and domain experts to carry out this
task, taking as input a set of ontological needs.

S http://www.w3.0org/TR/rdf-schema/
7 http://www.wsmo.org/wsml/wsml-syntax

http://www.w3.org/TR/rdf-schema/
http://www.wsmo.org/wsml/wsml-syntax

98 M.C. Suarez-Figueroa and A. Gémez-Pérez

The task output is a list containing the intended end users of the ontology to be
built; the list is included in slot 4 of the template shown in Table 5.1.

Task 3. Identifying the intended uses. The development of an ontology is mainly
motivated by scenarios related to the application that will use the ontology. The
goal of this task is to obtain the intended uses and use scenarios of the ontology. The
ontology development team holds a set of interviews with the users and domain
experts in order to carry out this task, taking as input a set of ontological needs;
the purpose here is to obtain the uses of the ontology within the application, and to
have a general idea of the application requirements, in terms of knowledge to be
represented.

The task output is a list of intended uses in the form of scenarios, which is
included in slot 5 of the template shown in Table 5.1. Such scenarios describe a set
of general ontology requirements that the ontology should satisfy after being
formally implemented. The scenarios should be described in natural language;
they can be expressed in UML as use cases.

Task 4. Identifying requirements. The goal of this task is to acquire the set of
requirements that the ontology should satisfy. Ontology requirements, similar to
software requirements®, can be divided into the following two types:

* Non-functional ontology requirements refer to the characteristics, qualities, or
general aspects not related to the content that the ontology should represent.
Examples of non-functional requirements are (a) whether the terminology to be
used in the ontology must be taken from standards, (b) whether the ontology
must be multilingual, or (c) whether the ontology should be written following
a specific naming convention.

e Functional ontology requirements, which can be seen as content specific
requirements, refer to the particular knowledge to be represented by the ontology
and the particular terminology to be included in the ontology. In the SEEMP
case study (Villazon-Terrazas et al. 2011), for example, the knowledge and the
terminology are about curriculum vitae with candidate skills, education level,
expertise, previous work experience, or about job offers with information on job
location, salary, etc.

The ontology development team should interview the users and domain experts,
taking as input a set of ontological needs, and they should obtain as result the initial
set of ontology requirements (non-functional and functional) of the ontology to be
built. To identify functional requirements, they use as main technique the writing of
the requirements in natural language in the form of the so-called CQs. They can use

8 In software engineering, functional requirements refer to the required behavior of the system, that
is, the functionalities that the software system should have, while non-functional requirements
refer to implicit expectations about how well the software system should work. That is, these
requirements can be seen as aspects about the system or as “non-behavioral” requirements
(Sommerville 2007).

5 Ontology Requirements Specification 99

mind map tools (Buzan 1974) and spreadsheet processors (such as MS Excel) for
gathering the requirements. If people are geographically distributed, they can
employ Wiki tools, such as Cicero’.

Some strategies for identifying CQs are:

e Top-down: The team starts with complex questions that are decomposed in
simpler ones.

¢ Bottom-up: The team starts with simple questions that are composed to create
complex ones.

e Middle out: The team starts just writing down important questions that are
composed and decomposed later on to form abstract and simple questions,
respectively.

The output of this task is (1) a list of non-functional ontology requirements
written in natural language, which is included in slot 6a of the template shown in
Table 5.1, and (2) a list of functional ontology requirements in the form of CQs and
their associated answers, which is the input of Task 5. This list of functional
requirements will be grouped in Task 5 and then included in slot 6b of the template
shown in Table 5.1.

Task 5. Grouping functional requirements. The goal of this task is to group into
several categories the list of functional ontology requirements in the form of CQs
and their associated answers obtained in Task 4. The users, the domain experts, and
the ontology development team should classify the list of CQs written in natural
language with a hybrid approach that not only combines preestablished categories
such as time and date, units of measure, currencies, location, languages, etc., but
also creates categories for those terms that appear with the highest frequencies in
the list of CQs.

Techniques such as card sorting can be used when the grouping is done manu-
ally. In addition, mind map tools can help to display graphically and in groups the
CQs; or Cicero if the grouping is done collaboratively.

The task output is the set of groups of functional requirements in the form of
CQs and their associated answers, which is included in slot 6b of ORSD template
shown in Table 5.1. The set of groups obtained in this task is used by the
ontology development team to follow a modular approach during the ontology
building.

Usually this task is carried out in parallel with Task 4.

To group CQs is useful because it permits to identify the essential parts to be
covered by the ontology. The different groups of CQs will be used by the
ontology development team for developing the ontology with a modulariza-
tion approach. In addition, such groups can be used to organize the development
in a collaborative fashion in which different teams are in charge of a set of CQs
groups.

° http://cicero.uni-koblenz.de/wiki/index.php/Main_Page

http://cicero.uni-koblenz.de/wiki/index.php/Main_Page

100 M.C. Suarez-Figueroa and A. Gomez-Pérez

Task 6. Validating the set of requirements. The aim here is to identify possible
conflicts between ontology requirements, missing ontology requirements, and
contradictions between them. Users, domain experts, and ontology developers
must carry out this task taking as input the set of requirements identified in
Task 4 (it includes both non-functional and functional requirements) to decide if
each element of the set is valid or not.

The task output is the confirmation of the validity of the set of non-functional
and functional ontology requirements.

The criteria that can be used in this validation task and that are mainly inspired
by (IEEE 1993; Davis 1993) are the following:

e Correctness. A set of requirements is correct if, and only if, each requirement
refers to some features of the ontology to be developed.

e Completeness. Inspired by (Wieringa 1996), a set of requirements can be
considered complete if, and only if, users and domain experts review the
requirements and confirm that they are not aware of additional requirements.

e Consistency. A set of requirements can be considered internally consistent if,
and only if, no conflicts exist between them.

e Verifiability. A set of requirements is verifiable if, and only if, there is a finite
process with a reasonable cost that tests whether the final ontology satisfies each
requirement.

» Understandability. Each requirement must be understandable to end users and
domain experts.

e Unambiguity. An ontology requirement is unambiguous if, and only if, it has
only one meaning; that is, if it does not admit any doubt or misunderstanding.

» Conciseness. A set of requirements is concise if, and only if, each and every
requirement is relevant and no duplicated or irrelevant requirements exist.

¢ Realism. A set of requirements is realistic if, and only if, each and every
requirement meaning makes sense in the domain.

e Modifiability. A set of requirements is modifiable if, and only if, its structure and
style allow changing issues in an easy, complete, and consistent way.

e Traceability. An ontology requirement is traceable if, and only if, its origin is
known, and it can be referred to in other documents during the ontology
development.

Task 7. Prioritizing requirements. The goal of this task is to give different levels
of priority to the non-functional and functional ontology requirements identified. In
the case of functional requirements, priorities should be given to the different
groups of CQs and, within each group, to the different CQs; additionally, priorities
could be given to each CQs independently of the groups. Users, domain experts,
and the ontology development team should carry out this task, taking as input the
requirements identified in Task 4 and the groups of CQs written in natural language
obtained in Task 5. The task output is a set of priorities attached to each require-
ment, to each group of CQs, and to each CQ in a group. The output is included in the
slots 6a and 6b of the template shown in Table 5.1.

5 Ontology Requirements Specification 101

Priorities will be used by the ontology development team for planning and
scheduling the ontology development and for deciding which parts of the ontology
are going to be developed first. This task is optional, but recommended. In fact, if no
priorities are given to the groups of CQs, ontology developers will start modeling
the ontology without any guidance regarding the functional requirements that
should be implemented first; in this case, the waterfall ontology life cycle model
should be selected during the scheduling of the ontology project. On the contrary, if
different priorities have been assigned to functional ontology requirements, the
iterative-incremental ontology life cycle model should be selected in the scheduling
activity.

Task 8. Extracting terminology and its frequency. The goal of this task is to
extract a pre-glossary of terms with their frequencies from the list of CQs and their
answers identified in Task 4. The ontology development team carries out this task
using terminology extraction techniques and tools supporting such techniques.

This pre-glossary of terms is divided in three different parts: terms from the CQs,
terms from their answers, and terms identified as named entities.

¢ From the requirements in the form of CQs, the ontology development team
should extract terminology (names, adjectives, and verbs) that will be formally
represented in the ontology by means of concepts, attributes, relations, or
instances (in the case of named entities).

e From the answers to the CQs, the ontology development team should extract
terminology that could be represented in the ontology as concepts or as
instances.

* From both CQs and corresponding answers, the ontology development team
should extract named entities such as countries or currencies, which are objects
in the universe of discourse.

The output is included in the slots 7a, 7b, and 7c of the template shown in
Table 5.1, respectively.

The set of terms with higher appearance frequencies will be used later on for
searching knowledge resources that could be potentially reused in the ontology
development. The following heuristic can be applied: the set of more frequent terms
is that requires more effort during the ontology development; for this reason,
frequencies are important to know which knowledge resources allow to save
more effort.

5.3 Ontology Requirements Specification in the Semantic
Nomenclature Case Study

This section provides one example of how to use the guidelines proposed for the
ontology requirements specification activity and what results are expected from any
of the tasks detailed in the guidelines. The example shows an excerpt of the ORSD

102 M.C. Suarez-Figueroa and A. Gomez-Pérez

obtained after performing the ontology requirements specification activity follow-
ing the methodological guidelines proposed in this chapter.

The example presented refers to the requirements specification of the ontology
network developed within the Semantic Nomenclature case study (see Chap. 20).
This requirements specification is not intended to be exhaustive; it just describes the
most important points. A detailed and complete requirements specification is
described in (Gomez-Pérez et al. 2007).

The main objectives of the Semantic Nomenclature case study were (a) helping
in the systematization of creating, maintaining, and keeping up-to-date drug-
related information, and (b) allowing an easy integration of new drug resources.
In order to do that, the case study tackles the engineering of a pharmaceutical
product ontology network implemented in OWL based on the nomenclature of
products in the pharmaceutical sector in Spain. This ontology network represents
the general aspects of the main terms and objects related to drugs, and it classifies
these pharmaceutical terms according to the Anatomical Therapeutic Chemical
(ATC)' classification.

Next we described the tasks followed for the ontology requirements specification
activity within the Semantic Nomenclature case study based on the methodological
guidelines proposed in this chapter.

Task 1. Identifying purpose, scope, and implementation language. The develop-
ment of the Semantic Nomenclature ontology network is motivated by scenarios
related to the end-user application that will use the ontology network. Such
scenarios describe a set of the ontology requirements that the ontology should
satisfy after being formally implemented. The motivating scenarios are described
in (Gomez-Pérez et al. 2006). In summary, the purpose of building the ontology
network within the Semantic Nomenclature case study is to provide a consensual
knowledge model of the pharmaceutical domain and to solve the lack of communi-
cation between stakeholders in the pharmaceutical sector. The Semantic Nomen-
clature ontology network should provide a complete reference model about all the
knowledge around the pharmaceutical products based on the main pharmaceutical
classification and models used in the pharmaceutical sector. The implementation
language selected is OWL.

Task 2. Identifying the intended end users. The analysis of the motivating
scenarios described in (Gomez-Pérez et al. 2006) allowed ontology developers to
identify the following intended end users of the ontology:

e User 1. Pharmacists who navigate across the ontology searching for drug
information.

e User 2. GSCoP (General Spanish Council of Pharmacists) technicians who
navigate across the ontology network and search for information or relations
about a given concept (drug, active ingredient, etc.). GSCoP technicians also
extract the latest information from different sources and update their database.

10 http://www.whocc.no/atc_ddd_index/

http://dx.doi.org/10.1007/978-3-642-24794-1_20
http://www.whocc.no/atc_ddd_index/

5 Ontology Requirements Specification 103

e User 3. Spanish government analysts who study the situation of the pharmaceu-
tical product information in the Spanish market or update the content.

Task 3. Identifying the intended uses. The analysis of the motivating scenarios
described in (Gomez-Pérez et al. 2006) allowed ontology developers to identify the
following main intended uses of the ontology:

e Use 1. To search for updated information about the characteristics of pharma-
ceutical products

» Use 2. To connect heterogeneous pharmaceutical models

e Use 3. To update pharmaceutical product information databases

Task 4. Identifying requirements. The non-functional ontology requirement
identified was:

e NFRI1. The ontology must support a multilingual scenario in the following
languages: Spanish, Catalan, Basque, and Galician.

For specifying the functional ontology requirements, the competency question
technique was used. In addition, the bottom-up approach for identifying them was
used because it was the more direct way to work with the domain experts. Compe-
tency questions were stored in an Excel file and then rewritten in a mind map tool as
appears in Fig. 5.3.

In total, 61 competency questions were identified; they are described in detail in
(Gomez-Pérez et al. 2007). Examples of some competency questions are:

¢ CQI. What is the drug commercial name? Aspirina C (400/240MG 10
comprimidos efervescentes)

e CQ2. What is the drug’s main active ingredient (molecule)? Acido
acetilsalicilico

e CQ3. What is its Spanish national code? 7127291

e CQ4. What is the drug registration date? 01/09/1976

Task 5. Grouping functional requirements. The 61 competency questions
described in (Gomez-Pérez et al. 2007) were manually grouped into the following
three groups with the domain experts’ help:

* CQG1. Pharmaceutical product (29 competency questions)
¢ CQG?2. Laboratory (4 competency questions)
* CQG3. Active ingredient (12 competency questions)

CQ1, What is the drug commercial name?

- Agpirina C (400/240MG 10 comprimidos Efervescentes)

CQ2. Whatis the drug main active ingredient (malecule)?
- Acido Acetilsalicilico

CQ4. What is the drug registration date? | Ontology Metwork b | CQ3.Whatis its Spanish national code?
- 017091 976 RariF:il

(6. whatis the drug price? CQ5. What is the drug wi date?]

Fig. 5.3 Excerpt of competency questions

104 M.C. Suarez-Figueroa and A. Gomez-Pérez

The criteria for grouping the competency questions were based on the identified
uses, the identified users, and the domain experts’ suggestions. Apart from the three
aforementioned groups, ontology developers have created a new group, called
Composite (CQG4), which includes the result of combining simple CQs to obtain
more general and complex CQs.

Figure 5.4 shows the four groups with examples of CQs in the laboratory and
pharmaceutical product groups.

Task 6. Validating the set of requirements. During the overall process,
ontology developers received recommendations, suggestions, and advice from the
domain experts, and they iterated several times until the final approval by the end
users was achieved. Domain experts and ontology developers used the following
criteria for validating the set of requirements (both non-functional and functional
requirements):

e Correctness. Domain experts and ontology developers checked the correctness
of each non-functional requirement and of each competency question, verifying
that its formulation and answers were correct.

» Consistent. Domain experts also verified that the non-functional requirements
and the competency questions did not have any possible inconsistency.

Task 7. Prioritizing requirements. Within the Semantic Nomenclature
case study, ontology developers did not carry out this step. This means the
first version of the ontology network must be able to represent the knowledge
contained in all the competency questions and be able to cover all the non-
functional requirements.

Task 8. Extracting terminology and its frequency. From the competency
questions and their answers, ontology developers manually extracted the termino-
logy that will be formally represented in the ontology network by means of con-
cepts, attributes, and relations. In addition, ontology developers identified the terms
and the objects in the universe of discourse. Examples of the terms identified are
shown in Table 5.2.

After following these tasks, the output of the ontology requirements specifica-
tion activity is the ontology requirements specification document. An excerpt of this
document, which has been written for this chapter, is shown in Table 5.3.

CO1. What ks the drug commencial name?
[| - Aspirina C 0

| | a2 st ts me aeug main aciive ingredient gmolecuie)?
| - Acico Acetisasciico

ca —
: = — H{Laborstory}-, A Phamaceuteal Prouct cf‘ai;::‘“""’5“""""”“""‘"""|
(@32 WWhat is the national code of e laboratory? -] \ [— L
] |/ Gemarss Nomenttsture
Oralagy Heswuek \

(033, What medkines are manufaclurd by the Fsboratons? |- | Coe What is the drug registration date? |
[ctive: mw.q.m‘-/' - I08HSTE
| |{C0%. What is he drug withdrawal date? |

\ {06 Wihat ts the dnug referenca price?
4 Composite

Fig. 5.4 Examples of competency questions in groups

5 Ontology Requirements Specification 105

Table 5.2 Examples of terminology

Terms from competency questions

Drug Dosage
Medicine Date
Laboratory Indication

Active ingredient
Terms from answers

Aspirina C 7127291
Acido acetilsalicilico 01/01/1976
Objects

Ibuprofeno Tetrazepam
Butibufeno Procaina
Penicilamina Ketamina
Niflumico acid Clotiazapam
Galamina Oxitriptan

Table 5.3 Excerpt of Semantic Nomenclature ontology requirements specification document

Semantic Nomenclature ontology requirements specification

1 Purpose
The purpose of building the Semantic Nomenclature ontology network is to provide a reference
model for the pharmaceutical domain. This model should be based on the main pharmaceutical
classification and models used in the pharmaceutical sector
2 Scope
The ontology has to focus just on the Spanish and European pharmaceutical domain
3 Implementation language
The ontology has to be implemented in OWL
4 Intended end users
User 1. Pharmacist User 3. Spanish government analysts
User 2. GSCoP technicians
5 Intended uses
Use 1. To search for updated information about the characteristics of pharmaceutical products
Use 2. To connect heterogeneous pharmaceutical models
Use 3. To update pharmaceutical product information databases
6 Ontology requirements
(a) Non-Functional requirements
NFRI1. The ontology must support a multilingual scenario in the following languages:
Spanish, Catalan, Basque, and Galician
(b) Functional requirements: Groups of competency questions
CQGJ1. Pharmaceutical product (29 CQs) CQGS3. Active ingredient (12 CQs)
CQG?2. Laboratory (4 CQs) CQG4. Composed ones (16 CQs)
7 Pre-glossary of terms
(a) Terms from competency questions

Drug (29) Medicine (15) Active ingredient (20) Laboratory (14)
(b) Terms from answers
Aspirina C Acido acetilsalicilico 7127291 01/01/1976

(c) Objects
Ibuprofeno Butibufeno Galamina Procaina

106 M.C. Sudrez-Figueroa and A. Gémez-Pérez

5.4 Conclusions

One of the critical activities when developing ontologies is to identify their func-
tional and non-functional requirements. In this chapter, the ontology requirements
specification activity has been systematized by proposing detailed and prescriptive
methodological guidelines for specifying ontology requirements, based on CQs,
and by providing a template for writing the ontology requirement specification
document (ORSD).

The ORSD will play a key role during the ontology development process because
it facilitates different activities. In that sense, it will be shown in later chapters that the
ontology requirements specification document (1) is a crucial input for the scheduling
of ontology development projects (see Chap. 14) and (2) facilitates, among other
activities, the search and reuse of non-ontological resources for reengineering them
into ontologies (such as lexicons, glossaries, and dictionaries); the search and reuse of
ontologies, ontology modules, ontology statements (e.g., using Watson), and onto-
logy design patterns; and the verification of the ontology during the whole ontology
development.

References

Buzan T (1974) Use your head. Ariel Books, British Broadcasting Corporation (BBC), London

Davis A (1993) Software requirements: objects, functions and states. Prentice Hall, Upper Saddle
River

Gomez-Pérez JM, Daviaud C, Morera B, Benjamins R, Pariente Lobo T, Herrero Carcel G, Tort G
(2006) NeOn deliverable D8.1.1. Analysis of the pharma domain and requirements

Go6mez-Pérez JM, Buil-Aranda C, Pariente Lobo T, Herrero Carcel G, Baena A (2007) NeOn
deliverable D8.3.1. Ontologies for the pharmaceutical case studies

Griininger M, Fox MS (1995) Methodology for the design and evaluation of ontologies. In: Skuce D
(ed) IJCAI95 workshop on basic ontological issues in knowledge sharing, Montreal,
pp 6.1-6.10

IEEE (1993) IEEE Recommended practice for software requirements specifications. IEEE Std. 830

Noy NF, McGuinness DL (2001) Ontology development 101: a guide to creating your first
ontology. Technical report KSL-01-05, Stanford Knowledge Systems Laboratory, Stanford

Sommerville T (2007) Software engineering, 8th edn. Addison-Wesley, London. ISBN 0-321-
31379-8

Staab S, Schnurr HP, Studer R, Sure Y (2001) Knowledge processes and ontologies. IEEE Intell
Syst 16(1):26-34

Uschold M (1996) Building ontologies: towards a unified methodology. In: Watson I (ed) 16th
Annual conference of the British Computer Society Specialist Group on Expert Systems,
Cambridge, UK

Villazén-Terrazas B, Ramirez J, Suarez-Figueroa MC, Gomez-Pérez A (2011) A network of
ontology networks for building e-employment advanced systems. Expert Syst Appl 38(11):
13612-13624

Wiegers E (2003) Software requirements 2: practical techniques for gathering and managing
requirements throughout the product development cycle, 2nd edn. Microsoft Press, Redmond.
ISBN 0-7356-1879-8

Wieringa R (1996) Requirements engineering: frameworks for understanding. Wiley, New York

http://dx.doi.org/10.1007/978-3-642-24794-1_14

Chapter 6
Reusing and Re-engineering Non-ontological
Resources for Building Ontologies

Boris Villazon-Terrazas and Asuncion Gomez-Pérez

Abstract With the goal of speeding up the ontology development process, ontol-
ogy developers are reusing as much as possible available ontological and non-
ontological resources such as classification schemes, thesauri, lexicons, and
folksonomies, that have already reached some consensus. The reuse of such non-
ontological resources necessarily involves their re-engineering into ontologies.
Based on this new trend, this chapter presents a general method for re-engineering
non-ontological resources into ontologies, taking into account that non-ontological
resources are highly heterogeneous in their data model and contents. The method is
based on the so-called re-engineering patterns, which define a procedure that
transforms the non-ontological resource components into ontology representational
primitives. This chapter also presents the description of a software library that
implements the transformations suggested by the patterns. Finally, the chapter
depicts an evaluation of the method.

6.1 Introduction and Motivation

Research on ontology engineering methodologies has provided methods and
techniques for developing ontologies from scratch. Well-recognized methodologi-
cal approaches such as METHONTOLOGY (G6mez-Pérez et al. 2003), On-To-
Knowledge (Schnurr et al. 2001), and DILIGENT (Pinto et al. 2004) issue
guidelines that help researchers to develop ontologies. However, researchers face

B. Villazon-Terrazas (5<) « A. Gomez-Pérez

Ontology Engineering Group, Departamento de Inteligencia Artificial, Facultad de Informatica,
Universidad Politécnica de Madrid, Campus de Montegancedo sn., 28660 Boadilla del Monte,
Madrid, Spain

e-mail: bvillazon@fi.upm.es; asun@fi.upm.es

M.C. Suarez-Figueroa et al. (eds.), Ontology Engineering in a Networked World, 107
DOI 10.1007/978-3-642-24794-1_6, © Springer-Verlag Berlin Heidelberg 2012

mailto:bvillazon@fi.upm.es
mailto:asun@fi.upm.es

108 B. Villazon-Terrazas and A. Gomez-Pérez

an important limitation: no guidelines are provided for building ontologies by re-
engineering some knowledge resources widely used within a particular community.

During the last decade, specific methods, techniques, and tools were proposed
for building ontologies from available knowledge resources. First, ontology
learning methods and tools were proposed to extract relevant concepts and relations
from structured, semi-structured, and non-structured resources (Gomez-Pérez and
Manzano-Macho 2004; Maedche and Staab 2001) in order to form a single ontol-
ogy. One important constraint of these methods and tools is that they propose ad
hoc solutions to transforming such resources, mainly texts, into ontologies. Hepp
(2006), Hepp and de Brujin (2007), and Hepp (2007) stated that employing methods
and techniques when transforming non-ontological resources to ontologies is key
for the success of semantic technology for two main reasons: (1) if the use of
semantic technologies for real-world data integration challenges is required, it is
possible to refer to the original conceptual elements, and (2) for many domains, the
existing category systems, XML schemas, and normative entity identifiers are the
most efficient resources for engineering ontologies.

The literature presents a wide set of methods and tools for the ontologization of
non-ontological resources. This ontologization of resources has led to the design of
several specific methods, techniques, and tools (Hepp and de Brujin 2007;
Hyvoonen et al. 2008; Gangemi et al. 2003; Garcia and Celma 2005). These are
mainly specific to a particular resource type, or to a particular resource implemen-
tation. Thus, every time ontology engineers are faced with a new resource type or
implementation, they develop ad hoc solutions to transforming such resource into a
single ontology.

The analysis of the ontologies developed by distinct research groups in different
international and national projects have revealed that there are different alternative
ways or possibilities to build ontologies by reusing and re-engineering the available
knowledge resources used by a particular community. However, at this stage, we
can state that all the projects perform an ad hoc transformation of the resources
available for building ontologies.

Therefore, a new ontology development paradigm started approximately in
2007, whose emphasis was on the reuse and possible subsequent reengineering of
knowledge resources, as opposed to custom-building new ontologies from scratch.
However, in order to support and promote such reuse-based approach, new
methods, techniques, and tools are needed.

The remainder of the chapter is organized as follows: Section 6.2 presents our
categorization of non-ontological resources. Then, Sect. 6.3 describes the method-
ological guidelines for reusing non-ontological resources. Next, Sect. 6.4 provides
the pattern-based method for re-engineering non-ontological resources into
ontologies. Section 6.5 introduces the technological support for our re-engineering
method. Then, Sect. 6.6 describes an example of the methodological guidelines
presented here. Finally, Sect. 6.7 presents the conclusions and future work.

6 Reusing and Re-engineering Non-ontological Resources for Building Ontologies 109
6.2 Types of Non-ontological Resources

The knowledge resources, reused in several projects for building ontologies, con-
tain readily available a wealth of category definitions and reflect some degree of
community consensus. In this chapter, we refer to non-ontological resources
(NOR)1. Examples of NORs are classification schemes, thesauri, lexica, and
folksonomies, among others. This type of resources encodes different types of
knowledge and can be implemented in different ways.

Our analysis of the literature has revealed different ways of categorizing non-
ontological resources. Thus, Maedche and Staab (2001) and Sabou et al. (2007)
classify non-ontological resources into unstructured (e.g., free text), semi-
structured (e.g., folksonomies), and structured (e.g., databases) resources, whereas
Gangemi et al. (1998) distinguish catalogs of normalized terms, glossed catalogues,
and taxonomies. Finally, Hodge (2000) proposes characteristics such as structure,
complexity, relationships among terms, and historical functions for classifying
them. However, an accepted and agreed-upon typology of non-ontological
resources does not exist yet.

Therefore, one of the contributions of this chapter is the categorization of
NORs, according to the following three features presented in Fig. 6.1: (1) type of
NOR, which refers to the type of inner organization of the information; (2) data
model, that is, the design data model used to represent the knowledge encoded by
the resource; and (3) resource implementation.

According to the type of NORs, we classify them into:

* Glossaries: A glossary is an alphabetical list of terms or words found in or
related to a specific topic or text. It may or may not include explanations, and its
vocabulary may be monolingual, bilingual, or multilingual (Wright and Budin
1997). An example of glossary is the FAO Fisheries Glossary?.

e Lexicons: In a restricted sense, a computational lexicon is considered as a list of
words or lexemes hierarchically organized and normally accompanied by mean-
ing and linguistic behavior information (Hirst 2004). A fine example is
WordNet®, the best known computational lexicon of English.

e Classification schemes: A classification scheme is the descriptive information of
an arrangement or division of objects into groups according to the characteristics
that the objects have in common (ISO/IEC FDIS 11179-1). A good example is
the Fishery International Standard Statistical Classification of Aquatic Animals
and Plants (ISSCAAP)*.

e Thesauri: Thesauri are controlled vocabularies of terms in a particular domain
with hierarchical, associative, and equivalence relations between terms.

! Along this chapter, we use either NOR or non-ontological resource without distinction
2 http://www.fao.org/fi/glossary/default.asp

3 http://wordnet.princeton.edu/

“http://www.fao.org/figis/serviet/RefServlet

http://www.fao.org/fi/glossary/default.asp
 http://wordnet.princeton.edu/
 http://www.fao.org/figis/servlet/RefServlet

110 B. Villazon-Terrazas and A. Gomez-Pérez

Glossary Lascon
Thessurus
Classification - .
— T 7 Type of non-ontological
resource
Path Adjsceniy
. p- S
Snowflaks . Flsttened
. N, — Classification scheme
-~ e ~ datamodels
Ontabase XML File
MatPie Spresdshest =1
op— R A : Implementation
Classification scheme : 2 R
modelled usinga Path N A lassification scheme
Enumeration model - 7“ modelled usinga Path
andstoredina Enumeration model and
database. stored in an XML file.

Fig. 6.1 Non-ontological resource categorization

Thesauri are mainly used for indexing and retrieving articles in large databases
(ISO 2788). An example of thesaurus is the AGROVOC?’ thesaurus.

e Folksonomies: Folksonomies are Web 2.0 systems that users employ to
upload and annotate their content effortlessly and without requiring any expert
knowledge®. This simplicity has made folksonomies widely successful, and
this success, in its turn, has resulted in a massive amount of user-generated
and user-annotated web content. The main advantage of folksonomies is the
implicit knowledge they contain. When users tag resources with one or more
tags, they assign these resources the meaning of the tag. Furthermore, the
co-occurrence of tags implies a semantic correlation among them. An example
of how folksonomies are used can be seen in the del.icio.us’ web site.

The knowledge encoded by the resource can be represented in different ways,
known as data models. A data model (Carkenord 2002) is an abstract model that
describes how data is represented and accessed. There are three types: (1) the
conceptual data model, which presents the primary entities and relationships of

s http://www.fao.org/agrovoc/
S http://www.vanderwal.net/folksonomy.html
http://del.icio.us/

http://www.fao.org/agrovoc/
http://www.vanderwal.net/folksonomy.html
http://del.icio.us/

6 Reusing and Re-engineering Non-ontological Resources for Building Ontologies 111

concern to a specific domain; (2) the logical data model, which depicts the logical
entity types, the data attributes describing those entities, and the relationships
between entities; and (3) the physical data model, which is related to a specific
implementation of the resource. In this chapter, we will use the term data model
when referring to the logical data model. With regard to the data model, there are
different ways of representing the knowledge encoded by the resource. In this
chapter, we only focus in data models for classification schemes, thesauri, and
lexica. The data models are described in detail in Villazon-Terrazas et al. (2010).

Next we present several data models for classification schemes, shown in

Fig. 6.2.

Path enumeration (Brandon 2005): A path enumeration model (see Fig. 6.2b) is
a recursive structure for hierarchy representations and is defined as a model that
stores, for each node, the path (as a string) from the root to the node. This string
is the concatenation of the node code in the path from the root to the node.
Adjacency list (Brandon 2005): An adjacency list model is a recursive structure
for hierarchy representations comprising a list of nodes with a linking column to
their parent nodes. Figure 6.2c shows this model.

Snowflake (Malinowski and Zimanyi 2006): A snowflake model is a normalized
structure for hierarchy representations. For each hierarchy level, a table is
created. In this model, each hierarchy node has a column linked to its parent
node. Figure 6.2d shows this model.

Flattened (Malinowski and Zimanyi 2006): A flattened model is a denormalized
structure for hierarchy representations. The hierarchy is represented by a table
where each hierarchy level is stored in a different column. Figure 6.2e shows this
model.

Next, we present two data models for thesauri.

Record-based model (Soergel 1995): A record-based model is a denormalized
structure that for every term uses a record with information about the term, such
as synonyms, broader, narrower, and related terms. This model looks like the
flattened model for classification scheme.

Relation-based model (Soergel 1995): A relation-based model leads to a more
elegant and efficient structure. Information is stored in individual pieces that can
be arranged in different ways. Relationship types are not defined as fields in a
record, they are simply data values in a relationship record, thus new relationship
types can be introduced with ease. There are three entities: (1) a term entity,
which contains the overall set of terms; (2) a term-term relationship entity, in
which each record contains two different term codes and the relationship
between them; and (3) a relationship source entity, which contains the overall
resource relationships.

Next we present a data model for lexica.

Record-based model (Soergel 1995): This model can also be used for lexicons
because the use of a record for every lexical resource and information about that
lexical resource is possible.

112 B. Villazon-Terrazas and A. Gomez-Pérez

a
Water area
/T\I
Environmental Jurisdiction Fishing Statistical
area area area
North/South/
Inlandimarine Ocean
& &
b c
20000 | Water area 20000 Water area
20000.21000 | Environmental area 21000 |Emvironmental area | 20000
2000024020 Junsdiction area 24020 Jurisdicton area 120000
20000.22000 Fshing Statistcal area 22000 |Fighing Statistical area 20000
20000.2100021001 | Iintand/marine 21001 Inland/marine 121000
20000.21000.21003 | North/South/Equatorial 21003 North/SouthEquatonal | 21000
2000022000.22001 | FAO ares 22001 |FAO stetistical area | 22000
20000.22000.22002 | Areal grid system 22002 Areal grid system 22000

2001 22000 |FAO statistical area
22002 22000 Areal grid system

-
(=]

<?xml jon="1.0" e ling="UTF8"?>
[~ <WaterAreaClassificationScheme>
= <CSlI»
<ID>20000</1D>
<Name>Water area</Name>
i <Parent></Parent>
</CSI>
e <CSi>
<ID>21000</1D>
<Name>Environmental area</Name>
i <Parent>20000</Parent>
</CSI>

Fig. 6.2 Example of classification scheme. (a) Excerpt of the Water Area classification scheme,
(b) Path Enumeration data model, (c) Adjacency List data model, (d) Snowflake data model,
(e) Flattened data model, (f) XML implementation for the Adjacency List data model,
(g) Spreadsheet implementation for the Path Enumeration data model

6 Reusing and Re-engineering Non-ontological Resources for Building Ontologies 113

e Relation-based model (Soergel 1995): It can also be used for lexicons because
the storage of information about the lexicon in individual pieces is possible.

According to the implementation, we classify NORs into:

e Databases: A database is a structured collection of records or data stored in
a computer system.

e Spreadsheets: An electronic spreadsheet consists of a matrix of cells where
a user can enter formulas and values.

* XML file: EXtensible Markup Language is a simple, open, and flexible format
used to exchange a wide variety of data on and off the web. XML is a tree
structure of nodes and nested nodes of information where the user defines the
names of the nodes.

o Flat file: A flat file is a file usually read or written sequentially. In general, a flat
file is a file containing records with no structured interrelationships.

In summary, Fig. 6.1 shows how a given type of NOR can be modeled following
one or more data models, each of which implemented in different ways at the
implementation layer. Figure 6.1 shows, as an example, a classification scheme
modeled following a path enumeration model. In this case, the classification
scheme is implemented in a database and in an XML file.

To exemplify the non-ontological categorization presented with a real life
classification scheme, we use an excerpt from the FAO water area classification
presented in (Fig. 6.2a). This classification schema is modeled following a path
enumeration model (Fig. 6.2b), an adjacency list model (Fig 6.2c), a snowflake
model (Fig. 6.2d), and a flattened model (Fig. 6.2¢). Figure 6.2f presents an XML
implementation of the adjacency list model, and Fig. 6.2g presents a spreadsheet
implementation of the path enumeration model of the same classification scheme.

It is worth mentioning that this first categorization of NORs is neither exhaustive
nor complete. Currently, we are enriching it by adding examples taken from
RosettaNet® and Electronic Data Interchange, EDI’.

Moreover, we can map available non-ontological resources to our categoriza-
tion. Next we present a brief list of them.

e The United Nations Standard Products and Services Code, UNSPSCIO, is a
classification scheme, modeled with the path enumeration data model and stored
in a relational database.

« WordNet'!, a lexical database for English, is a lexicon, modeled with the
relation-based data model and stored in several implementations; a particular
implementation of it is a relational database.

8 http://www.rosettanet.org/

o http://www.edibasics.co.uk/
19 http://www.unspsc.org/

' http://wordnet.princeton.edu/

http://www.rosettanet.org/
 http://www.edibasics.co.uk/
 http://www.unspsc.org/
 http://wordnet.princeton.edu/

114 B. Villazon-Terrazas and A. Gomez-Pérez

UMLS12'? is a very large, multipurpose, multilingual thesaurus that contains
information about biomedical and health-related concepts. It is modeled with the
record-based model and stored in a flat file.

MeSh'?, the Medical Subject Headings, is a classification scheme, modeled with
the path enumeration data model.

The Art and Architecture Thesaurus'® is modeled with the record-based data
model and implemented in XML.

The ISCO-08 International Standard Classification of Occupations'” is a classi-
fication scheme modeled with the path enumeration data model and
implemented in a database and spreadsheet.

The European Training Thesaurus, ETT!®, is modeled with the record-based
data model and implemented in XML.

The Classification of Fields of Education and Training, FOET”, is a classifica-
tion scheme modeled with path enumeration data model and implemented in
XML and spreadsheet.

The Aquatic Sciences and Fisheries Abstracts thesaurus, ASFA"® is modeled
with the record-based data model and implemented in XML.

The AGROVOC thesaurus'® is modeled with the relation-based data model and
implemented in a database.

The Fisheries Global Information System, FIGIS??, is modeled with the adja-
cency list data model and implemented in a database.

The Classification of Italian Education Titles published by the National Institute
of Statistics, ISTAT?!, is a classification scheme modeled with the flattened data
model and implemented in a spreadsheet.

12 http://www.nlm.nih.gov/pubs/factsheets/umlsmeta.html

13 http://www.nlm.nih.gov/mesh/

14 http://www.getty.edu/research/tools/vocabularies/aat/index.html
15 http://www.ilo.org/public/english/bureau/stat/isco/index.htm

16 http://libserver.cedefop.europa.eu/ett/en/

17 http://ec.europa.eu/eurostat/ramon/nomenclatures/index.cfm?TargetUrl=DSP_GEN_DESC_
VIEW_NOHDR&StrNom=EDU_TRAINI&StrLanguageCode=EN

18 http://www.fao.org/fishery/asfa/8/en

19 http://aims.fao.org/website/ AGROVOC-Thesaurus/sub
20 http://www.fao.org/figis/servlet/RefServlet

2! http://en.istat.it/

 http://www.nlm.nih.gov/pubs/factsheets/umlsmeta.html
http://www.nlm.nih.gov/mesh/
http://www.getty.edu/research/tools/vocabularies/aat/index.html
http://www.ilo.org/public/english/bureau/stat/isco/index.htm
http://libserver.cedefop.europa.eu/ett/en/
http://ec.europa.eu/eurostat/ramon/nomenclatures/index.cfm?TargetUrl=DSP_GEN_DESC_VIEW_NOHDR&StrNom=EDU_TRAINI&StrLanguageCode=EN
http://ec.europa.eu/eurostat/ramon/nomenclatures/index.cfm?TargetUrl=DSP_GEN_DESC_VIEW_NOHDR&StrNom=EDU_TRAINI&StrLanguageCode=EN
http://ec.europa.eu/eurostat/ramon/nomenclatures/index.cfm?TargetUrl=DSP_GEN_DESC_VIEW_NOHDR&StrNom=EDU_TRAINI&StrLanguageCode=EN
http://ec.europa.eu/eurostat/ramon/nomenclatures/index.cfm?TargetUrl=DSP_GEN_DESC_VIEW_NOHDR&StrNom=EDU_TRAINI&StrLanguageCode=EN
http://ec.europa.eu/eurostat/ramon/nomenclatures/index.cfm?TargetUrl=DSP_GEN_DESC_VIEW_NOHDR&StrNom=EDU_TRAINI&StrLanguageCode=EN
http://www.fao.org/fishery/asfa/8/en
http://aims.fao.org/website/AGROVOC-Thesaurus/sub
http://www.fao.org/figis/servlet/RefServlet
http://en.istat.it/

6 Reusing and Re-engineering Non-ontological Resources for Building Ontologies 115

6.3 Methodological Guidelines for Reusing Non-ontological
Resources

Once we have defined and categorized the non-ontological resources to be dealt
with, we present the methodological guidelines for reusing them. The goal of the
non-ontological resource reuse process is to choose the most suitable non-ontological
resource for building ontologies. Domain experts, software developers, and ontology
practitioners carry out this process by taking as input the ontology requirements
specification document (ORSD)** to find the most suitable non-ontological resources
for the development of ontologies. The output of the process is a set of non-ontological
resources that, to some extent, covers the expected domain. Figure 6.3 shows the filling
card used in the process of reusing non-ontological resources, which includes the
definition, goal, input, output, performer of the process, and period of execution.

This process includes the activities and tasks presented in Fig. 6.4 and is
explained next.

6.3.1 Activity 1. Search Non-ontological Resources

The goal of the activity is to search non-ontological resources from highly reliable
web sites, domain-related sites, and resources within organizations. Domain
experts, software developers, and ontology practitioners carry out this activity,
taking as input the ORSD. They use the terms that have the highest frequency in
the ORSD to search for the candidate non-ontological resources that cover the
desired terminology. The activity output is a set of candidate non-ontological
resources that may belong to any of the identified typologies described in Sect. 6.2.

6.3.2 Activity 2. Assess the Set of Candidate Non-ontological
Resources

The goal of the activity is to assess the set of candidate non-ontological resources.
Domain experts, software developers, and ontology practitioners carry out this
activity, taking as input the set of candidate non-ontological resources. We propose
to consider the following measurable criteria: (1) coverage, (2) precision plus two
subjective criteria, (3) quality>®, and (4) consensus. These criteria are inspired on
the work proposed in Gangemi et al. (20006).

22 This document is the outcome of the ontology specification activity (Sudrez-Figueroa et al.
2009) (see Chapter 5).

23 A deep analysis of the quality of the resource is out of the scope of this chapter.

116 B. Villazén-Terrazas and A. Gomez-Pérez

Non-Ontological Resource Reuse

Defintion

Non-Onlological Resource Reuse refers to the process of choosing the most
suitable non-ontological resources for the development of ontologies.

Goal

To choose the most suitable non-ontological resources for building ontologies.

Input Output

. P A set of non-ontological
lgsumoe::D(lg%ySD;equwemems specification resources that to some extend

covers the expected domain.

Who

Domain experts, software developers and ontology practitioners.

When

After the ontology specification activity and before the non-ontological resource re-
engineering process.

Fig. 6.3 Non-ontological resource reuse filling card
6.3.2.1 Task 2.1 Extract Lexical Entries

The goal of this task is to extract the lexical entries of the non-ontological resources.
The task is carried out by software developers and ontology practitioners by taking
as input the non-ontological resources and extracting their lexical entries with
terminology extraction tools.

6.3.2.2 Task 2.2 Calculate Precision

The goal of this task is to calculate the precision of the candidate non-ontological
resources. Precision is a measure widely used in information retrieval (Baeza-Yates
and Ribeiro-Neto 1999) and is defined as the proportion of retrieved material that is

6 Reusing and Re-engineering Non-ontological Resources for Building Ontologies

Fig. 6.4

"

Ontology Development Team

ORSD

W/

Activity 1.
Search non-ontological
resources

.

Task 2.1 Extract lexical entries

Activity 2.
Assess the set of candidate
non-ontological resources

Ontology Team l
m Task 2.2 Calculate precision
Ontology D Team l
m Task 2.3 Calculate coverage
Ontology D P Team l
... Task 2.4 Evaluate the
- consensus
Users and Domain Experts T
m Task 2.5 Evaluate the quality
Domain Experts and ODT 3
m Task 2.6 Build the assessment
Ontology D Team
Activity 3.
ﬁﬁﬁﬁ, Select the most appropriate
non-ontological resources
Domain Experts and ODT

¥/

Set of non-
ontological
resources

Activities for the non-ontological resource reuse process

117

118 B. Villazon-Terrazas and A. Gomez-Pérez

actually relevant. This task is carried out by software developers and ontology
practitioners by taking as input the lexical entries extracted for the non-ontological
resources and the terminology gathered in the ORSD. To adapt this precision
measure into our context, we need to define:

* NORLexicalEntries as the set of lexical entries extracted from the non-ontological
resource
e ORSDTerminology as the set of identified terms included in the ORSD

Now we can define the precision, in our context, as the proportion of the lexical
entries of the non-ontological resource that are included in the identified terms of
the ORSD over the lexical entries of the non-ontological resource. This is expressed
as follows:

|[{NORLexicalEntries} N {ORSDTerminology}|
|{NORLexicalEntries}|

Precision =

6.3.2.3 Task 2.3 Calculate Coverage

The goal of this task is to calculate the coverage of the non-ontological resources.
Coverage is based on the recall measure used in information retrieval (Baeza-Yates
and Ribeiro-Neto 1999). Recall is defined as the proportion of relevant material
actually retrieved in answer to a search request. This task is carried out by software
developers and ontology practitioners by taking as input both the lexical entries
extracted from the non-ontological resources and the terminology gathered in the
ORSD. To adapt this measure into our context, we use the aforementioned
definitions of NORLexicalEntries and ORSDTerminology. In this context, coverage
is the proportion of the identified terms of the ORSD that are included in the lexical
entries of the non-ontological resource over the identified terms of the ORSD. This
is expressed as follows:

[{NORLexicalEntries} N {ORSDTerminology}|
[{ORSDTerminology}|

Coverage =

6.3.2.4 Task 2.4 Evaluate the Consensus

The goal of this task is to evaluate the consensus of the non-ontological resources.
Consensus is a subjective and not quantifiable criterion. This task is carried out by
domain experts, taking as input the non-ontological resources for stating whether
the non-ontological resources contain terminology agreed upon by the community

6 Reusing and Re-engineering Non-ontological Resources for Building Ontologies 119

or not. We propose a preliminary starting point for this evaluation. Domain experts
have to check whether the resource is coming from:

¢ A standardization body or any entity whose primary activity is to develop,
coordinate, promulgate, revise, amend, reissue, or otherwise maintain standards;
for example, the International Organization for Standardization (ISO), the
American National Standards Institute (ANSI), and the World Wide Web
Consortium (W3C)

« Large organizations across national governments, such as the Food and Agricul-
ture Organization of the United Nations (FAO), the World Health Organization
(WHO), the United Nations Educational, Scientific and Cultural Organization
(UNESCO), and the International Olympic Committee (IOC)

¢ A large enough user community to make it profitable for developers to use it as a
means of general interoperability

Either the resource is coming from any of the aforementioned parties or not,
domain experts may state that the resource has reached some degree of consensus.

6.3.2.5 Task 2.5 Evaluate the Quality

The goal of this task is to evaluate the quality of the resource. We do not intend to
provide a deep analysis of the quality of the resource but to offer some preliminary
considerations about it. In this chapter, we propose to check the following quality
attributes:

¢ Good documentation of the resource.

e Lack of anomalies of the non-ontological resource, such as redundancies or
inconsistencies.

» Reliability of the non-ontological resource. This means analyzing whether we
can trust the resource or not.

6.3.2.6 Task 2.6 Build the Assessment Table

The goal of this task is to create an assessment table of the non-ontological resources.
Software developers and ontology practitioners carry out this task, taking as input the
non-ontological resources with their respective values for precision, coverage, con-
sensus, and quality criteria, for the construction of the assessment table. This table is
shown in Table 6.1. The first column shows the non-ontological resources found. The

Table 6.1 Assessment table for the NORs

NOR Precision Coverage Consensus Quality
NOR 1 NOR 1 precision value NOR 1 coverage value (Yes/no) (Yes/no)
NOR 2 NOR 2 precision value NOR 2 coverage value (Yes/no) (Yes/no)

NOR 3 NOR 3 precision value NOR 3 coverage value (Yes/no) (Yes/no)

120 B. Villazon-Terrazas and A. Gomez-Pérez

precision column shows the precision value calculated for each non-ontological
resource. Then, the coverage column shows the coverage value calculated for each
non-ontological resource. Next, the consensus column depicts the domain experts’
judgment about whether the non-ontological resource has been agreed on by the
community or not (Yes/No). Finally, the quality column illustrates the domain
experts, software developers, and ontology practitioners’ judgment about whether
the resource has an acceptable level of quality or not (Yes/No).

6.3.3 Activity 3. Select the Most Appropriate Non-ontological
Resources

The goal of this activity is to select the most appropriate non-ontological resources
to be transformed into an ontology. This activity is carried out by domain experts,
software developers, and ontology practitioners, taking as input the non-ontological
resource assessment table. The selection is performed manually and we recommend
looking for resources with:

e Consensus. This criterion is taken into account in the first place because if the
resource to be reused contains terminology agreed upon by the community, the
effort and time spent in finding out the right labels for the ontology terms will
decrease considerably.

e Quality. This criterion is taken into account in the second place because if the
resource to be reused has an acceptable level of quality, then the resultant
ontology should also have it.

» High value of coverage. This criterion is taken into account in the third place
because our third concern is to consider most of the ORSD terms identified.

» High value of precision. This criterion is taken into account in the fourth place
because our fourth concern is the proportion of non-ontological lexical entries
over the identified terms of the ORSD.

The activity output is a ranked list of non-ontological resources that, to some
extent, covers the expected domain. These resources will be ready for the re-
engineering process.

6.4 Methodological Guidelines for Re-engineering NORs
into Ontologies

In this section, we depict the prescriptive methodological guidelines for re-
engineering NORs. The goal of the method for re-engineering non-ontological
resources is to transform a non-ontological resource into an ontology. The output
of the process is an ontology. Figure 6.5 shows the filling card of the non-ontological

6 Reusing and Re-engineering Non-ontological Resources for Building Ontologies 121

Non-Ontological Resource Re-
engineering

Definition

Naon-Ontological Resource Re-engneering refers to the process of taking an
existing non ontological resource and transforming it into an ontology.

Goal

| Create an ontology from a non-ontological resource. |

Input Output

One or more non-ontological resources
selected by the reuse process and the| | |An ontology.
library of patterns for re-engineering.

Who

Domain experts, software developers and ontology practitioners.

When

After the non-ontological resource reuse process and before the
conceptualization activity.

Fig. 6.5 Non-ontological resource re-engineering filling card

resource re-engineering process, which includes the definition, goal, input, output,
performer of the process, and time execution.

The NOR re-engineering process consists of the three activities depicted in
Fig. 6.6.

6.4.1 Activity 1. Non-ontological Resource Reverse Engineering

The goal of this activity is to analyze a non-ontological resource, to identify its
underlying terms, and to create representations of the resource at the different levels
of abstraction (design, requirements, and conceptual).

122

Non-
ontological
resource

Domain Experts and ODT

Task 1.1 Data gathering

1
k4

Task 1.2 Conceptual

Domain Experts and ODT abstraction

|
k4

(5

Domain Experts and ODT

Task 1.3 Information
exploration

Task 2.1 Search for a suitable
pattern for re-engineering non-

Ontology Development Team ontological resources

L]

Ontology Development Teaml

~

suitable
paﬂern?/

Yes =

No,

l

Non-Ontological Resource

Ontology Development Team

B. Villazén-Terrazas and A. Gomez-Pérez

Activity 1.

Reverse Engineering

Activity 2. !
Non-Ontological Resource,
Transformation

R

~

Task 2.2.a Use the pattern to
guide the transformation

Task 2.2.b Perform an ad-hoc
transformation

L

!

Task 2.3 Manual refinement

4

Ontology Development Team

I

]

1

'

1

I

I

1

I .

] PR-NOR

1 INPUT "
library

e/ /

Y

1

1

1

I

I

'

'

1

1

'

1

|

1

1

]

Activity 3. Ontology Forward
Engineering

Ontology Development Team

Ontology

Fig. 6.6 Re-engineering process for non-ontological resources

6.4.1.1 Task 1.1 Data Gathering

The goal of this task is to search and compile all the available data and documenta-
tion about the non-ontological resource, including purpose, components, data
model, and implementation details.

6 Reusing and Re-engineering Non-ontological Resources for Building Ontologies 123

6.4.1.2 Task 1.2 Conceptual Abstraction

The goal of this task is to identify the schema of the non-ontological resource
including the conceptual components and their relationships. If the conceptual
schema is not available in the documentation, the schema should be reconstructed
manually or with a data modeling tool.

6.4.1.3 Task 1.3 Information Exploration

The goal of this task is to find out how the conceptual schema of the non-
ontological resource and its content are represented in the data model. If the non-
ontological resource data model is not available in the documentation, the data
model should be reconstructed manually or with a data modeling tool.

6.4.2 Activity 2. Non-ontological Resource Transformation

This activity has as a goal to generate a conceptual model from the non-ontological
resource. We propose the use of patterns for re-engineering non-ontological
resources (PR-NOR) to guide the transformation process.

6.4.2.1 Task 2.1 Search for a Suitable Pattern for Re-engineering
Non-ontological Resource

The goal of this task is to find out if there is any applicable re-engineering pattern
that transforms the non-ontological resource into a conceptual model. The search is
performed in the ODP Porta12424, which includes the PR-NOR library, and with the
following criteria: (1) non-ontological resource type, (2) internal data model of the
resource, and (3) the transformation approach.

6.4.2.2 Task 2.2.a Use Re-engineering Patterns to Guide the Transformation

The goal of this task is to apply the re-engineering pattern obtained in Task 2.1 (see
Sect. 6.4.2.1) to transform the non-ontological resource into a conceptual model. If
a suitable pattern for re-engineering non-ontological resources is found, then the
conceptual model is created from the non-ontological resource following the
procedure established in the pattern for re-engineering. Alternatively, the software

2* http://ontologydesignpatterns.org

http://ontologydesignpatterns.org

124 B. Villazon-Terrazas and A. Gomez-Pérez

library, described later in Sect. 6.5, can be used for generating the ontology
automatically.

6.4.2.3 Task 2.2.b Perform an Ad Hoc Transformation

The goal of this task is to set up an ad hoc procedure that transforms the non-ontological
resource into a conceptual model when a suitable pattern for re-engineering cannot
be found. This ad hoc procedure may be generalized to create a new pattern for re-
engineering non-ontological resources.

6.4.2.4 Task 2.3 Manual Refinement

The goal of this task is to check whether any inconsistency appears after the
transformation. Software developers and ontology practitioners, with the help of
domain experts, can fix manually any inconsistencies generated from the
transformation.

6.4.3 Activity 3. Ontology Forward Engineering

The goal of this activity is to generate the ontology. We use the ontology levels of
abstraction to depict this activity because they are directly related to the ontology
development process. The conceptual model obtained in Task 2.2.a (Sect. 6.4.2.2)
or 2.2.b (Sect. 6.4.2.3) is transformed into a formalized model, according to a
knowledge representation paradigm such as description logics, first order logic, or
F-logic. Then, the formalized model is implemented in an ontology language.

6.5 Technological Support

Our technological support consists in (1) a PR-NOR pattern library that includes the
set of patterns for re-engineering non-ontological resources and the implementation
of (2) NOR,O, a software library that implements the transformation process
suggested by the patterns.

6 Reusing and Re-engineering Non-ontological Resources for Building Ontologies 125

Table 6.2 Template of pattern for re-engineering non-ontological resource
Slot Value

General information

Name Name of the pattern

Identifier An acronym composed of component type + abbreviated name of
the component + number

Component type Pattern for re-engineering non-ontological resource (PR-NOR)

Use case

General Description in natural language of the re-engineering problem
addressed by the pattern for re-engineering non-ontological
resources

Example Description in natural language of an example of the re-engineering
problem

Pattern for re-engineering non-ontological resource

Input: resource to be re-engineered

General Description in natural language of the non-ontological resource

Example Description in natural language of an example of the non-
ontological resource

Graphical representation

General Graphical representation of the non-ontological resource

Example Graphical representation of the example of non-ontological resource

Output: designed ontology

General Description in natural language of the ontology created after
applying the pattern for re-engineering the non-ontological
resource

Graphical representation
(UML) General solution Graphical representation, using the UML profile (Brockmans and
ontology Haase 2006), of the ontology created for the non-ontological
resource being re-engineered
(UML) Example solution A graphical representation example, which uses the UML profile
ontology (Brockmans and Haase 2006), of the ontology created for the
non-ontological resource being used
Process: how to re-engineer

General Algorithm for the re-engineering process

Example Application of the algorithm to the non-ontological resource
example

Time complexity The time complexity of the algorithm

Additional notes Additional notes of the algorithm

Formal transformation

General Formal description of the transformation made with the formal

definitions of the resources
Relationships (optional)
Relations to other modeling Description of any relation to other PR-NOR patterns or other
components ontology design patterns

126

B. Villazon-Terrazas and A. Gomez-Pérez

Table 6.3 Set of patterns for re-engineering NORs

N Identifier Type of NOR NOR data model Target

1 PR-NOR-CLTX-01 Classification scheme Path enumeration Ontology schema (TBox)
2 PR-NOR-CLTX-02 Classification Scheme Adjacency list Ontology schema (TBox)
3 PR-NOR-CLTX-03 Classification scheme Snowflake Ontology schema (TBox)
4 PR-NOR-CLTX-04 Classification scheme Flattened Ontology schema (TBox)
5 PR-NOR-CLAX-10 Classification scheme Path enumeration Ontology (TBox + ABox)
6 PR-NOR-CLAX-11 Classification scheme Adjacency list Ontology (TBox + ABox)
7 PR-NOR-CLAX-12 Classification scheme Snowflake Ontology (TBox + ABox)
8 PR-NOR-CLAX-13 Classification scheme Flattened Ontology (TBox + ABox)
9 PR-NOR-TSTX-01 Thesaurus Record based Ontology Schema (TBox)
10 PR-NOR-TSTX-02 Thesaurus Relation based Ontology Schema (TBox)
11 PR-NOR-TSAX-10 Thesaurus Record based Ontology (TBox + ABox)
12 PR-NOR-TSAX-11 Thesaurus Relation based Ontology (TBox + ABox)
13 PR-NOR-LXTX-01 Lexicon Record based Ontology schema (TBox)
14 PR-NOR-LXTX-02 Lexicon Relation based Ontology schema (TBox)
15 PR-NOR-LXAX-10 Lexicon Record based Ontology (TBox + ABox)
16 PR-NOR-LXAX-11 Lexicon Relation based Ontology (TBox + ABox)

6.5.1 Patterns for Re-engineering Non-ontological Resources

In this section, we introduce the 16 patterns that perform the transformations of
NORs into ontologies. Patterns for re-engineering NORs (PR-NOR) define a pro-
cedure that transforms the NOR terms into ontology representational primitives.

Next, we present the template proposed that describes the patterns for re-
engineering non-ontological resources (PR-NOR). We have modified the tabular
template used in Villazon-Terrazas et al. (2008) for describing the PR-NORs. The
meaning of each field is shown in Table 6.2.

According to the NOR categorization presented in Sect. 6.2, we propose patterns
for re-engineering classification schemes, thesauri, and lexicons (see Table 6.3).
For every data model, we can define a process with a well-defined sequence of
activities in order to extract the NOR terms and then to map these terms to a
conceptual model of an ontology. This process is expressed as an algorithm.
Moreover, it is worth mentioning that we refer to ontology schema as TBox, and
just ontology as TBox and ABox. These patterns are included in the ODP Portal®.

The re-engineering patterns take advantage of the use of the ontology design
patterns® for creating the ontology code. So, most of the code generated follows the
best practices already identified by the community (see section Process on
Table 6.2).

2 http://ontologydesignpatterns.org

26 Ontology design patterns are included in the ODP portal. The ODP portal is a Semantic Web
portal dedicated to ontology design best practices for the Semantic Web, emphasizing particularly
ontology design patterns (OPs)

http://ontologydesignpatterns.org

6 Reusing and Re-engineering Non-ontological Resources for Building Ontologies 127

Although we have identified five types of NORs, here we just list patterns for re-
engineering classification schemes, thesauri, and lexica (see Table 6.3).

6.5.1.1 Semantics of the Relations Among the NOR Terms

The TBox transformation approach converts the resource content into an ontology
schema. TBox transformation tries to impose a formal semantics on the resource by
making explicit the semantics hidden in the relations of the NOR terms. To this end,
each NOR term is mapped to a class, and then, the semantics of the relations among
those entities must be discovered and then made explicit. Thus, patterns that follow
the TBox transformation approach must discover first the semantics of the relations
among the NOR terms. To perform this task, we rely on WordNet, which organizes
the lexical information into meanings (senses) and synsets. What makes WordNet
remarkable is the existence of various relations explicitly declared between the
word forms (e.g., lexical relations, such as synonymy and antonymy) and the
synsets (meaning to meaning or semantic relations, e.g., hyponymy/hypernymy
relation, meronymy relation). Here, we want to prove that we can rely on an
external resource for making explicit the relations. For this purpose, first, we rely
on WordNet, and then, as a future line of this work, we may rely on other
information resources, such as DBpedia27.

Algorithm 1 describes how to make explicit the semantics of the relations in the
NOR terms. The abbreviation of the algorithm name is getRelation.

6.5.2 NOR,0

This section presents NOR,O, a Java library that implements the transformation
process suggested by the patterns for re-engineering non-ontological resources
(PR-NOR). The library performs the ETL process> for transforming the non-
ontological resource components into ontology terms. A high-level conceptual
architecture diagram of the modules involved is shown in Fig. 6.7.

Algorithm 1 Discovering the semantics of the relations — getRelation

1: Take two related terms from the NOR, # and #j
2: defaultRelation < userDefinedRelation

3: if contains(#i,tj) then

4: relation «— ti.subClassOf.tj

(continued)

7 http://www.dbpedia.org/

28 Extract, transform, and load (ETL) of legacy data sources is a process that involves (1)
extracting data from the outside resources, (2) transforming data to fit operational needs, and (3)
loading data into the end target resources (Kimball and Caserta 2004).

http://www.dbpedia.org/

128 B. Villazon-Terrazas and A. Gomez-Pérez

— = g
7 d

Fig. 6.7 Modules of the NOR,O software library

Algorithm 1 Discovering the semantics of the relations — getRelation

5: else if contains(#/,t/) then
6: relation — tj.subClassOf.ti

7: else
8: wordnetRelation «— WordNet(ti, tj)
9: if wordnetRelation = = hyponym then
10: relation « ti.subClassOf.tj
11: else if wordnetRelation = = hypernym then
12: relation «— tj.subClassOf.ti
13: else if wordnetRelation = = meronym then
14: relation — ti.partOf.tj
15: else if wordnetRelation = = holonym then
16: relation « tj.partOf.ti
17: else
18: relation < defaultRelation
19: endif
20: end if

21: return relation

6 Reusing and Re-engineering Non-ontological Resources for Building Ontologies 129

Figure 6.7 depicts the modules of the PR-NOR software library: NOR Connec-
tor, Transformer, Semantic Relation Disambiguator, Exter-
nal Resource Service, and OR Connector. In the following sections, these
modules are described in detail. For illustrating the modules, the example of the
transformation of the ASFA thesaurus® into an ontology schema® is provided.

6.5.2.1 NOR Connector

The NOR Connector loads classification schemes, thesauri, and lexicons modeled
with their corresponding data models, and implemented in databases, XML, flat
files, and spreadsheets.

This module utilizes an XML configuration file for describing the NOR. An
example of the XML configuration file is presented in Listing 6.1. The Listing
shows how the file describes a thesaurus. The thesaurus has two schema entities,
Term and NonPreferredTerm, is modeled following the record-based data model,
and is implemented in XML.

Listing 6.1 NOR Connector configuration file example

<Nor type="Classification .Scheme” name="cepa94”>
<Schema>
<SchemaEntities>
<SchemaEntity name=" CSItem”>
<Attribute name=” CSIdentifier”
valueFrom="cepa.CodeNumber”
type="string” />
<Attribute name="CSName”
valueFrom="cepa. DescriptionEnglish”
type="string” />
<Relation name="subType”
using="PathEnumeration”
destination="CSItem” />
<Relation name="superType”
using="PathEnumeration”
destination="CSItem” />
</SchemaEntity>
</SchemaEntities>
</Schema>
<DataModel>
<PathEnumeration>
<PathEntity>cepa</PathEntity>
<PathSeparator>.</PathSeparator>
<PathField>CodeNumber</PathField>
</PathEnumeration>
</DataModel>
<Implementation>
<Database>
<Dbms>MSACCESS< /Dbms>
<Name>cepa94</Name>
<Username></Username>
<Password></Password>
<Host></Host>
<Port></Port>
</Database>
</Implementation>
</Nor>

2 http://www4.fao.org/asfa/asfa.htm
39 http://mccarthy.dia.fi.upm.es/ontologies/asfa.owl

http://www4.fao.org/asfa/asfa.htm
http://mccarthy.dia.fi.upm.es/ontologies/asfa.owl

130 B. Villazon-Terrazas and A. Gomez-Pérez

6.5.2.2 Transformer

This module performs the transformation suggested by the patterns by
implementing the sequence of activities included in the patterns. The module
transforms the NOR elements, loaded by the NOR Connector module, into
internal model representation elements. It also interacts with the Semantic
Relation Disambiguator module for obtaining the suggested semantic
relations of the NOR elements.

The Transformer also utilizes an XML configuration file, called prnor.
xml, for describing the transformation between the NOR elements and the
ontology elements. This XML configuration file has only one section, PRNOR,
which includes the description of the transformation from the NOR schema
components (e.g., schema entities, attributes, and relations) into the ontology
elements (e.g., classes, object properties, data properties, and individuals).
Additionally, it indicates the transformation approach (e.g., TBox, ABox, or
Population).

Two examples of the XML configuration file are shown in Listings 6.2 and 6.3.

Listing 6.2 indicates that the pattern follows the TBox transformation approach
and that it transforms the elements of the CSItem schema component into ontology
classes. Also, by default, it transforms the subType schema relation into a
subClassOf relation and the superType schema relation into a superClassOf
relation, unless the Semantic Relation Disambiguator module suggests
another relation.

Listing 6.2 PR-NOR Connector configuration file example — Classification
Scheme

<Prnor identifier="PR-NOR-CLTX—-01” transformationApproach="TBox”
topLevelClass=" Protection_Activities” externalResource="WordNet”>
<Class from="CSItem” identifier="[CSName]...[CSIdentifier]”>
<ObjectProperty from="subType” to="subClassOf” />
<ObjectProperty from="superType” to="superClassOf” />
</Class>
</Prnor>

Listing 6.3 indicates that the pattern follows the TBox transformation approach
and that it transforms the elements of the Term schema component into ontology
classes. Also, by default, it transforms the NT schema relation into a superClassOf
relation, the RT schema relation into a relatedTerm relation, and the BT schema
relation into a subClassOf relation, unless the Semantic Relation
Disambiguator module suggests another relation. Finally, the UF schema
relation is transformed into a rdfs:label, and the module uses WordNet as external
resource for disambiguation.

6 Reusing and Re-engineering Non-ontological Resources for Building Ontologies 131

Listing 6.3 PR-NOR Connector configuration file example — Thesaurus

<Prnor identifier="PR-NOR-TSTX—-01” transformationApproach="TBox”
externalResource="WordNet”>
<Class from="Term” identifier="[Identifier]”>
<ObjectProperty from="NT" to="superClassOf” />
<ObjectProperty from="RT” to="relatedTerm” />
<ObjectProperty from="BT” to="subClassOf” />

<ObjectProperty from="UF" to="rdfs:label” />
</ Class>
</Prnor>

6.5.2.3 Semantic Relation Disambiguator

This module is in charge of obtaining the semantic relation between two NOR
elements. Basically, the module receives two NOR elements from the Trans-
former module and returns the semantic relation between them. First, the module
verifies whether it can obtain the subClassOf relation by identifying attribute
adjectives®' within the two given elements of the resource. If this is not the case,
then the module connects the external resource through the External
Resource Service module to get the relation.

The TBox transformation approach converts the resource content into an ontol-
ogy schema. To this end, each NOR term is mapped to a class, and then the
semantics of the relations among those entities is made explicit. Thus, patterns
that follow the TBox transformation approach must make explicit the semantics of
the relations among the NOR terms. To perform this task, we rely on WordNet,
which organizes the lexical information into meanings (senses) and synsets.

Algorithm 1, presented in Sect. 6.5.1.1, describes how to make explicit the
semantics of the relations in the NOR terms.

It is worth mentioning that, when asserting the partOf relation the algorithm
takes advantage of the use of the PartOf content pattern’” to guarantee that
the OWL code generated follows common practices in ontological engineering.

6.5.2.4 External Resource Service

The External Resource Service is in charge of interacting with external
resources for obtaining the semantic relations between two NOR elements. At this

3! Attributive adjectives are part of the noun phrase headed by the noun they modify, for example,
happy is an attributive adjective in “happy people.” In English, the attributive adjective usually
precedes the noun in simple phrases but often follows the noun when the adjective is modified or
qualified by a phrase acting as an adverb.

2 http://ontologydesignpatterns.org/wiki/Submissions:PartOf

http://ontologydesignpatterns.org/wiki/Submissions:PartOf

132 B. Villazon-Terrazas and A. Gomez-Pérez

moment, the module interacts with WordNet. We are now implementing the access
to DBpedia™ due to the reasons explained in Sect. 6.5.1.1.

6.5.2.5 OR Connector

The Ontological Resource (OR) Connector generates the ontol-
ogy in OWL Lite. To this end, this module relies on the OWL API**. Tt also utilizes
an XML configuration file for describing the ontology to be generated.

An example of the XML configuration file is shown in Listing 6.4. The listing
indicates that the ontology generated will be stored in the asfa.owl file, that its name
will be asfa ontology, and that it will be implemented in OWL.

Listing 6.4 OR Connector configuration file example

<Or name=" asfa._.ontology”

ontologyURI="http://mccarthy.dia. fi.upm.es/ontologies/asfa.owl”
ontologyFile="asfa.owl” implementation="OWL"

alreadyExist="no” separator="#">

</Or>

Finally, to conclude the description of the software library, it is worth mention-
ing that the implementation of this library follows a modular approach; therefore, it
is possible to extend it and include other types of NORs, data models, and
implementations in a simple way, as well as to exploit other external resources
for making explicit the hidden semantics in the relations of the NOR terms.

6.6 Example

In order to evaluate the methodological guidelines proposed in this chapter, we
conducted two experiments in real case scenarios within the SEEMP*’ and mIO!*°
projects.

6.6.1 SEEMP Project

The main objective of this project was to develop an interoperable architecture for
public employment services (PES). The resultant architecture consisted of (1) a
reference ontology, the core component of the system, that acts as a common
“language” in the form of a set of controlled vocabularies that describes the details

33 http://dbpedia.org/

3 http://owlapi.sourceforge.net/
35 http://www.seemp.org/

36 hitp://www.cenitmio.es/

http://dbpedia.org/
http://owlapi.sourceforge.net/
http://www.seemp.org/
http://www.cenitmio.es/

6 Reusing and Re-engineering Non-ontological Resources for Building Ontologies 133

of a job posting; (2) a set of local ontologies, each PES uses its own local ontology,
which describes the employment market in its own terms; (3) a set of mappings
between each local ontology and the reference ontology; and (4) a set of mappings
between the PES schema sources and the local ontologies.

In the following sections, we describe the application of our methodological
guidelines for reusing and re-engineering non-ontological resources when building
an occupation ontology.

6.6.1.1 Reusing Non-ontological Resources

This section presents the application of the method for reusing non-ontological
resources within the SEEMP project. It shows the process we followed for selecting
the non-ontological resources to be reused when building the occupation domain
ontology.

Activity 1. Search Non-ontological Resources

Following the suggestions of some domain experts, we searched for the occupation
classifications at (1) the Ramon Eurostat Portal®’, (2) the ONET web site*®, and 3)
the companies the project partners. Thus, we found the following classifications:

¢ Standard Occupational Classification System (SOC)

 International Standard Classification of Occupations (ISCO-88)

e International Standard Classification of Occupations, for European Union
purposes, ISCO-88 (COM)

¢ Occupational Information Network (ONET)

« EURES™ proprietary occupation classification

Activity 2. Assess the Set of Candidate Non-ontological Resources

The goal of this activity was to assess the set of candidate non-ontological
resources. Experts of the occupation domain, software developers, and ontology
practitioners carried out this activity taking as input the set of candidate non-
ontological resources.

Task 1. Extract Lexical Entries

Within this task, we extracted the lexical entries of the aforementioned occupation
classifications. We developed an ad hoc extraction tool for performing automati-
cally the extraction task.

3 http://ec.europa.eu/eurostat/ramon/
38 http://online.onetcenter.org/
* http://www.eurodyn.com/

http://ec.europa.eu/eurostat/ramon/
http://online.onetcenter.org/
http://www.eurodyn.com/

134 B. Villazon-Terrazas and A. Gomez-Pérez

Task 2. Calculate Precision

Since we were dealing with occupations related to the IT domain, it was impossible
to cover all the IT domain occupations already identified in the ontology
requirements specification document. Thus, we used a constant that represents the
complete set of IT domain occupations. In this case, the cardinality of the complete
set is K. Therefore, the intersection of the complete set with the set of terms
available in the ORSD is the set of terms of the ORSD. Next, we present the
precision for each occupation classification:

card{{NORLexicalEntries} N {ORSDTerminology}}

Precision —
rectston card{NORLexicalEntries}
.. 6NK 6
. SOCPI ecision = m = m = 00002
.. 9nK 9
e ISCO — 88Precision = m = % =0.0165
INK 9
e ISCO — 88COMPrecision = ——=——=0.0173
recision 520 520
ONETPrecisi _2nk_ 2l =0.0179
recision = er — 1167 =%
89NK 89
o EURESPrecision = =—=0.2
URESPrecision 355 355 0.2507

Task 3. Calculate Coverage

Again, since we were dealing with the occupations related to the IT domain, it was
impossible to cover all the IT domain occupations in the ORSD. Thus, we used a
constant K that represents the complete set of IT domain occupations. Next, we
present the coverage for each occupation classification:

card{{NORLexicalEntries} N {ORSDTerminology}}
card{ORSDTerminology}

Coverage =

K
e SOCPrecision = 6L = E
K K

I9NK 9
. 1 — P ~1S1 = = —
SCO — 88Precision e e

6 Reusing and Re-engineering Non-ontological Resources for Building Ontologies 135

Table 6.4 Assessment table for SEEMP occupation standards

NOR Precision Coverage Consensus
SOC 0.0002 6/K No
I1SCO-88 0.0165 9/K No
ISCO-88 COM 0.0173 9/K Yes
ONET 0.0179 21/K No
EURES 0.2507 89/K Yes
I9NnK 9
e ISCO — 88COMPrecision=———=—
K K
21NK 21
e ONETPrecision= =—
K K

K K

e FEURESPrecision = 8 NK = 89

Task 4. Evaluate the Consensus

It was important for the project that resources focused on the current European
reality because the user partners involved in SEEMP are European, and the
outcoming prototype has to be validated in European scenarios. Thus, domain
experts confirmed whether the resources were built with the consensus of the
European community or not. They also explained that ISCO-88(COM) and
EURES proprietary occupation classification contains terminology that had already
reached a consensus.

Table 6.4 summarizes all the information of each non-ontological resource.

Activity 3. Select the Most Appropriate Non-ontological Resources

Following Table 6.1 we selected a non-ontological resource, the EURES proprie-
tary occupation classification.

We followed the same process for selecting the non-ontological resources when
building the remaining ontologies. We provide a table (see Table 6.5) that
summarizes the selection of standards, codes, and classifications accomplished
for building every domain ontology.

6.6.1.2 Re-engineering Non-ontological Resources

In this section, we present the application of the method for re-engineering
non-ontological resources within the SEEMP project. Once we select the non-
ontological resource, we have to transform it into an ontology. Next, we describe
the process of generating an occupation ontology from the EURES proprietary
occupation classification.

136 B. Villazon-Terrazas and A. Gomez-Pérez

Table 6.5 Standards, codes, and classifications reused

Domain Candidate standards/classifications Selected Justification
standards/
classifications
Economic sector 1SIC, NACE, NAICS NACE Best coverage and
European scope
Education fields ISCED 97, FOET FOET Best coverage and
European scope
Education levels 1SCED 97 ISCED 97 Worldwide scope,
widely accepted
Currency Pacific exchange, ISO 4217, 1SO 4217 Worldwide scope,
WordAtlas widely accepted
Geographic ISO 3166, Regions of the World ~ ISO 3166 Worldwide scope,
widely accepted
Language ISO 639 ISO 639 Worldwide scope,
widely accepted
Language levels CEFR CEFR European scope,
widely accepted
Driving licence EU driving licence EU driving licence European legislation
Skills EURES EURES Coverage and
European scope
Contract types LE FOREM proprietary Mix of both Acceptable
classification, ARL proprietary classifications coverage in
classification SEEMP scope
Work condition ~ LE FOREM proprietary LE FOREM Acceptable
classification proprietary coverage in
classification SEEMP scope

Activity 1. Non-ontological Resource Reverse Engineering

In this activity, we gathered documentation on the EURES occupation classification
from the European Dynamics SEEMP user partner. From this documentation, we
extracted the schema of the classification scheme, which consists of two tables,
CVO OCCGROUP and CVO OCCUGROUP NAME. Since the data model was not
available in the documentation, it was necessary to extract it for the resource
implementation itself. The EURES occupation classification is modeled following
the snowflake data model and is implemented in a MS Access database.

Activity 2. Non-ontological Resource Transformation

Within this activity, we carried out the following tasks:

1. We identified the transformation approach, the TBox transformation, i.e.,
transforming the resource content into an ontology schema.

2. Then, we searched our local pattern repository for a suitable pattern to re-
engineer NORs, taking into account the transformation approach (TBox

6 Reusing and Re-engineering Non-ontological Resources for Building Ontologies 137

Table 6.6 Resources transformed in the SEEMP project

Resource Type Data model Implementation Pattern used

NACE Classification Path enumeration Database PR-NOR-CLTX-01
scheme

FOET Classification Path enumeration Database PR-NOR-CLTX-01
scheme

ISCED 97 Classification Adjacency list Database PR-NOR-CLTX-02
scheme

ISO 4217 Classification Snowflake XML PR-NOR-CLAX-12
scheme

ISO 3166 Classification Snowflake XML PR-NOR-CLAX-12
scheme

1SO 639 Classification Snowflake XML PR-NOR-CLAX-12
scheme

CEFR Classification Proprietary Proprietary
scheme model format

EU driving Classification Snowflake Proprietary

licence scheme format

EURES skill Classification Path enumeration Database PR-NOR-CLTX-01
scheme

LE FOREM Proprietary Proprietary Proprietary

contracts classification model format

transformation), the non-ontological resource type (classification scheme), and
the data model (snowflake data model) of the resource.

3. The most appropriate pattern found for this case was the PR-NOR-CLTX-03
pattern. This pattern takes as input a classification scheme modeled with a
snowflake data model and produces an ontology schema.

Activity 3. Ontology Forward Engineering

WSML™ is the ontology implementation language used in the SEEMP project.
Because of the number of occupations of the EURES classification, it was not
practical to create the ontology manually. Therefore, we created an ad hoc wrapper,
implemented in Java, that reads the data from the resource implementation and
automatically creates the corresponding classes and relations of the new ontology
following the suggestions given by the pattern for re-engineering NORs and the
conceptual model.

We followed this process for all the resources identified, being the patterns used
those presented in Table 6.6.

“Ohttp://www.wsmo.org/wsml/

http://www.wsmo.org/wsml/

138 B. Villazén-Terrazas and A. Gomez-Pérez

EURES

CEF (LanguagesLevels) _‘%
=) B

.
IS0 6382 (Languages) @ eures O] —+—
Language
Ontology

[5) FOET (EducationFieids)

- 7 :
ISCEDST (EducationLevels)

Eurgpean
Legisiation

% adhocwrapper

- External Sources
Fig. 6.8 SEEMP reference ontology
Table 6.7 SEEMP reference ontology statistical data
Ontology Concepts Attributes Axioms Instances Efforts (man.months)
SEEMP RO 1,985 315 1,037 1,449 6

6.6.1.3 Analysis of the Applicability of the Method

The SEEMP Reference Ontology (SEEMP RO) was developed following the
method for reusing and re-engineering non-ontological resources. It is composed
of 13 modular ontologies: competence, compensation, driving licence, economic
activity, education, geography, job offer, job seeker, labur regulatory, language,
occupation, skill, and time. The main sub-ontologies are the job offer and job
seeker, which are intended to represent the structure of a job posting and a CV,
respectively. While these main two sub-ontologies were built taking as a starting
point some HRXML recommendations, the others derived from some available
international standards (like NACE, ISCO-88 (COM), FOET, etc.), employment
services classifications, and international codes (like ISO 3166, ISO 6392, etc.) that
best fitted the European requirements. Figure 6.8 presents these 13 modular
ontologies (each ontology is represented by a triangle), 10 of which were obtained

6 Reusing and Re-engineering Non-ontological Resources for Building Ontologies 139

after re-engineering the standard/classification. The SEEMP Reference Ontology is
available at http://oeg-upm.net/index.php/en/ontologies/99-hrmontology .

In order to illustrate the dimension of the ontology and the ontological
engineers’ efforts required to build it, some statistical data are shown in Table 6.7.

Our experience in SEEMP has shown us that the approach of building ontologies
by reusing and re-engineering non-ontological resources already agreed upon
allows building ontologies faster, with less resources, and with an immediate
consensus. This approach permits making explicit the knowledge implicitly coded
in organization models and standards. By building ontologies in this fashion, we
facilitate that ontologies become reference ontologies in their respective domains.

With respect to the application of the method for reuse and re-engineering, this
was especially useful for guiding the steps of the ontological engineers involved
since this method provides detailed and sufficient guidelines. In addition, the
existence of a well-defined and structured process for building the ontology net-
work in the e-employment domain eased the planning, coordination, and commu-
nication with other non—Semantic Web members of the development team, which
in turn helped to convey reliability to the final result.

6.6.2 mlO! Project

The main objective of the mIO! project is to develop ubiquitous services in an
intelligent environment, adapted to every user and its context by means of mobile
interfaces. The project relies on ontologies for modeling the knowledge.

The following sections describe the application of our methodological
guidelines for reusing and re-engineering non-ontological resources when building
a geographical ontology, which includes continents, countries, and regions.

6.6.2.1 Reusing Non-ontological Resources

This section describes the activities carried out for reusing non-ontological
resources.

Activity 1. Search Non-ontological Resources

Following some of the suggestions made by the domain experts, we searched
geographical location resources on highly reliable web sites. Next, we list the
geographic location classifications:

« ISO 3166*" Maintenance Agency (ISO 3166/MA) ISO’s focal point for country
codes

*!http://www.iso.org/iso/en/prods-services/iso3166ma/index.html

http://oeg-upm.net/index.php/en/ontologies/99-hrmontology
http://www.iso.org/iso/en/prods-services/iso3166ma/index.html

140 B. Villazon-Terrazas and A. Gomez-Pérez

« Guide to regions of the world*>
+ Regions of the world*®

Activity 2. Assess the Set of Candidate Non-ontological Resources

Once we had the set of candidate non-ontological resources, we needed to assess
them according to the following criteria: precision, coverage, consensus, and
quality of the resources.

Task 2.1 Extract Lexical Entries

Within this task, we extracted the lexical entries of the aforementioned geographic
location classifications. For this purpose, we used TreeTagger™, a syntactic
annotator.

Task 2.2 Calculate Precision

It was impossible to cover all the geographic locations in the ORSD. Thus, we used
a constant K that represents the cardinality of the complete set of geographical
locations. Next, we present the precision for each geographic location
classification:

card{{NORLexicalEntries} N {ORSDTerminology}}

Precision —
rectston card{NORLexicalEntries}
195NK 195
o 1 1 = = —=0.
S0O3166 200 200 0.975
12NnK 102
* Guidet] theWorld = =—=0.528
uidetoregionsoftheWor 93 193
. 110NK 110
* RegionsoftheWorld = 54— 154 0.714

Task 2.3 Calculate Coverage
Again, it was impossible to cover all the geographic locations in the ORSD.
Thus, we used a constant K that represents the cardinality of the complete set of

42 http://www.countriesandcities.com/regions/
43 http://park.org/Regions/
“ http://www.ims.uni-stuttgart.de/projekte/corplex/Tree Tagger/

http://www.countriesandcities.com/regions/
http://park.org/Regions/
http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/

6 Reusing and Re-engineering Non-ontological Resources for Building Ontologies 141

geographic locations. Next, we present the coverage for each geographic location
classification:

card{{NORLexicalEntries} N {ORSDTerminology}}

C =
overase card{ORSDTerminology}
195NK 195
e ISO3166 = ——— = —
0 K K
102NK 102
* GuidetoregionsoftheWorld = 70 -
K K
110NnK 110
* RegionsoftheWorld = ———— = —
K K

Task 2.4 Evaluate the Consensus
It was important for the project that resources focused on the current worldwide
reality because the outcoming prototype will be validated by users.

Thus, domain experts evaluated whether the resource was built with the consen-
sus of the worldwide community or not. They confirmed that ISO 3166 has the full
consensus of the community, whereas the other resources have not.

Task 2.5 Evaluate the Quality

In this case, domain experts evaluated whether the resource was built with an
acceptable level of quality. They confirmed that ISO 3166 has an acceptable level
of quality.

Task 2.6 Build the Assessment Table
Table 6.8 summarizes all the information related to each non-ontological resource.

Activity 3. Select the Most Appropriate Non-ontological Resources

According to Table 6.8, we selected the following non-ontological resource: ISO
3166.

Table 6.8 Assessment table for the m/O! geographical locations

NOR Precision Coverage Consensus Quality
ISO 3166 0.975 195/K Yes Yes
Guide to regions of the World 0.528 102/K No No

Regions of the World 0.714 110/K No No

142 B. Villazon-Terrazas and A. Gomez-Pérez

6.6.2.2 Re-engineering Non-ontological Resources

This section presents the application of the method for re-engineering non-
ontological resources within the m/O! project. Once we have the non-ontological
resource selected, the ISO 3166, we had to transform it into an ontology. Next, we
describe the process of generating a geographical location ontology.

Activity 1. Non-ontological Resource Reverse Engineering

In this activity, we gathered documentation about ISO 3166 from its web site. From
this documentation, we extracted the schema of the classification scheme, which
consists of one entity ISO 31661 Entry. Since the data model was not available in
the documentation, it was necessary to extract it for the resource implementation
itself. ISO 3166 is modeled following the snowflake data model and implemented
in XML.

Activity 2. Non-ontological Resource Transformation

In this activity, we carried out the following tasks:

1. We identified the transformation approach, the ABox transformation, i.e., the
transformation of the resource schema into an ontology schema, and the resource
content into ontology instances.

2. Then we searched our local pattern repository for a suitable pattern to re-
engineer NORs, taking into account the transformation approach (ABox trans-
formation), the non-ontological resource type (classification scheme), and the
data model (snowflake data model) of the resource.

3. The most appropriate pattern for this case is the PR-NOR-CLAX-12 pattern.
This pattern takes as input a classification scheme modeled with a snowflake
data model.

4. Finally, we followed the procedure defined by the pattern selected for
transforming the resource components into ontology elements.

Activity 3. Ontology Forward Engineering

In this activity, we formalized and implemented the ontology in OWL. The
ontology is available at http://mccarthy.dia.fi.upm.es/ontologies/.

http://mccarthy.dia.fi.upm.es/ontologies/

6 Reusing and Re-engineering Non-ontological Resources for Building Ontologies 143

offers /
is offered by
0. 0.
Provider Service 0.
Source
executes /
is executed by defines
plays 0.
0. consist of Location
Role fo
-SOUPA i
-FOAF g - - - e-response-buildings %"
consistof - 150 3166 il
has device
0. 0.
Interface, ~associated to Device
- CODAMOS ¢

) - CP-COM-01 A A

provide access - time-entry o%°

SLP-SV-01 A

Legend

] Ontology _,:b

? Module PN
. ODP A
- Delivery 4,° .
Standard

Fig. 6.9 mlO! Ontology network
Table 6.9 mIO! Ontology statistical data
Ontology Concepts Attributes Axioms Instances Efforts (man.months)
mlO! ontology 432 276 154 120 3

6.6.2.3 Analysis of the Applicability of the Method

The network of ontologies of the mIO! project was developed following the NeOn
Methodology (Sudrez-Figueroa et al. 2008). This ontology is composed of 11
modular ontologies: provider, service, source, geographical location, environment,
time, device, user, network, interface, and role. Only the geographical location
ontology was built according to the method for reusing and re-engineering
non-ontological resources. The other ontologies were built by reusing available
ontologies or modules.

144 B. Villazén-Terrazas and A. Gomez-Pérez

Figure 6.9 presents the m/O! ontology network and includes the location sub-
ontology. The ontology network is available at http://oeg-upm.net/ index.php/en/
ontologies/82-mio-ontologies

In order to illustrate the dimension of the ontology and the efforts required by the
ontological engineers to build it, we outline some data in Table 6.9.

Our experience in mIO! has served us to demonstrate that the approach of
building ontologies by reuse and re-engineering non-ontological resources already
agreed upon allows building ontologies faster, with less resources, and with con-
sensus. With respect to the application of the method for reuse and re-engineering,
this was especially useful for guiding the steps of the ontological engineers
involved since the method provides detailed and sufficient guidelines.

6.7 Conclusions

In this chapter, we have provided a method and its technological support that rely
on re-engineering patterns in order to speed up the ontology development process
by reusing and re-engineering as much as possible available non-ontological
resources. Moreover, we have introduced a three-level categorization of NORs
according to three different features: type of NOR, data model, and implementa-
tion. Finally, we have presented two use cases of the proposed approach.

