

Ontology Engineering in a Networked World

.

Mari Carmen Suárez-Figueroa
Asunción Gómez-Pérez • Enrico Motta
Aldo Gangemi

Editors

Ontology
Engineering in a
Networked World

Editors
Mari Carmen Suárez-Figueroa
Universidad Politécnica de Madrid
Facultad de Informática
Ontology Engineering Group
Campus de Montegancedo sn.
Boadilla del Monte
Madrid
Spain
mcsuarez@fi.upm.es

Enrico Motta
The Open University
Knowledge Media Institute
Milton Keynes
United Kingdom
e.motta@open.ac.uk

Asunción Gómez-Pérez
Universidad Politécnica de Madrid
Facultad de Informática
Ontology Engineering Group
Campus de Montegancedo sn.
Boadilla del Monte
Madrid
Spain
asun@fi.upm.es

Aldo Gangemi
Semantic Technology Lab,
Institute for Cognitive Sciences
and Technology, CNR
Via Nomentana 56
Rome
Italy
aldo.gangemi@cnr.it

ISBN 978-3-642-24793-4 e-ISBN 978-3-642-24794-1
DOI 10.1007/978-3-642-24794-1
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011945419

Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

To our families

.

Foreword

I am very pleased that this book has seen the light. I have been involved in the NeOn

project from its early beginning: first, during the proposal writing and project

negotiation phase, then as a project member responsible for one of the use cases

and the exploitation of the results and, finally, when I moved on to a different

professional challenge, as a member of the Advisory Board. Whatever the collabo-

ration form, it has always been a pleasure to work with this excellent consortium.

Even after my leave from the NeOn project, I remained active in semantic

research, but then from a technology transfer point of view. During the past

5 years, I have monitored the impact of European research projects on the economic

competitiveness of Europe. Results show that although there is much investment in

EU research, tangible results – at least in ICT – in terms of economic impact are

more the exception than the rule. It is therefore with great pleasure that I can write

the foreword to this NeOn book, more than a year after the end of the project, which

is a clear manifestation that NeOn has turned into an initiative beyond its initial

funding of the European Commission, a necessary step towards economic impact.

The first time I heard the term ‘ontology’ was in the early 1990s, when – in

computer science – it was merely an academic concept. Now, 20 years later, the

term ontology and more general, semantic technology, is penetrating increasingly

more applications and areas, spearheaded by areas such as life sciences. This book

contributes to putting ontological engineering in a more realistic environment: out

of the labs and into the real world (wide web), where reuse and interrelationships

are more the rule than exceptions.

Of course, there is still a long way to go for ontologies and semantic technology

to be fully taken up by mainstream markets, but this book certainly will help to

speed up the process.

Dr. V. Richard Benjamins

Director User Modelling

Telefónica Digital

vii

.

Preface

The Semantic Web is characterized by the existence of a very large number of

distributed semantic resources, which subscribe to alternative but often overlapping

modelling schema (i.e. ontologies). Together these resources define a network of
ontologies. This emerging scenario is radically different from the relatively narrow

contexts in which ontologies have been traditionally developed and applied. Thus,

there is a need for new practical methodologies and technologies to support

effectively the development of a new kind of network-oriented semantic

applications. This new support should assist a variety of users, dealing with a

variety of ontology engineering tasks.

To address this methodological need, this book describes the NeOnMethodology
Framework, which includes a set of nine scenarios for collaboratively building

ontologies and ontology networks, a glossary of processes and activities potentially

involved in ontology development and a collection of ontology life cycle models.

Other important aspects of this framework include (a) a pattern-based design

approach and (b) the provision of various models which can be used to represent

information about ontology networks. In addition, the framework provides a set of

methodological guidelines for the different processes and activities relevant to the

development of networked ontologies. These guidelines are presented in a prescrip-

tive way to facilitate their adoption by students and practitioners. The guidelines are

supported by a comprehensive software environment, which provides effective and

integrated support for all the processes and activities described in the book. Hence,

the book also includes (a) an overview of the NeOn Toolkit, focusing in particular

on the user interaction side, and (b) a detailed description of several plugins, which

are most critical to the ontology development process.

Finally, the book shows how the NeOn methods and tools have been applied in

three real-world case studies in the fishery and pharmaceutical domains. These

descriptions reveal effectively the value of the proposed methods and tools.

ix

This book aims to be a self-contained compendium of material for students

and practitioners in ontology engineering. We aim to provide the necessary

level of detail to allow readers to adopt the proposed methods and tools in practi-

cal ontology engineering projects. This book can be used as a textbook for under-

graduate and postgraduate courses on ontology engineering, together with other

books which focus specifically on the use of OWL for ontology engineering.

The content presented in this book is the result of the work done in the NeOn

project (life cycle support for networked ontologies), which was funded by the

European Commission’s Sixth Framework Programme under grant number FP6-

027595. Several dozens people collaborated on the NeOn project, and the research

described in this book would have not been possible without such massive collabo-

rative effort. Hence, we would like to thank all the people who collaborated in the

project for the excellent contribution to advancing research in ontology engineering

and for making this book possible.

In addition, we are extremely thankful to our colleagues, Nathalie Aussenac-

Gilles, Vadim Ermolayev, Mouna Kamel, Pierluigi Miraglia, Sofia Pinto, Elena

Simperl, Vojtech Svátek and Valentina Tamma, who provided very interesting

comments and feedback and helped unselfishly to improve the quality of this book.

We are also grateful to Ralf Gerstner, Frank Holzwarth, Viktoria Meyer and

Tanja J€ager at Springer-Verlag for their support and assistance during the produc-

tion of the manuscript.

Finally, we are very thankful for the love and support from our families without

which we could not have finished this book.

Mari Carmen Suárez-Figueroa

Asunción Gómez-Pérez

Enrico Motta

Aldo Gangemi

x Preface

Contents

1 Introduction: Ontology Engineering in a Networked World 1

Mari Carmen Suárez-Figueroa, Asunción Gómez-Pérez,

Enrico Motta, and Aldo Gangemi

Part I NeOn Methodology Framework

2 The NeOn Methodology for Ontology Engineering 9

Mari Carmen Suárez-Figueroa, Asunción Gómez-Pérez,

and Mariano Fernández-López

3 Pattern-Based Ontology Design . 35

Valentina Presutti, Eva Blomqvist, Enrico Daga, and Aldo Gangemi

4 The NeOn Ontology Models . 65

Alessandro Adamou, Raúl Palma, Peter Haase, Elena Montiel-Ponsoda,

Guadalupe Aguado de Cea, Asunción Gómez-Pérez, Wim Peters,

and Aldo Gangemi

Part II Ontology Engineering Activities

5 Ontology Requirements Specification . 93

Mari Carmen Suárez-Figueroa and Asunción Gómez-Pérez

6 Reusing and Re-engineering Non-ontological Resources

for Building Ontologies . 107

Boris Villazón-Terrazas and Asunción Gómez-Pérez

7 Ontology Development by Reuse . 147

Mariano Fernández-López, Mari Carmen Suárez-Figueroa,

and Asunción Gómez-Pérez

8 Ontology Localization . 171

Mauricio Espinoza Mejı́a, Elena Montiel-Ponsoda,

Guadalupe Aguado de Cea, and Asunción Gómez-Pérez

xi

9 Ontology (Network) Evaluation . 193

Marta Sabou and Miriam Fernandez

10 Modularizing Ontologies . 213

Mathieu d’Aquin

11 Ontology Evolution . 235

Raúl Palma, Fouad Zablith, Peter Haase, and Oscar Corcho

12 Methodological Guidelines for Matching Ontologies 257

Jérôme Euzenat and Chan Le Duc

Part III The NeOn Toolkit

13 Overview of the NeOn Toolkit . 281

Michael Erdmann and Walter Waterfeld

14 Scheduling Ontology Engineering Projects Using gOntt 303

Mari Carmen Suárez-Figueroa, Asunción Gómez-Pérez,

and Oscar Muñoz-Garcı́a

15 Customizing Your Interaction with Kali-ma 319

Alessandro Adamou and Valentina Presutti

16 Visualizing and Navigating Ontologies with KC-Viz 343

Enrico Motta, Silvio Peroni, José Manuel Gómez-Pérez,

Mathieu d’Aquin, and Ning Li

17 Reasoning with Networked Ontologies . 363

Guilin Qi and Andreas Harth

Part IV Case Studies

18 Knowledge Management at FAO: A Case Study on Network

of Ontologies in Fisheries . 383

Caterina Caracciolo, Juan Heguiabehere, Aldo Gangemi,

Claudio Baldassarre, Johannes Keizer, and Marc Taconet

19 Electronic Invoice Management in the Pharmaceutical Sector:

The PharmaInnova Case . 407

José Manuel Gómez-Pérez, Vı́ctor Méndez, Joan Candini,

and Juan Carlos Muñoz

20 Integrating Product Information in the Pharmaceutical Sector . . . 423

Tomás Pariente Lobo and Germán Herrero Cárcel

Index . 435

xii Contents

Chapter 1

Introduction: Ontology Engineering

in a Networked World

Mari Carmen Suárez-Figueroa, Asunción Gómez-Pérez,

Enrico Motta, and Aldo Gangemi

Abstract While ontology engineering is rapidly entering the mainstream, expert

ontology engineers are a scarce resource. Hence, there is a need for practical

methodologies and technologies, which can assist a variety of user types with

ontology development tasks. To address this need, this book presents a scenario-

based methodology, the NeOn Methodology, which provides guidance for all main

activities in ontology engineering. The context in which we consider these activities

is that of a networked world, where reuse of existing resources is commonplace,

ontologies are developed collaboratively, and managing relationships between

ontologies becomes an essential aspect of the ontological engineering process.

The description of both the methodology and the ontology engineering activities

is grounded in a comprehensive software environment, the NeOn Toolkit and its

plugins, which provides integrated support for all the activities described in the

book. Here we provide an introduction for the whole book, while the rest of the

content is organized into 4 parts: (1) the NeOn Methodology Framework, (2) the set

of ontology engineering activities, (3) the NeOn Toolkit and plugins, and (4) three

use cases. Primary goals of this book are (a) to disseminate the results from the

NeOn project in a structured and comprehensive form, (b) to make it easier for

students and practitioners to adopt ontology engineering methods and tools, and

M.C. Suárez-Figueroa (*) • A. Gómez-Pérez

Ontology Engineering Group, Facultad de Informática, Universidad Politécnica de Madrid,

Campus de Montegancedo sn., 28660 Boadilla del Monte, Madrid, Spain

e-mail: mcsuarez@fi.upm.es; asun@fi.upm.es

E. Motta

Knowledge Media Institute (KMi), The Open University, Walton Hall, Milton Keynes

MK7 6AA, UK

e-mail: e.motta@open.ac.uk

A. Gangemi

Semantic Technologies Lab, Institute of Cognitive Sciences and Technologies (National Research

Council – CNR), Via Nomentana 56, 00161 Rome, Italy

e-mail: aldo.gangemi@cnr.it

M.C. Suárez-Figueroa et al. (eds.), Ontology Engineering in a Networked World,
DOI 10.1007/978-3-642-24794-1_1, # Springer-Verlag Berlin Heidelberg 2012

1

mailto:mcsuarez@fi.upm.es
mailto:asun@fi.upm.es
mailto:e.motta@open.ac.uk
mailto:aldo.gangemi@cnr.it

(c) to provide a textbook for undergraduate and postgraduate courses on ontology

engineering.

1.1 Introduction

The Semantic Web is characterized by the existence of a very large number of

distributed semantic resources, which subscribe to alternative but often overlapping

modeling schema (i.e., ontologies). Together these resources define a network of
ontologies related through a variety of different meta-relationships such as

versioning, inclusion, inconsistency, similarity, and others. This emerging scenario

is radically different from the relatively narrow contexts in which ontologies have

been traditionally developed and applied, and calls for new methods and tools to

support effectively the development of a new kind of network-oriented semantic

applications.

Hence, ontologies on the Web are not stand-alone artifacts. They relate to

each other in ways that might affect their meaning, and are inherently distributed

in a network of interlinked semantic resources. More precisely, a network of
ontologies or an ontology network is a collection of ontologies related together

via a variety of relationships, such as alignment, modularization, version, and

dependency. Accordingly, a networked ontology is an ontology included in such

a network, sharing relationships with a potentially large number of other ontologies.

Intuitively, this aspect of considering ontologies as included in a network

implies that they are defined not only through their content but also in terms of

ontology metadata, which provide information about their provenance, purpose,

and the relations with other ontologies and semantic resources, among other things.

One of the most common ways for two ontologies to relate is to be dependent on

each other. More precisely, it is often the case that in order to define its own model,

an ontology refers to the definitions included in another ontology. The OWL

language includes a primitive (owl:imports) allowing an ontology developer to

declare such a relationship, merging the definitions of the imported ontology with

those from the importing one.

Aligning ontologies is a way to put different models in correspondence by

declaring which entities in one ontology are the same as those in another ontology,

or a generalization or specialization. The main purpose of alignments is to ensure

semantic interoperability, making it possible to merge ontologies in a meaningful

way by representing information in one ontology in terms of the entities in another.

Large, monolithic ontologies are hard to manipulate, use, and maintain. Modular

ontologies on the contrary divide the ontological model in self-contained,

interlinked components, which can be considered independently, while at the

same time participate to the definition of a specific aspect of an ontology. Therefore,

modules share the relation that they are common components of a larger ontology,

and often include dependencies and alignments to other modules.

2 M.C. Suárez-Figueroa et al.

Finally, versioning relates to the activity of keeping track of the different

versions of an ontology. This is of particular importance in a collaborative ontology

engineering environment, where the ontology evolution process needs to be care-

fully monitored and managed. The OWL language includes primitives to declare

versioning relations between ontologies, but these do not consider fine-grained

changes and are not often used in practice.

In this networked world, ontology practitioners need both methodological and

technological support for the development and use of ontology networks. We aim to

provide such a support in this book.

1.2 NeOn Methodology Framework

One of the main contributions of this book is the NeOn Methodology framework,

which is described in the first part of this book. Although methodological

approaches already exist in the literature – e.g., METHONTOLOGY, On-To-

Knowledge, and DILIGENT, they do not provide the comprehensive set of methods

described in the NeOn Methodology, especially with respect to key activities in

a network-centric scenario, such as those related to reusing and managing the

dynamics of ontologies.

The NeOn Methodology (Chap. 2) uses a scenario-based approach to ontology

development and provides a comprehensive set of methods and guidelines for

carrying out the variety of activities required when developing ontologies in

a networked world.

The NeOn Methodology includes (1) a set of nine scenarios that involve

different activities for collaboratively building ontologies and ontology networks,

(2) a glossary of processes and activities relevant to ontology development, (3) a

collection of ontology life cycle models, and (4) a set of methodological guidelines.

The NeOn Methodology defines each process or activity in a precise manner,

stating its purpose, inputs and outputs, the actors involved, when its execution is

more appropriate, and a set of proposed methods, techniques, and tools to be used.

The methodology is presented in a prescriptive way to facilitate its adoption by

students and practitioners.

Current methodologies for ontology engineering, such as METHONTOLOGY,

On-To-Knowledge, and DILIGENT, mainly include guidelines for single ontology

construction, ranging from ontology requirements specification to ontology imple-

mentation, and they are mainly targeted to ontology researchers. In contrast to the

aforementioned approaches, the NeOn Methodology does not prescribe a rigid

workflow but instead suggests pathways and activities for a variety of scenarios.

The nine scenarios described in the book cover commonly occurring situations,

e.g., when existing ontologies need to be reengineered, aligned, modularised,

localized to support different languages and cultures, or integrated with non-

ontological resources (NORs), such as folksonomies or thesauri.

1 Introduction: Ontology Engineering in a Networked World 3

http://dx.doi.org/10.1007/978-3-642-24794-1_2

Another important aspect of the NeOn Methodology is the pattern-based design

approach described in Chap. 3. In this chapter, different types of ontology design

patterns (ODPs) are presented as well as an associated method (named eXtreme

Design) to assist in ontology development. Ontology design patterns provide

modeling solutions which can be applied to solve recurrent ontology design

problems. The availability of a library of ontology design patterns is an important

step toward achieving the ultimate goal of turning ontology design into a structured

and reproducible engineering process. The pattern library also includes patterns for

reengineering non-ontological resources (such as thesauri, classification schemas,

etc.) into ontologies.

In addition, as part of the methodological framework, three models are proposed

to represent information about ontology networks. They play a critical role, as they

allow keeping track of the provenance, purpose, and design of ontologies, as well as

covering multilinguality issues. The three models are:

• The Ontology Metadata Vocabulary (OMV). An ontology that defines classes

and relations to describe authoring aspects, ontology type, purpose, etc.

• The Collaborative Ontology Design Ontology (C-ODO). An ontology network

that enables designers to describe design entities (ontologies, modules, ontology

elements, requirements, activities, tools, reusable knowledge, teams, people, etc.).

• The Linguistic Information Repository (LIR). An ontology that defines a set of

linguistic classes, whose nature accounts for the localization of ontology terms

in a particular language.

1.3 Ontology Engineering Activities

The second part of the book provides the reader with a description of the key

activities relevant to the ontology engineering life cycle in a networked world. For

each activity, a general introduction, methodological guidelines, practical examples

(where possible), and the technological support within the NeOn Toolkit (if avail-

able) are provided. Methodological guidelines are explained using a common

structure, which includes process or activity definition, goal, input and output,

actors involved, and a graphical workflow, which describes how the process or

activity should be carried out. This structured way of explaining the guidelines

maximizes the pedagogical value of the book.

The starting point to develop an ontology network is the gathering of the

requirements the ontology should fulfill. This activity is called ontology

requirements specification and is described in Chap. 5.

Once requirements are collected, ontology practitioners are encouraged to fol-

low a reuse approach in the ontology building process, which allows speeding up

the ontology network development process, saving time and money, and promoting

the application of good practices. In this context, both non-ontological resources

(Chap. 6) and ontological resources (Chap. 7) can be reused.

4 M.C. Suárez-Figueroa et al.

http://dx.doi.org/10.1007/978-3-642-24794-1_3
http://dx.doi.org/10.1007/978-3-642-24794-1_5
http://dx.doi.org/10.1007/978-3-642-24794-1_6
http://dx.doi.org/10.1007/978-3-642-24794-1_7

An important aspect in a networked world, which involves different natural

languages and cultures, is the localization of the ontologies. This activity is

described in Chap. 8.

Another key aspect in the ontology network development is the ontology

evaluation activity, which is performed at different levels and according to different

criteria, as explained in Chap. 9.

Additionally, modularization also needs to be taken into account in the ontology

network development according to three different aspects: (1) designing modular

ontologies, (2) modularizing existing ontologies, and (3) reusing ontology modules.

Methodological guidelines for modularizing existing ontologies are presented in

Chap. 10.

Ontology networks need to be kept up to date in order to reflect changes and

updates. To this purpose, methodological guidelines for ontology evolution are

provided in Chap. 11.

Finally, finding alignments between ontologies is an important task for ontology

engineering in a networked world, and is covered in Chap. 12, which provides

methodological guidelines for this activity.

1.4 The NeOn Toolkit

The third part of the book presents an overview of the NeOn Toolkit (Chap. 13),

focusing in particular on the user interaction side and a detailed description of the

plugins, which are most critical to the ontology development process.

Proper management of ontology engineering projects in a networked world

requires careful planning, and to this purpose it is recommended that an ontology

project plan and schedule is defined. To support this activity, a NeOn Toolkit

plugin, called gOntt, has been developed, which is described in Chap. 14.

The tasks of locating, selecting, and accessing NeOn Toolkit plugins are

supported by the Kali-ma plugin (Chap. 15). This plugin, which exploits the

versatility of the C-ODO Light model, assists ontology engineers and project

managers in carrying out such tasks through a unified, shared interaction mode.

Visualizing and navigating ontology networks is a key issue for ontology

engineering. In this sense, the NeOn Toolkit provides a novel plugin called KC-Viz

(Chap. 16), which exploits an innovative ontology summarizationmethod to support a

“middle-out ontology browsing” approach, where it becomes possible to navigate

ontologies starting from the most information-rich nodes (key concepts).
Finally, reasoning with ontology networks is another key activity in ontology

engineering. Chapter 17 presents (a) the NeOn Toolkit query plugin, which allows

users to query ontologies in the NeOn Toolkit via the RDF query language

SPARQL, (b) the NeOn Toolkit reasoning plugin, which allows for standard

reasoning tasks, such as materializing inferences and checking consistency in

ontologies, and (c) the RaDON plugin, which supports users in diagnosing and

resolving inconsistencies in networked ontologies.

1 Introduction: Ontology Engineering in a Networked World 5

http://dx.doi.org/10.1007/978-3-642-24794-1_8
http://dx.doi.org/10.1007/978-3-642-24794-1_9
http://dx.doi.org/10.1007/978-3-642-24794-1_10
http://dx.doi.org/10.1007/978-3-642-24794-1_11
http://dx.doi.org/10.1007/978-3-642-24794-1_12
http://dx.doi.org/10.1007/978-3-642-24794-1_13
http://dx.doi.org/10.1007/978-3-642-24794-1_14
http://dx.doi.org/10.1007/978-3-642-24794-1_15
http://dx.doi.org/10.1007/978-3-642-24794-1_16
http://dx.doi.org/10.1007/978-3-642-24794-1_17

1.5 Case Studies

The fourth and last part of the book describes how the NeOn methods and tools have

been applied in three real-world case studies in the fishery and pharmaceutical

domains.

• Knowledge management at FAO (Chap. 18). This case study is centered on

fisheries data1 and aims to build a system to enable fisheries experts to have

a unified view of the distributed data relevant to fisheries stocks. The result is

a prototype of a Fisheries Stock Depletion Assessment System (FSDAS), which

illustrates the advantages derived from enriching data with explicit semantics.

• Electronic invoice management in the pharmaceutical sector: the PharmaInnova

case (Chap. 19). This chapter deals with the development of an ontology

network for automating the exchange of electronic invoices in the pharmaceuti-

cal sector.

• Integrating product information in the pharmaceutical sector (Chap. 20). This

case study focuses on the development of a network of interconnected pharma-

ceutical ontologies to provide an integrated view of different drug terminologies.

1 http://www.fao.org/fishery/en

6 M.C. Suárez-Figueroa et al.

http://dx.doi.org/10.1007/978-3-642-24794-1_18
http://dx.doi.org/10.1007/978-3-642-24794-1_19
http://dx.doi.org/10.1007/978-3-642-24794-1_20
http://www.fao.org/fishery/en

Part I

NeOn Methodology Framework

Chapter 2

The NeOn Methodology for Ontology

Engineering

Mari Carmen Suárez-Figueroa, Asunción Gómez-Pérez,

and Mariano Fernández-López

Abstract In contrast to other approaches that provide methodological guidance for

ontology engineering, the NeOn Methodology does not prescribe a rigid workflow,

but instead it suggests a variety of pathways for developing ontologies. The nine

scenarios proposed in the methodology cover commonly occurring situations, for

example, when available ontologies need to be re-engineered, aligned, modular-

ized, localized to support different languages and cultures, and integrated with

ontology design patterns and non-ontological resources, such as folksonomies or

thesauri. In addition, the NeOn Methodology framework provides (a) a glossary of

processes and activities involved in the development of ontologies, (b) two onto-

logy life cycle models, and (c) a set of methodological guidelines for different

processes and activities, which are described (a) functionally, in terms of goals,

inputs, outputs, and relevant constraints; (b) procedurally, by means of workflow

specifications; and (c) empirically, through a set of illustrative examples.

2.1 Introduction

Given the large increase in the number of ontologies, which are available online,

ontology development is more and more becoming a reuse-centric process (Simperl

2009). In particular, the level of reuse may vary significantly, depending on whether

M.C. Suárez-Figueroa (*) • A. Gómez-Pérez

Ontology Engineering Group, Facultad de Informática, Universidad Politécnica de Madrid,

Campus de Montegancedo sn., 28660 Boadilla del Monte, Madrid, Spain

e-mail: mcsuarez@fi.upm.es; asun@fi.upm.es

M. Fernández-López

Escuela Politécnica Superior, Universidad San Pablo CEU, Urbanización Monteprı́ncipe sn.,

28668 Boadilla del Monte, Madrid, Spain

e-mail: mfernandez.eps@ceu.es

M.C. Suárez-Figueroa et al. (eds.), Ontology Engineering in a Networked World,
DOI 10.1007/978-3-642-24794-1_2, # Springer-Verlag Berlin Heidelberg 2012

9

mailto:mcsuarez@fi.upm.es
mailto:asun@fi.upm.es
mailto:mfernandez.eps@ceu.es

it concerns (a) other ontologies, such as DOLCE1, SUMO (Pease et al. 2002), and

Kowien2; (b) ontology modules (Cuenca-Grau et al. 2007); (c) ontology statements

and ontology design patterns (Gangemi 2007; Presutti and Gangemi 2008); and

(d) non-ontological resources (Jimeno-Yepes et al. 2009), such as thesauri, lexicons,

DBs, UML diagrams, and classification schemas (e.g., NAICS3 and SOC4).

Thus, in this context ontology development can be then characterized as the

construction of a network of ontologies, where the different resources may be

managed by different people, possibly in different organizations.

Given this new vision of ontology engineering by reuse, it then becomes

important to provide strong methodological support for the collaborative develop-

ment of ontology networks.

Methodological frameworks are widely accepted in different mature fields

(Fernández-López 1999), like Software Engineering and Knowledge Engineering.

Such methodological frameworks cover aspects, such as development process, life

cycle models, as well as the methods, techniques, and tools that can be used to

support the development process. Accordingly, a mature methodology for develop-

ing ontologies should also cover these aspects.

This chapter describes the NeOn Methodology for building ontologies and

ontology networks, a scenario-based methodology that supports different aspects

of the ontology development process, as well as the reuse and dynamic evolution of

networked ontologies in distributed environments, where knowledge is introduced

by different people (domain experts, ontology practitioners) at different stages of

the ontology development process.

This methodology includes the following components:

• The NeOn Glossary (Sect. 2.2), which identifies and defines the processes and

activities potentially involved in the ontology network construction.

• A set of nine scenarios for building ontologies and ontology networks, which are
described in Sect. 2.3. Each scenario is decomposed in different processes and

activities taken from those included in the NeOn Glossary.
• Two ontology network life cycle models (Sect. 2.4) that specify how to organize

the processes and activities of the NeOn Glossary into phases5.
• A set of prescriptive methodological guidelines for processes and activities

(Sect. 2.5).

1 http://www.loa-cnr.it/DOLCE.html
2 Skill Ontology from the University of Essen, which defines concepts representing the

competencies required to describe job position requirements and job applicant skills. Available

at http://www.kowien.uni-essen.de/publikationen/konstruktion.pdf
3 North American Industry Classification System, which provides industry-sector definitions for

Canada, Mexico, and the United States to facilitate uniform economic studies across the

boundaries of these countries. Available at http://www.census.gov/epcd/www/naics.html
4 Standard Occupational Classification, which classifies workers into occupational categories

(23 major groups, 96 minor groups, and 449 occupations). Available at http://www.bls.gov/soc/
5 A phase is a distinct period or stage in a process of development.

10 M.C. Suárez-Figueroa et al.

http://www.loa-cnr.it/DOLCE.html
http://www.kowien.uni-essen.de/publikationen/konstruktion.pdf
http://www.census.gov/epcd/www/naics.html
http://www.bls.gov/soc/

In addition to applying the NeOn Methodology to the development of the

ontology networks associated with use cases of the NeOn project as shown in

Chaps. 18, 19, and 20. This methodology has been used to build ontology networks

in different domains and areas and by people with diverse background, for example,

and just to name a few, in e-employment (Villazón-Terrazas et al. 2011), in

education (Clemente et al. 2011), in tourism (Lamsfus et al. 2009), and in mobile

environments (Poveda-Villalón et al. 2010).

Finally, it is worth mentioning that the NeOn Methodology can also be used

within the Linked Data initiative (Bizer et al. 2009) since this is based on knowl-

edge resource reused and re-engineering as well as on mapping resources. Publish-

ing Linked Data is a process that involves a high number of activities, design

decisions as well as a wide range of technologies. The main activities are (1) identi-

fication of the data sources, (2) vocabulary modeling, (3) generation of the RDF

data, (4) publication of the RDF data, and (5) linking the RDF data with other

datasets in the cloud. In the vocabulary modeling activity, ontologies to model the

data contained in the selected sources should be developed. The most important

recommendation here is to reuse as much as possible available knowledge

resources that model the knowledge needed. In this regard, the NeOn Methodology

provides precise guidelines to help practitioners to create the vocabularies needed.

One example of the use of the NeOn Methodology in this initiative can be found in

(Vilches-Blázquez et al. 2010).

2.2 The NeOn Glossary

The NeOn Glossary identifies and defines the processes and activities potentially

involved in the ontology network construction. This glossary has been established

by a consensus reaching process among ontology experts and is a first step in

addressing the lack of a standard glossary in Ontology Engineering – in contrast

with the Software Engineering field that can claim the IEEE Standard Glossary of

Software Engineering Terminology (IEEE 1990). The NeOn Glossary of Processes

and Activities (Suárez-Figueroa 2010)6 includes 59 processes and activities listed

in Table 2.1.

2.3 Nine Scenarios for Building Ontology Networks

In the NeOn Methodology framework, a set of nine flexible scenarios

for collaboratively building ontologies and ontology networks, placing special

emphasis on reusing and re-engineering knowledge resources (ontological and

non-ontological), has been identified.

6 http://mayor2.dia.fi.upm.es/oeg-upm/files/pdf/NeOnGlossary.pdf

2 The NeOn Methodology for Ontology Engineering 11

http://dx.doi.org/10.1007/978-3-642-24794-1_18
http://dx.doi.org/10.1007/978-3-642-24794-1_19
http://dx.doi.org/10.1007/978-3-642-24794-1_20
http://mayor2.dia.fi.upm.es/oeg-upm/files/pdf/NeOnGlossary.pdf

Figure 2.1 presents the set of the nine most plausible scenarios for building

ontologies and ontology networks. Directed arrows with associated numbered

circles represent the different scenarios. Each scenario is decomposed into different

processes or activities. Processes and activities are represented with colored circles

or with rounded boxes and are defined in the NeOn Glossary of Processes and

Activities presented in Sect. 2.2. Figure 2.1 also shows (as dotted boxes) the

existing knowledge resources to be reused, and the possible outputs that result

from the execution of some of the presented scenarios.

This section includes, as independent subsections, the most common scenarios

that may unfold during the ontology network development. However, the reader

should keep in mind that this list is not meant to be exhaustive.

• Scenario 1: From specification to implementation. The ontology network is

developed from scratch, that is, without reusing available knowledge resources.

Table 2.1 NeOn Glossary of processes and activities

Processes

Ontology aligning Non-ontological resource reuse

Ontology design pattern reuse Ontological resource reuse

Ontology module reuse Ontology reuse

Ontology re-engineering Ontology statement reuse

Non-ontological resource re-engineering Ontology validation

Activities

Ontology annotation Ontology merging

Ontology assessment Ontology modification

Ontology comparison Ontology modularization

Ontology conceptualization Ontology module extraction

Ontology configuration management control Ontology partitioning

Ontology customization Ontology population

Ontology diagnosis Ontology pruning

Ontology documentation Ontology quality assurance

Ontology elicitation Ontology repair

Ontology enrichment Ontology requirements specification

Ontology environment study Non-ontological resource reverse Engineering

Ontology evaluation Non-ontological resource transformation

Ontology evolution Ontology restructuring

Ontology extension Ontology reverse engineering

Ontology feasibility study Scheduling

Ontology formalization Ontology search

Ontology forward engineering Ontology selection

Ontology implementation Ontology specialization

Ontology integration Ontology summarization

Knowledge acquisition for ontologies Ontology translation

Ontology learning Ontology update

Ontology localization Ontology upgrade

Ontology mapping Ontology verification

Ontology matching Ontology versioning

12 M.C. Suárez-Figueroa et al.

• Scenario 2: Reusing and re-engineering non-ontological resources. This scenario
covers the case where ontology developers need to analyze non-ontological

resources and decide, according to the requirements the ontology should fulfill

which non-ontological resources can be reused to build the ontology network. The

scenario also covers the task of re-engineering the selected resources into

ontologies.

• Scenario 3: Reusing ontological resources. Here, ontology developers reuse

ontological resources (ontologies as a whole, ontology modules, and/or ontology

statements).

• Scenario 4: Reusing and re-engineering ontological resources. Here, ontology
developers both reuse and re-engineer ontological resources.

• Scenario 5: Reusing and merging ontological resources. This scenario unfolds

only in those cases where several ontological resources in the same domain are

selected for reuse and when ontology developers wish to create a new ontologi-

cal resource from two or more ontological resources.

• Scenario 6: Reusing, merging, and re-engineering ontological resources. This
scenario is similar to Scenario 5; however, here developers decide not to use the

set of merged resources as it is, but to re-engineer it.

• Scenario 7: Reusing ontology design patterns (ODPs). Ontology developers

access ODPs repositories to reuse them.

KnowledgeResources

Non Ontological Resource
Reuse

Non Ontological Resource
Reengineering

2

2

2

Non Ontological Resources

Thesauri

DictionariesGlossaries Lexicons

TaxonomiesClassification
Schemas

O. Localization

9

Ontology Support Activities: Knowledge Acquisition (Elicitation); Documentation;
Configuration Management; Evaluation (V&V); Assessment

1,2,3,4,5,6,7,8, 9

Ontological Resource
Reengineering

4

4

4

Alignments
5

5

5

6

6

6

6
3

Ontological Resource
Reuse

3
Ontological Resources

O. Repositories and Registries

Flogic
RDF(S)
OWL

Ontology Design
Pattern Reuse

7

O. Design Patterns

Ontology Restructuring
(Pruning, Extension,

Specialization, Modularization)

8

O. Specification Scheduling O. Conceptualization O. ImplementationO. Formalization

1
RDF(S)

OWL

Flogic

O. Aligning

O. Merging

Fig. 2.1 Scenarios for building ontologies and ontology networks

2 The NeOn Methodology for Ontology Engineering 13

• Scenario 8: Restructuring ontological resources. Ontology developers restruc-

ture (modularizing, pruning, extending, and/or specializing) ontological

resources to be integrated in the ontology network being built.

• Scenario 9: Localizing ontological resources. Ontology developers adapt an

ontology to other languages and culture communities, thus producing a multi-

lingual ontology.

Knowledge acquisition, documentation, configuration management, evaluation,

and assessment should be carried out during the whole ontology network develop-

ment, that is, in any scenario used for developing the ontology network. The

intensity of such support activities depends on the concrete phase of the develop-

ment progress.

It is worth mentioning that these scenarios can be combined in different

and flexible ways, and that any combination of scenarios should include Scenario 1

because this scenario is made up of the core activities that have to be performed in

any ontology development. Indeed, as Fig. 2.1 shows, the results of any other

scenario should be integrated in the corresponding activity of Scenario 1.

The following subsections present the various scenarios identified; each subsec-

tion includes (a) motivation for the scenario; (b) sequence of processes, activities,

and tasks to be carried out, where the processes and activities included are taken

from the NeOn Glossary of Processes and Activities (Sect. 2.2); and (c) outcomes

for the scenario.

2.3.1 Scenario 1: From Specification to Implementation

This scenario refers to the development of ontologies from scratch. The scenario is

made up of the core activities that have to be performed in any ontology develop-

ment and should be combined with the rest of scenarios.

In this scenario, ontology developers7 should specify first the requirements that

the ontology should fulfill, by means of the ontology requirements specification
activity. The objective of this activity is to output the ontology requirements speci-

fication document (ORSD) that includes the purpose, the scope, and the implemen-

tation language of the ontology network, the target group, and the intended uses of

the ontology network, as well as the set of requirements that the ontology network

should fulfill, mainly in the form of competency questions (CQs)8 and a pre-glossary
of terms. Prescriptive methodological guidelines for this activity are provided

in Chap. 5.

7 In this book, ontology developers refer to software developers and ontology practitioners

involved in the development of ontologies.
8 An example of CQ can be “where is located the device Z? The device Z is at coordinates X, Y”.

14 M.C. Suárez-Figueroa et al.

http://dx.doi.org/10.1007/978-3-642-24794-1_5

After the ontology requirements specification activity, it is recommended to

carry out a look for candidate knowledge resources (ontologies, non-ontological

resources, and ontology design patterns) to be reused in the development, using as

input terms included in the ORSD. These candidate resources provide clues for the

identification of the scenarios to be followed during the ontology development.

Then, the scheduling activitymust be carried out, using the ORSD and the results of

such a look for resources. During the scheduling activity, the team establishes the

ontology network life cycle and the human resources needed for the ontology

project. Chapter 14 presents guidelines and a tool for performing the scheduling

of ontology development projects.

Then, the ontology developers assigned to the ontology project should carry out

(1) the ontology conceptualization activity, in which knowledge is organized and

structured into meaningful models at the knowledge level; (2) the ontology
formalization activity, in which the conceptual model is transformed into a semi-

computable model; and (3) the ontology implementation activity, in which a

computable model (implemented in an ontology language) is generated.

The principal output is a network of ontologies that represents the expected

domain implemented in an ontology language (OWL9, F-Logic, etc.). In addition, a

broad range of documents, such as the ontology requirements specification docu-

ment, the ontology description document, and the ontology evaluation document,

will be generated as output by the different activities.

2.3.2 Scenario 2: Reusing and Re-engineering Non-Ontological
Resources

Currently, ontology developers are realizing the benefits of “not reinventing the

wheel” at each ontology development. They are starting to reuse as much as

possible non-ontological resources, such as classification schemes, thesauri,

lexicons, and folksonomies, built by others that already have reached some degree

of consensus, with the aim of speeding up the ontology development process

(Villazón-Terrazas et al. 2010). The reuse of such resources involves necessarily

their re-engineering into ontologies. Therefore, this scenario unfolds in those cases

in which ontology developers wish to reuse the non-ontological resources at their

disposal.

As Fig. 2.1 shows (by arrows with the number 2), ontology developers should

accomplish first the non-ontological resource reuse process and then choose the

most suitable non-ontological resources (thesauri, glossaries, databases, etc.) to be

used for building the ontology network. Such non-ontological resources cover to

some extent the domain of the ontology network being built. If ontology developers

9 http://www.w3.org/TR/owl-ref/

2 The NeOn Methodology for Ontology Engineering 15

http://dx.doi.org/10.1007/978-3-642-24794-1_14
http://www.w3.org/TR/owl-ref/

decide that one or more resources are useful for the ontology network development,

then the non-ontological resource re-engineering process should be carried out to

transform the selected non-ontological resources into ontologies. After this process,

ontology developers should use the resultant ontologies as input of some of the

activities included in Scenario 1 (explained in Sect. 2.3.1), as shown in Fig. 2.1.

The activities for carrying out the non-ontological resource reuse process are

briefly explained below; prescriptive methodological guidelines for this activity are

described in Chap. 6:

1. Activity 1. Search non-ontological resources. The goal of the activity is to find

non-ontological resources in highly reliable websites, domain-related sites, and

resources within organizations. The input for this activity is the ontology

requirements specification document (ORSD).

2. Activity 2. Assess the set of candidate non-ontological resources. The goal of

this activity is to assess the set of candidate non-ontological resources obtained

in Activity 1. To carry out this activity, the following criteria should be used:

coverage, precision, and consensus about the knowledge and terminology used

in the resource, which is a subjective criterion.

3. Activity 3. Select the most appropriate non-ontological resources. The goal of

this activity is to select the most appropriate non-ontological resources from

those candidates obtained in Activity 2.

As mentioned before, the goal of the non-ontological resource re-engineering

process is to transform a non-ontological resource into an ontology. This process

can be divided into the following activities, and prescriptive methodological

guidelines for performing them are included in Chap. 6:

1. Activity 1. Non-ontological resource reverse engineering. The goal of this

activity is to analyze a non-ontological resource in order to identify its underly-

ing components and create representations of the resource at the different levels

of abstraction (design, requirements, and conceptual).

2. Activity 2. Non-ontological resource transformation. The goal of this activity is

to generate a conceptual model from the non-ontological resource.

3. Activity 3. Ontology forward engineering. The goal of this activity is to output a
new implementation of the ontology on the basis of the new conceptual model

identified in Activity 2.

The principal output is an ontology network that represents the expected domain

implemented in an ontology language (OWL, F-Logic, etc.). Furthermore, a broad

range of documents containing the requirements specification, the ontology docu-

mentation, the ontology evaluation, etc. will be generated as output of different

activities. Additionally, the non-ontological resources selected to be reused have

been “ontologized” by means of the non-ontological resource re-engineering

activity.

16 M.C. Suárez-Figueroa et al.

http://dx.doi.org/10.1007/978-3-642-24794-1_6
http://dx.doi.org/10.1007/978-3-642-24794-1_6

2.3.3 Scenario 3: Reusing Ontological Resources

As more ontological resources are available in ontology repositories and on the

Internet10, ontology developers are starting to reuse them not only with the idea of

“not reinventing the wheel”, but also with the aim of taking advantage of them.

Thus, this scenario unfolds in those cases in which ontology developers have at

their disposal ontological resources useful for their problem and that can be reused

in the ontology development.

As Fig. 2.1 shows (by arrows with the number 3), ontology developers should

perform the ontological resource reuse process, which is composed of the follow-

ing activities:

1. Activity 1. Ontology search. Ontology developers search for candidate onto-

logical resources that satisfy the requirements in repositories and registries

like Swoogle11, Watson12, and Sindice13. These ontological resources could be

implemented in different languages or could be available in different ontology

tools.

2. Activity 2. Ontology assessment. Ontology developers must inspect the content

and granularity of the ontological resources obtained in Activity 1. The goal of

this activity is to find out if such resources satisfy the needs identified in the

ORSD.

3. Activity 3. Ontology comparison. Ontology developers should compare the

ontological resources assessed in Activity 2, taking into account a set of criteria

identified by developers (e.g., reuse economic cost, code clarity, and content

quality).

4. Activity 4. Ontology selection. Ontology developers should select the set of

ontological resources that are the most appropriate for their ontology network

requirements, based on the comparisons obtained in Activity 3.

After selecting the most appropriate ontological resources, ontology

developers should define the reuse mode; that is, ontology developers need to

decide how they will reuse the selected ontological resources. There are three

possible modes:

• The ontological resources selected will be reused as they are.

• The ontology re-engineering activity should be carried out with the onto-

logical resources selected.

• Some ontological resources will be merged to obtain a new ontological

resource.

10 See, for example, a list of novel ontology search engines described at: http://esw.w3.org/topic/

TaskForces/CommunityProjects/LinkingOpenData/SemanticWebSearchEngines
11 http://swoogle.umbc.edu/
12 http://watson.kmi.open.ac.uk/WatsonWUI/
13 http://sindice.com/

2 The NeOn Methodology for Ontology Engineering 17

http://esw.w3.org/topic/TaskForces/CommunityProjects/LinkingOpenData/SemanticWebSearchEngines
http://esw.w3.org/topic/TaskForces/CommunityProjects/LinkingOpenData/SemanticWebSearchEngines
http://swoogle.umbc.edu/
http://watson.kmi.open.ac.uk/WatsonWUI/
http://sindice.com/

Before reusing the selected ontological resources by means of any reuse

mode, it is also convenient to evaluate these resources through the ontology
evaluation activity.

5. Activity 5. Ontology integration. Ontology developers should include, as they

are, the ontological resources selected (the code) in Activity 4 into the ontology

network being built following the activities of Scenario 1 (Sect. 2.3.1).

Prescriptive methodological guidelines to reuse general ontologies are provided

in Chap. 7.

The principal output is an ontology network that represents the expected domain

implemented in an ontology language (OWL, F-Logic, etc.). Additionally, a broad

range of documents including the requirements specification, the ontology docu-

mentation, the ontology evaluation, etc. will be generated as output of different

activities.

2.3.4 Scenario 4: Reusing and Re-engineering Ontological
Resources

This scenario unfolds in those cases in which ontology developers have at their

disposal ontological resources useful for their problem, which can be reused in the

ontology network development. However, such resources are not exactly useful as

they are, so they should be modified (i.e., re-engineered) to serve to the intended

purpose or problem.

As Fig. 2.1 shows (by arrows with the number 4), ontology developers should

perform first the ontological resource reuse process to select the most suitable

ontological resources to be used for building the ontology network. Then, they

should carry out the ontological resource re-engineering process to modify the

selected ontological resources. Finally, they should use the resultant ontological

resources as input to some of the activities included in Scenario 1 (explained in

Sect. 2.3.1), as shown in Fig. 2.1.

Specifically, ontology developers should carry out some activities as part of the

ontological resource reuse process; such activities are the following: ontology
search, ontology assessment, ontology comparison, and ontology selection as

already explained in Scenario 3 (Sect. 2.3.3).

After the ontology selection activity, ontology developers should decide how

they will reuse the ontological resources. They should also decide whether to

perform the ontological resource re-engineering process with the selected ontolog-

ical resources because these resources may not absolutely correct for the concrete

use case as they are and they need to be transformed in some way.

The ontological resource re-engineering process proposed here has been created

taking as inspiration the software re-engineering process (Byrne 1992). It is com-

posed of the following activities: ontological resource reverse engineering, onto-
logical resource restructuring, and ontological resource forward engineering.

18 M.C. Suárez-Figueroa et al.

http://dx.doi.org/10.1007/978-3-642-24794-1_7

Additionally, this process is related to the levels of abstraction shown in Fig. 2.2

that are based on (Byrne 1992) and are described below.

• Specification is the highest level of abstraction. In this level, requirements,

purpose, and scope, among other components of the specification, are described.

• In the conceptualization level, ontology characteristics such as structure and

components are described. The knowledge that the ontology represents is

organized following a set of knowledge representation primitives (concepts,

relations, etc.). In this level, the knowledge is structured in meaningful models

at the knowledge level (Newell 1982). To organize the knowledge, intermediate

representations based on tabular and graphical notations (Gómez-Pérez et al.

2003), which can be understood by ontology practitioners, can be used.

• In the formalization level, the formal or semi-computable model that was used to

transform the conceptual model is described.

• The implementation level is the lowest abstraction level. Here, the ontology

description focuses on implementation characteristics and is represented in an

ontology language understandable by computers and usable by automatic reasoners.

Figure 2.3 presents the ontological resource re-engineering model. This model

suggests different paths to re-engineer an ontological resource, taking into account

the levels of abstraction presented in Fig. 2.2. Examples of these paths are:

• At implementation level: from ontological resource 1 code to ontological

resource 2 code

• At formalization level: reverse engineering (from code 1 to formalization 1),

restructuring formalization 1 to obtain formalization 2, and forward engineering

to obtain code of resource 2

• At conceptualization level: reverse engineering (from code 1 to conceptualiza-

tion 1), restructuring conceptualization 1 to obtain conceptualization 2, and

forward engineering to obtain formalization or implementation 2

Specification

Conceptualization

Formalization

Implementation

Fig. 2.2 Levels of abstraction for the ontological resource re-engineering process

2 The NeOn Methodology for Ontology Engineering 19

• At specification level: reverse engineering (from code 1 to specification 1),

restructuring specification 1 to obtain specification 2, and forward engineering

to obtain conceptualization, formalization, or implementation 2

The choice of a concrete path depends on the ontological resource characteristics

that have to be changed. Thus, in Fig. 2.3 the following types of changes can be

distinguished:

• Re-specification. If the ontology developer restructures the requirements speci-

fication, she changes requirements, purpose and scope, among other elements of

the requirements specification. For example, changes in requirements, addition

or deletion of requirements, etc.

• Re-conceptualization. If she restructures the conceptualization, changes might

refer to modification of ontology structure, modification of granularity and

richness of the knowledge, removal or addition of axioms, restructuration of

ontology architecture (modularization), inclusion of new concepts, use of ontol-

ogy design patterns, etc.

• Re-formalization. If she restructures the formalization level, the changes refer to

formalization characteristics (such as changing the ontology paradigm from

description logic to frames).

• Re-implementation. If she restructures the implementation level, the changes are

focused on implementation characteristics that are tightly related to the ontology

implementation language (e.g., translation from RDF(S) to OWL). Other

changes could be conforming to coding standards, improving code readability,

renaming code items, etc.

Ontology developers should decide at which level they need to carry out the

ontological resource re-engineering process. Once ontology developers have

decided the level, they should carry out the ontological resource re-engineering

process, and then they should integrate the result of such a process (code,

Fig. 2.3 Ontological resource re-engineering model

20 M.C. Suárez-Figueroa et al.

formalization, conceptualization, or specification) into the corresponding activity of

Scenario 1 (Sect. 2.3.1).

The principal outcome is an ontology network that represents the expected

domain implemented in an ontology language (OWL, F-Logic, etc.). Additionally,

a broad range of documents including requirements specification, ontology docu-

mentation, ontology evaluation, etc. will be generated as output of different

activities. Furthermore, new ontological resources from those selected for their

reuse are generated through the ontological resource re-engineering process. Such

new resources can be considered as new versions of the ontological resources after

the re-engineering process.

2.3.5 Scenario 5: Reusing and Merging Ontological Resources

This scenario unfolds in those cases where several ontological resources in the same

domain can be selected for reuse and when the ontology developer wishes to create

a new ontological resource from two or more, possibly overlapping, ontological

resources. It could also occur that the ontology developer wishes only to establish

alignments among the ontological resources selected in order to create the ontology

network.

As Fig. 2.1 shows (by arrows with the number 5), ontology developers should

perform first the ontological resource reuse process to select the most suitable

ontological resources that will be used for building the ontology network. Con-

cretely, ontology developers should carry out the activities presented in Scenario 3

(Sect. 2.3.3) as part of the ontological resource reuse process. After the ontology

selection activity, ontology developers should decide how they will reuse the

ontological resources selected. In this scenario, ontology developers decide to

perform the following activities because the selected resources are valid as they

are, but not in a complete way, if they were reused in a separate fashion. The

activities to be performed are the following:

1. Activity 1. Ontology aligning. Ontology developers carry out this activity with

the aim of obtaining a set of alignments among the selected ontological

resources. Prescriptive methodological guidelines for this activity are described

in Chap. 12.

2. Activity 2. Ontology merging. Ontology developers can merge the selected

ontological resources using the alignments (output of Activity 1) to obtain a

new ontological resource from the overlapping selected ones.

Ontology developers have here two different possibilities: (1) to establish the

mappings among such selected resources and (2) to establish the mappings and also

to merge the selected resources.

After this activity, ontology developers should use the resultant merged onto-

logical resource as input of some of the activities included in Scenario 1 (explained

in Sect. 2.3.1), as shown in Fig. 2.1.

2 The NeOn Methodology for Ontology Engineering 21

The principal outputs are (a) a set of alignments among the selected ontological

resources and (b) a set of new ontological resources to be integrated as they are in

the ontology network.

2.3.6 Scenario 6: Reusing, Merging, and Re-engineering
Ontological Resources

This scenario unfolds in those cases in which several ontological resources in the

same domain can be selected to build the ontology network. Ontology developers

decide to create a new ontological resource merging two or more, possibly

overlapping, ontological resources. Such a merged ontological resource is not

useful as it is, so it should be modified (i.e., re-engineered) to serve to the intended

purpose.

As Fig. 2.1 shows (see arrows with number 6), ontology developers should

perform first the ontological resource reuse process to select the most suitable

ontological resources for building the ontology network (as explained in Scenario 3

(Sect. 2.3.3)). Then, they should decide how they will reuse the selected ontological

resources. It is in this scenario where ontology developers decide to perform the

ontology aligning and ontology merging activities because the selected resources

are valid but not in a complete way for the concrete case if they are considered

separately, as explained in Scenario 5 (Sect. 2.3.5). After merging the selected

resources, they should carry out the ontological resource re-engineering process as
described in Scenario 4 (Sect. 2.3.4). After that, they should use the resultant

ontological resource as input of some of the activities included in Scenario 1

(explained in Sect. 2.3.1), as shown in Fig. 2.1.

The principal output is an ontology network that represents the expected domain

implemented in an ontology language (OWL, F-Logic, etc.). Additionally, a broad

range of documents including the requirements specification, the ontology docu-

mentation, the ontology evaluation, etc. will be generated as output of different

activities.

Furthermore, a merged ontological resource, taken from those selected for reuse,

and a re-engineered merged ontological resource are generated. Alignments bet-

ween the ontological resources selected are also outputs of this scenario.

2.3.7 Scenario 7: Reusing Ontology Design Patterns

Recently, within the Ontology Engineering field, ontology design patterns (ODPs)
have emerged as (1) a way of helping ontology developers to model OWL

ontologies (Gangemi 2005; Pan et al. 2007) and (2) a new mode of encoding best

practices, based on experiences and knowledge of “good” solutions. As any other

22 M.C. Suárez-Figueroa et al.

type of patterns, ODPs are perceived as having three kinds of benefits (Blomqvist

et al. 2009): (1) reuse benefits, (2) guidance benefits, and (3) communication

benefits. ODPs can be found in online libraries that include both the description

and the OWL code associated to the patterns as, for example, “the Ontology Design

Pattern Wiki”14, or they can be obtained from the “Semantic Web Best Practices

and Deployment”15 working group. Thus, this scenario unfolds in those cases where

best practices can be applied to the development of ontology networks.

Ontology developers work on the development of an ontology network and very

often encounter problems regarding the way in which certain knowledge should be

modeled. This may happen during the ontology conceptualization activity, the

ontology formalization activity, or during the ontology implementation activity.

In these situations, ontology developers can access on-line libraries in order to find

modeling solutions.

Ontology developers should perform the ontology design pattern reuse process
to select the most suitable ODPs for building the ontology network. The principal

output of this reuse process is a set of ontology design patterns integrated into the

ontology network being developed. Guidelines to perform this reuse are provided in

Chap. 3.

2.3.8 Scenario 8: Restructuring Ontological Resources

This scenario unfolds in those cases where the knowledge contained in the concep-

tual model of the ontology network should be corrected and reorganized to obtain

the network that covers the ontology requirements.

Ontology developers should perform the ontology restructuring activity to

modify the ontology network being built, after the ontology conceptualization

activity. The ontology restructuring activity can be performed by executing any

of the following sub-activities, combining them in any manner and order:

• Ontology modularization activity. Ontology developers create different ontology
modules in the ontology network, which facilitates the reuse of the knowledge

included in the network. Prescriptive methodological guidelines to carry out this

activity are presented in Chap. 10.

• Ontology pruning activity. Ontology developers prune those branches of the

taxonomies included in the ontology network that are considered not necessary

to cover the ontology requirements.

• Ontology enrichment activity. This activity can be carried out by performing any

of the two sub-activities that follow:

14 http://ontologydesignpatterns.org/
15 http://www.w3.org/2001/sw/BestPractices/

2 The NeOn Methodology for Ontology Engineering 23

http://dx.doi.org/10.1007/978-3-642-24794-1_3
http://dx.doi.org/10.1007/978-3-642-24794-1_10
http://ontologydesignpatterns.org/
http://www.w3.org/2001/sw/BestPractices/

– Ontology extension activity. Ontology developers extend the ontology net-

work, including (in width) new concepts and relations.

– Ontology specialization activity. Ontology developers specialize those

branches of the ontology network that require more granularity and include

more specialized concepts and relations.

Note that this activity (ontology restructuring) can be performed (1) in an

independent way as explained in this scenario or (2) as part of the ontological

resource re-engineering process, as described in Scenario 4 in Sect. 2.3.4.

The principal output is a conceptual model of the ontology network that

represents the expected domain.

2.3.9 Scenario 9: Localizing Ontological Resources

Although access to top-quality ontologies (e.g., Galen, CYC, or AKT) is, in many

cases, free and unlimited for users all around the world, most of these ontologies are

available only in English. Due to the language barrier, non-English users therefore

often encounter problems when trying to access ontological knowledge in their own

languages. Moreover, more and more ontology-based systems are being built for

multilingual applications (e.g., multilingual machine translation or multilingual

information retrieval). For these reasons, the need for multilingual ontologies has

increased. Thus, this scenario unfolds in those cases in which the ontology network

to be developed should be written in different natural languages.

Ontology developers should perform the ontology localization activity once the
ontology has been conceptualized and restructured. This activity requires the

translation of all the ontology terms into another natural language (Spanish, French,

German, etc.) different from the language used in the conceptualization, using

multilingual thesauri and electronic dictionaries (e.g., EuroWordNet16). This ontol-

ogy localization activity is composed of the following tasks (Espinoza et al. 2009):

1. Task 1. Selecting the most appropriate linguistic assets. The goal of this task is to
select the most appropriate linguistic assets that help to reduce the cost, to

improve the quality of the localization, and to increase the consistency of the

localization activity.

2. Task 2. Selecting ontology label(s) to be localized. The goal of this task is to

select the ontology label(s) to be localized.

3. Task 3. Obtaining ontology label translation(s). The goal of this task is to obtain
the most appropriate translation in the target language for each ontology label.

4. Task 4. Evaluating label translation(s). The goal of this task is to evaluate the

label translations in the target language.

16 http://www.illc.uva.nl/EuroWordNet/

24 M.C. Suárez-Figueroa et al.

http://www.illc.uva.nl/EuroWordNet/

5. Task 5. Updating the ontology. The goal of this task is to update the ontology

with the label translations obtained for each localized label. The task output is an

ontology enriched with labels in the target language associated to each localized

term.

Prescriptive methodological guidelines for localizing ontologies are presented in

Chap. 8.

After this localization activity, the resulting conceptual model should be

integrated in the conceptualization activity of Scenario 1 (Sect. 2.3.1).

The principal outcome is a conceptual model of the ontology network in

different natural languages (i.e., a multilingual conceptual model) that represents

the expected domain.

2.4 Two Ontology Network Life Cycle Models

Ontologies are artifacts designed for the purpose of satisfying certain requirements

and needs that are emerging in the real world.

Thus, the ontology network development process is defined as the process by

which user’s needs are translated into an ontology network. This means that the

ontology network development process can be seen as a specific case of the

software development process.

An ontology network life cycle model is defined as a model to describe how to

develop (and maintain) an ontology network project; in other words, how to

organize the processes and activities of the NeOn Glossary into phases or stages.

This section includes the two ontology network life cycle models, which include

the waterfall model (Sect. 2.4.1) and the iterative-incremental model (Sect. 2.4.2).
Additionally, it is worth mentioning that these two models are intrinsically related

to the set of nine flexible scenarios for collaboratively building ontologies and

ontology networks, presented in Sect. 2.3. Such a relation is due to the creation of

both models and scenarios, taking into account the importance of reusing and re-

engineering knowledge resources and merging resources.

2.4.1 Waterfall Ontology Network Life Cycle Models

The main characteristic of the waterfall life cycle model family proposed for the

ontology network development is the representation of the stages of an ontology

network as sequential phases. This model represents the stages as a waterfall. In this

model, a concrete stage must be completed before the following stage begins, and

no backtracking is permitted except in the case of the maintenance phase.

The main assumption for using the waterfall ontology network life cycle model

proposed is that the requirements are completely known, without ambiguities, and

unchangeable at the beginning of the ontology network development.

2 The NeOn Methodology for Ontology Engineering 25

http://dx.doi.org/10.1007/978-3-642-24794-1_8

This model could be used in the following situations:

• In ontology projects with a short duration (e.g., 2 months)

• In ontology projects in which the goal is to develop an existing ontology in

a different formalism or language

• In ontology projects in which the requirements are closed, for instance, to

implement an ontology based on an ISO standard, or based on resources with

previous consensus in the included knowledge

• In ontology projects when ontologies cover a small, well-understood domain

Taking into account the characteristics of the ontology development scenario,

this model includes a set of support activities that should be performed in all of the

phases. This set of support activities includes the acquisition of knowledge in the

domain in which the ontology network is being developed, the evaluation (from

a content-oriented perspective) and the assessment (from user and need perspec-

tives) of the different phase outputs, project and configuration management, and

documentation.

Because of the importance of reusing and re-engineering knowledge resources

and merging ontological resources, the following five significantly different

versions of the waterfall ontology network life cycle model have been defined.

These versions have been created incrementally (i.e., the four-phase is the basis for

the five-phase, the five-phase is the basis for the six-phase, etc.).

Before detailing the different versions, they can be summarized in the following

way:

• The four-phase waterfall model. It represents the stages of an ontology network,

starting with the initiation phase and going through the design phase and the

implementation phase to the maintenance phase.

• The five-phase waterfall model. It extends the four-phase model with the reuse

of ontological resources as they are.

• The five-phase + merging phase waterfall model. It is a special case of the five-

phase model. It includes the merging phase to obtain a new ontological resource

from two or more ontological resources previously selected in the reuse phase.

• The six-phasewaterfall model. It extends the five-phasemodel with re-engineering

phase. It allows the re-engineering of knowledge resources (ontological and non-

ontological). It could happen that several knowledge resources are transformed

into ontologies in the re-engineering phase.

• The six-phase + merging phase waterfall model. It extends the six-phase model

by including the merging phase after the reuse phase.

2.4.1.1 The Four-Phase Waterfall Ontology Network Life Cycle Model

This model represents the stages of an ontology network, starting with the initiation

phase and going through the design phase, the implementation phase to the mainte-

nance phase.

26 M.C. Suárez-Figueroa et al.

The model proposed is shown in Fig. 2.4, and the main purposes and outcomes

for each phase in the model are the following:

• Initiation phase. In this phase, it is necessary to produce an ontology require-

ment specification document (ORSD) (explained in Chap. 5), including the

requirements that the ontology network should satisfy and taking into account

knowledge about the concrete domain. Also in this phase, the approval or

rejection of the ontology network development should be obtained. This phase

has also as requisite to identify the development team and to establish the

resources, responsibilities, and timing (i.e., the scheduling for the ontology

project).

• Design phase. The output of this phase should be both an informal model and

a formal one that satisfy the requirements obtained in the previous phase. The

formal model cannot be used by computers, but it can be reused in other

ontology networks.

• Implementation phase. In this phase, the formal model is implemented in an

ontology language. The output of this phase is an ontology implemented in

RDF(S), OWL, or other language that can be used by semantic applications or by

other ontology networks.

It is worth mentioning that the last two phases (design and implementation

ones) are normally performed together when ontology development tools (such

as NeOn Toolkit, Protégé, etc.) are used.

• Maintenance phase. If, during the use of the ontology network, errors or missing

knowledge are detected, then the ontology development team should go back to

the design phase. Additionally, in this phase the generation of new versions for

the ontology network should also be carried out.

2.4.1.2 The Five-Phase Waterfall Ontology Network Life Cycle Model

This model extends the four-phase model with a new phase in which the reuse of

already implemented ontological resources is considered. The main purpose in the

reuse phase is to obtain one or more ontological resources to be reused in the

Initiation Phase

Design Phase

Implementation Phase

Maintenance Phase

Fig. 2.4 The four-phase waterfall ontology network life cycle model

2 The NeOn Methodology for Ontology Engineering 27

http://dx.doi.org/10.1007/978-3-642-24794-1_5

ontology network being developed. The output of this reuse phase could be either an

informal model or a formal one to be used in the design phase, or an implemented

model (in an ontology language) to be used in the implementation phase.

For the other phases, the purposes and outcomes are the same as those presented

in the four-phase model.

2.4.1.3 The Five-Phase + Merging Phase Waterfall Ontology Network

Life Cycle Model

This model is a special case of the five-phase model. Now, a new phase (the

merging phase) is added after the reuse one. This merging phase has as a main

purpose to obtain a new ontological resource from two or more ontological

resources selected in the reuse phase.

For the other phases, the purposes and outcomes are the same as those presented

in the five-phase model.

2.4.1.4 The Six-Phase Waterfall Ontology Network Life Cycle Model

In this model, the five-phase model is taken as general basis, and a new phase

(re-engineering phase) is included after the reuse one. This model allows the reuse

of knowledge resources (ontological and non-ontological) and their later re-

engineering. In this model, the reuse phase has as output one or more knowledge

resources to be reused in the ontology network that is being developed. After this

phase, the non-ontological resources are transformed into ontologies in the re-

engineering phase; the ontological resources, on the other hand, can or cannot be

re-engineered, a decision that should be taken by the ontology development team.

For the other phases, the purposes and outcomes are the same as those presented

in the six-phase model.

2.4.1.5 The Six-Phase + Merging Phase Waterfall Ontology Network

Life Cycle Model

This model, extended from the six-phase model, includes the merging phase after
the reuse phase. For the other phases, the purposes and outcomes are the same as

those presented in the six-phase model.

2.4.2 Iterative-Incremental Ontology Network Life Cycle Model

The main feature of this model is the development of ontology networks

organized in a set of iterations (or short mini-projects with a fixed duration).

Each individual iteration is similar to an ontology network project that uses any

28 M.C. Suárez-Figueroa et al.

type of waterfall model from those presented in Sect. 2.4.1, as shown schematically

in Fig. 2.5.

This model could be used in the following situations:

• In ontology projects with large groups of developers having different profiles

and roles

• In ontology projects in which the development involves several different

domains that are not well understood

• In ontology projects in which requirements are not completely known or can

change during the ontology development

Ontology requirements specified in the ORSD can be divided in different

subsets. The result of any iteration is a functional and partial ontology network

that meets a subset of the ontology network requirements. Such a partial ontology

network can be used, evaluated, and integrated in any other ontology network.

This model is based on the continuous improvement and extension of the

ontology network resulted from performing multiple iterations with cyclic feedback

and adaptation. In this way, the ontology network grows incrementally along the

development. Generally, in each iteration new requirements are taken into account,

but, occasionally, in a particular iteration, the partial ontology network could be

only enhanced.

This model focuses on a set of basic requirements; from these requirements,

a subset is chosen and considered in the development of the ontology network. The

partial result is reviewed, the risk of continuation with the next iteration is analyzed

and the initial set of requirements is increased and/or modified in the next iteration

until the complete ontology network is developed.

Fig. 2.5 Schematic vision of the iterative-incremental model

2 The NeOn Methodology for Ontology Engineering 29

The main benefit of this model is to identify and alleviate the possible risks as

soon as possible. Other benefits are:

• The development team is motivated by rapidly producing an adequate ontology.

• Some priorities can be established in the set of requirements.

• The development can be possibly adapted to changes in the requirements.

• The scheduling of each iteration can be adapted based on the experience of

previous iterations.

It is worth mentioning that at the beginning of the ontology network project, the

number of iterations during the ontology project is influenced by:

• The decision of performing a more complete and detailed ontology requirements

specification. In this case, the number of iterations will be lower.

• The decision of carrying out a simpler and less complete requirements specifi-

cation, in which case more number of iterations and more revisions will be

needed.

Figure 2.5 shows the schematic vision of the iterative-incremental model. The

first initiation phase shown in the figure has as main outcomes the ontology network

requirements and the general and global plan for the whole ontology network

development. Regarding the different iterations, as mentioned before, each iteration

in the iterative-incremental model can follow a different version of the waterfall

model from those presented in Sect. 2.4.1. However, any version of the waterfall

model to be used in the iterative-incremental model should be modified in the

following way:

• No backtracking is allowed between phases in a particular iteration, because the

refinement should be performed in the next iterations.

• Revising the ontology network requirements and the global plan should be

carried out in the initiation phase of each iteration. Additionally, a detailed

plan for the particular iteration should be performed.

2.4.3 Relation Between Scenarios and Life Cycle Models

The set of nine flexible scenarios for building ontologies and ontology networks

presented in Sect. 2.3 and the two proposed ontology network life cycle models

presented in this section are intrinsically related because both scenarios and life

cycle models have been created (1) taking into account the importance of reusing

and re-engineering knowledge resources (ontological and non-ontological) and

merging ontological resources and (2) assuming a controlled setting for ontology

engineering in which approaches such as mining ontologies from tags are not

considered.

Table 2.2 summarizes the relationships between scenarios for building ontology

networks and ontology network life cycle models. These relationships have been

established based on the following:

30 M.C. Suárez-Figueroa et al.

• Scenario 1 (as stated in Sect. 2.3.1) is for building ontology networks from

scratch. The scenario mainly includes core activities such as specification,

conceptualization, and implementation. This way of building ontologies fits

with the stages represented in the four-phase waterfall model (initiation phase,

design phase, implementation phase, and maintenance phase).

• Scenario 2 (as stated in Sect. 2.3.2) is for building ontology networks by reusing

and re-engineering non-ontological resources, which is represented in the

six-phase waterfall model.

• Scenario 3 (as stated in Sect. 2.3.3) is for building ontology networks by reusing

ontological resources. This way of building ontologies is represented by the

five-phase waterfall model.

• Scenario 4 (as stated in Sect. 2.3.4) refers to the development of ontology

networks by reusing and re-engineering ontological resources. This way of

building ontologies is represented by the six-phase waterfall model.

• Scenario 5 (as stated in Sect. 2.3.5) is for building ontology networks by reusing

and merging ontological resources, which is represented by the five-phase +

merging phase waterfall model.

• Scenario 6 (as stated in Sect. 2.3.6) refers to the development of ontology

networks by reusing, merging, and re-engineering ontological resources. This

way of building ontology networks is represented by the six-phase + merging

phase waterfall model.

• Scenario 7 (as stated in Sect. 2.3.7) is for building ontology networks by reusing

ontology design patterns, which is represented by the five-phase waterfall model.

• Scenario 8 (as stated in Sect. 2.3.8) is for building ontology networks by

restructuring ontological resources. This is mainly related to the core activities

already mentioned in Scenario 1. Thus, this Scenario 8 is also represented by the

four-phase waterfall model.

• Scenario 9 (as stated in Sect. 2.3.9) refers to the development of ontology

networks by localizing ontologies. This way of building ontologies is mainly

related to Scenario 1 and thus represented by the four-phase waterfall model.

Table 2.2 Relation between scenarios and life cycle models

Four-

phase

model

Five-

phase

model

Five-

phase + merging

phase model

Six-

phase

model

Six-phase + merging

phase model

Scenario 1 X

Scenario 2 X

Scenario 3 X

Scenario 4 X

Scenario 5 X

Scenario 6 X

Scenario 7 X

Scenario 8 X

Scenario 9 X

2 The NeOn Methodology for Ontology Engineering 31

As explained in Sect. 2.4.2, the iterative-incremental model is basically formed

by a set of iterations that can follow any version of waterfall ontology network life

cycle model. Thus, the relation between scenarios and the iterative-incremental

model depends on the different versions of waterfall model used in the iterative-

incremental one, and for this reason, the relations presented in Table 2.2 are also

valid for this model.

2.5 Methodological Guidelines for Processes and Activities

In the second part of this book (called Ontology Engineering Activities), methodo-

logical guidelines for a subset of the processes and activities included in the NeOn

Glossary are provided. To describe each of the processes and activities included in

the NeOnMethodology presented in this book, the following content is provided for

most of the cases:

• A general introduction to the process or activity, where the value of the process

or activity is discussed.

• The detailed guidelines proposed for carrying out the process or the activity,

including the following fields: (a) definition, which is taken from the NeOn

Glossary of Processes and Activities and included in Sect. 2.2; (b) goal, which
explains the main objective intended to be achieved by the process or the

activity; (c) input, which includes the resources needed for carrying out the

process or the activity; (d) output, which includes the results obtained after

carrying out the process or the activity; (e) who, which identifies the people or

teams involved in the process or the activity; and (f) when, which explains in

which stage of the development the process or the activity should be carried out.

All the aforementioned information is provided in the so-called filling cards.
These filling cards explain the information of each process and activity of the

NeOn Methodology in a practical and easy way. Each card is filled according to

the filling card template shown in Table 2.3.

• A graphical workflow that shows how the process or the activity should be

carried out is also included. This workflow contains the inputs, outputs, actors

involved, and details for carrying out a process or activity in a prescriptive

manner. Additionally, methods, techniques, and tools supporting the process or

activity are proposed.

• Examples explaining the guidelines proposed are also given.

It should be noted that in the framework of the NeOn Methodology, there are

a wide range of prescriptive methodological guidelines for carrying out different

processes and activities. Along this book, the reader can find guidelines for Scenario 1,
particularly for ontology requirements specification (Chap. 5) and scheduling

(Chap. 14), Scenario 2 (Chap. 6), Scenario 3 (Chap. 7), Scenario 5 (Chap. 12),

Scenario 7 (Chap. 3), Scenario 8, for ontology modularization (Chap. 10), and

Scenario 9 (Chap. 8). In addition, there are also guidelines for ontology evaluation

(Chap. 9) and for ontology evolution (Chap. 11).

32 M.C. Suárez-Figueroa et al.

http://dx.doi.org/10.1007/978-3-642-24794-1_5
http://dx.doi.org/10.1007/978-3-642-24794-1_14
http://dx.doi.org/10.1007/978-3-642-24794-1_6
http://dx.doi.org/10.1007/978-3-642-24794-1_7
http://dx.doi.org/10.1007/978-3-642-24794-1_12
http://dx.doi.org/10.1007/978-3-642-24794-1_3
http://dx.doi.org/10.1007/978-3-642-24794-1_10
http://dx.doi.org/10.1007/978-3-642-24794-1_8
http://dx.doi.org/10.1007/978-3-642-24794-1_9
http://dx.doi.org/10.1007/978-3-642-24794-1_11

References

Bizer C, Heath T, Berners-Lee T (2009) Linked data – the story so far. Int J Semant Web Inf Syst 5

(3):1–22

Blomqvist E, Gangemi A, Presutti V (2009) Experiments on pattern-based ontology design. In:

Proceedings of the 5th international conference on Knowledge Capture (K-CAP 2009),

Redondo Beach, CA, USA, 1–4 Sept 2009. ISBN: 978-1-60558-658-8

Byrne EJ (1992) A conceptual foundation for software re-engineering. In: Proceedings of the

international conference on software maintenance and reengineering. IEEE Computer Society

Press, Orlando, pp 226–235

Clemente J, Ramı́rez A, de Antonio A (2011) A proposal for student modeling based on ontologies

and diagnosis rules. Expert Syst Appl 38(7):8066–8078

Cuenca-Grau B, Horrocks I, Kazakov Y, Sattler U (2007) Just the right amount: extracting

modules from ontologies. In: Proceedings of the 16th international conference on world

wide web, Banff, Alberta, Canada, pp 717–726. ISBN: 978-1-59593-654-7

Espinoza M, Montiel-Ponsoda E, Gómez-Pérez A (2009) Ontology Iocalization. In: Proceedings

of the fifth international conference on Knowledge Capture (KCAP 2009), Redondo Beach,

CA, USA, pp 33–40. ISBN: 978-1-60558-658-8

Fernández-López M (1999) Overview of methodologies for building ontologies. In: Proceedings

of the IJCAI-99 workshop on ontologies and problem-solving methods: lessons learned and

future trend, Stockholm, Sweden, August 1999. http://oa.upm.es/5480/

Gangemi A (2005) Ontology design patterns for semantic web content. In: Musen M et al (eds)

Proceedings of the fourth international semantic web conference, Galway, Ireland. Springer,

Berlin

Gangemi A (2007) Design patterns for legal ontology construction. In: Casanovas P, Noriega P,

Bourcier D, Galindo F (eds) Trends in legal knowledge: the semantic web and the regulation of

electronic social systems. European Press Academic Publishing, Florence

Table 2.3 Template for the process and activity filling card

Process or Activity Name

Definition

Goal

Input Output

Who

When

2 The NeOn Methodology for Ontology Engineering 33

http://oa.upm.es/5480/

Gómez-Pérez A, Fernández-López M, Corcho O (2003) Ontological engineering. Advanced

information and knowledge processing series. Springer, Heidelberg, ISBN 1-85233-551-3

IEEE Standard Glossary of Software Engineering Terminology (1990) IEEE Std. 610.12–1990

(Revision and redesignation of IEEE Std. 792–1983)

Jimeno-Yepes A, Jimenez-Ruiz E, Berlanga-Llavori R, Rebholz-Schuhmann D (2009) Reuse of

terminological resources for efficient ontological engineering in life sciences. BMC Bioinfor-

matics 10:S4. ISSN: 1471–2105

Lamsfus C, Alzua-Sorzabal A, Martin D, Salvador Z, Usandizaga A (2009) Human-centric

ontology-based context modelling in tourism. In: Proceedings of KEOD 2009 Proceedings

of the International Conference onKnowledge Engineering andOntologyDevelopment, Funchal -

Madeira, Portugal, October 6–8, 2009. INSTICC Press 2009, ISBN 978-989-674-012-2,

pp 424–434

Newell A (1982) The knowledge level. Artif Intell 18(1):87–127

Pan JZ, Lancieri L, Maynard D, Gandon F, Cuel R, Leger A (2007) Knowledge web deliverable

D1.4.2.v2. Success stories and best practices. Available at http://knowledgeweb.semanticweb.

org/semanticportal/deliverables/D1.4.2v2.pdf

Pease RA, Niles I, Li J (2002) The suggested upper merged ontology: a large ontology for the

semantic web and its applications. In: Workshop on ontologies and the semantic web at the

AAAI 2002, Edmonton

Poveda-Villalón M, Suárez-Figueroa MC, Garcı́a-Castro R, Gómez-Pérez A (2010) A context

ontology for mobile environments. In: Workshop on Context, Information and Ontologies

(CIAO 2010) co-located with EKAW 2010, Lisbon

Presutti V, Gangemi A (2008) Content ontology design patterns as practical building blocks for

web ontologies. In: Proceedings of the 27th international conference on conceptual modeling

(ER2008), Barcelona, Spain

Simperl E (2009) Reusing ontologies on the Semantic Web: A feasibility study. Data Knowledge

Engineering 68(10):905–925

Suárez-Figueroa MC (2010) NeOn Methodology for building ontology networks: specification,

scheduling and reuse. PhD thesis, Universidad Politécnica de Madrid, España. Available at

http://oa.upm.es/3879/

Vilches-Blázquez LM, Villazón-Terrazas B, Saquicela V, de Leon A, Corcho O, Gómez-Pérez A

(2010) GeoLinked data and INSPIRE through an application case. In: 18th ACM

SIGSPATIAL international conference on Advances in Geographic Information Systems

(ACM SIGSPATIAL GIS 2010), San Jose, CA, 2–5 Nov 2010

Villazón-Terrazas B, Suárez-Figueroa MC, Gómez-Pérez A (2010) A pattern-based method

for re-engineering non-ontological resources into ontologies. Int J Semant Web Inf Syst

6(4):27–63

Villazón-Terrazas B, Ramı́rez J, Suárez-Figueroa MC, Gómez-Pérez A (2011) A network

of ontology networks for building e-employment advanced systems. Expert Syst Appl

38(11):13612–13624

34 M.C. Suárez-Figueroa et al.

http://knowledgeweb.semanticweb.org/semanticportal/deliverables/D1.4.2v2.pdf
http://knowledgeweb.semanticweb.org/semanticportal/deliverables/D1.4.2v2.pdf
http://oa.upm.es/3879/

Chapter 3

Pattern-Based Ontology Design

Valentina Presutti, Eva Blomqvist, Enrico Daga, and Aldo Gangemi

Abstract In this chapter, we present ontology design patterns (ODPs), which are

reusable modeling solutions that encode modeling best practices. ODPs are the

main tool for performing pattern-based design of ontologies, which is an approach

to ontology development that emphasizes reuse and promotes the development of

a common “language” for sharing knowledge about ontology design best practices.

We put specific focus on content ODPs (CPs) and show how they can be used within

a particular methodology. CPs are domain-dependent patterns, the requirements of

which are expressed by means of competency questions, contextual statements, and

reasoning requirements. The eXtreme Design (XD) methodology is an iterative and

incremental process, which is characterized by a test-driven and collaborative

development approach. In this chapter, we exemplify the XD methodology for

the specific case of CP reuse. The XD methodology is also supported by a set of

software components named XD Tools, compatible with the NeOn Toolkit, which

assist users in the process of pattern-based design.

3.1 Introduction

One of the most challenging and neglected areas of ontology design is reusability,

which is getting more and more important partly due to the increased spread of the

Linked Data concept (Bizer et al. 2009). The notion of “pattern” has proved useful

in design, as exemplified in diverse areas, such as software engineering (Gamma

et al. 1994). In this chapter, we introduce the notion of ontology design patterns

(ODPs) along with a description of their different types and characteristics.

V. Presutti (*) • E. Blomqvist • E. Daga • A. Gangemi

Semantic Technologies Lab, Institute of Cognitive Sciences and Technologies (National Research

Council – CNR), Via Nomentana 56, 00161 Rome, Italy

e-mail: valentina.presutti@cnr.it; eva.blomqvist@istc.cnr.it; enrico.daga@cnr.it;

aldo.gangemi@cnr.it

M.C. Suárez-Figueroa et al. (eds.), Ontology Engineering in a Networked World,
DOI 10.1007/978-3-642-24794-1_3, # Springer-Verlag Berlin Heidelberg 2012

35

mailto:valentina.presutti@cnr.it
mailto:eva.blomqvist@istc.cnr.it
mailto:enrico.daga@cnr.it
mailto:aldo.�gangemi@cnr.it

Then we focus on content ODPs (CPs), which are domain-dependent practices of

modeling, encoded as reusable computational components.

ODPs have recently been the subject of a series of workshops (Blomqvist et al.

2009b, 2010b), and they are collected in online repositories such as the ODP

portal1. Section 3.2 defines and describes ODPs, their types and characteristics,

while in Sect. 3.3, we describe how CPs can be reused by means of a set of

operations, such as import, specialization, and composition. In the second part of

the chapter, i.e., Sect. 3.4, we introduce a pattern-based ontology design approach

and describe a particular iterative and incremental method named eXtreme Design

(XD), supporting this practice with a collaborative and test-driven approach. At the

end of Sect. 3.4, we show a set of tools that provide software support to XD in the

NeOn Toolkit environment, before we summarize some conclusions in Sect. 3.5.

3.2 What Are Ontology Design Patterns (ODPs)?

During the past decade, as remarked by (Gangemi and Presutti 2009), an average

user that is trying to build or reuse an ontology, or an existing knowledge resource,

has typically been left with very limited assistance in using unfriendly logical

structures, some large, hardly comprehensible ontologies, and a bunch of good

practices that must be discovered from the literature. A typical usage scenario

includes, for instance, a large set of web ontologies that are evaluated (usually in

an implicit way, e.g., by inspecting them) against the intended domain and tasks of

the ontology that is needed. The selected ontology (if any) is reused, and then an

adaptation process is started in order to cope with the implicit requirements

underlying the ontology project that originally created the reused ontology2. This

scenario is costly in many cases. As noted by (Rector and Stevens 2008), usability

of large OWL ontologies from a human perspective is often low, and automatic

selection mechanisms do not help with the adaptation process.

Another typical scenario includes so-called “reference” or “core” ontologies that

are supposed to be directly reused and specialized. Unfortunately, even if well

designed, they are usually large and cover more knowledge than what a designer

might need. In this case, it is hard to reuse only the “useful pieces” of the ontology,

and consequently, the cost of reuse can be higher than developing a new ontology

from scratch. On the other hand, the success of very simple and small ontologies,

such as FOAF3 and SKOS (Miles and Bechhofer 2009), shows the potential of

1 http://www.ontologydesignpatterns.org
2 Even in cases when ontology requirements are explicitly expressed, e.g., as described in Chap. 5,

there are commonly other implicit domain assumptions that need to be addressed at reuse time. In

our experience, it is also quite rare that explicit requirements are distributed together with their

corresponding ontology.
3 See the FOAF project website: http://www.foaf-project.org/

36 V. Presutti et al.

http://www.ontologydesignpatterns.org
http://dx.doi.org/10.1007/978-3-642-24794-1_5
http://www.foaf-project.org/

really portable or “sustainable” ontologies. These lessons learned support a new

approach to ontology design, which is sketched here.

Under the assumption that there exist classes of problems that can be solved by

applying common solutions (as has been experienced in software engineering), it is

suggested to support reusability on the design side specifically. We need a way to

express commonly applicable solutions and “best practices” and what ontological

requirements they solve (see Chap. 5); this is where ODPs come into play. An ODP

is a modeling solution to a recurrent ontology design problem (Gangemi and

Presutti 2009). However, with the term ODP we refer to a wide range of modeling

solution types. ODPs can be grouped into six types, or families, each addressing

different kinds of modeling problems:

Structural ODPs include Logical ODPs and Architectural ODPs. Logical ODPs are
compositions of logical constructs that solve a problem of expressivity. They

help solving design problems when the used representation language does not

directly support certain logical constructs, such as representing n-ary relations in
OWL (Noy and Rector 2004). Architectural ODPs are defined in terms of

compositions of Logical ODPs and affect the overall shape of the ontology,

e.g., a certain OWL 2 profile could be viewed as an Architectural ODP.
Correspondence ODPs include Re-engineering ODPs and Alignment ODPs. Re-

engineering ODPs provide designers with solutions to the problem of

transforming a conceptual model, which can be either an ontology or a non-

ontological resource4. to an ontology, e.g., transforming an OWL ontology in

order to make it comply with a certain vocabulary, transforming a classification

scheme to an OWL ontology, and so on. Alignment ODPs are patterns for

creating semantic associations between two existing ontologies. They provide

designers with solutions to align two ontologies without changing the logical

types of the ontology entities involved, e.g., relating two ontologies both defin-

ing the concept “author,” one by a class and the other by a property (Scharffe and

Fensel 2008).

Reasoning ODPs are procedures that perform automatic inference. Examples of

Reasoning ODPs are so-called normalizations (Vrandečić and Sure 2007).

Other Reasoning ODPs include common reasoning tasks, such as classification,
subsumption, inheritance, materialization, de-anonymizing, etc.

Presentation ODPs deal with usability and readability of ontologies from a human

perspective. They are best practices facilitating ontology evaluation and selec-

tion, hence supporting reuse. Examples of Presentation ODPs are so-called

Naming ODPs, which identify best practices for naming, i.e., naming con-

ventions (Svátek et al. 2009).

Lexico-Syntactic ODPs are linguistic structures consisting of a sequence of types of
words associated with an assessment of the meaning they express (Aguado de

Cea et al. 2009). For example, the sequence of two noun phrases connected by

4 For further details, and a definition of “non-ontological resource”, see Chap. 6 of this book.

3 Pattern-Based Ontology Design 37

http://dx.doi.org/10.1007/978-3-642-24794-1_5
http://dx.doi.org/10.1007/978-3-642-24794-1_6

the verb be such as “Dolphins are warm blooded mammals” often identifies a

“subClassOf” relation between a class that represents dolphins and a class that

represents warm-blooded mammals.

Content (or domain) ODPs (CPs) are instantiations (and compositions) of Logical
ODPs. They have an explicit non-logical vocabulary for a specific domain of

interest, i.e., they are content (domain) dependent, although the domain might be

very general. An example of a Content ODP is depicted in Fig. 3.1. It represents

the concept of a “time interval” as a class of things characterized by an arbitrary

number of “dates” (i.e., points in time), but which has exactly one start date and

one end date.

Much more important than the type of a pattern is its nature of being a reusable

modeling solution. Ideally, an ontology project can be completely developed by

reusing existing solutions, i.e., ODPs, by appropriately combining them – however,

this ideal situation will most likely be very rare in practice, whereby we need to

combine the approach presented here with the ones targeted in other chapters of this

book. An interesting question is nevertheless: How can we make ODP reuse as easy

and useful as possible? In order to identify candidate ODPs for reuse in a certain

ontology project, ODPs and the specific ontology design problems to be addressed

have to be comparable, i.e., need to be described in a similar way. For instance, we

need to know what requirements a certain ODP helps us to solve, as well as what

requirements are present in our current ontology design project.

Figure 3.2 depicts the idea of pattern-based design. The ontology development

project is divided into two spaces: (1) the problem space, which contains a set of

requirements (explicitly represented, e.g., as competency questions (CQs), as

discussed in Chap. 5) that describe the ontology design problems to be addressed,

and (2) the solution space, which contains all available ODPs, where each ODP

should be well documented, e.g., described through what ontological requirements

it solves. First, the requirements of the current project (problem space) are com-

pared with the requirements of the available ODPs (solution space), and a set of

candidate matching ODPs are identified. Second, the most appropriate ODPs

among the candidate ones are selected for reuse, as illustrated by “dropping them

into the project basket” in Fig. 3.2.

Fig. 3.1 UML-like diagram showing the OWL encoding of the time interval CP taken from the

online catalog of CPs (http://www.ontologydesignpatterns.org/wiki/Submissions:TimeInterval)

38 V. Presutti et al.

http://dx.doi.org/10.1007/978-3-642-24794-1_5
http://(http://www.ontologydesignpatterns.org/wiki/Submissions:TimeInterval)

One of the most important raison d’être of ODPs is to enable this matching and

selection task for supporting reuse. Hence, regardless of its type, an ODP is

associated with a set of requirements, explicitly represented, which describes the

problem it provides a solution for. For example, the requirements associated with

the CP shown in Fig. 3.1 refer to the problem of representing time intervals, their

start and end points. If expressed in the form of CQs, the requirements of that CP

include “What is the starting point of a particular interval?” and “What is the end

point of a particular interval?”. Another example is the Logical ODP for expressing

“n-ary relations,” the requirements of which indicate the issue of representing

relations with n arguments through a logical language including only primitives

for expressing binary relations, e.g., a language such as OWL. The format and

extent of formality of requirement representation depends on the type of ODP. In

this chapter, we will focus on content ODPs (CPs) and how to use them for

developing ontologies through the application of a particular pattern-based method,

as well as its specific tool support.

3.3 Content Ontology Design Patterns (CPs)

CPs solve design problems for the domain classes and properties that populate an

ontology; therefore, they solve content – domain-specific – problems (Gangemi and

Presutti 2009). According to the general notion of ODP (see Sect. 3.2), each CP is

Fig. 3.2 The idea of pattern-based design. The ontology project is divided into the problem and

solution spaces. The problem space contains a set of requirements (see Chap. 5), while the solution
space contains a set of ODPs. The two spaces are compared in order to identify ODPs matching the

requirements (matches are illustrated by arrows). A number of those ODPs are selected for reuse in

the ontology project, i.e., dropped in the project basket

3 Pattern-Based Ontology Design 39

http://dx.doi.org/10.1007/978-3-642-24794-1_5

associated with a set of requirements, which represents the problem it provides a

solution for. Such requirements are usually represented in three different forms: (1)

competency questions (CQs), i.e., based on work by (Gruninger and Fox 1994),

(2) contextual statements, i.e., general axioms that hold within the domain, and (3)

reasoning requirements. CQs indicate typical queries that a knowledge base will be

able to answer if it is based on that CP. Contextual statements are general axioms

that apply within the domain, which indicate conditions that hold for (and between)

certain concepts encoded by the CP. Finally, reasoning requirements indicate what

inferences are enabled by the CP, e.g., if it perhaps allows some form of classifica-

tion or consistency checking of facts.

The time interval CP shown earlier, in Fig. 3.1 (Sect. 3.2), which is a very simple

but useful CP, is associated with the following competency questions:

• When does a certain time interval start?
• When does a certain time interval end?
• What are the points in time that belong to a certain time interval?

Typically, a CP can also be associated with a set of SPARQL queries that

formally encode its competency questions. This is very useful for an ontology

designer who wants to test an ontology containing a CP against sample data since

the SPARQL queries can be used to test the coverage of the CQs.

The time interval CP (see Fig. 3.1, Sect. 3.2) is also associated with the following

contextual statement:

• A time interval always has exactly one starting point and exactly one end point.

This requirement is, in the OWL realization of the CP, addressed by cardinality

restrictions on the data type properties that identify the start and the end of a time

interval.

Finally, this CP is also associated with the following reasoning requirements:

• The start and end dates of a time interval belong to the interval.
• Two time intervals with the same start and end dates should be recognized to be

the same interval.

The first reasoning requirement is, in the OWL realization of the CP, addressed

by defining the two data type properties startDate and endDate as sub-

properties of hasDate, which is the property indicating that something belongs

to the interval. This enables ontologies reusing the CP to also include the start and

end date of an interval, when the model is queried for dates belonging to the

interval, using the hasDate property. The second reasoning requirement is

addressed by defining a hasKey[startDate, endDate] axiom, on the

class TimeInterval. This enables an inference engine to infer that the owl:
sameAs property holds between two instances of TimeIntervalwhenever they

have the same start and end date values.

Where do CPs come from? This is a highly relevant question since we need a

considerable catalog of CPs in order for them to be useful in practice. A CP can

emerge from existing conceptual models as well as from data. It can be extracted

40 V. Presutti et al.

from foundational (Masolo et al. 2005), core (Gangemi and Borgo 2004), or

domain ontologies, re-engineered from other conceptual models (e.g., data model

patterns (Hay 2000)). Informally, the distinction between foundational, core, and

domain ontologies relates to the generality of the domain they address and to the

extent of domain coverage: (1) foundational ontologies, e.g., DOLCE5 and SUMO

(Niles and Pease 2001), axiomatize general concepts and relations and are reusable

across any domain; (2) core ontologies (Masolo et al. 2005), such as the Core

Ontology of Fishery (Gangemi et al. 2004) and the Core Legal Ontology (Gangemi

et al. 2005), focus on a specific domain without being restricted to specific

applications or specific sub-areas. The latter can be built as extensions of founda-

tional ontologies or based on general principles and well-founded methodologies;

and (3) domain ontologies, such as the Gene ontology6 and the Unified Medical

Language System (UMLS)7, deal extensively with a specific domain of interest,

deepen the coverage of a certain area of a domain or address a specific use case

within a domain. Informally, such general ontologies can be viewed as com-

positions of numerous CPs, and by modularizing such ontologies, i.e., decoupling

certain “pieces” from the rest of their often large overall structure, the formal

representation of those CPs can be extracted.

CPs can also be extracted from Linked Data (Bizer et al. 2009), i.e., in a more

bottom-up fashion, where they emerge from the way data is actually modeled. By

analyzing recurring semantic structures (if any) within the same, as well as across

different, datasets addressing some domain of interest, CPs may be detected.

CPs can also be created by composing or specializing other CPs or by expanding

them (see Sect. 3.3.1 describing operations on CPs). Figure 3.3 shows a composed

CP. This CP allows to represent the relation between an information object, such as

a novel, and its realizations, e.g., a book, an HTML page, etc., and to index this

relation based on the place where and time when it holds. This CP reuses the time
interval CP shown in Fig. 3.1 (Sect. 3.2) and combines it with two other CPs, the

information realization CP8 and the place CP9. The composition is realized by

specializing a fourth CP, the situation CP10. which is a CP corresponding to the

n-ary relation Logical ODP.

Since CPs can be represented as reusable building blocks, e.g., OWL modules, a

natural question is how they are distinguished from any other small ontology. CPs

show a number of pragmatic characteristics that allow to distinguish them from

other ontologies. CPs are:

5 DOLCE – Project Home Page: http://dolce.semanticweb.org
6 See http://www.geneontology.org/
7 See http://www.nlm.nih.gov/research/umls/
8 http://ontologydesignpatterns.org/wiki/Submissions:Information_realization
9 http://ontologydesignpatterns.org/wiki/Submissions:Place
10 http://ontologydesignpatterns.org/wiki/Submissions:Situation

3 Pattern-Based Ontology Design 41

http://dolce.semanticweb.org
http://www.geneontology.org/
http://www.nlm.nih.gov/research/umls/
http://ontologydesignpatterns.org/wiki/Submissions:Information_realization
http://ontologydesignpatterns.org/wiki/Submissions:Place
http://ontologydesignpatterns.org/wiki/Submissions:Situation

• Computational components. They are represented and encoded in a computa-

tional logic language, e.g., OWL, so that they can be processed and reused as

building blocks in ontology design, e.g., through the OWL import construct.

• Small, autonomous components. Smallness and autonomy of CPs facilitate the

design of ontology networks, because they enforce modularization; by compos-

ing CPs, designers can better govern the complexity of the whole resulting

ontology as opposed to governing a monolithic ontology.

• Inference enabling components. Each CP allows some logical conclusions to be

drawn from the model. This means that a single element, e.g., a single class

without any associated axioms, cannot be a CP since it does not enable any

inferences (even simple ones) to be made.

• Hierarchical components. All CPs participate in a partial order, where the

ordering relation is called specialization (see Sect. 3.3.1). Specialization requires
that at least one entity of the more specific pattern, e.g., a class or property, is

subsumed by at least one entity of another, more general, pattern. Figure 3.4

shows an example of CP specialization: (a) shows the part-of CP11, which
defines a transitive property between objects for representing parthood rela-

tionships between them; (b) shows the componency CP12, which specializes

part-of by defining object properties for representing direct parts of objects as

sub-properties of the transitive parthood relation.

• Cognitively relevant components. CP visualization must be intuitive and com-

pact and should catch relevant, “core” notions of a domain13.

• Best practices of ontology modeling. How to evaluate the quality of a CP, e.g., to

determine if it is truly a best practice is currently an open issue (Hammar and

Sandkuhl 2010); hence at the moment, the quality of a CP can only be assessed

through the personal experience of ontology designers and through its prove-

nance. Additional criteria are evidence from reusability across different projects

and large-scale applications such as Linked Data.

Fig. 3.3 UML-like diagram showing the OWL encoding of the time and place indexed informa-
tion realization CP present in the online catalog of CPs

11 http://ontologydesignpatterns.org/wiki/Submissions:PartOf
12 http://ontologydesignpatterns.org/wiki/Submissions:Componency
13 Independently of the generality at which a CP is singled out, it must contain the central notions

that “make rational thinking move” for an expert in a given domain for a given task.

42 V. Presutti et al.

http://ontologydesignpatterns.org/wiki/Submissions:PartOf
http://ontologydesignpatterns.org/wiki/Submissions:Componency

Additionally, CPs often match linguistic structures called frames. This could be

formulated as an additional characteristic of being linguistically relevant, and the

essence of most CPs can be expressed quite straightforward in natural language.

The richest repository of frames is FrameNet (Baker et al. 1998). Informally,

a frame is a lexically founded ontology design pattern. Frames typically

encode argument structures for verbs, e.g., the frame Desiring defines associations

between elements (or “semantic roles”) such as Experiencer, Event,
FocalParticipant, LocationOfEvent, etc. Frames can be used for

validating CPs with respect to lexical coverage, for lexicalizing them, and can be

re-engineered in order to populate a CP catalog such as the ODP portal.

As opposed to the concept of CP, there is that of AntiCP. AntiCPs are ontologies
that implement wrong modeling practices, e.g., examples of bad practices or

common mistakes. In other words, they are based on erroneous assumptions or

rationales. For example, modeling transitive parthood relationships through sub-

sumption, e.g., City rdfs:subClassOf Country, is considered an AntiCP.

AntiCPs produce the side effect of inferring wrong or undesired knowledge, e.g.,

Rome rdf:type Country, or of preventing the capability to infer the desired

knowledge. It is important to distinguish between ontologies that are not CPs and

AntiCPs, i.e., only a subset of ontologies that are not CPs are AntiCPs.

Fig. 3.4 Example of CP specialization: (a) depicts the part-of CP, which is specialized by the

componency CP, shown in (b)

3 Pattern-Based Ontology Design 43

3.3.1 Operations on Content Patterns

CPs are a special kind of ontologies, as discussed above, and their creation and

usage rely on a set of operations that can be summarized as follows:

Cloning consists of duplicating an ontology entity (possibly into a new namespace),

which can be reused in a CP or used as a prototype for the definition of a new

ontology entity defined in a CP. This operation is, for instance, used when

extracting CPs from foundational and core ontologies, i.e., a part of the larger

structure becomes a CP through being cloned and given a new namespace.

Composition relates two CPs and results in a new ontology (which could in turn be a

CP – as seen in Fig. 3.3, Sect. 3.3). The resulting ontology includes the union of

the sets of ontology entities and axioms from the two CPs plus the ontology

entities and axioms that are defined locally in the new ontology in order to relate

the two CPs, e.g., disjointness axioms. Figure 3.5 depicts an example of a CP

composition. At the left of the figure, the two CPs are shown separately, one CP

(top left) represents membership relationships between persons and music

bands, the other CP (bottom left) models objects and the roles they play. The

axioms that are added for composing the two CPs are shown at the right side of

the figure. The class Person is defined to be subclass of Object, and both

Person and Band are defined to be disjoint with Role.
Specialization defines a new ontology (which could in turn be a CP) by specializing

entities of an existing one, e.g., a CP. Specialization introduces a partial order

between CPs, based on subsumption relations holding between their respective

ontological entities. Specialization relies on rdfs:subClassOf and owl:
subPropertyOf constructs. Figure 3.4 in Sect. 3.3, as mentioned previously,

shows an example of specialization: the component CP (Fig. 3.4b) specializes

part-of (Fig. 3.4a) by defining the object properties directPart and

directPartOf as sub-properties of hasPart and partOf, respectively.
Import is the basic mechanism for explicit CP reuse, as well as a way to reuse

ontologies in general. It is also the only operation described here that is directly

Fig. 3.5 Example of CP composition: A CP representing membership relationships between

persons and bands (top left) is composed with the CP object-role (bottom left), which represents

objects and the roles they play, and the result can be seen to the right

44 V. Presutti et al.

supported in the OWL vocabulary, through owl:imports. By importing a CP,

the ontology includes all the axioms of the CP and hence ensures the set of

inferences that the CP enables in its corresponding knowledge base.

3.4 eXtreme Design: An Agile Methodology for Pattern-Based

Ontology Development

With the name eXtreme Design (XD), we refer to a family of methods that support

the pattern-based design approach as depicted in Fig. 3.2 (Sect. 3.2), i.e., the

matching between problem and solution spaces in order to reuse solution

components, such as ODPs (Presutti et al. 2009). When XD is based on CPs, the

problem space is expressed by means of competency questions (CQs), contextual
statements, and reasoning requirements, as described at the beginning of Sect. 3.3,

and the solution space contains CPs and their associated requirements, i.e., simi-

larly expressed through CQs, contextual statements, and reasoning requirements.

Hence, the matching process is performed through finding similarities between CQs

as well as between the other two types of requirements, as exemplified in Fig. 3.6.

In the following sections, we describe the XD method, inspired by software

engineering’s eXtreme Programming (XP) (Shore and Warden 2007) and experi-
ence factory (Basili et al. 1994), for building ontologies through intensive CP reuse.

XD is test-driven, i.e., testing is a central part of the development; it applies a

divide-and-conquer approach similarly to XP and promotes pair design, which is

analogous to pair programming.

3.4.1 eXtreme Design Principles

Similarly to XP, XD has evolved around a set of main principles. The principles

both describe the essence of XD and act as guidelines when performing the design

process.

The first principle is named customer involvement and feedback. Ideally, the
customer should be involved in the ontology development team continuously.

Fig. 3.6 The XD (eXtreme Design) approach with CPs, exemplified for CQ matching

3 Pattern-Based Ontology Design 45

This means that the customer should identify representatives that can be easily

contacted during the development for quick feedback. Such representatives have to

be aware of all parts, and needs, of the project. Here, depending on the project

configuration, the “customer” could be either the organization containing the end

users of the system to be built (including the ontology) or simply the software

developers needing the ontology in order to perform some particular functionality

in the overall system.

The second principle states that all requirements should be based on customer
stories, from which CQs, contextual statements, and reasoning requirements are

derived. The customer representatives describe the ontology requirements and the

ontology tasks in terms of small stories. Designers work on those small stories and

transform them into more rigorous and precise requirements, e.g., in the form of

CQs, contextual statements, and reasoning requirements.

Next, an important principle is that of iterative development. XD is an iterative

and incremental process. Each iteration produces a number of modules that con-

tribute to an incremental release, produced through an integration phase.

Test-driven design means, in the case of XD, that testing is used as an integrated

means for completing the modules. Stories, CQs, reasoning requirements, and

contextual statements are used in order to develop unit tests, e.g., CQs can be

transformed into SPARQL queries. By deciding how the query should be formed, a

developer is actually partly designing the model, hence, the notion “test-driven”

design. The ontology module representing a customer story can be passed to the

integration phase, i.e., to be included in the next release, only if all its associated

unit tests run successfully. This principle also enforces the task-oriented approach

of the method, i.e., the principle that modules should realize exactly what is

required (their intended task), nothing more and nothing less.