References

Baeza-Yates Ricardo, Ribeiro-Neto Berthier (1999) Modern information retrieval, 1st edn.
Addison Wesley, Harlow. ISBN 020139829X

Brandon D (2005) Recursive database structures. J] Comput Sci Coll 1:295-304

Brockmans S, Haase P (2006) A metamodel and UML profile for networked ontologies.
A complete reference. Technical report, University Karlsruhe, 2006

Carkenord B (2002) Why build a logical data model. http://www.embarcadero.com/resources/tech
papers/datamodel.pdf

Gangemi A, Pisanelli D, Steve G (1998) Ontology integration: experiences with medical
terminologies. Ontol Inf Syst 1:163-178

Gangemi A, Guarino N, Masolo C, Oltramari A (2003) Sweetening WORDNET with DOLCE.
Al Mag 24(3):13-24, ISSN 0738-4602

Gangemi A, Catenacci C, Ciaramita M, Lehmann J (2006) Modelling ontology evaluation and
validation. In: Proceedings of the 3rd European Semantic Web Conference (ESWC2006),
LNCS, vol 4011. Springer, Budva, 2006

Garcia R, Celma O (2005) Semantic integration and retrieval of multimedia metadata.
In: Proceedings of the ISWC 2005 workshop on knowledge markup and semantic annotation
(Semannot’2005), Galway, Ireland

Gomez-Pérez A, Manzano-Macho D (2004) An overview of methods and tools for ontology
learning from texts. Knowl Eng Rev 19(3):187-212. ISSN 0269-8889, doi: http://dx.doi.org/
10.1017/ S0269888905000251

Goémez-Pérez A, Fernandez-Lopez M, Corcho O (2003) Ontological engineering, Advanced
information and knowledge processing. Springer, New York/London. ISBN 1-85233-551-3

http://oeg-upm.net/
index.php/en/ontologies/82-mio-ontologies
index.php/en/ontologies/82-mio-ontologies
http://www.embarcadero.com/resources/tech papers/datamodel.pdf
http://www.embarcadero.com/resources/tech papers/datamodel.pdf
http://dx.doi.org/10.1017/
http://dx.doi.org/10.1017/

6 Reusing and Re-engineering Non-ontological Resources for Building Ontologies 145

Hepp M (2006) Products and services ontologies: a methodology for deriving owl ontologies from
industrial categorization standards. Int J Semant Web Inf Syst 2(1):72-99

Hepp M (2007) Possible ontologies: how reality constrains the development of relevant
ontologies. IEEE Internet Comput 11(1):90-96

Hepp M.,de Brujin J (2007) GenTax: a generic methodology for deriving OWL and RDF-S
ontologies from hierarchical classifications, thesauri, and inconsistent taxonomies. In:
Proceedings of the 4th European Semantic Web Conference (ESWC2007). Springer, Innsbruck

Hirst G (2004) Ontology and the lexicon. In: Handbook on ontologies in information systems.
Springer, Berlin, pp 209-230

Hodge G (2000) Systems of knowledge organization for digital libraries: beyond traditional
authority files. http://www.clir.org/pubs/reports/pub91/contents.html

Hyvoonen E, Viljanen K, Tuominen J, Seppoaloa K (2008) Building a national semantic web
ontology and ontology service infrastructure -the FinnONTO approach. In: ESWC, vol 1.
Springer, Heidelberg, pp 95-109

ISO 2788 (1986) Documentation — guidelines for the establishment and development of monolin-
gual thesaurus. International Standard Organization (ISO), Report ISO 2788

ISO/IEC FDIS 11179-1 (2004) Information technology — metadata registries — part 1: framework.
International Standard Organization (ISO), Report ISO/IEC FDIS 11179-1

Kimball R, Caserta J (2004) The data warehouse ETL toolkit: practical techniques for extracting,
cleaning, conforming, and delivering data. Wiley, New York. ISBN 0764567578

Maedche A, Staab S (2001) Ontology learning for the semantic web. IEEE Intell Syst 16:72-79

Malinowski E, Zimanyi E (2006) Hierarchies in a multidimensional model: from conceptual
modeling to logical representation. Data Knowl Eng 59:348-377

Pinto S, Tempich C, Staab S (2004) DILIGENT: towards a fine-grained methodology for
distributed, loosely-controlled and evolving engineering of ontologies. In: Proceedings of the
16th European Conference on Artificial Intelligence (ECAI 2004). IOS Press, Amsterdam,
Washington, DC, pp 393-397, ISBN 1-58603-452-9

Sabou M, Angeletou S, d’Aquin M, Barrasa J, Dellschaft K, Gangemi A, Lehman J, Lewen H,
Maynard D, Mladenic D, Nissim M, Peters W, Presutti V, Villazén-Terrazas B (2007)
Selection and integration of reusable components from formal or informal specifications.
Technical report, NeOn project deliverable D2.2.1, 2007

Schnurr H-P, Studer R, Sure Y (2001) Knowledge processes and ontologies. IEEE Intell Syst
1(16):26-34

Soergel D (1995) Data models for an integrated thesaurus database. Compat Integr Order Syst
24(3):47-57

Suarez-Figueroa MC, Aguado de Cea G, Buil C, Dellschaft K, Fernandez-Lopez M, Garcia-Silva
A, Gomez-Pérez A, Herrero G, Montiel-Ponsoda E, Sabou M, Villazon-Terrazas B, Yufei Z
(2008) NeOn Methodology for building contextualized ontology networks. Technical report,
NeOn project deliverable D5.4.1, 2008

Suarez-Figueroa MC, Gomez-Pérez A, Villazon- Terrazas B (2009) How to write and use the
ontology requirements specification document. In: OTM Conferences (2), pp 966-982, 2009

Villazon-Terrazas B, Angeletou S, Garcia-Silva A, Gomez-Pérez A, Maynard D, Suarez-
Figueroa MC, Peters W (2008) NeOn deliverable D2.2.2 methods and tools for supporting
reengineering. Technical report, NeOn, 2008

Villazén-Terrazas B, Suarez-Figueroa MC, Gomez-Pérez A (2010) A pattern-based method for re-
engineering non-ontological resources into ontologies. Int J Semant Web Inf Syst 6(4):27-63

Wright SE, Budin G (eds) (1997) Handbook of terminology management, basic aspects of
terminology management. John Benjamins Publishing Company, Amsterdam

http://www.clir.org/pubs/reports/pub91/contents.html

Chapter 7
Ontology Development by Reuse

Mariano Fernandez-Lopez, Mari Carmen Suarez-Figueroa,
and Asuncion Gomez-Pérez

Abstract This chapter presents methodological guidelines that allow engineers to
reuse generic ontologies. This kind of ontologies represents notions generic across
many fields, (is part of, temporal interval, etc.). The guidelines helps the developer
(a) to identify the type of generic ontology to be reused, (b) to find out the axioms
and definitions that should be reused and (c) to adapt and integrate the generic
ontology selected in the domain ontology to be developed. For each task of the
methodology, a set of heuristics with examples are presented. We hope that after
reading this chapter, you would have acquired some basic ideas on how to take
advantage of the great deal of well-founded explicit knowledge that formalizes
generic notions such as time concepts and the part of relation.

7.1 Introduction

Ontologies play an important role in many knowledge-intensive applications, by
formally defining the conceptualization used by the application and by facilitating
interoperability. Building ontologies from scratch can in general be expensive. In
this sense, one way of reducing the time and costs associated with the ontology
development process is by reusing available ontological resources. Ontologies
developed by reuse can also build on existing good practices (from well-developed
ontologies), thus increasing the overall quality of the results.

M. Fernandez-Lopez (D<)

Escuela Politécnica Superior, Universidad San Pablo CEU, Urbanizacion Monteprincipe sn.,
28668 Boadilla del Monte, Madrid, Spain

e-mail: mfernandez.eps@ceu.es

M.C. Suarez-Figueroa « A. Gomez-Pérez

Ontology Engineering Group, Facultad de Informatica, Universidad Politécnica de Madrid,
Campus de Montegancedo sn., 28660 Boadilla del Monte, Madrid, Spain

e-mail: mcsuarez@fi.upm.es; asun@fi.upm.es

M.C. Suarez-Figueroa et al. (eds.), Ontology Engineering in a Networked World, 147
DOI 10.1007/978-3-642-24794-1_7, © Springer-Verlag Berlin Heidelberg 2012

mailto:mfernandez.eps@ceu.es
mailto:mcsuarez@fi.upm.es
mailto:asun@fi.upm.es

148 M. Fernandez-Lopez et al.

As mentioned in Chap. 2, the NeOn Methodology presents nine scenarios for
building networks of ontologies. One of these scenarios is Building Ontology
Networks by Reusing Ontological Resources. In this scenario, ontology developers
analyze whether existing ontological resources can be reused in the context of
building an ontology.

The reuse of ontological resources is encouraged by a recent increase in the
number of ontologies available online.

According to our experience, the reuse of ontological resources is useful for
(a) saving time and resources during the ontology development and (b) refining the
Ontology Requirement Specification Document (ORSD) (see Chap. 5) taking into
account the knowledge represented in the candidate ontological resources to be
reused. The latter case refers to the situation in which the engineer finds axioms
and/or definitions of terms that did not appear in the ORSD. For example, in the
development of a drug ontology, the engineer may find a type of drug that had not
been considered in the ORSD. For the sake of simplicity, in this chapter, it is
assumed that the reuse does not imply modifications in the ORSD. If such
modifications are required, an iterative-incremental life cycle model should be
followed (see Chap. 2).

The ontological resource reuse process is often influenced by the type of
ontology to be reused. Ontologies can model domain entities (e.g., drug, disease,
pharmaceutical product) or generic entities, which are considered to be generic
across many fields (van Heijst et al. 1997). For example, the part of relation can be
used to link objects in the mechanical domain (the spark plug is part of the motor)
and also in the domain of cultural activities (the interpretation of Radetzky March is
part of the New Year Concert). Hence, such generic ontologies can be reused in a
wider range of domains.

However, the reuse of large ontologies such as WordNet' or the NCI ontology
(Golbeck et al. 2003) can cause difficulties because they tend to contain far more
definitions than most applications would normally need. Hence, in the context of a
reuse process, sometimes elements of an ontology (e.g., modules or statements)
have to be extracted first, to be integrated in the new ontology (d’Aquin M et al.
2007b). For this reason, different levels of granularity in the reuse of ontologies can
be distinguished:

« Ontologies can be reused as a whole if they closely meet the expectations and the
needs of the ontology engineer.

« In certain cases, only one part or module” of an ontology is relevant for reuse.
For example, when building an ontology about lung cancer, it is not always
necessary to reuse an entire ontology about the human bodys; it suffices to reuse a
module describing concepts related to the lung.

1 http://wordnet.princeton.edu/

2 We consider a module (d’Aquin M et al. 2007b) as a part of the ontology that defines the relevant
set of terms for a particular purpose.

http://dx.doi.org/10.1007/978-3-642-24794-1_2
http://dx.doi.org/10.1007/978-3-642-24794-1_5
http://dx.doi.org/10.1007/978-3-642-24794-1_2
http://wordnet.princeton.edu/

7 Ontology Development by Reuse 149

e In other cases, only some knowledge components from the ontology (the
description of a particular entity, the branch in the taxonomic hierarchy in
which an entity appears, or entity neighborhoods in the ontology) are relevant
for the development needs. In these cases, the reuse of ontological knowledge is
performed at the statement” level, providing the ontology developer with better
control over the material being reused.

This chapter focuses on providing methodological guidelines for the reuse of
generic ontologies, although most of the recommendations are also applicable to
the reuse of domain ontologies.

7.2 Methodological Guidelines for Reusing Generic
Ontologies

Table 7.1 presents a filling card with the information concerning the generic
ontology reuse process. The card includes the definition, the goal, the inputs and
outputs, the performer of the process, and the time scheduled for the process.

Figure 7.1 shows the workflow and the activities for carrying out the generic
ontology reuse process, that is, selecting the ontology to be reused, and customizing
and integrating it in the ontology to be developed.

The activities shown in Fig. 7.1 are explained in more detail in the rest of the
chapter. For the sake of simplicity, the different activities involved in the whole
process are explained, and it is considered the reuse of just one ontology. When
reusing more than one ontology, the process described should be performed
iteratively.

Along the exposition, an example of reusing a generic ontology in the develop-
ment of the pharmaceutical product ontology network (PPO) (see Chap. 20) is
presented. This ontology will be used as a bridge between proprietary systems for
managing financial and product knowledge interoperability in pharmaceutical
laboratories, companies, and distributors in Spain. In this ontology reuse task, we
have taken into account the four competency questions (CQs) shown in Table 7.2.
They have been obtained from Chap. 7 of the NeOn deliverable D5.4.1 (Suarez-
Figueroa et al. 2008).

The reader can find additional information on ontology reuse in (Sudrez-
Figueroa 2010).

3 An ontology statement (or triple) contains the following three components: subject, predicate,
and object.

http://dx.doi.org/10.1007/978-3-642-24794-1_20
http://dx.doi.org/10.1007/978-3-642-24794-1_7

150 M. Fernandez-Lopez et al.

Table 7.1 Generic ontology reuse filling card

Generic Ontology Reuse

Definition

Generic OntologyReuse refers to the process of using general ontologies in the solution of different probleras.

Goal

The goal of this process is to find and select generic ontologies and integrate ther in the ontology ne twork
being developed.

Input Output

Corapetency questions (CQs) ircluded in the
ORSD of the ontology network to be developed

and the implementation language of such K | |
ontology. A gereric ontology integrated in the ontology network

being developed.

Optionally, there may be a set of tables that
compare with the same criteria the candidate
ontologies to be reused.

Who

Software developers and ontology practitioners irvolved in the ontology developraent. It may be required the
help of an ontology practitioner familiarized in forral ontologies or theories.

When

The generic ontology reuse process should be carried out after the ontology specification activity:

7.2.1 Activity 1: Selecting the Generic Ontology to be Reused

The goal of this activity is to select the most appropriate generic ontologies to be
reused in the ontology being developed. It is worth mentioning that instead of
reusing available ontologies, practitioners can implement from scratch the neces-
sary axioms and definitions according to some existing formalization, for example,
the one appearing in Annex. On the one hand, the advantage of reusing available
ontologies implemented in a formal language is that ontology developers will save
effort in the transformation of a formalization that is not suitable for run-time
reasoning. On the other hand, the advantage of starting from an existing formalization
is that ontology developers will save effort in the searching, comparison, and
evaluation of candidate ontologies to be reused. In this chapter, we focus on the
reuse option.

7 Ontology Development by Reuse

>

Ontology Development Team

>

Ontology Development Team

>

Ontology Development Team

>

Ontology Development Team

"

Ontology Development Team

151

Task 1.1. Reformulating the CQs and adding linking

axioms

v

Task 1.2. Identifying the definitions and axioms of the

ontology to be reused

Task 1.3. Searching for ontologies
Task 1.4. Performing a comparative
study
v

Task 1.5. Determining the most
appropriate ontology to be reused

Activity 1. Selecting the
ontology to be reused

Task 2.1. Pruning the ontology to be
reused

v

Task 2.2. Enriching the ontology to be
reused

Task 2.3. Translating the ontology to be ‘
reused

Task 2.4. Adapting the ontology to be reused

to the design criteria of the ontology to be
developed

l

Task 2.5. Evaluating the obtained ontology

Activity 2. Customizing the
selected ontology

4

Fig. 7.1 Activities for reusing generic ontologies

Ontology to be
Activity 3. Integrating the developed +
ontology to be reused ontology to be

reused

This activity takes as input the ORSD (Chap. 5) and is divided in the following

tasks:

Task 1.1 Reformulating the CQs and adding linking axioms. The main goal of
this task is to reformulate the CQs included in the ORSD of the ontology that is
being developed with vocabulary that could potentially belong to ontologies to be
reused but that do not explicitly appear in the CQs. Additionally, another goal of

http://dx.doi.org/10.1007/978-3-642-24794-1_5

152 M. Fernandez-Lopez et al.

Table 7.2 Excerpt of informal host competency questions (pharmaceutical product ontology
case)

CQid Informal CQ Example of answer

CQ, What drugs do have paracetamol? Algidol®
Apiretal®
Bisolgrip®
Cortafriol®
Dolgesic®
Dolostop®
Efferalgan®
Frenadol®
Gelocatil®
Pharmagrip®
Termalgin®

CQ, Which is the composition of Frenadol®? Caffeine
Chlorpheniramine citrate
Dextrometorphan
Paracetamol

CQs Which is the main active ingredient of Frenadol®? Paracetamol

CQq4 Which substances do Frenadol® interacts with? Ethyl alcohol
Isoniazid
Propranolol
Rifampicin

this task is to identify axioms that link terms of the CQs to terms that could be
reused. The first column of Table 7.3 shows some typical cases (case 1, case 2, and
case 3%) that guide the engineer in transforming CQs and adding linking axioms.
The third column shows the action to carry out in each case. Finally, as an example,
the second and fourth columns present the PPO CQ that matches each case and the
result of applying the action corresponding to the case. For example, given that the
case 2 (Table 7.3) proposes to reformulate CQs using the term is part of, the CQ,
(Table 7.2), what drugs do have paracetamol?, can be expressed as which drugs is
paracetamol part of? Given that the term is part of appears in the new formulation,
the engineer knows that a mereology can be reused (see Annex to review basic
mereology notions).

This task is useful to make explicit abstract terms such as is part of, temporal
point, and temporal interval that can be reused from mereological or time
ontologies.

Task 1.2 Identifying the definitions and axioms of the ontology to be reused. The
goal here is to identify which definitions and axioms can be potentially reused in the
ontology to be developed. The terms whose definition could be reusable from other
ontologies are those terms appearing in the pre-glossary of the ORSD (specifically
in slot 7) (see Chap. 5) and the new terms that appear in the reformulated CQs

“The rest of the cases are presented in Sudrez-Figueroa (2010).

http://dx.doi.org/10.1007/978-3-642-24794-1_5

7 Ontology Development by Reuse 153

Table 7.3 Analysis and transformation of the competency questions and addition of linking
axioms and rules (Task 1.1)

Case Competency question Action to carry out Result of the action
Case 1. Ontology CQ,. Which is the Reformulate the ~ Which are the proper
developers are composition of CQ to mention parts of Frenadol®?
interested in knowing Frenadol®? the term is
the parts of an object proper part of

without including the
object itself

Case 2. Ontology CQ;. What drugs do Reformulate the ~ Which drugs is
developers are have paracetamol? CQ to mention paracetamol part of?
interested in knowing (The inclusion of the term is part
the parts of an object the substance itself of
including the object is because
itself paracetamol itself

could be a drug)

CQy4. Which ‘Which substances do the
substances do parts of Frenadol®
Frenadol® interacts interacts with?
with?

Case 3. The CQ refers to CQs. Which is the Introduce a linking Introduce, when the
a relation S that is main active axiom mereology
subrelation of ingredient of establishing implementation is
isPartOf Frenadol®? that S is reused, the following

subrelation of axiom: Is main active

is part of ingredient of is a
subrelation of is
part of?

obtained in Task 1.1. The second column of Table 7.4 presents some heuristics that are
useful to find mereology definitions and axioms that could be potentially reused (for
the rest of the heuristics see footnote 4). Such a table shows that the properties of is
part of that are useful for PPO are reflexivity, antisymmetry, transitivity, and the weak
supplementation principle. For example, if ontology developers are interested in
knowing what substances contains a particular substance (e.g., iron), they need to
apply transitivity, since the substance in question can be an indirect part of the drug.
For instance, iron is part of ferrous sulfite, and this is, in its turn, part of Mol Iron®,
which is a drug. Moreover, the definition of the term is proper part of should be reused
to answer questions like CQ,, where the interest is not located in the drug itself.
Task 1.3 Search for ontologies. The ontology development team should search
for ontologies that implement the axioms and definitions identified in Task 1.2.
To perform this task, ontology developers can use a general purpose search
engine (e.g., Google’), Semantic Web search engines (e.g., Swoogle®, Watson’,

s http://www.google.es/
S http://swoogle.umbc.edu/
7 http://watson.kmi.open.ac.uk

http://www.google.es/
http://swoogle.umbc.edu/
http://watson.kmi.open.ac.uk

154 M. Fernandez-Lopez et al.

Table 7.4 Identification of definitions and axioms to reuse from a mereology (Task 1.2)

Axioms and When they are useful The condition

definitions is fulfilled

A.l. Is part of Recommended if its implementation is possible, to ensure Yes
reflexivity the right meaning of part of

A.2.Is part of Recommended if its implementation is possible, for Yes
antisymmetry consistency verification

A.3. Is part of X has parts X1, X, . . ., X;,. In its turn, there is some X; with Yes
transitivity parts X;1, X2, - . ., X;- That is, X has several levels of

parts. Besides, ontology developers are interested in
all the levels when they ask: which are the parts of X?

D.1. Is proper part of The case 1 (see Table 7.3) is fulfilled Yes
definition

A.4. Is part of weak ~ Recommended if its implementation is possible, for Yes
supplementation consistency verification

Sindice®, Sigma”), repositories (e.g., the Protégé ontology library'®, the Open
Biological and Biomedical Ontologies'', and Cupboard'?), and other known
ontologies (for instance, mereology terms can be reused from Dolce-Lite13,
SUMO-OWL', etc.).

For example, Watson is a Semantic Web search engine developed as part of the
NeOn project which provides features to search, select, and integrate ontologies
available online (d’Aquin and Motta 2011). Watson collects, indexes, and provides
access to ontologies crawled from the web. From a user interface perspective, it can
be seen as a classical search engine, taking as input keywords (e.g., based on the
ORSD) and providing as a result a list of ontologies that match these keywords,
together with information about each ontology, and about entities in them that are
relevant to the given keywords. Ontologies and entities can be further explored
online, using the provided navigation features. As part of its indexing process,
Watson also extracts information about each ontology, such as the underlying
language, its size, and metadata that the corresponding file might include. Search
results from Watson often include thousands of ontologies. They can be further
reduced by using filters (search options) regarding the scope of the search (in local
names, labels, comments, or any other literal of an entity), the type of entities to
consider (classes, properties, or individuals), and how strict the match should be. In
addition, developers’ background knowledge helps in the filtering.

8 http://sindice.com/

o http://sig.ma/

10 http://protege.cim3.net/cgi-bin/wiki.pl?ProtegeOntologiesLibrary
1 http://www.obofoundry.org/

12 http://cupboard.open.ac.uk

'3 http://www.loa-cnr.it/ontologies/DOLCE-Lite.owl

" http://www.ontologyportal.org/translations/SUMO.owl.txt

http://sindice.com/
http://sig.ma/
http://protege.cim3.net/cgi-bin/wiki.pl?ProtegeOntologiesLibrary
http://www.obofoundry.org/
http://cupboard.open.ac.uk
http://www.loa-cnr.it/ontologies/DOLCE-Lite.owl
http://www.ontologyportal.org/translations/SUMO.owl.txt

7 Ontology Development by Reuse 155

In addition to its user interface, Watson includes a set of open APIs making it
possible for application developers to find and exploit online ontologies directly
from the provided infrastructure. This API has been used to create an interface to
Watson from the NeOn Toolkit, where definitions of specific classes and properties
can be found and reuse: the Watson plugin (d’Aquin et al. 2008). Using the Watson
plugin, an initial “skeleton” model can be defined as a basis for searching relevant
definitions from online ontologies. Selecting a concept or a property, the user can
obtain list of statements that corresponds to alternative representations of this class
and properties, and directly integrate such representations (partially or completely)
in the ontology under development.

In addition to the Watson plugin, other developments have been integrated with
Watson with the goal of facilitating ontology search and reuse. For example, in
addition to extracted information, Watson provides a simple visual summary of
each ontology using the key concept extraction mechanism described in (Peroni
et al. 2008). Mechanisms such as visual summaries and the Watson indexing
process were also reused to create Cupboard (d’Aquin and Lewen 2009), an
ontology repository system, where users can publish ontologies and search them
in a way similar to Watson.

As an example, Table 7.5 presents some ontologies that define mereological
relations.

Task 1.4 Performing a comparative study. The goal here is to compare the
candidate ontologies obtained in Task 1.3 with the axioms and definitions identified
in Task 1.2. This comparative study is represented in the form of a table to facilitate
its use. In the table, each row represents the set of definitions (or axioms) identified
in Task 1.2, and each column, the ontologies found in Task 1.3.

As an example, a comparative table of ontologies implementing mereologies is
shown in Table 7.6. The symbol “X” means that the feature is represented in the
ontology. In the example, the definitions of underlap and disjoint, and the weak
supplementation principle are formalized in formal mereologies (see Annex), but
they do not appear in any of the OWL ontologies that appear in the table.

Task 1.5 Determining the most appropriate ontology to be reused. The goal of
this task is to determine which of the candidate ontologies identified in Task 1.3 is
the most appropriate to be reused in the ontology being developed. To determine
such an ontology, the analysis following Fig. 7.2 is carried out.

Table 7.5 Mereology implementations (Task 1.3)

Found mereology implementations Project or institution

Single part whole® wscC

SUMO-OWL IEEE Standard Upper Ontology working group
Dolce-Lite Italian Research Council (CNR)

Oswebsite” OS Open data

OBO Open Biological and Biomedical Ontologies®

“http://www.w3.0rg/2001/sw/BestPractices/OEP/SimplePartWhole/part.owl
bhttp://www.4;)rdnancesurvey.co‘uk/oswebsite/«;)ntology/Mereology.owl
“http://www.berkeleybop.org/ontologies/obo-all/relationship/relationship.owl

http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/part.owl
http://www.ordnancesurvey.co.uk/oswebsite/ontology/Mereology.owl
http://www.berkeleybop.org/ontologies/obo-all/relationship/relationship.owl

—_

56 M. Fernandez-Lopez et al.

Table 7.6 Comparative study of mereology ontologies (Task 1.4)

The shadow features are required by the host ontology of section 6 use case (Task 1.2)

Legend:

Reuse economic cost Is used to calculate
_—

Variable to be assigned a value

Quality of the
documentation

Non-functional analysis

Understandability effort
Code clarity

Adequacy of knowledge
extraction

Necessity of bridge terms

Availability of tests

Reliability

Integration effort

Practical support

j : . H
!

Functional analysis

| T T T T Y T

Fig. 7.2 How to take the decision of choosing an ontology (Task 1.5)

Features identified in Task 1.2 (reflexivity, transitivity, etc.) are called functional
features, while the tag non-functional is used for the rest of features (reuse eco-
nomic cost, code clarity, etc.). A weight of 0.75 has been assigned to non-functional
features and 0.25 to the functional ones. These weights have been assigned because,
according to the author’s experience, adding new functional features to an ontology
that scores well with respect to the non-functional ones is, in most cases, easier than

7 Ontology Development by Reuse 157

overcoming the lack of compliance in non-functional properties. The exact value of
each weight can be obtained using different procedures. One of them is by means of
the utility theory (Jiménez et al. 2003). Another one is by means of former
experience; this is the option we have used. That is, we have adjusted the weights
so that the quantitative result applied to different cases of generic ontology reuse is
equal to the one recommended by experienced people in this task. The first option
follows a prescriptive approach, whereas the second, a descriptive one.

With the objective of having a reference to compare the scores, the score of an
ideal ontology has been considered as a normalization denominator. Let us note that
if this ideal reference is not provided, it is not easy to know the significance of the
difference between the ontology scores. Thus, for example, without this ideal
reference, if the difference between ontologies 0, and 0, is 0.4, the engineer cannot
necessarily determine how large such difference is.

Given an ontology ont, the following formula to calculate the score of the
functional features analysis is used:

>~ value,y (functionalFeature;)

ScoreFunctionalFeaturesqy = —— x 100% (7.1
ont > valuejgeaion (functionalFeature;) o (7.1
i

where valueg(functionalFeature;) is the value of functional feature i for
the ontology ont, and valuejgeon(functionalFeature;) is the value of
functional feature i for an ideal ontology, that is, the number of features (axioms
and definitions) obtained in Task 1.4.

Concerning non-functional features analysis, it is carried out on the basis of the
following four dimensions:

e Reuse economic cost. It refers to the estimate of the economic cost needed for
accessing and using the candidate ontology. If the candidate ontology has any
type of license, then the cost of acquisition and/or exploitation should be taken
into account (Gomez-Pérez and Lozano-Tello 2005).

e Understandability effort. It refers to the estimate of the effort needed for
understanding the candidate ontology. In this case, the following criteria should
be analyzed:

— Quality of the documentation. It refers to whether there is any communicable
material used to describe or explain different aspects of the candidate ontol-
ogy (e.g., modeling decisions). The documentation should explain the
statements contained in the ontology so that a nonexpert could understand
them (Pinto and Martins 2001).

— Availability of external knowledge sources. It refers to whether the candidate
ontology has references to documentation sources and/or if experts are easily
available.

— Code clarity. It refers to whether the code is easy to understand and modify,
that is, if the knowledge entities follow unified patterns and are intuitive

158

M. Fernandez-Lopez et al.

(Pinto and Martins 2001). It is advantageous to use the same pattern to make
sibling definitions, thus improving ontology understanding and making it
easier to include new definitions (Gémez-Pérez and Rojas 1999). For exam-
ple, if it has been decided to distinguish between Frenadol product and
Frenadol substance, the same distinction should be made for the rest of
drugs (Efferalgan, Dolostop, etc.). Clarity also refers to whether the code is
well documented, that is, if it includes clear and coherent definitions and
comments for the knowledge entities represented in the candidate ontology.
The difference between this criterion and the quality of the documentation is
that clarity refers to the comments and the definitions inside the code;
meanwhile, the quality of the documentation refers to external documentation
(papers, manuals, etc.).

Integration effort. It refers to the estimate of the effort needed for integrating the

candidate ontology into the ontology being developed. In this case, the following
criteria should be analyzed:

Adequacy of knowledge extraction. It refers to whether it is easy to identify
parts of the candidate ontology to be reused and to extract them. For example,
in large and not modularized ontologies (e.g., SUO), the difficulty to extract
the part of the knowledge we are interested in is especially high.

Adequacy of naming conventions. It refers to whether both ontologies (the
candidate and the one being developed) follow the same rules for naming the
different ontology components (e.g., concept names should start with capital
letters, relation names should start with non-capital letters).

Adequacy of the implementation language. It refers to whether both
languages (the candidate ontology’s and the ontology’s being developed)
are the same, or at least are able to represent similar knowledge with the
same granularity.

Knowledge clash. It refers to whether there are contradictory bits of knowl-
edge between the candidate ontology to be reused and the ontology being
developed (e.g., discrete time versus continuous time assumption).
Adaptation to the reasoner. It refers to whether the adaptation of definitions
and axioms that satisfy the existing restrictions of the reasoner is needed (e.g.,
explicit definitions can be included in OWL ontologies; however, this kind of
definitions cannot be included in ontologies written in Prolog).

Necessity of bridge terms. It refers to whether it is necessary to create new
linking axioms and/or relations to integrate the candidate ontology to be
reused into the ontology being developed.

Reliability. It refers to an analysis of whether ontology developers can trust the

candidate ontology to be reused. In this case, the following criteria should be
considered:

Design criteria. It refers to whether the ontology has been built according to
the design criteria assumed by the development team of the domain ontology.

7 Ontology Development by Reuse 159

For example, one design criterion is the use of standards of the domain (on
pharmacy, medicine, etc.) if they exist.

— Availability of tests. It refers to whether tests are available for the candidate
ontology to be reused. Although it is not still usual in ontological engineering,
the development team could publish the tests used during the ontology
construction.

— Former evaluation. It refers to whether the ontology has been properly
evaluated, not only by means of automatic unit tests but also by domain
and ontology modeling experts.

— Theoretical support. It refers to whether the candidate ontology is supported
by a sound theory, explicitly described in a document.

— Development team reputation. It refers to whether the development team of
the candidate ontology is known to be experienced and competent.

— Purpose reliability. It refers to whether the candidate ontology has been
developed as a simple example or for a stronger purpose.

— Popularity. It refers to whether there are well-known projects or ontologies
reusing the candidate ontology (Lozano-Tello 2002).

Table 7.7 shows the criteria (organized by dimensions) and the ways to measure
them. In the table, for each criterion, there is (a) a range of values (an interval of
linguistic values or a natural number), (b) an explanation of how to measure the
criterion, and (c) a numerical weight. The numerical weights are proposed here by
default, according to the importance the authors give to the different criteria; for
example, the criterion design criteria is extremely important for us, and therefore
we assign a numerical weight of 10; however, the criterion purpose reliability is not
so important for us, therefore, we give it a weight of 3. It is worth mentioning that
such numerical weights depend on the importance the ontology developer gives to
the different criteria, and that such weights can be modified. The symbols (+) and
(—) in the weights are specified to indicate whether the criterion counts in a positive
or a negative way, respectively. These symbols cannot be modified by the ontology
developer.

Thus, ontology developers should fill a table and analyze the candidate
ontologies with respect to the abovementioned criteria, taking into account the
different ways to measure each criterion and the possible values that can be
assigned.

Having filled Table 7.7 with different values for each criterion and for each
candidate ontology, ontology developers should obtain a score for each candidate
ontology and then decide which one is the most appropriate. To obtain such a score,
the following method is proposed:

¢ To transform linguistic values, the following transformation rules are proposed:

— Value = Unknown — Valuet = 0.

Value = Low — Valuer = 1 if the weigh is (+), 3 otherwise.
Value = Medium — Valuer = 2.

— Value = High — Valuer = 3 if the weigh is (+), 1 otherwise.

160

M. Fernandez-Lopez et al.

Table 7.7 Decision criteria to select an ontology (Task 1.5)

Criteria Range of values How to measure it Weight
Reuse cost
Reuse economic {Unknown, low, Asking the owner for an estimate (=) 10
cost medium,
high}
Understandability effort
Quality of the {Unknown, low, Analyzing if the ontology has documentation (+) 8
documentation medium, and if such documentation really explains
high} the ontology itself, as well as modeling
criteria used during the ontology
development
Availability of {Unknown, low, Analyzing if in the ontology documentation +#+) 7
external medium, there is any reference to external sources
knowledge high} that could be used to better understand the
ontology
Code clarity {Unknown, low, Inspecting the ontology code analyzing the + 8

Integration effort

Adequacy of
knowledge
extraction

Adequacy of naming

conventions

Adequacy of the

implementation

language

Knowledge clash

Adaptation to the
reasoner

Necessity of bridge

terms

Reliability
Design criteria

Availability of tests

Former evaluation

medium,
high}

{Unknown, low,
medium,
high}

{Unknown,
Low,
Medium,
High}

{Unknown, low,
medium,
high}

{Unknown, low,
medium,
high}

{Unknown, low,
medium,
high}

{Unknown, low,
medium,
high}

{Unknown, low,
medium,
high}

{Unknown, low,
medium,
high}

{Unknown, low,
medium,
high}

complexity of the definitions (and axioms)
implemented in the ontology

Analyzing if the ontology is modularized or if it
can be modularized in an easier way

Comparing the naming conventions of both
ontologies

Comparing the ontology language of both
ontologies. If both languages are different,
analyzing the loss of knowledge in the
translation

Comparing modeling decisions of both
ontologies

Comparing the reasoners related to the
ontology language of both ontologies

Inspecting the ontology code and the result of
Task 1.1 (see Table 7.3)

Analyzing if the ontology is built according to
the design criteria assumed by the
development team of the domain ontology

Analyzing if the ontology documentation refers
to existing unit tests

Analyzing if the ontology documentation refers
to different types of evaluation (automatic
unit tests, human evaluation, etc.)

+ 9

) 5

+ 7

=7

+ 7

(=) 6

+) 10

+) 8

+ 8

(continued)

7 Ontology Development by Reuse 161

Table 7.7 (continued)

Criteria Range of values How to measure it Weight
Theoretical support {Unknown, low, Analyzing if the ontology documentation refers (+) 10
medium, to the theory on which the ontology is based
high}
Development team {Unknown, low, Searching for information about the ontology (+) 8
reputation medium, development team (other ontologies
high} developed, papers published, etc.)
Purpose reliability ~ {Unknown, low, Analyzing if the ontology documentation refers (+) 3
medium, to the purpose for which the ontology was
high} developed
Popularity {Unknown, low, Analyzing if the ontology documentation refers (+) 7
medium, to other ontologies and/or projects reusing
high} the ontology

— where:
— Valuer is the transformed value
— Value is the linguistic value provided by the ontology developer

Given that we want to penalize ontologies about which we have less knowledge,
we have assigned a value of 0 to unknown.

e The score that synthesizes the non-functional features contribution is the follow-
ing weighted mean:

Weight;

X == x 100% (7.2)
> Weight;
i

ScoreNon-FunctionalF eaturesqn, = E Valueron,;
i

where:

— ScoreNon-FunctionalF eaturesy, is the score for the candidate ontology ont
for the set of criteria

— jis a particular criterion of those included in Table 7.7

— Valuergy is the transformed value for the criterion j in the ontology ont

— Weight, is the numerical weight associated to the criterion k

— Finally, applying the aforementioned weights of 0.25 and 0.75 for functional
and non-functional features respectively, the following formula is applied:

Score = 0.25 x ScoreFunctionalFeatures + 0.75
X ScoreNon-FunctionalF eatures. (7.3)

After applying the previous formula to all the candidate ontologies, ontology
developers should select the candidate ontology with the best normalized scored.

162 M. Fernandez-Lopez et al.

Table 7.8 Determining the most appropriate mereology implementation (Task 1.5)

Criteria Weight Values
Single part SUMO- Dolce- Oswebsite OBO
whole OWL Lite
Reuse cost
Reuse economic cost (=) 10 Low Low Low Low Low
Understandability effort
Quality of the (+) 8 High High High Unknown Unknown
documentation
Availability of external (+) 7 High High High Unknown Unknown
knowledge
Code clarity (+) 8 High High High High High
Integration effort
Adequacy of knowledge (+) 9 High High Low Low Low
extraction
Adequacy of naming +) 5 Low High Low High Low
conventions
Adequacy of the (+) 7 High High High High High
implementation
language
Knowledge clash (=) 7 Low Low Low Low Low
Adaptation to the reasoner (+) 7 High High High High High
Necessity of bridge terms (=) 6 Low Low Low Low Low
Reliability
Design decisions (+) 10 High High High High High
Availability of tests (+) 8 Unknown Unknown Unknown Unknown Unknown
Former evaluation (+) 8 Unknown Unknown Unknown Unknown Unknown
Theoretical support (+) 10 High High High Unknown Unknown
Development team (+) 8 High High High High High
reputation
Purpose reliability (+) 3 Low Unknown Unknown High High
Popularity (+) 7 Unknown Unknown Unknown Unknown Unknown

As an example, in the context of the PPO case, we have filled in the values
associated with the OWL versions of SUO-OWL and Dolce-Lite, which are shown
in Table 7.8. The scores of the functional features have been obtained from
Table 7.6.

The results in Task 1.5 have been very close. Given that we have found top-level
concepts of SUMO-OWL like biologically active substance and molecule (and their
ancestors) useful for PPO, the criterion adequacy of knowledge extraction has been
assigned high for this ontology and, consequently, has obtained the best score
(Table 7.9).

For this example, we have used a spreadsheet. For the future, we plan to support
the automation of this task in NeOn Toolkit.

7 Ontology Development by Reuse 163

Table 7.9 Synthesis of the results of determining the most appropriate mereology implementation
(Task 1.5)

Single SUMO- Dolce- Oswebsite OBO
part OWL Lite
whole

Score for non-functional features. See formula 85.33% 87.2% 79.73% 64.8% 62.13%
(7.2). Henceforth, this result will be
referred as (3)

Score for functional features resulting from 33.33% 33.33% 50% 33.33% 33.33%
task. See Table 7.6 and formula (7.1).
Henceforth, this result will be referred as (4)

Final score = 0.75 x (3) + 0.25 x (4) 7233% 73.73% 72.3% 56.93% 54.93%

7.2.2 Activity 2: Customizing the Selected Generic Ontology

The goal of this activity is to customize the ontology selected in Activity 1
according to the needs of the domain ontology being developed. This activity
consists of the following tasks:

Task 2.1 Pruning the ontology to be reused according to the needed features.
The goal of this task is to prune the selected ontology taking into account the
features needed in the domain ontology that is being developed. Thus, for example,
if the definition of overlap is defined in the generic ontology, but it is not necessary
in the resulting ontology, it should be removed.

Task 2.2 Enriching the ontology to be reused. The goal of this task is to extend
the ontology selected with the new conceptual structures needed in the domain
ontology being developed. In the PPO example, we have added transitivity to the
part and properPart object properties, reflexivity and antisymmetry to part, and
asymmetry and irreflexivity to properPart.

When pruning and enriching the ontology, it is necessary to take into account
that the axioms and definitions to be reused may be applicable to a category that
does not completely include all the individuals of interest in our domain ontology.
If this happens, an adaptation of the axioms and definitions should be performed.

Task 2.3 Translating the ontology to be reused into the implementation language
of the domain ontology being developed. The goal of this task is to translate the
selected ontology into the implementation language of the domain ontology being
developed if those two ontologies are in different languages.

An ontology can be translated in an automatic or manual way. It is important to
point out that a complete translation into different languages is not always possible.
For example, let us suppose the following implementation in Prolog of overlaps
and disjoint:

overlaps (X, Y) :- isPartOf(Z, X), isPartOf(zZ, Y).
disjoint (X, Y) :- \+overlaps (X, Y).

The rule corresponding to disjoint cannot be implemented in OWL. In fact, let us
note that given that Prolog works under the closed world assumption, if common

164 M. Fernandez-Lopez et al.

parts of substancel and substance?2 have not been represented, the answer
to the query:

?:-disjoint (substancel, substance2) .

will be true. However, it is not possible to attain this effect directly with OWL
(open world assumption).

Task 2.4 Adapting the ontology to be reused to the design criteria followed in the
ontology to be developed. The following modifications have to be done in most
cases: (a) changing names (concepts, properties) to adapt them to the naming
conventions used in the ontology network being developed and (b) adding range
to properties. For example, we have adapted the names to the convention used in
PPO. Thus, part has been changed to isPartOf.

Task 2.5 Evaluating the obtained ontology. The goal of this task is to evaluate
from a content perspective if there are no errors in the ontology. This task is
described in detail in Chap. 9.

7.2.3 Activity 3: Integrating the Generic Ontology to be Reused
in the Ontology Being Developed

The goal of this activity is to integrate the ontology obtained in Activity 2 in the
ontology being developed. The development team should decide whether:

¢ To import the customized ontology. The advantage is that the resulting devel-
oped ontology will be structured in different modules'® (see Chap. 10).

» To copy the customized ontology. This can be a good solution if the customized
ontology belongs to the same domain as the one of the ontology to be developed.
For example, if the customized ontology adds more drug types to a drug
ontology.

In any case, links between terms of the reused ontology and the ontology to be
developed should be established. In the case of PPO, we have taken advantage of
the possibilities that SUMO-OWL offers us to easily represent different
perspectives of the notion of drug, for example, drug as a substance that acts in
our organism and drug as a product that can be sold. Moreover, given that
transitivity, antisymmetry, etc. involve individuals, we have added an individual
for each type of substance and product. Therefore, the application that uses the PPO
maintains the individuals corresponding to particular entities (e.g., Frenadol C243,
corresponding to Frenadol box with manufacturing lot C243) and the individuals
that represent products and substances in a general way. Thus, for example, the

!5 The term module has here the pragmatic sense equivalent to the d’ Aquin’s reference cited in the
Introduction.

http://dx.doi.org/10.1007/978-3-642-24794-1_9
http://dx.doi.org/10.1007/978-3-642-24794-1_10

7 Ontology Development by Reuse

=& object

@ selfConnectedObject
=@ Corpuscularobject
=@ Artifact
=3 Product

=& DrugProduct

: AlgidolProduct

: ApiretalProduct

: BisolgripProduct

: CortafriolProduct

; DolgesicProduct

; DolostopProduct

; EfferalganProduct

; FrenadolProduct

; GelocatilProduct

i PharmagripProduct
TermalginProduct

=@ BiologicallyActiveSubstance
& Caffeine
i CitrateOFChlorpheniramine
@ pextrometorphan

5

DrugSubstance
3 Algidolsubstance
(3 apiretalsubstance

3 sisolgripSubstance

_. @ cortafriolsubstance

@ DpolgesicSubstance

@ DolostopSubstance

& EfferalganSubstance

: & FrenadolSubstance

& Gelocatilsubstance

-_ PharmagripSubstance

TermalginSubstance

[ethylalcohol
@ 1sionazid
& nutrient
Paracetamol

165

=12 isPartof
E .‘ﬁ isMainActivelngredientOFf
- 4 isProperPartOf
=& topObjectProperty
& hasExpirationDate
o interactswWith

Fig. 7.3 Partial view of the concept and the object property hierarchies (Snapshot taken from

NeOn Toolkit)

system can infer that caffeine is part of Frenadol because there is an individual of
caffeine (also with tag “caffeine”) that is part of an object Frenadol, that is, an
individual of Frenadol. We have also added the axioms identified in Table 7.3
(see Sect. 7.2.1) (e.g., isMainActivelngredient is subrelation of isPartOf).

To answer CQ,4, we have added this rule to the ontology:

interactsWith(?x, ?y), isPartOf (?x, ?z) ->

interactsWith(?z,

?y)

166 M. Fernandez-Lopez et al.

Table 7.10 Formal host competency questions that require part of modeling (for the sake of
simplicity, prefixes, and value data types are omitted in the answers)

Informal CQ Formal CQ Example of answer
#co1r
SELECT ?X | X |

‘What drugs
WHERE

do have

paracetamol? { ——————=—=———=—==========
?X rdf:type ub:DrugSubstance
ub:Paracetamol ub:isProperPartOf |FrenadolSubstance

?X . |BisolgripSubstance
}

|cortafriolSubstance

|DolgesicSubstance

| TermalginSubstance

|AlgidolSubstance

|EfferalganSubstance

|DolostopSubstance

|GelocatilSubstance

|ApiretalSubstance

| PharmagripSubstance

[X]

CQ2
Which is the | SELECT ?X
composition |WHERE .
of . | Dextrometorphan
Frenadol®? . |CcitrateOfChlorpheniramine

?X ub:isProperPartOf
ub:FrenadolSubstance |Caffeine
’ | Paracetamol

(continued)

7 Ontology Development by Reuse

Table 7.10 (continued)

167

?X .

Informal CQ Formal CQ Example of answer
CO3
SELECT ?X
Which is the WHERE «
main active { | |
ingredient of ?X ub:isMainActiveIngredientof |
Frenadol®? | Paracetamol |
ub:FrenadolSubstance
}
#cos | e
Which | x |
substances do
SELECT ?X ================
Frenadol®] o
interacts WHERE | Rifanpicin |
with? { | Propranolol |
ub:FrenadolSubstance | Isionazid |
ub:interactsWith | EthylAlcohol |

That is, if a substance ?x interacts with another substance ?y, then the latter
interacts with every part of ?x. Thus, for example, given that paracetamol interacts
with the ethyl alcohol, Frenadol® also interacts with ethyl alcohol.

A partial view of the resulting ontology is shown in Fig. 7.3.

The resulting ontology should be evaluated. In the PPO case, besides other tests,
we have checked that the CQs are answered (see Table 7.10).

7.3 Conclusions and Future Work

The reuse of (well-developed) ontologies allows spreading good practices and
increasing the overall quality of ontological models. In this chapter, we have
presented how to carry out this process. The guidelines shown here provide the

methodological assistance to Scenario 3 in the NeOn Methodology (Chap. 2).

Given that the reuse of an ontology usually implies pruning it, ontology reuse
usually implies statement reuse (see (Sudrez-Figueroa 2010) to know more about
how to reuse domain ontologies as well as ontology statements). Consequently, we
have not distinguished between these two classes of reuse.

It is also worth mentioning that interesting knowledge represented in ontologies
may be found by chance. For instance, part of the knowledge on substances and

http://dx.doi.org/10.1007/978-3-642-24794-1_2

168 M. Fernandez-Lopez et al.

products reused from SUMO-OWL has been found when we were searching for
mereology knowledge.

The NeOn Toolkit includes the Watson plugin to support ontology search. An
objective for future development will be to develop the necessary plugin to assist
with the other tasks associated with ontology reuse, especially for the selection of
the most appropriate ontology (Task 1.5).

In addition, it would be interesting to perform a comparison of the costs of
(a) reusing generic ontologies versus (b) developing what is required from scratch.

Annex: Mereology

A mereology is a formal theory of parts and associated concepts (Borst 1997;
Schneider 2003). We have said “a mereology” instead of “the mereology” because
different assumptions can be taken into account in the formalization of parthood.
Therefore, different mereologies can be proposed.

In the following paragraphs, we will show one of the mereologies presented by
Varzi (2007).

Theory M. Most of the authors agree on the following core of axioms (named
with A) and definitions (named with D) (Varzi 2007). Along these paragraphs, we
use examples of territories to clarify the meaning of axioms and definitions. The
mentions to administrative units really refer to their physical territories.

e A.l. Reflexivity. Every object of the universe of discourse is a part of itself. For
instance, the EU is part of the EU.

e A.2. Antisymmetry. If an object x is a part of y, and y is a part of x, then x and y are
the same object. For instance, if the territory T’ is part of the territory 75, then the
only way so that T, is part of T is being T and T, the same territory.

o A.3. Transitivity. If x is a part of y, and y is a part of z, then x is a part of z. For
instance, the Community of Madrid is part of Spain, and Spain is part of the EU;
therefore, the Community of Madrid is a part of the EU.

A number of additional mereological predicates can be then introduced by
definition:

e D.I. Proper part. A proper part is a part that is other that the individual itself. For
example, Spain is proper part of the EU, since Spain is part of the EU and they
are different entities.

e D.2. Direct part. X is direct part of y if and only if x is proper part of y and there is
no part between x and y'®. For example, Spain is direct part of the EU, but
Madrid is not, since Spain is a part between Madrid and the EU.

18 http://hces.science.uva.nl/projects/NewK ACTUS/library/lib/mereology.html

http://hcs.science.uva.nl/projects/NewKACTUS/library/lib/mereology.html

7 Ontology Development by Reuse 169

e D.3. Overlap. The relation overlaps is defined as a sharing part. That is, x and y
overlap if and only if there is a z such that z is part of x and part of y. For instance,
Nordic countries and the EU overlap, since there are Nordic countries which are
parts of the EU.

e DA4. Underlap. The relation underlaps is defined as a sharing whole. That is, x
and y underlap if and only if there is a z such that x and y are parts of z. For
example, the Netherlands, Sweden, and Spain underlap the same common
whole: the EU.

* D.5. Disjoint. The disjoint relation is the logical negation of overlaps. For
example, Belgium and the Netherlands are disjoint territories.

Theory M may be viewed as embodying the common core of any mereological
theory. A.1-A.3 should be extended to build a mereology.

Minimal mereology (MM). A way to extend M is assuming the following
principle (Varzi 2007):

o A4. Weak supplementation principle. Every object x with a proper part y has
another part z that is disjoint from y. The domain of territories, for example,
fulfills this principle. For example, given that Spain is proper part of the EU, then
the EU has other parts that are disjoint from Spain: the Netherlands, Luxemburg,
Sweden, etc.

Most of the authors strengthen that A.4 should be incorporated to M as a further
fundamental principle on the meaning of part of. Other authors provide scenarios
that could be counterexamples of this principle. However, it is far from being
demonstrated that such supposed counterexamples have implications in computer
applications.

The rest of mereologies starting from MM are explained with examples in
(Fernandez Lopez et al. 2008; Suarez-Figueroa 2010).

References

Borst WN (1997) Construction of engineering ontologies. Centre for Telematica and Information
Technology, University of Tweenty, Enschede

d’Aquin M, Lewen H (2009) Cupboard — a place to expose your ontologies to applications and the
community. Demo at European Semantic Web Conference, ESWC 2009, Heraklion, Greece

d’Aquin M, Motta E (2011) Watson, more than a semantic web search engine, Semant Web J 2,
10S Press

d’Aquin M, Sabou M, Dzbor M, Baldassarre C, Gridinoc L, Angeletou S, Motta E (2007a)
Watson: a gateway for the semantic web. Poster session of the European Semantic Web
Conference, ESWC 2007, Busan

d’Aquin M, Schlicht A, Stuckenschmidt H, Sabou M (2007b) Ontology modularization for
knowledge selection: experiments and evaluations. In: 18th international conference on Data-
base and Expert Systems Applications, DEXA 2007, Regensburg, Germany

d’Aquin M, Sabou M, Motta E (2008) Reusing knowledge from the semantic web with the Watson
Plugin. Demo at International Semantic Web Conference, ISWC 2008, Karlsruhe, Germany

170 M. Fernandez-Lopez et al.

Fernandez Lopez M, Gomez-Pérez A, Suarez-Figueroa MC (2008) Selecting and customizing a
mereology ontology for its reuse in a pharmaceutical product ontology. In: Griininger M,
Eschenbach C (eds) Formal Ontology in Information Systems. Fifth international conference
(FOIS-2008), Saarbriicken, Germany. I0S Press, Amsterdam, pp 181-194

Golbeck J, Fragoso G, Hartel F, Hendler J, Parsia B, Oberthaler J (2003) The national cancer
institute’s thesaurus and ontology. J Web Semant1(1):75-80

Gomez-Pérez A, Lozano-Tello A (2005) Applying ONTOMETRIC method to measure the
suitability of ontologies. In: Green P, Rosemann M (eds) Business systems analysis with
ontologies. Idea Group Publishing, Hershey, pp 249-269

Gomez-Pérez A, Rojas MD (1999) Ontological reengineering and reuse. In: Fensel D, Studer R
(eds) 11th European workshop on Knowledge Acquisition, Modeling and Management
(EKAW 1999), Dagstuhl Castle, Germany, Lecture Notes in Artificial Intelligence LNAI
1621 Springer, Berlin, Germany, pp 139-156

Jiménez A, Rios-Insua S, Mateos A (2003) A decision support system for multiattribute utility
evaluation based on imprecise assignments. Decis Support Syst 36:65-79

Lozano-Tello A (2002) Meétrica de idoneidad de ontologias. PhD Thesis, Universidad de
Extremadura, Caceres, Spain 2002

Peroni S, Motta E, d’Aquin M (2008) Identifying key concepts in an ontology through the
integration of cognitive principles with statistical and topological measures. In: Third Asian
semantic web conference, Bangkok, Thailand

Pinto HS, Martins JP (2001) A methodology for ontology integration. In: Gil Y, Musen M,
Shavlik J (eds) First international conference on Knowledge Capture (KCAP 2001), Victoria,
Canada. ACM Press, New York, pp 131-138

Schneider L (2003) How to build a foundational ontology: the object-centered high-level reference
ontology OCHRE. In: Giinter A, Kruse R, Neumann B (eds) Proceedings of the 26th annual
German conference on Artificial Intelligence (KI-2003), Hamburg, Germany. Lecture Notes in
Arttificial Intelligence (LNAI-2821), Berlin, Germany, pp 120-134. (http://citeseerx.ist.psu.edu/
viewdoc/download;jsessionid=12B7EC62C9601245457C735C07AA07A0?doi=10.1.1.1.3440
&rep=rep 1 &type=pdf)

Suarez-Figueroa, MC (coordinator) (2008) D5.4.1. NeOn Methodology for building contextual-
ized ontology networks. NeOn project

Sudrez-Figueroa, MC (2010) NeOn Methodology for building ontology networks: specification,
scheduling and reuse. PhD Thesis, Facultad de Informatica, Universidad Politécnica de
Madrid, Spain

van Heijst G, Schreiber ATh, Wielinga BJ (1997) Using explicit ontologies in KBS development.
Int J Hum-Comput Stud 45:183-292

Varzi A (2007) In: Aiello M, Pratt-Hartmann I, van Benthem J (eds) Spatial reasoning and
ontology: parts, wholes, and locations. Springer, Heidelberg, pp 945-1038

http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=12B7EC62C9601245457C735C07AA07A0?doi=10.1.1.1.3440&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=12B7EC62C9601245457C735C07AA07A0?doi=10.1.1.1.3440&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=12B7EC62C9601245457C735C07AA07A0?doi=10.1.1.1.3440&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=12B7EC62C9601245457C735C07AA07A0?doi=10.1.1.1.3440&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=12B7EC62C9601245457C735C07AA07A0?doi=10.1.1.1.3440&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=12B7EC62C9601245457C735C07AA07A0?doi=10.1.1.1.3440&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=12B7EC62C9601245457C735C07AA07A0?doi=10.1.1.1.3440&rep=rep1&type=pdf

Chapter 8
Ontology Localization

Mauricio Espinoza Mejia, Elena Montiel-Ponsoda,
Guadalupe Aguado de Cea, and Asuncion Gomez-Pérez

Abstract In the context of the Semantic Web, resources on the net can be enriched
by well-defined, machine-understandable metadata describing their associated con-
ceptual meaning. These metadata consisting of natural language descriptions of
concepts are the focus of the activity we describe in this chapter, namely, ontology
localization. In the framework of the NeOn Methodology, ontology localization is
defined as the activity of adapting an ontology to a particular language and culture.
This adaptation mainly involves the translation of the natural language descriptions
of the ontology from a source natural language to a target natural language, with the
final objective of obtaining a multilingual ontology, that is, an ontology
documented in several natural languages. The purpose of this chapter is to provide
detailed and prescriptive methodological guidelines to support the performance of
this activity.

8.1 Motivation

As with the World Wide Web, the success or failure of the Semantic Web will be
determined to a large extent by easy access to and availability of high-quality and
diverse content (Benjamins et al. 2002). In this respect, an important challenge that
needs to be addressed is the multilingualism problem, which until now has not been
properly investigated (Tjoa et al. 2005). This problem already exists in the current

M. Espinoza Mejia (><)

Facultad de Ingenieria, Universidad de Cuenca. Cdla. Universitaria, Av. 12 de Abril sn, Cuenca,
Ecuador

e-mail: mauricio.espinoza@ucuenca.edu.ec

E. Montiel-Ponsoda « G. Aguado de Cea » A. Gémez-Pérez

Ontology Engineering Group, Facultad de Informatica, Universidad Politécnica de Madrid,
Campus de Montegancedo sn, 28660 Boadilla del Monte, Madrid, Spain

e-mail: emontiel@fi.upm.es; lupe@fi.upm.es; asun@fi.upm.es

M.C. Suarez-Figueroa et al. (eds.), Ontology Engineering in a Networked World, 171
DOI 10.1007/978-3-642-24794-1_8, © Springer-Verlag Berlin Heidelberg 2012

mailto:mauricio.espinoza@ucuenca.edu.ec
mailto:emontiel@fi.upm.es
mailto:lupe@fi.upm.es
mailto:asun@fi.upm.es

172 M. Espinoza Mejia et al.

web and should also be tackled in the Semantic Web. Studies on language distribu-
tion over WWW content show that even if English is the predominating language
for documents, there exists an important amount of resources written in other
languages, according to the following distribution: English 27.6%, Chinese
22.1%, Spanish 7.9%, Japanese 5.5%, French 4.6%, Portuguese 4.2%, German
3.7%, Arabic 2.9%, Russian 2.6%, Korean 2.2%, and other languages 16.7%".
In the case of the Semantic Web, the problem is similar; most of the ontologies
that have been built so far have English as their basis. Nevertheless, although
English is now the de facto language for science and technology, other spoken
languages are used, and it is important to provide methods and tools both to support
the definition of ontologies expressed in languages other than English and also to
support interoperability across ontologies written in different languages.

Currently, a great effort is being applied to the construction of ontologies.
Although access to top-quality ontologies (e.g., Galen’, CYC®, or AKT?) is in
many cases free and unlimited for users around the world, most of these ontologies
can be said to be essentially monolingual, that is, documented in one natural
language, and this language is often English as an international lingua franca.
However, there is a growing need for multilingual ontology resources that over-
come communication barriers arising from cultural-linguistic differences, lack of
excellent command of English, need for high precision in communication, etc.
In fact, multilingual knowledge is even more prevalent in those countries that have
more than one official language (Yang and Li 2003). For example, Chinese and
English are the official languages in Hong Kong; French and English in Canada;
and Dutch, French, and German in Belgium.

Moreover, the use of ontologies has grown not only in terms of the number of
application domains but also in the number of natural languages chosen to build
domain-specific knowledge bases. Thus, multilingual ontologies are nowadays
demanded by institutions worldwide with a huge number of resources available
in different languages. Basically, usage of multilingual ontologies traverses many
disciplines and has become an urgent need in certain organizations. For instance, in
agriculture, the Food and Agriculture Organization (FAO) has expressed the need
for semantically structuring the information they have in different natural
languages. Since all FAO official documents must be made available in Arabic,
English, Chinese, French, Russian, and Spanish, a large amount of research has
been carried out in translating large multilingual agricultural thesauri (Chun and
Wenlin 2002), in mapping methodologies for thesauri (Liang et al. 2005; Liang and
Sini 2006), and in defining requirements to improve the interoperability of these
multilingual information resources (Caracciolo et al. 2007). In education, the

! Obtained on September 30, 2009, from http://www.internetworldstats.com
2 http://www.co-ode.org/galen/

3 http://www.opencyc.org/downloads

* http://www.aktors.org/publications/ontology/

http://www.internetworldstats.com
http://www.co-ode.org/galen/
http://www.opencyc.org/downloads
http://www.aktors.org/publications/ontology/

8 Ontology Localization 173

Bologna declaration has introduced an ontology-based framework for qualification
recognition (Vas 2007) across the European Union, in an effort to best match labor
markets with employment opportunities. In e-learning, educational ontologies are
used to enhance learning experience (Cui et al. 2004) and to empower system
platforms with high adaptivity (Sosnovsky and Gavrilova 2006). In the finance
domain, ontologies are used to model knowledge in the stock market domain
(Alonso et al. 2005) and portfolio management (Zhang et al. 2002). In medicine,
ontologies are employed to improve knowledge sharing and knowledge reuse. For
example, a notable amount of research has focused on the creation of an ontology of
traditional Chinese medicine.

A further factor that has increased the need for multilingual ontologies is the
development of some ontology-based systems that need to interact with information
in natural languages. Some examples of these applications are cross-lingual infor-
mation retrieval (Guyot et al. 2005), multilingual question answering (Pazienza
et al. 2005), and knowledge management (Segev and Gal 2008).

These examples can serve to highlight the importance of adding multilingualism,
that is, multilingual information, to ontologies before trying to solve the numerous
pending problems that still exist with the current monolingual approach. But, while
there is a clear need for ontology localization, there are no well-defined and broadly
accepted definitions of what the ontology localization activity entails. Moreover, to
our knowledge, no other study has focused on the methodological guidelines for
this activity. For this reason, in this chapter we present efficient, prescriptive, and
detailed methodological guidelines for the ontology localization activity.

The rest of the chapter is organized as follows: Sect. 8.2 presents the scope of the
methodological guidelines together with a detailed and systematic account of the
most important items from practical and application perspectives. Section 8.3
describes the guidelines for the ontology localization activity (including the filling
card and the activity workflow). Section 8.4 includes an example of how the
proposed guidelines for ontology localization are used in practice and the results
obtained. Finally, Sect. 8.5 summarizes the main conclusions from this work.

8.2 Scope of the Methodological Guidelines

Methodological guidelines for ontology localization can be discussed from differ-
ent perspectives:

* Guidelines for the development of internationalized ontologies
¢ Guidelines for the localization of existing ontologies
¢ Guidelines for reaching a mature ontology localization process

In what follows, we briefly describe these types of guidelines with respect to
three aspects: (1) the objective and scope of the guidelines, (2) the target audience,
and (3) the work related to them. Then, we will deal with the design principles we
considered in order to define the guidelines used in this chapter.

174 M. Espinoza Mejia et al.

8.2.1 Guidelines for the Development of Internationalized
Ontologies

Objective and scope: The aim of these guidelines is to improve the design and
implementation of internationalized ontologies in order to reduce the cost of
localization. Based on the software localization field (LISA), we understand
internationalized ontologies as ontologies built with the aim of supporting multilin-
gual descriptions of the conceptualizations they provide, since they are to be used in
a multilingual scenario. However, this means that in their design phase, language-
and culture-specific concepts are to be stored externally or removed, so as to enable
possible reuse, and only those common concepts are captured in the ontology.

Target audience: These guidelines are intended particularly for ontology
developers, who are concerned with the design and development of ontologies. In
addition, they are intended for international institutions interested in planning,
designing, and implementing internationalized domain ontologies.

Related work: These guidelines provide recommendations for naming ontology
elements. The key goal here is that the ontology elements be clear (avoid ambiguity)
and simple (easy to translate to other languages). Recently, some approaches have
been defined (Flied et al. 2007; Schober et al. 2007), which propose naming
conventions for ontology terms.

8.2.2 Guidelines for the Localization of Existing Ontologies

Objective and scope: The aim is to carry out the localization process of ontologies
already conceptualized. Usually, these ontologies are designed without taking into
account the multilingual and localization aspects. Therefore, these guidelines aim at
reducing costs, improving its quality, and increasing the consistency of the locali-
zation activity.

Target audience: These guidelines are particularly intended for ontology
stakeholders such as localization managers, translators, and reviewers, who are
concerned with the ontology localization activity. In addition, they are intended for
communities interested in localizing ontologies and those international firms that
may promote multilingualism in their working environments for a variety of
reasons.

Related work: These guidelines describe different stages for the localization
activity. At each stage of the process, they explain the activities or tasks to be
performed with the same style and granularity level as used by software develop-
ment methodologies. To the best of our knowledge, no guidelines exist for
supporting the ontology localization activity. However, software localization
methodologies could be adapted for ontology localization, as these methodologies
are very general.

8 Ontology Localization 175
8.2.3 Guidelines for Realizing a Robust Localization Process

Objective and scope: These guidelines are meant to help reach a robust localization
process within an organization. Usually, most organizations pass through different
stages of maturity before reaching a robust localization process. Therefore, these
guidelines describe behaviors or best practices adopted by successful projects.

Target audience: We envisage that they can be intended for organizations
dedicated to the development of Semantic Web applications that require the use
of multilingual ontologies.

Related work: These guidelines should describe different maturity levels used to
improve and appraise the ability of an organization to perform the functions
required in the ontology localization activity. The localization maturity model
(DePalma 2007) (LMM) is a new advance in the deployment of software localiza-
tion. While LMM compliance will not guarantee success, it does increase the
likelihood of succeeding by helping planners understand what others have experi-
enced and learned before them. As this methodology is quite general, we believe it
can be adapted to ontology engineering methodologies.

In this chapter, we propose general guidelines that cover the localization of
existing ontologies (second group above). In the following sections, we will define
the actors involved in the different tasks of the ontology localization activity. Then,
we will describe in detail the tasks for carrying out this activity.

8.3 Methodological Guidelines for Ontology Localization

In this section, our purpose is to explain the guidelines set out to help ontology
developers in the ontology localization activity. The principles that guide the
construction of such guidelines are the following:

e The guidelines should be general enough in the sense that they should help
software developers and ontology practitioners to localize ontologies in different
natural languages and domains.

¢ The guidelines should define each activity or task precisely; they should clearly
state its purpose, its inputs and outputs, the actors involved, when its execution is
more convenient, and the set of methods, techniques, and tools to be used for
executing them.

» To facilitate a prompt assimilation of the ontology localization by software
developers and ontology practitioners, we present the guidelines in a prescriptive
way, not specifically oriented to researchers.

First, we present the different kinds of actors involved in the ontology localiza-
tion activity. Then, we describe the guidelines for localizing ontologies to different
natural languages.

176 M. Espinoza Mejia et al.
8.3.1 Ontology Localization Actors

The different tasks involved in the ontology localization activity are carried out by
different actors according to the kind of roles that must be performed in each task.
In the following, we describe briefly the main actors involved in the localization
activity:

e Domain experts and ontology development team. The domain expert or experts
and the ontology development team (ODT) are responsible for performing one
of the first tasks in the ontology localization activity. Their work consists of
selecting the right resources and tools to perform the ontology localization
activity.

e Localization manager. The localization manager plays a key role in the locali-
zation activity, as he or she must prepare all technical aspects of the localization
activity, including the localization material (e.g., identifying the ontology
elements to be localized) and distributing it to the localization team, setting up
the localization team, as well as assigning and monitoring the tasks. Another task
to be performed by the localization manager is the updating and final quality
revision of the translated ontology.

» Linguists. These specialists can either be:

— Translators (localization specialist). Once the localization manager assigns
the localization tasks to each member, the translator or localization specialist
takes care of discovering the most appropriate translations for each ontology
element.

— Reviewers (QA specialist). The reviewer or quality assurance (QA) specialist
reviews the translated ontology elements. A reviewer does not necessarily
focus on the quality of the translations but on the linguistic and stylistic
quality of the translated ontology elements. The revision is a final language
check for spelling errors, grammar mistakes, and consistency.

The current industry trend is to use external localization service providers in the
translation task to avoid the high fixed cost of using in-house translators and use
translators focused on the target markets and knowing the up-to-date usage of
particular languages. We conceived a similar situation for ontology localization,
in which translators and reviewers can be internal or external to the organization
that develops the ontology and who work in a distributed environment. Figure 8.1
shows the high-level overview of the people who are directly involved in the
ontology localization activity, both on the localization service and on the ontology
publisher side. The localization manager and the ontology expert are responsible for
the communication between both groups. In Fig. 8.1, the quality assurance depart-
ment (QA department) performs a final quality check on all localized ontology
elements received from the localization service provider to find out possible
problems in the translations.

8 Ontology Localization 177

4 N)

Localization | _ _ _ = Ontology
Manager Expert and ODT
5 QA
Translators Reviewers Department
Localization Service Onlology Publisher

Fig. 8.1 Actors involved in the ontology localization activity

8.3.2 Ontology Localization Guidelines

The ontology localization guidelines have been created in the context of the NeOn
Methodology (see Chap. 2) to build ontology networks. Thus, taking into account
the aforementioned methodological work, we provide the filling card for the
ontology localization shown in Fig. 8.2. Such filling card explains the information
of this activity in a practical and easy way.

The methodological guidelines for carrying out the ontology localization activ-
ity can be seen in Fig. 8.3. The workflow shows the main tasks involved, their
inputs, outputs, and actors. The result of this activity is an enriched ontology
(multilingual) with linguistic information (into target language) associated to
each localized term.

The tasks for carrying out the ontology localization activity are explained in
detail in the following:

Task 1. Select the most appropriate linguistic assets.

The goal of this activity is to select the most appropriate linguistic assets that help
in the localization activity. Domain experts and ODT carry out this activity, taking
as input the ontology to be localized. The activity output is a set of linguistic
assets that can help to reduce the cost, improve the quality, and increase the
consistency of the localization activity. The choice of a specific resource is
performed manually, taking into account that the linguistic assets comply with
the following characteristics:

» Consensus. Resources used should contain multilingual terminology consensu-
ally accepted by the community (authoritative resources), thus the effort and
time spent in finding out adequate translation labels for ontology terms would
decrease considerably. In this sense, internal resources, such as terminology

http://dx.doi.org/10.1007/978-3-642-24794-1_2

178 M. Espinoza Mejia et al.

Ontology Localization

Definition
Ontology localization refers to the adaptation of an ontology to particular
language and culture

Goal

To translate an ontology expressed in a source natural language into a
target natural language.

Input Qutput

An ontology whose ontology An ontology whose ontology labels
labels are expressed in one or have been translated to the target
several natural languages, natural language.

from which one is selected as

The resulting translations are added
source natural language.

to available labels of the orginal
ontology already in one or several
languages.

Who

Software developers and ontology practitioners, who form part of the

ontology development team, in collaboration with domain and linguistic
experts.

When

Once the conceptual model of the ontology is stable, with the aim of
avoiding spending time and resources in a model that is not definitive.

Fig. 8.2 Ontology localization filling card

databases, glossaries, etc., maintained by the organization or individual itself are
good representatives of consensual resources.

* Broad coverage. Resources should cover translation information from general to
specific domain labels. It is advisable to use domain-specific resources (e.g., a
glossary of financial terms or a legal dictionary) when translating domain
ontologies, since they will contain the appropriate terminology. Also, since
each resource supports different features and language sets, the selected
resources should cover all target languages for current and possible future
ontology localization projects.

8 Ontology Localization 179

Ontology

m Task 1. Select the most

Domain Experts and ODT appropriate linguistic assets

m Task 2. Select ontology

label(s) to be localized

Localization Manager

Y
ﬁ Task 3. Obtain ontology |
label translation(s) 0
Translator(s)
Y
Task 4. Evaluate label
: ND
translation(s)

Translator(s) andior Reviewer(s)

Are
translations
correct?

YES

v
m Task 5. Ontology update

Localization Manager

Multilingual
Ontology

e High precision. Resources used for ontology localization should be able to

identify the morphological and lexicographical differences that exist between
different natural languages.

Fig. 8.3 Tasks for ontology localization

To select the appropriate translation tool for performing the ontology localiza-
tion activity, the preliminary guidelines presented in Table 8.1 are recommended.

180 M. Espinoza Mejia et al.

Table 8.1 Ontology localization task and its corresponding tool

Type of ontology Translation tool Comments
term

Ontology concepts, Ontology localization tool =~ The main difficulty at this level is related to
attributes, and the fact that labels for concepts, attributes,
relations and relations are usually short (isolated)

labels, not inserted in a sentence or text.
Therefore, a tool designed for the purpose
of translating ontologies is required at this
stage to extract the label specification and
its context correctly. The label context is
in its turn required for discovering the
label sense (for disambiguation purposes)

Consider for example the word “plant,”
which depending on the context can be
translated into Spanish as “planta” in the
sense of “living organism” or “fabrica” in
the sense of “industrial plant”

Ontology instances Computer-aided translation The main complication at this level is to
tool or ontology decide which instances should be
localization tool translated and which ones should not

A big part of the instances are represented by
proper names and, therefore should not be
translated (e.g., a label containing
“Michael Schumacher” should not be
translated). However, other instances
such as “South America” should be
translated to other natural languages, as
they have traditionally well-established
and accepted translations

Ontology term Translation memory tool The major cost involved at this level is the
annotations difficulty in translating correctly long

pieces of text

To provide a human-readable description of a
term, the RDF(S) and OWL ontology
languages use for example the rdfs:
comment statement, where a textual
comment can be added. Thus, this level
involves the difficulty to translate a whole
sentence (not isolated labels or terms)
which is part of the annotation of
concepts, attributes, or instances in
ontologies

Task 2. Select ontology label(s) to be localized.

The goal of this task is to select the ontology label(s) to be localized. The localiza-

tion manager carries out this task, taking as input an ontology whose labels are

expressed in a source natural language and need to be localized to a target language.
By default, all labels of concepts, attributes, relations, and instances will be

selected to be translated. However, it may happen that the ontology has been

partially localized, and only the remaining labels need to be translated or

8 Ontology Localization 181

retranslated if, according to the localization manager, they have not been properly
translated.

The task output is a set of ontology labels and their context’. The context
describes the meaning of a specific label in the ontology and consists of a small
excerpt of ontology labels around the ontology label itself (e.g., direct hypernym
labels, hyponym labels, etc.).

Task 3. Obtain ontology label translation(s).

For each ontology label, the goal of this task is to obtain the most appropriate
translation in the target language. Translators carry out this task, taking as input the
ontology label(s) to be localized. Different machine translation (MT) techniques
(Stroppa et al. 2007; Gimpel and Smith 2008; Sato and Saito 2002) can be used to
perform this task in an automatic manner. Basically, the MT techniques proposed in
the literature ground their operation on some lexical or semantic resources for
discovering the most appropriate translations. Thus, we can identify translation
techniques based on dictionaries, terminologies, thesaurus, online services, corpora,
ontologies, etc. The identification and combination of techniques will depend on
two factors:

o The type of domain knowledge represented in the ontology. We mainly consider
here two types of domains: internationalized domains, that is, domains whose
categorization usually finds consensus among different cultures, and culturally
dependent domains, that is, domains whose categorization is normally
influenced by a certain culture.

On the one hand, ontologies categorized within the first domain type will
require translation techniques that allow identifying direct correspondences
between words. Techniques based on linguistic resources such as dictionaries,
terminologies, etc., can be used in this case. On the other hand, ontologies
representing a culturally dependant domain (e.g., the judiciary), in which
categorizations tend to reflect the particularities of a certain culture, will require
translation techniques that allow identifying semantic correspondences.

e The type of ontology element to be localized. A second factor to be considered is
the type of ontology elements to be localized. Depending on the ontology
elements considered for localization, the algorithms of localization can be
more or less complex. For example, the localization of ontology concepts and
relations has a higher level of complexity than the localization of ontology
instances because a big part of the instances are represented by proper names
and have previously agreed translation or should not be translated.

The task output is a ranked set of labels in the target language for each ontology
label(s).

Task 4. Evaluate label translation(s).

STn NLP, context refers to the environment in which a word is used and provides the information
needed for figuring out the meaning of homonyms or polysemic words.

182 M. Espinoza Mejia et al.

Translation quality measurements must accomplish two basic criteria:

e Repeatable. Two assessments of the same sample must yield similar results.
* Reproducible and objective. Different evaluators should arrive at a similar
assessment for the same piece of translation.

The goal of this task is to evaluate label translations in the target language. At
this stage, translators and/or reviewers carry out this activity taking as input the
labels in the target language. The output of this task is a set of labels with its
corresponding evaluation. Different linguistic criteria can be used for the evaluation
of label translations. We propose two levels of evaluation criteria and for each level
a set of tests, which should be automated as far as possible.

e Semantic fidelity evaluation. The aim of this evaluation criterion is to control
that the label translation is conceptually equivalent to the ontology label in the
source language. A way of evaluating the semantic fidelity is to perform a
backward translation test, which provides a quality-control step demonstrating
that the quality of the translation is such that the same meaning is derived when
the translation is moved back into the source language.

e Stylistic evaluation. The aim is to control the clarity and syntax of the target
language, which depends on the style of the source language and on the features
of the individual idiolect. Special attention should be paid to certain stylistic
aspects (e.g., “transport service” instead of “service of transport”), misspellings,

99 <6

and typos (e.g., “women” instead of “woman,” “ig” instead of “big,” etc.).

Task 5. Ontology update.

The goal of this task is to update the ontology with the label translations obtained
for each localized label. The localization manager/QA department carries out this
task taking as input the selected label translations. The activity output is an
ontology enriched with labels in the target language associated to each localized
term. The ontology enrichment can follow two different modeling options. If only
labels in different languages are to be included in the ontology, we can make use of
the rdfs:label and rdfs:comment properties of the OWL language (model 1). If, on
the other hand, the final application demands further linguistic data than just labels,
an external model capturing linguistic descriptions can be associated to the ontol-
ogy (model 2). The choice of the modeling option for the linguistic information will
be mainly determined by two factors:

e The type of domain of knowledge represented by the ontology
» The amount of linguistic information required by the final application

Taking these variables into account, we envision the two following scenarios:

o If the conceptualization represents a consensual domain, we can opt for the
inclusion of multilingual information in the ontology (model 1) or for the
association of an external model with the ontology (model 2). The decision
between these two options will depend on the linguistic needs of the final
application. An illustrative example of model 2 can be seen in Fig. 8.9

8 Ontology Localization 183

(see Sect. 8.4). If morphosyntactic data are needed for the purpose of informa-
tion retrieval or information extraction, for example, the most suitable option
will be the association of an external model. In the state of the art, we find some
suitable models in this sense, such as LingInfo (Buitelaar et al. 2006), which
enriches the ontology with morphosyntactic information, or LexInfo (Buitelaar
et al. 2009), which additionally accounts for the syntactic realization of ontology
terms in a certain linguistic structure.

e If the conceptualization represents a culturally dependent domain, and concep-
tualization mismatches among different cultures exist, we will opt for the
association of an external model that permits to account for those cultural
divergences at the terminological layer (model 2). In this sense, we refer to the
LIR (linguistic information repository) (Peters et al. 2007; Montiel-Ponsoda
et al. 2010), a model that permits to account for term variants within one
language and cultural divergences across languages at the terminological layer.

8.4 Example

In this section, we include an example of the use of the proposed guidelines for the
ontology localization activity and the obtained results. In particular, the example
refers to the automatic localization of the “economy activity” ontology, an ontology
developed in the SEEMP® project, using the LabelTranslator system.

LabelTranslator has been designed with the aim of automating ontology locali-
zation, and it has been implemented as a plugin of the ontology editor NeOn
Toolkit. In its current version, it can localize ontologies in English, German, and
Spanish. In its design, the guidelines proposed above have been followed.

In order to illustrate the results obtained by our system, we will consider the
extract of the sample economy activity ontology shown in Fig. 8.4. Let us suppose
that the user wants to translate the term “bars” from English into Spanish.
According to the domain of the sample ontology, the correct translation of the

Sector

Construction Hotels_and_restaurants Education

Canteens_and Bars Hotels Restaurants
_catering

Fig. 8.4 Extract of the sample economy activity ontology

S http://droz.dia.fi.upm.es/hrmontology/

http://droz.dia.fi.upm.es/hrmontology/

184 M. Espinoza Mejia et al.

selected term should refer to a room or establishment where alcoholic drinks are
served over a counter, not to a horizontal rod that serves as a support for gymnasts
as they perform exercises to a rigid piece of either metal or wood, etc.

In the following, we briefly describe how the tasks are performed by our system
and which techniques and tools are used for each task.

Task 1. Select the most appropriate linguistic assets.

The linguistic assets used by the current version of the LabelTranslator plugin are
multilingual resources (Wiktionary or IATE), translation web services (Google
Translate, BabelFish, etc.), Semantic Web resources (EuroWordNet and third-
party resources retrieved through Watson’, a search engine which indexes many
ontologies available on the web), and remote lexical resources. The addition of
further domain-specific resources is foreseen for domain ontologies.

Task 2. Select ontology label(s) to be localized.

Once an ontology has been created or imported in the NeOn Toolkit,
LabelTranslator allows users and domain experts to manually/automatically sort
out the ontology elements that should undergo localization. By right clicking on a
frame (concept, attribute, or relation), the Translate action performs the translation
of an ontology label (see Fig. 8.5).

For each ontology element, LabelTranslator retrieves its local context, its neigh-
bor terms, which is interpreted by the system using a structure-level approach. In
our approach, the context of an ontology term is used to disambiguate the lexical
meaning of an ontology term. To determine the context of an ontology term, the
system retrieves the labels of the set of terms associated with the term under
consideration. The list of context labels comprises a set of names which can be
direct label names and/or attributes label names, depending on the type of term that
is being translated.

To mitigate risks associated with system performance, LabelTranslator limits the
number of context labels used to disambiguate the translated label. Every context
label is compared with the ontology label under consideration using a measure based
on normalized Google distance (NGD) (Cilibrasi and Vitanyi 2004). NGD measures
the semantic relatedness between any two terms, considering the relative frequency
in which two terms appear in the web within the same documents. Those labels with
the higher values of similarity are chosen (maximum 3%).

In Fig. 8.6, on the left, the dashed area represents all the context labels found for
the ontology label “bars.” Our prototype finds nine labels, but only selects two (see
the dotted area) to disambiguate the term. In the table on the right, we show for each
type of ontology term (concept, attribute, or relation) the context labels that could

7 http://watson.kmi.open.ac.uk/WatsonWUI/

8 The number of context labels used to disambiguate a translated label depends on the ontology
domain. However, in our experiments we found that a threshold of three context labels reduce the
time of response of the overall system and it is compatible with the range of good responses found
by comparing the results with human evaluations.

http://watson.kmi.open.ac.uk/WatsonWUI/

8 Ontology Localization 185

& "Ontology Navigator Z‘J =0
Construction -
@ Education

Higher_education
Electricity_gas_and_water_supply
@ Electricity_gas_steam_and_hot_water_supply
@ Extraterritorial_organizations_and_bodies
@ Financial_intermediation
Financial_intermediation_except_insurance_and_pension_funding
@ Fishing
@ Fishing_fish_farming_and_related_service_activities
@ Health_and_social_work
Hotels_and_restaurants

@ Bars
@ Car New Class CtisN fion
@ Cant Ld New Individual Ctrl+Shift+N
@ Hot¢ @2 New Project...
Rest 3
@ Mining| ¥ Delete Delete
[§ Mini
gher": Refactor »
[} Pub!ic-z Rename... F2
. _G Real_es? o =
_| Object Properti
(] Data Properties &= Expost...
_\J Annotation Pro 4% Show in Visualizer
__| Datatypes
b Refresh FS
i Occupation_Ontol i
2 univ-bench.owl Translate

Fig. 8.5 Screenshot of the ontology navigator view with the Translate action used by the
LabelTranslator plugin

be extracted. For instance, for the concept “bars” the system retrieves its
hypernyms, hyponyms, attributes, and sibling concepts.

Task 3. Obtain ontology term translation(s).

In order to obtain the most appropriate translation for each ontology element in the
target language, LabelTranslator uses the following techniques in the indicated
order:

» In Step 1, the system obtains equivalent translations for all selected labels by
accessing the linguistic assets listed in Task 1.

» In Step 2, the system retrieves a list of semantic senses for each translated label,
querying Watson and EuroWordNet. Each sense is represented as a tuple:

sk = <s, grph, descr>

where s is the list of synonym names, grph describes the sense by means of the
hierarchical graph of hypernyms and hyponyms of synonym terms found in one

186 M. Espinoza Mejia et al.

Sector Context labels. Oﬁiolaﬂ terms
T e T y
// | ‘““x.:‘ e Concepts | Attributes | Relations
/” SRS S o "“"""H. X X

Ee) - XL x X
Constructuon Hotels and reslaurants Educallon Attributes X

\‘h\ Domain [x X
/ HH‘““ 5 Range | X X
Sibblings X

_:" Canteens and '-l Hotels Resiaurants
catenng = -

Fig. 8.6 Context of the ontology label “bars”

or more ontologies, and descr is a description in natural language of such a
sense. As matching terms could correspond to ontology concepts, attributes, or
instances, three lists of possible senses are associated with each translated label t:
g.coneept g auribute g instance - Njgtice that to perform cross-language sense
translations, the external resources are limited to those resources that have
multilingual information like EuroWordNet.

The multilingual retrieval of a word sense (synset) in EuroWordNet is done
by means of the Interlinguallndex (ILI) that serves as a link among the different
wordnets. For example, when a synset, such as “bar” with the meaning “the
professional position,” is retrieved from the English wordnet, its synset ID is
mapped through the ILI to the synsets IDs of the same concept in the different
language-dependent wordnets (German, Spanish, etc.) that describe the same
concept but contain the word description in its specific language. A similar
retrieval process is used in the case of multilingual ontologies but using the
references between concepts and labels as offered by the standard rdfs:comment
and rdfs:1abel properties.

Coming back to our example, in Fig. 8.7, we show the translations of the
ontology label “bars” from English into Spanish; our prototype finds eight
translations, but we only show three. Notice that t; has the desired semantics
according to the similarity with the lexical and semantic ontology context (see
Fig. 8.4).

e In Step 3, the system uses a disambiguation method to sort the translations
according to their context. LabelTranslator carries out this task in relation to the
senses of each translated label and the sense of the label under consideration.
The ranking method we use to compare structures relies on an equivalence
probability measure between two candidate structures, as proposed in Trillo
et al. (2007). The aim is to discover whether the semantics of two ontology terms
represent the same sense. At this stage, domain experts and translators may
decide to choose the most appropriate translation among the ranked ones. By
default, the system will consider the one in the highest position.

In Fig. 8.8, we show a sample of the equivalent translations obtained for the
term “bars.” Notice that the translations obtained are ranked according to the
ontology context.

8 Ontology Localization

187

area
|
cuarto

t, = <bares; 5,°°"*"= {[bares,...,, cantinas], bar , “Un establecimiento... las bebidas...”}>

bar_cocteles bar_expendio bar_publico

implemento

|
t; = <barras; s,°°***'= {[barras,..., barrotes], barra , “Unapieza de metal..."}>

manubrio ... barra_toalla

aparatos_gimnasia
[

ts = <barras paralelas; 5,°**"'= {paralelas, paralelas, “Una barra... soporte gimnastas..."}>

barras_asimetricas

Fig. 8.7 Some translations of the ontology label “bars” into Spanish

R -
: Source Language:
Target Language:

bares barras paralelas barras|larguero compds
Translations

U

bares

barras paralelas

U

barras

)

larguero

glo

compas

Fig. 8.8 Equivalent translations for the term “bars”

Task 4. Evaluate term translation(s).

The current version of LabelTranslator does not provide a method for semiauto-

matically evaluating the translations obtained in the previous step. Therefore,

we

used a manual evaluation to perform this task. Based on the NeOn methodological

guidelines, we would identify the following situation:

188 M. Espinoza Mejia et al.

Table 8.2 Ontology localization task and its corresponding tool

Original term (EN) Translation (ES) Backward translation (EN)
Bars Bares Bars
Drinks cabinet
Barras paralelas Parallel bars
Barras Bar
Rod
Stick
Loaf

e Semantic fidelity evaluation. In order to evaluate the semantic fidelity of the
translation, we would implement the “backward translation” criteria (Shigenobu
2007). Table 8.2 shows the semantic fidelity evaluation results (only few cases
have been analyzed) for some terms translated into Spanish. The middle column
shows the translations obtained by LabelTranslator in Spanish.

In many cases, the backward translation did not match exactly the original
meaning. Thanks to a deeper analysis, which took into consideration the context
(hotels and restaurants), we identified that the translation “barras,” for example,
did not match the original meaning.

e Stylistic evaluation. The current version of LabelTranslator does not support an
automated stylistic evaluation. This task was manually carried out by an expert
in the domain. The translations proposed were consistent in all cases, according
to the context of the ontology.

Task 5. Ontology update.

The ontology is updated with the resulting linguistic data, which are stored in the
LIR model, a separate module adopted by the LabelTranslator NeOn plugin for
organizing and relating linguistic information within the same language and across
languages to domain ontologies. Figure 8.9 shows the linguistic information page of
the sample term “bars.” The linguistic page uses a model based on a modular
approach to store the linguistic information associated to each ontology term. So,
one can see that the translation proposed, “bares,” is the full form of a term, is
masculine, and is considered the main entry in this domain.