It has to be noted that ontology unit testing, first introduced by (Vrandečić and

Gangemi 2006), has a different meaning than software unit testing. An ontology

module developed for addressing (part of) a user story is tested by developing unit

tests, i.e., dedicated ontology modules containing sample facts and appropriately

documented with testing metadata, each importing the ontology module to be

tested, based on one of the following three approaches: (1) through verification
tests to test the fulfillment of basic requirements, i.e., SPARQL queries based on

CQs that are run against valid sample data in order to check if expected results are

returned by the SPARQL engine, (2) inference tests, i.e., through inference materi-

alization performed on sample data which is expected to cause certain inferences to

be materialized in accordance with the reasoning requirements and (3) through

stress tests, e.g., through consistency checking performed on invalid sample data

violating the contextual statements, thus expecting to provoke inconsistencies.

While (1) and (2) are mainly intended for verifying the correct implementation of

requirements, (3) could be viewed as more similar to the kind of software testing

when a system is fed random or erroneous data, to make sure such cases are handled

correctly, and there are no unexpected side effects or crashes.

One of the core principles of XD is ODP reuse, which inherently leads to a

modular design. Iterations are based on identifying reusable CPs through matching

46 V. Presutti et al.

CQs and other requirements. Every time there is a positive match, the identified CPs

are considered for reuse. If the solution space does not provide an adequate ready-

to-use CP, a specific solution is developed in a modular way, preferably in the form

of a new CP so that it can be shared with the team (and ideally on the web) for future

reuse. This principle favors the creation of a common “language” based on shared

patterns and eases both the understandability and the integration of developed

modules. In addition, the divide-and-conquer paradigm leads to a natural

modularisation of the problem, which facilitates a distributed ontology develop-

ment, and assists in scoping the modeling issues that are addressed within a single

iteration.

To handle this incremental ontology development, collaboration and integration
are two essential principles. Integration is a key aspect of XD, as the ontology is

developed in a distributed, modular, and collaborative way. Collaboration and

continuous sharing of knowledge is needed when running an XD project. The result

of each iteration, i.e., one or more ontology modules, is integrated with the rest of

the ontology modules before releasing an increment. Typically, a sub-team of

designers is devoted to the integration task.

As mentioned previously, task-oriented design is another main principle. The

XD approach is based on developing a task-oriented ontology, covering only part of

a domain of knowledge according to a specific application task. This is opposed to

the more philosophically oriented approach of formal ontology design, where the

aim is to comprehensively cover a certain domain of knowledge. XD proposes to

provide solutions to the exact requirements stated, in the sense that the concepts

should be defined according to the intended task of the ontology, rather than in

some common sense notion of their “true” nature. Each XD iteration focuses on a

specific part of the domain requirements, expressed in terms of a user story.

On the more organizational side, XD promotes pair design. The team of

designers is organized in pairs. This practice is analogous to the pair programming

of XP. While pair programming has empirically been proven efficient in software

development, it still remains to rigorously test the efficiency for ontology engineer-

ing. Currently, this has to be considered a hypothesis, based on experience and

observations made through collecting feedback of trainees and developers, through

informal discussions and questionnaires after the execution of XD with different

teams. Most of them felt that they benefit from on-the-fly brainstorming, and

perceived to improve the effect of learning-by-doing within the pair design setting.

3.4.2 The eXtreme Design Process

Figure 3.7 shows the complete XD process for CP reuse. The process starts with the

XD team, including the customer representatives, making themselves familiar with

the knowledge domain, with the aim of identifying the scope of the ontology

project, based on the desired application tasks (Step 1. Project initiation and
scoping). The objective is twofold: (1) to make the customer representatives

3 Pattern-Based Ontology Design 47

(domain experts) aware of what the XD team expects from them and (2) to provide

the ontology design team with an overview of the problem from a domain expert

perspective, its scope, and agree on initial terminology. The result of this step is the

setup of a collaborative environment where the customer representatives and

ontology designers will share documentation and collect argumentation and

motivations of modeling issues, including terminology, e.g., through deploying a

wiki for the project. Following this starting activity, the XD team identifies the

sources of CPs to be used during the ontology project (Step 2. Identify CP catalogs);
however, such a set can be extended during the process.

The customer representatives are then invited to write stories, preferably from

real, documented scenarios, which act as samples of the typical facts that should be

stored in the resulting ontology, and exemplify how these facts are connected and

used (Step 3. Collecting requirement stories). All stories are organized in terms of

priority, and possible dependencies between them are identified and made explicit.

Each story is described by means of a small card, like the one depicted in Table 3.1,

which includes the unique title of the story, a list of other stories that it depends on,

a description in natural language, i.e., the story itself, and a priority value. The

customer can add stories during the whole project life cycle, depending on how

formal contracts and other commitments are formulated. Nevertheless, if a new

requirement emerges, new stories can be written.

Once a sufficient number of stories for starting the development have been

collected, each pair of designers selects a story that will be the focus of their

work for the next iteration (Step 4. Eliciting requirements and constructing mod-
ule(s) from CPs). The selection is based on the experience and competencies of the

design pair and on the priority of the story. A new wiki page for the story is created,

and its content is set up based on the information reported on the card. By

performing this task, a pair enters a development iteration (the dashed rectangle

in Fig. 3.7, which is detailed in Fig. 3.8).

Once a story has been completely modeled, it is carefully documented and released

internally for integration into the next release (Step 5. Releasing module(s)). This
task constitutes the end of a story iteration for a pair, and the result is one or

more ontology modules, i.e., small ontologies. Before releasing a module, it is

important to make sure that all tests run successfully and that the module is well

documented, both in the shared wiki as well as through annotations in the module

itself. All ontological elements have to have appropriate labels, they have to be

commented (as well as the module itself), and the module should be associated with

a description of its purpose, the requirements it solves, and even links to the unit

Table 3.1 A requirement story card, here exemplified through a story from the fishery domain

Title Tuna observation

Depends on Exploitation values, tuna areas

Description In 2004, the resource of species “tuna” in water area 24 was observed

to be fully exploited in the tropical zone at pelagic depth

Priority High

48 V. Presutti et al.

tests that have been used. The modules are assigned a URI and are shared by the

whole team. If a module can be publicly shared, and is considered highly reusable,

it can be published in open web registries, such as the ODP portal.

Once a new module is released, it has to be integrated with all the others that

constitute the current version of the ontology network (Step 6. Integrating partial
solutions, evaluating, and revising). Usually, one pair is in charge of performing the

integration and related tests. New unit tests are defined for the integrated ontology

network, and all existing ones (unit tests of individual modules) are again executed

Fig. 3.7 The overall XD process, for CP reuse

3 Pattern-Based Ontology Design 49

as regression tests before moving to next task. All contextual statements and

reasoning requirements are taken into account, and all necessary alignment axioms

are defined. The modules are now under the complete control and editing of the

team in charge of the integration, and refactoring of the ontology modules may

be performed in case inconsistent modeling choices are discovered. Integration can

be done in multiple fashions, and an integration policy should be defined at the start

of the project. For instance, if decoupling of modules is an essential feature of the

resulting ontology network, then a minimum of refactoring should be performed in

Fig. 3.8 Detailed breakdown of sub-steps in the design pair iteration (steps 4–5 in Fig. 3.7)

50 V. Presutti et al.

order to remove overlap between modules, instead integration should simply align

the modules. On the other hand, in some cases, a coherent and non-redundant model

is desired, whereby an alternative policy would be to refactor the modules, remove

as many redundant definitions as possible and instead add import dependencies

between them. The products of this step are new unit tests and alignment axioms,

and possibly a set of changes to the ontology modules (results of refactoring), all

properly documented in the wiki.

When all unit tests run successfully during the integration step, a new incremen-

tal version of the ontology network can be released (Step 7. Releasing new version
of ontology network). The ontology is given a new version number, it is appropri-

ately documented, and it is associated with its own version of the wiki documenta-

tion. It is important to note that the process depicted in Fig. 3.7 is usually not a

sequential one, i.e., in most cases the arrows indicate an input/output dependency

rather than a sequence of actions. For instance, the integration and release steps will

be ongoing activities during the complete project (as soon as the first modules are

ready); hence, integration will be performed in parallel with Steps 4–5 where new

modules are produced, to create a series of incremental releases.

Step 4 of the XD process identifies the core iteration performed by a design pair,

which is focused on the development of the ontology module(s) representing one

user story. Figure 3.8 depicts the main steps of a single iteration (i.e., a detailed

breakdown of the steps within the dashed rectangle of Fig. 3.7).

First, the development pair analyzes the selected user story and derives a set of

CQs, contextual statements and reasoning requirements from it (Step 4.1. Eliciting
requirements). In order to do that, designers could involve the customer for having

feedback and clarifications. For example, the story “Tuna observation” (see

Table 3.1) can be transformed into the following CQs, which are added to the

story’s wiki page:

• CQ1: What is the exploitation state observed and the vertical distance in a given

climatic zone for a certain resource?

• CQ2: What resources have been observed during a certain period in a certain

water area?

Additionally, assume that the following contextual statements and reasoning

requirements are derived based on a discussion with the customer representative:

• A resource contains one or more species.

• Species are associated to vertical distances. As a consequence, the vertical

distance of a resource is inferred through the vertical distance of its species.

The iteration continues by further breaking down the task, before starting to

address it through modeling. This is done by selecting one of the competency

questions, or a small set of them that constitutes a coherent modeling issue, and

then start matching them to the competency questions associated with available CPs

in order to identify candidates for reuse (Step 4.2. Matching and selecting patterns).
In our example, let CQ1 and CQ2 be the selected competency questions. Candidate

CPs for reuse would be situation and time interval. The competency question of

3 Pattern-Based Ontology Design 51

situation – “What entities are in the setting of a certain situation?” – can be said to

match the observation of the resource and the parameters that are in the setting of

that observation. Additionally, the time interval CP may be seen as matching the

question of what period a certain observation was made (CQ2), although this could

also be solved with just a simple data type property.

The following step is to select which of those patterns should actually be used for

solving the modeling problem. In our case, there are only two patterns, and neither

is an alternative solution to the other, but in many cases, this step involves making

some modeling choices, i.e., deciding which pattern is most suitable for the

particular case. Nevertheless, in our example, we still need to decide if both patterns

are really needed or if they add too much overhead to our model. For instance, we

may decide that time interval adds too many extra elements to the model since

perhaps our customer simply wants to store the year of the observation, rather than

an exact period of dates, in which case we will only select situation.
After selecting a set of CPs, it is time to start modeling, i.e., reusing the CPs

(Step 4.3. Reusing and integrating CPs). The term “reuse” here refers to the

application of typical operations that can be applied to CPs, i.e., import, specializa-
tion and composition (see Sect. 3.3.1). In some cases, one may also decide to clone a

CP, e.g., if it is desirable not to rely on imports external to the project, which would

result in replicating the modeling solution, but without importing the available

building block. The latter has both advantages, e.g., reducing the size of the module

in case the complete transitive closure of CP imports is not cloned, and

disadvantages, e.g., the loss of a common “language” by not referring to the pattern

explicitly and reduced support for automatic alignment with other pattern-based

modules.

In our example, we import and specialize situation in order to address CQ1, as

shown in Fig. 3.9. Our particular situation is an “observation,” and the thing

observed is an “aquatic resource.” Additionally, the exploitation state, climatic

zone, and vertical distance of the observation are also involved in the setting.

Thereby, we add a subclass of situation:Situation named AquaticRe-
sourceObservation and add the other entities as subclasses of owl:Thing.
In addition, we define sub-properties of the situation:isSettingFor and

Fig. 3.9 Specialization of the situation CP for modeling aquatic resource observations, as for

addressing CQ1

52 V. Presutti et al.

its inverse, for connecting the observations to the resources and the different

parameters. After iterating over all selected CPs (in our example, only one pattern

was selected) and integrating them into the current module, the module also has to

be extended to cover the complete set of CQs. In our example, no pattern was

selected to solve the time period issue in CQ2; hence, a data type property has to be

added to the module in order to cover the complete CQ.

The goal of the following task (Step 4.4. Testing module) is to validate the

ontology module against the requirements it is supposed to address, i.e., CQs,

contextual statements, and reasoning requirements, through developing and

executing verification tests, inference tests, and stress tests (see description of test

types in Sect. 3.4.1). The ontology modules are revised until all unit tests run

successfully. All unit tests are documented in the project wiki and are properly

linked to their motivating user story, and requirement(s), in order to document the

testing activity as well as to preserve the unit tests for the integration process. In our

example, a unit verification test associated with CQ2 could be the following

SPARQL query, retrieving the exploitation state (?exp), vertical distance (?dist),

climatic zone (?zone), and resources (?resource) of available observations (?obs):

SELECT ?exp ?dist ?resource ?zone
WHERE {

?obs a:AquaticResourceObservation.
?obs aboutAquaticResource ?resource.
?obs hasClimaticZone ?zone
?obs hasExploitationState ?exp.
?obs hasVerticalDistance ?dist

}

If all requirements derived from the story have been solved, and all tests run

successfully, the design pair proceeds to internally release the module(s) (Step 5.
Releasing module(s)), which are then ready for integration in the current overall

increment iteration.

3.4.3 Example: A Music Industry Ontology

To illustrate the process of creating ontologies through XD, a small hypothetical

project is described in this section. The domain, which is music industry, should be
intuitive to most readers. The example is not intended as a case for validating the

methodology, but merely as an illustration how it could be used in practice.

Step 1 – Project initiation and scoping. Let us assume that an ontology is needed in

an online community platform for people who want to discuss music, share

news, playlists, and music recommendations. The ontology will be used to store

and retrieve information about music recordings and artists, as well as to reason

3 Pattern-Based Ontology Design 53

over musical genres. As ontology developers, we are working closely together

with the software developers, implementing the online community software;

however, we also have access to some future administrators of the community,

who are used as the “customer representatives”, i.e., domain experts, during the

project. A wiki is set up for the development project, where all information is

stored and shared, both between developers and with the customer

representatives.

Step 2 – Identifying CP catalogs. Let us assume that we decide to focus on CP reuse

and to mainly reuse CPs from the ODP portal.

Step 3 – Collecting requirement stories. As soon as the project environment is set

up, we ask the customer representatives to start entering their stories into the

wiki. Some stories become examples of typical information that is to be stored

by the ontology, while other stories focus more on reasoning tasks of the

ontology, depending on how the customer representatives formulate them.

Each story is entered into the story template, e.g., given a title and priority,

and as soon as several stories are in place, they can be related to each other.

A collected story can be seen in Table 3.2, and another one in Table 3.3. The

“Albums”-story depends on the “Recordings of songs” story, since the notion of

recorded track appears also in the story about albums but is the main focus of

“Recordings of songs.”

Step 4 – Eliciting requirements and constructing modules from CPs. At this point,
the design team is divided into pairs, in order to develop the ontology modules

using pair design. One pair is dedicated to the integration task, i.e., proceed

directly to prepare Steps 6–7, while the rest of the pairs choose their first stories

from the pool of collected ones. Each story with high priority has to be solved

before the lower priority ones are addressed. Each pair then starts to elicit

requirements from their chosen story, i.e., tries to derive CQs, contextual

statements, and reasoning requirements.

Table 3.2 A requirement story from the music domain concerning albums

Title Albums

Depends on Recordings of songs

Description An album is a collection of recorded tracks. The genre(s) of an album should be

derived based on the genres of the tracks it contains

Priority High

Table 3.3 A requirement story from the music domain concerning songs and recordings

Title Recordings of songs

Depends on

Description Songs are recorded by artists. Many artists can record the same song. In the

web interface, users will click on songs and get to see the artists that have

recorded them and links to information on those recordings

Priority High

54 V. Presutti et al.

Let us imagine that you are part of the design pair who picks up the story in

Table 3.2. First, you start analyzing the story itself, to see if there are any

obvious CQs, indicating information that should be stored and retrieved. The

most obvious CQs are:

1. What are the tracks of this album?

2. What is the genre of this track or album?

There could however be other CQs possible; hence, the final list needs to be

agreed with a customer representative, in order to ensure appropriate coverage of

the domain and task and to avoid misinterpretations of the story. In addition, it is

evident from the way the story is written that a reasoning requirement is needed,

i.e., the following:

• An album should be automatically assigned all the genres of it contained

tracks.

In other cases, it may not be as self-evident what needs to be possible to infer;

however, in many cases, software requirements and interactions with the cus-

tomer can clarify such issues.

Additionally, contextual statements can be proposed based on common sense

knowledge, e.g., in our case:

• An album always has at least one track.

Other contextual statements may be given by the customer representative or

be implicit in the software requirements, e.g., limitations set by the way the

software will use the ontology. We have thus collected two CQs, one contextual

statement and one reasoning requirement, based on the story in Table 3.2 and our

interaction with the customer representatives.

Next, the pair proceeds to select a subset of the requirements, which represent

some particular modeling issue. When analyzing the CQs, we note that the first

one is focused on the album as a collection of tracks, while the second one adds

the notion of genre. These are actually quite separate concerns, and in order to

decouple these modeling issues, we decide to create one module for each CQ.

Choosing to start with the first CQ and the contextual statement, we now need

to match the CQ to the requirements covered by the CPs in the ODP portal.

When searching the portal’s CP submission table14, we find that there are several

interesting CPs, e.g., there is the collection CP15 for representing membership,

and the part of CP for part-whole relations. In this case, both patterns have

matching CQs, so the choice is instead based on how we wish to view the album,

i.e., as an object divided into parts or as a collection that is the sum of its

members. One of the main differences between the patterns is that the part of CP

14 http://ontologydesignpatterns.org/wiki/Submissions:ContentOPs
15 http://ontologydesignpatterns.org/wiki/Submissions:Collection

3 Pattern-Based Ontology Design 55

http://ontologydesignpatterns.org/wiki/Submissions:ContentOPs
http://ontologydesignpatterns.org/wiki/Submissions:Collection

defines the part-whole relation as transitive, while the membership relation in the

collection CP is not. Since we are not interested in creating a hierarchy of parts,

we decide on the collection CP and document this choice in the project wiki

(including our argumentation).

Then it is time to start modeling. Since we are creating a new module each

time, we start by creating an empty ontology, with a new namespace (following a

namespace convention agreed in Step 1). Next, we import the OWL building

block of the collection CP into our empty ontology and start specializing it. As a

subclass of collection:Collection, we create a new class Album, and
then another new class called Track (subclass of owl:Thing). To complete

the specialization, we create sub-properties of the pattern properties, with more

domain-specific names, e.g., containsTrack and containedInAlbum,
set them to be inverses, and define domain and range axioms. Figure 3.10

illustrates the result of this process. Each entity we create is commented, and

given a label, and we additionally extend the specialized CP, by adding the

contextual statement as a cardinality restriction over the containsTrack
property on the Album class.

When the design pair is satisfied, it is time to test the module they have

created. First, we formulate the CQ as a SPARQL query. Most often, missing

parts are discovered already when formulating the query since the query formu-

lation involves an inspection of the model. However, a new ontology (i.e., a “test

case”) is created, importing the ontology to be tested, and some test instances are

added in the test case ontology. If the SPARQL query gives the expected result,

based on our test data, then the test is successful. We can proceed to perform

some stress testing. In this case, we should add data that violates some con-

straint, e.g., a contextual statement, and see that the ontology is able to detect the

problem, e.g., through finding an inconsistency, and that there are no undesired

containsTrack/
containedInAlbum

rdf:type
rdf:type

rdfs:subPropertyOf

rdfs:subPropertyOf

Fig. 3.10 Specialization of the collection CP

56 V. Presutti et al.

side effects. In our case, however, the open-world assumption of OWL makes it

hard to detect violations of our contextual statement.

When all tests run successfully, and the module is fully annotated and

documented in the wiki, it is time to proceed with the next set of requirements,

i.e., the second CQ and the reasoning requirement. Similarly as before, we start

by matching the requirements to the list of CPs in the ODP portal. This time, we

do not immediately find a match, i.e., there is no pattern for music genres;

however, there are patterns for expressing descriptions and parameters of a

concept. Nevertheless, let us assume that we find these too abstract for our

case, and instead choose to create the model on our own.

Just as in the previous iteration, we start by creating a new empty ontology with

its own namespace. However, this time we realize that we need the tracks and

albums that we just modeled in the previous module; hence, we import it into our

new ontology module. Then we add the class Genre and a property hasGenre
(including its inverse genreOf). The domain of hasGenre is set to the union

of Track and Album, while the range is set to the Genre class. In addition, to

solve the reasoning requirement, we add a property chain definition to the

hasGenre property, stating that hasGenre can be derived from the combi-

nation of the hasTrack and hasGenre properties, meaning that if an album

has a track which in turn has a certain genre, then that album should also be

directly connected to the same genre.

Testing this time involves testing the CQ using one or more SPARQL queries

but also to test the inferences produced based on the property chain, i.e., to

confirm that the reasoning requirement is fulfilled. To do the latter, we create a

new empty ontology, import our module to be tested and add some test data that

should produce the correct inference. For instance, an album instance can be

added, then associated to a track (through hasTrack), and the track’s genre set
to rock (through hasGenre). When the inferences are materialized, we

expect to see that the album is now also associated with the genre rock. As
soon as all tests run successfully, and the ontology module is appropriately

commented, we are now ready to release the complete solution of the customer

story in Table 3.2, consisting of our two ontology modules.

Step 5 – Releasing module(s). The modules, and all their wiki documentation, are

now made available to the pair in charge of integration.

Step 6 – Integrating partial solutions, evaluating, and revising. As soon as the

integration team have more than one solution to work with, i.e., more than one

story is covered, they start integrating the modules. Integration is a crucial part

and involves a trade-off between refactoring, to reduce overlap between

modules, and keeping the decoupling of modules to facilitate later changes

and reusability of individual modules. In some cases, integration is quite easy,

e.g., the modules can directly be imported into one new ontology, and tested

together, without any additional modeling, while in other cases, the integration

means to add some “glue” to resolve conflicts and make sure that the

requirements of the stories treated so far can be covered all together. However,

the use of CPs facilitates the integration since it makes explicit the modeling

3 Pattern-Based Ontology Design 57

choices made, assures that the development team has a shared vocabulary for

talking about modeling choices, and in some cases even makes the integration

semi-automatic, i.e., if the same CP is imported in several modules they are

inherently aligned.

While the integration pair starts their task, our design pair can now go back to the

list of remaining user stories, and select a new one, to start another development

iteration. This process is continued until no more stories are to be covered.

Step 7 – Releasing new version of ontology network. After each new module has

been integrated into the resulting ontology (i.e., ontology network), a new

release is created, letting the customer and other parties, e.g., software

developers, review and test the ontology at all stages of development.

3.4.4 Tool Support

In this section, we briefly present the ODP portal16 and the eXtreme Design Tools

(XD Tools), two resources that support XD. The ODP portal is a semantic wiki

dedicated to best practices of ontology design for the semantic web, with particular

focus on ODPs. The ODP portal supports the life cycle of ODPs, i.e., from their

proposal to their evaluation and possible certification. CP wiki pages can be created

automatically in the wiki by providing, as input, the CP OWL file properly

annotated. Currently, the ODP portal supports the life cycle of Content ODPs,
Re-engineering ODPs, Alignment ODPs, Logical ODPs, Architectural ODPs, and
Lexico-syntactic ODPs. The ODP portal is associated with a registry of CPs17.

While the ODP portal is meant to give community support to XD, the XD

Tools are meant to assist the execution of the XD methodology. XD Tools are a

set of software components released as an Eclipse plugin, accessible through a

perspective – eXtreme Design – compatible with Eclipse-based ontology design

environments, such as the NeOn Toolkit. Currently, XD Tools are comprised of five

main components that allow a user to browse a registry of CPs, search and import

them into a local ontology project. Although specialization is possible through

native NeOn Toolkit functionalities, XD Tools feature a wizard for specializing a

CP, for usability reasons. As a special feature, a service for analyzing an ontology

with respect to general modeling best practices is also included.

Figure 3.11 gives an overview of the XD Tools interface as it appears in the

NeOn Toolkit. The ODP Registry view (bottom left of Fig. 3.11 – enlarged view in

Fig. 3.12) exposes a tree-like view of a CP registry that can be browsed by a user.

The default registry used is the ODP portal registry, but others can be added

through customizing the plugin. When a CP is selected, the ODP Details view

16 The ODP portal main page, http://www.ontologydesignpattern.org
17 The ODP Portal pattern registry can be downloaded at: http://ontologydesignpatterns.org/

schemas/registry.owl

58 V. Presutti et al.

http://www.ontologydesignpattern.org
http://ontologydesignpatterns.org/schemas/registry.owl
http://ontologydesignpatterns.org/schemas/registry.owl

(to the right of the registry view in both figures) shows a description of it, based on

the annotations stored in the CP’s OWL file. By right clicking on a CP, its OWL

file can be downloaded through the “Get” command and put in a local ontology

project. The ODP Selector view (bottom right of Fig. 3.11 – enlarged view in

Fig. 3.13) provides a search service over the CP registry. By clicking on the

“Search” icon (highlighted by a small circle in Fig. 3.13), a user can type a natural

language query, e.g., a competency question, in a text field, and submit it to a set of

search services that return ranked lists of CPs, from which the user can select the

most appropriate one(s).

Fig. 3.11 Screenshot overview of XD Tools

Fig. 3.12 Screenshot depicting the ODP Registry view (left) and the ODP Details view (right)

3 Pattern-Based Ontology Design 59

The XD Analyzer view (top right of Fig. 3.11 – enlarged view in Fig. 3.14) can be

run through a contextual menu on a selected ontology and shows a list of messages,

each associated with a best practice criterion. A message indicates whether the

ontology satisfies a certain criterion or not. The XD Analyzer has a pluggable

architecture, allowing for easy extension of the set of heuristics that express “best

practices.” Three levels of messages can be produced: errors, warnings, and

suggestions (i.e., proposals for improvement). An error is, for instance, a missing type,

i.e., all instances should have an explicit class as its type (could be owl:Thing).

Fig. 3.13 Screenshot depicting the ODP Selector view and its search query interface

Fig. 3.14 Screenshot depicting the XD Analyzer, showing the results of the analysis in the list to

the right. Yellow triangles indicate warnings, while “i” stands for suggestion. The number of

occurrences is given within brackets

60 V. Presutti et al.

Examples of warnings are missing labels and comments, as well as proposals to

create an inverse for each object property that has no inverse so far in the

analyzed ontology. A suggestion could be a message to check the object

properties that lack domain and range definitions, i.e., such definitions are not

mandatory in a well-designed ontology, since they could be replaced by other

axioms; however, if they are missing, it could also indicate that the developer

has forgot to add them.

XD Tools also include a wizard for guiding users in the process of specializing a

CP. Figure 3.15a shows the Specialization wizard. CP specialization, as the primary

step of their reuse, can be challenging for an inexperienced user if it is done one

element at a time, without guidance. From a user perspective, CP specialization has

the following steps: (1) import the pattern into the working ontology, (2) define

subclasses/sub-properties for each of the (most specific) pattern entities needed and

(3) add any additional appropriate axioms. The specialization wizard provided

by XD Tools guides the user through this process. Finally, XD Tools provide a

so-called Annotation dialog – depicted in Fig. 3.15b – which supports annotation,

i.e., documentation, of an ontology based on customizable annotation vocabularies.

In addition, XD Tools provide several help functions, such as inline info boxes,

help sections in the Eclipse help center and “cheat sheets” describing the XD

methodology for CP reuse.

3.5 Conclusion

In this chapter, we have presented ontology design patterns (ODPs), which are

reusable modeling solutions that encode modeling best practices, by briefly

discussing their different types and characteristics. ODPs are the main tool for

Fig. 3.15 Part (a) shows the XD Specialization wizard and (b) the XD Annotation dialog

3 Pattern-Based Ontology Design 61

performing pattern-based design of ontologies, which is an approach to ontology

development that emphasizes reuse and promotes the development of a common

“language” for sharing knowledge about ontology design best practices. ODPs are

associated with a set of requirements that are explicitly expressed in order to favor

their selection through a matching procedure. Content ODPs (CPs) have been the

main focus of this chapter, which has shown through some examples how they can

be used for building an ontology according to a set of elicited requirements. CPs are

domain-dependent patterns, the requirements of which are expressed by means of

competency questions, contextual statements, and reasoning requirements. In order

to reuse CPs, we have defined a set of operations that include importing, speci-

alizing, and composing them to the aim of building a new ontology (or ontology

network).

In the second part of the chapter, we have described an agile methodology for

pattern-based ontology design named eXtreme Design (XD), an iterative and

incremental process, which is characterized by a test-driven and collaborative

development approach. The XD methodology is supported by a set of software

components named XD Tools, which assist users in the process of pattern-based

design.

The XD methodology has been tested in numerous ontology development

projects, including user-based experiments conducted in controlled environments.

The results of those experiments have been reported by Blomqvist and colleagues

(2009a) and by Blomqvist and colleagues (2010a). The participants were, for

instance, asked to assess how useful ODPs and XD were and how much overhead

it added to their work processes, as well if XD felt like a natural way of working,

i.e., if they were already working in a similar way before being introduced to the

methodology. Overall, the methodology was received well, and the participants felt

that it was a very natural way of working, without adding any unnecessary

restrictions to the process. Nevertheless, the objective evaluation of their modeling

results showed that the quality increased drastically, in particular with respect to a

number of common mistakes, when introducing the methodology. This could be

attributed to the testing focus of the methodology that enforces a rigorous evalua-

tion of each solution before its release. So even though the participants felt that the

methodology added nothing new, it actually helped them to structure their work and

provide better and more rigorously tested ontologies.

References

Aguado de Cea G, Gómez-Pérez A, Montiel-Ponsoda E, Suárez-Figueroa MC (2009) Using

linguistic patterns to enhance ontology development. In: Dietz J (ed) Proceedings of the

international conference on knowledge engineering and ontology development (KEOD),

Funchal, pp 206–213

Baker CF, Fillmore CJ, Lowe JB (1998) The Berkeley FrameNet project. In: Boitet C, Whitelock P

(eds) Proceedings of the 36th annual meeting of the Association for Computational Linguistics

62 V. Presutti et al.

and 17th international conference on computational linguistics, vol 1. Association for Compu-

tational Linguistics, Stroudsburg, PA, USA, pp 86–90

Basili V, Caldiera G, Rombach D (1994) The experience factory. In: Marciniak J (ed) Encyclope-

dia of software engineering. Wiley, New York, pp 469–476

Bizer C, Heath T, Berners-Lee T (2009) Linked data – the story so far. Int J Semant Web Inf Syst 5

(3):1–22

Blomqvist E, Gangemi A, Presutti V (2009a) Experiments on pattern-based ontology design. In:

Proceeding of K-CAP 2009, Los Angeles. ACM, New York

Blomqvist E, Sandkuhl K, Scharffe F, Svatek V (2009b) Proceedings of the workshop on ontology

patterns (WOP 2009), collocated with the 8th international semantic web conference (ISWC-

2009), Washington, DC, USA, 25 Oct, 2009, vol 516. CEUR

Blomqvist E, Presutti V, Daga E, Gangemi A (2010a) Experimenting with eXtreme design. In:

Proceedings of EKAW2010 – knowledge engineering and management by the masses, LNCS

6317. Springer, Berlin/Heidelberg/New York

Blomqvist E, Chaudhri V, Corcho O, Presutti V, Sandkuhl K (2010b) Proceedings of the 2nd

international workshop on ontology patterns – WOP2010, vol 671. CEUR

Gamma E, Helm R, Johnson R, Vlissides J (1994) Design patterns: elements of reusable object-

oriented software. Addison-Wesley, Reading

Gangemi A, Borgo S (2004) Core ontologies in ontology engineering 2004. (Un) Successful cases

and best practices for ontology engineering: reusing well-founded ontologies for domain

content specification. In: Proceedings of the EKAW*04 workshop on core ontologies in

ontology engineering, Northamptonshire (UK), 8 Oct, 2004, vol 118. CEUR

Gangemi A, Presutti V (2009) Ontology design patterns. In: Staab S, Studer R (eds) Handbook on

ontologies, 2nd edn. Springer, Berlin, pp 221–243

Gangemi A, Fisseha F, Keizer J, Lehmann J, Liang A, Pettman I, Sini M, Taconet M (2004) A core

ontology of fishery and its use in the FOS project. In: EKAW 2004 workshop on core

ontologies in ontology engineering, Northamptonshire. CEUR

Gangemi A, Sagri MT, Tiscornia D (2005) A constructive framework for legal ontologies. In: Law

and the semantic web. Legal ontologies, methodologies, legal information retrieval, and

applications. 3369. Springer, Berlin/Heidelberg/New York

Gruninger M, Fox MS (1994) The role of competency questions in enterprise eEngineering. In:

IFIP WG5.7 workshop on benchmarking – theory and practice, Trondheim

Hammar K, Sandkuhl K (2010) The state of ontology pattern research: a systematic review of

ISWC, ESWC and ASWC 2005–2009. In: Blomqvist E, Chaudhri VK, Corcho O, Presutti V,

Sandkuhl K (eds) Proceedings of the 2nd International workshop on ontology patterns –

WOP2010. Workshop at the 9th international semantic web conference (ISWC2010) –

ISWC 2010 workshops, vol VIII. Shanghai, China, 8 Nov, 2010, vol 671. CEUR

Hay DC (2000) Data model patterns: conventions of thought. Dorset House Publishing, New York

Masolo C, Borgo S, Gangemi A, Guarino N, Oltramari A (2005) The wonderweb library of

foundational ontologies. Wonderweb deliverable D18. Laboratory for applied ontology (ISTC-

CNR)

Miles A, Bechhofer S (2009) SKOS simple knowledge organization system reference. W3C

Niles I, Pease A (2001) Towards a standard upper ontology. In: Welty C, Smith B (eds) 2nd

international conference on formal ontology in information systems (FOIS-2001), Ogunquit

Noy N, Rector A (2004) Defining N-ary relations on the semantic web: use with individuals. W3C

Presutti V, Daga E, Gangemi A, Blomqvist E (2009) eXtreme design with content ontology design

patterns. In: Blomqvist E, Sandkuhl K, Scharffe F, Svatek V (eds) Proceedings of the workshop

on ontology patterns (WOP 2009), collocated with the 8th international semantic web confer-

ence (ISWC-2009), Washington, DC, USA, 25 Oct 2009, vol 516. CEUR

Rector A, Stevens R (2008) Barriers to the use of OWL in knowledge driven applications. In:

Dolbear C, Ruttenberg A, Sattler U (eds) Proceedings of the fifth OWLED workshop on OWL:

experiences and directions collocated with the 7th international semantic web conference

(ISWC-2008) Karlsruhe, Germany, 26–27 Oct 2008, vol 432. CEUR

3 Pattern-Based Ontology Design 63

Scharffe F, Fensel D (2008) Correspondence patterns for ontology alignment. In: Gangemi A,

Euzenat J (eds) Proceedings of the 16th international conference, EKAW 2008, Acitrezza,

Italy. 5268. Springer, Berlin/Heidelberg/New York, pp 83–92

Shore J, Warden S (2007) The art of agile development. O’Reilly, Farnham

Svátek V, Sváb-Zamazal O, Presutti V (2009) Ontology naming pattern sauce for (human and

computer) gourmets. In: Workshop on ontology patterns at ISWC’09, Washington DC, 2009.

516. CEUR

Vrandečić D, Gangemi A (2006) Unit tests for ontologies. In: Proceedings of the 1st international

workshop on ontology content and evaluation in enterprise. Springer, Berlin/Heidelberg/New York

Vrandečić D, Sure Y (2007) How to design better ontology metrics. In: May W, Kifer M (eds) 4th

European semantic web conference (ESWC’07). Springer, Berlin/Heidelberg/New York

64 V. Presutti et al.

Chapter 4

The NeOn Ontology Models

Alessandro Adamou, Raúl Palma, Peter Haase, Elena Montiel-Ponsoda,

Guadalupe Aguado de Cea, Asunción Gómez-Pérez, Wim Peters,

and Aldo Gangemi

Abstract Interoperability on multiple levels, concerning both the ontologies them-

selves and their engineering activities, is a key requirement for ontology networks

to be efficient, with minimal redundancy and high reuse. This requirement has

a strict binding for software tools that can support some interoperability levels, yet

they can be hindered by a lack of shared models and vocabularies describing the

resources to be handled, as well as the ways of handling them. Here, three examples

of metalevel vocabularies are proposed, each covering at least one peculiar

A. Adamou (*)

Semantic Technologies Lab, Institute of Cognitive Sciences, and Technologies (National Research

Council – CNR), Via Nomentana 56, 00161 Rome, Italy

Department of Computer Science, Alma Mater Studiorum Universitá di Bologna, Mura Anteo

Zamboni 7, 40126 Bologna, Italy

e-mail: alessandro.adamou@istc.cnr.it; adamou@cs.unibo.it

R. Palma

Poznan Supercomputing and Networking Center, ul. Dabrowskiego 79a, 60-529 Poznan, Poland

e-mail: rpalma@man.poznan.pl

P. Haase

fluid Operations AG, Altrottstr. 31, 69190 Walldorf, Germany

e-mail: peter.haase@fluidops.com

E. Montiel-Ponsoda • G. Aguado de Cea • A. Gómez-Pérez

Ontology Engineering Group, Facultad de Informática, Universidad Politécnica de Madrid,

Campus de Montegancedo sn, 28660 Boadilla del Monte, Madrid, Spain

e-mail: emontiel@fi.upm.es; lupe@fi.upm.es; asun@fi.upm.es

W. Peters

University of Sheffield, Sheffield, UK

e-mail: w.peters@dcs.shef.ac.uk

A. Gangemi

Semantic Technologies Lab, Institute of Cognitive Sciences, and Technologies (National Research

Council – CNR), Via Nomentana 56, 00161 Rome, Italy

e-mail: aldo.gangemi@cnr.it

M.C. Suárez-Figueroa et al. (eds.), Ontology Engineering in a Networked World,
DOI 10.1007/978-3-642-24794-1_4, # Springer-Verlag Berlin Heidelberg 2012

65

mailto:alessandro.adamou@istc.cnr.it; adamou@cs.unibo.it
mailto:rpalma@man.poznan.pl
mailto:peter.haase@fluidops.com
mailto:emontiel@fi.upm.es
mailto:lupe@fi.upm.es
mailto:asun@fi.upm.es
mailto:w.peters@dcs.shef.ac.uk
mailto:aldo.gangemi@cnr.it

interoperability aspect: OMV for modeling the artifacts themselves, LIR for man-

aging a multilingual layer on top of them, and C-ODO Light for modeling collabo-

ration-supportive life cycle management tasks and processes. All of these models

lend themselves to handling by dedicated software tools and are all being employed

within NeOn products.

4.1 Introduction

Authoring ontologies and modeling domains of interest are only part of an ontology

life cycle management process. If these activities are carried out in a monolithic

fashion, from scratch and without reusing readily available knowledge models, this

may lead to costly “reinventions of the wheel” and contradicts the Semantic Web

philosophy of an open knowledge world. On the other hand, even when the

intention and sentiment to follow this philosophy are present, they might not be

encouraged by appropriate tool support. This, in turn, depends on the availability of

formal models of processes and artifacts in ontology design, i.e., their metalevel.
This model may sometimes be implicitly hardwired in the software itself, but if it is

not, then it may be useful to share and exploit it for the sake of interoperability, be it

conceptual, linguistic, functional, or social.

This chapter focuses on three contributions to the practice of ontology design by

metalevel handling. Each contribution, presented itself as an ontology network,

covers a specific design perspective, i.e., reuse (OMV), localization (LIR), and

collaborative engineering (C-ODO Light). By the end of the chapter, the reader will

have a practical insight as to how a model of the ontology metalevel can be

employed to build effective software tools to automate engineering tasks.

4.2 Ontology Metadata Vocabulary (OMV)

Ontologies have undergone an enormous development and have been applied in

many domains within the last years, especially in the context of the Semantic

Web. Currently, however, efficient knowledge sharing and reuse, a prerequisite

for the realization of the Semantic Web vision, is a difficult task. It is hard to find

and share existing ontologies because of the lack of standards for documenting

and annotating ontologies with metadata information. Without ontology-specific

metadata, developers are not able to reuse existing ontologies, which leads to

interoperability problems, as well as duplicate efforts. In order to provide a basis

for an effective access and exchange of ontologies across the web, it is necessary

to agree on a standard for ontology metadata. This standard then provides a

common set of terms and definitions describing ontologies and is called metadata
vocabulary.

66 A. Adamou et al.

Limitations. The need for a metadata vocabulary for describing ontologies has

been acknowledged in the past by previous efforts (e.g., Dublin Core 1998, Reference

Ontology 2000, Ontology Metaontology (OMO) 2003, and DogmaModeler

Ontology 2005). However, at the moment, most of the current ontologies exist in

pure form without any additional information, e.g., domain of interest, authorship

information, and statistic information (Ungrangsi and Simperl 2008). This is due in

part to the lack of standards or community-accepted vocabularies for documenting

and annotating ontologies with metadata information. Moreover, most of the

previous efforts carried out on this issue provide only a list of property-value
pairs for describing ontologies (e.g., Arpı́rez et al. 2000; Jarrar 2005), limiting

the processing capabilities and the related relevant information that can be

described. Similarly, ontology metadata are in many of the existing systems

and repositories (e.g., DAML Ontology Library1, SchemaWeb Directory2, and

SWOOGLE3), not based on agreed standards, which makes them difficult to

integrate or reuse. Finally, general-purpose standards, such as Dublin Core, are
not appropriate for capturing information about ontologies because of the

differences between arbitrary information sources and ontologies. For instance,

aspects related to the application scenario, scope, purpose, or evaluation results are

essential when describing ontologies. Additionally, besides structural and technical

information, ontologies have to be described in terms of descriptive metadata, such

as provenance information, ontology categorizations, underlying methodologies, or

knowledge representation paradigms that are specific for ontologies.

Thereupon, in this chapter we describe our contribution to the alleviation of this

situation: the ontology metadata standard OMV (Ontology Metadata Vocabulary),

which specifies reusability-enhancing ontology features for human- and machine-

processing purposes. It allows to clarify the relations between the available ontologies

so that they are easy to search, to characterize, and to maintain. Moreover, it provides

the means for making explicit the virtual and implicit network of ontologies.

Ontology Metadata Requirements. As a result of a systematic survey of the state

of the art in the area of ontology reuse, we have elaborated an inventory of

requirements for the metadata model. Besides analytical activities, we conducted

extensive literature research focused on theoretical methods (Pinto and Martins

2001; Gangemi et al. 1999; Lozano-Tello and Gómez-Pérez 2004) and also on case

studies on reusing existing ontologies (Uschold et al. 1998; Russ et al. 1999; Paslaru

Bontas et al. 2005). Our aim was to identify the real-world needs of the community

with respect to a descriptive metadata format for ontologies. Further on, the

requirement analysis phase was complemented by a comparative study of existing

(ontology-independent) metadata models and tools such as ontology repositories

and libraries that (implicitly) make use of some form of ontology metadata.

1 http://www.daml.org/ontologies/
2 http://www.schemaweb.info/
3 http://swoogle.umbc.edu/

4 The NeOn Ontology Models 67

http://www.daml.org/ontologies/
http://www.schemaweb.info/
http://swoogle.umbc.edu/

Several aspects to be considered in ontology metadata representation are defi-

nitely similar to those of other more general metadata standards such as Dublin

Core. Differences arise, however, if we consider the semantic nature of ontologies,

which are much more than plain web information sources. The main requirements

identified in this process are the following:

Accessibility. Metadata should be accessible and processable for both humans and

machines. Whereas the human-driven aspects are ensured by the usage of natural

language concept names, the machine-readability requirement can be

implemented by the usage of web-compatible representation languages (such

as XML or Semantic Web languages, see below). Furthermore, having metadata

in processable format will facilitate the implementation of tools that use or

manage ontology-related metadata (e.g., ontology changes).

Usability. A metadata model should (1) reflect the needs of the majority of ontology

users, as reported by existing case studies in ontology reuse, but at the same time (2)

allow proprietary extensions and refinements in particular application scenarios (e.

g., ontology change management). From a content perspective, usability can be

maximized by taking into account multiple metadata types, which correspond to

specific viewpoints on the ontological resources and are applied in various appli-

cation tasks. Despite the broad understanding of the metadata concept and the use

cases associated to each definition, several key aspects of metadata information

have already been established across computer science fields (NISO 2004):

• Structural metadata relate to statistical measures on the graph structure under-

lying an ontology. In particular, we mention the number of specific ontological

primitives (e.g., number of classes and individuals). The availability of struc-

tural metadata influences the usability of an ontology in concrete application

scenarios, because size and structure parameters constrain the type of tools

and methods that are applied to aiding the reuse process. For instance, as it has

been analyzed in the past (e.g., Gardiner et al. 2006), most ontology reasoners

have still scalability issues when dealing with large ontologies. Furthermore,

structural metadata provide core information to identify when an ontology

changes (e.g., a different number of classes or individuals).

• Descriptive metadata relate to the domain modeled in the ontology in the

form of keywords, topic classifications, textual descriptions of the ontology

contents, etc. This type of metadata plays a crucial role in the selection of

appropriate reuse candidates, a process that includes requirements with

respect to the domain of the ontologies to be reused. Moreover, descriptive

metadata are highly useful when identifying ontology changes from a high-

level point of view (e.g., the domain has been specialized and the description

has been updated).

• Administrative metadata provide information to help manage an ontology,

such as when and how it was created, rights management, file format,

and other technical information. Obviously, information like the date of modi-

fication of the ontology is also useful to identify when an ontology has

changed.

68 A. Adamou et al.

Interoperability. Similar to the ontology it describes, metadata information should

be available in a form that facilitates metadata exchange among applications.

While the syntactical aspects of interoperability are covered by the usage of

standard representation languages (see ‘Accessibility’), the semantic interopera-

bility among machines handling ontology metadata information can be ensured

by means of a formal and explicit representation of the meaning of the metadata

entities (by conceptualizing the metadata vocabulary itself as an ontology).

4.2.1 OMV Overview

This section presents the ontology metadata vocabulary (OMV); the first part

provides an overview of the core design principles applied to the development of

the OMV metadata model; then, we describe in detail the core of such a model;

next, we present implementation and practical aspects; finally, we provide an

introduction to the OMV extensions.

4.2.1.1 Core and Extensions

Following the usability constraints identified during the requirements analysis,

we decided to design the OMV schema modularly, distinguishing between the

OMV core and various OMV extensions. The former captures information that is

expected to be relevant to the majority of ontology reuse settings. However, in order

to allow ontology developers and users to specify task-or application-specific

ontology-related information, we allowed for the development of OMV extension

modules, which are separated from the core schema while remaining compatible to

it. That is, the terms are supposed to mean the same thing in the core and the exten-

sions. Essentially, extensions reuse the core knowledge and provide specialized

information for different ontology aspects.

4.2.1.2 Metadata Organization and Categorization

In the following, we present the organization and categorization of metadata

(entities) in two dimensions, which provide a structured overview of the OMV

ontology:

Property Appropriation. We organize metadata entities according to the impact on

the prospected reusability of the described ontological content as presented in

the following list:

• Required – mandatory metadata elements. Any missing entry in this category

leads to an incomplete description of the ontology.

• Optional – important metadata facts, but not strongly required.

4 The NeOn Ontology Models 69

• Extensional – specialized metadata entities, which are not considered to be

part of the core metadata schema.

Property Categorization. Orthogonal to the previous classification, we organize the
metadata elements according to the type and purpose of the information

contained as follows:

• General – elements providing general information about the ontology.

• Availability – information about the location of the ontology (e.g., its URI or

the URL where the ontology is published on the web).

• Applicability – information about the intended usage or scope of the

ontology.

• Format – information about the physical representation of the resource.

In terms of ontologies, these elements include information about the repre-

sentation language(s) in which the ontology is formalized.

• Provenance – information about the organizations contributing to the creation

of the ontology.

• Relationship – information about relationships to other resources. This cate-

gory includes versioning, as well as conceptual relationships such as

extensions, generalization/specialization, and imports.

• Statistics – various metrics on the underlying graph topology of an ontology

(e.g., number of classes).

• Other – information not covered in the categories listed above.

Note that the classification dimensions introduced above (appropriation and

categorization) are intended to be considered when implementing several metadata

support facilities. The first dimension is relevant for a metadata creation service,

since it ensures a minimal set of useful metadata entries for each of the described

resources. The second can be used in various settings, mainly to reduce the user-

perceived complexity of the metadata schema, whose elements can be structured

according to the corresponding categories.

4.2.1.3 OMV Core Metadata Entities

The main classes and properties of the OMV ontology are illustrated in Fig. 4.14.

Besides the main class Ontology, the metadata model contains elements describ-

ing various aspects related to the creation, management, and usage of an ontology.

We will briefly discuss these in the following text. In a typical ontology engineering

process, person(s) or organization(s) develop ontologies. We group these two

classes under the generic class Party by a subclass-of relation. A Party can have

several locations by referring to a Location individual and can create and contribute

4 Please notice that not all classes and properties are included. The ontology is available for

download in several ontology formats at http://omv.ontoware.org/

70 A. Adamou et al.

http://omv.ontoware.org/

to ontological resources, i.e., Ontology class. Review details and further informa-

tion can be captured in an extensional OMV module. Further on we provide

information about the engineering process the ontology originally resulted from in

terms of the classes OntologyEngineeringMethodology, OntologyEn-
gineeringTool, and the attributes version, status, creationDate, and
modificationDate. Again these can be elaborated as an extension of the core

metadata schema. The usage history of the ontology is modeled by classes such as

Fig. 4.1 OMV core overview

4 The NeOn Ontology Models 71

the OntologyTask and LicenceModel. The scheme also contains

a representation of the most significant intrinsic features of an ontology. Details

on ontology languages are representable with the help of the classes

OntologySyntax, OntologyLanguage, and KnowledgeRepresenta-
tionParadigm. Ontologies might be categorized along a multitude of

dimensions. One of the most popular classifications differentiates among applica-

tion, domain, core, task, and upper-level ontologies. A further classification relies

on their level of formality and types of Knowledge Representation (KR) primitives

supported, introducing catalogs, glossaries, thesauri, taxonomies, frames, etc., as

types of ontologies. The former categories can be modeled as individuals of the

class OntologyType, while generic formality levels are introduced with the help

of the class FormalityLevel. The domain the ontology describes is represented

by the class OntologyDomain that references a predefined topic hierarchy such

as the DMOZ hierarchy. Further content information can be provided as values of

the attributes description, keywords, and documentation. Moreover, the metadata

schema provides information about the imported ontologies (useImports) and
versioning relations (hasPriorVersion, isBackwardCompatibleWith,
and isIncompatibleWith) – analogously to the OWL ontology properties.

Finally, OMV gives an overview of the graph topology of an Ontology with the help

of several graph-related metrics represented as integer values of the attributes

numberOfClasses, numberOfProperties, numberOfAxioms, and

numberOfIndividuals.

4.2.1.4 Ontological Representation

Following the accessibility and interoperability requirements, as well as the nature

of the metadata, which are intended to describe ontologies, the conceptual model

designed in the previous steps was implemented in OWL25. With OWL being

established as the standard to represent ontologies, it was only logical to opt for

representing ontology metadata using the same language. As a consequence, the

same tooling for processing the ontologies can also be used for processing the

ontology metadata.

Additionally, a metadata element is modeled either by means of classes and

individuals or by means of valued properties. The former alternative, represented

using additional classes linked by object properties, was chosen to model those

metadata elements representing entities that can be referred to. The latter alter-

native, represented using datatype properties, was chosen to model metadata

elements with value/content that can be easily mapped to conventional data types

(numerical, literal, list values).

5 In the remainder of this chapter, when OWL appears without any version information, it refers to

OWL1. As opposed, when referring to OWL2, we explicitly note it.

72 A. Adamou et al.

Finally, OMV implements the appropriate properties of metadata entities by

different means: The required and optional metadata entities are implemented in

OMV core with the appropriate cardinality restrictions, while the extensional

metadata entities are implemented in the different OMV extensions.

4.2.1.5 OMV Extensions

The OMV core metadata is intended to evolve toward a commonly agreed schema

for Semantic Web ontologies. In contrast to this ambitious goal, we are aware that

for specific domains, tasks, or communities, extensions in any direction might be

required. These extensions should be compatible to the OMV core, but at the same

time, they should fulfill the requirements of a domain-, task-, or community-driven

setting.

The character of an OMV extension is a metadata ontology itself that imports the

OMV core ontology. There are no restricting modeling guidelines to be met.

However, developers are encouraged to follow the design principles described

above (see Sects. 4.2.1.2 and 4.2.1.3), as well as to follow a basic set of guidelines

for naming ontology terms (Palma et al. 2008).

Some of the existing OMV extensions were developed in collaboration with

different institutions. The available extensions6 are: the generic change ontology,

which models changes to an ontology (Palma 2009); the lexOMV extension

(Montiel-Ponsoda et al. 2007) that models the linguistic or multilingual data

contained in the ontology; the modules extension that represents the description

of ontology modules (d’Aquin et al. 2008); the peer extension that captures

information of peers sharing metadata about ontologies and related entities

(e.g., mappings and modules) (Wang et al. 2007); and the mapping extension that

describes mappings between heterogeneous ontologies.

4.2.2 Uses and Benefits

OMV plays an important role in the ontology reuse task by facilitating the discov-

ery and exchange of ontologies, fostering the widespread dissemination of ontol-

ogy-driven technologies and the development of full-fledged ontology repositories

and registries on the web. Furthermore, applications that work with the creation or

(re)use of ontologies can benefit from having a standard schema for ontology

metadata. By using the same vocabulary to describe ontology metadata, applications

can exchange this information easily.

6 OMV extensions are also available at http://omv.ontoware.org

4 The NeOn Ontology Models 73

http://omv.ontoware.org

Several applications are already using OMV to describe ontology metadata. In

this section, we present a selection of these applications that use OMV at various

stages of the ontology development life cycle. First, the NeOn Toolkit7 (c.f. Part III

of this book) includes a set of OMV-related plugins that either use OMV or provide

access to OMV-enabled registries (e.g., Oyster, Centrasite). Oyster8 is an open-

source ontology registry that uses the metadata for retrieval and selection tasks and

can also export OMV data for other applications. Similarly, the commercial registry

Centrasite9 provides an OMV-specialized web service to support the management

of ontology metadata. Also, BioPortal10 and Cupboard11 are two ontology

repositories that use OMV for the description of ontologies. The Semantic Web

gateway Watson12 can generate OMV annotations for the ontologies discovered.

Finally, applications such as the Protege MetaAnalysis plugin13 allow to calculate

various metadata for ontologies and facilitate the export of that metadata to the

OMV.

Oyster (Palma and Haase 2005) is a distributed registry that exploits Semantic

Web techniques in order to provide a solution for exchanging and reusing onto-

logies and related entities (e.g., ontology developers, ontology mappings, ontology

changes, etc.). To achieve this goal, Oyster uses OMV to describe ontologies and

related entities.

Moreover, Oyster uses ontologies extensively to provide its main metadata

management functions (registry metadata, formulating queries, routing queries,

and processing answers). The ontology metadata entries are aligned and formally

represented according to two ontologies: (1) the OMV that describes the properties

of the ontology and (2) a topic hierarchy to define the domain of the ontology

(c.f. Sect. 4.3).

NeOn Applications. The NeOn Toolkit includes different OMV-related plugins.

The Oyster-API plugin enables programmatic access to all Oyster registry

functionalities within any other NeOn Toolkit plugin. This plugin can either use

a local or remote Oyster instance. Similarly, the Oyster-GUI plugin provides

a graphical user interface to interact with Oyster servers and other OMV-enabled

servers (e.g., Centrasite) implementing the OMV-based web service. This plugin

allows submitting, updating, and removing instances ofOMV core classes, submitting

queries to search ontologies based on different criteria and importing from the Internet

ontologies matching the search criteria. Furthermore, the change-capturing plugin

implements methods and strategies for the capturing and synchronization of ontology

changes that are formally represented as instances of the change ontology (an OMV

7http://www.neon-toolkit.org/
8 http://oyster2.ontoware.org
9 http://www.infoq.com/zones/centrasite/
10 http://bioportal.bioontology.org
11 http://cupboard.open.ac.uk:8081/cupboard
12 http://watson.kmi.open.ac.uk/
13 http://protegewiki.stanford.edu/wiki/MetaAnalysis

74 A. Adamou et al.

http://www.neon-toolkit.org/
http://oyster2.ontoware.org
http://www.infoq.com/zones/centrasite/
http://bioportal.bioontology.org
http://cupboard.open.ac.uk:8081/cupboard
http://watson.kmi.open.ac.uk/
http://protegewiki.stanford.edu/wiki/MetaAnalysis

extension). This OMV extension is also used by several other plugins, such as Cicero

plugin (to enable discussions on changes), Evolva plugin (to represent the changes

proposed by the plugin based on background knowledge) and GATE Web service

plugin (to represent the changes generated from textual sources).

Additionally, the Cupboard system produced in NeOn for ontology publishing,

sharing, and reuse also relies on OMV to implement some of its features. Besides

letting users add their ontologies in a personal space – hosting, indexing, linking,

and exposing them through APIs and SPARQL – Cupboard is designed to be

a community tool. It helps ontology users and practitioners (including ontology

developers) in finding and reusing ontologies, through the use of rich ontology

metadata (thanks to Oyster and OMV) and advanced ontology review mechanisms.

Finally, the latest update produced in NeOn of the collaborative ontology design

ontology (C-ODO), called codolight (c.f. Sect. 4.4), has been aligned with OMV.

Compared to the original C-ODO ontology design metamodel, codolight is now

linked to requirements and application tasks, has been used for tool descriptions, is

aligned to external vocabularies, is lighter in complexity, and improves association

between the social and software layers of ontology design aspects. From a design

viewpoint, the metadata provided by OMV have a semantics that is potentially

compatible to that of other metamodels, and this alignment helps with metadata

interoperability.

Protege Plugin. The Protege MetaAnalysis plugin calculates various metadata

for ontologies and facilitates the export of those metadata to the OMV. The plugin

is a tab widget consisting of four panels: the numbers panel, the design panel, the

OWL panel, and the extras panel. The plugin computes metadata for a given

ontology and displays them in these panels. The ontology metadata can be exported

to an extension of the OMV. If the ontology already exists in OMV, the metadata

for that ontology are updated. Otherwise, a new instance of the ontology is created

in OMV and populated with the computed metadata.

BioPortal. While Oyster is a distributed ontology repository, BioPortal is

a centralized repository of biomedical ontologies, where authors submit their

ontologies. As part of the submission process, authors also fill in the form to

describe their metadata. In the future, it is planned to add the capability for the

authors simply to point to the location of an OWL file that has the OMV individuals

and to have BioPortal import the information from that file.

BioPortal uses the ontology metadata in ontology search and navigation. Users

can specify, e.g., whether they want their search term to appear only in concept

definitions or in metadata as well. BioPortal will also use OMV extensions. For

example, one of the functions of BioPortal is to be a repository of mappings

between concepts in biomedical ontologies. Each mapping comes with its own

set of metadata (e.g., the mapping author, the algorithms used, the application

context in which the mapping is valid, etc.) (Fridman Noy et al. 2008). It is planned

to represent the mapping metadata as an OMV extension.

Another feature of BioPortal is the use of peer reviews for ontology evaluation.

Ontology users can rate BioPortal ontologies along different dimensions, such as

coverage and degree of formality, based on their experience with the ontology in

4 The NeOn Ontology Models 75

their own applications (Fridman Noy et al. 2005). The evaluation extension will

also be an OMV extension.

The Watson Semantic Web gateway contains a repository of ontologies and

provides export of their metadata in the OMV format. When Watson users search

for ontologies, they can click on an ontology URI from the search results, and then

on the overview page for that, click on “Get OMV” for the metadata export.

OMEGA is an algorithm that addresses the problem of populating metadata

elements (Ungrangsi and Simperl 2008). It generates automatically metadata

about arbitrary ontologies on the web and is available as a web application and

a REST web service. It takes an ontology as input and automatically populates

certain metadata information such as domain, level of formality, and statistics,

using an ontology metadata schema, which is part of the OMV standard.

4.3 Linguistic Information Repository (LIR)

The symbiosis between ontologies and natural language has proven more and more

relevant in the light of the growing interest and use of Semantic Web technologies.

Ontologies that are well-documented in a natural language not only provide humans

with a better understanding of the world model they represent, but also a better

exploitation by the systems that may use them. This “grounding in natural lan-

guage” is believed to provide improvements in tasks such as ontology-based

information extraction, ontology learning, and population from text or ontology

verbalization (Buitelaar et al. 2009).

Nowadays, there is a growing demand for ontology-based applications that need

to interact with information in different natural languages, i.e., with multilingual

information. This is the case of numerous international organizations currently

introducing semantic technologies in their information systems, such as the Food

and Agriculture Organization or the World Health Organization, to mention just

a few. Such organizations have to manage information and resources available

in more than a dozen of different natural languages and have to customize the

information they produce to a similar number of linguistic communities.

For all these reasons, solutions have to be provided to model multiple natural

language descriptions in ontologies. Such an undertaking needs to consider several

requirements imposed by the characteristics of the domain of knowledge modeled

in the ontology and by the type of linguistic descriptions that are required by the

final application.

Requirements. Although the number of multilingual ontologies is still quite

small compared with the total amount of ontologies available in the web14, we

have conducted a survey of the state of the art of modeling options to represent

multilingual information in ontologies (Montiel-Ponsoda et al. 2010). This survey

14 The Semantic Web search engine Watson provides data about the language of ontology labels

that shows that around 80% of ontologies have literals only in English (http://watson.kmi.open.ac.

uk/blog/2007/11/20/1195580640000.html)

76 A. Adamou et al.

http://watson.kmi.open.ac.uk/blog/2007/11/20/1195580640000.html
http://watson.kmi.open.ac.uk/blog/2007/11/20/1195580640000.html

has revealed the existence of three modeling options, which are briefly explained in

the following:

• Including multilingual labels in the ontology model

• Combining the ontology model with a mapping model between different natural

languages or a common interlingua

• Associating the ontology model with an external linguistic model

The first modeling option relies on the RDF(S) and OWL properties rdfs:
label and rdfs:comment to associate word forms and descriptions to ontology

elements. The main disadvantage of this option is that it is not possible to define any

relation among the linguistic annotations, so that the linguistic information is

restricted and the model is difficult to scale. The second option assumes the

existence of several ontologies in the same domain with labels expressed in

different natural languages, which are mapped to each other in a pairwise fashion,

or through a common conceptualization or interlingua. This option has been

considered in projects such as EuroWordNet (Vossen 1998). The risk of this option
is that a lot of effort has to be put in developing one conceptualization per language

and also in establishing mappings or links among conceptualizations. Finally, the

third modeling option allows the association of an external model of linguistic

descriptions to the ontology. The main advantages of this modeling option have to

do with the capability of the linguistic model of evolving into a complex model of

linguistic descriptions that can be accommodated to account for the needs of the

final applications. Models that follow this approach include LingInfo (Buitelaar

et al. 2006), LexOnto (Cimiano et al. 2007) or LexInfo (Buitelaar et al. 2009).

Whereas some models have been explicitly designed to enrich ontologies with

linguistic information, such as the ones mentioned above, they mainly focus on

morphosyntactic descriptions of ontological entities and have not handled multilin-

gualism issues, as the ones that arise when aiming at reusing the same ontology in

different linguistic and cultural settings. This is particularly relevant in the case of

ontologies that represent categorizations of reality that are not completely valid for

all the cultures and languages involved. In this context, we have to consider the

possibility of providing relations among the linguistic descriptions in different

languages associated to the same ontology elements.

Finally, we refer to the need for encoding the linguistic descriptions captured in

the linguistic model according to standard models in order to guarantee interopera-

bility, reuse, and commitment to best practices. The potential integration of termi-

nological and lexical knowledge bases into our model requires interoperability with

existing and proposed standards. In this sense, we have analyzed some

standardization initiatives that have been developed in order to capture linguistic

information that can be reused for various purposes. As the most important

initiatives, we mention a number of standards from the International Organization

for Standardization (ISO) and the World Wide Web Consortium (W3C) that

capture terminological and lexical information. We are referring to Terminological

Markup Framework (TMF) (ISO 2003), the Lexical Markup Framework (LMF)

(ISO 2006), and Simple Knowledge Organization Systems (SKOS) (Miles et al.

4 The NeOn Ontology Models 77

2005). After the analysis of the state of the art and considering the needs of a model

that aims at providing ontologies with multilingual information, we identified the

following set of requirements:

Independence: the possibility for providing independent and complex models of

linguistic information that can be self-contained and from which information can

be inferred. The independence between the ontology and the linguistic model

guarantees the full development of both without one restricting the other.

In particular, in the case of the linguistic model, this allows the existence of a

complex model that contains as much linguistic information as required by the

final application and, additionally, in different languages.

Localization: the capability for providing a subset of linguistic descriptions to

account for the linguistic realization of an ontology in different natural

languages and representing term variants within one language and cultural

specificities among different languages.

Interoperability: the flexibility of interoperating with existing standards for the

representation of lexical and terminological information. By interoperating with

standard models, there also exists the possibility for the model of interchanging

knowledge with the standards and being extended with further linguistic descrip-

tion elements, if so required by the final application.

Accessibility: the fact of being implemented in a syntax or representation language

that can provide tool support available to manage it, as well as access to external

resources from which information can be obtained to semi-automatically support

the model.

4.3.1 LIR Overview

This section presents the Linguistic Information Repository or LIR, a model that has

been created with the twofold purpose of fulfilling the needs of portability and

association of multilingual information to domain ontologies, on the one hand, and

adapting ontologies to the needs of the languages involved in the localization

activity, on the other.

The LIR has been implemented as an ontology in OWL. Its main purpose is not

to provide a model for a lexicon of a language but to cover a subset of linguistic

description elements that account for the linguistic realization of a domain ontology

in different natural languages. A complete description of the current version of the

LIR can be found in (Montiel-Ponsoda et al. 2008; Montiel-Ponsoda 2011).

The lexical and terminological information captured in the LIR is organized

around the LexicalEntry class. Lexical entry is considered a union of word

form (Lexicalization) and meaning (Sense). This ground structure has been
inspired by the Lexical Markup Framework (LMF). The compliance with this

standard is important for two main reasons: (a) Links to lexicons modeled

according to this standard can be established, and (b) the LIR can be flexibly

78 A. Adamou et al.

extended with modular extensions of the LMF (or standard-compliant) modeling

specific linguistic aspects, such as deep morphology or syntax, not dealt by LIR in

its present stage. For more details on the interoperability of the LIR with further

standards see (Peters et al. 2010).

The rest of the classes that make up the LIR are Language, Definition,
Source, Note, and UsageContext (see Fig. 4.2). These can be linked to the

Lexicalization and Sense classes. Each lexicalization is associated to one

sense. The sense class represents the meaning of the ontology concept in a given

language. It has been modeled as an empty class because its purpose is to point to

other resources in which that sense is captured. The meaning of the concept in a

certain language (which may not completely overlap with the formal description of

the concept in the ontology) is “materialized” in the definition class, i.e., is

expressed in natural language. The UsageContext gives us information about

how a word behaves syntactically in a certain language by means of examples.

Source information can be attached to any class in the model (Lexicalization,
Definition, etc.), and, finally, the Note class has been meant to include any

information about language specificities, connotations, style, register, etc., and can

be related to any class. By determining the Language of a lexical entry, we can

ask the system to display only the linguistic information associated to the ontology

belonging to a given language.

Fig. 4.2 Diagram of LIR ancillary classes

4 The NeOn Ontology Models 79

4.3.2 Uses and Benefits

The main benefit of the LIR model is that it provides a very granular specification

of relationships between elements of an ontology. In particular, it identifies

well-defined relationships among the linguistic descriptions used to represent

ontological concepts, specifically:

• Well-defined relations within lexicalizations in one language

• Well-defined relations within lexicalizations across languages

Both cases are illustrated in the following. The example in Fig. 4.3 concerns the

establishment of relations among term variants belonging to the same language.

Specifically, this case exemplifies the use of various acronyms and full forms

attached to one and the same concept. Three lexical entries (01:LexicalEntry, 02:

LexicalEntry, and 03:LexicalEntry) are associated with the same concept (C21:

Class), which means that they are terms that identify one and the same concept.

Two lexical entries (01:LexicalEntry and 02:LexicalEntry) belong to English,

whereas the third lexical entry (03:LexicalEntry) belongs to French. The two

English lexical entries are considered synonyms, and both are translations of the

Fig. 4.3 LIR example usage within a single language

80 A. Adamou et al.

French lexical entry. Each lexical entry contains two lexicalizations. For example,

01:LexicalEntry includes 011:Lexicalization and 0111:Lexicalization, whose

labels are FAO and Food and Agriculture Organization, respectively. FAO is the

acronym for Food and Agriculture Organization, and, moreover, it is considered the

main entry. FAO of the UN and Food and Agriculture Organization of the United

Nations are deemed synonyms of FAO and Food and Agriculture Organization.

Both lexical entries (01:LexicalEntry and 02:LexicalEntry) are translations of OAA

and Organisation des Nations Unies pour l’Alimentation et l’Agriculture in the

French language. Thanks to LIR it is possible to retrieve synonyms within the same

language associated with the same concept and distinguish different term types

such as acronyms and full forms.

The second example highlights the possibility given by the LIR model to

represent scientific names and use them across languages (scientific names are in

Latin and are internationally accepted over scientific communities). Variants in the

same language (e.g., Buffaloes (syncerus)) can therefore be connected to the same

scientific term, such as the English and Japanese translations. We have illustrated in

Fig. 4.4 how the concept buffaloes (C133:Class) has four lexical entries associated

(01:LexicalEntry, 02:LexicalEntry, 03:LexicalEntry, and 04:LexicalEntry). Two of

them belong to the English language and contain synonymous lexicalizations (011:

Lexicalization and 021:Lexicalization).

Then, we have a lexicalization in Latin that represents the scientific name, and it

is accordingly related with the rest of lexical entries by means of the object property

hasScientificName. Finally, 04:LexicalEntry belongs to the Japanese language,
which is also the common denomination in Japanese of the Syncerus caffer scientific
name and, at the same time, the translation of the two lexicalizations in English.

To conclude, we refer to the LabelTranslator NeOn plugin, a translation-

supporting tool (Espinoza et al. 2008) that provides semi-automatically translations

Fig. 4.4 LIR example of cross-language usage

4 The NeOn Ontology Models 81

for ontology lexicalizations. Currently, the languages supported by the plugin are

Spanish, English, and German. Once translations are obtained for the labels of the

original ontology, they are stored in the LIR. However, if the system does not

support the language combination in which we are interested, we can still use this

system to take advantage of the LIR application programming interface or API

implemented in the NeOn Toolkit. In this sense, the needed linguistic information

can be introduced manually.

4.4 Collaborative Ontology Design Ontology (C-ODO) Light

Authoring and maintaining Semantic Web ontologies is generally not an individual,

monolithic activity but is intrinsically grounded on social and collaborative pro-

cesses, more so when ontologies are configured in a networked architecture.

Continuous interaction between knowledge engineers and domain experts is key

and so is that with resource providers whenever reuse or re-engineering enters the

life cycle.

However, without dedicated tool support, collaboration may occur across gen-

eral-purpose software tools and communication channels, in which case a manual

effort is required to coordinate and bring the outcome of these activities together.

Thus, on one hand, tool support to ontology engineering activities (e.g., reusing
existing ontologies and design patterns; re-engineering thesauri, lexica, and data-

base schemas; validating the outcome) is required. On the other hand, tools are

often unable to support these activities in a collaborative setting, e.g., aiding the

discussion and consensus-based assessment of an ontology element and the ratio-

nale behind it. Among other reasons, this can also be ascribed to an inadequate

requirement analysis describing the actual processes and data involved therein, and

the lack of a conceptual framework that formally expresses these notions so that

they can be unified and reasoned upon.

4.4.1 C-ODO Light Overview

C-ODO Light (aka codolight) is one such formal knowledge framework. It is a

pattern-based OWL-DL ontology network that provides a metamodel for describing

collaborative ontology projects (Gangemi et al. 2007). C-ODO Light was designed

so as to take into account requirements deriving from the experience with formal

models for describing ontology projects and tools, as well as existing controlled

vocabularies.

In particular, the network displays the following features:

1. The ability to formalize ontology design tool descriptions in terms of input/

output data (knowledge types), functionalities, interface objects, and interaction

patterns

82 A. Adamou et al.

2. Smooth integration between human-oriented and tool-oriented descriptions of

ontology design aspects

3. Alignment to existing vocabularies such as DOAP, OMV, etc.

4. Light axiomatization, e.g., no use of anonymous classes in restrictions

5. Modular development by pattern-based design (cf. Chap. 3), in compliance with

the ontologydesignpatterns.org practices

Additionally, the codolight core is extended to support specific ontology appli-

cation tasks, such as:

1. Browsing semantic data about ontology projects, tools, data, repositories,

solutions, discussion, evaluation, etc.

2. Searching and selecting design components based on design aspects, knowledge

types, individual needs, user profiles, etc.

3. Creating design configuration interfaces that aid or automate task 2

4. Help collecting ontology requirements, design functionalities, and ontology

application tasks for an ontology project

5. Providing a shared network of vocabularies to create/query/reason on

annotations and data related to ontology projects, including integration between

annotations of heterogeneous provenance, such as those coming from collabora-

tive discussions and change

It is here anticipated that part of these tasks are implemented within NeOn in the

form of the Kali-ma tool, to be described in Chap. 15.

4.4.2 Structure

The C-ODO Light network of ontologies is organized as a layered architecture,

where these layers are connected with different types of bindings. Besides the two

bottom layers that define the main structure, there are three additional layers that

bridge it with existing applications, vocabularies, and functionalities:

Pattern layer: It contains reusable content ontology design patterns (Content ODP)
(Presutti and Gangemi 2008) that include, e.g. sequence, partof, situation,
collectionentity, and so on. The patterns are reused in the design of the

ontologies constituting the core architecture of codolight.
Core codolight layer: It contains the nine modules of the codolight core network of

ontologies, centered around the codkernel module in the center, along with

modules coddata, codprojects, codworkflows, codarg, codsolutions, codtools,
codinterfaces, and codinteraction importing codkernel.

Plugin layer: It consists of the modules containing the descriptions of the NeOn

Toolkit plugins related to ontology design, formalized in OWL by reusing the

codolight vocabulary and some of the alignment modules.

Categorization layer: It consists of the modules containing the definition of the

design aspects according to which tools, knowledge types, and functionalities

are organized, as well as the closure of inferences derived by the application of

reasoners to the previous layers.

4 The NeOn Ontology Models 83

http://dx.doi.org/10.1007/978-3-642-24794-1_3
http://dx.doi.org/10.1007/978-3-642-24794-1_15

Alignment layer: It consists of the modules containing mapping axioms between

codolight and related vocabularies, currently: OMV, DOAP, FOAF, NeOn

Access Rights model, NeOn OWL metamodel, NeOn OWL2 metamodel, and

the Software Ontology Model.

Each layer is in its turn an ontology network with its own architecture. In

particular, the core codolight layer network encodes the main aspects of ontology

design by following an architectural ontology design pattern called corolla. The
floral metaphor for the corolla pattern, shown in Fig. 4.5, suggests an overall shape

for the network composed of a kernel module, which includes the definition of core

concepts of the domain of interest, and a set of petal modules, each defining a

specific aspect of the same domain.

The corolla pattern minimizes dependencies and enforces loose coupling

between the modules of an ontology network: In the codolight core example, all

modules, but codinteraction (described below), directly depend on the kernel

module exclusively. Also, the modules are built so that their structure suggests an

organization of the network, by which different aspects of the domain of interest are

represented by each petal module. The criterion by which an ontology network can

be broken apart into a corolla can be: What are the main aspects of the domain
described by the ontology network?

The kernel module defines core concepts, shared by all aspects. As shown in

Fig. 4.6, axiomatization is minimal at the kernel level, i.e., although the basic

classes of collaborative ontology design are defined, only a minimum set of new

properties, or restrictions holding between them, is asserted. It is up to petal

modules to refine the axiomatization of at least one of the core concepts each,

thus adding details for at least one aspect.

All classes defined in the kernel module are specializations of classes from the

pattern layer (such as DesignFunctionality subsuming Task from the

taskrole pattern15 or KnowledgeResource, FormalExpression,

Fig. 4.5 Core C-ODO Light corolla architecture

15 http://www.ontologydesignpatterns.org/cp/owl/taskrole.owl

84 A. Adamou et al.

http://www.ontologydesignpatterns.org/cp/owl/taskrole.owl

IconicObject all subsuming InformationObject from the intensio-
nextension pattern16), thus inheriting the structure defined by equality over

shared classes.

The following petal modules are defined for codolight:

Data (coddata): contains the main notions that classify the data managed when

designing an ontology: ontologies, ontology elements, Knowledge Organization

Systems (KOS), KOS elements, rules, modules, encoding syntaxes, and more. For

each class of knowledge resources, a knowledge-type instance is provided.

Projects (codprojects): contains the minimal vocabulary for representing ontology

design projects and their executions. An ontology project is here taken as a social

entity, whose computational counterpart (e.g., a project created in the NeOn

Toolkit) is a software entity that collects resources and descriptions related to an

ontology project.

Workflows (codworkflows): contains classes and properties to represent workflows

from within ontology projects: collaborative workflows, accountable agents,

need for an agent or a design functionality, etc.

Fig. 4.6 C-ODO Light kernel class diagram

16 http://www.ontologydesignpatterns.org/cp/owl/intensionextension.owl

4 The NeOn Ontology Models 85

http://www.ontologydesignpatterns.org/cp/owl/intensionextension.owl

Argumentation (codarg): contains the basic classes and properties to represent

argumentation concepts: arguments, threads, ideas, positions, rationales, etc.

Solutions (codsolutions): contains classes and properties to represent ontology

design solutions: competency questions, ontology design patterns, ontology

requirements, unit tests, etc.

Tools (codtools): contains classes and properties to represent ontology design tools:
tools, pieces of code, code entities, computational tasks, input and output data

relations, etc.

Interfaces (codinterfaces): contains classes and properties that represent some

typical user interface entities, such as interface objects, panes, and windows.

Interaction (codinteraction): contains classes and properties that represent some

typical entities related to human-computer and human-ontology interaction, e.g.,

user types, computational tasks, and workflows. These can in turn be combined

so as to construct interaction pattern models.

One advantage of employing this aspect-oriented architecture is selective exten-
sibility. A software application intended to exploit only a given subsystem of

ontology life cycle management, such as reasoning on the usage of interaction

patterns and user interface widgets, can import only the codinterfaces and

codinteraction modules. Possibly, they can also extend these modules with

ontologies that model further additional interaction patterns or GUI elements

originally not intended for the application domain at hand.

4.4.3 Alignments

This section provides an insight on some alignments that hold between codolight
and other vocabularies that are widely used on the Semantic Web or are introduced

as part of the methodology described by this book (c.f. Chap. 2), such as OMV that

is described in this very chapter.

OWL17. The alignments between codolight and the OWL language constructs

consider three different vocabularies:

• The original RDF, RDFS, and OWL vocabularies from the W3C

• The OWL1 metamodel designed for NeOn

• The OWL2 metamodel also designed for NeOn

The reason why so many different vocabularies represent entities from a same

language is mainly due to the pragmatic evolution of semantic technologies.

The original vocabularies by W3C are not extremely detailed in distinguishing

the constructs available in OWL (and RDF, RDFS); e.g., it is difficult to describe

existential restrictions explicitly, because these are just instances of owl:
Restriction. On the other hand, W3C vocabularies are implemented in all

APIs and tools for ontology engineering, so in order to maximize interoperability,

17 http://www.ontologydesignpatterns.org/cpont/codo/owl22codo.owl

86 A. Adamou et al.

http://www.ontologydesignpatterns.org/cpont/codo/owl22codo.owl

an ontology design vocabulary like codolight must be aligned to the main data

vocabularies. The OWL metamodels developed in NeOn try to overcome the

referential coarseness of OWL constructs, e.g., by providing the class

owlodm1:ExistentialRestriction. On the other hand, these metamodels

are not intended to be a replacement for the W3C OWL data model.

Ontology Metadata Vocabulary (OMV)18. The OMV described in this chapter is

a vocabulary for annotating ontologies with time, authors, tools, languages, etc.,

and it is used to provide support for ontology registries. However, from a design

viewpoint, the semantics of OMVmetadata are potentially compatible with those of

other metamodels, so this alignment aids metadata interoperability. Only subsump-

tion alignments occur, i.e., OMV classes and properties are subclasses or

subproperties of those from the codolight pattern and core layers. Aligned OMV

classes of interest include omv:OntologySyntax, omv:FormalityLevel,
omv:OntologyEngineeringTool, and omv:OntologyTask. Aligned

OMV properties of interest include omv:hasContributor, omv:
hasCreator, omv:useImports, and omv:isIncompatibleWith.

Description of a Project (DOAP)19. DOAP is a vocabulary for creating profiles

of software projects20 with time, authors, FOAF (Friend of a Friend) vocabulary

profiles, etc. The doap:Project notion addressed here is computational and

not social; therefore, it has been aligned as equivalent to codkernel:
Project. Subsumption mappings occur between doap:Repository and

collectionentity:Collection, and between doap:Version and

coddata:Annotation. Direct mappings occur between FOAF and the

codolight pattern layer, either by equivalence (foaf:Agent and agentrole:
Agent) or by subsumption (foaf:topic and topic:hasTopic; foaf:
Document and intensionextension:InformationObject; foaf:
member and collectionentity:hasMember).

NeOn Access Rights Model21. This ontology representing access control policies
and related entities uses three different vocabularies, i.e., accessRights22,
ar-entities23, and ar-agents24. Entities from these vocabularies, such as Action,
Agent, and Content, map to codolight via subsumption alignments. The

Right class, being a conceptualization of its holder in the access policies context,

subsumes the Description class from the description design pattern.

Software Ontology Model (SOM)25. The SOM is designed to represent entities in

the object-oriented programming model (Tappolet et al. 2010). Given the class

18 http://www.ontologydesignpatterns.org/cpont/codo/omv2codo.owl
19 http://www.ontologydesignpatterns.org/cpont/codo/doap2codo.owl
20 http://trac.usefulinc.com/doap
21 http://www.ontologydesignpatterns.org/cpont/codo/accessrights2codo.owl
22 http://www.uni-koblenz.de/~bercovici/owl/2008/7/accessRight.owl
23 http://www.uni-koblenz.de/~bercovici/owl/2008/7/entity.owl
24 http://www.uni-koblenz.de/~schwagereit/owl/agents.owl
25 http://www.ontologydesignpatterns.org/cpont/codo/som2codo.owl

4 The NeOn Ontology Models 87

http://www.ontologydesignpatterns.org/cpont/codo/omv2codo.owl
http://www.ontologydesignpatterns.org/cpont/codo/doap2codo.owl
http://trac.usefulinc.com/doap
http://www.ontologydesignpatterns.org/cpont/codo/accessrights2codo.owl
http://www.uni-koblenz.de/~bercovici/owl/2008/7/accessRight.owl
http://www.uni-koblenz.de/~bercovici/owl/2008/7/entity.owl
http://www.uni-koblenz.de/~schwagereit/owl/agents.owl
http://www.ontologydesignpatterns.org/cpont/codo/som2codo.owl

subtree for the som:Entity class, which includes functions, methods,

classes, and packages, the parent class aligns to codtools:CodeEntity by

equivalence.

4.5 Conclusions

A methodology for managing ontology networks is best designed if formal models

of the resources and processes involved come along with it. To that end, the NeOn

Methodology proposes three stand-alone models, i.e., the OMV, LIR, and C-ODO

Light ontologies, that can nonetheless be interconnected in order to represent and

reason on the structural, linguistic, and engineering aspects of ontology life cycle.

Ontology alignments are provided across these models to ensure logic interopera-

bility, without hampering their stand-alone usage possibilities. These ontologies

also serve as a back end for software applications provided as plugins for the NeOn

Toolkit (see Chaps. 13, 14, 15), which treat each ontology separately to serve

dedicated phases and processes in ontology management.

References

Arpı́rez J, Gómez-Pérez A, Lozano-Tello A, Pinto HS (2000) Reference ontology and (ONTO)

2 agent: the ontology yellow pages. Knowl Inf Syst 2:387–412

Buitelaar P, Declerck T, Frank A, Racioppa S, Kiesel M, Sintek M, Engel R, Romanelli M,

Sonntag D, Loos B, Micelli V, Porzel R, Cimiano P (2006) Linginfo: design and applications of

a model for the integration of linguistic information in ontologies. In: Proceedings of the

OntoLex 2006 workshop: interfacing ontologies and lexical resources for semantic web

technologies, Genoa

Buitelaar P, Cimiano P, Haase P, Sintek M (2009) Towards linguistically grounded ontologies.

In: Proceedings of the 6th annual European semantic web conference (ESWC2009), Heraklion,

pp 111–125

Cimiano P, Haase P, Herold M, Mantel M, Buitelaar P (2007) LexOnto: a model for ontology

lexicons for ontology-based nlp. In: Proceedings of the OntoLex07 workshop at the ISWC07,

Busan

d’Aquin M, Haase P, Rudolph S, Euzenat J, Zimmermann A, Dzbor M, Iglesias M, Jacques Y,

Caracciolo C, Buil-Aranda C, Gómez-Pérez J (2008) NeOn formalisms for modularization:

syntax, semantics, algebra. Technical report D1.1.3, Open University

Espinoza M, Gómez-Pérez A, Mena E (2008) Enriching an ontology with multilingual informa-

tion. In: Proceedings of the 5th annual of the European semantic web conference (ESWC

2008), Tenerife, pp 333–347

Fridman Noy N, Guha RV, Musen MA (2005) User ratings of ontologies: who will rate the raters?

In: Proceedings of the AAAI 2005 spring symposium on knowledge collection from volunteer

contributors, Stanford, CA, USA

Fridman Noy N, Griffith N, Musen MA (2008) Collecting community-based mappings in an

ontology repository. In: Proceedings of 7th international semantic web conference´08.

Springer, Karlsruhe

88 A. Adamou et al.

http://dx.doi.org/10.1007/978-3-642-24794-1_13
http://dx.doi.org/10.1007/978-3-642-24794-14
http://dx.doi.org/10.1007/978-3-642-24794-1_15

Gangemi A, Pisanelli DM, Steve G (1999) An overview of the ONIONS project: applying

ontologies to the integration of medical terminologies. Data Knowl Eng 31(2):183–220

Gangemi A, Lehmann J, Presutti V, Nissim M, Catenacci C (2007) C-ODO: an OWL meta-model

for collaborative ontology design. In: Fridman Noy N, Alani H, Stumme G, Mika P, Sure Y,

Vrandecic D (eds) CKC, CEUR-WS.org

Gardiner T, Horrocks I, Tsarkov D (2006) Automated Benchmarking of Description Logic

Reasoners. In Parsia B, Sattler U, Toman D (eds) Proc. of the Int. Workshop on Description

Logics (DL’06), Windermere Lake District, UK. Volume 189 of CEUR., Lake District, UK

167–174

ISO 16642 (2003) Terminological markup framework in computer applications in terminology.

Technical report, International Organization for Standardization (ISO). URL http://www.loria.

fr/projets/TMF/

ISO 24613 (2006) Lexical markup framework in language resource management. Technical

report, International Organization for Standardization (ISO). URL http://lirics.loria.fr/

doc_pub/LMF%20rev9%2015March2006.pdf

Jarrar M (2005) Towards methodological principles for ontology engineering. PhD thesis, Vrije

Universiteit Brussel, Brussels

Lozano-Tello A, Gómez-Pérez A (2004) ONTOMETRIC: a method to choose the appropriate

ontology. J Database Manag 15(2)

Miles A, Matthews B, Beckett D, Brickley D, Wilson M, Rogers N (2005) SKOS: a language to

describe simple knowledge structures for the web. In: Proceedings of the XTech conference

2005, Amsterdam

Montiel-Ponsoda E (2011) Multilingualism in ontologies: multilingual lexico-syntactic patterns

for ontology modeling and linguistic information repository for ontology localization. PhD

thesis, Universidad Politécnica de Madrid, Madrid

Montiel-Ponsoda E, Aguado de Cea G, Suárez-Figueroa MC, Palma R, Peters W, Gómez-Pérez A

(2007) LexOMV: an OMV extension to capture multilinguality. In: 6th international semantic

web conference. In Workshop Ontolex07, Busan

Montiel-Ponsoda E, Peters W, Aguado de Cea G, Espinoza M, Gómez-Pérez A, Sini M (2008)

Multilingual and localization support for ontologies. Technical report, D2.4.2 NeOn project

deliverable

Montiel-Ponsoda E, Aguado de Cea G, Gómez-Pérez A, Peters W (2010) Enriching ontologies

with multilingual information. J Nat Lang Eng 17(3):283–309

NISO (2004) Understanding metadata. NISO Press, National Information Standards Organization.

Available at http://www.niso.org/publications/press/UnderstandingMetadata.pdf

Palma R (2009) Ontology metadata management in distributed environments. PhD thesis,

Universidad Politécnica de Madrid

Palma R, Haase P (2005) Oyster – sharing and re-using ontologies in a peer-to-peer community.

In: International semantic web conference, Galway, pp 1059–1062

Palma R, Hartmann J, Haase P (2008) OMV – ontology metadata vocabulary for the semantic web.

Technical report, Universidad Politécnica de Madrid, University of Karlsruhe. Version 2.4.

Available at http://omv.ontoware.org/

Paslaru Bontas E, Mochol M, Tolksdorf R (2005) Case studies on ontology reuse. In: Proceedings

of the IKNOW05 international conference on knowledge management, Graz

Peters W, Gangemi A, Villazón-Terrazas B (2010) Modelling and re-engineering linguistic/

terminological resources. Technical report, D2.4.4 NeOn project deliverable

Pinto HS, Martins JP (2001) A methodology for ontology integration. In: Proceedings of the

international conference on knowledge capture K-CAP01, Victoria

Presutti V, Gangemi A (2008) Content ontology design patterns as practical building blocks for

web ontologies. In: ER ‘08: proceedings of the 27th international conference on conceptual

modeling. Springer, Berlin/Heidelberg, pp 128–141

4 The NeOn Ontology Models 89

http://www.loria.fr/projets/TMF/
http://www.loria.fr/projets/TMF/
http://lirics.loria.fr/doc_pub/LMF%20rev9%2015March2006.pdf
http://lirics.loria.fr/doc_pub/LMF%20rev9%2015March2006.pdf
http://www.niso.org/publications/press/UnderstandingMetadata.pdf
http://omv.ontoware.org/

Russ T, Valente A, Macgregor R (1999) Practical experiences in trading off ontology usability and

reusability. In: Proceedings of the 12th workshop on knowledge acquisition, modeling and

management (EKAW’99), Banff, pp 16–21

Tappolet J, Kiefer C, Bernstein A (2010) Semantic web enabled software analysis. J Web Semant

8(2–3):225–240

Ungrangsi R, Simperl E (2008) OMEGA: an automatic ontology metadata generation algorithm.

In: 16th international conference on knowledge engineering, knowledge management and

knowledge patterns. Springer, Berlin/Heidelberg/New York

Uschold M, Healy M, Williamson K, Clark P, Woods S (1998) Ontology reuse and application. In:

Proceedings of the international conference on formal ontology and information systems

FOIS98, Trento

Vossen P (1998) Introduction to EuroWordNet. In Ide N, Greenstein D, Vossen P (eds) Special

issue on EuroWordNet, vol 32(2–3), pp 73–89

Wang Y, Haase P, Palma R (2007) D1.4.1: Prototypes for managing networked ontologies.

Technical report D1.4.1, University of Karlsruhe; NeOn deliverable. URL http://www.

neon-project.org/

90 A. Adamou et al.

http://www.neon-project.org/
http://www.neon-project.org/

Part II

Ontology Engineering Activities

Chapter 5

Ontology Requirements Specification

Mari Carmen Suárez-Figueroa and Asunción Gómez-Pérez

Abstract The goal of the ontology requirements specification activity is to state

why the ontology is being built, what its intended uses are, who the end users are,

and which requirements the ontology should fulfill. This chapter presents detailed

methodological guidelines for specifying ontology requirements efficiently. These

guidelines will help ontology engineers to capture ontology requirements and

produce the ontology requirements specification document (ORSD). The ORSD

will play a key role during the ontology development process because it facilitates,

among other activities, (1) the search and reuse of existing knowledge resources

with the aim of reengineering them into ontologies, (2) the search and reuse of

ontological resources (ontologies, ontology modules, ontology statements as well

as ontology design patterns), and (3) the verification of the ontology along the

ontology development.

5.1 Introduction

One of the key processes in software development is software specification

(Sommerville 2007), whose aim is to understand and define what functionalities

are required from the software product. It has been proved that a detailed software

requirements document provides several benefits (IEEE 1993), such as (a) the

establishment of the basis for agreement between customers and suppliers on

what the software product is supposed to do, (b) the reduction of the development

effort, (c) the provision of a basis for estimating costs and schedules, and (d) the

offer of a baseline for validation and verification.

M.C. Suárez-Figueroa (*) • A. Gómez-Pérez

Ontology Engineering Group, Facultad de Informática, Universidad Politécnica de Madrid,

Campus de Montegancedo sn., 28660 Boadilla del Monte, Madrid, Spain

e-mail: mcsuarez@fi.upm.es; asun@fi.upm.es

M.C. Suárez-Figueroa et al. (eds.), Ontology Engineering in a Networked World,
DOI 10.1007/978-3-642-24794-1_5, # Springer-Verlag Berlin Heidelberg 2012

93

mailto:mcsuarez@fi.upm.es
mailto:asun@fi.upm.es

When a software application based on ontologies is being developed, ontology

requirements should be identified in addition to the application requirements. Our

experience in building ontology-based applications, in domains as diverse as

satellite data processing1, finding funding programs2, fishery stocks3, user context4,

and e-employment5, has shown that more critical than capturing software

requirements was the efficient and precise identification of the knowledge that the

ontology should contain. Up to now, application developers already have precise

methodologies (Sommerville 2007; IEEE 1993; Wiegers 2003) that help them to

define application requirements. However, the guidelines included in current

methodologies for building ontologies are not enough for defining ontology

requirements.

For this reason, this chapter presents detailed methodological guidelines for

specifying ontology requirements as part of the NeOn Methodology (see Chap. 2).

Such methodological guidelines are based on the use of the so-called competency

questions (CQs) (Gr€uninger and Fox 1995) and are inspired by how methodologies

for building ontologies propose to perform the ontology requirements specification

activity (Staab et al. 2001; Uschold 1996; Noy and McGuinness 2001). These

guidelines are also inspired by available practices and previous experiences in

different national and European funded projects. These methodological guidelines

help to capture knowledge from users and to produce the ontology requirements

specification document that will be used by ontology developers to develop

an ontology that will fulfill the requirements identified.

5.2 Methodological Guidelines for Ontology Requirements

Specification

The ontology requirements specification activity has a main goal to state why the

ontology is being built, which its intended uses are, who the end users are, and what

specific requirements the ontology should fulfill are. For specifying the specific

ontology requirements, the competency questions technique proposed in

(Gr€uninger and Fox 1995) is used. Before identifying the set of competency

questions, the purpose and scope of the ontology should be identified, as well as

its level of formality, and its intended uses and end users.

1 http://www.ontogrid.net
2 http://esperonto.net/fundfinder
3 http://www.neon-project.org/nw/Ontology-driven_fish_stock_depletion_assessment_system
4 http://www.isoco.com/ontologies/mio/index.html
5 http://www.seemp.org

94 M.C. Suárez-Figueroa and A. Gómez-Pérez

http://dx.doi.org/10.1007/978-3-642-24794-1_2
http://www.ontogrid.net
http://esperonto.net/fundfinder
http://www.neon-project.org/nw/Ontology-driven_fish_stock_depletion_assessment_system
http://www.isoco.com/ontologies/mio/index.html
http://www.seemp.org

The NeOn Methodology framework for building ontology networks proposes

the filling card, for the ontology requirements specification activity, as it is shown

in Fig. 5.1. The card includes the definition, goal, inputs, and outputs, who carries

out the activity and when the activity should be performed.

The tasks for carrying out the ontology requirements specification activity can be

seen in Fig. 5.2. The result of this activity is the ontology requirements specification

document that should be written following the ORSD template shown in Table 5.1.

The tasks for carrying out the ontology requirements specification activity are

explained in detail next.

Task 1. Identifying the purpose, scope, and implementation language. The

objective is to determine the main goal of the ontology, its coverage and foreseeable

Fig. 5.1 Ontology requirements specification filling card

5 Ontology Requirements Specification 95

Task 1. Identifying the purpose,
scope and implementation

language

Task 2. Identifying the intended
end-users

Task 3. Identifying the intended
uses

Task 5. Grouping functional
requirements

Are they valid?

Yes

Task 8. Extracting terminology and
its frequency

Users, Domain Experts and ODT

Task 4. Identifying requirements

Users, Domain Experts and ODT

Task 6. Validating the
set of requirements

Task 7. Prioritizing requirements

Users, Domain Experts and ODT

Ontology Development Team

Users, Domain Experts and
Ontology Development Team (ODT)

Users, Domain Experts and ODT

Users, Domain Experts and ODT

ORSDOUTPUT

Set of
ontological

needs

IN
P

U
T

Users, Domain Experts and ODT

No

Fig. 5.2 Tasks for ontology requirements specification

96 M.C. Suárez-Figueroa and A. Gómez-Pérez

granularity, and its implementation language (e.g., OWL, RDFS6, WSML7). The

ontology development team holds a set of interviews with possible users and

domain experts in order to carry out this task, taking as input a set of ontological

needs, that is, the necessity of having the knowledge represented in the form of an

ontology. The users and domain experts are crucial to identify the purpose and

scope of the ontology; on the other hand, the ontology developers should decide the

formal language to be used for implementing the ontology.

The task output is included in slots 1–3 of the template shown in Table 5.1.

Task 2. Identifying the intended end users. The goal of this task is to establish

who the intended main end users of the ontology are. The ontology development

team holds a set of interviews with the users and domain experts to carry out this

task, taking as input a set of ontological needs.

Table 5.1 Template for the OSRD

Ontology Requirements Specification Document Template

1 Purpose

The general goal of the ontology. In other words, the main function or role that the

ontology should have

2 Scope

The general coverage and the degree of detail that the ontology should have

3 Implementation language

The formal language that the ontology should have

4 Intended end users

The intended end users expected for the ontology

5 Intended uses

The intended uses expected for the ontology

6 Ontology requirements

(a) Non-Functional requirements

The general requirements or aspects that the ontology should fulfill, including

optionally priorities for each requirement

(b) Functional requirements: Groups of competency questions

The content specific requirements that the ontology should fulfill, in the form of

groups of competency questions and their answers, including optionally priorities

for each group and for each competency question

7 Pre-glossary of terms

(a) Terms from competency questions

The list of terms included in the competency questions and their frequencies

(b) Terms from answers

The list of terms included in the answers and their frequencies

(c) Objects

The list of objects included in the competency questions and in their answers

6 http://www.w3.org/TR/rdf-schema/
7 http://www.wsmo.org/wsml/wsml-syntax

5 Ontology Requirements Specification 97

http://www.w3.org/TR/rdf-schema/
http://www.wsmo.org/wsml/wsml-syntax

The task output is a list containing the intended end users of the ontology to be

built; the list is included in slot 4 of the template shown in Table 5.1.

Task 3. Identifying the intended uses. The development of an ontology is mainly

motivated by scenarios related to the application that will use the ontology. The

goal of this task is to obtain the intended uses and use scenarios of the ontology. The

ontology development team holds a set of interviews with the users and domain

experts in order to carry out this task, taking as input a set of ontological needs;

the purpose here is to obtain the uses of the ontology within the application, and to

have a general idea of the application requirements, in terms of knowledge to be

represented.

The task output is a list of intended uses in the form of scenarios, which is

included in slot 5 of the template shown in Table 5.1. Such scenarios describe a set

of general ontology requirements that the ontology should satisfy after being

formally implemented. The scenarios should be described in natural language;

they can be expressed in UML as use cases.

Task 4. Identifying requirements. The goal of this task is to acquire the set of

requirements that the ontology should satisfy. Ontology requirements, similar to

software requirements8, can be divided into the following two types:

• Non-functional ontology requirements refer to the characteristics, qualities, or

general aspects not related to the content that the ontology should represent.

Examples of non-functional requirements are (a) whether the terminology to be

used in the ontology must be taken from standards, (b) whether the ontology

must be multilingual, or (c) whether the ontology should be written following

a specific naming convention.

• Functional ontology requirements, which can be seen as content specific

requirements, refer to the particular knowledge to be represented by the ontology

and the particular terminology to be included in the ontology. In the SEEMP

case study (Villazón-Terrazas et al. 2011), for example, the knowledge and the

terminology are about curriculum vitae with candidate skills, education level,

expertise, previous work experience, or about job offers with information on job

location, salary, etc.

The ontology development team should interview the users and domain experts,

taking as input a set of ontological needs, and they should obtain as result the initial

set of ontology requirements (non-functional and functional) of the ontology to be

built. To identify functional requirements, they use as main technique the writing of

the requirements in natural language in the form of the so-called CQs. They can use

8 In software engineering, functional requirements refer to the required behavior of the system, that

is, the functionalities that the software system should have, while non-functional requirements

refer to implicit expectations about how well the software system should work. That is, these

requirements can be seen as aspects about the system or as “non-behavioral” requirements

(Sommerville 2007).

98 M.C. Suárez-Figueroa and A. Gómez-Pérez

mind map tools (Buzan 1974) and spreadsheet processors (such as MS Excel) for

gathering the requirements. If people are geographically distributed, they can

employ Wiki tools, such as Cicero9.

Some strategies for identifying CQs are:

• Top-down: The team starts with complex questions that are decomposed in

simpler ones.

• Bottom-up: The team starts with simple questions that are composed to create

complex ones.

• Middle out: The team starts just writing down important questions that are

composed and decomposed later on to form abstract and simple questions,

respectively.

The output of this task is (1) a list of non-functional ontology requirements

written in natural language, which is included in slot 6a of the template shown in

Table 5.1, and (2) a list of functional ontology requirements in the form of CQs and

their associated answers, which is the input of Task 5. This list of functional

requirements will be grouped in Task 5 and then included in slot 6b of the template

shown in Table 5.1.

Task 5. Grouping functional requirements. The goal of this task is to group into

several categories the list of functional ontology requirements in the form of CQs

and their associated answers obtained in Task 4. The users, the domain experts, and

the ontology development team should classify the list of CQs written in natural

language with a hybrid approach that not only combines preestablished categories

such as time and date, units of measure, currencies, location, languages, etc., but

also creates categories for those terms that appear with the highest frequencies in

the list of CQs.

Techniques such as card sorting can be used when the grouping is done manu-

ally. In addition, mind map tools can help to display graphically and in groups the

CQs; or Cicero if the grouping is done collaboratively.

The task output is the set of groups of functional requirements in the form of

CQs and their associated answers, which is included in slot 6b of ORSD template

shown in Table 5.1. The set of groups obtained in this task is used by the

ontology development team to follow a modular approach during the ontology

building.

Usually this task is carried out in parallel with Task 4.

To group CQs is useful because it permits to identify the essential parts to be

covered by the ontology. The different groups of CQs will be used by the

ontology development team for developing the ontology with a modulariza-

tion approach. In addition, such groups can be used to organize the development

in a collaborative fashion in which different teams are in charge of a set of CQs

groups.

9 http://cicero.uni-koblenz.de/wiki/index.php/Main_Page

5 Ontology Requirements Specification 99

http://cicero.uni-koblenz.de/wiki/index.php/Main_Page

Task 6. Validating the set of requirements. The aim here is to identify possible

conflicts between ontology requirements, missing ontology requirements, and

contradictions between them. Users, domain experts, and ontology developers

must carry out this task taking as input the set of requirements identified in

Task 4 (it includes both non-functional and functional requirements) to decide if

each element of the set is valid or not.

The task output is the confirmation of the validity of the set of non-functional

and functional ontology requirements.

The criteria that can be used in this validation task and that are mainly inspired

by (IEEE 1993; Davis 1993) are the following:

• Correctness. A set of requirements is correct if, and only if, each requirement

refers to some features of the ontology to be developed.

• Completeness. Inspired by (Wieringa 1996), a set of requirements can be

considered complete if, and only if, users and domain experts review the

requirements and confirm that they are not aware of additional requirements.

• Consistency. A set of requirements can be considered internally consistent if,
and only if, no conflicts exist between them.

• Verifiability. A set of requirements is verifiable if, and only if, there is a finite

process with a reasonable cost that tests whether the final ontology satisfies each

requirement.

• Understandability. Each requirement must be understandable to end users and

domain experts.

• Unambiguity. An ontology requirement is unambiguous if, and only if, it has

only one meaning; that is, if it does not admit any doubt or misunderstanding.

• Conciseness. A set of requirements is concise if, and only if, each and every

requirement is relevant and no duplicated or irrelevant requirements exist.

• Realism. A set of requirements is realistic if, and only if, each and every

requirement meaning makes sense in the domain.

• Modifiability. A set of requirements is modifiable if, and only if, its structure and
style allow changing issues in an easy, complete, and consistent way.

• Traceability. An ontology requirement is traceable if, and only if, its origin is

known, and it can be referred to in other documents during the ontology

development.

Task 7. Prioritizing requirements. The goal of this task is to give different levels
of priority to the non-functional and functional ontology requirements identified. In

the case of functional requirements, priorities should be given to the different

groups of CQs and, within each group, to the different CQs; additionally, priorities

could be given to each CQs independently of the groups. Users, domain experts,

and the ontology development team should carry out this task, taking as input the

requirements identified in Task 4 and the groups of CQs written in natural language

obtained in Task 5. The task output is a set of priorities attached to each require-

ment, to each group of CQs, and to each CQ in a group. The output is included in the

slots 6a and 6b of the template shown in Table 5.1.

100 M.C. Suárez-Figueroa and A. Gómez-Pérez

Priorities will be used by the ontology development team for planning and

scheduling the ontology development and for deciding which parts of the ontology

are going to be developed first. This task is optional, but recommended. In fact, if no

priorities are given to the groups of CQs, ontology developers will start modeling

the ontology without any guidance regarding the functional requirements that

should be implemented first; in this case, the waterfall ontology life cycle model

should be selected during the scheduling of the ontology project. On the contrary, if

different priorities have been assigned to functional ontology requirements, the

iterative-incremental ontology life cycle model should be selected in the scheduling

activity.

Task 8. Extracting terminology and its frequency. The goal of this task is to

extract a pre-glossary of terms with their frequencies from the list of CQs and their

answers identified in Task 4. The ontology development team carries out this task

using terminology extraction techniques and tools supporting such techniques.

This pre-glossary of terms is divided in three different parts: terms from the CQs,

terms from their answers, and terms identified as named entities.

• From the requirements in the form of CQs, the ontology development team

should extract terminology (names, adjectives, and verbs) that will be formally

represented in the ontology by means of concepts, attributes, relations, or

instances (in the case of named entities).

• From the answers to the CQs, the ontology development team should extract

terminology that could be represented in the ontology as concepts or as

instances.

• From both CQs and corresponding answers, the ontology development team

should extract named entities such as countries or currencies, which are objects

in the universe of discourse.

The output is included in the slots 7a, 7b, and 7c of the template shown in

Table 5.1, respectively.

The set of terms with higher appearance frequencies will be used later on for

searching knowledge resources that could be potentially reused in the ontology

development. The following heuristic can be applied: the set of more frequent terms

is that requires more effort during the ontology development; for this reason,

frequencies are important to know which knowledge resources allow to save

more effort.

5.3 Ontology Requirements Specification in the Semantic

Nomenclature Case Study

This section provides one example of how to use the guidelines proposed for the

ontology requirements specification activity and what results are expected from any

of the tasks detailed in the guidelines. The example shows an excerpt of the ORSD

5 Ontology Requirements Specification 101

obtained after performing the ontology requirements specification activity follow-

ing the methodological guidelines proposed in this chapter.

The example presented refers to the requirements specification of the ontology

network developed within the Semantic Nomenclature case study (see Chap. 20).

This requirements specification is not intended to be exhaustive; it just describes the

most important points. A detailed and complete requirements specification is

described in (Gómez-Pérez et al. 2007).

The main objectives of the Semantic Nomenclature case study were (a) helping

in the systematization of creating, maintaining, and keeping up-to-date drug-

related information, and (b) allowing an easy integration of new drug resources.

In order to do that, the case study tackles the engineering of a pharmaceutical

product ontology network implemented in OWL based on the nomenclature of

products in the pharmaceutical sector in Spain. This ontology network represents

the general aspects of the main terms and objects related to drugs, and it classifies

these pharmaceutical terms according to the Anatomical Therapeutic Chemical

(ATC)10 classification.

Next we described the tasks followed for the ontology requirements specification

activity within the Semantic Nomenclature case study based on the methodological

guidelines proposed in this chapter.

Task 1. Identifying purpose, scope, and implementation language. The develop-
ment of the Semantic Nomenclature ontology network is motivated by scenarios

related to the end-user application that will use the ontology network. Such

scenarios describe a set of the ontology requirements that the ontology should

satisfy after being formally implemented. The motivating scenarios are described

in (Gómez-Pérez et al. 2006). In summary, the purpose of building the ontology

network within the Semantic Nomenclature case study is to provide a consensual

knowledge model of the pharmaceutical domain and to solve the lack of communi-

cation between stakeholders in the pharmaceutical sector. The Semantic Nomen-

clature ontology network should provide a complete reference model about all the

knowledge around the pharmaceutical products based on the main pharmaceutical

classification and models used in the pharmaceutical sector. The implementation

language selected is OWL.

Task 2. Identifying the intended end users. The analysis of the motivating

scenarios described in (Gómez-Pérez et al. 2006) allowed ontology developers to

identify the following intended end users of the ontology:

• User 1. Pharmacists who navigate across the ontology searching for drug

information.

• User 2. GSCoP (General Spanish Council of Pharmacists) technicians who

navigate across the ontology network and search for information or relations

about a given concept (drug, active ingredient, etc.). GSCoP technicians also

extract the latest information from different sources and update their database.

10 http://www.whocc.no/atc_ddd_index/

102 M.C. Suárez-Figueroa and A. Gómez-Pérez

http://dx.doi.org/10.1007/978-3-642-24794-1_20
http://www.whocc.no/atc_ddd_index/

• User 3. Spanish government analysts who study the situation of the pharmaceu-

tical product information in the Spanish market or update the content.

Task 3. Identifying the intended uses. The analysis of the motivating scenarios

described in (Gómez-Pérez et al. 2006) allowed ontology developers to identify the

following main intended uses of the ontology:

• Use 1. To search for updated information about the characteristics of pharma-

ceutical products

• Use 2. To connect heterogeneous pharmaceutical models

• Use 3. To update pharmaceutical product information databases

Task 4. Identifying requirements. The non-functional ontology requirement
identified was:

• NFR1. The ontology must support a multilingual scenario in the following

languages: Spanish, Catalan, Basque, and Galician.

For specifying the functional ontology requirements, the competency question

technique was used. In addition, the bottom-up approach for identifying them was

used because it was the more direct way to work with the domain experts. Compe-

tency questions were stored in an Excel file and then rewritten in a mind map tool as

appears in Fig. 5.3.

In total, 61 competency questions were identified; they are described in detail in

(Gómez-Pérez et al. 2007). Examples of some competency questions are:

• CQ1. What is the drug commercial name? Aspirina C (400/240MG 10
comprimidos efervescentes)

• CQ2. What is the drug’s main active ingredient (molecule)? Acido
acetilsalicilico

• CQ3. What is its Spanish national code? 7127291
• CQ4. What is the drug registration date? 01/09/1976

Task 5. Grouping functional requirements. The 61 competency questions

described in (Gómez-Pérez et al. 2007) were manually grouped into the following

three groups with the domain experts’ help:

• CQG1. Pharmaceutical product (29 competency questions)

• CQG2. Laboratory (4 competency questions)

• CQG3. Active ingredient (12 competency questions)

Fig. 5.3 Excerpt of competency questions

5 Ontology Requirements Specification 103

The criteria for grouping the competency questions were based on the identified

uses, the identified users, and the domain experts’ suggestions. Apart from the three

aforementioned groups, ontology developers have created a new group, called

Composite (CQG4), which includes the result of combining simple CQs to obtain

more general and complex CQs.

Figure 5.4 shows the four groups with examples of CQs in the laboratory and

pharmaceutical product groups.

Task 6. Validating the set of requirements. During the overall process,

ontology developers received recommendations, suggestions, and advice from the

domain experts, and they iterated several times until the final approval by the end

users was achieved. Domain experts and ontology developers used the following

criteria for validating the set of requirements (both non-functional and functional

requirements):

• Correctness. Domain experts and ontology developers checked the correctness

of each non-functional requirement and of each competency question, verifying

that its formulation and answers were correct.

• Consistent. Domain experts also verified that the non-functional requirements

and the competency questions did not have any possible inconsistency.

Task 7. Prioritizing requirements. Within the Semantic Nomenclature

case study, ontology developers did not carry out this step. This means the

first version of the ontology network must be able to represent the knowledge

contained in all the competency questions and be able to cover all the non-

functional requirements.

Task 8. Extracting terminology and its frequency. From the competency

questions and their answers, ontology developers manually extracted the termino-

logy that will be formally represented in the ontology network by means of con-

cepts, attributes, and relations. In addition, ontology developers identified the terms

and the objects in the universe of discourse. Examples of the terms identified are

shown in Table 5.2.

After following these tasks, the output of the ontology requirements specifica-

tion activity is the ontology requirements specification document. An excerpt of this

document, which has been written for this chapter, is shown in Table 5.3.

Fig. 5.4 Examples of competency questions in groups

104 M.C. Suárez-Figueroa and A. Gómez-Pérez

Table 5.3 Excerpt of Semantic Nomenclature ontology requirements specification document

Semantic Nomenclature ontology requirements specification

1 Purpose

The purpose of building the Semantic Nomenclature ontology network is to provide a reference

model for the pharmaceutical domain. This model should be based on the main pharmaceutical

classification and models used in the pharmaceutical sector

2 Scope

The ontology has to focus just on the Spanish and European pharmaceutical domain

3 Implementation language

The ontology has to be implemented in OWL

4 Intended end users

User 1. Pharmacist User 3. Spanish government analysts

User 2. GSCoP technicians

5 Intended uses

Use 1. To search for updated information about the characteristics of pharmaceutical products

Use 2. To connect heterogeneous pharmaceutical models

Use 3. To update pharmaceutical product information databases

6 Ontology requirements

(a) Non-Functional requirements

NFR1. The ontology must support a multilingual scenario in the following languages:

Spanish, Catalan, Basque, and Galician

(b) Functional requirements: Groups of competency questions

CQG1. Pharmaceutical product (29 CQs) CQG3. Active ingredient (12 CQs)

CQG2. Laboratory (4 CQs) CQG4. Composed ones (16 CQs)

7 Pre-glossary of terms

(a) Terms from competency questions

Drug (29) Medicine (15) Active ingredient (20) Laboratory (14)

(b) Terms from answers

Aspirina C Ácido acetilsalicı́lico 7127291 01/01/1976

(c) Objects

Ibuprofeno Butibufeno Galamina Procaina

Table 5.2 Examples of terminology

Terms from competency questions

Drug Dosage

Medicine Date

Laboratory Indication

Active ingredient

Terms from answers

Aspirina C 7127291

Ácido acetilsalicı́lico 01/01/1976

Objects

Ibuprofeno Tetrazepam

Butibufeno Procaina

Penicilamina Ketamina

Niflumico acid Clotiazapam

Galamina Oxitriptan

5 Ontology Requirements Specification 105

5.4 Conclusions

One of the critical activities when developing ontologies is to identify their func-

tional and non-functional requirements. In this chapter, the ontology requirements

specification activity has been systematized by proposing detailed and prescriptive

methodological guidelines for specifying ontology requirements, based on CQs,

and by providing a template for writing the ontology requirement specification

document (ORSD).

The ORSD will play a key role during the ontology development process because

it facilitates different activities. In that sense, it will be shown in later chapters that the

ontology requirements specification document (1) is a crucial input for the scheduling

of ontology development projects (see Chap. 14) and (2) facilitates, among other

activities, the search and reuse of non-ontological resources for reengineering them

into ontologies (such as lexicons, glossaries, and dictionaries); the search and reuse of

ontologies, ontology modules, ontology statements (e.g., using Watson), and onto-

logy design patterns; and the verification of the ontology during the whole ontology

development.

References

Buzan T (1974) Use your head. Ariel Books, British Broadcasting Corporation (BBC), London

Davis A (1993) Software requirements: objects, functions and states. Prentice Hall, Upper Saddle

River

Gómez-Pérez JM, Daviaud C, Morera B, Benjamins R, Pariente Lobo T, Herrero Cárcel G, Tort G

(2006) NeOn deliverable D8.1.1. Analysis of the pharma domain and requirements

Gómez-Pérez JM, Buil-Aranda C, Pariente Lobo T, Herrero Cárcel G, Baena A (2007) NeOn

deliverable D8.3.1. Ontologies for the pharmaceutical case studies

Gr€uninger M, Fox MS (1995) Methodology for the design and evaluation of ontologies. In: Skuce D

(ed) IJCAI95 workshop on basic ontological issues in knowledge sharing, Montreal,

pp 6.1–6.10

IEEE (1993) IEEE Recommended practice for software requirements specifications. IEEE Std. 830

Noy NF, McGuinness DL (2001) Ontology development 101: a guide to creating your first

ontology. Technical report KSL-01-05, Stanford Knowledge Systems Laboratory, Stanford

Sommerville I (2007) Software engineering, 8th edn. Addison-Wesley, London. ISBN 0-321-

31379-8

Staab S, Schnurr HP, Studer R, Sure Y (2001) Knowledge processes and ontologies. IEEE Intell

Syst 16(1):26–34

Uschold M (1996) Building ontologies: towards a unified methodology. In: Watson I (ed) 16th

Annual conference of the British Computer Society Specialist Group on Expert Systems,

Cambridge, UK

Villazón-Terrazas B, Ramı́rez J, Suárez-Figueroa MC, Gómez-Pérez A (2011) A network of

ontology networks for building e-employment advanced systems. Expert Syst Appl 38(11):

13612–13624

Wiegers E (2003) Software requirements 2: practical techniques for gathering and managing

requirements throughout the product development cycle, 2nd edn. Microsoft Press, Redmond.

ISBN 0-7356-1879-8

Wieringa R (1996) Requirements engineering: frameworks for understanding. Wiley, New York

106 M.C. Suárez-Figueroa and A. Gómez-Pérez

http://dx.doi.org/10.1007/978-3-642-24794-1_14

Chapter 6

Reusing and Re-engineering Non-ontological

Resources for Building Ontologies

Boris Villazón-Terrazas and Asunción Gómez-Pérez

Abstract With the goal of speeding up the ontology development process, ontol-

ogy developers are reusing as much as possible available ontological and non-

ontological resources such as classification schemes, thesauri, lexicons, and

folksonomies, that have already reached some consensus. The reuse of such non-

ontological resources necessarily involves their re-engineering into ontologies.

Based on this new trend, this chapter presents a general method for re-engineering

non-ontological resources into ontologies, taking into account that non-ontological

resources are highly heterogeneous in their data model and contents. The method is

based on the so-called re-engineering patterns, which define a procedure that

transforms the non-ontological resource components into ontology representational

primitives. This chapter also presents the description of a software library that

implements the transformations suggested by the patterns. Finally, the chapter

depicts an evaluation of the method.

6.1 Introduction and Motivation

Research on ontology engineering methodologies has provided methods and

techniques for developing ontologies from scratch. Well-recognized methodologi-

cal approaches such as METHONTOLOGY (Gómez-Pérez et al. 2003), On-To-

Knowledge (Schnurr et al. 2001), and DILIGENT (Pinto et al. 2004) issue

guidelines that help researchers to develop ontologies. However, researchers face

B. Villazón-Terrazas (*) • A. Gómez-Pérez

Ontology Engineering Group, Departamento de Inteligencia Artificial, Facultad de Informática,

Universidad Politécnica de Madrid, Campus de Montegancedo sn., 28660 Boadilla del Monte,

Madrid, Spain

e-mail: bvillazon@fi.upm.es; asun@fi.upm.es

M.C. Suárez-Figueroa et al. (eds.), Ontology Engineering in a Networked World,
DOI 10.1007/978-3-642-24794-1_6, # Springer-Verlag Berlin Heidelberg 2012

107

mailto:bvillazon@fi.upm.es
mailto:asun@fi.upm.es

an important limitation: no guidelines are provided for building ontologies by re-

engineering some knowledge resources widely used within a particular community.

During the last decade, specific methods, techniques, and tools were proposed

for building ontologies from available knowledge resources. First, ontology

learning methods and tools were proposed to extract relevant concepts and relations

from structured, semi-structured, and non-structured resources (Gómez-Pérez and

Manzano-Macho 2004; Maedche and Staab 2001) in order to form a single ontol-

ogy. One important constraint of these methods and tools is that they propose ad

hoc solutions to transforming such resources, mainly texts, into ontologies. Hepp

(2006), Hepp and de Brujin (2007), and Hepp (2007) stated that employing methods

and techniques when transforming non-ontological resources to ontologies is key

for the success of semantic technology for two main reasons: (1) if the use of

semantic technologies for real-world data integration challenges is required, it is

possible to refer to the original conceptual elements, and (2) for many domains, the

existing category systems, XML schemas, and normative entity identifiers are the

most efficient resources for engineering ontologies.

The literature presents a wide set of methods and tools for the ontologization of

non-ontological resources. This ontologization of resources has led to the design of

several specific methods, techniques, and tools (Hepp and de Brujin 2007;

Hyv€oonen et al. 2008; Gangemi et al. 2003; Garcı́a and Celma 2005). These are

mainly specific to a particular resource type, or to a particular resource implemen-

tation. Thus, every time ontology engineers are faced with a new resource type or

implementation, they develop ad hoc solutions to transforming such resource into a

single ontology.

The analysis of the ontologies developed by distinct research groups in different

international and national projects have revealed that there are different alternative

ways or possibilities to build ontologies by reusing and re-engineering the available

knowledge resources used by a particular community. However, at this stage, we

can state that all the projects perform an ad hoc transformation of the resources

available for building ontologies.

Therefore, a new ontology development paradigm started approximately in

2007, whose emphasis was on the reuse and possible subsequent reengineering of
knowledge resources, as opposed to custom-building new ontologies from scratch.

However, in order to support and promote such reuse-based approach, new

methods, techniques, and tools are needed.

The remainder of the chapter is organized as follows: Section 6.2 presents our

categorization of non-ontological resources. Then, Sect. 6.3 describes the method-

ological guidelines for reusing non-ontological resources. Next, Sect. 6.4 provides

the pattern-based method for re-engineering non-ontological resources into

ontologies. Section 6.5 introduces the technological support for our re-engineering

method. Then, Sect. 6.6 describes an example of the methodological guidelines

presented here. Finally, Sect. 6.7 presents the conclusions and future work.

108 B. Villazón-Terrazas and A. Gómez-Pérez

6.2 Types of Non-ontological Resources

The knowledge resources, reused in several projects for building ontologies, con-

tain readily available a wealth of category definitions and reflect some degree of

community consensus. In this chapter, we refer to non-ontological resources
(NOR)1. Examples of NORs are classification schemes, thesauri, lexica, and

folksonomies, among others. This type of resources encodes different types of

knowledge and can be implemented in different ways.

Our analysis of the literature has revealed different ways of categorizing non-

ontological resources. Thus, Maedche and Staab (2001) and Sabou et al. (2007)

classify non-ontological resources into unstructured (e.g., free text), semi-

structured (e.g., folksonomies), and structured (e.g., databases) resources, whereas

Gangemi et al. (1998) distinguish catalogs of normalized terms, glossed catalogues,

and taxonomies. Finally, Hodge (2000) proposes characteristics such as structure,

complexity, relationships among terms, and historical functions for classifying

them. However, an accepted and agreed-upon typology of non-ontological

resources does not exist yet.

Therefore, one of the contributions of this chapter is the categorization of

NORs, according to the following three features presented in Fig. 6.1: (1) type of

NOR, which refers to the type of inner organization of the information; (2) data

model, that is, the design data model used to represent the knowledge encoded by

the resource; and (3) resource implementation.

According to the type of NORs, we classify them into:

• Glossaries: A glossary is an alphabetical list of terms or words found in or

related to a specific topic or text. It may or may not include explanations, and its

vocabulary may be monolingual, bilingual, or multilingual (Wright and Budin

1997). An example of glossary is the FAO Fisheries Glossary2.

• Lexicons: In a restricted sense, a computational lexicon is considered as a list of

words or lexemes hierarchically organized and normally accompanied by mean-

ing and linguistic behavior information (Hirst 2004). A fine example is

WordNet3, the best known computational lexicon of English.

• Classification schemes: A classification scheme is the descriptive information of

an arrangement or division of objects into groups according to the characteristics

that the objects have in common (ISO/IEC FDIS 11179-1). A good example is

the Fishery International Standard Statistical Classification of Aquatic Animals

and Plants (ISSCAAP)4.

• Thesauri: Thesauri are controlled vocabularies of terms in a particular domain

with hierarchical, associative, and equivalence relations between terms.

1Along this chapter, we use either NOR or non-ontological resource without distinction
2 http://www.fao.org/fi/glossary/default.asp
3 http://wordnet.princeton.edu/
4 http://www.fao.org/figis/servlet/RefServlet

6 Reusing and Re-engineering Non-ontological Resources for Building Ontologies 109

http://www.fao.org/fi/glossary/default.asp
 http://wordnet.princeton.edu/
 http://www.fao.org/figis/servlet/RefServlet

Thesauri are mainly used for indexing and retrieving articles in large databases

(ISO 2788). An example of thesaurus is the AGROVOC5 thesaurus.

• Folksonomies: Folksonomies are Web 2.0 systems that users employ to

upload and annotate their content effortlessly and without requiring any expert

knowledge6. This simplicity has made folksonomies widely successful, and

this success, in its turn, has resulted in a massive amount of user-generated

and user-annotated web content. The main advantage of folksonomies is the

implicit knowledge they contain. When users tag resources with one or more

tags, they assign these resources the meaning of the tag. Furthermore, the

co-occurrence of tags implies a semantic correlation among them. An example

of how folksonomies are used can be seen in the del.icio.us7 web site.

The knowledge encoded by the resource can be represented in different ways,

known as data models. A data model (Carkenord 2002) is an abstract model that

describes how data is represented and accessed. There are three types: (1) the

conceptual data model, which presents the primary entities and relationships of

Fig. 6.1 Non-ontological resource categorization

5 http://www.fao.org/agrovoc/
6 http://www.vanderwal.net/folksonomy.html
7 http://del.icio.us/

110 B. Villazón-Terrazas and A. Gómez-Pérez

http://www.fao.org/agrovoc/
http://www.vanderwal.net/folksonomy.html
http://del.icio.us/

concern to a specific domain; (2) the logical data model, which depicts the logical

entity types, the data attributes describing those entities, and the relationships

between entities; and (3) the physical data model, which is related to a specific

implementation of the resource. In this chapter, we will use the term data model

when referring to the logical data model. With regard to the data model, there are
different ways of representing the knowledge encoded by the resource. In this

chapter, we only focus in data models for classification schemes, thesauri, and

lexica. The data models are described in detail in Villazón-Terrazas et al. (2010).

Next we present several data models for classification schemes, shown in

Fig. 6.2.

• Path enumeration (Brandon 2005): A path enumeration model (see Fig. 6.2b) is

a recursive structure for hierarchy representations and is defined as a model that

stores, for each node, the path (as a string) from the root to the node. This string

is the concatenation of the node code in the path from the root to the node.

• Adjacency list (Brandon 2005): An adjacency list model is a recursive structure

for hierarchy representations comprising a list of nodes with a linking column to

their parent nodes. Figure 6.2c shows this model.

• Snowflake (Malinowski and Zimányi 2006): A snowflake model is a normalized

structure for hierarchy representations. For each hierarchy level, a table is

created. In this model, each hierarchy node has a column linked to its parent

node. Figure 6.2d shows this model.

• Flattened (Malinowski and Zimányi 2006): A flattened model is a denormalized

structure for hierarchy representations. The hierarchy is represented by a table

where each hierarchy level is stored in a different column. Figure 6.2e shows this

model.

Next, we present two data models for thesauri.

• Record-based model (Soergel 1995): A record-based model is a denormalized

structure that for every term uses a record with information about the term, such

as synonyms, broader, narrower, and related terms. This model looks like the

flattened model for classification scheme.

• Relation-based model (Soergel 1995): A relation-based model leads to a more

elegant and efficient structure. Information is stored in individual pieces that can

be arranged in different ways. Relationship types are not defined as fields in a

record, they are simply data values in a relationship record, thus new relationship

types can be introduced with ease. There are three entities: (1) a term entity,

which contains the overall set of terms; (2) a term-term relationship entity, in

which each record contains two different term codes and the relationship

between them; and (3) a relationship source entity, which contains the overall

resource relationships.

Next we present a data model for lexica.

• Record-based model (Soergel 1995): This model can also be used for lexicons

because the use of a record for every lexical resource and information about that

lexical resource is possible.

6 Reusing and Re-engineering Non-ontological Resources for Building Ontologies 111

Fig. 6.2 Example of classification scheme. (a) Excerpt of the Water Area classification scheme,

(b) Path Enumeration data model, (c) Adjacency List data model, (d) Snowflake data model,

(e) Flattened data model, (f) XML implementation for the Adjacency List data model,

(g) Spreadsheet implementation for the Path Enumeration data model

112 B. Villazón-Terrazas and A. Gómez-Pérez

• Relation-based model (Soergel 1995): It can also be used for lexicons because

the storage of information about the lexicon in individual pieces is possible.

According to the implementation, we classify NORs into:

• Databases: A database is a structured collection of records or data stored in

a computer system.

• Spreadsheets: An electronic spreadsheet consists of a matrix of cells where

a user can enter formulas and values.

• XML file: EXtensible Markup Language is a simple, open, and flexible format

used to exchange a wide variety of data on and off the web. XML is a tree

structure of nodes and nested nodes of information where the user defines the

names of the nodes.

• Flat file: A flat file is a file usually read or written sequentially. In general, a flat

file is a file containing records with no structured interrelationships.

In summary, Fig. 6.1 shows how a given type of NOR can be modeled following

one or more data models, each of which implemented in different ways at the

implementation layer. Figure 6.1 shows, as an example, a classification scheme

modeled following a path enumeration model. In this case, the classification

scheme is implemented in a database and in an XML file.

To exemplify the non-ontological categorization presented with a real life

classification scheme, we use an excerpt from the FAO water area classification

presented in (Fig. 6.2a). This classification schema is modeled following a path

enumeration model (Fig. 6.2b), an adjacency list model (Fig 6.2c), a snowflake

model (Fig. 6.2d), and a flattened model (Fig. 6.2e). Figure 6.2f presents an XML

implementation of the adjacency list model, and Fig. 6.2g presents a spreadsheet

implementation of the path enumeration model of the same classification scheme.

It is worth mentioning that this first categorization of NORs is neither exhaustive

nor complete. Currently, we are enriching it by adding examples taken from

RosettaNet8 and Electronic Data Interchange, EDI9.

Moreover, we can map available non-ontological resources to our categoriza-

tion. Next we present a brief list of them.

• The United Nations Standard Products and Services Code, UNSPSC10, is a

classification scheme, modeled with the path enumeration data model and stored

in a relational database.

• WordNet11, a lexical database for English, is a lexicon, modeled with the

relation-based data model and stored in several implementations; a particular

implementation of it is a relational database.

8 http://www.rosettanet.org/
9 http://www.edibasics.co.uk/
10 http://www.unspsc.org/
11 http://wordnet.princeton.edu/

6 Reusing and Re-engineering Non-ontological Resources for Building Ontologies 113

http://www.rosettanet.org/
 http://www.edibasics.co.uk/
 http://www.unspsc.org/
 http://wordnet.princeton.edu/

• UMLS1212 is a very large, multipurpose, multilingual thesaurus that contains

information about biomedical and health-related concepts. It is modeled with the

record-based model and stored in a flat file.

• MeSh13, the Medical Subject Headings, is a classification scheme, modeled with

the path enumeration data model.

• The Art and Architecture Thesaurus14 is modeled with the record-based data

model and implemented in XML.

• The ISCO-08 International Standard Classification of Occupations15 is a classi-

fication scheme modeled with the path enumeration data model and

implemented in a database and spreadsheet.

• The European Training Thesaurus, ETT16, is modeled with the record-based

data model and implemented in XML.

• The Classification of Fields of Education and Training, FOET17, is a classifica-

tion scheme modeled with path enumeration data model and implemented in

XML and spreadsheet.

• The Aquatic Sciences and Fisheries Abstracts thesaurus, ASFA18, is modeled

with the record-based data model and implemented in XML.

• The AGROVOC thesaurus19 is modeled with the relation-based data model and

implemented in a database.

• The Fisheries Global Information System, FIGIS20, is modeled with the adja-

cency list data model and implemented in a database.

• The Classification of Italian Education Titles published by the National Institute

of Statistics, ISTAT21, is a classification scheme modeled with the flattened data

model and implemented in a spreadsheet.

12 http://www.nlm.nih.gov/pubs/factsheets/umlsmeta.html
13 http://www.nlm.nih.gov/mesh/
14 http://www.getty.edu/research/tools/vocabularies/aat/index.html
15 http://www.ilo.org/public/english/bureau/stat/isco/index.htm
16 http://libserver.cedefop.europa.eu/ett/en/
17 http://ec.europa.eu/eurostat/ramon/nomenclatures/index.cfm?TargetUrl¼DSP_GEN_DESC_
VIEW_NOHDR&StrNom¼EDU_TRAINI&StrLanguageCode¼EN
18 http://www.fao.org/fishery/asfa/8/en
19 http://aims.fao.org/website/AGROVOC-Thesaurus/sub
20 http://www.fao.org/figis/servlet/RefServlet
21 http://en.istat.it/

114 B. Villazón-Terrazas and A. Gómez-Pérez

 http://www.nlm.nih.gov/pubs/factsheets/umlsmeta.html
http://www.nlm.nih.gov/mesh/
http://www.getty.edu/research/tools/vocabularies/aat/index.html
http://www.ilo.org/public/english/bureau/stat/isco/index.htm
http://libserver.cedefop.europa.eu/ett/en/
http://ec.europa.eu/eurostat/ramon/nomenclatures/index.cfm?TargetUrl=DSP_GEN_DESC_VIEW_NOHDR&StrNom=EDU_TRAINI&StrLanguageCode=EN
http://ec.europa.eu/eurostat/ramon/nomenclatures/index.cfm?TargetUrl=DSP_GEN_DESC_VIEW_NOHDR&StrNom=EDU_TRAINI&StrLanguageCode=EN
http://ec.europa.eu/eurostat/ramon/nomenclatures/index.cfm?TargetUrl=DSP_GEN_DESC_VIEW_NOHDR&StrNom=EDU_TRAINI&StrLanguageCode=EN
http://ec.europa.eu/eurostat/ramon/nomenclatures/index.cfm?TargetUrl=DSP_GEN_DESC_VIEW_NOHDR&StrNom=EDU_TRAINI&StrLanguageCode=EN
http://ec.europa.eu/eurostat/ramon/nomenclatures/index.cfm?TargetUrl=DSP_GEN_DESC_VIEW_NOHDR&StrNom=EDU_TRAINI&StrLanguageCode=EN
http://www.fao.org/fishery/asfa/8/en
http://aims.fao.org/website/AGROVOC-Thesaurus/sub
http://www.fao.org/figis/servlet/RefServlet
http://en.istat.it/

6.3 Methodological Guidelines for Reusing Non-ontological

Resources

Once we have defined and categorized the non-ontological resources to be dealt

with, we present the methodological guidelines for reusing them. The goal of the

non-ontological resource reuse process is to choose the most suitable non-ontological

resource for building ontologies. Domain experts, software developers, and ontology

practitioners carry out this process by taking as input the ontology requirements

specification document (ORSD)22 to find the most suitable non-ontological resources

for the development of ontologies. The output of the process is a set of non-ontological

resources that, to some extent, covers the expected domain. Figure 6.3 shows the filling

card used in the process of reusing non-ontological resources, which includes the

definition, goal, input, output, performer of the process, and period of execution.

This process includes the activities and tasks presented in Fig. 6.4 and is

explained next.

6.3.1 Activity 1. Search Non-ontological Resources

The goal of the activity is to search non-ontological resources from highly reliable

web sites, domain-related sites, and resources within organizations. Domain

experts, software developers, and ontology practitioners carry out this activity,

taking as input the ORSD. They use the terms that have the highest frequency in

the ORSD to search for the candidate non-ontological resources that cover the

desired terminology. The activity output is a set of candidate non-ontological

resources that may belong to any of the identified typologies described in Sect. 6.2.

6.3.2 Activity 2. Assess the Set of Candidate Non-ontological
Resources

The goal of the activity is to assess the set of candidate non-ontological resources.

Domain experts, software developers, and ontology practitioners carry out this

activity, taking as input the set of candidate non-ontological resources. We propose

to consider the following measurable criteria: (1) coverage, (2) precision plus two

subjective criteria, (3) quality23, and (4) consensus. These criteria are inspired on

the work proposed in Gangemi et al. (2006).

22 This document is the outcome of the ontology specification activity (Suárez-Figueroa et al.

2009) (see Chapter 5).
23 A deep analysis of the quality of the resource is out of the scope of this chapter.

6 Reusing and Re-engineering Non-ontological Resources for Building Ontologies 115

6.3.2.1 Task 2.1 Extract Lexical Entries

The goal of this task is to extract the lexical entries of the non-ontological resources.

The task is carried out by software developers and ontology practitioners by taking

as input the non-ontological resources and extracting their lexical entries with

terminology extraction tools.

6.3.2.2 Task 2.2 Calculate Precision

The goal of this task is to calculate the precision of the candidate non-ontological

resources. Precision is a measure widely used in information retrieval (Baeza-Yates

and Ribeiro-Neto 1999) and is defined as the proportion of retrieved material that is

Fig. 6.3 Non-ontological resource reuse filling card

116 B. Villazón-Terrazas and A. Gómez-Pérez

Fig. 6.4 Activities for the non-ontological resource reuse process

6 Reusing and Re-engineering Non-ontological Resources for Building Ontologies 117

actually relevant. This task is carried out by software developers and ontology

practitioners by taking as input the lexical entries extracted for the non-ontological

resources and the terminology gathered in the ORSD. To adapt this precision

measure into our context, we need to define:

• NORLexicalEntries as the set of lexical entries extracted from the non-ontological

resource

• ORSDTerminology as the set of identified terms included in the ORSD

Now we can define the precision, in our context, as the proportion of the lexical

entries of the non-ontological resource that are included in the identified terms of

the ORSD over the lexical entries of the non-ontological resource. This is expressed

as follows:

Precision ¼ NORLexicalEntriesf g \ ORSDTerminologyf gj j
j NORLexicalEntriesf gj

6.3.2.3 Task 2.3 Calculate Coverage

The goal of this task is to calculate the coverage of the non-ontological resources.

Coverage is based on the recall measure used in information retrieval (Baeza-Yates

and Ribeiro-Neto 1999). Recall is defined as the proportion of relevant material

actually retrieved in answer to a search request. This task is carried out by software

developers and ontology practitioners by taking as input both the lexical entries

extracted from the non-ontological resources and the terminology gathered in the

ORSD. To adapt this measure into our context, we use the aforementioned

definitions of NORLexicalEntries and ORSDTerminology. In this context, coverage
is the proportion of the identified terms of the ORSD that are included in the lexical

entries of the non-ontological resource over the identified terms of the ORSD. This

is expressed as follows:

Coverage ¼ NORLexicalEntriesf g \ ORSDTerminologyf gj j
ORSDTerminologyf gj j

6.3.2.4 Task 2.4 Evaluate the Consensus

The goal of this task is to evaluate the consensus of the non-ontological resources.

Consensus is a subjective and not quantifiable criterion. This task is carried out by

domain experts, taking as input the non-ontological resources for stating whether

the non-ontological resources contain terminology agreed upon by the community

118 B. Villazón-Terrazas and A. Gómez-Pérez

or not. We propose a preliminary starting point for this evaluation. Domain experts

have to check whether the resource is coming from:

• A standardization body or any entity whose primary activity is to develop,

coordinate, promulgate, revise, amend, reissue, or otherwise maintain standards;

for example, the International Organization for Standardization (ISO), the

American National Standards Institute (ANSI), and the World Wide Web

Consortium (W3C)

• Large organizations across national governments, such as the Food and Agricul-

ture Organization of the United Nations (FAO), the World Health Organization

(WHO), the United Nations Educational, Scientific and Cultural Organization

(UNESCO), and the International Olympic Committee (IOC)

• A large enough user community to make it profitable for developers to use it as a

means of general interoperability

Either the resource is coming from any of the aforementioned parties or not,

domain experts may state that the resource has reached some degree of consensus.

6.3.2.5 Task 2.5 Evaluate the Quality

The goal of this task is to evaluate the quality of the resource. We do not intend to

provide a deep analysis of the quality of the resource but to offer some preliminary

considerations about it. In this chapter, we propose to check the following quality

attributes:

• Good documentation of the resource.

• Lack of anomalies of the non-ontological resource, such as redundancies or

inconsistencies.

• Reliability of the non-ontological resource. This means analyzing whether we

can trust the resource or not.

6.3.2.6 Task 2.6 Build the Assessment Table

The goal of this task is to create an assessment table of the non-ontological resources.

Software developers and ontology practitioners carry out this task, taking as input the

non-ontological resources with their respective values for precision, coverage, con-

sensus, and quality criteria, for the construction of the assessment table. This table is

shown in Table 6.1. The first column shows the non-ontological resources found. The

Table 6.1 Assessment table for the NORs

NOR Precision Coverage Consensus Quality

NOR 1 NOR 1 precision value NOR 1 coverage value (Yes/no) (Yes/no)

NOR 2 NOR 2 precision value NOR 2 coverage value (Yes/no) (Yes/no)

NOR 3 NOR 3 precision value NOR 3 coverage value (Yes/no) (Yes/no)

6 Reusing and Re-engineering Non-ontological Resources for Building Ontologies 119

precision column shows the precision value calculated for each non-ontological

resource. Then, the coverage column shows the coverage value calculated for each

non-ontological resource. Next, the consensus column depicts the domain experts’

judgment about whether the non-ontological resource has been agreed on by the

community or not (Yes/No). Finally, the quality column illustrates the domain

experts, software developers, and ontology practitioners’ judgment about whether

the resource has an acceptable level of quality or not (Yes/No).

6.3.3 Activity 3. Select the Most Appropriate Non-ontological
Resources

The goal of this activity is to select the most appropriate non-ontological resources

to be transformed into an ontology. This activity is carried out by domain experts,

software developers, and ontology practitioners, taking as input the non-ontological

resource assessment table. The selection is performed manually and we recommend

looking for resources with:

• Consensus. This criterion is taken into account in the first place because if the

resource to be reused contains terminology agreed upon by the community, the

effort and time spent in finding out the right labels for the ontology terms will

decrease considerably.

• Quality. This criterion is taken into account in the second place because if the

resource to be reused has an acceptable level of quality, then the resultant

ontology should also have it.

• High value of coverage. This criterion is taken into account in the third place

because our third concern is to consider most of the ORSD terms identified.

• High value of precision. This criterion is taken into account in the fourth place

because our fourth concern is the proportion of non-ontological lexical entries

over the identified terms of the ORSD.

The activity output is a ranked list of non-ontological resources that, to some

extent, covers the expected domain. These resources will be ready for the re-

engineering process.

6.4 Methodological Guidelines for Re-engineering NORs

into Ontologies

In this section, we depict the prescriptive methodological guidelines for re-

engineering NORs. The goal of the method for re-engineering non-ontological

resources is to transform a non-ontological resource into an ontology. The output

of the process is an ontology. Figure 6.5 shows the filling card of the non-ontological

120 B. Villazón-Terrazas and A. Gómez-Pérez

resource re-engineering process, which includes the definition, goal, input, output,

performer of the process, and time execution.

The NOR re-engineering process consists of the three activities depicted in

Fig. 6.6.

6.4.1 Activity 1. Non-ontological Resource Reverse Engineering

The goal of this activity is to analyze a non-ontological resource, to identify its

underlying terms, and to create representations of the resource at the different levels

of abstraction (design, requirements, and conceptual).

Fig. 6.5 Non-ontological resource re-engineering filling card

6 Reusing and Re-engineering Non-ontological Resources for Building Ontologies 121

6.4.1.1 Task 1.1 Data Gathering

The goal of this task is to search and compile all the available data and documenta-

tion about the non-ontological resource, including purpose, components, data

model, and implementation details.

Domain Experts and ODT

Non-
ontological
resource

Activity 1.
Non-Ontological Resource

Reverse Engineering

Activity 2.
Non-Ontological Resource

Transformation

Activity 3. Ontology Forward
Engineering

Task 1.1 Data gathering

Task 1.2 Conceptual
abstraction

Task 1.3 Information
exploration

Task 2.1 Search for a suitable
pattern for re-engineering non-

ontological resources

Task 2.2.b Perform an ad-hoc
transformation

Task 2.2.a Use the pattern to
guide the transformation

Task 2.3 Manual refinement

Ontology

O
U

T
P

U
T

INPUT

IN
P

U
T

PR-NOR
library

Is there a
suitable
pattern?

Domain Experts and ODT

Domain Experts and ODT

Ontology Development Team

Yes No

Ontology Development Team

Ontology Development Team

Ontology Development TeamOntology Development Team

Fig. 6.6 Re-engineering process for non-ontological resources

122 B. Villazón-Terrazas and A. Gómez-Pérez

6.4.1.2 Task 1.2 Conceptual Abstraction

The goal of this task is to identify the schema of the non-ontological resource

including the conceptual components and their relationships. If the conceptual

schema is not available in the documentation, the schema should be reconstructed

manually or with a data modeling tool.

6.4.1.3 Task 1.3 Information Exploration

The goal of this task is to find out how the conceptual schema of the non-

ontological resource and its content are represented in the data model. If the non-

ontological resource data model is not available in the documentation, the data

model should be reconstructed manually or with a data modeling tool.

6.4.2 Activity 2. Non-ontological Resource Transformation

This activity has as a goal to generate a conceptual model from the non-ontological

resource. We propose the use of patterns for re-engineering non-ontological

resources (PR-NOR) to guide the transformation process.

6.4.2.1 Task 2.1 Search for a Suitable Pattern for Re-engineering

Non-ontological Resource

The goal of this task is to find out if there is any applicable re-engineering pattern

that transforms the non-ontological resource into a conceptual model. The search is

performed in the ODP Portal2424, which includes the PR-NOR library, and with the

following criteria: (1) non-ontological resource type, (2) internal data model of the

resource, and (3) the transformation approach.

6.4.2.2 Task 2.2.a Use Re-engineering Patterns to Guide the Transformation

The goal of this task is to apply the re-engineering pattern obtained in Task 2.1 (see

Sect. 6.4.2.1) to transform the non-ontological resource into a conceptual model. If

a suitable pattern for re-engineering non-ontological resources is found, then the

conceptual model is created from the non-ontological resource following the

procedure established in the pattern for re-engineering. Alternatively, the software

24 http://ontologydesignpatterns.org

6 Reusing and Re-engineering Non-ontological Resources for Building Ontologies 123

http://ontologydesignpatterns.org

library, described later in Sect. 6.5, can be used for generating the ontology

automatically.

6.4.2.3 Task 2.2.b Perform an Ad Hoc Transformation

The goal of this task is to set up an ad hoc procedure that transforms the non-ontological

resource into a conceptual model when a suitable pattern for re-engineering cannot

be found. This ad hoc procedure may be generalized to create a new pattern for re-

engineering non-ontological resources.

6.4.2.4 Task 2.3 Manual Refinement

The goal of this task is to check whether any inconsistency appears after the

transformation. Software developers and ontology practitioners, with the help of

domain experts, can fix manually any inconsistencies generated from the

transformation.

6.4.3 Activity 3. Ontology Forward Engineering

The goal of this activity is to generate the ontology. We use the ontology levels of

abstraction to depict this activity because they are directly related to the ontology

development process. The conceptual model obtained in Task 2.2.a (Sect. 6.4.2.2)

or 2.2.b (Sect. 6.4.2.3) is transformed into a formalized model, according to a

knowledge representation paradigm such as description logics, first order logic, or

F-logic. Then, the formalized model is implemented in an ontology language.

6.5 Technological Support

Our technological support consists in (1) a PR-NOR pattern library that includes the

set of patterns for re-engineering non-ontological resources and the implementation

of (2) NOR2O, a software library that implements the transformation process

suggested by the patterns.

124 B. Villazón-Terrazas and A. Gómez-Pérez

Table 6.2 Template of pattern for re-engineering non-ontological resource

Slot Value

General information

Name Name of the pattern

Identifier An acronym composed of component type + abbreviated name of

the component + number

Component type Pattern for re-engineering non-ontological resource (PR-NOR)

Use case

General Description in natural language of the re-engineering problem

addressed by the pattern for re-engineering non-ontological

resources

Example Description in natural language of an example of the re-engineering

problem

Pattern for re-engineering non-ontological resource

Input: resource to be re-engineered

General Description in natural language of the non-ontological resource

Example Description in natural language of an example of the non-

ontological resource

Graphical representation

General Graphical representation of the non-ontological resource

Example Graphical representation of the example of non-ontological resource

Output: designed ontology

General Description in natural language of the ontology created after

applying the pattern for re-engineering the non-ontological

resource

Graphical representation

(UML) General solution

ontology

Graphical representation, using the UML profile (Brockmans and

Haase 2006), of the ontology created for the non-ontological

resource being re-engineered

(UML) Example solution

ontology

A graphical representation example, which uses the UML profile

(Brockmans and Haase 2006), of the ontology created for the

non-ontological resource being used

Process: how to re-engineer

General Algorithm for the re-engineering process

Example Application of the algorithm to the non-ontological resource

example

Time complexity The time complexity of the algorithm

Additional notes Additional notes of the algorithm

Formal transformation

General Formal description of the transformation made with the formal

definitions of the resources

Relationships (optional)

Relations to other modeling

components

Description of any relation to other PR-NOR patterns or other

ontology design patterns

6 Reusing and Re-engineering Non-ontological Resources for Building Ontologies 125

6.5.1 Patterns for Re-engineering Non-ontological Resources

In this section, we introduce the 16 patterns that perform the transformations of

NORs into ontologies. Patterns for re-engineering NORs (PR-NOR) define a pro-

cedure that transforms the NOR terms into ontology representational primitives.

Next, we present the template proposed that describes the patterns for re-

engineering non-ontological resources (PR-NOR). We have modified the tabular

template used in Villazón-Terrazas et al. (2008) for describing the PR-NORs. The

meaning of each field is shown in Table 6.2.

According to the NOR categorization presented in Sect. 6.2, we propose patterns

for re-engineering classification schemes, thesauri, and lexicons (see Table 6.3).

For every data model, we can define a process with a well-defined sequence of

activities in order to extract the NOR terms and then to map these terms to a

conceptual model of an ontology. This process is expressed as an algorithm.

Moreover, it is worth mentioning that we refer to ontology schema as TBox, and

just ontology as TBox and ABox. These patterns are included in the ODP Portal25.

The re-engineering patterns take advantage of the use of the ontology design

patterns26 for creating the ontology code. So, most of the code generated follows the

best practices already identified by the community (see section Process on

Table 6.2).

Table 6.3 Set of patterns for re-engineering NORs

N Identifier Type of NOR NOR data model Target

1 PR-NOR-CLTX-01 Classification scheme Path enumeration Ontology schema (TBox)

2 PR-NOR-CLTX-02 Classification Scheme Adjacency list Ontology schema (TBox)

3 PR-NOR-CLTX-03 Classification scheme Snowflake Ontology schema (TBox)

4 PR-NOR-CLTX-04 Classification scheme Flattened Ontology schema (TBox)

5 PR-NOR-CLAX-10 Classification scheme Path enumeration Ontology (TBox + ABox)

6 PR-NOR-CLAX-11 Classification scheme Adjacency list Ontology (TBox + ABox)

7 PR-NOR-CLAX-12 Classification scheme Snowflake Ontology (TBox + ABox)

8 PR-NOR-CLAX-13 Classification scheme Flattened Ontology (TBox + ABox)

9 PR-NOR-TSTX-01 Thesaurus Record based Ontology Schema (TBox)

10 PR-NOR-TSTX-02 Thesaurus Relation based Ontology Schema (TBox)

11 PR-NOR-TSAX-10 Thesaurus Record based Ontology (TBox + ABox)

12 PR-NOR-TSAX-11 Thesaurus Relation based Ontology (TBox + ABox)

13 PR-NOR-LXTX-01 Lexicon Record based Ontology schema (TBox)

14 PR-NOR-LXTX-02 Lexicon Relation based Ontology schema (TBox)

15 PR-NOR-LXAX-10 Lexicon Record based Ontology (TBox + ABox)

16 PR-NOR-LXAX-11 Lexicon Relation based Ontology (TBox + ABox)

25 http://ontologydesignpatterns.org
26 Ontology design patterns are included in the ODP portal. The ODP portal is a Semantic Web

portal dedicated to ontology design best practices for the Semantic Web, emphasizing particularly

ontology design patterns (OPs)

126 B. Villazón-Terrazas and A. Gómez-Pérez

http://ontologydesignpatterns.org

Although we have identified five types of NORs, here we just list patterns for re-

engineering classification schemes, thesauri, and lexica (see Table 6.3).

6.5.1.1 Semantics of the Relations Among the NOR Terms

The TBox transformation approach converts the resource content into an ontology

schema. TBox transformation tries to impose a formal semantics on the resource by

making explicit the semantics hidden in the relations of the NOR terms. To this end,

each NOR term is mapped to a class, and then, the semantics of the relations among

those entities must be discovered and then made explicit. Thus, patterns that follow

the TBox transformation approach must discover first the semantics of the relations

among the NOR terms. To perform this task, we rely on WordNet, which organizes

the lexical information into meanings (senses) and synsets. What makes WordNet

remarkable is the existence of various relations explicitly declared between the

word forms (e.g., lexical relations, such as synonymy and antonymy) and the

synsets (meaning to meaning or semantic relations, e.g., hyponymy/hypernymy

relation, meronymy relation). Here, we want to prove that we can rely on an

external resource for making explicit the relations. For this purpose, first, we rely

on WordNet, and then, as a future line of this work, we may rely on other

information resources, such as DBpedia27.

Algorithm 1 describes how to make explicit the semantics of the relations in the

NOR terms. The abbreviation of the algorithm name is getRelation.

6.5.2 NOR2O

This section presents NOR2O, a Java library that implements the transformation

process suggested by the patterns for re-engineering non-ontological resources

(PR-NOR). The library performs the ETL process28 for transforming the non-

ontological resource components into ontology terms. A high-level conceptual

architecture diagram of the modules involved is shown in Fig. 6.7.

Algorithm 1 Discovering the semantics of the relations – getRelation

1: Take two related terms from the NOR, ti and tj

2: defaultRelation userDefinedRelation

3: if contains(ti,tj) then

4: relation ti.subClassOf.tj

(continued)

27 http://www.dbpedia.org/
28 Extract, transform, and load (ETL) of legacy data sources is a process that involves (1)

extracting data from the outside resources, (2) transforming data to fit operational needs, and (3)

loading data into the end target resources (Kimball and Caserta 2004).

6 Reusing and Re-engineering Non-ontological Resources for Building Ontologies 127

http://www.dbpedia.org/

Algorithm 1 Discovering the semantics of the relations – getRelation

5: else if contains(tj,ti) then

6: relation tj.subClassOf.ti

7: else

8: wordnetRelation WordNet(ti, tj)

9: if wordnetRelation ¼ ¼ hyponym then

10: relation ti.subClassOf.tj

11: else if wordnetRelation ¼ ¼ hypernym then

12: relation tj.subClassOf.ti

13: else if wordnetRelation ¼ ¼ meronym then

14: relation ti.partOf.tj

15: else if wordnetRelation ¼ ¼ holonym then

16: relation tj.partOf.ti

17: else

18: relation defaultRelation

19: end if

20: end if

21: return relation

Fig. 6.7 Modules of the NOR2O software library

128 B. Villazón-Terrazas and A. Gómez-Pérez

Figure 6.7 depicts the modules of the PR-NOR software library: NOR Connec-
tor, Transformer, Semantic Relation Disambiguator, Exter-
nal Resource Service, and OR Connector. In the following sections, these
modules are described in detail. For illustrating the modules, the example of the

transformation of the ASFA thesaurus29 into an ontology schema30 is provided.

6.5.2.1 NOR Connector

The NOR Connector loads classification schemes, thesauri, and lexicons modeled

with their corresponding data models, and implemented in databases, XML, flat

files, and spreadsheets.

This module utilizes an XML configuration file for describing the NOR. An

example of the XML configuration file is presented in Listing 6.1. The Listing

shows how the file describes a thesaurus. The thesaurus has two schema entities,

Term and NonPreferredTerm, is modeled following the record-based data model,

and is implemented in XML.

Listing 6.1 NOR Connector configuration file example

Scheme” name=”cepa94”<Nor type=” C l a s s i f i c a t i o n >
<Schema>

<SchemaEntit ies>
<SchemaEntity name=”CSItem”>

<Attr ibute name=” CSIde n t i f i e r ”
valueFrom=”cepa . CodeNumber”
type=” s t r i ng ”/>

<Attr ibute name=”CSName”
valueFrom=”cepa . De sc r i p t i onEng l i sh”
type=” s t r i ng ”/>

<Relat ion name=”subType”
us ing=”PathEnumeration”
d e s t i n a t i o n=”CSItem”/>

<Relat ion name=”superType ”
us ing=”PathEnumeration”
d e s t i n a t i o n=”CSItem”/>

</SchemaEntity>
</SchemaEntit ies>

</Schema>
<DataModel>

<PathEnumeration>
<PathEntity>cepa</PathEntity>
<PathSeparator> .</PathSeparator>

<PathFie ld>CodeNumber</PathFie ld>
</PathEnumeration>

</DataModel>
<Implementation>

<Database>
<Dbms>MSACCESS</Dbms>
<Name>cepa94</Name>
<Username></Username>
<Password></Password>
<Host></Host>
<Port></Port>

</Database>
</ Implementation>

</Nor>

29 http://www4.fao.org/asfa/asfa.htm
30 http://mccarthy.dia.fi.upm.es/ontologies/asfa.owl

6 Reusing and Re-engineering Non-ontological Resources for Building Ontologies 129

http://www4.fao.org/asfa/asfa.htm
http://mccarthy.dia.fi.upm.es/ontologies/asfa.owl

6.5.2.2 Transformer

This module performs the transformation suggested by the patterns by

implementing the sequence of activities included in the patterns. The module

transforms the NOR elements, loaded by the NOR Connector module, into

internal model representation elements. It also interacts with the Semantic
Relation Disambiguator module for obtaining the suggested semantic

relations of the NOR elements.

The Transformer also utilizes an XML configuration file, called prnor.

xml, for describing the transformation between the NOR elements and the

ontology elements. This XML configuration file has only one section, PRNOR,
which includes the description of the transformation from the NOR schema

components (e.g., schema entities, attributes, and relations) into the ontology

elements (e.g., classes, object properties, data properties, and individuals).

Additionally, it indicates the transformation approach (e.g., TBox, ABox, or

Population).

Two examples of the XML configuration file are shown in Listings 6.2 and 6.3.

Listing 6.2 indicates that the pattern follows the TBox transformation approach

and that it transforms the elements of the CSItem schema component into ontology

classes. Also, by default, it transforms the subType schema relation into a

subClassOf relation and the superType schema relation into a superClassOf
relation, unless the Semantic Relation Disambiguator module suggests

another relation.

Listing 6.2 PR-NOR Connector configuration file example – Classification

Scheme

<Prnor i d e n t i f i e r=”PR−NOR−CLTX−01” transformationApproach=”TBox”
topLeve lClass=” P r o t e c t i o n Ac t i v i t i e s ” exte rna lResource=”WordNet”>

<Class from=”CSItem” i d e n t i f i e r=” [CSName] . . [CS I den t i f i e r] ”>
<ObjectProperty from=”subType” to=” subClassOf”/>
<ObjectProperty from=”superType ” to=” superClassOf”/>

</Class>
</Prnor>

Listing 6.3 indicates that the pattern follows the TBox transformation approach

and that it transforms the elements of the Term schema component into ontology

classes. Also, by default, it transforms the NT schema relation into a superClassOf
relation, the RT schema relation into a relatedTerm relation, and the BT schema

relation into a subClassOf relation, unless the Semantic Relation
Disambiguator module suggests another relation. Finally, the UF schema

relation is transformed into a rdfs:label, and the module uses WordNet as external

resource for disambiguation.

130 B. Villazón-Terrazas and A. Gómez-Pérez

Listing 6.3 PR-NOR Connector configuration file example – Thesaurus

<Prnor i d e n t i f i e r=”PR−NOR−TSTX−01” transformationApproach=”TBox”
exte rna lResource=”WordNet”>

<Class from=”Term” i d e n t i f i e r=” [I d e n t i f i e r] ”>
<ObjectProperty from=”NT” to=” superClassOf”/>
<ObjectProperty from=”RT” to=” re latedTerm”/>
<ObjectProperty from=”BT” to=” subClassOf”/>
<ObjectProperty from=”UF” to=” r d f s : l a b e l ”/>

</Class>
</Prnor>

6.5.2.3 Semantic Relation Disambiguator

This module is in charge of obtaining the semantic relation between two NOR

elements. Basically, the module receives two NOR elements from the Trans-
formermodule and returns the semantic relation between them. First, the module

verifies whether it can obtain the subClassOf relation by identifying attribute

adjectives31 within the two given elements of the resource. If this is not the case,

then the module connects the external resource through the External
Resource Service module to get the relation.

The TBox transformation approach converts the resource content into an ontol-

ogy schema. To this end, each NOR term is mapped to a class, and then the

semantics of the relations among those entities is made explicit. Thus, patterns

that follow the TBox transformation approach must make explicit the semantics of

the relations among the NOR terms. To perform this task, we rely on WordNet,

which organizes the lexical information into meanings (senses) and synsets.

Algorithm 1, presented in Sect. 6.5.1.1, describes how to make explicit the

semantics of the relations in the NOR terms.

It is worth mentioning that, when asserting the partOf relation the algorithm

takes advantage of the use of the PartOf content pattern32 to guarantee that

the OWL code generated follows common practices in ontological engineering.

6.5.2.4 External Resource Service

The External Resource Service is in charge of interacting with external

resources for obtaining the semantic relations between two NOR elements. At this

31 Attributive adjectives are part of the noun phrase headed by the noun they modify, for example,

happy is an attributive adjective in “happy people.” In English, the attributive adjective usually

precedes the noun in simple phrases but often follows the noun when the adjective is modified or

qualified by a phrase acting as an adverb.
32 http://ontologydesignpatterns.org/wiki/Submissions:PartOf

6 Reusing and Re-engineering Non-ontological Resources for Building Ontologies 131

http://ontologydesignpatterns.org/wiki/Submissions:PartOf

moment, the module interacts with WordNet. We are now implementing the access

to DBpedia33 due to the reasons explained in Sect. 6.5.1.1.

6.5.2.5 OR Connector

The Ontological Resource (OR) Connector generates the ontol-
ogy in OWL Lite. To this end, this module relies on the OWL API34. It also utilizes

an XML configuration file for describing the ontology to be generated.

An example of the XML configuration file is shown in Listing 6.4. The listing

indicates that the ontology generated will be stored in the asfa.owl file, that its name

will be asfa ontology, and that it will be implemented in OWL.

Listing 6.4 OR Connector configuration file example

<Or name=” as f a onto logy”
ontologyURI=” ht tp : //mccarthy . d ia . f i . upm. es / on t o l o g i e s / a s f a . owl”
on to l ogyF i l e=” as f a . owl” implementation=”OWL”
a l r e adyEx i s t=”no” sepa ra to r=”#”>
</Or>

Finally, to conclude the description of the software library, it is worth mention-

ing that the implementation of this library follows a modular approach; therefore, it

is possible to extend it and include other types of NORs, data models, and

implementations in a simple way, as well as to exploit other external resources

for making explicit the hidden semantics in the relations of the NOR terms.

6.6 Example

In order to evaluate the methodological guidelines proposed in this chapter, we

conducted two experiments in real case scenarios within the SEEMP35 and mIO!36

projects.

6.6.1 SEEMP Project

The main objective of this project was to develop an interoperable architecture for

public employment services (PES). The resultant architecture consisted of (1) a

reference ontology, the core component of the system, that acts as a common

“language” in the form of a set of controlled vocabularies that describes the details

33 http://dbpedia.org/
34 http://owlapi.sourceforge.net/
35 http://www.seemp.org/
36 http://www.cenitmio.es/

132 B. Villazón-Terrazas and A. Gómez-Pérez

http://dbpedia.org/
http://owlapi.sourceforge.net/
http://www.seemp.org/
http://www.cenitmio.es/

of a job posting; (2) a set of local ontologies, each PES uses its own local ontology,

which describes the employment market in its own terms; (3) a set of mappings

between each local ontology and the reference ontology; and (4) a set of mappings

between the PES schema sources and the local ontologies.

In the following sections, we describe the application of our methodological

guidelines for reusing and re-engineering non-ontological resources when building

an occupation ontology.

6.6.1.1 Reusing Non-ontological Resources

This section presents the application of the method for reusing non-ontological

resources within the SEEMP project. It shows the process we followed for selecting

the non-ontological resources to be reused when building the occupation domain

ontology.

Activity 1. Search Non-ontological Resources

Following the suggestions of some domain experts, we searched for the occupation

classifications at (1) the Ramon Eurostat Portal37, (2) the ONET web site38, and (3)

the companies the project partners. Thus, we found the following classifications:

• Standard Occupational Classification System (SOC)

• International Standard Classification of Occupations (ISCO-88)

• International Standard Classification of Occupations, for European Union

purposes, ISCO-88 (COM)

• Occupational Information Network (ONET)

• EURES39 proprietary occupation classification

Activity 2. Assess the Set of Candidate Non-ontological Resources

The goal of this activity was to assess the set of candidate non-ontological

resources. Experts of the occupation domain, software developers, and ontology

practitioners carried out this activity taking as input the set of candidate non-

ontological resources.

Task 1. Extract Lexical Entries
Within this task, we extracted the lexical entries of the aforementioned occupation

classifications. We developed an ad hoc extraction tool for performing automati-

cally the extraction task.

37 http://ec.europa.eu/eurostat/ramon/
38 http://online.onetcenter.org/
39 http://www.eurodyn.com/

6 Reusing and Re-engineering Non-ontological Resources for Building Ontologies 133

http://ec.europa.eu/eurostat/ramon/
http://online.onetcenter.org/
http://www.eurodyn.com/

Task 2. Calculate Precision
Since we were dealing with occupations related to the IT domain, it was impossible

to cover all the IT domain occupations already identified in the ontology

requirements specification document. Thus, we used a constant that represents the

complete set of IT domain occupations. In this case, the cardinality of the complete

set is K. Therefore, the intersection of the complete set with the set of terms

available in the ORSD is the set of terms of the ORSD. Next, we present the

precision for each occupation classification:

Precision ¼ card NORLexicalEntriesf g \ ORSDTerminologyf gf g
card NORLexicalEntriesf g

• SOCPrecision ¼ 6 \ K

26162
¼ 6

26162
¼ 0:0002

• ISCO� 88Precision ¼ 9 \ K

544
¼ 9

544
¼ 0:0165

• ISCO� 88COMPrecision ¼ 9 \ K

520
¼ 9

520
¼ 0:0173

• ONETPrecision ¼ 21 \ K

1167
¼ 21

1167
¼ 0:0179

• EURESPrecision ¼ 89 \ K

355
¼ 89

355
¼ 0:2507

Task 3. Calculate Coverage
Again, since we were dealing with the occupations related to the IT domain, it was

impossible to cover all the IT domain occupations in the ORSD. Thus, we used a

constant K that represents the complete set of IT domain occupations. Next, we

present the coverage for each occupation classification:

Coverage ¼ card NORLexicalEntriesf g \ ORSDTerminologyf gf g
card ORSDTerminologyf g

• SOCPrecision ¼ 6 \ K

K
¼ 6

K

• ISCO� 88Precision ¼ 9 \ K

K
¼ 9

K

134 B. Villazón-Terrazas and A. Gómez-Pérez

• ISCO� 88COMPrecision¼ 9 \ K

K
¼ 9

K

• ONETPrecision¼ 21 \ K

K
¼ 21

K

• EURESPrecision ¼ 89 \ K

K
¼ 89

K

Task 4. Evaluate the Consensus
It was important for the project that resources focused on the current European

reality because the user partners involved in SEEMP are European, and the

outcoming prototype has to be validated in European scenarios. Thus, domain

experts confirmed whether the resources were built with the consensus of the

European community or not. They also explained that ISCO-88(COM) and

EURES proprietary occupation classification contains terminology that had already

reached a consensus.

Table 6.4 summarizes all the information of each non-ontological resource.

Activity 3. Select the Most Appropriate Non-ontological Resources

Following Table 6.1 we selected a non-ontological resource, the EURES proprie-

tary occupation classification.

We followed the same process for selecting the non-ontological resources when

building the remaining ontologies. We provide a table (see Table 6.5) that

summarizes the selection of standards, codes, and classifications accomplished

for building every domain ontology.

6.6.1.2 Re-engineering Non-ontological Resources

In this section, we present the application of the method for re-engineering

non-ontological resources within the SEEMP project. Once we select the non-

ontological resource, we have to transform it into an ontology. Next, we describe

the process of generating an occupation ontology from the EURES proprietary

occupation classification.

Table 6.4 Assessment table for SEEMP occupation standards

NOR Precision Coverage Consensus

SOC 0.0002 6/K No

ISCO-88 0.0165 9/K No

ISCO-88 COM 0.0173 9/K Yes

ONET 0.0179 21/K No

EURES 0.2507 89/K Yes

6 Reusing and Re-engineering Non-ontological Resources for Building Ontologies 135

Activity 1. Non-ontological Resource Reverse Engineering

In this activity, we gathered documentation on the EURES occupation classification

from the European Dynamics SEEMP user partner. From this documentation, we

extracted the schema of the classification scheme, which consists of two tables,

CVO OCCGROUP and CVO OCCUGROUP NAME. Since the data model was not

available in the documentation, it was necessary to extract it for the resource

implementation itself. The EURES occupation classification is modeled following

the snowflake data model and is implemented in a MS Access database.

Activity 2. Non-ontological Resource Transformation

Within this activity, we carried out the following tasks:

1. We identified the transformation approach, the TBox transformation, i.e.,

transforming the resource content into an ontology schema.

2. Then, we searched our local pattern repository for a suitable pattern to re-

engineer NORs, taking into account the transformation approach (TBox

Table 6.5 Standards, codes, and classifications reused

Domain Candidate standards/classifications Selected

standards/

classifications

Justification

Economic sector ISIC, NACE, NAICS NACE Best coverage and

European scope

Education fields ISCED 97, FOET FOET Best coverage and

European scope

Education levels ISCED 97 ISCED 97 Worldwide scope,

widely accepted

Currency Pacific exchange, ISO 4217,

WordAtlas

ISO 4217 Worldwide scope,

widely accepted

Geographic ISO 3166, Regions of the World ISO 3166 Worldwide scope,

widely accepted

Language ISO 639 ISO 639 Worldwide scope,

widely accepted

Language levels CEFR CEFR European scope,

widely accepted

Driving licence EU driving licence EU driving licence European legislation

Skills EURES EURES Coverage and

European scope

Contract types LE FOREM proprietary

classification, ARL proprietary

classification

Mix of both

classifications

Acceptable

coverage in

SEEMP scope

Work condition LE FOREM proprietary

classification

LE FOREM

proprietary

classification

Acceptable

coverage in

SEEMP scope

136 B. Villazón-Terrazas and A. Gómez-Pérez

transformation), the non-ontological resource type (classification scheme), and

the data model (snowflake data model) of the resource.

3. The most appropriate pattern found for this case was the PR-NOR-CLTX-03

pattern. This pattern takes as input a classification scheme modeled with a

snowflake data model and produces an ontology schema.

Activity 3. Ontology Forward Engineering

WSML40 is the ontology implementation language used in the SEEMP project.

Because of the number of occupations of the EURES classification, it was not

practical to create the ontology manually. Therefore, we created an ad hoc wrapper,

implemented in Java, that reads the data from the resource implementation and

automatically creates the corresponding classes and relations of the new ontology

following the suggestions given by the pattern for re-engineering NORs and the

conceptual model.

We followed this process for all the resources identified, being the patterns used

those presented in Table 6.6.

Table 6.6 Resources transformed in the SEEMP project

Resource Type Data model Implementation Pattern used

NACE Classification

scheme

Path enumeration Database PR-NOR-CLTX-01

FOET Classification

scheme

Path enumeration Database PR-NOR-CLTX-01

ISCED 97 Classification

scheme

Adjacency list Database PR-NOR-CLTX-02

ISO 4217 Classification

scheme

Snowflake XML PR-NOR-CLAX-12

ISO 3166 Classification

scheme

Snowflake XML PR-NOR-CLAX-12

ISO 639 Classification

scheme

Snowflake XML PR-NOR-CLAX-12

CEFR Classification

scheme

Proprietary

model

Proprietary

format

EU driving

licence

Classification

scheme

Snowflake Proprietary

format

EURES skill Classification

scheme

Path enumeration Database PR-NOR-CLTX-01

LE FOREM

contracts

Proprietary

classification

Proprietary

model

Proprietary

format

40 http://www.wsmo.org/wsml/

6 Reusing and Re-engineering Non-ontological Resources for Building Ontologies 137

http://www.wsmo.org/wsml/

6.6.1.3 Analysis of the Applicability of the Method

The SEEMP Reference Ontology (SEEMP RO) was developed following the

method for reusing and re-engineering non-ontological resources. It is composed

of 13 modular ontologies: competence, compensation, driving licence, economic
activity, education, geography, job offer, job seeker, labur regulatory, language,
occupation, skill, and time. The main sub-ontologies are the job offer and job
seeker, which are intended to represent the structure of a job posting and a CV,

respectively. While these main two sub-ontologies were built taking as a starting

point some HRXML recommendations, the others derived from some available

international standards (like NACE, ISCO-88 (COM), FOET, etc.), employment

services classifications, and international codes (like ISO 3166, ISO 6392, etc.) that

best fitted the European requirements. Figure 6.8 presents these 13 modular

ontologies (each ontology is represented by a triangle), 10 of which were obtained

Fig. 6.8 SEEMP reference ontology

Table 6.7 SEEMP reference ontology statistical data

Ontology Concepts Attributes Axioms Instances Efforts (man.months)

SEEMP RO 1,985 315 1,037 1,449 6

138 B. Villazón-Terrazas and A. Gómez-Pérez

after re-engineering the standard/classification. The SEEMP Reference Ontology is

available at http://oeg-upm.net/index.php/en/ontologies/99-hrmontology.
In order to illustrate the dimension of the ontology and the ontological

engineers’ efforts required to build it, some statistical data are shown in Table 6.7.

Our experience in SEEMP has shown us that the approach of building ontologies

by reusing and re-engineering non-ontological resources already agreed upon

allows building ontologies faster, with less resources, and with an immediate

consensus. This approach permits making explicit the knowledge implicitly coded

in organization models and standards. By building ontologies in this fashion, we

facilitate that ontologies become reference ontologies in their respective domains.

With respect to the application of the method for reuse and re-engineering, this

was especially useful for guiding the steps of the ontological engineers involved

since this method provides detailed and sufficient guidelines. In addition, the

existence of a well-defined and structured process for building the ontology net-

work in the e-employment domain eased the planning, coordination, and commu-

nication with other non–Semantic Web members of the development team, which

in turn helped to convey reliability to the final result.

6.6.2 mIO! Project

The main objective of the mIO! project is to develop ubiquitous services in an

intelligent environment, adapted to every user and its context by means of mobile

interfaces. The project relies on ontologies for modeling the knowledge.

The following sections describe the application of our methodological

guidelines for reusing and re-engineering non-ontological resources when building

a geographical ontology, which includes continents, countries, and regions.

6.6.2.1 Reusing Non-ontological Resources

This section describes the activities carried out for reusing non-ontological

resources.

Activity 1. Search Non-ontological Resources

Following some of the suggestions made by the domain experts, we searched

geographical location resources on highly reliable web sites. Next, we list the

geographic location classifications:

• ISO 316641 Maintenance Agency (ISO 3166/MA) ISO’s focal point for country

codes

41 http://www.iso.org/iso/en/prods-services/iso3166ma/index.html

6 Reusing and Re-engineering Non-ontological Resources for Building Ontologies 139

http://oeg-upm.net/index.php/en/ontologies/99-hrmontology
http://www.iso.org/iso/en/prods-services/iso3166ma/index.html

• Guide to regions of the world42

• Regions of the world43

Activity 2. Assess the Set of Candidate Non-ontological Resources

Once we had the set of candidate non-ontological resources, we needed to assess

them according to the following criteria: precision, coverage, consensus, and

quality of the resources.

Task 2.1 Extract Lexical Entries
Within this task, we extracted the lexical entries of the aforementioned geographic

location classifications. For this purpose, we used TreeTagger44, a syntactic

annotator.

Task 2.2 Calculate Precision
It was impossible to cover all the geographic locations in the ORSD. Thus, we used

a constant K that represents the cardinality of the complete set of geographical

locations. Next, we present the precision for each geographic location

classification:

Precision ¼ card NORLexicalEntriesf g \ ORSDTerminologyf gf g
card NORLexicalEntriesf g

• ISO3166 ¼ 195 \ K

200
¼ 195

200
¼ 0:975

• GuidetoregionsoftheWorld ¼ 102 \ K

193
¼ 102

193
¼ 0:528

• RegionsoftheWorld ¼ 110 \ K

154
¼ 110

154
¼ 0:714

Task 2.3 Calculate Coverage
Again, it was impossible to cover all the geographic locations in the ORSD.

Thus, we used a constant K that represents the cardinality of the complete set of

42 http://www.countriesandcities.com/regions/
43 http://park.org/Regions/
44 http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/

140 B. Villazón-Terrazas and A. Gómez-Pérez

http://www.countriesandcities.com/regions/
http://park.org/Regions/
http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/

geographic locations. Next, we present the coverage for each geographic location

classification:

Coverage ¼ card NORLexicalEntriesf g \ ORSDTerminologyf gf g
card ORSDTerminologyf g

• ISO3166 ¼ 195 \ K

K
¼ 195

K

• GuidetoregionsoftheWorld ¼ 102 \ K

K
¼ 102

K

• RegionsoftheWorld ¼ 110 \ K

K
¼ 110

K

Task 2.4 Evaluate the Consensus
It was important for the project that resources focused on the current worldwide

reality because the outcoming prototype will be validated by users.

Thus, domain experts evaluated whether the resource was built with the consen-

sus of the worldwide community or not. They confirmed that ISO 3166 has the full

consensus of the community, whereas the other resources have not.

Task 2.5 Evaluate the Quality
In this case, domain experts evaluated whether the resource was built with an

acceptable level of quality. They confirmed that ISO 3166 has an acceptable level

of quality.

Task 2.6 Build the Assessment Table
Table 6.8 summarizes all the information related to each non-ontological resource.

Activity 3. Select the Most Appropriate Non-ontological Resources

According to Table 6.8, we selected the following non-ontological resource: ISO

3166.

Table 6.8 Assessment table for the mIO! geographical locations

NOR Precision Coverage Consensus Quality

ISO 3166 0.975 195/K Yes Yes

Guide to regions of the World 0.528 102/K No No

Regions of the World 0.714 110/K No No

6 Reusing and Re-engineering Non-ontological Resources for Building Ontologies 141

6.6.2.2 Re-engineering Non-ontological Resources

This section presents the application of the method for re-engineering non-

ontological resources within the mIO! project. Once we have the non-ontological

resource selected, the ISO 3166, we had to transform it into an ontology. Next, we

describe the process of generating a geographical location ontology.

Activity 1. Non-ontological Resource Reverse Engineering

In this activity, we gathered documentation about ISO 3166 from its web site. From

this documentation, we extracted the schema of the classification scheme, which

consists of one entity ISO 31661 Entry. Since the data model was not available in

the documentation, it was necessary to extract it for the resource implementation

itself. ISO 3166 is modeled following the snowflake data model and implemented

in XML.

Activity 2. Non-ontological Resource Transformation

In this activity, we carried out the following tasks:

1. We identified the transformation approach, the ABox transformation, i.e., the

transformation of the resource schema into an ontology schema, and the resource

content into ontology instances.

2. Then we searched our local pattern repository for a suitable pattern to re-

engineer NORs, taking into account the transformation approach (ABox trans-

formation), the non-ontological resource type (classification scheme), and the

data model (snowflake data model) of the resource.

3. The most appropriate pattern for this case is the PR-NOR-CLAX-12 pattern.

This pattern takes as input a classification scheme modeled with a snowflake

data model.

4. Finally, we followed the procedure defined by the pattern selected for

transforming the resource components into ontology elements.

Activity 3. Ontology Forward Engineering

In this activity, we formalized and implemented the ontology in OWL. The

ontology is available at http://mccarthy.dia.fi.upm.es/ontologies/.

142 B. Villazón-Terrazas and A. Gómez-Pérez

http://mccarthy.dia.fi.upm.es/ontologies/

6.6.2.3 Analysis of the Applicability of the Method

The network of ontologies of the mIO! project was developed following the NeOn

Methodology (Suárez-Figueroa et al. 2008). This ontology is composed of 11

modular ontologies: provider, service, source, geographical location, environment,
time, device, user, network, interface, and role. Only the geographical location

ontology was built according to the method for reusing and re-engineering

non-ontological resources. The other ontologies were built by reusing available

ontologies or modules.

Fig. 6.9 mIO! Ontology network

Table 6.9 mIO! Ontology statistical data

Ontology Concepts Attributes Axioms Instances Efforts (man.months)

mIO! ontology 432 276 154 120 3

6 Reusing and Re-engineering Non-ontological Resources for Building Ontologies 143

Figure 6.9 presents the mIO! ontology network and includes the location sub-

ontology. The ontology network is available at http://oeg-upm.net/ index.php/en/

ontologies/82-mio-ontologies

In order to illustrate the dimension of the ontology and the efforts required by the

ontological engineers to build it, we outline some data in Table 6.9.

Our experience in mIO! has served us to demonstrate that the approach of

building ontologies by reuse and re-engineering non-ontological resources already

agreed upon allows building ontologies faster, with less resources, and with con-

sensus. With respect to the application of the method for reuse and re-engineering,

this was especially useful for guiding the steps of the ontological engineers

involved since the method provides detailed and sufficient guidelines.

6.7 Conclusions

In this chapter, we have provided a method and its technological support that rely

on re-engineering patterns in order to speed up the ontology development process

by reusing and re-engineering as much as possible available non-ontological

resources. Moreover, we have introduced a three-level categorization of NORs

according to three different features: type of NOR, data model, and implementa-

tion. Finally, we have presented two use cases of the proposed approach.

References

Baeza-Yates Ricardo, Ribeiro-Neto Berthier (1999) Modern information retrieval, 1st edn.

Addison Wesley, Harlow. ISBN 020139829X

Brandon D (2005) Recursive database structures. J Comput Sci Coll 1:295–304

Brockmans S, Haase P (2006) A metamodel and UML profile for networked ontologies.

A complete reference. Technical report, University Karlsruhe, 2006

Carkenord B (2002) Why build a logical data model. http://www.embarcadero.com/resources/tech

papers/datamodel.pdf

Gangemi A, Pisanelli D, Steve G (1998) Ontology integration: experiences with medical

terminologies. Ontol Inf Syst 1:163–178

Gangemi A, Guarino N, Masolo C, Oltramari A (2003) Sweetening WORDNET with DOLCE.

AI Mag 24(3):13–24, ISSN 0738–4602

Gangemi A, Catenacci C, Ciaramita M, Lehmann J (2006) Modelling ontology evaluation and

validation. In: Proceedings of the 3rd European Semantic Web Conference (ESWC2006),

LNCS, vol 4011. Springer, Budva, 2006

Garcı́a R, Celma O (2005) Semantic integration and retrieval of multimedia metadata.

In: Proceedings of the ISWC 2005 workshop on knowledge markup and semantic annotation

(Semannot’2005), Galway, Ireland

Gómez-Pérez A, Manzano-Macho D (2004) An overview of methods and tools for ontology

learning from texts. Knowl Eng Rev 19(3):187–212. ISSN 0269–8889, doi: http://dx.doi.org/

10.1017/ S0269888905000251

Gómez-Pérez A, Fernández-López M, Corcho O (2003) Ontological engineering, Advanced

information and knowledge processing. Springer, New York/London. ISBN 1–85233–551–3

144 B. Villazón-Terrazas and A. Gómez-Pérez

http://oeg-upm.net/
index.php/en/ontologies/82-mio-ontologies
index.php/en/ontologies/82-mio-ontologies
http://www.embarcadero.com/resources/tech papers/datamodel.pdf
http://www.embarcadero.com/resources/tech papers/datamodel.pdf
http://dx.doi.org/10.1017/
http://dx.doi.org/10.1017/

Hepp M (2006) Products and services ontologies: a methodology for deriving owl ontologies from

industrial categorization standards. Int J Semant Web Inf Syst 2(1):72–99

Hepp M (2007) Possible ontologies: how reality constrains the development of relevant

ontologies. IEEE Internet Comput 11(1):90–96

Hepp M,de Brujin J (2007) GenTax: a generic methodology for deriving OWL and RDF-S

ontologies from hierarchical classifications, thesauri, and inconsistent taxonomies. In:

Proceedings of the 4th European Semantic Web Conference (ESWC2007). Springer, Innsbruck

Hirst G (2004) Ontology and the lexicon. In: Handbook on ontologies in information systems.

Springer, Berlin, pp 209–230

Hodge G (2000) Systems of knowledge organization for digital libraries: beyond traditional

authority files. http://www.clir.org/pubs/reports/pub91/contents.html

Hyv€oonen E, Viljanen K, Tuominen J, Sepp€oal€oa K (2008) Building a national semantic web

ontology and ontology service infrastructure -the FinnONTO approach. In: ESWC, vol 1.

Springer, Heidelberg, pp 95–109

ISO 2788 (1986) Documentation – guidelines for the establishment and development of monolin-

gual thesaurus. International Standard Organization (ISO), Report ISO 2788

ISO/IEC FDIS 11179–1 (2004) Information technology – metadata registries – part 1: framework.

International Standard Organization (ISO), Report ISO/IEC FDIS 11179–1

Kimball R, Caserta J (2004) The data warehouse ETL toolkit: practical techniques for extracting,

cleaning, conforming, and delivering data. Wiley, New York. ISBN 0764567578

Maedche A, Staab S (2001) Ontology learning for the semantic web. IEEE Intell Syst 16:72–79

Malinowski E, Zimányi E (2006) Hierarchies in a multidimensional model: from conceptual

modeling to logical representation. Data Knowl Eng 59:348–377

Pinto S, Tempich C, Staab S (2004) DILIGENT: towards a fine-grained methodology for

distributed, loosely-controlled and evolving engineering of ontologies. In: Proceedings of the

16th European Conference on Artificial Intelligence (ECAI 2004). IOS Press, Amsterdam,

Washington, DC, pp 393–397, ISBN 1–58603–452–9

Sabou M, Angeletou S, d’Aquin M, Barrasa J, Dellschaft K, Gangemi A, Lehman J, Lewen H,

Maynard D, Mladenic D, Nissim M, Peters W, Presutti V, Villazón-Terrazas B (2007)

Selection and integration of reusable components from formal or informal specifications.

Technical report, NeOn project deliverable D2.2.1, 2007

Schnurr H-P, Studer R, Sure Y (2001) Knowledge processes and ontologies. IEEE Intell Syst

1(16):26–34

Soergel D (1995) Data models for an integrated thesaurus database. Compat Integr Order Syst

24(3):47–57

Suárez-Figueroa MC, Aguado de Cea G, Buil C, Dellschaft K, Fernández-López M, Garcı́a-Silva

A, Gómez-Pérez A, Herrero G, Montiel-Ponsoda E, Sabou M, Villazón-Terrazas B, Yufei Z

(2008) NeOn Methodology for building contextualized ontology networks. Technical report,

NeOn project deliverable D5.4.1, 2008

Suárez-Figueroa MC, Gómez-Pérez A, Villazón- Terrazas B (2009) How to write and use the

ontology requirements specification document. In: OTM Conferences (2), pp 966–982, 2009

Villazón-Terrazas B, Angeletou S, Garcı́a-Silva A, Gómez-Pérez A, Maynard D, Suárez-

Figueroa MC, Peters W (2008) NeOn deliverable D2.2.2 methods and tools for supporting

reengineering. Technical report, NeOn, 2008

Villazón-Terrazas B, Suárez-Figueroa MC, Gómez-Pérez A (2010) A pattern-based method for re-

engineering non-ontological resources into ontologies. Int J Semant Web Inf Syst 6(4):27–63

Wright SE, Budin G (eds) (1997) Handbook of terminology management, basic aspects of

terminology management. John Benjamins Publishing Company, Amsterdam

6 Reusing and Re-engineering Non-ontological Resources for Building Ontologies 145

http://www.clir.org/pubs/reports/pub91/contents.html

Chapter 7

Ontology Development by Reuse

Mariano Fernández-López, Mari Carmen Suárez-Figueroa,

and Asunción Gómez-Pérez

Abstract This chapter presents methodological guidelines that allow engineers to

reuse generic ontologies. This kind of ontologies represents notions generic across

many fields, (is part of, temporal interval, etc.). The guidelines helps the developer
(a) to identify the type of generic ontology to be reused, (b) to find out the axioms

and definitions that should be reused and (c) to adapt and integrate the generic

ontology selected in the domain ontology to be developed. For each task of the

methodology, a set of heuristics with examples are presented. We hope that after

reading this chapter, you would have acquired some basic ideas on how to take

advantage of the great deal of well-founded explicit knowledge that formalizes

generic notions such as time concepts and the part of relation.

7.1 Introduction

Ontologies play an important role in many knowledge-intensive applications, by

formally defining the conceptualization used by the application and by facilitating

interoperability. Building ontologies from scratch can in general be expensive. In

this sense, one way of reducing the time and costs associated with the ontology

development process is by reusing available ontological resources. Ontologies

developed by reuse can also build on existing good practices (from well-developed

ontologies), thus increasing the overall quality of the results.

M. Fernández-López (*)

Escuela Politécnica Superior, Universidad San Pablo CEU, Urbanización Monteprı́ncipe sn.,

28668 Boadilla del Monte, Madrid, Spain

e-mail: mfernandez.eps@ceu.es

M.C. Suárez-Figueroa • A. Gómez-Pérez

Ontology Engineering Group, Facultad de Informática, Universidad Politécnica de Madrid,

Campus de Montegancedo sn., 28660 Boadilla del Monte, Madrid, Spain

e-mail: mcsuarez@fi.upm.es; asun@fi.upm.es

M.C. Suárez-Figueroa et al. (eds.), Ontology Engineering in a Networked World,
DOI 10.1007/978-3-642-24794-1_7, # Springer-Verlag Berlin Heidelberg 2012

147

mailto:mfernandez.eps@ceu.es
mailto:mcsuarez@fi.upm.es
mailto:asun@fi.upm.es

As mentioned in Chap. 2, the NeOn Methodology presents nine scenarios for

building networks of ontologies. One of these scenarios is Building Ontology
Networks by Reusing Ontological Resources. In this scenario, ontology developers

analyze whether existing ontological resources can be reused in the context of

building an ontology.

The reuse of ontological resources is encouraged by a recent increase in the

number of ontologies available online.

According to our experience, the reuse of ontological resources is useful for

(a) saving time and resources during the ontology development and (b) refining the

Ontology Requirement Specification Document (ORSD) (see Chap. 5) taking into

account the knowledge represented in the candidate ontological resources to be

reused. The latter case refers to the situation in which the engineer finds axioms

and/or definitions of terms that did not appear in the ORSD. For example, in the

development of a drug ontology, the engineer may find a type of drug that had not

been considered in the ORSD. For the sake of simplicity, in this chapter, it is

assumed that the reuse does not imply modifications in the ORSD. If such

modifications are required, an iterative-incremental life cycle model should be

followed (see Chap. 2).

The ontological resource reuse process is often influenced by the type of

ontology to be reused. Ontologies can model domain entities (e.g., drug, disease,

pharmaceutical product) or generic entities, which are considered to be generic

across many fields (van Heijst et al. 1997). For example, the part of relation can be

used to link objects in the mechanical domain (the spark plug is part of the motor)

and also in the domain of cultural activities (the interpretation of Radetzky March is

part of the New Year Concert). Hence, such generic ontologies can be reused in a

wider range of domains.

However, the reuse of large ontologies such as WordNet1 or the NCI ontology

(Golbeck et al. 2003) can cause difficulties because they tend to contain far more

definitions than most applications would normally need. Hence, in the context of a

reuse process, sometimes elements of an ontology (e.g., modules or statements)

have to be extracted first, to be integrated in the new ontology (d’Aquin M et al.

2007b). For this reason, different levels of granularity in the reuse of ontologies can

be distinguished:

• Ontologies can be reused as a whole if they closely meet the expectations and the

needs of the ontology engineer.

• In certain cases, only one part or module2 of an ontology is relevant for reuse.

For example, when building an ontology about lung cancer, it is not always

necessary to reuse an entire ontology about the human body; it suffices to reuse a

module describing concepts related to the lung.

1 http://wordnet.princeton.edu/
2We consider a module (d’Aquin M et al. 2007b) as a part of the ontology that defines the relevant

set of terms for a particular purpose.

148 M. Fernández-López et al.

http://dx.doi.org/10.1007/978-3-642-24794-1_2
http://dx.doi.org/10.1007/978-3-642-24794-1_5
http://dx.doi.org/10.1007/978-3-642-24794-1_2
http://wordnet.princeton.edu/

• In other cases, only some knowledge components from the ontology (the

description of a particular entity, the branch in the taxonomic hierarchy in

which an entity appears, or entity neighborhoods in the ontology) are relevant

for the development needs. In these cases, the reuse of ontological knowledge is

performed at the statement3 level, providing the ontology developer with better

control over the material being reused.

This chapter focuses on providing methodological guidelines for the reuse of

generic ontologies, although most of the recommendations are also applicable to

the reuse of domain ontologies.

7.2 Methodological Guidelines for Reusing Generic

Ontologies

Table 7.1 presents a filling card with the information concerning the generic

ontology reuse process. The card includes the definition, the goal, the inputs and

outputs, the performer of the process, and the time scheduled for the process.

Figure 7.1 shows the workflow and the activities for carrying out the generic

ontology reuse process, that is, selecting the ontology to be reused, and customizing

and integrating it in the ontology to be developed.

The activities shown in Fig. 7.1 are explained in more detail in the rest of the

chapter. For the sake of simplicity, the different activities involved in the whole

process are explained, and it is considered the reuse of just one ontology. When

reusing more than one ontology, the process described should be performed

iteratively.

Along the exposition, an example of reusing a generic ontology in the develop-

ment of the pharmaceutical product ontology network (PPO) (see Chap. 20) is

presented. This ontology will be used as a bridge between proprietary systems for

managing financial and product knowledge interoperability in pharmaceutical

laboratories, companies, and distributors in Spain. In this ontology reuse task, we

have taken into account the four competency questions (CQs) shown in Table 7.2.

They have been obtained from Chap. 7 of the NeOn deliverable D5.4.1 (Suárez-

Figueroa et al. 2008).

The reader can find additional information on ontology reuse in (Suárez-

Figueroa 2010).

3 An ontology statement (or triple) contains the following three components: subject, predicate,
and object.

7 Ontology Development by Reuse 149

http://dx.doi.org/10.1007/978-3-642-24794-1_20
http://dx.doi.org/10.1007/978-3-642-24794-1_7

7.2.1 Activity 1: Selecting the Generic Ontology to be Reused

The goal of this activity is to select the most appropriate generic ontologies to be

reused in the ontology being developed. It is worth mentioning that instead of

reusing available ontologies, practitioners can implement from scratch the neces-

sary axioms and definitions according to some existing formalization, for example,

the one appearing in Annex. On the one hand, the advantage of reusing available

ontologies implemented in a formal language is that ontology developers will save

effort in the transformation of a formalization that is not suitable for run-time

reasoning. On the other hand, the advantage of starting from an existing formalization

is that ontology developers will save effort in the searching, comparison, and

evaluation of candidate ontologies to be reused. In this chapter, we focus on the

reuse option.

Table 7.1 Generic ontology reuse filling card

150 M. Fernández-López et al.

This activity takes as input the ORSD (Chap. 5) and is divided in the following

tasks:

Task 1.1 Reformulating the CQs and adding linking axioms. The main goal of

this task is to reformulate the CQs included in the ORSD of the ontology that is

being developed with vocabulary that could potentially belong to ontologies to be

reused but that do not explicitly appear in the CQs. Additionally, another goal of

Activity 3. Integrating the
ontology to be reused

OUTPUT

Ontology to be
developed +

ontology to be
reused

Task 1.3. Searching for ontologies

ORSD

IN
P

U
T

Ontology Development Team

Ontology Development Team

Ontology Development Team

Task 1.1. Reformulating the CQs and adding linking
axioms

Task 1.2. Identifying the definitions and axioms of the
ontology to be reused

Task 1.5. Determining the most
appropriate ontology to be reused

Ontology Development Team

Task 2.1. Pruning the ontology to be
reused

Task 2.2. Enriching the ontology to be
reused

Task 2.3. Translating the ontology to be
reused

Activity 2. Customizing the
selected ontology

Task 2.5. Evaluating the obtained ontology

Ontology Development Team

Activity 1. Selecting the
ontology to be reused

Task 2.4. Adapting the ontology to be reused
to the design criteria of the ontology to be

developed

Task 1.4. Performing a comparative
study

Fig. 7.1 Activities for reusing generic ontologies

7 Ontology Development by Reuse 151

http://dx.doi.org/10.1007/978-3-642-24794-1_5

this task is to identify axioms that link terms of the CQs to terms that could be

reused. The first column of Table 7.3 shows some typical cases (case 1, case 2, and

case 34) that guide the engineer in transforming CQs and adding linking axioms.

The third column shows the action to carry out in each case. Finally, as an example,

the second and fourth columns present the PPO CQ that matches each case and the

result of applying the action corresponding to the case. For example, given that the

case 2 (Table 7.3) proposes to reformulate CQs using the term is part of, the CQ1

(Table 7.2), what drugs do have paracetamol?, can be expressed as which drugs is
paracetamol part of? Given that the term is part of appears in the new formulation,

the engineer knows that a mereology can be reused (see Annex to review basic

mereology notions).

This task is useful to make explicit abstract terms such as is part of, temporal
point, and temporal interval that can be reused from mereological or time

ontologies.

Task 1.2 Identifying the definitions and axioms of the ontology to be reused. The
goal here is to identify which definitions and axioms can be potentially reused in the

ontology to be developed. The terms whose definition could be reusable from other

ontologies are those terms appearing in the pre-glossary of the ORSD (specifically

in slot 7) (see Chap. 5) and the new terms that appear in the reformulated CQs

Table 7.2 Excerpt of informal host competency questions (pharmaceutical product ontology

case)

CQ id Informal CQ Example of answer

CQ1 What drugs do have paracetamol? Algidol®
Apiretal®
Bisolgrip®
Cortafriol®
Dolgesic®
Dolostop®
Efferalgan®
Frenadol®
Gelocatil®
Pharmagrip®
Termalgin®

CQ2 Which is the composition of Frenadol®? Caffeine

Chlorpheniramine citrate

Dextrometorphan

Paracetamol

CQ3 Which is the main active ingredient of Frenadol®? Paracetamol

CQ4 Which substances do Frenadol® interacts with? Ethyl alcohol

Isoniazid

Propranolol

Rifampicin

4 The rest of the cases are presented in Suárez-Figueroa (2010).

152 M. Fernández-López et al.

http://dx.doi.org/10.1007/978-3-642-24794-1_5

obtained in Task 1.1. The second column of Table 7.4 presents some heuristics that are

useful to find mereology definitions and axioms that could be potentially reused (for

the rest of the heuristics see footnote 4). Such a table shows that the properties of is
part of that are useful for PPO are reflexivity, antisymmetry, transitivity, and the weak

supplementation principle. For example, if ontology developers are interested in

knowing what substances contains a particular substance (e.g., iron), they need to

apply transitivity, since the substance in question can be an indirect part of the drug.

For instance, iron is part of ferrous sulfite, and this is, in its turn, part of Mol Iron®,

which is a drug.Moreover, the definition of the term is proper part of should be reused
to answer questions like CQ2, where the interest is not located in the drug itself.

Task 1.3 Search for ontologies. The ontology development team should search

for ontologies that implement the axioms and definitions identified in Task 1.2.

To perform this task, ontology developers can use a general purpose search

engine (e.g., Google5), Semantic Web search engines (e.g., Swoogle6, Watson7,

Table 7.3 Analysis and transformation of the competency questions and addition of linking

axioms and rules (Task 1.1)

Case Competency question Action to carry out Result of the action

Case 1. Ontology

developers are

interested in knowing

the parts of an object

without including the

object itself

CQ2. Which is the

composition of

Frenadol®?

Reformulate the

CQ to mention

the term is
proper part of

Which are the proper

parts of Frenadol®?

Case 2. Ontology

developers are

interested in knowing

the parts of an object

including the object

itself

CQ1. What drugs do

have paracetamol?

(The inclusion of

the substance itself

is because

paracetamol itself

could be a drug)

Reformulate the

CQ to mention

the term is part
of

Which drugs is

paracetamol part of?

CQ4. Which

substances do

Frenadol® interacts

with?

Which substances do the

parts of Frenadol®

interacts with?

Case 3. The CQ refers to

a relation S that is

subrelation of

isPartOf

CQ3. Which is the

main active

ingredient of

Frenadol®?

Introduce a linking

axiom

establishing

that S is

subrelation of

is part of

Introduce, when the

mereology

implementation is

reused, the following

axiom: Is main active
ingredient of is a
subrelation of is
part of?

5 http://www.google.es/
6 http://swoogle.umbc.edu/
7 http://watson.kmi.open.ac.uk

7 Ontology Development by Reuse 153

http://www.google.es/
http://swoogle.umbc.edu/
http://watson.kmi.open.ac.uk

Sindice8, Sigma9), repositories (e.g., the Protégé ontology library10, the Open

Biological and Biomedical Ontologies11, and Cupboard12), and other known

ontologies (for instance, mereology terms can be reused from Dolce-Lite13,

SUMO-OWL14, etc.).

For example, Watson is a Semantic Web search engine developed as part of the

NeOn project which provides features to search, select, and integrate ontologies

available online (d’Aquin and Motta 2011). Watson collects, indexes, and provides

access to ontologies crawled from the web. From a user interface perspective, it can

be seen as a classical search engine, taking as input keywords (e.g., based on the

ORSD) and providing as a result a list of ontologies that match these keywords,

together with information about each ontology, and about entities in them that are

relevant to the given keywords. Ontologies and entities can be further explored

online, using the provided navigation features. As part of its indexing process,

Watson also extracts information about each ontology, such as the underlying

language, its size, and metadata that the corresponding file might include. Search

results from Watson often include thousands of ontologies. They can be further

reduced by using filters (search options) regarding the scope of the search (in local

names, labels, comments, or any other literal of an entity), the type of entities to

consider (classes, properties, or individuals), and how strict the match should be. In

addition, developers’ background knowledge helps in the filtering.

Table 7.4 Identification of definitions and axioms to reuse from a mereology (Task 1.2)

Axioms and

definitions

When they are useful The condition

is fulfilled

A.1. Is part of
reflexivity

Recommended if its implementation is possible, to ensure

the right meaning of part of
Yes

A.2. Is part of
antisymmetry

Recommended if its implementation is possible, for

consistency verification

Yes

A.3. Is part of
transitivity

X has parts X1, X2, . . ., Xn. In its turn, there is some Xiwith

parts Xi1, Xi2, . . ., Xim. That is, X has several levels of

parts. Besides, ontology developers are interested in

all the levels when they ask: which are the parts of X?

Yes

D.1. Is proper part of
definition

The case 1 (see Table 7.3) is fulfilled Yes

A.4. Is part of weak
supplementation

Recommended if its implementation is possible, for

consistency verification

Yes

8 http://sindice.com/
9 http://sig.ma/
10 http://protege.cim3.net/cgi-bin/wiki.pl?ProtegeOntologiesLibrary
11 http://www.obofoundry.org/
12 http://cupboard.open.ac.uk
13 http://www.loa-cnr.it/ontologies/DOLCE-Lite.owl
14 http://www.ontologyportal.org/translations/SUMO.owl.txt

154 M. Fernández-López et al.

http://sindice.com/
http://sig.ma/
http://protege.cim3.net/cgi-bin/wiki.pl?ProtegeOntologiesLibrary
http://www.obofoundry.org/
http://cupboard.open.ac.uk
http://www.loa-cnr.it/ontologies/DOLCE-Lite.owl
http://www.ontologyportal.org/translations/SUMO.owl.txt

In addition to its user interface, Watson includes a set of open APIs making it

possible for application developers to find and exploit online ontologies directly

from the provided infrastructure. This API has been used to create an interface to

Watson from the NeOn Toolkit, where definitions of specific classes and properties

can be found and reuse: the Watson plugin (d’Aquin et al. 2008). Using the Watson

plugin, an initial “skeleton” model can be defined as a basis for searching relevant

definitions from online ontologies. Selecting a concept or a property, the user can

obtain list of statements that corresponds to alternative representations of this class

and properties, and directly integrate such representations (partially or completely)

in the ontology under development.

In addition to the Watson plugin, other developments have been integrated with

Watson with the goal of facilitating ontology search and reuse. For example, in

addition to extracted information, Watson provides a simple visual summary of

each ontology using the key concept extraction mechanism described in (Peroni

et al. 2008). Mechanisms such as visual summaries and the Watson indexing

process were also reused to create Cupboard (d’Aquin and Lewen 2009), an

ontology repository system, where users can publish ontologies and search them

in a way similar to Watson.

As an example, Table 7.5 presents some ontologies that define mereological

relations.

Task 1.4 Performing a comparative study. The goal here is to compare the

candidate ontologies obtained in Task 1.3 with the axioms and definitions identified

in Task 1.2. This comparative study is represented in the form of a table to facilitate

its use. In the table, each row represents the set of definitions (or axioms) identified

in Task 1.2, and each column, the ontologies found in Task 1.3.

As an example, a comparative table of ontologies implementing mereologies is

shown in Table 7.6. The symbol “X” means that the feature is represented in the

ontology. In the example, the definitions of underlap and disjoint, and the weak

supplementation principle are formalized in formal mereologies (see Annex), but

they do not appear in any of the OWL ontologies that appear in the table.

Task 1.5 Determining the most appropriate ontology to be reused. The goal of

this task is to determine which of the candidate ontologies identified in Task 1.3 is

the most appropriate to be reused in the ontology being developed. To determine

such an ontology, the analysis following Fig. 7.2 is carried out.