These guidelines have not been formally evaluated. Nevertheless, as shown
above, we believe that the guidelines proposed are effective because following
the different tasks and obtaining the expected results in each task they ensure that
the progress is being achieved and that the goals of the localization activity are met
at the end of it.

However, it is worth mentioning that the applicability of these guidelines has
also been proved in one of the use cases of the NeOn project (Food and Agriculture
Organization of the UN). In order to evaluate the quality of the translations obtained
by our system, different experiments were designed. The experiments were carried
out by comparing the translations provided by an expert (gold standard) with
the translations provided by the ranking algorithm used in LabelTranslator.

8 Ontology Localization 189

I3 Entity Properties 71 A\ Ontelogy Vieualizer =0
Idertifie
URE <hitp//wwwrwebede T Activity_Ontology®E,
Lexical Entries
Friries Lewieal Erviry Relatisnskips
Mentiien Part Of Speech Langusge Identifie:
LesicHEnty-1 noun English x Hymonymi
Lodcallntry-2 noun Spanah ® - Trandation:

LexscaEntey-1 x

Antonyms

Scientific names
~ Lexkalizations
Entsies Loicsiicotion Term type Lesicakzation Vasiarts
Label G.Mumbsr Gender Didiect Langua. Labe
Acranym Abbredation <
Eares Plural Museub. Spanish X T G Acromyms
« om ot for
s " Short Foms
Dialect Vasiant
& Common Name ©) Scantific Name Equatient
Formulaz
7] Main Entry Formule Legical Expressions

Spelling Variarts
Symbels
Transhterstion;

Dialectal Variart) M.Word Expression
Trandeeration] Logical Expression

Syrabel Eqastien

Fig. 8.9 Linguistic information associated to the ontology term “bars”

The ontology corpus used for the evaluation was selected from the set of the
KnowledgeWeb’ ontologies used to manage EU projects. The experimental results
showed that our system suggested the correct translation 72% of the times. Also, the
recall values obtained suggested that a high percentage of the correct translations
were part of the final translations shown to the user. More details about these
experiments can be found in Dzbor et al. (2009).

8.5 Conclusions

In this chapter, we have presented the methodological guidelines that we propose to
help ontology practitioners in the localization activity. These guidelines assume
that users have some knowledge on ontology localization. However, the guidelines
are presented so that nonexperts can understand them. To the best of our knowl-
edge, the study presented here is the first attempt to offer guidelines for the
localization of ontologies.

These guidelines have not been formally evaluated. Nevertheless, we have
validated their applicability using them in one of the ontologies used in the
SEEMP project. We cannot assure that the guidelines will be valid in all localiza-
tion scenarios, but further validation of the guidelines will be possible in future
ontology localization projects with different settings.

° http://knowledgeweb.semanticweb.org/

http://knowledgeweb.semanticweb.org/

190 M. Espinoza Mejia et al.

The localization guidelines also meet the sufficient conditions of any methodo-
logical guidelines for localizing an ontology to different natural languages. Specifi-
cally, the ontology localization guidelines are:

» Grounded on existing practices because they have been defined by combining
tasks of existing methodological guidelines

e Collaborative because they contemplate the participation and consensus of
different actors distributed geographically

* Open because they do not limit the types of ontologies or the specific ontology
terms (classes, object, or datatype properties) to be considered in localization nor
the resources that should be employed in the actual translation

e Usable because they are clearly documented and their use does not involve a
great effort

The applicability of the ontology localization methodology has been proved in
the SEEMP project where this methodology has been used for the localization of
the “occupation” ontology, by means of using the guidelines proposed in this
chapter. In this project, we have proven that it is feasible to perform a manual
localization using basic guidelines instead of a tool-focused approach.

References

Alonso LS, Bas LJ, Bellido S, Contreras J, Benjamins R, Gémez JM (2005) Deliverable 10.7
financial ontology, FP6-507483. In: WP10: case study eBanking

Benjamins R, Contreras J, Corcho O, Gémez-Pérez A (2002) Six challenges for the semantic web.
In: Proceedings of the first international semantic Web conference (ISWC 2002). Springer,
Berlin

Buitelaar P, Sintek M, Kiesel M (2006) A multilingual/multimedia lexicon model for ontologies.
In: Sure Y, Domingue J (eds) The semantic Web: research and applications, 3rd European
semantic Web conference (ESWC), Budva, Montenegro. Lecture notes in computer science.
Springer, Berlin, pp 502-513

Buitelaar P, Cimiano P, Haase P, Sintek M (2009) Towards linguistically grounded ontologies. In:
Proceedings of 6th annual European semantic Web conference, (ESWC). Lecture notes in
computer science. Springer, Berlin, pp 111-125

Caracciolo, C, Sini, M, Keizer, J (2007) Requirements for the treatment of multilinguality in
ontologies within FAO. In OWLED 2007 Workshop on OWL, Innsbruck (Austria). http://hdl.
handle.net/10760/15660

Chun Ch, Wenlin L (2002) The translation of agricultural multilingual thesaurus. In: AFITA 2002,
Asian agricultural information technology & management. Proceedings of the third Asian
conference for information technology in agriculture, Beijing, pp 526-528

Cilibrasi R, Vitanyi P (2004) Automatic meaning discovery using google, manuscript, CWI

Cui G, Chen F, Chen H, Li S (2004) OntoEdu: A Case Study of Ontology-based Education Grid
System for E-learning. In The Official Journal of Global Chinese Society FOR Computers in
Education (GCCCE journal), Volume 2, pp 59-72

DePalma DA (2007) Moving Beyond the Ad Hocracy of Localization. Multilingual Localization:
Getting Started Guide, pp. 68

Dzbor M, Suarez-Figueroa MC, Blomqvist E, Lewen H, Espinoza M, Gémez-Pérez A, Palma R
(2009) D5.6.2 Experimentation and Evaluation of the NeOn Methodology, NeOn Project

Flied G, Kop C, Vohringer J (2007) From OWL class and property labels to human understandable
natural language. In: Proceeding of 12th international conference on applications of natural

http://hdl.handle.net/10760/15660
http://hdl.handle.net/10760/15660

8 Ontology Localization 191

language to information systems. Lecture notes in computer science 4592. Springer, Berlin,
pp 156-167

Gimpel K, Smith N (2008) Rich source-side context for statistical machine translation. In:
StatMT’08: proceedings of the third workshop on statistical machine translation. Association
for Computational Linguistics, Morristown, NJ, USA, pp 9-17

Guyot J, Radhouani S, Falquet G (2005) Ontology-based multilingual information retrieval. In:
CLEF working notes multilingual track, pp 21-23

Liang A, Sini M (2006) Mapping AGROVOC and the Chinese agricultural thesaurus: definitions,
tools, procedures. New Rev Hypermedia Multimedia 12(1):51-62

Liang A, Sini M, Chang C, Li S, Lu W, He C, Keizer J (2005) The mapping schema from Chinese
agricultural thesaurus to AGROVOC. In: 6th agricultural ontology service (AOS) workshop on
ontologies: the more practical issues and experiences, Vila Real, pp 1-6

Localization Industry Standards Association (LISA) What is globalization? http://www.lisa.org/
What-Is-Globalization.48.0.html?&no_cache=1&sword_list[]=internationalization

Montiel Ponsoda, E, Aguado de Cea, G, Gomez-Pérez, A, and Peters, W (2010) Enriching
Ontologies with Multilingual Information, Journal of Natural Language, Cambridge University
Press, pp 1-27

Pazienza M, Stellato A, Zanzotto F, Henriksen L, Paggio P (2005) Ontology mapping to support
ontology based question answering. In: Proceedings of the 2nd meaning workshop, Trento

Peters W, Montiel-Ponsoda E, Aguado de Cea G (2007) Localizing ontologies in OWL. In:
Proceedings of OntoLex’07, co-located at the 6th international semantic web conference
ISWC + ASWC 2007, Busan, South Korea

Sato K, Saito H (2002) Extracting word sequence correspondences with support vector machines.
In: Proceedings of the 19th international conference on computational linguistics. Association
for Computational Linguistics, Morristown, NJ, USA, pp 1-7

Schober D, Kusnierczyk W, Lewis SE, Lomax J, Members of the MSI, PSI Ontology Working
Group, Mungall C, Rocca-Serra P, Smith B, Sansone SA (2007) Towards naming conventions
for use in controlled vocabulary and ontology engineering. In Bioontology SIG Proceedings
(ISMB 2007), Vienna, Austria, pp. 14

Segev A, Gal A (2008) Enhancing portability with multilingual ontology-based knowledge
management. Decis Support Syst 45:567-584

Shigenobu T (2007) Evaluation and usability of back translation for intercultural communication.
In: Aykin N (ed) Proceedings of the 2nd international conference on usability and internation-
alization (UI-HCII’07). Springer, Berlin/Heidelberg, pp 259-265

Sosnovsky S, Gavrilova T (2006) Development of Educational Ontology for c-programming. Int J
Inf Theor Appl 13:303-308

Stroppa N, van den Bosch A, Way A (2007) Exploiting source similarity for SMT using context-
informed features. In: Proceedings of the 11th international conference on theoretical and
methodological issues in machine translation, Skvde, Sweden, pp 231-240

Tjoa AM, Andjomshoaa A, Shayeganfar F, Wagner R (2005) Semantic web challenges and new
requirements. In: Proceedings of the 16th international workshop on database and expert
systems applications (DEXA’05), Copenhagen

Trillo R, Gracia J, Espinoza M, Mena E (2007) Discovering the semantics of user keywords.
J Univers Comput Sci 13(12):1908-1935

Vas R (2007) Educational ontology and knowledge testing. Electron J Knowl Manage 5
(1):123-130

Yang C, Li KW (2003) Automatic construction of English/Chinese parallel corpora. J] Am Soc Inf
Sci Technol 54(8):730-742

Zhang Z, Zhang C, Ong SS (2002) Building an ontology for financial investment. In: Intelligent
data engineering and automated learning (IDEAL), data mining, financial engineering, and
intelligent agents, second international conference. Springer, Berlin, pp 308-313

http://www.lisa.org/What-Is-Globalization.48.0.html?&no_cache=1&sword_list[]=internationalization
http://www.lisa.org/What-Is-Globalization.48.0.html?&no_cache=1&sword_list[]=internationalization
http://www.lisa.org/What-Is-Globalization.48.0.html?&no_cache=1&sword_list[]=internationalization
http://www.lisa.org/What-Is-Globalization.48.0.html?&no_cache=1&sword_list[]=internationalization

Chapter 9
Ontology (Network) Evaluation

Marta Sabou and Miriam Fernandez

Abstract Ontology evaluation refers to the activity of checking the technical
quality of an ontology against a frame of reference. As such, it is of core importance
for ontology engineering supporting scenarios such as ontology validation, knowl-
edge selection, or the evaluation of knowledge extraction algorithms. In this
chapter, we provide methodological guidelines for evaluating stand-alone onto-
logies as well as ontology networks. Our goal is not only to present the NeOn
perspective on this issue but to also provide a practical outlook to the vast area of
work in the area of ontology evaluation. Without performing an extensive state-of-
the-art analysis of this research field, we aim to illustrate how various evaluation
methods developed by the NeOn project, and not only, can be used at different
stages of the evaluation process. We conclude the chapter with some concrete
examples of performing ontology evaluation.

9.1 Motivation

Ontology (network) evaluation plays a key role in ensuring the quality of ontology
networks, and it is employed within various ontology engineering scenarios. The
main scenario is that of ontology development, namely the process during which
the ontology is built. The goal in this case is to assess the quality and correctness
of the obtained ontology. The process of ontology development can be achieved
through different methods and the evaluation of the obtained ontology changes

M. Sabou ()
MODUL University Vienna, Am Kahlenberg 1, 1190 Vienna, Austria
e-mail: marta.sabou@modul.ac.at

M. Fernandez

Knowledge Media Institute (KMi), The Open University, Walton Hall, Milton Keynes,
MK7 6AA, UK

e-mail: m.fernandez@open.ac.uk

M.C. Suarez-Figueroa et al. (eds.), Ontology Engineering in a Networked World, 193
DOI 10.1007/978-3-642-24794-1_9, © Springer-Verlag Berlin Heidelberg 2012

mailto:marta.sabou@modul.ac.at
mailto:m.fernandez@open.ac.uk

194 M. Sabou and M. Fernandez

accordingly. For example, an ontology could be obtained through automatic
extraction from representative data sources such as text (Cimiano and Volker
2005) or databases (Cerbah 2008). In this case, an important research question
refers to evaluating ontology extraction algorithms with respect to the quality of the
produced artifacts, as well as comparing the various algorithms to each other.
Ontology evaluation can often be used as a means to automatically assess the
quality of the output of such algorithms.

Alternatively, the ontology development phase could also involve an ontology
evolution activity where a base ontology is extended, either manually or through
automatic means, in order to cover new domain terminology or to correspond to
new application requirements (Chap. 11). In this case, the goal of ontology evalua-
tion is to assess whether the new additions have impacted on the quality of the base
ontology.

Additionally to ontology development, another scenario where ontology evalu-
ation plays an important role is that of ontology selection. With the recent advances
in the area of the Semantic Web, in particular the proliferation of online available
ontologies and semantic search engines such as Watson' or Sindice?, an increased
number of applications are built by reusing external knowledge rather than building
it from scratch (d’Aquin, et al. 2008). Examples include cross-ontology question
answering (Lopez et al. 2010), relation detection, ontology evolution (Zablith et al.
2010), or ontology matching (Sabou et al. 2008). For these applications, it is crucial
to evaluate, often entirely automatically, the quality of the reused knowledge.
Ontology evaluation here refers to the situation where existing ontologies are
evaluated (and often ranked) in terms of selected criteria in order to select the
most appropriate one for the task at hand.

A final usage scenario is during the ontology modularization process that leads to
a network of interconnected ontology modules (Chap. 10), whose quality is itera-
tively assessed in order to decide whether the modularization has reached the
expected results.

In this chapter, we further explore ontology (network) evaluation by providing a
definition (Sect. 9.2), methodological guidelines (Sect. 9.3), and concrete examples
(Sect. 9.4).

9.2 Definitions and Filling Card

Ontology evaluation is defined as the activity of checking the technical quality of an
ontology against a frame of reference (Suarez-Figueroa and Gomez-Pérez 2008).
Intuitively, whenever an evaluation is performed for a certain ontology

! http://kmi-web05.open.ac.uk/WatsonWUI/
2 http://sindice.com/

http://dx.doi.org/10.1007/978-3-642-24794-1_11
http://dx.doi.org/10.1007/978-3-642-24794-1_10
http://kmi-web05.open.ac.uk/WatsonWUI/
http://sindice.com/

9 Ontology (Network) Evaluation 195

(or alignment) aspect (e.g., modeling correctness), the process is always guided by
the evaluator’s understanding of what is best and what is worse. In some cases,
these boundaries (which we refer to as frame of reference) are clearly defined and
tangible (e.g., a reference ontology, a reference alignment), but in other cases, they
are weakly defined and may be different from one person to another, or even across
evaluation sessions. The NeOn Glossary distinguishes two types of ontology
evaluations depending on the frame of reference used:

* Ontology validation is the ontology evaluation activity that compares the mean-
ing of the ontology definitions against the intended model of the world that it

Ontology Network Evaluation

Definition

Evaluation of Ontology Networks refers to the activity of checking the technical
quality of the ontology network against a frame of reference.

Goal

The goal is to compare the ontology network with the specification requirements
and gold standards (if available) by taking into account evaluation criteria and
applying various evaluation approaches, yielding evaluation results and advices
on how to improve the ontology network.

Input Output
A set of ontologies with o Evaluation results in the form of quantitative and
interconnection links qualitative measures, and informal advices on
(network). the possible ontology network modifications.

e A ranked list of ontologies.

Who

o Domain experts, users, ontology developers and practitioners from the ontology
development team.
¢ Applications which automatically evaluate and reuse ontologies.

When

e This activity should be carried out in parallel with the ontology network
development and evolution, and after parts of the ontology network are (at least
partially, as prototypes) implemented.

¢ |t also plays an important role during ontology selection and modularization.

Fig. 9.1 Filling card for ontology (network) evaluation

196 M. Sabou and M. Fernandez

aims to conceptualize (an intangible frame of reference). This activity answers
the question: are you producing the right ontology?

e Ontology verification is the ontology evaluation activity which compares the
ontology against the ontology specification document (ontology requirements
and competency questions), thus ensuring that the ontology is built correctly
(in compliance with the ontology specification). This activity answers the
question: Are you producing the ontology in the right way?

The filling card shown in Fig. 9.1 provides a structured summary of the ontology
(network) evaluation activity. Section 2.5 describes the main components of a
filling card in more detail.

9.3 Ontology Network Evaluation Workflow and Guidelines

In this section, we describe the NeOn methodological guidelines for carrying out
the ontology network evaluation activity. Besides prescribing a methodology, our
aim is also to provide a brief overview of the various evaluation methods and
techniques that can be used in each step of the methodology.

We propose a component-based evaluation approach where each element of the
network (e.g., ontologies and alignments between ontology pairs) is evaluated as a
stand-alone individual and then the findings of these evaluations are summed up
(Fig. 9.2). An alternative to this approach would be the evaluation of the entire
network from the point of view of the users or the organization that will use the
ontology network. Methodologically, this approach is similar to evaluating a stand-
alone component using, for example, a task-based evaluation, and therefore, it is
covered by Tasks 2 and 3 of the proposed workflow. Figure 9.2 shows the workflow
and the tasks for carrying out the ontology network evaluation.

Task 1. Selecting individual components of the ontology network. In a first
instance, the ontology development team identifies the elements of the network
that need to be evaluated including individual ontologies (Maedche and Staab 2002;
Burton-Jones et al. 2005; Alani et al. 2006; Fernandez et al. 2006), alignments
between ontology pairs (Euzenat and Shvaiko 2007), ontology statements (Lopez
et al. 2009), ontology relations, etc. Their decision should be based on two criteria:
(1) which ontology network elements are critical for the overall network and (2)
which of these elements can actually be evaluated. The latter means that there must
exist some frame of reference against which these individual components can be, at
least in principle, evaluated. As we discussed before, the frame of reference is not
necessarily tangible, but can be some idea of the perfect model, or canon, defined by
the human evaluator for the particular evaluation task. Examples of frames of
references will be given at Task 3.

Task 2. Selecting an evaluation goal and approach. For evaluating individual
ontologies, the team needs to decide the goal of the evaluation and select an

http://dx.doi.org/10.1007/978-3-642-24794-1_2

9 Ontology (Network) Evaluation

®

Ontology Development Team

it

Ontology Development Team

.

Ontology Development Team

{55

Users, Domain Experts and ODT

i

Ontology Development Team

Ontology
network

Task 1. Selecting individual

197

components of the network

l

Task 2. Selecting an evaluation
goal and approach

l

Task 3. Identifying a frame of
reference and evaluation metric

l

Task 4. Applying the selected
evaluation approach

Ara all network

7

Yes
X

Task 5. Combining and presenting
individual evaluation results

Possible
improvements

Ranked
ontologies

Fig. 9.2 Workflow and tasks for evaluating ontology networks

appropriate evaluation approach (as summarized in Table 9.1). We distinguish the
following evaluation goals:

e Domain coverage — Does the ontology cover a topic domain? The extent to
which an ontology covers a considered domain is an important factor to be
considered both during the development and the selection of an ontology. The
evaluation approaches employed to achieve this goal imply the comparison of
the ontology to frames of references such as a gold standard ontology (Maedche
and Staab 2002), or data sets that are representative for the domain (user-defined
terms (Alani et al. 2006; Fernandez et al. 2006), tag sets (Cantador et al. 2007),

document corpus (Brewster et al. 2004), etc.).

e Quality of the modeling in terms of the design and development process and in
terms of the final result — Does the ontology development process comply with

198

M. Sabou and M. Fernandez

Table 9.1 Evaluation goals, evaluation approaches, and relevant NeOn plugins

Evaluation goal

Evaluation approaches and relevant NeOn plugins

Domain coverage

Quality of modeling

Suitability for an
application/task

Adoption and use

Compare to a domain-specific gold standard ontology (Maedche
and Staab 2002)

Compare to unstructured or informal data (Brewster et al. 2004;

Jones and Alani 2006)

Compare to a user-defined set of terms — Sindice, Watson (Alani et al.
2006)

Compare to an extended (using WordNet or other structured
information sources) user-defined set of terms (Fernandez et al.
2006; Cantador et al. 2007)

Use human assessments to evaluate the syntactic, structural, and
semantic quality of the ontology (Guarino and Welty 2004; Lozano-
Tello and Gomez-Pérez 2004; Burton-Jones et al. 2005)

Use reasoners to assess the logical correctness of the ontology
(Horridge et al. 2009)

Analyze the design and development process of the ontology to check
its compliance with ontology modeling best practices/ODPs
(Caracciolo and Heguiabehere 2009; Poveda-Villalon et al. 2009)

Automatically compare to a reference alignment (Euzenat and Shvaiko
2007)

Manually assess the quality of an alignment (Sabou et al. 2008)

NeOn plugins:

RaDON

XDTools

Alignment plugin

Use the ontology within an application/task and evaluate the task results
and performance (Porzel and Malaka 2004; Strasunskas and
Tomassen 2008; Fernandez et al. 2009)

The work of Van Hage (Van Hage et al. 2007) presents two sampling-
based evaluation approaches of ontology alignments

Evaluation of the interlinking structure across ontologies — Sindice,
Watson (Patel et al. 2003)

Social rating systems (Lewen et al. 2006; Cantador et al. 2007)

NeOn plugin:

Watson for knowledge reuse

ontology modeling best practices/ODPs? Is the ontology modeled correctly?
Applicable both for the ontology development (Lozano-Tello and Gomez-Pérez
2004) and selection scenarios (Burton-Jones et al. 2005; Tartir et al. 2005), this
evaluation goal focuses on the quality of the ontology which can be assessed
using a wide range of approaches focusing on logical correctness or syntactic,
structural, and semantic quality. Quality in terms or correctness, precision, and
recall is an important goal when evaluating ontology alignments.

3 ODP stands for Ontology Design Pattern.

9 Ontology (Network) Evaluation 199

e Suitability for an application/task — Is the ontology suitable to use for a specific
application/task? (Porzel and Malaka 2004; Fernandez et al. 2009) Will it
produce the expected results? (Strasunskas and Tomassen 2008) Different
applications rely on different ontology (or alignment) characteristics. For exam-
ple, for applications that use ontologies to support natural language processing
tasks, domain coverage is often more important than logical correctness. As a
result, measuring ontology (alignment) quality alone is not enough to predict
how well the ontology (developed or selected) will support an application or a
task. Task-based evaluations help assessing suitability for a task or application,
rather than generic quality features.

e Adoption and use — Has the ontology been reused (imported) as part of other
ontologies? (Sindice,> Watson') How did others rate the ontology? (Cantador
et al. 2007, Cupboard*) Understanding the extent of adoption of an ontology is of
particular interest when selecting it, the assumption being that there is a direct
correlation between the level of adoption and the quality of the ontology.
Analyzing the degree of interlinking between an ontology and other ontologies
(e.g., in terms of reused terms or ontology imports) as well as relying on social
rating systems are two key approaches to achieve this goal.

Task 3. Identifying a frame of reference and evaluation metric. While in Task 2
the ontology development team decides on the key goal(s) of the evaluation and
potential approaches, in Task 3, the team needs to select the concrete ingredients of
the evaluation, consisting of:

e A frame of reference — What are we comparing against? The frame of reference
denotes a set of representative resources that sets a baseline value against which
the ontology should be compared.

e Evaluation metric(s) — How to measure the features of the ontology that will be
compared? Example evaluation metrics are precision and recall, cost-based
evaluation metrics, measures of similarity between an ontology or a mapping,
and a corpus (domain knowledge), and lexical metrics. Table 9.2 summarizes the
main evaluation metrics presented in the literature.

As exemplified in Table 9.2, evaluation metrics are generally specific for each
frame of reference. There are however some generic metrics, such as precision and
recall, which can be adapted for use with various frames of references.

Similarly to (Brank et al. 2005), we distinguish the following types of frames of
references:

¢ Gold standard: The frame of reference is defined by a baseline ontology or some
other kind of structured representation of the problem domain for which an
appropriate ontology is needed. A gold standard is often used when the goal of

*http://cupboard.open.ac.uk:808 1 /cupboard-search/

http://cupboard.open.ac.uk:8081/cupboard-search/

200

M. Sabou and M. Fernandez

Table 9.2 Evaluation metrics used for various evaluation frameworks

Frame of
reference

Evaluation metric/approach

Gold standard

Application-based

Data-driven

Assessment by
humans

Interpretability: amount of terms of the ontology that have a WordNet" sense
(Burton-Jones et al. 2005)

Clarity: amount of WordNet senses of the ontological terms (Burton-Jones
et al. 2005)

Lexical similarity: average string matching between the set of gold standard
terms and the set of ontology terms (Maedche and Staab 2002)

Taxonomical similarity: maximum overlap between the concepts of the gold
standard and the concepts of the ontology in terms of their “semantic
cotopy” (their sets of super- and subconcepts) (Maedche and Staab 2002)

Relation similarity: overlap between the relations of the gold standard and the
relations of the ontology considering the geometric mean value of how
similar their domain and range concepts are (Maedche and Staab 2002)

Precision and recall of an alignment with respect to a reference alignment
(gold standard): precision measures the ratio of correctly found
correspondences (true positives) over the total number of returned
correspondences (true and false positives). Recall measures the ratio of
correctly found correspondences (true positives) over the total number of
expected correspondences (true positives and true negatives) (Euzenat
2007)

Semantic precision/semantic recall for alignment evaluation: This measure
proposes an abstract generalization of precision and recall to discriminate
among different degrees of alignment correctness (Euzenat 2007)

History: number of times an ontology has been accessed

Insertion, deletion, and substitution errors: errors according to the
improvements in the task’s output after fixing these errors in the employed
ontology (Porzel and Malaka 2004)

Search task fitness and search enhancement capability: these measures
evaluate ontology quality in the context of an ontology-driven web search
task (Strasunskas and Tomassen 2008)

Watson’s topology measures: these measures are used in the context of a
relation correctness evaluation task (Fernandez et al. 2009)

Class match: coverage of an ontology with respect to a set of search terms
(Alani et al. 2006)

Best fit ontology: ontology that maximizes its conditional probability given a
corpus. The probability is computed considering the terms and document
clusters within the corpus (Brewster et al. 2004)

Syntactic quality: number of syntactical errors in the ontology (Burton-Jones
et al. 2005)

Accuracy: number of false statements in the ontology (Burton-Jones et al.
2005)

Trust: correctness and usefulness of the information delivered by a certain
reviewer with respect to the ontology (Lewen et al. 2006). This measure is
defined and exploited in collaborative systems (d’Aquin et al. 2009)

Collaborative evaluation: collaborative assessment of ontologies based on
manual user evaluation (Cantador et al. 2007)

Essence: assess if an entity is true in every possible world (Guarino and
Welty 2004)

(continued)

9 Ontology (Network) Evaluation 201

Table 9.2 (continued)

Frame of
reference

Evaluation metric/approach

Topology-based

Language-based

Methodology-
based

Identity: assess if individual entities of the world are the same or different
(Guarino and Welty 2004)

Unity: recognizes all the parts that form an individual entity (Guarino and
Welty 2004)

Topology of the graph: set of topological evaluation measures including
number of classes, number of properties, number of individuals, ontology
popularity (number of ontologies importing a given ontology), and
ontology depth and breadth (maximum, minimum, average, and
variance); extracted from Watson

Density: number of subclass, sibling, and domain relations of a given concept
(Alani et al. 2006)

Semantic similarity: closeness of the concepts of interest in the ontology
structure (Alani et al. 2006)

Betweenness: number of paths that pass through each node of the ontological
graph (Alani et al. 2006)

Comprehensiveness: number of classes and properties of an ontology (Burton-
Jones et al. 2005)

Authority: normalized value of times that an ontology is imported in the
network (Burton-Jones et al. 2005)

OntoRank: ranks ontologies based on the interlinking structure among
ontologies in the network. Different versions of the similar evaluation
principle are found in (Patel et al. 2003; Ding et al. 2005)

Relationship richness: diversity of relations and placement of relations in the
ontology (Tartir et al. 2005)

Attribute richness: average number of properties per class (Tartir et al. 2005)

Inheritance richness: average number of subclasses per class (Tartir et al.
2005)

Class richness: ratio between the number of classes that contain instances
divided by the total number of classes in the ontology (Tartir et al. 2005)

Average population: ratio between the number of ontology instances and
classes (Tartir et al. 2005)

Cohesion: number of separated, connected components of the ontological
graph (Tartir et al. 2005)

Thirty-eight modeling language-specific criteria: if the language allows
axioms embedded in terms, can define disjoint decompositions, etc.
(Lozano-Tello and Gomez-Pérez 2004)

Eleven methodology-based evaluation metrics: precision factors (e.g., the
delimitation of phases in the ontology construction), usability factors (e.g.,
the quality of manuals), and maturity factors (e.g., the importance of the
developed ontology) (Lozano-Tello and Gémez-Pérez 2004)

“http://wordnet.princeton.edu/

the evaluation is domain coverage. For alignments, a reference alignment can
play the role of a gold standard.

e Application-based: The frame of reference consists of the set of “ideal” results
that an application should return when plugging the “perfect” ontology

http://wordnet.princeton.edu/

202 M. Sabou and M. Fernandez

(or alignment) into it. This frame of reference pertains to the assessment of the
ontology’s (alignment’s) suitability for an application/task.

* Data-driven: The frame of reference is a collection of unstructured or informal
data (e.g., text), which represents the problem domain. Similarly to structured
representations used as gold standards, unstructured data collections are also
mostly used to support the evaluation of domain coverage.

o Assessment by humans: The frame of reference is defined by human judgments
that measure ontology features (or alignment characteristics) not recognizable
by machines. Humans can (relatively) easily assess several ontology quality
features which are not amenable to automatic processing. Human ratings also
help to assess the level of adoption and use of the ontologies. Human-based
ontology ratings are exploited to automatically select the most appropriate
ontology according to previous users’ experiences (Cantador et al. 2007).

Additionally, and based on the way in which human evaluators assess ontology
quality features (by comparison with their mental idea of the perfect model or canon
for these features), we have identified the next three nontangible frames of
references as ideal models of topologies, languages, and ontology-construction
methodologies, which constitute the boundaries within which comparisons are
based when performing the evaluations: (a) the ontology with the optimal topology,
(b) the potentially most powerful and expressive ontology language, and (c) the
perfect set of steps to follow and requirements to fulfill in order to achieve the best
modeled ontology. All these canons or ideal models of topologies, languages, and
methodologies are weakly defined since they may vary across evaluations and
across the evaluators who defined them.

e Topology-based: The frame of reference is defined by the minimum or maxi-
mum possible values of the topology evaluation metrics among ontologies
within the network, or among ontology entities within the same ontology.
Topology metrics automatically assess ontology quality features as well as
adoption and use features, by measuring the interlinking structure of ontologies
across the network (Ding et al. 2005).

e Language-based: The frame of reference is defined by the representational
capabilities of the language used to construct the ontology.

e Methodology-based: The frame of reference is defined by the different quality
factors of the selected ontology-development methodology.

Task 4. Applying the selected evaluation approach. Applying the selected
evaluation approach requires a proper setup for the evaluation experiments and
implementation of software tools to compute the evaluation metrics, and/or engage
the human experts in stimulating sessions to collect their evaluations. We advise
ontology developers to refer to the relevant scientific publications cited in this
chapter for example evaluation setups and best practices. Evaluation approaches
that rely on human judgment (Guarino and Welty 2004; Lozano-Tello and Gémez-
Pérez 2004) are generally more time consuming and sophisticated than those which
compare numeric values derived by automatic measures (Sindice, Watson),

9 Ontology (Network) Evaluation 203

although they often offer more valuable insight into the evaluation process. We
advise using parallel evaluation with multiple human experts to account for cross-
evaluator disagreements.

Task 5. Combining and presenting individual evaluation results. This task
highlights the weakest spots in the ontology network by considering individual
evaluation results and how they affect the rest of the network. The evaluation results
derived for individual components are combined to reach a global understanding of
the network’s quality. The final task is to present the results of the evaluation in an
appropriate form for possible repair (corrections, additions), improvements, and
future evolution of the ontology network.

9.4 Examples of Ontology Evaluation

Since ontology network evaluation is not a widespread activity as yet, in this
section, we present examples of various ontology evaluation studies and show
how their stages map to the tasks prescribed by our guidelines. The examples
cover all the key evaluation goals described in Task 2: domain coverage
(Sect. 9.4.3), quality of modeling (Sects. 9.4.1 and 9.4.2), suitability for an applica-
tion (Sects. 9.4.3 and 9.4.4), and adoption (Sect. 9.4.5).

9.4.1 Evaluation of an Individual Ontology

In this example, we describe the evaluation of YAGO (Suchanek et al. 2008), a
large, lightweight, general-purpose ontology, automatically derived from
Wikipedia and WordNet. YAGO has over 1.7 million entities (individuals and
concepts) and 15 million facts (ground binary relations between entities). The
relations include the taxonomic hierarchy as well as around 100 semantic relations
between entities. YAGO’s evaluation follows the main tasks of our methodology.

[Task 2] Since the evaluation was performed in an ontology development
scenario, the authors’ goal was to assess the quality of modeling of YAGO, namely
its precision with respect to the data sets from where it has been derived. The
approach was that of evaluating the precision by using human expert opinion.

[Task 3] To evaluate the precision of an ontology, its facts have to be compared
to some ground truths. Since there is no computer-processable ground truth of
suitable extent to be used as a frame of reference, the authors relied on manual
evaluations against Wikipedia content, which was the frame of reference.

[Task 4] During the evaluation, human judges rated as “correct,” “incorrect,” or
“don’t know” facts that were randomly selected from YAGO. Since common sense
often does not suffice to judge the correctness of the YAGO facts, a snippet of the
corresponding Wikipedia page was also presented to the judges. Thus, the evalua-
tion compared YAGO against the ground truth of Wikipedia (i.e., it does not deal

204 M. Sabou and M. Fernandez

Table 9.3 Precision of some YAGO facts

Relation No. of evaluation Precision

1 hasExpenses 46 100.0% =+ 0.0%

2 hasInflation 25 100.0% + 0.0%

3 hasLaborForce 43 97.67441% + 0.0%

4 during 232 97.48950% + 1.838%
88 hasGDPPPP 75 91.22189% + 5.897%
89 hasGini 62 91.00750% + 6.455%
90 discovered 84 90.98286% =+ 5.702%

with the problem of Wikipedia containing some false information). Thirteen judges
evaluated a total of 5,200 facts (ground relations between YAGO entities).

[Task 5] The authors use a tabular format (Table 9.3) to present the evaluation
results in the decreasing order of the obtained precision (we only show the most and
least precise relations). To make sure that the findings are significant, the Wilson
confidence interval for & = 5% was computed. A confidence interval of 0% means
that the facts have been evaluated exhaustively. The evaluation shows very high
quality results as 74 relations have a precision of over 95%.

This tabular presentation helps identifying the least precise relations and fosters
the analysis of such cases. It can be concluded, for example, that a key source of
error are inconsistencies of the underlying sources. For example, for the relation
bornOnDate, most false facts stem from erroneous Wikipedia categories (e.g.,
persons born in 1802 are in the /805 Births Wikipedia category). For facts with
literals (such as hasHeight), many errors stem from a nonstandard format of the
numbers (e.g., height is considered 1.6 km, just because the infobox says 1,632 m
instead of 1.632 m). Occasionally, the data in Wikipedia was updated between the
time of extraction and the time of the evaluation. This explains many errors for
frequently changing properties such as hasGDPPPP and hasGini.

9.4.2 Pattern-Based Ontology Evaluation

In this section, we show how ontology design patterns, specifically content design
patterns (CPs), are used to evaluate an ontology. The example does not cover the
complete evaluation of the ontology, but presents one specific case where a CP
assisted in finding potential problems and additionally suggested a solution. The
example is set within the fishery domain, and the evaluated ontology is version 0.3
of the “fishing areas” ontology, modeling the division of water areas into divisions
and subdivisions. An example is the FAO major fishing area 51, Western Indian
Ocean, and its subareas numbered from 1 to 8, where 1 corresponds to the Red Sea
and 2 to the Persian Gulf, but where the subdivisions of these subareas are only
numerically identified.

9 Ontology (Network) Evaluation 205

[Task 2] The goal of the evaluation was assessing the quality of modeling, and
the chosen approach was manual evaluation by an ontology pattern expert.

[Task 3] The expert used the pattern catalog available in the ontology design
pattern portal® as a “gold standard” of modeling to which the modeling solutions in
the evaluated ontology were compared. CPs introduce best practices for solving
particular modeling problems, but by introducing those solutions, the pattern
catalog can also be seen as a catalog of modeling issues.

[Task 4] The ontology used a locally defined, transitive, “part-of” relation to
model the division of subareas and further levels of divisions and subdivisions, thus
using the same modeling approach as the “part-of” content pattern. This modeling
solution, however, is not suitable for certain contexts, because, when using
reasoning, it is not possible to distinguish between the direct and the indirect
subparts of an area. For example, if the hierarchical structure of the partitioning
of the areas should be reconstructed, for example, for browsing the ontology in a
graphical interface, or when answering “what are the divisions of the Red Sea?,”
only the direct subareas of the Red Sea are of interest rather than all the inferable
parts.

The “componency pattern” provides a modeling alternative using two inverse
object properties: “hasComponent” and “isComponentOf.” These are nontransitive
properties that can be used in combination with the “part-of pattern” to both register
general partitioning but also the nontransitive property of a “proper part,” i.e., a
direct component of something. When using these two patterns as “gold standards”
for modeling, the ontology evaluator can discover the potential problem of a
missing nontransitive property to distinguish the different “levels” of area decom-
position and propose an appropriate solution.

9.4.3 Multiple Evaluations of an Ontology

An example of how various types of evaluations shed light on different aspects of
an ontology is provided in (Sabou et al. 2005). Similar to this, when evaluating
ontology networks, one needs to combine evaluation results for various network
components. The authors of (Sabou et al. 2005) report on the multifaceted evalua-
tion of an ontology that was automatically extracted from a corpus of textual web
service descriptions in the bioinformatics domain. The various stages of this
evaluation are graphically depicted in Fig. 9.3. The aim of the extracted ontology
is to support the semantic description of web services. The myGrid® project
provided a good context to evaluate this ontology as a bioinformatics expert has
previously built a gold standard ontology for describing the same set of web

5 http://www.ontologydesignpatterns.org
S http://www.mygrid.org.uk

http://www.ontologydesignpatterns.org
http://www.mygrid.org.uk

206 M. Sabou and M. Fernandez

T - extraction
&> evaluation

application
ontology

Gold Standard

4, fitness for task

. rage .

3 domain cove \

- 1
-~
i - 5 relevant
. ™ T | information
I Y. E
- Moy ™~ . < AR
I n{i@/ - Q
Opng >

O/ >, |
OQJ’b;-'s |
! Wi . _ .

1. extraction
performance

[o I

expert’s domain
knowledge m

Fig. 9.3 Overview of various evaluations of an ontology (Sabou et al. 2005)

services. The domain expert has relied on his domain knowledge to build the
ontology rather than on the description of web services (corpus), which were
used as the main input for the automatic extraction algorithm. A part of the gold
standard ontology, referred to as the application ontology, provides concepts for
annotating web service descriptions in a form-based annotation tool and is subse-
quently used at web service discovery time to power the search.

[Task 2] In this ontology development scenario, the evaluations had several
complementary goals. First, the authors aimed to assess whether the extracted
ontology would be a good starting point for building an ontology and relied on an
expert evaluation approach for this (shown as evaluation 2 in Fig. 9.3). Second, they
wanted to evaluate domain coverage by comparison to the gold standard ontology
(shown as evaluation 3 in Fig. 9.3). Third, the authors got an insight into how well
the ontology would support an application by comparing it with the application
ontology.

[Task 3] The authors made use of the following frames of references and metrics.
For evaluation 2, the frame of reference consisted in the expert’s knowledge of the
domain as he was asked to review and rate the extracted concepts as either correct
or spurious or new. A precision value was then computed as a ratio of the correct
and new concepts over all extracted concepts. For evaluation 3, the authors used the
gold standard ontology as a frame of reference and computed metrics such as
lexical overlap (LO — the ratio of overlapping concepts), ontological improvement

9 Ontology (Network) Evaluation 207

Table 9.4 Results for domain coverage and task fitness from (Sabou et al. 2005)

Concepts Gold standard Application ontology
All 549 125
Correct 39 25
Allisseq 510 100
Missed,.oppus 3 (0.6%) 0 (0%)
Missed . iornal 360 (70.6%) 88 (88%)
Missed ,pgract 101 (19.8%) 6 (6%)
Missed.omposea 46 (9%) 6 (6%)
New 306 27

LO 7% 20%

OL 93% 80%

ol 56% 21.5%

(OI — the ratio of new concepts that were not in the gold standard but were domain
relevant), and ontological loss (OL — the ratio of gold standard concepts which were
not extracted). For evaluation 4, the application ontology was used as a frame of
reference and compared to the extracted ontology using the metrics defined for
evaluation 3.

[Task 4] Task 4 consisted in the evaluation performed by the domain expert as
well as the computation of the various ontology comparison metrics.

[Task 5] The authors sum up the results of the various evaluations in tabular form
and perform a subsequent analysis of these results. For example, Table 9.4 sums up
the results when assessing domain coverage and suitability for a task by comparing
the extracted ontology to the gold standard and application ontologies. The results
show that although the overlap with the gold standard is low (7%), the extracted
ontology contains a significant number of new, domain-relevant concepts (56%)
that were identified in the automatically analyzed corpus but missed by the domain
expert, which relied exclusively on his domain knowledge. A detailed analysis of
all the missed concepts when comparing to the gold standard ontology shows that
70.6% of these terms did actually not appear in the corpus (but could be acquired if
the corpus would be enlarged) and 19.8% referred to abstract concepts introduced
by the domain expert to structure the ontology and which again were not in the
corpus. It turns out that extraction algorithm-related issues only account for only
10% of the missed concepts.

9.4.4 Task-Based Ontology Evaluation

The authors of (Strasunskas and Tomassen 2008) investigate which ontology
features influence the web search task. In their study, they consider different
types of search tasks (fact-finding, exploratory search, comprehensive search),
identify ontology features important for each task, and then introduce new evalua-
tion metrics that measure these features respectively (e.g., fact-finding fitness

208 M. Sabou and M. Fernandez

(FFF), exploratory search task fitness (EXF)). Such metrics can support ontology
selection for search. Their theoretical considerations are experimentally verified, by
correlating the values of the metrics for different ontology versions with the search
performance obtained in the context of the WebOdIR web search application
(Strasunskas and Tomassen 2008). Core to their study is therefore a task-based
evaluation of ontologies.

[Task 2] The goal is to understand the suitability for a task, and the approach
consists in exploiting ontologies to support web search and measuring the improve-
ment in terms of search precision obtained in an experimental setting.

[Task 3] The frame of reference is defined by the performance scores obtained in
a web search task with an original version of the ontology. The metrics used
measure ontology features important for certain search tasks (e.g., FFF, EXF).

[Task 4] The experimental setup consists of relying on two groups of users to
perform web search using WebOdIR within four different domains (two search
tasks per domain, i.e., eight tasks in total). WebOdIR exploited a set of ontologies
for one group and the extended version of the same ontologies for the second group.
The performance score of the search task is computed and compared across the two
versions of the ontologies as well as correlated with the computed values of the
newly introduced metrics.

[Task 5] The authors present these correlations in both tabular and graphical
form and conclude on the influence of ontology features on various search tasks.
For example, they found that more instances and object properties improve fact
finding, while the addition of disjoint and equivalent concepts is beneficial for
explanatory and comprehensive search tasks.

9.4.5 Evaluating Ontology Adoption and Use

The work of Cantador and colleagues (Cantador et al. 2007) presents a tool for
collaborative ontology evaluation and reuse (WebCORE) focused on evaluating
domain coverage and adoption and usage. The goal of this tool is to help experts
and practitioners to select the most appropriate ontologies from a repository. The
tool has three main components. The first one helps the user to semiautomatically
generate a gold standard representing the domain of interest. The second compo-
nent evaluates the domain coverage of the ontologies by comparing them against
the previously generated gold standard by means of lexical and taxonomical
evaluation measures. The third component exploits previous users’ judgments of
those ontologies to automatically recommend the best ones.

[Task 2] Two main evaluation goals are considered when selecting the optimal
ontology: (a) the domain coverage and (b) the adoption and use of the ontology.

[Task 3] To evaluate domain coverage, authors select a gold standard as a frame
of reference. This gold standard is a representation of the domain of interest and is
semiautomatically generated by the user with the support of the tool. To generate it,
the user (a) introduces an initial set of terms or selects a textual source from which a

9 Ontology (Network) Evaluation 209

set of terms representing the domain of interest can be extracted, (b) complements
this set of terms by selecting additional terms from a ranked list, automatically
generated by the system by considering previous user-generated gold standards, and
(c) extends this set of terms by selecting suggested hypernym, hyponym, and
synonym relations from WordNet. To evaluate the adoption and use of the
ontologies, this work relies on an assessment by humans’ frame of reference.
Users share their own experiences by evaluating the used ontologies according to
five criteria: correctness, readability, flexibility, level of formality (highly informal,
semi-informal, semiformal, and rigorously formal), and type of model (upper-level,
core-ontology, domain-ontology, task-ontology, and application-ontology).

[Task 4] The tool evaluates the ontologies in two phases. First, the ontologies are
evaluated according to their domain coverage by comparing them against the
semiautomatically generated gold standard using lexical and taxonomical similarity
measures. Second, the ontologies with sufficient domain coverage are assessed on
their level of adoption and use with the help of a collaborative filtering algorithm
(Adomavicius and Tuzhilin 2005) that explores the manual evaluations of the
ontologies stored into the system. This algorithm takes into account not only
previous users’ experiences (usage) but also the number of times the ontologies
were selected (adoption).

[Task 5] The representation of the results differs for the two types of evaluations.
For domain coverage, the tool presents a ranked list of ontologies including their
individual scores for the lexical and taxonomical evaluation measures, as well as a
combined evaluation score. After the adoption and usage evaluation, the list of
ontologies is reranked, and the collaborative ontology evaluation score is added to
the previous scores. In addition, the system allows the user to provide her own
judgment of the ontology so that her assessment can be exploited for future
ontology evaluations and selections.

9.5 Relevant NeOn Toolkit Plugins

Given the complexity of the ontology evaluation task in terms of the variety of
approaches and metrics, the NeOn Toolkit does not provide an evaluation plugin
per se. However, various plugins exist that can support different evaluation
approaches. We provide a brief description of these plugins here.

The RaDON plugin’ supports the automatic detection of logical inconsistency
and incoherence in an ontology or an ontology network. The plugin does not only
detect these modeling errors but can also repair them automatically or support the
user to manually solve these issues. As such, RaDON can support users whose goal
is to assess the quality of modeling in their ontology.

" http://www.neon-toolkit.org/wiki/2.3.1/RaDON

http://www.neon-toolkit.org/wiki/2.3.1/RaDON

210 M. Sabou and M. Fernandez

The XDTools plugin® contains a suite of tools that support design pattern—based
ontology development. One of the tools, XD Analyzer, provides suggestions and
feedback to the user with respect to how good practices in ontology design have
been followed, according to the eXtreme Design (XD) method (for instance,
missing labels and comments, isolated entities, unused imported ontologies). Chapter 3
provides more information about the XD method. Similarly to RaDON, this plugin
can also be used when checking the quality of modeling; however, the focus here is
the quality of the domain conceptualization rather than logical correctness.

The Watson for knowledge reuse’ plugin primarily supports knowledge reuse by
allowing an ontology developer to search the Watson ontology search engine for
relevant knowledge statements directly from within the NeOn Toolkit and then
reuse those statements. The plugin also interfaces with the Cupboard ontology
publication environment that allows users to rate various characteristics of the
ontologies that they reused (e.g., reusability, correctness, completeness, domain
coverage, modeling style). Individual ratings are aggregated into an overall score
and can support other people when reusing ontologies. This plugin supports the
evaluation of ontologies in terms of their adoption and use providing also reviews
written by previous adopters.

9.6 Summary

Ontology evaluation is an important and complex ontology engineering activity. Its
complexity stems both by its applicability in a variety of scenarios (Sect. 9.1) as
well as the abundant number of existing approaches and metrics. In this chapter, we
aimed at providing practitioners with the right balance of generic guidelines and
specific techniques that they could use from the wide landscape of works in this area
(Sect. 9.2). We hope that the five diverse evaluation examples in Sect. 9.3 will serve
as useful material for exemplifying the proposed guidelines.

Although ontology networks contain both ontologies and their links in terms of
alignments, we have mostly focused on ontology evaluation. Readers interested in
ontology alignment evaluation should also consult Chap. 12. Finally, Chaps. 10 and
11 describe other ontology engineering activities that can benefit from ontology
evaluation, namely ontology modularization and evolution.

8 http://www.neon-toolkit.org/wiki/2.3.1/XDTools
o http://www.neon-toolkit.org/wiki/2.3.1/Watson_for_Knowledge_Reuse

http://dx.doi.org/10.1007/978-3-642-24794-1_3
http://dx.doi.org/10.1007/978-3-642-24794-1_12
http://dx.doi.org/10.1007/978-3-642-24794-1_10
http://dx.doi.org/10.1007/978-3-642-24794-1_11
http://www.neon-toolkit.org/wiki/2.3.1/XDTools
http://www.neon-toolkit.org/wiki/2.3.1/Watson_for_Knowledge_Reuse

9 Ontology (Network) Evaluation 211

References

Adomavicius G, Tuzhilin A (2005) Toward the next generation of reccommender systems: a survey
of the state-of-the-art and possible extensions. IEEE Trans Knowl Data Eng 17(6):734-749

Alani H, Brewster C, Shadbolt N (2006) Ranking ontologies with AKTiveRank. In: 5th interna-
tional Semantic Web Conference ISWC 2006), Athens, GA, USA, pp 1-15

Brank J, Grobelnik M, Mladeni¢ D (2005) A survey of ontology evaluation techniques.
In: Conference on Data Mining and Data Warehouses (SiKDD 2005), Ljubljana, Slovenia,
pp 166-170

Brewster C, Alani H, Dasmahapatra S, Wilks Y (2004) Data driven ontology evaluation. In: 4th
international conference on Language Resources and Evaluation (LREC 2004), Lisbon,
Portugal, pp 164-169

Burton-Jones A, Storey VC, Sugumaran V, Ahluwalia P (2005) A semiotic metrics suite for
assessing the quality of ontologies. Data & knowledge engineering — Special issue: Natural
Language and Database and Information Systems: NLDB 2003, pp 84-102

Cantador I, Fernandez M, Castells P (2007) Improving ontology recommendation and reuse in
WebCORE by Collaborative Assessments. In: Workshop on social and collaborative construc-
tion of structured knowledge at the 16th international World Wide Web conference
(WWW 2007), Banff, Canada

Caracciolo C, Heguiabehere J (2009) NeOn deliverable D7.2.3. Initial network of fisheries
ontologies. NeOn project

Cerbah F (2008) Learning highly structured semantic repositories from relational databases —
RDBtoOnto tool. In: 5th European Semantic Web Conference (ESWC 2008), Tenerife, Spain,
pp 777-781

Cimiano P, Volker J (2005) Text20nto — a framework for ontology learning and data-driven
change discovery. In: 10th international conference on applications of Natural Language to
Information Systems (NLDB-2005), Alicante, Spain, pp 227-238

d’Aquin M, Motta E, Sabou M, Angeletou S, Gridinoc L, Lopez V, Guidi D (2008) Towards a new
generation of semantic web applications. IEEE Intell Syst 23(3):20-28

d’Aquin M, Euzenat J, Duc C, Lewen H (2009) Sharing and reusing aligned ontologies with
cupboard. Demo at international conference on Knowledge Capture (K-CAP 2009), Redondo
Beach, CA, USA

Ding L, Pan R, Finin T, Joshi A, Peng Y, Kolari P (2005) Finding and ranking knowledge on the
semantic web. In: 4th international Semantic Web Conference (ISWC 2005), Galway, Ireland,
pp 156-170

Euzenat J (2007). Semantic precision and recall for ontology alignment evaluation. In:
20th international Joint Conference on Artificial Intelligence (IJCAI-2007), Hyderabad,
India, pp 348-353

Euzenat J, Shvaiko P (2007) Ontology matching. Springer, Heidelberg

Fernandez M, Cantador I, Castells P (2006) CORE: a tool for collaborative ontology reuse and
evaluation. In: 4th international workshop on evaluation of ontologies for the web at the 15th
international World Wide Web conference (WWW 2006), Edinburgh, Scotland

Fernandez M, Overbeeke C, Sabou M, Motta E (2009) What makes a good ontology? A case-study
in fine-grained knowledge reuse. In: 4th Asian Semantic Web Conference (ASWC 2009),
Shanghai, China, pp 61-75

Guarino N, Welty C (2004) An overview of OntoClean. In: Handbook on ontologies. Springer,
Berlin, pp 151-172

Horridge M, Parsia B, Sattler U (2009) Explaining inconsistencies in OWL ontologies. In:
Scalable uncertainty management. Springer, Berlin/Heidelberg, pp 124137

Jones M, Alani H (2006) Content-based ontology ranking. In: 9th international protege confer-
ence, Stanford, CA

Lewen H, Supekar K, Noy N, Musen M (2006) Topic-specific trust and open rating systems: an
approach for ontology evaluation. In: 4th international workshop on Evaluation of Ontologies

212 M. Sabou and M. Fernandez

for the Web (EON2006) at the 15th international World Wide Web conference (WWW 2006),
Edinburgh, Scotland

Lopez V, Nikolov A, Fernandez M, Sabou M, Uren V, Motta E (2009) Merging and ranking
answers in the semantic web: the wisdom of crowds. In: 4th Asian Semantic Web Conference
(ASWC 2009), Shanghai, China, pp 135-152

Lopez V, Nikolov A, Sabou M, Uren V, Motta E (2010) Scaling up question-answering to linked
data. In: Knowledge Engineering and Knowledge Management by the Masses (EKAW-2010),
Lisbon, Portugal, pp 193-210

Lozano-Tello A, Gémez-Pérez A (2004) Ontometric: a method to choose the appropriate ontol-
ogy. J Database Manage 15(2):1-18

Maedche M, Staab S (2002) Measuring similarity between ontologies. In: 13th international
conference on Knowledge Engineering and Knowledge Management (EKAW 2002),
Siguenza, Spain, pp 251-263

Patel C, Supekar K, Lee Y, Park E (2003) OntoKhoj: a semantic web Portal for ontology
searching, ranking, and classification. In: 5th international workshop on Web Information
and Data Management (WIDM 2003). In conjunction with the 12th international conference on
Information and Knowledge Management (CIKM 2003), New Orleans, LA, USA

Porzel R, Malaka R (2004) A task-based approach for ontology evaluation. In: Proceeding of
ECAI 2004 workshop on ontology learning and population, Valencia, Spain

Poveda-Villalén M, Sudrez-Figueroa MC, Gémez-Pérez A (2009) Common pitfalls in ontology
development. In: 13th Conference of the Spanish Association for Artificial Intelligence
(CAEPIA 2009), Sevilla, Spain, pp 91-100

Sabou M, Wroe C, Goble C, Mishne G (2005) Learning domain ontologies for web service
descriptions: an experiment in bioinformatics. In: 14th international World Wide Web confer-
ence (WWW 2005), Chiba, Japan, pp 190-198

Sabou M, d’Aquin M, Motta E (2008) Exploring the semantic web as background knowledge for
ontology matching. J Data Semant 11:156-190

Strasunskas D, Tomassen S (2008) Empirical insights on a value of ontology quality in ontology-
driven web search. OnTheMove 2008 confederated international conferences (OTM 2008),
Monterrey, Mexico, pp 1319-1337

Suarez-Figueroa MC, Gomez-Pérez A (2008) First attempt towards a standard glossary of ontol-
ogy engineering terminology. In: 8th international conference on Terminology and Knowledge
Engineering (TKE 2008), Copenhagen, Demark, pp 1-15

Suchanek FM, Kasneci G, Weikum G (2008) YAGO: a large ontology from Wikipedia and
WordNet. J] Web Semant 6(3):203-217

Tartir S, Arpinar I, Moore M, Sheth A, Aleman-Meza B (2005) OntoQA: metric-based ontology
quality analysis. In: IEEE workshop on knowledge acquisition from distributed, autonomous,
semantically heterogeneous data and knowledge sources, Houston, TX

Van Hage W, Isaac A, Aleksovski Z (2007). Sample evaluation of ontology matching systems. In:
5th international workshop on Evaluation of Ontologies and Ontology-based tools (EON 2007)
Located at the 6th international Semantic Web Conference (ISWC 2007), Busan, Korea

Zablith F, d’Aquin M, Sabou M, Motta E (2010) Using ontological contexts to assess the relevance
of statements in ontology evolution. In: 17th conference on Knowledge Engineering and
Knowledge Management by the Masses (EKAW 2010), Lisbon, Portugal, pp 226240

Chapter 10
Modularizing Ontologies

Mathieu d’Aquin

Abstract As large monolithic ontologies are difficult to handle and maintain, the
activity of modularizing an ontology consists in identifying components (modules)
of this ontology that can be considered separately while they are interlinked with
other modules. The end benefit of modularizing an ontology can be, depending on
the particular application or scenario, (a) to improve performance by enabling the
distribution or targeted processing, (b) to facilitate the development and mainte-
nance of the ontology by dividing it in loosely coupled, self-contained components
or (c) to facilitate the reuse of parts of the ontology. In this chapter, we present a
brief introduction to the field of ontology modularization. We detail the approach
taken as a guideline to modularize existing ontologies and the tools available in
order to carry out this activity.

10.1 Motivation

In complex domains such as medicine, ontologies can contain thousands of
concepts. Examples of such large ontologies are the NCI (National Cancer Institute)
Thesaurus' with about 27,500 and the Gene Ontology” with about 22,000 concepts.
However, problems with large monolithical ontologies in terms of reusability,
scalability, and maintenance have led to an increasing interest in techniques for
dividing ontologies into sets of cohesive, self-contained modules; for extracting
modules from ontologies relevant to a sub-domain or a task; as well as for

Uhttp://ncit.nci.nih.gov/

2http://www.geneontology.org/

M. d’Aquin (P<)

Knowledge Media Institute (KMi), The Open University, Walton Hall, Milton Keynes,

MK?7 6AA, UK
e-mail: m.daquin@open.ac.uk

M.C. Suarez-Figueroa et al. (eds.), Ontology Engineering in a Networked World, 213
DOI 10.1007/978-3-642-24794-1_10, © Springer-Verlag Berlin Heidelberg 2012

mailto:m.daquin@open.ac.uk
http://ncit.nci.nih.gov/
http://www.geneontology.org/

214 M. d’Aquin

combining and manipulating ontology modules. We observe however that there is
no universal way to modularize an ontology and that the choice of a particular
technique or approach should be guided by the requirements of the application or
scenario relying on modularization.

In particular, ontologies that contain thousands of concepts cannot be created
and maintained by a single person. The broad coverage of such large ontologies
normally requires a team of experts. In many cases, these experts will be located in
different organizations and will work on the same ontology in parallel. In other
situations, large ontologies are mostly created to provide a standard model of a
domain to be used by developers of individual solutions within that domain. While
existing large ontologies often cover a complete domain, the providers of individual
solutions are often only interested in a specific part of the overall domain.

Also, the nature of ontologies as reference models for a domain requires a high
degree of quality of the respective model. Representing a consensus model, it is also
important to have proposed models validated by different experts. In the case of large
ontologies, it is often difficult, if not impossible, to understand the model as a whole.

On a technical level, very large ontologies cause serious scalability problems.
The complexity of reasoning about ontologies is well known to be critical even for
smaller ontologies. In the presence of ontologies like the NCI Thesaurus, not only
reasoning engines but also modelling and visualization tools reach their limits.
Currently, there is no modelling tool that can provide convenient modelling support
for ontologies of the size of the NCI Thesaurus.

All these problems are a result of the fact that a large ontology is treated as a
single monolithic model. Most problems would disappear if the overall model
consists of a set of coherent modules about a certain sub-topic that can be used
independently of the other modules while still containing information about its
relation to these other modules.

In the next sections, we describe a general guideline to the modularization
of ontologies and tools that can be used to support this activity. We identify
three approaches which can be involved in realizing the modularization of an ontology:
ontology partitioning, ontology module extraction and ontology module composition.

10.2 Ontology Modularization

We consider an ontology O as a set of axioms (sub-class, equivalence, instantiation,
etc.) and the signature Sig(O) of an ontology O as the set of entity names occurring
in the axioms of O, that is, its vocabulary. As described in the NeOn Glossary
(Suarez-Figueroa 2010), ontology modularization refers to the activity of
identifying one or more modules in an ontology. A module is considered to be a
significant and self-contained sub-part of an ontology. Therefore, a module M;(O)
of an ontology O is also a set of axioms (an ontology), with the minimal constraint
that Sig(M;(O)) C Sig(O). Note that, while it may often be desirable, it is not always
the case that M;(O) C O.

10 Modularizing Ontologies 215
10.2.1 Ontology Partitioning

The activity of partitioning an ontology consists of splitting up the set of axioms
into a set of modules {My, - - -, Mk} such that each M; is an ontology, and the union
of all modules is semantically equivalent to the original ontology O (see Fig. 10.1).
Note that some approaches being labelled as partitioning methods do not actually
create partitions, as the resulting modules may overlap. There are several methods
for ontology partitioning that have been developed for different purposes.

The method of MacCartney et al. (2003) aims at improving the efficiency of
inference algorithms by localizing reasoning. For this purpose, this technique
minimizes the shared language (i.e. the intersection of the signatures) of pairs of
modules. A message passing algorithm for reasoning over the distributed ontology
is proposed for implementing resolution-based inference in the separate modules.
Completeness and correctness of some resolution strategies is preserved, and others
trade completeness for efficiency.

The method of Cuenca Grau et al. (2005) partitions an ontology into a set of
modules connected by e-connections. This approach aims at preserving the com-
pleteness of local reasoning within all created modules. This requirement is sup-
posed to make the approach suitable for supporting selective use and reuse since
every module can be exploited independently of the others.

A tool that produces sparsely connected modules of reduced size was presented
in Stuckenschmidt and Klein (2004). The goal of this method is to support mainte-
nance and use of very large ontologies by providing the possibility to individually
inspect smaller parts of the ontology. The algorithm operates with a number of
parameters that can be used to tune the result to the requirements of a given
application.

Later in this chapter, we describe a method for ontology partitioning based on
enforcing good properties in the dependency graph between the resulting modules.

Fig. 10.1 Ontology partitioning

216 M. d’Aquin
10.2.2 Ontology Module Extraction

Ontology module extraction consists in reducing an ontology to the sub-part, the
module, that covers a particular sub-vocabulary. This activity has been called seg-
mentation in Seidenberg and Rector (2006) and traversal view extraction in Noy and
Musen (2004). More precisely, given an ontology O and a set SV C Sig(O) of terms
from the ontology, a module extraction mechanism returns a module Mgy, supposed to
be the relevant part of O that covers the sub-vocabulary SV (Sig(Msy) 2 SV, see
Fig. 10.2). Techniques for module extraction often rely on the so-called traversal
method: starting from the elements of the input sub-vocabulary, relations in the
ontology are recursively ‘traversed’ to gather relevant (i.e. related) elements to be
included in the module.

Such a technique has been integrated in the PROMPT tool (Noy and Musen
2004), to be used in the Protégé environment. This method recursively follows the
properties around a selected class of the ontology until a given distance is reached.
The user can exclude certain properties in order to adapt the result to the needs of
the application.

The mechanism presented in Seidenberg and Rector (2006) starts from a set of
classes of the input ontology and extracts related elements on the basis of class
subsumption and OWL restrictions. Some optional filters can also be activated to
reduce the size of the resulting module. This technique has been implemented to be
used in the Galen project and relies on the Galen upper ontology.

In Stuckenschmidt (2006), the author defines a viewpoint as being a sub-part
of an ontology that only contains the knowledge concerning a given sub-vocabulary
(a set of concept and property names). The computation of a viewpoint is based on
the definition of a viewpoint-dependent subsumption relation.

Inspired from the previously described techniques, d’Aquin et al. (2006) define
an approach for the purpose of the dynamic selection of relevant modules from
online ontologies. The input sub-vocabulary can contain classes, properties or
individuals. The mechanism is fully automatized, is designed to work with different
kinds of ontologies (from simple taxonomies to rich and complex OWL
ontologies), and relies on inferences during the modularization process.

)

Fig. 10.2 Ontology module extraction

10 Modularizing Ontologies 217

Finally, the technique described in Doran et al. (2007) is focussed on ontology
module extraction for aiding an ontology engineer in reusing an ontology module.
It takes a single class as input and extracts a module about this class. The approach
it relies on is that, in most cases, elements that (directly or indirectly) make
reference to the initial class should be included.

One important issue related to ontology module extraction is that different
scenarios and applications require different ways to modularize ontologies
(d’Aquin et al. 2007b). To facilitate the selection, combination and adaptation of
the various existing module extraction techniques, d’Aquin et al. (2007a) describe a
parametric approach for module extraction. The principle is to describe module
extraction techniques under a common framework that can be parameterized
according to the modularization technique that is most suited for the application.
This framework relies on a graph transformation engine. Ontologies to be modular-
ized are represented as graphs, and modularization techniques re-formulated as
graph transformation rules. In this way, existing modularization technique can be
implemented in the same tool, making it easier to compare, adapt and combine
them, and new modularization techniques can easily be implemented in the form of
modularization rules. The paper (d’Aquin et al. 2007a) described the reformulation
of several existing techniques for modularization, but an operational implementa-
tion of the tool has not been made available.

Very similar ideas to the one described in d’Aquin et al. (2007a) are at the basis
of another approach for parametric modularization (Doran et al. 2008) which,
instead of a graph transformation framework, employs a mechanism that recur-
sively execute SPARQL queries over the ontology to build a sub-set of it. The
parameters of this framework are the sets of SPARQL queries that represent
modularization techniques. In the same line of ideas, we describe later in this
chapter a tool that relies on a set of specific extraction operators that can be
combined to extract modules from ontologies in a way that is customized to the
application at hand.

10.2.3 Ontology Module Composition

In Wiederhold (1994), Wiederhold defines a simple ontology algebra, with the main
purpose of facilitating ontology-based software composition. He defines a set of
operators applying set-related operations on the entities described in the input
ontologies and relying on equality mappings (=) between these entities. More
precisely, the three operators are defined as shown in Table 10.1.

In the same line of ideas, but in a more formalized and sophisticated way, Melnik
et al. (2004) describe a set of operators for model management, as defined in the
Rondo platform (Melnik et al. 2003). The goal of model management is to facilitate
and automatize the development of metadata-intensive applications by relying on
the abstract and generic notion of model of the data, as well as on the idea of
mappings between these models. An essential part of a platform for model

218 M. d’Aquin

Table 10.1 Set of operators

Intersection(Oy, 02) — O Creates an ontology O containing the common (mapped)
entities in O, and O,
Union(O4, O) — O Creates an ontology O containing the entities of O,
and O, and merging the common ones
Difference(O;, O;) — O Creates an ontology O containing only the

entities in O, that are not mapped to entities in O,

management is a set of operators to manipulate and combine these models and
mappings. Melnik et al. (2004) focus on formalizing a core set of operators: Match,
Compose, Merge, Extract, Difference and Confluence. Match is particular in this
set. It takes two models as an input and returns a mapping between these models.
It inherently does not have a formal semantics as it depends on the technique used
for matching, as well as on the concrete formalism used to describe the models and
mappings. Merge intuitively corresponds to the Union operator in Wiederhold
(1994): it takes two models and a mapping and creates a new model that contains
the information from both input models, relying on the input mapping. It also
creates two mappings from the created model to the two original ones. Extract
creates the sub-model of a model that is involved in a mapping, and Difference, the
sub-model that is not involved in a mapping. Finally, compose and confluence are
mapping manipulation operators, creating mappings by merging or composing
other mappings.

Kaushik et al. (2006) define operators for combining ontologies created by
different members of a community and written in RDF. This paper first provides
a formalization of RDF to describe set-related operators such as Intersection, Union
and Difference. It also adds other kinds of operators, such as the quotient of two
ontologies O; and O, (collapsing O, into one entity and pointing all the properties
of O, to entities of O, to this particular entity) and the product of two ontologies
(inversely, extending the properties from O; to O, to all the entities of O,). It is
worth mentioning that such operators can be related to the ones of relational
algebras used in relational database systems.

Note finally that the OWL tools’ that are part of the KAON2* framework include
operators such as Difference, Merge and Filter, working at the level of ontology
axioms. For example, merge creates an ontology as the union of the axioms
contained in the two input ontologies. The NeOn Toolkit plugin for ontology
module composition presented in Sect. 10.5.3 relies on similar simple operators
and is integrated with the other tools for module extraction and ontology
partitioning.

3 http://km.aifb. kit.edu/projects/owltools/
“http://kaon2.semanticweb.org/

http://km.aifb.kit.edu/projects/owltools/
http://kaon2.semanticweb.org/

10 Modularizing Ontologies 219
10.3 A General Approach to Modularizing Ontologies

As we mentioned in Sect. 10.1, the goal of ontology modularization is to obtain a
module or a set of modules from an ontology, which fit the requirements of a
particular application or a particular scenario. Especially due to the large number of
different techniques that can be used and combined to achieve these goals, there is a
need for methodological guidelines to help ontology developers in selecting and
applying the appropriate techniques for modularization, depending on the goal of
modularization.

Note that, as opposed to a single, monolithic ontology, an ontology network is
essentially a modular ontology, made of components (the individual ontologies)
interacting with each other in a particular context. The approach presented here is
applied on individual ontologies (possibly networked) to create either networks of
ontologies or elements for networks of ontologies.

Generalizing and clarifying the description above, we specify the definition of
ontology modularization, as provided by the NeOn Glossary (Sudrez-Figueroa
2010), as the activity that takes as an input an ontology and that has for goal to
identify a set of modules for this ontology, effectively creating a modular version of
it, for the purpose of supporting maintenance and reuse (see Fig. 10.3).
Modularization offers a way to cut down potentially large ontologies into smaller,
more manageable modules. It is generally realized by the ontology engineer or the
ontology engineering team, preferably with the help of domain experts.

Figure 10.4 shows the workflow and the tasks for carrying out the ontology
modularization activity. As can be seen in this figure, we see this activity as an
iterative process, potentially combining different methods and techniques for mod-
ule extraction and partitioning, and combining their results through the use of
module composition operators.

Task 1. Identifying the Purpose of Modularization

As discussed earlier, the modularization of an ontology strongly depends on the
application relying on the modularization and the context in which the ontology is
developed. It is therefore crucial to start by identifying the reasons for modularizing
the ontologies and the expected benefits, to guide the rest of the process.

Commonly considered benefits (and thus drivers) of ontology modularization
are:

e Improving performance by enabling the distribution of reasoning or by
exploiting only the relevant modules of a large ontology (see Suntisrivaraporn
et al. (2008) for an example in inference justification)

e Facilitating the development and maintenance of the ontology by dividing it in
loosely coupled, self-contained components, which can be managed separately

e Facilitating the reuse of (parts of) the ontology by extracting modules of the
ontology that have a specific application or purpose for being reused

e Customizing ontologies by application developers to flexibly extract and com-
bine modules relevant to a particular application or to provide different modules

220 M. d’Aquin

Ontology Modularization

Definition

Ontology Modularization refers to the activity of identifying one or more modules in
an ontology with the purpose of supporting reuse or maintenance.

Goal

The modularization activity offers a way to cut-down potentially large ontologies into
smaller, more manageable modules.

Input Output
A module or a set of modules from the input ontology. In
An ontology. . .
practice, ontology modules are themselves ontologies.
Who

Ontology engineer (ontology development team), curator of the ontology, preferably
with the help of domain experts.

When

To facilitate ontology reuse, as part of the re-engineering process, as part of a restruc-
turing activity.

Fig. 10.3 Ontology modularization filling card

to different groups of users (see Lopez et al. (2009) for an example in managing
access rights in a distributed question answering system)

Identifying the purpose of modularization is essential for the next tasks, in
particular to select the appropriate modularization technique and criteria to maxi-
mize the expected benefit of modularization.

Task 2. Selecting a Modularization Approach

As explained at the beginning of this chapter, there are two main approaches to
obtain modules from ontologies: ontology partitioning and ontology module extrac-
tion. It is generally easy to decide which one to choose according to the
modularization purpose:

* Whenever the purpose relates to the entire ontology (i.e. improving mainte-
nance, and in some cases performance), a partitioning approach should be
considered.

* Whenever the purpose relates to extracting specific parts of an ontology (e.g. to
customize it or reuse it partially), module extraction should be considered.

10 Modularizing Ontologies

i

Users, Domain Experts and
Ontology Development Team (ODT)

"

Ontology Development Team

Ontology

modularization

Task 1. Identifying purpose of

]

Task 2. Selecting a
modularization approach

221

l

i

Users, Domain Experts and ODT

Task 3. Defining modularization

criteria

"

l

Task 4. Selecting a base
modularization technique

Ontology Development Team

i

Ontology Development Team

"

Ontology Development Team

i

Users, Domain Experts and ODT

l

Task 5. Parametrizing the
tecnique and applying it

)

Task 6. Combining results

]

Task 7. Evaluating
modularization

Is it satisfactory

Yes

®

Task 8. Finalizing modularization

Ontology Development Team

Fig. 10.4 Tasks for modularizing ontologies

Ontology
Module(s)

Of course, this needs to be considered in the context of the overall iterative
process that constitutes ontology modularization. In general, when the purpose is to
obtain a set of modules to cover the entire ontology, in a first iteration, partitioning

222 M. d’Aquin

should be considered. In subsequent iterations, intermediary modules might need to
be further partitioned, or specific modules be extracted.

Task 3. Defining Modularization Criteria

The modularization criteria define the basic characteristics that the resulting
modules should have, that is, what should go into a module. In d’Aquin et al.
(2009), a set of criteria typically employed for modularization is given (e.g. logical
completeness and correctness with respect to the original ontology, size, relation
between modules). The criteria to emphasize should be decided, depending on the
purpose of modularization (as defined in Task 1). For example, if the goal is to
improve the reasoning procedure, logical criteria should be favoured. In d’Aquin
et al. (2009), we showed that the great variety of techniques for modularization all
implement different criteria, meaning that this task is essential for choosing the
appropriate technique, or combination of techniques. Unfortunately, while work in
d’Aquin et al. (2009) provides a list of common criteria, and insights on their
importance in different scenarios, the choice of the right criteria to apply is highly
dependent on a particular situation and has to be left to the ontology engineers to
decide.

Task 4. Selecting a Base Modularization Technique

As mentioned in previous sections, there is a great variety of techniques and tools
for ontology modularization. In d’Aquin et al. (2007b, 2009), we showed that these
techniques implement a different intuition about what should be in a module, and
s0, there is no universal definition of what an ontology module should contain. In
other words, it is necessary to select the most appropriate technique, depending on
the criteria to apply. There is currently no comprehensive list of techniques that
could be applied for modularization. However, authors in d’Aquin et al. (2009)
provide a description of the major techniques and experiments, demonstrating how
they realize some possible criteria.

Task 5. Parametrizing the Technique and Applying It

Depending on the technique that has been selected by Task 4, there may be various
parameters required to obtain interesting and useful results. For example, module
extraction techniques generally require identifying a sub-vocabulary of the original
ontology, defining a particular area of interest. Partitioning techniques may require
indications, for example, about the minimal/maximal size of a module. In such
cases, the ontology engineer can only refer to guidelines and manual of the
individual tool to establish the best parameters in his/her context. Most of the
techniques would, in principle, be applied in the same way, taking the original
ontology as input and creating modules in the form of smaller ontologies, allowing
in this way to process the resulting modules iteratively, in the same way as the
original ontology.

Task 6. Combining Results

As mentioned earlier, we favour an iterative process where the adequate modules
are produced by refining and combining the results obtained with various
parameters, techniques and approaches. Therefore, at every iteration, everytime a
new (set of) module(s) is produced, it is necessary to integrate it — that is, to
combine it — with the modules that were produced at previous iterations. The way

10 Modularizing Ontologies 223

to combine depends on the criteria for modularization and on the modules already
produced. Two possibilities are:

e If some modules were too small or not logically complete and the current
iteration produced complementary modules, then the results should be merged.

e If modules from a previous iteration were too big because the employed tech-
nique did not consider some of the criteria, and a new technique is applied that
implements the missing criteria, then the common part from the results of both
iteration should be considered.

Operators for combining modules should be employed here to derive new
modules from the results of partitioning or extraction techniques, or from different
iterations for the process. The three common operators should be applied in the
following situations:

o Intersection: when two or more modules have been produced that are comple-
mentary in the sense that they are too broad and should be reduced in relation
with each other

e Union: when two or more modules have been produced that are complementary
in the sense that they are too narrow and should be integrated with each other

» Difference: when two or more modules have been produced that are comple-
mentary in the sense that one should be narrowed down so that it does not
overlap with the other

Task 7. Evaluating Modularization

The evaluation of the result of the modularization (meaning the complete set of
generated modules to be included in the modular ontology) is a crucial part of the
iterative process. Indeed, it depends on this evaluation whether a new iteration is
necessary, applying a new set of criteria and a new technique, or if the current (set
of) modules are satisfactory, considering the application scenario. There are two
ways in which the modularization could be evaluated:

* By checking the criteria: Evaluating whether the criteria defined for
modularization have been realized as expected by the modularization technique
is useful both for checking if the results match the requirements of the applica-
tion and for establishing a new set of criteria in case another iteration is required.

e By testing against the purpose of modularization: If the defined criteria have all
been realized, it is important to check whether or not the obtained modulari-
zation actually realizes the expected improvement compared to the original
ontology. For example, if the goal was to facilitate the maintenance of the
ontology, the ontology engineers and domain experts should check whether
the structure of the new, modular ontology has been created in a sensible way
according to this purpose. Another example could be when the goal is to better
support an application; in these cases, further guidelines about how to perform
an application-based ontology evaluation can be found in Chap. 9.

http://dx.doi.org/10.1007/978-3-642-24794-1_9

224 M. d’Aquin

There can be three outcomes for this task. It can establish by evaluation that:

e The modularization is satisfactory, so that the created modules can be finalized
and deployed (Task 8).

e The modularization is incomplete, so that a new iteration should be carried on,
using another set of criteria and another technique to produce complementary
results.

e The modularization is improper, so that a new iteration is required, re-consider-
ing the set of criteria and the technique to employ in order to produce modules
that better match the purpose of modularization.

Note that in different iterations, only the purpose of modularization cannot
change. In particular, even if the approach (extraction or partitioning) generally
does not change, it is not hard to imagine scenarios in which a partitioning
technique is first applied, followed by extraction procedures on the previously
created modules, as showed by the example in Sect. 10.4.

Task 8. Finalizing Modularization

Once the produced modularization is judged satisfactory, an additional step can
be required for it to be deployed and exploited in an application. For example, it is
usually necessary to revise the identifiers of each of the modules so that they follow
the conventions employed in the target application, to re-establish links between
modules, or simply to deploy the resulting modules in a way that it is made
accessible in the target application and the editorial workflow.

10.4 Example

We consider the scenario where a large monolithic ontology has been developed in
the past, and this needs to be modularized in order to facilitate its maintenance. The
purpose of the modularization has therefore been clearly identified (Task 1). In this
case, it is clear that what is required is to produce a set of modules that together
cover the entire ontology. Thus, in Task 2, the partitioning approach is selected.
Considering that the purpose is to facilitate maintenance, the major criteria (Task 3)
to take into account are:

¢ The sizes of the modules, which should be small enough to be easily manageable
but not too small so that the ontology curator does not have to handle too many
different modules for a particular management task

» Therelations between modules, which should favour a well-structured organization
in the dependency of the modules

Considering both criteria above, it is decided to apply the NeOn Toolkit plugin
for ontology partitioning (see Sect. 10.5), which works on the dependency graph of
modules and intends to provide good structures for this dependency graph (Task 4).
The only parameter for this technique is the minimum size of a module (Task 5),
which is chosen according to the size of the initial ontology. The resulting partition

10 Modularizing Ontologies 225
4

Q-
bQﬂo

Iteration 1: Apply Partitioning Technique

\é@.-» .b

Iteration 1: Combine (merge) small modules

Fig. 10.5 First iteration in our example modularization process

is described in Fig. 10.5. Even if there are no previous results yet, some modules
produced by the partitioning technique can already be combined together (Task 6).
Indeed, small modules can be judged too small and might contain information that
is considered relevant for other modules. Therefore, these modules can be merged
using the NeOn Toolkit plugin for module combination and employing the Union
operator. This is depicted for our example in Fig. 10.5.

Now that a first result has been produced, it can be evaluated (Task 7) by the
ontology development team, the domain experts and the users. In this example,
there is one module that is considered too big and covering two different topics that
should be separated. A second iteration is necessary.

The goal of the second iteration is to extract from one of the modules produced
previously, the elements related to one particular topic. Thus, we chose to follow the
extraction approach (Task 2). The criteria here are mainly that the extracted module
should contain ontological elements relevant to this particular topic (Task 3). A
specific ontology module extraction technique is selected for this (Task 4) and used
to generate relevant modules on the basis of a set of core terms defining the topic
(Task 5). The result is depicted in Fig. 10.6. Now that one module has been extracted
for one of the topic covered by the original module, the one for the second topic has
to be created in the combination task (Task 6). This is achieved by using the
Difference operator in the module combination plugin of the NeOn Toolkit (see
Fig. 10.6). In this way, the original module has then been divided into two modules,
one being the complement of the other. We then obtain a new set of modules that can
be evaluated, and if judged adequate, can replace the original, monolithic ontology.

226 M. d’Aquin
=@

t3

4

Iteration 2: Apply Extraction Technique

°c@P=@

Iteration 2: Create the complement of previous result

> v Y

Fig. 10.6 Second iteration in our example modularization process

10.5 Tool Support

The abstract example presented above provides an illustration of the overall activity
of modularizing an existing ontology, using the iterative method we propose, based
on different modularization approaches, and combining results from different
techniques. Ideally, the tools necessary to achieve this activity of modularizing
should be integrated within the same ontology engineering environment in which
the ontologies are developed. Here, we present the tools integrated in the NeOn
Toolkit in order to realize ontology partitioning, ontology module extraction and
ontology module composition. Together with the NeOn Toolkit, these tools repre-
sent an integrated environment for creating and manipulating ontology modules.

10.5.1 Ontology Partitioning

Our method for ontology partitioning is based on basic requirements concerning the
resulting modularization and its structure. We consider that the result of the
partitioning process should not only be a bag of modules but should also provide
the relations between them in terms of dependency. In addition, some good
properties for this structure should be enforced in order to facilitate the manipula-
tion and maintenance of the modularization.

As our approach is based on the dependency structure of modules, we need to
define this relation of dependency. We consider a module M, to be dependent on a
module M, if there is at least one entity in M; whose definition or description
depends on at least one entity in M,. The definition or the description of an entity

10 Modularizing Ontologies 227

ke

Arbitrary module dependency graph Good module dependency graph

Fig. 10.7 Graphs illustrating dependency structures between ontology modules

A depends on an entity B whenever B participates in the axioms defining or
describing A.

From this definition, we can see that if a module M; depends on a module M,, it
means that M; should import M,. The main particularity of our approach is that we
want the dependency structure of the resulting modularization to have good
properties in order to be efficient in facilitating further engineering of the obtained
modular ontology. In other terms, as shown in Fig. 10.7, we do not want this
structure to be any arbitrary (directed) graph, but to respect two major rules:

1. Rule I (no cycle): There should not be any cycle in the dependency graph of the
resulting modularization. The rationale for this rule is that we are trying to
reproduce the natural situation where modules would be reused. Creating bidi-
rectional interdependencies between reused modules is a bad practice as it
introduces additional difficulties in case of an update of one of the modules or
when distributing modules (Parnas 1978).

2. Rule 2 (no transitive dependency): If a module reuses another one, it should not
directly or indirectly reuse a module on which the reused one is dependent.
Indeed, when this situation arises, it means that the organization of modules into
layers has not been enforced, so that a module is reusing other modules at
different levels of the same branch of the dependency graph. Besides producing
unnecessary redundancies in the dependency structure, this could also cause
difficulties for the evolution and distribution of the module by creating ‘concur-
rent propagation paths,’ leading to the same module.

In addition, in order to ensure not only that the structure of the modularization
respects good properties but also that individual modules are easy to manage and to
handle, we add two rules on the characteristics of each module:

1. Rule 3 (size of the modules): A module should not be smaller than a given
threshold. Indeed, initial experiments have shown that applying only the two
rules above can result in very small modules. Too small modules can be hard to
manage, as it can result in having to consider too many different modules for a
given task (e.g. update) (d’Aquin et al. 2007b). Note that, even if it could
sometimes be useful, a rule based on the maximum size of a module would
not be applicable, as it would contradict rules 1 or 2. In this case, it would be

228 M. d’Aquin

recommended to use the extraction techniques described in Sect. 10.5.2 to
reduce the size of the modules considered too big.

2. Rule 4 (intra-connectedness): Entities within a module should be connected with
each other. This is a very simple and natural rule to follow. Indeed, there is no
reason for entities that are completely disconnected, directly or indirectly, to end
up in the same module.

Having the above rules defined, our algorithm for partitioning ontologies is
reasonably straightforward. It basically consists in starting from an initial
modularization with as many modules as entities in the ontology. From this initial
modularization, the algorithm iteratively enforces rules 1 and 2, merging modules
when necessary. At the end of this step, a modularization that respects rules 1, 2 and
4 is obtained. The last task consists in merging modules that are too small according
to the given threshold, ensuring that this merging ends up in modules that respect
both rules 3 and 4.

Figure 10.8 shows a screenshot of the ontology partitioning plugin integrated
with the NeOn Toolkit, which relies on the technique described above. Concretely,
this plugin takes the form of a view which allows the user to select the ontology to
modularize, specify the threshold for the minimum size of the modules, and execute
the algorithm. The result of the algorithm is then presented as a graph, with each

Parameters

Project : o Refresh |

Ontology: _file:/Users /{277 /D /PhD gies/biosphere.rdf_Evolva_20100927_135644 5 ;!ehesn]

™
Min Size of Module 5 .
Level of transitive co-inclusion: 2 |:]

(_Execute Operation
Original Ontology:
91 entities
1B4 axioms
Insect, Ciliate, Coral, MicrobiotaTaxonomy, Dairy, Animal,
MarineMicrobiota, Mold, Poultry, Yeast, Fungi,
ExoticVegetation, SegmentedWorm, Invertebrate, technician,
Moss, Plant, Mushroom, TreeRing, Sporozoan,

Partition #0: 31 entities

32 axioms

Depends on 0 other modules

2 other modules depend on it

Echinoderm, Bird, Mollusk, Livestock, Centipede, Millipede,
Roundworm, Sponge, Indig s5pecies, dog, Reptile,
Flatworm, Zooplankton, Arthropod, Amphibian, ExoticSpecies,
Crustacean, Arachnid, Anemone, technician,

Partition #1: 47 entities
48 axioms
Depends on 1 other modules
1 other modules depend on it
Flagellate, DeciduousVegetation, Diatom, Pollen,
9 on, Phy l . Fern, Coccolithophore,
Amoebae, Conifer, Bacteria, Algae, BlueGreenAlgae, Crown,
Liverwort, Litter, Protist, Crop, Mankton, Macrophyte,

Partition #2: 7 entities

Save Result

Project : | TED_Agri_Evolv_Onto = ((Retresh) [Save Partition

Fig. 10.8 Screenshot of the ontology partitioning plugin of the NeOn Toolkit

10 Modularizing Ontologies 229

node corresponding to a created module (details of the module are shown when
selecting the corresponding node). The plugin allows the user to save and integrate
to the current ontology project each module individually.

An interesting aspect of the implementation within the NeOn Toolkit is that it
allows a very flexible and customizable modularization process. Indeed, it is
possible to re-run the algorithm with different parameters, save only the modules
that are relevant according to the ontology engineer, and use the module composi-
tion plugin presented below to manipulate and customize the modularization until a
satisfactory, well-suited modularization is obtained.

10.5.2 Ontology Module Extraction

Ind’Aquin et al. (2007a, and 2007b), we have shown through a number of experiments
that extracting a module from an ontology is an ill-defined task: the criteria used to
decide what should go in a module and what is a good, relevant module are highly
dependent on the specificity of the application scenario. In other terms, there is no
universal, generic module extraction approach. This appeared also very clearly in the
different use cases described in d’Aquin et al. (2008), where different users, in
different contexts, provided completely different perspectives about what should go
in a module. In general, what appeared from these use cases is that:

1. Users have different, more or less well-defined ideas about what module extrac-
tion should do, varying from very elementary cases (e.g. extract a branch) to
complex, abstract requirements (should extract everything that helps in
interpreting a particular entity). Hence, each of the scenarios we encountered
would require a different approach for module extraction.

2. Users want to keep in control of the way the module is created. It is required to
support the parameterization of the module extraction for the user to be able to
really ‘choose’ what goes into the module.