Table 7.5 Mereology implementations (Task 1.3)

Found mereology implementations Project or institution

Single part wholea W3C

SUMO-OWL IEEE Standard Upper Ontology working group

Dolce-Lite Italian Research Council (CNR)

Oswebsiteb OS Open data

OBO Open Biological and Biomedical Ontologiesc

ahttp://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/part.owl
bhttp://www.ordnancesurvey.co.uk/oswebsite/ontology/Mereology.owl
chttp://www.berkeleybop.org/ontologies/obo-all/relationship/relationship.owl

7 Ontology Development by Reuse 155

http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/part.owl
http://www.ordnancesurvey.co.uk/oswebsite/ontology/Mereology.owl
http://www.berkeleybop.org/ontologies/obo-all/relationship/relationship.owl

Features identified in Task 1.2 (reflexivity, transitivity, etc.) are called functional

features, while the tag non-functional is used for the rest of features (reuse eco-

nomic cost, code clarity, etc.). A weight of 0.75 has been assigned to non-functional

features and 0.25 to the functional ones. These weights have been assigned because,

according to the author’s experience, adding new functional features to an ontology

that scores well with respect to the non-functional ones is, in most cases, easier than

Reuse economic cost

Understandability effort

Quality of the
documentation

Non-functional analysis

Code clarity

Integration effort

Adequacy of knowledge
extraction

Functional analysis

Necessity of bridge terms

Availability of tests

Practical support

…

Reliability

…

…

Final result

Is used to calculate

Legend:

Variable to be assigned a value

Fig. 7.2 How to take the decision of choosing an ontology (Task 1.5)

Table 7.6 Comparative study of mereology ontologies (Task 1.4)

Axioms and definitions Single part whole SUMO-OWL Dolce-Lite Oswebsite OBO

Includes the relation isPartOf X X X X X

A.1. Reflexivity

A.2. Antisymmetry

A.3. Transitivity X X X X

D.1. Proper part X X X

D.2. Direct part X X

D.3. Overlap X X

D.4. Underlap

D.5. Disjoint

A.4. Weak supplementation
The shadow features are required by the host ontology of section 6 use case (Task 1.2)

156 M. Fernández-López et al.

overcoming the lack of compliance in non-functional properties. The exact value of

each weight can be obtained using different procedures. One of them is by means of

the utility theory (Jiménez et al. 2003). Another one is by means of former

experience; this is the option we have used. That is, we have adjusted the weights

so that the quantitative result applied to different cases of generic ontology reuse is

equal to the one recommended by experienced people in this task. The first option

follows a prescriptive approach, whereas the second, a descriptive one.

With the objective of having a reference to compare the scores, the score of an

ideal ontology has been considered as a normalization denominator. Let us note that

if this ideal reference is not provided, it is not easy to know the significance of the

difference between the ontology scores. Thus, for example, without this ideal

reference, if the difference between ontologies o1 and o2 is 0.4, the engineer cannot
necessarily determine how large such difference is.

Given an ontology ont, the following formula to calculate the score of the

functional features analysis is used:

ScoreFunctionalFeaturesont ¼
P
i

valueontðfunctionalFeatureiÞ
P
i

valueidealOntðfunctionalFeatureiÞ � 100% (7.1)

where valueont(functionalFeaturei) is the value of functional feature i for
the ontology ont, and valueidealOnt(functionalFeaturei) is the value of

functional feature i for an ideal ontology, that is, the number of features (axioms

and definitions) obtained in Task 1.4.

Concerning non-functional features analysis, it is carried out on the basis of the

following four dimensions:

• Reuse economic cost. It refers to the estimate of the economic cost needed for

accessing and using the candidate ontology. If the candidate ontology has any

type of license, then the cost of acquisition and/or exploitation should be taken

into account (Gómez-Pérez and Lozano-Tello 2005).

• Understandability effort. It refers to the estimate of the effort needed for

understanding the candidate ontology. In this case, the following criteria should

be analyzed:

– Quality of the documentation. It refers to whether there is any communicable

material used to describe or explain different aspects of the candidate ontol-

ogy (e.g., modeling decisions). The documentation should explain the

statements contained in the ontology so that a nonexpert could understand

them (Pinto and Martins 2001).

– Availability of external knowledge sources. It refers to whether the candidate
ontology has references to documentation sources and/or if experts are easily

available.

– Code clarity. It refers to whether the code is easy to understand and modify,

that is, if the knowledge entities follow unified patterns and are intuitive

7 Ontology Development by Reuse 157

(Pinto and Martins 2001). It is advantageous to use the same pattern to make

sibling definitions, thus improving ontology understanding and making it

easier to include new definitions (Gómez-Pérez and Rojas 1999). For exam-

ple, if it has been decided to distinguish between Frenadol product and

Frenadol substance, the same distinction should be made for the rest of

drugs (Efferalgan, Dolostop, etc.). Clarity also refers to whether the code is

well documented, that is, if it includes clear and coherent definitions and

comments for the knowledge entities represented in the candidate ontology.

The difference between this criterion and the quality of the documentation is

that clarity refers to the comments and the definitions inside the code;

meanwhile, the quality of the documentation refers to external documentation

(papers, manuals, etc.).

• Integration effort. It refers to the estimate of the effort needed for integrating the

candidate ontology into the ontology being developed. In this case, the following

criteria should be analyzed:

– Adequacy of knowledge extraction. It refers to whether it is easy to identify

parts of the candidate ontology to be reused and to extract them. For example,

in large and not modularized ontologies (e.g., SUO), the difficulty to extract

the part of the knowledge we are interested in is especially high.

– Adequacy of naming conventions. It refers to whether both ontologies (the

candidate and the one being developed) follow the same rules for naming the

different ontology components (e.g., concept names should start with capital

letters, relation names should start with non-capital letters).

– Adequacy of the implementation language. It refers to whether both

languages (the candidate ontology’s and the ontology’s being developed)

are the same, or at least are able to represent similar knowledge with the

same granularity.

– Knowledge clash. It refers to whether there are contradictory bits of knowl-

edge between the candidate ontology to be reused and the ontology being

developed (e.g., discrete time versus continuous time assumption).

– Adaptation to the reasoner. It refers to whether the adaptation of definitions

and axioms that satisfy the existing restrictions of the reasoner is needed (e.g.,

explicit definitions can be included in OWL ontologies; however, this kind of

definitions cannot be included in ontologies written in Prolog).

– Necessity of bridge terms. It refers to whether it is necessary to create new

linking axioms and/or relations to integrate the candidate ontology to be

reused into the ontology being developed.

• Reliability. It refers to an analysis of whether ontology developers can trust the

candidate ontology to be reused. In this case, the following criteria should be

considered:

– Design criteria. It refers to whether the ontology has been built according to

the design criteria assumed by the development team of the domain ontology.

158 M. Fernández-López et al.

For example, one design criterion is the use of standards of the domain (on

pharmacy, medicine, etc.) if they exist.

– Availability of tests. It refers to whether tests are available for the candidate

ontology to be reused. Although it is not still usual in ontological engineering,

the development team could publish the tests used during the ontology

construction.

– Former evaluation. It refers to whether the ontology has been properly

evaluated, not only by means of automatic unit tests but also by domain

and ontology modeling experts.

– Theoretical support. It refers to whether the candidate ontology is supported

by a sound theory, explicitly described in a document.

– Development team reputation. It refers to whether the development team of

the candidate ontology is known to be experienced and competent.

– Purpose reliability. It refers to whether the candidate ontology has been

developed as a simple example or for a stronger purpose.

– Popularity. It refers to whether there are well-known projects or ontologies

reusing the candidate ontology (Lozano-Tello 2002).

Table 7.7 shows the criteria (organized by dimensions) and the ways to measure

them. In the table, for each criterion, there is (a) a range of values (an interval of

linguistic values or a natural number), (b) an explanation of how to measure the

criterion, and (c) a numerical weight. The numerical weights are proposed here by

default, according to the importance the authors give to the different criteria; for

example, the criterion design criteria is extremely important for us, and therefore

we assign a numerical weight of 10; however, the criterion purpose reliability is not
so important for us, therefore, we give it a weight of 3. It is worth mentioning that

such numerical weights depend on the importance the ontology developer gives to

the different criteria, and that such weights can be modified. The symbols (+) and

(�) in the weights are specified to indicate whether the criterion counts in a positive

or a negative way, respectively. These symbols cannot be modified by the ontology

developer.

Thus, ontology developers should fill a table and analyze the candidate

ontologies with respect to the abovementioned criteria, taking into account the

different ways to measure each criterion and the possible values that can be

assigned.

Having filled Table 7.7 with different values for each criterion and for each

candidate ontology, ontology developers should obtain a score for each candidate

ontology and then decide which one is the most appropriate. To obtain such a score,

the following method is proposed:

• To transform linguistic values, the following transformation rules are proposed:

– Value ¼ Unknown ! ValueT ¼ 0.

– Value ¼ Low ! ValueT ¼ 1 if the weigh is (+), 3 otherwise.

– Value ¼ Medium ! ValueT ¼ 2.

– Value ¼ High ! ValueT ¼ 3 if the weigh is (+), 1 otherwise.

7 Ontology Development by Reuse 159

Table 7.7 Decision criteria to select an ontology (Task 1.5)

Criteria Range of values How to measure it Weight

Reuse cost

Reuse economic

cost

{Unknown, low,

medium,

high}

Asking the owner for an estimate (�) 10

Understandability effort

Quality of the

documentation

{Unknown, low,

medium,

high}

Analyzing if the ontology has documentation

and if such documentation really explains

the ontology itself, as well as modeling

criteria used during the ontology

development

(+) 8

Availability of

external

knowledge

{Unknown, low,

medium,

high}

Analyzing if in the ontology documentation

there is any reference to external sources

that could be used to better understand the

ontology

(+) 7

Code clarity {Unknown, low,

medium,

high}

Inspecting the ontology code analyzing the

complexity of the definitions (and axioms)

implemented in the ontology

(+) 8

Integration effort

Adequacy of

knowledge

extraction

{Unknown, low,

medium,

high}

Analyzing if the ontology is modularized or if it

can be modularized in an easier way

(+) 9

Adequacy of naming

conventions

{Unknown,

Low,

Medium,

High}

Comparing the naming conventions of both

ontologies

(+) 5

Adequacy of the

implementation

language

{Unknown, low,

medium,

high}

Comparing the ontology language of both

ontologies. If both languages are different,

analyzing the loss of knowledge in the

translation

(+) 7

Knowledge clash {Unknown, low,

medium,

high}

Comparing modeling decisions of both

ontologies

(�) 7

Adaptation to the

reasoner

{Unknown, low,

medium,

high}

Comparing the reasoners related to the

ontology language of both ontologies

(+) 7

Necessity of bridge

terms

{Unknown, low,

medium,

high}

Inspecting the ontology code and the result of

Task 1.1 (see Table 7.3)

(�) 6

Reliability

Design criteria {Unknown, low,

medium,

high}

Analyzing if the ontology is built according to

the design criteria assumed by the

development team of the domain ontology

(+) 10

Availability of tests {Unknown, low,

medium,

high}

Analyzing if the ontology documentation refers

to existing unit tests

(+) 8

Former evaluation {Unknown, low,

medium,

high}

Analyzing if the ontology documentation refers

to different types of evaluation (automatic

unit tests, human evaluation, etc.)

(+) 8

(continued)

160 M. Fernández-López et al.

– where:

– ValueT is the transformed value

– Value is the linguistic value provided by the ontology developer

Given that we want to penalize ontologies about which we have less knowledge,

we have assigned a value of 0 to unknown.

• The score that synthesizes the non-functional features contribution is the follow-

ing weighted mean:

ScoreNon-FunctionalFeaturesont ¼
X

i

ValueTont;i � WeightjP
i

Weighti
� 100% (7.2)

where:

– ScoreNon-FunctionalFeaturesont is the score for the candidate ontology ont
for the set of criteria

– j is a particular criterion of those included in Table 7.7

– ValueTont,j is the transformed value for the criterion j in the ontology ont
– Weightk is the numerical weight associated to the criterion k
– Finally, applying the aforementioned weights of 0.25 and 0.75 for functional

and non-functional features respectively, the following formula is applied:

Score ¼ 0:25� ScoreFunctionalFeaturesþ 0:75
� ScoreNon-FunctionalFeatures: (7.3)

After applying the previous formula to all the candidate ontologies, ontology

developers should select the candidate ontology with the best normalized scored.

Table 7.7 (continued)

Criteria Range of values How to measure it Weight

Theoretical support {Unknown, low,

medium,

high}

Analyzing if the ontology documentation refers

to the theory on which the ontology is based

(+) 10

Development team

reputation

{Unknown, low,

medium,

high}

Searching for information about the ontology

development team (other ontologies

developed, papers published, etc.)

(+) 8

Purpose reliability {Unknown, low,

medium,

high}

Analyzing if the ontology documentation refers

to the purpose for which the ontology was

developed

(+) 3

Popularity {Unknown, low,

medium,

high}

Analyzing if the ontology documentation refers

to other ontologies and/or projects reusing

the ontology

(+) 7

7 Ontology Development by Reuse 161

As an example, in the context of the PPO case, we have filled in the values

associated with the OWL versions of SUO-OWL and Dolce-Lite, which are shown

in Table 7.8. The scores of the functional features have been obtained from

Table 7.6.

The results in Task 1.5 have been very close. Given that we have found top-level

concepts of SUMO-OWL like biologically active substance andmolecule (and their
ancestors) useful for PPO, the criterion adequacy of knowledge extraction has been
assigned high for this ontology and, consequently, has obtained the best score

(Table 7.9).

For this example, we have used a spreadsheet. For the future, we plan to support

the automation of this task in NeOn Toolkit.

Table 7.8 Determining the most appropriate mereology implementation (Task 1.5)

Criteria Weight Values

Single part

whole

SUMO-

OWL

Dolce-

Lite

Oswebsite OBO

Reuse cost

Reuse economic cost (�) 10 Low Low Low Low Low

Understandability effort

Quality of the

documentation

(+) 8 High High High Unknown Unknown

Availability of external

knowledge

(+) 7 High High High Unknown Unknown

Code clarity (+) 8 High High High High High

Integration effort

Adequacy of knowledge

extraction

(+) 9 High High Low Low Low

Adequacy of naming

conventions

(+) 5 Low High Low High Low

Adequacy of the

implementation

language

(+) 7 High High High High High

Knowledge clash (�) 7 Low Low Low Low Low

Adaptation to the reasoner (+) 7 High High High High High

Necessity of bridge terms (�) 6 Low Low Low Low Low

Reliability

Design decisions (+) 10 High High High High High

Availability of tests (+) 8 Unknown Unknown Unknown Unknown Unknown

Former evaluation (+) 8 Unknown Unknown Unknown Unknown Unknown

Theoretical support (+) 10 High High High Unknown Unknown

Development team

reputation

(+) 8 High High High High High

Purpose reliability (+) 3 Low Unknown Unknown High High

Popularity (+) 7 Unknown Unknown Unknown Unknown Unknown

162 M. Fernández-López et al.

7.2.2 Activity 2: Customizing the Selected Generic Ontology

The goal of this activity is to customize the ontology selected in Activity 1

according to the needs of the domain ontology being developed. This activity

consists of the following tasks:

Task 2.1 Pruning the ontology to be reused according to the needed features.
The goal of this task is to prune the selected ontology taking into account the

features needed in the domain ontology that is being developed. Thus, for example,

if the definition of overlap is defined in the generic ontology, but it is not necessary

in the resulting ontology, it should be removed.

Task 2.2 Enriching the ontology to be reused. The goal of this task is to extend

the ontology selected with the new conceptual structures needed in the domain

ontology being developed. In the PPO example, we have added transitivity to the

part and properPart object properties, reflexivity and antisymmetry to part, and
asymmetry and irreflexivity to properPart.

When pruning and enriching the ontology, it is necessary to take into account

that the axioms and definitions to be reused may be applicable to a category that

does not completely include all the individuals of interest in our domain ontology.

If this happens, an adaptation of the axioms and definitions should be performed.

Task 2.3 Translating the ontology to be reused into the implementation language
of the domain ontology being developed. The goal of this task is to translate the

selected ontology into the implementation language of the domain ontology being

developed if those two ontologies are in different languages.

An ontology can be translated in an automatic or manual way. It is important to

point out that a complete translation into different languages is not always possible.

For example, let us suppose the following implementation in Prolog of overlaps
and disjoint:

overlaps(X, Y) :- isPartOf(Z, X), isPartOf(Z, Y).
disjoint(X, Y) :- \+overlaps(X, Y).

The rule corresponding to disjoint cannot be implemented in OWL. In fact, let us

note that given that Prolog works under the closed world assumption, if common

Table 7.9 Synthesis of the results of determining the most appropriate mereology implementation

(Task 1.5)

Single

part

whole

SUMO-

OWL

Dolce-

Lite

Oswebsite OBO

Score for non-functional features. See formula

(7.2). Henceforth, this result will be

referred as (3)

85.33% 87.2% 79.73% 64.8% 62.13%

Score for functional features resulting from

task. See Table 7.6 and formula (7.1).

Henceforth, this result will be referred as (4)

33.33% 33.33% 50% 33.33% 33.33%

Final score ¼ 0.75 � (3) + 0.25 � (4) 72.33% 73.73% 72.3% 56.93% 54.93%

7 Ontology Development by Reuse 163

parts of substance1 and substance2 have not been represented, the answer

to the query:

?:- disjoint(substance1, substance2).

will be true. However, it is not possible to attain this effect directly with OWL

(open world assumption).

Task 2.4 Adapting the ontology to be reused to the design criteria followed in the
ontology to be developed. The following modifications have to be done in most

cases: (a) changing names (concepts, properties) to adapt them to the naming

conventions used in the ontology network being developed and (b) adding range

to properties. For example, we have adapted the names to the convention used in

PPO. Thus, part has been changed to isPartOf.
Task 2.5 Evaluating the obtained ontology. The goal of this task is to evaluate

from a content perspective if there are no errors in the ontology. This task is

described in detail in Chap. 9.

7.2.3 Activity 3: Integrating the Generic Ontology to be Reused
in the Ontology Being Developed

The goal of this activity is to integrate the ontology obtained in Activity 2 in the

ontology being developed. The development team should decide whether:

• To import the customized ontology. The advantage is that the resulting devel-

oped ontology will be structured in different modules15 (see Chap. 10).

• To copy the customized ontology. This can be a good solution if the customized

ontology belongs to the same domain as the one of the ontology to be developed.

For example, if the customized ontology adds more drug types to a drug

ontology.

In any case, links between terms of the reused ontology and the ontology to be

developed should be established. In the case of PPO, we have taken advantage of

the possibilities that SUMO-OWL offers us to easily represent different

perspectives of the notion of drug, for example, drug as a substance that acts in

our organism and drug as a product that can be sold. Moreover, given that

transitivity, antisymmetry, etc. involve individuals, we have added an individual

for each type of substance and product. Therefore, the application that uses the PPO

maintains the individuals corresponding to particular entities (e.g., Frenadol C243,

corresponding to Frenadol box with manufacturing lot C243) and the individuals

that represent products and substances in a general way. Thus, for example, the

15 The term module has here the pragmatic sense equivalent to the d’Aquin’s reference cited in the

Introduction.

164 M. Fernández-López et al.

http://dx.doi.org/10.1007/978-3-642-24794-1_9
http://dx.doi.org/10.1007/978-3-642-24794-1_10

system can infer that caffeine is part of Frenadol because there is an individual of

caffeine (also with tag “caffeine”) that is part of an object Frenadol, that is, an
individual of Frenadol. We have also added the axioms identified in Table 7.3

(see Sect. 7.2.1) (e.g., isMainActiveIngredient is subrelation of isPartOf).
To answer CQ4, we have added this rule to the ontology:

interactsWith(?x, ?y), isPartOf(?x, ?z) ->
interactsWith(?z, ?y)

Fig. 7.3 Partial view of the concept and the object property hierarchies (Snapshot taken from

NeOn Toolkit)

7 Ontology Development by Reuse 165

Table 7.10 Formal host competency questions that require part of modeling (for the sake of

simplicity, prefixes, and value data types are omitted in the answers)

Informal CQ Formal CQ Example of answer

What drugs
do have
paracetamol?

CQ1

SELECT ?X

WHERE

{

?X rdf:type ub:DrugSubstance .

ub:Paracetamol ub:isProperPartOf

?X .

}

Which is the
composition
of
Frenadol®?

CQ2

SELECT ?X

WHERE

{

?X ub:isProperPartOf

ub:FrenadolSubstance .

}

|X|

=====================

|FrenadolSubstance

|BisolgripSubstance

|CortafriolSubstance

|DolgesicSubstance

|TermalginSubstance

|AlgidolSubstance

|EfferalganSubstance

|DolostopSubstance

|GelocatilSubstance

|ApiretalSubstance

|PharmagripSubstance

|X|

=====================

|Dextrometorphan

|CitrateOfChlorpheniramine

|Caffeine

|Paracetamol

(continued)

166 M. Fernández-López et al.

That is, if a substance ?x interacts with another substance ?y, then the latter

interacts with every part of ?x. Thus, for example, given that paracetamol interacts

with the ethyl alcohol, Frenadol® also interacts with ethyl alcohol.

A partial view of the resulting ontology is shown in Fig. 7.3.

The resulting ontology should be evaluated. In the PPO case, besides other tests,

we have checked that the CQs are answered (see Table 7.10).

7.3 Conclusions and Future Work

The reuse of (well-developed) ontologies allows spreading good practices and

increasing the overall quality of ontological models. In this chapter, we have

presented how to carry out this process. The guidelines shown here provide the

methodological assistance to Scenario 3 in the NeOn Methodology (Chap. 2).

Given that the reuse of an ontology usually implies pruning it, ontology reuse

usually implies statement reuse (see (Suárez-Figueroa 2010) to know more about

how to reuse domain ontologies as well as ontology statements). Consequently, we

have not distinguished between these two classes of reuse.

It is also worth mentioning that interesting knowledge represented in ontologies

may be found by chance. For instance, part of the knowledge on substances and

Which is the
main active
ingredient of
Frenadol®?

CQ3

SELECT ?X

WHERE

{

?X ub:isMainActiveIngredientOf

ub:FrenadolSubstance

}

| X |

===============

| Paracetamol |

Which
substances do
Frenadol®
interacts
with?

CQ4

SELECT ?X

WHERE

{

ub:FrenadolSubstance

ub:interactsWith

?X .
}

| X |

================

| Rifanpicin |

| Propranolol |

| Isionazid |

| EthylAlcohol |

Informal CQ Formal CQ Example of answer

.

Table 7.10 (continued)

7 Ontology Development by Reuse 167

http://dx.doi.org/10.1007/978-3-642-24794-1_2

products reused from SUMO-OWL has been found when we were searching for

mereology knowledge.

The NeOn Toolkit includes the Watson plugin to support ontology search. An

objective for future development will be to develop the necessary plugin to assist

with the other tasks associated with ontology reuse, especially for the selection of

the most appropriate ontology (Task 1.5).

In addition, it would be interesting to perform a comparison of the costs of

(a) reusing generic ontologies versus (b) developing what is required from scratch.

Annex: Mereology

A mereology is a formal theory of parts and associated concepts (Borst 1997;

Schneider 2003). We have said “a mereology” instead of “the mereology” because

different assumptions can be taken into account in the formalization of parthood.

Therefore, different mereologies can be proposed.

In the following paragraphs, we will show one of the mereologies presented by

Varzi (2007).

Theory M. Most of the authors agree on the following core of axioms (named

with A) and definitions (named with D) (Varzi 2007). Along these paragraphs, we

use examples of territories to clarify the meaning of axioms and definitions. The

mentions to administrative units really refer to their physical territories.

• A.1. Reflexivity. Every object of the universe of discourse is a part of itself. For

instance, the EU is part of the EU.

• A.2. Antisymmetry. If an object x is a part of y, and y is a part of x, then x and y are
the same object. For instance, if the territory T1 is part of the territory T2, then the
only way so that T2 is part of T1 is being T1 and T2 the same territory.

• A.3. Transitivity. If x is a part of y, and y is a part of z, then x is a part of z. For
instance, the Community of Madrid is part of Spain, and Spain is part of the EU;

therefore, the Community of Madrid is a part of the EU.

A number of additional mereological predicates can be then introduced by

definition:

• D.1. Proper part. A proper part is a part that is other that the individual itself. For

example, Spain is proper part of the EU, since Spain is part of the EU and they

are different entities.

• D.2. Direct part. X is direct part of y if and only if x is proper part of y and there is
no part between x and y16. For example, Spain is direct part of the EU, but

Madrid is not, since Spain is a part between Madrid and the EU.

16 http://hcs.science.uva.nl/projects/NewKACTUS/library/lib/mereology.html

168 M. Fernández-López et al.

http://hcs.science.uva.nl/projects/NewKACTUS/library/lib/mereology.html

• D.3. Overlap. The relation overlaps is defined as a sharing part. That is, x and y
overlap if and only if there is a z such that z is part of x and part of y. For instance,
Nordic countries and the EU overlap, since there are Nordic countries which are

parts of the EU.

• D.4. Underlap. The relation underlaps is defined as a sharing whole. That is, x
and y underlap if and only if there is a z such that x and y are parts of z. For
example, the Netherlands, Sweden, and Spain underlap the same common

whole: the EU.

• D.5. Disjoint. The disjoint relation is the logical negation of overlaps. For
example, Belgium and the Netherlands are disjoint territories.

Theory M may be viewed as embodying the common core of any mereological

theory. A.1–A.3 should be extended to build a mereology.

Minimal mereology (MM). A way to extend M is assuming the following

principle (Varzi 2007):

• A.4. Weak supplementation principle. Every object x with a proper part y has

another part z that is disjoint from y. The domain of territories, for example,

fulfills this principle. For example, given that Spain is proper part of the EU, then

the EU has other parts that are disjoint from Spain: the Netherlands, Luxemburg,

Sweden, etc.

Most of the authors strengthen that A.4 should be incorporated toM as a further

fundamental principle on the meaning of part of. Other authors provide scenarios

that could be counterexamples of this principle. However, it is far from being

demonstrated that such supposed counterexamples have implications in computer

applications.

The rest of mereologies starting from MM are explained with examples in

(Fernández López et al. 2008; Suárez-Figueroa 2010).

References

Borst WN (1997) Construction of engineering ontologies. Centre for Telematica and Information

Technology, University of Tweenty, Enschede

d’Aquin M, Lewen H (2009) Cupboard – a place to expose your ontologies to applications and the

community. Demo at European Semantic Web Conference, ESWC 2009, Heraklion, Greece

d’Aquin M, Motta E (2011) Watson, more than a semantic web search engine, Semant Web J 2,

IOS Press

d’Aquin M, Sabou M, Dzbor M, Baldassarre C, Gridinoc L, Angeletou S, Motta E (2007a)

Watson: a gateway for the semantic web. Poster session of the European Semantic Web

Conference, ESWC 2007, Busan

d’Aquin M, Schlicht A, Stuckenschmidt H, Sabou M (2007b) Ontology modularization for

knowledge selection: experiments and evaluations. In: 18th international conference on Data-

base and Expert Systems Applications, DEXA 2007, Regensburg, Germany

d’Aquin M, Sabou M, Motta E (2008) Reusing knowledge from the semantic web with the Watson

Plugin. Demo at International Semantic Web Conference, ISWC 2008, Karlsruhe, Germany

7 Ontology Development by Reuse 169

Fernández López M, Gómez-Pérez A, Suárez-Figueroa MC (2008) Selecting and customizing a

mereology ontology for its reuse in a pharmaceutical product ontology. In: Gr€uninger M,

Eschenbach C (eds) Formal Ontology in Information Systems. Fifth international conference

(FOIS-2008), Saarbr€ucken, Germany. IOS Press, Amsterdam, pp 181–194

Golbeck J, Fragoso G, Hartel F, Hendler J, Parsia B, Oberthaler J (2003) The national cancer

institute’s thesaurus and ontology. J Web Semant1(1):75–80

Gómez-Pérez A, Lozano-Tello A (2005) Applying ONTOMETRIC method to measure the

suitability of ontologies. In: Green P, Rosemann M (eds) Business systems analysis with

ontologies. Idea Group Publishing, Hershey, pp 249–269

Gómez-Pérez A, Rojas MD (1999) Ontological reengineering and reuse. In: Fensel D, Studer R
(eds) 11th European workshop on Knowledge Acquisition, Modeling and Management

(EKAW 1999), Dagstuhl Castle, Germany, Lecture Notes in Artificial Intelligence LNAI

1621 Springer, Berlin, Germany, pp 139–156

Jiménez A, Rı́os-Insua S, Mateos A (2003) A decision support system for multiattribute utility

evaluation based on imprecise assignments. Decis Support Syst 36:65–79

Lozano-Tello A (2002) Métrica de idoneidad de ontologı́as. PhD Thesis, Universidad de

Extremadura, Cáceres, Spain 2002

Peroni S, Motta E, d’Aquin M (2008) Identifying key concepts in an ontology through the

integration of cognitive principles with statistical and topological measures. In: Third Asian

semantic web conference, Bangkok, Thailand

Pinto HS, Martins JP (2001) A methodology for ontology integration. In: Gil Y, Musen M,

Shavlik J (eds) First international conference on Knowledge Capture (KCAP 2001), Victoria,

Canada. ACM Press, New York, pp 131–138

Schneider L (2003) How to build a foundational ontology: the object-centered high-level reference

ontology OCHRE. In: G€unter A, Kruse R, Neumann B (eds) Proceedings of the 26th annual

German conference on Artificial Intelligence (KI-2003), Hamburg, Germany. Lecture Notes in

Artificial Intelligence (LNAI-2821), Berlin, Germany, pp 120–134. (http://citeseerx.ist.psu.edu/

viewdoc/download;jsessionid¼12B7EC62C9601245457C735C07AA07A0?doi¼10.1.1.1.3440

&rep¼rep1&type¼pdf)

Suárez-Figueroa, MC (coordinator) (2008) D5.4.1. NeOn Methodology for building contextual-

ized ontology networks. NeOn project

Suárez-Figueroa, MC (2010) NeOn Methodology for building ontology networks: specification,

scheduling and reuse. PhD Thesis, Facultad de Informática, Universidad Politécnica de

Madrid, Spain

van Heijst G, Schreiber ATh, Wielinga BJ (1997) Using explicit ontologies in KBS development.

Int J Hum-Comput Stud 45:183–292

Varzi A (2007) In: Aiello M, Pratt-Hartmann I, van Benthem J (eds) Spatial reasoning and

ontology: parts, wholes, and locations. Springer, Heidelberg, pp 945–1038

170 M. Fernández-López et al.

http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=12B7EC62C9601245457C735C07AA07A0?doi=10.1.1.1.3440&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=12B7EC62C9601245457C735C07AA07A0?doi=10.1.1.1.3440&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=12B7EC62C9601245457C735C07AA07A0?doi=10.1.1.1.3440&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=12B7EC62C9601245457C735C07AA07A0?doi=10.1.1.1.3440&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=12B7EC62C9601245457C735C07AA07A0?doi=10.1.1.1.3440&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=12B7EC62C9601245457C735C07AA07A0?doi=10.1.1.1.3440&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=12B7EC62C9601245457C735C07AA07A0?doi=10.1.1.1.3440&rep=rep1&type=pdf

Chapter 8

Ontology Localization

Mauricio Espinoza Mejı́a, Elena Montiel-Ponsoda,

Guadalupe Aguado de Cea, and Asunción Gómez-Pérez

Abstract In the context of the Semantic Web, resources on the net can be enriched

by well-defined, machine-understandable metadata describing their associated con-

ceptual meaning. These metadata consisting of natural language descriptions of

concepts are the focus of the activity we describe in this chapter, namely, ontology

localization. In the framework of the NeOn Methodology, ontology localization is

defined as the activity of adapting an ontology to a particular language and culture.

This adaptation mainly involves the translation of the natural language descriptions

of the ontology from a source natural language to a target natural language, with the

final objective of obtaining a multilingual ontology, that is, an ontology

documented in several natural languages. The purpose of this chapter is to provide

detailed and prescriptive methodological guidelines to support the performance of

this activity.

8.1 Motivation

As with the World Wide Web, the success or failure of the Semantic Web will be

determined to a large extent by easy access to and availability of high-quality and

diverse content (Benjamins et al. 2002). In this respect, an important challenge that

needs to be addressed is the multilingualism problem, which until now has not been

properly investigated (Tjoa et al. 2005). This problem already exists in the current

M. Espinoza Mejı́a (*)

Facultad de Ingenierı́a, Universidad de Cuenca. Cdla. Universitaria, Av. 12 de Abril sn, Cuenca,

Ecuador

e-mail: mauricio.espinoza@ucuenca.edu.ec

E. Montiel-Ponsoda • G. Aguado de Cea • A. Gómez-Pérez

Ontology Engineering Group, Facultad de Informática, Universidad Politécnica de Madrid,

Campus de Montegancedo sn, 28660 Boadilla del Monte, Madrid, Spain

e-mail: emontiel@fi.upm.es; lupe@fi.upm.es; asun@fi.upm.es

M.C. Suárez-Figueroa et al. (eds.), Ontology Engineering in a Networked World,
DOI 10.1007/978-3-642-24794-1_8, # Springer-Verlag Berlin Heidelberg 2012

171

mailto:mauricio.espinoza@ucuenca.edu.ec
mailto:emontiel@fi.upm.es
mailto:lupe@fi.upm.es
mailto:asun@fi.upm.es

web and should also be tackled in the Semantic Web. Studies on language distribu-

tion over WWW content show that even if English is the predominating language

for documents, there exists an important amount of resources written in other

languages, according to the following distribution: English 27.6%, Chinese

22.1%, Spanish 7.9%, Japanese 5.5%, French 4.6%, Portuguese 4.2%, German

3.7%, Arabic 2.9%, Russian 2.6%, Korean 2.2%, and other languages 16.7%1.

In the case of the Semantic Web, the problem is similar; most of the ontologies

that have been built so far have English as their basis. Nevertheless, although

English is now the de facto language for science and technology, other spoken

languages are used, and it is important to provide methods and tools both to support

the definition of ontologies expressed in languages other than English and also to

support interoperability across ontologies written in different languages.

Currently, a great effort is being applied to the construction of ontologies.

Although access to top-quality ontologies (e.g., Galen2, CYC3, or AKT4) is in

many cases free and unlimited for users around the world, most of these ontologies

can be said to be essentially monolingual, that is, documented in one natural

language, and this language is often English as an international lingua franca.

However, there is a growing need for multilingual ontology resources that over-

come communication barriers arising from cultural-linguistic differences, lack of

excellent command of English, need for high precision in communication, etc.

In fact, multilingual knowledge is even more prevalent in those countries that have

more than one official language (Yang and Li 2003). For example, Chinese and

English are the official languages in Hong Kong; French and English in Canada;

and Dutch, French, and German in Belgium.

Moreover, the use of ontologies has grown not only in terms of the number of

application domains but also in the number of natural languages chosen to build

domain-specific knowledge bases. Thus, multilingual ontologies are nowadays

demanded by institutions worldwide with a huge number of resources available

in different languages. Basically, usage of multilingual ontologies traverses many

disciplines and has become an urgent need in certain organizations. For instance, in

agriculture, the Food and Agriculture Organization (FAO) has expressed the need

for semantically structuring the information they have in different natural

languages. Since all FAO official documents must be made available in Arabic,

English, Chinese, French, Russian, and Spanish, a large amount of research has

been carried out in translating large multilingual agricultural thesauri (Chun and

Wenlin 2002), in mapping methodologies for thesauri (Liang et al. 2005; Liang and

Sini 2006), and in defining requirements to improve the interoperability of these

multilingual information resources (Caracciolo et al. 2007). In education, the

1Obtained on September 30, 2009, from http://www.internetworldstats.com
2 http://www.co-ode.org/galen/
3 http://www.opencyc.org/downloads
4 http://www.aktors.org/publications/ontology/

172 M. Espinoza Mejı́a et al.

http://www.internetworldstats.com
http://www.co-ode.org/galen/
http://www.opencyc.org/downloads
http://www.aktors.org/publications/ontology/

Bologna declaration has introduced an ontology-based framework for qualification

recognition (Vas 2007) across the European Union, in an effort to best match labor

markets with employment opportunities. In e-learning, educational ontologies are

used to enhance learning experience (Cui et al. 2004) and to empower system

platforms with high adaptivity (Sosnovsky and Gavrilova 2006). In the finance

domain, ontologies are used to model knowledge in the stock market domain

(Alonso et al. 2005) and portfolio management (Zhang et al. 2002). In medicine,

ontologies are employed to improve knowledge sharing and knowledge reuse. For

example, a notable amount of research has focused on the creation of an ontology of

traditional Chinese medicine.

A further factor that has increased the need for multilingual ontologies is the

development of some ontology-based systems that need to interact with information

in natural languages. Some examples of these applications are cross-lingual infor-

mation retrieval (Guyot et al. 2005), multilingual question answering (Pazienza

et al. 2005), and knowledge management (Segev and Gal 2008).

These examples can serve to highlight the importance of adding multilingualism,

that is, multilingual information, to ontologies before trying to solve the numerous

pending problems that still exist with the current monolingual approach. But, while

there is a clear need for ontology localization, there are no well-defined and broadly

accepted definitions of what the ontology localization activity entails. Moreover, to

our knowledge, no other study has focused on the methodological guidelines for

this activity. For this reason, in this chapter we present efficient, prescriptive, and

detailed methodological guidelines for the ontology localization activity.

The rest of the chapter is organized as follows: Sect. 8.2 presents the scope of the

methodological guidelines together with a detailed and systematic account of the

most important items from practical and application perspectives. Section 8.3

describes the guidelines for the ontology localization activity (including the filling

card and the activity workflow). Section 8.4 includes an example of how the

proposed guidelines for ontology localization are used in practice and the results

obtained. Finally, Sect. 8.5 summarizes the main conclusions from this work.

8.2 Scope of the Methodological Guidelines

Methodological guidelines for ontology localization can be discussed from differ-

ent perspectives:

• Guidelines for the development of internationalized ontologies

• Guidelines for the localization of existing ontologies

• Guidelines for reaching a mature ontology localization process

In what follows, we briefly describe these types of guidelines with respect to

three aspects: (1) the objective and scope of the guidelines, (2) the target audience,

and (3) the work related to them. Then, we will deal with the design principles we

considered in order to define the guidelines used in this chapter.

8 Ontology Localization 173

8.2.1 Guidelines for the Development of Internationalized
Ontologies

Objective and scope: The aim of these guidelines is to improve the design and

implementation of internationalized ontologies in order to reduce the cost of

localization. Based on the software localization field (LISA), we understand

internationalized ontologies as ontologies built with the aim of supporting multilin-

gual descriptions of the conceptualizations they provide, since they are to be used in

a multilingual scenario. However, this means that in their design phase, language-

and culture-specific concepts are to be stored externally or removed, so as to enable

possible reuse, and only those common concepts are captured in the ontology.

Target audience: These guidelines are intended particularly for ontology

developers, who are concerned with the design and development of ontologies. In

addition, they are intended for international institutions interested in planning,

designing, and implementing internationalized domain ontologies.

Related work: These guidelines provide recommendations for naming ontology

elements. The key goal here is that the ontology elements be clear (avoid ambiguity)

and simple (easy to translate to other languages). Recently, some approaches have

been defined (Flied et al. 2007; Schober et al. 2007), which propose naming

conventions for ontology terms.

8.2.2 Guidelines for the Localization of Existing Ontologies

Objective and scope: The aim is to carry out the localization process of ontologies

already conceptualized. Usually, these ontologies are designed without taking into

account the multilingual and localization aspects. Therefore, these guidelines aim at

reducing costs, improving its quality, and increasing the consistency of the locali-

zation activity.

Target audience: These guidelines are particularly intended for ontology

stakeholders such as localization managers, translators, and reviewers, who are

concerned with the ontology localization activity. In addition, they are intended for

communities interested in localizing ontologies and those international firms that

may promote multilingualism in their working environments for a variety of

reasons.

Related work: These guidelines describe different stages for the localization

activity. At each stage of the process, they explain the activities or tasks to be

performed with the same style and granularity level as used by software develop-

ment methodologies. To the best of our knowledge, no guidelines exist for

supporting the ontology localization activity. However, software localization

methodologies could be adapted for ontology localization, as these methodologies

are very general.

174 M. Espinoza Mejı́a et al.

8.2.3 Guidelines for Realizing a Robust Localization Process

Objective and scope: These guidelines are meant to help reach a robust localization

process within an organization. Usually, most organizations pass through different

stages of maturity before reaching a robust localization process. Therefore, these

guidelines describe behaviors or best practices adopted by successful projects.

Target audience: We envisage that they can be intended for organizations

dedicated to the development of Semantic Web applications that require the use

of multilingual ontologies.

Related work: These guidelines should describe different maturity levels used to

improve and appraise the ability of an organization to perform the functions

required in the ontology localization activity. The localization maturity model

(DePalma 2007) (LMM) is a new advance in the deployment of software localiza-

tion. While LMM compliance will not guarantee success, it does increase the

likelihood of succeeding by helping planners understand what others have experi-

enced and learned before them. As this methodology is quite general, we believe it

can be adapted to ontology engineering methodologies.

In this chapter, we propose general guidelines that cover the localization of

existing ontologies (second group above). In the following sections, we will define

the actors involved in the different tasks of the ontology localization activity. Then,

we will describe in detail the tasks for carrying out this activity.

8.3 Methodological Guidelines for Ontology Localization

In this section, our purpose is to explain the guidelines set out to help ontology

developers in the ontology localization activity. The principles that guide the

construction of such guidelines are the following:

• The guidelines should be general enough in the sense that they should help

software developers and ontology practitioners to localize ontologies in different

natural languages and domains.

• The guidelines should define each activity or task precisely; they should clearly

state its purpose, its inputs and outputs, the actors involved, when its execution is

more convenient, and the set of methods, techniques, and tools to be used for

executing them.

• To facilitate a prompt assimilation of the ontology localization by software

developers and ontology practitioners, we present the guidelines in a prescriptive

way, not specifically oriented to researchers.

First, we present the different kinds of actors involved in the ontology localiza-

tion activity. Then, we describe the guidelines for localizing ontologies to different

natural languages.

8 Ontology Localization 175

8.3.1 Ontology Localization Actors

The different tasks involved in the ontology localization activity are carried out by

different actors according to the kind of roles that must be performed in each task.

In the following, we describe briefly the main actors involved in the localization

activity:

• Domain experts and ontology development team. The domain expert or experts

and the ontology development team (ODT) are responsible for performing one

of the first tasks in the ontology localization activity. Their work consists of

selecting the right resources and tools to perform the ontology localization

activity.

• Localization manager. The localization manager plays a key role in the locali-

zation activity, as he or she must prepare all technical aspects of the localization

activity, including the localization material (e.g., identifying the ontology

elements to be localized) and distributing it to the localization team, setting up

the localization team, as well as assigning and monitoring the tasks. Another task

to be performed by the localization manager is the updating and final quality

revision of the translated ontology.

• Linguists. These specialists can either be:

– Translators (localization specialist). Once the localization manager assigns

the localization tasks to each member, the translator or localization specialist

takes care of discovering the most appropriate translations for each ontology

element.

– Reviewers (QA specialist). The reviewer or quality assurance (QA) specialist
reviews the translated ontology elements. A reviewer does not necessarily

focus on the quality of the translations but on the linguistic and stylistic

quality of the translated ontology elements. The revision is a final language

check for spelling errors, grammar mistakes, and consistency.

The current industry trend is to use external localization service providers in the

translation task to avoid the high fixed cost of using in-house translators and use

translators focused on the target markets and knowing the up-to-date usage of

particular languages. We conceived a similar situation for ontology localization,

in which translators and reviewers can be internal or external to the organization

that develops the ontology and who work in a distributed environment. Figure 8.1

shows the high-level overview of the people who are directly involved in the

ontology localization activity, both on the localization service and on the ontology

publisher side. The localization manager and the ontology expert are responsible for

the communication between both groups. In Fig. 8.1, the quality assurance depart-
ment (QA department) performs a final quality check on all localized ontology

elements received from the localization service provider to find out possible

problems in the translations.

176 M. Espinoza Mejı́a et al.

8.3.2 Ontology Localization Guidelines

The ontology localization guidelines have been created in the context of the NeOn

Methodology (see Chap. 2) to build ontology networks. Thus, taking into account

the aforementioned methodological work, we provide the filling card for the

ontology localization shown in Fig. 8.2. Such filling card explains the information

of this activity in a practical and easy way.

The methodological guidelines for carrying out the ontology localization activ-

ity can be seen in Fig. 8.3. The workflow shows the main tasks involved, their

inputs, outputs, and actors. The result of this activity is an enriched ontology

(multilingual) with linguistic information (into target language) associated to

each localized term.

The tasks for carrying out the ontology localization activity are explained in

detail in the following:

Task 1. Select the most appropriate linguistic assets.
The goal of this activity is to select the most appropriate linguistic assets that help

in the localization activity. Domain experts and ODT carry out this activity, taking

as input the ontology to be localized. The activity output is a set of linguistic

assets that can help to reduce the cost, improve the quality, and increase the

consistency of the localization activity. The choice of a specific resource is

performed manually, taking into account that the linguistic assets comply with

the following characteristics:

• Consensus. Resources used should contain multilingual terminology consensu-

ally accepted by the community (authoritative resources), thus the effort and

time spent in finding out adequate translation labels for ontology terms would

decrease considerably. In this sense, internal resources, such as terminology

Fig. 8.1 Actors involved in the ontology localization activity

8 Ontology Localization 177

http://dx.doi.org/10.1007/978-3-642-24794-1_2

databases, glossaries, etc., maintained by the organization or individual itself are

good representatives of consensual resources.

• Broad coverage. Resources should cover translation information from general to

specific domain labels. It is advisable to use domain-specific resources (e.g., a

glossary of financial terms or a legal dictionary) when translating domain

ontologies, since they will contain the appropriate terminology. Also, since

each resource supports different features and language sets, the selected

resources should cover all target languages for current and possible future

ontology localization projects.

Fig. 8.2 Ontology localization filling card

178 M. Espinoza Mejı́a et al.

• High precision. Resources used for ontology localization should be able to

identify the morphological and lexicographical differences that exist between

different natural languages.

To select the appropriate translation tool for performing the ontology localiza-

tion activity, the preliminary guidelines presented in Table 8.1 are recommended.

Fig. 8.3 Tasks for ontology localization

8 Ontology Localization 179

Task 2. Select ontology label(s) to be localized.
The goal of this task is to select the ontology label(s) to be localized. The localiza-

tion manager carries out this task, taking as input an ontology whose labels are

expressed in a source natural language and need to be localized to a target language.

By default, all labels of concepts, attributes, relations, and instances will be

selected to be translated. However, it may happen that the ontology has been

partially localized, and only the remaining labels need to be translated or

Table 8.1 Ontology localization task and its corresponding tool

Type of ontology

term

Translation tool Comments

Ontology concepts,

attributes, and

relations

Ontology localization tool The main difficulty at this level is related to

the fact that labels for concepts, attributes,

and relations are usually short (isolated)

labels, not inserted in a sentence or text.

Therefore, a tool designed for the purpose

of translating ontologies is required at this

stage to extract the label specification and

its context correctly. The label context is

in its turn required for discovering the

label sense (for disambiguation purposes)

Consider for example the word “plant,”

which depending on the context can be

translated into Spanish as “planta” in the

sense of “living organism” or “fábrica” in

the sense of “industrial plant”

Ontology instances Computer-aided translation

tool or ontology

localization tool

The main complication at this level is to

decide which instances should be

translated and which ones should not

A big part of the instances are represented by

proper names and, therefore should not be

translated (e.g., a label containing

“Michael Schumacher” should not be

translated). However, other instances

such as “South America” should be

translated to other natural languages, as

they have traditionally well-established

and accepted translations

Ontology term

annotations

Translation memory tool The major cost involved at this level is the

difficulty in translating correctly long

pieces of text

To provide a human-readable description of a

term, the RDF(S) and OWL ontology

languages use for example the rdfs:

comment statement, where a textual

comment can be added. Thus, this level

involves the difficulty to translate a whole

sentence (not isolated labels or terms)

which is part of the annotation of

concepts, attributes, or instances in

ontologies

180 M. Espinoza Mejı́a et al.

retranslated if, according to the localization manager, they have not been properly

translated.

The task output is a set of ontology labels and their context5. The context

describes the meaning of a specific label in the ontology and consists of a small

excerpt of ontology labels around the ontology label itself (e.g., direct hypernym

labels, hyponym labels, etc.).

Task 3. Obtain ontology label translation(s).
For each ontology label, the goal of this task is to obtain the most appropriate

translation in the target language. Translators carry out this task, taking as input the

ontology label(s) to be localized. Different machine translation (MT) techniques

(Stroppa et al. 2007; Gimpel and Smith 2008; Sato and Saito 2002) can be used to

perform this task in an automatic manner. Basically, the MT techniques proposed in

the literature ground their operation on some lexical or semantic resources for

discovering the most appropriate translations. Thus, we can identify translation

techniques based on dictionaries, terminologies, thesaurus, online services, corpora,

ontologies, etc. The identification and combination of techniques will depend on

two factors:

• The type of domain knowledge represented in the ontology. We mainly consider

here two types of domains: internationalized domains, that is, domains whose

categorization usually finds consensus among different cultures, and culturally
dependent domains, that is, domains whose categorization is normally

influenced by a certain culture.

On the one hand, ontologies categorized within the first domain type will

require translation techniques that allow identifying direct correspondences

between words. Techniques based on linguistic resources such as dictionaries,

terminologies, etc., can be used in this case. On the other hand, ontologies

representing a culturally dependant domain (e.g., the judiciary), in which

categorizations tend to reflect the particularities of a certain culture, will require

translation techniques that allow identifying semantic correspondences.

• The type of ontology element to be localized. A second factor to be considered is

the type of ontology elements to be localized. Depending on the ontology

elements considered for localization, the algorithms of localization can be

more or less complex. For example, the localization of ontology concepts and

relations has a higher level of complexity than the localization of ontology

instances because a big part of the instances are represented by proper names

and have previously agreed translation or should not be translated.

The task output is a ranked set of labels in the target language for each ontology

label(s).

Task 4. Evaluate label translation(s).

5 In NLP, context refers to the environment in which a word is used and provides the information

needed for figuring out the meaning of homonyms or polysemic words.

8 Ontology Localization 181

Translation quality measurements must accomplish two basic criteria:

• Repeatable. Two assessments of the same sample must yield similar results.

• Reproducible and objective. Different evaluators should arrive at a similar

assessment for the same piece of translation.

The goal of this task is to evaluate label translations in the target language. At

this stage, translators and/or reviewers carry out this activity taking as input the

labels in the target language. The output of this task is a set of labels with its

corresponding evaluation. Different linguistic criteria can be used for the evaluation

of label translations. We propose two levels of evaluation criteria and for each level

a set of tests, which should be automated as far as possible.

• Semantic fidelity evaluation. The aim of this evaluation criterion is to control

that the label translation is conceptually equivalent to the ontology label in the

source language. A way of evaluating the semantic fidelity is to perform a

backward translation test, which provides a quality-control step demonstrating

that the quality of the translation is such that the same meaning is derived when

the translation is moved back into the source language.

• Stylistic evaluation. The aim is to control the clarity and syntax of the target

language, which depends on the style of the source language and on the features

of the individual idiolect. Special attention should be paid to certain stylistic

aspects (e.g., “transport service” instead of “service of transport”), misspellings,

and typos (e.g., “women” instead of “woman,” “ig” instead of “big,” etc.).

Task 5. Ontology update.
The goal of this task is to update the ontology with the label translations obtained

for each localized label. The localization manager/QA department carries out this

task taking as input the selected label translations. The activity output is an

ontology enriched with labels in the target language associated to each localized

term. The ontology enrichment can follow two different modeling options. If only

labels in different languages are to be included in the ontology, we can make use of

the rdfs:label and rdfs:comment properties of the OWL language (model 1). If, on

the other hand, the final application demands further linguistic data than just labels,

an external model capturing linguistic descriptions can be associated to the ontol-

ogy (model 2). The choice of the modeling option for the linguistic information will

be mainly determined by two factors:

• The type of domain of knowledge represented by the ontology

• The amount of linguistic information required by the final application

Taking these variables into account, we envision the two following scenarios:

• If the conceptualization represents a consensual domain, we can opt for the

inclusion of multilingual information in the ontology (model 1) or for the

association of an external model with the ontology (model 2). The decision

between these two options will depend on the linguistic needs of the final

application. An illustrative example of model 2 can be seen in Fig. 8.9

182 M. Espinoza Mejı́a et al.

(see Sect. 8.4). If morphosyntactic data are needed for the purpose of informa-

tion retrieval or information extraction, for example, the most suitable option

will be the association of an external model. In the state of the art, we find some

suitable models in this sense, such as LingInfo (Buitelaar et al. 2006), which

enriches the ontology with morphosyntactic information, or LexInfo (Buitelaar

et al. 2009), which additionally accounts for the syntactic realization of ontology

terms in a certain linguistic structure.

• If the conceptualization represents a culturally dependent domain, and concep-

tualization mismatches among different cultures exist, we will opt for the

association of an external model that permits to account for those cultural

divergences at the terminological layer (model 2). In this sense, we refer to the

LIR (linguistic information repository) (Peters et al. 2007; Montiel-Ponsoda

et al. 2010), a model that permits to account for term variants within one

language and cultural divergences across languages at the terminological layer.

8.4 Example

In this section, we include an example of the use of the proposed guidelines for the

ontology localization activity and the obtained results. In particular, the example

refers to the automatic localization of the “economy activity” ontology, an ontology

developed in the SEEMP6 project, using the LabelTranslator system.

LabelTranslator has been designed with the aim of automating ontology locali-

zation, and it has been implemented as a plugin of the ontology editor NeOn

Toolkit. In its current version, it can localize ontologies in English, German, and

Spanish. In its design, the guidelines proposed above have been followed.

In order to illustrate the results obtained by our system, we will consider the

extract of the sample economy activity ontology shown in Fig. 8.4. Let us suppose

that the user wants to translate the term “bars” from English into Spanish.

According to the domain of the sample ontology, the correct translation of the

Fig. 8.4 Extract of the sample economy activity ontology

6 http://droz.dia.fi.upm.es/hrmontology/

8 Ontology Localization 183

http://droz.dia.fi.upm.es/hrmontology/

selected term should refer to a room or establishment where alcoholic drinks are

served over a counter, not to a horizontal rod that serves as a support for gymnasts

as they perform exercises to a rigid piece of either metal or wood, etc.

In the following, we briefly describe how the tasks are performed by our system

and which techniques and tools are used for each task.

Task 1. Select the most appropriate linguistic assets.
The linguistic assets used by the current version of the LabelTranslator plugin are

multilingual resources (Wiktionary or IATE), translation web services (Google

Translate, BabelFish, etc.), Semantic Web resources (EuroWordNet and third-

party resources retrieved through Watson7, a search engine which indexes many

ontologies available on the web), and remote lexical resources. The addition of

further domain-specific resources is foreseen for domain ontologies.

Task 2. Select ontology label(s) to be localized.
Once an ontology has been created or imported in the NeOn Toolkit,

LabelTranslator allows users and domain experts to manually/automatically sort

out the ontology elements that should undergo localization. By right clicking on a

frame (concept, attribute, or relation), the Translate action performs the translation

of an ontology label (see Fig. 8.5).

For each ontology element, LabelTranslator retrieves its local context, its neigh-

bor terms, which is interpreted by the system using a structure-level approach. In

our approach, the context of an ontology term is used to disambiguate the lexical

meaning of an ontology term. To determine the context of an ontology term, the

system retrieves the labels of the set of terms associated with the term under

consideration. The list of context labels comprises a set of names which can be

direct label names and/or attributes label names, depending on the type of term that

is being translated.

To mitigate risks associated with system performance, LabelTranslator limits the

number of context labels used to disambiguate the translated label. Every context

label is compared with the ontology label under consideration using ameasure based

on normalized Google distance (NGD) (Cilibrasi and Vitanyi 2004). NGDmeasures

the semantic relatedness between any two terms, considering the relative frequency

in which two terms appear in the web within the same documents. Those labels with

the higher values of similarity are chosen (maximum 38).

In Fig. 8.6, on the left, the dashed area represents all the context labels found for

the ontology label “bars.” Our prototype finds nine labels, but only selects two (see

the dotted area) to disambiguate the term. In the table on the right, we show for each

type of ontology term (concept, attribute, or relation) the context labels that could

7 http://watson.kmi.open.ac.uk/WatsonWUI/
8 The number of context labels used to disambiguate a translated label depends on the ontology

domain. However, in our experiments we found that a threshold of three context labels reduce the

time of response of the overall system and it is compatible with the range of good responses found

by comparing the results with human evaluations.

184 M. Espinoza Mejı́a et al.

http://watson.kmi.open.ac.uk/WatsonWUI/

be extracted. For instance, for the concept “bars” the system retrieves its

hypernyms, hyponyms, attributes, and sibling concepts.

Task 3. Obtain ontology term translation(s).
In order to obtain the most appropriate translation for each ontology element in the

target language, LabelTranslator uses the following techniques in the indicated

order:

• In Step 1, the system obtains equivalent translations for all selected labels by

accessing the linguistic assets listed in Task 1.

• In Step 2, the system retrieves a list of semantic senses for each translated label,

querying Watson and EuroWordNet. Each sense is represented as a tuple:

sk ¼ <s; grph; descr>

where s is the list of synonym names, grph describes the sense by means of the

hierarchical graph of hypernyms and hyponyms of synonym terms found in one

Fig. 8.5 Screenshot of the ontology navigator view with the Translate action used by the

LabelTranslator plugin

8 Ontology Localization 185

or more ontologies, and descr is a description in natural language of such a

sense. As matching terms could correspond to ontology concepts, attributes, or

instances, three lists of possible senses are associated with each translated label t:

St
concept, St

attribute, St
instance. Notice that to perform cross-language sense

translations, the external resources are limited to those resources that have

multilingual information like EuroWordNet.

The multilingual retrieval of a word sense (synset) in EuroWordNet is done

by means of the InterlingualIndex (ILI) that serves as a link among the different

wordnets. For example, when a synset, such as “bar” with the meaning “the

professional position,” is retrieved from the English wordnet, its synset ID is

mapped through the ILI to the synsets IDs of the same concept in the different

language-dependent wordnets (German, Spanish, etc.) that describe the same

concept but contain the word description in its specific language. A similar

retrieval process is used in the case of multilingual ontologies but using the

references between concepts and labels as offered by the standard rdfs:comment

and rdfs:label properties.

Coming back to our example, in Fig. 8.7, we show the translations of the

ontology label “bars” from English into Spanish; our prototype finds eight

translations, but we only show three. Notice that t1 has the desired semantics

according to the similarity with the lexical and semantic ontology context (see

Fig. 8.4).

• In Step 3, the system uses a disambiguation method to sort the translations

according to their context. LabelTranslator carries out this task in relation to the

senses of each translated label and the sense of the label under consideration.

The ranking method we use to compare structures relies on an equivalence

probability measure between two candidate structures, as proposed in Trillo

et al. (2007). The aim is to discover whether the semantics of two ontology terms

represent the same sense. At this stage, domain experts and translators may

decide to choose the most appropriate translation among the ranked ones. By

default, the system will consider the one in the highest position.

In Fig. 8.8, we show a sample of the equivalent translations obtained for the

term “bars.” Notice that the translations obtained are ranked according to the

ontology context.

Fig. 8.6 Context of the ontology label “bars”

186 M. Espinoza Mejı́a et al.

Task 4. Evaluate term translation(s).
The current version of LabelTranslator does not provide a method for semiauto-

matically evaluating the translations obtained in the previous step. Therefore, we

used a manual evaluation to perform this task. Based on the NeOn methodological

guidelines, we would identify the following situation:

Fig. 8.7 Some translations of the ontology label “bars” into Spanish

Fig. 8.8 Equivalent translations for the term “bars”

8 Ontology Localization 187

• Semantic fidelity evaluation. In order to evaluate the semantic fidelity of the

translation, we would implement the “backward translation” criteria (Shigenobu

2007). Table 8.2 shows the semantic fidelity evaluation results (only few cases

have been analyzed) for some terms translated into Spanish. The middle column

shows the translations obtained by LabelTranslator in Spanish.

In many cases, the backward translation did not match exactly the original

meaning. Thanks to a deeper analysis, which took into consideration the context

(hotels and restaurants), we identified that the translation “barras,” for example,

did not match the original meaning.

• Stylistic evaluation. The current version of LabelTranslator does not support an

automated stylistic evaluation. This task was manually carried out by an expert

in the domain. The translations proposed were consistent in all cases, according

to the context of the ontology.

Task 5. Ontology update.
The ontology is updated with the resulting linguistic data, which are stored in the

LIR model, a separate module adopted by the LabelTranslator NeOn plugin for

organizing and relating linguistic information within the same language and across

languages to domain ontologies. Figure 8.9 shows the linguistic information page of

the sample term “bars.” The linguistic page uses a model based on a modular

approach to store the linguistic information associated to each ontology term. So,

one can see that the translation proposed, “bares,” is the full form of a term, is

masculine, and is considered the main entry in this domain.

These guidelines have not been formally evaluated. Nevertheless, as shown

above, we believe that the guidelines proposed are effective because following

the different tasks and obtaining the expected results in each task they ensure that

the progress is being achieved and that the goals of the localization activity are met

at the end of it.

However, it is worth mentioning that the applicability of these guidelines has

also been proved in one of the use cases of the NeOn project (Food and Agriculture

Organization of the UN). In order to evaluate the quality of the translations obtained

by our system, different experiments were designed. The experiments were carried

out by comparing the translations provided by an expert (gold standard) with

the translations provided by the ranking algorithm used in LabelTranslator.

Table 8.2 Ontology localization task and its corresponding tool

Original term (EN) Translation (ES) Backward translation (EN)

Bars Bares Bars

Drinks cabinet

Barras paralelas Parallel bars

Barras Bar

Rod

Stick

Loaf

188 M. Espinoza Mejı́a et al.

The ontology corpus used for the evaluation was selected from the set of the

KnowledgeWeb9 ontologies used to manage EU projects. The experimental results

showed that our system suggested the correct translation 72% of the times. Also, the

recall values obtained suggested that a high percentage of the correct translations

were part of the final translations shown to the user. More details about these

experiments can be found in Dzbor et al. (2009).

8.5 Conclusions

In this chapter, we have presented the methodological guidelines that we propose to

help ontology practitioners in the localization activity. These guidelines assume

that users have some knowledge on ontology localization. However, the guidelines

are presented so that nonexperts can understand them. To the best of our knowl-

edge, the study presented here is the first attempt to offer guidelines for the

localization of ontologies.

These guidelines have not been formally evaluated. Nevertheless, we have

validated their applicability using them in one of the ontologies used in the

SEEMP project. We cannot assure that the guidelines will be valid in all localiza-

tion scenarios, but further validation of the guidelines will be possible in future

ontology localization projects with different settings.

Fig. 8.9 Linguistic information associated to the ontology term “bars”

9 http://knowledgeweb.semanticweb.org/

8 Ontology Localization 189

http://knowledgeweb.semanticweb.org/

The localization guidelines also meet the sufficient conditions of any methodo-

logical guidelines for localizing an ontology to different natural languages. Specifi-

cally, the ontology localization guidelines are:

• Grounded on existing practices because they have been defined by combining

tasks of existing methodological guidelines

• Collaborative because they contemplate the participation and consensus of

different actors distributed geographically

• Open because they do not limit the types of ontologies or the specific ontology

terms (classes, object, or datatype properties) to be considered in localization nor

the resources that should be employed in the actual translation

• Usable because they are clearly documented and their use does not involve a

great effort

The applicability of the ontology localization methodology has been proved in

the SEEMP project where this methodology has been used for the localization of

the “occupation” ontology, by means of using the guidelines proposed in this

chapter. In this project, we have proven that it is feasible to perform a manual

localization using basic guidelines instead of a tool-focused approach.

References

Alonso LS, Bas LJ, Bellido S, Contreras J, Benjamins R, Gómez JM (2005) Deliverable 10.7

financial ontology, FP6-507483. In: WP10: case study eBanking

Benjamins R, Contreras J, Corcho O, Gómez-Pérez A (2002) Six challenges for the semantic web.

In: Proceedings of the first international semantic Web conference (ISWC 2002). Springer,

Berlin

Buitelaar P, Sintek M, Kiesel M (2006) A multilingual/multimedia lexicon model for ontologies.

In: Sure Y, Domingue J (eds) The semantic Web: research and applications, 3rd European

semantic Web conference (ESWC), Budva, Montenegro. Lecture notes in computer science.

Springer, Berlin, pp 502–513

Buitelaar P, Cimiano P, Haase P, Sintek M (2009) Towards linguistically grounded ontologies. In:

Proceedings of 6th annual European semantic Web conference, (ESWC). Lecture notes in

computer science. Springer, Berlin, pp 111–125

Caracciolo, C, Sini, M, Keizer, J (2007) Requirements for the treatment of multilinguality in

ontologies within FAO. In OWLED 2007 Workshop on OWL, Innsbruck (Austria). http://hdl.

handle.net/10760/15660

Chun Ch, Wenlin L (2002) The translation of agricultural multilingual thesaurus. In: AFITA 2002,

Asian agricultural information technology & management. Proceedings of the third Asian

conference for information technology in agriculture, Beijing, pp 526–528

Cilibrasi R, Vitanyi P (2004) Automatic meaning discovery using google, manuscript, CWI

Cui G, Chen F, Chen H, Li S (2004) OntoEdu: A Case Study of Ontology-based Education Grid

System for E-learning. In The Official Journal of Global Chinese Society FOR Computers in

Education (GCCCE journal), Volume 2, pp 59–72

DePalma DA (2007) Moving Beyond the Ad Hocracy of Localization. Multilingual Localization:

Getting Started Guide, pp. 6–8

Dzbor M, Suárez-Figueroa MC, Blomqvist E, Lewen H, Espinoza M, Gómez-Pérez A, Palma R

(2009) D5.6.2 Experimentation and Evaluation of the NeOn Methodology, NeOn Project

Flied G, Kop C, V€ohringer J (2007) From OWL class and property labels to human understandable

natural language. In: Proceeding of 12th international conference on applications of natural

190 M. Espinoza Mejı́a et al.

http://hdl.handle.net/10760/15660
http://hdl.handle.net/10760/15660

language to information systems. Lecture notes in computer science 4592. Springer, Berlin,

pp 156–167

Gimpel K, Smith N (2008) Rich source-side context for statistical machine translation. In:

StatMT’08: proceedings of the third workshop on statistical machine translation. Association

for Computational Linguistics, Morristown, NJ, USA, pp 9–17

Guyot J, Radhouani S, Falquet G (2005) Ontology-based multilingual information retrieval. In:

CLEF working notes multilingual track, pp 21–23

Liang A, Sini M (2006) Mapping AGROVOC and the Chinese agricultural thesaurus: definitions,

tools, procedures. New Rev Hypermedia Multimedia 12(1):51–62

Liang A, Sini M, Chang C, Li S, Lu W, He C, Keizer J (2005) The mapping schema from Chinese

agricultural thesaurus to AGROVOC. In: 6th agricultural ontology service (AOS) workshop on

ontologies: the more practical issues and experiences, Vila Real, pp 1–6

Localization Industry Standards Association (LISA) What is globalization? http://www.lisa.org/

What-Is-Globalization.48.0.html?&no_cache¼1&sword_list[]¼internationalization

Montiel Ponsoda, E, Aguado de Cea, G, Gómez-Pérez, A, and Peters, W (2010) Enriching

Ontologies with Multilingual Information, Journal of Natural Language, Cambridge University

Press, pp 1–27

Pazienza M, Stellato A, Zanzotto F, Henriksen L, Paggio P (2005) Ontology mapping to support

ontology based question answering. In: Proceedings of the 2nd meaning workshop, Trento

Peters W, Montiel-Ponsoda E, Aguado de Cea G (2007) Localizing ontologies in OWL. In:

Proceedings of OntoLex’07, co-located at the 6th international semantic web conference

ISWC + ASWC 2007, Busan, South Korea

Sato K, Saito H (2002) Extracting word sequence correspondences with support vector machines.

In: Proceedings of the 19th international conference on computational linguistics. Association

for Computational Linguistics, Morristown, NJ, USA, pp 1–7

Schober D, Kusnierczyk W, Lewis SE, Lomax J, Members of the MSI, PSI Ontology Working

Group, Mungall C, Rocca-Serra P, Smith B, Sansone SA (2007) Towards naming conventions

for use in controlled vocabulary and ontology engineering. In Bioontology SIG Proceedings

(ISMB 2007), Vienna, Austria, pp. 1–4

Segev A, Gal A (2008) Enhancing portability with multilingual ontology-based knowledge

management. Decis Support Syst 45:567–584

Shigenobu T (2007) Evaluation and usability of back translation for intercultural communication.

In: Aykin N (ed) Proceedings of the 2nd international conference on usability and internation-

alization (UI-HCII’07). Springer, Berlin/Heidelberg, pp 259–265

Sosnovsky S, Gavrilova T (2006) Development of Educational Ontology for c-programming. Int J

Inf Theor Appl 13:303–308

Stroppa N, van den Bosch A, Way A (2007) Exploiting source similarity for SMT using context-

informed features. In: Proceedings of the 11th international conference on theoretical and

methodological issues in machine translation, Skvde, Sweden, pp 231–240

Tjoa AM, Andjomshoaa A, Shayeganfar F, Wagner R (2005) Semantic web challenges and new

requirements. In: Proceedings of the 16th international workshop on database and expert

systems applications (DEXA’05), Copenhagen

Trillo R, Gracia J, Espinoza M, Mena E (2007) Discovering the semantics of user keywords.

J Univers Comput Sci 13(12):1908–1935

Vas R (2007) Educational ontology and knowledge testing. Electron J Knowl Manage 5

(1):123–130

Yang C, Li KW (2003) Automatic construction of English/Chinese parallel corpora. J Am Soc Inf

Sci Technol 54(8):730–742

Zhang Z, Zhang C, Ong SS (2002) Building an ontology for financial investment. In: Intelligent

data engineering and automated learning (IDEAL), data mining, financial engineering, and

intelligent agents, second international conference. Springer, Berlin, pp 308–313

8 Ontology Localization 191

http://www.lisa.org/What-Is-Globalization.48.0.html?&no_cache=1&sword_list[]=internationalization
http://www.lisa.org/What-Is-Globalization.48.0.html?&no_cache=1&sword_list[]=internationalization
http://www.lisa.org/What-Is-Globalization.48.0.html?&no_cache=1&sword_list[]=internationalization
http://www.lisa.org/What-Is-Globalization.48.0.html?&no_cache=1&sword_list[]=internationalization

Chapter 9

Ontology (Network) Evaluation

Marta Sabou and Miriam Fernandez

Abstract Ontology evaluation refers to the activity of checking the technical

quality of an ontology against a frame of reference. As such, it is of core importance

for ontology engineering supporting scenarios such as ontology validation, knowl-

edge selection, or the evaluation of knowledge extraction algorithms. In this

chapter, we provide methodological guidelines for evaluating stand-alone onto-

logies as well as ontology networks. Our goal is not only to present the NeOn

perspective on this issue but to also provide a practical outlook to the vast area of

work in the area of ontology evaluation. Without performing an extensive state-of-

the-art analysis of this research field, we aim to illustrate how various evaluation

methods developed by the NeOn project, and not only, can be used at different

stages of the evaluation process. We conclude the chapter with some concrete

examples of performing ontology evaluation.

9.1 Motivation

Ontology (network) evaluation plays a key role in ensuring the quality of ontology

networks, and it is employed within various ontology engineering scenarios. The

main scenario is that of ontology development, namely the process during which

the ontology is built. The goal in this case is to assess the quality and correctness

of the obtained ontology. The process of ontology development can be achieved

through different methods and the evaluation of the obtained ontology changes

M. Sabou (*)

MODUL University Vienna, Am Kahlenberg 1, 1190 Vienna, Austria

e-mail: marta.sabou@modul.ac.at

M. Fernandez

Knowledge Media Institute (KMi), The Open University, Walton Hall, Milton Keynes,

MK7 6AA, UK

e-mail: m.fernandez@open.ac.uk

M.C. Suárez-Figueroa et al. (eds.), Ontology Engineering in a Networked World,
DOI 10.1007/978-3-642-24794-1_9, # Springer-Verlag Berlin Heidelberg 2012

193

mailto:marta.sabou@modul.ac.at
mailto:m.fernandez@open.ac.uk

accordingly. For example, an ontology could be obtained through automatic
extraction from representative data sources such as text (Cimiano and V€olker
2005) or databases (Cerbah 2008). In this case, an important research question

refers to evaluating ontology extraction algorithms with respect to the quality of the

produced artifacts, as well as comparing the various algorithms to each other.

Ontology evaluation can often be used as a means to automatically assess the

quality of the output of such algorithms.

Alternatively, the ontology development phase could also involve an ontology
evolution activity where a base ontology is extended, either manually or through

automatic means, in order to cover new domain terminology or to correspond to

new application requirements (Chap. 11). In this case, the goal of ontology evalua-

tion is to assess whether the new additions have impacted on the quality of the base

ontology.

Additionally to ontology development, another scenario where ontology evalu-

ation plays an important role is that of ontology selection.With the recent advances

in the area of the Semantic Web, in particular the proliferation of online available

ontologies and semantic search engines such as Watson1 or Sindice2, an increased

number of applications are built by reusing external knowledge rather than building

it from scratch (d’Aquin, et al. 2008). Examples include cross-ontology question

answering (Lopez et al. 2010), relation detection, ontology evolution (Zablith et al.

2010), or ontology matching (Sabou et al. 2008). For these applications, it is crucial

to evaluate, often entirely automatically, the quality of the reused knowledge.

Ontology evaluation here refers to the situation where existing ontologies are

evaluated (and often ranked) in terms of selected criteria in order to select the

most appropriate one for the task at hand.

A final usage scenario is during the ontology modularization process that leads to
a network of interconnected ontology modules (Chap. 10), whose quality is itera-

tively assessed in order to decide whether the modularization has reached the

expected results.

In this chapter, we further explore ontology (network) evaluation by providing a

definition (Sect. 9.2), methodological guidelines (Sect. 9.3), and concrete examples

(Sect. 9.4).

9.2 Definitions and Filling Card

Ontology evaluation is defined as the activity of checking the technical quality of an
ontology against a frame of reference (Suárez-Figueroa and Gómez-Pérez 2008).

Intuitively, whenever an evaluation is performed for a certain ontology

1 http://kmi-web05.open.ac.uk/WatsonWUI/
2 http://sindice.com/

194 M. Sabou and M. Fernandez

http://dx.doi.org/10.1007/978-3-642-24794-1_11
http://dx.doi.org/10.1007/978-3-642-24794-1_10
http://kmi-web05.open.ac.uk/WatsonWUI/
http://sindice.com/

(or alignment) aspect (e.g., modeling correctness), the process is always guided by

the evaluator’s understanding of what is best and what is worse. In some cases,

these boundaries (which we refer to as frame of reference) are clearly defined and

tangible (e.g., a reference ontology, a reference alignment), but in other cases, they

are weakly defined and may be different from one person to another, or even across

evaluation sessions. The NeOn Glossary distinguishes two types of ontology

evaluations depending on the frame of reference used:

• Ontology validation is the ontology evaluation activity that compares the mean-

ing of the ontology definitions against the intended model of the world that it

Ontology Network Evaluation

Definition

Evaluation of Ontology Networks refers to the activity of checking the technical
quality of the ontology network against a frame of reference.

Goal

The goal is to compare the ontology network with the specification requirements
and gold standards (if available) by taking into account evaluation criteria and
applying various evaluation approaches, yielding evaluation results and advices
on how to improve the ontology network.

Input

A set of ontologies with
interconnection links
(network).

Output

· Evaluation results in the form of quantitative and
qualitative measures, and informal advices on
the possible ontology network modifications.

· A ranked list of ontologies.

Who

· Domain experts, users, ontology developers and practitioners from the ontology
development team.

· Applications which automatically evaluate and reuse ontologies.

When

· This activity should be carried out in parallel with the ontology network
development and evolution, and after parts of the ontology network are (at least
partially, as prototypes) implemented.

· It also plays an important role during ontology selection and modularization.

Fig. 9.1 Filling card for ontology (network) evaluation

9 Ontology (Network) Evaluation 195

aims to conceptualize (an intangible frame of reference). This activity answers

the question: are you producing the right ontology?
• Ontology verification is the ontology evaluation activity which compares the

ontology against the ontology specification document (ontology requirements

and competency questions), thus ensuring that the ontology is built correctly

(in compliance with the ontology specification). This activity answers the

question: Are you producing the ontology in the right way?

The filling card shown in Fig. 9.1 provides a structured summary of the ontology

(network) evaluation activity. Section 2.5 describes the main components of a

filling card in more detail.

9.3 Ontology Network Evaluation Workflow and Guidelines

In this section, we describe the NeOn methodological guidelines for carrying out

the ontology network evaluation activity. Besides prescribing a methodology, our

aim is also to provide a brief overview of the various evaluation methods and

techniques that can be used in each step of the methodology.

We propose a component-based evaluation approach where each element of the

network (e.g., ontologies and alignments between ontology pairs) is evaluated as a

stand-alone individual and then the findings of these evaluations are summed up

(Fig. 9.2). An alternative to this approach would be the evaluation of the entire

network from the point of view of the users or the organization that will use the

ontology network. Methodologically, this approach is similar to evaluating a stand-

alone component using, for example, a task-based evaluation, and therefore, it is

covered by Tasks 2 and 3 of the proposed workflow. Figure 9.2 shows the workflow
and the tasks for carrying out the ontology network evaluation.

Task 1. Selecting individual components of the ontology network. In a first

instance, the ontology development team identifies the elements of the network

that need to be evaluated including individual ontologies (Maedche and Staab 2002;

Burton-Jones et al. 2005; Alani et al. 2006; Fernandez et al. 2006), alignments

between ontology pairs (Euzenat and Shvaiko 2007), ontology statements (Lopez

et al. 2009), ontology relations, etc. Their decision should be based on two criteria:

(1) which ontology network elements are critical for the overall network and (2)

which of these elements can actually be evaluated. The latter means that there must

exist some frame of reference against which these individual components can be, at

least in principle, evaluated. As we discussed before, the frame of reference is not

necessarily tangible, but can be some idea of the perfect model, or canon, defined by

the human evaluator for the particular evaluation task. Examples of frames of

references will be given at Task 3.

Task 2. Selecting an evaluation goal and approach. For evaluating individual

ontologies, the team needs to decide the goal of the evaluation and select an

196 M. Sabou and M. Fernandez

http://dx.doi.org/10.1007/978-3-642-24794-1_2

appropriate evaluation approach (as summarized in Table 9.1). We distinguish the

following evaluation goals:

• Domain coverage – Does the ontology cover a topic domain? The extent to

which an ontology covers a considered domain is an important factor to be

considered both during the development and the selection of an ontology. The

evaluation approaches employed to achieve this goal imply the comparison of

the ontology to frames of references such as a gold standard ontology (Maedche

and Staab 2002), or data sets that are representative for the domain (user-defined

terms (Alani et al. 2006; Fernandez et al. 2006), tag sets (Cantador et al. 2007),

document corpus (Brewster et al. 2004), etc.).

• Quality of the modeling in terms of the design and development process and in

terms of the final result – Does the ontology development process comply with

Fig. 9.2 Workflow and tasks for evaluating ontology networks

9 Ontology (Network) Evaluation 197

ontology modeling best practices/ODPs3? Is the ontology modeled correctly?
Applicable both for the ontology development (Lozano-Tello and Gómez-Pérez

2004) and selection scenarios (Burton-Jones et al. 2005; Tartir et al. 2005), this

evaluation goal focuses on the quality of the ontology which can be assessed

using a wide range of approaches focusing on logical correctness or syntactic,

structural, and semantic quality. Quality in terms or correctness, precision, and

recall is an important goal when evaluating ontology alignments.

Table 9.1 Evaluation goals, evaluation approaches, and relevant NeOn plugins

Evaluation goal Evaluation approaches and relevant NeOn plugins

Domain coverage Compare to a domain-specific gold standard ontology (Maedche

and Staab 2002)

Compare to unstructured or informal data (Brewster et al. 2004;

Jones and Alani 2006)

Compare to a user-defined set of terms – Sindice, Watson (Alani et al.

2006)

Compare to an extended (using WordNet or other structured

information sources) user-defined set of terms (Fernandez et al.

2006; Cantador et al. 2007)

Quality of modeling Use human assessments to evaluate the syntactic, structural, and

semantic quality of the ontology (Guarino and Welty 2004; Lozano-

Tello and Gómez-Pérez 2004; Burton-Jones et al. 2005)

Use reasoners to assess the logical correctness of the ontology

(Horridge et al. 2009)

Analyze the design and development process of the ontology to check

its compliance with ontology modeling best practices/ODPs

(Caracciolo and Heguiabehere 2009; Poveda-Villalón et al. 2009)

Automatically compare to a reference alignment (Euzenat and Shvaiko

2007)

Manually assess the quality of an alignment (Sabou et al. 2008)

NeOn plugins:

RaDON

XDTools

Alignment plugin

Suitability for an

application/task

Use the ontology within an application/task and evaluate the task results

and performance (Porzel and Malaka 2004; Strasunskas and

Tomassen 2008; Fernandez et al. 2009)

The work of Van Hage (Van Hage et al. 2007) presents two sampling-

based evaluation approaches of ontology alignments

Adoption and use Evaluation of the interlinking structure across ontologies – Sindice,

Watson (Patel et al. 2003)

Social rating systems (Lewen et al. 2006; Cantador et al. 2007)

NeOn plugin:

Watson for knowledge reuse

3ODP stands for Ontology Design Pattern.

198 M. Sabou and M. Fernandez

• Suitability for an application/task – Is the ontology suitable to use for a specific
application/task? (Porzel and Malaka 2004; Fernandez et al. 2009) Will it
produce the expected results? (Strasunskas and Tomassen 2008) Different

applications rely on different ontology (or alignment) characteristics. For exam-

ple, for applications that use ontologies to support natural language processing

tasks, domain coverage is often more important than logical correctness. As a

result, measuring ontology (alignment) quality alone is not enough to predict

how well the ontology (developed or selected) will support an application or a

task. Task-based evaluations help assessing suitability for a task or application,

rather than generic quality features.

• Adoption and use – Has the ontology been reused (imported) as part of other
ontologies? (Sindice,2 Watson1) How did others rate the ontology? (Cantador

et al. 2007, Cupboard4) Understanding the extent of adoption of an ontology is of

particular interest when selecting it, the assumption being that there is a direct

correlation between the level of adoption and the quality of the ontology.

Analyzing the degree of interlinking between an ontology and other ontologies

(e.g., in terms of reused terms or ontology imports) as well as relying on social

rating systems are two key approaches to achieve this goal.

Task 3. Identifying a frame of reference and evaluation metric. While in Task 2

the ontology development team decides on the key goal(s) of the evaluation and

potential approaches, in Task 3, the team needs to select the concrete ingredients of

the evaluation, consisting of:

• A frame of reference –What are we comparing against? The frame of reference

denotes a set of representative resources that sets a baseline value against which

the ontology should be compared.

• Evaluation metric(s) – How to measure the features of the ontology that will be
compared? Example evaluation metrics are precision and recall, cost-based

evaluation metrics, measures of similarity between an ontology or a mapping,

and a corpus (domain knowledge), and lexical metrics. Table 9.2 summarizes the

main evaluation metrics presented in the literature.

As exemplified in Table 9.2, evaluation metrics are generally specific for each

frame of reference. There are however some generic metrics, such as precision and

recall, which can be adapted for use with various frames of references.

Similarly to (Brank et al. 2005), we distinguish the following types of frames of

references:

• Gold standard: The frame of reference is defined by a baseline ontology or some

other kind of structured representation of the problem domain for which an

appropriate ontology is needed. A gold standard is often used when the goal of

4 http://cupboard.open.ac.uk:8081/cupboard-search/

9 Ontology (Network) Evaluation 199

http://cupboard.open.ac.uk:8081/cupboard-search/

Table 9.2 Evaluation metrics used for various evaluation frameworks

Frame of

reference

Evaluation metric/approach

Gold standard Interpretability: amount of terms of the ontology that have a WordNeta sense

(Burton-Jones et al. 2005)

Clarity: amount of WordNet senses of the ontological terms (Burton-Jones

et al. 2005)

Lexical similarity: average string matching between the set of gold standard

terms and the set of ontology terms (Maedche and Staab 2002)

Taxonomical similarity: maximum overlap between the concepts of the gold

standard and the concepts of the ontology in terms of their “semantic

cotopy” (their sets of super- and subconcepts) (Maedche and Staab 2002)

Relation similarity: overlap between the relations of the gold standard and the
relations of the ontology considering the geometric mean value of how

similar their domain and range concepts are (Maedche and Staab 2002)

Precision and recall of an alignment with respect to a reference alignment
(gold standard): precision measures the ratio of correctly found

correspondences (true positives) over the total number of returned

correspondences (true and false positives). Recall measures the ratio of

correctly found correspondences (true positives) over the total number of

expected correspondences (true positives and true negatives) (Euzenat

2007)

Semantic precision/semantic recall for alignment evaluation: This measure

proposes an abstract generalization of precision and recall to discriminate

among different degrees of alignment correctness (Euzenat 2007)

Application-based History: number of times an ontology has been accessed

Insertion, deletion, and substitution errors: errors according to the

improvements in the task’s output after fixing these errors in the employed

ontology (Porzel and Malaka 2004)

Search task fitness and search enhancement capability: these measures

evaluate ontology quality in the context of an ontology-driven web search

task (Strasunskas and Tomassen 2008)

Watson’s topology measures: these measures are used in the context of a

relation correctness evaluation task (Fernandez et al. 2009)

Data-driven Class match: coverage of an ontology with respect to a set of search terms

(Alani et al. 2006)

Best fit ontology: ontology that maximizes its conditional probability given a

corpus. The probability is computed considering the terms and document

clusters within the corpus (Brewster et al. 2004)

Assessment by

humans

Syntactic quality: number of syntactical errors in the ontology (Burton-Jones

et al. 2005)

Accuracy: number of false statements in the ontology (Burton-Jones et al.

2005)

Trust: correctness and usefulness of the information delivered by a certain

reviewer with respect to the ontology (Lewen et al. 2006). This measure is

defined and exploited in collaborative systems (d’Aquin et al. 2009)

Collaborative evaluation: collaborative assessment of ontologies based on

manual user evaluation (Cantador et al. 2007)

Essence: assess if an entity is true in every possible world (Guarino and

Welty 2004)

(continued)

200 M. Sabou and M. Fernandez

the evaluation is domain coverage. For alignments, a reference alignment can

play the role of a gold standard.

• Application-based: The frame of reference consists of the set of “ideal” results

that an application should return when plugging the “perfect” ontology

Table 9.2 (continued)

Frame of

reference

Evaluation metric/approach

Identity: assess if individual entities of the world are the same or different

(Guarino and Welty 2004)

Unity: recognizes all the parts that form an individual entity (Guarino and

Welty 2004)

Topology-based Topology of the graph: set of topological evaluation measures including

number of classes, number of properties, number of individuals, ontology
popularity (number of ontologies importing a given ontology), and

ontology depth and breadth (maximum, minimum, average, and

variance); extracted from Watson

Density: number of subclass, sibling, and domain relations of a given concept

(Alani et al. 2006)

Semantic similarity: closeness of the concepts of interest in the ontology

structure (Alani et al. 2006)

Betweenness: number of paths that pass through each node of the ontological

graph (Alani et al. 2006)

Comprehensiveness: number of classes and properties of an ontology (Burton-

Jones et al. 2005)

Authority: normalized value of times that an ontology is imported in the

network (Burton-Jones et al. 2005)

OntoRank: ranks ontologies based on the interlinking structure among

ontologies in the network. Different versions of the similar evaluation

principle are found in (Patel et al. 2003; Ding et al. 2005)

Relationship richness: diversity of relations and placement of relations in the

ontology (Tartir et al. 2005)

Attribute richness: average number of properties per class (Tartir et al. 2005)

Inheritance richness: average number of subclasses per class (Tartir et al.

2005)

Class richness: ratio between the number of classes that contain instances

divided by the total number of classes in the ontology (Tartir et al. 2005)

Average population: ratio between the number of ontology instances and

classes (Tartir et al. 2005)

Cohesion: number of separated, connected components of the ontological

graph (Tartir et al. 2005)

Language-based Thirty-eight modeling language-specific criteria: if the language allows
axioms embedded in terms, can define disjoint decompositions, etc.
(Lozano-Tello and Gómez-Pérez 2004)

Methodology-

based

Eleven methodology-based evaluation metrics: precision factors (e.g., the

delimitation of phases in the ontology construction), usability factors (e.g.,
the quality of manuals), and maturity factors (e.g., the importance of the
developed ontology) (Lozano-Tello and Gómez-Pérez 2004)

ahttp://wordnet.princeton.edu/

9 Ontology (Network) Evaluation 201

http://wordnet.princeton.edu/

(or alignment) into it. This frame of reference pertains to the assessment of the

ontology’s (alignment’s) suitability for an application/task.
• Data-driven: The frame of reference is a collection of unstructured or informal

data (e.g., text), which represents the problem domain. Similarly to structured

representations used as gold standards, unstructured data collections are also

mostly used to support the evaluation of domain coverage.
• Assessment by humans: The frame of reference is defined by human judgments

that measure ontology features (or alignment characteristics) not recognizable

by machines. Humans can (relatively) easily assess several ontology quality
features which are not amenable to automatic processing. Human ratings also

help to assess the level of adoption and use of the ontologies. Human-based

ontology ratings are exploited to automatically select the most appropriate

ontology according to previous users’ experiences (Cantador et al. 2007).

Additionally, and based on the way in which human evaluators assess ontology
quality features (by comparison with their mental idea of the perfect model or canon

for these features), we have identified the next three nontangible frames of

references as ideal models of topologies, languages, and ontology-construction

methodologies, which constitute the boundaries within which comparisons are

based when performing the evaluations: (a) the ontology with the optimal topology,

(b) the potentially most powerful and expressive ontology language, and (c) the

perfect set of steps to follow and requirements to fulfill in order to achieve the best

modeled ontology. All these canons or ideal models of topologies, languages, and

methodologies are weakly defined since they may vary across evaluations and

across the evaluators who defined them.

• Topology-based: The frame of reference is defined by the minimum or maxi-

mum possible values of the topology evaluation metrics among ontologies

within the network, or among ontology entities within the same ontology.

Topology metrics automatically assess ontology quality features as well as

adoption and use features, by measuring the interlinking structure of ontologies

across the network (Ding et al. 2005).

• Language-based: The frame of reference is defined by the representational

capabilities of the language used to construct the ontology.

• Methodology-based: The frame of reference is defined by the different quality

factors of the selected ontology-development methodology.

Task 4. Applying the selected evaluation approach. Applying the selected

evaluation approach requires a proper setup for the evaluation experiments and

implementation of software tools to compute the evaluation metrics, and/or engage

the human experts in stimulating sessions to collect their evaluations. We advise

ontology developers to refer to the relevant scientific publications cited in this

chapter for example evaluation setups and best practices. Evaluation approaches

that rely on human judgment (Guarino and Welty 2004; Lozano-Tello and Gómez-

Pérez 2004) are generally more time consuming and sophisticated than those which

compare numeric values derived by automatic measures (Sindice, Watson),

202 M. Sabou and M. Fernandez

although they often offer more valuable insight into the evaluation process. We

advise using parallel evaluation with multiple human experts to account for cross-

evaluator disagreements.

Task 5. Combining and presenting individual evaluation results. This task

highlights the weakest spots in the ontology network by considering individual

evaluation results and how they affect the rest of the network. The evaluation results

derived for individual components are combined to reach a global understanding of

the network’s quality. The final task is to present the results of the evaluation in an

appropriate form for possible repair (corrections, additions), improvements, and

future evolution of the ontology network.

9.4 Examples of Ontology Evaluation

Since ontology network evaluation is not a widespread activity as yet, in this

section, we present examples of various ontology evaluation studies and show

how their stages map to the tasks prescribed by our guidelines. The examples

cover all the key evaluation goals described in Task 2: domain coverage

(Sect. 9.4.3), quality of modeling (Sects. 9.4.1 and 9.4.2), suitability for an applica-

tion (Sects. 9.4.3 and 9.4.4), and adoption (Sect. 9.4.5).

9.4.1 Evaluation of an Individual Ontology

In this example, we describe the evaluation of YAGO (Suchanek et al. 2008), a

large, lightweight, general-purpose ontology, automatically derived from

Wikipedia and WordNet. YAGO has over 1.7 million entities (individuals and

concepts) and 15 million facts (ground binary relations between entities). The

relations include the taxonomic hierarchy as well as around 100 semantic relations

between entities. YAGO’s evaluation follows the main tasks of our methodology.

[Task 2] Since the evaluation was performed in an ontology development

scenario, the authors’ goal was to assess the quality of modeling of YAGO, namely

its precision with respect to the data sets from where it has been derived. The

approach was that of evaluating the precision by using human expert opinion.

[Task 3] To evaluate the precision of an ontology, its facts have to be compared

to some ground truths. Since there is no computer-processable ground truth of

suitable extent to be used as a frame of reference, the authors relied on manual

evaluations against Wikipedia content, which was the frame of reference.

[Task 4] During the evaluation, human judges rated as “correct,” “incorrect,” or

“don’t know” facts that were randomly selected from YAGO. Since common sense

often does not suffice to judge the correctness of the YAGO facts, a snippet of the

corresponding Wikipedia page was also presented to the judges. Thus, the evalua-

tion compared YAGO against the ground truth of Wikipedia (i.e., it does not deal

9 Ontology (Network) Evaluation 203

with the problem of Wikipedia containing some false information). Thirteen judges

evaluated a total of 5,200 facts (ground relations between YAGO entities).

[Task 5] The authors use a tabular format (Table 9.3) to present the evaluation

results in the decreasing order of the obtained precision (we only show the most and

least precise relations). To make sure that the findings are significant, the Wilson

confidence interval for a ¼ 5% was computed. A confidence interval of 0% means

that the facts have been evaluated exhaustively. The evaluation shows very high

quality results as 74 relations have a precision of over 95%.

This tabular presentation helps identifying the least precise relations and fosters

the analysis of such cases. It can be concluded, for example, that a key source of

error are inconsistencies of the underlying sources. For example, for the relation

bornOnDate, most false facts stem from erroneous Wikipedia categories (e.g.,

persons born in 1802 are in the 1805 Births Wikipedia category). For facts with

literals (such as hasHeight), many errors stem from a nonstandard format of the

numbers (e.g., height is considered 1.6 km, just because the infobox says 1,632 m

instead of 1.632 m). Occasionally, the data in Wikipedia was updated between the

time of extraction and the time of the evaluation. This explains many errors for

frequently changing properties such as hasGDPPPP and hasGini.

9.4.2 Pattern-Based Ontology Evaluation

In this section, we show how ontology design patterns, specifically content design

patterns (CPs), are used to evaluate an ontology. The example does not cover the

complete evaluation of the ontology, but presents one specific case where a CP

assisted in finding potential problems and additionally suggested a solution. The

example is set within the fishery domain, and the evaluated ontology is version 0.3

of the “fishing areas” ontology, modeling the division of water areas into divisions

and subdivisions. An example is the FAO major fishing area 51, Western Indian

Ocean, and its subareas numbered from 1 to 8, where 1 corresponds to the Red Sea

and 2 to the Persian Gulf, but where the subdivisions of these subareas are only

numerically identified.

Table 9.3 Precision of some YAGO facts

Relation No. of evaluation Precision

1 hasExpenses 46 100.0% � 0.0%

2 hasInflation 25 100.0% � 0.0%

3 hasLaborForce 43 97.67441% � 0.0%

4 during 232 97.48950% � 1.838%

. . .

88 hasGDPPPP 75 91.22189% � 5.897%

89 hasGini 62 91.00750% � 6.455%

90 discovered 84 90.98286% � 5.702%

204 M. Sabou and M. Fernandez

[Task 2] The goal of the evaluation was assessing the quality of modeling, and
the chosen approach was manual evaluation by an ontology pattern expert.

[Task 3] The expert used the pattern catalog available in the ontology design

pattern portal5 as a “gold standard” of modeling to which the modeling solutions in

the evaluated ontology were compared. CPs introduce best practices for solving

particular modeling problems, but by introducing those solutions, the pattern

catalog can also be seen as a catalog of modeling issues.

[Task 4] The ontology used a locally defined, transitive, “part-of” relation to

model the division of subareas and further levels of divisions and subdivisions, thus

using the same modeling approach as the “part-of” content pattern. This modeling

solution, however, is not suitable for certain contexts, because, when using

reasoning, it is not possible to distinguish between the direct and the indirect

subparts of an area. For example, if the hierarchical structure of the partitioning

of the areas should be reconstructed, for example, for browsing the ontology in a

graphical interface, or when answering “what are the divisions of the Red Sea?,”

only the direct subareas of the Red Sea are of interest rather than all the inferable

parts.

The “componency pattern” provides a modeling alternative using two inverse

object properties: “hasComponent” and “isComponentOf.” These are nontransitive

properties that can be used in combination with the “part-of pattern” to both register

general partitioning but also the nontransitive property of a “proper part,” i.e., a

direct component of something. When using these two patterns as “gold standards”

for modeling, the ontology evaluator can discover the potential problem of a

missing nontransitive property to distinguish the different “levels” of area decom-

position and propose an appropriate solution.

9.4.3 Multiple Evaluations of an Ontology

An example of how various types of evaluations shed light on different aspects of

an ontology is provided in (Sabou et al. 2005). Similar to this, when evaluating

ontology networks, one needs to combine evaluation results for various network

components. The authors of (Sabou et al. 2005) report on the multifaceted evalua-

tion of an ontology that was automatically extracted from a corpus of textual web

service descriptions in the bioinformatics domain. The various stages of this

evaluation are graphically depicted in Fig. 9.3. The aim of the extracted ontology
is to support the semantic description of web services. The myGrid6 project

provided a good context to evaluate this ontology as a bioinformatics expert has

previously built a gold standard ontology for describing the same set of web

5 http://www.ontologydesignpatterns.org
6 http://www.mygrid.org.uk

9 Ontology (Network) Evaluation 205

http://www.ontologydesignpatterns.org
http://www.mygrid.org.uk

services. The domain expert has relied on his domain knowledge to build the

ontology rather than on the description of web services (corpus), which were

used as the main input for the automatic extraction algorithm. A part of the gold

standard ontology, referred to as the application ontology, provides concepts for
annotating web service descriptions in a form-based annotation tool and is subse-

quently used at web service discovery time to power the search.

[Task 2] In this ontology development scenario, the evaluations had several

complementary goals. First, the authors aimed to assess whether the extracted

ontology would be a good starting point for building an ontology and relied on an

expert evaluation approach for this (shown as evaluation 2 in Fig. 9.3). Second, they

wanted to evaluate domain coverage by comparison to the gold standard ontology

(shown as evaluation 3 in Fig. 9.3). Third, the authors got an insight into how well

the ontology would support an application by comparing it with the application

ontology.

[Task 3] The authors made use of the following frames of references and metrics.

For evaluation 2, the frame of reference consisted in the expert’s knowledge of the

domain as he was asked to review and rate the extracted concepts as either correct
or spurious or new. A precision value was then computed as a ratio of the correct

and new concepts over all extracted concepts. For evaluation 3, the authors used the

gold standard ontology as a frame of reference and computed metrics such as

lexical overlap (LO – the ratio of overlapping concepts), ontological improvement

Fig. 9.3 Overview of various evaluations of an ontology (Sabou et al. 2005)

206 M. Sabou and M. Fernandez

(OI – the ratio of new concepts that were not in the gold standard but were domain

relevant), and ontological loss (OL – the ratio of gold standard concepts which were

not extracted). For evaluation 4, the application ontology was used as a frame of

reference and compared to the extracted ontology using the metrics defined for

evaluation 3.

[Task 4] Task 4 consisted in the evaluation performed by the domain expert as

well as the computation of the various ontology comparison metrics.

[Task 5] The authors sum up the results of the various evaluations in tabular form

and perform a subsequent analysis of these results. For example, Table 9.4 sums up

the results when assessing domain coverage and suitability for a task by comparing

the extracted ontology to the gold standard and application ontologies. The results

show that although the overlap with the gold standard is low (7%), the extracted

ontology contains a significant number of new, domain-relevant concepts (56%)

that were identified in the automatically analyzed corpus but missed by the domain

expert, which relied exclusively on his domain knowledge. A detailed analysis of

all the missed concepts when comparing to the gold standard ontology shows that

70.6% of these terms did actually not appear in the corpus (but could be acquired if

the corpus would be enlarged) and 19.8% referred to abstract concepts introduced

by the domain expert to structure the ontology and which again were not in the

corpus. It turns out that extraction algorithm–related issues only account for only

10% of the missed concepts.

9.4.4 Task-Based Ontology Evaluation

The authors of (Strasunskas and Tomassen 2008) investigate which ontology

features influence the web search task. In their study, they consider different

types of search tasks (fact-finding, exploratory search, comprehensive search),

identify ontology features important for each task, and then introduce new evalua-

tion metrics that measure these features respectively (e.g., fact-finding fitness

Table 9.4 Results for domain coverage and task fitness from (Sabou et al. 2005)

Concepts Gold standard Application ontology

All 549 125

Correct 39 25

Allmissed 510 100

Missedcorpus 3 (0.6%) 0 (0%)

Missedexternal 360 (70.6%) 88 (88%)

Missedabstract 101 (19.8%) 6 (6%)

Missedcomposed 46 (9%) 6 (6%)

New 306 27

LO 7% 20%

OL 93% 80%

OI 56% 21.5%

9 Ontology (Network) Evaluation 207

(FFF), exploratory search task fitness (EXF)). Such metrics can support ontology

selection for search. Their theoretical considerations are experimentally verified, by

correlating the values of the metrics for different ontology versions with the search

performance obtained in the context of the WebOdIR web search application

(Strasunskas and Tomassen 2008). Core to their study is therefore a task-based

evaluation of ontologies.

[Task 2] The goal is to understand the suitability for a task, and the approach

consists in exploiting ontologies to support web search and measuring the improve-

ment in terms of search precision obtained in an experimental setting.

[Task 3] The frame of reference is defined by the performance scores obtained in
a web search task with an original version of the ontology. The metrics used

measure ontology features important for certain search tasks (e.g., FFF, EXF).

[Task 4] The experimental setup consists of relying on two groups of users to

perform web search using WebOdIR within four different domains (two search

tasks per domain, i.e., eight tasks in total). WebOdIR exploited a set of ontologies

for one group and the extended version of the same ontologies for the second group.

The performance score of the search task is computed and compared across the two

versions of the ontologies as well as correlated with the computed values of the

newly introduced metrics.

[Task 5] The authors present these correlations in both tabular and graphical

form and conclude on the influence of ontology features on various search tasks.

For example, they found that more instances and object properties improve fact

finding, while the addition of disjoint and equivalent concepts is beneficial for

explanatory and comprehensive search tasks.

9.4.5 Evaluating Ontology Adoption and Use

The work of Cantador and colleagues (Cantador et al. 2007) presents a tool for

collaborative ontology evaluation and reuse (WebCORE) focused on evaluating

domain coverage and adoption and usage. The goal of this tool is to help experts

and practitioners to select the most appropriate ontologies from a repository. The

tool has three main components. The first one helps the user to semiautomatically

generate a gold standard representing the domain of interest. The second compo-

nent evaluates the domain coverage of the ontologies by comparing them against

the previously generated gold standard by means of lexical and taxonomical

evaluation measures. The third component exploits previous users’ judgments of

those ontologies to automatically recommend the best ones.

[Task 2] Two main evaluation goals are considered when selecting the optimal

ontology: (a) the domain coverage and (b) the adoption and use of the ontology.
[Task 3] To evaluate domain coverage, authors select a gold standard as a frame

of reference. This gold standard is a representation of the domain of interest and is

semiautomatically generated by the user with the support of the tool. To generate it,

the user (a) introduces an initial set of terms or selects a textual source from which a

208 M. Sabou and M. Fernandez

set of terms representing the domain of interest can be extracted, (b) complements

this set of terms by selecting additional terms from a ranked list, automatically

generated by the system by considering previous user-generated gold standards, and

(c) extends this set of terms by selecting suggested hypernym, hyponym, and

synonym relations from WordNet. To evaluate the adoption and use of the

ontologies, this work relies on an assessment by humans’ frame of reference.

Users share their own experiences by evaluating the used ontologies according to

five criteria: correctness, readability, flexibility, level of formality (highly informal,

semi-informal, semiformal, and rigorously formal), and type of model (upper-level,

core-ontology, domain-ontology, task-ontology, and application-ontology).

[Task 4] The tool evaluates the ontologies in two phases. First, the ontologies are
evaluated according to their domain coverage by comparing them against the

semiautomatically generated gold standard using lexical and taxonomical similarity

measures. Second, the ontologies with sufficient domain coverage are assessed on

their level of adoption and use with the help of a collaborative filtering algorithm

(Adomavicius and Tuzhilin 2005) that explores the manual evaluations of the

ontologies stored into the system. This algorithm takes into account not only

previous users’ experiences (usage) but also the number of times the ontologies

were selected (adoption).

[Task 5] The representation of the results differs for the two types of evaluations.
For domain coverage, the tool presents a ranked list of ontologies including their

individual scores for the lexical and taxonomical evaluation measures, as well as a

combined evaluation score. After the adoption and usage evaluation, the list of

ontologies is reranked, and the collaborative ontology evaluation score is added to

the previous scores. In addition, the system allows the user to provide her own

judgment of the ontology so that her assessment can be exploited for future

ontology evaluations and selections.

9.5 Relevant NeOn Toolkit Plugins

Given the complexity of the ontology evaluation task in terms of the variety of

approaches and metrics, the NeOn Toolkit does not provide an evaluation plugin

per se. However, various plugins exist that can support different evaluation

approaches. We provide a brief description of these plugins here.

The RaDON plugin7 supports the automatic detection of logical inconsistency

and incoherence in an ontology or an ontology network. The plugin does not only

detect these modeling errors but can also repair them automatically or support the

user to manually solve these issues. As such, RaDON can support users whose goal

is to assess the quality of modeling in their ontology.

7 http://www.neon-toolkit.org/wiki/2.3.1/RaDON

9 Ontology (Network) Evaluation 209

http://www.neon-toolkit.org/wiki/2.3.1/RaDON

The XDTools plugin8 contains a suite of tools that support design pattern–based

ontology development. One of the tools, XD Analyzer, provides suggestions and

feedback to the user with respect to how good practices in ontology design have

been followed, according to the eXtreme Design (XD) method (for instance,

missing labels and comments, isolated entities, unused imported ontologies). Chapter 3

provides more information about the XD method. Similarly to RaDON, this plugin

can also be used when checking the quality of modeling; however, the focus here is
the quality of the domain conceptualization rather than logical correctness.

TheWatson for knowledge reuse9 plugin primarily supports knowledge reuse by

allowing an ontology developer to search the Watson ontology search engine for

relevant knowledge statements directly from within the NeOn Toolkit and then

reuse those statements. The plugin also interfaces with the Cupboard ontology

publication environment that allows users to rate various characteristics of the

ontologies that they reused (e.g., reusability, correctness, completeness, domain

coverage, modeling style). Individual ratings are aggregated into an overall score

and can support other people when reusing ontologies. This plugin supports the

evaluation of ontologies in terms of their adoption and use providing also reviews

written by previous adopters.

9.6 Summary

Ontology evaluation is an important and complex ontology engineering activity. Its

complexity stems both by its applicability in a variety of scenarios (Sect. 9.1) as

well as the abundant number of existing approaches and metrics. In this chapter, we

aimed at providing practitioners with the right balance of generic guidelines and

specific techniques that they could use from the wide landscape of works in this area

(Sect. 9.2). We hope that the five diverse evaluation examples in Sect. 9.3 will serve

as useful material for exemplifying the proposed guidelines.

Although ontology networks contain both ontologies and their links in terms of

alignments, we have mostly focused on ontology evaluation. Readers interested in

ontology alignment evaluation should also consult Chap. 12. Finally, Chaps. 10 and

11 describe other ontology engineering activities that can benefit from ontology

evaluation, namely ontology modularization and evolution.

8 http://www.neon-toolkit.org/wiki/2.3.1/XDTools
9 http://www.neon-toolkit.org/wiki/2.3.1/Watson_for_Knowledge_Reuse

210 M. Sabou and M. Fernandez

http://dx.doi.org/10.1007/978-3-642-24794-1_3
http://dx.doi.org/10.1007/978-3-642-24794-1_12
http://dx.doi.org/10.1007/978-3-642-24794-1_10
http://dx.doi.org/10.1007/978-3-642-24794-1_11
http://www.neon-toolkit.org/wiki/2.3.1/XDTools
http://www.neon-toolkit.org/wiki/2.3.1/Watson_for_Knowledge_Reuse

References

Adomavicius G, Tuzhilin A (2005) Toward the next generation of recommender systems: a survey

of the state-of-the-art and possible extensions. IEEE Trans Knowl Data Eng 17(6):734–749

Alani H, Brewster C, Shadbolt N (2006) Ranking ontologies with AKTiveRank. In: 5th interna-

tional Semantic Web Conference (ISWC 2006), Athens, GA, USA, pp 1–15

Brank J, Grobelnik M, Mladenić D (2005) A survey of ontology evaluation techniques.

In: Conference on Data Mining and Data Warehouses (SiKDD 2005), Ljubljana, Slovenia,

pp 166–170

Brewster C, Alani H, Dasmahapatra S, Wilks Y (2004) Data driven ontology evaluation. In: 4th

international conference on Language Resources and Evaluation (LREC 2004), Lisbon,

Portugal, pp 164–169

Burton-Jones A, Storey VC, Sugumaran V, Ahluwalia P (2005) A semiotic metrics suite for

assessing the quality of ontologies. Data & knowledge engineering – Special issue: Natural

Language and Database and Information Systems: NLDB 2003, pp 84–102

Cantador I, Fernandez M, Castells P (2007) Improving ontology recommendation and reuse in

WebCORE by Collaborative Assessments. In: Workshop on social and collaborative construc-

tion of structured knowledge at the 16th international World Wide Web conference

(WWW 2007), Banff, Canada

Caracciolo C, Heguiabehere J (2009) NeOn deliverable D7.2.3. Initial network of fisheries

ontologies. NeOn project

Cerbah F (2008) Learning highly structured semantic repositories from relational databases –

RDBtoOnto tool. In: 5th European Semantic Web Conference (ESWC 2008), Tenerife, Spain,

pp 777–781

Cimiano P, V€olker J (2005) Text2Onto – a framework for ontology learning and data-driven

change discovery. In: 10th international conference on applications of Natural Language to

Information Systems (NLDB-2005), Alicante, Spain, pp 227–238

d’Aquin M, Motta E, Sabou M, Angeletou S, Gridinoc L, Lopez V, Guidi D (2008) Towards a new

generation of semantic web applications. IEEE Intell Syst 23(3):20–28

d’Aquin M, Euzenat J, Duc C, Lewen H (2009) Sharing and reusing aligned ontologies with

cupboard. Demo at international conference on Knowledge Capture (K-CAP 2009), Redondo

Beach, CA, USA

Ding L, Pan R, Finin T, Joshi A, Peng Y, Kolari P (2005) Finding and ranking knowledge on the

semantic web. In: 4th international Semantic Web Conference (ISWC 2005), Galway, Ireland,

pp 156–170

Euzenat J (2007). Semantic precision and recall for ontology alignment evaluation. In:

20th international Joint Conference on Artificial Intelligence (IJCAI-2007), Hyderabad,

India, pp 348–353

Euzenat J, Shvaiko P (2007) Ontology matching. Springer, Heidelberg

Fernandez M, Cantador I, Castells P (2006) CORE: a tool for collaborative ontology reuse and

evaluation. In: 4th international workshop on evaluation of ontologies for the web at the 15th

international World Wide Web conference (WWW 2006), Edinburgh, Scotland

Fernandez M, Overbeeke C, Sabou M, Motta E (2009) What makes a good ontology? A case-study

in fine-grained knowledge reuse. In: 4th Asian Semantic Web Conference (ASWC 2009),

Shanghai, China, pp 61–75

Guarino N, Welty C (2004) An overview of OntoClean. In: Handbook on ontologies. Springer,

Berlin, pp 151–172

Horridge M, Parsia B, Sattler U (2009) Explaining inconsistencies in OWL ontologies. In:

Scalable uncertainty management. Springer, Berlin/Heidelberg, pp 124–137

Jones M, Alani H (2006) Content-based ontology ranking. In: 9th international protege confer-

ence, Stanford, CA

Lewen H, Supekar K, Noy N, Musen M (2006) Topic-specific trust and open rating systems: an

approach for ontology evaluation. In: 4th international workshop on Evaluation of Ontologies

9 Ontology (Network) Evaluation 211

for the Web (EON2006) at the 15th international World Wide Web conference (WWW 2006),

Edinburgh, Scotland

Lopez V, Nikolov A, Fernandez M, Sabou M, Uren V, Motta E (2009) Merging and ranking

answers in the semantic web: the wisdom of crowds. In: 4th Asian Semantic Web Conference

(ASWC 2009), Shanghai, China, pp 135–152

Lopez V, Nikolov A, Sabou M, Uren V, Motta E (2010) Scaling up question-answering to linked

data. In: Knowledge Engineering and Knowledge Management by the Masses (EKAW-2010),

Lisbon, Portugal, pp 193–210

Lozano-Tello A, Gómez-Pérez A (2004) Ontometric: a method to choose the appropriate ontol-

ogy. J Database Manage 15(2):1–18

Maedche M, Staab S (2002) Measuring similarity between ontologies. In: 13th international

conference on Knowledge Engineering and Knowledge Management (EKAW 2002),

Siguenza, Spain, pp 251–263

Patel C, Supekar K, Lee Y, Park E (2003) OntoKhoj: a semantic web Portal for ontology

searching, ranking, and classification. In: 5th international workshop on Web Information

and Data Management (WIDM 2003). In conjunction with the 12th international conference on

Information and Knowledge Management (CIKM 2003), New Orleans, LA, USA

Porzel R, Malaka R (2004) A task-based approach for ontology evaluation. In: Proceeding of

ECAI 2004 workshop on ontology learning and population, Valencia, Spain

Poveda-Villalón M, Suárez-Figueroa MC, Gómez-Pérez A (2009) Common pitfalls in ontology

development. In: 13th Conference of the Spanish Association for Artificial Intelligence

(CAEPIA 2009), Sevilla, Spain, pp 91–100

Sabou M, Wroe C, Goble C, Mishne G (2005) Learning domain ontologies for web service

descriptions: an experiment in bioinformatics. In: 14th international World Wide Web confer-

ence (WWW 2005), Chiba, Japan, pp 190–198

Sabou M, d’Aquin M, Motta E (2008) Exploring the semantic web as background knowledge for

ontology matching. J Data Semant 11:156–190

Strasunskas D, Tomassen S (2008) Empirical insights on a value of ontology quality in ontology-

driven web search. OnTheMove 2008 confederated international conferences (OTM 2008),

Monterrey, Mexico, pp 1319–1337

Suárez-Figueroa MC, Gómez-Pérez A (2008) First attempt towards a standard glossary of ontol-

ogy engineering terminology. In: 8th international conference on Terminology and Knowledge

Engineering (TKE 2008), Copenhagen, Demark, pp 1–15

Suchanek FM, Kasneci G, Weikum G (2008) YAGO: a large ontology from Wikipedia and

WordNet. J Web Semant 6(3):203–217

Tartir S, Arpinar I, Moore M, Sheth A, Aleman-Meza B (2005) OntoQA: metric-based ontology

quality analysis. In: IEEE workshop on knowledge acquisition from distributed, autonomous,

semantically heterogeneous data and knowledge sources, Houston, TX

Van Hage W, Isaac A, Aleksovski Z (2007). Sample evaluation of ontology matching systems. In:

5th international workshop on Evaluation of Ontologies and Ontology-based tools (EON 2007)

Located at the 6th international Semantic Web Conference (ISWC 2007), Busan, Korea

Zablith F, d’Aquin M, SabouM, Motta E (2010) Using ontological contexts to assess the relevance

of statements in ontology evolution. In: 17th conference on Knowledge Engineering and

Knowledge Management by the Masses (EKAW 2010), Lisbon, Portugal, pp 226–240

212 M. Sabou and M. Fernandez

Chapter 10

Modularizing Ontologies

Mathieu d’Aquin

Abstract As large monolithic ontologies are difficult to handle and maintain, the

activity of modularizing an ontology consists in identifying components (modules)

of this ontology that can be considered separately while they are interlinked with

other modules. The end benefit of modularizing an ontology can be, depending on

the particular application or scenario, (a) to improve performance by enabling the

distribution or targeted processing, (b) to facilitate the development and mainte-

nance of the ontology by dividing it in loosely coupled, self-contained components

or (c) to facilitate the reuse of parts of the ontology. In this chapter, we present a

brief introduction to the field of ontology modularization. We detail the approach

taken as a guideline to modularize existing ontologies and the tools available in

order to carry out this activity.

10.1 Motivation

In complex domains such as medicine, ontologies can contain thousands of

concepts. Examples of such large ontologies are the NCI (National Cancer Institute)

Thesaurus1 with about 27,500 and the Gene Ontology2 with about 22,000 concepts.

However, problems with large monolithical ontologies in terms of reusability,

scalability, and maintenance have led to an increasing interest in techniques for

dividing ontologies into sets of cohesive, self-contained modules; for extracting

modules from ontologies relevant to a sub-domain or a task; as well as for

M. d’Aquin (*)

Knowledge Media Institute (KMi), The Open University, Walton Hall, Milton Keynes,

MK7 6AA, UK

e-mail: m.daquin@open.ac.uk

1 http://ncit.nci.nih.gov/
2 http://www.geneontology.org/

M.C. Suárez-Figueroa et al. (eds.), Ontology Engineering in a Networked World,
DOI 10.1007/978-3-642-24794-1_10, # Springer-Verlag Berlin Heidelberg 2012

213

mailto:m.daquin@open.ac.uk
http://ncit.nci.nih.gov/
http://www.geneontology.org/

combining and manipulating ontology modules. We observe however that there is

no universal way to modularize an ontology and that the choice of a particular

technique or approach should be guided by the requirements of the application or

scenario relying on modularization.

In particular, ontologies that contain thousands of concepts cannot be created

and maintained by a single person. The broad coverage of such large ontologies

normally requires a team of experts. In many cases, these experts will be located in

different organizations and will work on the same ontology in parallel. In other

situations, large ontologies are mostly created to provide a standard model of a

domain to be used by developers of individual solutions within that domain. While

existing large ontologies often cover a complete domain, the providers of individual

solutions are often only interested in a specific part of the overall domain.

Also, the nature of ontologies as reference models for a domain requires a high

degree of quality of the respective model. Representing a consensus model, it is also

important to have proposed models validated by different experts. In the case of large

ontologies, it is often difficult, if not impossible, to understand the model as a whole.

On a technical level, very large ontologies cause serious scalability problems.

The complexity of reasoning about ontologies is well known to be critical even for

smaller ontologies. In the presence of ontologies like the NCI Thesaurus, not only

reasoning engines but also modelling and visualization tools reach their limits.

Currently, there is no modelling tool that can provide convenient modelling support

for ontologies of the size of the NCI Thesaurus.

All these problems are a result of the fact that a large ontology is treated as a

single monolithic model. Most problems would disappear if the overall model

consists of a set of coherent modules about a certain sub-topic that can be used

independently of the other modules while still containing information about its

relation to these other modules.

In the next sections, we describe a general guideline to the modularization

of ontologies and tools that can be used to support this activity. We identify

three approacheswhich can be involved in realizing themodularization of an ontology:

ontology partitioning, ontology module extraction and ontology module composition.

10.2 Ontology Modularization

We consider an ontology O as a set of axioms (sub-class, equivalence, instantiation,

etc.) and the signature Sig(O) of an ontology O as the set of entity names occurring

in the axioms of O, that is, its vocabulary. As described in the NeOn Glossary

(Suárez-Figueroa 2010), ontology modularization refers to the activity of

identifying one or more modules in an ontology. A module is considered to be a

significant and self-contained sub-part of an ontology. Therefore, a module Mi(O)

of an ontology O is also a set of axioms (an ontology), with the minimal constraint

that Sig(Mi(O))� Sig(O). Note that, while it may often be desirable, it is not always

the case that Mi(O) � O.

214 M. d’Aquin

10.2.1 Ontology Partitioning

The activity of partitioning an ontology consists of splitting up the set of axioms

into a set of modules {M1, � � �, Mk} such that each Mi is an ontology, and the union

of all modules is semantically equivalent to the original ontology O (see Fig. 10.1).

Note that some approaches being labelled as partitioning methods do not actually

create partitions, as the resulting modules may overlap. There are several methods

for ontology partitioning that have been developed for different purposes.

The method of MacCartney et al. (2003) aims at improving the efficiency of

inference algorithms by localizing reasoning. For this purpose, this technique

minimizes the shared language (i.e. the intersection of the signatures) of pairs of

modules. A message passing algorithm for reasoning over the distributed ontology

is proposed for implementing resolution-based inference in the separate modules.

Completeness and correctness of some resolution strategies is preserved, and others

trade completeness for efficiency.

The method of Cuenca Grau et al. (2005) partitions an ontology into a set of

modules connected by e-connections. This approach aims at preserving the com-

pleteness of local reasoning within all created modules. This requirement is sup-

posed to make the approach suitable for supporting selective use and reuse since

every module can be exploited independently of the others.

A tool that produces sparsely connected modules of reduced size was presented

in Stuckenschmidt and Klein (2004). The goal of this method is to support mainte-

nance and use of very large ontologies by providing the possibility to individually

inspect smaller parts of the ontology. The algorithm operates with a number of

parameters that can be used to tune the result to the requirements of a given

application.

Later in this chapter, we describe a method for ontology partitioning based on

enforcing good properties in the dependency graph between the resulting modules.

Fig. 10.1 Ontology partitioning

10 Modularizing Ontologies 215

10.2.2 Ontology Module Extraction

Ontology module extraction consists in reducing an ontology to the sub-part, the

module, that covers a particular sub-vocabulary. This activity has been called seg-

mentation in Seidenberg and Rector (2006) and traversal view extraction in Noy and

Musen (2004). More precisely, given an ontology O and a set SV � Sig(O) of terms

from the ontology, amodule extractionmechanism returns amoduleMSV, supposed to

be the relevant part of O that covers the sub-vocabulary SV (Sig(MSV) � SV, see

Fig. 10.2). Techniques for module extraction often rely on the so-called traversal

method: starting from the elements of the input sub-vocabulary, relations in the

ontology are recursively ‘traversed’ to gather relevant (i.e. related) elements to be

included in the module.

Such a technique has been integrated in the PROMPT tool (Noy and Musen

2004), to be used in the Protégé environment. This method recursively follows the

properties around a selected class of the ontology until a given distance is reached.

The user can exclude certain properties in order to adapt the result to the needs of

the application.

The mechanism presented in Seidenberg and Rector (2006) starts from a set of

classes of the input ontology and extracts related elements on the basis of class

subsumption and OWL restrictions. Some optional filters can also be activated to

reduce the size of the resulting module. This technique has been implemented to be

used in the Galen project and relies on the Galen upper ontology.

In Stuckenschmidt (2006), the author defines a viewpoint as being a sub-part

of an ontology that only contains the knowledge concerning a given sub-vocabulary

(a set of concept and property names). The computation of a viewpoint is based on

the definition of a viewpoint-dependent subsumption relation.

Inspired from the previously described techniques, d’Aquin et al. (2006) define

an approach for the purpose of the dynamic selection of relevant modules from

online ontologies. The input sub-vocabulary can contain classes, properties or

individuals. The mechanism is fully automatized, is designed to work with different

kinds of ontologies (from simple taxonomies to rich and complex OWL

ontologies), and relies on inferences during the modularization process.

Fig. 10.2 Ontology module extraction

216 M. d’Aquin

Finally, the technique described in Doran et al. (2007) is focussed on ontology

module extraction for aiding an ontology engineer in reusing an ontology module.

It takes a single class as input and extracts a module about this class. The approach

it relies on is that, in most cases, elements that (directly or indirectly) make

reference to the initial class should be included.

One important issue related to ontology module extraction is that different

scenarios and applications require different ways to modularize ontologies

(d’Aquin et al. 2007b). To facilitate the selection, combination and adaptation of

the various existing module extraction techniques, d’Aquin et al. (2007a) describe a

parametric approach for module extraction. The principle is to describe module

extraction techniques under a common framework that can be parameterized

according to the modularization technique that is most suited for the application.

This framework relies on a graph transformation engine. Ontologies to be modular-

ized are represented as graphs, and modularization techniques re-formulated as

graph transformation rules. In this way, existing modularization technique can be

implemented in the same tool, making it easier to compare, adapt and combine

them, and new modularization techniques can easily be implemented in the form of

modularization rules. The paper (d’Aquin et al. 2007a) described the reformulation

of several existing techniques for modularization, but an operational implementa-

tion of the tool has not been made available.

Very similar ideas to the one described in d’Aquin et al. (2007a) are at the basis

of another approach for parametric modularization (Doran et al. 2008) which,

instead of a graph transformation framework, employs a mechanism that recur-

sively execute SPARQL queries over the ontology to build a sub-set of it. The

parameters of this framework are the sets of SPARQL queries that represent

modularization techniques. In the same line of ideas, we describe later in this

chapter a tool that relies on a set of specific extraction operators that can be

combined to extract modules from ontologies in a way that is customized to the

application at hand.

10.2.3 Ontology Module Composition

In Wiederhold (1994), Wiederhold defines a simple ontology algebra, with the main

purpose of facilitating ontology-based software composition. He defines a set of

operators applying set-related operations on the entities described in the input

ontologies and relying on equality mappings (¼) between these entities. More

precisely, the three operators are defined as shown in Table 10.1.

In the same line of ideas, but in a more formalized and sophisticated way, Melnik

et al. (2004) describe a set of operators for model management, as defined in the

Rondo platform (Melnik et al. 2003). The goal of model management is to facilitate

and automatize the development of metadata-intensive applications by relying on

the abstract and generic notion of model of the data, as well as on the idea of

mappings between these models. An essential part of a platform for model

10 Modularizing Ontologies 217

management is a set of operators to manipulate and combine these models and

mappings. Melnik et al. (2004) focus on formalizing a core set of operators: Match,

Compose, Merge, Extract, Difference and Confluence. Match is particular in this

set. It takes two models as an input and returns a mapping between these models.

It inherently does not have a formal semantics as it depends on the technique used

for matching, as well as on the concrete formalism used to describe the models and

mappings. Merge intuitively corresponds to the Union operator in Wiederhold

(1994): it takes two models and a mapping and creates a new model that contains

the information from both input models, relying on the input mapping. It also

creates two mappings from the created model to the two original ones. Extract

creates the sub-model of a model that is involved in a mapping, and Difference, the

sub-model that is not involved in a mapping. Finally, compose and confluence are

mapping manipulation operators, creating mappings by merging or composing

other mappings.

Kaushik et al. (2006) define operators for combining ontologies created by

different members of a community and written in RDF. This paper first provides

a formalization of RDF to describe set-related operators such as Intersection, Union

and Difference. It also adds other kinds of operators, such as the quotient of two

ontologies O1 and O2 (collapsing O2 into one entity and pointing all the properties

of O1 to entities of O2 to this particular entity) and the product of two ontologies

(inversely, extending the properties from O1 to O2 to all the entities of O2). It is

worth mentioning that such operators can be related to the ones of relational

algebras used in relational database systems.

Note finally that the OWL tools3 that are part of the KAON24 framework include

operators such as Difference, Merge and Filter, working at the level of ontology

axioms. For example, merge creates an ontology as the union of the axioms

contained in the two input ontologies. The NeOn Toolkit plugin for ontology

module composition presented in Sect. 10.5.3 relies on similar simple operators

and is integrated with the other tools for module extraction and ontology

partitioning.

Table 10.1 Set of operators

Intersection(O1, O2) ! O Creates an ontology O containing the common (mapped)

entities in O1 and O2

Union(O1, O2) ! O Creates an ontology O containing the entities of O1

and O2 and merging the common ones

Difference(O1, O2) ! O Creates an ontology O containing only the

entities in O1 that are not mapped to entities in O2

3 http://km.aifb.kit.edu/projects/owltools/
4 http://kaon2.semanticweb.org/

218 M. d’Aquin

http://km.aifb.kit.edu/projects/owltools/
http://kaon2.semanticweb.org/

10.3 A General Approach to Modularizing Ontologies

As we mentioned in Sect. 10.1, the goal of ontology modularization is to obtain a

module or a set of modules from an ontology, which fit the requirements of a

particular application or a particular scenario. Especially due to the large number of

different techniques that can be used and combined to achieve these goals, there is a

need for methodological guidelines to help ontology developers in selecting and

applying the appropriate techniques for modularization, depending on the goal of

modularization.

Note that, as opposed to a single, monolithic ontology, an ontology network is

essentially a modular ontology, made of components (the individual ontologies)

interacting with each other in a particular context. The approach presented here is

applied on individual ontologies (possibly networked) to create either networks of

ontologies or elements for networks of ontologies.

Generalizing and clarifying the description above, we specify the definition of

ontology modularization, as provided by the NeOn Glossary (Suárez-Figueroa

2010), as the activity that takes as an input an ontology and that has for goal to

identify a set of modules for this ontology, effectively creating a modular version of

it, for the purpose of supporting maintenance and reuse (see Fig. 10.3).

Modularization offers a way to cut down potentially large ontologies into smaller,

more manageable modules. It is generally realized by the ontology engineer or the

ontology engineering team, preferably with the help of domain experts.

Figure 10.4 shows the workflow and the tasks for carrying out the ontology

modularization activity. As can be seen in this figure, we see this activity as an

iterative process, potentially combining different methods and techniques for mod-

ule extraction and partitioning, and combining their results through the use of

module composition operators.

Task 1. Identifying the Purpose of Modularization
As discussed earlier, the modularization of an ontology strongly depends on the

application relying on the modularization and the context in which the ontology is

developed. It is therefore crucial to start by identifying the reasons for modularizing

the ontologies and the expected benefits, to guide the rest of the process.

Commonly considered benefits (and thus drivers) of ontology modularization

are:

• Improving performance by enabling the distribution of reasoning or by

exploiting only the relevant modules of a large ontology (see Suntisrivaraporn

et al. (2008) for an example in inference justification)

• Facilitating the development and maintenance of the ontology by dividing it in

loosely coupled, self-contained components, which can be managed separately

• Facilitating the reuse of (parts of) the ontology by extracting modules of the

ontology that have a specific application or purpose for being reused

• Customizing ontologies by application developers to flexibly extract and com-

bine modules relevant to a particular application or to provide different modules

10 Modularizing Ontologies 219

to different groups of users (see Lopez et al. (2009) for an example in managing

access rights in a distributed question answering system)

Identifying the purpose of modularization is essential for the next tasks, in

particular to select the appropriate modularization technique and criteria to maxi-

mize the expected benefit of modularization.

Task 2. Selecting a Modularization Approach
As explained at the beginning of this chapter, there are two main approaches to

obtain modules from ontologies: ontology partitioning and ontology module extrac-

tion. It is generally easy to decide which one to choose according to the

modularization purpose:

• Whenever the purpose relates to the entire ontology (i.e. improving mainte-

nance, and in some cases performance), a partitioning approach should be

considered.

• Whenever the purpose relates to extracting specific parts of an ontology (e.g. to

customize it or reuse it partially), module extraction should be considered.

Ontology Modularization

Definition

Ontology Modularization refers to the activity of identifying one or more modules in
an ontology with the purpose of supporting reuse or maintenance.

Goal

The modularization activity offers a way to cut-down potentially large ontologies into
smaller, more manageable modules.

Input Output

An ontology. A module or a set of modules from the input ontology. In
practice, ontology modules are themselves ontologies.

Who

Ontology engineer (ontology development team), curator of the ontology, preferably
with the help of domain experts.

When

To facilitate ontology reuse, as part of the re-engineering process, as part of a restruc-
turing activity.

Fig. 10.3 Ontology modularization filling card

220 M. d’Aquin

Of course, this needs to be considered in the context of the overall iterative

process that constitutes ontology modularization. In general, when the purpose is to

obtain a set of modules to cover the entire ontology, in a first iteration, partitioning

Task 1. Identifying purpose of
modularization

Task 2. Selecting a
modularization approach

Task 3. Defining modularization
criteria

Task 5. Parametrizing the
tecnique and applying it

Is it satisfactory

No

Yes

Task 8. Finalizing modularization

Users, Domain Experts and ODT

Task 4. Selecting a base
modularization technique

Task 6. Combining results

Ontology Development Team

Users, Domain Experts and
Ontology Development Team (ODT)

Users, Domain Experts and ODT

Ontology
Module(s)OUTPUT

Ontology

IN
P

U
T

Ontology Development Team

Ontology Development Team

Ontology Development Team

Task 7. Evaluating
modularization

Ontology Development Team

Fig. 10.4 Tasks for modularizing ontologies

10 Modularizing Ontologies 221

should be considered. In subsequent iterations, intermediary modules might need to

be further partitioned, or specific modules be extracted.

Task 3. Defining Modularization Criteria
The modularization criteria define the basic characteristics that the resulting

modules should have, that is, what should go into a module. In d’Aquin et al.

(2009), a set of criteria typically employed for modularization is given (e.g. logical

completeness and correctness with respect to the original ontology, size, relation

between modules). The criteria to emphasize should be decided, depending on the

purpose of modularization (as defined in Task 1). For example, if the goal is to

improve the reasoning procedure, logical criteria should be favoured. In d’Aquin

et al. (2009), we showed that the great variety of techniques for modularization all

implement different criteria, meaning that this task is essential for choosing the

appropriate technique, or combination of techniques. Unfortunately, while work in

d’Aquin et al. (2009) provides a list of common criteria, and insights on their

importance in different scenarios, the choice of the right criteria to apply is highly

dependent on a particular situation and has to be left to the ontology engineers to

decide.

Task 4. Selecting a Base Modularization Technique
As mentioned in previous sections, there is a great variety of techniques and tools

for ontology modularization. In d’Aquin et al. (2007b, 2009), we showed that these

techniques implement a different intuition about what should be in a module, and

so, there is no universal definition of what an ontology module should contain. In

other words, it is necessary to select the most appropriate technique, depending on

the criteria to apply. There is currently no comprehensive list of techniques that

could be applied for modularization. However, authors in d’Aquin et al. (2009)

provide a description of the major techniques and experiments, demonstrating how

they realize some possible criteria.

Task 5. Parametrizing the Technique and Applying It
Depending on the technique that has been selected by Task 4, there may be various

parameters required to obtain interesting and useful results. For example, module

extraction techniques generally require identifying a sub-vocabulary of the original

ontology, defining a particular area of interest. Partitioning techniques may require

indications, for example, about the minimal/maximal size of a module. In such

cases, the ontology engineer can only refer to guidelines and manual of the

individual tool to establish the best parameters in his/her context. Most of the

techniques would, in principle, be applied in the same way, taking the original

ontology as input and creating modules in the form of smaller ontologies, allowing

in this way to process the resulting modules iteratively, in the same way as the

original ontology.

Task 6. Combining Results
As mentioned earlier, we favour an iterative process where the adequate modules

are produced by refining and combining the results obtained with various

parameters, techniques and approaches. Therefore, at every iteration, everytime a

new (set of) module(s) is produced, it is necessary to integrate it – that is, to

combine it – with the modules that were produced at previous iterations. The way

222 M. d’Aquin

to combine depends on the criteria for modularization and on the modules already

produced. Two possibilities are:

• If some modules were too small or not logically complete and the current

iteration produced complementary modules, then the results should be merged.

• If modules from a previous iteration were too big because the employed tech-

nique did not consider some of the criteria, and a new technique is applied that

implements the missing criteria, then the common part from the results of both

iteration should be considered.

Operators for combining modules should be employed here to derive new

modules from the results of partitioning or extraction techniques, or from different

iterations for the process. The three common operators should be applied in the

following situations:

• Intersection: when two or more modules have been produced that are comple-

mentary in the sense that they are too broad and should be reduced in relation

with each other

• Union: when two or more modules have been produced that are complementary

in the sense that they are too narrow and should be integrated with each other

• Difference: when two or more modules have been produced that are comple-

mentary in the sense that one should be narrowed down so that it does not

overlap with the other

Task 7. Evaluating Modularization
The evaluation of the result of the modularization (meaning the complete set of

generated modules to be included in the modular ontology) is a crucial part of the

iterative process. Indeed, it depends on this evaluation whether a new iteration is

necessary, applying a new set of criteria and a new technique, or if the current (set

of) modules are satisfactory, considering the application scenario. There are two

ways in which the modularization could be evaluated:

• By checking the criteria: Evaluating whether the criteria defined for

modularization have been realized as expected by the modularization technique

is useful both for checking if the results match the requirements of the applica-

tion and for establishing a new set of criteria in case another iteration is required.

• By testing against the purpose of modularization: If the defined criteria have all

been realized, it is important to check whether or not the obtained modulari-

zation actually realizes the expected improvement compared to the original

ontology. For example, if the goal was to facilitate the maintenance of the

ontology, the ontology engineers and domain experts should check whether

the structure of the new, modular ontology has been created in a sensible way

according to this purpose. Another example could be when the goal is to better

support an application; in these cases, further guidelines about how to perform

an application-based ontology evaluation can be found in Chap. 9.

10 Modularizing Ontologies 223

http://dx.doi.org/10.1007/978-3-642-24794-1_9

There can be three outcomes for this task. It can establish by evaluation that:

• The modularization is satisfactory, so that the created modules can be finalized

and deployed (Task 8).

• The modularization is incomplete, so that a new iteration should be carried on,

using another set of criteria and another technique to produce complementary

results.

• The modularization is improper, so that a new iteration is required, re-consider-

ing the set of criteria and the technique to employ in order to produce modules

that better match the purpose of modularization.

Note that in different iterations, only the purpose of modularization cannot

change. In particular, even if the approach (extraction or partitioning) generally

does not change, it is not hard to imagine scenarios in which a partitioning

technique is first applied, followed by extraction procedures on the previously

created modules, as showed by the example in Sect. 10.4.

Task 8. Finalizing Modularization
Once the produced modularization is judged satisfactory, an additional step can

be required for it to be deployed and exploited in an application. For example, it is

usually necessary to revise the identifiers of each of the modules so that they follow

the conventions employed in the target application, to re-establish links between

modules, or simply to deploy the resulting modules in a way that it is made

accessible in the target application and the editorial workflow.

10.4 Example

We consider the scenario where a large monolithic ontology has been developed in

the past, and this needs to be modularized in order to facilitate its maintenance. The

purpose of the modularization has therefore been clearly identified (Task 1). In this

case, it is clear that what is required is to produce a set of modules that together

cover the entire ontology. Thus, in Task 2, the partitioning approach is selected.

Considering that the purpose is to facilitate maintenance, the major criteria (Task 3)

to take into account are:

• The sizes of the modules, which should be small enough to be easily manageable

but not too small so that the ontology curator does not have to handle too many

different modules for a particular management task

• The relations betweenmodules, which should favour awell-structured organization

in the dependency of the modules

Considering both criteria above, it is decided to apply the NeOn Toolkit plugin

for ontology partitioning (see Sect. 10.5), which works on the dependency graph of

modules and intends to provide good structures for this dependency graph (Task 4).

The only parameter for this technique is the minimum size of a module (Task 5),

which is chosen according to the size of the initial ontology. The resulting partition

224 M. d’Aquin

is described in Fig. 10.5. Even if there are no previous results yet, some modules

produced by the partitioning technique can already be combined together (Task 6).

Indeed, small modules can be judged too small and might contain information that

is considered relevant for other modules. Therefore, these modules can be merged

using the NeOn Toolkit plugin for module combination and employing the Union

operator. This is depicted for our example in Fig. 10.5.

Now that a first result has been produced, it can be evaluated (Task 7) by the

ontology development team, the domain experts and the users. In this example,

there is one module that is considered too big and covering two different topics that

should be separated. A second iteration is necessary.

The goal of the second iteration is to extract from one of the modules produced

previously, the elements related to one particular topic. Thus, we chose to follow the

extraction approach (Task 2). The criteria here are mainly that the extracted module

should contain ontological elements relevant to this particular topic (Task 3). A

specific ontology module extraction technique is selected for this (Task 4) and used

to generate relevant modules on the basis of a set of core terms defining the topic

(Task 5). The result is depicted in Fig. 10.6. Now that one module has been extracted

for one of the topic covered by the original module, the one for the second topic has

to be created in the combination task (Task 6). This is achieved by using the

Difference operator in the module combination plugin of the NeOn Toolkit (see

Fig. 10.6). In this way, the original module has then been divided into two modules,

one being the complement of the other.We then obtain a new set of modules that can

be evaluated, and if judged adequate, can replace the original, monolithic ontology.

Fig. 10.5 First iteration in our example modularization process

10 Modularizing Ontologies 225

10.5 Tool Support

The abstract example presented above provides an illustration of the overall activity

of modularizing an existing ontology, using the iterative method we propose, based

on different modularization approaches, and combining results from different

techniques. Ideally, the tools necessary to achieve this activity of modularizing

should be integrated within the same ontology engineering environment in which

the ontologies are developed. Here, we present the tools integrated in the NeOn

Toolkit in order to realize ontology partitioning, ontology module extraction and

ontology module composition. Together with the NeOn Toolkit, these tools repre-

sent an integrated environment for creating and manipulating ontology modules.

10.5.1 Ontology Partitioning

Our method for ontology partitioning is based on basic requirements concerning the

resulting modularization and its structure. We consider that the result of the

partitioning process should not only be a bag of modules but should also provide

the relations between them in terms of dependency. In addition, some good

properties for this structure should be enforced in order to facilitate the manipula-

tion and maintenance of the modularization.

As our approach is based on the dependency structure of modules, we need to

define this relation of dependency. We consider a module M1 to be dependent on a

module M2 if there is at least one entity in M1 whose definition or description

depends on at least one entity in M2. The definition or the description of an entity

Fig. 10.6 Second iteration in our example modularization process

226 M. d’Aquin

A depends on an entity B whenever B participates in the axioms defining or

describing A.

From this definition, we can see that if a module M1 depends on a module M2, it

means that M1 should import M2. The main particularity of our approach is that we

want the dependency structure of the resulting modularization to have good

properties in order to be efficient in facilitating further engineering of the obtained

modular ontology. In other terms, as shown in Fig. 10.7, we do not want this

structure to be any arbitrary (directed) graph, but to respect two major rules:

1. Rule 1 (no cycle): There should not be any cycle in the dependency graph of the

resulting modularization. The rationale for this rule is that we are trying to

reproduce the natural situation where modules would be reused. Creating bidi-

rectional interdependencies between reused modules is a bad practice as it

introduces additional difficulties in case of an update of one of the modules or

when distributing modules (Parnas 1978).

2. Rule 2 (no transitive dependency): If a module reuses another one, it should not

directly or indirectly reuse a module on which the reused one is dependent.

Indeed, when this situation arises, it means that the organization of modules into

layers has not been enforced, so that a module is reusing other modules at

different levels of the same branch of the dependency graph. Besides producing

unnecessary redundancies in the dependency structure, this could also cause

difficulties for the evolution and distribution of the module by creating ‘concur-

rent propagation paths,’ leading to the same module.

In addition, in order to ensure not only that the structure of the modularization

respects good properties but also that individual modules are easy to manage and to

handle, we add two rules on the characteristics of each module:

1. Rule 3 (size of the modules): A module should not be smaller than a given

threshold. Indeed, initial experiments have shown that applying only the two

rules above can result in very small modules. Too small modules can be hard to

manage, as it can result in having to consider too many different modules for a

given task (e.g. update) (d’Aquin et al. 2007b). Note that, even if it could

sometimes be useful, a rule based on the maximum size of a module would

not be applicable, as it would contradict rules 1 or 2. In this case, it would be

Fig. 10.7 Graphs illustrating dependency structures between ontology modules

10 Modularizing Ontologies 227

recommended to use the extraction techniques described in Sect. 10.5.2 to

reduce the size of the modules considered too big.

2. Rule 4 (intra-connectedness): Entities within a module should be connected with

each other. This is a very simple and natural rule to follow. Indeed, there is no

reason for entities that are completely disconnected, directly or indirectly, to end

up in the same module.

Having the above rules defined, our algorithm for partitioning ontologies is

reasonably straightforward. It basically consists in starting from an initial

modularization with as many modules as entities in the ontology. From this initial

modularization, the algorithm iteratively enforces rules 1 and 2, merging modules

when necessary. At the end of this step, a modularization that respects rules 1, 2 and

4 is obtained. The last task consists in merging modules that are too small according

to the given threshold, ensuring that this merging ends up in modules that respect

both rules 3 and 4.

Figure 10.8 shows a screenshot of the ontology partitioning plugin integrated

with the NeOn Toolkit, which relies on the technique described above. Concretely,

this plugin takes the form of a view which allows the user to select the ontology to

modularize, specify the threshold for the minimum size of the modules, and execute

the algorithm. The result of the algorithm is then presented as a graph, with each

Fig. 10.8 Screenshot of the ontology partitioning plugin of the NeOn Toolkit

228 M. d’Aquin

node corresponding to a created module (details of the module are shown when

selecting the corresponding node). The plugin allows the user to save and integrate

to the current ontology project each module individually.

An interesting aspect of the implementation within the NeOn Toolkit is that it

allows a very flexible and customizable modularization process. Indeed, it is

possible to re-run the algorithm with different parameters, save only the modules

that are relevant according to the ontology engineer, and use the module composi-

tion plugin presented below to manipulate and customize the modularization until a

satisfactory, well-suited modularization is obtained.

10.5.2 Ontology Module Extraction

In d’Aquin et al. (2007a, and 2007b),we have shown through a number of experiments

that extracting a module from an ontology is an ill-defined task: the criteria used to

decide what should go in a module and what is a good, relevant module are highly

dependent on the specificity of the application scenario. In other terms, there is no

universal, generic module extraction approach. This appeared also very clearly in the

different use cases described in d’Aquin et al. (2008), where different users, in

different contexts, provided completely different perspectives about what should go

in a module. In general, what appeared from these use cases is that:

1. Users have different, more or less well-defined ideas about what module extrac-

tion should do, varying from very elementary cases (e.g. extract a branch) to

complex, abstract requirements (should extract everything that helps in

interpreting a particular entity). Hence, each of the scenarios we encountered

would require a different approach for module extraction.

2. Users want to keep in control of the way the module is created. It is required to

support the parameterization of the module extraction for the user to be able to

really ‘choose’ what goes into the module.

For these reasons, we implemented a plugin for the NeOn Toolkit to realize

module extraction, providing an interactive and iterative approach to this activity.

This plugin integrates a number of different ‘operators’ for module extraction, most

of them being relatively elementary: based on an initial set of entities, extract the

super-/sub-classes, entities they depend or that depend on them, common super-/

sub-classes, sub-/super-properties, all classes of instances, or all instances of

classes. The interface for this plugin (Fig. 10.9) allows the user to easily combine

these different elementary operators in an interactive way. An initial module can be

created, using particular parameters (here the recursion level), obtaining an initial

set of entities to be included. Then another operator can be used, on other entities

and other parameters, to refine the module and extend it with other entities until an

appropriate module is created. At any point of the process, previous operations can

be undone and the module cleared.

10 Modularizing Ontologies 229

In addition, the plugin provides straightforward functions to facilitate the selec-

tion of the entities to consider for module extraction. This includes restricting the

visualization to classes, properties or individuals and searching for entities

matching a specific string. Once a module is created, it can simply be saved as

part of the current ontology project and become itself processable as an ontology

(module) to be composed or partitioned using the other modularization plugins.

10.5.3 Ontology Module Composition

A simple module algebra (including operators for Intersection, Union and Differ-

ence of module) is implemented in a dedicated plugin, which is realized as a new

NeOn Toolkit view. As shown in Fig. 10.10, in this view, the user selects the two

ontologies that serve as input for the operators. In the field between the two

Fig. 10.9 Screenshot of the ontology module extraction plugin of the NeOn Toolkit

230 M. d’Aquin

ontologies, the user selects the operator to be applied. In addition to the combination

operators, the plugin also supports alignment as an operator, which allows relating

modules via mappings. Depending on the operator chosen, the result will be either a

new module (for Union, Difference, Intersection) or an alignment (for align).

Finally, the user can specify whether the application of the operators should be

sensitive to differences in the namespace. If not, the operators only consider local

names. This is for example relevant for the Difference operator applied to two

versions of the same ontology – as often, the namespace changes from one version

to another (and thus all elements in the ontology), a difference based on the fully

qualified names would not be very meaningful.

10.6 Conclusion

In this chapter, we motivated and gave an overview of the activity of ontology

modularization. We described a general approach for modularizing ontologies and

the tools that have been developed for the NeOn Toolkit ontology engineering

Fig. 10.10 Screenshot of the ontology module composition plugin of the NeOn Toolkit

10 Modularizing Ontologies 231

environment to support this approach. However, even with the provided tool and

methodological support, modularizing an ontology is still a very time-consuming

task, not only because of the expensive computation it requires but also because of

the expertise and experience needed from the ontology engineer to obtain the

desired result (which is very often very hard to establish). We described a simple

‘abstract’ example of ontology modularization. Further to this work, the empirical

analysis of existing modular ontologies and of the process of modularizing existing

ontologies could give us further insight into the broad notion of ontology

modularity.

References

Cuenca Grau B, Parsia B, Sirin E, Kalyanpur A (2005) Automatic partitioning of owl ontologies

using E-connections. In: Description logics, DL2005, Edinburgh

d’Aquin M, Sabou M, Motta E (2006) Modularization: a key for the dynamic selection of relevant

knowledge components. In: Workshop on modular ontologies, WoMO 2006, Athens

d’Aquin M, Doran P, Motta E, Tamma V (2007a) Towards a parametric ontology modularization

framework based on graph transformation. In: International workshop on modular ontologies,

K-CAP 2007, Whistler

d’Aquin M, Schlicht A, Stuckenschmidt H, Sabou M (2007b) Ontology modularization for

knowledge selection: experiments and evaluations. In: Database and expert systems

applications, 18th international conference, DEXA 2007. Springer, Berlin/Heidelberg/

New York

d’Aquin M, Haase P, Rudolph S, Euzenat J, Zimmermann A, Dzbor M, Iglesias M, Jacques Y,

Caracciolo C, Buil Aranda C, Gomez, JM (2008) D1.1.3 NeOn formalisms for modularization:

syntax, semantics, algebra. NeOn deliverable 1.1.3. NeOn project

d’Aquin M, Schlicht A, Stuckenschmidt H, Sabou M (2009) Criteria and evaluation for ontology

modularization technique criteria and evaluation for ontology modularization technique. In:

Stuckenschmidt H, Parent C, Spaccapietra S (eds) Modular ontologies: concepts, theories and

techniques for knowledge modularization. Springer, Berlin/Heidelberg/New York

Doran P, Tamma V, Iannone L (2007) Ontology module extraction for ontology reuse: an ontology

engineering perspective. In: Proceedings of the 2007 ACM CIKM international conference on

information and knowledge management, Lisbon

Doran P, Palmisano I, Tamma V (2008) SOMET: algorithm and tool for SPARQL based ontology

module extraction. In: International workshop on ontologies: reasoning and modularity

(WORM-08), ESWC 2008, Tenerife

Kaushik S, Farkas C, Wijesekera D, Ammann P (2006) An algebra for composing ontologies. In:

Formal ontology in information systems, FOIS 2006, Baltimore

Lopez V, Motta E, Dzbor M, d’Aquin M, Peroni S, Guidi D (2009) Final version of the question

answering system. Deliverable 8.6 of the OpenKnowledge project

MacCartney B, McIlraith S, Amir E, Uribe TE (2003) Practical partition-based theorem proving

for large knowledge bases. In: Proceedings of the international joint conference on artificial

intelligence, IJCAI 2003, Acapulco

Melnik S, Rahm E, Bernstein PA (2003) Rondo: a programming platform for generic model

management. In: Proceedings of the SIGMOD 2003, San Diego, pp 193–204

Melnik S, Bernstein PA, Halevy AY, Rahm E (2004) A semantics for model management

operators. Microsoft technical report

Noy NF, Musen MA (2004) Specifying ontology views by traversal. In: Proceedings of the

international semantic web conference, ISWC 2004, Hiroshima

232 M. d’Aquin

Parnas DL (1978) Designing software for ease of extension and contraction. In: Proceedings of the

3rd international conference on software engineering

Seidenberg J, Rector A (2006) Web ontology segmentation: analysis, classification and use.

In: Proceedings of the world wide web conference, WWW 2006, Edinburgh

Stuckenschmidt H (2006) Toward multi-viewpoint reasoning with OWL ontologies.

In: Proceedings of the European semantic web conference, ESWC 2006, Budva

Stuckenschmidt H, Klein M (2004) Structure-based partitioning of large concept hierarchies.

In: International semantic web conference, ISWC 2004, Hiroshima

Suárez-Figueroa MC (2010) NeOn Methodology for building ontology networks: specification,

scheduling and reuse. PhD thesis, Universidad Politécnica de Madrid, España. Available at

http://oa.upm.es/3879/

Suntisrivaraporn B, Guilin Q, Ji Q, Haase P (2008) A modularization-based approach to finding all

justifications for OWL DL entailments. In: Asian semantic web conference, ASWC 2008,

Bangkok

Wiederhold G (1994) An algebra for ontology composition. In: Monterey workshop on formal

methods, Monterey

10 Modularizing Ontologies 233

http://oa.upm.es/3879/

Chapter 11

Ontology Evolution

Raúl Palma, Fouad Zablith, Peter Haase, and Oscar Corcho

Abstract Ontologies are dynamic entities that evolve over time. There are several

challenges associated with the management of ontology dynamics, from the ade-

quate control of ontology changes to the identification and administration of

ontology versions. Moreover, ontologies are increasingly becoming part of a

network of complex relationships and dependencies, where they reuse and extend

other ontologies, have associated metadata in order to ease sharing and reuse, are

used to integrate heterogeneous knowledge bases, etc. Under these circumstances, a

change in an ontology does not only affect the ontology itself but may also have

consequences in all its related artifacts. In this chapter, we propose methodological

guidelines for carrying out the ontology evolution activity. We target different

scenarios, supporting users in the process of ontology evolution from a generic

perspective and on how to use tools that semiautomatically assist them in discover-

ing, evaluating, and integrating domain changes to evolve ontologies. To illustrate

their applicability, we describe how such guidelines have been used in real example

applications.

R. Palma (*)

Poznan Supercomputing and Networking Center, ul Dabrowskiego 79a, 60-529 Poznan, Poland

e-mail: rpalma@man.poznan.pl

F. Zablith

Knowledge Media Institute (KMi), The Open University, Walton Hall, Milton Keynes

MK7 6AA, UK

e-mail: f.zablith@open.ac.uk

P. Haase

fluid Operations AG, Altrottstr. 31, 69190 Walldorf, Germany

e-mail: peter.haase@fluidops.com

O. Corcho

Ontology Engineering Group, Facultad de Informática, Universidad Politécnica de Madrid,

Campus de Montegancedo sn, 28660 Boadilla del Monte, Madrid, Spain

e-mail: ocorcho@fi.upm.es

M.C. Suárez-Figueroa et al. (eds.), Ontology Engineering in a Networked World,
DOI 10.1007/978-3-642-24794-1_11, # Springer-Verlag Berlin Heidelberg 2012

235

mailto:rpalma@man.poznan.pl
mailto:f.zablith@open.ac.uk
mailto:peter.haase@fluidops.com
mailto:ocorcho@fi.upm.es

11.1 Motivation

Ontologies are fundamental building blocks of the Semantic Web and are often

used as the knowledge backbones of advanced information systems. As such, the

growing use and application of ontologies in many different areas during the last

years has led to an increasing interest of both researchers and industry in the

construction of ontologies and the reuse of existing ones. Reusing existing

ontologies instead of creating new ones from scratch has many benefits: it lowers

the time and cost of developing new ontologies, avoids duplicate efforts, eases

interoperability, etc. As a consequence, complex networks of ontologies are being

created where each ontology may depend on several others and may also be related

to other artifacts (e.g., individuals, mappings, applications, and metadata).

Nevertheless, this situation also brings about new issues. Ontologies (like many

other system components) are dynamic entities. An ontology, defined as a formal,

explicit specification of a shared conceptualization (Studer et al. 1998), may change

whenever any of the elements of this definition changes. For instance, domains are

not static or fixed: they may evolve when non-existing elements become part of the

domain or when some elements become obsolete, among others. Additionally,

ontologies need to be kept up to date in order to reflect the changes that affect the

life cycle of the underlying systems (e.g., changes in the underlying data sets, need

for new functionalities, etc.). A similar situation occurs with shared conceptua-

lizations, which may change, for example, when the domain experts involved in

modeling acquire additional knowledge about the domain. Finally, the formal

specification may change because new ontology languages or new versions of the

existing ones become available, for example.

The management of ontology dynamics raises many challenges such as the

identification and administration of different ontology versions or the flow control

of ontology changes (i.e., when and how an ontology can change). Moreover,

dealing with ontology changes involves the execution of many related tasks.

Most of these tasks are already identified in the context of the ontology evolution

process, defined in (Stojanovic 2004) as the timely adaptation of an ontology to the

arisen changes and the consistent management of these changes. For example,

among these tasks are the capturing and formal representation of ontology changes,

the verification of the ontology consistency after the changes are performed, and the

propagation of those changes to the ontology related entities. The distributed nature

of a network of ontologies where complex relations can exist between ontologies

and other artifacts demands the necessity to propagate ontology changes to the

distributed ontology-dependent artifacts (e.g., related ontologies, ontology indivi-

duals, mappings, and metadata). For instance, a change in a wine ontology (e.g., add

a new class for a type of wine) may require one or more updates in its related

metadata (e.g., increase the number of classes by one, add an additional key class,

add an additional contributor, and update the date of the last modification) or its

mappings to other similar ontologies (e.g., create a new correspondence between

the new class and another class representing the same type of wine in another

236 R. Palma et al.

ontology). Moreover, the ontology and its related artifacts may be distributed in

different places across the web.

While it seems necessary to apply the ontology evolution activity consistently

for most ontology-based systems, it is often a time-consuming and knowledge-

intensive activity, as it requires a knowledge engineer to identify the need for

change, perform appropriate changes on the base ontology, and manage its various

versions. While existing evolution frameworks normally include a description of

the life cycle, this description is neither meant nor suited to replace guidelines.

Therefore, we propose here methodological guidelines for supporting ontology

developers during the evolution of the ontologies and for supporting them in

exploiting tools to facilitate the evolution of their ontologies.

It is worth noting that both ontology evolution and ontology versioning deal with

the management of ontology changes. However, they differ in their focus: ontology

evolution focuses on the modification of an ontology, possibly preserving its

consistency, whereas ontology versioning focuses on creating and managing differ-

ent versions of the ontology.

We argue that in order to provide a comprehensive support for ontology evolu-

tion, targeted at users and ontology engineers, we need two types of guidelines: one

that guides users in the process of ontology evolution from a generic perspective

and another that provides guidelines on how to use tools that semiautomatically

assist users in discovering, evaluating, and integrating domain changes to evolve

ontologies.

The remainder of this chapter is organized as follows: First, we introduce high-

level guidelines for carrying out the ontology evolution activity. This would give an

overall picture of the required tasks and possible options to handle each one,

supported by an example in the fishery domain of FAO. Second, we provide

guidelines for how to support users in exploiting and customizing tools that support

users in evolving ontologies from external domain data using semiautomatic

techniques. This is also supported by an applied example in the academic domain.

11.2 Guidelines for Ontology Evolution

In this section, we present the guidelines set out to help ontology developers in the

ontology evolution activity. Such guidelines have been created in the context of the

NeOn Methodology for building ontology networks. This methodology takes into

account the existence of multiple ontologies in ontology networks, the collaborative

ontology development, the dynamic dimension, and the reuse and reengineering of

knowledge-aware resources.

According to the NeOn Glossary of Processes and Activities (Suárez-Figueroa

and Gómez-Pérez 2008), ontology evolution refers to the activity of facilitating the

modification of an ontology by preserving its consistency; it can be seen as a

consequence of different activities during the development of the ontology.

11 Ontology Evolution 237

Thus, in the framework of the NeOn Methodology we propose the filling card for

the ontology evolution, presented in Fig. 11.1, which includes the definition, goal,

input, output, who carries out the activity, and when the activity should be carried out.

11.2.1 Ontology Evolution Tasks

Figure 11.2 illustrates the methodological guidelines for carrying out the ontology

evolution activity, showing the main tasks involved, their inputs, outputs, and

actors. The tasks shown in the figure are explained below. They are based on the

generic activities discussed in (Bennett and Rajlich 2000) for the process of making

changes to any type of artifact that is subject to changes, customized to the case of

ontology evolution (e.g., Leenheer and Mens 2007) in the context of ontology

networks.

Ontology Evolution

Definition

Ontologies evolution refers to the activity of facilitating the modification of an ontology
by preserving its consistency; it can be seen as a consequence of different activities
during the development of the ontology.

Goal

The goal of ontology evolution is to provide a defined process (potenially with tool
support) to perform updates and changes to one or multiple ontologies.

Input Output

An ontology in a consistant state.
A ontology in a consistant state with the
proposed changes implemented.

Who

When

Normally it occurs after the ontology has been deployed and needs to be updated.
Changes during the initial creation would be part of the ontology engineering process.

All ontology engineers that have to perform changes/updates to a deployed ontology.

Fig. 11.1 Ontology evolution filling card

238 R. Palma et al.

Task 1 Requesting a Change

This is the initial task in the evolution of an ontology. In order for ontology

evolution to have the desired outcome, it is important that the input ontology is in

a consistent state. If the ontology is not in a consistent state, it has to be repaired

first, using one of the different ontology diagnosis and repair tools (e.g., RaDON,

Fig. 11.2 Tasks for ontology evolution activity

11 Ontology Evolution 239

see Chap. 17) or techniques before starting the evolution process. Note that we

require the input ontology to be in a consistent state because dealing with an

inconsistent ontology may produce unexpected results. For instance, the propaga-

tion of changes may produce inconsistencies in related artifacts. This requirement is

also in accordance to existing ontology evolution approaches (e.g., Stojanovic

(2004)). Besides, the main goal of ontology evolution is to adapt an ontology to

arisen needs (e.g., changes in the domain, changes in the experts knowledge, etc.),

not to repair an inconsistent ontology. Therefore, the input of the evolution process

is an ontology that correctly models a particular domain/task, before new needs

arise. However, the repairing of an inconsistent ontology before starting the onto-

logy evolution process can be seen as a preprocessing task. The first step of this

task is basically initiating the change process. Changes can either be requested from

users or developers, who feel that the ontology is not adequate in its current form,

or changes can be discovered. In literature (Stojanovic 2004), change discovery

is distinguished into top-down and bottom-up change discovery. Top-down

(deductive/explicit) changes are often the results from knowledge elicitation tech-

niques that are used to acquire knowledge directly from human experts (e.g.,

domain experts or end users). Bottom-up changes are typically the result from

machine learning techniques, which use different methods to infer patterns from

the sets of examples (e.g., structure/data/usage-driven change discovery).

Once changes are discovered or requested, they have to be represented in a formal

and explicit way. Typically, a change ontology is used to model proposed/requested

changes (e.g., Stojanovic 2004; Klein and Noy 2003; Noy et al. 2006; Palma

et al. 2009). This formal representation of ontology changes makes them machine-

understandable, which supports and facilitates many evolution activities: their

propagation to ontology related entities, the synchronization of distributed copies

of the same ontology, their integration with information related to the process of the

ontology development (e.g., accept/reject changes), the identification of conflicts,

etc. Moreover, having changes formally represented makes them usable by other

ontology evolution systems as well as exploitable for supplementary functionality of

an ontology evolution system such as learnability. Finally, it allows to keep track

of the ontology changes by generating a log that maintains the history (and order)

of applied changes as a sequence of individuals of the proposed model.

In contrast to previous approaches in the literature, in NeOn, a layered approach for

the representation of ontology changes was proposed (Palma et al. 2007, 2009), which

consists of a generic ontology, independent of the underlying ontology model that

models generic operations in a taxonomy of changes that are expected to be supported

by any ontology language. Furthermore, the model can be specialized for different

ontology languages, allowing the reuse and refinement for specific needs. Also, the

model extends previous taxonomies of changes with a more granular classification

that considers the actual atomic changes that can be performed in an ontology.

In case there are multiple change requests for an ontology, the requested changes

have to be prioritized. In order to determine which change should be implemented

first, one can rely on the status of the person requesting the change, or have an

ontology engineer review the requested changes and rank them according to

240 R. Palma et al.

http://dx.doi.org/10.1007/978-3-642-24794-1_17

urgency. It is also important that dependencies are considered when ranking the

requested changes. It could be that changes are dependent on each other or even

contradict each other.

Finally, this task may include the use of a well-defined process (a workflow) for

coordinating change proposals (see Palma et al. 2008a, b). This process is respon-

sible for determining who (depending on the user permissions) can do what (what

kind of actions) and when (depending on the state of the ontology element (e.g.,

classes, properties and individuals), and the permissions of the user).

Tool Support in the NeOn Toolkit

• RaDON plugin is an ontology diagnosis and repair tool that can be used before

starting the evolution activity, i.e., before applying changes.

• Tools supporting the request/discovery of changes:

– The workflow feature supports the process that coordinates the proposal of

changes in a collaborative environment. It supports a top-down/explicit

discovery method, i.e., when changes are requested by users/developers.

– The Evolva plugin supports the discovery of changes from external data

sources (e.g., text, folksonomies, or RSS feeds). Changes are integrated and

evaluated by relying on background knowledge such as online ontologies. In

the next section, we present in details the guidelines for how to exploit such

tool to apply the identified changes on the ontology and produce a new

ontology version.

Task 2 Planning the Change

In this task, the change request is analyzed, and it is determined why the change

needs to be made and which part of the ontology is affected by the change.

For that purpose, one uses impact analysis, where all potential consequences

(side effects) of a change are identified along with an estimation of what needs to be

modified to accomplish a change (Arnold 1996; Bohner 1996). As we noted in the

introduction, ontologies may depend on several others and may also be related to

other artifacts (e.g., individuals, mappings, applications, metadata, etc.). Hence, for

the analysis of the impact of a change, a complete list of all implications to the

ontology and its dependent artifacts should be presented to the ontology engineer

(Plessers 2006).

The previous analysis is also helpful to estimate the cost of evolution. Based on

this cost, the ontology engineer can decide whether or not to propagate a change to a

dependent artifact (Plessers 2006).

As a result of the analysis performed during this task, the ontology engineer may

decide to implement the change, or if the change has many side effects or if the cost

of implementation is too high, he may defer the change request to a later time or not

implement it at all.

Once the ontology developer team has decided which changes will be

implemented and how they have to be implemented, the next phase of ontology

evolution, namely change implementation, is entered.

11 Ontology Evolution 241

Tool Support in the NeOn Toolkit

• The NeOn Toolkit provides simple support when deciding whether to make a

change or not. In particular, when a user wants to delete an ontology element, the

list of related axioms (the side effect) is shown to the editor, which permits him

to verify the cost of implementing the change.

Task 3 Implementing the Change

Implementing the changes is of varying difficulty, depending on the impact of the

requested change. While some change can be as easy as adding or removing a

subclass, other changes can require complex operations and restructuring of the

ontology.

One of the first and foremost important features is change logging, which allows

to track which changes have been made, and also allows for an easy undo, in case

something goes wrong. The change log can also be published to inform people

using the ontology on the updates.

If the requested change turns out to be too difficult to be implemented, the

ontology may need to be restructured first, before the actual desired change can be

implemented (Chikofsky and Cross 1990). Depending on the complexity of the

task, an ontology engineer can be chosen to perform the restructuring and the

subsequent implementation of the changes. For instance, in (Proper and Halpin

2004), the authors distinguish three reasons to apply transformation: (1) to select an

alternative conceptual schema which is regarded as a better representation of the

domain, (2) to enrich the schema with derivable parts creating diverse alternative

views on the same conceptual schema as a part of the original schema, and (3) to

optimize a finished conceptual schema before mapping it to a logical design.

One important issue to take into consideration when implementing a change is the

management of inconsistencies that this changemay introduce in the ontology. In case

an inconsistency occurs, it has to be decided how to address it.While some approaches

try to keep the ontology in consistent state at all cost by even disallowing changes

introducing inconsistencies, others claim that the inconsistencies are inevitable and

hence we have to deal with them. Regardless of the approach, the inconsistencies have

to be identified and resolved, possibly using some tools as it was mentioned in the

introduction. In the literature, this activity has been introduced in (Stojanovic 2004) as

the semantics of the change (originally proposed in the area of data schema evolution

in Banerjee et al. 1987) and includes the computation of additional changes that

guarantee the transition of the ontology into another consistent state. It enables

the resolution of induced changes in a systematic manner, ensuring the consistency

of the whole ontology. In particular, the author focuses on the structural

inconsistencies that arise when the ontology model constraints are invalidated after

a change request. Additionally, the author introduces evolution strategies to choose

how a change should be resolved based on the structure of the ontology, the complex-

ity of the process, the frequency of the strategy use, or on an explicitly given state of

the instances to be achieved (given by the ontology engineer).

Furthermore, another important issue that has to be addressed during the imple-

mentation of the change(s) is the management of the ontology version. After the

242 R. Palma et al.

ontology changes, the ontology engineer should decide whether the resulting

ontology constitutes a new version of the ontology and hence it should have a

different version information. Some recommendations on the use of URIs can be

found. For instance, in (Klein and Fensel 2001), the authors propose to use an URI

for ontology identification with a two-level numbering scheme: major and minor.

Minor numbers for backward compatible modifications (an ontology-URI ending

with aminor number identifies a specific ontology).Major numbers for incompatible

changes (an ontology-URI ending with a major number identifies a line of backward

compatible ontologies). In practice, however, it is common that ontologies do not

include any version information at all. As a consequence, usually it is not easy to

identify different versions of an ontology. The problem of identifying ontologies in

the Semantic Web is not a trivial issue (see Klein and Fensel 2001). For instance,

in (Palma et al. 2008c), a composite identification consisting of the URI plus version

(if available) plus the location of the ontology is used to identify an ontology.

Finally, as aforementioned, the change(s) have to be propagated to all the

ontology related artifacts (if the ontology engineer decided to do it in the previous

task based on the analysis of the cost and impact). In (Stojanovic 2004), the author

discusses the propagation of changes to dependent ontologies, individuals, and

applications and elaborates on the propagation to dependent ontologies using a

combination of push and pull mechanism. For the propagation to ontology

individuals, several mechanisms can be applied from the research in the area of

databases. For instance, in (Parsia et al. 2005), the authors discuss how changes can

be propagated to the individuals of the database by using four possible mechanisms:

immediate conversion (propagate changes as they happen), deferred conversion

(propagate changes at specific points in time), explicit deletion (when referenced

concepts are dropped), or filtering (for using different versions of the schema). In

NeOn, the propagation of changes has also been considered to (1) distributed copies

of the same ontology and (2) ontology metadata (Palma 2009; Palma et al. 2007,

2008b).

Tool Support in the NeOn Toolkit

• NeOn Toolkit ontology editor allows the manual application of changes to

ontologies.

• The change capturing plugin supports the logging of changes automatically from

the NeOn ontology editor. It also supports the application of logs generated by

other systems. Additionally, it is also in charge of propagating changes to the

distributed copies of the same ontology.

• RaDON plugin can be used for the management of inconsistencies.

Task 4 Verification and Validation

Before the ontology is considered evolved completely, the last step deals with

assessing questions whether the right ontology is built and whether it is built in the

right way. During this assessment, usually not only the ontology originally modified

is verified in isolation, but in general, this activity can include the verification of

other artifacts related to the ontology (as mentioned above) to ensure that they were

11 Ontology Evolution 243

not changed in a wrong way or they have an unexpected behavior. The verification

and validation step can include the following activities:

• Formal verification, such as state machines and temporal logics, to derive useful

properties of the system under study

• Testing by users or automatically to verify whether the system behaves as

expected

• Debugging for localizing and repairing errors found during the verification or

testing (usually performed by an ontology engineer) (for example Haase et al.

(2006))

• Quality assurance, which typically concerns non-functional qualities, like reus-

ability, adaptability, interoperability, etc.

• Justification of the changes, (for example Stojanovic 2004)

• Relevance of the changes with respect to the ontology under evolution (Zablith

et al. 2010)

In case problems are detected, these have to be fixed by moving back into Task 3,

and then returning to Task 4 to verify the corrected outcome.

Additionally, this task may include curation activities (e.g., approve/reject)

derived from the well-defined process (e.g., workflow) that coordinates the change

proposals (see Palma et al. 2008a, b). In this case, ontology engineers usually have

different roles, and only those with the required authority can accept or reject the

change proposals. If a change is rejected, the original author can modify the change

and start all over again since Task 1 or he can decide to discard it completely.

Tool Support in the NeOn Toolkit

• The Cicero plugin supports the justification of changes.

• The workflow feature supports the refining of activities (see Fig. 11.3).

• The Evolva plugin checks the relevance of a change with respect to an ontology

by relying on the analysis of ontological contexts and a set of identified rele-

vance patterns supported by a confidence-based ranking (Zablith et al. 2010).

Working with Networked Ontologies

The NeOn project deals with networks of ontologies and networked ontologies

(Haase et al. 2006), defined as a collection of ontologies related together via a

variety of different relationships such as mapping, modularization, version, and

dependency relationships.

Hence, it is worth remarking that the process described above can be applied to

networked ontologies since such a process takes into account the existing ontology

dependencies with other related artifacts, such as individuals, mappings, applica-

tions, and metadata, as we noted in each step. In a nutshell, such dependencies are

first considered during the analysis of the impact and cost in Task 2. Furthermore,

during the propagation of the changes in Task 3, all the ontology-related artifacts

are updated (if necessary), ensuring the consistency of the networked ontologies.

Finally, when assessing the correctness of the evolved ontology in Task 4, the

verification also takes into consideration the ontology-related artifacts to ensure that

244 R. Palma et al.

the whole network of ontologies is behaving as expected, i.e., it is consistent. So,

any conflict that may arise can be caught at an earlier stage of the ontology

evolution process, affecting, for instance, the decision of whether or not a change

should be implemented.

11.2.2 Example

To describe the proposed guidelines for the ontology evolution activity in a more

practical way, in this sectionwe illustrate how to perform this activity by describing an

experiment conducted in collaboration with a team of FAO ontology editors in charge

of the maintenance of ontologies in the fishery domain. The editors performed

collaboratively a set of typical changes and actions to a stable version of one fishery

ontology in order to reach a new stable version. In this scenario, a central server kept a

shared copy of the ontology and the related changes. In the remainder of this section,

we describe only the most relevant points. A detailed and complete description of the

experiment is presented in Palma (2009).

Fig. 11.3 Collaborative editorial workflow support in NeOn Toolkit

11 Ontology Evolution 245

Task 1 Requesting a Change

Initially, FAO experts in the fishery domain requested a set of changes to be applied

to the current version of the species ontology1 (v1.0 at the time the experiment was

conducted) – the ontology models a taxonomic classification of biological entities,

including classes such as Family, Group, Order, and Species. In this case, changes

were discovered using a top-down/explicit method as the knowledge came directly

from human experts. A total of 34 changes were requested using real information

according to the experts (see Palma 2009). Examples of those changes are: to add

Individual 31005–10001 (Species); to add Individual 31005–10001 DataProperty

hasNameScientific, value: Pterodroma wrong macroptera, type: string; to add Root

Class Speciation; and to add ObjectProperty hasScientificNameAuthor.

In this scenario, different ontology editors, with different roles (Subject Experts,

and Validator), were working collaboratively in the implementation of the changes

and hence it was not necessary to prioritize them (prioritization of multiple

changes).

Each of the proposed changes was represented as an individual of the change

ontology proposed in Palma et al. (2009) – representation of changes. For this

experiment, ontology editors were using the NeOn Toolkit with the collaborative

infrastructure. Hence, the representation of the changes was performed automati-

cally whenever a new change was captured by the change capturing plugin of NeOn

Toolkit.

Furthermore, in this scenario, the ontology editors were following a well-defined

process (workflow) for the coordination of the change proposals. As a consequence,

during this task the system created for any new change proposal, the appropriate

workflow action automatically (insert, update, delete).

Task 2 Planning the Change

For this experiment, it was necessary to implement the requested changes regard-

less of the side effects. Therefore, it did not perform any analysis of the impact or

cost. In fact, the idea of the experiment was to assess the efficiency of the system to

support the development of an ontology in a collaborative scenario, not the time or

cost of implementing a change.

Task 3 Implementing the Change

For this task, no restructuring of the change(s) was necessary, because on the one

hand the changes were not too difficult to implement due to the ontology structure,

and on the other hand, the cost of implementing was not an issue.

Additionally, for this task, the system (change capturing plugin of NeOn

Toolkit) took care of logging automatically all of the proposed changes (change

logging), maintaining the chronological history of the events.

1 Available at http://aims.fao.org/en/website/Fisheries-ontologies-/sub2#species

246 R. Palma et al.

http://aims.fao.org/en/website/Fisheries-ontologies-/sub2#species

In this experiment, the change(s) did not introduce any inconsistencies in the

ontology. However, in case it would be necessary to manage inconsistencies, the

RaDON plugin for NeOn Toolkit could have been used to detect and fix them.

As we introduced at the beginning of this section, for this experiment, the

ontology and related changes were centralized in a server. Furthermore, the ontol-

ogy used for the experiment was not related to other artifacts at the moment. Hence,

it was not necessary any propagation of changes.

Task 4 Verification and Validation

During this task, the ontology editors analyzed every change to ensure that the

resulting ontology was as expected using the visualization plugins of the NeOn

Toolkit.

Additionally, this task was one of the most important of the experiment as it

included all the curation activities derived from the workflow that coordinates the

proposal of changes. Hence, in this task, an ontology validator was in charge of

accepting and rejecting changes as necessary by using the appropriate workflow

plugins of the NeOn Toolkit. Finally, at the moment of the experiment, there was no

support for the justification of changes.

11.3 Guidelines for Exploiting Tools in Ontology Evolution

In this section, we propose a methodological guideline for supporting users in

identifying new and relevant domain changes from external data sources. Such

guidelines aim to facilitate the process on evolving ontologies to reflect the latest

changes in certain domains by analyzing various data sources. This guideline

complements the tool-based support provided by the Evolva ontology evolution

framework (discussed next), with concrete guidance on how to realize the various

tasks of the evolution activity, using semiautomatic techniques in an efficient way.

11.3.1 The Evolva Framework

The Evolva ontology evolution framework (Zablith 2009) relies on the hypothesis

that various forms of data corpus (texts, folksonomies, RSS feeds, etc.) can be used

to detect the need for an evolution and initiate it (see Fig. 11.4). Evolva also relies

on the idea that, in order to integrate new pieces of information extracted from the

exploited sources into the current ontology, evolution systems can rely on the

automated use of external background knowledge sources, which can be supplied

by online ontologies, lexical resources (e.g., WordNet, Fellbaum 1998), or the web.

An additional use of background knowledge comes at the level of online ontologies

used to assess the relevance of statements with respect to the ontology in focus.

11 Ontology Evolution 247

While the goal of the Evolva framework is to reduce, as much as possible,

human intervention within the evolution process, user input is required at the level

of evolution management and for fine-tuning of various parts of the framework. The

role of the user is needed to properly parameterize the components, select the right

sources of information and of background knowledge, validate the results of

various steps, and, generally, guide the evolution process to obtain high-quality

results. These tasks are not trivial, as they depend a lot on the particular ontology to

be evolved, the domain covered, the applications relying on the ontology, and the

reasons for its evolution. The experience of the knowledge engineer and his/her

knowledge of the ontology and of the exploitable sources of information are

therefore essential.

11.3.2 Tasks

The tasks for performing a semiautomatic ontology evolution can be seen in the

workflow shown in Fig. 11.5. In this context, the starting point is an existing

ontology (depicted as V1 in Fig. 11.5 and base ontology in Fig. 11.4, see

Sect. 11.3.1), which the user aims to evolve based on available domain data sources.

The selection of the appropriate sources from which new ontology entities are

identified depends on the evolution use case and the availability of such sources in

the domain in focus. In the rest of this section, we present the details of the tasks

involved in semiautomatically evolving the ontology.

IE / OL /
NER

Extracted
Schema/
Instances

Relation
Discovery

Evolved
Ontology

Relations
List

Consistency
Check

Approved
Ontology

Recording
Changes

Admin
Control

Change
Propagation

Transform-
ation

Quality
Check

Raw Data
+Transform

ation

Information
Discovery

Data
Validation

Ontological
Changes

Evolution
Management

Translation

Duplication
Check

Evolution
Validation

Temporal
Reasoning

Un-
structured

Data

External
Ontologies

Databases
Background
Knowledge

Base
Ontology

= I/O Data

= Processes

Schema/
Instances
Changes

Performing
Changes

Quality
Check

Fig. 11.4 Evolva’s ontology evolution framework

248 R. Palma et al.

Task 1 Identify the Part of Ontology to Evolve

The first task required by the ontology development team is to select the part of the

ontology to evolve. The evolution can be applied either on the entire ontology or on

a certain part of it. In many cases, ontologies may include a significant amount of

statements, causing the evolution to take a long processing time. In such cases, after

specifying the evolution purpose, the user may choose the part of the ontology to

evolve through selecting the set of concepts to be handled by the process.

Task 2 Set the Data Sources and Extraction Parameters

Depending on the domain, domain experts should prepare the data sources that

contain relevant information to the ontology context. Such data sources could be in

the form of text documents, folksonomies, databases, or even other ontologies.

Based on the decision of the ontology development team to evolve the ontology

either in terms of schema, individuals, or both, the extraction should be customized

Task 1: Identify the part of
ontology to Evolve

Task 2: Set the data sources and
extraction parameters

Task 3: Validate extracted data

Task 4: Setup relation discovery
and quality check

Task 5: Generate ontology
changes and new ontology version

Task 6: Validate new ontology
and manage changes

Task 7: Deploy new ontology
version

Is the new
ontology valid?

Are the relations
relevant?

Users, Domain Experts
and ODT

Users, Domain Experts
and ODT

Users and Domain
Experts

No

Yes

Is the data
relevant?

No

Yes

No

Yes

Ontology Development
Team

Ontology Development
Team

Ontology Development
Team

Ontology Development
Team

Ontology
V2

Ontology
V1

Input

Output

Fig. 11.5 Tasks for ontology evolution supported by semiautomatic tools

11 Ontology Evolution 249

accordingly. For example, in the case of schema evolution, the user may choose to

extract concepts for the data sources, without dealing with individuals. While in the

case of individuals, the evolution process could omit the extraction of schema

elements. Choosing between schema and individuals evolution could be biased

by the ontology functionalities and domain nature, i.e., when many ontology-

dependent components exist (e.g., various applications or other aligned ontologies),

evolving the ontology schema may be costly, and the ontology development team

may choose to perform this operation less frequently. While in environments where

ontology components are easily controllable and where a lot of new information is

generated leading to a frequent generation of new concepts, schema evolution

would be required.

Task 3 Validate Extracted Data

After extracting knowledge elements from the data sources, noise and irrelevant

entities should be excluded. The user is supported by manual and automated

validation techniques with customizable parameters. For the manual validation,

the domain expert would serve as one of the best quality checkers as he/she is the

most knowledgeable about the ontology context. This task is completed after

checking that all the data are valid to be processed further by the system.

Task 4 Setup Relation Discovery and Quality Check

The role of the user, after the data validation task, is to prepare the automated

relation discovery process. The relation discovery process links the validated data

to the ontology. This requires the user to select the various types of background

knowledge sources to be used. The choice of background knowledge is directly

dependent on the type of domain the ontology represents. If the domain were

specialized, the user would choose domain-specific background knowledge sources

(e.g., specialized thesauri). This would improve the quality of relations and increase

the system precision. While if the domain is generic, using online ontologies or

generic thesauri would perform well. In addition to the selection of sources, the user

should fine-tune the parameters of the relation discovery process, such as the

settings related to the automatic relevance checking, or specify the maximum

depth to explore. In addition to the supplied automatic quality checking methods,

for example, in terms or relevance, domain experts should additionally check the

quality of relations, before using them later in the system.

Task 5 Generate Ontology Changes and New Ontology Version

Based on the approved relations in the previous task, ontology changes are

generated and applied on the new ontology version. Users should specify where

to apply the changes, i.e., directly on the initial ontology or on a detached copy. The

choice of where to perform changes depends on the environment and the ontology

development team approach. The team should be aware that applying changes on

the initial ontology would directly affect the dependent components. If this is not

feasible, or designers prefer to keep the initial ontology intact while reviewing the

changes, creating a detached ontology version would be more appropriate.

250 R. Palma et al.

Task 6 Validate New Ontology and Manage Changes

The user should control the changes performed on the new ontology version. With

the new evolved ontology, problems such as inconsistencies and duplication are

likely to emerge. Users in this task specify the checking methods to be applied on

the new ontology version using reasoners, for example, in addition to manually

control the recorded ontology changes.

Task 7 Deploy New Ontology Version

Once the new version is approved, users should control the propagation of the new

ontology version to the dependent components. Links to the previous ontology

version should be checked and whether the new ontology has been successfully

saved and accessible.

11.3.3 Example

In this part, we highlight an example of ontology evolution scenario using the

Evolva plugin for the NeOn Toolkit, following the guidelines presented in the

previous section. We run our example in an environment where the NeOn Toolkit

and Evolva plugin2 are operational.

Consider the case of evolving the latest version of the SWRC ontology3 in the

academic context. We first load the ontology in the NeOn Toolkit and start Evolva.

In our simple case where the ontology has a limited number of concepts and time is

not an issue, we choose to evolve all the ontology (Task 1). This choice can be

specified in the first step of the process (called Ontology) in Fig. 11.6.

After preparing the ontology and identifying the part of ontology to evolve, we

move to select the data sources containing relevant information with a potentially

added value to our ontology (Task 2). This is implemented in Data Sources step of

Fig. 11.6. A relevant source of information we found was on the Leverhulme

website4 that contains text documents about research project and information

about people in the academic domain. We locate and download the relevant text

documents, then select the sources in Evolva for performing data extraction and

validation. Having no ontology-dependent components, a schema evolution would

not have any side effects on applications or other dependent elements. Thus, as

ontology developers in this use case, we test the extraction of concepts from the

data sources and integrate them in the ontology. Evolva includes extraction of

2Details on how to install and run Evolva can be found at: http://evolva.kmi.open.ac.uk/
3 The SWRC ontology can be downloaded from: http://ontoware.org/swrc/swrc/SWRCOWL/

swrc_updated_v0.7.1.owl
4 http://www.leverhulme.ac.uk/

11 Ontology Evolution 251

http://evolva.kmi.open.ac.uk/
http://ontoware.org/swrc/swrc/SWRCOWL/swrc_updated_v0.7.1.owl
http://ontoware.org/swrc/swrc/SWRCOWL/swrc_updated_v0.7.1.owl
http://www.leverhulme.ac.uk/

concepts from text documents and RSS feeds, as well as a list of raw terms. The

validation parameters incorporate term existence checking feature (based on a

similarity value) and a term length checker for removing terms under a specified

length.

We load the Leverhulme text documents and run the extraction and validation

process. A list of extracted concepts is returned, with Evolva automatically

identifying existing terms in the ontology and terms that fall below a length

threshold. If the automatic validation performs poorly overall, it is possible for

users to fine-tune the parameters and rerun the validation process again. In addition

to the automatic validation, users have the ability to go through the list of concepts

and manually select terms they find irrelevant (Task 3), implemented in the Data
Validation step in Fig. 11.6. Domain experts would play here a major role as they

are the most aware of the relevance of concepts with respect to the ontology.

After the data validation process and approving relevant data, we move to Task 5

of setting up the relation discovery process with the right background knowledge,

sources, and parameters. The SWRC ontology domain is, to some extent, a generic

academic purpose ontology. Thus, related information can be easily found through

online ontologies in which a lot of academic domain ontologies can be found, as

well as through WordNet, the generic thesaurus. Thus, we choose to perform the

Fig. 11.6 Screenshot of the Evolva plugin

252 R. Palma et al.

relation discovery process through exploiting online ontologies using Scarlet

(Sabou et al. 2008) (a Semantic Web–based relation discovery engine) and

WordNet.

Evolva automatically harvests the chosen background knowledge sources and

identifies how extracted concepts should be integrated in the ontology. If needed,

Evolva also provides the option to discover relations between new concepts, before

being integrated in the ontology. This has been implemented in the Relation
Discovery step in Fig. 11.6. To illustrate how background knowledge sources

integrate new concepts, Applicant and Website are two concepts extracted from

the Leverhulme text document. WordNet links Applicant as a subclass of Person,
an existing concept in the SWRC ontology, while online ontologies linkWebsite to
Organization through a hasWebsite relation. The length of relations to discover is

customizable. Thus, if the users find that the process is taking long, or lengthy

relations prove to be overall irrelevant, they can decrease the relation length

threshold and rerun the process again.

After the relations linking new concepts to existing concepts in the ontology,

Evolva relies on online ontologies from where the relation is identified to assess the

relevance of the relation with respect to the ontology. Using identified relevance

patterns, with pattern-specific confidence, relations are returned ranked to the user

with the highly relevant relations placed on top (Zablith et al. 2010). The user is

supplied with a customizable graphical visualization of the ontological contexts

(shown on top of Fig. 11.6), as a validation of the relevance calculation. In addition

to the visualization parameters, it is possible to change the weight of relevance

patterns, hence affecting the overall ranking of relations.

Once all relations are approved and relevant, they are used to generate the

ontology changes (last step in Fig. 11.6). If the user spots any unwanted changes,

it is possible to go back to the relation validation, remove the source relations, and

regenerate the ontology changes. Based on the ontology changes provided, it is

possible to apply the changes on the source ontology, or a new version with the

evolution date appended to the name of the new ontology version. Changes are

applied automatically within the NeOn Toolkit, and the user will instantly see the

updates in the ontology navigator of the toolkit (on the left of Fig. 11.6).

Our next task is to validate the new ontology version and manage the new

changes that the ontology has been subject to (Task 6). Evolva relies on the change

logging plugin (Palma et al. 2008b) based on the NeOn Toolkit. The user is given

all the functionalities to review changes after being applied on the ontology.

Inappropriate changes can be rolled back, or sent for further review, until reaching

a reliable new ontology version.

After approving the final ontology version, we deploy it by double-checking

the links to the previous ontology version that are automatically created by Evolva

(Task 7). We also check that the ontology has been saved correctly, and that it is

still accessible by doing some checks such as running queries and validating the

results.

11 Ontology Evolution 253

11.4 Conclusion

Ontology evolution is a tedious and time-consuming task. To successfully keep the

ontology up to date with domain changes, ontology engineers should be supplied

with the right guidelines and tool usage to make this task easier. For that, we

presented in this chapter guidelines for ontology evolution covering two aspects: a

high-level ontology evolution process and tool-oriented guidelines to semiauto-

matically identify, evaluate, and apply domain changes to ontologies.

The first aspect describes the tasks involved in the ontology evolution process

from a generic perspective and discusses guidelines in possible ways to achieve

each task. The second aspect aims to facilitate the process of identifying ontology

changes from external domain data, checking their quality, and integrating them in

the ontology, by using semiautomatic techniques. The guidelines in this case

include how to use and parameterize the involved tools to achieve the optimal

new ontology version.

The two aspects work together to enable ontology engineers to understand the

complete picture and tasks involved in ontology evolution, to successfully move

from an existing ontology state to a new one with the appropriate representation of

domain changes that arise.

References

Arnold RS (1996) Software change impact analysis. IEEE Computer Society Press, Los Alamitos

Banerjee J, KimW, Kim HJ, Korth HF (1987) Semantics and implementation of schema evolution

in object-oriented databases. SIGMOD Rec 16(3):311–322

Bennett KH, Rajlich V (2000) Software maintenance and evolution: a roadmap. In: ICSE - future

of SE track, ACM, New York, pp. 73–87

Berners-Lee T, Fielding R, Masinter L (2005) RFC 3986, Uniform Resource Identifier (URI):

Generic syntax. Available at http://tools.ietf.org/html/rfc3986

Bohner SA (1996) Software change impact analysis for design evolution. In: Software change

impact analysis. IEEE Computer Society Press, Los Alamitos, pp 67–81

Chikofsky EJ, Cross JG (1990) Reverse engineering and design recovery: a taxonomy. IEEE Softw

7(1):13–17

Fellbaum C (1998) Wordnet: an electronic lexical database. MIT Press, Cambridge

Haase P, Rudolph S, Wang Y, Brockmans S, Palma R, Euzenat J, d’Aquin M (2006) NeOn

deliverable D1.1.1. Networked ontology model. Available at http://www.neon-project.org/

Klein M, Fensel D (2001) Ontology versioning for the semantic web. In: Proceedings of the

international semantic web working symposium (SWWS’01), Stanford University, Stanford,

CA, USA

Klein M, Noy N (2003) A component-based framework for ontology evolution. In: Proceedings of

the IJCAI’03 workshop: ontologies and distributed systems, Acapulco, Mexico

Leenheer PD, Mens T (2007) Ontology management. Semantic web, semantic web services, and

business applications. In: Ontology evolution. State-of the-art and future directions. Springer,

New York/London

Noy N, Chugh A, Liu W, Musen M (2006) A framework for ontology evolution in collaborative

environments. In: International semantic web conference, Athens, pp 544–558

254 R. Palma et al.

http://tools.ietf.org/html/rfc3986
http://www.neon-project.org/

Palma R (2009) Ontology metadata management in distributed environments. PhD thesis,

Departamento de Inteligencia Artificial, Facultad de Informatica, Universidad Politecnica de

Madrid

Palma R, Haase P, Wang Y, d’Aquin M (2007) D1.3.1 propagation models and strategies.

Technical report D1.3.1, UPM; NeOn deliverable. Available at http://www.neon-project.org/

Palma R, Haase P, Corcho O, Gómez-Pérez A (2008a) An editorial workflow approach for

collaborative ontology development. In: ASWC’08. Springer, Berlin

Palma R, Haase P, Jiu Q (2008b) D1.3.2 Evaluation of propagation models and strategies.

Technical report D1.3.2; NeOn deliverable

Palma R, Hartmann J, Haase P (2008c) OMV – ontology metadata vocabulary for the semantic

web. v. 2.4. Available at http://omv.ontoware.org/

Palma R, Haase P, Corcho O, Gómez-Pérez A (2009) Change representation for OWL

2 ontologies. In: Proceedings of the fifth international workshop OWL: experiences and

directions. In ISWC09, Chantilly, VA, USA

Parsia B, Sirin E, Kalyanpur A (2005) Debugging OWL ontologies. In: Proceedings of the 14th

international conference on world wide web. ACM Press, New York, pp 633–640

Plessers P (2006) An Approach to Web-based Ontology Evolution. PhD thesis, Department of

Computer Science, Vrije Universiteit Brussel, Brussel

Proper HA, Halpin TA (2004) Conceptual schema optimisation – database optimization before

sliding down the waterfall. Technical report, Department of Computer Science, University of

Queensland

Sabou M, d’Aquin M, Motta E (2008) Exploring the semantic web as background knowledge for

ontology matching. J Data Semant XI:156–190

Stojanovic L (2004) Methods and tools for ontology evolution. PhD thesis, University of Karlsruhe

(TH)

Studer R, Benjamins VR, Fensel D (1998) Knowledge engineering: principles and methods. Data

Knowl Eng 25(1–2):161–197

Suárez-Figueroa MC, Gómez-Pérez A (2008) First attempt towards a standard glossary of ontol-

ogy engineering terminology. In: Proceedings of 8th international conference on terminology

and knowledge engineering (TKE’08) Copenhagen, DENMARK, pp 1–15

Zablith F (2009) Evolva: a comprehensive approach to ontology evolution. In: Proceedings

of ESWC 2009: the semantic web: research and applications – PhD symposium, Heraklion,

pp 944–948

Zablith F, Sabou M, d’Aquin M, Motta E (2010) Using ontological contexts to assess the relevance

of statements in ontology evolution. In: Proceedings of the 17th conference on knowledge

engineering and knowledge management by the masses (EKAW), Lisbon, Portugal. Springer,

Berlin

11 Ontology Evolution 255

http://www.neon-project.org/
http://omv.ontoware.org/

Chapter 12

Methodological Guidelines for Matching

Ontologies

Jérôme Euzenat and Chan Le Duc

Abstract Finding alignments between ontologies is a very important operation for

ontology engineering. It allows for establishing links between ontologies, either to

integrate them in an application or to relate developed ontologies to context. It is

even more critical for networked ontologies. Incorrect alignments may lead to

unwanted consequences throughout the whole network, and incomplete alignments

may fail to provide the expected consequences. Yet, there is no well-established

methodology available for matching ontologies. We propose methodological

guidelines that build on previously disconnected results and experiences.

12.1 Motivation

Ontologymatching is the activity of establishing correspondences between ontologies.

Correspondences express relationships supposed to hold between entities in

ontologies, for instance, that a ‘district’ in one ontology is the same as a ‘kreis’ in

another one or that ‘fishery’ in an ontology is a subclass of ‘company’ in another one.

An alignment may be used to link an ontology with its background, i.e. set it in a more

general context: This is typically what is achieved by providing an alignment with an

upper-level ontology. An alignment can also be used to link an ontology with its

previous versions or alternative ontologies in other applications.

We use interchangeably the terms matching operation (focussing on the input

and result), matching task (focussing on the goal and the insertion of the task in

a wider context) and matching activity (focussing on the internal processing).

J. Euzenat (*)

INRIA & LIG, F-38330 Montbonnot Saint-Martin, France

e-mail: Jerome.Euzenat@inria.fr

C. Le Duc

Université Paris 8, 93200 Saint-Denis, France

e-mail: Chan.Leduc@iut.univ-paris8.fr

M.C. Suárez-Figueroa et al. (eds.), Ontology Engineering in a Networked World,
DOI 10.1007/978-3-642-24794-1_12, # Springer-Verlag Berlin Heidelberg 2012

257

mailto:Jerome.Euzenat@inria.fr
mailto:Chan.Leduc@iut.univ-paris8.fr

The ontology matching process may be summarised as in Fig. 12.1 by a process

taking two ontologies (o and o0) as input and returning an alignment (A0), i.e. a set of
correspondences. In addition, this process can take as input an initial alignment and

various parameters. Ontology matching can be used with more than two ontologies.

However, in this chapter, we restrict ourselves to matching two ontologies. As

simple as it seems, ontology matching is an unsolved problem and a delicate

activity which requires care (Euzenat and Shvaiko 2007). Many matching methods

exist, and not one fits all needs.

Ontology matching is a very important operation in modern ontology engineer-

ing because of the networked environment in which ontologies are engineered and

supposed to work. Methodologically, it is worthwhile to express relations between

ontologies because this allows (1) for working with small and self-sufficient

modules instead of monolithic ontologies, (2) for expressing the links between

two versions of the same ontology and thus to upgrade data from one ontology to

another or (3) for putting back an ontology in the context of an upper-level

ontology, allowing it to play better with other ontologies. Networked ontologies

are sets of ontologies together with alignments relating the entities of these

ontologies. These ontologies may be related because they are complementary,

two independent domain ontologies, e.g. sales and tyres, refinement, a domain

ontology specialising a top-level ontology, or supplementary, a version replacing

another version or two ontologies about the same domain. In networked ontologies,

alignments are as important as the ontologies themselves because relationships

between ontologies are the basis of networks.

Hence, methodological guidance for ontology matching is particularly required

and needs to be supported for helping ontology engineers to develop semantic

applications. Contrary to ontology building which is an open-ended (design) activ-

ity, ontology matching is an inductive activity bounded by the ontology to be

matched. Hence, it requires a more focussed methodology.

Yet, very little support exists for such an activity at the methodological or at the

tool level. Even in the database field, where similar but simpler problems have

existed for years, there is no consensus methodology on how schema matching can

be conducted. This chapter provides guidance for matching ontologies based on

existing partial guidelines and overall experience collected so far in the field.

We do not consider ontology matching as an independent activity. On the

contrary, we consider it as related to ontology management: When ontologies

evolve, alignments must follow this evolution. Moreover, as proposed in the work

o

o′

A matching A′

parameters

resources

Fig. 12.1 The matching

activity (From Euzenat

and Shvaiko 2007)

258 J. Euzenat and C. Le Duc

of Euzenat et al. (2008), ontology matching should be considered in a dynamic

perspective in which the result of matching has its own life cycle and will have to be

maintained and evolved. This is illustrated by Fig. 12.2, representing the alignment

life cycle. This life cycle takes into account the evolution of alignments as well as

the importance of considering alignment as first-class objects which can be shared.

As such, alignments can be manipulated to better suit the needs of users. We

consider this ontology alignment life cycle and further investigate the methodolog-

ical guidelines for supporting it. In the spirit of NeOn (see Chap. 1), these

guidelines put the emphasis on networks of ontologies as well as reusing ontologies

and alignments.

In what follows, we first introduce synthetic descriptions of the ontology

matching activity (Sect. 12.2). Then, we discuss the issue of the format in which

alignments have to be delivered in order to support reusable matching (Sect. 12.3)

before considering step by step the proposed methodological guidelines

(Sect. 12.4). Then we present support offered by tools for the proposed methodo-

logical guidelines (Sect. 12.5). Finally, examples are given (Sect. 12.6) before

concluding.

12.2 Ontology Matching Filling Cards

We present below two different ontology matching activities. These depend on the

time at which ontology matching is supposed to take place. If ontology matching is

supposed to occur at design time, then its goal is to match two ontologies for

connecting them in a network; if it is to occur at runtime, then the goal of the

activity is to generate a matching process that achieves ontology matching at

runtime.

This distinction between runtime and design time ontology matching is very

important in practice because the output of the two operations is not the same. At

design time, the resulting alignment is used for relating the different ontologies

which will be used at runtime, for instance, for transforming queries. At runtime,

enhancement

creation

AA

evaluation

communication

A exploitation

Fig. 12.2 The ontology alignment life cycle (Adapted from Euzenat et al. 2008)

12 Methodological Guidelines for Matching Ontologies 259

http://dx.doi.org/10.1007/978-3-642-24794-1_1

ontology matching is used for finding alignments between ontologies which were

not known at design time. This could be for composing semantic web services using

different ontologies, for instance.

When ontology matching is performed at design time (see Fig. 12.3), only the

resulting alignment is available at runtime: no more matching is necessary. So,

there is no runtime constraint on matching. When it is performed at runtime, no

design time alignment is available; the matching will occur at runtime. So, the goal

of the designer is to design a matching process instead of an alignment (see

Fig. 12.4). In this case, runtime constraints (speed, memory) may apply to

matching.

However, functionally, these two operations can also be seen as the same since

they, in practice, generate an ontology matching process which is executed at

different moments. Hence, the guidelines that we apply are the same in both

cases because it consists of choosing software components which are applied at

different time.

Design time ontology matching

Definition

Goal

Input

Who

When

Output

Ontology matching (in design time) is the activity which finds alignments between ontologies.

Matching two ontologies.

Two ontologies to be matched.

When designing ontologies. In networked ontology applications, this activity can occur at any time.

Ontology engineers, who form the ontology development team (ODT), in collaboration with users and domain
experts.

An alignment between these two ontologies, which may
have been further transformed into a processable
element, e.g., query mediator, merged ontologies.

Fig. 12.3 Design time ontology matching

260 J. Euzenat and C. Le Duc

12.3 Alignments and Formats

Although formats should not be a main concern for methodology, it is here very

important because the input and output of most of the tasks is an alignment. Hence,

choosing a common alignment representation makes tasks interoperable and allows

for better sharing and reusing the product of the ontology matching activity.

Ontology alignments are sets of relationships between ontology entities.

Alignments may be expressed in various languages. For instance, the two relations

mentioned in the introduction can be expressed in OWL (Horrocks et al. 2003)

through owl:equivalentClass and rdfs:subClassOf, but they can also

be expressed in SKOS (Miles and Bechhofer 2009) through skos:exactMatch
and skos:broaderMatch. Other applications may mandate a different form like

views in databases, mediators in web services frameworks or even merged

ontologies. The advantage of such representations is that they can be processed.

However, application-specific output is not particularly interoperable. It is not

easy to transform a database view into OWL axioms or SKOS statements into

ODEDialect (Corcho and Gómez-Pérez 2007). Indeed, when the alignment is

Run time ontology matching

Definition

Ontology matching (in run time) is the activity which finds relationships between ontologies.

Goal

Designing a process for matching two ontologies.

The specification of a process for matching two
ontologies.

Semantic application designers.

When developing applications requiring run time matching.

Input Output

Who

When

The characteristics of the ontologies to match
and the context in which this matching
operation will occur.

Fig. 12.4 Runtime ontology matching

12 Methodological Guidelines for Matching Ontologies 261

expressed in OWL, its only possible use is to ‘merge’ two OWL ontologies. It

cannot easily be used to import data from one ontology to another or to translate

queries. Moreover, such formats are not easy to share and retrieve (see Sect. 12.4.7)

or to manipulate (see Sect. 12.4.6), e.g. for merging the results of several matchers

if they do not use a format that supports such manipulations.

Hence, in order to avoid early commitment to a particular type of usage, it is to

be preferred to keep the alignments in a declarative language. Such a language

allows for manipulating and composing alignments as well as for generating the

required representation (OWL, SKOS and others) when necessary.

Using a neutral and declarative representation (Euzenat 2004) provides the

opportunity to distribute and share alignments among applications. This is why,

in the remainder, only ‘alignments’ are considered.

12.4 Detailed Guidelines

Ontology matching has been the focus of a lot of attention in the recent years.

However, little work has been carried out on the methodological support for finding

alignments. We provide here the outline for such methodological guidelines. It can

be summarised by the workflow of Fig. 12.5. Each task of this workflow will be

described in subsections.

12.4.1 Identifying Ontologies and Characterising Needs

The first task in finding alignments is to identify the ontologies to be matched and to

characterise the need. Indeed, the type of required alignment will be different if the

Identifying ontologies,
characterising need

Finding existing
alignments

Selecting matcher

Matching

Evaluating

Enhancing

Storing and sharing

Rendering

not found

passed
failed

found

Fig. 12.5 The matching

methodology workflow.

It goes step by step through

characterising the problem,

selecting existing alignments,

selecting appropriate

matchers, running the

matchers, evaluating the

results and correcting the

choices made before

(matchers, parameters),

documenting and publishing

good results and finally using

them

262 J. Euzenat and C. Le Duc

goal is to merge two ontologies in a knowledge-based system or to add yet another

data source to a query mediator. In the former case, the alignment will have to be

strictly correct, otherwise the system may draw incorrect inferences, but the

relationships can be diverse: subsumption and disjointness assertions can be very

useful. In the latter case, lack of completeness is not a problem since other sources

may return the missing answers, but relations other than equivalence are not

straightforwardly used in query mediation. This first task is similar to Activity 3

of the work of Corcho (2005), called ‘design of [a] translation system’, which

specifies how to characterise source and target ontologies for ontology translation.

It is also useful to characterise the kind of ontologies: Are they labelled in the

same natural language? What is their expressiveness? Are individuals related to the

ontologies available?

Characterising the situation in which matching will be performed should not be

neglected. It will determine the choice of matchers or alignments as well as the

parameters to care for. Euzenat and Shvaiko (2007) identified several parameters:

• Are instances available at match time?