For these reasons, we implemented a plugin for the NeOn Toolkit to realize
module extraction, providing an interactive and iterative approach to this activity.
This plugin integrates a number of different ‘operators’ for module extraction, most
of them being relatively elementary: based on an initial set of entities, extract the
super-/sub-classes, entities they depend or that depend on them, common super-/
sub-classes, sub-/super-properties, all classes of instances, or all instances of
classes. The interface for this plugin (Fig. 10.9) allows the user to easily combine
these different elementary operators in an interactive way. An initial module can be
created, using particular parameters (here the recursion level), obtaining an initial
set of entities to be included. Then another operator can be used, on other entities
and other parameters, to refine the module and extend it with other entities until an
appropriate module is created. At any point of the process, previous operations can
be undone and the module cleared.

230 M. d’Aquin

Parameters
Project : | TED_Agri_Evolv_Onto v (Refresh)
Ontology: | file:/Users/f277/Doc fPhD/ontologies/biosphere.rdf_Evolv... 3| (Refresh)
[_Extract gEl %) Recursion level (0=inf): |5 |[2)
C:: Insect Insect
C:: Ciliate Animal
C:: Coral LivingThing
C:: MicrobiotaTaxonomy Coral
C:: Dairy Dairy
C:: Animal Poultry
C:: MarineMicrobiota SegmentedWorm
C:: Mold Invertebrate
C:: Poultry technician
C:: Yeast Anemone
C:: Fungi Arachnid
C:: ExoticVegetation Crustacean
C:: SegmentedWorm ExoticSpecies
C:: Invertebrate Amphibian
C:: technician Arthropod
C:: Moss = Zooplankton '-:
C:: Plant 3 Mammal
C:: Mushroom b Flatwnrm b4
((search) o Classes Properties ¥ Individuals
Save Result
Project : TED_Agri_Evolv_Onto ;J (Refresh)
MNamespace:
Module Identifier:
Save Ontology

Fig. 10.9 Screenshot of the ontology module extraction plugin of the NeOn Toolkit

In addition, the plugin provides straightforward functions to facilitate the selec-
tion of the entities to consider for module extraction. This includes restricting the
visualization to classes, properties or individuals and searching for entities
matching a specific string. Once a module is created, it can simply be saved as
part of the current ontology project and become itself processable as an ontology
(module) to be composed or partitioned using the other modularization plugins.

10.5.3 Ontology Module Composition

A simple module algebra (including operators for Intersection, Union and Differ-
ence of module) is implemented in a dedicated plugin, which is realized as a new
NeOn Toolkit view. As shown in Fig. 10.10, in this view, the user selects the two
ontologies that serve as input for the operators. In the field between the two

10 Modularizing Ontologies 231

Ontology 1
Project: KMI_Evolv_Onto

Ontol http:/ fswre. .org/ logy-0

~

Ontology 2
Project: |TED Aari Evolv Onto [*) (Refresh)

Ontol | fle:/Users/f277/Dx /PhD/ontol raf 2] (Refresn)

_Operators
O union O Difference (0] [ignore
(O Alignment (name equal) () Alignment (edit distance)

All axioms in ontology 1 <711>: O
nsl: hitp:/ /swrc.ontoware.org/ontology-07

All axioms in ontology 2 <173>:
ns2: file:/Users/fz77/D: [PhD 1l rdf

Axioms in the new generated ontology (&B-!:r
0 > SubClassOf(<file. !Uurs.‘l‘x??,‘nﬂ' ". rdfiM, hy <file:/Users/
f277/Documents/PhD)
1> .Annomlon&um-on(rdl'l label dmp f.'swtr .org/ gy > "5 iges"@de)
http: /] swrc Lorg/ dent>))

2>

k] s«ucuncmmle mmul‘:?? Do /PhD/ I [biosphere.rdf#Cl phyll> <file:/Users/
f277/D h.]

4> Annomlomumion&dh label -f.hltp Hmt: .org/ gy#supervisor r@de)

5 > DisjointClasses{<http://swre 9 log Thesis> <http://swrc.ontoware.org/
omoloqytPhDThuns)-l (-
6 > Decl Class{<http:/ /swrc org/ 1] 4
7 > AnnotationAssertion(rdfs:label <http:/fswrc .0rg | roduct> v

_Export Result

Project : KMI Evolv Onto l!
Module identifier: tp: / fmodul €.0rg 1291913851370.0m
Default hitp: / fmodul e.orgé

Fig. 10.10 Screenshot of the ontology module composition plugin of the NeOn Toolkit

ontologies, the user selects the operator to be applied. In addition to the combination
operators, the plugin also supports alignment as an operator, which allows relating
modules via mappings. Depending on the operator chosen, the result will be either a
new module (for Union, Difference, Intersection) or an alignment (for align).

Finally, the user can specify whether the application of the operators should be
sensitive to differences in the namespace. If not, the operators only consider local
names. This is for example relevant for the Difference operator applied to two
versions of the same ontology — as often, the namespace changes from one version
to another (and thus all elements in the ontology), a difference based on the fully
qualified names would not be very meaningful.

10.6 Conclusion

In this chapter, we motivated and gave an overview of the activity of ontology
modularization. We described a general approach for modularizing ontologies and
the tools that have been developed for the NeOn Toolkit ontology engineering

232 M. d’Aquin

environment to support this approach. However, even with the provided tool and
methodological support, modularizing an ontology is still a very time-consuming
task, not only because of the expensive computation it requires but also because of
the expertise and experience needed from the ontology engineer to obtain the
desired result (which is very often very hard to establish). We described a simple
‘abstract’ example of ontology modularization. Further to this work, the empirical
analysis of existing modular ontologies and of the process of modularizing existing
ontologies could give us further insight into the broad notion of ontology
modularity.

References

Cuenca Grau B, Parsia B, Sirin E, Kalyanpur A (2005) Automatic partitioning of owl ontologies
using E-connections. In: Description logics, DL2005, Edinburgh

d’Aquin M, Sabou M, Motta E (2006) Modularization: a key for the dynamic selection of relevant
knowledge components. In: Workshop on modular ontologies, WoMO 2006, Athens

d’Aquin M, Doran P, Motta E, Tamma V (2007a) Towards a parametric ontology modularization
framework based on graph transformation. In: International workshop on modular ontologies,
K-CAP 2007, Whistler

d’Aquin M, Schlicht A, Stuckenschmidt H, Sabou M (2007b) Ontology modularization for
knowledge selection: experiments and evaluations. In: Database and expert systems
applications, 18th international conference, DEXA 2007. Springer, Berlin/Heidelberg/
New York

d’Aquin M, Haase P, Rudolph S, Euzenat J, Zimmermann A, Dzbor M, Iglesias M, Jacques Y,
Caracciolo C, Buil Aranda C, Gomez, JM (2008) D1.1.3 NeOn formalisms for modularization:
syntax, semantics, algebra. NeOn deliverable 1.1.3. NeOn project

d’Aquin M, Schlicht A, Stuckenschmidt H, Sabou M (2009) Criteria and evaluation for ontology
modularization technique criteria and evaluation for ontology modularization technique. In:
Stuckenschmidt H, Parent C, Spaccapietra S (eds) Modular ontologies: concepts, theories and
techniques for knowledge modularization. Springer, Berlin/Heidelberg/New York

Doran P, Tamma V, Iannone L (2007) Ontology module extraction for ontology reuse: an ontology
engineering perspective. In: Proceedings of the 2007 ACM CIKM international conference on
information and knowledge management, Lisbon

Doran P, Palmisano I, Tamma V (2008) SOMET: algorithm and tool for SPARQL based ontology
module extraction. In: International workshop on ontologies: reasoning and modularity
(WORM-08), ESWC 2008, Tenerife

Kaushik S, Farkas C, Wijesekera D, Ammann P (2006) An algebra for composing ontologies. In:
Formal ontology in information systems, FOIS 2006, Baltimore

Lopez V, Motta E, Dzbor M, d’Aquin M, Peroni S, Guidi D (2009) Final version of the question
answering system. Deliverable 8.6 of the OpenKnowledge project

MacCartney B, Mcllraith S, Amir E, Uribe TE (2003) Practical partition-based theorem proving
for large knowledge bases. In: Proceedings of the international joint conference on artificial
intelligence, IJCAI 2003, Acapulco

Melnik S, Rahm E, Bernstein PA (2003) Rondo: a programming platform for generic model
management. In: Proceedings of the SIGMOD 2003, San Diego, pp 193-204

Melnik S, Bernstein PA, Halevy AY, Rahm E (2004) A semantics for model management
operators. Microsoft technical report

Noy NF, Musen MA (2004) Specifying ontology views by traversal. In: Proceedings of the
international semantic web conference, ISWC 2004, Hiroshima

10 Modularizing Ontologies 233

Parnas DL (1978) Designing software for ease of extension and contraction. In: Proceedings of the
3rd international conference on software engineering

Seidenberg J, Rector A (2006) Web ontology segmentation: analysis, classification and use.
In: Proceedings of the world wide web conference, WWW 2006, Edinburgh

Stuckenschmidt H (2006) Toward multi-viewpoint reasoning with OWL ontologies.
In: Proceedings of the European semantic web conference, ESWC 2006, Budva

Stuckenschmidt H, Klein M (2004) Structure-based partitioning of large concept hierarchies.
In: International semantic web conference, ISWC 2004, Hiroshima

Sudrez-Figueroa MC (2010) NeOn Methodology for building ontology networks: specification,
scheduling and reuse. PhD thesis, Universidad Politécnica de Madrid, Espafia. Available at
http://oa.upm.es/3879/

Suntisrivaraporn B, Guilin Q, Ji Q, Haase P (2008) A modularization-based approach to finding all
justifications for OWL DL entailments. In: Asian semantic web conference, ASWC 2008,
Bangkok

Wiederhold G (1994) An algebra for ontology composition. In: Monterey workshop on formal
methods, Monterey

http://oa.upm.es/3879/

Chapter 11
Ontology Evolution

Raiil Palma, Fouad Zablith, Peter Haase, and Oscar Corcho

Abstract Ontologies are dynamic entities that evolve over time. There are several
challenges associated with the management of ontology dynamics, from the ade-
quate control of ontology changes to the identification and administration of
ontology versions. Moreover, ontologies are increasingly becoming part of a
network of complex relationships and dependencies, where they reuse and extend
other ontologies, have associated metadata in order to ease sharing and reuse, are
used to integrate heterogeneous knowledge bases, etc. Under these circumstances, a
change in an ontology does not only affect the ontology itself but may also have
consequences in all its related artifacts. In this chapter, we propose methodological
guidelines for carrying out the ontology evolution activity. We target different
scenarios, supporting users in the process of ontology evolution from a generic
perspective and on how to use tools that semiautomatically assist them in discover-
ing, evaluating, and integrating domain changes to evolve ontologies. To illustrate
their applicability, we describe how such guidelines have been used in real example
applications.

R. Palma (B<)
Poznan Supercomputing and Networking Center, ul Dabrowskiego 79a, 60-529 Poznan, Poland
e-mail: rpalma@man.poznan.pl

F. Zablith

Knowledge Media Institute (KMi), The Open University, Walton Hall, Milton Keynes
MK7 6AA, UK

e-mail: f.zablith@open.ac.uk

P. Haase
fluid Operations AG, Altrottstr. 31, 69190 Walldorf, Germany
e-mail: peter.haase@fluidops.com

0. Corcho

Ontology Engineering Group, Facultad de Informatica, Universidad Politécnica de Madrid,
Campus de Montegancedo sn, 28660 Boadilla del Monte, Madrid, Spain

e-mail: ocorcho@fi.upm.es

M.C. Suarez-Figueroa et al. (eds.), Ontology Engineering in a Networked World, 235
DOI 10.1007/978-3-642-24794-1_11, © Springer-Verlag Berlin Heidelberg 2012

mailto:rpalma@man.poznan.pl
mailto:f.zablith@open.ac.uk
mailto:peter.haase@fluidops.com
mailto:ocorcho@fi.upm.es

236 R. Palma et al.
11.1 Motivation

Ontologies are fundamental building blocks of the Semantic Web and are often
used as the knowledge backbones of advanced information systems. As such, the
growing use and application of ontologies in many different areas during the last
years has led to an increasing interest of both researchers and industry in the
construction of ontologies and the reuse of existing ones. Reusing existing
ontologies instead of creating new ones from scratch has many benefits: it lowers
the time and cost of developing new ontologies, avoids duplicate efforts, eases
interoperability, etc. As a consequence, complex networks of ontologies are being
created where each ontology may depend on several others and may also be related
to other artifacts (e.g., individuals, mappings, applications, and metadata).

Nevertheless, this situation also brings about new issues. Ontologies (like many
other system components) are dynamic entities. An ontology, defined as a formal,
explicit specification of a shared conceptualization (Studer et al. 1998), may change
whenever any of the elements of this definition changes. For instance, domains are
not static or fixed: they may evolve when non-existing elements become part of the
domain or when some elements become obsolete, among others. Additionally,
ontologies need to be kept up to date in order to reflect the changes that affect the
life cycle of the underlying systems (e.g., changes in the underlying data sets, need
for new functionalities, etc.). A similar situation occurs with shared conceptua-
lizations, which may change, for example, when the domain experts involved in
modeling acquire additional knowledge about the domain. Finally, the formal
specification may change because new ontology languages or new versions of the
existing ones become available, for example.

The management of ontology dynamics raises many challenges such as the
identification and administration of different ontology versions or the flow control
of ontology changes (i.e., when and how an ontology can change). Moreover,
dealing with ontology changes involves the execution of many related tasks.
Most of these tasks are already identified in the context of the ontology evolution
process, defined in (Stojanovic 2004) as the timely adaptation of an ontology to the
arisen changes and the consistent management of these changes. For example,
among these tasks are the capturing and formal representation of ontology changes,
the verification of the ontology consistency after the changes are performed, and the
propagation of those changes to the ontology related entities. The distributed nature
of a network of ontologies where complex relations can exist between ontologies
and other artifacts demands the necessity to propagate ontology changes to the
distributed ontology-dependent artifacts (e.g., related ontologies, ontology indivi-
duals, mappings, and metadata). For instance, a change in a wine ontology (e.g., add
a new class for a type of wine) may require one or more updates in its related
metadata (e.g., increase the number of classes by one, add an additional key class,
add an additional contributor, and update the date of the last modification) or its
mappings to other similar ontologies (e.g., create a new correspondence between
the new class and another class representing the same type of wine in another

11 Ontology Evolution 237

ontology). Moreover, the ontology and its related artifacts may be distributed in
different places across the web.

While it seems necessary to apply the ontology evolution activity consistently
for most ontology-based systems, it is often a time-consuming and knowledge-
intensive activity, as it requires a knowledge engineer to identify the need for
change, perform appropriate changes on the base ontology, and manage its various
versions. While existing evolution frameworks normally include a description of
the life cycle, this description is neither meant nor suited to replace guidelines.
Therefore, we propose here methodological guidelines for supporting ontology
developers during the evolution of the ontologies and for supporting them in
exploiting tools to facilitate the evolution of their ontologies.

It is worth noting that both ontology evolution and ontology versioning deal with
the management of ontology changes. However, they differ in their focus: ontology
evolution focuses on the modification of an ontology, possibly preserving its
consistency, whereas ontology versioning focuses on creating and managing differ-
ent versions of the ontology.

We argue that in order to provide a comprehensive support for ontology evolu-
tion, targeted at users and ontology engineers, we need two types of guidelines: one
that guides users in the process of ontology evolution from a generic perspective
and another that provides guidelines on how to use tools that semiautomatically
assist users in discovering, evaluating, and integrating domain changes to evolve
ontologies.

The remainder of this chapter is organized as follows: First, we introduce high-
level guidelines for carrying out the ontology evolution activity. This would give an
overall picture of the required tasks and possible options to handle each one,
supported by an example in the fishery domain of FAO. Second, we provide
guidelines for how to support users in exploiting and customizing tools that support
users in evolving ontologies from external domain data using semiautomatic
techniques. This is also supported by an applied example in the academic domain.

11.2 Guidelines for Ontology Evolution

In this section, we present the guidelines set out to help ontology developers in the
ontology evolution activity. Such guidelines have been created in the context of the
NeOn Methodology for building ontology networks. This methodology takes into
account the existence of multiple ontologies in ontology networks, the collaborative
ontology development, the dynamic dimension, and the reuse and reengineering of
knowledge-aware resources.

According to the NeOn Glossary of Processes and Activities (Suarez-Figueroa
and Gomez-Pérez 2008), ontology evolution refers to the activity of facilitating the
modification of an ontology by preserving its consistency; it can be seen as a
consequence of different activities during the development of the ontology.

238 R. Palma et al.

Ontology Evolution

Definition

Ontologies evolution refers to the activity of facilitating the modification of an ontology
by preserving its consistency; it can be seen as a consequence of different activities
during the development of the ontology.

Goal

The goal of ontology evolution is to provide a defined process (potenially with tool
support) to perform updates and changes to one or multiple ontologies.

Input Output

A ontology in a consistant state with the

An ontology in a consistant state. proposed changes implemented.

Who

All ontology engineers that have to perform changes/updates to a deployed ontology.

When

Normally it occurs after the ontology has been deployed and needs to be updated.
Changes during the initial creation would be part of the ontology engineering process.

Fig. 11.1 Ontology evolution filling card

Thus, in the framework of the NeOn Methodology we propose the filling card for
the ontology evolution, presented in Fig. 11.1, which includes the definition, goal,
input, output, who carries out the activity, and when the activity should be carried out.

11.2.1 Ontology Evolution Tasks

Figure 11.2 illustrates the methodological guidelines for carrying out the ontology
evolution activity, showing the main tasks involved, their inputs, outputs, and
actors. The tasks shown in the figure are explained below. They are based on the
generic activities discussed in (Bennett and Rajlich 2000) for the process of making
changes to any type of artifact that is subject to changes, customized to the case of
ontology evolution (e.g., Leenheer and Mens 2007) in the context of ontology
networks.

11 Ontology Evolution 239

An ontology in
a consistent
state

b
eess Tk

Requesting a change

Users, Domain Experts and ODT

m Task 2
Planning the change

Ontology Developer Team

A 4

Task 3
Implementing

the change

Ontology Developer Team

e
Verification and

Users, Ontology Editors and ODT Validation

J

An ontology
in consistent
state

Fig. 11.2 Tasks for ontology evolution activity

Task 1 Requesting a Change

This is the initial task in the evolution of an ontology. In order for ontology
evolution to have the desired outcome, it is important that the input ontology is in
a consistent state. If the ontology is not in a consistent state, it has to be repaired
first, using one of the different ontology diagnosis and repair tools (e.g., RaDON,

240 R. Palma et al.

see Chap. 17) or techniques before starting the evolution process. Note that we
require the input ontology to be in a consistent state because dealing with an
inconsistent ontology may produce unexpected results. For instance, the propaga-
tion of changes may produce inconsistencies in related artifacts. This requirement is
also in accordance to existing ontology evolution approaches (e.g., Stojanovic
(2004)). Besides, the main goal of ontology evolution is to adapt an ontology to
arisen needs (e.g., changes in the domain, changes in the experts knowledge, etc.),
not to repair an inconsistent ontology. Therefore, the input of the evolution process
is an ontology that correctly models a particular domain/task, before new needs
arise. However, the repairing of an inconsistent ontology before starting the onto-
logy evolution process can be seen as a preprocessing task. The first step of this
task is basically initiating the change process. Changes can either be requested from
users or developers, who feel that the ontology is not adequate in its current form,
or changes can be discovered. In literature (Stojanovic 2004), change discovery
is distinguished into top-down and bottom-up change discovery. Top-down
(deductive/explicit) changes are often the results from knowledge elicitation tech-
niques that are used to acquire knowledge directly from human experts (e.g.,
domain experts or end users). Bottom-up changes are typically the result from
machine learning techniques, which use different methods to infer patterns from
the sets of examples (e.g., structure/data/usage-driven change discovery).

Once changes are discovered or requested, they have to be represented in a formal
and explicit way. Typically, a change ontology is used to model proposed/requested
changes (e.g., Stojanovic 2004; Klein and Noy 2003; Noy et al. 2006; Palma
et al. 2009). This formal representation of ontology changes makes them machine-
understandable, which supports and facilitates many evolution activities: their
propagation to ontology related entities, the synchronization of distributed copies
of the same ontology, their integration with information related to the process of the
ontology development (e.g., accept/reject changes), the identification of conflicts,
etc. Moreover, having changes formally represented makes them usable by other
ontology evolution systems as well as exploitable for supplementary functionality of
an ontology evolution system such as learnability. Finally, it allows to keep track
of the ontology changes by generating a log that maintains the history (and order)
of applied changes as a sequence of individuals of the proposed model.

In contrast to previous approaches in the literature, in NeOn, a layered approach for
the representation of ontology changes was proposed (Palma et al. 2007, 2009), which
consists of a generic ontology, independent of the underlying ontology model that
models generic operations in a taxonomy of changes that are expected to be supported
by any ontology language. Furthermore, the model can be specialized for different
ontology languages, allowing the reuse and refinement for specific needs. Also, the
model extends previous taxonomies of changes with a more granular classification
that considers the actual atomic changes that can be performed in an ontology.

In case there are multiple change requests for an ontology, the requested changes
have to be prioritized. In order to determine which change should be implemented
first, one can rely on the status of the person requesting the change, or have an
ontology engineer review the requested changes and rank them according to

http://dx.doi.org/10.1007/978-3-642-24794-1_17

11 Ontology Evolution 241

urgency. It is also important that dependencies are considered when ranking the
requested changes. It could be that changes are dependent on each other or even
contradict each other.

Finally, this task may include the use of a well-defined process (a workflow) for
coordinating change proposals (see Palma et al. 2008a, b). This process is respon-
sible for determining who (depending on the user permissions) can do what (what
kind of actions) and when (depending on the state of the ontology element (e.g.,
classes, properties and individuals), and the permissions of the user).

Tool Support in the NeOn Toolkit

* RaDON plugin is an ontology diagnosis and repair tool that can be used before
starting the evolution activity, i.e., before applying changes.

» Tools supporting the request/discovery of changes:

— The workflow feature supports the process that coordinates the proposal of
changes in a collaborative environment. It supports a top-down/explicit
discovery method, i.e., when changes are requested by users/developers.

— The Evolva plugin supports the discovery of changes from external data
sources (e.g., text, folksonomies, or RSS feeds). Changes are integrated and
evaluated by relying on background knowledge such as online ontologies. In
the next section, we present in details the guidelines for how to exploit such
tool to apply the identified changes on the ontology and produce a new
ontology version.

Task 2 Planning the Change

In this task, the change request is analyzed, and it is determined why the change
needs to be made and which part of the ontology is affected by the change.

For that purpose, one uses impact analysis, where all potential consequences
(side effects) of a change are identified along with an estimation of what needs to be
modified to accomplish a change (Arnold 1996; Bohner 1996). As we noted in the
introduction, ontologies may depend on several others and may also be related to
other artifacts (e.g., individuals, mappings, applications, metadata, etc.). Hence, for
the analysis of the impact of a change, a complete list of all implications to the
ontology and its dependent artifacts should be presented to the ontology engineer
(Plessers 2006).

The previous analysis is also helpful to estimate the cost of evolution. Based on
this cost, the ontology engineer can decide whether or not to propagate a change to a
dependent artifact (Plessers 2006).

As aresult of the analysis performed during this task, the ontology engineer may
decide to implement the change, or if the change has many side effects or if the cost
of implementation is too high, he may defer the change request to a later time or not
implement it at all.

Once the ontology developer team has decided which changes will be
implemented and how they have to be implemented, the next phase of ontology
evolution, namely change implementation, is entered.

242 R. Palma et al.

Tool Support in the NeOn Toolkit

e The NeOn Toolkit provides simple support when deciding whether to make a
change or not. In particular, when a user wants to delete an ontology element, the
list of related axioms (the side effect) is shown to the editor, which permits him
to verify the cost of implementing the change.

Task 3 Implementing the Change

Implementing the changes is of varying difficulty, depending on the impact of the
requested change. While some change can be as easy as adding or removing a
subclass, other changes can require complex operations and restructuring of the
ontology.

One of the first and foremost important features is change logging, which allows
to track which changes have been made, and also allows for an easy undo, in case
something goes wrong. The change log can also be published to inform people
using the ontology on the updates.

If the requested change turns out to be too difficult to be implemented, the
ontology may need to be restructured first, before the actual desired change can be
implemented (Chikofsky and Cross 1990). Depending on the complexity of the
task, an ontology engineer can be chosen to perform the restructuring and the
subsequent implementation of the changes. For instance, in (Proper and Halpin
2004), the authors distinguish three reasons to apply transformation: (1) to select an
alternative conceptual schema which is regarded as a better representation of the
domain, (2) to enrich the schema with derivable parts creating diverse alternative
views on the same conceptual schema as a part of the original schema, and (3) to
optimize a finished conceptual schema before mapping it to a logical design.

One important issue to take into consideration when implementing a change is the
management of inconsistencies that this change may introduce in the ontology. In case
an inconsistency occurs, it has to be decided how to address it. While some approaches
try to keep the ontology in consistent state at all cost by even disallowing changes
introducing inconsistencies, others claim that the inconsistencies are inevitable and
hence we have to deal with them. Regardless of the approach, the inconsistencies have
to be identified and resolved, possibly using some tools as it was mentioned in the
introduction. In the literature, this activity has been introduced in (Stojanovic 2004) as
the semantics of the change (originally proposed in the area of data schema evolution
in Banerjee et al. 1987) and includes the computation of additional changes that
guarantee the transition of the ontology into another consistent state. It enables
the resolution of induced changes in a systematic manner, ensuring the consistency
of the whole ontology. In particular, the author focuses on the structural
inconsistencies that arise when the ontology model constraints are invalidated after
a change request. Additionally, the author introduces evolution strategies to choose
how a change should be resolved based on the structure of the ontology, the complex-
ity of the process, the frequency of the strategy use, or on an explicitly given state of
the instances to be achieved (given by the ontology engineer).

Furthermore, another important issue that has to be addressed during the imple-
mentation of the change(s) is the management of the ontology version. After the

11 Ontology Evolution 243

ontology changes, the ontology engineer should decide whether the resulting
ontology constitutes a new version of the ontology and hence it should have a
different version information. Some recommendations on the use of URIs can be
found. For instance, in (Klein and Fensel 2001), the authors propose to use an URI
for ontology identification with a two-level numbering scheme: major and minor.
Minor numbers for backward compatible modifications (an ontology-URI ending
with a minor number identifies a specific ontology). Major numbers for incompatible
changes (an ontology-URI ending with a major number identifies a line of backward
compatible ontologies). In practice, however, it is common that ontologies do not
include any version information at all. As a consequence, usually it is not easy to
identify different versions of an ontology. The problem of identifying ontologies in
the Semantic Web is not a trivial issue (see Klein and Fensel 2001). For instance,
in (Palma et al. 2008c), a composite identification consisting of the URI plus version
(if available) plus the location of the ontology is used to identify an ontology.

Finally, as aforementioned, the change(s) have to be propagated to all the
ontology related artifacts (if the ontology engineer decided to do it in the previous
task based on the analysis of the cost and impact). In (Stojanovic 2004), the author
discusses the propagation of changes to dependent ontologies, individuals, and
applications and elaborates on the propagation to dependent ontologies using a
combination of push and pull mechanism. For the propagation to ontology
individuals, several mechanisms can be applied from the research in the area of
databases. For instance, in (Parsia et al. 2005), the authors discuss how changes can
be propagated to the individuals of the database by using four possible mechanisms:
immediate conversion (propagate changes as they happen), deferred conversion
(propagate changes at specific points in time), explicit deletion (when referenced
concepts are dropped), or filtering (for using different versions of the schema). In
NeOn, the propagation of changes has also been considered to (1) distributed copies
of the same ontology and (2) ontology metadata (Palma 2009; Palma et al. 2007,
2008Db).

Tool Support in the NeOn Toolkit

¢ NeOn Toolkit ontology editor allows the manual application of changes to
ontologies.

» The change capturing plugin supports the logging of changes automatically from
the NeOn ontology editor. It also supports the application of logs generated by
other systems. Additionally, it is also in charge of propagating changes to the
distributed copies of the same ontology.

¢ RaDON plugin can be used for the management of inconsistencies.

Task 4 Verification and Validation

Before the ontology is considered evolved completely, the last step deals with
assessing questions whether the right ontology is built and whether it is built in the
right way. During this assessment, usually not only the ontology originally modified
is verified in isolation, but in general, this activity can include the verification of
other artifacts related to the ontology (as mentioned above) to ensure that they were

244 R. Palma et al.

not changed in a wrong way or they have an unexpected behavior. The verification
and validation step can include the following activities:

¢ Formal verification, such as state machines and temporal logics, to derive useful
properties of the system under study

e Testing by users or automatically to verify whether the system behaves as
expected

¢ Debugging for localizing and repairing errors found during the verification or
testing (usually performed by an ontology engineer) (for example Haase et al.
(2006))

* Quality assurance, which typically concerns non-functional qualities, like reus-
ability, adaptability, interoperability, etc.

¢ Justification of the changes, (for example Stojanovic 2004)

» Relevance of the changes with respect to the ontology under evolution (Zablith
et al. 2010)

In case problems are detected, these have to be fixed by moving back into Task 3,
and then returning to Task 4 to verify the corrected outcome.

Additionally, this task may include curation activities (e.g., approve/reject)
derived from the well-defined process (e.g., workflow) that coordinates the change
proposals (see Palma et al. 2008a, b). In this case, ontology engineers usually have
different roles, and only those with the required authority can accept or reject the
change proposals. If a change is rejected, the original author can modify the change
and start all over again since Task 1 or he can decide to discard it completely.

Tool Support in the NeOn Toolkit

» The Cicero plugin supports the justification of changes.

» The workflow feature supports the refining of activities (see Fig. 11.3).

¢ The Evolva plugin checks the relevance of a change with respect to an ontology
by relying on the analysis of ontological contexts and a set of identified rele-
vance patterns supported by a confidence-based ranking (Zablith et al. 2010).

Working with Networked Ontologies

The NeOn project deals with networks of ontologies and networked ontologies
(Haase et al. 2006), defined as a collection of ontologies related together via a
variety of different relationships such as mapping, modularization, version, and
dependency relationships.

Hence, it is worth remarking that the process described above can be applied to
networked ontologies since such a process takes into account the existing ontology
dependencies with other related artifacts, such as individuals, mappings, applica-
tions, and metadata, as we noted in each step. In a nutshell, such dependencies are
first considered during the analysis of the impact and cost in Task 2. Furthermore,
during the propagation of the changes in Task 3, all the ontology-related artifacts
are updated (if necessary), ensuring the consistency of the networked ontologies.
Finally, when assessing the correctness of the evolved ontology in Task 4, the
verification also takes into consideration the ontology-related artifacts to ensure that

11 Ontology Evolution 245

) DWL - NeOn Toalkit - F:\Wy Documents\Weln TooBdiibinaries\NeOnToobdl-1.1-B588 extendediworkspace.
Fle El Nodgde Segch Brojed fun Regtyy Wincow Hep

3- A4 iBDA & i% e B 5 ow. gy Flogk
O ortoiogyvavgeter 13 T T [ey Prepartes © Change LogVew | - Draft ew 1] * ToDe Delsted Vv |, Acproved Vew © Tole Approved Wiew =
e oyt [OWL] -~
= dlh D e id st ode fhafinh Changes Lok
-2 Casnns Ortolgy Charge Type Frelsted Ereity Bathor Tine Ratus Last Action
@ ortsiogyboman =]
e ovsioarios] o
+ [Fietype £l
@ ConarasieThny L
& @ servcefrovder =
+ @ roe =
+ @ FFet g
@ BsctroricDoaumen A
* @ irformaton L] hitor... AddClass OreclogyTask, R Palma LOJIAOE L2 4T PM Draft nsert by Redl Paima
+ [@ ownatleThing m|
* @ owner Ll hetze... AdeCiass CeeelegyDemen R Palmy LOIN00 50251 PM Draft Ingert by Raul Paima
@ servce L
+ @ Nodistion hito:... AddObjectProperty hasDoman ok Palng LOjIA06 6:03:22 PM Desft Insert by Rau Paima
+ @ Aot -
< »
o] g, AddObmcPTopstyDoman haDomer Fad Palm LOJIOE S04 M Drat RepctTolnalt by Peter Hasse
L indvodusls I = O | wpe.. addindvidedl CnoologyTask Rk Palma OGS SoC4:21 PM Draft Insert by Roul Paima
ol " |« »

3 Awvctaion Delets | [Subri hanges To Be Approved
-' owvem 130, . el b owiocatonve;change = I 4R41 T |0 1ZARCE T TEEDBTON F AN CAES T2 -
o, ks, . st Ot ond

hashuthon Fad Mna
‘aocheddawm
m«mmrg ehjectPyoperty: hitt:ewar i lu. saj-casinonkubl ovdsasomsn
doenan: WL Chass: WD [vwes. 18,5 bt et PO Doy Task

CVChange |
type:Acdtion
; deiocak 64D ITEDCD L ZHCARS B4 2B T1STTSIERME

LRI s
daze: LO[108 £:04:20 PM
hasPravcusTharge: hp: e ida. i sef-deels Onitubs g WRCRECBAZEON I2EEL
aodedl«nwar: w::.'mw.du i soi-daeieiOntus. ol

hasiuthor: Fad

appkedtion
OWLClass: OWLClass: betpcf safddaele/ Tl nsk,
ndvdusl: M-Iaw izp:fjwwe Aa b s dasleiCetubi ealf Aot ason

Loggng: 1 cntokoges

Fig. 11.3 Collaborative editorial workflow support in NeOn Toolkit

the whole network of ontologies is behaving as expected, i.e., it is consistent. So,
any conflict that may arise can be caught at an earlier stage of the ontology
evolution process, affecting, for instance, the decision of whether or not a change
should be implemented.

11.2.2 Example

To describe the proposed guidelines for the ontology evolution activity in a more
practical way, in this section we illustrate how to perform this activity by describing an
experiment conducted in collaboration with a team of FAO ontology editors in charge
of the maintenance of ontologies in the fishery domain. The editors performed
collaboratively a set of typical changes and actions to a stable version of one fishery
ontology in order to reach a new stable version. In this scenario, a central server kept a
shared copy of the ontology and the related changes. In the remainder of this section,
we describe only the most relevant points. A detailed and complete description of the
experiment is presented in Palma (2009).

246 R. Palma et al.

Task 1 Requesting a Change

Initially, FAO experts in the fishery domain requested a set of changes to be applied
to the current version of the species ontology' (v1.0 at the time the experiment was
conducted) — the ontology models a taxonomic classification of biological entities,
including classes such as Family, Group, Order, and Species. In this case, changes
were discovered using a top-down/explicit method as the knowledge came directly
from human experts. A total of 34 changes were requested using real information
according to the experts (see Palma 2009). Examples of those changes are: to add
Individual 31005-10001 (Species); to add Individual 31005-10001 DataProperty
hasNameScientific, value: Pterodroma wrong macroptera, type: string; to add Root
Class Speciation; and to add ObjectProperty hasScientificNameAuthor.

In this scenario, different ontology editors, with different roles (Subject Experts,
and Validator), were working collaboratively in the implementation of the changes
and hence it was not necessary to prioritize them (prioritization of multiple
changes).

Each of the proposed changes was represented as an individual of the change
ontology proposed in Palma et al. (2009) — representation of changes. For this
experiment, ontology editors were using the NeOn Toolkit with the collaborative
infrastructure. Hence, the representation of the changes was performed automati-
cally whenever a new change was captured by the change capturing plugin of NeOn
Toolkit.

Furthermore, in this scenario, the ontology editors were following a well-defined
process (workflow) for the coordination of the change proposals. As a consequence,
during this task the system created for any new change proposal, the appropriate
workflow action automatically (insert, update, delete).

Task 2 Planning the Change

For this experiment, it was necessary to implement the requested changes regard-
less of the side effects. Therefore, it did not perform any analysis of the impact or
cost. In fact, the idea of the experiment was to assess the efficiency of the system to
support the development of an ontology in a collaborative scenario, not the time or
cost of implementing a change.

Task 3 Implementing the Change

For this task, no restructuring of the change(s) was necessary, because on the one
hand the changes were not too difficult to implement due to the ontology structure,
and on the other hand, the cost of implementing was not an issue.

Additionally, for this task, the system (change capturing plugin of NeOn
Toolkit) took care of logging automatically all of the proposed changes (change
logging), maintaining the chronological history of the events.

! Available at http://aims.fao.org/en/website/Fisheries-ontologies-/sub2#species

http://aims.fao.org/en/website/Fisheries-ontologies-/sub2#species

11 Ontology Evolution 247

In this experiment, the change(s) did not introduce any inconsistencies in the
ontology. However, in case it would be necessary to manage inconsistencies, the
RaDON plugin for NeOn Toolkit could have been used to detect and fix them.

As we introduced at the beginning of this section, for this experiment, the
ontology and related changes were centralized in a server. Furthermore, the ontol-
ogy used for the experiment was not related to other artifacts at the moment. Hence,
it was not necessary any propagation of changes.

Task 4 Verification and Validation

During this task, the ontology editors analyzed every change to ensure that the
resulting ontology was as expected using the visualization plugins of the NeOn
Toolkit.

Additionally, this task was one of the most important of the experiment as it
included all the curation activities derived from the workflow that coordinates the
proposal of changes. Hence, in this task, an ontology validator was in charge of
accepting and rejecting changes as necessary by using the appropriate workflow
plugins of the NeOn Toolkit. Finally, at the moment of the experiment, there was no
support for the justification of changes.

11.3 Guidelines for Exploiting Tools in Ontology Evolution

In this section, we propose a methodological guideline for supporting users in
identifying new and relevant domain changes from external data sources. Such
guidelines aim to facilitate the process on evolving ontologies to reflect the latest
changes in certain domains by analyzing various data sources. This guideline
complements the tool-based support provided by the Evolva ontology evolution
framework (discussed next), with concrete guidance on how to realize the various
tasks of the evolution activity, using semiautomatic techniques in an efficient way.

11.3.1 The Evolva Framework

The Evolva ontology evolution framework (Zablith 2009) relies on the hypothesis
that various forms of data corpus (texts, folksonomies, RSS feeds, etc.) can be used
to detect the need for an evolution and initiate it (see Fig. 11.4). Evolva also relies
on the idea that, in order to integrate new pieces of information extracted from the
exploited sources into the current ontology, evolution systems can rely on the
automated use of external background knowledge sources, which can be supplied
by online ontologies, lexical resources (e.g., WordNet, Fellbaum 1998), or the web.
An additional use of background knowledge comes at the level of online ontologies
used to assess the relevance of statements with respect to the ontology in focus.

248 R. Palma et al.

Evoluticm

Changes Validation

it Ontological
! O =1/0 Data / /
1

\ = Processes
e e e Evolved
Ontology
/ Information \ (" Data)
Discovery Validation

Un-
structured
Data

Schema/
Instances

Quality
Check

Quality
Check

Relations
List

Approved
Ontology

External
Ontologies

Fig. 11.4 Evolva’s ontology evolution framework

Relation

Translation W Schema/

Control

Evolution
N\ Management /

While the goal of the Evolva framework is to reduce, as much as possible,
human intervention within the evolution process, user input is required at the level
of evolution management and for fine-tuning of various parts of the framework. The
role of the user is needed to properly parameterize the components, select the right
sources of information and of background knowledge, validate the results of
various steps, and, generally, guide the evolution process to obtain high-quality
results. These tasks are not trivial, as they depend a lot on the particular ontology to
be evolved, the domain covered, the applications relying on the ontology, and the
reasons for its evolution. The experience of the knowledge engineer and his/her
knowledge of the ontology and of the exploitable sources of information are
therefore essential.

11.3.2 Tasks

The tasks for performing a semiautomatic ontology evolution can be seen in the
workflow shown in Fig. 11.5. In this context, the starting point is an existing
ontology (depicted as V1 in Fig. 11.5 and base ontology in Fig. 11.4, see
Sect. 11.3.1), which the user aims to evolve based on available domain data sources.
The selection of the appropriate sources from which new ontology entities are
identified depends on the evolution use case and the availability of such sources in
the domain in focus. In the rest of this section, we present the details of the tasks
involved in semiautomatically evolving the ontology.

11 Ontology Evolution 249

Ontology
A%!

Input

m Task 1: Identify the part of
ontology to Evolve
Ontology Development
Team l

m Task 2: Set the data sources and
extraction parameters

Users, Domain Experts

and ODT l
ﬁﬂﬁ Task 3: Validate extracted data l No
Users and Domain
Experts

Is the data
relevant?

Task 4: Setup relation discovery [+— Yes
and quality check [+— No

I

Users, Domain Experts
and ODT

Are the relations

Task 5: Generate ontology
changes and new ontology version

l

Task 6: Validate new ontology
and manage changes

Ontology Development
s the new
ontology valid?

Task 7: Deploy new ontology
version

=

le— Yes
Ontology Development

§ g
@
o
3

l=— No

§ B
)
o
3

l«— Yes

Ontology Development
Team

Fig. 11.5 Tasks for ontology evolution supported by semiautomatic tools

Task 1 Identify the Part of Ontology to Evolve

The first task required by the ontology development team is to select the part of the
ontology to evolve. The evolution can be applied either on the entire ontology or on
a certain part of it. In many cases, ontologies may include a significant amount of
statements, causing the evolution to take a long processing time. In such cases, after
specifying the evolution purpose, the user may choose the part of the ontology to
evolve through selecting the set of concepts to be handled by the process.

Task 2 Set the Data Sources and Extraction Parameters

Depending on the domain, domain experts should prepare the data sources that
contain relevant information to the ontology context. Such data sources could be in
the form of text documents, folksonomies, databases, or even other ontologies.
Based on the decision of the ontology development team to evolve the ontology
either in terms of schema, individuals, or both, the extraction should be customized

250 R. Palma et al.

accordingly. For example, in the case of schema evolution, the user may choose to
extract concepts for the data sources, without dealing with individuals. While in the
case of individuals, the evolution process could omit the extraction of schema
elements. Choosing between schema and individuals evolution could be biased
by the ontology functionalities and domain nature, i.e., when many ontology-
dependent components exist (e.g., various applications or other aligned ontologies),
evolving the ontology schema may be costly, and the ontology development team
may choose to perform this operation less frequently. While in environments where
ontology components are easily controllable and where a lot of new information is
generated leading to a frequent generation of new concepts, schema evolution
would be required.

Task 3 Validate Extracted Data

After extracting knowledge elements from the data sources, noise and irrelevant
entities should be excluded. The user is supported by manual and automated
validation techniques with customizable parameters. For the manual validation,
the domain expert would serve as one of the best quality checkers as he/she is the
most knowledgeable about the ontology context. This task is completed after
checking that all the data are valid to be processed further by the system.

Task 4 Setup Relation Discovery and Quality Check

The role of the user, after the data validation task, is to prepare the automated
relation discovery process. The relation discovery process links the validated data
to the ontology. This requires the user to select the various types of background
knowledge sources to be used. The choice of background knowledge is directly
dependent on the type of domain the ontology represents. If the domain were
specialized, the user would choose domain-specific background knowledge sources
(e.g., specialized thesauri). This would improve the quality of relations and increase
the system precision. While if the domain is generic, using online ontologies or
generic thesauri would perform well. In addition to the selection of sources, the user
should fine-tune the parameters of the relation discovery process, such as the
settings related to the automatic relevance checking, or specify the maximum
depth to explore. In addition to the supplied automatic quality checking methods,
for example, in terms or relevance, domain experts should additionally check the
quality of relations, before using them later in the system.

Task 5 Generate Ontology Changes and New Ontology Version

Based on the approved relations in the previous task, ontology changes are
generated and applied on the new ontology version. Users should specify where
to apply the changes, i.e., directly on the initial ontology or on a detached copy. The
choice of where to perform changes depends on the environment and the ontology
development team approach. The team should be aware that applying changes on
the initial ontology would directly affect the dependent components. If this is not
feasible, or designers prefer to keep the initial ontology intact while reviewing the
changes, creating a detached ontology version would be more appropriate.

11 Ontology Evolution 251

Task 6 Validate New Ontology and Manage Changes

The user should control the changes performed on the new ontology version. With
the new evolved ontology, problems such as inconsistencies and duplication are
likely to emerge. Users in this task specify the checking methods to be applied on
the new ontology version using reasoners, for example, in addition to manually
control the recorded ontology changes.

Task 7 Deploy New Ontology Version

Once the new version is approved, users should control the propagation of the new
ontology version to the dependent components. Links to the previous ontology
version should be checked and whether the new ontology has been successfully
saved and accessible.

11.3.3 Example

In this part, we highlight an example of ontology evolution scenario using the
Evolva plugin for the NeOn Toolkit, following the guidelines presented in the
previous section. We run our example in an environment where the NeOn Toolkit
and Evolva plugin® are operational.

Consider the case of evolving the latest version of the SWRC ontology” in the
academic context. We first load the ontology in the NeOn Toolkit and start Evolva.
In our simple case where the ontology has a limited number of concepts and time is
not an issue, we choose to evolve all the ontology (Task 1). This choice can be
specified in the first step of the process (called Ontology) in Fig. 11.6.

After preparing the ontology and identifying the part of ontology to evolve, we
move to select the data sources containing relevant information with a potentially
added value to our ontology (Task 2). This is implemented in Data Sources step of
Fig. 11.6. A relevant source of information we found was on the Leverhulme
website® that contains text documents about research project and information
about people in the academic domain. We locate and download the relevant text
documents, then select the sources in Evolva for performing data extraction and
validation. Having no ontology-dependent components, a schema evolution would
not have any side effects on applications or other dependent elements. Thus, as
ontology developers in this use case, we test the extraction of concepts from the
data sources and integrate them in the ontology. Evolva includes extraction of

2 Details on how to install and run Evolva can be found at: http://evolva.kmi.open.ac.uk/

3The SWRC ontology can be downloaded from: http://ontoware.org/swrc/swrc/SWRCOWL/
swrc_updated_v0.7.1.owl

“http://www .leverhulme.ac.uk/

http://evolva.kmi.open.ac.uk/
http://ontoware.org/swrc/swrc/SWRCOWL/swrc_updated_v0.7.1.owl
http://ontoware.org/swrc/swrc/SWRCOWL/swrc_updated_v0.7.1.owl
http://www.leverhulme.ac.uk/

252 R. Palma et al.

Jh Ontology Navigator 1 = 0| [|@ entity Properties G Evolva Main View 53 . J} Ontology Visualizer| [Console
(i Academic [OWLZ] r
v «f ortology-07
¥ i Classes O oy o — ((Proceed)
¥ @ Document
» @ Publication
@ ungublished L e i r—
* @ Event
- [orpantzaton T Procccd)
* @ Person Proceed
* @ Product
> @eroject TR By — m&)
» @ Topic Relations List - Background Knowledge | Validation
»] Object Properties Souree Relation Target Ust Patt Conf Contex Back. Kn Path
* 2] Cata Properties saff superClass lectures s 10 [G)scadet hetp://keni-web0S.open.ac.ukB1/ -
* _| Annotation Propertics staff subClass person My 10 C) Scarlet hittpc/ fwww.c.umbc.edu/~lkagal 1|
¥ _ | Daratypes institution superClass association 5 075 |) Scastet hrip:/ waw. rewdnto.org/ 1054564
¥ &} artology-07_Evolva_20101105_094029 text superClass booklet Y5 an ﬂ Goagh)i
¥ | Classes ext superClass manual s
s
¥ [Document text superClass book =
.ma‘ (= superClass collection ¥ § B .
- et superClass proceedings o 5 b
& terer rext superClass unpublished ¥ 5
@ proposal text superClass artiche s
» [@ Publication contact superClass person s
* @ event comtact superClass organization ¥ 5 B ‘if *
* @ Organization text superClass report #s Taratus o Ao Fo—
» @ rersen institution superClass organization ¥ 5 | | / ,, I
» @ Product institution superClass cepartment ¥ 5 \ o
» @ Froject * staff subClass department ¥ 2 e
b class subClass collection 22 H
V1
ikl . = [| research subClass event I [r—
I indhviduals 25 [Donsale form subClass collection ¥ 2 \ P
rust subClass organization [V 4
institution superClass university O § ’
institution subClass organization ¥ 4 —
form subClass document [4 =
award subClass event 4 e
proposal subClass document :24 *
hermer subClass document V) 4 o _‘.
— | s 4
T —————
Agply Changes on Base Ontology) Apply Changes on a new Version

Fig. 11.6 Screenshot of the Evolva plugin

concepts from text documents and RSS feeds, as well as a list of raw terms. The
validation parameters incorporate term existence checking feature (based on a
similarity value) and a term length checker for removing terms under a specified
length.

We load the Leverhulme text documents and run the extraction and validation
process. A list of extracted concepts is returned, with Evolva automatically
identifying existing terms in the ontology and terms that fall below a length
threshold. If the automatic validation performs poorly overall, it is possible for
users to fine-tune the parameters and rerun the validation process again. In addition
to the automatic validation, users have the ability to go through the list of concepts
and manually select terms they find irrelevant (Task 3), implemented in the Data
Validation step in Fig. 11.6. Domain experts would play here a major role as they
are the most aware of the relevance of concepts with respect to the ontology.

After the data validation process and approving relevant data, we move to Task 5
of setting up the relation discovery process with the right background knowledge,
sources, and parameters. The SWRC ontology domain is, to some extent, a generic
academic purpose ontology. Thus, related information can be easily found through
online ontologies in which a lot of academic domain ontologies can be found, as
well as through WordNet, the generic thesaurus. Thus, we choose to perform the

11 Ontology Evolution 253

relation discovery process through exploiting online ontologies using Scarlet
(Sabou et al. 2008) (a Semantic Web-based relation discovery engine) and
WordNet.

Evolva automatically harvests the chosen background knowledge sources and
identifies how extracted concepts should be integrated in the ontology. If needed,
Evolva also provides the option to discover relations between new concepts, before
being integrated in the ontology. This has been implemented in the Relation
Discovery step in Fig. 11.6. To illustrate how background knowledge sources
integrate new concepts, Applicant and Website are two concepts extracted from
the Leverhulme text document. WordNet links Applicant as a subclass of Person,
an existing concept in the SWRC ontology, while online ontologies link Website to
Organization through a hasWebsite relation. The length of relations to discover is
customizable. Thus, if the users find that the process is taking long, or lengthy
relations prove to be overall irrelevant, they can decrease the relation length
threshold and rerun the process again.

After the relations linking new concepts to existing concepts in the ontology,
Evolva relies on online ontologies from where the relation is identified to assess the
relevance of the relation with respect to the ontology. Using identified relevance
patterns, with pattern-specific confidence, relations are returned ranked to the user
with the highly relevant relations placed on top (Zablith et al. 2010). The user is
supplied with a customizable graphical visualization of the ontological contexts
(shown on top of Fig. 11.6), as a validation of the relevance calculation. In addition
to the visualization parameters, it is possible to change the weight of relevance
patterns, hence affecting the overall ranking of relations.

Once all relations are approved and relevant, they are used to generate the
ontology changes (last step in Fig. 11.6). If the user spots any unwanted changes,
it is possible to go back to the relation validation, remove the source relations, and
regenerate the ontology changes. Based on the ontology changes provided, it is
possible to apply the changes on the source ontology, or a new version with the
evolution date appended to the name of the new ontology version. Changes are
applied automatically within the NeOn Toolkit, and the user will instantly see the
updates in the ontology navigator of the toolkit (on the left of Fig. 11.6).

Our next task is to validate the new ontology version and manage the new
changes that the ontology has been subject to (Task 6). Evolva relies on the change
logging plugin (Palma et al. 2008b) based on the NeOn Toolkit. The user is given
all the functionalities to review changes after being applied on the ontology.
Inappropriate changes can be rolled back, or sent for further review, until reaching
a reliable new ontology version.

After approving the final ontology version, we deploy it by double-checking
the links to the previous ontology version that are automatically created by Evolva
(Task 7). We also check that the ontology has been saved correctly, and that it is
still accessible by doing some checks such as running queries and validating the
results.

254 R. Palma et al.

11.4 Conclusion

Ontology evolution is a tedious and time-consuming task. To successfully keep the
ontology up to date with domain changes, ontology engineers should be supplied
with the right guidelines and tool usage to make this task easier. For that, we
presented in this chapter guidelines for ontology evolution covering two aspects: a
high-level ontology evolution process and tool-oriented guidelines to semiauto-
matically identify, evaluate, and apply domain changes to ontologies.

The first aspect describes the tasks involved in the ontology evolution process
from a generic perspective and discusses guidelines in possible ways to achieve
each task. The second aspect aims to facilitate the process of identifying ontology
changes from external domain data, checking their quality, and integrating them in
the ontology, by using semiautomatic techniques. The guidelines in this case
include how to use and parameterize the involved tools to achieve the optimal
new ontology version.

The two aspects work together to enable ontology engineers to understand the
complete picture and tasks involved in ontology evolution, to successfully move
from an existing ontology state to a new one with the appropriate representation of
domain changes that arise.

References

Arnold RS (1996) Software change impact analysis. IEEE Computer Society Press, Los Alamitos

Banerjee J, Kim W, Kim HJ, Korth HF (1987) Semantics and implementation of schema evolution
in object-oriented databases. SIGMOD Rec 16(3):311-322

Bennett KH, Rajlich V (2000) Software maintenance and evolution: a roadmap. In: ICSE - future
of SE track, ACM, New York, pp. 73-87

Berners-Lee T, Fielding R, Masinter L (2005) RFC 3986, Uniform Resource Identifier (URI):
Generic syntax. Available at http://tools.ietf.org/html/rfc3986

Bohner SA (1996) Software change impact analysis for design evolution. In: Software change
impact analysis. IEEE Computer Society Press, Los Alamitos, pp 67-81

Chikofsky EJ, Cross JG (1990) Reverse engineering and design recovery: a taxonomy. IEEE Softw
7(1):13-17

Fellbaum C (1998) Wordnet: an electronic lexical database. MIT Press, Cambridge

Haase P, Rudolph S, Wang Y, Brockmans S, Palma R, Euzenat J, d’Aquin M (2006) NeOn
deliverable D1.1.1. Networked ontology model. Available at http://www.neon-project.org/

Klein M, Fensel D (2001) Ontology versioning for the semantic web. In: Proceedings of the
international semantic web working symposium (SWWS’01), Stanford University, Stanford,
CA, USA

Klein M, Noy N (2003) A component-based framework for ontology evolution. In: Proceedings of
the IJICAI’03 workshop: ontologies and distributed systems, Acapulco, Mexico

Leenheer PD, Mens T (2007) Ontology management. Semantic web, semantic web services, and
business applications. In: Ontology evolution. State-of the-art and future directions. Springer,
New York/London

Noy N, Chugh A, Liu W, Musen M (2006) A framework for ontology evolution in collaborative
environments. In: International semantic web conference, Athens, pp 544-558

http://tools.ietf.org/html/rfc3986
http://www.neon-project.org/

11 Ontology Evolution 255

Palma R (2009) Ontology metadata management in distributed environments. PhD thesis,
Departamento de Inteligencia Artificial, Facultad de Informatica, Universidad Politecnica de
Madrid

Palma R, Haase P, Wang Y, d’Aquin M (2007) D1.3.1 propagation models and strategies.
Technical report D1.3.1, UPM; NeOn deliverable. Available at http://www.neon-project.org/

Palma R, Haase P, Corcho O, Gémez-Pérez A (2008a) An editorial workflow approach for
collaborative ontology development. In: ASWC’08. Springer, Berlin

Palma R, Haase P, Jiu Q (2008b) D1.3.2 Evaluation of propagation models and strategies.
Technical report D1.3.2; NeOn deliverable

Palma R, Hartmann J, Haase P (2008c) OMV - ontology metadata vocabulary for the semantic
web. v. 2.4. Available at http://omv.ontoware.org/

Palma R, Haase P, Corcho O, Goémez-Pérez A (2009) Change representation for OWL
2 ontologies. In: Proceedings of the fifth international workshop OWL: experiences and
directions. In ISWC09, Chantilly, VA, USA

Parsia B, Sirin E, Kalyanpur A (2005) Debugging OWL ontologies. In: Proceedings of the 14th
international conference on world wide web. ACM Press, New York, pp 633-640

Plessers P (2006) An Approach to Web-based Ontology Evolution. PhD thesis, Department of
Computer Science, Vrije Universiteit Brussel, Brussel

Proper HA, Halpin TA (2004) Conceptual schema optimisation — database optimization before
sliding down the waterfall. Technical report, Department of Computer Science, University of
Queensland

Sabou M, d’Aquin M, Motta E (2008) Exploring the semantic web as background knowledge for
ontology matching. J Data Semant XI:156-190

Stojanovic L (2004) Methods and tools for ontology evolution. PhD thesis, University of Karlsruhe
(TH)

Studer R, Benjamins VR, Fensel D (1998) Knowledge engineering: principles and methods. Data
Knowl Eng 25(1-2):161-197

Sudrez-Figueroa MC, Gémez-Pérez A (2008) First attempt towards a standard glossary of ontol-
ogy engineering terminology. In: Proceedings of 8th international conference on terminology
and knowledge engineering (TKE’08) Copenhagen, DENMARK, pp 1-15

Zablith F (2009) Evolva: a comprehensive approach to ontology evolution. In: Proceedings
of ESWC 2009: the semantic web: research and applications — PhD symposium, Heraklion,
pp 944-948

Zablith F, Sabou M, d’ Aquin M, Motta E (2010) Using ontological contexts to assess the relevance
of statements in ontology evolution. In: Proceedings of the 17th conference on knowledge
engineering and knowledge management by the masses (EKAW), Lisbon, Portugal. Springer,
Berlin

http://www.neon-project.org/
http://omv.ontoware.org/

Chapter 12
Methodological Guidelines for Matching
Ontologies

Jérome Euzenat and Chan Le Duc

Abstract Finding alignments between ontologies is a very important operation for
ontology engineering. It allows for establishing links between ontologies, either to
integrate them in an application or to relate developed ontologies to context. It is
even more critical for networked ontologies. Incorrect alignments may lead to
unwanted consequences throughout the whole network, and incomplete alignments
may fail to provide the expected consequences. Yet, there is no well-established
methodology available for matching ontologies. We propose methodological
guidelines that build on previously disconnected results and experiences.

12.1 Motivation

Ontology matching is the activity of establishing correspondences between ontologies.
Correspondences express relationships supposed to hold between entities in
ontologies, for instance, that a ‘district’ in one ontology is the same as a ‘kreis’ in
another one or that ‘fishery’ in an ontology is a subclass of ‘company’ in another one.
An alignment may be used to link an ontology with its background, i.e. set it in a more
general context: This is typically what is achieved by providing an alignment with an
upper-level ontology. An alignment can also be used to link an ontology with its
previous versions or alternative ontologies in other applications.

We use interchangeably the terms matching operation (focussing on the input
and result), matching task (focussing on the goal and the insertion of the task in
a wider context) and matching activity (focussing on the internal processing).

J. Euzenat (0<)
INRIA & LIG, F-38330 Montbonnot Saint-Martin, France
e-mail: Jerome.Euzenat@inria.fr

C. Le Duc
Université Paris 8, 93200 Saint-Denis, France
e-mail: Chan.Leduc@iut.univ-paris8.fr

M.C. Suarez-Figueroa et al. (eds.), Ontology Engineering in a Networked World, 257
DOI 10.1007/978-3-642-24794-1_12, © Springer-Verlag Berlin Heidelberg 2012

mailto:Jerome.Euzenat@inria.fr
mailto:Chan.Leduc@iut.univ-paris8.fr

258 J. Euzenat and C. Le Duc

Fig. 12.1 The matching
activity (From Euzenat
and Shvaiko 2007)

parameters

matching —{ Al

f

resources

The ontology matching process may be summarised as in Fig. 12.1 by a process
taking two ontologies (0 and ¢’) as input and returning an alignment (4’), i.e. a set of
correspondences. In addition, this process can take as input an initial alignment and
various parameters. Ontology matching can be used with more than two ontologies.
However, in this chapter, we restrict ourselves to matching two ontologies. As
simple as it seems, ontology matching is an unsolved problem and a delicate
activity which requires care (Euzenat and Shvaiko 2007). Many matching methods
exist, and not one fits all needs.

Ontology matching is a very important operation in modern ontology engineer-
ing because of the networked environment in which ontologies are engineered and
supposed to work. Methodologically, it is worthwhile to express relations between
ontologies because this allows (1) for working with small and self-sufficient
modules instead of monolithic ontologies, (2) for expressing the links between
two versions of the same ontology and thus to upgrade data from one ontology to
another or (3) for putting back an ontology in the context of an upper-level
ontology, allowing it to play better with other ontologies. Networked ontologies
are sets of ontologies together with alignments relating the entities of these
ontologies. These ontologies may be related because they are complementary,
two independent domain ontologies, e.g. sales and tyres, refinement, a domain
ontology specialising a top-level ontology, or supplementary, a version replacing
another version or two ontologies about the same domain. In networked ontologies,
alignments are as important as the ontologies themselves because relationships
between ontologies are the basis of networks.

Hence, methodological guidance for ontology matching is particularly required
and needs to be supported for helping ontology engineers to develop semantic
applications. Contrary to ontology building which is an open-ended (design) activ-
ity, ontology matching is an inductive activity bounded by the ontology to be
matched. Hence, it requires a more focussed methodology.

Yet, very little support exists for such an activity at the methodological or at the
tool level. Even in the database field, where similar but simpler problems have
existed for years, there is no consensus methodology on how schema matching can
be conducted. This chapter provides guidance for matching ontologies based on
existing partial guidelines and overall experience collected so far in the field.

We do not consider ontology matching as an independent activity. On the
contrary, we consider it as related to ontology management: When ontologies
evolve, alignments must follow this evolution. Moreover, as proposed in the work

12 Methodological Guidelines for Matching Ontologies 259

enhancement
vr‘ ‘—W P evaluation
A
&_’ J T commuhication -
creation

A" — exploitation BN

Fig. 12.2 The ontology alignment life cycle (Adapted from Euzenat et al. 2008)

of Euzenat et al. (2008), ontology matching should be considered in a dynamic
perspective in which the result of matching has its own life cycle and will have to be
maintained and evolved. This is illustrated by Fig. 12.2, representing the alignment
life cycle. This life cycle takes into account the evolution of alignments as well as
the importance of considering alignment as first-class objects which can be shared.
As such, alignments can be manipulated to better suit the needs of users. We
consider this ontology alignment life cycle and further investigate the methodolog-
ical guidelines for supporting it. In the spirit of NeOn (see Chap. 1), these
guidelines put the emphasis on networks of ontologies as well as reusing ontologies
and alignments.

In what follows, we first introduce synthetic descriptions of the ontology
matching activity (Sect. 12.2). Then, we discuss the issue of the format in which
alignments have to be delivered in order to support reusable matching (Sect. 12.3)
before considering step by step the proposed methodological guidelines
(Sect. 12.4). Then we present support offered by tools for the proposed methodo-
logical guidelines (Sect. 12.5). Finally, examples are given (Sect. 12.6) before
concluding.

12.2 Ontology Matching Filling Cards

We present below two different ontology matching activities. These depend on the
time at which ontology matching is supposed to take place. If ontology matching is
supposed to occur at design time, then its goal is to match two ontologies for
connecting them in a network; if it is to occur at runtime, then the goal of the
activity is to generate a matching process that achieves ontology matching at
runtime.

This distinction between runtime and design time ontology matching is very
important in practice because the output of the two operations is not the same. At
design time, the resulting alignment is used for relating the different ontologies
which will be used at runtime, for instance, for transforming queries. At runtime,

http://dx.doi.org/10.1007/978-3-642-24794-1_1

260 J. Euzenat and C. Le Duc

Design time ontology matching

Definition

Ontology matching (in design time) is the activity which finds alignments between ontologies.

Goal

Matching two ontologies.

Input Output

An alignment between these two ontologies, which may
Two ontologies to be matched. have been further transformed into a processable
element, e.g., query mediator, merged ontologies.

Who

Ontology engineers, who form the ontology development team (ODT), in collaboration with users and domain
experts.

When

When designing ontologies. In networked ontology applications, this activity can occur at any time.

Fig. 12.3 Design time ontology matching

ontology matching is used for finding alignments between ontologies which were
not known at design time. This could be for composing semantic web services using
different ontologies, for instance.

When ontology matching is performed at design time (see Fig. 12.3), only the
resulting alignment is available at runtime: no more matching is necessary. So,
there is no runtime constraint on matching. When it is performed at runtime, no
design time alignment is available; the matching will occur at runtime. So, the goal
of the designer is to design a matching process instead of an alignment (see
Fig. 12.4). In this case, runtime constraints (speed, memory) may apply to
matching.

However, functionally, these two operations can also be seen as the same since
they, in practice, generate an ontology matching process which is executed at
different moments. Hence, the guidelines that we apply are the same in both
cases because it consists of choosing software components which are applied at
different time.

12 Methodological Guidelines for Matching Ontologies 261

Run time ontology matching

Definition

Ontology matching (in run time) is the activity which finds relationships between ontologies.

Goal

Designing a process for matching two ontologies.

Input Output

The characteristics of the ontologies to match . .
and the context in which this matching The specification of a process for matching two

operation will occur. ontologies.

Who

Semantic application designers.

When

When developing applications requiring run time matching.

Fig. 12.4 Runtime ontology matching

12.3 Alignments and Formats

Although formats should not be a main concern for methodology, it is here very
important because the input and output of most of the tasks is an alignment. Hence,
choosing a common alignment representation makes tasks interoperable and allows
for better sharing and reusing the product of the ontology matching activity.
Ontology alignments are sets of relationships between ontology entities.
Alignments may be expressed in various languages. For instance, the two relations
mentioned in the introduction can be expressed in OWL (Horrocks et al. 2003)
through owl:equivalentClass and rdfs:subClassOf, but they can also
be expressed in SKOS (Miles and Bechhofer 2009) through skos:exactMatch
and skos :broaderMatch. Other applications may mandate a different form like
views in databases, mediators in web services frameworks or even merged
ontologies. The advantage of such representations is that they can be processed.
However, application-specific output is not particularly interoperable. It is not
easy to transform a database view into OWL axioms or SKOS statements into
ODEDialect (Corcho and G6émez-Pérez 2007). Indeed, when the alignment is

262 J. Euzenat and C. Le Duc

expressed in OWL, its only possible use is to ‘merge’ two OWL ontologies. It
cannot easily be used to import data from one ontology to another or to translate
queries. Moreover, such formats are not easy to share and retrieve (see Sect. 12.4.7)
or to manipulate (see Sect. 12.4.6), e.g. for merging the results of several matchers
if they do not use a format that supports such manipulations.

Hence, in order to avoid early commitment to a particular type of usage, it is to
be preferred to keep the alignments in a declarative language. Such a language
allows for manipulating and composing alignments as well as for generating the
required representation (OWL, SKOS and others) when necessary.

Using a neutral and declarative representation (Euzenat 2004) provides the
opportunity to distribute and share alignments among applications. This is why,
in the remainder, only ‘alignments’ are considered.

12.4 Detailed Guidelines

Ontology matching has been the focus of a lot of attention in the recent years.
However, little work has been carried out on the methodological support for finding
alignments. We provide here the outline for such methodological guidelines. It can
be summarised by the workflow of Fig. 12.5. Each task of this workflow will be
described in subsections.

12.4.1 Identifying Ontologies and Characterising Needs

The first task in finding alignments is to identify the ontologies to be matched and to
characterise the need. Indeed, the type of required alignment will be different if the

Identifying ontologies,
characterising need

|

Finding existing found

alignments
Fig. 12.5 The matching l"o ¢ found
methodology workflow. :
It goes step by step through —’| Selecting matcher |
characterising the problem, :
selecting existing alignments,
selecting appropriate
matchers, running the
matchers, evaluating the
results and correcting the
choices made before
(matchers, parameters),
documenting and publishing l
good results and finally using
them |

| Enhancing | | Matching |

Rendering |

12 Methodological Guidelines for Matching Ontologies 263

goal is to merge two ontologies in a knowledge-based system or to add yet another
data source to a query mediator. In the former case, the alignment will have to be
strictly correct, otherwise the system may draw incorrect inferences, but the
relationships can be diverse: subsumption and disjointness assertions can be very
useful. In the latter case, lack of completeness is not a problem since other sources
may return the missing answers, but relations other than equivalence are not
straightforwardly used in query mediation. This first task is similar to Activity 3
of the work of Corcho (2005), called ‘design of [a] translation system’, which
specifies how to characterise source and target ontologies for ontology translation.

It is also useful to characterise the kind of ontologies: Are they labelled in the
same natural language? What is their expressiveness? Are individuals related to the
ontologies available?

Characterising the situation in which matching will be performed should not be
neglected. It will determine the choice of matchers or alignments as well as the
parameters to care for. Euzenat and Shvaiko (2007) identified several parameters:

» Are instances available at match time?

» Is matching performed under time constraints?

* Has matching to be performed automatically?

e Must the alignment be correct?

e Must the alignment be complete?

e What type of operation (merging ontologies, transforming queries) is to be
performed?

These characteristics of the situation are requirements for the ontology matching
process. There has been research attempting to refine such requirements. Mochol
(2009) gave a very precise description of the type of ontologies to be matched
depending on their size, expressiveness, language and role, e.g. domain ontology or
upper-level ontology.

12.4.2 Finding Existing Alignments

Finding existing alignments which satisfy the need of the application is the second
task. Alignments may be found on the web or through specialised directories.
Reusing existing alignments should be privileged because of the cost of generating
such alignments. For that purpose, the task of sharing (see Sect. 12.4.7) prepares
alignment retrieving.

Ideally, alignments should come with annotations characterising their level of
trustworthiness, the purpose for which they have been built and the type of relations
they use.

These alignments must concern the ontologies to be matched, and they have to
satisfy the constraints related to the alignment established in Sect. 12.4.1. In
particular, correctness and completeness are criteria to use for selecting among
various alignments.

264 J. Euzenat and C. Le Duc

These criteria may be assessed manually, on a sample, or can be inferred through
the properties of their generation methods. In particular, one can use metadata
attached to such alignments. They can reveal the method used for matching the
ontologies (in particular, if these are automatic or manually generated alignments),
they can cover manual assessments about the alignment (people publishing them
can annotate the alignments to tell what they are good for) or they may contain
indications of their intended use which can be matched with that of the current
situation.

So, practically, selecting an alignment requires:

» Finding alignment repositories

¢ Finding those alignments between the ontologies to match

e Assessing the capacity of these alignments to address the needs previously
identified, either based on metadata, or on the content of the alignments

¢ Deciding for one alignment based on this assessment

If apparently suitable alignments are available, the user can directly go to the
validation task (Sect. 12.4.5). Otherwise, it is necessary to create a new alignment
from the ontologies, as is explained in Sect. 12.4.3.

12.4.3 Selecting a Matcher

In order to build a new alignment, a suitable matcher has to be found. Many
matchers have been developed over the years, and they provide different results
on different types of data sets and matching contexts. Hence, the criteria elicited in
the characterisation phase (Sect. 12.4.1) are also used for selecting the most
appropriate matcher.

There have been several studies about how to choose a matcher depending on the
characteristics of the ontologies and those of the expected alignments. They are
worth taking into account.

Euzenat et al. (2006) provide a simple method for weighting matcher capabilities
(speed, automaticity, precision and recall as measured in matcher evaluations)
against the application requirements defined as the answers to the questions of
Sect. 12.4.1.

The work of Mochol (2009) uses a deep classification of matchers and the
matching context in order to assess which matcher will be more adapted to a
particular context. This assessment is made using the Analytic Hierarchy Process
(AHP) which guides the decision process of choosing a matcher. It can work on
automatic or manual mode.

The OntoMas system (Huza et al. 2006) has been developed for helping and
teaching how to carry out matching. For choosing a matcher, it processes a set of
symbolic rules over a classification of tools and a characterisation of tasks.

The problem of such methods is that they require extensive information about
available matchers which is not always available or always accurate when the

12 Methodological Guidelines for Matching Ontologies 265

assessment comes from the matcher developers. An important source of informa-
tion is the result of the various matcher evaluation campaigns that have been run.
The most important one is the Ontology Alignment Evaluation Initiative (OAEI)
campaigns'. They have evaluated many matchers in a variety of situations. So their
results can be taken into account when choosing a matcher. They are currently
further developed in the context of the SEALS project’.

So, in practice, choosing a matcher can be achieved by:

* Finding available matchers

e Assessing their capacity to generate alignments that fill the identified
requirements by reading their documentation or comparing their performances
in similar tasks during evaluations

» Deciding for one matcher based on this assessment

Other works try to automate this task, or the choice of matcher parameters, on
the fly (Sayyadian et al. 2005). Such work can be used in runtime matching
processes.

12.4.4 Matching Ontologies

The next task consists of running the matcher against the ontologies and collecting
the resulting alignment. It may seem like the simplest task, methodologically
speaking, because matchers have been designed exactly for this purpose.

But the user should not hesitate to run the matcher several times or to run several
matchers, trying different sets of parameters and different thresholds. It is also
useful to process matching incrementally by curating the returned alignment and
feeding it again to the matcher for improving it.

In fact, all the procedure that can be applied at the enhancing phase (see
Sect. 12.4.6) can also be directly applied during the matching phase without any
prior evaluation.

Hence, this task can be further decomposed into a more complex sub-workflow
(see Fig. 12.6). Section 12.4.6 provides some refinements of the matching
workflow.

12.4.5 Evaluating Alignments

Once an alignment has been obtained, it is necessary to perform a final screening
and validation. Evaluation can be applied on alignments that have been retrieved as

! http://oaei.ontologymatching.org
2 http://www.seals-project.eu

http://oaei.ontologymatching.org
http://www.seals-project.eu

266 J. Euzenat and C. Le Duc

Modifying
parameters
parameters
alignment o
£ Matching

B3

consmtency
|
1

Fig. 12.6 The sub-workflow of fine-tuning matchers (all tasks but matching are optional). After
matching, it is possible to apply automatically some alignment manipulation that can trim the
alignment under a threshold, check and restore the consistency of an alignment or compose
the alignment with another alignment. The result of these manipulations can be fed back as
input to the matching operation or can be the final result of the workflow. Alternatively, it is
possible to modify the parameters of the matcher and to run it again. These operations can be
triggered manually or automatically

well. This task corresponds to the evaluation task of Fig. 12.2. Very precise
methodological guidelines for evaluation of ontology networks are provided in
Chap. 9 which may be applied here as well (note that the ‘identify evaluation
criteria and frame of reference’ task corresponds to our ‘identifying ontologies and
characterising needs’ task, see Sect. 12.4.1). We consider here what is specific to
alignment evaluation during the matching activity. The evaluate/enhance loop in
Fig. 12.5 corresponds to the feedback after evaluation in Fig. 12.2.

Evaluation consists of assessing properties of the obtained alignment. It can be
performed either manually or automatically. Manual evaluation can be achieved by
running a dry test of the final application or by asking an independent expert to
assess the quality of the alignment and perform some manual assessment. For that
purpose, graphical tools which allow to navigate quickly both in the alignment and
in the ontologies are invaluable.

An often overlooked functionality of matching algorithms is their ability to give
explanation for the provided alignments. Explanations can be obtained by
interacting with the matcher or by accessing metadata about a stored alignment.

Automated quantitative evaluation can be performed by using techniques for
evaluating alignments used in matcher evaluation campaigns such as OAEI' or
SEALS?. These would require to extract samples from the results and computing
measures like precision and recall which would provide an approximation of
correctness and completeness.

There is no definitive answer as to what is a good result for evaluation. The
evaluation must be performed so as to assess evaluation criteria. The characterisation
of the problem (Sect. 12.4.1) aims at defining such success criteria. For some
applications, high recall is required, while for some others, recall is not important.
Moreover, the meaning of ‘high’ is not the same for all applications: A critical
application which can break if some correspondence is missing will require 100%
recall while a non critical application may be satisfied with 98%.

http://dx.doi.org/10.1007/978-3-642-24794-1_9

12 Methodological Guidelines for Matching Ontologies 267

If the evaluation results are positive, i.e. the alignment satisfies these success
criteria, then the obtained alignment can go through the next task, storing and sharing
(Sect. 12.4.7); otherwise, the alignment can be improved (Sect. 12.4.6) before being
input to the matcher and/or another matcher and/or parameters can be chosen.

12.4.6 Enhancing Alignments

Enhancement can be obtained either through manual modification of the alignment,
e.g. with the help of an alignment editor, or the application of refinement
procedures, e.g. selecting correspondences by applying thresholds. This enhancing
task can lead to:

» The selection of another matcher, as in Fig. 12.5, by going back to Sect. 12.4.3

» The selection of another set of parameters to use with the same matcher, as in
Fig. 12.6

e The manipulation of the alignment through trimming under a particular thresh-
old or combining several alignments, as in Fig. 12.6

Among these procedures, the most straightforward one consists of trimming the
alignment under some thresholds. There are many different ways to apply auto-
matic thresholds (Euzenat and Shvaiko 2007). Some work has introduced double
thresholding: Above the upper threshold, correspondences are selected, under the
lower threshold, they are discarded, and the remaining correspondences are brought
to the attention of the user (Lambrix and Liu 2009).

It may also restore consistency when the resulting alignment has been detected
inconsistent in the evaluation (Sect. 12.4.5). By consistency checking, we do not
necessarily mean logical consistency checking, but rather that the result does not
violate particular constraints which may be:

e Acyclicity
» Syntactic anti-patterns (Roussey et al. 2009)
« Full logical consistency

Enhancing may then consist of selecting a subset of the correspondences in an
alignment which satisfies the constraints. Algorithms developed in (Meilicke and
Stuckenschmidt 2009) are particularly suited for that purpose.

Alignments obtained from various sources, such as other matchers or alignment
libraries, may be composed in a single alignment through various operators:
composition, meet, join and union.

12.4.7 Storing and Sharing

An extra task is to save and share the obtained alignment in a declarative format and
to give it proper annotations to record its provenance and purpose. This task is very

268 J. Euzenat and C. Le Duc

often overlooked but it is vital if one wants to find alignments in the corresponding
task (Sect. 12.4.2): carefully annotating alignments will help others to reuse
them. This task corresponds to the communication task of Fig. 12.2, and the dotted
arrow in Fig. 12.5 corresponds to the availability of stored alignments after
communication.

When an alignment is deemed worth publishing, then it can be annotated, stored
and communicated to other parties interested in such an alignment.

Annotations of alignments should record the information that is useful for the
‘finding existing alignment’ task (Sect. 12.4.2). In particular, what is the purpose of
this alignment, what is the assessment of its quality? Noy et al. (2008) discuss
various kinds of metadata that are useful to record with correspondences. There are
a few normalised vocabularies for doing this, and in particular the ontology
metadata vocabulary (Hartmann et al. 2005). Other useful information like the
algorithm used for computing it, the time it took or the source alignments and the
date of matching can generally be recorded automatically.

Below is a sample of metadata associated with an alignment in the Alignment
APIL:

dc:date 2009/10/23
align:method fr.inrialpes.exmo.align.impl.methods.StringDistAlignment
align:time 421
omwg:purpose Query mediation
align:creator JohnDoe
while correspondence annotations can be:
align:measure .7768
align:note "manualy validated"

Storing an alignment requires some type of persistent storage. This is usually
achieved through the use of a database management system, but a web site based on
a file system may be sufficient. However, alignments must be properly indexed to
retrieve them when necessary on various characteristics (one ontology, pairs of
ontologies, arity, etc.). Indexing can be direct through a URI identifying alignments
or indirect through queries looking for alignments based on their metadata. In
general, it is preferable that both access modes be available.

Finally, these alignments may be shared by interested communities. For that
purpose, they should be accessible on the web through HTML interfaces or web
services.

There are several software supporting sharing alignments on the web. The
Alignment server® and Cupboard (d’Aquin et al. 2009) are general-purpose servers
providing alignments in the Alignment format. BioPortal* is specialised in biomed-
ical ontologies and provides individual correspondences (called mappings in this
system).

? http://alignapi.gforge.inria.fr
*http://bioportal bioontology.org

http://alignapi.gforge.inria.fr
http://bioportal.bioontology.org

12 Methodological Guidelines for Matching Ontologies 269
12.4.8 Rendering Alignments

Finally, the alignment is transformed into another form or interpreted for
performing actions like mediation or merging.

This task corresponds to the exploitation task of Fig. 12.2. It is the natural
outcome of matching. The exploitation of the alignment may be denoted by a
different activity name, e.g. merging or query translating, taking directly the
alignment as input. However, it may happen that ontology matching is considered
as an activity in itself in which case it will deliver its output in an appropriate format
for another task. This is what is called ‘rendering’.

Rendering may deliver the alignment as such in RDF in order to be processed by
an interpreter such as a query mediator. But it also can be transformed, as discussed
in Sect. 12.3, into OWL axioms, SKOS relations or sets of owl:sameAs
statements.

The dotted arrow on Fig. 12.2 expresses the feedback after using the alignment
which may contribute to enhance it.

12.5 Support for Matching Ontologies

We think that methodological guidelines are more useful and better accepted if they
are supported by tools rather than delivered as rules to be applied. So far, existing
support is available in the alignment manipulation part rather than the requirement
analysis part.

12.5.1 Independent Tools

Some tools offer alignment manipulation that can be used for alignment enhance-
ment (Sect. 12.4.6).

Foam (Ehrig 2007) is a framework in which matching algorithms can be
integrated. It mostly offers matching and processor generation. It does not offer
online services or alignment editing, but it is available as a Protégé plugin and has
been integrated in the KAON2 ontology management environment. COMA++
(Aumiiller et al. 2005) and Harmony (Mork et al. 2008) are stand-alone (schema)
matching work benches that allow for integrating and composing matching
algorithms. They support matching, evaluating, editing, storing and, for COMA++,
processing alignments.

270 J. Euzenat and C. Le Duc

The Alignment server, associated with the Alignment APP (David et al. 2011),
offers matching ontologies, manipulating, evaluating, storing and sharing
alignments as well as processor generation. It can be accessed by clients through
an API, web services, agent communication languages or HTTP. It does not support
editing.

Most of the software developed for editing alignments are candidates for design
time matching. The same alignment editor can be used for manipulating more
precisely the obtained alignments. They should provide a convenient display of
the currently edited alignments and the opportunity to discard, modify or add
correspondences. Ideally, each design time function should be available from an
alignment editor. Since ontologies and alignments can be very large, it is very
challenging to offer intuitive alignment editing support. There exists such editor
prototype such as OnaGui® or iMerge (El Jerroudi and Ziegler 2008).

12.5.2 Integrated Tools

Model management has been promoted in databases for dealing with data integra-
tion in a generic way. It offers a high-level view to the operations applied to
databases and their relations. Rondo’ is such a system (Melnik et al. 2003). It offers
operators for generating the alignments, composing them and applying them as data
transformation. It is a stand-alone programme with no editing functions.

Integrated tools integrate alignment management to ontology management.

The Web Service Modeling Toolkit (WSMT) (Kerrigan et al. 2007) is an
Integrated Development Environment (IDE) for Semantic Web services which
also provides ontology engineering capabilities. Among other capabilities,
WSMT proposes a set of tools for manually creating, editing and storing ontology
alignments. It offers a set of methods and techniques that assist ontology engineers
in their work, such as different graphical perspectives over the ontologies,
suggestions of the most related entities from the source and target ontology and
guidance throughout the matching process (Mocan et al. 2006). WSMT and the
ontology engineer work together in an iterative process which involves cycles
consisting of suggestions from the tool side and validation and creation of
correspondences from the user side.

Protégé is an ontology edition environment which offers design time support for
matching. In particular, it features Prompt® (Noy and Musen 2003), an environment
that provides some matching methods and alignment visualisation. Prompt allows
to match, compare and merge ontologies. Since alignments are expressed in an

5 http://alignapi.gforge.inria.fr

6 http://sourceforge.net/projects/onagui/

7 http://infolab.stanford.edu/modman/rondo/

8 http://protege.stanford.edu/plugins/prompt/prompt.html

http://alignapi.gforge.inria.fr
http://sourceforge.net/projects/onagui/
http://infolab.stanford.edu/modman/rondo/
http://protege.stanford.edu/plugins/prompt/prompt.html

12 Methodological Guidelines for Matching Ontologies 271

ontology, they can be stored and shared through the Protégé server mode. Prompt
can be extended through a plugin mechanism.

12.5.3 The NeOn Toolkit Alignment Plugin

The NeOn’ project produced a toolkit for ontology management (see Chap. 13)
which features runtime and design time ontology alignment support.

NeOn supports ontology alignments in both the NeOn Toolkit and the Cupboard
ontology server.

The NeOn Toolkit Alignment plugin works in two modes: an offline mode in
which the user can work locally on the alignments. The user can run the matchers
which are embedded in the toolkit against ontologies in the NeOn Toolkit and
manipulate alignments which are in the local environment. Figure 12.7 shows two
selected ontologies and a matching method that can be applied to them. It also
shows a local alignment between these two ontologies to which operations such as
trimming under a threshold or rendering in OWL (‘import’) can be applied.

The online mode connects the NeOn Toolkit to an alignment server allowing to
share ontologies and to apply these operations on alignments stored on the server.

- | £ (oW
& *Ontology Naviga 8= O & Entity Properties | 3] =a
i NewOntologyProject [OWL2]
* A > edumitsisus bibtex.ow| * Input
* dh myOita2 owl
Online

Omology 1 htto: faligrai. glorge.inria.fr tutorial fedu.mit.visus._bibtex.owl 3] (Refresn

Oenology 2 hog: f fakignapt glarge.inria. b utorial myOmoZ owl

Methods fr.inrialpes. exme.align.implmethod SMOANameAlignment 3] ([Manch

Server alignments

Local abgnments | (REONDemo workspaced falign/ 1 2] (imgon Trim

O individuals 52 =o

= View Allgnment

Anonymous alignment

Alignment metadata

uric hapctalignap glocge inrta friuorialiedu mis visus bibeex owl
ool file: hitpcalignapi.gorge inria (o mlorialicd mit visus hibiey ow)
type: OWL 20
uric hatpcalignapi gforpe. mria fritutoalmy Omo2 owl
anan? files:_hatm inlimnani afene inia frimteatimdnin® ol

Fig. 12.7 The NeOn Toolkit Alignment plugin interface

° http://www.neon-project.org

http://dx.doi.org/10.1007/978-3-642-24794-1_13
http://www.neon-project.org

272 J. Euzenat and C. Le Duc

Of course, alignments can move back and forth between the server and the local
environment.

Both online and offline modes provide the functions of the Alignment API:
retrieving alignments, matching ontologies, trimming alignments under various
thresholds, storing them in permanent stores and rendering them in numerous
output formats. These operations support the whole alignment life cycle (Fig. 12.5).

The Alignment plugin allows one to automatically compute and manage onto-
logy alignments. More precisely, it offers the following functionalities:

« Find alignments between ontologies or those available on the server
* Match ontologies

¢ Trim alignments by applying thresholds to existing alignments

» Retrieve and render alignments in a particular format

¢ Upload and store an alignment permanently on the server

Alignments stored in the server can be further shared through the Cupboard
ontology server. It allows for indexing alignments available from alignment
servers. Hence, these alignments can be available to each Cupboard user to be
stored in her cupboard and, as for ontologies, be rated and annotated. Cupboard
provides direct access to alignments as well as indirect access to the Alignment
server to generate new alignments when they are missing.

12.6 Examples

In this section, we consider a user having to connect an ontology designed for drug
and prescription to existing ontologies outside. These examples are closely related
to the application presented in Chap. 20.

12.6.1 Identifying Needs

More precisely, the newly proposed Semantic Nomenclature ontology (presented in
Chap. 20), designed from schemas of pharmacological firm databases, has to be
matched to ontologies available on the web. This could help searching for literature
about concerned drugs or exporting drug interactions as linked data for other
applications to take them into account.

The requirements for this matching activity allow it to be performed offline,
without time constraints, so the use of the NeOn Toolkit and user supervision is
perfectly suited. The ontologies, having been developed independently and for
different purposes, are not expected to match exactly. Correct correspondences
are expected, completeness is secondary. The type of operation to be performed
with the resulting alignments is data export (for exposing linked data) and query
translation (for connecting to the literature).

http://dx.doi.org/10.1007/978-3-642-24794-1_20
http://dx.doi.org/10.1007/978-3-642-24794-1_20

12 Methodological Guidelines for Matching Ontologies 273

Table 12.1 Characteristics of the considered ontologies

Organisation Ontology Lang. Form. Classes Relations Properties
ATOS Semantic Nomenclature English OWL 67 20 26
UMLS Semantic Network English OWL 199 105 0
LDIS DrugOnt English OWL 28 26 32
NLM RX nomenclature English OWL 10 16 0

12.6.2 Identifying Ontologies

Watson (d’Aquin and Motta 2011) allows for finding further ontologies that may be
useful. These are:

« The LDIS Drug ontology'’ which has been designed for prescription application
in hospitals (related with electronic patient record)

« The UMLS Semantic Network ontology'' which is well used for literature
indexing because of its extensive coverage

+ The RxNorm ontology'? which is used for classifying drugs and is suited to
search the literature

A quick study of these ontologies shows the characteristics displayed in
Table 12.1.

More ontologies on this topic are available, and a comparison can be found in
Herrero Carcel and Pariente (2009).

The ontologies are relatively homogeneous being in English (with some Spanish
comments in Semantic Nomenclature) and OWL. They have comparable sizes with
the notable exception of UMLS.