• Is matching performed under time constraints?

• Has matching to be performed automatically?

• Must the alignment be correct?

• Must the alignment be complete?

• What type of operation (merging ontologies, transforming queries) is to be

performed?

These characteristics of the situation are requirements for the ontology matching

process. There has been research attempting to refine such requirements. Mochol

(2009) gave a very precise description of the type of ontologies to be matched

depending on their size, expressiveness, language and role, e.g. domain ontology or

upper-level ontology.

12.4.2 Finding Existing Alignments

Finding existing alignments which satisfy the need of the application is the second

task. Alignments may be found on the web or through specialised directories.

Reusing existing alignments should be privileged because of the cost of generating

such alignments. For that purpose, the task of sharing (see Sect. 12.4.7) prepares

alignment retrieving.

Ideally, alignments should come with annotations characterising their level of

trustworthiness, the purpose for which they have been built and the type of relations

they use.

These alignments must concern the ontologies to be matched, and they have to

satisfy the constraints related to the alignment established in Sect. 12.4.1. In

particular, correctness and completeness are criteria to use for selecting among

various alignments.

12 Methodological Guidelines for Matching Ontologies 263

These criteria may be assessed manually, on a sample, or can be inferred through

the properties of their generation methods. In particular, one can use metadata

attached to such alignments. They can reveal the method used for matching the

ontologies (in particular, if these are automatic or manually generated alignments),

they can cover manual assessments about the alignment (people publishing them

can annotate the alignments to tell what they are good for) or they may contain

indications of their intended use which can be matched with that of the current

situation.

So, practically, selecting an alignment requires:

• Finding alignment repositories

• Finding those alignments between the ontologies to match

• Assessing the capacity of these alignments to address the needs previously

identified, either based on metadata, or on the content of the alignments

• Deciding for one alignment based on this assessment

If apparently suitable alignments are available, the user can directly go to the

validation task (Sect. 12.4.5). Otherwise, it is necessary to create a new alignment

from the ontologies, as is explained in Sect. 12.4.3.

12.4.3 Selecting a Matcher

In order to build a new alignment, a suitable matcher has to be found. Many

matchers have been developed over the years, and they provide different results

on different types of data sets and matching contexts. Hence, the criteria elicited in

the characterisation phase (Sect. 12.4.1) are also used for selecting the most

appropriate matcher.

There have been several studies about how to choose a matcher depending on the

characteristics of the ontologies and those of the expected alignments. They are

worth taking into account.

Euzenat et al. (2006) provide a simple method for weighting matcher capabilities

(speed, automaticity, precision and recall as measured in matcher evaluations)

against the application requirements defined as the answers to the questions of

Sect. 12.4.1.

The work of Mochol (2009) uses a deep classification of matchers and the

matching context in order to assess which matcher will be more adapted to a

particular context. This assessment is made using the Analytic Hierarchy Process

(AHP) which guides the decision process of choosing a matcher. It can work on

automatic or manual mode.

The OntoMas system (Huza et al. 2006) has been developed for helping and

teaching how to carry out matching. For choosing a matcher, it processes a set of

symbolic rules over a classification of tools and a characterisation of tasks.

The problem of such methods is that they require extensive information about

available matchers which is not always available or always accurate when the

264 J. Euzenat and C. Le Duc

assessment comes from the matcher developers. An important source of informa-

tion is the result of the various matcher evaluation campaigns that have been run.

The most important one is the Ontology Alignment Evaluation Initiative (OAEI)

campaigns1. They have evaluated many matchers in a variety of situations. So their

results can be taken into account when choosing a matcher. They are currently

further developed in the context of the SEALS project2.

So, in practice, choosing a matcher can be achieved by:

• Finding available matchers

• Assessing their capacity to generate alignments that fill the identified

requirements by reading their documentation or comparing their performances

in similar tasks during evaluations

• Deciding for one matcher based on this assessment

Other works try to automate this task, or the choice of matcher parameters, on

the fly (Sayyadian et al. 2005). Such work can be used in runtime matching

processes.

12.4.4 Matching Ontologies

The next task consists of running the matcher against the ontologies and collecting

the resulting alignment. It may seem like the simplest task, methodologically

speaking, because matchers have been designed exactly for this purpose.

But the user should not hesitate to run the matcher several times or to run several

matchers, trying different sets of parameters and different thresholds. It is also

useful to process matching incrementally by curating the returned alignment and

feeding it again to the matcher for improving it.

In fact, all the procedure that can be applied at the enhancing phase (see

Sect. 12.4.6) can also be directly applied during the matching phase without any

prior evaluation.

Hence, this task can be further decomposed into a more complex sub-workflow

(see Fig. 12.6). Section 12.4.6 provides some refinements of the matching

workflow.

12.4.5 Evaluating Alignments

Once an alignment has been obtained, it is necessary to perform a final screening

and validation. Evaluation can be applied on alignments that have been retrieved as

1 http://oaei.ontologymatching.org
2 http://www.seals-project.eu

12 Methodological Guidelines for Matching Ontologies 265

http://oaei.ontologymatching.org
http://www.seals-project.eu

well. This task corresponds to the evaluation task of Fig. 12.2. Very precise

methodological guidelines for evaluation of ontology networks are provided in

Chap. 9 which may be applied here as well (note that the ‘identify evaluation

criteria and frame of reference’ task corresponds to our ‘identifying ontologies and

characterising needs’ task, see Sect. 12.4.1). We consider here what is specific to

alignment evaluation during the matching activity. The evaluate/enhance loop in

Fig. 12.5 corresponds to the feedback after evaluation in Fig. 12.2.

Evaluation consists of assessing properties of the obtained alignment. It can be

performed either manually or automatically. Manual evaluation can be achieved by

running a dry test of the final application or by asking an independent expert to

assess the quality of the alignment and perform some manual assessment. For that

purpose, graphical tools which allow to navigate quickly both in the alignment and

in the ontologies are invaluable.

An often overlooked functionality of matching algorithms is their ability to give

explanation for the provided alignments. Explanations can be obtained by

interacting with the matcher or by accessing metadata about a stored alignment.

Automated quantitative evaluation can be performed by using techniques for

evaluating alignments used in matcher evaluation campaigns such as OAEI1 or

SEALS2. These would require to extract samples from the results and computing

measures like precision and recall which would provide an approximation of

correctness and completeness.

There is no definitive answer as to what is a good result for evaluation. The

evaluation must be performed so as to assess evaluation criteria. The characterisation

of the problem (Sect. 12.4.1) aims at defining such success criteria. For some

applications, high recall is required, while for some others, recall is not important.

Moreover, the meaning of ‘high’ is not the same for all applications: A critical

application which can break if some correspondence is missing will require 100%

recall while a non critical application may be satisfied with 98%.

Modifying
parameters

Matching

Checking
consistency

Triming Composing

parameters

alignment

Fig. 12.6 The sub-workflow of fine-tuning matchers (all tasks but matching are optional). After

matching, it is possible to apply automatically some alignment manipulation that can trim the

alignment under a threshold, check and restore the consistency of an alignment or compose

the alignment with another alignment. The result of these manipulations can be fed back as

input to the matching operation or can be the final result of the workflow. Alternatively, it is

possible to modify the parameters of the matcher and to run it again. These operations can be

triggered manually or automatically

266 J. Euzenat and C. Le Duc

http://dx.doi.org/10.1007/978-3-642-24794-1_9

If the evaluation results are positive, i.e. the alignment satisfies these success

criteria, then the obtained alignment can go through the next task, storing and sharing

(Sect. 12.4.7); otherwise, the alignment can be improved (Sect. 12.4.6) before being

input to the matcher and/or another matcher and/or parameters can be chosen.

12.4.6 Enhancing Alignments

Enhancement can be obtained either through manual modification of the alignment,

e.g. with the help of an alignment editor, or the application of refinement

procedures, e.g. selecting correspondences by applying thresholds. This enhancing

task can lead to:

• The selection of another matcher, as in Fig. 12.5, by going back to Sect. 12.4.3

• The selection of another set of parameters to use with the same matcher, as in

Fig. 12.6

• The manipulation of the alignment through trimming under a particular thresh-

old or combining several alignments, as in Fig. 12.6

Among these procedures, the most straightforward one consists of trimming the

alignment under some thresholds. There are many different ways to apply auto-

matic thresholds (Euzenat and Shvaiko 2007). Some work has introduced double

thresholding: Above the upper threshold, correspondences are selected, under the

lower threshold, they are discarded, and the remaining correspondences are brought

to the attention of the user (Lambrix and Liu 2009).

It may also restore consistency when the resulting alignment has been detected

inconsistent in the evaluation (Sect. 12.4.5). By consistency checking, we do not

necessarily mean logical consistency checking, but rather that the result does not

violate particular constraints which may be:

• Acyclicity

• Syntactic anti-patterns (Roussey et al. 2009)

• Full logical consistency

Enhancing may then consist of selecting a subset of the correspondences in an

alignment which satisfies the constraints. Algorithms developed in (Meilicke and

Stuckenschmidt 2009) are particularly suited for that purpose.

Alignments obtained from various sources, such as other matchers or alignment

libraries, may be composed in a single alignment through various operators:

composition, meet, join and union.

12.4.7 Storing and Sharing

An extra task is to save and share the obtained alignment in a declarative format and

to give it proper annotations to record its provenance and purpose. This task is very

12 Methodological Guidelines for Matching Ontologies 267

often overlooked but it is vital if one wants to find alignments in the corresponding

task (Sect. 12.4.2): carefully annotating alignments will help others to reuse

them. This task corresponds to the communication task of Fig. 12.2, and the dotted

arrow in Fig. 12.5 corresponds to the availability of stored alignments after

communication.

When an alignment is deemed worth publishing, then it can be annotated, stored

and communicated to other parties interested in such an alignment.

Annotations of alignments should record the information that is useful for the

‘finding existing alignment’ task (Sect. 12.4.2). In particular, what is the purpose of

this alignment, what is the assessment of its quality? Noy et al. (2008) discuss

various kinds of metadata that are useful to record with correspondences. There are

a few normalised vocabularies for doing this, and in particular the ontology

metadata vocabulary (Hartmann et al. 2005). Other useful information like the

algorithm used for computing it, the time it took or the source alignments and the

date of matching can generally be recorded automatically.

Below is a sample of metadata associated with an alignment in the Alignment

API:

dc:date 2009/10/23
align:method fr.inrialpes.exmo.align.impl.methods.StringDistAlignment

align:time 421
omwg:purpose Query mediation

align:creator JohnDoe
while correspondence annotations can be:

align:measure .7768
align:note "manualy validated"

Storing an alignment requires some type of persistent storage. This is usually

achieved through the use of a database management system, but a web site based on

a file system may be sufficient. However, alignments must be properly indexed to

retrieve them when necessary on various characteristics (one ontology, pairs of

ontologies, arity, etc.). Indexing can be direct through a URI identifying alignments

or indirect through queries looking for alignments based on their metadata. In

general, it is preferable that both access modes be available.

Finally, these alignments may be shared by interested communities. For that

purpose, they should be accessible on the web through HTML interfaces or web

services.

There are several software supporting sharing alignments on the web. The

Alignment server3 and Cupboard (d’Aquin et al. 2009) are general-purpose servers

providing alignments in the Alignment format. BioPortal4 is specialised in biomed-

ical ontologies and provides individual correspondences (called mappings in this

system).

3 http://alignapi.gforge.inria.fr
4 http://bioportal.bioontology.org

268 J. Euzenat and C. Le Duc

http://alignapi.gforge.inria.fr
http://bioportal.bioontology.org

12.4.8 Rendering Alignments

Finally, the alignment is transformed into another form or interpreted for

performing actions like mediation or merging.

This task corresponds to the exploitation task of Fig. 12.2. It is the natural

outcome of matching. The exploitation of the alignment may be denoted by a

different activity name, e.g. merging or query translating, taking directly the

alignment as input. However, it may happen that ontology matching is considered

as an activity in itself in which case it will deliver its output in an appropriate format

for another task. This is what is called ‘rendering’.

Rendering may deliver the alignment as such in RDF in order to be processed by

an interpreter such as a query mediator. But it also can be transformed, as discussed

in Sect. 12.3, into OWL axioms, SKOS relations or sets of owl:sameAs
statements.

The dotted arrow on Fig. 12.2 expresses the feedback after using the alignment

which may contribute to enhance it.

12.5 Support for Matching Ontologies

We think that methodological guidelines are more useful and better accepted if they

are supported by tools rather than delivered as rules to be applied. So far, existing

support is available in the alignment manipulation part rather than the requirement

analysis part.

12.5.1 Independent Tools

Some tools offer alignment manipulation that can be used for alignment enhance-

ment (Sect. 12.4.6).

Foam (Ehrig 2007) is a framework in which matching algorithms can be

integrated. It mostly offers matching and processor generation. It does not offer

online services or alignment editing, but it is available as a Protégé plugin and has

been integrated in the KAON2 ontology management environment. COMA++

(Aum€uller et al. 2005) and Harmony (Mork et al. 2008) are stand-alone (schema)

matching work benches that allow for integrating and composing matching

algorithms. They support matching, evaluating, editing, storing and, for COMA++,

processing alignments.

12 Methodological Guidelines for Matching Ontologies 269

The Alignment server, associated with the Alignment API5 (David et al. 2011),

offers matching ontologies, manipulating, evaluating, storing and sharing

alignments as well as processor generation. It can be accessed by clients through

an API, web services, agent communication languages or HTTP. It does not support

editing.

Most of the software developed for editing alignments are candidates for design

time matching. The same alignment editor can be used for manipulating more

precisely the obtained alignments. They should provide a convenient display of

the currently edited alignments and the opportunity to discard, modify or add

correspondences. Ideally, each design time function should be available from an

alignment editor. Since ontologies and alignments can be very large, it is very

challenging to offer intuitive alignment editing support. There exists such editor

prototype such as OnaGui6 or iMerge (El Jerroudi and Ziegler 2008).

12.5.2 Integrated Tools

Model management has been promoted in databases for dealing with data integra-

tion in a generic way. It offers a high-level view to the operations applied to

databases and their relations. Rondo7 is such a system (Melnik et al. 2003). It offers

operators for generating the alignments, composing them and applying them as data

transformation. It is a stand-alone programme with no editing functions.

Integrated tools integrate alignment management to ontology management.

The Web Service Modeling Toolkit (WSMT) (Kerrigan et al. 2007) is an

Integrated Development Environment (IDE) for Semantic Web services which

also provides ontology engineering capabilities. Among other capabilities,

WSMT proposes a set of tools for manually creating, editing and storing ontology

alignments. It offers a set of methods and techniques that assist ontology engineers

in their work, such as different graphical perspectives over the ontologies,

suggestions of the most related entities from the source and target ontology and

guidance throughout the matching process (Mocan et al. 2006). WSMT and the

ontology engineer work together in an iterative process which involves cycles

consisting of suggestions from the tool side and validation and creation of

correspondences from the user side.

Protégé is an ontology edition environment which offers design time support for

matching. In particular, it features Prompt8 (Noy and Musen 2003), an environment

that provides some matching methods and alignment visualisation. Prompt allows

to match, compare and merge ontologies. Since alignments are expressed in an

5 http://alignapi.gforge.inria.fr
6 http://sourceforge.net/projects/onagui/
7 http://infolab.stanford.edu/modman/rondo/
8 http://protege.stanford.edu/plugins/prompt/prompt.html

270 J. Euzenat and C. Le Duc

http://alignapi.gforge.inria.fr
http://sourceforge.net/projects/onagui/
http://infolab.stanford.edu/modman/rondo/
http://protege.stanford.edu/plugins/prompt/prompt.html

ontology, they can be stored and shared through the Protégé server mode. Prompt

can be extended through a plugin mechanism.

12.5.3 The NeOn Toolkit Alignment Plugin

The NeOn9 project produced a toolkit for ontology management (see Chap. 13)

which features runtime and design time ontology alignment support.

NeOn supports ontology alignments in both the NeOn Toolkit and the Cupboard

ontology server.

The NeOn Toolkit Alignment plugin works in two modes: an offline mode in

which the user can work locally on the alignments. The user can run the matchers

which are embedded in the toolkit against ontologies in the NeOn Toolkit and

manipulate alignments which are in the local environment. Figure 12.7 shows two

selected ontologies and a matching method that can be applied to them. It also

shows a local alignment between these two ontologies to which operations such as

trimming under a threshold or rendering in OWL (‘import’) can be applied.

The online mode connects the NeOn Toolkit to an alignment server allowing to

share ontologies and to apply these operations on alignments stored on the server.

Fig. 12.7 The NeOn Toolkit Alignment plugin interface

9 http://www.neon-project.org

12 Methodological Guidelines for Matching Ontologies 271

http://dx.doi.org/10.1007/978-3-642-24794-1_13
http://www.neon-project.org

Of course, alignments can move back and forth between the server and the local

environment.

Both online and offline modes provide the functions of the Alignment API:

retrieving alignments, matching ontologies, trimming alignments under various

thresholds, storing them in permanent stores and rendering them in numerous

output formats. These operations support the whole alignment life cycle (Fig. 12.5).

The Alignment plugin allows one to automatically compute and manage onto-

logy alignments. More precisely, it offers the following functionalities:

• Find alignments between ontologies or those available on the server

• Match ontologies

• Trim alignments by applying thresholds to existing alignments

• Retrieve and render alignments in a particular format

• Upload and store an alignment permanently on the server

Alignments stored in the server can be further shared through the Cupboard

ontology server. It allows for indexing alignments available from alignment

servers. Hence, these alignments can be available to each Cupboard user to be

stored in her cupboard and, as for ontologies, be rated and annotated. Cupboard

provides direct access to alignments as well as indirect access to the Alignment

server to generate new alignments when they are missing.

12.6 Examples

In this section, we consider a user having to connect an ontology designed for drug

and prescription to existing ontologies outside. These examples are closely related

to the application presented in Chap. 20.

12.6.1 Identifying Needs

More precisely, the newly proposed Semantic Nomenclature ontology (presented in

Chap. 20), designed from schemas of pharmacological firm databases, has to be

matched to ontologies available on the web. This could help searching for literature

about concerned drugs or exporting drug interactions as linked data for other

applications to take them into account.

The requirements for this matching activity allow it to be performed offline,

without time constraints, so the use of the NeOn Toolkit and user supervision is

perfectly suited. The ontologies, having been developed independently and for

different purposes, are not expected to match exactly. Correct correspondences

are expected, completeness is secondary. The type of operation to be performed

with the resulting alignments is data export (for exposing linked data) and query

translation (for connecting to the literature).

272 J. Euzenat and C. Le Duc

http://dx.doi.org/10.1007/978-3-642-24794-1_20
http://dx.doi.org/10.1007/978-3-642-24794-1_20

12.6.2 Identifying Ontologies

Watson (d’Aquin and Motta 2011) allows for finding further ontologies that may be

useful. These are:

• The LDIS Drug ontology10 which has been designed for prescription application

in hospitals (related with electronic patient record)

• The UMLS Semantic Network ontology11 which is well used for literature

indexing because of its extensive coverage

• The RxNorm ontology12 which is used for classifying drugs and is suited to

search the literature

A quick study of these ontologies shows the characteristics displayed in

Table 12.1.

More ontologies on this topic are available, and a comparison can be found in

Herrero Cárcel and Pariente (2009).

The ontologies are relatively homogeneous being in English (with some Spanish

comments in Semantic Nomenclature) and OWL. They have comparable sizes with

the notable exception of UMLS.

12.6.3 Finding Existing Alignments

Finding available alignments may be achieved by using an alignment server. In the

present case, there is no alignment available between these ontologies.

12.6.4 Selecting a Matcher

The user then proceeds by selecting a matcher suited to match these ontologies. In

this case, given that ontologies are about a very close and normalised domain, they

Table 12.1 Characteristics of the considered ontologies

Organisation Ontology Lang. Form. Classes Relations Properties

ATOS Semantic Nomenclature English OWL 67 20 26

UMLS Semantic Network English OWL 199 105 0

LDIS DrugOnt English OWL 28 26 32

NLM RX nomenclature English OWL 10 16 0

10 http://lsdis.cs.uga.edu/projects/asdoc/DrugOnt_schema.owl
11 http://swpatho.ag-nbi.de/owldata/umlssn.owl
12 http://www.nlm.nih.gov/research/umls/rxnorm/

12 Methodological Guidelines for Matching Ontologies 273

http://lsdis.cs.uga.edu/projects/asdoc/DrugOnt_schema.owl
http://swpatho.ag-nbi.de/owldata/umlssn.owl
http://www.nlm.nih.gov/research/umls/rxnorm/

are written in the same natural language; the user may select very simple matchers

based on the strings naming entities. There are several matchers available, either

under the NeOn Toolkit or the Alignment server; the best way is to try them and to

see the results (see Sect. 12.6.5).

In a second iteration, tests have been performed with more elaborate matchers

such as a simple use of WordNet which would use synonyms to match terms and

distance in the hypernym graph. Or it can use the Aroma matcher which will

attempt at determining association rules between concepts before extracting an

alignment between them (David et al. 2007).

12.6.5 Matching

The simple StringDistAlignment method with different string distances is run, and

results are displayed in Table 12.2.

The user first ran the method with Levenshtein measure (edit distance) and

SMOA measure which tries to better interpret the way people label things, e.g. by

using syntactic variations. The threshold has been put to .75 so as to avoid

considering far-reaching similarity between strings. Later, a threshold of .85 has

been applied in order to further ensure correctness (because a higher threshold will

eliminate unlikely matches).

12.6.6 Evaluating

There is no automatic way to evaluate these results. They have to be manually

looked into by the user to assess their quality (they can be displayed by alignments

editors).

Concerning the drug ontology, the small returns with the Levenshtein distance

are obviously correct. The use of SMOA provides mostly new correct matches,

such as interacts/hasInteraction. The only non–fully correct matches are the

matching of DrugInteraction and OtherInteraction to interaction. Using SMOA

with a .75 threshold provides reasonable results. Some more matches, such as

Table 12.2 Number of matched entities in Semantic Nomenclature depending on matching

method and threshold. The example has used two iterations displayed by the horizontal line

Method Threshold DrugOnto RxNorm UMLSSN

Levenshtein .85 3 3 9

– .75 3 4 11

SMOA .85 8 8 20

– .75 11 11 34

WordNet .75 5 6 12

Aroma 8 5 30

274 J. Euzenat and C. Le Duc

isIndicated/has_indication_text, could have been found, but not many. The small

number of matches can be explained as follows: Semantic Nomenclature is more

oriented towards the drug production and commerce processes, while the drug

ontology is targeting the consumption process.

Concerning UMLSSN and RxNorm, Levenshtein was better than SMOA which

was returning quite a lot of unwanted matches, such as isProducedBy/produces or

Clinical_Finding/Clinical_Drug. After a closer examination, there is no real reason

to find more correspondences than those provided by Levenshtein, so the user may

want to use these. Especially with UMLSSN, it seems that the labels have been

chosen so that they correspond to those of UMLS so they exactly match.

Using the more elaborate matchers has confirmed this. They have only returned

plausible but not necessarily valid correspondences, such as Physical_Entity/

Physical_Object.

12.6.7 Enhancing

Enhancement may be achieved by two means: either by manual edition of the

resulting alignment or by running a new matcher, using new parameters or applying

different threshold to the results. This is what has been done by using different

thresholds and testing the more elaborate matchers, i.e. starting back to Sect. 12.6.4.

In the end, once the SMOA alignment with the drug ontology has been found

acceptable with respect to other results, this alignment is manually edited and

selected.

Both means can be interleaved: It is possible to edit an alignment and to use it as

further input for a matcher.

12.6.8 Storing and Sharing

Once an alignment of sufficient quality is established, especially if it has been

curated by hand, it must be better documented, for instance, by adding metadata

explaining how it has been obtained, who has curated it and what is the reached

confidence in each correspondence. This is illustrated in Sect. 12.4.7. Then, it can

be uploaded to an Alignment server so that it would be visible to other people (in

the previous step of Sect. 12.6.3).

12.6.9 Rendering

Finally, the obtained alignments have to be used. We have considered that the data

expressed in the Semantic Nomenclature ontology could be converted in the drug

ontology so as to communicate critical information about interaction. This may be

12 Methodological Guidelines for Matching Ontologies 275

achieved either by generating an XSLT transformation applying to the data

expressed in XML for obtaining the interactions under the drug ontology or

a more elaborate process may take advantage of the alignment to generate links

between instances of both ontologies.

On the other side, if RxNorm or UMLSSN is used to query bibliographical

databases, the alignments may be used for translating queries expressed with

respect to the Semantic Nomenclature into queries expressed in the two other

ontologies and eventually evaluate them in parallel.

12.7 Conclusions

Establishing relations between ontology entities is part of modern ontology engi-

neering and a very important activity for networked ontology engineering.

This activity remains difficult though there are many solutions for carrying it out.

We proposed methodological guidelines for ontology matching which integrates

with the alignment life cycle and can cooperate with ontology engineering

methodologies. In particular, we paid a particular attention to alignment sharing

and reuse. These guidelines are based on research work on particular tasks: Some of

these have been investigated in depth and others have not. Similarly, some tools

cover parts of these guidelines, but none is able to support them entirely.

Hence, more work is necessary to achieve a fully instrumented ontology

matching methodological support, and no doubt it will raise some demands for

improvement in the proposed methodological guidelines.

12.8 Further Readings

There are few methodological accounts of ontology matching. Mochol (2009) is the

exception: a whole thesis dedicated to matcher selection. Corcho (2005) has

considered more specifically the methodology for designing an ontology translation

method, including a matcher. Euzenat and Shvaiko (2007) covers many facets of

ontology matching, but not extensively methodology. It provides insights of most of

the tasks of the above methodological path. Euzenat et al. (2008) is more methodo-

logical but not focussed on the individual act of matching.

Acknowledgements We thank Pavel Shvaiko for his comments on a previous version of this

chapter. This work has been partly supported by the European Commission IST project NeOn

(IST-2006-027595).

276 J. Euzenat and C. Le Duc

References

Aum€uller D, Do H-H, Maßmann S, Rahm E (2005) Schema and ontology matching with COMA++.

In: Proceedings of the 24th international conference on management of data (SIGMOD),

software demonstration, Baltimore, MD, USA, pp 906–908

Corcho Ó (2005) A layered declarative approach to ontology translation with knowledge preser-

vation. Ios Press, Amsterdam

Corcho Ó, Gómez-Pérez A (2007) ODEDialect: a set of declarative languages for implementing

ontology translation systems. J Univers Comput Sci 13(12):1805–1834

d’Aquin M, Motta E (2011) Watson, more than a semantic web search engine. Semant Web J

2:55–63

d’Aquin M, Euzenat J, Le Duc C, Lewen H (2009) Sharing and reusing aligned ontologies with

cupboard. In: Proceedings of 5th ACM KCap poster session, Redondo Beach, CA, USA,

pp 179–180. URL ftp://ftp.inrialpes.fr/pub/exmo/publications/daquin2009a.pdf

David J, Guillet F, Briand H (2007) Association rule ontology matching approach. Int J Semant

Web Inf Syst 3(2):27–49

David J, Euzenat J, Scharffe F, Trojahn dos Santos C (2011) The Alignment API 4.0. Semant Web

J 2(1):3–10. URL http://iospress.metapress.com/content/4164891n48p5v826/

Ehrig M (2007) Semantic web and beyond: computing for human experience. In: Ontology

alignment: bridging the semantic gap. Springer, New York. Acitrezza, Italy, ISBN

0–387–32805-X

El Jerroudi Z, Ziegler J (2008) iMERGE: interactive ontology merging. In: Proceedings of the 16th

EKAW demonstration track, Acitrezza, Italy, pp 52–56

Euzenat J (2004) An API for ontology alignment. In: Proceedings of 3rd international semantic

web conference (ISWC), Hiroshima, Japan, Lecture notes in computer science, vol 3298.

Springer, Berlin/Heidelberg, pp 698–712

Euzenat J, Shvaiko P (2007) Ontology matching. Springer, Heidelberg

Euzenat J, Ehrig M, Jentzsch A, Mochol M, Shvaiko P (2006) Case-based recommendation of

matching tools and techniques. Deliverable 1.2.2.2.1, knowledge web. URL ftp://ftp.inrialpes.

fr/pub/exmo/reports/kweb-126.pdf

Euzenat J, Mocan A, Scharffe F (2008) Ontology alignment: an ontology management perspec-

tive. In: Hepp M, De Leenheer P, De Moor A, Sure Y (eds) Ontology management: semantic

web, semantic web services, and business applications. Springer, New York, pp 177–206

Hartmann J, Palma R, Sure Y, Haase P, Suárez-Figueroa MC, Haase P, Gómez-Pérez A, Studer R

(2005) Ontology metadata vocabulary and applications. In: Meersman R, Tari Z, Herrero P

et al (eds) Proceedings of the International conference on ontologies, databases and

applications of semantics (ODBASE-2005), Lecture notes in computer science, vol 3762.

Springer, Berlin/Heidelberg/New York, pp 906–915

Herrero Cárcel G, Pariente T (2009) Revision of ontologies for semantic nomenclature: pharma-

ceutical networked ontologies. Deliverable 8.3.2, NeOn project

Horrocks I, Patel-Schneider P, van Harmelen F (2003) From SHIQ and RDFto OWL: the making

of a web ontology language. J Web Semant 1(1):7–26

Huza M, Harzallah M, Trichet F (2006) OntoMas: a tutoring system dedicated to ontology

matching. In: Proceedings of the 1st ISWC international workshop on ontology matching

(OM), Athens, GA, USA, pp 228–323

Kerrigan M, Mocan A, Tanler M, Fensel D (2007) The web service modeling toolkit – an

integrated development environment for semantic web services. In: Proceedings of the 4th

European semantic web conference (ESWC) system description track, Innsbruck, Austria,

pp 303–317

Meilicke C, Stuckenschmidt H (2009) An efficient method for computing alignment diagnoses. In:

Proceedings of the 3rd international conference on web reasoning and rule systems (RR-2009),

Chantilly, VA, USA, pp 182–196

12 Methodological Guidelines for Matching Ontologies 277

ftp://ftp.inrialpes.fr/pub/exmo/publications/daquin2009a.pdf
http://iospress.metapress.com/content/4164891n48p5v826/
ftp://ftp.inrialpes.fr/pub/exmo/reports/kweb-126.pdf
ftp://ftp.inrialpes.fr/pub/exmo/reports/kweb-126.pdf

Melnik S, Rahm E, Bernstein P (2003) Rondo: a programming platform for model management.

In: Proceedings of the 22nd international conference on management of data (SIGMOD), San

Diego, CA, USA, pp 193–204

Miles A, Bechhofer S (2009) SKOS simple knowledge organization system: reference. Recom-

mendation, W3C. URL http://www.w3.org/TR/skosreference

Mocan A, Cimpian E, Kerrigan M (2006) Formal model for ontology mapping creation. In:

Proceedings of the 5th international semantic web conference (ISWC), Athens, GA, USA,

Lecture notes in computer science, vol 4273. Springer, Berlin/Heidelberg/New York,

pp 459–472

Mochol M (2009) The methodology for finding suitable ontology matching approaches. PhD

thesis, Freie Universit€at Berlin. URL http://www.diss.fuberlin.de/diss/receive/

FUDISS_thesis_000000008124

Mork Peter, Seligman Len, Rosenthal Arnon, Korb Joel, Wolf Chris (2008) The harmony

integration workbench. J Data Semant XI:65–93

Noy N, Musen M (2003) The PROMPT suite: interactive tools for ontology merging and mapping.

Int J Hum-Comput Stud 59(6):983–1024. ISSN: 1071–5819. doi:http://dx.doi.org/10.1016/j.

ijhcs.2003.08.002

Noy N, Griffith N, Musen M (2008) Collecting community-based mappings in an ontology

repository. In: Proceedings of the 7th international semantic web conference (ISWC),

Karlsruhe, Germany, pp 371–386

Patrick Lambrix, Qiang Liu (2009) Using partial reference alignments to align ontologies. In:

Proceedings of the 6th European semantic web conference (ESWC 2009), Heraklion,

Germany, Lecture notes in computer science, vol 5554. Springer, Berlin/Heidelberg/New York,

pp 188–202

Roussey C, Corcho Ó, Vilches Blázquez LM (2009) A catalogue of owl ontology antipatterns. In:

Proceedings of the 5th international conference on knowledge capture (KCap-2009), Redondo

Beach, CA, USA, pp 205–206

Sayyadian M, Lee Y, Doan A-H, Rosenthal A (2005) Tuning schema matching software using

synthetic scenarios. In: Proceedings of the 31st international conference on very large data

bases (VLDB), Trondheim, Norway, pp 994–1005

278 J. Euzenat and C. Le Duc

http://www.w3.org/TR/skosreference
http://www.diss.fuberlin.de/diss/receive/FUDISS_thesis_000000008124
http://www.diss.fuberlin.de/diss/receive/FUDISS_thesis_000000008124
http://dx.doi.org/http://dx.doi.org/10.1016/j.ijhcs.2003.08.002
http://dx.doi.org/http://dx.doi.org/10.1016/j.ijhcs.2003.08.002

Part III

The NeOn Toolkit

Chapter 13

Overview of the NeOn Toolkit

Michael Erdmann and Walter Waterfeld

Abstract The NeOn Toolkit is one of the major results of the NeOn project. It is

a state-of-the-art, open-source, multiplatform ontology engineering environment,

which provides comprehensive support for the ontology engineering life cycle of

networked ontologies. It is based on an open and modular plugin architecture that

allows adding additional plugins realizing more advanced features supporting

more complex ontology engineering activities. A substantial number of plugins

have been developed within and outside the NeOn consortium and are available at

the NeOn Toolkit homepage. The NeOn Toolkit supports the Web Ontology

Language OWL 2, the ontology language specified by the W3C, and features

basic editing and visualization functionality. Its user interface, especially the

presentation of class restrictions, makes the NeOn Toolkit accessible to users that

do not have long experience with ontologies but instead know the object-oriented

modeling paradigm. In the chapter, we will present the feature set of the NeOn

Toolkit and how to use it. A second part explains some architecture and implemen-

tation background and how new plugins can be integrated into the common

platform.

13.1 Introduction to the NeOn Toolkit

The NeOn Toolkit is a state-of-the-art, open-source, multiplatform ontology engi-

neering environment, which provides comprehensive support for the ontology

engineering life cycle of networked ontologies (see Chap. 1).

M. Erdmann (*)

ontoprise GmbH, An der RaumFabrik 33a, 76227 Karlsruhe, Germany

e-mail: michael.erdmann@ontoprise.de

W. Waterfeld

Software AG, Uhlandstraße 12, 64297 Darmstadt, Germany

e-mail: Walter.Waterfeld@softwareag.com

M.C. Suárez-Figueroa et al. (eds.), Ontology Engineering in a Networked World,
DOI 10.1007/978-3-642-24794-1_13, # Springer-Verlag Berlin Heidelberg 2012

281

http://dx.doi.org/10.1007/978-3-642-24794-1_1
mailto:michael.erdmann@ontoprise.de
mailto:Walter.Waterfeld@softwareag.com

In order to support such broad ontology modeling functionality, it has an open

and modular plugin architecture. The NeOn Toolkit core provides the framework

and some basic functionality. More advanced features supporting more complex

ontology engineering activities (see part “Ontology Engineering Activities” in this

book) are provided by plugins. A substantial number of plugins have been devel-

oped within and outside the NeOn consortium and are available at the NeOn Toolkit

homepage1.

The NeOn Toolkit supports the Web Ontology Language OWL 2, the ontology

language specified by the World Wide Web Consortium (Motik et al. 2009).

Neither this chapter nor this book is intended to be an OWL tutorial. Thus, we

assume a basic understanding of the concepts of this ontology language, that is, the

different kinds of axioms and entities that OWL 2 provides2. The NeOn Toolkit

provides editing support for all entities which are defined in OWL (e.g., classes) and

also supports all but a few of the OWL axioms (e.g., the assertion that there is no

relation between two individuals cannot yet be expressed in the NeOn Toolkit).

This chapter consists of two main parts. In the first part, we will discuss the basic

features of the NeOn Toolkit and describe how to use them. Since the NeOn Toolkit

is an open and extensible platform, we will look under the hood of the toolkit and

we will discuss the building blocks and standards that are used to define the toolkit

and which can be exploited by developers to create additional functionalities for the

NeOn Toolkit in the form of plugins. Thus, we mean here developers of ontology

functionalities and not developers of ontologies, where the latter we consider as

users of the NeOn Toolkit.

13.2 The NeOn Toolkit: For Users

In this section, we demonstrate the features of the core NeOn Toolkit and how to

use them.

13.2.1 General Features

13.2.1.1 The Screen Layout

The NeOn Toolkit operates on ontologies (Gruber 1993) that are stored locally in

a so-called workspace. The workspace is the organizational unit, where users can

organize all the artifacts of their current work. At any time, a user works only in

1 http://NeOn-Toolkit.org
2A good introduction to the OWL language can be found in Hitzler et al. (2009).

282 M. Erdmann and W. Waterfeld

http://NeOn-Toolkit.org

exactly one workspace, which is organized into independent projects. Each project

can contain multiple ontologies. The ontologies within a project can refer to each

other via the owl:import statement. In this way, multiple ontologies can be viewed

and edited at the same time. Different versions of the same ontology can be stored

in different projects or in different workspaces.

The workspace and project metaphor is visualized in the NeOn Toolkit by the

layout of the basic OWL perspective. A perspective is an Eclipse mechanism to

describe the composition and layout of different views in a window. A view is a

subwindow displaying certain information and/or allowing user input. The OWL

perspective initially contains three main views, which represent the basic function-

ality of the NeOn Toolkit, as shown in Fig. 13.1.

• Ontology navigator: This view in the top left of the screen displays all ontology

projects of the current workspace. Each project can hold multiple ontologies, and

each ontology contains folders for classes, properties (object, data, and annota-

tion properties), and data types. Each of these folders displays a hierarchical

presentation of the classes, properties, and data types of the respective ontology.

• Individuals: When you select a class in the Ontology Navigator, a list of all its
individuals is listed in this view.

• Entity properties: The NeOn Toolkit displays details of each selected entity in

this view, which takes the most space of the screen and is located on the right-

hand side. The content of this view adapts, depending on the type of the currently

selected entity (ontology, class, property, individual, etc.). Since most entities

(can) have a lot of relevant information, which would not necessarily fit on a

single screen, the entity property view uses several tabs (at the bottom of the

view) where users can switch between different aspects of the entity.

Fig. 13.1 Screenshot of the NeOn Toolkit

13 Overview of the NeOn Toolkit 283

The basic operations users perform with the NeOn Toolkit are (1) the creation of

new objects (projects, ontologies, and other entities) and (2) the manipulation of

their properties. The Ontology Navigator can be used for creating new objects. This

can be done via the context menu on the empty canvas or on one of the many

already existing nodes in the tree. In most cases, the shortcut CTRL + N can also be

used to create a new entity, depending on the currently selected node (the context).

Thus, users can create new ontologies in a project, new subclasses, or new

subproperties, etc.

For manipulating the properties of an entity, users typically will use the Entity
Properties View. Since OWL ontologies consist of axioms, users also essentially

interact with the NeOn Toolkit on the axiom level. The tabs of the Entity Properties
View contain forms for different aspects of each entity where users can add new

properties or alter or delete existing ones. In later sections, we will give some more

details for the most commonly used forms.

13.2.1.2 Loading and Saving

In order to load or save ontologies (outside of the workspace), the NeOn Toolkit

provides import and export features, which are available from the context menu of

ontology nodes in the Ontology Navigator tree and from the File menu. The NeOn

Toolkit supports several serialization formats for OWL ontologies:

• OWL/RDF – the official OWL 2 W3C recommendation in RDF/XML

• OWLX – an OWL 2-XML presentation according to the OWL 2 recommendation

• OWL 2 – the functional syntax of the OWL 2 recommendation

• OMN – the Manchester syntax for OWL 2 (Horridge and Patel-Schneider 2009)

• TTL – a Turtle serialization format for the RDF graph of the OWL 2 ontology

(Beckett and Berners-Lee 2008)

13.2.1.3 Entity Label Modes

The labels that are displayed for entities in the different fields of the user interface

depend on the selected Entity Label Mode. The toolbar icon labeled “ns”3 shown in
Fig. 13.2 lets the user choose between four different modes:

• Complete URI: displays the complete URI of an entity (e.g., “http://www.fao.

org/aims/geopolitical.owl#group”) including its local name.

• Local name: displays only the local name of an entity (e.g., “group”). This makes

the ontology a lot more readable, but since the local names are not necessarily

unique, there is potential for conflicts.

3 “ns” here stands for “namespace.”

284 M. Erdmann and W. Waterfeld

http://www.fao.org/aims/geopolitical.owl#group
http://www.fao.org/aims/geopolitical.owl#group

• QName: displays the namespace prefix and local name of an entity (e.g., “geo:

group”). This is the recommended setting and is especially useful when multiple

ontologies are used or different namespaces are in use. In case a default

namespace is defined for an ontology, no prefix is shown for this namespace.

• Language: If the ontology contains labels (rdfs:label) for entities, this option can
display the human readable labels in a specified language, thus providing

multilanguage support. Note that all languages are available, which are specified

in the preferences.

13.2.1.4 Manchester Syntax

Most fields in the Entity Property View can take single entity names, URIs,

QNames, or local names. Others can hold complex class expressions, for example,

the superclasses of a class can be either a simple class (referenced by its ID) or an

anonymous class specified as a complex class expression. The NeOn Toolkit

supports the Manchester syntax for formulating these expressions.

The Manchester syntax is a user-friendly compact syntax for the ontology

language OWL (Horridge and Patel-Schneider 2009), especially suited for writing

OWL class expressions. Although the syntax borrows ideas from the OWL

abstract syntax, it is much less verbose, meaning that it is quicker to write and

easier to read. While following the compactness of the DL syntax, special

mathematical symbols such as the universal or the existential quantifiers have

been replaced by keywords such as “only” and “some.” The Manchester syntax

for OWL 2 is not strictly a part of the OWL 2 recommendation by the W3C, but it

was developed by members of the W3C OWL 2 working group, and the syntax is

published as a W3C Note. This Note contains the complete language specification

and also examples for using it.

Fig. 13.2 Selecting how entities should occur in the user interface

13 Overview of the NeOn Toolkit 285

Table 13.1 gives examples for the look and feel of the Manchester syntax.

Restrictions in OWL are special anonymous classes, constructed using certain

OWL primitives. Based on existing classes and class expressions, the Manchester

syntax allows to create more complex classes using Boolean class constructors (see

Table 13.2).

Of course, users can also create even more complex classes by nesting multiple

class expressions within each other. For example, the following formula in

Manchester syntax describes the set of people who have at least one child that

has some children that are only men, that is, grandparents that only have grandsons:

Person and hasChild
some (Person and (hasChild only Man) and (hasChild some Person))

13.2.1.5 Navigation

The fields in the Entity Properties View often contain references to other entities,

for example, the domain of a property or the superclass of a class. These references

can also be nested within more complex expressions. Oftentimes, it is desirable and

useful to jump directly to the referenced entities to further inspect the model. The

NeOn Toolkit provides a handy navigation utility which supports this task. By

pressing the Control (Ctrl) key and hovering over the name of an entity, the text

becomes highlighted in blue and gets underlined (see Fig. 13.3). It becomes a

clickable hyperlink. By using the left mouse button, the NeOn Toolkit will jump

to the selected entity by updating the Ontology Navigator and Entity Properties
View to show it.

Table 13.1 Example expressions in Manchester syntax

OWL construct Manchester syntax keyword Example

owl:someValuesFrom Some hasRelative some Person

owl:allValuesFrom Only hasAuthor only Writer

owl:hasValue Value writtenBy value Goethe

owl:minCardinality Min hasPlayer min 3

owl:cardinality Exactly hasPlayer exactly 3

owl:maxCardinality Max hasPlayer max 3

Table 13.2 Complex class constructions

OWL construct Manchester syntax keyword Example

owl:intersectionOf And Writer and Male

owl:unionOf Or Male or Female

owl:complementOf Not not Child

286 M. Erdmann and W. Waterfeld

13.2.1.6 Search and Finding References

Another useful feature of the NeOn Toolkit is its Search facility. Ontologies can be
quite large in size, and to this purpose, the NeOn Toolkit provides a helpful search

dialog (see Fig. 13.4). Besides a search term, the dialog allows users to specify the

type of entity and also the scope for the search (e.g., a single ontology, a project, or

the complete workspace). In order to have fast reaction times, the search is

internally performed on asserted knowledge only.

After hitting the Search button, the results will be displayed in the Search View.
It presents a list of all entities matching the keyword, organized according to the

ontology (and project) they were found in. By double-clicking a line in the Search
View, it will jump to the respective entity (see Fig. 13.5).

All nodes in the Ontology Navigator provide a context menu action to Find
References. When selecting this item, the NeOn Toolkit will find all axioms that

Fig. 13.3 Entity labels as hyperlinks

Fig. 13.4 Search dialog

13 Overview of the NeOn Toolkit 287

contain this entity. The results, again, are displayed in the Search View and are

clickable, exactly as in the case of the normal search above (see Fig. 13.6).

13.2.1.7 Autocompletion

The NeOn Toolkit also features a useful autocompletion function, which is avail-

able in all text boxes of the Entity Properties View while in edit mode.

Autocompletion is triggered by clicking CTRL + Space and starts automatically

after a second of idle time. Since expressions in Manchester syntax can be complex,

the NeOn Toolkit also tries to limit its proposals to applicable entity names, for

example, only class names or only property names. In Fig. 13.7, the user typed

“abs” and the Toolkit proposes a list of classes that contain this substring. On the

right, it also shows a tooltip with the complete URI and also the rdfs:comment for
the selected entities, in this case “p2:abstract.”

13.2.1.8 The Help Facility

The built-in Help system of the NeOn Toolkit is quite elaborate, and a full user

documentation is available from within the Toolkit. It is accessible via the Help

Fig. 13.5 Search results organized by project and ontology

Fig. 13.6 Search results for a “find references” search

288 M. Erdmann and W. Waterfeld

menu entry Help Contents. The help pages are organized in so-called books. The

basic Toolkit provides a book about basic modeling of OWL with the NeOn

Toolkit. If other plugins are installed, they typically also provide their own docu-

mentation in the form of own books.

Additionally, many wizards or dialogs provide context-sensitive Help by

clicking the question-mark icon in the lower left-hand corner. This will guide

users to appropriate pages in the documentation.

13.2.2 OWL Entities in the NeOn Toolkit User Interface

By selecting a node in the Ontology Navigator or another view, users can set the

focus of the NeOn Toolkit on the associated entity. As the focus changes, the

content of the Entity Properties View updates to show the details of the newly

selected entity. Depending on the type of entity (ontology, class, property, individ-

ual, etc.), the Entity Properties View looks different (e.g., the icon in the top-left

corner of the view changes to reflect the type), and it offers different tabs at the

bottom of the view to enable switching between the various aspects of the entity.

Some tabs are shared between entity types, and we will present these first.

13.2.2.1 Annotations

The OWL 2 W3C recommendation offers the opportunity to add annotations to all

kinds of entities. The NeOn Toolkit supports this feature with a single GUI element,

the Annotations Tab, for all entities (see Fig. 13.8).

Fig. 13.7 Drop-down list provided by autocompletion

13 Overview of the NeOn Toolkit 289

Annotations can either use the built-in annotation properties of OWL 2 or RDF

(S), or they can use user-defined annotation properties. Using the Edit/Remove
buttons, existing annotations can be altered or removed. With the last line, entitled

“create new,” additional annotations can be added. Autocompletion is supported for

the property name and for the data type.

13.2.2.2 Source View

Another useful feature (for advanced users) is the ability to view an entity in some

form of textual serialization. The NeOn Toolkit offers this functionality via the

Source View Tab for each entity type. Ontologies can be displayed in several

serialization formats, for example, RDF/XML, functional-style syntax, or

Manchester syntax. For other entities, the NeOn Toolkit displays the Manchester

syntax of the frame representing the entity and, additionally, a list of all axioms

relevant for this entity. The tab uses syntax highlighting to make the display easier

to read (see Fig. 13.9).

13.2.2.3 Project

The Entity Properties View for projects includes an Aggregated Statistics tab, in
addition to a general tab that displays some metadata about the current project. In

this tab, the NeOn Toolkit presents overall statistics about the ontologies in the

project, for example, the total number of classes, properties, or axioms. Like the

search, the statistics is based on asserted knowledge only.

13.2.2.4 OWL Ontology

The main tab for ontologies is the Imports and Namespaces tab, which lists all

ontologies imported by this one (via owl:imports) and the defined namespaces.

Fig. 13.8 The Annotations Tab is available for all entities

290 M. Erdmann and W. Waterfeld

A screenshot can be seen in Fig. 13.1 (see Sect. 13.2.1.1). The set of imported

ontologies and the namespace definitions can also be changed here. The closure of

imported ontologies is visualized by the Ontology Imports Graph tab. Importing an

ontology makes the entire set of classes, properties, and individuals provided by

that ontology available to the current one. In the OWL preferences dialog, users
decide whether they want to see imported axioms (and entities) in the user interface

or not. Imported axioms will be highlighted with a light-blue background.

The NeOn Toolkit supports ontologies which are loaded from remote locations,

for example, from the web. The Location field of the Ontology Entity Properties
View shows whether the ontology is stored locally or loaded from the web.

Fig. 13.9 Source Views for different entities

13 Overview of the NeOn Toolkit 291

13.2.2.5 OWL Class

Generally speaking, OWL classes can be considered as sets of individuals that share

similar characteristics. These classes are organized in hierarchies, of which owl:
Thing is the root class. OWL classes are described through so-called class

descriptions. The class hierarchy is displayed in the Ontology Navigator. Clicking
on a class shows its instances in the Individual View and all properties that have this

class in its domain in a specialDomain View. The number of individuals that belong

to a class is also displayed in the navigator together with the class label, for

example, in Fig. 13.1 (see Sect. 13.2.1.1), we see that the class “territory” has no

direct instances but 232 inherited ones (“territory 0|232”). Thus, it is easier for users

to see at a glance which classes are more or less populated, a key piece of

information when making sense of an ontology or when keeping track of an

ontology in development.

The Entity Properties View for classes provides two additional tabs, besides the

Annotations and Source View tab. The Taxonomy tab lets the users view and modify

the super- and subclasses of the current class, as well as equivalent and disjoint

classes. A special feature of the NeOn Toolkit, not present in other ontology editors,

is the special treatment of OWL restrictions. On a separate Class Restrictions tab
(see Fig. 13.10), the user can see and specify the restrictions for the selected class

and a given property. Since super restrictions are a common modeling pattern for

formulating local properties with their ranges and cardinality, this presentation is

adequate and easily understood, even by non-OWL experts. The NeOn Toolkit

supports all OWL 2 restrictions:

• owl:allValuesFrom (ALL)

• owl:someValuesFrom (SOME)

Fig. 13.10 Restrictions on OWL classes

292 M. Erdmann and W. Waterfeld

• owl:hasValue (HAS_VALUE)
• owl:hasSelf (HAS_SELF)
• owl:maxCardinality (AT_MOST/MAX)

• owl:minCardinality (AT_LEAST/MIN)

• owl:cardinality (EXACTLY/CARD)

13.2.2.6 OWL Property (Object, Data, and Annotation Properties)

The Entity Properties Views for all three kinds of OWL properties are quite similar.

In the following, we will only describe the Entity Properties View for object

properties since its features are essentially a superset of the other properties.

The Domain and Range tab (see Fig. 13.11) contains information about the rdfs:
domain and rdfs:range of the selected property. The values for the text fields can be
arbitrary class descriptions formulated using the Manchester syntax. The domain

and the range of each property are always maintained as a list, which can be

manipulated with the edit and remove buttons. Thus, multiple domains and ranges

are completely supported.

Fig. 13.11 Domain and Range can be defined for all properties

13 Overview of the NeOn Toolkit 293

On the same tab, the Characteristics of the property are also displayed. Annota-

tion properties have no characteristics in OWL, data properties can be defined as

functional, and object properties can additionally be characterized as inverse
functional, reflexive, irreflexive, symmetric, asymmetric, and/or transitive. Each
characteristic is displayed twice. In the left-hand column, the assertions from the

current ontology are shown, whereas the second column shows whether a charac-

teristic is true in one of the directly or indirectly imported ontologies. This is based

on the ontology import functionality described in Sect. 13.2.2.4.

OWL 2 and RDFS properties can be hierarchically organized. This information

is collected in the Taxonomy tab. It displays Super- and Sub-Properties, as well as
Equivalent Properties. Object properties also can have Inverse Properties or

property chains (the composition of a sequence of properties) as subproperties.

Thus, it is possible, for example, to specify that the property hasUncle is a

subproperty of the concatenation of hasParent and hasBrother.

13.2.2.7 OWL Individual

The Entity Properties View for individuals contains the general tabs for Annotations
and the Source View and two tabs that allow users to display and define properties

for an individual. The Properties tab (see Fig. 13.12) has two sections, one for

instantiating Object Properties and one for instantiating Data Properties. The
Template Form tab provides forms for applicable properties, so that the users can

see which properties are available for an individual (based on its classes) and can

directly instantiate individual properties. The final tab for Individuals is the

Fig. 13.12 The properties of an OWL individual

294 M. Erdmann and W. Waterfeld

Taxonomy tab in which users can define equality and inequality between

individuals (owl:sameAs and owl:differentFrom, respectively) and list also all

classes the individual belongs to (rdf:type).

13.2.3 Extending the NeOn Toolkit’s Feature Set

In the previous section, we have described the features that are built in the NeOn

Toolkit core. Of course, the core only contains the essential functionalities of the

NeOn Toolkit, and many more features (Harth 2010) are available for download.

Users can configure the NeOn Toolkit environment according to their needs.

One of the prominent functionality that is available via easy-to-install features is

reasoning. Thus, it is possible to cope with different reasoning functionality and

with different reasoner realizations. For example, the reasoner plugin provides

important reasoning functionality based on the Pellet2 and the HermiT3 reasoner

(see Chap. 17).

The mechanism to install new features while working with the NeOn Toolkit

refers to a special location in the web, the so-called NeOn update site. This update
site is maintained by the NeOn Foundation4 and provides up-to-date plugins for a

variety of ontology engineering activities. Users can access this update site from

within the NeOn Toolkit (via Install new software in the Help menu). The resulting

dialog (see Fig. 13.13) lets users select an update site (the NeOn update site is

preconfigured already) and shows a list of features organized in a number of

categories that can be selected, downloaded, and installed with a few clicks.

13.3 The NeOn Toolkit: For Developers

The NeOn Toolkit has an open and modular architecture, which it inherits from its

underlying platform, Eclipse. Eclipse is a rich development environment, which is

widely adopted in the programming world and also perfectly fits the modeling

paradigm for ontologies. It provides developers a framework to easily create,

publish, and integrate new features into the NeOn Toolkit. Eclipse is open-source,

and the NeOn Toolkit also is published under the same open Eclipse Public

License5, which means that it can be used and extended for any purpose, commer-

cial and noncommercial.

4 The body responsible for the management and distribution of the NeOn Toolkit, http://www.

neon-foundation.org/
5 http://www.eclipse.org/legal/epl-v10.html

13 Overview of the NeOn Toolkit 295

http://dx.doi.org/10.1007/978-3-642-24794-1_17
http://www.neon-foundation.org/
http://www.neon-foundation.org/
http://www.eclipse.org/legal/epl-v10.html

The openness of the platform and the reliance on open standards was a major

driver in the design and development of the NeOn Toolkit. Besides the open Eclipse
platform6, we use (as Eclipse also does) OSGi (2009) as our component framework

and the OWL API (Horridge and Bechhofer 2009) as our data model for the

ontologies managed with the NeOn Toolkit. These three important building blocks

for NeOn will be described in what follows, after introducing the general architec-

ture of the NeOn Toolkit (as an application development platform).

Fig. 13.13 Dialog for loading and installing additional plugins

6 http://www.eclipse.org/

296 M. Erdmann and W. Waterfeld

http://www.eclipse.org/

13.3.1 Architecture

The architecture of the NeOn Toolkit must cover the complete ontology function-

ality. This includes the coverage of tools for the whole ontology life cycle, and it

must enable all ontology engineering activities. The NeOn Toolkit focuses on the

development part of ontology functionality. However, for ontology-based applica-

tions, the distinction between development time and runtime is not as clear as in

conventional applications, for example, schematic information like classes are

often also changed and modified at runtime, which is impossible for conventional

applications. Therefore, the architecture of the NeOn Toolkit also includes runtime

components. The architecture must also allow the easy integration of additional

ontology engineering functionalities in a highly modular fashion (Waterfeld et al.

2008a).

Thus, we defined for the NeOn Toolkit a generic architecture with a layering
approach. The layering resembles increasing abstraction layers for ontology

functionalities. The layers, however, also organize the data and control flow

between the components of each layer. The components of higher layers invoke

components of lower layers but not vice versa.

Based on these principles, the NeOn Toolkit architecture consists of three layers

(see Fig. 13.14):

• Infrastructure services: These are the basic ontology services contained in all

versions of the NeOn Toolkit. The OWL API implementation is the most

important one.

• Engineering components: The main ontology functionality is contained in the

engineering plugins provided by the NeOn Toolkit core and by additional

plugins.

• Front-end components: They contain the user interfaces for the engineering

plugins. They are similarly extendible like the engineering components.

This layering and more details are described in the NeOn Toolkit design

documents (Waterfeld et al. 2007, 2008b).

13.3.2 APIs and Realization

13.3.2.1 Eclipse Platform

For the realization of the architecture, we use the Eclipse platform. Eclipse, which

has a strong record as a software development environment, provides rich func-

tionality for the development of plugins for the toolkit. Additionally, Eclipse

provides, via its extension point mechanism, a simple way to extend its functionality

for other types of development assets. For the NeOn Toolkit, this mechanism has

been used extensively to realize the basic tools for ontology development.

13 Overview of the NeOn Toolkit 297

These can now be used to realize more specific ontology tools. The advantages

of this extension point mechanism are twofold: First, it allows an easy realization of

a basic ontology modeling tool because many of Eclipse’s existing functionalities

can be reused; second, the development and integration of additional, more specific

ontology tools is almost seamless because the functionality can be easily plugged in
as an extension of the core NeOn Toolkit.

13.3.2.2 OSGi

OSGi (2009) is a very flexible and dynamic component model. It allows

a completely dynamic management of components in different versions.

Fig. 13.14 The NeOn architecture

298 M. Erdmann and W. Waterfeld

Thus, components can be deployed, stopped, started, and uninstalled in the running

system, and the resulting dependencies are correctly managed. Eclipse has been

based on OSGi since 2004; however, not all capabilities of OSGi are yet used in the

Eclipse context.

In NeOn, we have leveraged the implicit capabilities of NeOn plugins as OSGi

bundles for publishing ontology engineering plugins as web services. This is

possible by offering a web service container based on an OSGi server. Into such a

web service container, all needed NeOn ontology engineering functionalities can be

deployed. For a specific ontology engineering plugin, only a web service wrapper

has to be generated and also deployed. Thus, any ontology functionality, originally

only available in the NeOn Toolkit, is now available as a web service.

This is of course not possible for front-end plugins. However, due to the

separation of engineering plugins and front-end plugins of the NeOn architecture,

the NeOn Toolkit provides the means to realize this capability for any functionality

defined in the engineering layer.

13.3.2.3 OWL API

Over the past few years, the W3C OWL working group has continuously extended

and redefined the specification of the web ontology language, initially dubbed OWL

1.1, and in October 2009, released OWL 2 (Motik et al. 2009).

While originally the NeOn Toolkit had its own realization of an ontology API,

following the release of the OWL 2 specification, it switched to the (Manchester)
OWL API7, both to support the new language features and also to ensure compati-

bility with other Semantic Web tools and future developments. The OWL API

(Horridge and Bechhofer 2009) is available under the open-source LGPL license

and has emerged as the de facto standard for implementing OWL-based

applications. It has an active user community and promises a high degree of

standard compliance. It is the reference implementation of the OWL 2 Recommen-

dation by the OWL working group.

13.3.3 Create Your Own Plugin

To facilitate the deployment of new plugins, we make use of the Eclipse Update

mechanism which allows for deploying and updating new features. Features are a

concept of Eclipse to represent a unit of useful and deployable functionalities. The

role of features is to allow providers to make collections of plugins that logically go

together.

7 http://owlapi.sourcrforge.net

13 Overview of the NeOn Toolkit 299

http://owlapi.sourcrforge.net

Developers interested in adding functionalities to the NeOn Toolkit can find

more information on the NeOn Toolkit wiki, in the developer’s corner8. There they
will find references to our source code management system for the NeOn Toolkit

core, as well as for many other plugins. The wiki also links to the developer’s

mailing list, where questions can be posed to the NeOn community.

As a central entry point for information about available plugins, we maintain a

plugin wiki9. The purpose of the plugin wiki is to enable both developers and users

to create and find information about components of the NeOn Toolkit. The plugin

descriptions can include metadata, such as the developer and his/her affiliation,

availability, license, etc., along with a brief description of the functionality of the

plugin.

For the NeOn Toolkit, we have created a dedicated NeOn Update Site referenced
in the NeOn Toolkit core. After a quality assurance procedure, newly available

plugins are uploaded to the update site and thus become immediately accessible to

all users of the Toolkit. When developing a plugin for NeOn, a developer can even

set up his/her own update site, following the instructions from Eclipse.org10.

13.4 Conclusions

In this chapter, we have described the main features of the core NeOn Toolkit and

illustrated how the core functionality can be extended by downloading additional

plugins. The Toolkit is an open platform to which anybody can contribute, and a

number of resources are available for users and developers interested in the NeOn

Toolkit:

• http://neon-toolkit.org: From here, users can download the latest release of the

toolkit. Plugins are documented here, and developers find important information

to get started.

• http://neon-project.org: This site contains information about the EU-funded

NeOn Integrated Project with a lot of documents describing results of our

research on networked ontologies, most of which has also been translated in

functional code in the form of plugins for the NeOn Toolkit.

• http://www.neon-project.org/nw/NeOn_Movies: This contains a collection of

tutorial videos explaining the main functionalities of the NeOn Toolkit plugins.

• http://www.neon-toolkit.org/mailman/listinfo/: This web page provides infor-

mation about two mailing lists. One is intended for developers of NeOn plugins

to discuss implementation questions. The other is meant for users of the

8 http://neon-toolkit.org/wiki/Developer_Corner
9 http://neon-toolkit.org/wiki/Neon_Plugins
10 http://wiki.eclipse.org/FAQ_How_do_I_create_an_update_site_%28site.xml%29%3F

300 M. Erdmann and W. Waterfeld

http://neon-toolkit.org
http://neon-project.org
http://www.neon-project.org/nw/NeOn_Movies
http://www.neon-toolkit.org/mailman/listinfo/
http://neon-toolkit.org/wiki/Developer_Corner
http://neon-toolkit.org/wiki/Neon_Plugins
http://wiki.eclipse.org/FAQ_How_do_I_create_an_update_site_%28site.xml%29%3F

technology where we provide tips and answer questions with respect to the

Toolkit and its plugins.

• Some participants of the NeOn Project have recently founded the NeOn Tech-

nology Foundation Inc11. to make sure that the development and distribution of

the NeOn Toolkit as a free and open-source tool for the ontology community

continues. Under the auspices of the Foundation, we will continue to improve

the toolkit and make sure that it stays a competitive competitor in the market.

References

Beckett D, Berners-Lee T (2008) Turtle – Terse RDF triple language. W3C team submission

14 Jan 2008. http://www.w3.org/TeamSubmission/turtle/

Gruber TR (1993) A translation approach to portable ontology specifications. Knowl Acquis

5(2):199–220. http://ksl-web.stanford.edu/KSL_Abstracts/KSL-92–71.html

Harth A (coordinator) (2010) NeOn deliverable D6.10.3 updated NeOn Toolkit plugins. NeOn

deliverable. http://www.neon-project.org/nw/images/a/a2/NeOn_2010_D6103.pdf

Hitzler P, Kr€otzsch M, Parsia B, Patel-Schneider P, Rudolph S (eds) (2009) OWL 2 web ontology

language: primer W3C recommendation. http://www.w3.org/TR/owl2-primer/

Horridge M, Bechhofer S (2009) The OWL API: a Java API for working with OWL 2 ontologies.

In: Proceedings of OWLED 2009 – OWL: experiences and directions. 6th international

workshop co-located with ISWC 2009, Chantilly, VA, USA. http://www.webont.org/owled/

2009/papers/owled2009_submission_29.pdf

Horridge M, Patel-Schneider PF (2009) OWL 2 web ontology language: Manchester syntax W3C

working group note. http://www.w3.org/TR/owl2-manchester-syntax/

Motik P, Patel-Schneider F, Parsia B (eds) (2009) OWL 2 web ontology language: structural

specification and functional-style syntax. W3C recommendation. http://www.w3.org/TR/

owl2-syntax/

OSGi Alliance (2009) OSGi service platform V4.0, core specification

Waterfeld W, Weiten M, Haase P (2007) D6.2.1 specification of NeOn reference architecture

and NeOn APIs. NeOn deliverable. http://droz.dia.fi.upm.es/neon/servlet/download?ontology

¼Documentation+Ontology&concept¼Deliverable&instanceSet¼neon&instance¼D6.2.1%

3A+Specification+of+NeOn+reference+architecture+%26+NeOn+API-s&attribute¼On-line

+PDF+Version&value¼NeOn_2007_D6.2.1.pdf

Waterfeld W, Weiten M, Haase P (2008a) Ontology management infrastructures. In: Hepp M,

De Leenheer P, de Moor A (eds) Ontology management: semantic web, semantic web services,

and business applications. Springer, New York

Waterfeld W, Erdmann M, Schweitzer T, Haase P (2008b) D6.9.1 specification of NeOn architec-

ture and API V2. NeOn deliverable. Available at http://www.neon-project.org/web-content/

images/Publications/neon_2008_d6.9.1.pdf

11 http://www.neon-foundation.org/

13 Overview of the NeOn Toolkit 301

http://www.w3.org/TeamSubmission/turtle/
http://ksl-web.stanford.edu/KSL_Abstracts/KSL-92–71.html
http://www.neon-project.org/nw/images/a/a2/NeOn_2010_D6103.pdf
http://www.w3.org/TR/owl2-primer/
http://www.webont.org/owled/2009/papers/owled2009_submission_29.pdf
http://www.webont.org/owled/2009/papers/owled2009_submission_29.pdf
http://www.w3.org/TR/owl2-manchester-syntax/
http://www.w3.org/TR/owl2-syntax/
http://www.w3.org/TR/owl2-syntax/
http://droz.dia.fi.upm.es/neon/servlet/download?ontology=Documentation+Ontology&concept=Deliverable&instanceSet=neon&instance=D6.2.1%3A+Specification+of+NeOn+reference+architecture+%26+NeOn+API-s&attribute=On-line+PDF+Version&value=NeOn_2007_D6.2.1.pdf
http://droz.dia.fi.upm.es/neon/servlet/download?ontology=Documentation+Ontology&concept=Deliverable&instanceSet=neon&instance=D6.2.1%3A+Specification+of+NeOn+reference+architecture+%26+NeOn+API-s&attribute=On-line+PDF+Version&value=NeOn_2007_D6.2.1.pdf
http://droz.dia.fi.upm.es/neon/servlet/download?ontology=Documentation+Ontology&concept=Deliverable&instanceSet=neon&instance=D6.2.1%3A+Specification+of+NeOn+reference+architecture+%26+NeOn+API-s&attribute=On-line+PDF+Version&value=NeOn_2007_D6.2.1.pdf
http://droz.dia.fi.upm.es/neon/servlet/download?ontology=Documentation+Ontology&concept=Deliverable&instanceSet=neon&instance=D6.2.1%3A+Specification+of+NeOn+reference+architecture+%26+NeOn+API-s&attribute=On-line+PDF+Version&value=NeOn_2007_D6.2.1.pdf
http://droz.dia.fi.upm.es/neon/servlet/download?ontology=Documentation+Ontology&concept=Deliverable&instanceSet=neon&instance=D6.2.1%3A+Specification+of+NeOn+reference+architecture+%26+NeOn+API-s&attribute=On-line+PDF+Version&value=NeOn_2007_D6.2.1.pdf
http://droz.dia.fi.upm.es/neon/servlet/download?ontology=Documentation+Ontology&concept=Deliverable&instanceSet=neon&instance=D6.2.1%3A+Specification+of+NeOn+reference+architecture+%26+NeOn+API-s&attribute=On-line+PDF+Version&value=NeOn_2007_D6.2.1.pdf
http://droz.dia.fi.upm.es/neon/servlet/download?ontology=Documentation+Ontology&concept=Deliverable&instanceSet=neon&instance=D6.2.1%3A+Specification+of+NeOn+reference+architecture+%26+NeOn+API-s&attribute=On-line+PDF+Version&value=NeOn_2007_D6.2.1.pdf
http://droz.dia.fi.upm.es/neon/servlet/download?ontology=Documentation+Ontology&concept=Deliverable&instanceSet=neon&instance=D6.2.1%3A+Specification+of+NeOn+reference+architecture+%26+NeOn+API-s&attribute=On-line+PDF+Version&value=NeOn_2007_D6.2.1.pdf
http://droz.dia.fi.upm.es/neon/servlet/download?ontology=Documentation+Ontology&concept=Deliverable&instanceSet=neon&instance=D6.2.1%3A+Specification+of+NeOn+reference+architecture+%26+NeOn+API-s&attribute=On-line+PDF+Version&value=NeOn_2007_D6.2.1.pdf
http://www.neon-project.org/web-content/images/Publications/neon_2008_d6.9.1.pdf
http://www.neon-project.org/web-content/images/Publications/neon_2008_d6.9.1.pdf
http://www.neon-foundation.org/

Chapter 14

Scheduling Ontology Engineering Projects

Using gOntt

Mari Carmen Suárez-Figueroa, Asunción Gómez-Pérez,

and Oscar Muñoz-Garcı́a

Abstract In order to manage properly ontology development projects in complex

settings and to apply correctly the NeOn Methodology, it is crucial to have

knowledge of the entire ontology development life cycle before starting the devel-

opment projects. The ontology project plan and scheduling helps the ontology

development team to have this knowledge and to monitor the project execution.

To facilitate the planning and scheduling of ontology development projects, the

NeOn Toolkit plugin called gOntt has been developed. gOntt is a tool that supports

the scheduling of ontology network development projects and helps to execute

them. In addition, prescriptive methodological guidelines for scheduling ontology

development projects using gOntt are provided.

14.1 Introduction

One of the crucial aspects within engineering processes is the issue of planning and

scheduling development projects. These two terms are often thought of as synony-

mous; however, they are not. While planning1 is the act of drawing up a plan, that is,

a series of steps to be carried out to achieve an objective, scheduling2 is defined as

the activity of placing planned events along a timeline. Scheduling clearly depends

on planning, and both are crucial in any project.

Bearing in mind that ontologies are part of software products and that sometimes

ontologies are considered a kind of software, experiences and practices in software

M.C. Suárez-Figueroa (*) • A. Gómez-Pérez • O. Muñoz-Garcı́a

Ontology Engineering Group, Facultad de Informática, Universidad Politécnica de Madrid,

Campus de Montegancedo sn., 28660 Boadilla del Monte, Madrid, Spain

e-mail: mcsuarez@fi.upm.es; asun@fi.upm.es; omunozgarcia@gmail.com

1 http://www.wordnet-online.com/planning.shtml
2 http://www.wordnet-online.com/scheduling.shtml

M.C. Suárez-Figueroa et al. (eds.), Ontology Engineering in a Networked World,
DOI 10.1007/978-3-642-24794-1_14, # Springer-Verlag Berlin Heidelberg 2012

303

mailto:mcsuarez@fi.upm.es
mailto:asun@fi.upm.es
mailto:omunozgarcia@gmail.com
http://www.wordnet-online.com/planning.shtml
http://www.wordnet-online.com/scheduling.shtml

engineering can be adopted and adjusted in the ontology engineering community.

For this reason and with the aim of achieving in ontology engineering a similar

degree of maturity to that of the software engineering field, we take as basis

software engineering works to provide ontology engineers with help in planning

and scheduling ontology development projects.

In software engineering, every development project has a life cycle (Taylor

2008), which is produced by instantiating a particular life cycle model. Life

cycle models can be seen as abstractions of the phases or stages through which

a product passes along its life. Examples of life cycle models are waterfall (Royce

1970), incremental (Sommerville 2007), iterative (Pfleeger 2001), evolutionary

prototyping (Davis et al. 1988), and rapid throwaway prototyping (Davis et al.

1988).

To properly manage software development projects, it is crucial to have knowl-

edge of the entire software development life cycle (Stellman and Greene 2005). In

this regard, software engineers always plan and schedule every development project

before starting it. The project plan defines the tasks to be carried out and establishes

the human resources to perform the project work. To estimate the effort required to

perform each task, techniques such as (Stellman and Greene 2005) Wideband

Delphi, PROBE, and COCOMO II can be used.

The project schedule is a calendar that links the tasks to be performed with

the resources to support their performance. One of the most common forms of

representing schedules is to use a Gantt chart (Gantt 1974); and the most popular

tool for creating a project schedule is Microsoft Project, according to (Stellman and

Greene 2005). However, according to our knowledge, any tool for managing

project schedules provides guidelines on how to execute the project.

Ontologies are used for making knowledge explicit and allowing it to be shared.

One of the keys when building ontologies as in the case of software products is to

plan and schedule the ontology development. However, in ontology engineering,

planning and scheduling are still in their early stages. Only METHONTOLOGY

(Fernández-López et al. 1997; Blázquez et al. 1998) defines the scheduling activity,

but it does not provide guidelines for helping ontology developers to plan and

schedule their projects. Other methodologies, such as On-To-Knowledge (Staab

et al. 2001) and DILIGENT (Pinto et al. 2004), do not include these activities in

their developments. Regarding the calculation of cost estimation of projects, the

only technique available is ONTOCOM (Simperl et al. 2009), a model that predicts

the costs of ontology development projects.

To cover this lack of methods and tools for planning and scheduling, this chapter

describes (a) the gOntt plugin, a tool that supports the scheduling of ontology

network development projects and helps to execute them, and (b) prescriptive

methodological guidelines for scheduling ontology development projects using

gOntt.

304 M.C. Suárez-Figueroa et al.

14.2 Scheduling Ontology Development Projects

Scheduling, as defined in the NeOn Glossary of Processes and Activities mentioned

in Chap. 2, refers to the activity of identifying the different processes and activities

to be performed during ontology development, their arrangement, and the time and

resources needed for their completion. Thus, this activity includes as an important

task the establishment of the ontology network life cycle, that is, the specific ordered
sequence of processes and activities that ontology developers carry out during the

life of the ontology network.

The goal of scheduling is to organize the different processes and activities in

time, that is, to state a concrete programming or scheduling that guides the ontology

network development, including processes and activities, their order and time, as

well as human resource restrictions.

To establish the concrete schedule for the ontology network development, four

important questions have to be answered:

1. How to organize an ontology development project into phases, or in other words,

which ontology network life cycle model is the most appropriate for the ontol-

ogy network development?

2. Which particular processes and activities should be carried out in the ontology

network development?

3. Which order and dependencies exist among processes and activities?

4. What amount of resources (human and time) is needed and available for the

development of the ontology network?

The first three questions are related to the establishment of the ontology network

life cycle, and their responses would result in a general plan for the ontology

network development. The fourth question is related to the inclusion of time and

human resources restrictions for each process and activity included in the plan, and

its response would result in the concrete schedule for the ontology network devel-

opment. An estimate on how many people should be involved in the ontology

network development can be obtained using the ONTOCOM model (Simperl et al.

2009). This is a cost estimation model, whose goal is to predict the costs (expressed

in person per month) arising in typical ontology engineering processes.

As in the case of software engineering projects, an ontology engineer cannot

start the ontology development project scheduling without having first identified the

ontology requirements. In addition, the scheduling activity needs as input the types

of potential knowledge resources (ontological resources, non-ontological resources,

and/or ontology design patterns) to be reused during the development.

The filling card for the scheduling activity, presented in Fig. 14.1, includes the

definition, goal, inputs and outputs, performer of the activity, and time of the

activity.

14 Scheduling Ontology Engineering Projects Using gOntt 305

http://dx.doi.org/10.1007/978-3-642-24794-1_2

14.3 gOntt: NeOn Toolkit Plugin for the Scheduling Activity

To support the scheduling of ontology development projects, the NeOn Toolkit

provides a plugin called gOntt. This plugin is conceptually based on the following

ingredients that are explained in Chap. 2: (a) the scenarios of the NeOn Methodo-

logy, (b) the set of ontology network life cycle models, and (c) the NeOn Glossary

of Processes and Activities.

Fig. 14.1 Scheduling filling card

306 M.C. Suárez-Figueroa et al.

http://dx.doi.org/10.1007/978-3-642-24794-1_2

The gOntt plugin has the following main objectives:

1. To support ontology developers in the decision of which ontology network life

cycle model is the most appropriate for building their ontologies

2. To help ontology developers in the decision of which concrete processes and

activities should be carried out in the ontology network development and in

which order

3. To instantiate the life cycle model selected and to create a particular life cycle

for the ontology development with the processes and activities needed, including

time restrictions on them

4. To inform ontology developers about how to carry out a particular process or

activity through the NeOn methodological guidelines and a reference to the

concrete NeOn plugins to be used – that is, to help ontology developers in the

ontology project execution.

According to the aforementioned objectives, gOntt functionalities can be divided

into two main groups: functionalities for scheduling ontology development projects
and functionalities for helping in the execution of ontology development projects.

The functionalities for scheduling an ontology network development are:

• To create particular schedules from scratch, by allowing the ontology developer

to include processes, activities, phases, and relationships, along with restrictions

between them. Such processes and activities could either come from the NeOn

Glossary of Processes and Activities or be new ones proposed by the developer.

• To create particular schedules in a guided way. gOntt creates preliminary plans

for the ontology development with a simple two-step wizard. The ontology

developer uses the wizard to answer a set of simple and intuitive questions

that implicitly allow him to select the ontology life cycle model and the

processes and activities to be carried out.

– gOntt internally uses a set of heuristics based on methodological foundations

and scheduling templates3 (Suárez-Figueroa 2010) to automatically generate

the initial plan.

– gOntt provides the user with an initial plan in the form of a Gantt chart that

the user can modify in the following fashion: (a) by including or deleting

processes and activities, (b) by changing order and dependencies among

processes and activities, and (c) by including resource assignments and

restrictions to the planned processes and activities (this possibility is out of

the scope of this chapter).

• To create, modify, and delete gOntt projects.

• To export and import gOntt projects in an interchange format based on XML

(files with .got extension).

3 Such scheduling templates show ontology project default plans based on the different and

possible combinations among life cycle models, scenarios, and processes and activities.

14 Scheduling Ontology Engineering Projects Using gOntt 307

• To provide graphical and textual visualizations of gOntt projects.

• To rename, reorder, and delete processes, activities, and phases from a gOntt

project.

• To change the scope of a given process or activity (e.g., to change a given

activity to a different phase).

• To create, modify, and delete connections between activities, between processes,

and between activities and processes. If a connection exists between two

elements, the latter cannot start until the former is completed. These connections

can have two different meanings:

– Logical dependencies: when it is required that one activity is carried out

before another because of the nature of the activities (e.g., diagnosis before

repair in ontology validation)

– Temporal dependencies: when an activity should be performed after another

because of project requirements (e.g., ontology reuse and non-ontological

reuse can be carried out in parallel because they have no restrictions between

them but, in some cases, there are not enough human resources to perform the

activities in parallel, and so they should be set to perform in sequence)

• To include and modify the duration and the starting date of the processes,

activities, and phases.

• To check gOntt projects with respect to logical and temporal constraints.

• To provide usual editing capabilities such as copy, paste, undo, and redo.

The functionalities for helping in the execution of ontology development projects
are:

• To provide the developer with some methodological guidelines for the processes

and activities identified in the NeOn Methodology, and thus

– To display a filling card, which includes the process or activity definition, its

goal, inputs and outputs, performer of the process or activity, and time of the

performance. Figure 14.2 shows an example of the filling card for the

ontology localization activity.

– To display a workflow and some methodological guidelines explaining how

the process or the activity should be carried out, including its inputs, outputs,

and actors involved. Figure 14.3 shows an example of the methodological

guidelines for the ontology localization activity. Workflows are implemented

with Eclipse cheat sheets4.

4 Cheat sheets is a new emerging technology within Eclipse V3.0 that is meant to guide a developer

through a series of complex tasks to achieve some overall goal. Some tasks can be performed

automatically, such as launching the required tools for the user. Other tasks need to be completed

manually by the user.

308 M.C. Suárez-Figueroa et al.

• To provide a direct access to the NeOn plugins associated to each process

and activity planned. This means that gOntt triggers the different NeOn Toolkit

plugins associated to each process or activity included in the plan. To make this

possible, gOntt uses the so-called extension points5.
• To launch the Kali-ma dashboard (described in Chap. 15) with the plugins that

are related to a given activity, process, phase, or whole scheduling projects.

Figure 14.4 shows the general appearance of the gOntt plugin, whereas

Fig. 14.5 shows a specific plan; as for the latter, it is worth mentioning that in the

reuse phase, ontological and non-ontological resource reuses can be replicated for

Fig. 14.2 Example of the ontology localization filling card in gOntt

5 gOntt has its own extension point that the rest of NeOn Toolkit plugins should implement (see

Suárez-Figueroa et al. 2010 for more detail).

14 Scheduling Ontology Engineering Projects Using gOntt 309

http://dx.doi.org/10.1007/978-3-642-24794-1_15

every single resource used in the ontology development; the same holds for the

reengineering phase in the non-ontological resource reengineering process.

For each ontology network development project within the NeOn Toolkit, up to

one gOntt scheduling can be created.

To create a new gOntt project, one of the following NeOn Toolkit new

wizards must be launched (see Fig. 14.6): “Schedule a project from scratch”

Fig. 14.3 Example of the workflow and of some methodological guidelines for the ontology

localization activity in gOntt

310 M.C. Suárez-Figueroa et al.

Methodological Guidelines

Gantt Chart

Recommended Plugin

Fig. 14.4 Screenshot of the gOntt plugin

Fig. 14.5 A specific plan generated by gOntt

14 Scheduling Ontology Engineering Projects Using gOntt 311

Fig. 14.6 gOntt wizards for scheduling new projects

Fig. 14.7 Accessing a scheduling from the Ontology Navigator

312 M.C. Suárez-Figueroa et al.

or “Schedule a project in a guided way.” Then the wizard selected will ask about

the ontology network development project that ontology developers want to

schedule.

Once the scheduling has been created for a given project, ontology developers

can access to the gOntt project by clicking on the “scheduling” item in the Ontology

Navigator as Fig. 14.7 shows.

14.4 Guidelines for Scheduling Ontology Development

Project Using gOntt

The workflow for carrying out the scheduling of ontology development projects

using gOntt is presented in this section. Each of the tasks in the workflow proposed

includes prescriptive methodological guidelines. The tasks for carrying out the

scheduling activity are shown in Fig. 14.8 and are explained in detail below.

Task 1. Selecting the ontology network life cycle model. The goal of this task is to
obtain the most appropriate ontology network life cycle model for the ontology

network to be developed. Users, domain experts, and the ontology development

team carry out this task, taking as input both the ontology requirement specification

Task 1. Selecting the ontology
network life cycle model

Task 2. Selecting the set of
scenarios

Users, Domain Experts and ODT

Task 3. Updating the initial plan

Task 4. Establishing resource
restrictions and assignments

Users , Domain Experts and ODT

Users, Domain Experts and ODT

Users, Domain Experts and ODT

Scheduling
for the Ontology

Network
Development

OUTPUT

ORSD

IN
P

U
T

Initial Plan
(in the form of
a Gantt chart)

OUTPUT

Types of potential
knowledge

resources to be
reused

Update of the
Initial Plan

(in the form of
a Gantt chart)

OUTPUT

Fig. 14.8 Tasks for scheduling ontology development projects with gOntt

14 Scheduling Ontology Engineering Projects Using gOntt 313

document (ORSD) (see Chap. 5) and the types of potential knowledge resources to

be reused during the development. To help ontology developers in the decision of

which is the most appropriate life cycle model among those presented in Chap. 2,

gOntt presents a simple natural language question, displayed in Fig. 14.9. Based on

the response given, either the waterfall model is selected, or the iterative-incremen-

tal model. In the latter case, ontology developers should also provide the expected

number of iterations in the ontology development.

Task 2. Selecting the set of scenarios. The goal of this task is to select the set of

scenarios to be followed during the ontology network development. Users, domain

experts, and the ontology development team carry out this task, taking as input both

the ontology requirement specification document (ORSD) and the set of potential

knowledge resources to be used during the development.

To help ontology developers in this task, gOntt presents the set of natural

language questions displayed in Fig. 14.10. If the model selected in Task 1 is the

waterfall one, then questions should be answered once; on the other hand, if the

model selected is the iterative-incremental one, then the set of questions should be

answered once for each iteration expected.

With the responses to these questions, the set of heuristics based on methodo-

logical foundations and the set of scheduling templates (Suárez-Figueroa 2010),

Fig. 14.9 Choosing the ontology network life cycle model

314 M.C. Suárez-Figueroa et al.

http://dx.doi.org/10.1007/978-3-642-24794-1_5
http://dx.doi.org/10.1007/978-3-642-24794-1_2

gOntt is able to obtain the initial ontology network life cycle, that is, an initial plan

for the ontology network development. The task output is represented as a Gantt

chart, which is de facto standard in software project management.

Task 3. Updating the initial plan. The goal of this task is to modify (if necessary)

the initial plan presented by gOntt. Users, domain experts, and the ontology

development team carry out this task, taking as input both the ontology requirement

specification document (ORSD) and the set of potential knowledge resources to be

used during the development.

Ontology developers can modify the initial plan in the following ways: (a) by

including or deleting processes, activities, and model phases and (b) by changing

order and dependencies among processes and activities.

Fig. 14.10 Selecting the scenarios

14 Scheduling Ontology Engineering Projects Using gOntt 315

Task 4. Establishing resource restrictions and assignments. The goal of this task
is to include information about temporal scheduling and human resource

assignments in the life cycle obtained in Task 3. Users, domain experts, and the

ontology development team carry out this task, taking as input both the ontology

requirement specification document (ORSD) and the set of potential knowledge

resources to be used during the development.

14.5 Conclusions

In order to manage properly ontology development projects in complex settings and

to apply the NeOn Methodology correctly, it is crucial to have knowledge of the

entire ontology development life cycle before starting development. The ontology

project plan defines the tasks to be executed, the time when the tasks will be

executed, and the dependencies between tasks. The project plan is the only way,

as can be shown in other disciplines, to commit people to the project and to show

how the work will be performed. It also aids ontology engineers in monitoring

project execution and assessing the impact of a particular delay in the planned tasks.

With these notions in mind, this chapter presented (a) the gOntt plugin, a tool

that supports the scheduling of ontology networks developments as well as their

execution, and (b) prescriptive methodological guidelines for scheduling ontology

development projects using gOntt.

In relation to the work presented in this chapter, an integration of gOntt and the

guidelines proposed with the ONTOCOM model (Simperl et al. 2009) is planned.

Additionally, such works will be extended by providing details of the cost

associated to carrying out a particular task in an ontology development project.

References

Blázquez M, Fernández-López M, Garcı́a-Pinar JM, Gómez-Pérez A (1998) Building ontologies

at the knowledge level using the ontology design environment. In: Gaines BR, Musen MA

(eds) 11th international workshop on Knowledge Acquisition, Modeling and Management

(KAW 1998), Banff, Canada, SHARE4:1–15

Davis AM, Bersoff EH, Comer ER (1988) A strategy for comparing alternative software develop-

ment life cycle models. IEEE Trans Softw Eng 14–10:1453–1461

Fernández-López M, Gómez-Pérez A, Juristo N (1997) METHONTOLOGY: from ontological art

towards ontological engineering. In: Spring symposium on ontological engineering of AAAI,

Stanford University, Standord, CA, pp 33–40

Gantt HL (1974) Work, wages and profit, published by The Engineering Magazine. New York,

1910; republished as Work, wages and profits, Hive Publishing Company, Easton, PA, 1974,

ISBN 0879600489

Pfleeger S (2001) Software engineering: theory and practice, 2nd edn. Prentice Hall, Upper Saddle

River. ISBN 0-13-029049-1

Pinto HS, Tempich C, Staab S (2004) DILIGENT: towards a fine-grained methodology for

DIstributed, Loosely-controlled and evolvInG Engineering of oNTologies. In: López de

316 M.C. Suárez-Figueroa et al.

Mantaras R, Saitta L (eds) Proceedings of the 16th European Conference on Artificial Intelli-

gence (ECAI 2004). IOS Press, Valencia, Spain, pp 393–397, 22–27 Aug 2004. ISBN:

1-58603-452-9. ISSN: 0922-6389

Royce WW (1970) Managing the development of large software systems: concepts and

techniques. In: Proceedings Western Electronic Show and Convention (WESCON), Los

Angeles, 25–28 Aug 1970

Simperl E, Popov I, B€urger T (2009) ONTOCOM revisited: towards accurate cost predictions for

ontology development projects. In: Proceedings of the European Semantic Web Conference

2009 (ESWC 2009), Heraklion, Greece, 20 May–04 June 2009

Sommerville I (2007) Software engineering, 8th edn. Addison-Wesley, Harlow/New York. ISBN

0-321-31379-8

Staab S, Schnurr HP, Studer R, Sure Y (2001) Knowledge processes and ontologies. IEEE Intell

Syst 16(1):26–34

Stellman A, Greene J (2005) Applied software project management. ISBN: 0-596-00948-8.

O’Reilly

Suárez-Figueroa MC (2010) NeOn Methodology for building ontology networks: specification,

scheduling and reuse. PhD thesis, Universidad Politécnica de Madrid, España, June 2010.

Available at http://oa.upm.es/3879/

Suárez-Figueroa MC, Gómez-Pérez A, Muñoz O (2010). NeOn deliverable. D5.3.3. gOntt plugin

for scheduling ontology projects. NeOn project. Available at http://www.neon-project.org/nw/

images/c/c1/NeOn_2010_D533.pdf

Taylor JC (2008) Project Scheduling and Cost Control: Planning, Monitoring and Controlling the

Baseline. J Ross Publishing, ISBN: 9781932159110

14 Scheduling Ontology Engineering Projects Using gOntt 317

http://oa.upm.es/3879/
http://www.neon-project.org/nw/images/c/c1/NeOn_2010_D533.pdf
http://www.neon-project.org/nw/images/c/c1/NeOn_2010_D533.pdf

Chapter 15

Customizing Your Interaction with Kali-ma

Alessandro Adamou and Valentina Presutti

Abstract This chapter presents the Kali-ma NeOn Toolkit plugin, which exploits

the versatility of the C-ODO Light model to assist ontology engineers and project

managers in locating, selecting, and accessing other plugins through a unified,

shared interaction mode. Kali-ma offers reasoning methods for classifying and

categorizing ontology design tools with a variety of criteria, including collaborative

aspects of ontology engineering and activities that follow the NeOn Methodology.

Furthermore, it provides means for storing selections of tools and associating them

directly to development projects so that they can be shared and ported across

systems involved in common engineering tasks. In order to boost Kali-ma support

for third-party plugins, we are also offering an online service for the semiautomatic

generation of C-ODO Light–based plugin descriptions.

A. Adamou (*)

Semantic Technology Lab, Institute of Cognitive Sciences and Technologies (National Research

Council – CNR), Via Nomentana 56, 00161 Rome, Italy

Department of Computer Science, Alma Mater Studiorum Università di Bologna, Mura Anteo

Zamboni 7, 40126 Bologna, Italy

e-mail: alessandro.adamou@istc.cnr.it; adamou@cs.unibo.it

V. Presutti

Semantic Technology Lab, Institute of Cognitive Sciences and Technologies (National Research

Council – CNR), Via Nomentana 56, 00161 Rome, Italy

e-mail: valentina.presutti@cnr.it

M.C. Suárez-Figueroa et al. (eds.), Ontology Engineering in a Networked World,
DOI 10.1007/978-3-642-24794-1_15, # Springer-Verlag Berlin Heidelberg 2012

319

mailto:alessandro.adamou@istc.cnr.it
mailto:adamou@cs.unibo.it
mailto:valentina.presutti@cnr.it

15.1 Introduction

Being an Eclipse RCP1-based ontology engineering platform, the NeOn Toolkit has

an openly extensible feature set. Third parties may add custom functionalities in the

form of software modules called plugins. Although the NeOn Toolkit provides its

own set of specific extension points for manipulating ontology project hierarchies,

most of those commonly provided by the Eclipse platform are supported. As with

other Eclipse platforms, NeOn Toolkit plugins are maintained in dedicated

repositories, called update sites. A pointer to one such update site, which was

described in Chap. 13, is hardcoded in the core toolkit, but since the platform is

open, anyone may set up their own update sites and use them as sources for

additional plugins.

The RCP takes the burden of integrating plugins from the user interface per-

spective, e.g., by adding menus and toolbar buttons, populating the lists of views

and perspectives, or adding new types of items that can be created via wizards.

However, it is usually up to the developer to facilitate conceptual integration of her
plugin by characterizing the goals of its features. The ways for doing so in the

Eclipse platforms are little more than giving appropriate names and assigning

categories to the UI contributions provided by their plugins. Performing this task

can be tricky if the platform is supported by a large community, whose each

member develops a plugin not knowing what others are doing. As a result,

developers may arbitrarily add whatever categories, items, and labels they see fit

for their plugins regardless of the rest. For example, two developers can create

multiple categories for views, give them unique identifiers but label them both as

Visualization independently on one another. As a result, end users will see two

Visualization categories grouping different UI elements. Again, one developer

could name a category after the plugin providing the corresponding UI elements,

while another could name it after an arbitrarily named task supported by her plugin.

In other words, when a contributor develops a plugin for the NeOn Toolkit, as well

as for most plugin-based frameworks, she projects her own interpretation of the

implicit metamodel of the user interface. Moreover, the uncontrolled proliferation

of features (Damian and Chisan 2006) can clutter the user interface, e.g., if each

plugin adds its own menu simply because no common agreement is reached as to

which menus should be used for adding entries or submenus.

An instance of the scenarios described above is shown in Fig. 15.1. Here, a NeOn

Toolkit user who has installed a large number of plugins from different sources is

presented with this two-level tree list upon selecting the Show View menu entry.

The names of views and the categories grouping them are widely varying in this

example: some views, such as Evolva Main View, OntoConto, and SearchPoint, are

named after the plugin that provides them; others, such as Partitioning, Relationship

1Eclipse Rich Client Platform, the software development toolkit originally written for the Eclipse
integrated development environment (IDE).

320 A. Adamou and V. Presutti

http://dx.doi.org/10.1007/978-3-642-24794-1_13

Visualization, and Repair and Diagnose a Single Ontology, are named after the

functionalities they provide; others, such as Gantt, refer to the structure of the view

itself. Since there are no set rules about the naming of categories and interface

components, there is no right or wrong with any of these rationales. However,

Fig. 15.1 An example of a view selection menu in a very crowded NeOn Toolkit

15 Customizing Your Interaction with Kali-ma 321

because they come from different interpretations that each developer had of the user

interface model, the overall picture may appear confused and cluttered. It is a goal

of Kali-ma to try and bring some order into this confusion.

Kali-ma is a NeOn Toolkit plugin that aids developers and end users alike in

creating a conceptually harmonized view on other known NeOn Toolkit plugins

(and, more in general, tools that support the life cycle of ontologies). Kali-ma

implements a user interface paradigm alternative to the Eclipse Workbench

(and which can be switched with the latter in real time). This interface groups all

UI contributions and access methods by the plugins issuing them and, with rela-

tively little development effort, the plugins themselves by categories best

representing the goals they are targeted at. It also adds a set of collaboration-

oriented functionalities for end users, such as a metadata search feature, a white-

board for executing dynamic plugin assemblies, and dedicated real-time chat

support for ontology projects.

The remainder of this chapter provides an insight on the plugin as a whole, its

functionalities, and the rationale behind them. Section 15.2 guides the reader

through the plugin features and is structured so that the reader can concentrate on

the section for end users (Sect. 15.2.1) or the one for developers (Sect. 15.2.2),

depending on the reader’s role. Developers are however advised to read both

subsections in order to gain an understanding on the effects of their Kali-ma

extensions on the interaction experience. Section 15.2.3 focuses on the underlying

software architecture and how it combines standard components in Java with others

in OWL (namely an extended version of the C-ODO Light ontology described in

Chap. 4), thus being of interest for software engineers and ontology specialists

alike.

15.2 Kali-ma Plugin Features

By the end of this section, the reader will have learned about the functionalities

exposed by the Kali-ma plugin for facilitating interaction with and configuration of

software components in the NeOn Toolkit. An insight is also provided, as well as

documented, as to which steps the user needs to perform in order to activate and

interact with these functionalities.

Although the Kali-ma plugin is oriented toward providing alternate modalities

for end users to interact with the functionalities provided by the NeOn Toolkit, the

rule body and several other aspects by which these modalities are provided

are customizable. Some of such features are configurable at runtime by end users,

while others are available by applying simple extensions to plugins by their

respective developers. By this distinction, the remainder of this section is structured

so as to allow a neat separation between functionalities that refer to end users for

direct consumption and functionalities that refer to developers for their plugins to

322 A. Adamou and V. Presutti

http://dx.doi.org/10.1007/978-3-642-24794-1_4

provide alternate interaction paths. In particular, the next section will also focus on

what features can be configured by end users prior to launching the Kali-ma plugin

on a running NeOn Toolkit platform.

15.2.1 Functionalities for End Users

When the Kali-ma plugin is activated, a desktop-integrated graphical user interface

(GUI), called Dashboard, replaces the traditional Eclipse Workbench-based NeOn

Toolkit interface. The constituents of this user interface, an example of which is

shown in Fig. 15.2, are lightweight graphical elements, or widgets. A single widget

represents either a built-in functionality provided by Kali-ma or a group of

functionalities provided by some other NeOn Toolkit plugin.

Kali-ma provides a number of functionalities aimed at end users and aids them in

the configuration of, and rapid access to, selected sets of tools apt for completing

certain classes of tasks. These are as follows:

• Tool organization and selection based on preferred criteria.

• Quick plugin access that groups most functionalities of a plugin into a single

widget.

• Profile management for bookmarking sets of plugins and associating them with

ontology projects, thereby managing profiles.
• Project-based real-time chat that allows remote collaborating parties to share

metadata of a common ontology project.

• Advanced search for ontology data and metadata.

• Pipeline assembly, for broadcasting the output of a plugin to other listening

plugins in order to accomplish complex tasks.

• Assistant, for obtaining real-time guidance.

15.2.1.1 Preliminary Configuration

As with most NeOn Toolkit plugins, Kali-ma is configurable in several aspects

concerning its way to handle interaction with the framework. While it does make

sense to customize some of these aspects only once the Kali-ma dashboard has been

activated, other features require prior configuration, as they affect the way dash-

board elements are constructed. This section discusses the latter set of features and

the steps to follow for configuring them.

Kali-ma comes with a “safe” default setup, in that all the plugin functionalities

can be activated with no alteration of the default settings, granted an available

internet connection. The only exception is the chat functionality, which requires the

user to set the hostname of a Jabber/XMPP chat server where she has an account

already registered.

All the settings of the Kali-ma plugin are grouped under a single Kali-ma entry

in the NeOn Toolkit Preferences category. Remember that the Preferences panel

15 Customizing Your Interaction with Kali-ma 323

F
ig
.
1
5
.2

T
h
e
K
al
i-
m
a
d
as
h
b
o
ar
d
o
f
w
id
g
et
s.
S
o
rt
ed

b
y
co
lu
m
n
,
to
p
to

bo
tt
om

,
th
en

le
ft
to

ri
gh

t:
th
e
co
do

or
ga

ni
ze
r;
th
e
he
lp
er

w
id
ge
t;
w
id
g
et
s
re
p
re
se
n
ti
n
g

th
e
fo
ll
o
w
in
g
p
lu
g
in
s:
C
ic
er
o
,
g
O
n
tt
,
X
D
es
ig
n
T
o
o
ls
an
d
W
at
so
n
;
th
e
do

ck
w
id
g
et

w
it
h
p
la
ce
h
o
ld
er
s
fo
r
fi
v
e
m
o
re

p
lu
g
in

w
id
g
et
s;
th
e
pr
ofi

le
m
an

ag
er
;
th
e

sw
it
ch

w
id
g
et

fo
r
re
tu
rn
in
g
to

th
e
N
eO

n
T
o
o
lk
it
w
o
rk
b
en
ch

324 A. Adamou and V. Presutti

can be accessed in different ways, depending on the operating system used. For

example, Windows users will find it in theWindow top menu, while OS X users will

find it in the NeOn Toolkit top menu.

Due to their intrinsic heterogeneity, the configuration parameters are in turn

grouped into four categories:

1. Appearance is the category of customizable cosmetic aspects of the Kali-ma user

interface.

• Open profiles docked is an optional override for the docking options of each

plugin widget in a user profile. When this option is checked, if the user opens

a Kali-ma user profile, all of its plugin widgets will be minimized to the

Kali-ma dock on startup, even if set otherwise in the profile itself. This option

is preferable for users who wish to start with a dashboard as clear as possible.

• Widget background policy determines what background color should be used

for each plugin widget. Depending on the setting, the color can be either the

one used for a category that classifies the plugin or one set by the user for that

specific plugin.

2. Network deals with how Kali-ma exploits online resources. Currently, all the

settings in this category are related to the built-in XMPP chat service.

• XMPP Host and Port locate the resource where the XMPP messaging service

is provided, e.g., for GTalk use Host talk.google.com and Port 5222.
• XMPP Service name, the identifier of the XMPP service on the host, if

different from the host name, e.g., jabber.org.
• Multiuser chat service, the identifier of the Multiuser Chat (MUC) service on

the host, e.g., conference.jabber.org. Although not all XMPP-based

services come with this functionality, this is required for the Kali-ma chat to

work.

3. Reasoning enables the user to configure the parameters by which Kali-ma should

locate and classify ontology design tools. These settings can have a significant

impact on startup performance, but their default values are relatively safe on that

respect. Note that changes to this configuration will only take effect the next time

the Kali-ma dashboard is launched.

• Plugin address book location is the physical URI of the ontology that

indicates where the OWL descriptions of each plugin should be fetched

from. Its default value is a plugin registry maintained by the Ontology Design

Patterns portal2 (Presutti et al. 2008).

• Criterion for tool classification selects which property should be used as a

criterion for classifying ontology design tools. Currently selectable criteria

are Design aspects, Processes and activities, and Design functionalities.

2 The Ontology Design Patterns portal, http://www.ontologydesignpatterns.org

15 Customizing Your Interaction with Kali-ma 325

http://www.ontologydesignpatterns.org

• Perform online update denotes when Kali-ma should check for updates to the

online plugin address book. Available options are “Each run,” “Only on next

run,” and “Never.” Note that if the address book has not been fetched yet

(e.g., on the first run of Kali-ma ever), the update will be performed even if

the “Never” option is set.

• Cache plugin classification indicates whether Kali-ma should materialize all

inferences about plugins and store them into a local cache ontology. Because

inferencing is a lengthy and highly CPU-intensive task, it is recommended to

set this option unless major changes in the plugin registry occur. Note that this

option only indicates whether the cache should be built, not whether it should
be used: it will always be used if present. To force-rebuild the cache, the user
can clear all the local data by clicking the Clear now button. This button is

grayed out if there are no such local data.

4. Toolkit integration manages the way Kali-ma handles the standard NeOn

Toolkit user interface along with its own. Users will configure these parameters

according to their will to be provided with both interfaces altogether.

• Stick dashboard to main window. If this option is set, the Kali-ma UI will

appear on top of the standard NeOn Toolkit window, and its behavior will

mimic the one of that window. Thus, when the NTK window is minimized,

hidden, or maximized, so will be the Kali-ma widgets. Note that the Kali-ma

dashboard is not modal; therefore, the NTK UI components in the back-

ground can still be interacted with.

• Main window behavior allows the user to set how the main NTK window

should appear or disappear when the Kali-ma dashboard is activated or

deactivated. The user can opt for the main window to be hidden or minimized

or neither. This option is only available when the “Stick dashboard to main

window” option is unchecked.

Example 15.1. This and all the examples in this chapter are based on a run-

through scenario extracted from the case study described in Chap. 20. The

Semantic Nomenclature of pharmaceutical products was carried out using the

NeOn Methodology and related software support. Therefore, in order to use

Kali-ma to carry out the activities specified in this methodology, an engineer will

select Processes and activities from the Reasoning ! Criterion for tool classi-
fication configuration panel.

15.2.1.2 Activating the Dashboard

Unlike most other NeOn Toolkit plugins, which support specific tasks in the

engineering of networked ontologies and are therefore integrated with the platform,

Kali-ma provides a GUI that runs in parallel with the standard one. For this reason,

Kali-ma integration is limited to the preferences panel and the commands for

326 A. Adamou and V. Presutti

http://dx.doi.org/10.1007/978-3-642-24794-1_20

activating its own user interface, called the dashboard. These commands are

located:

• In the Launch Dashboard menu entry in the Kali-ma top menu

• In the NeOn Toolkit top bar as the Launch Dashboard button (an open perspec-

tive is required for displaying the button)

When one of these two actions is performed, the reasoning and plugin discovery

tasks for preparing the dashboard are started as a background job. In particular, the

following actions are performed:

1. The local tool descriptions and cache ontology are checked. If neither is present,

or the online update parameter is set, plugin descriptions are fetched from the

locations indicated in the online registry.

2. If variations between the local plugin ontology and the online registry are

detected, the user is notified about these changes and prompted to choose

whether to apply them or not. If changes are applied, any local cache is

invalidated.

3. Plugins are classified by the designated criterion in one of the following ways:

• If a valid local cache is present, it is queried directly.

• If no valid cache is present but Kali-ma is configured to build one, it will first

do so then query the cache it just built. This task is highly CPU intensive but

will not have to be performed again as long as the cache remains valid.

• If no valid cache is present and Kali-ma is not configured to build one, it will
use a reasoner to classify plugins. This task is CPU intensive and will have to

be run on every dashboard startup unless a cache is built.

4. The Kali-ma dashboard is activated and displayed in its default state. The NeOn

Toolkit main window is hidden from view if set to do so.

Example 15.2. The project manager of the Semantic Nomenclature case study

creates a new NeOn Toolkit ontology project called “SemanticNomenclature” and

shares it with engineers using a version control tool such as CVS or Subversion.

When the Dashboard is activated using the Launch Dashboard button, Kali-ma

becomes aware of this project and can store profiles and configurations in its

directory.

Recall that the dashboard is an aggregate of basic user interface components

called widgets, whose look-and-feel exploits the capabilities offered by the GUI

toolkit of the host operating system. Every widget identifies a functionality, or set of

functionalities, in the NeOn Toolkit. Widgets can be grouped in two major

categories: native widgets denote built-in interaction-oriented functionalities

offered by the Kali-ma plugin itself and are always available regardless of what

tools are installed on the platform; plugin widgets are representatives for plugins

that are installed on the system, and they offer quick access to the functionalities

available due to these plugins being installed. Widgets belonging to this latter

15 Customizing Your Interaction with Kali-ma 327

category are available upon user request when the corresponding plugin is installed

on the NeOn Toolkit platform, no matter what the canonical interaction paths to

access them.

15.2.1.3 Organizing the Plugin Space

The heart of the Kali-ma approach for organizing the NeOn Toolkit as a function-

ality provider resides in the classification of its plugins by a unique, design-centered

criterion that is nonetheless customizable. Therefore, its core functionality is to

present end users with an overview of the plugins that are available in their running

instance of the NTK and to help them select the one(s) whose coverage best suits

the tasks that need to be performed.

The C-ODO organizer is the widget used for presenting this aggregate overview
of plugins. This widget is named after C-ODO Light, the design ontology that is the

base for all the classification criteria adopted by default in Kali-ma. Recall that an

overview of the goal, rationale, and architecture of the C-ODO Light ontology

network was given in Chap. 5.

The C-ODO organizer is the tool browser provided by Kali-ma. Users are free to

choose from time to time, whether they wish to explore the plugin space as a tree or

as a graph, by switching between the Tree View and theWheel View tabs. The Tree

View is organized as a simple Category ! Plugin two-level tree; i.e., by

expanding a category it is possible to view all and only the plugins that fall under

that category. This also implies that a plugin that encompasses more than one

category will appear as a child of multiple nodes in the taxonomy. The Wheel

View, so called after the shape adopted by the category set, provides the same

information in a graph. Although it takes up more space than the Tree View, it

displays more useful information altogether. When a category is selected in the

Wheel View, all and only the plugins under that category are displayed as in the

Tree View. However, for each shown plugin, an edge appears for every other
category it falls under.

The categories used for classifying plugins have a variable dependency on

C-ODO Light, yet they are all based on this ontology for modeling the notion of

an ontology design tool. The criterion used for identifying these categories can be

selected from the Reasoning panel of the Kali-ma preferences (entry “Criterion for

tool classification”) prior to launching the plugin. The available criteria are as

follows:

1. Custom design functionalities. These denote specific tasks and operations

involved in the design of networked ontologies. They are arbitrarily defined by

plugin developers, so the set of design functionalities can be highly fine grained,

depending on the choices of developers. “Create project,” “Cast vote,” or

“Delete annotation” are examples of such design functionalities. This criterion

is enabled by selecting “implements (Design Functionality)” from the Reasoning
preferences. End users should expect a sparse classification, with many

328 A. Adamou and V. Presutti

http://dx.doi.org/10.1007/978-3-642-24794-1_5

categories each with a limited number of plugins, yet with high redundancy

across multiple categories, roughly one for each functionality implemented in

that plugin.

2. NeOn Methodology refers to the fixed set of activities that are part of the NeOn

Methodology canon as defined in Chap. 2. For this criterion, the categories are

established a priori, and whether a plugin supports an activity in the methodology,

this reflects the rationale used for selecting such plugins in gOntt (cf. Chap. 14).

This criterion is enabled by selecting “supports activity (Activity)” from the

Reasoning preferences.
3. Ontology design aspects is a limited, fixed set of generic design functionalities

that aggregate the most common aspects of designing networked ontologies in a

collaborative environment. The categories are set and very limited in order to

provide dense classification of design tools. Also, it is the only case where the

categories to which plugins belong are not explicitly defined but are instead

obtained by inferencing over other features defined by the developers, namely

the types of knowledge their plugins consume and produce. This criterion is

enabled by selecting “has aspect (Design Aspect)” from the Reasoning
preferences.

Both the Tree View and the Wheel View in the C-ODO organizer can be filtered

by means of the funnel-shaped icon opposite the tabs. The filtering feature is due to

the fact that the ABoxes describing ontology design tools, as well as their registries,

are not bundled with the actual tools. In fact, they do not reside locally on the host

platform in general but are instead exposed on the web. Moreover, they are not

necessarily limited to NeOn Toolkit plugins but can span across several frameworks

and architectural paradigms, such as plugins for other platforms, stand-alone

applications, web applications, and web services.

Thus, three filters are available and can be cascaded: “Show only NeOn Toolkit

plugins” will exclude all those design tools that, according to their ontological

descriptions, do not qualify as plugins for the NeOn Toolkit. “Show only installed

tools” will apply the previous filter and skim all the NeOn Toolkit plugins that are

known to exist but are not detected as installed on the host platform. Finally, “Hide

empty categories” will remove all the nodes representing categories to which no

design tools are known to belong, regardless of the status of the other filters.

Example 15.3. The Semantic Nomenclature project manager has to select plugins

for the implementation phase of the use case. The C-ODO organizer Tree View

shows all the activities in the NeOn Methodology that come with software support.

The ODEMapster plugin is selected (by double-clicking) from the “Non-Ontological

Resource Reuse” activity, the OWLDoc plugin from the “Ontology Documenta-

tion” activity, the Watson plugin from the “Ontology Reuse” activity, and the

RaDON plugin from the “Ontology Validation” activity. To create a schedule for

all the activities to be performed in the phase, the gOntt plugin widget is also

selected from the “Scheduling” activity. When each plugin is selected, its

corresponding widget is displayed.

15 Customizing Your Interaction with Kali-ma 329

http://dx.doi.org/10.1007/978-3-642-24794-1_2
http://dx.doi.org/10.1007/978-3-642-24794-1_14

15.2.1.4 Interaction with Plugins

The standard mechanism by which a plugin is integrated with the Eclipse Rich

Client Platform is by implementing extension points. An extension point allows a

plugin to provide a contribution to the hosting platform, both on the functional level

and on the user interface level3. The latter in particular includes a set of standard

user interface objects that a plugin can implement to enrich the interactive experi-

ence with the platform. Some of them, such as wizards, views, or perspectives, can

be stand-alone elements that can be displayed without any need for prior action

upon other user interface or content items. For example, a wizard for exporting a

given resource in a given format might depend on the user having previously

selected the resource to export, but it might also allow the user to select that

resource from a browser within the wizard instead. Conversely, other extension

points contribute to the user interface by providing items that strictly depend on the

interaction context. For example, context menu items will require the user to

request a context menu on an item (typically by right-clicking on it). Therefore,

running the action associated with a context menu item with no prior selection

would make little sense and would in fact be unlikely to even work.

The current version of the Kali-ma plugin allows users to run NeOn Toolkit

plugins through the following stand-alone access methods:

1. Views are single panels within the Eclipse workbench that serve as containers for
arbitrary user interface controls. Multiple views can be aggregated in container

objects, called Folders, which are essentially tabbed panes where each tab allows

displaying one view at a time within the same folder. Views are usually

associated to single-use cases, such as displaying the results of a SPARQL

query, and can be manually moved across folders.

2. Perspectives are named composite panels that combine a group of folders and

views in a predefined fashion. View combinations are usually associated to

entire functionalities, which can be performed by interacting with the user

interface elements in each view. Single views can only be shown within a

perspective, and the NeOn Toolkit provides a default perspective for authoring

OWL ontologies.

3. New Wizards are paged dialogs for guided creation operations. The list of

available NewWizards in a system can be accessed from the “New” item in

the “File” menu. Examples of this access method allow users to create ontology

development projects, ontologies, and gOntt schedules. While we cannot rule

out cases where new resources have to be created from existing ones (e.g.,

ontologies need to be created within an existing project), many New Wizards

are associated to stand-alone use cases for creating new resources from scratch.

3 http://wiki.eclipse.org/FAQ_What_are_extensions_and_extension_points%3F

330 A. Adamou and V. Presutti

http://wiki.eclipse.org/FAQ_What_are_extensions_and_extension_points%3F

Figure 15.3 shows an example selection of access methods for the gOntt plugin

(whose widget sports a white-to-rust gradient background, as this is the graphical

feature assigned to the Project Management design aspect). The gOntt plugin

contributes to the NeOn Toolkit by means of both a Perspective and a New Wizard

for creating new schedules. A user can select either access method for launching the

gOntt plugin once the “Open” button is clicked.

15.2.1.5 Profile Management

A selection of plugins to be displayed as widgets in the Kali-ma dashboard could be

of much more use than simply assisting a single user during a single engineering

session. If an open dashboard were just a volatile object that had to be manually

rebuilt from scratch every time the NeOn Toolkit is restarted, not only would it be

awkward to share in a collaborative context (which is assumed to be recurrent in

NeOn-compliant ontology engineering), it would also discourage users and project

managers from adopting Kali-ma to support medium- and long-term phases in an

ontology engineering project.

In order to counter these preposterous potential shortcomings, Kali-ma offers a

profile management functionality, which is concretely available as a native widget

by its own right. The Profile manager widget, depicted in Fig. 15.4, allows users to
store, open, and manage dashboard profiles.

A dashboard profile is essentially a named sorted set of plugins that can be

serialized as an XML element and lives in the scope of both NeOn Toolkit

workspaces and single ontology projects. Having performed a selection of plugins,

all of which have a corresponding widget open in the Kali-ma dashboard, the user is

able to retain this selection of plugins for sharing or future reuse. To do so, it is

sufficient to type a name for the new profile in the top area of the widget and click

the “Save widgets to Profile” button in the bottom area. This done, the current set of

plugins is stored locally in the kalima_profiles.xml file in the workspace

metadata directory for the Kali-ma plugin. Profiles can be listed, renamed, or

deleted and one at a time can be set as active and displayed on screen by opening

Fig. 15.3 Access method selection for the gOntt plugin

15 Customizing Your Interaction with Kali-ma 331

the corresponding set of widgets. These operations are made available through

context menu actions on the table occupying the middle portion of the widget.

Although dashboard profiles exist by their own right in a given NeOn Toolkit

workspace, it is possible to bind them to one or more ontology development

projects. This operation is also available as a context menu action, and its effects

are visible on the second column of the table in the center of the widget, which

displays the names of the ontology projects to which a profile is bound to. Binding a

profile to one or more ontology projects results in saving a copy of that profile in

another kalima_profiles.xml file, this time placed in the project directory.

This action implies the ability to carry profiles along with a single project when it is

exported to another system, as it is a common practice to share entire projects in

Eclipse environments.

Example 15.4. The Semantic Nomenclature project manager wishes to share the

tools for the Implementation phase selected earlier with all the ontology engineers

who are set to perform each activity. A profile named “Implementation phase” is

created and bound to the “SemanticNomenclature” ontology development project

in the NeOn Toolkit. Because all participants are synchronized on this project, they

will all get a copy of the new profile the next time they update their working copy of

the project.

15.2.1.6 Dashboard Control and Docking

To counter the risks of ending up with a screen overcrowded by widgets, Kali-ma

comes with an additional interface element called the Dock. As its name suggests,

the Dock is conceptually inspired by a consolidated praxis in modern operating

systems, which provide a user interface feature for quickly switching between

applications. In our interpretation, the Kali-ma Dock provides a compact user

Fig. 15.4 Profile manager

widget. Three profiles have

been stored and are displayed

in the profile table. Two of

them (named Implementation
phase and Reuse phase) are
bound to the Semantic
Nomenclature ontology
project

332 A. Adamou and V. Presutti

interface for holding references to elements of the dashboard that are not of

immediate interest, yet it still makes sense to hold in the current view of the system.

For example, the user may want to remember having selected a certain plugin but

does not need to access it in that particular instant. Every widget that supports

docking comes with a toolbar button that, when clicked, instructs the dashboard

controller to hide that widget and add a corresponding entry in the Kali-ma Dock.

A dock entry is a very simple interface element that serves a placeholder for a

docked widget. Each entry consists of a label with the plugin identifier and an arrow

button for restoring the docked widget to its original position.

The Dock widget itself responds to the same screen overcrowding issue that

holds for plugin widgets and other dashboard widgets; therefore, it is not visible on

screen at all times. The Dock hides itself every time the last docked widget is

restored (i.e., there are no more dock entries) and becomes visible again once a

widget is docked (i.e., a dock entry is added). This is due to the fact that, at this

stage, the Dock serves the sole purpose of holding references to widgets that are

hidden from view. This behavior may vary as further functionalities are added to the

Kali-ma Dock in the future.

15.2.1.7 Project-Based Real-Time Chat

Several phases of the articulated ontology life cycle management process are

conceived with user collaboration in mind, and as such should they be carried out

(Holsapple and Joshi 2002). Activities such as the collective argumentation of

ontologies, or portions thereof, can be performed asynchronously, i.e., no different

than by posting comments on message boards and the like. There may be cases,

however, where multiple users collaborating on the same ontology project may

require to coordinate their efforts in real-time, in order not to bottleneck one

another. One such circumstance may involve two ontology engineers developing

separate modules of an ontology network, whose entities need to be related via

equivalence statements nonetheless. In such a situation, the user who needs to

perform the alignment will need to know the name of the alignment target as

soon as possible, and this can be significantly sped up by synchronous

communication.

Kali-ma includes a lightweight real-time chat system to support synchronous

communication in an environment where users can instantly share references to

resources in a common ontology project. Through the Chat widget, a single user can
join one or more dedicated virtual chat rooms, each named after an ontology project

she has in common with other users. Additionally, for each project, it is possible to

send the identifiers of any OWL entity loaded within that project with just a few

keystrokes.

Example 15.5. The project manager and engineers that share the “SemanticNo-

menclature” project and have the same XMPP Chat configuration in the Kali-ma

15 Customizing Your Interaction with Kali-ma 333

preferences will all be presented with an option to join the “SemanticNo-

menclature” chat room and discuss their engineering activities there.

As with other optional widgets, the Kali-ma chat interface can be activated by

means of the Dock widget by simply clicking the balloon-shaped icon on its toolbar.

In the default panel of this widget, it is sufficient for a user to type in her credentials

(set by the chat server administrator), freely choose an alternate label, or alias, and
log into the chat server. With this done, a combo box will display the list of

available chat rooms, each named after an ontology project in her NeOn Toolkit

workspace. Multiple chat rooms, one per project, can be joined at once, and a chat

room will be seamlessly created on the fly if it has not yet been configured by

another user. A user may send any free text message by simply typing it in a chat

room window. However, if a reference to an OWL class, property, or individual

needs to be broadcast to other users sharing the same project, it is sufficient to start

typing in part of its name (not necessarily a prefix) and invoke the autocompletion

key combination (usually Ctrl + Space) to select from a list of matching entities

that exist within that project. Multiple OWL entity references can be broadcast in a

single message by invoking autocompletion.

Any party is free to host a chat server compatible with Kali-ma. The plugin uses

the open standard instant messaging protocol XMPP (Extensible Messaging and

Presence Protocol)4, which sports numerous compatible instant messaging clients

as well as communication services (Google Talk5 and Jabber6 being two of them).

Anyone can set up an off-the-shelf XMPP server on a host and create accounts for

users, who can quickly configure Kali-ma on their clients (see Sect. 15.2.1.1) to

instantly use it for relaying their messages.

15.2.1.8 Obtaining Help

Kali-ma provides its own real-time help system, aimed at displaying appropriate

justification of each node appearing in the C-ODO Organizer taxonomy, and in

doing so, to take advantage of any metadata present in the ontologies describing

tools and classification criteria.

Real-time guidance is provided through the Helper widget. The Helper is

essentially a lightweight web browser capable of rendering HTML. However, it

also reacts to local events within the dashboard, such as a particular widget being

focused or a node being selected in the C-ODO organizer. While help messages

related to native functionalities are hardcoded, those deriving from metadata such

as OWL annotations derive from elements of the ontological component of Kali-ma,

which also include remote tool descriptions. For instance, when a node is selected

4XMPP, http://xmpp.org
5Google Talk, http://www.google.com/talk
6 Jabber, originator of the initial XMPP design and implementation, http://www.jabber.org

334 A. Adamou and V. Presutti

http://xmpp.org
http://www.google.com/talk
http://www.jabber.org

that represents a design aspect, NeOn Methodology activity, functionality, or

design tool, the Helper widget displays the rdfs:comment annotation for the

corresponding OWL individual.

15.2.2 Functionalities for Plugin Developers

One goal of Kali-ma is to reorganize the plugin space under a single, shared

criterion that can apply to the majority of plugins. To that end, it provides a set of

functionalities to aid developers in describing the features of their plugins so that

Kali-ma can elaborate on them and construct a single, harmonic view. These

functionalities belong to the following categories:

• Plugin description management guides users throughout the creation of the

ontology that describes how a plugin contributes to the life cycle management

of ontologies.

• The interoperability API allows developers to launch and customize a Dash-

board programmatically from the code of any plugin.

15.2.2.1 Plugin Description Management

As will be presented in Sect. 15.2.3.2, the Kali-ma infrastructure includes a

semantic layer involving components that are invariant in the domain of collabora-

tive ontology engineering, as is the C-ODO Light network, and others that can be

customized and adapted to new and refined taxonomies and criteria, such as the

rules for categorizing the tool space. Standing amid these two levels are the real-

world entities, i.e., the ABoxes where actual ontology design tools are instantiated

and facts are provided for them. Kali-ma has no built-in or prior knowledge of

which design tools exist, whether C-ODO Light–based ontologies describing them

are provided and what physical URIs should be dereferenced for locating these

descriptions. It does, however, provide a mechanism for locating such ontologies

from a single, configurable source. Coupled with this mechanism, we are offering

an online service for semiautomatic construction of C-ODO Light–based plugin

descriptions. The next section details the key functional characteristics of both

features mentioned above.

15.2.2.2 Plugin Description Generator

Knowledge of the ontology tool population is not delegated to a single online

repository. It is the plugin provider’s call to author pieces of structured knowledge

concerning their own products; thus, it is reasonable to expect them to remain

depositaries of this knowledge, while at the same time sharing it in an open

15 Customizing Your Interaction with Kali-ma 335

environment such as Linked Data. Concurrently, it was felt convenient to have

a system for aggregating references to these ontologies at disposal, rather than

crawling the whole Semantic Web.

In an effort to meet both demands, an interactive tool for constructing these

OWL tool manifests was devised as a service to be available anytime, anywhere.

A working prototype of this service was released as C-ODO-o-matic (simply

dubbed Codomatic throughout the remainder of the chapter)7, its name paying

homage to an inspiring online form for generating FOAF profiles. Codomatic is

a simple, single-page Ajax application for constructing C-ODO Light–based OWL

manifests of ontology design tools bearing the minimum set of axioms for allowing

a DL reasoner to categorize the tool with respect to any of the three supported

classification criteria explained in Sect. 15.2.1.3. The Codomatic service features

willfully essential styling so as to keep it open to embedding within Wiki pages or

web frames.

A sample of running Codomatic code generator for the Cicero argumentation

plugin (Dellschaft et al. 2008), depicted in Fig. 15.5, shows what minimum user

input is required and leveraged for the generation of the corresponding RDF code.

TheOntology base URI field provides the default namespace to be used for any new

entities asserted in the ontology to be generated and is advised to match the physical

URI to be dereferenced for locating the ontology itself. The Plugin name field,

along with its Camel syntax version, denote respectively the rdfs:label anno-

tation and the actual URI local name for the OWL individual that identifies the tool

itself, while the Plugin description field denote the English rdfs:comment

Fig. 15.5 The Codomatic tool description generator, after constructing the RDF code for an

argumentation management plugin called Cicero

7At the time of writing, the service is hosted at http://wit.istc.cnr.it:8080/codomatic

336 A. Adamou and V. Presutti

http://wit.istc.cnr.it:8080/codomatic

annotation for that individual. It is possible to state the tool in question to be a NeOn

Toolkit plugin, in which case its unique identifier must be supplied.

The list boxes that follow this field in the figure allow providers to include

functional specifications of their tools: through these interface objects, it is possible

to select an arbitrary number of knowledge types that the tool is known to consume

as input or produce as output, as well as the design functionalities and NeOn

processes and activities that it supports. For all fields but the NeOn processes and

activities one, an additional text box is available, where the provider can arbitrarily

instantiate new knowledge types and design functionalities, if the existing ones are

felt to fall short of accuracy or completeness in describing the tool in question.

However, while new design functionalities can immediately be exploited when

classifying a set of tools with respect to them, new knowledge types cannot

contribute to the rules for inferring supported design aspects, unless the providers

include additional defined classes that are restricted on the hasInputType or

hasOutputType properties for their new knowledge types.

The aforementioned statement supports the claim that by no means is Codomatic

intended to serve as a replacement for a full-fledged OWL editor. The service is

intended for the creation of minimal OWL manifests based on C-ODO Light,

and yet it leaves room for extension and refinement. Providers can use the NeOn

Toolkit OWL editor to add annotations for newly declared knowledge types and

functionalities and relate them to existing ones where need be, as well as define

additional rules for inferring supported design aspects from knowledge type

statements.

The “Generate code” button triggers an asynchronous remote procedure call to a

servlet that encapsulates submitted data and uses the same OWL API as Kali-ma’s

to output the corresponding ontology, whose source code is posted to the text area

below the button. This code includes all the necessary ontology imports and is

intended to be copied verbatim to an RDF document, which should then be

uploaded to a location of the provider’s choice. Codomatic does not pose

restrictions to tool providers as to what physical locations should be used for their

newly generated ontologies, nor does it store submitted base URIs or any other

information used for generating the OWL code. References to physical locations

can be submitted through the corresponding plugin pages on the NeOn Toolkit

Wiki, as documented in its plugin development and submission guide8. Being a

Semantic Media Wiki, it is then possible to export these references in RDF format

for Kali-ma to consume.

8 http://neon-toolkit.org/wiki/Plugin_HowTo

15 Customizing Your Interaction with Kali-ma 337

http://neon-toolkit.org/wiki/Plugin_HowTo

15.2.2.3 Interoperability API

In addition to supporting collaboration and interaction between end users, Kali-ma

as a plugin comes with additional developer features that allow other ontology

plugins to interoperate either with each other or with Kali-ma. There are two

distinct methods of allowing programmatic interoperability, which is achieved

through simple direct intervention on the plugin code. These two methods cover

separate interoperability aspects and can be implemented independently. They are:

1. Construction of Pipeline assemblies within widgets, for executing plugin

functionalities without switching to the plugin user interface for that plugin

2. External Dashboard control, for manipulating the contents of the Dashboard

Interoperability between plugins is achieved by construction of pipeline
assemblies, which are dynamic software structures where the output of one compo-

nent can be concatenated to one or more other components in the assembly in order

to execute complex computational tasks. For instance, a design pattern selection

service exposed by the eXtreme Design plugin (described in Chap. 3) could reuse

the output axioms of a search issued using theWatson plugin (described in Chap. 7) in
order to perform query expansion for broader pattern selection. Because the process

has no strict coupling at build time, such a scenario can be realized without either

plugin knowing a priori which other plugin it should expect its input from, or which

one should accept its output.

The other supported interoperability aspect is Dashboard control, i.e., the

programmatic manipulation of the Kali-ma user interface. This allows other

developers to construct custom dashboard configurations specific for the engineer-

ing activity supported by another tool. Among NeOn Toolkit plugins, the gOntt tool
for project scheduling supports Kali-ma dashboard interoperability, as it is possible

from within a gOntt schedule to launch a Kali-ma dashboard containing widgets for

all registered NeOn Toolkit plugins that support a given process, activity, or phase

in that schedule. This support is among the features showcased by the gOntt plugin

description in Chap. 14.

To reach either level of interoperability, a plugin must implement a simple Java

API exposed by Kali-ma itself. A developer who wishes a plugin functionality to be

directly called via its dashboard widget will simply have to implement an Eclipse

extension point, which is mapped to a simple Java interface, both provided by Kali-

ma. The developer will simply have to wrap a call to a plugin functionality into a Java

class that implements this interface and annotate the single public method with the

types of the parameters expected to be consumed and produced by that functionality.

The Dashboard control API is also simple and straightforward. It is enough for a

developer to invoke any static method of the DashboardLauncher class

exposed by the Kali-ma API, and a dashboard will be launched, containing widgets

for all the available plugins whose identifiers were passed as parameters. This

implementation may occur in a separate plugin, without any intervention on the

original plugin code.

338 A. Adamou and V. Presutti

http://dx.doi.org/10.1007/978-3-642-24794-1_3
http://dx.doi.org/10.1007/978-3-642-24794-1_7
http://dx.doi.org/10.1007/978-3-642-24794-1_14

15.2.3 Architectural Design

The software architecture of the Kali-ma plugin, used for performing semantic

reorganization of the tool space, incorporates both procedural and logical

components. That is, although the plugin is essentially a Java program (or, to be

more precise, a set of OSGi bundles) like most other plugins, some functionalities

are not entirely encoded as procedures in the plugin code but instead rely on formal

semantics that describe their behavior. Although the entire knowledge needed for

managing the tool space is maintained in its original OWL formalism, this is treated

in a similar fashion as runtime software libraries. Ontologies that describe the

domain model, plugin space, and classification criteria are dynamically aggregated

and linked at runtime.

The sections that follow provide an insight on the software architecture of Kali-

ma. After a quick overview on the next section, Sect. 15.2.3.2 describes the actual

ontology network used by the tool. Section 15.2.3.3 describes the software modules

that handle and reason upon the ontology network in order to classify NeOn Toolkit

plugins. Finally, Sect. 15.2.3.4 provides a quick insight as to how the result is

presented to the user.

15.2.3.1 Basic Software Architecture

The heterogeneous representation of the Kali-ma components, as well as the

openness to possibly reusing the procedural components in engineering fields

other than ontologies, imply a layered infrastructure of the tool. This infrastructure

can be seen as split into three major components as depicted in Fig. 15.6: the

ontological component is responsible for providing Kali-ma with the necessary

knowledge about existing NTK plugins and the rules by which to classify them; the

reasoning component manages the extraction of such knowledge from the ontolog-

ical component, as well as the aggregation and classification of plugins; and lastly,

the presentation component generates the widgets and handles communication

between Kali-ma, NTK plugins, and the NTK core.

15.2.3.2 Ontological Component

The ontological component, encoded in its entirety in OWL, is at the lowest level of

the stack. It is itself a layered subsystem, as the dependencies between its modules

are acyclic. The component as a whole can be seen as a large networked ontology,

although only the essential logical infrastructure is hardwired, whereas expert

ontology engineers can define categorization rules without an exhaustive knowl-

edge of the tool space, while leaving plugin contributors the liberty to author

descriptions for their tools and host them wherever they see fit.

15 Customizing Your Interaction with Kali-ma 339

The layers of the Kali-ma ontological component include:

• A foundational/domain layer, which is essentially the codolight model for

ontology design (described in Chap. 5). Its modularity and distinctive support

for collaborative life cycle management make it easily extensible with

specialized classes, additional primitives and rules, without any need for tainting

the whole model. What’s more, it is aligned to several widely used ontologies

describing the Semantic Web for computational and social interoperability.

• Sets of categorization rules, where the classification criteria used for providing a
taxonomy of tools in the Organizer widget are formalized. Recall that the default

criteria are implementation of design functionalities, support for NeOn Method-

ology processes and activities, and coverage of collaborative design aspects.
While applications of the first two criteria can be usually extracted without

resorting to reasoning tasks, inference will be required in order to determine

which design aspects are covered by a plugin.

• The tool space population model which includes C-ODO Light–based OWL

descriptions of NeOn Toolkit plugins, each describing what types of task a

certain plugin can help accomplish, what types of knowledge representation it

Fig. 15.6 The Kali-ma infrastructure and its main components

340 A. Adamou and V. Presutti

http://dx.doi.org/10.1007/978-3-642-24794-1_5

can handle, and so on. These are not hardwired in the built-in portion of the

ontological component and can be located anywhere on the web. Recall from

Sect. 15.2.2.2 that an online service is available for the automatic generation of

these tool descriptions.

15.2.3.3 Reasoning Component

In avoidance of the unwise practice of allowing the presentation component to

handle the knowledge base straight away, Kali-ma implements a dedicated subsys-

tem for extracting relevant knowledge. The ontological component provides such

knowledge that the reasoning component wraps into a Java object model, which can

then be accessed from the Dashboard controller in the presentation subsystem. This

lower-level component in the Kali-ma software architecture, and the intermediate

layer in the whole infrastructure, provides a software counterpart to the ontological

component.

The reasoning component comprises the following modules:

• The Kali-ma object model represents parts of the C-ODO Light network, along

with attached ontologies with additional categorization rules, in the form of Java

types. This model includes interfaces for design tool, knowledge type, NeOn

activity and design aspect OWL classes, and for generic annotated entities,

whose RDFS label and comment annotations are deemed significant in the

context of Kali-ma (i.e., they are presented to end users).

• The description visitor is responsible for instantiating the object model men-

tioned above from the ABoxes supplied by C-ODO Light–based plugin

descriptions and classification rule ontologies. This module includes

monitorable operations for initializing OWL managers and DL reasoners (both

supplied by external packages), loading them with fixed and user-defined

ontologies and querying them. This system can be configured to manage a

cache; thus, it does not necessarily query the DL reasoner on each Kali-ma run.

• A model registry is where the instantiated object model is stored and kept track

of. It stores wrapped OWL individuals and relationships between them and

allows changes to the model to be monitored through its own event system.

The model registry is ephemeral and does not need to be serialized, as it can be

completely rebuilt at runtime from the ontological component in reasonable

time.

Through the components of this subsystem, Kali-ma becomes aware of what

NeOn Toolkit plugins are known and/or installed in the running system, what are

the relevant relations in ontology design, and which of them are supported by

collected plugins. The Kali-ma application logic has no prior knowledge of such

relationships.

15 Customizing Your Interaction with Kali-ma 341

15.2.3.4 Presentation Component

The top-level component of the Kali-ma infrastructure, called presentation compo-
nent, implements both the user interface and its controller in the Model-View-
Controller (MVC) paradigm (Reenskaug 1979). This element is responsible for

leveraging the underlying C-ODO Light–based object model and presenting the

outcome of reasoning tasks performed thereupon. Widget factories, dashboard

management, and event handling support all belong to this component. Once

generated, widgets are deployed on the target view (typically, the operating system

desktop) and integrated among other operating system windows.

References

Damian D, Chisan J (2006) An empirical study of the complex relationships between requirements

engineering processes and other processes that lead to payoffs in productivity, quality, and risk

management. IEEE Trans Softw Eng 32(7):433–453

Dellschaft K, Engelbrecht H, Barreto JM, Rutenbeck S, Staab S (2008) Cicero: tracking design

rationale in collaborative ontology engineering. In: Bechhofer S, Hauswirth M, Hoffmann J,

Koubarakis M (eds) ESWC, Lecture notes in computer science, vol 5021. Springer, Berlin/

Heidelberg/New York, pp 782–786

Holsapple CW, Joshi KD (2002) A collaborative approach to ontology design. Commun ACM

45:42–47

Presutti V, Gangemi A, David S, de Cea GA, Suárez-Figueroa MC, Montiel-Ponsoda E, Poveda M

(2008) A library of ontology design patterns: reusable solutions for collaborative design of

networked ontologies. Deliverable D2.5.1, NeOn project

Reenskaug T (1979) Models – views – controllers. Technical report, Technical note, Xerox Parc

342 A. Adamou and V. Presutti

Chapter 16

Visualizing and Navigating Ontologies

with KC-Viz

Enrico Motta, Silvio Peroni, José Manuel Gómez-Pérez,

Mathieu d’Aquin, and Ning Li

Abstract There is empirical evidence that current user interfaces for ontology

engineering are still inadequate in their ability to reduce task complexity for

users, especially non-expert ones. Here we present a novel tool for visualizing

and navigating ontologies, KC-Viz, which exploits an innovative ontology summa-

rization method to support a “middle-out ontology browsing” approach, where it

becomes possible to navigate ontologies starting from the most information-rich

nodes (i.e., key concepts). This approach is similar to map-based visualization and

navigation in geographical information systems, where, e.g., major cities are

displayed more prominently than others, depending on the current level of granu-

larity. Building on its powerful and empirically validated ontology summarization

algorithm, KC-Viz provides a rich set of navigation and visualization mechanisms,

including flexible zooming into and hiding of specific parts of an ontology, visuali-

zation of the most salient nodes, history browsing, saving and loading of

customized ontology views, as well as essential interface support, such as graphical

zooming, font manipulation, tree layout customization, and other functionalities.

E. Motta (*) • M. d’Aquin • N. Li

Knowledge Media Institute (KMi), The Open University, Walton Hall, Milton Keynes,

MK7 6AA, UK

e-mail: e.motta@open.ac.uk; m.daquin@open.ac.uk; N.Li@open.ac.uk

S. Peroni

Department of Computer Science, University of Bologna, Bologna, Italy

e-mail: speroni@cs.unibo.it

J.M. Gómez-Pérez

Intelligent Software Components (iSOCO), S.A. Avda. del Partenón, 16-18, 28042 Madrid,

Spain

e-mail: jmgomez@isoco.com

M.C. Suárez-Figueroa et al. (eds.), Ontology Engineering in a Networked World,
DOI 10.1007/978-3-642-24794-1_16, # Springer-Verlag Berlin Heidelberg 2012

343

mailto:e.motta@open.ac.uk
mailto:m.daquin@open.ac.uk
mailto:N.Li@open.ac.uk
mailto:speroni@cs.unibo.it
mailto:jmgomez@isoco.com

16.1 Introduction

A key component of the Semantic Web is provided by the large number of

ontologies available online. Given such large-scale availability of ontologies,

ontology reuse is becoming more common, and tools, such as the Watson plugin

for the NeOn Toolkit (d’Aquin et al. 2008), are now available, which facilitate the

task of locating and directly reusing ontologies or ontology fragments. In this reuse-

centric context, it is highly desirable to have mechanisms that can efficiently help

users in making sense of the content of an ontology, e.g., in the context of having to

make a decision about whether an ontology retrieved online is suitable for a

particular set of requirements. However, the empirical studies carried out in the

NeOn project (Dzbor et al. 2006) have shown that the visualization and navigation

facilities available in today’s ontology engineering environments do not necessarily

provide effective support for making sense of and effectively exploring ontologies,

and often end up hindering rather than helping users. These studies show that this is

a problem, especially for non-expert users.

To address this issue, we have developed a novel tool for visualizing and

navigating ontologies, called KC-Viz, which has been realized as a plugin for the

NeOn Toolkit. KC-Viz exploits automatically created ontology summaries, based

on the idea of key concepts (Peroni et al. 2008), to facilitate the task of making sense

of large ontologies. In addition, it also provides a rich set of navigation and

visualization mechanisms, including flexible zooming into and hiding of specific

parts of an ontology, visualization of the most salient nodes, history browsing,

saving and loading of customized ontology views, as well as essential interface

customization support, such as graphical zooming, font manipulation, tree layout

customization, and other functionalities.

In this chapter, we present a description of the main functionalities provided by

KC-Viz, and we show how it attempts to address some of the limitations of current

tools for ontology engineering.

16.2 Limitations of Top-Down Approaches to Navigating

Ontologies

16.2.1 Ontology Sensemaking

Throughout this chapter, we will use as an illustrative example a version (v2.4) of

the SmartProducts ontology1, which is being developed in the course of the EU-

funded SmartProducts project2. The aim of this ontology is to support the

1 This network of ontologies can be downloaded from http://projects.kmi.open.ac.uk/

smartproducts/ontologies/SP_v2_4.zip
2 http://www.smartproducts-project.eu

344 E. Motta et al.

http://projects.kmi.open.ac.uk/smartproducts/ontologies/SP_v2_4.zip
http://projects.kmi.open.ac.uk/smartproducts/ontologies/SP_v2_4.zip
http://www.smartproducts-project.eu

specification of smart devices, able to engage proactively in cooperative problem

solving with other devices.

As shown in Fig. 16.1, the SmartProducts ontology is not a monolithic one but

comprises a number of sub-ontologies, which define different notions, such as time,

users, processes, products, etc. The project addresses three different test cases in the

aerospace, car, and consumer appliances industries, and in particular, Fig. 16.1

shows the network of ontologies used to characterize the latter scenario, which we

refer to as “Smart Kitchen.” The structure of the network is highly reusable, with

the top six nodes (i.e., ontologies) being shared across the three test cases, while the

bottom two ontologies are specific to the Smart Kitchen application.

Like most other ontology engineering environments available today, the NeOn

Toolkit provides an “Ontology Navigator” window, which supports ontology navi-

gation using the classic top-down file system model, where clicking on a folder

reveals its contents. In the case of an ontology engineering tool, the folder metaphor

is used “to open up” a class, to reveal its sub-classes.

Fig. 16.1 Import relations in the SmartProducts network of ontologies

16 Visualizing and Navigating Ontologies with KC-Viz 345

As discussed in (Katifori et al. 2007), this style of interface has several

advantages, including its familiarity to users and the ability to support a systematic

exploration of an ontology. For these reasons, it is more or less ubiquitous in

ontology engineering toolkits and also tends to perform well in evaluations

(Katifori et al. 2007). Nevertheless, it also exhibits some important limitations,

including its inability to show role relations and “to support tasks related to the

general ontology structure” (Katifori et al. 2007).

In this chapter, we will indeed focus on this category of tasks, which we will

refer to informally as ontology sensemaking tasks. More specifically, we will use

the term “sensemaking” to refer to the construction of a mental model of an

ontology, which encompasses the ontology as a whole and is sufficient for a user

to make a decision (for example) on whether an ontology is suitable for a particular

application or whether it covers certain areas of interest to the required extent, with

respect to user-specific criteria. In sum, the emphasis here will be less on supporting

tasks which require understanding a particular detail of the ontology than on

supporting tasks which require developing a “global” model of an ontology, at a

certain level of abstraction. In addition, although KC-Viz also support the visuali-

zation of non-taxonomic (i.e., domain) relations, here we will focus the discussion

almost exclusively on the navigation and visualization of taxonomies, on the basis

that developing an understanding of the overall taxonomic structure of an ontology

is an essential part of the sensemaking process.

16.2.2 Example: Using the Ontology Navigator for Sensemaking

Figure 16.2 shows a snapshot of the Ontology Navigator in the NeOn Toolkit, after

we have clicked on the most specific ontology shown in Fig. 16.1 (see Sect. 16.2.1),

which is called Philips-Test2. As shown in the figure, clicking on the folder Classes

reveals the four topmost classes in the SmartProducts network of ontologies3,

making explicit the top-level structure of the ontology. However, while this initial

visualization is useful to allow the user to understand the organization of the

ontology at the highest level of abstraction, it is not yet comprehensive enough

to allow the user to develop an overall model of the ontology in sufficient detail.

In particular, without further exploration, it is not yet possible to achieve the

following objectives, which are essential to the sensemaking process:

3 This is because the relevant preference in the NeOn Toolkit is set to display all inherited classes,

thus allowing us to browse the complete structure of the SmartProducts network of ontologies.

Alternatively, we can choose to see only definitions local to the Philips-Test2 ontology, by

deselecting the option “Show Imported Axioms.”

346 E. Motta et al.

• Understanding the overall size and shape of the ontology. By “size” here we

mean, given a node in the ontology4, the total number of its direct and indirect

sub-classes, while by “shape” we refer to an indication of the organization of the

sub-classes. For instance, an ontology (or part of it) can have a horizontal (i.e.,
many sub-classes and few levels of depth), or a vertical (i.e., many inheritance

levels and only a few sub-classes at each level) shape (Tartir et al. 2005).

Understanding the shape of an ontology (or part of it) also means to understand

whether it is balanced, indicating that all parts of the (sub-)ontology in question
have been developed to a similar extent, or unbalanced, possibly indicating that

some parts of the (sub-)ontology are less developed than others.

• Identifying the main components of the ontology and the typical exemplars of
these components. For instance, from Fig. 16.2 (see Sect. 16.2.1), we understand

that the SmartProducts ontology talks about spatial entities, a highly generic

(and therefore not-so-informative) concept, but the display fails to tell us which

kind of spatial entities the ontology primarily focuses on. Given that, for what we

know, the sub-tree under class SpatialThing may contain dozens of sub-classes,

it would be useful to have tools that could highlight to us the main spatial entities

Fig. 16.2 Navigation through a file system metaphor

4 If the node is owl:Thing, then we are talking about the size of the whole ontology, otherwise the

size of a particular subtree.

16 Visualizing and Navigating Ontologies with KC-Viz 347

covered by the ontology (i.e., the exemplars), without the need for extensive

exploration. In this case, this would require informing us that almost 50% of the

sub-tree under SpatialThing concerns food-related notions. Informative

exemplars can also help the user to predict the siblings of the class (i.e., the

exemplar) in question, thus playing a summarization role not just with respect to

its sub-tree, but also with respect to its siblings.

At this point, the reader may argue that what is needed is simply to explore the

structure in more depth, by clicking on the top four classes, to open up the next level

of detail. Figure 16.3 shows what happens when we do so and we click on all four

level 1 classes. Thirty-eight classes are now displayed, making the picture rather

complicated for the user. In addition, we are still none the wiser about which node

we should further explore, which parts of the ontologies are developed more in

detail, etc. And continuing to open up these nodes will simply bring more informa-

tion on the screen, making it even more difficult for the user to develop a quick

conceptual model of the ontology. Of course, the reader can also point out that part

of the problem is the relative lack of structure underneath class Abstract, which

contains 22 direct sub-classes. And indeed, a better organization of the sub-tree

underneath class Abstract is obviously needed. However, it is also fair to say that

the purpose of visualization and navigation tools is not simply to support navigation

in relatively small, nicely organized ontologies. More importantly, they also need to

help the user in making sense of and effectively explore large and possibly messy

ontologies.

The brief and informal analysis shown here is consistent with the findings

uncovered in more extensive empirical studies, such as (Dzbor et al. 2006),

which highlight the problems users encounter when using rigid top-down naviga-

tion tools. These problems include:

• Poor efficiency and effectiveness. To open up the display shown in Fig. 16.3 has
required six mouse clicks, and we still have a relatively poor understanding of

the content of the ontology.

• Lack of control when zooming on a particular node. When clicking on a node,

the user always opens up all the direct sub-classes. There is no way to control the

number of sub-classes shown, or to open up more than one level with one mouse

click.

• No abstraction or saliency mechanisms. The system has no way to automatically

hide nodes which are deemed not important (i.e., salient) according to some

criterion, and conversely, it is not able to bring to the attention of the user highly

important nodes, again with respect to some user criterion.

It is also important to emphasize that such problems are less associated with the

file system browsing metaphor than with the generic top-down navigation

approach. For instance, ontology engineering toolkits such as TopBraid Composer5

5 http://www.topquadrant.com/products/TB_Composer.html

348 E. Motta et al.

http://www.topquadrant.com/products/TB_Composer.html

Fig. 16.3 Exploring level 2 classes through the Ontology Navigator

16 Visualizing and Navigating Ontologies with KC-Viz 349

provide graphic tools which also implement such top-down navigation and not

surprisingly suffer from the same problems. Indeed, it can be argued that a

graphical interface for top-down navigation typically performs worse than a file

system model, primarily because the latter usually provides a much more compact

representation – i.e., showing the 38 classes in a graphical tree representation will

require a much larger display area, thus making it even more complex for a user to

make sense of it (Plaisant et al. 2002).

KC-Viz is an ontology visualization and navigation system, which has been

designed to address the issues highlighted here, by providing a rich set of navigation

and visualization mechanisms, which include flexible zooming into and hiding of

specific parts of an ontology, the ability to identify the most important concepts in

an ontology, according to empirically validated criteria, as well as a plethora of

other mechanisms to facilitate sensemaking and exploration of ontologies. As

already mentioned, a key aspect of KC-Viz is its reliance on a key concepts

extraction algorithm, which allows KC-Viz to produce the kind of ontology

summaries that human experts are able to produce. Hence, in what follows we

will first describe the key concept extraction algorithm used by KC-Viz, before

providing an overview of its functionalities.

16.3 Key Concept Extraction

Informally, key concepts can be seen as the best descriptors of an ontology, i.e.,

information-rich concepts, which are most effective in summarizing what an ontol-

ogy is about. In (Peroni et al. 2008), we considered a number of criteria to identify

the key concepts in an ontology. In particular, we use the notion of natural category

(Rosch 1978), to identify concepts that are information-rich in a psycholinguistic

sense. This notion is approximated by means of two operational measures: name

simplicity, which favors concepts that are labeled with simple names; and basic

level, which measures how “central” a concept is in the taxonomy of an ontology.

Two other criteria are drawn from the topology of an ontology: the notion of density
highlights concepts which are information-rich in a formal knowledge representa-

tion sense, i.e., they have been richly characterized with properties and taxonomic

relationships,while the notion of coverage is used to ensure that no important part of

the ontology is neglected, by maximizing the coverage of the ontology with respect

to its taxonomic relationships. Finally, the notion of popularity, drawn from lexical

statistics, is introduced as a criterion to identify concepts that are likely to be most

familiar to users. The density and popularity criteria are both decomposed in two

sub-criteria: global and local density, and global and local popularity, respectively.
While the global measures are normalized with respect to all the concepts in the

ontology, the local ones consider the relative density or popularity of a concept with

respect to its surrounding concepts. The aim here is to ensure that “locally signifi-

cant” concepts get a high score, even though they may not rank too highly with

respect to global measures. Each of these seven criteria produces a score for each

350 E. Motta et al.

concept in the ontology, and the final score assigned to a concept is a weighted sum

of the scores resulting from individual criteria. As described in (Peroni et al. 2008),

which provides a detailed account of our algorithm, KCE, and a formal definition of

the criteria it employs (i.e., density, coverage, popularity, etc.), our approach has

been shown to produce ontology summaries that correlate significantly with those

produced by human experts.

16.4 Overview of KC-Viz

16.4.1 Initial Visualization of an Ontology with KC-Viz

Normally, a KC-Viz session6 begins by generating an initial summary of an

ontology, to get an initial “gestalt” impression of the ontology. This can be achieved

in a number of different ways, most obviously by (1) selecting the ontology in

question in the “Ontology Navigator” tab of the NeOn Toolkit, (2) opening up a

menu of options by right clicking on the selected ontology, and then (3) choosing

Visualize Ontology ➔ Visualize Key Concepts, through a sequence of menus.

Figure 16.4 shows the result obtained after performing this operation on the

ontology Philips-Test27, the most specific node in the SmartProducts network of

ontologies8. As shown in the figure, we have now obtained an initial visualization of

the network of ontologies, which includes concepts at different levels in the class

hierarchy. This specific visualization includes 16 concepts because we have set the

size of our ontology summary to 15, and the algorithm has automatically added the

most generic concept, owl:Thing, to ensure that the visualization displays a

connected graph. If we wish to display more or less succinct graphs, we can do

so by changing the size of the ontology summary. The solid gray arrows in Fig. 16.4

indicate direct rdfs:subClassOf links, while the dotted green arrows indicate indi-

rect rdfs:subClassOf links. As shown in the figure, by hovering the mouse over an

indirect rdfs:subClassOf links, we can see the chain of rdfs:subClassOf relations,

summarized by the indirect link.

Another important piece of information provided by KC-Viz is the size of the

tree under a particular class, which is indicated by a pair of integers, indicating the

6All the examples in this paper have been generated using version 2.5 of the NeOn Toolkit and

KC-Viz v1.3.0.
7 It is important to point out that while Fig. 16.4 and later figures show exactly the concepts

returned by KC-Viz, for the sake of readability we have, when appropriate, manually rearranged

the layout, to try and minimize the compression caused by the physical size of this document. This

is needed primarily because KC-Viz displays assume a landscape orientation, while this article is

formatted according to a portrait orientation.
8 Crucially, the option “Ontology summary considers also imported ontology” must be enabled in

the KC-Viz preferences, otherwise only a summary of the concepts local to the Philips-Test2

ontology will be generated.

16 Visualizing and Navigating Ontologies with KC-Viz 351

number of direct and indirect sub-classes. For instance, Fig. 16.4 tells us that class

Abstract has 22 direct sub-classes and 117 indirect ones.

Although more exploration is obviously needed to get a thorough understanding

of the contents of the SmartProducts ontology network, it can be argued that as a

first step, the visualization shown in Fig. 16.4 already provides a rather effective

starting point for the ontology sensemaking process. In particular, looking at the

visualization, we can already reach a number of conclusions about the ontology,

only one of which (the first one) could be concluded after opening up class owl:

Thing in the ontology navigator – see Fig. 16.2, Sect. 16.2.1. For instance, we now

understand that:

• The network of ontologies contains four top-level classes (i.e., classes directly

linked to owl:Thing) – however, only two of them are displayed (Abstract and

TemporalThing) in the initial summary.

• The ontology contains a lot of information about food – e.g., the tree under class

FoodOrDrinkItem contains 46 classes.

• Key distinctions include time (TemporalThing) and space (PhysicalEnti-

tyInSpace). However, there are also temporal things, which are not physical

entities in space. We can deduce this because the visualization tells us that

TemporalThing has 108 sub-classes, while PhysicalEntityInSpace has 89.

• Class Abstract has a lot of sub-classes (117), but it may be relatively poorly

structured, having 22 direct sub-classes.

More importantly, this initial visualization provides a much better structure for

further exploration, than the rigid top-down navigation, which we illustrated in

Sect. 16.2. In particular, on the basis of this initial snapshot, we can identify key

“gaps” that we need to fill, in order to get a complete picture of the ontology. For

instance, we may want to explore:

Fig. 16.4 Initial visualization of the SmartProducts ontologies

352 E. Motta et al.

• The sub-tree under class Abstract to get a better understanding of this part of the

ontology. As discussed in Sect. 16.2, because of the relatively poor structure of

this part of the ontology, better control of the navigation process than that

provided by the Ontology Navigator will be needed, in order to be able to

explore this part of the ontology effectively.

• The sub-tree under FoodOrDrinkItem, as this is clearly a rich part of the ontology.

• The sub-tree under PhysicalEntityInSpace, which appears to encompass both

location-related notions and device-related ones (Assembly).

• Which sub-classes of TemporalThing are not also sub-classes of

PhysicalEntityInSpace.

• What kinds of agents are modeled by this ontology.

• Why products are not physical entities in space.

• Others.

In sum, the claim here is that the key concept extraction algorithm used by KC-

Viz, together with the degree of control that we get over it (size of summaries and

whether or not to consider imported axioms), allows the effective generation of

initial ontology snapshots, which helps the user in forming an initial idea of what an

ontology is about. In what follows, we show how the flexible support for explora-

tion provided by KC-Viz capitalizes on this initial summary to facilitate effective

ontology navigation and sensemaking.

16.4.2 Exploring Ontologies with KC-Viz

Let us consider our first task: to get a better understanding of the sub-tree under

class Abstract. We have already seen that a rigid top-down approach does not work

very well here, in particular because class Abstract contains many direct sub-

classes. So, let us try exploring with KC-Viz.

If we click right on a class displayed in KC-Viz, in this case, Abstract, we obtain

a menu which includes options for inspecting, expanding, and hiding a class. If we

select “Expand,” the menu shown in Fig. 16.5 pops up, which provides a rich set of

options for exploring the sub-tree under class Abstract. In particular, the following

four options for customizing the expansion algorithm are presented to the user:

• Whether to explore following taxonomic relations, other relations (through

domain and range), or any combination of these.

• Whether or not to make use of the ontology summarization algorithm, which in

this case will be applied only to the sub-tree of class Abstract.

• Whether or not to limit the range of the expansion – e.g., by expanding only to 1

or 2 levels.

• Whether to display the resulting visualization in a new window (“Hide”), or

whether to add the resulting nodes to the current windows. In the latter case,

some degree of control is given to the user with respect to the redrawing

algorithm, by allowing her to decide whether or not to limit the freedom of the

16 Visualizing and Navigating Ontologies with KC-Viz 353

graph layout algorithm to rearrange existing nodes. This is particularly useful in

those situations where expansion is meant to add only a few nodes, and the user

does not want the layout to be unnecessarily modified – e.g., because she has

already manually rearranged the nodes according to her own preferences.

As shown in Fig. 16.5, we have chosen to expand by key concepts, we have kept

the limit of the expansion to 10 concepts, and we have also chosen to hide the other

concepts, to be able to explore the sub-tree of class Abstract in a new window,

without the “noise” from unrelated concepts.

Figure 16.6 shows the result of the expansion, which confirms the relatively poor

degree of structure of the sub-tree under class Abstract, where only classes

UserProfile and PhysicalQuantity appear to have been further characterized in

Fig. 16.5 Expanding sub-trees in KC-Viz

354 E. Motta et al.

some detail and may warrant further exploration. In particular, we can look in more

detail at the latter, by expanding its sub-tree at all levels, without restricting it to key

concepts, as shown in Fig. 16.7.

Analogously, we can also explore the other key constituents of the SmartProducts

network of ontologies, by careful expansion of the sub-trees we wish to explore. For

instance, again by choosing expansion by key concepts, we can find out more about

the structure of the sub-tree under FoodOrDrinkItem, as shown in Fig. 16.8.

16.4.3 Other Functionalities Provided by KC-Viz

While the flexible expansion mechanism is the key facility provided by KC-Viz to

support flexible exploration of ontology trees, a number of other functionalities are

Fig. 16.6 Key concepts under class Abstract

Fig. 16.7 Expanding class PhysicalQuantity

16 Visualizing and Navigating Ontologies with KC-Viz 355

also provided, to ensure a comprehensive visualization and navigation support.

These include:

• A flexible mechanism for hiding nodes, as shown in Fig. 16.9.

• Integration with the Entity Properties and Ontology Navigator tabs in the NeOn

Toolkit, to support detailed inspection of classes.

• A dashboard, shown in Fig. 16.10, which allows the user to move back and forth

through the history of KC-Viz operations, to modify the formatting of the layout,

and to save the current display to a file, among other things.

• A preferences menu, shown in Fig. 16.11, which allows the user to set defaults

for the most common operations and also enables her to switch to a more

efficient (but sub-optimal) algorithm when dealing with very large ontologies.

Fig. 16.8 Expanding class FoodOrDrinkItem

Fig. 16.9 Options for removing classes from a display

356 E. Motta et al.

16.4.4 Summing Up: How KC-Viz Addresses Key Challenges
for Ontology Editors

Echoing the findings reported in the paper by (Dzbor et al. 2006), in Sect. 16.2 we

highlighted a number of issues which hamper the effectiveness of current tools for

visualizing and navigating ontologies. Here we revisit these issues, discussing how

KC-Viz attempts to address them:

• Poor efficiency and effectiveness. The exploration sequence shown in Figs. 16.4,
16.6, and 16.7 (see Sect. 16.4) only required three operations and arguably

provided us with a rather good understanding (at a given level of abstraction)

of a significant part of the ontology. In our view, this compares favorably with

the sequence described in Sect. 16.2, where several expansion operations did not

dramatically improve our understanding of the ontology. It is also relatively

straightforward to see that by repeating the exploration process we applied to

class Abstract to other three or four key classes shown in Fig. 16.4 (see

Sect. 16.4.1), we should be able to converge quickly to a rather comprehensive

overview of the SmartProducts network of ontologies.

• Lack of control when zooming on a particular node. KC-Viz addresses this

limitation by providing a very flexible set of options for node expansion, as

shown in Fig. 16.5 (see Sect. 16.4.2).

Fig. 16.10 The KC-Viz dashboard

Fig. 16.11 KC-Viz preferences

16 Visualizing and Navigating Ontologies with KC-Viz 357

• No abstraction or saliency mechanisms. The main abstraction mechanism

provided by KC-Viz is the key concept extraction algorithm, KCE, which

automatically identifies the “most important” concepts in the ontology, thus

making it possible to present snapshots of the ontology to the user, while hiding

away the “less important” concepts. Crucially, KCE has been empirically

validated, thus providing a sound basis to the approach used in KC-Viz. In

addition, by displaying information about the size of the sub-graphs under each

node and by also varying the size of the graphical node representing a class in

KC-Viz, the tool also provides a simple but effective mechanism to highlight the

most “salient” classes in an ontology.

It is also interesting to assess the functionalities provided by KC-Viz with

respect to the seven visualization task types proposed in (Shneiderman 1996). As

discussed below, KC-Viz supports all of them:

• Overview. This is one of the key functionalities provided by KC-Viz. In contrast
with other approaches – e.g., CropCircles (Wang and Parsia 2006), which

sacrifice the display of explicit labels for the sake of maximizing the number of

nodes on display, KC-Viz follows an alternative (and to our knowledge, unique)

approach: it exploits the ontology summarization algorithm to provide initial

overviews of an ontology and then allows the user to explore any part of the

model in details. In our view, the advantage here is that, at any given stage of the

process, only relatively few nodes are displayed and all of them are readable, thus

making it easy for the user to make sense of the model on display. In addition, the

simple display of information about the size of a class’ sub-graph (shown as two

integers describing the number of direct and indirect sub-classes) also provides

summary information for the parts of the ontology which are not displayed, thus

avoiding the need for abstract visualizations of clusters of nodes.

• Zoom. This functionality is supported by the Expand menu item, which provides

a flexible set of options for exploring a sub-graph in detail. As a result, the user

remains in control of both the size of the exploration space and the criteria used

to generate it.

• Filter. This functionality is provided as a side effect of the ability of KC-Viz to

focus on a particular part of the ontology and can also be invoked explicitly by

the user by means of the Hide menu option.

• Details-on-demand. A tight integration with the Entity Properties view of the

NeOn Toolkit makes it possible to click on any node displayed in KC-Viz and

inspect it.

• Relate. KC-Viz supports the visualization of both taxonomic and domain/range

relationships between classes. An example is given in Fig. 16.12, where all the

“level 1” relationships between FoodOrDrinkItem and other classes in the

ontologies are displayed. In particular, the dashed red arrows are used to indicate

domain/range relations, with the labels being displayed when the mouse hovers

over the arrow in question. In this case, we are showing that the ontology

contains a relation hasNutrient, whose domain is FoodOrDrinkItem and whose

range is NutrientPortion.

358 E. Motta et al.

• History. KC-Viz supports undo/redo actions at both macro and micro level, to

allow users to go back to, replay, or undo earlier operations.

• Extract. The key mechanism for extracting parts of an ontology is through the

Expand menu, allowing flexible extraction of nodes at various levels in the

hierarchy, in accordance with the key concept extraction algorithm, and follow-

ing taxonomic and/or domain or range relationships.

16.5 Related Work

Surveys on ontology visualization methods, like (Katifori et al. 2007), categorize

the methods for visualizing ontologies in six non-exclusive main types, called

indented list, node-link and tree, space-filling, zoomable, context + focus and

distortion, and 3D information landscapes.
The indented list category covers tree-centric views of the ontology, similar to

the one provided by the Ontology Navigator in the NeOn Toolkit, which was shown

in Figs. 16.2 and 16.3 (see Sect. 16.2). As already pointed out, because of its

familiarity to users, this style of interface is pretty much ubiquitous in ontology

engineering toolkits; however, it does not support sensemaking tasks very well,

especially in the case of large or unstructured ontologies.

Methods like IsaViz9, OntoViz10, and SpaceTree (Plaisant et al. 2002) are typical
members of the second category (node-link and tree), as they represent an ontology
through a graphical display of interconnected nodes. Hence, these systems are

similar to KC-Viz, with the crucial difference that, while KC-Viz uses ontology

Fig. 16.12 Displaying both taxonomic and domain/range relationships

9 http://www.w3.org/2001/11/IsaViz
10 http://protegewiki.stanford.edu/index.php/OntoViz

16 Visualizing and Navigating Ontologies with KC-Viz 359

http://www.w3.org/2001/11/IsaViz
http://protegewiki.stanford.edu/index.php/OntoViz

summarization to abstract out large trees, these methods tend to use preview icons –

e.g., a triangle in the case of SpaceTree, to abstract out large sub-graphs.

TreeMap (Shneiderman 1992) is representative of space-filling approaches,

which focus on optimizing the use of screen space to maximize the amount

of information displayed to the user. However, in order to achieve this goal,

these approaches tend to move away from the visualizations familiar to users,

such as indented lists and graphs, and therefore they tend to require much more

effort from users. In addition, it can be argued that no matter how much optimiza-

tion a system tries to achieve, eventually it will fill all the available screen space,

once a large enough set of data is given as input. Hence, while space filling is a

useful secondary goal, in our view, the key goal for a visualization system remains

the ability to provide views at different levels of abstraction, and in this respect, it

can be argued that KC-Viz is unique in its reliance on an empirically validated

ontology summarization algorithm, as opposed to general-purpose data abstraction

techniques.

CropCircles (Wang and Parsia 2006) is an example of a “zoomable visualiza-
tion,” i.e., an approach which presents “the nodes in the lower levels of the

hierarchy nested inside their parents and with smaller size than that of their parents”

(Katifori et al. 2007). Much like KC-Viz, these approaches can be effective in

providing good overviews, abstracting from large numbers of nodes. However, as

already mentioned, in contrast with KC-Viz, which uses ontology summarization to

provide abstraction, they sacrifice the display of explicit labels for the sake of

maximizing the number of nodes on display.

The group of techniques categorized as “context + focus and distortion” is

based on “the notion of distorting the view of the presented graph in order to

combine context and focus. The node on focus is usually the central one and the rest

of the nodes are presented around it, reduced in size until they reach a point that

they are no longer visible” (Katifori et al. 2007). These techniques offer a good

trade-off – a part of the ontology is shown in detailed (often tree-like) view, while

the rest is depicted around. A typical approach here is HyperTree (Souza et al.

2003), which skews the visualized model to emphasize the node currently explored

by the user. However, the problem with these techniques is that they essentially

attempt to show everything in the model, which often makes the “context” part of

little consequence and illegible. In contrast with these approaches, KC-Viz

leverages the advantages derived from using ontology summaries, allowing the

user to focus on ontology entities bearing the highest information value and

“contextualizing” them against the entities with systematically lower information

values. Crucially, it also provides flexible and effective mechanisms to change the

focus to other entities, as and when required.

Finally, Katifori et al. also discuss a class of systems called “Information
Landscapes,” which provide a 3D, landscape-oriented alternative to zoomable

visualizations. Hence, the remarks we made above about the latter category of

systems apply to information landscapes as well.

360 E. Motta et al.

16.6 Conclusions and Future Work

In this chapter, we have presented KC-Viz, an innovative approach to visualizing

and navigating ontologies, which exploits a powerful ontology summarization

algorithm, KCE, to introduce effective abstraction mechanisms in the ontology

exploration and sensemaking processes. Crucially, KC-Viz maximizes the value of

the foundational functionality afforded by KCE, by providing a flexible set of

options to zoom in or hide specific parts of an ontology, history browsing

mechanisms, flexible graphical layout formatting, and integration with other

components of the NeOn Toolkit.

Our next task will be to evaluate KC-Viz formally, by comparing the perfor-

mance in sensemaking tasks of users equipped with KC-Viz versus other users, to

try and determine whether there is objective evidence that KC-Viz improves both

the efficiency and the effectiveness of a sensemaking task.

We also plan to improve the range of functionalities provided by KC-Viz, in

particular by opening up the key concept extraction algorithm to the users, to allow

them to decide which criteria to prioritize in the generation of ontology summaries.

Also, better explanation facilities are needed, as in some cases it is not easy

to understand why a particular concept is deemed “important” by KC-Viz, while

another one is not.

In conclusion, it can be argued that, with a few exceptions, the ontology

engineering community has historically overlooked the importance of HCI issues

and has failed to provide user interfaces that can truly support users effectively, as

highlighted by Dzbor et al. (2006). With KC-Viz, we are trying to make an

important step in the direction of providing better user support for ontology

exploration and sensemaking, and we hope that our forthcoming empirical evalua-

tion studies will confirm our intuition that the approach implemented in KC-Viz

does indeed provide better sensemaking support for users of ontology engineering

environments.

Acknowledgments This work was partially supported by funding from the European Commis-

sion, in the context of the NeOn and SmartProducts projects. The paper has benefited greatly from

many insightful comments from Pierluigi Miraglia, who kindly suggested both ways to improve

the presentation of this work as well as interesting new directions for future research.

References

d’Aquin M, Sabou M, Motta E (2008) Reusing knowledge from the semantic web with the Watson

Plugin. Demo at the 2008 international semantic web conference, Karlsruhe, Germany

Dzbor M, Motta E, Buil Aranda C, Gómez-Pérez JM, Goerlitz O, Lewen H (2006) Developing

ontologies in OWL: an observational study. Workshop on OWL: experiences and directions,

Athens, GA, USA, Nov 2006

Katifori A, Halatsis C, Lepouras G, Vassilakis C, Giannopoulou E (2007) Ontology visualization

methods—a survey. ACM Comput Surv 39(4):Art.10

16 Visualizing and Navigating Ontologies with KC-Viz 361

Peroni S, Motta E, d’Aquin M (2008) Identifying key concepts in an ontology through the

integration of cognitive principles with statistical and topological measures. In: Third Asian

Semantic Web Conference, Bangkok, Thailand

Plaisant C, Grosjean J, Bederson BB (2002) Spacetree: supporting exploration in large node link

tree, design evolution and empirical evaluation. In: Proceedings of the international sympo-

sium on information visualization, 2002

Rosch E (1978) Principles of categorization. In: Cognition and categorization. Lawrence Erlbaum,

Hillsdale

Shneiderman B (1992) Tree visualization with tree-maps: a 2d space-filling approach. ACM Trans

Graph 11(1):92–99, 15

Shneiderman B (1996) The eyes have it: a task by data type taxonomy for information

visualizations. In: Proceedings of the 1996 IEEE symposium on Visual Languages

(VL 1996), Boulder, CO, USA. IEEE Computer Society, Washington, DC, USA

Souza K, Dos Santos A, Evangelista SRM (2003) Visualization of ontologies through hypertrees.

In: Proceedings of the Latin American conference on Human-computer interaction, 2003,
p 251–255

Tartir S, Arpinar IB, Moore M, Sheth AP, Aleman-Meza B (2005) OntoQA: Metric-based

ontology quality analysis. In Proceedings of the IEEE Workshop on Knowledge Acquisition

from Distributed, Autonomous, Semantically Heterogeneous Data and Knowledge Sources,

co-located with the 5th IEEE International Conference on Data Mining (ICDM 2005).

November 27, 2005, Huston, Texas, USA

Wang TD, Parsia B (2006) Cropcircles: topology sensitive visualization of owl class hierarchies.

In: Proceedings of the 5th International Semantic Web Conference 2006, Athens, GA, USA

362 E. Motta et al.

Chapter 17

Reasoning with Networked Ontologies

Guilin Qi and Andreas Harth

Abstract The chapter covers basic functionality pertaining to reasoning with

ontologies. We first introduce general methods for detecting and resolving

inconsistencies, and then present three plugins that provide reasoning and query

functionality. The three plugins are: the reasoning plugin, which allows for standard

reasoning tasks, such as materialising inferences and checking consistency in

ontologies; the RaDON plugin, which provides functionality for diagnosing and

resolving inconsistencies in networked ontologies; and the query plugin, which

allows for users querying ontologies in the NeOn Toolkit via the RDF query

language SPARQL.

17.1 Introduction

Reasoning plays an important role in knowledge engineering. With reasoning, users

can check whether an ontology (or a network of ontologies) contains logical

inconsistencies, which may indicate an error in modelling or an incompatibility

between combined ontologies. Further, reasoning can provide means to deduce new

facts from existing facts and axioms. Finally, users need means to pose questions to

knowledge bases and retrieve answers to those queries. Ideally, query processing

over ontologies takes the meaning – as formally specified via logical axioms – into

account when deriving answers to a query. Ontology languages provide the

mechanisms for encoding such meaning, and reasoners provide the mechanisms

for processing such meaning.

G. Qi (*)

School of Computer Science and Engineering, Southeast University, Nanjing, China

e-mail: gqi@seu.edu.cn

A. Harth

Institute AIFB, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

e-mail: harth@kit.edu

M.C. Suárez-Figueroa et al. (eds.), Ontology Engineering in a Networked World,
DOI 10.1007/978-3-642-24794-1_17, # Springer-Verlag Berlin Heidelberg 2012

363

mailto:gqi@seu.edu.cn
mailto:harth@kit.edu

Many ontology languages have been developed, ranging from simple languages

such as theResourceDescription Framework (RDF) and theRDFVocabularyDescrip-

tion Language, that is, RDF Schema (RDFS), to expressive languages such as theWeb

Ontology LanguageOWL.Ontologies specified in these languages allow for deductive

reasoning: drawing conclusions based on facts and axioms in a knowledge base. Often

used reasoning tasks are checking the consistency of a knowledge base, materialising

inferences that can be drawn from the codified knowledge in an ontology and answer-

ing queries over the knowledge base.

To support the life cycle of networked ontologies, we have developed three

plugins which provide reasoning services in the NeOn Toolkit:

• The reasoning plugin, which provides standard reasoning tasks on OWL

2 ontologies. Using the reasoner plugin, a user can get all the facts that can be

inferred from specified facts and axioms and check if an ontology is consistent.

• The RaDON plugin, which provides functionalities for diagnosing and resolving

inconsistencies in networked ontologies. That is, in case the reasoner found an

ontology to be inconsistent, it is difficult for a user to figure out the cause of

the inconsistency, as the reasoner only provided a yes/no result. Within the

NeOn Toolkit, the RaDON plugins enable a user to investigate the cause

for an inconsistency. In addition, RaDON features algorithms which automati-

cally resolve inconsistencies by removing those axioms which cause the

inconsistency.

• The query plugin, which allows users to pose queries in the SPARQL query

language (Prud’hommeaux and Seaborne 2008; Clark et al. 2008).

We cover preliminaries in Sect. 17.2, describe the approach for investigating and

resolving inconsistencies in Sect. 17.3, explain the main functionalities the plugins

provide in Sect. 17.4, summarise the usage of the plugins in Sect. 17.5 and finally

conclude with Sect. 17.6.

17.2 Preliminaries

In the following, we introduce basic notions used throughout the rest of the chapter.

17.2.1 RDF and RDFS

RDF serves as foundational data model for the Semantic Web. RDF is a graph-

structured data model for encoding semi-structured data. RDF data consists of RDF

triples: statements of subject-predicate-object. The formal semantics of RDF is

specified in Hayes (2004). We assume the reader is familiar with basic notions of

364 G. Qi and A. Harth

web architecture, such as Internationalised Resource Identifiers1 (IRIs), which are a

generalisation of URIs2.

Definition 17.1 (RDF Triple, RDF Graph, RDF Term). Let I be the set of IRIs,

B the set of blank nodes and L the set of RDF literals. An element of the set T R ¼
I [Bð Þ � I � I [B [Lð Þ is called RDF triple. A set of triples is called RDF

graph. An element of C ¼ I [B [L is called RDF term.

Ontology languages, such as RDFS and OWL, provide vocabulary for describ-

ing classes and properties. Constructs of RDFS, such as subclass and sub-property

relations, as well as constructs of the more expressive ontology language OWL are

covered in the next section.

17.2.2 Description Logics

Description logics (DL) (Baader et al. 2003) are a well-known family of knowledge

representation formalisms for ontologies. They are fragments of first-order predi-

cate logic. That is, they can be translated into first-order predicate logic according to

Borgida (1994). They differ from their predecessors such as frames (Minsky 1974)

in that they are equipped with a formal, logic-based semantics. In DL, elementary

descriptions are concept names (unary predicates) and role names (binary

predicates). Let NC and NR be pairwise disjoint and countably infinite sets of

concept names and role names, respectively. We use the letters A and B for concept

names, the letter R for role names and the letters C and D for concepts. > and ⊥
denote the universal concept and the bottom concept, respectively. Complex

descriptions are built from them recursively using concept and role constructors

provided by the particular DL under consideration. For example, in DL ALC
(Schmidt-Schau and Smolka 1991), the set of ALC concepts is the smallest

set such that (1) every concept name is a concept and (2) if C and D are concepts,

R is a role name, then the following expressions are also concepts: � C (full

negation), C u D (concept conjunction), C t D (concept disjunction), 8R�C (value

restriction on role names) and 9R:C (existential restriction on role names).

A terminology axiom is an expression of the form C v D where C and D are

concept expressions, and a role axiom is an expression of the form R v S, where R
and S are role expressions. A TBox, denoted by T , is a set of terminology axioms

and role axioms which are viewed as intensional description of the domain of

interest. An assertional axiom is an expression of the form C(a) or R(a, b), where C
is a concept expression, R is a role expression and a and b are individual names. An

ABox, denoted byA, is a set of assertional axioms, which are viewed as extensional

1 http://www.ietf.org/rfc/rfc3987.txt
2 http://www.ietf.org/rfc/rfc3987.txt

17 Reasoning with Networked Ontologies 365

http://www.ietf.org/rfc/rfc3987.txt
http://www.ietf.org/rfc/rfc3987.txt

information. Finally, A DL-based knowledge base (or ontology) is a pair

O ¼ T ;Að Þ, where T and A are a TBox and an ABox, respectively.

The semantics of a DL is defined by an interpretation I ¼ DI ; :I
� �

which consists

of a non-empty domain set DI and an interpretation function �I , which maps from

individuals, concepts and roles to elements of the domain, subsets of the domain and

binary relations on the domain, respectively. Given an interpretation I , we say that I
satisfies a terminology axiom C v D (respectively, a role axiom R v S) if CI � DI

(respectively,RI � SI). Furthermore,I satisfies a concept assertionC(a) (respectively,
a role assertionR(a, b)) if aI 2 CI (respectively, aI ; bI

� � 2 RI). An interpretation I is

called amodel of an ontologyO, iff it satisfies each axiom inO. The set of all models of

an ontologyO is denoted asM(O). We say that two ontologiesO1 andO2 are logically

equivalent, denoted asO1�O2, ifM(O1) ¼ M(O2). A concept nameC in an ontologyO
is unsatisfiable if for each model I ofO;CI ¼ ;. An ontology O is incoherent if there

exists an unsatisfiable concept name in O. An ontology O is inconsistent iff it has no

model.

17.3 Diagnosing and Repairing Inconsistent Networked

Ontologies

17.3.1 Relationship Between Inconsistency and Incoherence

The relationship between incoherence and inconsistency is not simple. First, the

fact that an ontology is inconsistent does not necessarily imply that it is incoherent,

and vice versa. There exist different combinations of inconsistency and incoher-

ence, as illustrated in Fig. 17.1 (most of the examples in this figure have been

proposed in Flouris et al. (2006)) and discussed in the following.

Figure 17.1(1) is an example of a consistent but incoherent ontology. In this

ontology, two concepts C1 and C2 are claimed to be disjoint but share a sub-

concept C3. Figure 17.1(2)–(4) show examples of inconsistent ontologies.

Figure 17.1(2) is an example of an inconsistent but coherent ontology. In this

ontology, two concepts C1 and C2 are claimed to be disjoint but share a sub-

concept which is a nominal {a}. Figure 17.1(3) is an example of an inconsistent

ontology in which an instance a instantiates a concept C1 and its complement � C1.
Figure 17.1(4) is an example of an inconsistent but coherent ontology, in which the

Fig. 17.1 Examples of variants of inconsistency. Pattern (1) to Pattern (5)

366 G. Qi and A. Harth

two disjoint concepts C1 and C2 share an instance a. Finally, Fig. 17.1(5) shows an
example of an ontology that is both incoherent and inconsistent.

From the definitions of incoherence above, we know that incoherence can occur

in the terminology level only. When dealing with inconsistency, we can differenti-

ate terminology axioms and assertional axioms. We have the following

categorisation of different kinds of reason for inconsistent ontologies.

• Inconsistency due to terminology axioms: In this case, we only consider incon-

sistency in TBoxes. Figure 17.1(2) is an example of such an inconsistency.

Following our definitions, this kind of inconsistency will make the TBox

incoherent:

• Inconsistency due to assertional axioms: This kind of inconsistency only occurs

in ABoxes. It is not related to incoherence. A source of assertional inconsistency

is that there are conflicting assertions about one individual, for example, an

individual is asserted to belong to a class and its complement class, as in

Fig. 17.1(2).

• Inconsistency due to terminology and assertional axioms: In this case, each

conflicting set of axioms must contain both terminology axioms and assertional

axioms. This kind of inconsistency is sometimes dependent on incoherence.

Such an example is shown in Fig. 17.1(5). It is easy to see that C3 is an

unsatisfiable concept and that O is inconsistent. The reason for the inconsistency

is that the individual a instantiates C3 which is unsatisfiable. Therefore, if we

repair the unsatisfiable concept C3, then the inconsistency will disappear as well.

On the other hand, the inconsistency in the example in Fig. 17.1(4) is not caused

by an incoherence.

The first kind of inconsistency is only related to terminology axioms. In this

case, the unit of change is a concept (either atomic or complex). Therefore, some

revision approaches which take the individual names as the unit of change, such as

the one proposed in Qi et al. (2006), cannot be applied to deal with this kind of

inconsistency. In contrast, the other two kinds of inconsistency are related to

assertional axioms. So the unit of change can be either a concept or an individual

name.

From this discussion, we observe that the causes for incoherence and inconsis-

tency are manifold, and their interdependencies are complex. Incoherence is always

caused by conflicts in the terminology. It may or may not affect the consistency of

the overall ontology. Inconsistency may arise due to conflicts in the ABox, in the

TBox or a combination of both ABox and TBox.

17.3.2 Debugging Inconsistent/Incoherent Ontologies

Current DL reasoners, such as RACER, can detect logical incoherence and return

unsatisfiable concepts in an OWL ontology. However, they do not support the

17 Reasoning with Networked Ontologies 367

diagnosis and incoherence resolution at all. To explain logical incoherence, it is

important to debug relevant axioms which are responsible for the contradiction.

Definition 17.2. (Schlobach and Cornet 2003) Let A be a named concept which is

unsatisfiable in a Tbox T . A set T 0 � T is a minimal unsatisfiability-preserving
sub-TBox (MUPS) of T if A is unsatisfiable in T 0 and A is satisfiable in every sub-

TBox T 00 � T 0. The set of all MUPS of T with respect to A is denoted asMUAðT Þ.
A MUPS of T with respect to A is the minimal sub-TBox of T in which A is

unsatisfiable. We will abbreviate the set of MUPS of T with respect to a concept

name A by mupsðT ;AÞ. Let us consider an example from Schlobach and Cornet

(2003). Suppose T contains the following axioms:

ax1 : A1 v :A u A2 u A3 ax2 : A2 v A u A4

ax3 : A3 v A4 u A5 ax4 : A4 v 8s:B u C
ax5 : A5 v 9s::B ax6 : A6 v A1 t 9r: A3 u :C u A4ð Þ
ax7 : A7 v A4 u 9s::B

where A, B and C are atomic concept names and Ai (i ¼ 1,. . .,7) are defined concept
names, and r and s are atomic roles. In this example, the unsatisfiable concept

names are A1, A3, A6, A7 and MUPS of T with respect to Ai (i ¼ 1, 3, 6, 7) are:

mupsðT ;A1Þ : ax1; ax2f g; ax1; ax3; ax4; ax5f gf g
mupsðT ;A3Þ : ax3; ax4; ax5f g
mupsðT ;A6Þ : ax1; ax2; ax4; ax6f g; ax1; ax3; ax4; ax5; ax6f gf g
mupsðT ;A7Þ : ax4; ax7f g

MUPS are useful for relating sets of axioms to the unsatisfiability of specific

concepts, but they can also be used to calculate a minimal incoherence-preserving

sub-TBox, which relates sets of axioms to the incoherence of a TBox in general and

is defined as follows.

Definition 17.3. (Schlobach and Cornet 2003) Let T be an incoherent TBox.

A TBox T 0 � T is a minimal incoherence-preserving sub-TBox (MIPS) of T if

T 0 is incoherent and every sub-TBox T 00 � T 0 is coherent. The set of all MIPSs of

T is denoted as MIðT Þ.
A MIPS of T is the minimal sub-TBox of T which is incoherent. The set of

MIPS for a TBox T is abbreviated with mipsðT Þ. For T in the above example, we

get 3 MIPS:

mipsðT Þ ¼ ax1; ax2f g; ax3; ax4; ax5f g; ax4; ax7f gf g

To debug an inconsistent ontology, the notion of a minimal inconsistent sub-
ontology is proposed in Haase et al. (2005).

368 G. Qi and A. Harth

Definition 17.4. A minimal inconsistent sub-ontology (MIS) O0 of O is an incon-

sistent sub-ontology of O that has not any proper subset O00 such that O00 is also
inconsistent.

There are many algorithms for debugging incoherent DL-based ontologies,

which can be classified into two approaches: a glass-box approach and a black-

box approach.

A glass-box approach is based on the reasoning algorithm of a DL. The advantage

of a glass-box approach is that it can find all MUPS of an incoherent ontology by a

single run of a modified reasoner. Most of the glass-box algorithms are obtained as

extension of tableau-based algorithms for checking satisfiability of a DL-based

ontology. The first tableau-based algorithm for debugging of terminologies of an

ontology is proposed in Schlobach and Cornet (2003). The algorithm is restricted to

unfoldable ALC TBoxes, that is, the left-hand sides of the concept axioms (the

defined concepts) are atomic and the right-hand sides (the definitions) contain no

direct or indirect reference to the defined concept. It is realised by attaching label to

axioms in order to keep track of which axioms are responsible for assertions

generated during the expansion of the completion forests. This algorithm is then

extended to more expressive DLs, like OWL DL, in Kalyanpur et al. (2005). As

pointed out in Kalyanpur et al. (2007), one problem for the tableau-based algorithms

is that some important blocking techniques cannot be used.

A black-box approach treats a DL reasoner as a ‘black-box’ or an ‘oracle’ and

uses it to check satisfiability of an ontology. The approach is reasoner-independent,

in the sense that the DL reasoner is solely used as an oracle to determine concept

satisfiability with respect to an ontology. The disadvantage of this approach is that it

needs to call the reasoner an exponential number of times in the worst case; thus, it

cannot handle large ontologies. Several algorithms belong to this approach, such as

those given in Kalyanpur et al. (2005) and Schlobach et al. (2007). The algorithm

proposed in Kalyanpur et al. (2005) consists of two main steps. In the first step, it

computes a single MUPS of the concept and then it utilises the Reiter’s hitting set

(HS) algorithm to retrieve the remaining ones. Two algorithms are given in

Kalyanpur et al. (2007) to compute a single MUPS. One of them first expands a

freshly generated ontology O0 to a superset of a MUPS using a relevance-based

selection function. Then O0 is pruned to find the final MUPS, where a window-

based pruning strategy is used to minimise the number of satisfiability-check calls

to the reasoner. However, the relevant subset O0 is expanded very quickly using the
syntactic selection function and becomes very large after a small number of

iteration. Therefore, they propose the other algorithm which extends a tableau

algorithm to find a subset of the original ontology that is a superset of a MUPS,

then apply the pruning strategy to find a MUPS. However, this algorithm still

cannot handle large ontologies, such as SNOMED CT.

In order to handle large incoherent ontologies, which may naturally exist when

ontologies from ontology network are integrated, we propose several optimisations.

The first optimisation is based on the syntactic locality-based module defined for

OWL DL ontologies in Grau et al. (2007). We generalise the results given in Baader

and Suntisrivaraporn (2008) by showing that the syntactic locality-based module of

17 Reasoning with Networked Ontologies 369

an ontology with respect to an unsatisfiable concept covers all MUPSs of the

ontology with respect to the concept in Suntisrivaraporn et al. (2008). As a

consequence, it suffices to focus on axioms in the module when finding all
MUPSs for an unsatisfiable concept. Empirical results demonstrate an improvement

of several orders of magnitude in efficiency and scalability of computing all MUPSs

in OWL DL ontologies. The second optimisation is based on a relevance-based
selection function defined in Huang et al. (2005) . We propose a relevance-based

algorithm for computing all MUPS of an unsatisfiable concept (Ji et al. 2009). The

algorithm iteratively constructs a set of MUPSs of an unsatisfiable concept using a

relevance-based selection function. Each MUPS returned by the algorithm is

attached with a weight denoting its relevance degree with respect to the

unsatisfiable concept.

Computing MISs of an inconsistent ontology can be similar to computing

MUPSs of an unsatisfiable concept. That is, we can simply adapt the black-box

algorithm for computing MUPS to compute MISs. However, such an algorithm

cannot scale to large ABoxes. In Du and Qi (2010), a novel method for computing a

set of sub-ontologies from an inconsistent OWL DL ontology is proposed so that

the computation of all MISs can be separately performed in each resulting sub-

ontology and the union of computational results yields exactly the set of all MISs.

Experimental results show that this method significantly improves the scalability

for computing all MISs of an inconsistent ontology.

17.3.3 A General Approach for Resolving Inconsistency
and Incoherence in Ontology Evolution

In this subsection, we deal with the problem of resolving inconsistency and

incoherence. More specifically, we consider this problem in the context of ontology

evolution. In this case, the problem is similar to the belief revision in classical

logic.

The problem of revision of ontology is described as follows. Suppose we have two

ontologiesO ¼ T ;Ah i andO0 ¼ T 0;A0� �
, whereO is the original ontology andO0 is

the newly received ontology which contains a set of axioms to be added toO. Even if
both O and O0 are individually consistent and coherent, putting them together may

cause inconsistency or incoherence. Therefore, we need to delete or weaken some

axioms in O to restore consistency and coherence. Note that when the original

ontology is inconsistent or incoherent and the newly received ontology is empty,

then the problem of revision of ontology is reduced to the problem of resolving

inconsistency and incoherence in a single ontology. Therefore, the approach proposed

in this chapter can be also used to deal with a single ontology.

Usually, the result of revision is a set of ontologies rather than a unique ontology

(Qi et al. 2006). More formally, we have the following definition of ontology

revision. We denote all the possible ontologies with O.

370 G. Qi and A. Harth

We first introduce the notion of a disjunctive ontology (Meyer et al. 2005).

A disjunctive ontology, denoted as O, is a set of ontologies. The semantics of the

disjunctive ontology is defined as follows (Meyer et al. 2005):

Definition 17.5. A disjunctive ontology O is satisfied by an interpretation I (or I
is a model ofO) iff 9O 2 O such that I j¼ O.O entails f, denotedO j¼ f, iff every
model of O is a model of f.
Definition 17.6. An ontology revision operator (or revision operator for short) in

DLs is a function � : O�O ! PðOÞ which satisfies the following conditions: (1)

O � O0 j¼ f for all f∈O0, where PðOÞ denotes all the subsets ofO and (2) for each

Oi∈O �O0, Oi is consistent.

That is, an ontology revision operator is a function which maps a pair of

ontologies to a disjunctive ontology which can consistently infer the newly received

ontology. In practice, we may only need one ontology after revision. In this case, we

can obtain such an ontology by ranking the ontologies obtained by the revision

operator and then selecting the one with highest rank. Ranking of ontologies can

either be given by the users or be computed by some measures, such as ranking of

test cases and syntactic relevance (see Kalyanpur et al. (2006) for more details).

The current work on ontology revision suffers from some problems, to name a

few, we have the following ones:

• There is much work on the analysis of applicability of AGM postulates for belief

change to DLs (Flouris et al. 2005, 2006). However, few of them discuss the

concrete construction of a revision approach.

• Current revision approaches often focus on dealing with logical inconsistency.

Another problem which is as important as inconsistency handling is incoherence

handling, where an ontology is incoherent if and only if there is an unsatisfiable

named concept in its terminology. As analysed in Flouris et al. (2006), logical

incoherence and logical inconsistency are not independent of each other.

A revision approach which resolves both logical incoherence and inconsistency

is missing.

We now propose our general approach which resolves incoherence and incon-

sistency in an integrated way. The approach consists of the process steps shown in

Fig. 17.2. In this process, problems that are related only with either the TBox or the

ABox are dealt with independently in two separate threads (c.f. left and right thread

of Fig. 17.2, respectively). For the TBox, inconsistency resolution is done before

incoherence resolution because incoherence is a consequence of inconsistency in

the TBox. We first check if T [T 0 is consistent. If it is not, then we resolve the

inconsistency. This can be done by either deleting the erroneous terminology

axioms or weakening them. In a next step, we resolve incoherence. There are

several ways to resolve incoherence. The commonly used technique is to remove

some (usually minimal numbers) of erroneous terminology axioms which are

responsible for the incoherence. Alternatively, we can take the maximal coherent

sub-ontologies of T with respect to T 0 as the result of revision (Meyer et al. 2006;

Lam et al. 2006). For the ABox, we resolve inconsistencies that occur only due to

17 Reasoning with Networked Ontologies 371

assertional axioms. This can be done by either deleting the assertional axioms

which are responsible for the inconsistency or weakening them. The weakening

of assertional axioms may be different from that of terminology axioms. Finally, we

deal with the inconsistency due to both terminology and assertional axioms. The

resulting ontology isO00 ¼ T 00;A00� �
, which is both consistent and coherent. In each

of the revision steps, the result may be a disjunctive ontology, since there may exist

several alternative ways to resolve the incoherence or inconsistency. However, in

each step, a decision is made: Which single ontology should be selected as input for

the subsequent step. This decision can be made either by the user or an automated

procedure based on a ranking of the results as discussed above.

Our general approach does not yet specify how to deal with inconsistency or

incoherence. Moreover, for different kinds of inconsistency, we can use different

strategies to resolve them. For example, when resolving inconsistency due to

terminology axioms, we can take the maximal consistent subsets of the original

TBox with respect to the new TBox as the result of revision. Whilst when resolving

Fig. 17.2 Approach to resolving inconsistency and incoherence

372 G. Qi and A. Harth

inconsistency related to assertional axioms, we can apply the revision approach in

Qi et al. (2006), which removes minimal number of individual resulting in the

conflict. In the next section, we instantiate our approach by proposing a concrete

approach to resolving incoherence and some concrete approaches to resolving

inconsistency.

17.3.4 Repairing Ontology Mappings

There has been some work on handling inconsistency in distributed ontologies

connected via mappings, where a mapping between two ontologies is a set of

correspondences between entities in the ontologies. In a distributed system

consisting of two ontologies and a mapping between them, correspondences in

the mapping can have different interpretations. For example, in distributed descrip-

tion logics (DDL) (Borgida and Serafini 2003), a correspondence in a mapping is

translated into two bridge rules that describe the ‘flow of information’ from one

ontology to another one. In Meilicke et al. (2007), the authors deal with the problem

of mapping revision in DDL by removing some bridge rules which are responsible

for the inconsistency. The idea of their approach is similar to that of the approaches

for debugging and repairing terminologies in a single ontology. Mappings can also

be interpreted as sets of axioms in a description logic. A heuristic method for

mapping revision is given in Meilicke and Stuckenschmidt (2007). However, this

method can only deal with inconsistency caused by disjointness axioms which state

that two concepts are disjoint. Later on, Meilicke et al. proposed another algorithm

to resolve the inconsistent mappings in Meilicke et al. (2008). The idea of their

algorithm is similar to the linear base revision operator given in Nebel (1994).

However, both methods given in Meilicke and Stuckenschmidt (2007) andMeilicke

et al. (2008) lack a rationality analysis with respect to logical properties.

In Qi et al. (2009), a conflict-based mapping revision operator is proposed based

on the notion of a ‘conflict set’, which is a sub-set of the mapping that is in conflict

with ontologies in a distributed system. A postulate from belief revision theory

(Hansson 1993) is adapted, and it is shown that the mapping revision operator can

be characterised by it. After that, an iterative algorithm for mapping revision is

given by using a revision operator in description logics, and it is shown that this

algorithm results in a conflict-based mapping revision operator. A revision operator

is given, and it is shown that the iterative algorithm based on it produces the same

results as the algorithm given in Meilicke et al. (2008). This specific iterative

algorithm has a polynomial time complexity if the satisfiability check of an

ontology can be done in polynomial time in the size of the ontology. However,

this algorithm may still be inefficient for large ontologies and mappings because it

requires a large number of satisfiability checks. Therefore, an algorithm to imple-

ment an alternative revision operator based on the relevance-based selection
function given in Huang et al. (2005) is proposed and is further optimised by a

module extraction technique given in Suntisrivaraporn et al. (2008). Neither of the

17 Reasoning with Networked Ontologies 373

above proposed revision operators removes minimal number of correspondences to

resolve inconsistencies. To better fulfil the principle of minimal change, we con-

sider the revision operator given in Qi et al. (2008) which utilises a heuristics based

on a scoring function which returns the number of minimal incoherence-preserving
sub-ontologies (MIPS) that an axiom belongs to. Instantiating the iterative algo-

rithm with this existing revision operator results in a new conflict-based mapping

revision operator.

17.4 Main Functionalities

In the following, we discuss the main functionality provided by the plugins which

cover reasoning and query processing with networked ontologies.

17.4.1 Reasoning Functionality

The installed reasoner materialises inferences and combines them with the ontol-

ogy, over which the query evaluation is carried out. Table 17.1 lists the axioms

which are supported for materialisation via the OWL API (Bechhofer et al. 2003).

Users may specify which of the axioms the reasoner should take into account in the

materialisation procedure. The reasoner plugin also provides a simple consistency

check which returns whether an ontology is consistent or not.

17.4.2 Diagnosing and Resolving Inconsistencies

Before representing the functionalities of RaDON, some terminologies involved are

introduced first:

Table 17.1 Supported

axioms for materialisation
Axiom

SubClass

DisjointClasses

PropertyAssertion

ClassAssertion

SubDataProperty

EquivalentClass

SubObjectProperty

DataPropertyCharacteristic

EquivalentDataProperties

EquivalentObjectProperty

InverseObjectProperties

ObjectPropertyCharacteristic

374 G. Qi and A. Harth

• Unsatisfiable concept: A named concept C in an ontology O is unsatisfiable if

and only if, for each model of O, the interpretation of C is empty.

• Incoherent ontology: An ontology O is incoherent if there exists an unsatisfiable

concept in O.
• Inconsistent ontology: An ontology O is inconsistent if and only if it has no

model.

RaDON provides a set of techniques for dealing with inconsistency and incoher-

ence in ontologies. In particular, RaDON supports novel strategies and consistency

models for distributed and networked environments.

RaDON extends the capabilities of existing reasoners with the functionalities to

deal with inconsistency and incoherence. Specifically, the functionalities provided

by RaDON include:

• Debugging an incoherent or an inconsistent ontology to explain why a concept is

unsatisfiable or why the ontology is inconsistent.

• Repairing an ontology automatically by computing all possible explanations

with respect to all unsatisfiable concepts if the ontology is incoherent, or with

respect to the inconsistent ontology if it is inconsistent.

• Repairing an ontology manually based on the debugging results. For the manual

repair, the user can choose the axioms to be removed for restoring the coherence

or consistency.

• Repairing a mapping between two ontologies.

• Coping with inconsistency based on a paraconsistency-based algorithm.

17.4.3 Query Functionality

The query plugin allows for query answering over local ontologies residing in

memory in the OWL API by using the ARQ query processor included in the Jena

Semantic Web framework (Carroll et al. 2004). Results of the query evaluation can

be further edited within the NeOn Toolkit.

17.5 Summary of Usage

In the following we show how to operate the plugins.

17.5.1 Reasoning Plugin

The reasoning plugin provides common access to reasoners for NeOn Toolkit

components. The plugin can be configured in a Preferences view shown in Fig. 17.3.

17 Reasoning with Networked Ontologies 375

Currently, two reasoners are supported, namely Pellet (Sirin et al. 2007) and HermIT

(Shearer et al. 2008). The selected preferences apply to all NeOn Toolkit components.

17.5.2 RaDON Plugin

RaDON provides two plugins to deal with a single ontology or an ontology

network. In the plugin of ‘Repair a Single Ontology’, the following specific

functionalities are provided:

• Handle incoherence: This functionality corresponds to the button of ‘Handle

Incoherence’ which can be activated if the ontology is incoherent. That is, there

is at least one unsatisfiable concept in the ontology. All the minimal

unsatisfiability-preserving subsets (MUPS) can be computed for each

unsatisfiable concept.

• Handle inconsistency: This corresponds to the button of ‘Handle Inconsistency’

which is activated if the ontology is inconsistent. That is, there is no model for

the ontology. All the minimal inconsistent subsets (MIS) can be calculated.

Fig. 17.3 Reasoner Preferences selection screenshot

376 G. Qi and A. Harth

• Repair automatically: This corresponds to the button of ‘Repair Automatically’.

If the button of ‘Repair Automatically’ is pressed, our algorithm will provide

some axioms to be removed to keep the coherence or consistency of the

ontology. Specifically, this can be done by computing the minimal incoher-

ence-preserving subsets (MIPS) or MIS, respectively, and then choosing auto-

matically some axioms to be removed.

• Repair manually: This corresponds to the button of ‘Repair Manually’. If this

button is activated, a new dialogue will be shown with the information of MIPS

or MIS which are computed based on the found MUPS or MIS, respectively. The

user could choose the axioms to be removed by themselves.

In the plugin of ‘Repair and Diagnose Ontology Network’, the similar

functionalities in the plugin above are given. The main difference is that this plugin

is to repair and diagnose a mapping between two ontologies by assuming the two

source ontologies are more reliable than the mapping itself.

17.5.3 SPARQL Query Plugin

The query plugin can be invoked using the ‘SPARQL Query’ context menu, which

starts the SPARQL view.

Users first load the ontology into the SPARQL query processor. Optionally,

users can load an ontology and materialise inferences at the same time. Having

loaded an ontology, users can specify a SPARQL query against the loaded ontology.

For example, the following SPARQL query lists all instances of type owl:Class.

PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
SELECT * WHERE– { ?s rdf:type owl:Class . }

When users click the ‘Evaluate’ button, the plugin generates a table with the

variable bindings. Figure 17.4 shows the SPARQL plugin with results for a query.

In addition to SPARQL SELECT queries which return a table with variable

bindings, the plugin also evaluates CONSTRUCT queries which return an RDF

graph. The returned RDF graph can be used to create a new ontology in the NeOn

Toolkit. Thus, the SPARQL query allows for the selection of parts of an ontology

and further refinement inside the Toolkit.

17.6 Conclusion

In this chapter we have discussed the functionality and workings of NeOn Toolkit’s

reasoning and query plugins. Reasoning tasks are important in knowledge engi-

neering, for example, to check for logical consistency of modelled artefacts. The

plugins provide users with advanced reasoning and query answering functionality

over networked ontologies.