12.6.3 Finding Existing Alignments

Finding available alignments may be achieved by using an alignment server. In the
present case, there is no alignment available between these ontologies.

12.6.4 Selecting a Matcher

The user then proceeds by selecting a matcher suited to match these ontologies. In
this case, given that ontologies are about a very close and normalised domain, they

10 http://Isdis.cs.uga.edu/projects/asdoc/DrugOnt_schema.owl
" http://swpatho.ag-nbi.de/owldata/umlssn.owl
12 http://www.nlm.nih.gov/research/umls/rxnorm/

http://lsdis.cs.uga.edu/projects/asdoc/DrugOnt_schema.owl
http://swpatho.ag-nbi.de/owldata/umlssn.owl
http://www.nlm.nih.gov/research/umls/rxnorm/

274 J. Euzenat and C. Le Duc

are written in the same natural language; the user may select very simple matchers
based on the strings naming entities. There are several matchers available, either
under the NeOn Toolkit or the Alignment server; the best way is to try them and to
see the results (see Sect. 12.6.5).

In a second iteration, tests have been performed with more elaborate matchers
such as a simple use of WordNet which would use synonyms to match terms and
distance in the hypernym graph. Or it can use the Aroma matcher which will
attempt at determining association rules between concepts before extracting an
alignment between them (David et al. 2007).

12.6.5 Matching

The simple StringDistAlignment method with different string distances is run, and
results are displayed in Table 12.2.

The user first ran the method with Levenshtein measure (edit distance) and
SMOA measure which tries to better interpret the way people label things, e.g. by
using syntactic variations. The threshold has been put to .75 so as to avoid
considering far-reaching similarity between strings. Later, a threshold of .85 has
been applied in order to further ensure correctness (because a higher threshold will
eliminate unlikely matches).

12.6.6 Evaluating

There is no automatic way to evaluate these results. They have to be manually
looked into by the user to assess their quality (they can be displayed by alignments
editors).

Concerning the drug ontology, the small returns with the Levenshtein distance
are obviously correct. The use of SMOA provides mostly new correct matches,
such as interacts/hasInteraction. The only non—fully correct matches are the
matching of Druglnteraction and OtherInteraction to interaction. Using SMOA
with a .75 threshold provides reasonable results. Some more matches, such as

Table 12.2 Number of matched entities in Semantic Nomenclature depending on matching
method and threshold. The example has used two iterations displayed by the horizontal line

Method Threshold DrugOnto RxNorm UMLSSN
Levenshtein .85 3 3 9
- 75 3 4 11
SMOA .85 8 8 20
- 15 11 11 34
WordNet 75 5 6 12
Aroma 8 5 30

12 Methodological Guidelines for Matching Ontologies 275

isIndicated/has_indication_text, could have been found, but not many. The small
number of matches can be explained as follows: Semantic Nomenclature is more
oriented towards the drug production and commerce processes, while the drug
ontology is targeting the consumption process.

Concerning UMLSSN and RxNorm, Levenshtein was better than SMOA which
was returning quite a lot of unwanted matches, such as isProducedBy/produces or
Clinical_Finding/Clinical_Drug. After a closer examination, there is no real reason
to find more correspondences than those provided by Levenshtein, so the user may
want to use these. Especially with UMLSSN, it seems that the labels have been
chosen so that they correspond to those of UMLS so they exactly match.

Using the more elaborate matchers has confirmed this. They have only returned
plausible but not necessarily valid correspondences, such as Physical_Entity/
Physical_Object.

12.6.7 Enhancing

Enhancement may be achieved by two means: either by manual edition of the
resulting alignment or by running a new matcher, using new parameters or applying
different threshold to the results. This is what has been done by using different
thresholds and testing the more elaborate matchers, i.e. starting back to Sect. 12.6.4.
In the end, once the SMOA alignment with the drug ontology has been found
acceptable with respect to other results, this alignment is manually edited and
selected.

Both means can be interleaved: It is possible to edit an alignment and to use it as
further input for a matcher.

12.6.8 Storing and Sharing

Once an alignment of sufficient quality is established, especially if it has been
curated by hand, it must be better documented, for instance, by adding metadata
explaining how it has been obtained, who has curated it and what is the reached
confidence in each correspondence. This is illustrated in Sect. 12.4.7. Then, it can
be uploaded to an Alignment server so that it would be visible to other people (in
the previous step of Sect. 12.6.3).

12.6.9 Rendering

Finally, the obtained alignments have to be used. We have considered that the data
expressed in the Semantic Nomenclature ontology could be converted in the drug
ontology so as to communicate critical information about interaction. This may be

276 J. Euzenat and C. Le Duc

achieved either by generating an XSLT transformation applying to the data
expressed in XML for obtaining the interactions under the drug ontology or
a more elaborate process may take advantage of the alignment to generate links
between instances of both ontologies.

On the other side, if RxNorm or UMLSSN is used to query bibliographical
databases, the alignments may be used for translating queries expressed with
respect to the Semantic Nomenclature into queries expressed in the two other
ontologies and eventually evaluate them in parallel.

12.7 Conclusions

Establishing relations between ontology entities is part of modern ontology engi-
neering and a very important activity for networked ontology engineering.
This activity remains difficult though there are many solutions for carrying it out.
We proposed methodological guidelines for ontology matching which integrates
with the alignment life cycle and can cooperate with ontology engineering
methodologies. In particular, we paid a particular attention to alignment sharing
and reuse. These guidelines are based on research work on particular tasks: Some of
these have been investigated in depth and others have not. Similarly, some tools
cover parts of these guidelines, but none is able to support them entirely.

Hence, more work is necessary to achieve a fully instrumented ontology
matching methodological support, and no doubt it will raise some demands for
improvement in the proposed methodological guidelines.

12.8 Further Readings

There are few methodological accounts of ontology matching. Mochol (2009) is the
exception: a whole thesis dedicated to matcher selection. Corcho (2005) has
considered more specifically the methodology for designing an ontology translation
method, including a matcher. Euzenat and Shvaiko (2007) covers many facets of
ontology matching, but not extensively methodology. It provides insights of most of
the tasks of the above methodological path. Euzenat et al. (2008) is more methodo-
logical but not focussed on the individual act of matching.

Acknowledgements We thank Pavel Shvaiko for his comments on a previous version of this
chapter. This work has been partly supported by the European Commission IST project NeOn
(IST-2006-027595).

12 Methodological Guidelines for Matching Ontologies 277

References

Aumiiller D, Do H-H, Maimann S, Rahm E (2005) Schema and ontology matching with COMA++.
In: Proceedings of the 24th international conference on management of data (SIGMOD),
software demonstration, Baltimore, MD, USA, pp 906-908

Corcho O (2005) A layered declarative approach to ontology translation with knowledge preser-
vation. Ios Press, Amsterdam

Corcho O, Gémez-Pérez A (2007) ODEDialect: a set of declarative languages for implementing
ontology translation systems. J Univers Comput Sci 13(12):1805-1834

d’Aquin M, Motta E (2011) Watson, more than a semantic web search engine. Semant Web J
2:55-63

d’Aquin M, Euzenat J, Le Duc C, Lewen H (2009) Sharing and reusing aligned ontologies with
cupboard. In: Proceedings of 5th ACM KCap poster session, Redondo Beach, CA, USA,
pp 179-180. URL ftp://ftp.inrialpes.fr/pub/exmo/publications/daquin2009a.pdf

David J, Guillet F, Briand H (2007) Association rule ontology matching approach. Int J Semant
Web Inf Syst 3(2):27-49

David J, Euzenat J, Scharffe F, Trojahn dos Santos C (2011) The Alignment API 4.0. Semant Web
J 2(1):3-10. URL http://iospress.metapress.com/content/416489 1n48p5v826/

Ehrig M (2007) Semantic web and beyond: computing for human experience. In: Ontology
alignment: bridging the semantic gap. Springer, New York. Acitrezza, Italy, ISBN
0-387-32805-X

ElJerroudi Z, Ziegler J (2008) iMERGE: interactive ontology merging. In: Proceedings of the 16th
EKAW demonstration track, Acitrezza, Italy, pp 52-56

Euzenat J (2004) An API for ontology alignment. In: Proceedings of 3rd international semantic
web conference (ISWC), Hiroshima, Japan, Lecture notes in computer science, vol 3298.
Springer, Berlin/Heidelberg, pp 698-712

Euzenat J, Shvaiko P (2007) Ontology matching. Springer, Heidelberg

Euzenat J, Ehrig M, Jentzsch A, Mochol M, Shvaiko P (2006) Case-based recommendation of
matching tools and techniques. Deliverable 1.2.2.2.1, knowledge web. URL ftp://ftp.inrialpes.
fr/pub/exmo/reports/kweb-126.pdf

Euzenat J, Mocan A, Scharffe F (2008) Ontology alignment: an ontology management perspec-
tive. In: Hepp M, De Leenheer P, De Moor A, Sure Y (eds) Ontology management: semantic
web, semantic web services, and business applications. Springer, New York, pp 177-206

Hartmann J, Palma R, Sure Y, Haase P, Suarez-Figueroa MC, Haase P, Gomez-Pérez A, Studer R
(2005) Ontology metadata vocabulary and applications. In: Meersman R, Tari Z, Herrero P
et al (eds) Proceedings of the International conference on ontologies, databases and
applications of semantics (ODBASE-2005), Lecture notes in computer science, vol 3762.
Springer, Berlin/Heidelberg/New York, pp 906-915

Herrero Carcel G, Pariente T (2009) Revision of ontologies for semantic nomenclature: pharma-
ceutical networked ontologies. Deliverable 8.3.2, NeOn project

Horrocks I, Patel-Schneider P, van Harmelen F (2003) From SHIQ and RDFto OWL: the making
of a web ontology language. J Web Semant 1(1):7-26

Huza M, Harzallah M, Trichet F (2006) OntoMas: a tutoring system dedicated to ontology
matching. In: Proceedings of the 1st ISWC international workshop on ontology matching
(OM), Athens, GA, USA, pp 228-323

Kerrigan M, Mocan A, Tanler M, Fensel D (2007) The web service modeling toolkit — an
integrated development environment for semantic web services. In: Proceedings of the 4th
European semantic web conference (ESWC) system description track, Innsbruck, Austria,
pp 303-317

Meilicke C, Stuckenschmidt H (2009) An efficient method for computing alignment diagnoses. In:
Proceedings of the 3rd international conference on web reasoning and rule systems (RR-2009),
Chantilly, VA, USA, pp 182-196

ftp://ftp.inrialpes.fr/pub/exmo/publications/daquin2009a.pdf
http://iospress.metapress.com/content/4164891n48p5v826/
ftp://ftp.inrialpes.fr/pub/exmo/reports/kweb-126.pdf
ftp://ftp.inrialpes.fr/pub/exmo/reports/kweb-126.pdf

278 J. Euzenat and C. Le Duc

Melnik S, Rahm E, Bernstein P (2003) Rondo: a programming platform for model management.
In: Proceedings of the 22nd international conference on management of data (SIGMOD), San
Diego, CA, USA, pp 193-204

Miles A, Bechhofer S (2009) SKOS simple knowledge organization system: reference. Recom-
mendation, W3C. URL http://www.w3.org/TR/skosreference

Mocan A, Cimpian E, Kerrigan M (2006) Formal model for ontology mapping creation. In:
Proceedings of the 5th international semantic web conference (ISWC), Athens, GA, USA,
Lecture notes in computer science, vol 4273. Springer, Berlin/Heidelberg/New York,
pp 459472

Mochol M (2009) The methodology for finding suitable ontology matching approaches. PhD
thesis, Freie Universitat Berlin. URL http://www.diss.fuberlin.de/diss/receive/
FUDISS_thesis_000000008124

Mork Peter, Seligman Len, Rosenthal Arnon, Korb Joel, Wolf Chris (2008) The harmony
integration workbench. J Data Semant XI:65-93

Noy N, Musen M (2003) The PROMPT suite: interactive tools for ontology merging and mapping.
Int J Hum-Comput Stud 59(6):983-1024. ISSN: 1071-5819. doi:http://dx.doi.org/10.1016/j.
ijhcs.2003.08.002

Noy N, Griffith N, Musen M (2008) Collecting community-based mappings in an ontology
repository. In: Proceedings of the 7th international semantic web conference (ISWC),
Karlsruhe, Germany, pp 371-386

Patrick Lambrix, Qiang Liu (2009) Using partial reference alignments to align ontologies. In:
Proceedings of the 6th European semantic web conference (ESWC 2009), Heraklion,
Germany, Lecture notes in computer science, vol 5554. Springer, Berlin/Heidelberg/New York,
pp 188-202

Roussey C, Corcho 0, Vilches Blazquez LM (2009) A catalogue of owl ontology antipatterns. In:
Proceedings of the 5th international conference on knowledge capture (KCap-2009), Redondo
Beach, CA, USA, pp 205-206

Sayyadian M, Lee Y, Doan A-H, Rosenthal A (2005) Tuning schema matching software using
synthetic scenarios. In: Proceedings of the 31st international conference on very large data
bases (VLDB), Trondheim, Norway, pp 994-1005

http://www.w3.org/TR/skosreference
http://www.diss.fuberlin.de/diss/receive/FUDISS_thesis_000000008124
http://www.diss.fuberlin.de/diss/receive/FUDISS_thesis_000000008124
http://dx.doi.org/http://dx.doi.org/10.1016/j.ijhcs.2003.08.002
http://dx.doi.org/http://dx.doi.org/10.1016/j.ijhcs.2003.08.002

Part 111
The NeOn Toolkit

Chapter 13
Overview of the NeOn Toolkit

Michael Erdmann and Walter Waterfeld

Abstract The NeOn Toolkit is one of the major results of the NeOn project. It is
a state-of-the-art, open-source, multiplatform ontology engineering environment,
which provides comprehensive support for the ontology engineering life cycle of
networked ontologies. It is based on an open and modular plugin architecture that
allows adding additional plugins realizing more advanced features supporting
more complex ontology engineering activities. A substantial number of plugins
have been developed within and outside the NeOn consortium and are available at
the NeOn Toolkit homepage. The NeOn Toolkit supports the Web Ontology
Language OWL 2, the ontology language specified by the W3C, and features
basic editing and visualization functionality. Its user interface, especially the
presentation of class restrictions, makes the NeOn Toolkit accessible to users that
do not have long experience with ontologies but instead know the object-oriented
modeling paradigm. In the chapter, we will present the feature set of the NeOn
Toolkit and how to use it. A second part explains some architecture and implemen-
tation background and how new plugins can be integrated into the common
platform.

13.1 Introduction to the NeOn Toolkit

The NeOn Toolkit is a state-of-the-art, open-source, multiplatform ontology engi-
neering environment, which provides comprehensive support for the ontology
engineering life cycle of networked ontologies (see Chap. 1).

M. Erdmann ()
ontoprise GmbH, An der RaumFabrik 33a, 76227 Karlsruhe, Germany
e-mail: michael.erdmann@ontoprise.de

W. Waterfeld
Software AG, Uhlandstrale 12, 64297 Darmstadt, Germany
e-mail: Walter.Waterfeld@softwareag.com

M.C. Suarez-Figueroa et al. (eds.), Ontology Engineering in a Networked World, 281
DOI 10.1007/978-3-642-24794-1_13, © Springer-Verlag Berlin Heidelberg 2012

http://dx.doi.org/10.1007/978-3-642-24794-1_1
mailto:michael.erdmann@ontoprise.de
mailto:Walter.Waterfeld@softwareag.com

282 M. Erdmann and W. Waterfeld

In order to support such broad ontology modeling functionality, it has an open
and modular plugin architecture. The NeOn Toolkit core provides the framework
and some basic functionality. More advanced features supporting more complex
ontology engineering activities (see part “Ontology Engineering Activities” in this
book) are provided by plugins. A substantial number of plugins have been devel-
oped within and outside the NeOn consortium and are available at the NeOn Toolkit
homepagel.

The NeOn Toolkit supports the Web Ontology Language OWL 2, the ontology
language specified by the World Wide Web Consortium (Motik et al. 2009).
Neither this chapter nor this book is intended to be an OWL tutorial. Thus, we
assume a basic understanding of the concepts of this ontology language, that is, the
different kinds of axioms and entities that OWL 2 provides®. The NeOn Toolkit
provides editing support for all entities which are defined in OWL (e.g., classes) and
also supports all but a few of the OWL axioms (e.g., the assertion that there is no
relation between two individuals cannot yet be expressed in the NeOn Toolkit).

This chapter consists of two main parts. In the first part, we will discuss the basic
features of the NeOn Toolkit and describe how to use them. Since the NeOn Toolkit
is an open and extensible platform, we will look under the hood of the toolkit and
we will discuss the building blocks and standards that are used to define the toolkit
and which can be exploited by developers to create additional functionalities for the
NeOn Toolkit in the form of plugins. Thus, we mean here developers of ontology
functionalities and not developers of ontologies, where the latter we consider as
users of the NeOn Toolkit.

13.2 The NeOn Toolkit: For Users

In this section, we demonstrate the features of the core NeOn Toolkit and how to
use them.

13.2.1 General Features

13.2.1.1 The Screen Layout

The NeOn Toolkit operates on ontologies (Gruber 1993) that are stored locally in
a so-called workspace. The workspace is the organizational unit, where users can
organize all the artifacts of their current work. At any time, a user works only in

"http://NeOn-Toolkit.org
2 A good introduction to the OWL language can be found in Hitzler et al. (2009).

http://NeOn-Toolkit.org

13 Overview of the NeOn Toolkit 283

exactly one workspace, which is organized into independent projects. Each project
can contain multiple ontologies. The ontologies within a project can refer to each
other via the owl:import statement. In this way, multiple ontologies can be viewed
and edited at the same time. Different versions of the same ontology can be stored
in different projects or in different workspaces.

The workspace and project metaphor is visualized in the NeOn Toolkit by the
layout of the basic OWL perspective. A perspective is an Eclipse mechanism to
describe the composition and layout of different views in a window. A view is a
subwindow displaying certain information and/or allowing user input. The OWL
perspective initially contains three main views, which represent the basic function-
ality of the NeOn Toolkit, as shown in Fig. 13.1.

e Ontology navigator: This view in the top left of the screen displays all ontology
projects of the current workspace. Each project can hold multiple ontologies, and
each ontology contains folders for classes, properties (object, data, and annota-
tion properties), and data types. Each of these folders displays a hierarchical
presentation of the classes, properties, and data types of the respective ontology.

e Individuals: When you select a class in the Ontology Navigator, a list of all its
individuals is listed in this view.

» Entity properties: The NeOn Toolkit displays details of each selected entity in
this view, which takes the most space of the screen and is located on the right-
hand side. The content of this view adapts, depending on the type of the currently
selected entity (ontology, class, property, individual, etc.). Since most entities
(can) have a lot of relevant information, which would not necessarily fit on a
single screen, the entity property view uses several tabs (at the bottom of the
view) where users can switch between different aspects of the entity.

i OWL - NeOn Toolkit E@WE
Ele Edt pavigste Seyrch Project Window Help
i B[R S -] B |[Eowm
¢ Ontology Navigator &1 =]| 47 search | % Entity Properties 52 =0
OWL Ontology
wr [
@ growpolsa Location |
= @ verritory 0232
@ dsputed * Imports
I3 ron_sef_governing 23123 ’
@ other 1)1 Add to imports:
1@ sef_governing 208|208 Please select an ontology to import B (3
@ _| Object Properties
@ | Data Properties ~ Namespaces
@ | Annotation Properties —=
] Datatypes O
& ontology-07]
P P =
() ()
. ol D&
0 Indvidusls 22 - Domain —Ta] D
Creake nevw:
O
Imports and Namespaces | Ontology Imports Graph | Annotations | Source View | Statistics

Fig. 13.1 Screenshot of the NeOn Toolkit

284 M. Erdmann and W. Waterfeld

The basic operations users perform with the NeOn Toolkit are (1) the creation of
new objects (projects, ontologies, and other entities) and (2) the manipulation of
their properties. The Ontology Navigator can be used for creating new objects. This
can be done via the context menu on the empty canvas or on one of the many
already existing nodes in the tree. In most cases, the shortcut CTRL + N can also be
used to create a new entity, depending on the currently selected node (the context).
Thus, users can create new ontologies in a project, new subclasses, or new
subproperties, etc.

For manipulating the properties of an entity, users typically will use the Entity
Properties View. Since OWL ontologies consist of axioms, users also essentially
interact with the NeOn Toolkit on the axiom level. The tabs of the Entity Properties
View contain forms for different aspects of each entity where users can add new
properties or alter or delete existing ones. In later sections, we will give some more
details for the most commonly used forms.

13.2.1.2 Loading and Saving

In order to load or save ontologies (outside of the workspace), the NeOn Toolkit
provides import and export features, which are available from the context menu of
ontology nodes in the Ontology Navigator tree and from the File menu. The NeOn
Toolkit supports several serialization formats for OWL ontologies:

* OWL/RDF - the official OWL 2 W3C recommendation in RDF/XML

¢ OWLX —an OWL 2-XML presentation according to the OWL 2 recommendation

¢ OWL 2 - the functional syntax of the OWL 2 recommendation

* OMN - the Manchester syntax for OWL 2 (Horridge and Patel-Schneider 2009)

e TTL — a Turtle serialization format for the RDF graph of the OWL 2 ontology
(Beckett and Berners-Lee 2008)

13.2.1.3 Entity Label Modes

The labels that are displayed for entities in the different fields of the user interface
depend on the selected Entity Label Mode. The toolbar icon labeled “ns™ shown in
Fig. 13.2 lets the user choose between four different modes:

* Complete URI: displays the complete URI of an entity (e.g., “http://www.fao.
org/aims/geopolitical.owl#group”) including its local name.

e Local name: displays only the local name of an entity (e.g., “group”). This makes
the ontology a lot more readable, but since the local names are not necessarily
unique, there is potential for conflicts.

3
“ns” here stands for “namespace.”

http://www.fao.org/aims/geopolitical.owl#group
http://www.fao.org/aims/geopolitical.owl#group

13 Overview of the NeOn Toolkit 285

) OWL - NeOn Toolkit # OWL - NeOn Toolkit

Fle Edk Navigste Search Project Window Help File Edit Navigste Search Project Window Help
Hw A A A il 1 5|;|Iﬁ;-;¢“-_;'<;a

hﬁmmtlcmm A B*S’WW Show QName 4|
Language =3 |

& & hetpsfjwm.Fao.0rgla
2] Classes = _| Classes -

=@ <http:/jwwwi.fa0.0rglaims{geopolitical.ow 0j290 = @ area0|250
i @ <http:fjwew.fao.orglaims/geopolitical. owligroup> 0|58 @ @ group0jS8
= @ <hitp:f/wewe.Fao.orgfaims geopolitical,owl y>0]232 = @ teritory 0]232
g* o a0, orglaims geopaitical. owl#disputed > @ 4
e ical.ondiner, sef_goverring: 23| @ non_se¥_govering 23123
G d‘iln.'i‘wmfao ugIMgeoooR:al marwm @ other 111
a] 3ims{geol @ se¥_goveming 208|208

@] Object Properties
= | Data Properties
2 hasCode

Fig. 13.2 Selecting how entities should occur in the user interface

e (OName: displays the namespace prefix and local name of an entity (e.g., “geo:
group”). This is the recommended setting and is especially useful when multiple
ontologies are used or different namespaces are in use. In case a default
namespace is defined for an ontology, no prefix is shown for this namespace.

e Language: If the ontology contains labels (rdfs:label) for entities, this option can
display the human readable labels in a specified language, thus providing
multilanguage support. Note that all languages are available, which are specified
in the preferences.

13.2.1.4 Manchester Syntax

Most fields in the Entity Property View can take single entity names, URIs,
QNames, or local names. Others can hold complex class expressions, for example,
the superclasses of a class can be either a simple class (referenced by its ID) or an
anonymous class specified as a complex class expression. The NeOn Toolkit
supports the Manchester syntax for formulating these expressions.

The Manchester syntax is a user-friendly compact syntax for the ontology
language OWL (Horridge and Patel-Schneider 2009), especially suited for writing
OWL class expressions. Although the syntax borrows ideas from the OWL
abstract syntax, it is much less verbose, meaning that it is quicker to write and
easier to read. While following the compactness of the DL syntax, special
mathematical symbols such as the universal or the existential quantifiers have
been replaced by keywords such as “only” and “some.” The Manchester syntax
for OWL 2 is not strictly a part of the OWL 2 recommendation by the W3C, but it
was developed by members of the W3C OWL 2 working group, and the syntax is
published as a W3C Note. This Note contains the complete language specification
and also examples for using it.

286 M. Erdmann and W. Waterfeld

Table 13.1 Example expressions in Manchester syntax

OWL construct Manchester syntax keyword Example
owl:someValuesFrom Some hasRelative some Person
owl:allValuesFrom Only hasAuthor only Writer
owl:hasValue Value writtenBy value Goethe
owl:minCardinality Min hasPlayer min 3
owl:cardinality Exactly hasPlayer exactly 3
owl:maxCardinality Max hasPlayer max 3

Table 13.2 Complex class constructions

OWL construct Manchester syntax keyword Example
owl:intersectionOf And Writer and Male
owl:unionOf Or Male or Female
owl:complementOf Not not Child

Table 13.1 gives examples for the look and feel of the Manchester syntax.
Restrictions in OWL are special anonymous classes, constructed using certain
OWL primitives. Based on existing classes and class expressions, the Manchester
syntax allows to create more complex classes using Boolean class constructors (see
Table 13.2).

Of course, users can also create even more complex classes by nesting multiple
class expressions within each other. For example, the following formula in
Manchester syntax describes the set of people who have at least one child that
has some children that are only men, that is, grandparents that only have grandsons:

Person and hasChild
some (Person and (hasChild only Man) and (hasChild some Person))

13.2.1.5 Navigation

The fields in the Entity Properties View often contain references to other entities,
for example, the domain of a property or the superclass of a class. These references
can also be nested within more complex expressions. Oftentimes, it is desirable and
useful to jump directly to the referenced entities to further inspect the model. The
NeOn Toolkit provides a handy navigation utility which supports this task. By
pressing the Control (Ctrl) key and hovering over the name of an entity, the text
becomes highlighted in blue and gets underlined (see Fig. 13.3). It becomes a
clickable hyperlink. By using the left mouse button, the NeOn Toolkit will jump
to the selected entity by updating the Ontology Navigator and Entity Properties
View to show it.

13 Overview of the NeOn Toolkit 287

+ Disjoint Classes

[disputed Ramove

| || Add || Cancel

Fig. 13.3 Entity labels as hyperlinks

[Rsearcn T

% own search |
Text
| German =] I” Case sensitive]
—Search For
[V Classes [V ObjectProperties [V Individuals [V Annotation Properties
[V Datatypes [V Data Properties [V Data Property Values [Annotation Values

Select Al | Unselect All

~Scope
(* Workspace (" Selectedresources € Enclosing|projects

C Workingset: | Choose. .. l

Fig. 13.4 Search dialog
13.2.1.6 Search and Finding References

Another useful feature of the NeOn Toolkit is its Search facility. Ontologies can be
quite large in size, and to this purpose, the NeOn Toolkit provides a helpful search
dialog (see Fig. 13.4). Besides a search term, the dialog allows users to specify the
type of entity and also the scope for the search (e.g., a single ontology, a project, or
the complete workspace). In order to have fast reaction times, the search is
internally performed on asserted knowledge only.

After hitting the Search button, the results will be displayed in the Search View.
It presents a list of all entities matching the keyword, organized according to the
ontology (and project) they were found in. By double-clicking a line in the Search
View, it will jump to the respective entity (see Fig. 13.5).

All nodes in the Ontology Navigator provide a context menu action to Find
References. When selecting this item, the NeOn Toolkit will find all axioms that

288 M. Erdmann and W. Waterfeld

@0]“&||‘E}|37l@'7,ﬂvaﬁw

B~ ﬂ:smmbhgyﬁo]ect (3 matches):
=- a;?, http:/fwww.fao.org/aims/geopolitical.ow (3 matches)
i) Federal_Republic_of Germany_the
"4 German_Democratic_Republic_the

Fig. 13.5 Search results organized by project and ontology

SO X% BEIY P-4~ =0
“http:/fwww. fao.org/aims geopolitical. owl #hasBorderWith” - 621 References found.
- SampleOntologyProject (621 matches) f’
B- 4 http: /fwww. fa0.org/aims/geopolitical.owl (621 matches)

i Individual: China Facts: hasBorderWith Myanmar

- Individual: Algeria Facts: hasBorderWith Tunisia

i~ Individual: Morocco Facts: hasBorderWith Spain

i Individual: Libyan_Arab_Jamahiriya_the Facts: hasBorderWith Sudan_the

i Individual: Croatia Facts: hasBorderWith Hungary

i) Individual: Belgium Facts: hasBorderWith France _I_'_I

»

< |

Fig. 13.6 Search results for a “find references” search

contain this entity. The results, again, are displayed in the Search View and are
clickable, exactly as in the case of the normal search above (see Fig. 13.6).

13.2.1.7 Autocompletion

The NeOn Toolkit also features a useful autocompletion function, which is avail-
able in all text boxes of the Entity Properties View while in edit mode.
Autocompletion is triggered by clicking CTRL + Space and starts automatically
after a second of idle time. Since expressions in Manchester syntax can be complex,
the NeOn Toolkit also tries to limit its proposals to applicable entity names, for
example, only class names or only property names. In Fig. 13.7, the user typed
“abs” and the Toolkit proposes a list of classes that contain this substring. On the
right, it also shows a tooltip with the complete URI and also the rdfs:comment for
the selected entities, in this case “p2:abstract.”

13.2.1.8 The Help Facility

The built-in Help system of the NeOn Toolkit is quite elaborate, and a full user
documentation is available from within the Toolkit. It is accessible via the Help

13 Overview of the NeOn Toolkit 289

~ Domain
The domain of this property is defined as the intersection of the entries below.
Lﬂipm [ede W remove
Create new:
=) (9) (Gonel)
abstract-merging-task URI:
= G sbstract-plan <http: ffwwvew loa-cnr. it fontologies/DOLCE-Lite. owl# abstract >
Local: abstract
Tl @ pz:abstract QName: pz:abstract
f @ p2:abstract-qualty == = T e
C e : main characteristic ract entities is that t not have
c g pzj:suactﬂm spatial nor temporal qualities, and they are not qualities themselves.
] p2:abstract-location The only class of abstract entities we consider in the present version
|| & p2:abstract-location-of of the upper ontology is that of qualty regions (or simply regions).
Quality spaces are special kinds of quality regions, being mereclogical
sums of all the regions related to a certain quality type. The other
- examples of abstract entities (sets and Facts) are only indicative.
D

TOCHT TSIy e CIosare:

Fig. 13.7 Drop-down list provided by autocompletion

menu entry Help Contents. The help pages are organized in so-called books. The
basic Toolkit provides a book about basic modeling of OWL with the NeOn
Toolkit. If other plugins are installed, they typically also provide their own docu-
mentation in the form of own books.

Additionally, many wizards or dialogs provide context-sensitive Help by
clicking the question-mark icon in the lower left-hand corner. This will guide
users to appropriate pages in the documentation.

13.2.2 OWL Entities in the NeOn Toolkit User Interface

By selecting a node in the Ontology Navigator or another view, users can set the
focus of the NeOn Toolkit on the associated entity. As the focus changes, the
content of the Entity Properties View updates to show the details of the newly
selected entity. Depending on the type of entity (ontology, class, property, individ-
ual, etc.), the Entity Properties View looks different (e.g., the icon in the top-left
corner of the view changes to reflect the type), and it offers different tabs at the
bottom of the view to enable switching between the various aspects of the entity.
Some tabs are shared between entity types, and we will present these first.

13.2.2.1 Annotations

The OWL 2 W3C recommendation offers the opportunity to add annotations to all
kinds of entities. The NeOn Toolkit supports this feature with a single GUI element,
the Annotations Tab, for all entities (see Fig. 13.8).

290 M. Erdmann and W. Waterfeld

, R -i‘&'EI
Identifier

URIL: | <hitp:/jwwe.Fao

Annotations

Annotation Property Value Type Language

| pdfs:Litera ._ _

rdFs:comiment

Create new:

< ¥
Domain and Range | Taxonomy | Annotations | Source Yiew

Fig. 13.8 The Annotations Tab is available for all entities

Annotations can either use the built-in annotation properties of OWL 2 or RDF
(S), or they can use user-defined annotation properties. Using the Edit/Remove
buttons, existing annotations can be altered or removed. With the last line, entitled
“create new,” additional annotations can be added. Autocompletion is supported for
the property name and for the data type.

13.2.2.2 Source View

Another useful feature (for advanced users) is the ability to view an entity in some
form of textual serialization. The NeOn Toolkit offers this functionality via the
Source View Tab for each entity type. Ontologies can be displayed in several
serialization formats, for example, RDF/XML, functional-style syntax, or
Manchester syntax. For other entities, the NeOn Toolkit displays the Manchester
syntax of the frame representing the entity and, additionally, a list of a/l/ axioms
relevant for this entity. The tab uses syntax highlighting to make the display easier
to read (see Fig. 13.9).

13.2.2.3 Project

The Entity Properties View for projects includes an Aggregated Statistics tab, in
addition to a general tab that displays some metadata about the current project. In
this tab, the NeOn Toolkit presents overall statistics about the ontologies in the
project, for example, the total number of classes, properties, or axioms. Like the
search, the statistics is based on asserted knowledge only.

13.2.2.4 OWL Ontology

The main tab for ontologies is the Imports and Namespaces tab, which lists all
ontologies imported by this one (via owl:imports) and the defined namespaces.

13 Overview of the NeOn Toolkit 291

ety propertes £ FAEis

OWL Ontology
URI ||"rtp-;'|'wv~w Fao,org/aims/gecpolitical.owl |
Location | file: fE: /NTK2. 3. 1 -Build264 /workspacefSampleOntologyProject fgeopolitical . owl |
w Serialization of Ontology %.
E |l
Choose the serialization format: (3) Functional Syntax) (O Manchester Syntax (O OLW/RDF () OWL/XML m
Prefix(xsd:= <http://www.w3.0rg/2001 [XMLSchema# >)
Prefix(owl:= <http://www.w3,0raf2002/07/owi# >)
Prefix(:=<http: /v
e
Prefix(rdf:=<http
Profix(rdfsim<htty] | 100
Prefix(skos:=<hitd | oy, | Kehttp: {fwer.Fa0.orglaims/geopoltical. owl# Germany >
N—— Oowyeomete D
mn«rgs:a v Frame Rep Identifier
A (rdfs:co P it
Annatation(rdfs:cc 7| URE: | <http:/jwww.fa0.orglaims/geopolitical.owl#self_governing>
(rdfs:
Armaion(rcfs o 3
Declaration(Class(sef_ » Frame Representation in Manchester Syntax
SubClassOf(: Facts:
AT e hasBorderwith A | Class:sef_governing
SubClassOf(:area hasBorderWith Lu Aolations:
SubClassOF(:area hasBorderwith Ne X ¢ =
SubClassOF(-area hasBorderWith Po rdfs:comment “UN Cartographic Section’
SubClassOf(:area hasBorderWwith 5w SubClassOF:
SubClassOF(:area isinGroup EU, :
S eind & isinGroup Europe, territory
& - isInGroup FAO, S
T T FAQ Disjont g
Iporcs Sid Hiraoy :mm world'?u disputed, non_self_governing, other
isinGroup westerr
IsSuccessorOf Fed
isSuccessorOf Ger
GDPNotes "Estim
GDPTotallnCurrent List of Axioms in Manchester Syntax
GOPUnit “millions d
GDPYear “2008"~ fass:self_governing
agriculturalreahio _self mm&mmwmmw self_governing
isel‘_ qoverning SubClassOf territory
Dls]ohtw\tl'l self _oaverrhg
‘ghanistan Type self_governing
Type seff governing
Class Restrictions |T. y | Annotations | Source View |

Fig. 13.9 Source Views for different entities

A screenshot can be seen in Fig. 13.1 (see Sect. 13.2.1.1). The set of imported
ontologies and the namespace definitions can also be changed here. The closure of
imported ontologies is visualized by the Ontology Imports Graph tab. Importing an
ontology makes the entire set of classes, properties, and individuals provided by
that ontology available to the current one. In the OWL preferences dialog, users
decide whether they want to see imported axioms (and entities) in the user interface
or not. Imported axioms will be highlighted with a light-blue background.

The NeOn Toolkit supports ontologies which are loaded from remote locations,
for example, from the web. The Location field of the Ontology Entity Properties
View shows whether the ontology is stored locally or loaded from the web.

292 M. Erdmann and W. Waterfeld

13.2.2.5 OWL Class

Generally speaking, OWL classes can be considered as sets of individuals that share
similar characteristics. These classes are organized in hierarchies, of which owl:
Thing is the root class. OWL classes are described through so-called class
descriptions. The class hierarchy is displayed in the Ontology Navigator. Clicking
on a class shows its instances in the Individual View and all properties that have this
class in its domain in a special Domain View. The number of individuals that belong
to a class is also displayed in the navigator together with the class label, for
example, in Fig. 13.1 (see Sect. 13.2.1.1), we see that the class “territory” has no
direct instances but 232 inherited ones (“territory 01232”). Thus, it is easier for users
to see at a glance which classes are more or less populated, a key piece of
information when making sense of an ontology or when keeping track of an
ontology in development.

The Entity Properties View for classes provides two additional tabs, besides the
Annotations and Source View tab. The Taxonomy tab lets the users view and modify
the super- and subclasses of the current class, as well as equivalent and disjoint
classes. A special feature of the NeOn Toolkit, not present in other ontology editors,
is the special treatment of OWL restrictions. On a separate Class Restrictions tab
(see Fig. 13.10), the user can see and specify the restrictions for the selected class
and a given property. Since super restrictions are a common modeling pattern for
formulating local properties with their ranges and cardinality, this presentation is
adequate and easily understood, even by non-OWL experts. The NeOn Toolkit
supports all OWL 2 restrictions:

e owl:allValuesFrom (ALL)
e owl:someValuesFrom (SOME)

@ Entity Properties &2 r = 0
Identifier

URI: [_: f{aims.Fao.orgf ',”_“i'.ic;l&vdlrm_se'_omm:v

~ Super Restrictions

Property Quantifier MinfMax Range

Create new:
+ Equivalent Restrictions
Property Quantifier Min M Range
Create new:
Class ictions | T ¥ Source Yiew

Fig. 13.10 Restrictions on OWL classes

13 Overview of the NeOn Toolkit 293

e owl:hasValue (HAS_VALUE)

e owl:hasSelf (HAS_SELF)

o owl:maxCardinality (AT_MOST/MAX)
o owl:minCardinality (AT_LEAST/MIN)
e owl:cardinality (EXACTLY/CARD)

13.2.2.6 OWL Property (Object, Data, and Annotation Properties)

The Entity Properties Views for all three kinds of OWL properties are quite similar.
In the following, we will only describe the Entity Properties View for object
properties since its features are essentially a superset of the other properties.

The Domain and Range tab (see Fig. 13.11) contains information about the rdfs:
domain and rdfs:range of the selected property. The values for the text fields can be
arbitrary class descriptions formulated using the Manchester syntax. The domain
and the range of each property are always maintained as a list, which can be
manipulated with the edit and remove buttons. Thus, multiple domains and ranges
are completely supported.

]
URI tp fao.org/ poltical. With>
~ Domain
The domain of this property is defined as the intersection of the entries below.
errory I(Eat] (Remove]
Create new:
Add |Cmr.d|
« Range

The range of this property is defined as the intersection of the entries below.

.terntorv l
Create new:
Add |Cmtei I

= Characteristics
Define if this property is functional, inverse functional, transitive or symmetric
Local: Transkive Closure:
me - |
[Oinverse functional
[reflexive
[irreflexive
[#] symmetric
[Asymmetric
[ransitive

Domain and Range | T | Annotations | Source View |

Fig. 13.11 Domain and Range can be defined for all properties

294 M. Erdmann and W. Waterfeld

On the same tab, the Characteristics of the property are also displayed. Annota-
tion properties have no characteristics in OWL, data properties can be defined as
functional, and object properties can additionally be characterized as inverse
functional, reflexive, irreflexive, symmetric, asymmetric, and/or transitive. Each
characteristic is displayed twice. In the left-hand column, the assertions from the
current ontology are shown, whereas the second column shows whether a charac-
teristic is true in one of the directly or indirectly imported ontologies. This is based
on the ontology import functionality described in Sect. 13.2.2.4.

OWL 2 and RDFS properties can be hierarchically organized. This information
is collected in the Taxonomy tab. It displays Super- and Sub-Properties, as well as
Equivalent Properties. Object properties also can have Inverse Properties or
property chains (the composition of a sequence of properties) as subproperties.
Thus, it is possible, for example, to specify that the property hasUncle is a
subproperty of the concatenation of hasParent and hasBrother .

13.2.2.7 OWL Individual

The Entity Properties View for individuals contains the general tabs for Annotations
and the Source View and two tabs that allow users to display and define properties
for an individual. The Properties tab (see Fig. 13.12) has two sections, one for
instantiating Object Properties and one for instantiating Data Properties. The
Template Form tab provides forms for applicable properties, so that the users can
see which properties are available for an individual (based on its classes) and can
directly instantiate individual properties. The final tab for Individuals is the

£ Entity Properties £3] =t =
Identifier

URI: | <hitp:/faims.Fa0.crgjaosigeopoltical.owl#British_Virgin_Islands>

+ Object Property Values

Property Walue
sAdministeredsy [nited_Kingdom_of_Great_Britain_and_Northern_lreland_the
isinGroup |5i0s

Create new:

« Data Property Yalues

Property Value Type Language
gricuturalAreahiotes ual Estimation ..:é’_d’?.[.'_'f'_‘?
[egricuturalareaTotal Jpesdifloat |
|agriculturalArealnit IE:II".'IE: Ha ::xsd:stn.nq

L

|

Properties Tearpl&eFu'm"lammrf annctations | Source View |

Fig. 13.12 The properties of an OWL individual

13 Overview of the NeOn Toolkit 295

Taxonomy tab in which users can define equality and inequality between
individuals (owl:sameAs and owl.differentFrom, respectively) and list also all
classes the individual belongs to (rdf:type).

13.2.3 Extending the NeOn Toolkit’s Feature Set

In the previous section, we have described the features that are built in the NeOn
Toolkit core. Of course, the core only contains the essential functionalities of the
NeOn Toolkit, and many more features (Harth 2010) are available for download.
Users can configure the NeOn Toolkit environment according to their needs.

One of the prominent functionality that is available via easy-to-install features is
reasoning. Thus, it is possible to cope with different reasoning functionality and
with different reasoner realizations. For example, the reasoner plugin provides
important reasoning functionality based on the Pellet2 and the HermiT3 reasoner
(see Chap. 17).

The mechanism to install new features while working with the NeOn Toolkit
refers to a special location in the web, the so-called NeOn update site. This update
site is maintained by the NeOn Foundation® and provides up-to-date plugins for a
variety of ontology engineering activities. Users can access this update site from
within the NeOn Toolkit (via Install new software in the Help menu). The resulting
dialog (see Fig. 13.13) lets users select an update site (the NeOn update site is
preconfigured already) and shows a list of features organized in a number of
categories that can be selected, downloaded, and installed with a few clicks.

13.3 The NeOn Toolkit: For Developers

The NeOn Toolkit has an open and modular architecture, which it inherits from its
underlying platform, Eclipse. Eclipse is a rich development environment, which is
widely adopted in the programming world and also perfectly fits the modeling
paradigm for ontologies. It provides developers a framework to easily create,
publish, and integrate new features into the NeOn Toolkit. Eclipse is open-source,
and the NeOn Toolkit also is published under the same open Eclipse Public
License’, which means that it can be used and extended for any purpose, commer-
cial and noncommercial.

*The body responsible for the management and distribution of the NeOn Toolkit, http://www.
neon-foundation.org/

3 http://www.eclipse.org/legal/epl-v10.html

http://dx.doi.org/10.1007/978-3-642-24794-1_17
http://www.neon-foundation.org/
http://www.neon-foundation.org/
http://www.eclipse.org/legal/epl-v10.html

296 M. Erdmann and W. Waterfeld

o[
Available Software
Check the items that you wish to install.

Work with: | NeOn Toolkit Update Site v2.4 - http: //neon-toolkit.org/plugins/2.4 = Add. |
Find more software by working with the 'Available Software Sites' preferences.

Itype filter text
Name | version I al
= [J000 Management
O%* contt 1.6.5
® [J000 Modularization and Customiza
[J000 ontology Dynamics
& [J000 ontology Evaluation
@ [J000 Other
Bl [F000 Reasoning and Inference
19> Reasoner 2.3.21
3. sparqQL
& (000 Reuse =
Details
The SPARQL Plugin allows a user to SPARQL queries over ontologies loaded into the NTK. It receives an j

[V Show only the latest versions of available software |~ Hide items that are already installed
IV Group items by category Whatis already installed?
[V Contact all update sites during install to find required software

< Back I Next > I Einist Cancel

Fig. 13.13 Dialog for loading and installing additional plugins

The openness of the platform and the reliance on open standards was a major
driver in the design and development of the NeOn Toolkit. Besides the open Eclipse
platformé, we use (as Eclipse also does) OSGi (2009) as our component framework
and the OWL API (Horridge and Bechhofer 2009) as our data model for the
ontologies managed with the NeOn Toolkit. These three important building blocks
for NeOn will be described in what follows, after introducing the general architec-
ture of the NeOn Toolkit (as an application development platform).

S http://www.eclipse.org/

http://www.eclipse.org/

13 Overview of the NeOn Toolkit 297
13.3.1 Architecture

The architecture of the NeOn Toolkit must cover the complete ontology function-
ality. This includes the coverage of tools for the whole ontology life cycle, and it
must enable all ontology engineering activities. The NeOn Toolkit focuses on the
development part of ontology functionality. However, for ontology-based applica-
tions, the distinction between development time and runtime is not as clear as in
conventional applications, for example, schematic information like classes are
often also changed and modified at runtime, which is impossible for conventional
applications. Therefore, the architecture of the NeOn Toolkit also includes runtime
components. The architecture must also allow the easy integration of additional
ontology engineering functionalities in a highly modular fashion (Waterfeld et al.
2008a).

Thus, we defined for the NeOn Toolkit a generic architecture with a layering
approach. The layering resembles increasing abstraction layers for ontology
functionalities. The layers, however, also organize the data and control flow
between the components of each layer. The components of higher layers invoke
components of lower layers but not vice versa.

Based on these principles, the NeOn Toolkit architecture consists of three layers
(see Fig. 13.14):

o Infrastructure services: These are the basic ontology services contained in all
versions of the NeOn Toolkit. The OWL API implementation is the most
important one.

e Engineering components: The main ontology functionality is contained in the
engineering plugins provided by the NeOn Toolkit core and by additional
plugins.

e Front-end components: They contain the user interfaces for the engineering
plugins. They are similarly extendible like the engineering components.

This layering and more details are described in the NeOn Toolkit design
documents (Waterfeld et al. 2007, 2008b).

13.3.2 APIs and Realization

13.3.2.1 Eclipse Platform

For the realization of the architecture, we use the Eclipse platform. Eclipse, which
has a strong record as a software development environment, provides rich func-
tionality for the development of plugins for the toolkit. Additionally, Eclipse
provides, via its extension point mechanism, a simple way to extend its functionality
for other types of development assets. For the NeOn Toolkit, this mechanism has
been used extensively to realize the basic tools for ontology development.

298 M. Erdmann and W. Waterfeld

ONTOLOGY- ENGINEERING TOOLS' FRONT-END ONTOLOGY-BASED APPLICATIONS' FRONT-END

5 tic Semantic
Portal Search
Form

ONTOLOGY ENGINEERING SERVICES ONTOLOGY USAGE SERVICES

Use Case Browsi -
Modeling | mumngn | Debugging I Retrieval || Reasoning

Other
Related Ontology
Services Services

[Language |strmmode|]| Tnconsistency | Services
Translation Transformation Resolution
tology laborative unctional
Ontology | Ontology | Performance I
Modularization Evaluation

RAfDEVELOPMENT / INTEGRATION ~ TESTING / EVALUATION

ONTOLOGY INFRASTRUCTURE SERVICES i
| oueyng | | Ressonng | | Repostoy | | Regemy | ‘ |

Fig. 13.14 The NeOn architecture

These can now be used to realize more specific ontology tools. The advantages
of this extension point mechanism are twofold: First, it allows an easy realization of
a basic ontology modeling tool because many of Eclipse’s existing functionalities
can be reused; second, the development and integration of additional, more specific
ontology tools is almost seamless because the functionality can be easily plugged in
as an extension of the core NeOn Toolkit.

13.3.2.2 OSGi

OSGi (2009) is a very flexible and dynamic component model. It allows
a completely dynamic management of components in different versions.

13 Overview of the NeOn Toolkit 299

Thus, components can be deployed, stopped, started, and uninstalled in the running
system, and the resulting dependencies are correctly managed. Eclipse has been
based on OSGi since 2004; however, not all capabilities of OSGi are yet used in the
Eclipse context.

In NeOn, we have leveraged the implicit capabilities of NeOn plugins as OSGi
bundles for publishing ontology engineering plugins as web services. This is
possible by offering a web service container based on an OSGi server. Into such a
web service container, all needed NeOn ontology engineering functionalities can be
deployed. For a specific ontology engineering plugin, only a web service wrapper
has to be generated and also deployed. Thus, any ontology functionality, originally
only available in the NeOn Toolkit, is now available as a web service.

This is of course not possible for front-end plugins. However, due to the
separation of engineering plugins and front-end plugins of the NeOn architecture,
the NeOn Toolkit provides the means to realize this capability for any functionality
defined in the engineering layer.

13.3.2.3 OWL API

Over the past few years, the W3C OWL working group has continuously extended
and redefined the specification of the web ontology language, initially dubbed OWL
1.1, and in October 2009, released OWL 2 (Motik et al. 2009).

While originally the NeOn Toolkit had its own realization of an ontology API,
following the release of the OWL 2 specification, it switched to the (Manchester)
OWL API’, both to support the new language features and also to ensure compati-
bility with other Semantic Web tools and future developments. The OWL API
(Horridge and Bechhofer 2009) is available under the open-source LGPL license
and has emerged as the de facto standard for implementing OWL-based
applications. It has an active user community and promises a high degree of
standard compliance. It is the reference implementation of the OWL 2 Recommen-
dation by the OWL working group.

13.3.3 Create Your Own Plugin

To facilitate the deployment of new plugins, we make use of the Eclipse Update
mechanism which allows for deploying and updating new features. Features are a
concept of Eclipse to represent a unit of useful and deployable functionalities. The
role of features is to allow providers to make collections of plugins that logically go
together.

7 http://owlapi.sourcrforge.net

http://owlapi.sourcrforge.net

300 M. Erdmann and W. Waterfeld

Developers interested in adding functionalities to the NeOn Toolkit can find
more information on the NeOn Toolkit wiki, in the developer’s corner®. There they
will find references to our source code management system for the NeOn Toolkit
core, as well as for many other plugins. The wiki also links to the developer’s
mailing list, where questions can be posed to the NeOn community.

As a central entry point for information about available plugins, we maintain a
plugin wiki®. The purpose of the plugin wiki is to enable both developers and users
to create and find information about components of the NeOn Toolkit. The plugin
descriptions can include metadata, such as the developer and his/her affiliation,
availability, license, etc., along with a brief description of the functionality of the
plugin.

For the NeOn Toolkit, we have created a dedicated NeOn Update Site referenced
in the NeOn Toolkit core. After a quality assurance procedure, newly available
plugins are uploaded to the update site and thus become immediately accessible to
all users of the Toolkit. When developing a plugin for NeOn, a developer can even

set up his/her own update site, following the instructions from Eclipse.org'®.

13.4 Conclusions

In this chapter, we have described the main features of the core NeOn Toolkit and
illustrated how the core functionality can be extended by downloading additional
plugins. The Toolkit is an open platform to which anybody can contribute, and a
number of resources are available for users and developers interested in the NeOn
Toolkit:

 http://neon-toolkit.org: From here, users can download the latest release of the
toolkit. Plugins are documented here, and developers find important information
to get started.

« http://neon-project.org: This site contains information about the EU-funded
NeOn Integrated Project with a lot of documents describing results of our
research on networked ontologies, most of which has also been translated in
functional code in the form of plugins for the NeOn Toolkit.

 http://www.neon-project.org/nw/NeOn_Movies: This contains a collection of
tutorial videos explaining the main functionalities of the NeOn Toolkit plugins.

e http://www.neon-toolkit.org/mailman/listinfo/: This web page provides infor-
mation about two mailing lists. One is intended for developers of NeOn plugins
to discuss implementation questions. The other is meant for users of the

8 http://neon-toolkit.org/wiki/Developer_Corner
° http://neon-toolkit.org/wiki/Neon_Plugins
10 http://wiki.eclipse.org/FAQ_How_do_I_create_an_update_site_%28site.xm1%29%3F

http://neon-toolkit.org
http://neon-project.org
http://www.neon-project.org/nw/NeOn_Movies
http://www.neon-toolkit.org/mailman/listinfo/
http://neon-toolkit.org/wiki/Developer_Corner
http://neon-toolkit.org/wiki/Neon_Plugins
http://wiki.eclipse.org/FAQ_How_do_I_create_an_update_site_%28site.xml%29%3F

13 Overview of the NeOn Toolkit 301

technology where we provide tips and answer questions with respect to the
Toolkit and its plugins.

¢ Some participants of the NeOn Project have recently founded the NeOn Tech-
nology Foundation Inc''. to make sure that the development and distribution of
the NeOn Toolkit as a free and open-source tool for the ontology community
continues. Under the auspices of the Foundation, we will continue to improve
the toolkit and make sure that it stays a competitive competitor in the market.

References

Beckett D, Berners-Lee T (2008) Turtle — Terse RDF triple language. W3C team submission
14 Jan 2008. http://www.w3.org/TeamSubmission/turtle/

Gruber TR (1993) A translation approach to portable ontology specifications. Knowl Acquis
5(2):199-220. http://ksl-web.stanford.edu/KSL_Abstracts/KSL-92—71.html

Harth A (coordinator) (2010) NeOn deliverable D6.10.3 updated NeOn Toolkit plugins. NeOn
deliverable. http://www.neon-project.org/nw/images/a/a2/NeOn_2010_D6103.pdf

Hitzler P, Krotzsch M, Parsia B, Patel-Schneider P, Rudolph S (eds) (2009) OWL 2 web ontology
language: primer W3C recommendation. http://www.w3.org/TR/owl2-primer/

Horridge M, Bechhofer S (2009) The OWL API: a Java API for working with OWL 2 ontologies.
In: Proceedings of OWLED 2009 — OWL: experiences and directions. 6th international
workshop co-located with ISWC 2009, Chantilly, VA, USA. http://www.webont.org/owled/
2009/papers/owled2009_submission_29.pdf

Horridge M, Patel-Schneider PF (2009) OWL 2 web ontology language: Manchester syntax W3C
working group note. http://www.w3.org/TR/owl2-manchester-syntax/

Motik P, Patel-Schneider F, Parsia B (eds) (2009) OWL 2 web ontology language: structural
specification and functional-style syntax. W3C recommendation. http://www.w3.org/TR/
owl2-syntax/

OSGi Alliance (2009) OSGi service platform V4.0, core specification

Waterfeld W, Weiten M, Haase P (2007) D6.2.1 specification of NeOn reference architecture
and NeOn APIs. NeOn deliverable. http://droz.dia.fi.upm.es/neon/servlet/download?ontology
=Documentation+Ontology&concept=Deliverable&instanceSet=neon&instance=D6.2.1%
3A+Specification+of+NeOn+reference+architecture+%26+NeOn+API-s&attribute=On-line
+PDF+Version&value=NeOn_2007_D6.2.1.pdf

Waterfeld W, Weiten M, Haase P (2008a) Ontology management infrastructures. In: Hepp M,
De Leenheer P, de Moor A (eds) Ontology management: semantic web, semantic web services,
and business applications. Springer, New York

Waterfeld W, Erdmann M, Schweitzer T, Haase P (2008b) D6.9.1 specification of NeOn architec-
ture and API V2. NeOn deliverable. Available at http://www.neon-project.org/web-content/
images/Publications/neon_2008_d6.9.1.pdf

" http://www.neon-foundation.org/

http://www.w3.org/TeamSubmission/turtle/
http://ksl-web.stanford.edu/KSL_Abstracts/KSL-92–71.html
http://www.neon-project.org/nw/images/a/a2/NeOn_2010_D6103.pdf
http://www.w3.org/TR/owl2-primer/
http://www.webont.org/owled/2009/papers/owled2009_submission_29.pdf
http://www.webont.org/owled/2009/papers/owled2009_submission_29.pdf
http://www.w3.org/TR/owl2-manchester-syntax/
http://www.w3.org/TR/owl2-syntax/
http://www.w3.org/TR/owl2-syntax/
http://droz.dia.fi.upm.es/neon/servlet/download?ontology=Documentation+Ontology&concept=Deliverable&instanceSet=neon&instance=D6.2.1%3A+Specification+of+NeOn+reference+architecture+%26+NeOn+API-s&attribute=On-line+PDF+Version&value=NeOn_2007_D6.2.1.pdf
http://droz.dia.fi.upm.es/neon/servlet/download?ontology=Documentation+Ontology&concept=Deliverable&instanceSet=neon&instance=D6.2.1%3A+Specification+of+NeOn+reference+architecture+%26+NeOn+API-s&attribute=On-line+PDF+Version&value=NeOn_2007_D6.2.1.pdf
http://droz.dia.fi.upm.es/neon/servlet/download?ontology=Documentation+Ontology&concept=Deliverable&instanceSet=neon&instance=D6.2.1%3A+Specification+of+NeOn+reference+architecture+%26+NeOn+API-s&attribute=On-line+PDF+Version&value=NeOn_2007_D6.2.1.pdf
http://droz.dia.fi.upm.es/neon/servlet/download?ontology=Documentation+Ontology&concept=Deliverable&instanceSet=neon&instance=D6.2.1%3A+Specification+of+NeOn+reference+architecture+%26+NeOn+API-s&attribute=On-line+PDF+Version&value=NeOn_2007_D6.2.1.pdf
http://droz.dia.fi.upm.es/neon/servlet/download?ontology=Documentation+Ontology&concept=Deliverable&instanceSet=neon&instance=D6.2.1%3A+Specification+of+NeOn+reference+architecture+%26+NeOn+API-s&attribute=On-line+PDF+Version&value=NeOn_2007_D6.2.1.pdf
http://droz.dia.fi.upm.es/neon/servlet/download?ontology=Documentation+Ontology&concept=Deliverable&instanceSet=neon&instance=D6.2.1%3A+Specification+of+NeOn+reference+architecture+%26+NeOn+API-s&attribute=On-line+PDF+Version&value=NeOn_2007_D6.2.1.pdf
http://droz.dia.fi.upm.es/neon/servlet/download?ontology=Documentation+Ontology&concept=Deliverable&instanceSet=neon&instance=D6.2.1%3A+Specification+of+NeOn+reference+architecture+%26+NeOn+API-s&attribute=On-line+PDF+Version&value=NeOn_2007_D6.2.1.pdf
http://droz.dia.fi.upm.es/neon/servlet/download?ontology=Documentation+Ontology&concept=Deliverable&instanceSet=neon&instance=D6.2.1%3A+Specification+of+NeOn+reference+architecture+%26+NeOn+API-s&attribute=On-line+PDF+Version&value=NeOn_2007_D6.2.1.pdf
http://droz.dia.fi.upm.es/neon/servlet/download?ontology=Documentation+Ontology&concept=Deliverable&instanceSet=neon&instance=D6.2.1%3A+Specification+of+NeOn+reference+architecture+%26+NeOn+API-s&attribute=On-line+PDF+Version&value=NeOn_2007_D6.2.1.pdf
http://www.neon-project.org/web-content/images/Publications/neon_2008_d6.9.1.pdf
http://www.neon-project.org/web-content/images/Publications/neon_2008_d6.9.1.pdf
http://www.neon-foundation.org/

Chapter 14
Scheduling Ontology Engineering Projects
Using gOntt

Mari Carmen Suarez-Figueroa, Asuncion Gomez-Pérez,
and Oscar Munoz-Garcia

Abstract In order to manage properly ontology development projects in complex
settings and to apply correctly the NeOn Methodology, it is crucial to have
knowledge of the entire ontology development life cycle before starting the devel-
opment projects. The ontology project plan and scheduling helps the ontology
development team to have this knowledge and to monitor the project execution.
To facilitate the planning and scheduling of ontology development projects, the
NeOn Toolkit plugin called gOntt has been developed. gOntt is a tool that supports
the scheduling of ontology network development projects and helps to execute
them. In addition, prescriptive methodological guidelines for scheduling ontology
development projects using gOntt are provided.

14.1 Introduction

One of the crucial aspects within engineering processes is the issue of planning and
scheduling development projects. These two terms are often thought of as synony-
mous; however, they are not. While planning’ is the act of drawing up a plan, that is,
a series of steps to be carried out to achieve an objective, scheduling® is defined as
the activity of placing planned events along a timeline. Scheduling clearly depends
on planning, and both are crucial in any project.

Bearing in mind that ontologies are part of software products and that sometimes
ontologies are considered a kind of software, experiences and practices in software

"http://www.wordnet-online.com/planning.shtml

2 http://www.wordnet-online.com/scheduling.shtml

M.C. Suarez-Figueroa (b<) » A. Gémez-Pérez « O. Muiioz-Garcia

Ontology Engineering Group, Facultad de Informatica, Universidad Politécnica de Madrid,

Campus de Montegancedo sn., 28660 Boadilla del Monte, Madrid, Spain
e-mail: mcsuarez@fi.upm.es; asun@fi.upm.es; omunozgarcia@gmail.com

M.C. Suarez-Figueroa et al. (eds.), Ontology Engineering in a Networked World, 303
DOI 10.1007/978-3-642-24794-1_14, © Springer-Verlag Berlin Heidelberg 2012

mailto:mcsuarez@fi.upm.es
mailto:asun@fi.upm.es
mailto:omunozgarcia@gmail.com
http://www.wordnet-online.com/planning.shtml
http://www.wordnet-online.com/scheduling.shtml

304 M.C. Suarez-Figueroa et al.

engineering can be adopted and adjusted in the ontology engineering community.
For this reason and with the aim of achieving in ontology engineering a similar
degree of maturity to that of the software engineering field, we take as basis
software engineering works to provide ontology engineers with help in planning
and scheduling ontology development projects.

In software engineering, every development project has a life cycle (Taylor
2008), which is produced by instantiating a particular life cycle model. Life
cycle models can be seen as abstractions of the phases or stages through which
a product passes along its life. Examples of life cycle models are waterfall (Royce
1970), incremental (Sommerville 2007), iterative (Pfleeger 2001), evolutionary
prototyping (Davis et al. 1988), and rapid throwaway prototyping (Davis et al.
1988).

To properly manage software development projects, it is crucial to have knowl-
edge of the entire software development life cycle (Stellman and Greene 2005). In
this regard, software engineers always plan and schedule every development project
before starting it. The project plan defines the tasks to be carried out and establishes
the human resources to perform the project work. To estimate the effort required to
perform each task, techniques such as (Stellman and Greene 2005) Wideband
Delphi, PROBE, and COCOMO II can be used.

The project schedule is a calendar that links the tasks to be performed with
the resources to support their performance. One of the most common forms of
representing schedules is to use a Gantt chart (Gantt 1974); and the most popular
tool for creating a project schedule is Microsoft Project, according to (Stellman and
Greene 2005). However, according to our knowledge, any tool for managing
project schedules provides guidelines on how to execute the project.

Ontologies are used for making knowledge explicit and allowing it to be shared.
One of the keys when building ontologies as in the case of software products is to
plan and schedule the ontology development. However, in ontology engineering,
planning and scheduling are still in their early stages. Only METHONTOLOGY
(Fernandez-Lopez et al. 1997; Blazquez et al. 1998) defines the scheduling activity,
but it does not provide guidelines for helping ontology developers to plan and
schedule their projects. Other methodologies, such as On-To-Knowledge (Staab
et al. 2001) and DILIGENT (Pinto et al. 2004), do not include these activities in
their developments. Regarding the calculation of cost estimation of projects, the
only technique available is ONTOCOM (Simperl et al. 2009), a model that predicts
the costs of ontology development projects.

To cover this lack of methods and tools for planning and scheduling, this chapter
describes (a) the gOntt plugin, a tool that supports the scheduling of ontology
network development projects and helps to execute them, and (b) prescriptive
methodological guidelines for scheduling ontology development projects using
2Ontt.

14 Scheduling Ontology Engineering Projects Using gOntt 305
14.2 Scheduling Ontology Development Projects

Scheduling, as defined in the NeOn Glossary of Processes and Activities mentioned
in Chap. 2, refers to the activity of identifying the different processes and activities
to be performed during ontology development, their arrangement, and the time and
resources needed for their completion. Thus, this activity includes as an important
task the establishment of the ontology network life cycle, that is, the specific ordered
sequence of processes and activities that ontology developers carry out during the
life of the ontology network.

The goal of scheduling is to organize the different processes and activities in
time, that is, to state a concrete programming or scheduling that guides the ontology
network development, including processes and activities, their order and time, as
well as human resource restrictions.

To establish the concrete schedule for the ontology network development, four
important questions have to be answered:

1. How to organize an ontology development project into phases, or in other words,
which ontology network life cycle model is the most appropriate for the ontol-
ogy network development?

2. Which particular processes and activities should be carried out in the ontology

network development?

. Which order and dependencies exist among processes and activities?

4. What amount of resources (human and time) is needed and available for the
development of the ontology network?

W

The first three questions are related to the establishment of the ontology network
life cycle, and their responses would result in a general plan for the ontology
network development. The fourth question is related to the inclusion of time and
human resources restrictions for each process and activity included in the plan, and
its response would result in the concrete schedule for the ontology network devel-
opment. An estimate on how many people should be involved in the ontology
network development can be obtained using the ONTOCOM model (Simperl et al.
2009). This is a cost estimation model, whose goal is to predict the costs (expressed
in person per month) arising in typical ontology engineering processes.

As in the case of software engineering projects, an ontology engineer cannot
start the ontology development project scheduling without having first identified the
ontology requirements. In addition, the scheduling activity needs as input the types
of potential knowledge resources (ontological resources, non-ontological resources,
and/or ontology design patterns) to be reused during the development.

The filling card for the scheduling activity, presented in Fig. 14.1, includes the
definition, goal, inputs and outputs, performer of the activity, and time of the
activity.

http://dx.doi.org/10.1007/978-3-642-24794-1_2

306 M.C. Suarez-Figueroa et al.

Scheduling

Definition

Scheduling refers to the activity of identifying the different activities and processes to be
performed during the ontology development, their arrangement, and the time and
resources needed for their completion.

Goal

The scheduling activity states a concrete programming or scheduling to guide the
ontology network development, including processes and activities and the order in which
they appear, and time and human resources restrictions and assignments.

Input Output

Ontology Requirements Specification
Document (ORSD) and types of Schedule for the ontology network
potential knowledge resources to be development.

reused.

Who

Software developers and ontology practitioners, who form the ontology development team
(ODT), in collaboration with users and domain experts.

When

This activity must be carried out after the ontology requirements specification activity and
after performing a quick search for existing and available knowledge resources.

Fig. 14.1 Scheduling filling card

14.3 gOntt: NeOn Toolkit Plugin for the Scheduling Activity

To support the scheduling of ontology development projects, the NeOn Toolkit
provides a plugin called gOntt. This plugin is conceptually based on the following
ingredients that are explained in Chap. 2: (a) the scenarios of the NeOn Methodo-
logy, (b) the set of ontology network life cycle models, and (c) the NeOn Glossary
of Processes and Activities.

http://dx.doi.org/10.1007/978-3-642-24794-1_2

14 Scheduling Ontology Engineering Projects Using gOntt 307

The gOntt plugin has the following main objectives:

1. To support ontology developers in the decision of which ontology network life
cycle model is the most appropriate for building their ontologies

2. To help ontology developers in the decision of which concrete processes and
activities should be carried out in the ontology network development and in
which order

3. To instantiate the life cycle model selected and to create a particular life cycle
for the ontology development with the processes and activities needed, including
time restrictions on them

4. To inform ontology developers about how to carry out a particular process or
activity through the NeOn methodological guidelines and a reference to the
concrete NeOn plugins to be used — that is, to help ontology developers in the
ontology project execution.

According to the aforementioned objectives, gOntt functionalities can be divided
into two main groups: functionalities for scheduling ontology development projects
and functionalities for helping in the execution of ontology development projects.

The functionalities for scheduling an ontology network development are:

e To create particular schedules from scratch, by allowing the ontology developer
to include processes, activities, phases, and relationships, along with restrictions
between them. Such processes and activities could either come from the NeOn
Glossary of Processes and Activities or be new ones proposed by the developer.

¢ To create particular schedules in a guided way. gOntt creates preliminary plans
for the ontology development with a simple two-step wizard. The ontology
developer uses the wizard to answer a set of simple and intuitive questions
that implicitly allow him to select the ontology life cycle model and the
processes and activities to be carried out.

— gOntt internally uses a set of heuristics based on methodological foundations
and scheduling templates® (Suarez-Figueroa 2010) to automatically generate
the initial plan.

— gOntt provides the user with an initial plan in the form of a Gantt chart that
the user can modify in the following fashion: (a) by including or deleting
processes and activities, (b) by changing order and dependencies among
processes and activities, and (c¢) by including resource assignments and
restrictions to the planned processes and activities (this possibility is out of
the scope of this chapter).

» To create, modify, and delete gOntt projects.
¢ To export and import gOntt projects in an interchange format based on XML
(files with .got extension).

3 Such scheduling templates show ontology project default plans based on the different and
possible combinations among life cycle models, scenarios, and processes and activities.

308 M.C. Suarez-Figueroa et al.

» To provide graphical and textual visualizations of gOntt projects.

¢ To rename, reorder, and delete processes, activities, and phases from a gOntt
project.

« To change the scope of a given process or activity (e.g., to change a given
activity to a different phase).

¢ To create, modify, and delete connections between activities, between processes,
and between activities and processes. If a connection exists between two
elements, the latter cannot start until the former is completed. These connections
can have two different meanings:

— Logical dependencies: when it is required that one activity is carried out
before another because of the nature of the activities (e.g., diagnosis before
repair in ontology validation)

— Temporal dependencies: when an activity should be performed after another
because of project requirements (e.g., ontology reuse and non-ontological
reuse can be carried out in parallel because they have no restrictions between
them but, in some cases, there are not enough human resources to perform the
activities in parallel, and so they should be set to perform in sequence)

¢ To include and modify the duration and the starting date of the processes,
activities, and phases.

» To check gOntt projects with respect to logical and temporal constraints.

¢ To provide usual editing capabilities such as copy, paste, undo, and redo.

The functionalities for helping in the execution of ontology development projects
are:

» To provide the developer with some methodological guidelines for the processes
and activities identified in the NeOn Methodology, and thus

— To display a filling card, which includes the process or activity definition, its
goal, inputs and outputs, performer of the process or activity, and time of the
performance. Figure 14.2 shows an example of the filling card for the
ontology localization activity.

— To display a workflow and some methodological guidelines explaining how
the process or the activity should be carried out, including its inputs, outputs,
and actors involved. Figure 14.3 shows an example of the methodological
guidelines for the ontology localization activity. Workflows are implemented
with Eclipse cheat sheets®.

* Cheat sheets is a new emerging technology within Eclipse V3.0 that is meant to guide a developer
through a series of complex tasks to achieve some overall goal. Some tasks can be performed
automatically, such as launching the required tools for the user. Other tasks need to be completed
manually by the user.

14 Scheduling Ontology Engineering Projects Using gOntt

.00 Ontology Localization: Filling Card

Definition

Ontology localization refers to the adaptation of an ontology to a particular

language and culture

Goal

To translate an ontology expressed in a source natural language into a target

natural language

Input

" An ontology whose ontology terms

are expressed in one or several
natural languages, from which one
is selected as source natural
language

Who

Qutput

been translated to the target natural
language. The resulting translations are
added to avaliable labels of the original 4
ontology already in one or several v

An ontology whose ontology terms have m

Software developers and ontology practitioners, who form part of the ontology
development team, on collaboration with domain and linguistic experts

When

Once the conceptual model of the ontology is stable, so as to avoid spending time
and resources in a model that is not definitive

F

Close)

Fig. 14.2 Example of the ontology localization filling card in gOntt

309

» To provide a direct access to the NeOn plugins associated to each process
and activity planned. This means that gOntt triggers the different NeOn Toolkit
plugins associated to each process or activity included in the plan. To make this
possible, gOntt uses the so-called extension points”.

» To launch the Kali-ma dashboard (described in Chap. 15) with the plugins that

are related to a given activity, process, phase, or whole scheduling projects.

Figure 14.4 shows the general appearance of the gOntt plugin, whereas
Fig. 14.5 shows a specific plan; as for the latter, it is worth mentioning that in the
reuse phase, ontological and non-ontological resource reuses can be replicated for

5 gOntt has its own extension point that the rest of NeOn Toolkit plugins should implement (see

Suarez-Figueroa et al. 2010 for more detail).

http://dx.doi.org/10.1007/978-3-642-24794-1_15

310 M.C. Sudrez-Figueroa et al.

Y |[Blgont [=]owL
"I-E'l_'j Cheat Sheets Sé = =]

Ontology Localization: Workflow and Methodological
Guidelines

v ¥ Introduction
b Task 1.Select the most appropriate linguistic assets
~ Task 2. Select ontology term(s) to be localized
The goal of this task is to select the ontology term(s) to be localized.
Domain experts and the ontology development team carry out this
task taking as input an ontology whose terms expressed in a source
natural larguage need to be localized to a target natural language.

The task output is a set of ontology terms with information of the
text to be translated and its context.

Since there are no methodological guidelines for guiding in the
selection of the ontology terms, we believe that the user is the one
who has to choose the space of candidates to be localized. At this
stage, the user may choose to localize the complete ontology or
certain terms only.

« Task 3. Obtain ontology term translation(s)

For each ontology term, the goal of this task is to obtain the most
appropriate translations in the target langiage. Domain and linguist
experts carry out this task taking as input the text of the ontology
term(s) to be localized.

Different techniques can be used to automatize this task:

1) cross-language term extraction to discover translation equivalents,
2) word sense discovery for discovering the possible senses or
definitions of the translations, and

3) word sense disambiguation for selecting the most appropriate
translatior for each ontology term(s).

The task output is a ranked set of translations for each ontology term
(sh.

} Task 4. Evaluate term translation(s)
} Task 5. Ontology update

Fig. 14.3 Example of the workflow and of some methodological guidelines for the ontology
localization activity in gOntt

every single resource used in the ontology development; the same holds for the
reengineering phase in the non-ontological resource reengineering process.

For each ontology network development project within the NeOn Toolkit, up to
one gOntt scheduling can be created.

To create a new gOntt project, one of the following NeOn Toolkit new
wizards must be launched (see Fig. 14.6): “Schedule a project from scratch”

14 Scheduling Ontology Engineering Projects Using gOntt

LN
TN Tw T

e

L
Methodological Guidelines

= O B e e 2
Jo

Ontology Localization: Workflow and
Methodological Gaidelines
o
* Tash L Sebect the meast appromriate lngutite
o
= Tk T ket oanibingy il 18 e akaed

Th gsst o s sk tha srtcioay
o

= Tath % Obsin cotology birm assliions)

[For eaih somsbogy b, the gtal of i 4tk 1 1
obtan the mait apprspeiate e
Comepmasiranen Do ard ket sazans carmy
ottt Eling 4s ingen th Tear of e
 Omtabops formurason ey a1 16 e WEARIRE.
VI 0-cioo Sevrenny Dtarers Inihripues c4m b v 14 mematitn
[s, e ke
e e p——
g ™ airiar) S Properties Dianan co
5 werd e iy for dcevnring e
i = Wsaer waoaaNi ot tantan 5 debrstions o the amaliice,
Prcs—— - v st Bt fod el
i Pt R) Meshodslogical Cuidelines st romgiorbepin e
Seteiegy ehag 7 Filling Card -
[tisaans ey B Add o a P ’ T T e ——
veisme ssasans 3 Change 10 a Phase . ach St Jamm
B Delete commections
& ’ »

® Tark 4. Deakuane tarm wranstations)
" Tas

Recommended Plugin

Fig. 14.4 Screenshot of the gOntt plugin

Hon Critologicll Retource Reverse Engreenng
Crfeologecal Resouece Tranafomaton
[Ortolagy Formsrd Engressing

Fig. 14.5 A specific plan generated by gOntt

= insenertaten s

312 M.C. Suarez-Figueroa et al.

Select a wizard ﬂ

Wizards:
{_type filter text Q)
¥ (= gOntt
D Schedule a project from scratch
Schedule a project in a guided way
» (= 0WL2 Ontology

] Show All Wizards.

® (< Back J(Next >) (Cancel)\i Finish)

| d

Fig. 14.6 gOntt wizards for scheduling new projects

cOpcion ot e, ~ O
4 1% NewOntologyProject [OWL2]
Scheduli
4 & >ontologyl
_ | Classes
__| Object Properties
| Data Properties
| Annotation Properties

_| Datatypes

Fig. 14.7 Accessing a scheduling from the Ontology Navigator

14 Scheduling Ontology Engineering Projects Using gOntt 313

or “Schedule a project in a guided way.” Then the wizard selected will ask about
the ontology network development project that ontology developers want to
schedule.

Once the scheduling has been created for a given project, ontology developers
can access to the gOntt project by clicking on the “scheduling” item in the Ontology
Navigator as Fig. 14.7 shows.

14.4 Guidelines for Scheduling Ontology Development
Project Using gOntt

The workflow for carrying out the scheduling of ontology development projects
using gOntt is presented in this section. Each of the tasks in the workflow proposed
includes prescriptive methodological guidelines. The tasks for carrying out the
scheduling activity are shown in Fig. 14.8 and are explained in detail below.

Task 1. Selecting the ontology network life cycle model. The goal of this task is to
obtain the most appropriate ontology network life cycle model for the ontology
network to be developed. Users, domain experts, and the ontology development
team carry out this task, taking as input both the ontology requirement specification

Types of potential
knowledge
resources to be
reused

Task 1. Selecting the ontology
network life cycle model

I

Users, Domain Experts and ODT l

Initial Plan
(in the form of
a Gantt chart)

Task 2. Selecting the set of
scenarios

I

Users, Domain Experts and ODT

Update of the
Initial Plan
(in the form of
a Gantt chart)

Task 3. Updating the initial plan

I

Users, Domain Experts and ODT

Scheduling
for the Ontology
Network
Development

Task 4. Establishing resource
restrictions and assignments

i
vy ¥

Users , Domain Experts and ODT

Fig. 14.8 Tasks for scheduling ontology development projects with gOntt

314 M.C. Suarez-Figueroa et al.

%)

New Ontology planning project
The antology life cycle model.

Are the ontology requirements assumed to be fully known at the begining @ o
of the cntology netwerk development? i
How many cycles do you want to perform in your ontology network 2 =
development? -

)] [<mck) @ neas) (Cancel

Fig. 14.9 Choosing the ontology network life cycle model

document (ORSD) (see Chap. 5) and the types of potential knowledge resources to
be reused during the development. To help ontology developers in the decision of
which is the most appropriate life cycle model among those presented in Chap. 2,
gOntt presents a simple natural language question, displayed in Fig. 14.9. Based on
the response given, either the waterfall model is selected, or the iterative-incremen-
tal model. In the latter case, ontology developers should also provide the expected
number of iterations in the ontology development.

Task 2. Selecting the set of scenarios. The goal of this task is to select the set of
scenarios to be followed during the ontology network development. Users, domain
experts, and the ontology development team carry out this task, taking as input both
the ontology requirement specification document (ORSD) and the set of potential
knowledge resources to be used during the development.

To help ontology developers in this task, gOntt presents the set of natural
language questions displayed in Fig. 14.10. If the model selected in Task 1 is the
waterfall one, then questions should be answered once; on the other hand, if the
model selected is the iterative-incremental one, then the set of questions should be
answered once for each iteration expected.

With the responses to these questions, the set of heuristics based on methodo-
logical foundations and the set of scheduling templates (Suarez-Figueroa 2010),

http://dx.doi.org/10.1007/978-3-642-24794-1_5
http://dx.doi.org/10.1007/978-3-642-24794-1_2

14 Scheduling Ontology Engineering Projects Using gOntt 315

aNnon

New Ontology planning project
Iteration 1 of 2

Scenario 1: From specification to implementation. @ Yes

Scenario 2: Have you planned to use any non-ontological resource such

> 3 ® ves () No
as thesauri, data bases, etc. in your ontology network development? S
Scenario 3: Have you planned to use any existing ontological resource in @ Y ON
your logy netwark develop 7 S
Scenario 4: Have you planned to use and modify any existing ontological Oy @ N
resource in your ontology network development? A LES Lo
Scenario 5: Have you planned to use and merge a set of existing —~
: = () Yes ® No
ontological resources in your ontology network development?
Scenario 6: Have you planned to use, merge, and modify a set of existing ~
: 5 () Yes @ No
ontological resources in your ontology network development?
Scenario 7: Have you planned to use ontology design patterns in your —~
logy network development? () Yes @ No
Scenario 8: Have you planned to restructure your ontology network? C Yes @ No
Scenario 9: Have you pl d to develop your logy network in —~
different natural languages? © ves O No

(" See Picture)

<Back) Net>) (cancel))

Fig. 14.10 Selecting the scenarios

gOntt is able to obtain the initial ontology network life cycle, that is, an initial plan
for the ontology network development. The task output is represented as a Gantt
chart, which is de facto standard in software project management.

Task 3. Updating the initial plan. The goal of this task is to modify (if necessary)
the initial plan presented by gOntt. Users, domain experts, and the ontology
development team carry out this task, taking as input both the ontology requirement
specification document (ORSD) and the set of potential knowledge resources to be
used during the development.

Ontology developers can modify the initial plan in the following ways: (a) by
including or deleting processes, activities, and model phases and (b) by changing
order and dependencies among processes and activities.

316 M.C. Suarez-Figueroa et al.

Task 4. Establishing resource restrictions and assignments. The goal of this task
is to include information about temporal scheduling and human resource
assignments in the life cycle obtained in Task 3. Users, domain experts, and the
ontology development team carry out this task, taking as input both the ontology
requirement specification document (ORSD) and the set of potential knowledge
resources to be used during the development.

14.5 Conclusions

In order to manage properly ontology development projects in complex settings and
to apply the NeOn Methodology correctly, it is crucial to have knowledge of the
entire ontology development life cycle before starting development. The ontology
project plan defines the tasks to be executed, the time when the tasks will be
executed, and the dependencies between tasks. The project plan is the only way,
as can be shown in other disciplines, to commit people to the project and to show
how the work will be performed. It also aids ontology engineers in monitoring
project execution and assessing the impact of a particular delay in the planned tasks.

With these notions in mind, this chapter presented (a) the gOntt plugin, a tool
that supports the scheduling of ontology networks developments as well as their
execution, and (b) prescriptive methodological guidelines for scheduling ontology
development projects using gOntt.

In relation to the work presented in this chapter, an integration of gOntt and the
guidelines proposed with the ONTOCOM model (Simperl et al. 2009) is planned.
Additionally, such works will be extended by providing details of the cost
associated to carrying out a particular task in an ontology development project.

References

Blazquez M, Fernandez-Lopez M, Garcia-Pinar JM, Gomez-Pérez A (1998) Building ontologies
at the knowledge level using the ontology design environment. In: Gaines BR, Musen MA
(eds) 11th international workshop on Knowledge Acquisition, Modeling and Management
(KAW 1998), Banff, Canada, SHARE4:1-15

Davis AM, Bersoff EH, Comer ER (1988) A strategy for comparing alternative software develop-
ment life cycle models. IEEE Trans Softw Eng 14-10:1453-1461

Fernandez-Lopez M, Gémez-Pérez A, Juristo N (1997) METHONTOLOGY:: from ontological art
towards ontological engineering. In: Spring symposium on ontological engineering of AAAI,
Stanford University, Standord, CA, pp 33-40

Gantt HL (1974) Work, wages and profit, published by The Engineering Magazine. New York,
1910; republished as Work, wages and profits, Hive Publishing Company, Easton, PA, 1974,
ISBN 0879600489

Pfleeger S (2001) Software engineering: theory and practice, 2nd edn. Prentice Hall, Upper Saddle
River. ISBN 0-13-029049-1

Pinto HS, Tempich C, Staab S (2004) DILIGENT: towards a fine-grained methodology for
DIstributed, Loosely-controlled and evolvInG Engineering of oNTologies. In: Lopez de

14 Scheduling Ontology Engineering Projects Using gOntt 317

Mantaras R, Saitta L (eds) Proceedings of the 16th European Conference on Artificial Intelli-
gence (ECAI 2004). IOS Press, Valencia, Spain, pp 393-397, 22-27 Aug 2004. ISBN:
1-58603-452-9. ISSN: 0922-6389

Royce WW (1970) Managing the development of large software systems: concepts and
techniques. In: Proceedings Western Electronic Show and Convention (WESCON), Los
Angeles, 25-28 Aug 1970

Simperl E, Popov I, Biirger T (2009) ONTOCOM revisited: towards accurate cost predictions for
ontology development projects. In: Proceedings of the European Semantic Web Conference
2009 (ESWC 2009), Heraklion, Greece, 20 May—04 June 2009

Sommerville I (2007) Software engineering, 8th edn. Addison-Wesley, Harlow/New York. ISBN
0-321-31379-8

Staab S, Schnurr HP, Studer R, Sure Y (2001) Knowledge processes and ontologies. IEEE Intell
Syst 16(1):26-34

Stellman A, Greene J (2005) Applied software project management. ISBN: 0-596-00948-8.
O’Reilly

Suarez-Figueroa MC (2010) NeOn Methodology for building ontology networks: specification,
scheduling and reuse. PhD thesis, Universidad Politécnica de Madrid, Espaifia, June 2010.
Available at http://oa.upm.es/3879/

Sudrez-Figueroa MC, Gémez-Pérez A, Muiioz O (2010). NeOn deliverable. D5.3.3. gOntt plugin
for scheduling ontology projects. NeOn project. Available at http://www.neon-project.org/nw/
images/c/c1/NeOn_2010_D533.pdf

Taylor JC (2008) Project Scheduling and Cost Control: Planning, Monitoring and Controlling the
Baseline. J Ross Publishing, ISBN: 9781932159110

http://oa.upm.es/3879/
http://www.neon-project.org/nw/images/c/c1/NeOn_2010_D533.pdf
http://www.neon-project.org/nw/images/c/c1/NeOn_2010_D533.pdf

Chapter 15
Customizing Your Interaction with Kali-ma

Alessandro Adamou and Valentina Presutti

Abstract This chapter presents the Kali-ma NeOn Toolkit plugin, which exploits
the versatility of the C-ODO Light model to assist ontology engineers and project
managers in locating, selecting, and accessing other plugins through a unified,
shared interaction mode. Kali-ma offers reasoning methods for classifying and
categorizing ontology design tools with a variety of criteria, including collaborative
aspects of ontology engineering and activities that follow the NeOn Methodology.
Furthermore, it provides means for storing selections of tools and associating them
directly to development projects so that they can be shared and ported across
systems involved in common engineering tasks. In order to boost Kali-ma support
for third-party plugins, we are also offering an online service for the semiautomatic
generation of C-ODO Light-based plugin descriptions.

A. Adamou ()
Semantic Technology Lab, Institute of Cognitive Sciences and Technologies (National Research
Council — CNR), Via Nomentana 56, 00161 Rome, Italy

Department of Computer Science, Alma Mater Studiorum Universita di Bologna, Mura Anteo
Zamboni 7, 40126 Bologna, Italy
e-mail: alessandro.adamou@istc.cnr.it; adamou@cs.unibo.it

V. Presutti

Semantic Technology Lab, Institute of Cognitive Sciences and Technologies (National Research
Council — CNR), Via Nomentana 56, 00161 Rome, Italy

e-mail: valentina.presutti@cnr.it

M.C. Suarez-Figueroa et al. (eds.), Ontology Engineering in a Networked World, 319
DOI 10.1007/978-3-642-24794-1_15, © Springer-Verlag Berlin Heidelberg 2012

mailto:alessandro.adamou@istc.cnr.it
mailto:adamou@cs.unibo.it
mailto:valentina.presutti@cnr.it

320 A. Adamou and V. Presutti
15.1 Introduction

Being an Eclipse RCP'-based ontology engineering platform, the NeOn Toolkit has
an openly extensible feature set. Third parties may add custom functionalities in the
form of software modules called plugins. Although the NeOn Toolkit provides its
own set of specific extension points for manipulating ontology project hierarchies,
most of those commonly provided by the Eclipse platform are supported. As with
other Eclipse platforms, NeOn Toolkit plugins are maintained in dedicated
repositories, called update sites. A pointer to one such update site, which was
described in Chap. 13, is hardcoded in the core toolkit, but since the platform is
open, anyone may set up their own update sites and use them as sources for
additional plugins.

The RCP takes the burden of integrating plugins from the user interface per-
spective, e.g., by adding menus and toolbar buttons, populating the lists of views
and perspectives, or adding new types of items that can be created via wizards.
However, it is usually up to the developer to facilitate conceptual integration of her
plugin by characterizing the goals of its features. The ways for doing so in the
Eclipse platforms are little more than giving appropriate names and assigning
categories to the Ul contributions provided by their plugins. Performing this task
can be tricky if the platform is supported by a large community, whose each
member develops a plugin not knowing what others are doing. As a result,
developers may arbitrarily add whatever categories, items, and labels they see fit
for their plugins regardless of the rest. For example, two developers can create
multiple categories for views, give them unique identifiers but label them both as
Visualization independently on one another. As a result, end users will see two
Visualization categories grouping different Ul elements. Again, one developer
could name a category after the plugin providing the corresponding UI elements,
while another could name it after an arbitrarily named task supported by her plugin.
In other words, when a contributor develops a plugin for the NeOn Toolkit, as well
as for most plugin-based frameworks, she projects her own interpretation of the
implicit metamodel of the user interface. Moreover, the uncontrolled proliferation
of features (Damian and Chisan 2006) can clutter the user interface, e.g., if each
plugin adds its own menu simply because no common agreement is reached as to
which menus should be used for adding entries or submenus.

An instance of the scenarios described above is shown in Fig. 15.1. Here, a NeOn
Toolkit user who has installed a large number of plugins from different sources is
presented with this two-level tree list upon selecting the Show View menu entry.
The names of views and the categories grouping them are widely varying in this
example: some views, such as Evolva Main View, OntoConto, and SearchPoint, are
named after the plugin that provides them; others, such as Partitioning, Relationship

! Eclipse Rich Client Platform, the software development toolkit originally written for the Eclipse
integrated development environment (IDE).

http://dx.doi.org/10.1007/978-3-642-24794-1_13

15 Customizing Your Interaction with Kali-ma 321

Show View

¥ = EVOIVa p-
<) Evolva Main View
¥ (= eXtreme Design Tools
8 ODP Details
<% ODP Registry
|G XD Selector
¥ (= Help
& Cheat Sheets
{DHelp
P (= NeOn Toolkit Basic
¥ [=>NeOn Toolkit Development
*. | Approved View
@ Customized View Maker
"~ Draft View
" To Be Approved View
! To Be Deleted View
¥ = NeOn Toolkit Human Ontology Interaction
@ Cyc AnswerArt
@ Displayed Documents View
& KC-Viz
/3 OntoConto
@ OntologyAtlas View
@ Relationship visualization
.® SearchPoint
¥ (= NeOn Toolkit Management
HGantt view !
¥ = NeOn Toolkit Modularization and Customization
4@ Module Extraction
=] Ontology Module Composition
@ Partitioning
¥ (2= NeOn Toolkit Ontology Dynamics
Change Log View
¥ (= NeOn Toolkit Ontology Evaluation
@ Metaknowledge
™ Repair and Diagnose a Single Ontology

Use F2 to display the description for a selected view.

Cancel) | OK)

#~

Fig. 15.1 An example of a view selection menu in a very crowded NeOn Toolkit

Visualization, and Repair and Diagnose a Single Ontology, are named after the
functionalities they provide; others, such as Gantt, refer to the structure of the view
itself. Since there are no set rules about the naming of categories and interface
components, there is no right or wrong with any of these rationales. However,

322 A. Adamou and V. Presutti

because they come from different interpretations that each developer had of the user
interface model, the overall picture may appear confused and cluttered. It is a goal
of Kali-ma to try and bring some order into this confusion.

Kali-ma is a NeOn Toolkit plugin that aids developers and end users alike in
creating a conceptually harmonized view on other known NeOn Toolkit plugins
(and, more in general, tools that support the life cycle of ontologies). Kali-ma
implements a user interface paradigm alternative to the Eclipse Workbench
(and which can be switched with the latter in real time). This interface groups all
UI contributions and access methods by the plugins issuing them and, with rela-
tively little development effort, the plugins themselves by categories best
representing the goals they are targeted at. It also adds a set of collaboration-
oriented functionalities for end users, such as a metadata search feature, a white-
board for executing dynamic plugin assemblies, and dedicated real-time chat
support for ontology projects.

The remainder of this chapter provides an insight on the plugin as a whole, its
functionalities, and the rationale behind them. Section 15.2 guides the reader
through the plugin features and is structured so that the reader can concentrate on
the section for end users (Sect. 15.2.1) or the one for developers (Sect. 15.2.2),
depending on the reader’s role. Developers are however advised to read both
subsections in order to gain an understanding on the effects of their Kali-ma
extensions on the interaction experience. Section 15.2.3 focuses on the underlying
software architecture and how it combines standard components in Java with others
in OWL (namely an extended version of the C-ODO Light ontology described in
Chap. 4), thus being of interest for software engineers and ontology specialists
alike.

15.2 Kali-ma Plugin Features

By the end of this section, the reader will have learned about the functionalities
exposed by the Kali-ma plugin for facilitating interaction with and configuration of
software components in the NeOn Toolkit. An insight is also provided, as well as
documented, as to which steps the user needs to perform in order to activate and
interact with these functionalities.

Although the Kali-ma plugin is oriented toward providing alternate modalities
for end users to interact with the functionalities provided by the NeOn Toolkit, the
rule body and several other aspects by which these modalities are provided
are customizable. Some of such features are configurable at runtime by end users,
while others are available by applying simple extensions to plugins by their
respective developers. By this distinction, the remainder of this section is structured
so as to allow a neat separation between functionalities that refer to end users for
direct consumption and functionalities that refer to developers for their plugins to

http://dx.doi.org/10.1007/978-3-642-24794-1_4

15 Customizing Your Interaction with Kali-ma 323

provide alternate interaction paths. In particular, the next section will also focus on
what features can be configured by end users prior to launching the Kali-ma plugin
on a running NeOn Toolkit platform.

15.2.1 Functionalities for End Users

When the Kali-ma plugin is activated, a desktop-integrated graphical user interface
(GUI), called Dashboard, replaces the traditional Eclipse Workbench-based NeOn
Toolkit interface. The constituents of this user interface, an example of which is
shown in Fig. 15.2, are lightweight graphical elements, or widgets. A single widget
represents either a built-in functionality provided by Kali-ma or a group of
functionalities provided by some other NeOn Toolkit plugin.

Kali-ma provides a number of functionalities aimed at end users and aids them in
the configuration of, and rapid access to, selected sets of tools apt for completing
certain classes of tasks. These are as follows:

e Tool organization and selection based on preferred criteria.

e Quick plugin access that groups most functionalities of a plugin into a single
widget.

* Profile management for bookmarking sets of plugins and associating them with
ontology projects, thereby managing profiles.

¢ Project-based real-time chat that allows remote collaborating parties to share
metadata of a common ontology project.

* Advanced search for ontology data and metadata.

e Pipeline assembly, for broadcasting the output of a plugin to other listening
plugins in order to accomplish complex tasks.

» Assistant, for obtaining real-time guidance.

15.2.1.1 Preliminary Configuration

As with most NeOn Toolkit plugins, Kali-ma is configurable in several aspects
concerning its way to handle interaction with the framework. While it does make
sense to customize some of these aspects only once the Kali-ma dashboard has been
activated, other features require prior configuration, as they affect the way dash-
board elements are constructed. This section discusses the latter set of features and
the steps to follow for configuring them.

Kali-ma comes with a “safe” default setup, in that all the plugin functionalities
can be activated with no alteration of the default settings, granted an available
internet connection. The only exception is the chat functionality, which requires the
user to set the hostname of a Jabber/XMPP chat server where she has an account
already registered.

All the settings of the Kali-ma plugin are grouped under a single Kali-ma entry
in the NeOn Toolkit Preferences category. Remember that the Preferences panel

A. Adamou and V. Presutti

324

[OUaqQIoMm IIY[00], UQAN Y} 0) Suruinjar Joj 1oSpim yoz1ms
Ay Lua8puvw aprfo.d Ay ¢s193pim urdnid orowr 9AY 10J s1opjoyaoed yIIm JOSPIM Y0P) (UOSIEAN PUE S[00], USISOOX ‘NUQS ‘01201) :suidnyd Surmor[oy oyl
Sunuasaxdar s1a3pIm 123pim 4ad]ay) LU2ZIUDS.L0 0p0OI) JYS14 01 If2] UAY) ‘wi0330q 03 doj ‘Umnjod Aq pIIoS "SI9ZPIM JO pIeoqysep ew-1[ed] Y], ¢°ST "SI

1H|00L UDBN Ol yoeg

ol |

(3|yoid 01 5136piIm aneg

[M0"SUONN[OSPOD
*J2 “indino se sad1-a8pajmouy uonnjos
QAR JEW SONIEUONOUN) SUAwadu

1 UM ARME-UONN[OS S8 PIUISSE[D 2
B3 [001 Y “219 *SWOIXE PAA[Is ‘swaned
uBsop :suonnjos uoddns 1ewp sadA LY
Aq pazt Yo st 10adse i udisag

Ean_s._quzx_..nEum um!...._u“:uu
auney | aseyd

| Aaysy
(snaafoud ABojorug | ey 3|yosd |

B [s31402d 11v)

__ aseyd uoneuawajdw|

o) (@

. 160joILe MU jo 041 ‘9

v 204 'u pnpow ABOIOILO UE 40 ABOIOID
- ue BuA|duwa SMO|[E 18y1 ANANDE U1 5|
 2snas ABoouug Swqoud JUIIYIP JO LONN|os
- ui Ajnpow ABojoiuo ue Jo ABojoiuo ue Buisn

[an0]
djaH/oju| (o eXS]

wawabeuew mopxiom @

sabeuep ajyoid [FX*1%) asnay ABojojug - Ajjenuew 153jas 1001 ubisaax)
. L s3n1ARdE pauoddng P EN-11® 197 (& uibnid 31N uosiea ()
4 uiBnid s15dTHIN0 ojul ABojopowIaW UDIN NOQ®Y %
3 Bnjd Jasdew3ao
< Jor|surILRqe] [uosIEM Q00 by
4 UIBng YN UCHRZHENSH ABOIOWIO Bupaauibuaas pue ommn @ -
- wawabeuew Dafosd @ ~
4
001 ubisaax
| 5136pim uibing ot S.nmu B
td uibinid LN voneziensiy Ao ()
oa TN O 0 O USPIRZIWPX GRS AU PIEZIM MON -
uiinid 1%|001 04301

Ajjenuew 133j35 (.

« 2wOBIE * ABojowo@
=) ZDILN/UQ3N/se7edsx10m/0IpUEsSa[e/Siasn/ - IMI00L UOSN - UOREZIENSIA ABOjoIuO T 000

wawabeuew vonewawnby @ -
MIIA 2RI

1zwebip 000D U U U
il

S00YD Bp-1jeN 197
poylaw ssadde ulbn|d 13335

1003 ubisagx Douia

15 Customizing Your Interaction with Kali-ma 325

can be accessed in different ways, depending on the operating system used. For
example, Windows users will find it in the Window top menu, while OS X users will
find it in the NeOn Toolkit top menu.

Due to their intrinsic heterogeneity, the configuration parameters are in turn
grouped into four categories:

1. Appearance is the category of customizable cosmetic aspects of the Kali-ma user
interface.

» Open profiles docked is an optional override for the docking options of each
plugin widget in a user profile. When this option is checked, if the user opens
a Kali-ma user profile, all of its plugin widgets will be minimized to the
Kali-ma dock on startup, even if set otherwise in the profile itself. This option
is preferable for users who wish to start with a dashboard as clear as possible.

o Widget background policy determines what background color should be used
for each plugin widget. Depending on the setting, the color can be either the
one used for a category that classifies the plugin or one set by the user for that
specific plugin.

2. Network deals with how Kali-ma exploits online resources. Currently, all the
settings in this category are related to the built-in XMPP chat service.

* XMPP Host and Port locate the resource where the XMPP messaging service
is provided, e.g., for GTalk use Host talk.google.com and Port 5222.

e XMPP Service name, the identifier of the XMPP service on the host, if
different from the host name, e.g., jabber.org.

e Multiuser chat service, the identifier of the Multiuser Chat (MUC) service on
the host, e.g., conference. jabber. org. Although not all XMPP-based
services come with this functionality, this is required for the Kali-ma chat to
work.

3. Reasoning enables the user to configure the parameters by which Kali-ma should
locate and classify ontology design tools. These settings can have a significant
impact on startup performance, but their default values are relatively safe on that
respect. Note that changes to this configuration will only take effect the next time
the Kali-ma dashboard is launched.

e Plugin address book location is the physical URI of the ontology that
indicates where the OWL descriptions of each plugin should be fetched
from. Its default value is a plugin registry maintained by the Ontology Design
Patterns portal® (Presutti et al. 2008).

e Criterion for tool classification selects which property should be used as a
criterion for classifying ontology design tools. Currently selectable criteria
are Design aspects, Processes and activities, and Design functionalities.

2 The Ontology Design Patterns portal, http://www.ontologydesignpatterns.org

http://www.ontologydesignpatterns.org

326

A. Adamou and V. Presutti

Perform online update denotes when Kali-ma should check for updates to the
online plugin address book. Available options are “Each run,” “Only on next
run,” and “Never.” Note that if the address book has not been fetched yet
(e.g., on the first run of Kali-ma ever), the update will be performed even if
the “Never” option is set.

Cache plugin classification indicates whether Kali-ma should materialize all
inferences about plugins and store them into a local cache ontology. Because
inferencing is a lengthy and highly CPU-intensive task, it is recommended to
set this option unless major changes in the plugin registry occur. Note that this
option only indicates whether the cache should be built, not whether it should
be used: it will always be used if present. To force-rebuild the cache, the user
can clear all the local data by clicking the Clear now button. This button is
grayed out if there are no such local data.

4. Toolkit integration manages the way Kali-ma handles the standard NeOn
Toolkit user interface along with its own. Users will configure these parameters
according to their will to be provided with both interfaces altogether.

Stick dashboard to main window. If this option is set, the Kali-ma UI will
appear on top of the standard NeOn Toolkit window, and its behavior will
mimic the one of that window. Thus, when the NTK window is minimized,
hidden, or maximized, so will be the Kali-ma widgets. Note that the Kali-ma
dashboard is not modal; therefore, the NTK UI components in the back-
ground can still be interacted with.

Main window behavior allows the user to set how the main NTK window
should appear or disappear when the Kali-ma dashboard is activated or
deactivated. The user can opt for the main window to be hidden or minimized
or neither. This option is only available when the “Stick dashboard to main
window” option is unchecked.

Example 15.1. This and all the examples in this chapter are based on a run-
through scenario extracted from the case study described in Chap. 20. The
Semantic Nomenclature of pharmaceutical products was carried out using the
NeOn Methodology and related software support. Therefore, in order to use
Kali-ma to carry out the activities specified in this methodology, an engineer will
select Processes and activities from the Reasoning — Criterion for tool classi-
fication configuration panel.

15.2.1.2 Activating the Dashboard

Unlike most other NeOn Toolkit plugins, which support specific tasks in the
engineering of networked ontologies and are therefore integrated with the platform,
Kali-ma provides a GUI that runs in parallel with the standard one. For this reason,
Kali-ma integration is limited to the preferences panel and the commands for

http://dx.doi.org/10.1007/978-3-642-24794-1_20

15 Customizing Your Interaction with Kali-ma 327

activating its own user interface, called the dashboard. These commands are
located:

e In the Launch Dashboard menu entry in the Kali-ma top menu
¢ In the NeOn Toolkit top bar as the Launch Dashboard button (an open perspec-
tive is required for displaying the button)

When one of these two actions is performed, the reasoning and plugin discovery
tasks for preparing the dashboard are started as a background job. In particular, the
following actions are performed:

1. The local tool descriptions and cache ontology are checked. If neither is present,
or the online update parameter is set, plugin descriptions are fetched from the
locations indicated in the online registry.

2. If variations between the local plugin ontology and the online registry are
detected, the user is notified about these changes and prompted to choose
whether to apply them or not. If changes are applied, any local cache is
invalidated.

3. Plugins are classified by the designated criterion in one of the following ways:

« If a valid local cache is present, it is queried directly.

« If no valid cache is present but Kali-ma is configured to build one, it will first
do so then query the cache it just built. This task is highly CPU intensive but
will not have to be performed again as long as the cache remains valid.

e If no valid cache is present and Kali-ma is not configured to build one, it will
use a reasoner to classify plugins. This task is CPU intensive and will have to
be run on every dashboard startup unless a cache is built.

4. The Kali-ma dashboard is activated and displayed in its default state. The NeOn
Toolkit main window is hidden from view if set to do so.

Example 15.2. The project manager of the Semantic Nomenclature case study
creates a new NeOn Toolkit ontology project called “SemanticNomenclature” and
shares it with engineers using a version control tool such as CVS or Subversion.
When the Dashboard is activated using the Launch Dashboard button, Kali-ma
becomes aware of this project and can store profiles and configurations in its
directory.

Recall that the dashboard is an aggregate of basic user interface components
called widgets, whose look-and-feel exploits the capabilities offered by the GUI
toolkit of the host operating system. Every widget identifies a functionality, or set of
functionalities, in the NeOn Toolkit. Widgets can be grouped in two major
categories: native widgets denote built-in interaction-oriented functionalities
offered by the Kali-ma plugin itself and are always available regardless of what
tools are installed on the platform; plugin widgets are representatives for plugins
that are installed on the system, and they offer quick access to the functionalities
available due to these plugins being installed. Widgets belonging to this latter

328 A. Adamou and V. Presutti

category are available upon user request when the corresponding plugin is installed
on the NeOn Toolkit platform, no matter what the canonical interaction paths to
access them.

15.2.1.3 Organizing the Plugin Space

The heart of the Kali-ma approach for organizing the NeOn Toolkit as a function-
ality provider resides in the classification of its plugins by a unique, design-centered
criterion that is nonetheless customizable. Therefore, its core functionality is to
present end users with an overview of the plugins that are available in their running
instance of the NTK and to help them select the one(s) whose coverage best suits
the tasks that need to be performed.

The C-ODO organizer is the widget used for presenting this aggregate overview
of plugins. This widget is named after C-ODO Light, the design ontology that is the
base for all the classification criteria adopted by default in Kali-ma. Recall that an
overview of the goal, rationale, and architecture of the C-ODO Light ontology
network was given in Chap. 5.

The C-ODO organizer is the tool browser provided by Kali-ma. Users are free to
choose from time to time, whether they wish to explore the plugin space as a tree or
as a graph, by switching between the Tree View and the Wheel View tabs. The Tree
View is organized as a simple Category — Plugin two-level tree; i.e., by
expanding a category it is possible to view all and only the plugins that fall under
that category. This also implies that a plugin that encompasses more than one
category will appear as a child of multiple nodes in the taxonomy. The Wheel
View, so called after the shape adopted by the category set, provides the same
information in a graph. Although it takes up more space than the Tree View, it
displays more useful information altogether. When a category is selected in the
Wheel View, all and only the plugins under that category are displayed as in the
Tree View. However, for each shown plugin, an edge appears for every other
category it falls under.

The categories used for classifying plugins have a variable dependency on
C-ODO Light, yet they are all based on this ontology for modeling the notion of
an ontology design tool. The criterion used for identifying these categories can be
selected from the Reasoning panel of the Kali-ma preferences (entry “Criterion for
tool classification”) prior to launching the plugin. The available criteria are as
follows:

1. Custom design functionalities. These denote specific tasks and operations
involved in the design of networked ontologies. They are arbitrarily defined by
plugin developers, so the set of design functionalities can be highly fine grained,
depending on the choices of developers. “Create project,” “Cast vote,” or
“Delete annotation” are examples of such design functionalities. This criterion
is enabled by selecting “implements (Design Functionality)” from the Reasoning
preferences. End users should expect a sparse classification, with many

http://dx.doi.org/10.1007/978-3-642-24794-1_5

15 Customizing Your Interaction with Kali-ma 329

categories each with a limited number of plugins, yet with high redundancy
across multiple categories, roughly one for each functionality implemented in
that plugin.

2. NeOn Methodology refers to the fixed set of activities that are part of the NeOn
Methodology canon as defined in Chap. 2. For this criterion, the categories are
established a priori, and whether a plugin supports an activity in the methodology,
this reflects the rationale used for selecting such plugins in gOntt (cf. Chap. 14).
This criterion is enabled by selecting “supports activity (Activity)” from the
Reasoning preferences.

3. Ontology design aspects is a limited, fixed set of generic design functionalities
that aggregate the most common aspects of designing networked ontologies in a
collaborative environment. The categories are set and very limited in order to
provide dense classification of design tools. Also, it is the only case where the
categories to which plugins belong are not explicitly defined but are instead
obtained by inferencing over other features defined by the developers, namely
the types of knowledge their plugins consume and produce. This criterion is
enabled by selecting “has aspect (Design Aspect)” from the Reasoning
preferences.

Both the Tree View and the Wheel View in the C-ODO organizer can be filtered
by means of the funnel-shaped icon opposite the tabs. The filtering feature is due to
the fact that the ABoxes describing ontology design tools, as well as their registries,
are not bundled with the actual tools. In fact, they do not reside locally on the host
platform in general but are instead exposed on the web. Moreover, they are not
necessarily limited to NeOn Toolkit plugins but can span across several frameworks
and architectural paradigms, such as plugins for other platforms, stand-alone
applications, web applications, and web services.

Thus, three filters are available and can be cascaded: “Show only NeOn Toolkit
plugins” will exclude all those design tools that, according to their ontological
descriptions, do not qualify as plugins for the NeOn Toolkit. “Show only installed
tools” will apply the previous filter and skim all the NeOn Toolkit plugins that are
known to exist but are not detected as installed on the host platform. Finally, “Hide
empty categories” will remove all the nodes representing categories to which no
design tools are known to belong, regardless of the status of the other filters.

Example 15.3. The Semantic Nomenclature project manager has to select plugins
for the implementation phase of the use case. The C-ODO organizer Tree View
shows all the activities in the NeOn Methodology that come with software support.
The ODEMapster plugin is selected (by double-clicking) from the “Non-Ontological
Resource Reuse” activity, the OWLDoc plugin from the “Ontology Documenta-
tion” activity, the Watson plugin from the “Ontology Reuse” activity, and the
RaDON plugin from the “Ontology Validation™ activity. To create a schedule for
all the activities to be performed in the phase, the gOntt plugin widget is also
selected from the “Scheduling” activity. When each plugin is selected, its
corresponding widget is displayed.

http://dx.doi.org/10.1007/978-3-642-24794-1_2
http://dx.doi.org/10.1007/978-3-642-24794-1_14

330 A. Adamou and V. Presutti

15.2.1.4 Interaction with Plugins

The standard mechanism by which a plugin is integrated with the Eclipse Rich
Client Platform is by implementing extension points. An extension point allows a
plugin to provide a contribution to the hosting platform, both on the functional level
and on the user interface level®. The latter in particular includes a set of standard
user interface objects that a plugin can implement to enrich the interactive experi-
ence with the platform. Some of them, such as wizards, views, or perspectives, can
be stand-alone elements that can be displayed without any need for prior action
upon other user interface or content items. For example, a wizard for exporting a
given resource in a given format might depend on the user having previously
selected the resource to export, but it might also allow the user to select that
resource from a browser within the wizard instead. Conversely, other extension
points contribute to the user interface by providing items that strictly depend on the
interaction context. For example, context menu items will require the user to
request a context menu on an item (typically by right-clicking on it). Therefore,
running the action associated with a context menu item with no prior selection
would make little sense and would in fact be unlikely to even work.

The current version of the Kali-ma plugin allows users to run NeOn Toolkit
plugins through the following stand-alone access methods:

1. Views are single panels within the Eclipse workbench that serve as containers for
arbitrary user interface controls. Multiple views can be aggregated in container
objects, called Folders, which are essentially tabbed panes where each tab allows
displaying one view at a time within the same folder. Views are usually
associated to single-use cases, such as displaying the results of a SPARQL
query, and can be manually moved across folders.

2. Perspectives are named composite panels that combine a group of folders and
views in a predefined fashion. View combinations are usually associated to
entire functionalities, which can be performed by interacting with the user
interface elements in each view. Single views can only be shown within a
perspective, and the NeOn Toolkit provides a default perspective for authoring
OWL ontologies.

3. New Wizards are paged dialogs for guided creation operations. The list of
available NewWizards in a system can be accessed from the “New” item in
the “File” menu. Examples of this access method allow users to create ontology
development projects, ontologies, and gOntt schedules. While we cannot rule
out cases where new resources have to be created from existing ones (e.g.,
ontologies need to be created within an existing project), many New Wizards
are associated to stand-alone use cases for creating new resources from scratch.

3 http://wiki.eclipse.org/FAQ_What_are_extensions_and_extension_points%3F

http://wiki.eclipse.org/FAQ_What_are_extensions_and_extension_points%3F

15 Customizing Your Interaction with Kali-ma 331

8.N.0) gOntt

A
Select plugin access met

Let Kali-Ma choose

*) Select manually

OWL Perspective with additional custom views
v Perspective org.neontoolkit.upm.gontt.perspective.Perspective
New Wizard org.neontoolkit.upm.gontt.wizard.GonttWizard

5

Fig. 15.3 Access method selection for the gOntt plugin

Figure 15.3 shows an example selection of access methods for the gOntt plugin
(whose widget sports a white-to-rust gradient background, as this is the graphical
feature assigned to the Project Management design aspect). The gOntt plugin
contributes to the NeOn Toolkit by means of both a Perspective and a New Wizard
for creating new schedules. A user can select either access method for launching the
2O0ntt plugin once the “Open” button is clicked.

15.2.1.5 Profile Management

A selection of plugins to be displayed as widgets in the Kali-ma dashboard could be
of much more use than simply assisting a single user during a single engineering
session. If an open dashboard were just a volatile object that had to be manually
rebuilt from scratch every time the NeOn Toolkit is restarted, not only would it be
awkward to share in a collaborative context (which is assumed to be recurrent in
NeOn-compliant ontology engineering), it would also discourage users and project
managers from adopting Kali-ma to support medium- and long-term phases in an
ontology engineering project.

In order to counter these preposterous potential shortcomings, Kali-ma offers a
profile management functionality, which is concretely available as a native widget
by its own right. The Profile manager widget, depicted in Fig. 15.4, allows users to
store, open, and manage dashboard profiles.

A dashboard profile is essentially a named sorted set of plugins that can be
serialized as an XML element and lives in the scope of both NeOn Toolkit
workspaces and single ontology projects. Having performed a selection of plugins,
all of which have a corresponding widget open in the Kali-ma dashboard, the user is
able to retain this selection of plugins for sharing or future reuse. To do so, it is
sufficient to type a name for the new profile in the top area of the widget and click
the “Save widgets to Profile” button in the bottom area. This done, the current set of
plugins is stored locally in the kalima profiles.xml file in the workspace
metadata directory for the Kali-ma plugin. Profiles can be listed, renamed, or
deleted and one at a time can be set as active and displayed on screen by opening

332 A. Adamou and V. Presutti

Fig. 15.4 Profile manager
widget. Three profiles have =
been stored and are displayed Reuse phase
in the profile table. Two of

them (named Implementation

Profile Manager

All Profiles v

phase and Reuse phase) are

bound to the Semantic p i
Profile name Ontology project(s)

Nomenclature ontology =

. Fishery

project " :
Implementation phase SemanticNomenclature
Reuse phase SemanticNomenclature

the corresponding set of widgets. These operations are made available through
context menu actions on the table occupying the middle portion of the widget.

Although dashboard profiles exist by their own right in a given NeOn Toolkit
workspace, it is possible to bind them to one or more ontology development
projects. This operation is also available as a context menu action, and its effects
are visible on the second column of the table in the center of the widget, which
displays the names of the ontology projects to which a profile is bound to. Binding a
profile to one or more ontology projects results in saving a copy of that profile in
another kalima profiles.xml file, this time placed in the project directory.
This action implies the ability to carry profiles along with a single project when it is
exported to another system, as it is a common practice to share entire projects in
Eclipse environments.

Example 15.4. The Semantic Nomenclature project manager wishes to share the
tools for the Implementation phase selected earlier with all the ontology engineers
who are set to perform each activity. A profile named “Implementation phase” is
created and bound to the “SemanticNomenclature” ontology development project
in the NeOn Toolkit. Because all participants are synchronized on this project, they
will all get a copy of the new profile the next time they update their working copy of
the project.

15.2.1.6 Dashboard Control and Docking

To counter the risks of ending up with a screen overcrowded by widgets, Kali-ma
comes with an additional interface element called the Dock. As its name suggests,
the Dock is conceptually inspired by a consolidated praxis in modern operating
systems, which provide a user interface feature for quickly switching between
applications. In our interpretation, the Kali-ma Dock provides a compact user

15 Customizing Your Interaction with Kali-ma 333

interface for holding references to elements of the dashboard that are not of
immediate interest, yet it still makes sense to hold in the current view of the system.
For example, the user may want to remember having selected a certain plugin but
does not need to access it in that particular instant. Every widget that supports
docking comes with a toolbar button that, when clicked, instructs the dashboard
controller to hide that widget and add a corresponding entry in the Kali-ma Dock.
A dock entry is a very simple interface element that serves a placeholder for a
docked widget. Each entry consists of a label with the plugin identifier and an arrow
button for restoring the docked widget to its original position.

The Dock widget itself responds to the same screen overcrowding issue that
holds for plugin widgets and other dashboard widgets; therefore, it is not visible on
screen at all times. The Dock hides itself every time the last docked widget is
restored (i.e., there are no more dock entries) and becomes visible again once a
widget is docked (i.e., a dock entry is added). This is due to the fact that, at this
stage, the Dock serves the sole purpose of holding references to widgets that are
hidden from view. This behavior may vary as further functionalities are added to the
Kali-ma Dock in the future.

15.2.1.7 Project-Based Real-Time Chat

Several phases of the articulated ontology life cycle management process are
conceived with user collaboration in mind, and as such should they be carried out
(Holsapple and Joshi 2002). Activities such as the collective argumentation of
ontologies, or portions thereof, can be performed asynchronously, i.e., no different
than by posting comments on message boards and the like. There may be cases,
however, where multiple users collaborating on the same ontology project may
require to coordinate their efforts in real-time, in order not to bottleneck one
another. One such circumstance may involve two ontology engineers developing
separate modules of an ontology network, whose entities need to be related via
equivalence statements nonetheless. In such a situation, the user who needs to
perform the alignment will need to know the name of the alignment target as
soon as possible, and this can be significantly sped up by synchronous
communication.

Kali-ma includes a lightweight real-time chat system to support synchronous
communication in an environment where users can instantly share references to
resources in a common ontology project. Through the Chat widget, a single user can
join one or more dedicated virtual chat rooms, each named after an ontology project
she has in common with other users. Additionally, for each project, it is possible to
send the identifiers of any OWL entity loaded within that project with just a few
keystrokes.

Example 15.5. The project manager and engineers that share the “SemanticNo-
menclature” project and have the same XMPP Chat configuration in the Kali-ma

334 A. Adamou and V. Presutti

preferences will all be presented with an option to join the “SemanticNo-
menclature” chat room and discuss their engineering activities there.

As with other optional widgets, the Kali-ma chat interface can be activated by
means of the Dock widget by simply clicking the balloon-shaped icon on its toolbar.
In the default panel of this widget, it is sufficient for a user to type in her credentials
(set by the chat server administrator), freely choose an alternate label, or alias, and
log into the chat server. With this done, a combo box will display the list of
available chat rooms, each named after an ontology project in her NeOn Toolkit
workspace. Multiple chat rooms, one per project, can be joined at once, and a chat
room will be seamlessly created on the fly if it has not yet been configured by
another user. A user may send any free text message by simply typing it in a chat
room window. However, if a reference to an OWL class, property, or individual
needs to be broadcast to other users sharing the same project, it is sufficient to start
typing in part of its name (not necessarily a prefix) and invoke the autocompletion
key combination (usually Ctr1 + Space) to select from a list of matching entities
that exist within that project. Multiple OWL entity references can be broadcast in a
single message by invoking autocompletion.

Any party is free to host a chat server compatible with Kali-ma. The plugin uses
the open standard instant messaging protocol XMPP (Extensible Messaging and
Presence Protocol)?, which sports numerous compatible instant messaging clients
as well as communication services (Google Talk” and Jabber® being two of them).
Anyone can set up an off-the-shelf XMPP server on a host and create accounts for
users, who can quickly configure Kali-ma on their clients (see Sect. 15.2.1.1) to
instantly use it for relaying their messages.

15.2.1.8 Obtaining Help

Kali-ma provides its own real-time help system, aimed at displaying appropriate
justification of each node appearing in the C-ODO Organizer taxonomy, and in
doing so, to take advantage of any metadata present in the ontologies describing
tools and classification criteria.

Real-time guidance is provided through the Helper widget. The Helper is
essentially a lightweight web browser capable of rendering HTML. However, it
also reacts to local events within the dashboard, such as a particular widget being
focused or a node being selected in the C-ODO organizer. While help messages
related to native functionalities are hardcoded, those deriving from metadata such
as OWL annotations derive from elements of the ontological component of Kali-ma,
which also include remote tool descriptions. For instance, when a node is selected

4 XMPP, http://xmpp.org
3 Google Talk, http://www.google.com/talk
8 Jabber, originator of the initial XMPP design and implementation, http://www.jabber.org

http://xmpp.org
http://www.google.com/talk
http://www.jabber.org

15 Customizing Your Interaction with Kali-ma 335

that represents a design aspect, NeOn Methodology activity, functionality, or
design tool, the Helper widget displays the rdfs:comment annotation for the
corresponding OWL individual.

15.2.2 Functionalities for Plugin Developers

One goal of Kali-ma is to reorganize the plugin space under a single, shared
criterion that can apply to the majority of plugins. To that end, it provides a set of
functionalities to aid developers in describing the features of their plugins so that
Kali-ma can elaborate on them and construct a single, harmonic view. These
functionalities belong to the following categories:

e Plugin description management guides users throughout the creation of the
ontology that describes how a plugin contributes to the life cycle management
of ontologies.

e The interoperability API allows developers to launch and customize a Dash-
board programmatically from the code of any plugin.

15.2.2.1 Plugin Description Management

As will be presented in Sect. 15.2.3.2, the Kali-ma infrastructure includes a
semantic layer involving components that are invariant in the domain of collabora-
tive ontology engineering, as is the C-ODO Light network, and others that can be
customized and adapted to new and refined taxonomies and criteria, such as the
rules for categorizing the tool space. Standing amid these two levels are the real-
world entities, i.e., the ABoxes where actual ontology design tools are instantiated
and facts are provided for them. Kali-ma has no built-in or prior knowledge of
which design tools exist, whether C-ODO Light—based ontologies describing them
are provided and what physical URIs should be dereferenced for locating these
descriptions. It does, however, provide a mechanism for locating such ontologies
from a single, configurable source. Coupled with this mechanism, we are offering
an online service for semiautomatic construction of C-ODO Light-based plugin
descriptions. The next section details the key functional characteristics of both
features mentioned above.

15.2.2.2 Plugin Description Generator

Knowledge of the ontology tool population is not delegated to a single online
repository. It is the plugin provider’s call to author pieces of structured knowledge
concerning their own products; thus, it is reasonable to expect them to remain
depositaries of this knowledge, while at the same time sharing it in an open

336 A. Adamou and V. Presutti

environment such as Linked Data. Concurrently, it was felt convenient to have
a system for aggregating references to these ontologies at disposal, rather than
crawling the whole Semantic Web.

In an effort to meet both demands, an interactive tool for constructing these
OWL tool manifests was devised as a service to be available anytime, anywhere.
A working prototype of this service was released as C-ODO-o-matic (simply
dubbed Codomatic throughout the remainder of the chapter)’, its name paying
homage to an inspiring online form for generating FOAF profiles. Codomatic is
a simple, single-page Ajax application for constructing C-ODO Light—based OWL
manifests of ontology design tools bearing the minimum set of axioms for allowing
a DL reasoner to categorize the tool with respect to any of the three supported
classification criteria explained in Sect. 15.2.1.3. The Codomatic service features
willfully essential styling so as to keep it open to embedding within Wiki pages or
web frames.

A sample of running Codomatic code generator for the Cicero argumentation
plugin (Dellschaft et al. 2008), depicted in Fig. 15.5, shows what minimum user
input is required and leveraged for the generation of the corresponding RDF code.
The Ontology base URI field provides the default namespace to be used for any new
entities asserted in the ontology to be generated and is advised to match the physical
URI to be dereferenced for locating the ontology itself. The Plugin name field,
along with its Camel syntax version, denote respectively the rdfs: label anno-
tation and the actual URI local name for the OWL individual that identifies the tool
itself, while the Plugin description field denote the English rdfs:comment

CODO-0-MATIC: Ontology Tool description generator
10 | Feerve. OFRTHORYORI P DAINErE 06 LOOALICOB8) (Leral 0000 Sw!

Ontology Bess . "
URI™: e

Phagin name™;) Cioers eior plagin Camel gyntan

0 ¥ This ool is a NeOn Toolkdt plugin 1D org.nesntosliot cicers.owl

Plogin
Gascription
Input type(s): U Posiion Selecied 1 of 20

Anetation Cluar

Cata sinctorn

KOSEment

Cerars {oomma-sparated)
Outpat typets): U Agument Selecied: 3 of 20

Voumentation threed Clear

™ .

Poason 3 e satologrdesigepatierns. org/opont

Cenars {comma-saparaied) b Npmn =

<owlsObjectProperty sdfsaboute"boodtools; dependsta” i

Supported U Praterental votng Selectedt 8028

design Propose soksion Clear == Bt 008 LIRPALLErES. OEQ/ TPONL
Punctionalites: Provide segumant t o L
Start preferenial vating
Others (comea-separated)

Fig. 15.5 The Codomatic tool description generator, after constructing the RDF code for an
argumentation management plugin called Cicero

7 At the time of writing, the service is hosted at http://wit.istc.cnr.it:8080/codomatic

http://wit.istc.cnr.it:8080/codomatic

15 Customizing Your Interaction with Kali-ma 337

annotation for that individual. It is possible to state the tool in question to be a NeOn
Toolkit plugin, in which case its unique identifier must be supplied.

The list boxes that follow this field in the figure allow providers to include
functional specifications of their tools: through these interface objects, it is possible
to select an arbitrary number of knowledge types that the tool is known to consume
as input or produce as output, as well as the design functionalities and NeOn
processes and activities that it supports. For all fields but the NeOn processes and
activities one, an additional text box is available, where the provider can arbitrarily
instantiate new knowledge types and design functionalities, if the existing ones are
felt to fall short of accuracy or completeness in describing the tool in question.
However, while new design functionalities can immediately be exploited when
classifying a set of tools with respect to them, new knowledge types cannot
contribute to the rules for inferring supported design aspects, unless the providers
include additional defined classes that are restricted on the hasInputType or
hasOutputType properties for their new knowledge types.

The aforementioned statement supports the claim that by no means is Codomatic
intended to serve as a replacement for a full-fledged OWL editor. The service is
intended for the creation of minimal OWL manifests based on C-ODO Light,
and yet it leaves room for extension and refinement. Providers can use the NeOn
Toolkit OWL editor to add annotations for newly declared knowledge types and
functionalities and relate them to existing ones where need be, as well as define
additional rules for inferring supported design aspects from knowledge type
statements.

The “Generate code” button triggers an asynchronous remote procedure call to a
servlet that encapsulates submitted data and uses the same OWL API as Kali-ma’s
to output the corresponding ontology, whose source code is posted to the text area
below the button. This code includes all the necessary ontology imports and is
intended to be copied verbatim to an RDF document, which should then be
uploaded to a location of the provider’s choice. Codomatic does not pose
restrictions to tool providers as to what physical locations should be used for their
newly generated ontologies, nor does it store submitted base URIs or any other
information used for generating the OWL code. References to physical locations
can be submitted through the corresponding plugin pages on the NeOn Toolkit
Wiki, as documented in its plugin development and submission guide®. Being a
Semantic Media Wiki, it is then possible to export these references in RDF format
for Kali-ma to consume.

& http://neon-toolkit.org/wiki/Plugin_HowTo

http://neon-toolkit.org/wiki/Plugin_HowTo

338 A. Adamou and V. Presutti

15.2.2.3 Interoperability API

In addition to supporting collaboration and interaction between end users, Kali-ma
as a plugin comes with additional developer features that allow other ontology
plugins to interoperate either with each other or with Kali-ma. There are two
distinct methods of allowing programmatic interoperability, which is achieved
through simple direct intervention on the plugin code. These two methods cover
separate interoperability aspects and can be implemented independently. They are:

1. Construction of Pipeline assemblies within widgets, for executing plugin
functionalities without switching to the plugin user interface for that plugin
2. External Dashboard control, for manipulating the contents of the Dashboard

Interoperability between plugins is achieved by construction of pipeline
assemblies, which are dynamic software structures where the output of one compo-
nent can be concatenated to one or more other components in the assembly in order
to execute complex computational tasks. For instance, a design pattern selection
service exposed by the eXtreme Design plugin (described in Chap. 3) could reuse
the output axioms of a search issued using the Watson plugin (described in Chap. 7) in
order to perform query expansion for broader pattern selection. Because the process
has no strict coupling at build time, such a scenario can be realized without either
plugin knowing a priori which other plugin it should expect its input from, or which
one should accept its output.

The other supported interoperability aspect is Dashboard control, i.e., the
programmatic manipulation of the Kali-ma user interface. This allows other
developers to construct custom dashboard configurations specific for the engineer-
ing activity supported by another tool. Among NeOn Toolkit plugins, the gOntt tool
for project scheduling supports Kali-ma dashboard interoperability, as it is possible
from within a gOntt schedule to launch a Kali-ma dashboard containing widgets for
all registered NeOn Toolkit plugins that support a given process, activity, or phase
in that schedule. This support is among the features showcased by the gOntt plugin
description in Chap. 14.

To reach either level of interoperability, a plugin must implement a simple Java
API exposed by Kali-ma itself. A developer who wishes a plugin functionality to be
directly called via its dashboard widget will simply have to implement an Eclipse
extension point, which is mapped to a simple Java interface, both provided by Kali-
ma. The developer will simply have to wrap a call to a plugin functionality into a Java
class that implements this interface and annotate the single public method with the
types of the parameters expected to be consumed and produced by that functionality.

The Dashboard control API is also simple and straightforward. It is enough for a
developer to invoke any static method of the DashboardLauncher class
exposed by the Kali-ma API, and a dashboard will be launched, containing widgets
for all the available plugins whose identifiers were passed as parameters. This
implementation may occur in a separate plugin, without any intervention on the
original plugin code.

http://dx.doi.org/10.1007/978-3-642-24794-1_3
http://dx.doi.org/10.1007/978-3-642-24794-1_7
http://dx.doi.org/10.1007/978-3-642-24794-1_14

15 Customizing Your Interaction with Kali-ma 339
15.2.3 Architectural Design

The software architecture of the Kali-ma plugin, used for performing semantic
reorganization of the tool space, incorporates both procedural and logical
components. That is, although the plugin is essentially a Java program (or, to be
more precise, a set of OSGi bundles) like most other plugins, some functionalities
are not entirely encoded as procedures in the plugin code but instead rely on formal
semantics that describe their behavior. Although the entire knowledge needed for
managing the tool space is maintained in its original OWL formalism, this is treated
in a similar fashion as runtime software libraries. Ontologies that describe the
domain model, plugin space, and classification criteria are dynamically aggregated
and linked at runtime.

The sections that follow provide an insight on the software architecture of Kali-
ma. After a quick overview on the next section, Sect. 15.2.3.2 describes the actual
ontology network used by the tool. Section 15.2.3.3 describes the software modules
that handle and reason upon the ontology network in order to classify NeOn Toolkit
plugins. Finally, Sect. 15.2.3.4 provides a quick insight as to how the result is
presented to the user.

15.2.3.1 Basic Software Architecture

The heterogeneous representation of the Kali-ma components, as well as the
openness to possibly reusing the procedural components in engineering fields
other than ontologies, imply a layered infrastructure of the tool. This infrastructure
can be seen as split into three major components as depicted in Fig. 15.6: the
ontological component is responsible for providing Kali-ma with the necessary
knowledge about existing NTK plugins and the rules by which to classify them; the
reasoning component manages the extraction of such knowledge from the ontolog-
ical component, as well as the aggregation and classification of plugins; and lastly,
the presentation component generates the widgets and handles communication
between Kali-ma, NTK plugins, and the NTK core.

15.2.3.2 Ontological Component

The ontological component, encoded in its entirety in OWL, is at the lowest level of
the stack. It is itself a layered subsystem, as the dependencies between its modules
are acyclic. The component as a whole can be seen as a large networked ontology,
although only the essential logical infrastructure is hardwired, whereas expert
ontology engineers can define categorization rules without an exhaustive knowl-
edge of the tool space, while leaving plugin contributors the liberty to author
descriptions for their tools and host them wherever they see fit.

340 A. Adamou and V. Presutti

_\'n

Presentation component \

(Plugin widget factory)

Cross-plugin
integration (Utility widget factory) ‘ View

(Dashboard Controller J

T

\\
|_, Reasoning component l

[Kali-ma model registry)
| |

Kali-ma object Description
model visitor

l | Plugin_12CODO

{4 kalimashu p.owD r e =)
t

Plugin

description

d codolight.owl) repository

k Ontological component

-,

P "
= Plugin_n 2CODO

Fig. 15.6 The Kali-ma infrastructure and its main components

The layers of the Kali-ma ontological component include:

A foundational/domain layer, which is essentially the codolight model for
ontology design (described in Chap. 5). Its modularity and distinctive support
for collaborative life cycle management make it easily extensible with
specialized classes, additional primitives and rules, without any need for tainting
the whole model. What’s more, it is aligned to several widely used ontologies
describing the Semantic Web for computational and social interoperability.
Sets of categorization rules, where the classification criteria used for providing a
taxonomy of tools in the Organizer widget are formalized. Recall that the default
criteria are implementation of design functionalities, support for NeOn Method-
ology processes and activities, and coverage of collaborative design aspects.
While applications of the first two criteria can be usually extracted without
resorting to reasoning tasks, inference will be required in order to determine
which design aspects are covered by a plugin.

The tool space population model which includes C-ODO Light-based OWL
descriptions of NeOn Toolkit plugins, each describing what types of task a
certain plugin can help accomplish, what types of knowledge representation it

http://dx.doi.org/10.1007/978-3-642-24794-1_5

15 Customizing Your Interaction with Kali-ma 341

can handle, and so on. These are not hardwired in the built-in portion of the
ontological component and can be located anywhere on the web. Recall from
Sect. 15.2.2.2 that an online service is available for the automatic generation of
these tool descriptions.

15.2.3.3 Reasoning Component

In avoidance of the unwise practice of allowing the presentation component to
handle the knowledge base straight away, Kali-ma implements a dedicated subsys-
tem for extracting relevant knowledge. The ontological component provides such
knowledge that the reasoning component wraps into a Java object model, which can
then be accessed from the Dashboard controller in the presentation subsystem. This
lower-level component in the Kali-ma software architecture, and the intermediate
layer in the whole infrastructure, provides a software counterpart to the ontological
component.
The reasoning component comprises the following modules:

» The Kali-ma object model represents parts of the C-ODO Light network, along
with attached ontologies with additional categorization rules, in the form of Java
types. This model includes interfaces for design tool, knowledge type, NeOn
activity and design aspect OWL classes, and for generic annotated entities,
whose RDFS label and comment annotations are deemed significant in the
context of Kali-ma (i.e., they are presented to end users).

e The description visitor is responsible for instantiating the object model men-
tioned above from the ABoxes supplied by C-ODO Light-based plugin
descriptions and classification rule ontologies. This module includes
monitorable operations for initializing OWL managers and DL reasoners (both
supplied by external packages), loading them with fixed and user-defined
ontologies and querying them. This system can be configured to manage a
cache; thus, it does not necessarily query the DL reasoner on each Kali-ma run.

e A model registry is where the instantiated object model is stored and kept track
of. It stores wrapped OWL individuals and relationships between them and
allows changes to the model to be monitored through its own event system.
The model registry is ephemeral and does not need to be serialized, as it can be
completely rebuilt at runtime from the ontological component in reasonable
time.

Through the components of this subsystem, Kali-ma becomes aware of what
NeOn Toolkit plugins are known and/or installed in the running system, what are
the relevant relations in ontology design, and which of them are supported by
collected plugins. The Kali-ma application logic has no prior knowledge of such
relationships.

342 A. Adamou and V. Presutti

15.2.3.4 Presentation Component

The top-level component of the Kali-ma infrastructure, called presentation compo-
nent, implements both the user interface and its controller in the Model-View-
Controller (MVC) paradigm (Reenskaug 1979). This element is responsible for
leveraging the underlying C-ODO Light—based object model and presenting the
outcome of reasoning tasks performed thereupon. Widget factories, dashboard
management, and event handling support all belong to this component. Once
generated, widgets are deployed on the target view (typically, the operating system
desktop) and integrated among other operating system windows.

References

Damian D, Chisan J (2006) An empirical study of the complex relationships between requirements
engineering processes and other processes that lead to payoffs in productivity, quality, and risk
management. IEEE Trans Softw Eng 32(7):433-453

Dellschaft K, Engelbrecht H, Barreto JM, Rutenbeck S, Staab S (2008) Cicero: tracking design
rationale in collaborative ontology engineering. In: Bechhofer S, Hauswirth M, Hoffmann J,
Koubarakis M (eds) ESWC, Lecture notes in computer science, vol 5021. Springer, Berlin/
Heidelberg/New York, pp 782-786

Holsapple CW, Joshi KD (2002) A collaborative approach to ontology design. Commun ACM
45:42-47

Presutti V, Gangemi A, David S, de Cea GA, Suarez-Figueroa MC, Montiel-Ponsoda E, Poveda M
(2008) A library of ontology design patterns: reusable solutions for collaborative design of
networked ontologies. Deliverable D2.5.1, NeOn project

Reenskaug T (1979) Models — views — controllers. Technical report, Technical note, Xerox Parc

Chapter 16

Visualizing and Navigating Ontologies
with KC-Viz

Enrico Motta, Silvio Peroni, José Manuel Gomez-Pérez,
Mathieu d’Aquin, and Ning Li

Abstract There is empirical evidence that current user interfaces for ontology
engineering are still inadequate in their ability to reduce task complexity for
users, especially non-expert ones. Here we present a novel tool for visualizing
and navigating ontologies, KC-Viz, which exploits an innovative ontology summa-
rization method to support a “middle-out ontology browsing” approach, where it
becomes possible to navigate ontologies starting from the most information-rich
nodes (i.e., key concepts). This approach is similar to map-based visualization and
navigation in geographical information systems, where, e.g., major cities are
displayed more prominently than others, depending on the current level of granu-
larity. Building on its powerful and empirically validated ontology summarization
algorithm, KC-Viz provides a rich set of navigation and visualization mechanisms,
including flexible zooming into and hiding of specific parts of an ontology, visuali-
zation of the most salient nodes, history browsing, saving and loading of
customized ontology views, as well as essential interface support, such as graphical
zooming, font manipulation, tree layout customization, and other functionalities.

E. Motta (04) « M. d’Aquin * N. Li

Knowledge Media Institute (KMi), The Open University, Walton Hall, Milton Keynes,
MK7 6AA, UK

e-mail: e.motta@open.ac.uk; m.daquin@open.ac.uk; N.Li@open.ac.uk

S. Peroni

Department of Computer Science, University of Bologna, Bologna, Italy

e-mail: speroni@cs.unibo.it

J.M. Goémez-Pérez

Intelligent Software Components (iISOCO), S.A. Avda. del Partenén, 16-18, 28042 Madrid,
Spain

e-mail: jmgomez@isoco.com

M.C. Suarez-Figueroa et al. (eds.), Ontology Engineering in a Networked World, 343
DOI 10.1007/978-3-642-24794-1_16, © Springer-Verlag Berlin Heidelberg 2012

mailto:e.motta@open.ac.uk
mailto:m.daquin@open.ac.uk
mailto:N.Li@open.ac.uk
mailto:speroni@cs.unibo.it
mailto:jmgomez@isoco.com

344 E. Motta et al.
16.1 Introduction

A key component of the Semantic Web is provided by the large number of
ontologies available online. Given such large-scale availability of ontologies,
ontology reuse is becoming more common, and tools, such as the Watson plugin
for the NeOn Toolkit (d’Aquin et al. 2008), are now available, which facilitate the
task of locating and directly reusing ontologies or ontology fragments. In this reuse-
centric context, it is highly desirable to have mechanisms that can efficiently help
users in making sense of the content of an ontology, e.g., in the context of having to
make a decision about whether an ontology retrieved online is suitable for a
particular set of requirements. However, the empirical studies carried out in the
NeOn project (Dzbor et al. 2006) have shown that the visualization and navigation
facilities available in today’s ontology engineering environments do not necessarily
provide effective support for making sense of and effectively exploring ontologies,
and often end up hindering rather than helping users. These studies show that this is
a problem, especially for non-expert users.

To address this issue, we have developed a novel tool for visualizing and
navigating ontologies, called KC-Viz, which has been realized as a plugin for the
NeOn Toolkit. KC-Viz exploits automatically created ontology summaries, based
on the idea of key concepts (Peroni et al. 2008), to facilitate the task of making sense
of large ontologies. In addition, it also provides a rich set of navigation and
visualization mechanisms, including flexible zooming into and hiding of specific
parts of an ontology, visualization of the most salient nodes, history browsing,
saving and loading of customized ontology views, as well as essential interface
customization support, such as graphical zooming, font manipulation, tree layout
customization, and other functionalities.

In this chapter, we present a description of the main functionalities provided by
KC-Viz, and we show how it attempts to address some of the limitations of current
tools for ontology engineering.

16.2 Limitations of Top-Down Approaches to Navigating
Ontologies

16.2.1 Ontology Sensemaking

Throughout this chapter, we will use as an illustrative example a version (v2.4) of
the SmartProducts ontology', which is being developed in the course of the EU-
funded SmartProducts project’. The aim of this ontology is to support the

"This network of ontologies can be downloaded from http://projects.kmi.open.ac.uk/
smartproducts/ontologies/SP_v2_4.zip

2 http://www.smartproducts-project.eu

http://projects.kmi.open.ac.uk/smartproducts/ontologies/SP_v2_4.zip
http://projects.kmi.open.ac.uk/smartproducts/ontologies/SP_v2_4.zip
http://www.smartproducts-project.eu

16 Visualizing and Navigating Ontologies with KC-Viz 345

http:/iwww.w3.0rg/2006/time

http://kmi.open.ac.uk/projects/smartproducts/ontologies/time.owl

http://kmi.open.ac.uk/projects/smartproducts/ontologies/generic.owl

http://kmi.open.ac.uk/projects/smartproducts/ontologies/user.owl

http://kmi.open.ac.uk/projects/smartproducts/ontologies/process.owl

http://kmi.open.ac.uk/projects/smartproducts/ontologies/food.owl

http://kmi.open.ac.uk/projects/smartproducts/ontologies/philips-test2.owl

Fig. 16.1 Import relations in the SmartProducts network of ontologies

specification of smart devices, able to engage proactively in cooperative problem
solving with other devices.

As shown in Fig. 16.1, the SmartProducts ontology is not a monolithic one but
comprises a number of sub-ontologies, which define different notions, such as time,
users, processes, products, etc. The project addresses three different test cases in the
aerospace, car, and consumer appliances industries, and in particular, Fig. 16.1
shows the network of ontologies used to characterize the latter scenario, which we
refer to as “Smart Kitchen.” The structure of the network is highly reusable, with
the top six nodes (i.e., ontologies) being shared across the three test cases, while the
bottom two ontologies are specific to the Smart Kitchen application.

Like most other ontology engineering environments available today, the NeOn
Toolkit provides an “Ontology Navigator” window, which supports ontology navi-
gation using the classic top-down file system model, where clicking on a folder
reveals its contents. In the case of an ontology engineering tool, the folder metaphor
is used “to open up” a class, to reveal its sub-classes.

346 E. Motta et al.

As discussed in (Katifori et al. 2007), this style of interface has several
advantages, including its familiarity to users and the ability to support a systematic
exploration of an ontology. For these reasons, it is more or less ubiquitous in
ontology engineering toolkits and also tends to perform well in evaluations
(Katifori et al. 2007). Nevertheless, it also exhibits some important limitations,
including its inability to show role relations and “to support tasks related to the
general ontology structure” (Katifori et al. 2007).

In this chapter, we will indeed focus on this category of tasks, which we will
refer to informally as ontology sensemaking tasks. More specifically, we will use
the term “sensemaking” to refer to the construction of a mental model of an
ontology, which encompasses the ontology as a whole and is sufficient for a user
to make a decision (for example) on whether an ontology is suitable for a particular
application or whether it covers certain areas of interest to the required extent, with
respect to user-specific criteria. In sum, the emphasis here will be less on supporting
tasks which require understanding a particular detail of the ontology than on
supporting tasks which require developing a “global” model of an ontology, at a
certain level of abstraction. In addition, although KC-Viz also support the visuali-
zation of non-taxonomic (i.e., domain) relations, here we will focus the discussion
almost exclusively on the navigation and visualization of taxonomies, on the basis
that developing an understanding of the overall taxonomic structure of an ontology
is an essential part of the sensemaking process.

16.2.2 Example: Using the Ontology Navigator for Sensemaking

Figure 16.2 shows a snapshot of the Ontology Navigator in the NeOn Toolkit, after
we have clicked on the most specific ontology shown in Fig. 16.1 (see Sect. 16.2.1),
which is called Philips-Test2. As shown in the figure, clicking on the folder Classes
reveals the four topmost classes in the SmartProducts network of ontologies’,
making explicit the top-level structure of the ontology. However, while this initial
visualization is useful to allow the user to understand the organization of the
ontology at the highest level of abstraction, it is not yet comprehensive enough
to allow the user to develop an overall model of the ontology in sufficient detail.
In particular, without further exploration, it is not yet possible to achieve the
following objectives, which are essential to the sensemaking process:

3 This is because the relevant preference in the NeOn Toolkit is set to display all inherited classes,
thus allowing us to browse the complete structure of the SmartProducts network of ontologies.
Alternatively, we can choose to see only definitions local to the Philips-Test2 ontology, by
deselecting the option “Show Imported Axioms.”

16 Visualizing and Navigating Ontologies with KC-Viz 347

¥ & SP_v2_4 (OWL2)
> 13http:Hkmi.open.ac.uk,‘projects,!smartproductsfontologies!eads.owl
I K:Ihttp:Hkmi.apen.ac.ukfprojects.!smartproducts}ontologiesfﬁat.owl
[idhttp:Hkmi.upen.ac.ukfprojects!smartproducts}ontologiesﬁaod.owl
3 Qhttp:Hkmi.open.ac.uk!projects!smmproducts}ontologies!generic.owl
v -ﬂ http://kmi.open.ac.uk/projects/smartproducts/ontologies/philips-test2.owl
¥ _|Classes
> @ generic:Abstract
> (& generic:Agent
> [generic:SpatialThing
» & sptime:TemporalThing
» _ | Object Properties
» _ | Data Properties
» __|Annotation Properties
» _ | Datatypes
[13http:Hkmi.open.ac.ukfprojects,!smartproducts}ontologiesfprocess.owl
b i::http:Hkmi.apen.ac.ukfprojects!smartproducts}ontologies,fproduct.owl
[dhttp:Hkmi.open.ac.ukfprojects!smartproductsfontologiesftlme.owl
= ﬁhttp:Hkmi.open.ac.uk;projects!smartproducts}ontologiesfuser.owl
» & http:/ /www.w3.0rg/2006 /time

Fig. 16.2 Navigation through a file system metaphor

¢ Understanding the overall size and shape of the ontology. By “size” here we
mean, given a node in the ontology®, the total number of its direct and indirect
sub-classes, while by “shape” we refer to an indication of the organization of the
sub-classes. For instance, an ontology (or part of it) can have a horizontal (i.e.,
many sub-classes and few levels of depth), or a vertical (i.e., many inheritance
levels and only a few sub-classes at each level) shape (Tartir et al. 2005).
Understanding the shape of an ontology (or part of it) also means to understand
whether it is balanced, indicating that all parts of the (sub-)ontology in question
have been developed to a similar extent, or unbalanced, possibly indicating that
some parts of the (sub-)ontology are less developed than others.

¢ Identifying the main components of the ontology and the typical exemplars of
these components. For instance, from Fig. 16.2 (see Sect. 16.2.1), we understand
that the SmartProducts ontology talks about spatial entities, a highly generic
(and therefore not-so-informative) concept, but the display fails to tell us which
kind of spatial entities the ontology primarily focuses on. Given that, for what we
know, the sub-tree under class SpatialThing may contain dozens of sub-classes,
it would be useful to have tools that could highlight to us the main spatial entities

*If the node is owl:Thing, then we are talking about the size of the whole ontology, otherwise the
size of a particular subtree.

348 E. Motta et al.

covered by the ontology (i.e., the exemplars), without the need for extensive
exploration. In this case, this would require informing us that almost 50% of the
sub-tree under SpatialThing concerns food-related notions. Informative
exemplars can also help the user to predict the siblings of the class (i.e., the
exemplar) in question, thus playing a summarization role not just with respect to
its sub-tree, but also with respect to its siblings.

At this point, the reader may argue that what is needed is simply to explore the
structure in more depth, by clicking on the top four classes, to open up the next level
of detail. Figure 16.3 shows what happens when we do so and we click on all four
level 1 classes. Thirty-eight classes are now displayed, making the picture rather
complicated for the user. In addition, we are still none the wiser about which node
we should further explore, which parts of the ontologies are developed more in
detail, etc. And continuing to open up these nodes will simply bring more informa-
tion on the screen, making it even more difficult for the user to develop a quick
conceptual model of the ontology. Of course, the reader can also point out that part
of the problem is the relative lack of structure underneath class Abstract, which
contains 22 direct sub-classes. And indeed, a better organization of the sub-tree
underneath class Abstract is obviously needed. However, it is also fair to say that
the purpose of visualization and navigation tools is not simply to support navigation
in relatively small, nicely organized ontologies. More importantly, they also need to
help the user in making sense of and effectively explore large and possibly messy
ontologies.

The brief and informal analysis shown here is consistent with the findings
uncovered in more extensive empirical studies, such as (Dzbor et al. 2006),
which highlight the problems users encounter when using rigid top-down naviga-
tion tools. These problems include:

e Poor efficiency and effectiveness. To open up the display shown in Fig. 16.3 has
required six mouse clicks, and we still have a relatively poor understanding of
the content of the ontology.

e Lack of control when zooming on a particular node. When clicking on a node,
the user always opens up all the direct sub-classes. There is no way to control the
number of sub-classes shown, or to open up more than one level with one mouse
click.

e No abstraction or saliency mechanisms. The system has no way to automatically
hide nodes which are deemed not important (i.e., salient) according to some
criterion, and conversely, it is not able to bring to the attention of the user highly
important nodes, again with respect to some user criterion.

It is also important to emphasize that such problems are less associated with the
file system browsing metaphor than with the generic top-down navigation
approach. For instance, ontology engineering toolkits such as TopBraid Composer’

3 http://www.topquadrant.com/products/TB_Composer.html

http://www.topquadrant.com/products/TB_Composer.html

16 Visualizing and Navigating Ontologies with KC-Viz

349

v :& http://kmi.open.ac.uk/projects/smartproducts /ontologies/philips-test2.owl

¥ | Classes
¥ [generic:Abstract
<http:/ /www.w3.0org/2006 /timezone#TimeZone>
food:Diet
food:NutrientPortion
» @ generic:Behaviour
generic:PhysicalQualityType
» [3 generic:PhysicalQuantity
3 generic:PhysicalQuantityUnit
> [@ generic:Quality
generic:ReferenceSystem
generic:RelativeLocationModifier
> [@ generic:Role
> [@ generic:Substance
> [@ generic:Task
» [@ process:ProcessEntity
user:InteractionMessage
user:InteractionOption
user:PreferenceCriterion
» [@ user:UserProfile
» 3 w3ctime:DateTimeDescription
» [@ w3ctime:DayOfWeek
P {8 w3ctime:DurationDescription
w3ctime:TemporalUnit
¥ [@ generic:Agent
» [3 generic:ContextAwareAgent
» [@ generic:LegalEntity
generic:UserAwareAgent
¥ @ generic:SpatialThing
» [3 generic:EntitylnSpace
» [@ generic:Location
¥ [@ sptime:TemporalThing
> [@ generic:Assembly
3 generic:AssemblyComponent
» [@ generic:EntityinSpace
» @ generic:Event
> L3 generic:Measurement
» [@ product:Product
» @ w3ctime:TemporalEntity
> | Object Properties

Fig. 16.3 Exploring level 2 classes through the Ontology Navigator

350 E. Motta et al.

provide graphic tools which also implement such top-down navigation and not
surprisingly suffer from the same problems. Indeed, it can be argued that a
graphical interface for top-down navigation typically performs worse than a file
system model, primarily because the latter usually provides a much more compact
representation — i.e., showing the 38 classes in a graphical tree representation will
require a much larger display area, thus making it even more complex for a user to
make sense of it (Plaisant et al. 2002).

KC-Viz is an ontology visualization and navigation system, which has been
designed to address the issues highlighted here, by providing a rich set of navigation
and visualization mechanisms, which include flexible zooming into and hiding of
specific parts of an ontology, the ability to identify the most important concepts in
an ontology, according to empirically validated criteria, as well as a plethora of
other mechanisms to facilitate sensemaking and exploration of ontologies. As
already mentioned, a key aspect of KC-Viz is its reliance on a key concepts
extraction algorithm, which allows KC-Viz to produce the kind of ontology
summaries that human experts are able to produce. Hence, in what follows we
will first describe the key concept extraction algorithm used by KC-Viz, before
providing an overview of its functionalities.

16.3 Key Concept Extraction

Informally, key concepts can be seen as the best descriptors of an ontology, i.e.,
information-rich concepts, which are most effective in summarizing what an ontol-
ogy is about. In (Peroni et al. 2008), we considered a number of criteria to identify
the key concepts in an ontology. In particular, we use the notion of natural category
(Rosch 1978), to identify concepts that are information-rich in a psycholinguistic
sense. This notion is approximated by means of two operational measures: name
simplicity, which favors concepts that are labeled with simple names; and basic
level, which measures how “central” a concept is in the taxonomy of an ontology.
Two other criteria are drawn from the topology of an ontology: the notion of density
highlights concepts which are information-rich in a formal knowledge representa-
tion sense, i.e., they have been richly characterized with properties and taxonomic
relationships, while the notion of coverage is used to ensure that no important part of
the ontology is neglected, by maximizing the coverage of the ontology with respect
to its taxonomic relationships. Finally, the notion of popularity, drawn from lexical
statistics, is introduced as a criterion to identify concepts that are likely to be most
familiar to users. The density and popularity criteria are both decomposed in two
sub-criteria: global and local density, and global and local popularity, respectively.
While the global measures are normalized with respect to all the concepts in the
ontology, the local ones consider the relative density or popularity of a concept with
respect to its surrounding concepts. The aim here is to ensure that “locally signifi-
cant” concepts get a high score, even though they may not rank too highly with
respect to global measures. Each of these seven criteria produces a score for each

16 Visualizing and Navigating Ontologies with KC-Viz 351

concept in the ontology, and the final score assigned to a concept is a weighted sum
of the scores resulting from individual criteria. As described in (Peroni et al. 2008),
which provides a detailed account of our algorithm, KCE, and a formal definition of
the criteria it employs (i.e., density, coverage, popularity, etc.), our approach has
been shown to produce ontology summaries that correlate significantly with those
produced by human experts.

16.4 Overview of KC-Viz

16.4.1 Initial Visualization of an Ontology with KC-Viz

Normally, a KC-Viz session® begins by generating an initial summary of an
ontology, to get an initial “gestalt” impression of the ontology. This can be achieved
in a number of different ways, most obviously by (1) selecting the ontology in
question in the “Ontology Navigator” tab of the NeOn Toolkit, (2) opening up a
menu of options by right clicking on the selected ontology, and then (3) choosing
Visualize Ontology =2 Visualize Key Concepts, through a sequence of menus.
Figure 16.4 shows the result obtained after performing this operation on the
ontology Philips-Test2’, the most specific node in the SmartProducts network of
ontologies®. As shown in the figure, we have now obtained an initial visualization of
the network of ontologies, which includes concepts at different levels in the class
hierarchy. This specific visualization includes 16 concepts because we have set the
size of our ontology summary to 15, and the algorithm has automatically added the
most generic concept, owl:Thing, to ensure that the visualization displays a
connected graph. If we wish to display more or less succinct graphs, we can do
so by changing the size of the ontology summary. The solid gray arrows in Fig. 16.4
indicate direct rdfs:subClassOf links, while the dotted green arrows indicate indi-
rect rdfs:subClassOf links. As shown in the figure, by hovering the mouse over an
indirect rdfs:subClassOf links, we can see the chain of rdfs:subClassOf relations,
summarized by the indirect link.

Another important piece of information provided by KC-Viz is the size of the
tree under a particular class, which is indicated by a pair of integers, indicating the

S All the examples in this paper have been generated using version 2.5 of the NeOn Toolkit and
KC-Viz v1.3.0.

Tt is important to point out that while Fig. 16.4 and later figures show exactly the concepts
returned by KC-Viz, for the sake of readability we have, when appropriate, manually rearranged
the layout, to try and minimize the compression caused by the physical size of this document. This
is needed primarily because KC-Viz displays assume a landscape orientation, while this article is
formatted according to a portrait orientation.

8 Crucially, the option “Ontology summary considers also imported ontology” must be enabled in
the KC-Viz preferences, otherwise only a summary of the concepts local to the Philips-Test2
ontology will be generated.

352 E. Motta et al.

@owl:Thing [4,247]

v A v
¥
@Abstract [22,117] @ProactiveAgent [3,5] @ TemporalThing [7,108]
> @AbstractAbsoluteLocationDescription [4,6] v ¥.

L 4
PhysicalEntitylnSpace [5,89] Product [3,15
@RegionalCuisineRecipe [14,19] b] uct []
v .

@RecipePreference [5,7] @Assembly [3,17]

@Quality 7,15] »
4 4 v »

@FoodOrDrinkitem [8,46]

Path 1: i
@¥itchenTool [6.9] @Food [6 netie) et ipliantFooditem [8,9]
2) FoodOrDrink
3) FoodOvDrinkitern

@PhysicalGeographicEntity [6,7]

Fig. 16.4 Initial visualization of the SmartProducts ontologies

number of direct and indirect sub-classes. For instance, Fig. 16.4 tells us that class
Abstract has 22 direct sub-classes and 117 indirect ones.

Although more exploration is obviously needed to get a thorough understanding
of the contents of the SmartProducts ontology network, it can be argued that as a
first step, the visualization shown in Fig. 16.4 already provides a rather effective
starting point for the ontology sensemaking process. In particular, looking at the
visualization, we can already reach a number of conclusions about the ontology,
only one of which (the first one) could be concluded after opening up class owl:
Thing in the ontology navigator — see Fig. 16.2, Sect. 16.2.1. For instance, we now
understand that:

» The network of ontologies contains four top-level classes (i.e., classes directly
linked to owl:Thing) — however, only two of them are displayed (Abstract and
TemporalThing) in the initial summary.

» The ontology contains a lot of information about food — e.g., the tree under class
FoodOrDrinklItem contains 46 classes.

e Key distinctions include time (TemporalThing) and space (PhysicalEnti-
tyInSpace). However, there are also temporal things, which are not physical
entities in space. We can deduce this because the visualization tells us that
TemporalThing has 108 sub-classes, while PhysicalEntityInSpace has 89.

» Class Abstract has a lot of sub-classes (117), but it may be relatively poorly
structured, having 22 direct sub-classes.

More importantly, this initial visualization provides a much better structure for
further exploration, than the rigid top-down navigation, which we illustrated in
Sect. 16.2. In particular, on the basis of this initial snapshot, we can identify key
“gaps” that we need to fill, in order to get a complete picture of the ontology. For
instance, we may want to explore:

16 Visualizing and Navigating Ontologies with KC-Viz 353

» The sub-tree under class Abstract to get a better understanding of this part of the
ontology. As discussed in Sect. 16.2, because of the relatively poor structure of
this part of the ontology, better control of the navigation process than that
provided by the Ontology Navigator will be needed, in order to be able to
explore this part of the ontology effectively.

¢ The sub-tree under FoodOrDrinkItem, as this is clearly a rich part of the ontology.

¢ The sub-tree under PhysicalEntityInSpace, which appears to encompass both
location-related notions and device-related ones (Assembly).

¢ Which sub-classes of TemporalThing are not also sub-classes of
PhysicalEntityInSpace.

* What kinds of agents are modeled by this ontology.

« Why products are not physical entities in space.

» Others.

In sum, the claim here is that the key concept extraction algorithm used by KC-
Viz, together with the degree of control that we get over it (size of summaries and
whether or not to consider imported axioms), allows the effective generation of
initial ontology snapshots, which helps the user in forming an initial idea of what an
ontology is about. In what follows, we show how the flexible support for explora-
tion provided by KC-Viz capitalizes on this initial summary to facilitate effective
ontology navigation and sensemaking.

16.4.2 Exploring Ontologies with KC-Viz

Let us consider our first task: to get a better understanding of the sub-tree under
class Abstract. We have already seen that a rigid top-down approach does not work
very well here, in particular because class Abstract contains many direct sub-
classes. So, let us try exploring with KC-Viz.

If we click right on a class displayed in KC-Viz, in this case, Abstract, we obtain
a menu which includes options for inspecting, expanding, and hiding a class. If we
select “Expand,” the menu shown in Fig. 16.5 pops up, which provides a rich set of
options for exploring the sub-tree under class Abstract. In particular, the following
four options for customizing the expansion algorithm are presented to the user:

¢ Whether to explore following taxonomic relations, other relations (through
domain and range), or any combination of these.

* Whether or not to make use of the ontology summarization algorithm, which in
this case will be applied only to the sub-tree of class Abstract.

* Whether or not to limit the range of the expansion — e.g., by expanding only to 1
or 2 levels.

e Whether to display the resulting visualization in a new window (“Hide”), or
whether to add the resulting nodes to the current windows. In the latter case,
some degree of control is given to the user with respect to the redrawing
algorithm, by allowing her to decide whether or not to limit the freedom of the

354 E. Motta et al.

Expand by

™ subclasses 7] Superclasses

(") Domain classes [T] Range classes

(selectall)

8 Expand by key concepts

Max number of key concepts m »

® Expand to all levels

() Expand to level 1 .
Other nodes

® Hide O Redraw

() Block (soft) () Block (hard)

(Expand) (Cancel)

Fig. 16.5 Expanding sub-trees in KC-Viz

graph layout algorithm to rearrange existing nodes. This is particularly useful in
those situations where expansion is meant to add only a few nodes, and the user
does not want the layout to be unnecessarily modified — e.g., because she has
already manually rearranged the nodes according to her own preferences.

As shown in Fig. 16.5, we have chosen to expand by key concepts, we have kept
the limit of the expansion to 10 concepts, and we have also chosen to hide the other
concepts, to be able to explore the sub-tree of class Abstract in a new window,
without the “noise” from unrelated concepts.

Figure 16.6 shows the result of the expansion, which confirms the relatively poor
degree of structure of the sub-tree under class Abstract, where only classes
UserProfile and PhysicalQuantity appear to have been further characterized in

16 Visualizing and Navigating Ontologies with KC-Viz 355

.A_b_stract [22,117]

i S
v

74 v~ g@PhysicalQuality [4,4]
s, %

s & @PhysicalQuantityUnit [4,4]
/7

X - @PhysicalQuantity [4,11]

: .MediterraneanCuis'meRecipe [4,4] @UserProfile [3,20]
; @DateTimeDescription [3,3] ;
@Capability [1,1]

‘Preference [2,15]
@Behaviour [3,5] ;

A
.MealNutritianEnergyPreference [2.2]

Fig. 16.6 Key concepts under class Abstract

@PhysicalQuantity [4,11]

L4 « v

) @Measurement [1,1]
@EnergyQuantity [L1] - gMassQuantity [3,3] @VolumeQuantity [2,2]
4
a A

'

>

’ . b @TemperatureMeasurement [0,0]
@EnergyQuantitylnCalories [0,0] &

@VolumeQuantitylnCups [0,0]
@MassQuantitylnPounds [0,0]
—_— — 0.0] @VolumeQuantitylnTableSpoons [0,0]
@MassQuantitylnOunces [0,

@MassQuantitylnGrams [0,0]

Fig. 16.7 Expanding class PhysicalQuantity

some detail and may warrant further exploration. In particular, we can look in more
detail at the latter, by expanding its sub-tree at all levels, without restricting it to key
concepts, as shown in Fig. 16.7.

Analogously, we can also explore the other key constituents of the SmartProducts
network of ontologies, by careful expansion of the sub-trees we wish to explore. For
instance, again by choosing expansion by key concepts, we can find out more about
the structure of the sub-tree under FoodOrDrinkItem, as shown in Fig. 16.8.

16.4.3 Other Functionalities Provided by KC-Viz

While the flexible expansion mechanism is the key facility provided by KC-Viz to
support flexible exploration of ontology trees, a number of other functionalities are

356 E. Motta et al.

.FcchrDrinkItem [8,46]

: 4 A ¥

@ConcreteFoodOrDrinkitem [2,2] ._._E.oodOrDrink [3.25] @VirtualFoodOrDrinkitem [1,2]
‘ v i
.'.A.nima[Foud [3,12].."-_-.HerbaIF00d [3,4] @IngredientPortion [1,1]
¥ 4 v >
@PairyFood [2,4] @Fish [1,1] @Meat [2,4] @CerealFood [1,1]
b A
@Cheese [2,2] @Poultry [2,2]

Fig. 16.8 Expanding class FoodOrDrinkItem

M T AbstractAbsolutelocatio...

Hide
M subclasses (] Superclasses
() Domain classes | Range classes

AT
@ Current class ([Select all

8 Hide recursively

(i Y
L Hide y ! 9 Cancel

WY,

Fig. 16.9 Options for removing classes from a display

also provided, to ensure a comprehensive visualization and navigation support.
These include:

¢ A flexible mechanism for hiding nodes, as shown in Fig. 16.9.

» Integration with the Entity Properties and Ontology Navigator tabs in the NeOn
Toolkit, to support detailed inspection of classes.

* A dashboard, shown in Fig. 16.10, which allows the user to move back and forth
through the history of KC-Viz operations, to modify the formatting of the layout,
and to save the current display to a file, among other things.

¢ A preferences menu, shown in Fig. 16.11, which allows the user to set defaults
for the most common operations and also enables her to switch to a more
efficient (but sub-optimal) algorithm when dealing with very large ontologies.

16 Visualizing and Navigating Ontologies with KC-Viz 357

Cancel/Re-apply step Zoom and label font Adjust gap Other operations

macro: (4 () zoom: () (+ x (=) () (_re-dlayour) ((save)
micro: | & Font: @ L+ ¥: @ | Reset key concepts ET Iti

Fig. 16.10 The KC-Viz dashboard

KC-Viz Preferences

Max size of ontology summary (from 1 to 1000) 15 r?

Max number of (non key-)concepts to be used to maximise coverage of

subclass-of tree, when generating ontology summary 2 r:]

(from 0 to max size of ontology summary)

Default size of subtree when expanding class 5 N

using key concepts (from 1 to 1000) B

Use sub-optimal (but very efficient) algorithm when the 3000 ™

number of classes in the ontology is higher than z

Ontology summary considers also imported ontologies Ei

Fig. 16.11 KC-Viz preferences

16.4.4 Summing Up: How KC-Viz Addresses Key Challenges
for Ontology Editors

Echoing the findings reported in the paper by (Dzbor et al. 2006), in Sect. 16.2 we
highlighted a number of issues which hamper the effectiveness of current tools for
visualizing and navigating ontologies. Here we revisit these issues, discussing how
KC-Viz attempts to address them:

* Poor efficiency and effectiveness. The exploration sequence shown in Figs. 16.4,
16.6, and 16.7 (see Sect. 16.4) only required three operations and arguably
provided us with a rather good understanding (at a given level of abstraction)
of a significant part of the ontology. In our view, this compares favorably with
the sequence described in Sect. 16.2, where several expansion operations did not
dramatically improve our understanding of the ontology. It is also relatively
straightforward to see that by repeating the exploration process we applied to
class Abstract to other three or four key classes shown in Fig. 16.4 (see
Sect. 16.4.1), we should be able to converge quickly to a rather comprehensive
overview of the SmartProducts network of ontologies.

e Lack of control when zooming on a particular node. KC-Viz addresses this
limitation by providing a very flexible set of options for node expansion, as
shown in Fig. 16.5 (see Sect. 16.4.2).

358 E. Motta et al.

e No abstraction or saliency mechanisms. The main abstraction mechanism

provided by KC-Viz is the key concept extraction algorithm, KCE, which
automatically identifies the “most important” concepts in the ontology, thus
making it possible to present snapshots of the ontology to the user, while hiding
away the “less important” concepts. Crucially, KCE has been empirically
validated, thus providing a sound basis to the approach used in KC-Viz. In
addition, by displaying information about the size of the sub-graphs under each
node and by also varying the size of the graphical node representing a class in
KC-Viz, the tool also provides a simple but effective mechanism to highlight the
most “salient” classes in an ontology.

It is also interesting to assess the functionalities provided by KC-Viz with

respect to the seven visualization task types proposed in (Shneiderman 1996). As
discussed below, KC-Viz supports all of them:

Overview. This is one of the key functionalities provided by KC-Viz. In contrast
with other approaches — e.g., CropCircles (Wang and Parsia 2006), which
sacrifice the display of explicit labels for the sake of maximizing the number of
nodes on display, KC-Viz follows an alternative (and to our knowledge, unique)
approach: it exploits the ontology summarization algorithm to provide initial
overviews of an ontology and then allows the user to explore any part of the
model in details. In our view, the advantage here is that, at any given stage of the
process, only relatively few nodes are displayed and all of them are readable, thus
making it easy for the user to make sense of the model on display. In addition, the
simple display of information about the size of a class’ sub-graph (shown as two
integers describing the number of direct and indirect sub-classes) also provides
summary information for the parts of the ontology which are not displayed, thus
avoiding the need for abstract visualizations of clusters of nodes.

Zoom. This functionality is supported by the Expand menu item, which provides
a flexible set of options for exploring a sub-graph in detail. As a result, the user
remains in control of both the size of the exploration space and the criteria used
to generate it.

Filter. This functionality is provided as a side effect of the ability of KC-Viz to
focus on a particular part of the ontology and can also be invoked explicitly by
the user by means of the Hide menu option.

Details-on-demand. A tight integration with the Entity Properties view of the
NeOn Toolkit makes it possible to click on any node displayed in KC-Viz and
inspect it.

Relate. KC-Viz supports the visualization of both taxonomic and domain/range
relationships between classes. An example is given in Fig. 16.12, where all the
“level 17 relationships between FoodOrDrinklItem and other classes in the
ontologies are displayed. In particular, the dashed red arrows are used to indicate
domain/range relations, with the labels being displayed when the mouse hovers
over the arrow in question. In this case, we are showing that the ontology
contains a relation hasNutrient, whose domain is FoodOrDrinkItem and whose
range is NutrientPortion.

16 Visualizing and Navigating Ontologies with KC-Viz 359

@~rhysicalEntityinSpace [5,89]

__..@Diet [0,0]

___...@MealCourseType [0,0]

@CourseRole [2,2]

onenene-- @@Recipe [1,20]
""""-.Fooﬁofbrinklt <eenenneeno- @NutrientPortion [0,0]
/ ¥
1 * @VirtualFoodOrDrinkitem [1,2]
b
B @DietCompliantFooditem [8,9] @FoodOrDrink [3,25]

@AtomicFoodOrDrinkitem [1,2] @Fooditem [1,1]

@CompositeFoodOrDrinkitem [0,0] ’
@Drinkitem [1,1]

@ConcreteFoodOrDrinkitem [2,2]

Fig. 16.12 Displaying both taxonomic and domain/range relationships

* History. KC-Viz supports undo/redo actions at both macro and micro level, to
allow users to go back to, replay, or undo earlier operations.

e Extract. The key mechanism for extracting parts of an ontology is through the
Expand menu, allowing flexible extraction of nodes at various levels in the
hierarchy, in accordance with the key concept extraction algorithm, and follow-
ing taxonomic and/or domain or range relationships.

16.5 Related Work

Surveys on ontology visualization methods, like (Katifori et al. 2007), categorize
the methods for visualizing ontologies in six non-exclusive main types, called
indented list, node-link and tree, space-filling, zoomable, context + focus and
distortion, and 3D information landscapes.

The indented list category covers tree-centric views of the ontology, similar to
the one provided by the Ontology Navigator in the NeOn Toolkit, which was shown
in Figs. 16.2 and 16.3 (see Sect. 16.2). As already pointed out, because of its
familiarity to users, this style of interface is pretty much ubiquitous in ontology
engineering toolkits; however, it does not support sensemaking tasks very well,
especially in the case of large or unstructured ontologies.

Methods like IsaViz’, OntoViz'®, and SpaceTree (Plaisant et al. 2002) are typical
members of the second category (node-link and tree), as they represent an ontology
through a graphical display of interconnected nodes. Hence, these systems are
similar to KC-Viz, with the crucial difference that, while KC-Viz uses ontology

° http://www.w3.0rg/2001/11/IsaViz
19 http://protegewiki.stanford.edu/index.php/OntoViz

http://www.w3.org/2001/11/IsaViz
http://protegewiki.stanford.edu/index.php/OntoViz

360 E. Motta et al.

summarization to abstract out large trees, these methods tend to use preview icons —
e.g., a triangle in the case of SpaceTree, to abstract out large sub-graphs.

TreeMap (Shneiderman 1992) is representative of space-filling approaches,
which focus on optimizing the use of screen space to maximize the amount
of information displayed to the user. However, in order to achieve this goal,
these approaches tend to move away from the visualizations familiar to users,
such as indented lists and graphs, and therefore they tend to require much more
effort from users. In addition, it can be argued that no matter how much optimiza-
tion a system tries to achieve, eventually it will fill all the available screen space,
once a large enough set of data is given as input. Hence, while space filling is a
useful secondary goal, in our view, the key goal for a visualization system remains
the ability to provide views at different levels of abstraction, and in this respect, it
can be argued that KC-Viz is unique in its reliance on an empirically validated
ontology summarization algorithm, as opposed to general-purpose data abstraction
techniques.

CropCircles (Wang and Parsia 20006) is an example of a “zoomable visualiza-
tion,” i.e., an approach which presents “the nodes in the lower levels of the
hierarchy nested inside their parents and with smaller size than that of their parents”
(Katifori et al. 2007). Much like KC-Viz, these approaches can be effective in
providing good overviews, abstracting from large numbers of nodes. However, as
already mentioned, in contrast with KC-Viz, which uses ontology summarization to
provide abstraction, they sacrifice the display of explicit labels for the sake of
maximizing the number of nodes on display.

The group of techniques categorized as “context + focus and distortion” is
based on “the notion of distorting the view of the presented graph in order to
combine context and focus. The node on focus is usually the central one and the rest
of the nodes are presented around it, reduced in size until they reach a point that
they are no longer visible” (Katifori et al. 2007). These techniques offer a good
trade-off — a part of the ontology is shown in detailed (often tree-like) view, while
the rest is depicted around. A typical approach here is HyperTree (Souza et al.
2003), which skews the visualized model to emphasize the node currently explored
by the user. However, the problem with these techniques is that they essentially
attempt to show everything in the model, which often makes the “context” part of
little consequence and illegible. In contrast with these approaches, KC-Viz
leverages the advantages derived from using ontology summaries, allowing the
user to focus on ontology entities bearing the highest information value and
“contextualizing” them against the entities with systematically lower information
values. Crucially, it also provides flexible and effective mechanisms to change the
focus to other entities, as and when required.

Finally, Katifori et al. also discuss a class of systems called “Information
Landscapes,” which provide a 3D, landscape-oriented alternative to zoomable
visualizations. Hence, the remarks we made above about the latter category of
systems apply to information landscapes as well.

16 Visualizing and Navigating Ontologies with KC-Viz 361
16.6 Conclusions and Future Work

In this chapter, we have presented KC-Viz, an innovative approach to visualizing
and navigating ontologies, which exploits a powerful ontology summarization
algorithm, KCE, to introduce effective abstraction mechanisms in the ontology
exploration and sensemaking processes. Crucially, KC-Viz maximizes the value of
the foundational functionality afforded by KCE, by providing a flexible set of
options to zoom in or hide specific parts of an ontology, history browsing
mechanisms, flexible graphical layout formatting, and integration with other
components of the NeOn Toolkit.

Our next task will be to evaluate KC-Viz formally, by comparing the perfor-
mance in sensemaking tasks of users equipped with KC-Viz versus other users, to
try and determine whether there is objective evidence that KC-Viz improves both
the efficiency and the effectiveness of a sensemaking task.

We also plan to improve the range of functionalities provided by KC-Viz, in
particular by opening up the key concept extraction algorithm to the users, to allow
them to decide which criteria to prioritize in the generation of ontology summaries.
Also, better explanation facilities are needed, as in some cases it iS not easy
to understand why a particular concept is deemed “important” by KC-Viz, while
another one is not.

In conclusion, it can be argued that, with a few exceptions, the ontology
engineering community has historically overlooked the importance of HCI issues
and has failed to provide user interfaces that can truly support users effectively, as
highlighted by Dzbor et al. (2006). With KC-Viz, we are trying to make an
important step in the direction of providing better user support for ontology
exploration and sensemaking, and we hope that our forthcoming empirical evalua-
tion studies will confirm our intuition that the approach implemented in KC-Viz
does indeed provide better sensemaking support for users of ontology engineering
environments.