17 Reasoning with Networked Ontologies 377

References

Baader F, Suntisrivaraporn B (2008) Debugging SNOMED CT using axiom pinpointing in the

description logic EL+. In: Proceedings of the 3rd international conference on Knowledge

Representation in Medicine (KR-MED 2008), Phoenix, AZ, USA

Baader F, Calvanese D, McGuinness D, Nardi D, Patel-Schneider P (2003) The description logic

handbook: theory, implementation and application. Cambridge University Press, Cambridge

Bechhofer S, Volz R, Lord P (2003) Cooking the semantic web with the owl api. In: The Semantic

Web – ISWC 2003, Lecture notes in computer science, vol 2870. Springer, Berlin/Heidelberg,

pp 659–675. doi:10.1007/978–3–540–39718–2 42

Borgida A (1994) On the relationship between description logic and predicate logic. In:

Proceedings of the 3rd international conference on Information and Knowledge Management

(CIKM 1994), Gaithersburg, MD. ACM, New York, pp 219–225

Borgida A, Serafini L (2003) Distributed description logics: assimilating information from peer

sources. J Data Semant 1:153–184

Carroll JJ, Dickinson I, Dollin C, Reynolds D, Seaborne A, Wilkinson K (2004) Jena:

implementing the semantic web recommendations. In: Proceedings of the 13th international

WorldWideWeb conference on Alternate track papers & posters. ACM, New York, NY, USA,

WWW Alt. 2004, pp 74–83, DOI http://doi.acm.org/10.1145/1013367.1013381, URL http://

doi.acm.org/10.1145/1013367.1013381

Fig. 17.4 Query plugin screenshot

378 G. Qi and A. Harth

http://dx.doi.org/10.1007/978–3–540–39718–2 42
http://dx.doi.org/http://doi.acm.org/10.1145/1013367.1013381
http://dx.doi.org/http://doi.acm.org/10.1145/1013367.1013381
http://dx.doi.org/http://doi.acm.org/10.1145/1013367.1013381

Clark KG, Feigenbaum L, Torres E (2008) SPARQL protocol for RDF. W3C Recommendation.

http://www.w3.org/TR/rdf-sparql-protocol/

Du J, Qi G (2010) Decomposition-based optimization for debugging of inconsistent owl dl

ontologies. In: Proceedings of the 4th international conference on Knowledge Science, Engi-

neering and Management (KSEM 2010), Belfast, Northern Ireland, UK, pp 88–100

Flouris G, Plexousakis D, Antoniou G (2005) On applying the AGM theory to DLs and OWL. In:

Proceedings of the 4th International Conference on Semantic Web (ISWC 2005), Galway,

Ireland, pp 216–231

Flouris G, Huang Z, Pan JZ, Plexousakis D, Wache H (2006) Inconsistencies, negations and

changes in ontologies. In: Proceedings of the 21st National Conference on Artificial Intelli-

gence (AAAI 2006), Boston, MA, pp 1295–1300

Grau BC, Horrocks I, Kazakov Y, Sattler U (2007) Just the right amount: extracting modules from

ontologies. In: Proceedings of the 16th international conference on World Wide Web (WWW

2007), Banff, AB, Canada, pp 717–726

Haase P, van Harmelen F, Huang Z, Stuckenschmidt H, Sure Y (2005) A framework for handling

inconsistency in changing ontologies. In: Proceedings of the 4th International Semantic Web

Conference (ISWC 2005), Galway, Ireland, pp 353–367

Hansson SO (1993) Reversing the levi identity. J Philos Log 22(6):637–669

Hayes P (2004) RDF semantics. W3C Recommendation. http://www.w3. org/TR/rdf-mt/

Huang Z, van Harmelen F, ten Teije A (2005) Reasoning with inconsistent ontologies. In:

Proceedings of the 9th International Joint Conference on Artificial Intelligence (IJCAI

2005), Edinburgh, Scotland, UK, pp 454–459

Ji Q, Qi G, Haase P (2009) A relevance-directed algorithm for finding justifications of dl

entailments. In: Proceedings of the 4th Asian Conference on Semantic Web (ASWC 2009),

Shanghai, China, pp 306–320

Kalyanpur A, Parsia B, Sirin E, Hendler J (2005) Debugging unsatisfiable classes in OWL

ontologies. J Web Semant 3(4):268–293

Kalyanpur A, Parsia B, Sirin E, Grau BC (2006) Repairing unsatisfiable concepts in owl

ontologies. In: Proceedings of the 3rd European Semantic Web Conference (ESWC 2006),

Budva, Montenegro, pp 170–184

Kalyanpur A, Parsia B, Horridge M, Sirin E (2007) Finding all justifications of OWL DL

entailments. In: Proceedings of the 6th International Semantic Web Conference (ISWC

2007), Busan, Korea, pp 267–280

Lam J, Pan JZ, Seeman D, Vasconcelos W (2006) A fine-grained approach to resolving

unsatisfiable ontologies. In: Proceedings of the 2006 IEEE/WIC/ACM international confer-

ence on Web Intelligence (WI 2006), Hong Kong, pp 428–434

Meilicke C, Stuckenschmidt H (2007) Applying logical constraints to ontology matching. In:

Proceedings of the 30th annual German conference on Artificial Intelligence (KI 2007),

Osnabr€uck, Germany, pp 99–113

Meilicke C, Stuckenschmidt H, Tamilin A (2007) Repairing ontology mappings. In: Proceedings

of the 22nd AAAI Conference on Artificial Intelligence (AAAI 2007), Vancouver, BC,

Canada, pp 1408–1413

Meilicke C, V€olker J, Stuckenschmidt H (2008) Learning disjointness for debugging mappings

between lightweight ontologies. In: Proceedings of the 16th international conference on

Knowledge Engineering: Practice and Patterns (EKAW 2008), Acitrezza, Italy, pp 93–108

Meyer T, Lee K, Booth R (2005) Knowledge integration for description logics. In: Proceedings of

20th national conference on Artificial Intelligence (AAAI 2005). AAAI Press, Pittsburgh, PA,

pp 645–650

Meyer T, Lee K, Booth R, Pan JZ (2006) Finding maximally satisfiable terminologies for the

description logic ALC. In: Proceedings of 21th national conference on Artificial Intelligence

(AAAI 2006), Boston, MA, pp 269–274

Minsky M (1974) A framework for representing knowledge. Massachusetts Institute of Technol-

ogy, Cambridge

17 Reasoning with Networked Ontologies 379

http://www.w3.org/TR/rdf-sparql-protocol/
http://www.w3. org/TR/rdf-mt/

Nebel B (1994) Base revision operations and schemes: semantics, representation and complexity.

In: Proceedings of the Eleventh European Conference on Artificial Intelligence (ECAI 1994),

Amsterdam, the Netherlands, pp 341–345

Prud’hommeaux E, Seaborne A (2008) SPARQL query language for RDF. W3C Recommenda-

tion. http://www.w3.org/TR/rdf-sparql-query/

Qi G, LiuW, Bell DA (2006) Knowledge base revision in description logics. In: Proceedings of the

10th European conference on logics in artificial intelligence (JELIA 2006). Springer,

Liverpool, UK, pp 386–398

Qi G, Haase P, Huang Z, Ji Q, Pan JZ, V€olker J (2008) A kernel revision operator for terminologies –

algorithms and evaluation. In: Proceedings of the 7th International Semantic Web Conference

(ISWC 2008), Karlsruhe, Germany, pp 419–434

Qi G, Ji Q, Haase P (2009) A conflict-based operator for mapping revision. In: Proceedings of the

8th International Semantic Web Conference (ISWC 2009), Chantilly, VA, USA, pp 521–536

Schlobach S, Cornet R (2003) Non-standard reasoning services for the debugging of description

logic terminologies. In: Proceedings of the 18th International Joint Conference on Artificial

Intelligence (IJCAI 2003), Acapulco, Mexico, pp 355–362

Schlobach S, Huang Z, Cornet R, van Harmelen F (2007) Debugging incoherent terminologies.

J Autom Reason 39(3):317–349

Schmidt-Schau M, Smolka G (1991) Attributive concept descriptions with complements. Artif

Intell 48(1):1–26

Shearer R, Motik B, Horrocks I (2008) HermiT: a highly-efficient OWL reasoner. In: Ruttenberg

A, Sattler U, Dolbear C (eds) Proceedings of the 5th international workshop on OWL:

Experiences and Directions (OWLED 2008 EU), Karlsruhe, Germany

Sirin E, Parsia B, Grau BC, Kalyanpur A, Katz Y (2007) Pellet: a practical owl-dl reasoner. Web

Semant 5:51–53. doi:10.1016/j.websem.2007.03.004, URL http://portal.acm.org/citation.cfm?

id¼ 1265608.1265744

Suntisrivaraporn B, Qi G, Ji Q, Haase P (2008) A modularization-based approach to finding all

justifications for owl dl entailments. In: Proceedings of the 3rd Asian Semantic Web Confer-

ence (ASWC 2008), Bangkok, Thailand, pp 1–15

380 G. Qi and A. Harth

http://www.w3.org/TR/rdf-sparql-query/
http://dx.doi.org/10.1016/j.websem.2007.03.004
http://portal.acm.org/citation.cfm?id= 1265608.1265744
http://portal.acm.org/citation.cfm?id= 1265608.1265744
http://portal.acm.org/citation.cfm?id= 1265608.1265744

Part IV

Case Studies

Chapter 18

Knowledge Management at FAO: A Case

Study on Network of Ontologies in Fisheries

Caterina Caracciolo, Juan Heguiabehere, Aldo Gangemi, Claudio

Baldassarre, Johannes Keizer, and Marc Taconet

Abstract In this chapter, we illustrate the work conducted at the Food and

Agriculture Organization of the United Nations (FAO) with the creation of

a network of ontologies about fisheries, developed with NeOn technologies and

methodologies. The network included the main thematic areas needed to talk about

fish stocks (often referred to as aquatic resources) and included data sources of

various types: reference data for time series, thesauri for document indexing, actual

time series, and the reuse of an existing well-known ontology maintained by FAO

(the geopolitical ontology). Such a network of ontologies was also used within

a prototypical web-based application. After describing the methodologies used to

create the network, and its contents and features, we draw some conclusions and

highlight the lessons learned during the process.

C. Caracciolo (*) • J. Keizer

Food and Agriculture Organization of the United Nations (FAO of the UN), OEK, v.le Terme di

Caracalla 1,

00154 Rome, Italy

e-mail: caterina.caracciolo@fao.org; johannes.keizer@fao.org

J. Heguiabehere

Facultad de Ingenierı́a, Universidad de Buenos Aires, Paseo Colón 850, Buenos Aires, Argentina

C1063ACV

e-mail: jheguiabehere@fi.uba.ar

A. Gangemi

Semantic Technologies Lab, Institute of Cognitive Sciences and Technologies (National

Research Council – CNR), Via Nomentana 56, 00161 Rome, Italy

e-mail: aldo.gangemi@cnr.it

C. Baldassarre • M. Taconet

Food and Agriculture Organization of the UN (FAO), FIES, v.le Terme di Caracalla 1,

00154 Rome, Italy

e-mail: claudio.baldassarre@fao.org; marc.taconet@fao.org

M.C. Suárez-Figueroa et al. (eds.), Ontology Engineering in a Networked World,
DOI 10.1007/978-3-642-24794-1_18, # Springer-Verlag Berlin Heidelberg 2012

383

mailto:caterina.caracciolo@fao.org
mailto:johannes.keizer@fao.org
mailto:jheguiabehere@fi.uba.ar
mailto:aldo.gangemi@cnr.it
mailto:claudio.baldassarre@fao.org
mailto:marc.taconet@fao.org

List of Acronyms

ASFA Aquatic Sciences and Fisheries Abstracts

ASFIS Aquatic Science and Fisheries Information System

CWP Coordinating Working Party on Fishery Statistics

EEZ Exclusive Economic Zones

FAO Food and Agriculture Organization of the United Nations

FIES Fisheries and Aquaculture Department, FAO

FSDAS Fisheries Stock Depletion Assessment System

HS Harmonized System

ISSCAAP International Standard Statistical Classification for Aquatic Animals

and Plants

ISSCFC International Standard Statistical Classification of Fishery

Commodities

ISO International Standard Organization

LMEs Large marine ecosystems

NAFO Northwest Atlantic Fisheries Organization

NOAA US National Oceanic and Atmospheric Administration

OAEI Ontology Alignment Evaluation Initiative

ODP Ontology Design Patterns Portal (www.ontologydesignpatterns.org)

OEK Office of Knowledge Exchange, Research and Extension

SITC Standard International Trade Classification

UNDP United Nations Development Programme

18.1 Introduction

The Food and Agriculture Organization of the United Nations (FAO) has collected

data about food and agriculture since its foundation in 1945. Since the beginning,

metadata has been used to annotate, organize, and classify data, as in the case of

thesauri used to index documents1 and reference data for statistics, i.e., the concepts

used as dimensions of a piece of statistical data2 to store and retrieve statistics3.

However, compared to most modern information systems, one may notice some

limitations.

First of all, especially for what concerns reference data, much of the actual

relationships between the objects that are referenced are kept away from it. For

example, there is reference data for species and reference data for fishing areas, but

1 http://www.fao.org/documents/en/docrep.jsp
2 Reference data may be considered a specific type of metadata for statistics. Other types of

metadata are about data provenance and methodology for data creation.
3 For a list of statistical databases on fisheries maintained by FAO, see http://www.fao.org/fishery/

statistics/en

384 C. Caracciolo et al.

http://www.fao.org/documents/en/docrep.jsp
http://www.fao.org/fishery/statistics/en
http://www.fao.org/fishery/statistics/en

if users want to know something about what species is found in a given fishing area,

they should search for this information in other information systems, where data

about species distribution is available. The result of this situation is that it is well

possible to query the system for time series about “catch of bluefin tuna (Thunnus
thynnus, Linnaeus, 1758) in the Indian Ocean,” although bluefin tuna is actually

found in open waters of tropical and subtropical seas worldwide. Moreover, data is

usually collected and stored according to one specific classification system. This

implies that the only way to query a database is by using exactly the same

classification used for storing the data. Conversion of data according to different

classifications is then a time-consuming task that only domain experts may reliably

perform. Obviously, the establishment of correspondences between classification

systems is a delicate task that falls outside the scope of an information manage-

ment project, but a modern information management approach should enable easy

conversion between one system and the other, any time when the conversion is

made available by experts.

For these reasons, the data owned by FAO is a good application area to prove and

refine the technologies developed within the NeOn project. We concentrated on the

domain of fisheries, as it is a good example of domain where the possibility of

linking together different information systems is crucial. The Fisheries and Aqua-

culture Department (FIES) of FAO publishes reports about various aspects of

fisheries, including aquatic resources, on a regular basis. Reports are usually

based on data contributed by different institutions, often stored in different infor-

mation systems and encoded in various formats. Therefore substantial data inte-

gration effort is usually required. In our use case on fisheries, we worked on the

hypothesis that the conversion of data and metadata into a network of ontologies

could lead to improved information sharing. The experimental application we

designed is a Fisheries Stock Depletion Assessment System (FSDAS)4.

In the rest of this chapter, we present our experience with the making of

a network of ontologies and on the application based on that. In Sect. 18.2, we

illustrate the domain and data used for the use case. In Sect. 18.3, we describe the

methodology followed for the creation of the network. In Sect. 18.4, we present the

resulting network of ontologies and highlight its features. In Sect. 18.5, we present

the ontology-based system we developed. Finally, in Sect. 18.6, we draw our

conclusion and hint at future work.

4 For details about the requirements driving this work in the context of the use case, see Iglesias

Sucasas et al. (2007).

18 Knowledge Management at FAO 385

18.2 Domains and Data

A fish stock is a subpopulation of particular species of fish with some definable

attributes and living in definable marine areas. A simplified notion of fish stock is

the one of marine resource: a fish stock considered from a management perspective.

We adopted the operational notion of marine resource and concentrated on a few

entities considered crucial to talk about it: first of all, marine species, but also water

areas (needed to indicate where species are caught) and land areas (to keep track of

legal dependency of water areas and vessels). We also considered other entities,

such as fisheries commodities and fishing techniques.

As for the actual data sets, we considered a relevant subset of the data set

available in FAO: a set of statistics on fisheries (mainly catch statistics) and

documents about fisheries. The corresponding metadata (i.e., reference data for

statistics and thesauri for documents) have been reengineered into a network of

ontologies. We also reused and included in the network the FAO geopolitical

ontology, used to aggregate information about countries and to operate the FAO

Country Profiles portal5. In the following, we first provide some explanations about

the entities we considered and then describe the data sets we used.

18.2.1 Data Sets Included in the Network of Ontologies

We have considered three distinct types of metadata sources:

1. Reference data used to identify the “dimensions” of a piece of statistical data

(we focused on catch data)

2. Thesauri used to index documents about fisheries: AGROVOC6 and ASFA

thesaurus7

3. The geopolitical ontology8. an ontology about geopolitical information main-

tained by FAO

Reference data. A time series is a sequence of statistical observations ordered in

time. FIES collects observations about catches (or captures), aquaculture produc-

tion, fleets, trade of commodities, among others9. Each piece of statistical data is

5 http://www.fao.org/countryprofiles/
6 http://aims.fao.org/website/AGROVOC-Thesaurus/sub
7 http://www4.fao.org/asfa/asfa.htm
8 http://www.fao.org/countryprofiles/geoinfo.asp?lang¼en
9Detailed information regarding fisheries statistics can be found in the Handbook of Fishery

Statistical Standards [HBFSS] by the Coordinating Working Party on Fishery Statistics (CWP).

The Coordinating Working Party on Fishery Statistics (CWP) supported by its participating

organizations has served since 1960 as the premier international and inter-organization forum

for agreeing upon common definitions, classifications, and standards for the collection of fishery

statistics.

386 C. Caracciolo et al.

http://www.fao.org/countryprofiles/
http://aims.fao.org/website/AGROVOC-Thesaurus/sub
http://www4.fao.org/asfa/asfa.htm
http://www.fao.org/countryprofiles/geoinfo.asp?lang=en
http://www.fao.org/countryprofiles/geoinfo.asp?lang=en

referenced by the following dimensions: time (in years), space (land and/or water

areas), and the variable representing the observed object (e.g., biological species,

vessels, commodities).

Figure 18.1 shows an example of time series about fish catch. Columns 1–3

represent the dimensions, or reference data, of the statistical data (i.e., land area,

water area, and species), while the last 10 columns report the yearly observations

collected. Information systems in FIES organize reference data into tables (refer-

ence tables (RT)) that store the codes assigned to each reference object according to
one or more coding system maintained by international organizations. They also

store the association between codes and names in one or more languages (usually

English, French, and Spanish). Correspondence between languages is one to one

because it results from international agreements (e.g., on names of territories, on

commodities classifications). The entire system that manages the RT is called

reference tables’ management system (RTMS)10, whose core is an oracle database.

Reference data is also used in the fisheries fact sheets produced by FIES, where

a large amount of information about fisheries, aquaculture, and related subjects

(including fishing techniques, fishing areas, fisheries and aquaculture country

profiles) is made available to the public in the form of semistructured text. All

fisheries fact sheets in FAO are in XML format, structured according to a compre-

hensive XML schema that includes all elements used in all types of fact sheets. Fact

sheets are organized by domains (e.g., cultured species, fishing equipment, fishery,

gear type), each corresponding to an element under the root FIGISdoc, the root of

any fact sheet (XML document). Domains are fully specified by means of nested

elements. Each element includes a description meant for human use.

FAO thesauri.We considered two thesauri: AGROVOC and ASFA. AGROVOC
is the FAO’s corporate thesaurus, covering all domains of interest to FAO, includ-

ing fisheries. AGROVOC is currently available in 19 languages, and 5 more are

under development11. AGROVOC is available in various formats, and at the time of

the NeOn use case, an OWL version was under study. Currently, it is encoded in

Fig. 18.1 Example of time series

10 Reference tables are browsable at: http://www.fao.org/fishery/rtms/en
11 Issues related to the treatment of multilinguality in AGROVOC are presented in Caracciolo and

Sini (2007).

18 Knowledge Management at FAO 387

http://www.fao.org/fishery/rtms/en

SKOS, although several other formats are still available to users. ASFA is the

thesaurus developed for the Aquatic Sciences and Fisheries Abstracts (ASFA)

partnership, an international agreement between institutions active in the area of

fisheries, to collect abstracts relevant to the domain. ASFA is available in three

languages: English, French, and Spanish.

The FAO geopolitical ontology is a repository of information (e.g., names in

various languages, codes, historical changes, geographical coordinates) about geo-

political entities such as countries and groups. It is largely used within FAO and by

partners for the purpose of querying information systems using codes for internal

storage of data about geopolitical entities (Kim et al. 2009). It is available as an

OWL ontology and as RDF(S) data published in the Linked Open Data style.

18.2.2 Coverage of the Fisheries Network of Ontologies

Once identified the resources to use for our use case, we went on selecting the

domain entities needed to ensure appropriate coverage of the network of ontologies

and consequent use in the FSDAS. For example, aquatic species and water areas are

necessary to define aquatic resources; land areas, together with aquatic species and

water areas, are necessary to reference catch statistics. Other entities are useful to

integrate our view on the fisheries domain, such as commodities (for production

data), fishing gears, and fishing vessels. The user not acquainted with statistics and

fisheries should keep in mind that names are important to enable users to search

across different data sets, while codes are important for actual storage and retrieval

of data.

In this section, we concentrate on the most important entities needed to under-

stand and reference fisheries data: aquatic species, water areas, land areas, and

aquatic resources.

Aquatic species. FAO maintains a list of aquatic species of interest to FAO (both

for fisheries and aquaculture), and about which data is collected: the ASFIS

(Aquatic Science and Fisheries Information System) list12, which currently includes

nearly 11,000 items13. Each species is provided with a taxonomic code, which

reflects a biological point of view (simplified taxonomic classification), used for the

purpose of data aggregation along taxonomic lines. Species are also given an

ISSCAAP14 code, whose purpose is aggregation according to groups formed

according to a commercial point of view. Species are also given an “inter-agency

3-alpha code”, which is a compact way to represent them and is used for data

exchange across UN agencies. As for names, only one preferred name in English,

12 http://www.fao.org/fishery/collection/asfis/en
13 ASIFS also includes taxonomic entities above the species level such as families or orders, on the

basis of the data reported to FAO by countries or other governing bodies.
14 International Standard Statistical Classification for Aquatic Animals and Plants (ISSCAAP).

388 C. Caracciolo et al.

http://www.fao.org/fishery/collection/asfis/en

Spanish, and French is taken for each species. The English name is available for

most of the records, and about one-third of them also have a French and Spanish

name15.

Water areas. Marine and inland waters are divided into a variety of zones and

areas, depending on the purpose of the division (e.g., legal jurisdiction, statistical

reporting of catch data, environmental assessment) and on the author of the division

(e.g., national or international body). For our purpose, the most important organi-

zation of water areas is the FAO Division Areas, used by FAO and partners for data

collection and statistical reporting. This is a system of 27 major areas, divided into

subareas, each divided into divisions, and these finally into subdivisions, covering

marine waters as well as inland waters16. We also considered large marine

ecosystems (LMEs): regions of the world’s oceans classified by the US National

Oceanic and Atmospheric Administration (NOAA)17 to identify areas of the oceans

for conservation purposes. LMEs have great economic and nutritional importance,

as the 64 classified LMEs produce 95% of the world’s annual marine fishery

biomass yields. We also considered exclusive economic zones (EEZ), i.e., sea

zones over which a state has special rights with regards to the exploration and use

of marine resources. The importance of EEZ cannot be overestimated, as can be

witnessed by the disputes between states over marine waters. From the point of

view of data collection and fisheries management, it is important to map the overlap

between EEZ and FAO divisions used for statistical data reporting.

Land areas. Land territories are central to most statistical collections. Fisheries

data is no exception since fish catches are either assigned to the country of the flag

flown by the fishing vessel or to the country where the vessels lands. Either way,

one may not forget territorial information. The names of territories (countries and

groups) are established by international agreements. By agreement, at least two

types of names of territory are given in each language: long names to be used in

official documents and short names to be used in informal communications.

A variety of codes are used for land areas. Most remarkably, ISO codes18 are

widely used and so are the codes established by the United Nations and its agencies,

such as the United Nations Development Programme (UNDP), the UN Statistical

Division, and by FAO. Each coding system tends to be specific to the purpose and

application for which they are used.

Fish stock aka aquatic resources. From a biological point of view, a stock

comprises all the individuals of fish in an area, which are part of the same

reproductive process. A stock occupies a well-defined spatial range and is

15Member agencies of the CWP have agreed to use these standard species names in statistical

publications and questionnaires. However, (a) it has not been possible to assign appropriate names

in all three languages to all species items, and (b) these names may not correspond with nationally

or regionally used common names.
16 http://www.fao.org/fishery/area/search/en
17 http://www.lme.noaa.gov/
18 ISO codes are established by the International Standard Organization (ISO).

18 Knowledge Management at FAO 389

http://www.fao.org/fishery/area/search/en
http://www.lme.noaa.gov/

independent of other stocks of the same species. When dealing with fishing

management, though, it is common to use the notion of aquatic resource, to vaguely

defined “stocks”, especially for management purposes. Just like a stock, a fishery

resource is defined in space and its geographical demarcation and often has a

political or jurisdictional connotation (e.g., Moroccan resources, exclusive eco-

nomic zones (EEZ), or high seas resources).

18.3 Methodology for the Creation of the Network

The methodologies for creating ontology networks have been widely studied within

NeOn (see Chap. 2). In our use case, when creating ontologies, we dealt with

various different situations:

• Reusing and reengineering non-ontological resources (Scenario 2 of the NeOn

Methodology)

• Building ontologies from scratch (corresponding to NeOn Methodology

Scenario 1)

• Reusing ontological resources (Scenario 3)

• Reusing ontology design patterns (Scenario 7)

• Mapping the ontologies created in order to obtain a networked set of ontologies

(Scenario 5)

We elicited the specifications for single ontologies, mappings among them, and

for the entire network, by extensive conversation with domain experts, in some

cases summarized by explicit competency questions. We also analyzed the systems

and data sets currently in use, to infer requirements about the expressivity of the

ontologies, their coverage and use for data collection, storage, and retrieval. In

particular, the scope, purpose, and level of formality of the network were derived

from those of the existing systems. In this sense, reaching consensus about the

ontologies was not really a problem, while several phases of consistency check,

verification, and validation of the requirements we extracted were performed

together with domain experts.

The ontologies in the network have been built by (1) reengineering non-onto-

logical resources either from relational databases or from informal knowledge

organization systems: thesauri, classification schemes, etc.; (2) designing them

from scratch; (3) reusing without any change. As for the reengineering of relational

databases, we followed the approach proposed in Barrasa et al. (2004), which

consists in creating ontologies based on the domain model and then creating

mappings between the ontologies and the database. Within this approach, we

used ontology design patterns (Presutti and Gangemi 2008; Gangemi and Presutti

2009) whenever possible (many of them were designed specifically for our purpose

390 C. Caracciolo et al.

http://dx.doi.org/10.1007/978-3-642-24794-1_2

and then generalized) and the R2O mapping language through the ODEMapster

processor19.

We followed an iterative approach consisting in a phase of domain analysis, a

phase of domain modeling, and a phase of data population of those models. A phase

of validation made with the collaboration of FAO fisheries and information man-

agement experts followed, which triggered a new iteration of modeling and popu-

lation. Each iteration was carried out in collaboration with domain experts, and

sanity checks were performed thereafter.

As for the reengineering of knowledge organization systems, we have consid-

ered two thesauri: ASFA and AGROVOC. Both had been previously ported to RDF

by using heterogeneous techniques: see Caracciolo et al. (2009) for a description

and references to related literature. Therefore, we have used an existing SKOS

version of ASFA and an experimental OWL version of AGROVOC, which was

under development in an independent FAO project.

Note that the different nature of the resources we used as a starting point,

thesauri and reference data (from relational databases), forced different modeling

styles. In fact, the ontologies resulting from the reengineering of reference data

have a precise semantics: if a class exists in the ontology, its extensional interpre-
tation (the set of individuals that have that class as rdf:type) includes exempli-

fications of the domain concept expressed by the name of that class. For example,

theWaterArea class refers to the collection of things that are water areas according

to fishery experts; the Species class refers to the collection of things that are

taxonomical species in the knowledge of fishery experts.

On the contrary, thesauri cannot be assumed to have an extensional semantics.

For example, asfa:Catchment_area cannot be directly interpreted as a class of

catchment areas but only as a thesaurus concept; in other words, it has a purely

intensional semantics. SKOS20 is a good formal language to encode this type of

resources, thanks to its class skos:Concept and its properties that enable the

representation of purely intensional relations between concepts, such as broader,
related, exact match, etc.

In other cases, ontologies have been built from scratch in order to model in a

more explicit way concepts that are implicitly used in the other resources that have

been reengineered, or because the FSDAS system needed the implementation of

some application requirements. Examples include the ontologies about aquatic

resources and the ontology for catch records. In those cases, the importance of

competency questions (Presutti and Gangemi 2008) was crucial because no previ-

ous formal modeling (as ontologies) of the domain existed, and the whole modeling

activity was only implicit in domain experts’ daily work. Those cases offered an

occasion to develop new ontology design patterns and to refine existing ones.

19 Initially, we used the stand-alone version of ODEMapster and then moved to the plugin version

for the NeOn Toolkit.
20 http://www.w3.org/TR/skos-reference

18 Knowledge Management at FAO 391

http://www.w3.org/TR/skos-reference

Finally, the inclusion in the network of the geopolitical ontology is a case of

reuse of an ontological resource. We have only reused data about countries, while

excluding other data that can be found in there, such as groups of countries.

Ontologies were networked in a variety of ways. First of all, improved versions

(either for the model or for the data) of ontologies were connected to one another by

means of the attribute owl:priorVersion. Second, some of the ontologies produced

were also designed in a modular way, thus creating a partial order graph by means

of owl:import statements. Third, mapping data was taken by the reference data,

where it was made available in relational form. For example, this happened with

ontologies about different commodity types. Fourth, a limited amount of mapping

was manually provided by domain experts. Finally, mappings were learned through

automatic methods (supervised by experts) and expressed as OWL ontologies that

contain the linking axioms between the vocabulary and the data from the linked

ontologies. Examples of these cases include mappings between ASFA and some

RTMS-based ontologies (e.g., species, aquatic areas, etc.), the linking between

countries in the geopolitical ontology and the catch data, and most of the mappings

included in the network.

The mapping between ASFA and AGROVOC (we already highlighted the

differences in their intended semantics) is an interesting case of automatic extrac-

tion of data and manual mapping. In that case, we had two options: either to enforce

an extensional semantics in ontologies derived from thesauri or to leave the

intensional semantics of the whole resource, and impose extensional semantics

only on specific thesaurus fragments, when needed. As the former approach has

proven to imply a time-consuming and partly arbitrary process, we opted for the

second approach, both for ASFA and AGROVOC. The consequence of this choice

is that, for any further usage of ASFA or AGROVOC concepts within the fishery

ontology network, task-oriented decisions will be required to provide a domain

semantics. For example, if the concept asfa:Catchment_area (an individual from

the class skos:Concept) is aligned to the class waterarea:Area (a class from the

FAO_fishing_area ontology), and the expected application aims at, for example,

finding the water areas for catch records of tunas, asfa:Catchment_area should be

also represented as an owl:Class by means of a refining rule so that any matching

water area (e.g., Mediterranean_sea) extracted from a document indexed by means

of ASFA can be represented as an instance of both asfa:Catchment_area (as a class)
and waterarea:Area. OWL221 semantics greatly helps in performing such

refinements because the interpretation of an ontology entity is made based on its

usage context (axiom); therefore, if we declare the axiom:

asfa:Catchment_area owl:equivalentClass waterarea:Area

then asfa:Catchment_area is automatically interpreted as an owl:Class.

21 http://www.w3.org/TR/owl2-syntax

392 C. Caracciolo et al.

http://www.w3.org/TR/owl2-syntax

The mapping between ASFA and AGROVOC was performed by using string

matching techniques22. For the mapping vocabulary, the SKOS mapping terms

have been used since the only alignment pattern needed is IndividualToIndividual,

and the desired mapping semantics is entirely covered by the SKOS terms: exact,

broad, narrow, close, related. The matches found in this way were then validated by

domain experts, the result of which validation was used to produce the final SKOS

mapping document.

Domain experts performing the evaluation of the suggested mappings were

presented in a spreadsheet with three columns, each showing an ASFA concept,

the candidate AGROVOC concepts (shown using their preferred English label) as a

concept-list embedded in a menu box, and the available SKOS mapping relations to

choose from.

The results of the ASFA-AGROVOC mapping are finally included in a new

ontology that imports SKOS, ASFA, and AGROVOC (Fig. 18.2) and contains all

mapping statements that have been validated by the experts, for example:

asfa:Mycotic_diseases skos:closeMatch agrovoc:Mycotoxicoses

Fig. 18.2 The ontology network resulting from the mapping between ASFA and AGROVOC:

asfaagrovocmapping.owl imports SKOS core, AGROVOC, and ASFA (asfad.owl is the actual

thesaurus; asfam.owl is the TBox containing the ASFA data model)

22We applied matching techniques based on the family of edit-distance functions. We chose the

Jaro-Winkler technique (Winkler 1990), which is not properly an edit-distance (as those based on

the notion of distance first formulated by Levenshtein (1966)), though it uses a broadly similar

metric which has proved of good results in the record-linkage literature. Some pre- and

postprocessing of the data was needed in order to normalize the format of entries in AGROVOC

and ASFA and present results to domain experts for validation.

18 Knowledge Management at FAO 393

18.4 FAO Network of Ontologies

In this section, we describe the FAO network of ontologies we produced and

analyze in details its features. All ontologies are available from the FAO website23

as OWL ontology schemas, populated with RDF instances. An HTML representa-

tion of both schema and instances was created by means of OWLDoc plugin for the

NeOn Toolkit and made available from the website.

The thematic areas covered by the network are all those introduced in Sect. 18.2

(aquatic species, water areas, land areas, and aquatic resources), plus others (fishing

gears and fishery commodities) that we do not describe in this chapter because less

central to the notion of fish stock. Figure 18.3 provides a high-level representation

of the network of fisheries ontologies. The use of the same icon signifies that the

ontologies represented in the picture cover the same thematic areas (see, for

example, the wave used to represent ontologies about divisions of water areas).

The network includes all the type of data sources mentioned in Sect. 18.2.2 (i.e.,

reference data, thesauri, and the FAO geopolitical ontology), plus a sample data set

of time series about “catch records” about aquatic species. Note that Fig. 18.3 does

not explicitly show the ontologies used only for the internal functioning of the

FSDAS nor those used to include mappings in the network (see below in this

section). Solid arrows denote owl:imports statements, while dashed arrows are for

mappings between classes and/or instances (see below in this section).

Fig. 18.3 Overview of the network of fisheries ontologies

23 http://aims.fao.org/website/NeON/sub2

394 C. Caracciolo et al.

http://aims.fao.org/website/NeON/sub2

Below, we list the ontologies included in the network, grouped by thematic areas

(see Fig. 18.3, ontologies symbolized by the same icon).

1. Aquatic species:

– Organized according to scientific taxonomic classification. Includes

biological entities relevant to fisheries classified taxonomically (Source:

reengineering of reference data)

– Species ISSCAAP. Includes the groups of aquatic species as defined in the

ISSCAAP classification (Source: reengineering of reference data)

– Species. Schema of information about aquatic species24, including informa-

tion about species distribution. (Source: manual modeling based on compe-

tency questions (Presutti and Gangemi 2008) and the fact sheets schema)

2. Water areas (Source: reengineering of reference data)

– FAO fishing areas. It includes 27 major areas, divided into a system of

subareas, divisions, and subdivisions.

– Large marine ecosystems. Identified by the National Oceanic and Atmo-

spheric Administration (NOOA) of the USA.

– Exclusive economic zone.

3. Aquatic resources (Sources: reengineering of reference data, data extracted from

fact sheets)

4. FAO geopolitical ontology. Contains information about land areas (countries)

5. Commodities ISSCFC HS (Source: reengineering of reference data). Contains

fragments of classification of commodities relative to fisheries: the International

Standard Statistical Classification of Fishery Commodities (ISSCFC) and the

Harmonized Classification (HS)25

6. Fishing gear ISSCFG26 (Source: reengineering of reference data)

7. AGROVOC thesaurus, covering a variety of thematic areas relevant to fisheries

8. ASFA thesaurus, covering a variety of thematic areas relevant to fisheries

9. Catch records (Source: FAO time series and NAFO)

Most of the ontologies produced are based on single repositories of data, as it is

the case with the reference data used to identify the “dimensions” of a piece of

statistical data collected by FAO. For example, any data about catch or production

is identified by a “what” (which species or group of species), a “where” (which

FAO fishing areas), and “by whom” (which country). However, the network also

included some ontologies populated with data coming from different sources, as for

example, the ontology on stocks, which includes data coming from both reference

data and fact sheets.

24 Any aquatic species relevant to fisheries, including some aquatic birds and plants.
25 http://193.43.36.238:8181/fi/website/FIRetrieveAction.do?dom¼ontology&xml¼sectionR.xml
26 http://www.fao.org/fishery/cwp/handbook/M/en

18 Knowledge Management at FAO 395

http://193.43.36.238:8181/fi/website/FIRetrieveAction.do?dom=ontology&xml=sectionR.xml
http://193.43.36.238:8181/fi/website/FIRetrieveAction.do?dom=ontology&xml=sectionR.xml
http://193.43.36.238:8181/fi/website/FIRetrieveAction.do?dom=ontology&xml=sectionR.xml
http://www.fao.org/fishery/cwp/handbook/M/en

The case of the ontology of catch record is an interesting one because it

organizes metadata (with extensive linking to the dedicated ontologies of reference

data) and data, i.e., pieces of statistical data about catch of aquatic species. We

considered the data collected by the Northwest Atlantic Fishery Organization

(NAFO)27 and FAO. Since the level of details of the two data sets is different, it

was required that a first step of harmonization be applied in order to reach a

common catch record definition. The result of this harmonization step is

represented in Fig. 18.4.

The picture shows the schema of a typical catch record, highlighting the types

(boxes) of subjects and objects of the properties (arrows) holding between a record

and the objects or data involved in that record. The catch record ontology28 reuses a

knowledge pattern (aka content design pattern, Gangemi and Presutti 2009) from

the ODP repository that models observations, records, and statements of dynamic

facts, with a specific temporal indexing29, and a knowledge pattern that models

spatial relations and places30. The class taxonomy of the catch record ontology is

Fig. 18.4 The CatchRecord knowledge pattern shared by FAO and NAFO data (Picture generated

by the ontology visualizer of NTK)

27 http://www.nafo.int/
28 http://www.ontologydesignpatterns.org/cp/owl/fsdas/catchrecord.owl
29 http://www.ontologydesignpatterns.org/cp/owl/observation.owl
30 http://www.ontologydesignpatterns.org/cp/owl/place.owl

396 C. Caracciolo et al.

http://www.nafo.int/
http://www.ontologydesignpatterns.org/cp/owl/fsdas/catchrecord.owl
http://www.ontologydesignpatterns.org/cp/owl/observation.owl
http://www.ontologydesignpatterns.org/cp/owl/place.owl

shown in Fig. 18.5. Figure 18.6 shows the ontology import graph for the catch

record ontology (arrows represent owl:imports statements). In particular, the

catchRecord class is a subclass of the class Observation from the observation.owl

Fig. 18.5 The CatchRecord class taxonomy (Picture generated by the KCViz visualizer of NTK)

Fig. 18.6 The import graph for the catch record ontology (Picture generated by the ontology

import visualizer of NTK)

18 Knowledge Management at FAO 397

pattern: an observation includes typically an observed entity (in this case, a species

through the isCatchRecordFor property), some temporal reference (in this case, a

date through recordDate and a year through catchYear), and some parameters (in

this case, a fishing area through fromFishingArea, a country through fromCountry,
an amount through catchAmount, and a unit of measure through unit). The catch

record ontology also reuses the water areas31 and species32 ontologies extracted

from the FI fact sheets.

The ontologies produced were networked by means of mappings of various

natures between their classes and/or individuals. Here we concentrate on those

mappings that are exploited by the FSDAS to provide users with richer entry points

to the data than those provided by current information systems (as per the

limitations mentioned in Sect. 18.1): we do not go in further details with the

network of import statements, or prior versions, and concentrate on mappings

modeled by using SKOS vocabulary and mappings expressing thematic, domain-

oriented information.

In the following, we list the mappings included in the network, including the

reason for having them in there. First, we list the mappings modeled as skos:

exactMatch:

• Taxonomic – ASFA

– Matching between species, to provide aquatic species, mainly described

taxonomically with more information about common names

• ASFA – AGROVOC

– Matching between species names, to exploit the multilinguality of

AGROVOC for species names

• Fisheries commodities – ASFA

– To provide ASFA commodities with the exact classifications

Many of these mappings were identified by using the experience (methodo-

logies, tools) gained during the Ontology Alignment Evaluation Initiative

(OAEI)33. Some of the ontologies included in the network were used as test bed

for the OAEI (see Shvaiko et al. 2007; Shvaiko et al. 2008; Shvaiko et al. 2009).

Also, some domain properties were identified and new links created (see

Caracciolo et al. 2010). Such links have been learned through typical matching

techniques (e.g., Soundex, Levenshtein), linguistic matching (e.g., headword
matching), and the structural properties emerging from the XML structure of FI

31 http://www.ontologydesignpatterns.org/cp/owl/fsdas/waterareasfactsheets.owl
32 http://www.ontologydesignpatterns.org/cp/owl/fsdas/speciesfactsheets.owl
33 http://oaei.ontologymatching.org/

398 C. Caracciolo et al.

http://www.ontologydesignpatterns.org/cp/owl/fsdas/waterareasfactsheets.owl
http://www.ontologydesignpatterns.org/cp/owl/fsdas/speciesfactsheets.owl
http://oaei.ontologymatching.org/

fact sheets. A manual evaluation of the linking has been performed. The list of

domain properties extracted is reported here:

• ASFA – Fishing gear ISSCFC. Relation: species caught by gear.

– To allow explicit grouping of species based on the gears used for their capture

• Taxonomic – Fishing gear ISSCFC. Relation: species caught by gear.

– To allow explicit grouping of species based on the gears used for their capture

• Taxonomic – FAO fishing areas. Relation: species found in FAO water areas.

– To allow explicit grouping of species based on the water areas where they are

known to be found

• Taxonomic – FAO geopolitical ontology. Relation: species in the vicinity of country.

– To allow explicit grouping of species based on the countries having a shore

with the water areas where the animal is known to be found

• Taxonomic – Commodities ISSCFC. Relation: species used for commodity.

– To provide a biological view on fisheries commodities

• Exclusive economic zones – FAO fishing areas. Relation: EEZ area intersects
FAO area.

– To provide a biological view on marine political boundaries

• Exclusive economic zones – FAO geopolitical ontology. Relation: EEZ area is
owned by a country.

– To associate water areas and the country ruling over it

• Large marine ecosystems – FAO fishing areas. Relation: LME area intersects
FAO area.

– To have a biological view on FAO reporting areas for statistical purpose

• Species ISSCAAP – Commodities ISSCFC HS. Relation: ISSCAAP group of

species originates commodity.

– To provide correspondence between different classifications of aquatic spe-

cies according to a commercial point of view

• Species ISSCAAP – Taxonomic. Relation: ISSCAAP group of species includes
taxonomic entity.

– To provide a biological view on a grouping of species based on commercial

interest

• Aquatic resources – Taxonomic – FAO fishing areas. Relations: aquatic resource

consists of aquatic species; aquatic resource lives in FAO area.

– To express the composition of a stock in terms of species and its presence in a

given FAO water area

18 Knowledge Management at FAO 399

As for how to expose the mappings between ontologies, i.e., if by means of

dedicated ontologies or not, we decided on the basis of what is best suited for

provenance and later maintenance. We created third entities in all cases where the

links are extracted after the creation of the ontologies. While in all other cases, we

preferred to leave the linking information inside the ontologies: this happened

especially in the case of correspondences between classification systems (e.g.,

commodities), which have the same provenance as the reference data.

Linguistic information. A dedicated linguistic model has been developed within

NeOn, the LIR model (see Chap. 4 in this book). The LIR model is a quite

sophisticated framework meant to support creation of ontologies that are

multilinguality aware, as is the case, for example, of resources such as AGROVOC,

which is currently distributed in 19 languages (5 more to be released soon).

However, our network of fisheries ontologies showed a limited degree of

multilinguality (in most cases, names are available in no more than three

languages), which made us adopt a simplified modeling of linguistic information

but compatible with the LIR model.

URIs. We used hash URIs34 for all ontologies based on reference data, forming

their local part by concatenating key codes used in the relational database35. This

type of URIs guarantees uniqueness; it is easy to check because the meta code

allows one to recognize at a glance if a piece of data was correctly taken from the

database and organized in the right class; given the stability of the source databases,

the generation of new versions is always compatible with previous versions, and it

is therefore of easy maintenance. Finally, this convention ensures uniformity

throughout the reference tables, which implies that URIs may be built in the same

way independently of the reference data set at hand.

The inconvenience of such a type of identifier is that it is very little informative

to casual users who are not aware of the database behind. However, this drawback is

partially overcome by having rdfs:labels that may be used for display, but still one

may argue that better, i.e., more informative and user-friendly URIs may be used.

Appropriate considerations should be made on a case-by-case approach36. The

discussion above shows that no uniform approach to URIs can be taken in this

34 http://www.w3.org/TR/2007/WD-cooluris-20071217/
35 As in http://www.fao.org/aims/aos/fi/species_taxonomic.owl#ID_31005_2632
36 Compare, for example, the following cases: For biological entities, the only names available (in

FAO data) for all entities are the scientific names. In the case of FAO water areas for statistical

reporting, the best option seems to be using the code itself (that vary in length and formal

composition, which may represent a problem for maintenance) given to each area, as it is the

only piece of information that each item adopts. Other entities in the future should be taken directly

from the body in charge, as in case of the large marine ecosystems is maintained by the US

National Oceanic and Atmospheric Administration (NOAA). The case of exclusive economic

zones (EEZ) is more complex, as there is no single accepted way to model and manage this type of

data. GIS technology provides a good tool to keep track of EEZ borders, but for our purposes, it is

also important that a coding system, if possible standardized, be available. Similar issues apply to

the case of vessel and gear types, while the case of commodities is even more controversial, as in

400 C. Caracciolo et al.

http://dx.doi.org/10.1007/978-3-642-24794-1_4
http://www.w3.org/TR/2007/WD-cooluris-20071217/
http://www.fao.org/aims/aos/fi/species_taxonomic.owl#ID_31005_2632

domain: sometimes, a human-readable name is the best choice; in other cases,

names are not available at all, or if they are, they are simply too long and

cumbersome to use. Codes may be preferred; however, they follow a number of

different formats, and often, they are revised and changed more often than names.

For this reason, we kept numeric identifiers in the URIs, and in so doing, we

privileged uniformity, uniqueness, and ease of maintenance over the possibility

for a human user to grasp from the URI what it is about. However, when data is to

be visualized, rdfs:labels are used instead of URIs.

18.5 Fisheries Stock Depletion Assessment System

The Fisheries Stock Depletion Assessment System (FSDAS) is a web-based proto-

type (Fig. 18.7 provides a high-level view of its system architecture) of what could

be achieved by a software supported by a network of ontologies. It provides access

to a selection of full-text documents and fact sheets, in addition to the data

that domain descriptions are way more important than codes, but unfortunately descriptions tend to

be extremely long.

Fig. 18.7 FSDAS system architecture

18 Knowledge Management at FAO 401

contained in the network, which also includes statistical data and metadata for

textual and statistical data.

Functional requirements for the FSDAS were elicited by fisheries managers and

domain experts, while non-functional requirements were carefully designed as a

joint work with information managers in FAO.

Users experience FSDAS as a browsable and queryable web application that

returns organized, ranked, linked results, together with direct links to related stored

documents or web pages. Figure 18.8 presents the user interface of FSDAS. It is

organized in panels that we list using the letters shown in Fig. 18.8 (A) Taxonomy

Panel for browsing taxonomies, (B) Query Composition Panel for the user to

compose complex queries, (C) Search and Result Panel for free text search, (D)

Resource Detail Panel, (E) Document Viewer Panel to inspect textual documents

returned as search result, and (F) Query Result Panel.

The FSDAS also allows for navigation of various classification systems, linked

to one another. This allows one to use a given classification system even if different

from the one used for data storage. Also alternative names retrieved from

networked resources are displayed to users. In summary, the large number of

mappings available is used to allow users to search the data set according to

multiple perspectives, for example, according marine area or gear type, as well as

aquatic species.

The query panel (Fig. 18.9) allows users to formulate queries like as complex as:

“What are the aquatic species living below 20 m depth, and whose name

contains the word-part shark?” In traditional systems, the answer to such a query

could only be found after a sequence of queries to different resources.

FSDAS also supports the grouping of aquatic resources by (marine) area or other

criteria, such as the fishing gear typically used for their capture.

Fig. 18.8 Main front-end panels in the FSDAS web interface

402 C. Caracciolo et al.

18.6 Conclusions and Lessons Learned

In this chapter, we reported on our experience with the application of tools and

techniques developed within the NeOn project to the area of fisheries. We have

developed a network of ontologies covering the most important thematic areas

needed to manage information about aquatic resources (i.e., aquatic species, water

areas, and land areas) and massively included mappings between the ontologies in

the network. The network also included a data set of statistical data: this is the first

attempt to give a semantic modeling to numeric data of that sort. Based on the

network, we built a prototypical application, called Fisheries Stock Depletion

Assessment System, with the goal to show users how networked ontologies could

be used.

The FSDAS prototype nicely shows the networked ontologies developed for this

work and how they can be used to bridge the information gap currently existing

between data sets. In particular, by using as a rich network of ontologies, it allows

users to query and look at the data collected, in particular statistical data, according

to more points of view than the one used for data storage.

The creation of the network was nicely supported by the NeOn Toolkit and its

plugins, in particular for the reengineering of non-ontological data (i.e., the refer-

ence data for time series) and the ontology mapping. However, in the case of

ontology mapping, also a number of NeOn technologies have been used, that

were later developed as NeOn plugins. For the reengineering of reference data,

we used extensively the NeOn plugin ODEMapster, which relies on ontologies for

the extraction of data from relational database. This approach resulted to be very

useful in preliminary phases but seems to be less convenient for data maintenance,

as any minor change in the original database requires that a new transformation

phase takes place.

The network of fisheries ontologies was produced within the scope of a large

prototypical effort, and it was not used to replace current information systems and

data sets. The implication of this state of affairs is that we essentially duplicated

data, as data maintenance continued to take place in the original data sources which

continued to feed existing information systems. In order for a complete replacement

to take place, all information systems accessing the data included in the network of

Fig. 18.9 FSDAS user interface: the query panel

18 Knowledge Management at FAO 403

ontologies should have been reengineered so as to work with ontologies and RDF

data. In fact, this is a process that is certainly going to happen but very likely in an

incremental manner. Based on this and other considerations, we encourage the use

of ontologies (OWL schema plus RDF instances) primarily for data sharing and

dissemination. For example, the extraction of data from relational database and its

reengineering as ontologies was extremely useful to make evident the many ad-hoc

decisions made when storing data for internal use only. These lessons revealed to be

important especially when dealing with standard classifications, such as the various

coding systems we considered. As many of the coding systems considered are

actually maintained by FAO and adopted as standards by the international commu-

nity, the use of standard technologies (e.g., RDF, OWL) showed to be an appropri-

ate approach to the publication of those standards to the public.

The work exposed in this chapter also contributed to a better understanding of

the issue of converting traditional thesauri into modern formats to be compatible

with current approach to web publications. For instance, the conversion of the

AGROVOC thesaurus into a concept schema is now finalized, while the conversion

of the ASFA thesaurus is about to be completed, also thank to the lessons learned

during the making of this work (see considerations about AGROVOC and ASFA

semantics in Sect. 18.3).

The activity of ontology mapping has had a remarkable follow up in the area of

linked data, which has RDF and concept schemas (ontologies) at its very

foundations. One of these results is that FAO is currently enhancing the network

of ontologies and the conversion work carried out within NeOn to produce a larger

data repository of open linked data (Caracciolo et al. 2011). One example of this is

the linked data version of AGROVOC37.

Acknowledgments We are pleased to thank our colleagues in FAO who have collaborated in

various phases of the NeOn project: Marta Iglesias, Yves Jaques, Margherita Sini, Aureliano

Gentile, Francesco Calderini, Soonho Kim, Fabrizio Sibeni.

References

Barrasa J, Corcho O, Gómez-Pérez A (2004) R2O, an extensible and semantically based database-

to-ontology mapping language. In: Second Workshop on Semantic Web and Databases

(SWDB2004), Toronto, Canada

Caracciolo C, Sini M (2007) Requirements for the treatment of multilinguality in ontologies within

FAO. In: Proceedings of OWLED2007. Available at http://owled2007.iut-velizy.uvsq.fr/

PapersPDF/submission_45.pdf

Caracciolo C, Heguiabehere J, Gangemi A, Presutti V (2009) NeOn deliverable D7.2.3. Initial

network of fisheries ontologies. NeOn project

37 http://aims.fao.org/website/Linked-Open-Data/sub

404 C. Caracciolo et al.

http://owled2007.iut-velizy.uvsq.fr/PapersPDF/submission_45.pdf
http://owled2007.iut-velizy.uvsq.fr/PapersPDF/submission_45.pdf
http://aims.fao.org/website/Linked-Open-Data/sub

Caracciolo C, Heguiabehere J, Gangemi A, Peters W, Stellato A (2010) NeOn deliverable D7.2.4.

Second network of fisheries ontologies. NeOn project

Caracciolo C, Morshed A, Stellato A, Johannsen G, Keizer J (2011) Thesaurus maintenance,

alignment and publication as Linked Data. In: Proceedings of MTSR 2011

Gangemi A, Presutti V (2009) Ontology design patterns. In: Staab S et al (eds) Handbook of

ontologies, 2nd edn. Springer, Berlin

Iglesias Sucasas M, Caracciolo C, Baldassarre C, Jaques Y (2007) NeOn deliverable D7.1.2.

Revised specifications of user requirements for the Fisheries case study. NeOn project

Kim S, Iglesias Sucasa M, Caracciolo C, Viollier V, Keizer J (2009) Integrating country-based

heterogeneous data at the United Nations: FAO’s Geopolitical Ontology and services. In:

Proceedings of semantic technology conference, 2009. http://semanticweb.com/integrating-

country-based-heterogeneous-data-at-the-united-nations-fao-s-geopolitical-ontology-and-

services_b10681

Levenshtein V (1966) Binary codes capable of correcting deletions, insertions, and reversals.

Soviet Phys Doklady 10:707–710

Presutti V, Gangemi A (2008) Content ontology design patterns as practical building blocks for

web ontologies. In: Spaccapietra S et al (eds) Proceedings of ER2008, Barcelona, Spain

Shvaiko P, Euzenat E, Giunchiglia F, He B (2007) Proceedings of 7th ontology matching

workshop. http://oaei.ontologymatching.org/doc/Proceedings-OM-2007.pdf

Shvaiko P, Euzenat E, Giunchiglia F, Stuckenschmidt H (2008) Proceedings of 8th ontology

matching workshop. http://disi.unitn.it/~p2p/OM-2008//om2008_proceedings.pdf

Shvaiko P, Euzenat E, Giunchiglia F, Stuckenschmidt H, Noy N, Rosenthal A (2009) Proceedings of

9th ontology matching workshop. http://disi.unitn.it/~p2p/OM-2009//om2009_proceedings.pdf

Winkler WE (1990) String comparator metrics and enhanced decision rules in the fellegi-sunter

model of record linkage. In: Proceedings of the section on survey research methods, American

Statistical Association, Alexandria, pp 354–359

18 Knowledge Management at FAO 405

http://semanticweb.com/integrating-country-based-heterogeneous-data-at-the-united-nations-fao-s-geopolitical-ontology-and-services_b10681
http://semanticweb.com/integrating-country-based-heterogeneous-data-at-the-united-nations-fao-s-geopolitical-ontology-and-services_b10681
http://semanticweb.com/integrating-country-based-heterogeneous-data-at-the-united-nations-fao-s-geopolitical-ontology-and-services_b10681
http://oaei.ontologymatching.org/doc/Proceedings-OM-2007.pdf
http://disi.unitn.it/~p2p/OM-2008//om2008_proceedings.pdf
http://disi.unitn.it/~p2p/OM-2009//om2009_proceedings.pdf

Chapter 19

Electronic Invoice Management in the

Pharmaceutical Sector: The PharmaInnova Case

José Manuel Gómez-Pérez, Vı́ctor Méndez, Joan Candini,

and Juan Carlos Muñoz

Abstract Since the use of electronic invoicing in business transactions was

approved by the EU back in 2002, its application in Europe has grown considerably.

However, despite the existence of standards like EDIFACT (http://www.unece.org/

trade/untdid/welcome.htm) or UBL, (http://www.oasis-open.org/committees/ubl)

widespread take-up of electronic invoicing has been hindered by the enormous

heterogeneity of proprietary solutions. In this chapter, we describe an approach

toward addressing the interoperability problem in electronic invoice exchange. We

especially focus on networked ontologies as the main enablers of such an approach,

where networked ontologies serve as a semantic gateway for the transformation of

invoice data between different formats and models.

19.1 Introduction

Since the new EU legislation on electronic invoicing was approved in 2002 and

implemented by member countries in 2004, it is possible to send and receive

invoices electronically, provided that they include a digital signature. The potential

savings are enormous assuming that appropriate technological solutions exist. In

parts of Europe, this has led to a proliferation of proprietary software products by

vendors, e.g., SAP and ORACLE, aimed at tackling the e-invoicing problem.

J.M. Gómez-Pérez (*) • V. Méndez

Intelligent Software Components (iSOCO) S.A., Avda. del Partenón, 16-18, 28042 Madrid, Spain

e-mail: jmgomez@isoco.com; vmendez@isoco.com

J. Candini

Laboratorios KIN, S.A, C. Ciudad de Granada, 123, 08018 Barcelona, Spain

e-mail: jcandini@kin.es

J.C. Muñoz

PharmaInnova, Avda. Torreblanca, 57, 08172 Sant Cugat del Vallés, Spain

e-mail: jcmunoz@pharmainnova.com

M.C. Suárez-Figueroa et al. (eds.), Ontology Engineering in a Networked World,
DOI 10.1007/978-3-642-24794-1_19, # Springer-Verlag Berlin Heidelberg 2012

407

http://www.unece.org/trade/untdid/welcome.htm
http://www.unece.org/trade/untdid/welcome.htm
http://www.oasis-open.org/committees/ubl
mailto:jmgomez@isoco.com
mailto:vmendez@isoco.com
mailto:jcandini@kin.es
mailto:jcmunoz@pharmainnova.com

However, almost all current solutions are stand-alone applications, each with their

own model of an electronic invoice.

Consequently, many industries suffer from migrating legacy systems to the

formats required by the current e-invoicing solutions. This is obviously an entry

barrier, especially for small and medium enterprises; large companies suffer less

because they can “force” their providers to comply with a particular format, or else,

they are out of business. Taking into account that a middle-sized organization

processes around 100,000 invoices per year, the potential benefits are self-evident,

with an estimated saving of almost 80% with respect to traditional paper invoices

(Gómez-Pérez et al. 2006). However, the risks are also considerable, given the size

of the investment required on one hand and the consequent vendor lock-in on the

other hand. It is obvious that technologies with the potential to reduce the cost of

migrating from one format to another are extremely attractive, especially for

middle-sized companies.

Throughout industry, there is a large duplication of effort that could be signifi-

cantly reduced if companies in the same sectors were willing to share models and

infrastructure, a precondition which is made more complex by the competitive

environments where they operate. The main limitations therefore include:

1. High investment (acquisition and maintenance) for industrial stakeholders to set

up their own business IT infrastructure.

2. Difficulty in setting up business partnerships is due to high IT integration costs;

this requires integration and communication across heterogeneous infra-

structures, with additional investments to be made as each new partner joins

such partnership. In practice, this implies the development of ad hoc transfor-

mation software between each pair of invoice formats and models potentially

participating in economic transactions, which is time-consuming, expensive, and

cumbersome.

3. Lack of possibilities to benefit from the fact that business partners of companies

in a same sector are often shared and their invoice models could be common.

This scenario provides an opportunity for building semantic platforms for data

interoperability among different stakeholders for business transactions in the form

of invoice exchange. Our main objective is to facilitate interoperable invoice

exchange between organizations following different formats and models, thus

reducing entry barriers for companies and stimulating widespread adoption of

e-invoicing, especially among small- and middle-sized companies.

In order to achieve such objective, users of e-invoicing systems need to be

provided with (1) expressive, modular, and extensible means to represent invoice

data observing both relevant standards and proprietary, local, and even tacit (not

explicitly defined by a data model) representations of invoices and (2) usable tools

that enable users to define correspondences between their invoice data and such

formal models, which can be subsequently exploited for automated exchange of

invoices between stakeholders following different representation models and/or

formats.

408 J.M. Gómez-Pérez et al.

In this chapter, we focus on the principled development of networked ontologies

to address the first of the abovementioned issues, allowing for automatic transfor-

mation of large amounts of invoice data across formats and models.

19.2 Use Case Description

The main problem of interoperable invoice exchange is heterogeneity. Current

technology and methods do not allow building generic solutions which allow the

different peers involved in a commercial transaction to automatically process any

type of invoice. The range of Enterprise Resource Planning (ERP) systems

according to which invoices are emitted and the different formats that exist in the

market are so wide that it has been necessary for organizations to take special

measures in order to adopt electronic.

Nowadays, two main types of measures are applied: (1) to create clusters or

sectorial associations that agree to define common invoicing infrastructure in terms

of shared ERP platforms, invoice formats and models, and processes and (2) to

identify the invoicing infrastructure that is necessary to automate invoice exchange

with given stakeholders and build specific ad hoc plugins which implement

gateways between the invoicing infrastructure of each peer.

Additionally, these two options can be mixed to a certain extent, as in the case of

PharmaInnova1, where a group of middle-sized laboratories have agreed to define

common invoice models but keeping their ERP infrastructure. Such approach

(illustrated in Fig. 19.1) requires an invoice interoperability middleware that

ensures compatibility between invoice models of providers, wholesalers, and

laboratories. Most laboratories have the same clients, so it is easier for them, as

members of the cluster, to define, negotiate with clients, and implement common

invoice models. This also allows the members of the cluster to share the expenses of

building the abovementioned middleware.

However, all this process is costly in time and effort, and flexibility is low. For

example, if a new member enters the cluster, the agreed invoice model needs to be

revised not only within the cluster but also with the clients. This problem also

applies to all the possible commercial transactions of pharmaceutical laboratories

with suppliers, wholesalers, and pharmacies and, by extension, to those between

wholesalers and pharmacies. Furthermore, knowledge about how to process invoice

data in order to address the interoperability problem should be provided as directly

as possible by subject matter experts (SMEs) in the field, leveraging their expertise

on the domain to conduct this process. This allows to minimize the number of errors

introduced by engineers with a limited knowledge of the e-invoicing models and

1 http://www.pharmainnova.com

19 Electronic Invoice Management in the Pharmaceutical Sector 409

http://www.pharmainnova.com

formats of specific companies and to reduce the cost of implementing the transfor-

mation process by leaving additional engineers out of the loop.

However, the knowledge of SMEs about invoice representations is usually

constrained to their own e-invoicing systems. Therefore, it becomes necessary to

provide them with a shared, formal conceptualization, e.g., an ontological repre-

sentation of the e-invoicing domain, which SMEs can use to describe their invoice

data. The election of an ontological framework for such purpose supports a three-

fold objective:

1. Provide a formal model for the representation of knowledge related with the e-

invoicing domain, which observes both e-invoicing standards and sectorial

specializations

2. Serve as a semantic gateway for invoice transformation during invoice exchange

3. Ensure the consistency of invoices exchanged between heterogeneous systems

by leveraging the expressivity of the ontologies for automatic data and object

type checks, observations of cardinality constraints, etc.

In this use case, we follow a learn-by-example approach where SMEs define

correspondences between a sample invoice and the ontologies, which enable them

to semantically annotate invoice data. The correspondences defined through such

annotations are stored, recording metadata about each individual piece of invoice

data annotated by the SME and the ontology entity it corresponds to. Subsequent

invoices following the format and model of the sample can be automatically

processed using the correspondences identified during the annotation phase, thus

supporting their transformation into ontology entities and, from there, into whatever

other invoice format and model treated in the same way.

Fig. 19.1 Interoperable invoice exchange in PharmaInnova

410 J.M. Gómez-Pérez et al.

19.3 Ontology Network Development

In the context of this use case, we have built an ontological framework in the form

of expressive, modular, and extensible networked ontologies following the ontol-

ogy development guidelines provided by the NeOn Methodology (Chap. 2) and,

simultaneously, contributing to its development. The resulting invoicing networked

ontologies are available as exemplary ontologies at the Ontology Design Patterns2

portal. Next, we describe the application of the methodology to this particular case,

focusing on:

• The observed ontology requirements specification

• The established ontology development life cycle, as part of the scheduling

activity

• The most relevant processes and activities that have been performed for the

development of the ontologies

19.3.1 Ontology Requirements Specification

Ontology requirements have been obtained fundamentally through competency

questions, answered by SMEs in a number of business sectors, who covered a

broad spectrum of the different roles in the invoicing process, including:

• U1. User of the invoicing application who is going to model a new invoice

• U2. User who emits invoices

• U3. User who receives invoices

• U4. User who administrates the invoicing system

• U5. Developers of invoicing applications

The complete set of competency questions and answers obtained can be found in

Gómez-Pérez et al. (2007). Such competency questions can be classified as follows:

1. Competency questions about the e-invoicing workflow (11 CQs). Examples for

this group are:

CQ7: What is necessary to identify the emitter of the invoice? NIF/CIF.
CQ9: What is necessary to identify the products in the invoice? Product

description.
CQ15: What is the address of the emitter of the invoice? The supplier fiscal

address.
CQ17: What is the status of the invoice X? The status can be imported, emitted,

in process, accepted, in creation or disused.

2 http://ontologydesignpatterns.org/wiki/Ontology:Main

19 Electronic Invoice Management in the Pharmaceutical Sector 411

http://dx.doi.org/10.1007/978-3-642-24794-1_2
http://ontologydesignpatterns.org/wiki/Ontology:Main

2. Business rules applied during invoice exchange (4 CQs). Examples for this

group are:

CQ20: What is the total discount applied to this invoice? Discounts in payment
date.

CQ21: Is it possible to apply any special price to this invoice? Yes, if you
describe the concept in the description line.

CQ22: Is it possible to apply any business rule in this invoice? No, only the rules
related to the amount to pay and supplier code.

CQ23: What is the unitary price before applying discounts? The net price.

3. Information about the roles of e-invoice emitters and receivers (32 CQs).

Examples for this group are:

CQ29: How much is the total price of the invoice? Price in the specific invoice
received.

CQ33: When do we have to pay? Date in the specific invoice received.
CQ49: Have we sold any other product in invoice X? Products in the specific

invoice received.
CQ60: Do we have to apply any specific rule in invoice X? Rules in the specific

invoice received.

4. State-of-the-art technologies used in e-invoicing systems (5 CQs). Examples for

this group are:

CQ40: What invoicing technologies are using the emitters of the invoice? ERPs
and small products for invoicing like Facturaplus or Contaplus, and
customized applications.

CQ42: In percentage, can you classify the invoicing technologies of each
emitter? 65% CSV and FLF, 25% xml, and 10% EDI.

CQ44: Is possible to classify the technologies depending on the business type of
the emitter of the invoice? No.

5. Multilingualism needs (2 CQs). The CQs for this group are:

CQ18: What is the language of the invoice? Currently only Spanish.
CQ19: Where is the emitter of the invoice from? Spain.

6. Time modeling (15 CQs). Examples for this group are:

CQ62: When do we have to pay the invoice X? Date that depends on the
agreement.

CQ63: When are the goods arriving bought in invoice X? On the agreed date.
CQ67: What is the expiry date of invoice X? There is no expiry date.
CQ75: How many products did we buy during the month? Number of products in

the received invoices.

412 J.M. Gómez-Pérez et al.

7. Currency representation (8 CQs):

CQ76: In what currency are the receivers paying in invoice X? Euro
CQ78: What taxes are applied in the invoice X? IVA, IGIC, or RE.
CQ82: How much is the total amount in invoice X? Total line amount – total

discounts + taxable amount.

8. General and composed competency questions (14 CQs):

CQ4: What concepts are mandatory for a wholesaler/provider/laboratory? Two
types of information: first regarding the identification of companies (names,
addresses, bank accounts, etc.) and second information about the amounts of
the products in the invoice and their prices

CQ84: Given a set of invoices of different companies, is it possible to identify the
common concepts used? Yes.

CQ87: Given the information of a company, what products did it buy? Products
in the received invoice.

CQ91: Given the information of a product, how many units have been sold?
Number of units in the received invoice.

Among the most relevant findings, interviews with SMEs showed the need of

observing the main e-invoicing standards, which were identified as EDIFACT and

UBL, and proprietary data models in business partnerships.

19.3.2 Ontology Development Life Cycle and Scenarios
for Building the Invoicing Networked Ontologies

In the face of eventual changes in the requirements to fulfill by the invoicing

networked ontologies, we have applied an iterative-incremental life cycle model

(explained in Chap. 2) for the development of the invoicing networked ontologies.

In addition to the activities performed as part of Scenario 1 (e.g., the ontology

conceptualization activity), we have mainly combined Scenario 6 of the NeOn

Methodology (reusing, merging, and reengineering ontological resources) and

Scenario 2 (reusing and reengineering non-ontological resources) from those

described in Chap. 2. The ontology specialization and ontology localization
activities, respectively, from Scenario 8 and Scenario 9 have also been performed.

See Fig. 19.2 for a detailed graphical representation.

19.3.3 Processes and Activities Performed

The following activities have been carried out for building the invoicing networked

ontologies:

19 Electronic Invoice Management in the Pharmaceutical Sector 413

http://dx.doi.org/10.1007/978-3-642-24794-1_2
http://dx.doi.org/10.1007/978-3-642-24794-1_2

1. Ontology elicitation. In this support activity, the pharmaceutical domain was

analyzed, with a focus on the invoicing life cycle, describing the steps an invoice

goes through from the time it is emitted to the moment it is validated by the

receiving company. This analysis also includes the actors that participate in the

process (laboratories, wholesalers, and providers), and their requirements.

2. Ontology requirements specification.As described in Sect. 19.3.1, this activity is
aimed at addressing the requirements that need to be fulfilled by the ontologies

in order to effectively support applications implementing the approach described

herein.

3. Reuse of existing knowledge resources. The knowledge resources used for

creating the invoicing networked ontologies can be organized in the following

groups:

– Upper-level ontologies and related projects. The motivation for using upper-

level ontologies comes from the need of reuse of the main reference ontology

for invoicing. The purpose of this ontology is that it can be instantiated for

different sectors of the industry. The first instantiation is for the pharmaceu-

tical sector, laboratories mainly, but it will also be extended for providers of

these laboratories or wholesalers. These providers provide from chemical

products to energy or clean products, so they need different instantiations of

the invoice reference ontology.

Fig. 19.2 NeOn Methodology (focus on scenarios 2, 6, 8, and 9)

414 J.M. Gómez-Pérez et al.

– Invoicing resources. These resources are mainly technologies for electronic

invoicing. The technologies are UBL, EDIFACT, and the PharmaInnova

approach.

– Projects whose main goal is to integrate the invoice vocabulary into
ontologies. These include the ONTOLOG project3 and the XBRL (eXtensible

Business Reporting Language) Ontology project4.

4. Ontology conceptualization (development of the invoicing networked ontologies).

In this step, we conceptualized the resources analyzed in the previous activities. A

result of this activity is the ontology design pattern Invoice5, used to represent the
core aspects of electronic invoices. Similarly to other ontology design patterns,

this one is a conceptual model which encapsulates the knowledge representation

given by SMEs, throughout an invoice template to ease the alignment of other

heterogeneous models for invoices grouping best practices and hence helping to

avoid mistakes in this step.

5. Ontology specialization (adaptation of the invoicing networked ontologies). The
final invoice reference ontology was adapted to the cluster of companies that are

going to use it, a laboratory for instance. The invoice reference ontology will be

specialized to each cluster of companies needs (laboratories in an initial phase).

6. Ontology localization (localization of the invoicing networked ontologies). The

users of the networked ontologies belong to different regions in Spain, in which

different languages are used. Spanish is the official language, but in these

regions, there are other co-official languages; therefore, localization was taken

into account. Likewise, this activity was followed to anticipate future use of the

ontology out of Spain.

7. Ontology evaluation (evaluation of the invoicing networked ontologies). Fol-

lowing this support activity, the invoicing networked ontologies were evaluated

by the users of PharmaInnova as described in Candini et al. (2010).

19.4 Description of the Invoicing Networked Ontologies

As shown in Fig. 19.3, the invoicing networked ontologies6 comprise a number of

ontologies including the invoicing backbone ontology (IBO) and other ontologies

for the subdomains addressed (one ontology module each). Such ontologies are the

UBL Invoicing Ontology (UBLIO) for the UBL e-business standard, the EDIFACT

Invoice Message Ontology (EIMO), which represents the subset of the EDIFACT

3 http://ontolog.cim3.net/
4 http://xbrlontology.com/
5 http://ontologydesignpatterns.org/wiki/Submissions:Invoice
6Available at: http://ontologydesignpatterns.org/wiki/Ontology:Aggregated_Invoice_Ontology

and http://www.isoco.com/ontologies/neon/AggregatedInvoiceOntology.owl

19 Electronic Invoice Management in the Pharmaceutical Sector 415

http://ontolog.cim3.net/
http://xbrlontology.com/
http://ontologydesignpatterns.org/wiki/Submissions:Invoice
http://ontologydesignpatterns.org/wiki/Ontology:Aggregated_Invoice_Ontology
http://www.isoco.com/ontologies/neon/AggregatedInvoiceOntology.owl

standard describing the EDI messages used for electronic invoice exchange, and the

PharmaInnova Ontology (PIO), which provides a formal representation of the

invoicing model used in the PharmaInnova partnership for electronic invoicing in

the pharmaceutical sector.

The coverage of the e-invoicing domain provided by these ontologies is exten-

sive, with almost 700 classes, around 500 object properties, and 300 data properties

(Table 19.1). Additionally, its design allows further extensions through modules for

new standards or proprietary approaches.

IBO has been built through the reuse of a number of business process ontologies,

like the enterprise ontology (EO) (Uschold et al. 1998) and TOVE7, time

Upper
Level

Time

Invoicing
Backbone (IBO)

W3C Time
Ontology

Reengineering

Specification

Information
 Objects

IO lite

XPDL

DOLCE
Ultralite

UBL
(UBLIO)

UBL ontology
(SUMO extension)

UBL
EDIFACT

Standard

PharmaInnova
(PIO)

PharmaInnova
specification

EDIFACT
(EIMO) Ontology

Business
 Process

BPMO

EO

TOVE

More general

More specific

Core
Components

Fig. 19.3 The e-invoicing networked ontologies

Table 19.1 Metrics of the

e-invoicing networked

ontologies

Classes 697

Object properties 532

Data properties 295

DL expressivity SHIQ(D)

Class axioms 1,922

Object property axioms 1,428

Data property axioms 643

Annotation axioms 3,224

7 http://www.eil.utoronto.ca/Enterprise-modelling/tove

416 J.M. Gómez-Pérez et al.

http://www.eil.utoronto.ca/Enterprise-modelling/tove

ontologies, the W3C time and time zone ontologies, and upper-level ontologies

(DOLCE ultralite and the information objects ontology8). While UBLIO is an

extension of the UBL ontology, based on SUMO9 and the core components10

recommended by the standard, EIMO is the ontological version of the EDIFACT

recommendation for electronic invoicing. Finally, PIO has been produced by

reengineering the PharmaInnova XML schema describing their invoicing data

model into an actual ontology. A detailed description of the ontologies can be

found in Gómez-Pérez et al. (2007).

During ontology reuse and conceptualization, we have used the core

functionalities provided by the NeOn Toolkit11 together with those stemming

from a number of plugins12, fundamentally: the OWL modeling plugin, the align-

ment plugin for ontology alignment, RaDON for ontology repair, ontology rela-

tionship visualizer for ontology visualization and navigation, and CupBoard, the

online ontology repository for sharing and reusing ontologies linked together and

their alignments.

19.5 Application Description: i2Ont

The range of ERP systems managing invoicing information (SAP, ORACLE,

PeopleSoft, Baan, Movex, openXpertya, etc.) and the different languages for

exchange of electronic business documents that exist in the market (EDIFACT,

UBL, Intermediate Document from SAP, etc.) are extremely diverse. NeOn Toolkit

with i2Ont plugin13 (Fig. 19.4) applies the invoicing networked ontologies to

enable organizations involved in economic transactions to exchange arbitrary

electronic business documents by automatically extracting the information

contained in them out of the details of their particular representation formats and

technologies, thus saving large amounts of money in the process, as shown in

Candini et al. (2010). Figure 19.4 shows NeOn Tookit with i2Ont plugin, where

its components are magnified: (1) relationship visualization provides a visualization

paradigm to navigate based on ontologies relations, (2) attributes view shows

information concerning data properties for the selected concept and information

about relationships items of invoice and data properties, and (3) invoice view shows

information concerning the loaded invoice and items of invoice which are mapped.

8 http://www.loa-cnr.it/DOLCE.html
9 http://www.ontologyportal.org
10 http://ontolog.cim3.net/cgi-bin/wiki.pl?CctRepresentation
11 http://neon-toolkit.org
12 http://neon-toolkit.org/wiki/Neon_Plugins
13 http://www.neon-project.org/nw/Movie:_i2Ont

19 Electronic Invoice Management in the Pharmaceutical Sector 417

http://www.loa-cnr.it/DOLCE.html
http://www.ontologyportal.org
http://ontolog.cim3.net/cgi-bin/wiki.pl?CctRepresentation
http://neon-toolkit.org
http://neon-toolkit.org/wiki/Neon_Plugins
http://www.neon-project.org/nw/Movie:_i2Ont

Fig. 19.4 NeOn Toolkit with i2Ont plugin (views with numbers are magnified)

418 J.M. Gómez-Pérez et al.

One of the most challenging entry barriers for uptake by real users in the domain,

with no background on ontological engineering, is the gap between domain knowl-

edge (e-business and economic transactions in the pharmaceutical domain) and the

formalisms used to acquire and represent such knowledge. Inspired by Newell’s

definition of the knowledge level (Newell 1982) back in the eighties, we have

intended to develop a highly usable, intelligent user interface that enables experts

on e-business and financial staff to alleviate their invoice interoperability problems

by means of networked ontologies, relieving them from caring about the way

invoice knowledge is formally represented, stored, mapped and, in summary,

processed. i2Ont allows domain experts to work and think exclusively at the level

of their expertise, i.e., electronic invoices.

The solution proposed is grounded on a combination of networked ontologies

and a graph-based visualization and navigation paradigm. Networked ontologies

provide a formal, semantic backbone between different electronic invoicing

formalisms and models, including support for the main invoicing standards, like

EDIFACT and UBL, and sectorial approaches like PharmaInnova. The user inter-

face allows for a simple navigation across the relevant invoicing concepts, and the

formal invoice model described in the ontology network allows ensuring correct-

ness and completeness of the correspondence between the different electronic

invoice representations.

Previous approaches to the invoice interoperability problem required

implementing specific transformations between the formats and models of each

pair of organization exchanging electronic invoices. This was cumbersome and

little scalable. On the contrary, i2Ont learns by example, i.e., sample electronic

invoices are used to define the mappings between electronic invoice data and

ontology concepts. Subsequent electronic invoices received by the system, with a

format and model compliant with such sample invoices, are transparently imported

as instances of the invoicing ontologies by means of applying the mappings defined

during the learning phase. From that point on, invoices are automatically exported

to whatever invoice format and model known by the system without needing to

implement ad hoc (and costly) transformations.

19.6 Exploitation Roadmap

The exploitation roadmap of the approach described in this chapter starts from

the integration of i2Ont technology with the PharmaInnova platform and its

subsequent exploitation by PharmaInnova and its members. For this purpose, a

new version of i2Ont has been developed in the form of a web application called

PharmaInvoicing14, currently accessible by PharmaInnova members only.

14 http://www.neon-project.org/nw/Movie:_i2Ont_Web

19 Electronic Invoice Management in the Pharmaceutical Sector 419

http://www.neon-project.org/nw/Movie:_i2Ont_Web

PharmaInvoicing presents functional and usability enhancements with respect to

i2Ont, focused on improving import and export performance and user interaction

throughout the electronic invoicing life cycle. It also includes a back office

providing i2Ont’s functionalities for SMEs to configure the correspondences

(mappings) between their invoices, using a single sample invoice and

PharmaInnova’s model.

Figure 19.5 shows a screenshot of PharmaInvoicing’s invoice configuration back

office. On the right-hand side, the graph displayed is a graphic, interactive repre-

sentation of our invoicing networked ontologies, which have been customized for

the case of PharmaInnova with a look and feel more specific to the pharmaceutical

domain. Usability improvements include new icons for the branches of the

ontologies representing the different subdomains, e.g., geographical locations,

currencies, etc., and invoice sections, e.g., header, summary, and body.

The use of PharmaInvoicing is completely transparent from the underlying

knowledge representation formalism. Invoices can be imported, exported, accepted,

rejected, and electronically signed, just like they are without the application of these

technologies, the only difference being the savings in terms of saved money, time,

and effort of IT experts in implementing ad hoc software for translating invoice data

from one format and model to another. Figure 19.6 illustrates this for the case of

invoice import.

As shown in Fig. 19.7, PharmaInvoicing is in the center of PharmaInnova’s

innovation roadmap, establishing a two-staged strategy toward exploitation of the

tool. PharmaInvoicing has been deployed and is currently being used internally by

PharmaInnova’s members. The knowledge obtained during this stage helped

validating the tool, supporting its refinement and eventual release as a product.

Fig. 19.5 PharmaInvoicing configuration back office

420 J.M. Gómez-Pérez et al.

The second (still ongoing) stage benefits from this and observes the exploitation of

the tool in a broader context, aiming for pharmaceutical laboratories outside of

PharmaInnova.

Fig. 19.6 Managing electronic invoices with PharmaInvoicing

Fig. 19.7 PharmaInnova innovation plan

19 Electronic Invoice Management in the Pharmaceutical Sector 421

In parallel to these two stages, exploitation opportunities for electronic invoicing

out of the pharmaceutical sector will be pursued, especially in public

administrations. PharmaInnova plans to offer i2Ont’s functionalities in SaaS

mode (software as a service), which provides computer-based services to customers

over the network, reducing initial costs and avoiding maintenance tasks on the

customer’s side. This will allow the members of PharmaInnova to freely use the

tool, while charging a fee to external users, e.g., laboratory providers, will be

possible.

19.7 Conclusions

In this chapter, we have described how networked ontologies can be used to

alleviate classical interoperability problems in electronic invoice exchange by

means of (1) providing a formal model for the representation of knowledge related

with the e-invoicing domain, which observes both e-invoicing standards and secto-

rial specializations, (2) serving as a semantic gateway for invoice transformation

during invoice exchange, and (3) ensuring the consistency of invoices exchanged

between heterogeneous systems by leveraging the expressivity of the ontologies for

automatic checks. A detailed description of the developed networked ontologies

has been provided, as well as of the application of the NeOn Methodology, which

supported such development and simultaneously benefited from this use case as a

comprehensive test bed. We have provided a short description of an application

(i2Ont) implementing the approach and introduced a subsequent business roadmap

for the resulting technology. Future work includes developing extensions of the

invoicing networked ontologies, for a more thorough coverage of invoicing formats

and models beyond EDIFACT and UBL, and the corresponding extensions of the

application in order to benefit from such extensions.

References

Candini J, Gómez-Pérez JM, Méndez V, Melero R, Pariente T, Herrero G (2010) Ontologies for

the pharmaceutical case studies. NeOn deliverable D8.6.1. http://www.neon-project.org/nw/

images/e/e8/NeOn_2010_D861.pdf

Gómez-Pérez JM, Daviaud C, Morera B, Benjamins R, Pariente T, Herrero G, Tort G (2006)

Analysis of the pharma domain and requirements. NeOn deliverable D8.1.1

Gómez-Pérez JM, Pariente T, Buil-Aranda C, Herrero G (2007) Ontologies for the pharmaceutical

case studies. NeOn deliverable D8.3.1. http://tinyurl.com/32zxytz

Newell A (1982) The knowledge level. Artif Intell 18(1):87–127

Uschold M, King M, Morales S, Zorgios Y (1998) The enterprise ontology. Knowl Eng Rev 13

(1):31–89

422 J.M. Gómez-Pérez et al.

http://www.neon-project.org/nw/images/e/e8/NeOn_2010_D861.pdf
http://www.neon-project.org/nw/images/e/e8/NeOn_2010_D861.pdf
http://tinyurl.com/32zxytz

Chapter 20

Integrating Product Information

in the Pharmaceutical Sector

Tomás Pariente Lobo and Germán Herrero Cárcel

Abstract In recent years, increased attention has been paid to what is called semantic

interoperability in eHealth, being the interoperable identification and description of

drugs at its very core. In spite of the efforts toward having a common way to

describe drugs, there is no universal nomenclature but several attempts like SNOMED

CT (http://www.ihtsdo.org/snomed-ct/) or the biomedical ontologies inOBOFoundry

(http://www.obofoundry.org/) and BioPortal (http://bioportal.bioontology.org/). This

chapter describes an approach that appliesNeOn technology to bridge the gap between

different ontologies describing pharmaceutical products.

20.1 Introduction

In recent years, there has been an increasing interest in semantic interoperability in

eHealth. In this domain, there is a clear need to link electronic health records (EHR)

to other clinical data and biological evidence for multiple purposes. At the very core

of this effort lies the need of having a common or interoperable identification and

description of drugs and medical products.

Several strategies have been put in practice. Standards such as the CEN 136061

European norm or the HL7 v32 are part of the semantic interoperability efforts. The

usage of SNOMED CT as a baseline for terminology is widely but not universally

accepted. Besides, SNOMED CT is not a proper ontology, and the interoperability

achieved using terms from this terminology is far from being complete. More

interesting for us is the widely spread idea that ontologies are a very useful way

T.P. Lobo (*) • G.H. Cárcel

ATOS Origin SAE, Albarracı́n 25, 28037 Madrid, Spain

e-mail: tomas.parientelobo@atosresearch.eu; german.herrero@atosresearch.eu

1 http://www.iso.org/iso/catalogue_detail.htm?csnumber¼40784
2 http://www.hl7.org

M.C. Suárez-Figueroa et al. (eds.), Ontology Engineering in a Networked World,
DOI 10.1007/978-3-642-24794-1_20, # Springer-Verlag Berlin Heidelberg 2012

423

http://www.ihtsdo.org/snomed-ct/
http://www.obofoundry.org/
http://bioportal.bioontology.org/
mailto:tomas.parientelobo@atosresearch.eu
mailto:german.herrero@atosresearch.eu
http://www.iso.org/iso/catalogue_detail.htm?csnumber=40784
http://www.iso.org/iso/catalogue_detail.htm?csnumber=40784
http://www.hl7.org

to describe drug models. Initiatives such as BioPortal or the OBO Foundry are clear

examples of the uptake of biomedical ontologies. It is in this direction where there

is a clear need of a solution where different terminologies expressed in ontological

form are mapped and connected in a way that the interoperability is ensured.

In order to achieve an interoperable nomenclature of drugs, a potential solution

has to provide the means to (1) transform the different vocabularies and models into

ontologies, (2) put all the ontologies together by creating the necessary mappings

between different drug descriptions, and (3) create the infrastructure to query the

ontologies using the terms that the different stakeholders are more familiar with.

In this chapter, we describe a proof of concept of this interoperable nomenclature

built according to the NeOn approach. The chapter is focused on the application of

different steps of the NeOn Methodology (Chap. 2) and the use of the NeOn Toolkit

(Chap. 13) and some of the plugins recommended by the methodology. It is worth

noting that the case study and the NeOn Methodology evolved together during the

NeOn project, so the methodology received continuous feedback from real

scenarios of usage in order to be eminently practical.

The chapter is structured as follows: First, we give a brief overview of the case

study followed by a discussion about how we applied the NeOn Methodology to

engineer the Semantic Nomenclature ontology network. The resulting ontology net-

work is then presented, along with a brief overview of the application showcase

developed to query the network. A conclusion section gives the general considerations

of the chapter.

20.2 Semantic Nomenclature Use Case Description

One of the major problems in achieving a common drug description is the different

stakeholders involved. Standardization bodies, governments (transnational, central,

regional, or local), international public bodies such as the World Health Organiza-

tion (WHO)3 or the European Committee for Standardization (CEN)4, private

organizations like the International Health Terminology Standards Development

Organisation (IHTSDO)5, public and private hospitals, etc., provide drug data and

standards for different purposes. Therefore, data heterogeneity and its frequent

changes, linked to the huge amount of drugs existing nowadays, pose a major

problem to solve the semantic interoperability issue.

In order to achieve semantic interoperability, we need to:

1. Enable the safe, meaningful sharing and combining of pharmaceutical data

between heterogeneous systems

3 http://www.who.int
4 http://www.cen.eu
5 http://www.ihtsdo.org

424 T.P. Lobo and G.H. Cárcel

http://dx.doi.org/10.1007/978-3-642-24794-1_2
http://dx.doi.org/10.1007/978-3-642-24794-1_13
http://www.who.int
http://www.cen.eu
http://www.ihtsdo.org

2. Enable the consistent use of modern terminology systems and medical knowl-

edge resources

3. Ensure the necessary data quality and consistency to enable rigorous uses of

heterogeneous data

Addressing all the previous issues needs more than a methodological and

technological sound approach. It needs the agreement and collaboration of most

of the named stakeholders in the overall life cycle, from the ontologies definition

and mapping to the validation, evaluation, and continuous update of the results.

This issue is clearly out of the scope of a project such as NeOn. The use case is

therefore focused only on the methodological and technological aspects of the

solution, offering a proof of concept of the NeOn approach toward the creation of

a shared and consistent knowledge base about pharmaceutical products. Being part

of the NeOn project, we used the NeOn Methodology and NeOn tools both at

conceptual and implementation levels.

In order to test the benefits of this approach, the case study focused on a limited

number of stakeholders and resources as shown in Fig. 20.1.

Figure 20.1 shows the main resources used in the case study:

• The Digitalis and Integra databases from the Spanish Agency of Medicine and

Health Products (AEMPS)6.

• The public part of the BOTPlus7 commercial database from the General Council

of Pharmacists in Spain.

• Public documents, such as official reports, public drug descriptions, HTML

descriptions, etc.

• Classification of pharmaceutical terms, such as the Anatomical Therapeutic

Chemical (ATC)8 classification, a WHO recommendation mapped to many

terminologies.

Fig. 20.1 Semantic Nomenclature stakeholders and resources overview

6 http://www.aemps.es/
7 https://botplusweb.portalfarma.com/
8 http://www.whocc.no/atc_ddd_index/

20 Integrating Product Information in the Pharmaceutical Sector 425

http://www.aemps.es/
https://botplusweb.portalfarma.com/
http://www.whocc.no/atc_ddd_index/

• Official documents detailing description of drugs models, such as the Summary of

Product Characteristics (SPC)9model from the EuropeanCommission. Some other

non-ontological resources, like commercial nomenclatures (vademecum), pharma

thesauri, widely used health standards or terminologies (HL7, SNOMED-CT,

UMLS, etc.), or web pages and documents from different actors of the domain

were also explored as candidate resources.

The approach followed was to model different resources and apply NeOn in

order to align the models. The new models are then populated with real drug data,

and the resultant knowledge base can be queried in order to obtain a more complete

and interoperable drug description.

20.3 Applying the NeOn Methodology to Engineer

the Ontology Network

Being both part of the NeOn project, the Semantic Nomenclature use case and the

NeOn Methodology evolved together. The use case applied the NeOn Methodology

(Chap. 2) and gave continuous feedback of the results of its usage. As a result of this

process, the Semantic Nomenclature ontology network has been developed within

this use case.

In this section, we describe a summary of the usage of the NeOn Methodology in

the Semantic Nomenclature use case.

20.3.1 Ontology Requirements Specification

In the NeOn project, we started the use case definition with the requirements

definition activity. Apart from gathering non-functional requirements, related

mainly to issues such as scalability or reliability, the main functional requirements

were gathered using competency questions (as explained in Chap. 5). These

questions were proposed and answered by some of the stakeholders mentioned in

the list below, which are the possible users for the ontology:

• U1: Pharmacist who is interested in searching for drugs information

• U2: BOTPlus technician whose main interest is to complete information of their

commercial database with drug data from other nomenclatures

• U3: AEMPS expert who analyzes the situation of the information about drugs or

updates its content

9 http://ec.europa.eu/enterprise/sectors/pharmaceuticals/files/eudralex/vol-2/c/spcguidrev1-

oct2005_en.pdf

426 T.P. Lobo and G.H. Cárcel

http://dx.doi.org/10.1007/978-3-642-24794-1_2
http://dx.doi.org/10.1007/978-3-642-24794-1_5
http://ec.europa.eu/enterprise/sectors/pharmaceuticals/files/eudralex/vol-2/c/spcguidrev1-oct2005_en.pdf
http://ec.europa.eu/enterprise/sectors/pharmaceuticals/files/eudralex/vol-2/c/spcguidrev1-oct2005_en.pdf

The competency questions gathered were enumerated and classified into groups

suggesting the initial list of the different concepts mentioned by the user groups.

The main groups are concepts about pharmaceutical products, laboratories, and

active ingredients.

As a matter of example, see below some competency questions about pharma-

ceutical products:

• CQ1. What is the drug commercial name?

• CQ13. Which is the drug composition?

• CQ17. Which route of administration is used?

• CQ18. What is the drug pharmaceutical form?

The complete set of competency questions, answers, and requirements obtained

can be found in Gómez-Pérez et al. (2007).

20.3.2 Scenario Selection

The NeOn Methodology is scenario-based, meaning that instead of prescribing a

rigid workflow, it suggests activities for a variety of scenarios. The NeOn Method-

ology presents and describes nine common scenarios that may arise during ontology

development as described in Chap. 2.

Based on the relation between life cycle model and the scenarios, for the first

iteration of the ontology development, we have followed Scenarios 1, 2, 3, and 8,

while in the second iteration, when the methodology and our initial network was

more advanced, we also followed Scenarios 6, 7, and 9. Not all the phases specified

on the methodology for the scenarios selected have been addressed in detail,

especially in the first iteration.

According to the NeOn Methodology, the ontology network life cycle model

defines in an abstract way how to develop an ontology network project and how to

organize the processes and activities into phases or stages. Due to the incremental

development of the ontologies followed in the project, the ontology network life

cycle model selected for the use case was the Iterative-Incremental Ontology Net-

work Life Cycle Model. This model organizes the ontology development in a set of

iterations (or short mini-projects with a fixed duration). Each iteration is scheduled as

a single ontology project using a waterfall model. Requirements specified in the

Ontology Requirements Specification can be divided in different subsets, and

implements throughout the different iterations.

Two main iterations have been selected for the development of the Semantic

Nomenclature ontology network. Six-phase Waterfall Model was selected for the

both iterations. This model allows the reengineering of ontological resources and

non-ontological resources (NORs), which was in the scope of the case study.

20 Integrating Product Information in the Pharmaceutical Sector 427

http://dx.doi.org/10.1007/978-3-642-24794-1_2

20.3.3 Ontological Processes and Activities Performed

In this section, we summarize the most interesting processes and activities followed

according to the NeOn Methodology and the scenarios selected in the use case.

Figure 20.2 shows the main activities followed by the Semantic Nomenclature case

study and included in the incremental life cycle model.

It is worth noticing that the processes and activities followed in both iterations

were basically the same. This is due to the fact that the result of the first iteration

was a preliminary version of the ontology network that was further elaborated and

extended in the second version.

• Support activities: The use case started with a survey of the domain. As part of

Scenario 1 of the NeOn Methodology, we followed the methodological support

activities, such as the Ontology Environmental Study and Ontology Feasibility

Study, in parallel to the Ontology Requirements Specification activity (as

explained in Sect. 20.3.1). In this phase, we decided that a network of ontologies

was the best approach for the use case. It is worth noting that in the second

iteration of the case study, we did a second round of the Ontology Requirements

Specification activity adding new requirements, especially from hospitals

toward the differentiation between commercial and clinical drugs. However,

the overall objective and approach of the use case remained unchanged. The

Fig. 20.2 Semantic Nomenclature use case ontological activities

428 T.P. Lobo and G.H. Cárcel

second iteration was closer to the incremental approach “produce and deliver”

new ontologies to the case study, but the already available ones were not

discarded but improved. We did not use the template for ontology requirements

specification document (ORSD) provided by the methodology because it was

drafted during the last period of the project, but we used a similar approach by

gathering requirements, competency questions, etc. In the second iteration, we

did a proper scheduling activity by using the tooling support provided by the

NeOn Toolkit (the gOntt plugin explained in Chap. 14) in order to generate a

plan for the iteration.

• Reusing resources: Following Scenarios 2 and 3, we tried in parallel to reuse as

much as possible already available ontologies in the domain and model new

ontologies from existing non-ontological resources. For the non-ontological

resources, we carried out several activities proposed by the NeOn Methodology,

such as resource search, resource assessment, or resource selection. The result of

this process was the selection of several resources: the ATC classification schemas

created manually and populated automatically from theWHOATCXML version,

the Digitalis and BOTPlus ontologies created from the abovementioned databases

using the R2O-ODEMapster plugin, and the SPC ontology created manually from

the SPC standard specification.

• In parallel, we tried to reuse as much as possible already available ontologies in

the domain. We followed several activities proposed by the NeOn Methodology,

such as ontology search, ontology assessment, ontology comparison, and ontol-

ogy selection for ontology reuse. The results of Scenarios 2 and 3 can be found in

Gómez-Pérez et al. (2007).

• In the second iteration, we used the ontology design patterns to better define the

ontologies. Apart from generic content patterns such as “part of”, we released a

candidate pattern for the description of drugs to distinguish between clinical

drugs, prescription drugs, and pharma-marketed products.

• Semantic enrichment: In the second iteration, as part of Scenario 8, we carried

out a semantic enrichment activity, including new concepts and relations espe-

cially to define clinical drugs in our Semantic Nomenclature ontology.

• Ontology conceptualization: The goal of the conceptualization activity is to

organize and structure the knowledge into meaningful models at the knowledge

level. We defined the main concepts and relations and decided on the overall

model. In this activity, the Semantic Nomenclature ontology network took

shape. As a result of the activity, we defined a new ontology (the Semantic

Nomenclature ontology) that acts as a bridge of the different ontologies present

on the network. We also decided on the type of alignments to be made between

that ontology and the rest of the ontologies selected or defined for the ontology

network.

• Ontology implementation: The main goal of the ontology implementation activ-

ity is to create a computable model implemented in an ontology language from

the conceptual model created in the ontology conceptualization activity. In the

Semantic Nomenclature, we used OWL2 and the NeOn Toolkit for the imple-

mentation. In this activity, we used several NeOn Toolkit plugins such as the

20 Integrating Product Information in the Pharmaceutical Sector 429

http://dx.doi.org/10.1007/978-3-642-24794-1_14

alignment plugin (and alignment server) to generate candidate alignments

between some of the ontologies of the ontology network, R2O and ODEMapster

to map the BOTPlus and Digitalis public databases to our ontology schemas in

order to generate the initial set of individuals, Cicero to develop the ontology

network in a collaborative fashion, Watson plugin to search for available

reusable ontologies, RaDON to continuously verify the coherence of the ontol-

ogy network, SPARQL for internal tests, and finally OWL-Doc for documenta-

tion purposes.

• Ontology evaluation: At the end of the project, we applied this support activity in

order to evaluate the resulting ontology network and application. On the one

hand, we used RaDON in order to evaluate the soundness of the ontologies of

our network. On the other hand, from the domain perspective, we counted with

several users to perform the evaluation. This final evaluation consisted of several

interviews with users and a training and evaluation hands-on session performed

at the end of the project.

20.4 Semantic Nomenclature Ontology Network

The Semantic Nomenclature ontology network comprises a set of ontologies

organized in four levels: the representation ontology (OWL), general ontologies,

domain ontologies, and application ontologies.

The Semantic Nomenclature (SN) ontology plays a central role in the network

(see Fig. 20.3), acting as a bridge between the different knowledge representations

from the application and domain ontologies.

The domain level comprises ontologies defining the main notion and concepts of

the pharmaceutical domain. At this level, we include ontologies providing a

classification of pharmaceutical terms, such as the ATC and SPC ontologies created

within the case study, or the RxNorm10, the UMLS Metathesaurus11, MeSH12,

OpenGALEN13, and NCI14, all reused or reengineered from existing ontologies or

resources. Some of these ontologies have been just partially mapped to the network

as a proof of concept. We did some tests using the alignment plugin in order to

perform these mappings. In some cases, the candidate alignments were good

10 RxNorm terminology produced by the National Library of Medicine (NLM) http://www.nlm.

nih.gov/research/umls/rxnorm/
11 UMLS Metathesaurus http://www.nlm.nih.gov/pubs/factsheets/umlsmeta.html
12 National Library of Medicine’s (USA) controlled vocabulary thesaurus http://www.ncbi.nlm.

nih.gov/mesh
13OpenGALEN http://www.opengalen.org/
14 NCI Metathesaurus http://ncim.nci.nih.gov/

430 T.P. Lobo and G.H. Cárcel

http://www.nlm.nih.gov/research/umls/rxnorm/
http://www.nlm.nih.gov/research/umls/rxnorm/
http://www.nlm.nih.gov/pubs/factsheets/umlsmeta.html
http://www.ncbi.nlm.nih.gov/mesh
http://www.ncbi.nlm.nih.gov/mesh
http://www.opengalen.org/
http://ncim.nci.nih.gov/

enough, although the overall impression was that a lot of manual work had to be

done (see Chap. 12 for more details on ontology alignment). New domain

ontologies can be added to the network by creating the necessary mappings.

At the Application level, we have ontologies representing knowledge of real-

world resources used for a specific purpose or application. This is the case of the

Digitalis and BOTPlus ontologies, containing governmental and private views of

commercial pharmaceutical products in Spain.

We have reused existing ontologies for defining common domain elements.

After looking at different ontologies, we chose the W3C time ontology for manag-

ing dates, parts of the Galen ontology for the definition of units of measurement,

and the geographical module from the Simile Ontology.

The Semantic Nomenclature ontology network is shown in Fig. 20.3. A detailed

description of the ontologies can be found in Candini et al. (2010).

The ontology network makes possible the easy interoperability and integration of

the distributed resources for the description of pharmaceutical products. Moreover,

the ontology network facilitates the aggregation of drug-related information

connecting new ontological resources via mappings to the SN ontology. This

solution makes possible searching for aggregated information by querying the

knowledge base using SN ontology elements or domain elements. Apart from the

obvious usage on the semantic interoperability area, these queries allow the different

stakeholders to potentially keep up to date their back-office systems or take better

decisions based on the aggregated information presented.

Fig. 20.3 Nomenclature ontology network

20 Integrating Product Information in the Pharmaceutical Sector 431

http://dx.doi.org/10.1007/978-3-642-24794-1_12

20.5 Semantic Nomenclature Application

The Semantic Nomenclature application is eye catching for the pharmaceutical

community as a new nomenclature (compendium) based on semantic web

technologies. The application is targeting mainly pharmaceutical-knowledge

experts. The main result is focused on the runtime aspects of NeOn, but it relies

on the work done at the design time on the ontologies using the NeOn Toolkit,

different NeOn plugins, and the NeOn Methodology. Apart from being a test bed of

the NeOn runtime services, the goal is to offer a view over a set of networked

ontologies, allowing functionalities such as querying, adding new ontologies to the

network, rating of ontology elements, or adding new ontology mappings.

The Semantic Nomenclature application is supported at the infrastructure level

by a knowledge base (KB) populated according to the Semantic Nomenclature

ontology network model. This KB contains relevant information about pharmaceu-

tical products and associated knowledge about other types of entities like active

ingredients, diseases, laboratories, etc. The Semantic Nomenclature application

provides a feature set in different dimensions: (a) accurate query answering mech-

anism by using a rich web client form that abstracts the end user from the underly-

ing SPARQL construction of queries, (b) access to aggregated data using the

Cupboard NeOn service, and (c) collaborative and social functionalities using the

Cicero NeOn Service integrated from the web application.

There is also a different angle to consider, which is related with the Open Linked

Data initiative. Linked Data15 is a term used to describe a recommended best

practice for exposing, sharing, and connecting pieces of data, information, and

knowledge on the Semantic Web using URIs and RDF. Among the current Linked

Data datasets currently available there are several health-related open resources,

such as Drugbank16, Dailymed17, or Diseasome18, and also several other generic-

purpose resources containing information about drugs, such as DBPedia19.

Although using Linked Data was not a requirement for the use case, we also

included in the current prototype a possible link to make use of Linked Data from

the Semantic Nomenclature application and a small attempt to allow the creation of

mappings between our ontologies and some of the Linked Data datasets. This is

nevertheless a work in progress aimed at showing a possible path for future

enhancements.

The implementation of the application deals with the integration of the ontology

network presented before in a user-friendly web application. The implementation

has two main different layers: a business processing layer at server side and a

15 http://linkeddata.org/
16 http://www.drugbank.ca/
17 http://dailymed.nlm.nih.gov
18 http://diseasome.eu/
19 http://dbpedia.org/

432 T.P. Lobo and G.H. Cárcel

http://linkeddata.org/
http://www.drugbank.ca/
http://dailymed.nlm.nih.gov
http://diseasome.eu/
http://dbpedia.org/

presentation layer at the client side. On the one hand, the server is essentially

dedicated to data processing and management of the functional process, and its

architecture is generic to interact with several software components provided by

NeOn or other third parties. On the other hand, the client side is dedicated to the

information presentation and the data interaction. The application uses Google Web

Toolkit (GWT)20 to allow a rich presentation layer. The software integration was

facilitated by the communication mechanism provided by the GWT technology.

For example, the Remote Procedure Call (RPC) mechanism permits to interoperate

with different kind of software components as a semantic repository, or the NeOn

plugins through web services. Moreover, the JSON21 communication language

between the server and client sides allows the exchange of structured data.

The users of the Semantic