Acknowledgments This work was partially supported by funding from the European Commis-
sion, in the context of the NeOn and SmartProducts projects. The paper has benefited greatly from
many insightful comments from Pierluigi Miraglia, who kindly suggested both ways to improve
the presentation of this work as well as interesting new directions for future research.

References

d’Aquin M, Sabou M, Motta E (2008) Reusing knowledge from the semantic web with the Watson
Plugin. Demo at the 2008 international semantic web conference, Karlsruhe, Germany

Dzbor M, Motta E, Buil Aranda C, Gomez-Pérez JM, Goerlitz O, Lewen H (2006) Developing
ontologies in OWL: an observational study. Workshop on OWL: experiences and directions,
Athens, GA, USA, Nov 2006

Katifori A, Halatsis C, Lepouras G, Vassilakis C, Giannopoulou E (2007) Ontology visualization
methods—a survey. ACM Comput Surv 39(4):Art.10

362 E. Motta et al.

Peroni S, Motta E, d’Aquin M (2008) Identifying key concepts in an ontology through the
integration of cognitive principles with statistical and topological measures. In: Third Asian
Semantic Web Conference, Bangkok, Thailand

Plaisant C, Grosjean J, Bederson BB (2002) Spacetree: supporting exploration in large node link
tree, design evolution and empirical evaluation. In: Proceedings of the international sympo-
sium on information visualization, 2002

Rosch E (1978) Principles of categorization. In: Cognition and categorization. Lawrence Erlbaum,
Hillsdale

Shneiderman B (1992) Tree visualization with tree-maps: a 2d space-filling approach. ACM Trans
Graph 11(1):92-99, 15

Shneiderman B (1996) The eyes have it: a task by data type taxonomy for information
visualizations. In: Proceedings of the 1996 IEEE symposium on Visual Languages
(VL 1996), Boulder, CO, USA. IEEE Computer Society, Washington, DC, USA

Souza K, Dos Santos A, Evangelista SRM (2003) Visualization of ontologies through hypertrees.
In: Proceedings of the Latin American conference on Human-computer interaction, 2003,
p 251-255

Tartir S, Arpinar IB, Moore M, Sheth AP, Aleman-Meza B (2005) OntoQA: Metric-based
ontology quality analysis. In Proceedings of the IEEE Workshop on Knowledge Acquisition
from Distributed, Autonomous, Semantically Heterogeneous Data and Knowledge Sources,
co-located with the 5th IEEE International Conference on Data Mining (ICDM 2005).
November 27, 2005, Huston, Texas, USA

Wang TD, Parsia B (2006) Cropcircles: topology sensitive visualization of owl class hierarchies.
In: Proceedings of the 5th International Semantic Web Conference 2006, Athens, GA, USA

Chapter 17
Reasoning with Networked Ontologies

Guilin Qi and Andreas Harth

Abstract The chapter covers basic functionality pertaining to reasoning with
ontologies. We first introduce general methods for detecting and resolving
inconsistencies, and then present three plugins that provide reasoning and query
functionality. The three plugins are: the reasoning plugin, which allows for standard
reasoning tasks, such as materialising inferences and checking consistency in
ontologies; the RaDON plugin, which provides functionality for diagnosing and
resolving inconsistencies in networked ontologies; and the query plugin, which
allows for users querying ontologies in the NeOn Toolkit via the RDF query
language SPARQL.

17.1 Introduction

Reasoning plays an important role in knowledge engineering. With reasoning, users
can check whether an ontology (or a network of ontologies) contains logical
inconsistencies, which may indicate an error in modelling or an incompatibility
between combined ontologies. Further, reasoning can provide means to deduce new
facts from existing facts and axioms. Finally, users need means to pose questions to
knowledge bases and retrieve answers to those queries. Ideally, query processing
over ontologies takes the meaning — as formally specified via logical axioms — into
account when deriving answers to a query. Ontology languages provide the
mechanisms for encoding such meaning, and reasoners provide the mechanisms
for processing such meaning.

G. Qi ()
School of Computer Science and Engineering, Southeast University, Nanjing, China
e-mail: gqi@seu.edu.cn

A. Harth
Institute AIFB, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
e-mail: harth@kit.edu

M.C. Suarez-Figueroa et al. (eds.), Ontology Engineering in a Networked World, 363
DOI 10.1007/978-3-642-24794-1_17, © Springer-Verlag Berlin Heidelberg 2012

mailto:gqi@seu.edu.cn
mailto:harth@kit.edu

364 G. Qi and A. Harth

Many ontology languages have been developed, ranging from simple languages
such as the Resource Description Framework (RDF) and the RDF Vocabulary Descrip-
tion Language, that is, RDF Schema (RDFS), to expressive languages such as the Web
Ontology Language OWL. Ontologies specified in these languages allow for deductive
reasoning: drawing conclusions based on facts and axioms in a knowledge base. Often
used reasoning tasks are checking the consistency of a knowledge base, materialising
inferences that can be drawn from the codified knowledge in an ontology and answer-
ing queries over the knowledge base.

To support the life cycle of networked ontologies, we have developed three
plugins which provide reasoning services in the NeOn Toolkit:

¢ The reasoning plugin, which provides standard reasoning tasks on OWL
2 ontologies. Using the reasoner plugin, a user can get all the facts that can be
inferred from specified facts and axioms and check if an ontology is consistent.

» The RaDON plugin, which provides functionalities for diagnosing and resolving
inconsistencies in networked ontologies. That is, in case the reasoner found an
ontology to be inconsistent, it is difficult for a user to figure out the cause of
the inconsistency, as the reasoner only provided a yes/no result. Within the
NeOn Toolkit, the RaDON plugins enable a user to investigate the cause
for an inconsistency. In addition, RaDON features algorithms which automati-
cally resolve inconsistencies by removing those axioms which cause the
inconsistency.

e The query plugin, which allows users to pose queries in the SPARQL query
language (Prud’hommeaux and Seaborne 2008; Clark et al. 2008).

We cover preliminaries in Sect. 17.2, describe the approach for investigating and
resolving inconsistencies in Sect. 17.3, explain the main functionalities the plugins
provide in Sect. 17.4, summarise the usage of the plugins in Sect. 17.5 and finally
conclude with Sect. 17.6.

17.2 Preliminaries

In the following, we introduce basic notions used throughout the rest of the chapter.

17.2.1 RDF and RDFS

RDF serves as foundational data model for the Semantic Web. RDF is a graph-
structured data model for encoding semi-structured data. RDF data consists of RDF
triples: statements of subject-predicate-object. The formal semantics of RDF is
specified in Hayes (2004). We assume the reader is familiar with basic notions of

17 Reasoning with Networked Ontologies 365

web architecture, such as Internationalised Resource Identifiers’ (IRIs), which are a
generalisation of URIs?.

Definition 17.1 (RDF Triple, RDF Graph, RDF Term). Let 7 be the set of IRIs,
B the set of blank nodes and £ the set of RDF literals. An element of the set 7R =
(TUB)xZI x(ZUBUL) is called RDF triple. A set of triples is called RDF
graph. An element of C =7 U B U L is called RDF term.

Ontology languages, such as RDFS and OWL, provide vocabulary for describ-
ing classes and properties. Constructs of RDFES, such as subclass and sub-property
relations, as well as constructs of the more expressive ontology language OWL are
covered in the next section.

17.2.2 Description Logics

Description logics (DL) (Baader et al. 2003) are a well-known family of knowledge
representation formalisms for ontologies. They are fragments of first-order predi-
cate logic. That is, they can be translated into first-order predicate logic according to
Borgida (1994). They differ from their predecessors such as frames (Minsky 1974)
in that they are equipped with a formal, logic-based semantics. In DL, elementary
descriptions are concept names (unary predicates) and role names (binary
predicates). Let N- and Ny be pairwise disjoint and countably infinite sets of
concept names and role names, respectively. We use the letters A and B for concept
names, the letter R for role names and the letters C and D for concepts. T and L
denote the universal concept and the bottom concept, respectively. Complex
descriptions are built from them recursively using concept and role constructors
provided by the particular DL under consideration. For example, in DL ALC
(Schmidt-Schau and Smolka 1991), the set of ALC concepts is the smallest
set such that (1) every concept name is a concept and (2) if C and D are concepts,
R is a role name, then the following expressions are also concepts: —C (full
negation), C M D (concept conjunction), C U D (concept disjunction), VR-C (value
restriction on role names) and JR.C (existential restriction on role names).

A terminology axiom is an expression of the form C C D where C and D are
concept expressions, and a role axiom is an expression of the form R C S, where R
and § are role expressions. A TBox, denoted by 7, is a set of terminology axioms
and role axioms which are viewed as intensional description of the domain of
interest. An assertional axiom is an expression of the form C(a) or R(a, b), where C
is a concept expression, R is a role expression and @ and b are individual names. An
ABox, denoted by A4, is a set of assertional axioms, which are viewed as extensional

Uhttp://www.ietf.org/rfc/rfc3987 txt
2 http://www.ietf.org/rfc/rfc3987 txt

http://www.ietf.org/rfc/rfc3987.txt
http://www.ietf.org/rfc/rfc3987.txt

366 G. Qi and A. Harth

information. Finally, A DL-based knowledge base (or ontology) is a pair
O = (7, A), where T and A are a TBox and an ABox, respectively.

The semantics of a DL is defined by an interpretation Z = (A”,.7) which consists
of a non-empty domain set AZ and an interpretation function -Z, which maps from
individuals, concepts and roles to elements of the domain, subsets of the domain and
binary relations on the domain, respectively. Given an interpretation Z, we say that 7
satisfies a terminology axiom C C D (respectively, a role axiom R C S) if CZ C D*
(respectively,RT C ST). Furthermore, T satisfies a concept assertion C(a) (respectively,
arole assertion R(a, b)) ifa* € C% (respectively, (aI bt) € R?). An interpretation 7 is
called a model of an ontology O, iff it satisfies each axiom in O. The set of all models of
an ontology O is denoted as M(O). We say that two ontologies O; and O, are logically
equivalent, denoted as O =0,, if M(O) = M(O,). A concept name C in an ontology O
is unsatisfiable if for each model Z of O, C* = (). An ontology O is incoherent if there
exists an unsatisfiable concept name in 0. An ontology O is inconsistent iff it has no
model.

17.3 Diagnosing and Repairing Inconsistent Networked
Ontologies

17.3.1 Relationship Between Inconsistency and Incoherence

The relationship between incoherence and inconsistency is not simple. First, the
fact that an ontology is inconsistent does not necessarily imply that it is incoherent,
and vice versa. There exist different combinations of inconsistency and incoher-
ence, as illustrated in Fig. 17.1 (most of the examples in this figure have been
proposed in Flouris et al. (2006)) and discussed in the following.

Figure 17.1(1) is an example of a consistent but incoherent ontology. In this
ontology, two concepts C1 and C2 are claimed to be disjoint but share a sub-
concept C3. Figure 17.1(2)—(4) show examples of inconsistent ontologies.
Figure 17.1(2) is an example of an inconsistent but coherent ontology. In this
ontology, two concepts C1 and C2 are claimed to be disjoint but share a sub-
concept which is a nominal {a}. Figure 17.1(3) is an example of an inconsistent
ontology in which an instance a instantiates a concept C1 and its complement — C1.
Figure 17.1(4) is an example of an inconsistent but coherent ontology, in which the

c c G ™, disjoint \
(SR L 2R | | (e =) | | (o JaZ0) | | | G Je &)
¥ - X - ¥ v ||\ o ¥ IS
I 4 c3)

i, g v X
a (C3) b {a} | a

== (1 = @] | 3 @) a (5)

Fig. 17.1 Examples of variants of inconsistency. Pattern (1) to Pattern (5)

17 Reasoning with Networked Ontologies 367

two disjoint concepts C1 and C2 share an instance a. Finally, Fig. 17.1(5) shows an
example of an ontology that is both incoherent and inconsistent.

From the definitions of incoherence above, we know that incoherence can occur
in the terminology level only. When dealing with inconsistency, we can differenti-
ate terminology axioms and assertional axioms. We have the following
categorisation of different kinds of reason for inconsistent ontologies.

e Inconsistency due to terminology axioms: In this case, we only consider incon-
sistency in TBoxes. Figure 17.1(2) is an example of such an inconsistency.
Following our definitions, this kind of inconsistency will make the TBox
incoherent:

e Inconsistency due to assertional axioms: This kind of inconsistency only occurs
in ABoxes. It is not related to incoherence. A source of assertional inconsistency
is that there are conflicting assertions about one individual, for example, an
individual is asserted to belong to a class and its complement class, as in
Fig. 17.1(2).

e Inconsistency due to terminology and assertional axioms: In this case, each
conflicting set of axioms must contain both terminology axioms and assertional
axioms. This kind of inconsistency is sometimes dependent on incoherence.
Such an example is shown in Fig. 17.1(5). It is easy to see that C5 is an
unsatisfiable concept and that O is inconsistent. The reason for the inconsistency
is that the individual a instantiates C3 which is unsatisfiable. Therefore, if we
repair the unsatisfiable concept Cs, then the inconsistency will disappear as well.
On the other hand, the inconsistency in the example in Fig. 17.1(4) is not caused
by an incoherence.

The first kind of inconsistency is only related to terminology axioms. In this
case, the unit of change is a concept (either atomic or complex). Therefore, some
revision approaches which take the individual names as the unit of change, such as
the one proposed in Qi et al. (2006), cannot be applied to deal with this kind of
inconsistency. In contrast, the other two kinds of inconsistency are related to
assertional axioms. So the unit of change can be either a concept or an individual
name.

From this discussion, we observe that the causes for incoherence and inconsis-
tency are manifold, and their interdependencies are complex. Incoherence is always
caused by conflicts in the terminology. It may or may not affect the consistency of
the overall ontology. Inconsistency may arise due to conflicts in the ABox, in the
TBox or a combination of both ABox and TBox.

17.3.2 Debugging Inconsistent/Incoherent Ontologies

Current DL reasoners, such as RACER, can detect logical incoherence and return
unsatisfiable concepts in an OWL ontology. However, they do not support the

368 G. Qi and A. Harth

diagnosis and incoherence resolution at all. To explain logical incoherence, it is
important to debug relevant axioms which are responsible for the contradiction.

Definition 17.2. (Schlobach and Cornet 2003) Let A be a named concept which is
unsatisfiable in a Tbox 7. A set 7' C 7T is a minimal unsatisfiability-preserving
sub-TBox (MUPS) of T if A is unsatisfiable in 7" and A is satisfiable in every sub-
TBox 7" C T'. The set of all MUPS of 7 with respect to A is denoted as MU, (7).

A MUPS of T with respect to A is the minimal sub-TBox of 7 in which A is
unsatisfiable. We will abbreviate the set of MUPS of 7 with respect to a concept
name A by mups(7,A). Let us consider an example from Schlobach and Cornet
(2003). Suppose 7 contains the following axioms:

axI:AIE—\AFIAzl_IA3 ax2:A2 EAHA4

ax; : A3 C A4 T1As axs : A4 CVs.BNC

axs : As C ds.—B axe 1 Ag T A U Ir.(A3 M —-CMAy)
axy : A7 © Ay M 3ds.—B

where A, B and C are atomic concept names and A; (i = 1,...,7) are defined concept
names, and r and s are atomic roles. In this example, the unsatisfiable concept
names are Al, A3, A6, A7 and MUPS of 7 with respect to A; (i = 1, 3, 6, 7) are:

mups(T, A1) : {{ax1,ax,}, {ax1,axs, axs,axs}}

mups(T ,Az) : {axs, axs, axs}

mups(T , Ag) : {{ax1,axy, axy,axe}, {ax,, axs, axs, axs,axe}}
mups(T,A7) : {axq, ax7}

MUPS are useful for relating sets of axioms to the unsatisfiability of specific
concepts, but they can also be used to calculate a minimal incoherence-preserving
sub-TBox, which relates sets of axioms to the incoherence of a TBox in general and
is defined as follows.

Definition 17.3. (Schlobach and Cornet 2003) Let 7 be an incoherent TBox.
A TBox 7' C T is a minimal incoherence-preserving sub-TBox (MIPS) of T if
T is incoherent and every sub-TBox 7" C 7" is coherent. The set of all MIPSs of
7 is denoted as MI(T).

A MIPS of 7 is the minimal sub-TBox of 7 which is incoherent. The set of
MIPS for a TBox 7 is abbreviated with mips(7). For T in the above example, we
get 3 MIPS:

mips(T) = {{ax1,axy }, {ax3,axy, axs }, {axq, ax7}}

To debug an inconsistent ontology, the notion of a minimal inconsistent sub-
ontology is proposed in Haase et al. (2005).

17 Reasoning with Networked Ontologies 369

Definition 17.4. A minimal inconsistent sub-ontology (MIS) O’ of O is an incon-
sistent sub-ontology of O that has not any proper subset O” such that O” is also
inconsistent.

There are many algorithms for debugging incoherent DL-based ontologies,
which can be classified into two approaches: a glass-box approach and a black-
box approach.

A glass-box approach is based on the reasoning algorithm of a DL. The advantage
of a glass-box approach is that it can find all MUPS of an incoherent ontology by a
single run of a modified reasoner. Most of the glass-box algorithms are obtained as
extension of tableau-based algorithms for checking satisfiability of a DL-based
ontology. The first tableau-based algorithm for debugging of terminologies of an
ontology is proposed in Schlobach and Cornet (2003). The algorithm is restricted to
unfoldable ALC TBoxes, that is, the left-hand sides of the concept axioms (the
defined concepts) are atomic and the right-hand sides (the definitions) contain no
direct or indirect reference to the defined concept. It is realised by attaching label to
axioms in order to keep track of which axioms are responsible for assertions
generated during the expansion of the completion forests. This algorithm is then
extended to more expressive DLs, like OWL DL, in Kalyanpur et al. (2005). As
pointed out in Kalyanpur et al. (2007), one problem for the tableau-based algorithms
is that some important blocking techniques cannot be used.

A black-box approach treats a DL reasoner as a ‘black-box’ or an ‘oracle’ and
uses it to check satisfiability of an ontology. The approach is reasoner-independent,
in the sense that the DL reasoner is solely used as an oracle to determine concept
satisfiability with respect to an ontology. The disadvantage of this approach is that it
needs to call the reasoner an exponential number of times in the worst case; thus, it
cannot handle large ontologies. Several algorithms belong to this approach, such as
those given in Kalyanpur et al. (2005) and Schlobach et al. (2007). The algorithm
proposed in Kalyanpur et al. (2005) consists of two main steps. In the first step, it
computes a single MUPS of the concept and then it utilises the Reiter’s hitting set
(HS) algorithm to retrieve the remaining ones. Two algorithms are given in
Kalyanpur et al. (2007) to compute a single MUPS. One of them first expands a
freshly generated ontology O’ to a superset of a MUPS using a relevance-based
selection function. Then O’ is pruned to find the final MUPS, where a window-
based pruning strategy is used to minimise the number of satisfiability-check calls
to the reasoner. However, the relevant subset O’ is expanded very quickly using the
syntactic selection function and becomes very large after a small number of
iteration. Therefore, they propose the other algorithm which extends a tableau
algorithm to find a subset of the original ontology that is a superset of a MUPS,
then apply the pruning strategy to find a MUPS. However, this algorithm still
cannot handle large ontologies, such as SNOMED CT.

In order to handle large incoherent ontologies, which may naturally exist when
ontologies from ontology network are integrated, we propose several optimisations.
The first optimisation is based on the syntactic locality-based module defined for
OWL DL ontologies in Grau et al. (2007). We generalise the results given in Baader
and Suntisrivaraporn (2008) by showing that the syntactic locality-based module of

370 G. Qi and A. Harth

an ontology with respect to an unsatisfiable concept covers all MUPSs of the
ontology with respect to the concept in Suntisrivaraporn et al. (2008). As a
consequence, it suffices to focus on axioms in the module when finding all
MUPS:s for an unsatisfiable concept. Empirical results demonstrate an improvement
of several orders of magnitude in efficiency and scalability of computing all MUPSs
in OWL DL ontologies. The second optimisation is based on a relevance-based
selection function defined in Huang et al. (2005) . We propose a relevance-based
algorithm for computing all MUPS of an unsatisfiable concept (Ji et al. 2009). The
algorithm iteratively constructs a set of MUPSs of an unsatisfiable concept using a
relevance-based selection function. Each MUPS returned by the algorithm is
attached with a weight denoting its relevance degree with respect to the
unsatisfiable concept.

Computing MISs of an inconsistent ontology can be similar to computing
MUPSs of an unsatisfiable concept. That is, we can simply adapt the black-box
algorithm for computing MUPS to compute MISs. However, such an algorithm
cannot scale to large ABoxes. In Du and Qi (2010), a novel method for computing a
set of sub-ontologies from an inconsistent OWL DL ontology is proposed so that
the computation of all MISs can be separately performed in each resulting sub-
ontology and the union of computational results yields exactly the set of all MISs.
Experimental results show that this method significantly improves the scalability
for computing all MISs of an inconsistent ontology.

17.3.3 A General Approach for Resolving Inconsistency
and Incoherence in Ontology Evolution

In this subsection, we deal with the problem of resolving inconsistency and
incoherence. More specifically, we consider this problem in the context of ontology
evolution. In this case, the problem is similar to the belief revision in classical
logic.

The problem of revision of ontology is described as follows. Suppose we have two
ontologies O = (7, A) and O' = (7', A"), where O is the original ontology and O is
the newly received ontology which contains a set of axioms to be added to O. Even if
both O and O’ are individually consistent and coherent, putting them together may
cause inconsistency or incoherence. Therefore, we need to delete or weaken some
axioms in O to restore consistency and coherence. Note that when the original
ontology is inconsistent or incoherent and the newly received ontology is empty,
then the problem of revision of ontology is reduced to the problem of resolving
inconsistency and incoherence in a single ontology. Therefore, the approach proposed
in this chapter can be also used to deal with a single ontology.

Usually, the result of revision is a set of ontologies rather than a unique ontology
(Qi et al. 2006). More formally, we have the following definition of ontology
revision. We denote all the possible ontologies with O.

17 Reasoning with Networked Ontologies 371

We first introduce the notion of a disjunctive ontology (Meyer et al. 2005).
A disjunctive ontology, denoted as O, is a set of ontologies. The semantics of the
disjunctive ontology is defined as follows (Meyer et al. 2005):

Definition 17.5. A disjunctive ontology O is satisfied by an interpretation Z (or Z
is amodel of Q) iff 30 € O such that Z |= O. O entails ¢, denoted O |= ¢, iff every
model of O is a model of ¢.

Definition 17.6. An ontology revision operator (or revision operator for short) in
DLs is a function o : O x O — P(O) which satisfies the following conditions: (1)
000 |= ¢ for all p=0’, where P(O) denotes all the subsets of O and (2) for each
0,000/, 0; is consistent.

That is, an ontology revision operator is a function which maps a pair of
ontologies to a disjunctive ontology which can consistently infer the newly received
ontology. In practice, we may only need one ontology after revision. In this case, we
can obtain such an ontology by ranking the ontologies obtained by the revision
operator and then selecting the one with highest rank. Ranking of ontologies can
either be given by the users or be computed by some measures, such as ranking of
test cases and syntactic relevance (see Kalyanpur et al. (2006) for more details).

The current work on ontology revision suffers from some problems, to name a
few, we have the following ones:

» There is much work on the analysis of applicability of AGM postulates for belief
change to DLs (Flouris et al. 2005, 2006). However, few of them discuss the
concrete construction of a revision approach.

¢ Current revision approaches often focus on dealing with logical inconsistency.
Another problem which is as important as inconsistency handling is incoherence
handling, where an ontology is incoherent if and only if there is an unsatisfiable
named concept in its terminology. As analysed in Flouris et al. (2006), logical
incoherence and logical inconsistency are not independent of each other.
A revision approach which resolves both logical incoherence and inconsistency
is missing.

We now propose our general approach which resolves incoherence and incon-
sistency in an integrated way. The approach consists of the process steps shown in
Fig. 17.2. In this process, problems that are related only with either the TBox or the
ABox are dealt with independently in two separate threads (c.f. left and right thread
of Fig. 17.2, respectively). For the TBox, inconsistency resolution is done before
incoherence resolution because incoherence is a consequence of inconsistency in
the TBox. We first check if 7 U 7" is consistent. If it is not, then we resolve the
inconsistency. This can be done by either deleting the erroneous terminology
axioms or weakening them. In a next step, we resolve incoherence. There are
several ways to resolve incoherence. The commonly used technique is to remove
some (usually minimal numbers) of erroneous terminology axioms which are
responsible for the incoherence. Alternatively, we can take the maximal coherent
sub-ontologies of 7 with respect to 7" as the result of revision (Meyer et al. 2006;
Lam et al. 2006). For the ABox, we resolve inconsistencies that occur only due to

372 G. Qi and A. Harth

0=<T, A>, 0'=<T, A'>

yes

no]]
TBox inconsistency

processing

yes

TBox incoherence

TUT" coherent?
processing

yes

no
Ontology inconsistency

QUO’ consistent?
processing

yes

y

Consistent and coherent

0" = <7'nl A”>

Fig. 17.2 Approach to resolving inconsistency and incoherence

assertional axioms. This can be done by either deleting the assertional axioms
which are responsible for the inconsistency or weakening them. The weakening
of assertional axioms may be different from that of terminology axioms. Finally, we
deal with the inconsistency due to both terminology and assertional axioms. The
resulting ontology is 0" = <T”, A”>, which is both consistent and coherent. In each
of the revision steps, the result may be a disjunctive ontology, since there may exist
several alternative ways to resolve the incoherence or inconsistency. However, in
each step, a decision is made: Which single ontology should be selected as input for
the subsequent step. This decision can be made either by the user or an automated
procedure based on a ranking of the results as discussed above.

Our general approach does not yet specify how to deal with inconsistency or
incoherence. Moreover, for different kinds of inconsistency, we can use different
strategies to resolve them. For example, when resolving inconsistency due to
terminology axioms, we can take the maximal consistent subsets of the original
TBox with respect to the new TBox as the result of revision. Whilst when resolving

17 Reasoning with Networked Ontologies 373

inconsistency related to assertional axioms, we can apply the revision approach in
Qi et al. (2006), which removes minimal number of individual resulting in the
conflict. In the next section, we instantiate our approach by proposing a concrete
approach to resolving incoherence and some concrete approaches to resolving
inconsistency.

17.3.4 Repairing Ontology Mappings

There has been some work on handling inconsistency in distributed ontologies
connected via mappings, where a mapping between two ontologies is a set of
correspondences between entities in the ontologies. In a distributed system
consisting of two ontologies and a mapping between them, correspondences in
the mapping can have different interpretations. For example, in distributed descrip-
tion logics (DDL) (Borgida and Serafini 2003), a correspondence in a mapping is
translated into two bridge rules that describe the ‘flow of information’ from one
ontology to another one. In Meilicke et al. (2007), the authors deal with the problem
of mapping revision in DDL by removing some bridge rules which are responsible
for the inconsistency. The idea of their approach is similar to that of the approaches
for debugging and repairing terminologies in a single ontology. Mappings can also
be interpreted as sets of axioms in a description logic. A heuristic method for
mapping revision is given in Meilicke and Stuckenschmidt (2007). However, this
method can only deal with inconsistency caused by disjointness axioms which state
that two concepts are disjoint. Later on, Meilicke et al. proposed another algorithm
to resolve the inconsistent mappings in Meilicke et al. (2008). The idea of their
algorithm is similar to the linear base revision operator given in Nebel (1994).
However, both methods given in Meilicke and Stuckenschmidt (2007) and Meilicke
et al. (2008) lack a rationality analysis with respect to logical properties.

In Qi et al. (2009), a conflict-based mapping revision operator is proposed based
on the notion of a ‘conflict set’, which is a sub-set of the mapping that is in conflict
with ontologies in a distributed system. A postulate from belief revision theory
(Hansson 1993) is adapted, and it is shown that the mapping revision operator can
be characterised by it. After that, an iterative algorithm for mapping revision is
given by using a revision operator in description logics, and it is shown that this
algorithm results in a conflict-based mapping revision operator. A revision operator
is given, and it is shown that the iterative algorithm based on it produces the same
results as the algorithm given in Meilicke et al. (2008). This specific iterative
algorithm has a polynomial time complexity if the satisfiability check of an
ontology can be done in polynomial time in the size of the ontology. However,
this algorithm may still be inefficient for large ontologies and mappings because it
requires a large number of satisfiability checks. Therefore, an algorithm to imple-
ment an alternative revision operator based on the relevance-based selection
function given in Huang et al. (2005) is proposed and is further optimised by a
module extraction technique given in Suntisrivaraporn et al. (2008). Neither of the

374 G. Qi and A. Harth

above proposed revision operators removes minimal number of correspondences to
resolve inconsistencies. To better fulfil the principle of minimal change, we con-
sider the revision operator given in Qi et al. (2008) which utilises a heuristics based
on a scoring function which returns the number of minimal incoherence-preserving
sub-ontologies (MIPS) that an axiom belongs to. Instantiating the iterative algo-
rithm with this existing revision operator results in a new conflict-based mapping
revision operator.

17.4 Main Functionalities

In the following, we discuss the main functionality provided by the plugins which
cover reasoning and query processing with networked ontologies.

17.4.1 Reasoning Functionality

The installed reasoner materialises inferences and combines them with the ontol-
ogy, over which the query evaluation is carried out. Table 17.1 lists the axioms
which are supported for materialisation via the OWL API (Bechhofer et al. 2003).
Users may specify which of the axioms the reasoner should take into account in the
materialisation procedure. The reasoner plugin also provides a simple consistency
check which returns whether an ontology is consistent or not.

17.4.2 Diagnosing and Resolving Inconsistencies

Before representing the functionalities of RaDON, some terminologies involved are
introduced first:

Table 17.1 Supported
axioms for materialisation

Axiom

SubClass

DisjointClasses
PropertyAssertion
ClassAssertion
SubDataProperty
EquivalentClass
SubObjectProperty
DataPropertyCharacteristic
EquivalentDataProperties
EquivalentObjectProperty
InverseObjectProperties
ObjectPropertyCharacteristic

17 Reasoning with Networked Ontologies 375

Unsatisfiable concept: A named concept C in an ontology O is unsatisfiable if
and only if, for each model of O, the interpretation of C is empty.

Incoherent ontology: An ontology O is incoherent if there exists an unsatisfiable
concept in O.

Inconsistent ontology: An ontology O is inconsistent if and only if it has no
model.

RaDON provides a set of techniques for dealing with inconsistency and incoher-

ence in ontologies. In particular, RaDON supports novel strategies and consistency
models for distributed and networked environments.

RaDON extends the capabilities of existing reasoners with the functionalities to

deal with inconsistency and incoherence. Specifically, the functionalities provided
by RaDON include:

Debugging an incoherent or an inconsistent ontology to explain why a concept is
unsatisfiable or why the ontology is inconsistent.

Repairing an ontology automatically by computing all possible explanations
with respect to all unsatisfiable concepts if the ontology is incoherent, or with
respect to the inconsistent ontology if it is inconsistent.

Repairing an ontology manually based on the debugging results. For the manual
repair, the user can choose the axioms to be removed for restoring the coherence
or consistency.

Repairing a mapping between two ontologies.

Coping with inconsistency based on a paraconsistency-based algorithm.

17.4.3 Query Functionality

The query plugin allows for query answering over local ontologies residing in
memory in the OWL API by using the ARQ query processor included in the Jena
Semantic Web framework (Carroll et al. 2004). Results of the query evaluation can
be further edited within the NeOn Toolkit.

17.5 Summary of Usage

In the following we show how to operate the plugins.

17.5.1 Reasoning Plugin

The reasoning plugin provides common access to reasoners for NeOn Toolkit
components. The plugin can be configured in a Preferences view shown in Fig. 17.3.

376 G. Qi and A. Harth

Preferences
niter text Reasoner Preferences = v
b General Select the reasoner used (restart NTK to make sure different
b Help reasoner is used)
b Instal/Update Choose Reasoner

< NeOn Toolkit Prefe ® Pellet
KC-Viz Preferenc O HermiT
Language Prefe
Ontology Langu
Visualizer

b Team

|Restore Qefaults| I Apply]

I Cancel] [OK]

Fig. 17.3 Reasoner Preferences selection screenshot

Currently, two reasoners are supported, namely Pellet (Sirin et al. 2007) and HermIT
(Shearer et al. 2008). The selected preferences apply to all NeOn Toolkit components.

17.5.2 RaDON Plugin

RaDON provides two plugins to deal with a single ontology or an ontology
network. In the plugin of ‘Repair a Single Ontology’, the following specific
functionalities are provided:

« Handle incoherence: This functionality corresponds to the button of ‘Handle
Incoherence’ which can be activated if the ontology is incoherent. That is, there
is at least one unsatisfiable concept in the ontology. All the minimal
unsatisfiability-preserving subsets (MUPS) can be computed for each
unsatisfiable concept.

« Handle inconsistency: This corresponds to the button of ‘Handle Inconsistency’
which is activated if the ontology is inconsistent. That is, there is no model for
the ontology. All the minimal inconsistent subsets (MIS) can be calculated.

17 Reasoning with Networked Ontologies 377

» Repair automatically: This corresponds to the button of ‘Repair Automatically’.
If the button of ‘Repair Automatically’ is pressed, our algorithm will provide
some axioms to be removed to keep the coherence or consistency of the
ontology. Specifically, this can be done by computing the minimal incoher-
ence-preserving subsets (MIPS) or MIS, respectively, and then choosing auto-
matically some axioms to be removed.

» Repair manually: This corresponds to the button of ‘Repair Manually’. If this
button is activated, a new dialogue will be shown with the information of MIPS
or MIS which are computed based on the found MUPS or MIS, respectively. The
user could choose the axioms to be removed by themselves.

In the plugin of ‘Repair and Diagnose Ontology Network’, the similar
functionalities in the plugin above are given. The main difference is that this plugin
is to repair and diagnose a mapping between two ontologies by assuming the two
source ontologies are more reliable than the mapping itself.

17.5.3 SPARQL Query Plugin

The query plugin can be invoked using the ‘SPARQL Query’ context menu, which
starts the SPARQL view.

Users first load the ontology into the SPARQL query processor. Optionally,
users can load an ontology and materialise inferences at the same time. Having
loaded an ontology, users can specify a SPARQL query against the loaded ontology.
For example, the following SPARQL query lists all instances of type owl:Class.

PREFIX owl: <http://www.w3.0rg/2002/07/owl#>
PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
SELECT * WHERE- { ?s rdf:type owl:Class . }

When users click the ‘Evaluate’ button, the plugin generates a table with the
variable bindings. Figure 17.4 shows the SPARQL plugin with results for a query.

In addition to SPARQL SELECT queries which return a table with variable
bindings, the plugin also evaluates CONSTRUCT queries which return an RDF
graph. The returned RDF graph can be used to create a new ontology in the NeOn
Toolkit. Thus, the SPARQL query allows for the selection of parts of an ontology
and further refinement inside the Toolkit.

17.6 Conclusion

In this chapter we have discussed the functionality and workings of NeOn Toolkit’s
reasoning and query plugins. Reasoning tasks are important in knowledge engi-
neering, for example, to check for logical consistency of modelled artefacts. The
plugins provide users with advanced reasoning and query answering functionality
over networked ontologies.

378 G. Qi and A. Harth

| B Search Window Help

ri- L - R &1 |[ElowL|
A *Ontology MNavigator 52 * 8 «}Entity Properties [SPARQL Query View & L=
- i NewOntologyProject [OWL2] Project: NewOntologyProject 2
b «§ =http:fharth.orglandreas/f =
£ At fuming. com/foaffo. 1/ ntology: hitp:/ixmins.comifoafid. 1/ %
| Status: |evalusting query... done in 106 ms |
Load Load and Materialise

PREFIX dc: <http:ffpurl.org/dc/elements/1.1/>

PREFIX foaf: <httpufxmins.comifoafi0. 1>

PREFIX owl: <http:/fwwaw.w3.0rgf2002/07/owi# >

PREFIX rdf: <http:/fwww.w3.0rg/1999/02/22-rdf-syntax-ns# >
PREFIX refs: <http:/fiwww.w3.orgl2000/01/rdf-schemad >
PREFIX vs: <http:/fwww.w3.orgf2003/06/sw-vocab-status/ins# >
PREFIX wot: <http:/fxmins comiwot/0.1/>

SELECT * WHERE { 7s rdfitype owh:Class . }

Evaiuate__

s

http:fxmins.comfoafid. Limage

hitp:/ixmins.comfoaf/0. LiProject

I 0 http:iiwwwow3.org/2000/ 10/swap/pimicontact#Person
= = http:/fxmins.comifoaf/0. Liagent

Qin = wbo @Ra &P | = http:fxmins. comifoafiD. LiLabelProperty
hitp:ffxmins.comfoaf/0. L/Document
hitp:wwww3.ora2002/07 fowl# Thing
hetp: /A 3.or 01/rdf-schemast

0 a
hittp:fAwwww3.0rgl2003/0LigeoiwgsB4_pos#SpatialThing
htp:ifxmins.comifoaf/0. L/OnlineAccount

hitpiixmins. comifoafi0. LiPerson
htto:ifixmins.comifoafid. LiPerscnalProfileDocument o

Fig. 17.4 Query plugin screenshot

References

Baader F, Suntisrivaraporn B (2008) Debugging SNOMED CT using axiom pinpointing in the
description logic EL+. In: Proceedings of the 3rd international conference on Knowledge
Representation in Medicine (KR-MED 2008), Phoenix, AZ, USA

Baader F, Calvanese D, McGuinness D, Nardi D, Patel-Schneider P (2003) The description logic
handbook: theory, implementation and application. Cambridge University Press, Cambridge

Bechhofer S, Volz R, Lord P (2003) Cooking the semantic web with the owl api. In: The Semantic
Web — ISWC 2003, Lecture notes in computer science, vol 2870. Springer, Berlin/Heidelberg,
pp 659-675. doi:10.1007/978-3-540-39718-2 42

Borgida A (1994) On the relationship between description logic and predicate logic. In:
Proceedings of the 3rd international conference on Information and Knowledge Management
(CIKM 1994), Gaithersburg, MD. ACM, New York, pp 219-225

Borgida A, Serafini L (2003) Distributed description logics: assimilating information from peer
sources. J Data Semant 1:153-184

Carroll JJ, Dickinson I, Dollin C, Reynolds D, Seaborne A, Wilkinson K (2004) Jena:
implementing the semantic web recommendations. In: Proceedings of the 13th international
World Wide Web conference on Alternate track papers & posters. ACM, New York, NY, USA,
WWW Alt. 2004, pp 74-83, DOI http://doi.acm.org/10.1145/1013367.1013381, URL http://
doi.acm.org/10.1145/1013367.1013381

http://dx.doi.org/10.1007/978–3–540–39718–2 42
http://dx.doi.org/http://doi.acm.org/10.1145/1013367.1013381
http://dx.doi.org/http://doi.acm.org/10.1145/1013367.1013381
http://dx.doi.org/http://doi.acm.org/10.1145/1013367.1013381

17 Reasoning with Networked Ontologies 379

Clark KG, Feigenbaum L, Torres E (2008) SPARQL protocol for RDF. W3C Recommendation.
http://www.w3.org/TR/rdf-sparql-protocol/

Du J, Qi G (2010) Decomposition-based optimization for debugging of inconsistent owl dl
ontologies. In: Proceedings of the 4th international conference on Knowledge Science, Engi-
neering and Management (KSEM 2010), Belfast, Northern Ireland, UK, pp 88-100

Flouris G, Plexousakis D, Antoniou G (2005) On applying the AGM theory to DLs and OWL. In:
Proceedings of the 4th International Conference on Semantic Web (ISWC 2005), Galway,
Ireland, pp 216-231

Flouris G, Huang Z, Pan JZ, Plexousakis D, Wache H (2006) Inconsistencies, negations and
changes in ontologies. In: Proceedings of the 21st National Conference on Artificial Intelli-
gence (AAAI 2006), Boston, MA, pp 1295-1300

Grau BC, Horrocks I, Kazakov Y, Sattler U (2007) Just the right amount: extracting modules from
ontologies. In: Proceedings of the 16th international conference on World Wide Web (WWW
2007), Banff, AB, Canada, pp 717-726

Haase P, van Harmelen F, Huang Z, Stuckenschmidt H, Sure Y (2005) A framework for handling
inconsistency in changing ontologies. In: Proceedings of the 4th International Semantic Web
Conference (ISWC 2005), Galway, Ireland, pp 353-367

Hansson SO (1993) Reversing the levi identity. J Philos Log 22(6):637-669

Hayes P (2004) RDF semantics. W3C Recommendation. http://www.w3. org/TR/rdf-mt/

Huang Z, van Harmelen F, ten Teije A (2005) Reasoning with inconsistent ontologies. In:
Proceedings of the 9th International Joint Conference on Aurtificial Intelligence (IJCAI
2005), Edinburgh, Scotland, UK, pp 454459

Ji Q, Qi G, Haase P (2009) A relevance-directed algorithm for finding justifications of dl
entailments. In: Proceedings of the 4th Asian Conference on Semantic Web (ASWC 2009),
Shanghai, China, pp 306-320

Kalyanpur A, Parsia B, Sirin E, Hendler J (2005) Debugging unsatisfiable classes in OWL
ontologies.] Web Semant 3(4):268-293

Kalyanpur A, Parsia B, Sirin E, Grau BC (2006) Repairing unsatisfiable concepts in owl
ontologies. In: Proceedings of the 3rd European Semantic Web Conference (ESWC 2006),
Budva, Montenegro, pp 170-184

Kalyanpur A, Parsia B, Horridge M, Sirin E (2007) Finding all justifications of OWL DL
entailments. In: Proceedings of the 6th International Semantic Web Conference (ISWC
2007), Busan, Korea, pp 267-280

Lam J, Pan JZ, Seeman D, Vasconcelos W (2006) A fine-grained approach to resolving
unsatisfiable ontologies. In: Proceedings of the 2006 IEEE/WIC/ACM international confer-
ence on Web Intelligence (WI 2006), Hong Kong, pp 428434

Meilicke C, Stuckenschmidt H (2007) Applying logical constraints to ontology matching. In:
Proceedings of the 30th annual German conference on Artificial Intelligence (KI 2007),
Osnabrick, Germany, pp 99-113

Meilicke C, Stuckenschmidt H, Tamilin A (2007) Repairing ontology mappings. In: Proceedings
of the 22nd AAAI Conference on Artificial Intelligence (AAAI 2007), Vancouver, BC,
Canada, pp 1408-1413

Meilicke C, Volker J, Stuckenschmidt H (2008) Learning disjointness for debugging mappings
between lightweight ontologies. In: Proceedings of the 16th international conference on
Knowledge Engineering: Practice and Patterns (EKAW 2008), Acitrezza, Italy, pp 93—-108

Meyer T, Lee K, Booth R (2005) Knowledge integration for description logics. In: Proceedings of
20th national conference on Artificial Intelligence (AAAI 2005). AAAI Press, Pittsburgh, PA,
pp 645-650

Meyer T, Lee K, Booth R, Pan JZ (2006) Finding maximally satisfiable terminologies for the
description logic ALC. In: Proceedings of 21th national conference on Atrtificial Intelligence
(AAAI 2006), Boston, MA, pp 269-274

Minsky M (1974) A framework for representing knowledge. Massachusetts Institute of Technol-
ogy, Cambridge

http://www.w3.org/TR/rdf-sparql-protocol/
http://www.w3. org/TR/rdf-mt/

380 G. Qi and A. Harth

Nebel B (1994) Base revision operations and schemes: semantics, representation and complexity.
In: Proceedings of the Eleventh European Conference on Atrtificial Intelligence (ECAI 1994),
Amsterdam, the Netherlands, pp 341-345

Prud’hommeaux E, Seaborne A (2008) SPARQL query language for RDF. W3C Recommenda-
tion. http://www.w3.org/TR/rdf-sparql-query/

Qi G, Liu W, Bell DA (2006) Knowledge base revision in description logics. In: Proceedings of the
10th European conference on logics in artificial intelligence (JELIA 2006). Springer,
Liverpool, UK, pp 386-398

Qi G, Haase P, Huang Z, Ji Q, Pan JZ, Volker J (2008) A kernel revision operator for terminologies —
algorithms and evaluation. In: Proceedings of the 7th International Semantic Web Conference
(ISWC 2008), Karlsruhe, Germany, pp 419434

Qi G, Ji Q, Haase P (2009) A conflict-based operator for mapping revision. In: Proceedings of the
8th International Semantic Web Conference (ISWC 2009), Chantilly, VA, USA, pp 521-536

Schlobach S, Cornet R (2003) Non-standard reasoning services for the debugging of description
logic terminologies. In: Proceedings of the 18th International Joint Conference on Artificial
Intelligence (IJCAI 2003), Acapulco, Mexico, pp 355-362

Schlobach S, Huang Z, Cornet R, van Harmelen F (2007) Debugging incoherent terminologies.
J Autom Reason 39(3):317-349

Schmidt-Schau M, Smolka G (1991) Attributive concept descriptions with complements. Artif
Intell 48(1):1-26

Shearer R, Motik B, Horrocks I (2008) HermiT: a highly-efficient OWL reasoner. In: Ruttenberg
A, Sattler U, Dolbear C (eds) Proceedings of the 5th international workshop on OWL:
Experiences and Directions (OWLED 2008 EU), Karlsruhe, Germany

Sirin E, Parsia B, Grau BC, Kalyanpur A, Katz Y (2007) Pellet: a practical owl-dl reasoner. Web
Semant 5:51-53. doi: 10.1016/j.websem.2007.03.004, URL http://portal.acm.org/citation.cfm?
id= 1265608.1265744

Suntisrivaraporn B, Qi G, Ji Q, Haase P (2008) A modularization-based approach to finding all
justifications for owl dl entailments. In: Proceedings of the 3rd Asian Semantic Web Confer-
ence (ASWC 2008), Bangkok, Thailand, pp 1-15

http://www.w3.org/TR/rdf-sparql-query/
http://dx.doi.org/10.1016/j.websem.2007.03.004
http://portal.acm.org/citation.cfm?id= 1265608.1265744
http://portal.acm.org/citation.cfm?id= 1265608.1265744
http://portal.acm.org/citation.cfm?id= 1265608.1265744

Part IV
Case Studies

Chapter 18
Knowledge Management at FAO: A Case
Study on Network of Ontologies in Fisheries

Caterina Caracciolo, Juan Heguiabehere, Aldo Gangemi, Claudio
Baldassarre, Johannes Keizer, and Marc Taconet

Abstract In this chapter, we illustrate the work conducted at the Food and
Agriculture Organization of the United Nations (FAO) with the creation of
a network of ontologies about fisheries, developed with NeOn technologies and
methodologies. The network included the main thematic areas needed to talk about
fish stocks (often referred to as aquatic resources) and included data sources of
various types: reference data for time series, thesauri for document indexing, actual
time series, and the reuse of an existing well-known ontology maintained by FAO
(the geopolitical ontology). Such a network of ontologies was also used within
a prototypical web-based application. After describing the methodologies used to
create the network, and its contents and features, we draw some conclusions and
highlight the lessons learned during the process.

C. Caracciolo (X)) J. Keizer

Food and Agriculture Organization of the United Nations (FAO of the UN), OEK, v.le Terme di
Caracalla 1,

00154 Rome, Italy

e-mail: caterina.caracciolo@fao.org; johannes.keizer@fao.org

J. Heguiabehere

Facultad de Ingenieria, Universidad de Buenos Aires, Paseo Colon 850, Buenos Aires, Argentina
C1063ACV

e-mail: jheguiabehere@fi.uba.ar

A. Gangemi

Semantic Technologies Lab, Institute of Cognitive Sciences and Technologies (National
Research Council — CNR), Via Nomentana 56, 00161 Rome, Italy

e-mail: aldo.gangemi@cnr.it

C. Baldassarre » M. Taconet

Food and Agriculture Organization of the UN (FAO), FIES, v.le Terme di Caracalla 1,
00154 Rome, Italy

e-mail: claudio.baldassarre@tfao.org; marc.taconet@fao.org

M.C. Suarez-Figueroa et al. (eds.), Ontology Engineering in a Networked World, 383
DOI 10.1007/978-3-642-24794-1_18, © Springer-Verlag Berlin Heidelberg 2012

mailto:caterina.caracciolo@fao.org
mailto:johannes.keizer@fao.org
mailto:jheguiabehere@fi.uba.ar
mailto:aldo.gangemi@cnr.it
mailto:claudio.baldassarre@fao.org
mailto:marc.taconet@fao.org

384 C. Caracciolo et al.

List of Acronyms

ASFA Aquatic Sciences and Fisheries Abstracts

ASFIS Aquatic Science and Fisheries Information System

CWP Coordinating Working Party on Fishery Statistics

EEZ Exclusive Economic Zones

FAO Food and Agriculture Organization of the United Nations

FIES Fisheries and Aquaculture Department, FAO

FSDAS Fisheries Stock Depletion Assessment System

HS Harmonized System

ISSCAAP International Standard Statistical Classification for Aquatic Animals
and Plants

ISSCFC International ~ Standard Statistical Classification of Fishery
Commodities

ISO International Standard Organization

LMEs Large marine ecosystems

NAFO Northwest Atlantic Fisheries Organization

NOAA US National Oceanic and Atmospheric Administration

OAEI Ontology Alignment Evaluation Initiative

ODP Ontology Design Patterns Portal (www.ontologydesignpatterns.org)

OEK Office of Knowledge Exchange, Research and Extension

SITC Standard International Trade Classification

UNDP United Nations Development Programme

18.1 Introduction

The Food and Agriculture Organization of the United Nations (FAO) has collected
data about food and agriculture since its foundation in 1945. Since the beginning,
metadata has been used to annotate, organize, and classify data, as in the case of
thesauri used to index documents' and reference data for statistics, i.e., the concepts
used as dimensions of a piece of statistical data® to store and retrieve statistics’.
However, compared to most modern information systems, one may notice some
limitations.

First of all, especially for what concerns reference data, much of the actual
relationships between the objects that are referenced are kept away from it. For
example, there is reference data for species and reference data for fishing areas, but

! http://www.fao.org/documents/en/docrep.jsp

2Reference data may be considered a specific type of metadata for statistics. Other types of
metadata are about data provenance and methodology for data creation.

3 For a list of statistical databases on fisheries maintained by FAO, see http://www.fao.org/fishery/
statistics/en

http://www.fao.org/documents/en/docrep.jsp
http://www.fao.org/fishery/statistics/en
http://www.fao.org/fishery/statistics/en

18 Knowledge Management at FAO 385

if users want to know something about what species is found in a given fishing area,
they should search for this information in other information systems, where data
about species distribution is available. The result of this situation is that it is well
possible to query the system for time series about “catch of bluefin tuna (Thunnus
thynnus, Linnaeus, 1758) in the Indian Ocean,” although bluefin tuna is actually
found in open waters of tropical and subtropical seas worldwide. Moreover, data is
usually collected and stored according to one specific classification system. This
implies that the only way to query a database is by using exactly the same
classification used for storing the data. Conversion of data according to different
classifications is then a time-consuming task that only domain experts may reliably
perform. Obviously, the establishment of correspondences between classification
systems is a delicate task that falls outside the scope of an information manage-
ment project, but a modern information management approach should enable easy
conversion between one system and the other, any time when the conversion is
made available by experts.

For these reasons, the data owned by FAO is a good application area to prove and
refine the technologies developed within the NeOn project. We concentrated on the
domain of fisheries, as it is a good example of domain where the possibility of
linking together different information systems is crucial. The Fisheries and Aqua-
culture Department (FIES) of FAO publishes reports about various aspects of
fisheries, including aquatic resources, on a regular basis. Reports are usually
based on data contributed by different institutions, often stored in different infor-
mation systems and encoded in various formats. Therefore substantial data inte-
gration effort is usually required. In our use case on fisheries, we worked on the
hypothesis that the conversion of data and metadata into a network of ontologies
could lead to improved information sharing. The experimental application we
designed is a Fisheries Stock Depletion Assessment System (FSDAS)”.

In the rest of this chapter, we present our experience with the making of
a network of ontologies and on the application based on that. In Sect. 18.2, we
illustrate the domain and data used for the use case. In Sect. 18.3, we describe the
methodology followed for the creation of the network. In Sect. 18.4, we present the
resulting network of ontologies and highlight its features. In Sect. 18.5, we present
the ontology-based system we developed. Finally, in Sect. 18.6, we draw our
conclusion and hint at future work.

* For details about the requirements driving this work in the context of the use case, see Iglesias
Sucasas et al. (2007).

386 C. Caracciolo et al.
18.2 Domains and Data

A fish stock is a subpopulation of particular species of fish with some definable
attributes and living in definable marine areas. A simplified notion of fish stock is
the one of marine resource: a fish stock considered from a management perspective.
We adopted the operational notion of marine resource and concentrated on a few
entities considered crucial to talk about it: first of all, marine species, but also water
areas (needed to indicate where species are caught) and land areas (to keep track of
legal dependency of water areas and vessels). We also considered other entities,
such as fisheries commodities and fishing techniques.

As for the actual data sets, we considered a relevant subset of the data set
available in FAO: a set of statistics on fisheries (mainly catch statistics) and
documents about fisheries. The corresponding metadata (i.e., reference data for
statistics and thesauri for documents) have been reengineered into a network of
ontologies. We also reused and included in the network the FAO geopolitical
ontology, used to aggregate information about countries and to operate the FAO
Country Profiles portal®. In the following, we first provide some explanations about
the entities we considered and then describe the data sets we used.

18.2.1 Data Sets Included in the Network of Ontologies

We have considered three distinct types of metadata sources:

1. Reference data used to identify the “dimensions” of a piece of statistical data
(we focused on catch data)

2. Thesauri used to index documents about fisheries: AGROVOC® and ASFA
thesaurus’

3. The geopolitical ontology®. an ontology about geopolitical information main-
tained by FAO

Reference data. A time series is a sequence of statistical observations ordered in
time. FIES collects observations about catches (or captures), aquaculture produc-
tion, fleets, trade of commodities, among others’. Each piece of statistical data is

3 http://www.fao.org/countryprofiles/

6 http://aims.fao.org/website/ AGROVOC-Thesaurus/sub

7 http://www4.fao.org/asfa/asfa.htm

8 http://www.fao.org/countryprofiles/geoinfo.asp?lang=en

°Detailed information regarding fisheries statistics can be found in the Handbook of Fishery
Statistical Standards [HBFSS] by the Coordinating Working Party on Fishery Statistics (CWP).
The Coordinating Working Party on Fishery Statistics (CWP) supported by its participating
organizations has served since 1960 as the premier international and inter-organization forum
for agreeing upon common definitions, classifications, and standards for the collection of fishery
statistics.

http://www.fao.org/countryprofiles/
http://aims.fao.org/website/AGROVOC-Thesaurus/sub
http://www4.fao.org/asfa/asfa.htm
http://www.fao.org/countryprofiles/geoinfo.asp?lang=en
http://www.fao.org/countryprofiles/geoinfo.asp?lang=en

18 Knowledge Management at FAO 387

NEW [MODIFY)
Statistical Query Results
Parameters selected {+] Special values explanation 4+1
Capture: Quantity (t)
Display Land Area: All ‘Ti [ok | EXPORT
Land Area Ocean Area Species Scientific name 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
Japan Atlantic Ocean and adjacent seas |Atlantic bluefin tuna| Thunnus thynnus |3 140(2 815(3 5013 630{3 0813 241|2 828|2 3552 923(2 084

Fig. 18.1 Example of time series

referenced by the following dimensions: time (in years), space (land and/or water
areas), and the variable representing the observed object (e.g., biological species,
vessels, commodities).

Figure 18.1 shows an example of time series about fish catch. Columns 1-3
represent the dimensions, or reference data, of the statistical data (i.e., land area,
water area, and species), while the last 10 columns report the yearly observations
collected. Information systems in FIES organize reference data into tables (refer-
ence tables (RT)) that store the codes assigned to each reference object according to
one or more coding system maintained by international organizations. They also
store the association between codes and names in one or more languages (usually
English, French, and Spanish). Correspondence between languages is one to one
because it results from international agreements (e.g., on names of territories, on
commodities classifications). The entire system that manages the RT is called
reference tables’ management system (RTMS)'?, whose core is an oracle database.

Reference data is also used in the fisheries fact sheets produced by FIES, where
a large amount of information about fisheries, aquaculture, and related subjects
(including fishing techniques, fishing areas, fisheries and aquaculture country
profiles) is made available to the public in the form of semistructured text. All
fisheries fact sheets in FAO are in XML format, structured according to a compre-
hensive XML schema that includes all elements used in all types of fact sheets. Fact
sheets are organized by domains (e.g., cultured species, fishing equipment, fishery,
gear type), each corresponding to an element under the root FIGISdoc, the root of
any fact sheet (XML document). Domains are fully specified by means of nested
elements. Each element includes a description meant for human use.

FAO thesauri. We considered two thesauri: AGROVOC and ASFA. AGROVOC
is the FAQ’s corporate thesaurus, covering all domains of interest to FAO, includ-
ing fisheries. AGROVOC is currently available in 19 languages, and 5 more are
under development1 ! AGROVOC is available in various formats, and at the time of
the NeOn use case, an OWL version was under study. Currently, it is encoded in

10 Reference tables are browsable at: http://www.fao.org/fishery/rtms/en

" Issues related to the treatment of multilinguality in AGROVOC are presented in Caracciolo and
Sini (2007).

http://www.fao.org/fishery/rtms/en

388 C. Caracciolo et al.

SKOS, although several other formats are still available to users. ASFA is the
thesaurus developed for the Aquatic Sciences and Fisheries Abstracts (ASFA)
partnership, an international agreement between institutions active in the area of
fisheries, to collect abstracts relevant to the domain. ASFA is available in three
languages: English, French, and Spanish.

The FAO geopolitical ontology is a repository of information (e.g., names in
various languages, codes, historical changes, geographical coordinates) about geo-
political entities such as countries and groups. It is largely used within FAO and by
partners for the purpose of querying information systems using codes for internal
storage of data about geopolitical entities (Kim et al. 2009). It is available as an
OWL ontology and as RDF(S) data published in the Linked Open Data style.

18.2.2 Coverage of the Fisheries Network of Ontologies

Once identified the resources to use for our use case, we went on selecting the
domain entities needed to ensure appropriate coverage of the network of ontologies
and consequent use in the FSDAS. For example, aquatic species and water areas are
necessary to define aquatic resources; land areas, together with aquatic species and
water areas, are necessary to reference catch statistics. Other entities are useful to
integrate our view on the fisheries domain, such as commodities (for production
data), fishing gears, and fishing vessels. The user not acquainted with statistics and
fisheries should keep in mind that names are important to enable users to search
across different data sets, while codes are important for actual storage and retrieval
of data.

In this section, we concentrate on the most important entities needed to under-
stand and reference fisheries data: aquatic species, water areas, land areas, and
aquatic resources.

Aquatic species. FAO maintains a list of aquatic species of interest to FAO (both
for fisheries and aquaculture), and about which data is collected: the ASFIS
(Aquatic Science and Fisheries Information System) list'%, which currently includes
nearly 11,000 items'?. Each species is provided with a taxonomic code, which
reflects a biological point of view (simplified taxonomic classification), used for the
purpose of data aggregation along taxonomic lines. Species are also given an
ISSCAAP'* code, whose purpose is aggregation according to groups formed
according to a commercial point of view. Species are also given an “inter-agency
3-alpha code”, which is a compact way to represent them and is used for data
exchange across UN agencies. As for names, only one preferred name in English,

12 http://www.fao.org/fishery/collection/asfis/en

13 ASIFS also includes taxonomic entities above the species level such as families or orders, on the
basis of the data reported to FAO by countries or other governing bodies.

!4 International Standard Statistical Classification for Aquatic Animals and Plants (ISSCAAP).

http://www.fao.org/fishery/collection/asfis/en

18 Knowledge Management at FAO 389

Spanish, and French is taken for each species. The English name is available for
most of the records, and about one-third of them also have a French and Spanish
name'”.

Water areas. Marine and inland waters are divided into a variety of zones and
areas, depending on the purpose of the division (e.g., legal jurisdiction, statistical
reporting of catch data, environmental assessment) and on the author of the division
(e.g., national or international body). For our purpose, the most important organi-
zation of water areas is the FAO Division Areas, used by FAO and partners for data
collection and statistical reporting. This is a system of 27 major areas, divided into
subareas, each divided into divisions, and these finally into subdivisions, covering
marine waters as well as inland waters'®. We also considered large marine
ecosystems (LMEs): regions of the world’s oceans classified by the US National
Oceanic and Atmospheric Administration (NOAA)'” to identify areas of the oceans
for conservation purposes. LMEs have great economic and nutritional importance,
as the 64 classified LMEs produce 95% of the world’s annual marine fishery
biomass yields. We also considered exclusive economic zones (EEZ), i.e., sea
zones over which a state has special rights with regards to the exploration and use
of marine resources. The importance of EEZ cannot be overestimated, as can be
witnessed by the disputes between states over marine waters. From the point of
view of data collection and fisheries management, it is important to map the overlap
between EEZ and FAO divisions used for statistical data reporting.

Land areas. Land territories are central to most statistical collections. Fisheries
data is no exception since fish catches are either assigned to the country of the flag
flown by the fishing vessel or to the country where the vessels lands. Either way,
one may not forget territorial information. The names of territories (countries and
groups) are established by international agreements. By agreement, at least two
types of names of territory are given in each language: long names to be used in
official documents and short names to be used in informal communications.
A variety of codes are used for land areas. Most remarkably, ISO codes'® are
widely used and so are the codes established by the United Nations and its agencies,
such as the United Nations Development Programme (UNDP), the UN Statistical
Division, and by FAO. Each coding system tends to be specific to the purpose and
application for which they are used.

Fish stock aka aquatic resources. From a biological point of view, a stock
comprises all the individuals of fish in an area, which are part of the same
reproductive process. A stock occupies a well-defined spatial range and is

15 Member agencies of the CWP have agreed to use these standard species names in statistical
publications and questionnaires. However, (a) it has not been possible to assign appropriate names
in all three languages to all species items, and (b) these names may not correspond with nationally
or regionally used common names.

16 http://www.fao.org/fishery/area/search/en

7 http://www.lme.noaa.gov/

81SO codes are established by the International Standard Organization (ISO).

http://www.fao.org/fishery/area/search/en
http://www.lme.noaa.gov/

390 C. Caracciolo et al.

independent of other stocks of the same species. When dealing with fishing
management, though, it is common to use the notion of aquatic resource, to vaguely
defined “stocks”, especially for management purposes. Just like a stock, a fishery
resource is defined in space and its geographical demarcation and often has a
political or jurisdictional connotation (e.g., Moroccan resources, exclusive eco-
nomic zones (EEZ), or high seas resources).

18.3 Methodology for the Creation of the Network

The methodologies for creating ontology networks have been widely studied within
NeOn (see Chap. 2). In our use case, when creating ontologies, we dealt with
various different situations:

¢ Reusing and reengineering non-ontological resources (Scenario 2 of the NeOn
Methodology)

¢ Building ontologies from scratch (corresponding to NeOn Methodology
Scenario 1)

* Reusing ontological resources (Scenario 3)

« Reusing ontology design patterns (Scenario 7)

» Mapping the ontologies created in order to obtain a networked set of ontologies
(Scenario 5)

We elicited the specifications for single ontologies, mappings among them, and
for the entire network, by extensive conversation with domain experts, in some
cases summarized by explicit competency questions. We also analyzed the systems
and data sets currently in use, to infer requirements about the expressivity of the
ontologies, their coverage and use for data collection, storage, and retrieval. In
particular, the scope, purpose, and level of formality of the network were derived
from those of the existing systems. In this sense, reaching consensus about the
ontologies was not really a problem, while several phases of consistency check,
verification, and validation of the requirements we extracted were performed
together with domain experts.

The ontologies in the network have been built by (1) reengineering non-onto-
logical resources either from relational databases or from informal knowledge
organization systems: thesauri, classification schemes, etc.; (2) designing them
from scratch; (3) reusing without any change. As for the reengineering of relational
databases, we followed the approach proposed in Barrasa et al. (2004), which
consists in creating ontologies based on the domain model and then creating
mappings between the ontologies and the database. Within this approach, we
used ontology design patterns (Presutti and Gangemi 2008; Gangemi and Presutti
2009) whenever possible (many of them were designed specifically for our purpose

http://dx.doi.org/10.1007/978-3-642-24794-1_2

18 Knowledge Management at FAO 391

and then generalized) and the R20 mapping language through the ODEMapster
processor'”.

We followed an iterative approach consisting in a phase of domain analysis, a
phase of domain modeling, and a phase of data population of those models. A phase
of validation made with the collaboration of FAO fisheries and information man-
agement experts followed, which triggered a new iteration of modeling and popu-
lation. Each iteration was carried out in collaboration with domain experts, and
sanity checks were performed thereafter.

As for the reengineering of knowledge organization systems, we have consid-
ered two thesauri: ASFA and AGROVOC. Both had been previously ported to RDF
by using heterogeneous techniques: see Caracciolo et al. (2009) for a description
and references to related literature. Therefore, we have used an existing SKOS
version of ASFA and an experimental OWL version of AGROVOC, which was
under development in an independent FAO project.

Note that the different nature of the resources we used as a starting point,
thesauri and reference data (from relational databases), forced different modeling
styles. In fact, the ontologies resulting from the reengineering of reference data
have a precise semantics: if a class exists in the ontology, its extensional interpre-
tation (the set of individuals that have that class as rdf:type) includes exempli-
fications of the domain concept expressed by the name of that class. For example,
the WaterArea class refers to the collection of things that are water areas according
to fishery experts; the Species class refers to the collection of things that are
taxonomical species in the knowledge of fishery experts.

On the contrary, thesauri cannot be assumed to have an extensional semantics.
For example, asfa:Catchment _area cannot be directly interpreted as a class of
catchment areas but only as a thesaurus concept; in other words, it has a purely
intensional semantics. SKOS? is a good formal language to encode this type of
resources, thanks to its class skos:Concept and its properties that enable the
representation of purely intensional relations between concepts, such as broader,
related, exact match, etc.

In other cases, ontologies have been built from scratch in order to model in a
more explicit way concepts that are implicitly used in the other resources that have
been reengineered, or because the FSDAS system needed the implementation of
some application requirements. Examples include the ontologies about aquatic
resources and the ontology for catch records. In those cases, the importance of
competency questions (Presutti and Gangemi 2008) was crucial because no previ-
ous formal modeling (as ontologies) of the domain existed, and the whole modeling
activity was only implicit in domain experts’ daily work. Those cases offered an
occasion to develop new ontology design patterns and to refine existing ones.

! Initially, we used the stand-alone version of ODEMapster and then moved to the plugin version
for the NeOn Toolkit.

2 http://www.w3.0rg/TR/skos-reference

http://www.w3.org/TR/skos-reference

392 C. Caracciolo et al.

Finally, the inclusion in the network of the geopolitical ontology is a case of
reuse of an ontological resource. We have only reused data about countries, while
excluding other data that can be found in there, such as groups of countries.

Ontologies were networked in a variety of ways. First of all, improved versions
(either for the model or for the data) of ontologies were connected to one another by
means of the attribute owl:priorVersion. Second, some of the ontologies produced
were also designed in a modular way, thus creating a partial order graph by means
of owl:import statements. Third, mapping data was taken by the reference data,
where it was made available in relational form. For example, this happened with
ontologies about different commodity types. Fourth, a limited amount of mapping
was manually provided by domain experts. Finally, mappings were learned through
automatic methods (supervised by experts) and expressed as OWL ontologies that
contain the linking axioms between the vocabulary and the data from the linked
ontologies. Examples of these cases include mappings between ASFA and some
RTMS-based ontologies (e.g., species, aquatic areas, etc.), the linking between
countries in the geopolitical ontology and the catch data, and most of the mappings
included in the network.

The mapping between ASFA and AGROVOC (we already highlighted the
differences in their intended semantics) is an interesting case of automatic extrac-
tion of data and manual mapping. In that case, we had two options: either to enforce
an extensional semantics in ontologies derived from thesauri or to leave the
intensional semantics of the whole resource, and impose extensional semantics
only on specific thesaurus fragments, when needed. As the former approach has
proven to imply a time-consuming and partly arbitrary process, we opted for the
second approach, both for ASFA and AGROVOC. The consequence of this choice
is that, for any further usage of ASFA or AGROVOC concepts within the fishery
ontology network, task-oriented decisions will be required to provide a domain
semantics. For example, if the concept asfa:Catchment _area (an individual from
the class skos:Concept) is aligned to the class waterarea:Area (a class from the
FAO_fishing_area ontology), and the expected application aims at, for example,
finding the water areas for catch records of tunas, asfa:Catchment_area should be
also represented as an ow/:Class by means of a refining rule so that any matching
water area (e.g., Mediterranean_sea) extracted from a document indexed by means
of ASFA can be represented as an instance of both asfa:Catchment_area (as a class)
and waterarea:Area. OWL2?' semantics greatly helps in performing such
refinements because the interpretation of an ontology entity is made based on its
usage context (axiom); therefore, if we declare the axiom:

asfa:Catchment_area owl:equivalentClass waterarea:Area

then asfa:Catchment_area is automatically interpreted as an owl:Class.

2! http://www.w3.0rg/TR /owl2-syntax

http://www.w3.org/TR/owl2-syntax

18 Knowledge Management at FAO 393

2 asfam.owl 2 core
v

7 -asfad.owl v
v

2% asfaagrovocmapping.owl

2 agrovoc

Fig. 18.2 The ontology network resulting from the mapping between ASFA and AGROVOC:
asfaagrovocmapping.owl imports SKOS core, AGROVOC, and ASFA (asfad.owl is the actual
thesaurus; asfam.owl is the TBox containing the ASFA data model)

The mapping between ASFA and AGROVOC was performed by using string
matching techniques®”. For the mapping vocabulary, the SKOS mapping terms
have been used since the only alignment pattern needed is IndividualToIndividual,
and the desired mapping semantics is entirely covered by the SKOS terms: exact,
broad, narrow, close, related. The matches found in this way were then validated by
domain experts, the result of which validation was used to produce the final SKOS
mapping document.

Domain experts performing the evaluation of the suggested mappings were
presented in a spreadsheet with three columns, each showing an ASFA concept,
the candidate AGROVOC concepts (shown using their preferred English label) as a
concept-list embedded in a menu box, and the available SKOS mapping relations to
choose from.

The results of the ASFA-AGROVOC mapping are finally included in a new
ontology that imports SKOS, ASFA, and AGROVOC (Fig. 18.2) and contains all
mapping statements that have been validated by the experts, for example:

asfa:Mycotic_diseases skos:closeMatch agrovoc:Mycotoxicoses

2 We applied matching techniques based on the family of edit-distance functions. We chose the
Jaro-Winkler technique (Winkler 1990), which is not properly an edit-distance (as those based on
the notion of distance first formulated by Levenshtein (1966)), though it uses a broadly similar
metric which has proved of good results in the record-linkage literature. Some pre- and
postprocessing of the data was needed in order to normalize the format of entries in AGROVOC
and ASFA and present results to domain experts for validation.

394 C. Caracciolo et al.

18.4 FAO Network of Ontologies

In this section, we describe the FAO network of ontologies we produced and
analyze in details its features. All ontologies are available from the FAO website™
as OWL ontology schemas, populated with RDF instances. An HTML representa-
tion of both schema and instances was created by means of OWLDoc plugin for the
NeOn Toolkit and made available from the website.

The thematic areas covered by the network are all those introduced in Sect. 18.2
(aquatic species, water areas, land areas, and aquatic resources), plus others (fishing
gears and fishery commodities) that we do not describe in this chapter because less
central to the notion of fish stock. Figure 18.3 provides a high-level representation
of the network of fisheries ontologies. The use of the same icon signifies that the
ontologies represented in the picture cover the same thematic areas (see, for
example, the wave used to represent ontologies about divisions of water areas).
The network includes all the type of data sources mentioned in Sect. 18.2.2 (i.e.,
reference data, thesauri, and the FAO geopolitical ontology), plus a sample data set
of time series about “catch records” about aquatic species. Note that Fig. 18.3 does
not explicitly show the ontologies used only for the internal functioning of the
FSDAS nor those used to include mappings in the network (see below in this
section). Solid arrows denote owl:imports statements, while dashed arrows are for
mappings between classes and/or instances (see below in this section).

Commodities ISSCFC HS

- LE- .-
: A _
2> Species ISSCAAP [T R N
‘er ; .}Asme 3 701 Agrovoc
T~ Taxonomic _ - -~ ;
FAO Geopolitical Ontology s [AHOR !
@ e e A e -a\é\'_ Fishing Gear Classification
< A " ISSCFG
Calch Records W " ¥4 5pecies
% Ao =
T Fishing Areas _— &
-
2 —_ v
. el T PP Aquatic
Exclusive Economic Zones - Resources
L -
Water Areas i Large Marine
> Ecosystems

Fig. 18.3 Overview of the network of fisheries ontologies

2 http://aims.fao.org/website/NeON/sub2

http://aims.fao.org/website/NeON/sub2

18 Knowledge Management at FAO 395

Below, we list the ontologies included in the network, grouped by thematic areas

(see Fig. 18.3, ontologies symbolized by the same icon).

1.

O 0 3 N

Aquatic species:

— Organized according to scientific taxonomic classification. Includes
biological entities relevant to fisheries classified taxonomically (Source:
reengineering of reference data)

— Species ISSCAAP. Includes the groups of aquatic species as defined in the
ISSCAAP classification (Source: reengineering of reference data)

— Species. Schema of information about aquatic species”, including informa-
tion about species distribution. (Source: manual modeling based on compe-
tency questions (Presutti and Gangemi 2008) and the fact sheets schema)

. Water areas (Source: reengineering of reference data)

— FAO fishing areas. It includes 27 major areas, divided into a system of
subareas, divisions, and subdivisions.

— Large marine ecosystems. Identified by the National Oceanic and Atmo-
spheric Administration (NOOA) of the USA.

— Exclusive economic zone.

. Aquatic resources (Sources: reengineering of reference data, data extracted from

fact sheets)

. FAO geopolitical ontology. Contains information about land areas (countries)
. Commodities ISSCFC HS (Source: reengineering of reference data). Contains

fragments of classification of commodities relative to fisheries: the International
Standard Statistical Classification of Fishery Commodities (ISSCFC) and the
Harmonized Classification (HS)*

. Fishing gear ISSCFG*® (Source: reengineering of reference data)

. AGROVOC thesaurus, covering a variety of thematic areas relevant to fisheries
. ASFA thesaurus, covering a variety of thematic areas relevant to fisheries

. Catch records (Source: FAO time series and NAFO)

Most of the ontologies produced are based on single repositories of data, as it is

the case with the reference data used to identify the “dimensions” of a piece of
statistical data collected by FAO. For example, any data about catch or production
is identified by a “what” (which species or group of species), a “where” (which
FAO fishing areas), and “by whom” (which country). However, the network also
included some ontologies populated with data coming from different sources, as for
example, the ontology on stocks, which includes data coming from both reference
data and fact sheets.

24 Any aquatic species relevant to fisheries, including some aquatic birds and plants.
% http://193.43.36.238:8181/fi/website/FIRetrieve Action.do?dom=ontology &xml=sectionR.xml
26 http://www.fao.org/fishery/cwp/handbook/M/en

http://193.43.36.238:8181/fi/website/FIRetrieveAction.do?dom=ontology&xml=sectionR.xml
http://193.43.36.238:8181/fi/website/FIRetrieveAction.do?dom=ontology&xml=sectionR.xml
http://193.43.36.238:8181/fi/website/FIRetrieveAction.do?dom=ontology&xml=sectionR.xml
http://www.fao.org/fishery/cwp/handbook/M/en

396 C. Caracciolo et al.

Thing

FAQ Fishing area
A isSettinaFor Species

FromFishingArea W

Thng — ~ ‘ '

ntry <
— Legend
) Parameter
@ @D
@ Class =
@ Root Class

Fig. 18.4 The CatchRecord knowledge pattern shared by FAO and NAFO data (Picture generated
by the ontology visualizer of NTK)

The case of the ontology of catch record is an interesting one because it
organizes metadata (with extensive linking to the dedicated ontologies of reference
data) and data, i.e., pieces of statistical data about catch of aquatic species. We
considered the data collected by the Northwest Atlantic Fishery Organization
(NAFO)27 and FAO. Since the level of details of the two data sets is different, it
was required that a first step of harmonization be applied in order to reach a
common catch record definition. The result of this harmonization step is
represented in Fig. 18.4.

The picture shows the schema of a typical catch record, highlighting the types
(boxes) of subjects and objects of the properties (arrows) holding between a record
and the objects or data involved in that record. The catch record ontology”® reuses a
knowledge pattern (aka content design pattern, Gangemi and Presutti 2009) from
the ODP repository that models observations, records, and statements of dynamic
facts, with a specific temporal indexing”’, and a knowledge pattern that models
spatial relations and places’’. The class taxonomy of the catch record ontology is

27 http://www.nafo.int/

28 http://www.ontologydesignpatterns.org/cp/owl/fsdas/catchrecord.owl
2 http://www.ontologydesignpatterns.org/cp/owl/observation.owl

30 http://www.ontologydesignpatterns.org/cp/owl/place.owl

http://www.nafo.int/
http://www.ontologydesignpatterns.org/cp/owl/fsdas/catchrecord.owl
http://www.ontologydesignpatterns.org/cp/owl/observation.owl
http://www.ontologydesignpatterns.org/cp/owl/place.owl

18 Knowledge Management at FAO 397

@ Grow
@ Fao_fishing_area
@ unitofMeasure [TypeOfwater
&3 Species 4
I
F Y
v | 4
- 13 Taxon 3 place +——— @
& Famiy » -
D 4 catchrecord.om
& Parameter
3 Order 4 @ Observation
'S
@ situation b
Legend:
2, Ontology
@ Class @ CatchRecord

Fig. 18.5 The CatchRecord class taxonomy (Picture generated by the KCViz visualizer of NTK)

.‘:1 situation, owl
A
2% cpannotationschema.owl -
4 £ observation,owl
2 place.owl A
r I.
& tatchrecord.owl
Z speciesfactsheets.onl ke
. ot waterareasfactsheets.on
| 2 e A

A water_FAO_areas.owl
A species_taxonomic,owl

Fig. 18.6 The import graph for the catch record ontology (Picture generated by the ontology
import visualizer of NTK)

shown in Fig. 18.5. Figure 18.6 shows the ontology import graph for the catch
record ontology (arrows represent owl:imports statements). In particular, the
catchRecord class is a subclass of the class Observation from the observation.owl

398 C. Caracciolo et al.

pattern: an observation includes typically an observed entity (in this case, a species
through the isCatchRecordFor property), some temporal reference (in this case, a
date through recordDate and a year through catchYear), and some parameters (in
this case, a fishing area through fromFishingArea, a country through fromCountry,
an amount through carchAmount, and a unit of measure through unit). The catch
record ontology also reuses the water areas’' and species®> ontologies extracted
from the FI fact sheets.

The ontologies produced were networked by means of mappings of various
natures between their classes and/or individuals. Here we concentrate on those
mappings that are exploited by the FSDAS to provide users with richer entry points
to the data than those provided by current information systems (as per the
limitations mentioned in Sect. 18.1): we do not go in further details with the
network of import statements, or prior versions, and concentrate on mappings
modeled by using SKOS vocabulary and mappings expressing thematic, domain-
oriented information.

In the following, we list the mappings included in the network, including the
reason for having them in there. First, we list the mappings modeled as skos:
exactMatch:

+ Taxonomic — ASFA

— Matching between species, to provide aquatic species, mainly described
taxonomically with more information about common names

» ASFA - AGROVOC

— Matching between species names, to exploit the multilinguality of
AGROVOC for species names

* Fisheries commodities — ASFA

— To provide ASFA commodities with the exact classifications

Many of these mappings were identified by using the experience (methodo-
logies, tools) gained during the Ontology Alignment Evaluation Initiative
(OAED?**. Some of the ontologies included in the network were used as test bed
for the OAEI (see Shvaiko et al. 2007; Shvaiko et al. 2008; Shvaiko et al. 2009).

Also, some domain properties were identified and new links created (see
Caracciolo et al. 2010). Such links have been learned through typical matching
techniques (e.g., Soundex, Levenshtein), linguistic matching (e.g., headword
matching), and the structural properties emerging from the XML structure of FI

3 http://www.ontologydesignpatterns.org/cp/owl/fsdas/waterareasfactsheets.owl
32 http://www.ontologydesignpatterns.org/cp/owl/fsdas/speciesfactsheets.owl
33 http://oaei.ontologymatching.org/

http://www.ontologydesignpatterns.org/cp/owl/fsdas/waterareasfactsheets.owl
http://www.ontologydesignpatterns.org/cp/owl/fsdas/speciesfactsheets.owl
http://oaei.ontologymatching.org/

18 Knowledge Management at FAO 399

fact sheets. A manual evaluation of the linking has been performed. The list of
domain properties extracted is reported here:

ASFA - Fishing gear ISSCFC. Relation: species caught by gear.

— To allow explicit grouping of species based on the gears used for their capture
Taxonomic — Fishing gear ISSCFC. Relation: species caught by gear.

— To allow explicit grouping of species based on the gears used for their capture
Taxonomic — FAO fishing areas. Relation: species found in FAO water areas.

— To allow explicit grouping of species based on the water areas where they are
known to be found

Taxonomic — FAO geopolitical ontology. Relation: species in the vicinity of country.

— To allow explicit grouping of species based on the countries having a shore
with the water areas where the animal is known to be found

Taxonomic — Commodities ISSCFC. Relation: species used for commodity.
— To provide a biological view on fisheries commodities

Exclusive economic zones — FAO fishing areas. Relation: EEZ area intersects
FAO area.

— To provide a biological view on marine political boundaries

Exclusive economic zones — FAO geopolitical ontology. Relation: EEZ area is
owned by a country.

— To associate water areas and the country ruling over it

Large marine ecosystems — FAO fishing areas. Relation: LME area intersects
FAO area.

— To have a biological view on FAO reporting areas for statistical purpose

Species ISSCAAP — Commodities ISSCFC HS. Relation: ISSCAAP group of
species originates commodity.

— To provide correspondence between different classifications of aquatic spe-
cies according to a commercial point of view

Species ISSCAAP — Taxonomic. Relation: ISSCAAP group of species includes
taxonomic entity.

— To provide a biological view on a grouping of species based on commercial
interest

Aquatic resources — Taxonomic — FAO fishing areas. Relations: aquatic resource
consists of aquatic species; aquatic resource /ives in FAO area.

— To express the composition of a stock in terms of species and its presence in a
given FAO water area

400 C. Caracciolo et al.

As for how to expose the mappings between ontologies, i.e., if by means of
dedicated ontologies or not, we decided on the basis of what is best suited for
provenance and later maintenance. We created third entities in all cases where the
links are extracted after the creation of the ontologies. While in all other cases, we
preferred to leave the linking information inside the ontologies: this happened
especially in the case of correspondences between classification systems (e.g.,
commodities), which have the same provenance as the reference data.

Linguistic information. A dedicated linguistic model has been developed within
NeOn, the LIR model (see Chap. 4 in this book). The LIR model is a quite
sophisticated framework meant to support creation of ontologies that are
multilinguality aware, as is the case, for example, of resources such as AGROVOC,
which is currently distributed in 19 languages (5 more to be released soon).
However, our network of fisheries ontologies showed a limited degree of
multilinguality (in most cases, names are available in no more than three
languages), which made us adopt a simplified modeling of linguistic information
but compatible with the LIR model.

URIs. We used hash URIs* for all ontologies based on reference data, forming
their local part by concatenating key codes used in the relational database®>. This
type of URIs guarantees uniqueness; it is easy to check because the meta code
allows one to recognize at a glance if a piece of data was correctly taken from the
database and organized in the right class; given the stability of the source databases,
the generation of new versions is always compatible with previous versions, and it
is therefore of easy maintenance. Finally, this convention ensures uniformity
throughout the reference tables, which implies that URIs may be built in the same
way independently of the reference data set at hand.

The inconvenience of such a type of identifier is that it is very little informative
to casual users who are not aware of the database behind. However, this drawback is
partially overcome by having rdfs:labels that may be used for display, but still one
may argue that better, i.e., more informative and user-friendly URIs may be used.
Appropriate considerations should be made on a case-by-case approach®®. The
discussion above shows that no uniform approach to URIs can be taken in this

3 http://www.w3.0rg/TR/2007/WD-cooluris-20071217/
35 Asin http://www.fao.org/aims/aos/fi/species_taxonomic.owl#ID_31005_2632

3 Compare, for example, the following cases: For biological entities, the only names available (in
FAO data) for all entities are the scientific names. In the case of FAO water areas for statistical
reporting, the best option seems to be using the code itself (that vary in length and formal
composition, which may represent a problem for maintenance) given to each area, as it is the
only piece of information that each item adopts. Other entities in the future should be taken directly
from the body in charge, as in case of the large marine ecosystems is maintained by the US
National Oceanic and Atmospheric Administration (NOAA). The case of exclusive economic
zones (EEZ) is more complex, as there is no single accepted way to model and manage this type of
data. GIS technology provides a good tool to keep track of EEZ borders, but for our purposes, it is
also important that a coding system, if possible standardized, be available. Similar issues apply to
the case of vessel and gear types, while the case of commodities is even more controversial, as in

http://dx.doi.org/10.1007/978-3-642-24794-1_4
http://www.w3.org/TR/2007/WD-cooluris-20071217/
http://www.fao.org/aims/aos/fi/species_taxonomic.owl#ID_31005_2632

18 Knowledge Management at FAO 401

Client

Web Browser Presentation tier

Server

Business Logic Logic tier

Iy

A 4
API

Inferencing

I Data tier

Hh

Ontologies

ABox
populated from
XML factsheets

Fig. 18.7 FSDAS system architecture

domain: sometimes, a human-readable name is the best choice; in other cases,
names are not available at all, or if they are, they are simply too long and
cumbersome to use. Codes may be preferred; however, they follow a number of
different formats, and often, they are revised and changed more often than names.
For this reason, we kept numeric identifiers in the URIs, and in so doing, we
privileged uniformity, uniqueness, and ease of maintenance over the possibility
for a human user to grasp from the URI what it is about. However, when data is to
be visualized, rdfs:labels are used instead of URISs.

18.5 Fisheries Stock Depletion Assessment System

The Fisheries Stock Depletion Assessment System (FSDAS) is a web-based proto-
type (Fig. 18.7 provides a high-level view of its system architecture) of what could
be achieved by a software supported by a network of ontologies. It provides access
to a selection of full-text documents and fact sheets, in addition to the data

that domain descriptions are way more important than codes, but unfortunately descriptions tend to
be extremely long.

402 C. Caracciolo et al.

Fig. 18.8 Main front-end panels in the FSDAS web interface

contained in the network, which also includes statistical data and metadata for
textual and statistical data.

Functional requirements for the FSDAS were elicited by fisheries managers and
domain experts, while non-functional requirements were carefully designed as a
joint work with information managers in FAO.

Users experience FSDAS as a browsable and queryable web application that
returns organized, ranked, linked results, together with direct links to related stored
documents or web pages. Figure 18.8 presents the user interface of FSDAS. It is
organized in panels that we list using the letters shown in Fig. 18.8 (A) Taxonomy
Panel for browsing taxonomies, (B) Query Composition Panel for the user to
compose complex queries, (C) Search and Result Panel for free text search, (D)
Resource Detail Panel, (E) Document Viewer Panel to inspect textual documents
returned as search result, and (F) Query Result Panel.

The FSDAS also allows for navigation of various classification systems, linked
to one another. This allows one to use a given classification system even if different
from the one used for data storage. Also alternative names retrieved from
networked resources are displayed to users. In summary, the large number of
mappings available is used to allow users to search the data set according to
multiple perspectives, for example, according marine area or gear type, as well as
aquatic species.

The query panel (Fig. 18.9) allows users to formulate queries like as complex as:

“What are the aquatic species living below 20 m depth, and whose name
contains the word-part shark?” In traditional systems, the answer to such a query
could only be found after a sequence of queries to different resources.

FSDAS also supports the grouping of aquatic resources by (marine) area or other
criteria, such as the fishing gear typically used for their capture.

18 Knowledge Management at FAO 403

Add Query Property Operator Value
0O hasHabitatandBiology - your input ~
O hasWaterfrea - your input
= hasBathymetryMin > * 200
O hasSynonym - your input
O canBeConfusedwith - your input
O hasBathymetry > * | your input
O feedsUpon - your input
isPrayedUponBy - your input
] caughtByGear - your input
O CaughtByVesselType - your input
1G] hasLocalName contains shark v

Fig. 18.9 FSDAS user interface: the query panel

18.6 Conclusions and Lessons Learned

In this chapter, we reported on our experience with the application of tools and
techniques developed within the NeOn project to the area of fisheries. We have
developed a network of ontologies covering the most important thematic areas
needed to manage information about aquatic resources (i.e., aquatic species, water
areas, and land areas) and massively included mappings between the ontologies in
the network. The network also included a data set of statistical data: this is the first
attempt to give a semantic modeling to numeric data of that sort. Based on the
network, we built a prototypical application, called Fisheries Stock Depletion
Assessment System, with the goal to show users how networked ontologies could
be used.

The FSDAS prototype nicely shows the networked ontologies developed for this
work and how they can be used to bridge the information gap currently existing
between data sets. In particular, by using as a rich network of ontologies, it allows
users to query and look at the data collected, in particular statistical data, according
to more points of view than the one used for data storage.

The creation of the network was nicely supported by the NeOn Toolkit and its
plugins, in particular for the reengineering of non-ontological data (i.e., the refer-
ence data for time series) and the ontology mapping. However, in the case of
ontology mapping, also a number of NeOn technologies have been used, that
were later developed as NeOn plugins. For the reengineering of reference data,
we used extensively the NeOn plugin ODEMapster, which relies on ontologies for
the extraction of data from relational database. This approach resulted to be very
useful in preliminary phases but seems to be less convenient for data maintenance,
as any minor change in the original database requires that a new transformation
phase takes place.

The network of fisheries ontologies was produced within the scope of a large
prototypical effort, and it was not used to replace current information systems and
data sets. The implication of this state of affairs is that we essentially duplicated
data, as data maintenance continued to take place in the original data sources which
continued to feed existing information systems. In order for a complete replacement
to take place, all information systems accessing the data included in the network of

404 C. Caracciolo et al.

ontologies should have been reengineered so as to work with ontologies and RDF
data. In fact, this is a process that is certainly going to happen but very likely in an
incremental manner. Based on this and other considerations, we encourage the use
of ontologies (OWL schema plus RDF instances) primarily for data sharing and
dissemination. For example, the extraction of data from relational database and its
reengineering as ontologies was extremely useful to make evident the many ad-hoc
decisions made when storing data for internal use only. These lessons revealed to be
important especially when dealing with standard classifications, such as the various
coding systems we considered. As many of the coding systems considered are
actually maintained by FAO and adopted as standards by the international commu-
nity, the use of standard technologies (e.g., RDF, OWL) showed to be an appropri-
ate approach to the publication of those standards to the public.

The work exposed in this chapter also contributed to a better understanding of
the issue of converting traditional thesauri into modern formats to be compatible
with current approach to web publications. For instance, the conversion of the
AGROVOC thesaurus into a concept schema is now finalized, while the conversion
of the ASFA thesaurus is about to be completed, also thank to the lessons learned
during the making of this work (see considerations about AGROVOC and ASFA
semantics in Sect. 18.3).

The activity of ontology mapping has had a remarkable follow up in the area of
linked data, which has RDF and concept schemas (ontologies) at its very
foundations. One of these results is that FAO is currently enhancing the network
of ontologies and the conversion work carried out within NeOn to produce a larger
data repository of open linked data (Caracciolo et al. 2011). One example of this is
the linked data version of AGROVOC?’.

Acknowledgments We are pleased to thank our colleagues in FAO who have collaborated in
various phases of the NeOn project: Marta Iglesias, Yves Jaques, Margherita Sini, Aureliano
Gentile, Francesco Calderini, Soonho Kim, Fabrizio Sibeni.

References

Barrasa J, Corcho O, Gomez-Pérez A (2004) R20, an extensible and semantically based database-
to-ontology mapping language. In: Second Workshop on Semantic Web and Databases
(SWDB2004), Toronto, Canada

Caracciolo C, Sini M (2007) Requirements for the treatment of multilinguality in ontologies within
FAO. In: Proceedings of OWLED2007. Available at http://owled2007.iut-velizy.uvsq.fr/
PapersPDF/submission_45.pdf

Caracciolo C, Heguiabehere J, Gangemi A, Presutti V (2009) NeOn deliverable D7.2.3. Initial
network of fisheries ontologies. NeOn project

37 http://aims.fao.org/website/Linked-Open-Data/sub

http://owled2007.iut-velizy.uvsq.fr/PapersPDF/submission_45.pdf
http://owled2007.iut-velizy.uvsq.fr/PapersPDF/submission_45.pdf
http://aims.fao.org/website/Linked-Open-Data/sub

18 Knowledge Management at FAO 405

Caracciolo C, Heguiabehere J, Gangemi A, Peters W, Stellato A (2010) NeOn deliverable D7.2.4.
Second network of fisheries ontologies. NeOn project

Caracciolo C, Morshed A, Stellato A, Johannsen G, Keizer J (2011) Thesaurus maintenance,
alignment and publication as Linked Data. In: Proceedings of MTSR 2011

Gangemi A, Presutti V (2009) Ontology design patterns. In: Staab S et al (eds) Handbook of
ontologies, 2nd edn. Springer, Berlin

Iglesias Sucasas M, Caracciolo C, Baldassarre C, Jaques Y (2007) NeOn deliverable D7.1.2.
Revised specifications of user requirements for the Fisheries case study. NeOn project

Kim S, Iglesias Sucasa M, Caracciolo C, Viollier V, Keizer J (2009) Integrating country-based
heterogeneous data at the United Nations: FAO’s Geopolitical Ontology and services. In:
Proceedings of semantic technology conference, 2009. http://semanticweb.com/integrating-
country-based-heterogeneous-data-at-the-united-nations-fao-s-geopolitical-ontology-and-
services_b10681

Levenshtein V (1966) Binary codes capable of correcting deletions, insertions, and reversals.
Soviet Phys Doklady 10:707-710

Presutti V, Gangemi A (2008) Content ontology design patterns as practical building blocks for
web ontologies. In: Spaccapietra S et al (eds) Proceedings of ER2008, Barcelona, Spain

Shvaiko P, Euzenat E, Giunchiglia F, He B (2007) Proceedings of 7th ontology matching
workshop. http://oaei.ontologymatching.org/doc/Proceedings-OM-2007.pdf

Shvaiko P, Euzenat E, Giunchiglia F, Stuckenschmidt H (2008) Proceedings of 8th ontology
matching workshop. http://disi.unitn.it/~p2p/OM-2008//om2008_proceedings.pdf

Shvaiko P, Euzenat E, Giunchiglia F, Stuckenschmidt H, Noy N, Rosenthal A (2009) Proceedings of
9th ontology matching workshop. http://disi.unitn.it/~p2p/OM-2009//om2009_proceedings.pdf

Winkler WE (1990) String comparator metrics and enhanced decision rules in the fellegi-sunter
model of record linkage. In: Proceedings of the section on survey research methods, American
Statistical Association, Alexandria, pp 354359

http://semanticweb.com/integrating-country-based-heterogeneous-data-at-the-united-nations-fao-s-geopolitical-ontology-and-services_b10681
http://semanticweb.com/integrating-country-based-heterogeneous-data-at-the-united-nations-fao-s-geopolitical-ontology-and-services_b10681
http://semanticweb.com/integrating-country-based-heterogeneous-data-at-the-united-nations-fao-s-geopolitical-ontology-and-services_b10681
http://oaei.ontologymatching.org/doc/Proceedings-OM-2007.pdf
http://disi.unitn.it/~p2p/OM-2008//om2008_proceedings.pdf
http://disi.unitn.it/~p2p/OM-2009//om2009_proceedings.pdf

Chapter 19
Electronic Invoice Management in the
Pharmaceutical Sector: The Pharmalnnova Case

José Manuel Gomez-Pérez, Victor Méndez, Joan Candini,
and Juan Carlos Munoz

Abstract Since the use of electronic invoicing in business transactions was
approved by the EU back in 2002, its application in Europe has grown considerably.
However, despite the existence of standards like EDIFACT (http://www.unece.org/
trade/untdid/welcome.htm) or UBL, (http://www.oasis-open.org/committees/ubl)
widespread take-up of electronic invoicing has been hindered by the enormous
heterogeneity of proprietary solutions. In this chapter, we describe an approach
toward addressing the interoperability problem in electronic invoice exchange. We
especially focus on networked ontologies as the main enablers of such an approach,
where networked ontologies serve as a semantic gateway for the transformation of
invoice data between different formats and models.

19.1 Introduction

Since the new EU legislation on electronic invoicing was approved in 2002 and
implemented by member countries in 2004, it is possible to send and receive
invoices electronically, provided that they include a digital signature. The potential
savings are enormous assuming that appropriate technological solutions exist. In
parts of Europe, this has led to a proliferation of proprietary software products by
vendors, e.g., SAP and ORACLE, aimed at tackling the e-invoicing problem.

J.M. Gémez-Pérez (34) « V. Méndez
Intelligent Software Components (iISOCO) S.A., Avda. del Partenon, 16-18, 28042 Madrid, Spain
e-mail: jmgomez@isoco.com; vmendez@isoco.com

J. Candini
Laboratorios KIN, S.A, C. Ciudad de Granada, 123, 08018 Barcelona, Spain
e-mail: jeandini@kin.es

J.C. Muiioz
Pharmalnnova, Avda. Torreblanca, 57, 08172 Sant Cugat del Vallés, Spain
e-mail: jemunoz@pharmainnova.com

M.C. Suarez-Figueroa et al. (eds.), Ontology Engineering in a Networked World, 407
DOI 10.1007/978-3-642-24794-1_19, © Springer-Verlag Berlin Heidelberg 2012

http://www.unece.org/trade/untdid/welcome.htm
http://www.unece.org/trade/untdid/welcome.htm
http://www.oasis-open.org/committees/ubl
mailto:jmgomez@isoco.com
mailto:vmendez@isoco.com
mailto:jcandini@kin.es
mailto:jcmunoz@pharmainnova.com

408 J.M. Gémez-Pérez et al.

However, almost all current solutions are stand-alone applications, each with their
own model of an electronic invoice.

Consequently, many industries suffer from migrating legacy systems to the
formats required by the current e-invoicing solutions. This is obviously an entry
barrier, especially for small and medium enterprises; large companies suffer less
because they can “force” their providers to comply with a particular format, or else,
they are out of business. Taking into account that a middle-sized organization
processes around 100,000 invoices per year, the potential benefits are self-evident,
with an estimated saving of almost 80% with respect to traditional paper invoices
(G6mez-Pérez et al. 2006). However, the risks are also considerable, given the size
of the investment required on one hand and the consequent vendor lock-in on the
other hand. It is obvious that technologies with the potential to reduce the cost of
migrating from one format to another are extremely attractive, especially for
middle-sized companies.

Throughout industry, there is a large duplication of effort that could be signifi-
cantly reduced if companies in the same sectors were willing to share models and
infrastructure, a precondition which is made more complex by the competitive
environments where they operate. The main limitations therefore include:

1. High investment (acquisition and maintenance) for industrial stakeholders to set
up their own business IT infrastructure.

2. Difficulty in setting up business partnerships is due to high IT integration costs;
this requires integration and communication across heterogeneous infra-
structures, with additional investments to be made as each new partner joins
such partnership. In practice, this implies the development of ad hoc transfor-
mation software between each pair of invoice formats and models potentially
participating in economic transactions, which is time-consuming, expensive, and
cumbersome.

3. Lack of possibilities to benefit from the fact that business partners of companies
in a same sector are often shared and their invoice models could be common.

This scenario provides an opportunity for building semantic platforms for data
interoperability among different stakeholders for business transactions in the form
of invoice exchange. Our main objective is to facilitate interoperable invoice
exchange between organizations following different formats and models, thus
reducing entry barriers for companies and stimulating widespread adoption of
e-invoicing, especially among small- and middle-sized companies.

In order to achieve such objective, users of e-invoicing systems need to be
provided with (1) expressive, modular, and extensible means to represent invoice
data observing both relevant standards and proprietary, local, and even tacit (not
explicitly defined by a data model) representations of invoices and (2) usable tools
that enable users to define correspondences between their invoice data and such
formal models, which can be subsequently exploited for automated exchange of
invoices between stakeholders following different representation models and/or
formats.

19 Electronic Invoice Management in the Pharmaceutical Sector 409

In this chapter, we focus on the principled development of networked ontologies
to address the first of the abovementioned issues, allowing for automatic transfor-
mation of large amounts of invoice data across formats and models.

19.2 Use Case Description

The main problem of interoperable invoice exchange is heterogeneity. Current
technology and methods do not allow building generic solutions which allow the
different peers involved in a commercial transaction to automatically process any
type of invoice. The range of Enterprise Resource Planning (ERP) systems
according to which invoices are emitted and the different formats that exist in the
market are so wide that it has been necessary for organizations to take special
measures in order to adopt electronic.

Nowadays, two main types of measures are applied: (1) to create clusters or
sectorial associations that agree to define common invoicing infrastructure in terms
of shared ERP platforms, invoice formats and models, and processes and (2) to
identify the invoicing infrastructure that is necessary to automate invoice exchange
with given stakeholders and build specific ad hoc plugins which implement
gateways between the invoicing infrastructure of each peer.

Additionally, these two options can be mixed to a certain extent, as in the case of
Pharmalnnova', where a group of middle-sized laboratories have agreed to define
common invoice models but keeping their ERP infrastructure. Such approach
(illustrated in Fig. 19.1) requires an invoice interoperability middleware that
ensures compatibility between invoice models of providers, wholesalers, and
laboratories. Most laboratories have the same clients, so it is easier for them, as
members of the cluster, to define, negotiate with clients, and implement common
invoice models. This also allows the members of the cluster to share the expenses of
building the abovementioned middleware.

However, all this process is costly in time and effort, and flexibility is low. For
example, if a new member enters the cluster, the agreed invoice model needs to be
revised not only within the cluster but also with the clients. This problem also
applies to all the possible commercial transactions of pharmaceutical laboratories
with suppliers, wholesalers, and pharmacies and, by extension, to those between
wholesalers and pharmacies. Furthermore, knowledge about how to process invoice
data in order to address the interoperability problem should be provided as directly
as possible by subject matter experts (SMEs) in the field, leveraging their expertise
on the domain to conduct this process. This allows to minimize the number of errors
introduced by engineers with a limited knowledge of the e-invoicing models and

! http://www.pharmainnova.com

http://www.pharmainnova.com

410 J.M. Gomez-Pérez et al.

Providers
Provider 1 Provider n

P
-

! &

Wholesalers

Pharmacies

Fig. 19.1 Interoperable invoice exchange in Pharmalnnova

formats of specific companies and to reduce the cost of implementing the transfor-
mation process by leaving additional engineers out of the loop.

However, the knowledge of SMEs about invoice representations is usually
constrained to their own e-invoicing systems. Therefore, it becomes necessary to
provide them with a shared, formal conceptualization, e.g., an ontological repre-
sentation of the e-invoicing domain, which SMEs can use to describe their invoice
data. The election of an ontological framework for such purpose supports a three-
fold objective:

1. Provide a formal model for the representation of knowledge related with the e-
invoicing domain, which observes both e-invoicing standards and sectorial
specializations

2. Serve as a semantic gateway for invoice transformation during invoice exchange

3. Ensure the consistency of invoices exchanged between heterogeneous systems
by leveraging the expressivity of the ontologies for automatic data and object
type checks, observations of cardinality constraints, etc.

In this use case, we follow a learn-by-example approach where SMEs define
correspondences between a sample invoice and the ontologies, which enable them
to semantically annotate invoice data. The correspondences defined through such
annotations are stored, recording metadata about each individual piece of invoice
data annotated by the SME and the ontology entity it corresponds to. Subsequent
invoices following the format and model of the sample can be automatically
processed using the correspondences identified during the annotation phase, thus
supporting their transformation into ontology entities and, from there, into whatever
other invoice format and model treated in the same way.

19 Electronic Invoice Management in the Pharmaceutical Sector 411
19.3 Ontology Network Development

In the context of this use case, we have built an ontological framework in the form
of expressive, modular, and extensible networked ontologies following the ontol-
ogy development guidelines provided by the NeOn Methodology (Chap. 2) and,
simultaneously, contributing to its development. The resulting invoicing networked
ontologies are available as exemplary ontologies at the Ontology Design Patterns”
portal. Next, we describe the application of the methodology to this particular case,
focusing on:

» The observed ontology requirements specification

¢ The established ontology development life cycle, as part of the scheduling
activity

¢ The most relevant processes and activities that have been performed for the
development of the ontologies

19.3.1 Ontology Requirements Specification

Ontology requirements have been obtained fundamentally through competency
questions, answered by SMEs in a number of business sectors, who covered a
broad spectrum of the different roles in the invoicing process, including:

» Ul. User of the invoicing application who is going to model a new invoice
e U2. User who emits invoices

e U3. User who receives invoices

e U4. User who administrates the invoicing system

» US. Developers of invoicing applications

The complete set of competency questions and answers obtained can be found in
Gomez-Pérez et al. (2007). Such competency questions can be classified as follows:

1. Competency questions about the e-invoicing workflow (11 CQs). Examples for
this group are:

CQ7: What is necessary to identify the emitter of the invoice? NIF/CIF.

CQ9: What is necessary to identify the products in the invoice? Product
description.

CQI15: What is the address of the emitter of the invoice? The supplier fiscal
address.

CQI17: What is the status of the invoice X? The status can be imported, emitted,
in process, accepted, in creation or disused.

2 http://ontologydesignpatterns.org/wiki/Ontology:Main

http://dx.doi.org/10.1007/978-3-642-24794-1_2
http://ontologydesignpatterns.org/wiki/Ontology:Main

412 J.M. Gémez-Pérez et al.

2. Business rules applied during invoice exchange (4 CQs). Examples for this
group are:

CQ20: What is the total discount applied to this invoice? Discounts in payment
date.

CQ21: Is it possible to apply any special price to this invoice? Yes, if you
describe the concept in the description line.

CQ22: Is it possible to apply any business rule in this invoice? No, only the rules
related to the amount to pay and supplier code.

CQ23: What is the unitary price before applying discounts? The net price.

3. Information about the roles of e-invoice emitters and receivers (32 CQs).
Examples for this group are:

CQ29: How much is the total price of the invoice? Price in the specific invoice
received.

CQ33: When do we have to pay? Date in the specific invoice received.

CQ49: Have we sold any other product in invoice X? Products in the specific
invoice received.

CQ60: Do we have to apply any specific rule in invoice X? Rules in the specific
invoice received.

4. State-of-the-art technologies used in e-invoicing systems (5 CQs). Examples for
this group are:

CQ40: What invoicing technologies are using the emitters of the invoice? ERPs
and small products for invoicing like Facturaplus or Contaplus, and
customized applications.

CQ42: In percentage, can you classify the invoicing technologies of each
emitter? 65% CSV and FLF, 25% xml, and 10% EDI.

CQ44: Is possible to classify the technologies depending on the business type of
the emitter of the invoice? No.

5. Multilingualism needs (2 CQs). The CQs for this group are:

CQI8: What is the language of the invoice? Currently only Spanish.
CQI19: Where is the emitter of the invoice from? Spain.

6. Time modeling (15 CQs). Examples for this group are:

CQ62: When do we have to pay the invoice X? Date that depends on the
agreement.

CQ63: When are the goods arriving bought in invoice X? On the agreed date.

CQ67: What is the expiry date of invoice X? There is no expiry date.

CQ75: How many products did we buy during the month? Number of products in
the received invoices.

19 Electronic Invoice Management in the Pharmaceutical Sector 413

7. Currency representation (8 CQs):

CQ76: In what currency are the receivers paying in invoice X? Euro

CQ78: What taxes are applied in the invoice X? IVA, IGIC, or RE.

CQ82: How much is the total amount in invoice X? Total line amount — total
discounts + taxable amount.

8. General and composed competency questions (14 CQs):

CQ4: What concepts are mandatory for a wholesaler/provider/laboratory? Two
types of information: first regarding the identification of companies (names,
addresses, bank accounts, etc.) and second information about the amounts of
the products in the invoice and their prices

CQ84: Given a set of invoices of different companies, is it possible to identify the
common concepts used? Yes.

CQ87: Given the information of a company, what products did it buy? Products
in the received invoice.

CQ91: Given the information of a product, how many units have been sold?
Number of units in the received invoice.

Among the most relevant findings, interviews with SMEs showed the need of
observing the main e-invoicing standards, which were identified as EDIFACT and
UBL, and proprietary data models in business partnerships.

19.3.2 Ontology Development Life Cycle and Scenarios
Jor Building the Invoicing Networked Ontologies

In the face of eventual changes in the requirements to fulfill by the invoicing
networked ontologies, we have applied an iterative-incremental life cycle model
(explained in Chap. 2) for the development of the invoicing networked ontologies.
In addition to the activities performed as part of Scenario 1 (e.g., the ontology
conceptualization activity), we have mainly combined Scenario 6 of the NeOn
Methodology (reusing, merging, and reengineering ontological resources) and
Scenario 2 (reusing and reengineering non-ontological resources) from those
described in Chap. 2. The ontology specialization and ontology localization
activities, respectively, from Scenario 8 and Scenario 9 have also been performed.
See Fig. 19.2 for a detailed graphical representation.

19.3.3 Processes and Activities Performed

The following activities have been carried out for building the invoicing networked
ontologies:

http://dx.doi.org/10.1007/978-3-642-24794-1_2
http://dx.doi.org/10.1007/978-3-642-24794-1_2

414 J.M. Gémez-Pérez et al.

]
f

) =]
| i
: 1N
I
il 'I‘ N
:Il Cassares | | Dhctonuies | Lewioore I i 'r @ N
il i :
H b
:: : 1 Ontological Rescurce
| il Rause
i '

Non Ontological Resource
Reuse

@ l Ontological Resource
Reengineering

[Non Ortolog cal Resource]

Reengineenng —

R;-- I . N

@ B A |

ROFE . E

0 Specification Scheduing O.Conceptualization O. Foemalization O. Implementation i iy !

Flogi

e L

o \ Ontology Restructuring i ,fi? }“" H

. (Pruning, Exténsion, : = 1

Q. Localization Speciakzation, Madularzaticn) Y/ e

1,2,6,8,9

Cniology Suppar Activilies: Knowledge Acquisition (Elatation); Documentation;]
Configuration Management, Evaluation (VE&V), Assessment

Fig. 19.2 NeOn Methodology (focus on scenarios 2, 6, 8, and 9)

1. Ontology elicitation. In this support activity, the pharmaceutical domain was
analyzed, with a focus on the invoicing life cycle, describing the steps an invoice
goes through from the time it is emitted to the moment it is validated by the
receiving company. This analysis also includes the actors that participate in the
process (laboratories, wholesalers, and providers), and their requirements.

2. Ontology requirements specification. As described in Sect. 19.3.1, this activity is
aimed at addressing the requirements that need to be fulfilled by the ontologies
in order to effectively support applications implementing the approach described
herein.

3. Reuse of existing knowledge resources. The knowledge resources used for
creating the invoicing networked ontologies can be organized in the following
groups:

— Upper-level ontologies and related projects. The motivation for using upper-
level ontologies comes from the need of reuse of the main reference ontology
for invoicing. The purpose of this ontology is that it can be instantiated for
different sectors of the industry. The first instantiation is for the pharmaceu-
tical sector, laboratories mainly, but it will also be extended for providers of
these laboratories or wholesalers. These providers provide from chemical
products to energy or clean products, so they need different instantiations of
the invoice reference ontology.

19 Electronic Invoice Management in the Pharmaceutical Sector 415

— Invoicing resources. These resources are mainly technologies for electronic
invoicing. The technologies are UBL, EDIFACT, and the Pharmalnnova
approach.

— Projects whose main goal is to integrate the invoice vocabulary into
ontologies. These include the ONTOLOG project’ and the XBRL (eXtensible
Business Reporting Language) Ontology project”.

4. Ontology conceptualization (development of the invoicing networked ontologies).
In this step, we conceptualized the resources analyzed in the previous activities. A
result of this activity is the ontology design pattern Invoice’, used to represent the
core aspects of electronic invoices. Similarly to other ontology design patterns,
this one is a conceptual model which encapsulates the knowledge representation
given by SMEs, throughout an invoice template to ease the alignment of other
heterogeneous models for invoices grouping best practices and hence helping to
avoid mistakes in this step.

5. Ontology specialization (adaptation of the invoicing networked ontologies). The
final invoice reference ontology was adapted to the cluster of companies that are
going to use it, a laboratory for instance. The invoice reference ontology will be
specialized to each cluster of companies needs (laboratories in an initial phase).

6. Ontology localization (localization of the invoicing networked ontologies). The
users of the networked ontologies belong to different regions in Spain, in which
different languages are used. Spanish is the official language, but in these
regions, there are other co-official languages; therefore, localization was taken
into account. Likewise, this activity was followed to anticipate future use of the
ontology out of Spain.

7. Ontology evaluation (evaluation of the invoicing networked ontologies). Fol-
lowing this support activity, the invoicing networked ontologies were evaluated
by the users of Pharmalnnova as described in Candini et al. (2010).

19.4 Description of the Invoicing Networked Ontologies

As shown in Fig. 19.3, the invoicing networked ontologies® comprise a number of
ontologies including the invoicing backbone ontology (IBO) and other ontologies
for the subdomains addressed (one ontology module each). Such ontologies are the
UBL Invoicing Ontology (UBLIO) for the UBL e-business standard, the EDIFACT
Invoice Message Ontology (EIMO), which represents the subset of the EDIFACT

3 http://ontolog.cim3.net/
4 http://xbrlontology.com/
S hitp://ontologydesignpatterns.org/wiki/Submissions:Invoice

6 Available at: http://ontologydesignpatterns.org/wiki/Ontology:Aggregated_Invoice_Ontology
and http://www.isoco.com/ontologies/neon/AggregatedInvoiceOntology.owl

http://ontolog.cim3.net/
http://xbrlontology.com/
http://ontologydesignpatterns.org/wiki/Submissions:Invoice
http://ontologydesignpatterns.org/wiki/Ontology:Aggregated_Invoice_Ontology
http://www.isoco.com/ontologies/neon/AggregatedInvoiceOntology.owl

416 J.M. Gomez-Pérez et al.

S
Ultralite / Upper

evel

BPMOE] A &> 10 lite/|nformation N
EO & %> /Business Objects W3C Time
TOVE [E] & Process Ontology

d

RE
Pharmalnnova
specification

N

UBLontology
(SUMO extension)

® %
Core :
Components B

Fig. 19.3 The e-invoicing networked ontologies

/\ Ontology

D Standard

% Reengineering
Specification

Table 19.1 Metrics of the

e Classes 697
e—1n\101ctmg networked Object properties 532
ontologies Data properties 295

DL expressivity SHIQ(D)
Class axioms 1,922
Object property axioms 1,428
Data property axioms 643
Annotation axioms 3,224

standard describing the EDI messages used for electronic invoice exchange, and the
Pharmalnnova Ontology (PIO), which provides a formal representation of the
invoicing model used in the Pharmalnnova partnership for electronic invoicing in
the pharmaceutical sector.

The coverage of the e-invoicing domain provided by these ontologies is exten-
sive, with almost 700 classes, around 500 object properties, and 300 data properties
(Table 19.1). Additionally, its design allows further extensions through modules for
new standards or proprietary approaches.

IBO has been built through the reuse of a number of business process ontologies,
like the enterprise ontology (EO) (Uschold et al. 1998) and TOVE’, time

7 http://www.eil.utoronto.ca/Enterprise-modelling/tove

http://www.eil.utoronto.ca/Enterprise-modelling/tove

19 Electronic Invoice Management in the Pharmaceutical Sector 417

ontologies, the W3C time and time zone ontologies, and upper-level ontologies
(DOLCE ultralite and the information objects ontology®). While UBLIO is an
extension of the UBL ontology, based on SUMO’ and the core components'’
recommended by the standard, EIMO is the ontological version of the EDIFACT
recommendation for electronic invoicing. Finally, PIO has been produced by
reengineering the Pharmalnnova XML schema describing their invoicing data
model into an actual ontology. A detailed description of the ontologies can be
found in Gomez-Pérez et al. (2007).

During ontology reuse and conceptualization, we have used the core
functionalities provided by the NeOn Toolkit'' together with those stemming
from a number of plugins'?, fundamentally: the OWL modeling plugin, the align-
ment plugin for ontology alignment, RaDON for ontology repair, ontology rela-
tionship visualizer for ontology visualization and navigation, and CupBoard, the
online ontology repository for sharing and reusing ontologies linked together and
their alignments.

19.5 Application Description: i20nt

The range of ERP systems managing invoicing information (SAP, ORACLE,
PeopleSoft, Baan, Movex, openXpertya, etc.) and the different languages for
exchange of electronic business documents that exist in the market (EDIFACT,
UBL, Intermediate Document from SAP, etc.) are extremely diverse. NeOn Toolkit
with i20nt plugin'? (Fig. 19.4) applies the invoicing networked ontologies to
enable organizations involved in economic transactions to exchange arbitrary
electronic business documents by automatically extracting the information
contained in them out of the details of their particular representation formats and
technologies, thus saving large amounts of money in the process, as shown in
Candini et al. (2010). Figure 19.4 shows NeOn Tookit with i20nt plugin, where
its components are magnified: (1) relationship visualization provides a visualization
paradigm to navigate based on ontologies relations, (2) attributes view shows
information concerning data properties for the selected concept and information
about relationships items of invoice and data properties, and (3) invoice view shows
information concerning the loaded invoice and items of invoice which are mapped.

8 http://www.loa-cnr.it/DOLCE.html

° http://www.ontologyportal.org

10 http://ontolog.cim3.net/cgi-bin/wiki.pl?CctRepresentation
1 http://neon-toolkit.org

12 http://neon-toolkit.org/wiki/Neon_Plugins

'3 http://www.neon-project.org/nw/Movie:_i2Ont

http://www.loa-cnr.it/DOLCE.html
http://www.ontologyportal.org
http://ontolog.cim3.net/cgi-bin/wiki.pl?CctRepresentation
http://neon-toolkit.org
http://neon-toolkit.org/wiki/Neon_Plugins
http://www.neon-project.org/nw/Movie:_i2Ont

418 J.M. Gomez-Pérez et al.

Fe B Nedgite Sewch Promct Fun woce Window Heb
D-EHeS el of- -
B oresgy g 11 T e veetien @iy e

= I mmon?

& @ cumatycls / g -

o ¥
Ind M Do | (©) Ran |FEH Pro |10 attr 53 =]
[104 i 00 [© on [P0 (B0 4t 53 = O] o
P~ X@~ o
Header .\2 j Iﬁl Recetving company
Attributes | Relation Type a
?Caxe_mbn & & string has_material_receiver
Linvoice_date_origin [35] date | has_invoice_receliver
. comments_incoterm [@ string !
2 Currency EUR @ sting 2 Laboratory
ZiDate [% 217122006 @@ date |
1 Document_number [3%] 12361_1 sting = |QEEE R
Lincoterm @ string
Zorigin & @ sting 9
i = = _chent
has_expedtion_warehouse
; has_provider
[Enmioem b
14 1 6 1 18 19 20
_____—
| 43788 wa e o
™ e T—

Fig. 19.4 NeOn Toolkit with i20nt plugin (views with numbers are magnified)

19 Electronic Invoice Management in the Pharmaceutical Sector 419

One of the most challenging entry barriers for uptake by real users in the domain,
with no background on ontological engineering, is the gap between domain knowl-
edge (e-business and economic transactions in the pharmaceutical domain) and the
formalisms used to acquire and represent such knowledge. Inspired by Newell’s
definition of the knowledge level (Newell 1982) back in the eighties, we have
intended to develop a highly usable, intelligent user interface that enables experts
on e-business and financial staff to alleviate their invoice interoperability problems
by means of networked ontologies, relieving them from caring about the way
invoice knowledge is formally represented, stored, mapped and, in summary,
processed. i20nt allows domain experts to work and think exclusively at the level
of their expertise, i.e., electronic invoices.

The solution proposed is grounded on a combination of networked ontologies
and a graph-based visualization and navigation paradigm. Networked ontologies
provide a formal, semantic backbone between different electronic invoicing
formalisms and models, including support for the main invoicing standards, like
EDIFACT and UBL, and sectorial approaches like Pharmalnnova. The user inter-
face allows for a simple navigation across the relevant invoicing concepts, and the
formal invoice model described in the ontology network allows ensuring correct-
ness and completeness of the correspondence between the different electronic
invoice representations.

Previous approaches to the invoice interoperability problem required
implementing specific transformations between the formats and models of each
pair of organization exchanging electronic invoices. This was cumbersome and
little scalable. On the contrary, i20nt learns by example, i.e., sample electronic
invoices are used to define the mappings between electronic invoice data and
ontology concepts. Subsequent electronic invoices received by the system, with a
format and model compliant with such sample invoices, are transparently imported
as instances of the invoicing ontologies by means of applying the mappings defined
during the learning phase. From that point on, invoices are automatically exported
to whatever invoice format and model known by the system without needing to
implement ad hoc (and costly) transformations.

19.6 Exploitation Roadmap

The exploitation roadmap of the approach described in this chapter starts from
the integration of i20nt technology with the Pharmalnnova platform and its
subsequent exploitation by Pharmalnnova and its members. For this purpose, a
new version of i20nt has been developed in the form of a web application called
Pharmalnvoicing'?, currently accessible by Pharmalnnova members only.

% http://www.neon-project.org/nw/Movie:_i20nt_Web

http://www.neon-project.org/nw/Movie:_i2Ont_Web

420 J.M. Gémez-Pérez et al.

| Pharmainnava - deOn - Windows intersat Lnplarer

s

Dragddrop

Fig. 19.5 Pharmalnvoicing configuration back office

Pharmalnvoicing presents functional and usability enhancements with respect to
i20nt, focused on improving import and export performance and user interaction
throughout the electronic invoicing life cycle. It also includes a back office
providing i20nt’s functionalities for SMEs to configure the correspondences
(mappings) between their invoices, using a single sample invoice and
Pharmalnnova’s model.

Figure 19.5 shows a screenshot of Pharmalnvoicing’s invoice configuration back
office. On the right-hand side, the graph displayed is a graphic, interactive repre-
sentation of our invoicing networked ontologies, which have been customized for
the case of Pharmalnnova with a look and feel more specific to the pharmaceutical
domain. Usability improvements include new icons for the branches of the
ontologies representing the different subdomains, e.g., geographical locations,
currencies, etc., and invoice sections, e.g., header, summary, and body.

The use of Pharmalnvoicing is completely transparent from the underlying
knowledge representation formalism. Invoices can be imported, exported, accepted,
rejected, and electronically signed, just like they are without the application of these
technologies, the only difference being the savings in terms of saved money, time,
and effort of IT experts in implementing ad hoc software for translating invoice data
from one format and model to another. Figure 19.6 illustrates this for the case of
invoice import.

As shown in Fig. 19.7, Pharmalnvoicing is in the center of Pharmalnnova’s
innovation roadmap, establishing a two-staged strategy toward exploitation of the
tool. Pharmalnvoicing has been deployed and is currently being used internally by
Pharmalnnova’s members. The knowledge obtained during this stage helped
validating the tool, supporting its refinement and eventual release as a product.

19 Electronic Invoice Management in the Pharmaceutical Sector 421

£ Pharmabeite 1.4,_proabs - Windewn intereat Laplorer =
[T I e e ——) C_CONSOAL Vi parc L > ihx S
WO et 143 prnbe L R R L
- Comgany DUSPROFARN .1
e ey rwbevee 3. 330, 120

¥ Factura 12361_1

Do de la facturs cemtor n Camsl
Entidiad mmivors () Eutided recavters {°)

OESFROT AR S0 Fame | Labsraterses KIN
wsreer . — SR
Chee Data, fron, importedi inveice oe i
T CouraT o cRANKDA, 173
— | e e Bah
IB21Y - SALIMETAS{Gras Canarmas) e GBS0 - Bacuekina(Barieling)
et ks
Reimaes Factien [Tio mpoutses - ~ | Progsgerateas |
Facha oL yvry) (%) N | Tvea [*)
P e e—
eoTeie C——1 timars v fucha 4 — T - |
s s i | T = "
7" Conceptos
e — s s e —
r5TAL D T 0% DOLADD 50 = £,300mm e . ® 3738 -]

Avcur Giute | Lagal natce [——="1
[GG
Caeynght © 3004 BOC0 5.4, A1 rghes reserved

Fig. 19.6 Managing electronic invoices with Pharmalnvoicing

- PHARMAINNOVA INNOVATION ROADMAP _

Q1-Q2 2010 Q3-Q4 2010

« Pharma sector (laboratories, providers, hospitals, pharmacies)
* Public administrations

v-l

| 1.INTERNAL USE PHARMAINNOVA 2.PHARMA LABS >

Validation > | alidation >
==

— i — -
B P

S'PHARMA

o

Fig. 19.7 Pharmalnnova innovation plan

The second (still ongoing) stage benefits from this and observes the exploitation of
the tool in a broader context, aiming for pharmaceutical laboratories outside of
Pharmalnnova.

422 J.M. Gémez-Pérez et al.

In parallel to these two stages, exploitation opportunities for electronic invoicing
out of the pharmaceutical sector will be pursued, especially in public
administrations. Pharmalnnova plans to offer i20nt’s functionalities in SaaS
mode (software as a service), which provides computer-based services to customers
over the network, reducing initial costs and avoiding maintenance tasks on the
customer’s side. This will allow the members of Pharmalnnova to freely use the
tool, while charging a fee to external users, e.g., laboratory providers, will be
possible.

19.7 Conclusions

In this chapter, we have described how networked ontologies can be used to
alleviate classical interoperability problems in electronic invoice exchange by
means of (1) providing a formal model for the representation of knowledge related
with the e-invoicing domain, which observes both e-invoicing standards and secto-
rial specializations, (2) serving as a semantic gateway for invoice transformation
during invoice exchange, and (3) ensuring the consistency of invoices exchanged
between heterogeneous systems by leveraging the expressivity of the ontologies for
automatic checks. A detailed description of the developed networked ontologies
has been provided, as well as of the application of the NeOn Methodology, which
supported such development and simultaneously benefited from this use case as a
comprehensive test bed. We have provided a short description of an application
(i20nt) implementing the approach and introduced a subsequent business roadmap
for the resulting technology. Future work includes developing extensions of the
invoicing networked ontologies, for a more thorough coverage of invoicing formats
and models beyond EDIFACT and UBL, and the corresponding extensions of the
application in order to benefit from such extensions.

References

Candini J, Gomez-Pérez JM, Méndez V, Melero R, Pariente T, Herrero G (2010) Ontologies for
the pharmaceutical case studies. NeOn deliverable D8.6.1. http://www.neon-project.org/nw/
images/e/e8/NeOn_2010_D861.pdf

Gomez-Pérez JM, Daviaud C, Morera B, Benjamins R, Pariente T, Herrero G, Tort G (2006)
Analysis of the pharma domain and requirements. NeOn deliverable DS.1.1

Gomez-Pérez JM, Pariente T, Buil-Aranda C, Herrero G (2007) Ontologies for the pharmaceutical
case studies. NeOn deliverable D8.3.1. http://tinyurl.com/32zxytz

Newell A (1982) The knowledge level. Artif Intell 18(1):87-127

Uschold M, King M, Morales S, Zorgios Y (1998) The enterprise ontology. Knowl Eng Rev 13
(1):31-89

http://www.neon-project.org/nw/images/e/e8/NeOn_2010_D861.pdf
http://www.neon-project.org/nw/images/e/e8/NeOn_2010_D861.pdf
http://tinyurl.com/32zxytz

Chapter 20
Integrating Product Information
in the Pharmaceutical Sector

Tomas Pariente Lobo and German Herrero Carcel

Abstract Inrecent years, increased attention has been paid to what is called semantic
interoperability in eHealth, being the interoperable identification and description of
drugs at its very core. In spite of the efforts toward having a common way to
describe drugs, there is no universal nomenclature but several attempts like SNOMED
CT (http://www.ihtsdo.org/snomed-ct/) or the biomedical ontologies in OBO Foundry
(http://www.obofoundry.org/) and BioPortal (http://bioportal.bioontology.org/). This
chapter describes an approach that applies NeOn technology to bridge the gap between
different ontologies describing pharmaceutical products.

20.1 Introduction

In recent years, there has been an increasing interest in semantic interoperability in
eHealth. In this domain, there is a clear need to link electronic health records (EHR)
to other clinical data and biological evidence for multiple purposes. At the very core
of this effort lies the need of having a common or interoperable identification and
description of drugs and medical products.

Several strategies have been put in practice. Standards such as the CEN 13606'
European norm or the HL7 v3? are part of the semantic interoperability efforts. The
usage of SNOMED CT as a baseline for terminology is widely but not universally
accepted. Besides, SNOMED CT is not a proper ontology, and the interoperability
achieved using terms from this terminology is far from being complete. More
interesting for us is the widely spread idea that ontologies are a very useful way

! http://www.iso.org/iso/catalogue_detail.htm?csnumber=40784
2 http://www.hl7.org
T.P. Lobo (<) » G.H. Carcel

ATOS Origin SAE, Albarracin 25, 28037 Madrid, Spain
e-mail: tomas.parientelobo@atosresearch.eu; german.herrero@atosresearch.eu

M.C. Suarez-Figueroa et al. (eds.), Ontology Engineering in a Networked World, 423
DOI 10.1007/978-3-642-24794-1_20, © Springer-Verlag Berlin Heidelberg 2012

http://www.ihtsdo.org/snomed-ct/
http://www.obofoundry.org/
http://bioportal.bioontology.org/
mailto:tomas.parientelobo@atosresearch.eu
mailto:german.herrero@atosresearch.eu
http://www.iso.org/iso/catalogue_detail.htm?csnumber=40784
http://www.iso.org/iso/catalogue_detail.htm?csnumber=40784
http://www.hl7.org

424 T.P. Lobo and G.H. Carcel

to describe drug models. Initiatives such as BioPortal or the OBO Foundry are clear
examples of the uptake of biomedical ontologies. It is in this direction where there
is a clear need of a solution where different terminologies expressed in ontological
form are mapped and connected in a way that the interoperability is ensured.

In order to achieve an interoperable nomenclature of drugs, a potential solution
has to provide the means to (1) transform the different vocabularies and models into
ontologies, (2) put all the ontologies together by creating the necessary mappings
between different drug descriptions, and (3) create the infrastructure to query the
ontologies using the terms that the different stakeholders are more familiar with.

In this chapter, we describe a proof of concept of this interoperable nomenclature
built according to the NeOn approach. The chapter is focused on the application of
different steps of the NeOn Methodology (Chap. 2) and the use of the NeOn Toolkit
(Chap. 13) and some of the plugins recommended by the methodology. It is worth
noting that the case study and the NeOn Methodology evolved together during the
NeOn project, so the methodology received continuous feedback from real
scenarios of usage in order to be eminently practical.

The chapter is structured as follows: First, we give a brief overview of the case
study followed by a discussion about how we applied the NeOn Methodology to
engineer the Semantic Nomenclature ontology network. The resulting ontology net-
work is then presented, along with a brief overview of the application showcase
developed to query the network. A conclusion section gives the general considerations
of the chapter.

20.2 Semantic Nomenclature Use Case Description

One of the major problems in achieving a common drug description is the different
stakeholders involved. Standardization bodies, governments (transnational, central,
regional, or local), international public bodies such as the World Health Organiza-
tion (WHO)3 or the European Committee for Standardization (CEN)4, private
organizations like the International Health Terminology Standards Development
Organisation (IHTSDO), public and private hospitals, etc., provide drug data and
standards for different purposes. Therefore, data heterogeneity and its frequent
changes, linked to the huge amount of drugs existing nowadays, pose a major
problem to solve the semantic interoperability issue.
In order to achieve semantic interoperability, we need to:

1. Enable the safe, meaningful sharing and combining of pharmaceutical data
between heterogeneous systems

3 http://www.who.int
“http://www.cen.eu
5 http://www.ihtsdo.org

http://dx.doi.org/10.1007/978-3-642-24794-1_2
http://dx.doi.org/10.1007/978-3-642-24794-1_13
http://www.who.int
http://www.cen.eu
http://www.ihtsdo.org

20 Integrating Product Information in the Pharmaceutical Sector 425

H o ws
melster Ontologies *+
Resources X
Snomed CT _
NCEIO -
HL7 UMLSLOINC Elg
ATC

Fig. 20.1 Semantic Nomenclature stakeholders and resources overview

2. Enable the consistent use of modern terminology systems and medical knowl-
edge resources

3. Ensure the necessary data quality and consistency to enable rigorous uses of
heterogeneous data

Addressing all the previous issues needs more than a methodological and
technological sound approach. It needs the agreement and collaboration of most
of the named stakeholders in the overall life cycle, from the ontologies definition
and mapping to the validation, evaluation, and continuous update of the results.
This issue is clearly out of the scope of a project such as NeOn. The use case is
therefore focused only on the methodological and technological aspects of the
solution, offering a proof of concept of the NeOn approach toward the creation of
a shared and consistent knowledge base about pharmaceutical products. Being part
of the NeOn project, we used the NeOn Methodology and NeOn tools both at
conceptual and implementation levels.

In order to test the benefits of this approach, the case study focused on a limited
number of stakeholders and resources as shown in Fig. 20.1.

Figure 20.1 shows the main resources used in the case study:

» The Digitalis and Integra databases from the Spanish Agency of Medicine and
Health Products (AEMPS)®.

« The public part of the BOTPlus’ commercial database from the General Council
of Pharmacists in Spain.

¢ Public documents, such as official reports, public drug descriptions, HTML
descriptions, etc.

» Classification of pharmaceutical terms, such as the Anatomical Therapeutic
Chemical (ATC)® classification, a WHO recommendation mapped to many
terminologies.

S http://www.aemps.es/
7 https://botplusweb.portalfarma.com/
8 http://www.whocc.no/atc_ddd_index/

http://www.aemps.es/
https://botplusweb.portalfarma.com/
http://www.whocc.no/atc_ddd_index/

426 T.P. Lobo and G.H. Carcel

» Official documents detailing description of drugs models, such as the Summary of
Product Characteristics (SPC)9 model from the European Commission. Some other
non-ontological resources, like commercial nomenclatures (vademecum), pharma
thesauri, widely used health standards or terminologies (HL7, SNOMED-CT,
UMLS, etc.), or web pages and documents from different actors of the domain
were also explored as candidate resources.

The approach followed was to model different resources and apply NeOn in
order to align the models. The new models are then populated with real drug data,
and the resultant knowledge base can be queried in order to obtain a more complete
and interoperable drug description.

20.3 Applying the NeOn Methodology to Engineer
the Ontology Network

Being both part of the NeOn project, the Semantic Nomenclature use case and the
NeOn Methodology evolved together. The use case applied the NeOn Methodology
(Chap. 2) and gave continuous feedback of the results of its usage. As a result of this
process, the Semantic Nomenclature ontology network has been developed within
this use case.

In this section, we describe a summary of the usage of the NeOn Methodology in
the Semantic Nomenclature use case.

20.3.1 Ontology Requirements Specification

In the NeOn project, we started the use case definition with the requirements
definition activity. Apart from gathering non-functional requirements, related
mainly to issues such as scalability or reliability, the main functional requirements
were gathered using competency questions (as explained in Chap. 5). These
questions were proposed and answered by some of the stakeholders mentioned in
the list below, which are the possible users for the ontology:

« Ul: Pharmacist who is interested in searching for drugs information

« U2: BOTPlus technician whose main interest is to complete information of their
commercial database with drug data from other nomenclatures

o U3: AEMPS expert who analyzes the situation of the information about drugs or
updates its content

o http://ec.europa.eu/enterprise/sectors/pharmaceuticals/files/eudralex/vol-2/c/spcguidrev 1-
0ct2005_en.pdf

http://dx.doi.org/10.1007/978-3-642-24794-1_2
http://dx.doi.org/10.1007/978-3-642-24794-1_5
http://ec.europa.eu/enterprise/sectors/pharmaceuticals/files/eudralex/vol-2/c/spcguidrev1-oct2005_en.pdf
http://ec.europa.eu/enterprise/sectors/pharmaceuticals/files/eudralex/vol-2/c/spcguidrev1-oct2005_en.pdf

20 Integrating Product Information in the Pharmaceutical Sector 427

The competency questions gathered were enumerated and classified into groups
suggesting the initial list of the different concepts mentioned by the user groups.
The main groups are concepts about pharmaceutical products, laboratories, and
active ingredients.

As a matter of example, see below some competency questions about pharma-
ceutical products:

¢ CQI. What is the drug commercial name?

* CQI3. Which is the drug composition?

* CQ17. Which route of administration is used?
e CQI18. What is the drug pharmaceutical form?

The complete set of competency questions, answers, and requirements obtained
can be found in Gomez-Pérez et al. (2007).

20.3.2 Scenario Selection

The NeOn Methodology is scenario-based, meaning that instead of prescribing a
rigid workflow, it suggests activities for a variety of scenarios. The NeOn Method-
ology presents and describes nine common scenarios that may arise during ontology
development as described in Chap. 2.

Based on the relation between life cycle model and the scenarios, for the first
iteration of the ontology development, we have followed Scenarios 1, 2, 3, and 8,
while in the second iteration, when the methodology and our initial network was
more advanced, we also followed Scenarios 6, 7, and 9. Not all the phases specified
on the methodology for the scenarios selected have been addressed in detail,
especially in the first iteration.

According to the NeOn Methodology, the ontology network life cycle model
defines in an abstract way how to develop an ontology network project and how to
organize the processes and activities into phases or stages. Due to the incremental
development of the ontologies followed in the project, the ontology network life
cycle model selected for the use case was the Iterative-Incremental Ontology Net-
work Life Cycle Model. This model organizes the ontology development in a set of
iterations (or short mini-projects with a fixed duration). Each iteration is scheduled as
a single ontology project using a waterfall model. Requirements specified in the
Ontology Requirements Specification can be divided in different subsets, and
implements throughout the different iterations.

Two main iterations have been selected for the development of the Semantic
Nomenclature ontology network. Six-phase Waterfall Model was selected for the
both iterations. This model allows the reengineering of ontological resources and
non-ontological resources (NORs), which was in the scope of the case study.

http://dx.doi.org/10.1007/978-3-642-24794-1_2

428 T.P. Lobo and G.H. Carcel
20.3.3 Ontological Processes and Activities Performed

In this section, we summarize the most interesting processes and activities followed
according to the NeOn Methodology and the scenarios selected in the use case.
Figure 20.2 shows the main activities followed by the Semantic Nomenclature case
study and included in the incremental life cycle model.

It is worth noticing that the processes and activities followed in both iterations
were basically the same. This is due to the fact that the result of the first iteration
was a preliminary version of the ontology network that was further elaborated and
extended in the second version.

« Support activities: The use case started with a survey of the domain. As part of
Scenario 1 of the NeOn Methodology, we followed the methodological support
activities, such as the Ontology Environmental Study and Ontology Feasibility
Study, in parallel to the Ontology Requirements Specification activity (as
explained in Sect. 20.3.1). In this phase, we decided that a network of ontologies
was the best approach for the use case. It is worth noting that in the second
iteration of the case study, we did a second round of the Ontology Requirements
Specification activity adding new requirements, especially from hospitals
toward the differentiation between commercial and clinical drugs. However,
the overall objective and approach of the use case remained unchanged. The

Ontology
Environment Study

1
1
—— Selecting Standards
1
I m
I
1
o _
1
1

Ontology
Conceptualization

i 1
1
falialle’s Ontology Implementation

I

1
| Ontology Maintenance

Fig. 20.2 Semantic Nomenclature use case ontological activities

20 Integrating Product Information in the Pharmaceutical Sector 429

second iteration was closer to the incremental approach “produce and deliver”
new ontologies to the case study, but the already available ones were not
discarded but improved. We did not use the template for ontology requirements
specification document (ORSD) provided by the methodology because it was
drafted during the last period of the project, but we used a similar approach by
gathering requirements, competency questions, etc. In the second iteration, we
did a proper scheduling activity by using the tooling support provided by the
NeOn Toolkit (the gOntt plugin explained in Chap. 14) in order to generate a
plan for the iteration.

* Reusing resources: Following Scenarios 2 and 3, we tried in parallel to reuse as
much as possible already available ontologies in the domain and model new
ontologies from existing non-ontological resources. For the non-ontological
resources, we carried out several activities proposed by the NeOn Methodology,
such as resource search, resource assessment, or resource selection. The result of
this process was the selection of several resources: the ATC classification schemas
created manually and populated automatically from the WHO ATC XML version,
the Digitalis and BOTPlus ontologies created from the abovementioned databases
using the R20-ODEMapster plugin, and the SPC ontology created manually from
the SPC standard specification.

e In parallel, we tried to reuse as much as possible already available ontologies in
the domain. We followed several activities proposed by the NeOn Methodology,
such as ontology search, ontology assessment, ontology comparison, and ontol-
ogy selection for ontology reuse. The results of Scenarios 2 and 3 can be found in
GoOmez-Pérez et al. (2007).

« In the second iteration, we used the ontology design patterns to better define the
ontologies. Apart from generic content patterns such as “part of”’, we released a
candidate pattern for the description of drugs to distinguish between clinical
drugs, prescription drugs, and pharma-marketed products.

¢ Semantic enrichment: In the second iteration, as part of Scenario 8, we carried
out a semantic enrichment activity, including new concepts and relations espe-
cially to define clinical drugs in our Semantic Nomenclature ontology.

* Ontology conceptualization: The goal of the conceptualization activity is to
organize and structure the knowledge into meaningful models at the knowledge
level. We defined the main concepts and relations and decided on the overall
model. In this activity, the Semantic Nomenclature ontology network took
shape. As a result of the activity, we defined a new ontology (the Semantic
Nomenclature ontology) that acts as a bridge of the different ontologies present
on the network. We also decided on the type of alignments to be made between
that ontology and the rest of the ontologies selected or defined for the ontology
network.

* Ontology implementation: The main goal of the ontology implementation activ-
ity is to create a computable model implemented in an ontology language from
the conceptual model created in the ontology conceptualization activity. In the
Semantic Nomenclature, we used OWL2 and the NeOn Toolkit for the imple-
mentation. In this activity, we used several NeOn Toolkit plugins such as the

http://dx.doi.org/10.1007/978-3-642-24794-1_14

430 T.P. Lobo and G.H. Carcel

alignment plugin (and alignment server) to generate candidate alignments
between some of the ontologies of the ontology network, R20 and ODEMapster
to map the BOTPlus and Digitalis public databases to our ontology schemas in
order to generate the initial set of individuals, Cicero to develop the ontology
network in a collaborative fashion, Watson plugin to search for available
reusable ontologies, RaDON to continuously verify the coherence of the ontol-
ogy network, SPARQL for internal tests, and finally OWL-Doc for documenta-
tion purposes.

* Ontology evaluation: At the end of the project, we applied this support activity in
order to evaluate the resulting ontology network and application. On the one
hand, we used RaDON in order to evaluate the soundness of the ontologies of
our network. On the other hand, from the domain perspective, we counted with
several users to perform the evaluation. This final evaluation consisted of several
interviews with users and a training and evaluation hands-on session performed
at the end of the project.

20.4 Semantic Nomenclature Ontology Network

The Semantic Nomenclature ontology network comprises a set of ontologies
organized in four levels: the representation ontology (OWL), general ontologies,
domain ontologies, and application ontologies.

The Semantic Nomenclature (SN) ontology plays a central role in the network
(see Fig. 20.3), acting as a bridge between the different knowledge representations
from the application and domain ontologies.

The domain level comprises ontologies defining the main notion and concepts of
the pharmaceutical domain. At this level, we include ontologies providing a
classification of pharmaceutical terms, such as the ATC and SPC ontologies created
within the case study, or the RxNormlO, the UMLS Metathesaurus“, MeSle,
OpenGALEN13 ,and N CIM, all reused or reengineered from existing ontologies or
resources. Some of these ontologies have been just partially mapped to the network
as a proof of concept. We did some tests using the alignment plugin in order to
perform these mappings. In some cases, the candidate alignments were good

" RxNorm terminology produced by the National Library of Medicine (NLM) http://www.nlm.
nih.gov/research/umls/rxnorm/

""UMLS Metathesaurus http://www.nlm.nih.gov/pubs/factsheets/umlsmeta.html

'2 National Library of Medicine’s (USA) controlled vocabulary thesaurus http://www.ncbi.nlm.
nih.gov/mesh

13 OpenGALEN http://www.opengalen.org/

“NCI Metathesaurus http://ncim.nci.nih.gov/

http://www.nlm.nih.gov/research/umls/rxnorm/
http://www.nlm.nih.gov/research/umls/rxnorm/
http://www.nlm.nih.gov/pubs/factsheets/umlsmeta.html
http://www.ncbi.nlm.nih.gov/mesh
http://www.ncbi.nlm.nih.gov/mesh
http://www.opengalen.org/
http://ncim.nci.nih.gov/

20 Integrating Product Information in the Pharmaceutical Sector 431

B ‘ ATC (OMS) i
- - Classification £ Reference Ontology
Dormain ontologies @ g
/ + Spanish Extension Application Ontologies
ATC - Domain Ontologies
T Galen £ Common Ontologies
WHO gy Mappings
sPc DrugOnto % Ad hoc wrapper
External Sources
Subsetsor]
Smmodcf‘_‘
-— sut—
Sramad RxNorm RxModel
/ SN\
/ N,
= of Reference ",
B" % Digitalis <—Ontology
DigitalisDE UMLS
Semantic
G—'\ —* . BOTPlus
Units, Gu .
BOTPIUsDS Uinks, Gaopaply:
) —+% — Commercial
Application Ontologies Ontologies

| Onmfogy Reuse

Fig. 20.3 Nomenclature ontology network

enough, although the overall impression was that a lot of manual work had to be
done (see Chap. 12 for more details on ontology alignment). New domain
ontologies can be added to the network by creating the necessary mappings.

At the Application level, we have ontologies representing knowledge of real-
world resources used for a specific purpose or application. This is the case of the
Digitalis and BOTPlus ontologies, containing governmental and private views of
commercial pharmaceutical products in Spain.

We have reused existing ontologies for defining common domain elements.
After looking at different ontologies, we chose the W3C time ontology for manag-
ing dates, parts of the Galen ontology for the definition of units of measurement,
and the geographical module from the Simile Ontology.

The Semantic Nomenclature ontology network is shown in Fig. 20.3. A detailed
description of the ontologies can be found in Candini et al. (2010).

The ontology network makes possible the easy interoperability and integration of
the distributed resources for the description of pharmaceutical products. Moreover,
the ontology network facilitates the aggregation of drug-related information
connecting new ontological resources via mappings to the SN ontology. This
solution makes possible searching for aggregated information by querying the
knowledge base using SN ontology elements or domain elements. Apart from the
obvious usage on the semantic interoperability area, these queries allow the different
stakeholders to potentially keep up to date their back-office systems or take better
decisions based on the aggregated information presented.

http://dx.doi.org/10.1007/978-3-642-24794-1_12

432 T.P. Lobo and G.H. Carcel
20.5 Semantic Nomenclature Application

The Semantic Nomenclature application is eye catching for the pharmaceutical
community as a new nomenclature (compendium) based on semantic web
technologies. The application is targeting mainly pharmaceutical-knowledge
experts. The main result is focused on the runtime aspects of NeOn, but it relies
on the work done at the design time on the ontologies using the NeOn Toolkit,
different NeOn plugins, and the NeOn Methodology. Apart from being a test bed of
the NeOn runtime services, the goal is to offer a view over a set of networked
ontologies, allowing functionalities such as querying, adding new ontologies to the
network, rating of ontology elements, or adding new ontology mappings.

The Semantic Nomenclature application is supported at the infrastructure level
by a knowledge base (KB) populated according to the Semantic Nomenclature
ontology network model. This KB contains relevant information about pharmaceu-
tical products and associated knowledge about other types of entities like active
ingredients, diseases, laboratories, etc. The Semantic Nomenclature application
provides a feature set in different dimensions: (a) accurate query answering mech-
anism by using a rich web client form that abstracts the end user from the underly-
ing SPARQL construction of queries, (b) access to aggregated data using the
Cupboard NeOn service, and (c) collaborative and social functionalities using the
Cicero NeOn Service integrated from the web application.

There is also a different angle to consider, which is related with the Open Linked
Data initiative. Linked Data'’ is a term used to describe a recommended best
practice for exposing, sharing, and connecting pieces of data, information, and
knowledge on the Semantic Web using URIs and RDF. Among the current Linked
Data datasets currently available there are several health-related open resources,
such as Drugbankm, Dailymed”, or Diseasomelg, and also several other generic-
purpose resources containing information about drugs, such as DBPedia'®.
Although using Linked Data was not a requirement for the use case, we also
included in the current prototype a possible link to make use of Linked Data from
the Semantic Nomenclature application and a small attempt to allow the creation of
mappings between our ontologies and some of the Linked Data datasets. This is
nevertheless a work in progress aimed at showing a possible path for future
enhancements.

The implementation of the application deals with the integration of the ontology
network presented before in a user-friendly web application. The implementation
has two main different layers: a business processing layer at server side and a

15 http://linkeddata.org/

16 http://www.drugbank.ca/

17 http://dailymed.nlm.nih.gov
18 http://diseasome.eu/

' http://dbpedia.org/

http://linkeddata.org/
http://www.drugbank.ca/
http://dailymed.nlm.nih.gov
http://diseasome.eu/
http://dbpedia.org/

20 Integrating Product Information in the Pharmaceutical Sector 433

presentation layer at the client side. On the one hand, the server is essentially
dedicated to data processing and management of the functional process, and its
architecture is generic to interact with several software components provided by
NeOn or other third parties. On the other hand, the client side is dedicated to the
information presentation and the data interaction. The application uses Google Web
Toolkit (GWT)?* to allow a rich presentation layer. The software integration was
facilitated by the communication mechanism provided by the GWT technology.
For example, the Remote Procedure Call (RPC) mechanism permits to interoperate
with different kind of software components as a semantic repository, or the NeOn
plugins through web services. Moreover, the JSON?' communication language
between the server and client sides allows the exchange of structured data.

The users of the Semantic Nomenclature web prototype are mainly pharmaceu-
tical-knowledge experts with a limited knowledge of ontologies. It is not intended
for users with no knowledge about ontologies at all, but they do not need to be
ontology experts to get benefits from using the prototype. But the prototype is not
closed to those domain actors; it is open to any other kind of users, such as people
who want to retrieve semantic-enriched information about pharmaceutical
products, personnel from hospitals, governmental agencies, etc. Moreover, the
prototype provides functionalities to biomedicine, pharmacy, or health-care
researchers to assess about the models of the ontologies used by the prototype,
add new models, or discuss with other colleagues.

sl | ey

e Semantic Nomenclature =

R L2 DA TR

B THAREN 125 MG 18

s
il

Lrsose
2084-11-01 BEDED

Fig. 20.4 Semantic Nomenclature web default perspective

20 http://code.google.com/webtoolkit/
2! http://www.json.org/

http://code.google.com/webtoolkit/
http://www.json.org/

434 T.P. Lobo and G.H. Carcel

A screenshot of the application can be shown in Fig. 20.4. This screenshot shows
different widgets used for selecting ontologies and querying and displaying the
results of the query.

20.6 Conclusion

In this chapter, we described how we applied the NeOn Methodology and the NeOn
Toolkit and some of its plugins on the development of an ontology network in the
scope of the Semantic Nomenclature use case developed within the NeOn project.
We explained the current situation and the interoperability problems posed by the
existence of multiple stakeholders, the heterogeneity of the different solutions for
drug description, and the huge amount of data involved, being this issue at the very
core of the semantic interoperability in eHealth effort. A detailed description of the
methodological activities carried out in the use case toward the definition of the
Semantic Nomenclature ontology network has been presented. As the NeOn Meth-
odology and the use case evolved in parallel, both received continuous feedback
from each other during the project life span. We have also briefly presented an
overview of the Semantic Nomenclature web application that takes advantage of
the underlying ontology network.

References

Candini J, Gémez-Pérez JM, Méndez V, Melero R, Pariente T, Herrero G (2010) Ontologies for
the pharmaceutical case studies. NeOn deliverable D8.6.1. http://www.neon-project.org/nw/
images/e/e8/NeOn_2010_D861.pdf

Gomez-Pérez JM, Pariente T, Buil-Aranda C, Herrero G (2007) Ontologies for the pharmaceutical
case studies. NeOn deliverable D8.3.1. http://tinyurl.com/32zxytz

http://www.neon-project.org/nw/images/e/e8/NeOn_2010_D861.pdf
http://www.neon-project.org/nw/images/e/e8/NeOn_2010_D861.pdf
http://tinyurl.com/32zxytz

Index

A

Academic, 251

Accessibility, 68, 72, 78

Activity, 10, 307

Adapt, 239

Adoption and use, 208

Agile methodology, 62

AGROVOC, 386, 387, 391-393,

395, 398, 400, 404

Alignment, 84, 257-262, 266, 270, 271
annotation, 263, 268
API, 268, 269, 271
composition, 270
edition, 267, 269, 270, 274-275
editor, 271
evaluation, 265-267
format, 261, 267-269
inconsistent, 267
library, 267
life cycle, 259, 271, 275
metadata, 264, 268
metadata vocabulary, 268
ODPs, 37
rendering, 269, 271, 272, 275
repository, 264, 267
retrieving, 263, 271, 272
reusing, 259, 263, 275
selection, 264
server, 268, 269, 271, 272, 275
sharing, 263, 267, 269, 275
storing, 267-272, 275
threshold, 275
trimming, 267, 271, 272, 275
URI, 268

Analytic Hierarchy Process (AHP), 264

M.C. Suarez-Figueroa et al. (eds.), Ontology Engineering in a Networked World,

Annotate data, 385
Annotation, 67, 87, 289-290, 292, 294, 337
dialog, 61
AntiCP, 43
API, 338
Applicability of the method, 138, 143
Application, 74
OMEGA, 76
Protégé, 74, 75
Watson, 76
Appropriate linguistic assets, selection of, 24
Appropriate non-ontological resources,
selection of, 16
Appropriation, 69
Approving, 253
Aquatic resource, 399
Aquatic Science and Fisheries Information
System (ASFIS), 388
Aquatic Sciences and Fisheries Abstracts
(ASFA), 386, 388, 391-393, 395,
398, 399
Aquatic species, 388-389, 395
Architectural ODPs, 37
Architecture, 297
Argumentation, 86, 333
Aroma, 274
ASFA. See Aquatic Sciences and Fisheries
Abstracts (ASFA)
ASFIS. See Aquatic Science and Fisheries
Information System (ASFIS)
Assessment, 209
Assessment table, building, 119
Asymmetric, 294
Autocompletion, 288
Axioms, 282, 287

DOI 10.1007/978-3-642-24794-1, © Springer-Verlag Berlin Heidelberg 2012

435

436

B

Backtracking, 30

Best practices, 22, 37, 42
BioPortal, 268

Bluefin tuna, 385

Bottom-up approach, 99, 103, 240

C
Candidate knowledge resources,
looking for, 15
Candidate non-ontological resources,
assessment of, 16, 115, 140
Catalog, 72
Catch record, 394
Catch record ontology, 397
Catchment_area, 391
CatchRecord class taxonomy, 397
Categorization, 70, 109
Change ontology, 240
Chat, 323, 325, 333
Class expression, 285
Classification scheme, 15, 112
Classify data, 385
Cloning, 44
Coding system, 387
Codolight, 75, 82-84, 86, 87, 335, 340, 342
Collaboration, 47, 66, 82, 83, 333, 338, 340
collaborative ontology engineering, 66
COMA++, 269
Combination of scenarios, 14
Competency questions (CQs), 14, 38, 40, 55,
62, 94, 99, 106, 149, 151, 152
strategies for identifying, 99
technique, 94
Componency CP, 42
Composition, 44, 52
Conceptual model, 23
Configuration, 322-323, 325-326
Consensus evaluation, 118
Consistency, 237, 239
Construction, 236
Content ontology design patterns, 38, 39, 62
Content specific requirement, 98
Context, 184
Contextual statement, 40, 55, 62
Coordinating, 241
Core ontology, 41
Corolla, 84
Corpus, 181
Correspondence, 257, 258, 268, 270, 272
Cost, 241
Coverage, 350

Index

Coverage calculation, 118, 134-135
CP catalogs, 48
CP composition, 41
CP specialization, 41
Create particular schedules from scratch, 307
Create particular schedules

in a guided way, 307
Cupboard, 268, 271, 272
Curation, 244, 247
Customer involvement, 45
Customer story, 46

D
Dashboard, 323, 325-327, 331, 333,
334, 338, 342
Data corpus, 247
Data gathering, 122
Data integration, 270
Data model
for classification schemes, 111
for thesauri, 111
Debugging, 368, 369, 373
Density, 350
Dependency, 244
Deploy, 251
Description logic (DL), 365
Description of a Project (DOAP), 87
Design aspect, 75, 83, 325, 329, 337
Design aspect OWL, 341
Design functionality, 85, 321, 325,
328, 337, 340
Design phase, 27
Design project, 85
Development project, 330
Development time, 297
Diagnosis, 238, 368
Dictionary, 181
DILIGENT, 3
Dimension, 386, 395
Discovery, 240, 250, 253
Distributed nature of network, 236
Divide-and-conquer paradigm, 47
Dock, 325, 332, 334
Document Viewer Panel, 402
Dolce-Lite, 154-156, 162, 163
Domain, 293, 386-390
coverage, 206, 208, 209
entity, 148
knowledge, 206
ODPs, 38
ontology, 41
Dynamics, 235

Index

E
E-connection, 215
e-invoicing, 410
Eclipse, 283, 295, 297, 298, 320, 322, 323, 330
Eclipse Public License, 295
EDIFACT, 407
EDIFACT Invoice Message Ontology
(EIMO), 415
EEZ. See Exclusive economic zone (EEZ)
Efficiency, 246
eHealth, 423
Electronic invoice, 408
Enterprise Resource Planning (ERP), 409
Entity Label Mode, 284
Entity Properties View, 284, 289, 292, 294
Error, 60
Evaluation, 49, 194, 208, 209
approach, 202
example, 210
framework, 200
metric, 199, 200
result, 203
Evaluation goal and approach, 196
adoption and use, 199
application/task, 199
domain coverage, 197
quality of modeling, 197-198
Evolution, 258
Exclusive economic zone (EEZ), 389, 399
Expansion, 354
key concept, 354
Experiment, 62, 245
Exploration, 352, 353, 355, 357, 361
eXtensible Business Reporting Language
(XBRL) Ontology project, 415
Extension point, 297, 309, 320, 330
External, 247
External resource service, 131-132
Extract lexical entry, 116
Extracting terminology
and frequency, 101, 104
Extraction, 249, 251
eXtreme Design (XD), 45, 62
principles, 4547
process, 47-53
eXtreme Design Tools (XD Tools), 58

F

FAO. See Food and Agriculture Organization
of United Nation (FAO)

Filling card, 32, 95, 308

Filling card template, 32

437

Fine-turning, 248
Fish stock aka aquatic resource, 389-390
Fisheries, 245
commodity, 386, 398
data, 389
ontology, 394
ontology, network of, 394
Fisheries Stock Depletion Assessment
System (FSDAS), 398, 401403
Fishery and pharmaceutical domain, 6
Fishing technique, 386
Five-phase + merging phase waterfall ontology
network life cycle model, 26, 28, 31
Five-phase waterfall ontology network life
cycle model, 26, 27, 31
Flexible scenarios, 11
Folk, 15
Folksonomy, 110
Food and Agriculture Organization
of United Nation (FAO), 383—404
geopolitical ontology, 388, 394, 399
thesauri, 387-388
Formal CQ, 166, 167
Forward engineering, 142
Foundational ontology, 41
Four-phase waterfall ontology network
life cycle model, 26, 31
Frame, 43, 72
Frame of reference, 195, 199, 202, 203
FrameNet, 43
Friend of a Friend (FOAF), 87
fromCountry, 398
fromFishingArea, 398
FSDAS. See Fisheries Stock Depletion
Assessment System (FSDAS)
Functional, 294
Functional and non-functional requirements,
identification of, 106
Functional ontology requirement, 98, 103
Functionality, 374

G

Gantt, 321

Gantt chart, 307, 314

Generic, 237

Generic entity, 148

Geographical demarcation, 390
Glossary, 72

Glossary of processes and activity, 306
Gold standard, 199, 205, 207

¢Ontt, 303-307, 316

Grouping functional requirement, 99

438

Guideline, 32, 173, 237
Guidelines for Scheduling Ontology
Development, 313-315

H

Harmony, 269
Hiding, 356
High-level, 254
Hypernym, 185
Hyponym, 185

1

i20nt, 417419

Identify, 249

iMerge, 270

Impact, 241

Implementation, 113, 242-243
Implementation phase, 27
Import, 44, 52, 56, 290
Incoherence, 366

Inconsistency, 242, 366, 367
Incremental life cycle model, 428
Industry, 414

Inference tests, 46, 53

Informal CQ, 152, 166, 167
Information realization CP, 41
Initial plan, 307, 314

Initiation phase, 27

Integration, 47, 49, 57
Integration effort, 158

Intended end users, identification of, 97, 102
Intended uses, identification of, 98, 103
Interaction, 86

Internationalized ontology, 173

Interoperability, 65, 69, 72,78, 87, 88, 335,338

computational, 340
conceptual, 320
conceptual interoperability, 66
functional interoperability, 66
linguistic interoperability, 66
semantic interoperability, 69
social interoperability, 66, 340
syntactical interoperability, 69

Inverse, 294

Invoice exchange, 408

Invoicing backbone ontology (IBO), 415

Irreflexive, 294

ISSCAAP, 388, 395, 399

ISSCFC, 395, 399

ISSCFG, 395

Iteration, 28, 313

Index

Iterative development, 46
Iterative-incremental ontology network life
cycle model, 25, 28, 30, 313

J
Justification, 247

K
Kali-ma dashboard, 309
KAON?2, 269
KC-Viz, 344, 351, 353, 358, 361
dashboard, 356
expanding, 353
functionality, 358
hiding, 353
inspecting, 353
preferences menu, 356
KCE, 351, 358, 361
Key concept, 350, 361
Knowledge resource, 108
Knowledge reuse, 210
Knowledge type, 85, 337, 341

L

Label translation(s), evaluation of, 24
LabelTranslator, 183

Laboratory, 414

Land area, 389

Large marine ecosystem (LME), 389, 399
Layered, 240

Levels of abstraction, 19
Lexicalization, 79-82
Lexico-Syntactic ODPs, 37

Lexicon, 15

Linguistic information, 76, 79, 400
Linguistic model, 77

Linked Data, 11, 41, 272, 336, 432
Linked Data initiative, 11

Linked Open Data, 388

LME. See Large marine ecosystem (LME)
Localization, 78

Localization manager, 176

Logging, 242, 246

Logical dependency, 308

Logical ODPs, 37

M
Machine translation (MT), 181
Maintenance phase, 27

Index

Manchester syntax, 285-286, 288
Manual evaluation, 209
Manual refinement, 124
Mappings, 21, 373
Maturity model, 175
Mereology, 168
Merging phase, 28
Metadata, 67-70, 72-75, 236, 384, 385
administrative metadata, 68
descriptive metadata, 68
structural metadata, 68
Metalevel, 66
Metalevel vocabulary, 65
Methodological guideline, 4, 16, 18, 308
for ontology requirements specification, 94
for processes and activities, 32
for specifying ontology requirement, 93, 94
Methodology, 67, 88, 326, 329
METHONTOLOGY, 3
Middle out strategy, 99
Mini-projects, 28
Minimal inconsistent subset (MIS), 376
Minimal unsatisfiability-preserving
subset (MUPS), 376
MIS. See Minimal inconsistent subset (MIS)
Model management, 270
Modeling solution, 37
Modification, 237
Modular design, 46
Modularization, 42, 213, 214
Modularization criteria, 222
Module, 148, 214
Multilingual conceptual model, 25
Multilingual ontology, 24, 172
Multilingualism, 66, 73, 76-78, 173
localization, 66
translation, 81
MUPS. See Minimal unsatisfiability-
preserving subset (MUPS)
Music industry ontology, 53

N

N-ary relation, 41

NAFO. See Northwest Atlantic Fishery

Organization (NAFO)

Namespaces, 290

Naming ODPs, 37

Natural category, 350

Navigation, 286, 345, 348, 356, 357
middle-out, 343
top-down, 345

NeOn, 404

439

NeOn Access Rights Model, 87
NeOn Foundation, 295
NeOn Glossary of Processes
and Activities, 10-12, 305
NeOn Methodology, 3, 9, 10, 94,
315, 329, 340, 426430
NeOn Methodology framework, 11
NeOn plugin, 403
NeOn plugin ODEMapster, 403
NeOn project, 385, 403
NeOn technology, 403
NeOn Toolkit, 5, 58, 74, 155, 209, 271-273,
306, 320, 322, 323, 327-332,
334, 340, 394, 403
alignment plugin, 271-272
plugin, 303 (), 337
user interface, 326
NeOn update site, 295
Network development, 305
Networked ontology, 2, 339
Networked world, 1
New ontology development paradigm, 108
Nomenclature, 423
Non-functional ontology requirements,
98, 103
Non-ontological resource, 10, 15, 109
re-engineering process, 16
reuse process, 15
reusing, 133, 139
reverse engineering, 16, 121, 136, 142
search and reuse of, 106
selection of, 120, 141
transformation, 16, 123, 142
NOR terms, semantics of relations among, 127
NOR,O, 127
NORs, categorization of, 113
Northwest Atlantic Fishery
Organization (NAFO), 396

0

OAEL 266

OBO, 155, 156, 162, 163
Obtained ontology evaluation, 164
ODEDialect, 261
ODEMapster processor, 391
ODP Detail, 58

ODP portal, 58

ODP Registry, 58

ODP Selector, 59
On-To-Knowledge, 3
OnaGui, 270

Online, 252

440

ONTOCOM model, 305
Ontological requirement, 38
Ontological resource forward engineering, 18
Ontological resource re-engineering model, 19
Ontological resource re-engineering process,
18,19, 22
Ontological resource restructuring, 18
Ontological resource reuse process, 17, 18,
21,22
Ontological resource reverse engineering, 18
Ontology, 10, 194, 262, 264-266,
270-273, 282, 305, 330,
347, 385, 386, 388, 396
adapting, 164
algebra, 217
alignment, 21, 272
application, 206
assessment, 17, 18
change, 250
comparison, 17, 18
conceptualization activity, 15
core, 36
design pattern reuse process, 23
design time matching, 270
development, 3, 9, 194
development life cycle, 315
development process, 10
development project, 332
documentation, 67
domain, 263
engineering, 1, 9, 258, 270, 276
engineering life cycle, 281
engineering life cycle activity, 4
enrichment, 23, 163
evaluation, 195, 210, 269
extension activity, 24
feature, 207
formalization activity, 15
forward engineering, 16, 124, 137
implementation activity, 15
integration, 18
label translation(s), obtaining, 24
label(s) to be localized, selection of, 24
language, 72
localization, 24, 171
management, 258-259
matching, 257-262, 269, 271, 272, 275
design time, 259, 260
runtime, 259, 260
merged, 261
merging, 21, 22, 263, 269, 270
modularization, 23, 71, 83, 194
module, 10, 106

Index

module composition, 217-218
module composition plugin, 231
module extraction, 216
module extraction plugin, 230
network, 2, 10, 51, 58, 82-84, 196,
205, 237, 266, 333, 390
network development process, 25
networked, 258, 275
evaluation, 193, 196, 203
partitioning, 215, 226
partitioning plugin, 228
project, 82, 83, 85, 322, 327, 331, 334
pruning, 23, 163
quality, 202
re-engineering activity, 17
reference, 36
repository, 17
requirement, 94
restructuring activity, 23
reuse, 106, 147, 344
search, 17, 18, 106
selection, 17, 18, 194
semantic nomenclature, 429
shape, 347
size, 347
specialization activity, 24
statement, 10
summary, 351, 360
translation, 163, 263, 275
update, 25, 182
upper-level, 257, 258, 263
validation, 195
verbalization, 76
verification, 196
version, 258
Ontology Alignment Evaluation Initiative
(OAEI), 265, 398
Ontology-based system, 385
Ontology design patterns (ODPs), 10, 22, 35,
36, 61, 83-85, 106, 204, 205, 429
Ontology Navigator, 283, 284, 287, 289
Ontology network life cycle model, 10, 15,
25, 305, 306
Ontology project execution, 303, 307, 315
Ontology requirements specification
activity, 14, 93, 94, 106
tasks for, 96
Ontology requirements specification document
(ORSD), 14, 93, 106, 148, 151, 313
Ontology requirements specification
document (ORSD) template, 95, 97
implementation language, 97
intended end users, 97

Index 441

intended uses, 97 Pipeline, 323, 338
ontology requirements, 97 Place CP, 41
functional requirements, 97 Plan, 303 (), 305
non-functional requirements, 97 Planning, 101, 241-242, 303 (), 304
pre-glossary of terms, 97 Plugin, 295, 299, 306-313, 320, 322,
purpose, 97 325, 327-331, 333, 335,
scope, 97 338-340, 364, 403
Ontology requirements specification Plugin wiki, 300
filling card, 95 Popularity, 350
Ontology statements (e.g., using Watson), 106 ~ PR-NOR software library, modules of, 129
OntoMas, 264 Pre-glossary of terms, 101
Open Biological and Biomedical Precision, 266
Ontology, 154 Precision calculation, 116, 134
Open world, 66 Prescriptive methodological guideline, 10, 32
Operator, 218, 223 Presentation ODPs, 37
OR Connector, 132 Prioritized, 240
Organize data, 385 Problem space, 38
OSGi, 296, 298-299, 339 Process, 10, 236
Oswebsite, 155, 156, 162, 163 Processes and activities, 325, 326, 340
OWL, 86, 261, 262, 269, 273, 337, Project, 283
339, 340, 387, 391 Prompt, 270
API, 297, 299, 337 Propagated, 243
class, 292-293 Property chain, 294
import, 392 Protégé, 269, 270
perspective, 283 Protégé ontology library, 154
priorVersion, 392 Purpose, scope, and implementation language,
property, 293-294 identification of, 97, 102
rendering, 271
sameAs, 269
trimming, 271 Q
OWL 2, 86, 285, 292, 299 QName, 285
OWL import, 42 Quality, 250
OWLDoc plugin, 394 Quality assurance (QA), 176

Quality evaluation, 119
Quality of modeling, 203, 205, 209, 210

P Query, 377, 385

Pair design, 47 mediator, 269

Parameter, 249-250 mediators, 261, 263

Part of CQs, 152 transformation, 259

Part of relation, 148 transforming, 263

Part-of CP, 42 translating, 269

Partition, 215 translation, 262, 272, 275, 276
Partitioning, 215 Query Composition Panel, 402
Pattern, 253 Query Result Panel, 402

Pattern for re-engineering non-ontological
resource (PR-NOR),

template of, 125-127 R
Pattern(s), 35 R20-ODEMapster, 429
selection, 51 RaDON, 375, 430
Pattern-based design approach, 4 Range, 293
Pharmaceutical, 414 Ranking, 240
Pharmalnnova, 419 RDF, 86, 269, 337, 388, 391, 394, 404

Pharmalnnova Ontology (P1O), 416 RDFS, 86, 341

442

Re-engineering, 15, 107
methodological guidelines for, 120
non-ontological resource, 135, 142
ODP, 37
pattern for, 123
phase, 28

Real-world case study, 6

Reasoner, 251

Reasoning, 83, 86, 326, 327, 336, 339, 363
ODP, 37
requirement, 40, 55, 62

Recall, 266

Reengineering non-ontological resource, 390

Reference data, 386387, 395, 400

Reference tables (RT), 387

Reference tables management

system (RTMS), 387

References, 287

Reflexive, 294

Registry, 74, 87, 327, 341
Centrasite, 74
Oyster, 74

Reliability, 158

Repair, 238

Repairing, 373

Repository, 73
BioPortal, 74, 75
Cupboard, 74

Represented, 240

Requesting, 238-241

Requirement analysis, 67, 82

Requirement story, 48

Requirements, 48, 51, 54, 62
identification of, 98, 103
prioritization of, 100, 104

Resource Detail Panel, 402

Resource restriction and assignment, 314

Resource transformation, 136

Result Panel, 402

Reusability, 213

Reuse, 15, 36, 62, 65-67, 69, 208, 236

Reuse economic cost, 157

Reuse phase, 27

Reuse-centric process, 9

Reusing, 107
methodological guideline for, 115

Reusing and re-engineering knowledge

resource, 11

Reusing non-ontological resource, 390

Reusing ontological resource, 390

Reusing ontology design pattern, 390

Revision, 367, 370, 371

Role, 244, 246

Index

Rondo, 270
Runtime, 297

S
Saliency mechanism, 348, 358
Scenario-based approach, 3
Scenario-based methodology, 10
Scenarios, 31
for building ontologies and
ontology networks, 10, 11
localizing ontological resource, 14, 24
of NeOn Methodology, 306
restructuring ontological resource, 14, 23
reusing and merging ontological
resource, 13, 21
reusing and re-engineering non-ontological
resource, 13, 15
reusing and re-engineering
ontological resource, 13, 18
reusing, merging, and re-engineering
ontological resource, 13, 22
reusing ontological resource, 13, 17
reusing ontology design
pattern (ODPs), 13, 22
from specification to
implementation, 12, 14
Schedule, 305, 330
Scheduling, 101, 106, 304, 305
Scheduling activity, 15, 305
Scheduling Ontology Engineering
Project, 303-316
Schema matching, 258
SEALS, 265, 266
Search, 287
Search non-ontological resource, 16, 115
Search Panel, 402
SEEMP Project, 132
Segmentation, 216
Select, 249, 251
Selecting, 313-314
Selecting the ontology network life
cycle model, 313
Semantic fidelity evaluation, 188
Semantic nomenclature, 326, 327, 329,
332, 334, 424-426
drug data, 426
interoperability, 424
pharmaceutical data, 424
Semantic nomenclature application, 432-434
cicero NeOn Service, 432
cupboard NeOn service, 432
Dailymed, 432

Index

DBPedia, 432
Diseasome, 432
Drugbank, 432
Google Web Toolkit (GWT), 433
JSON, 433
NeOn Methodology, 432
NeOn Toolkit, 432
Semantic Nomenclature case study, 102
Semantic nomenclature ontology
network, 430-431
ATC, 430
BOTPlus, 431
Digitalis, 431
MeSH, 430
NCI, 430
OpenGALEN, 430
RxNorm, 430
SPC, 430
UMLS Metathesaurus, 430
Semantic relation disambiguator, 131
Semantic Web, 2
Semantic wiki, 58
Semiautomatic, 247
Sensemaking, 346, 352, 361
Sequential phase, 25
Serialization, 284
Set of requirements, validation of, 100, 104
Sigma, 154
Sindice, 154
Sindicel3, 17
Single part whole, 155, 156, 162, 163
Situation CP, 41
Six-phase + merging phase waterfall ontology
network life cycle model, 26, 28, 31
Six-phase waterfall ontology network life
cycle model, 26, 28, 31
SKOS, 261, 262, 269, 387, 391, 393, 398
SmartProducts network of ontology, 346
SmartProducts ontology, 344, 345
SME, 410
Software Ontology Model (SOM), 87
Software requirements document, 93
Software specification, 93
Source, 248
SPARQL, 330, 377
Cupboard, 75
SPARQL query, 40
Specialization, 44, 52
Specialization wizard, 61
Statement level, 149
Statistic, 290
Stock, 390
Stress test, 46, 53

Suggestion, 61

SUMO-OWL, 154-156, 162-164, 168
Support activity, 14

Swoogle, 153

Swooglell, 17

Symmetric, 294

T

Task, 86

Task-oriented design, 47

Taxonomic code, 389

Taxonomy, 72, 292, 294

Technique, 250

Template for writing the ontology
requirement specification
document (ORSD), 106

Temporal dependency, 308

Terminology, 181

Test, 56

Test-driven design, 46

Thesauri/Thesaurus, 15, 72, 172, 181

Threshold, 253

Time interval CP, 38, 40

Time-consuming, 254

Tool-based support, 247

Tool-oriented guidelines, 254

Tools, 237

Top-down, 240, 246

Top-down strategy, 99

Transformation, 242

Transformer, 130

Transitive, 294

Translation, 24

Traversal method, 216

Trigger, 309

Tutorial, 300

Two-step wizard, 307

Types of potential knowledge
resources to be reused, 313

U

UBL, 407

UBL Invoicing Ontology (UBLIO), 415
Understandability effort, 157
Unit test, 49, 53

Update and change, 238
Update site, 320

Updating initial plan, 314
Upper ontology, 72

URI, 400, 401

Usability, 68

443

444

User interface (UI), 320, 322, 323, 330
User profile, 325, 331, 332

\'%
Validate, 250, 251, 253
Validation, 243-244, 252
Validation task criteria, 100
Verification, 106, 243-244
Verification test, 46, 53
Version, 235, 242, 250, 253
View extracted, 216
Visualization, 343, 346, 352, 356, 357
Visualization method, 359-360
context + focus and distortion, 360
indented list, 359
information landscape, 360
node-link and tree, 359
space-filling, 360
zoomable visualization, 360
Vocabulary, 65, 67
metadata vocabulary, 66

w

Warning, 61

WaterArea, 391

Waterfall life cycle model family, 25s
Waterfall model, 25, 313

Index

Waterfall ontology network life
cycle model, 25

Watson, 153—155, 168, 272

Watsonl2, 17

Weak supplementation principle, 169

Web ontology language OWL 2, 282

Web service, 299

Widget, 323, 325, 327, 328, 333,
334, 338, 340, 342

Wiki, 300

WordNet, 274

Workflow, 32, 85, 86, 244, 246, 308, 313

Workspace, 282

WSMT, 270

X

XBRL. See eXtensible Business
Reporting Language (XBRL)
Ontology project

XD analyzer, 60

XD tool, 62

XML, 275, 398

XMPP, 325, 334

XSLT, 275

Z
Zooming, 348, 357

	Ontology Engineering in a Networked World
	Foreword
	Preface
	Contents
	Chapter 1: Introduction: Ontology Engineering in a Networked World
	Part I: NeOn Methodology Framework
	Part II: Ontology Engineering Activities
	Part III: The NeOn Toolkit
	Part IV: Case Studies
	Index

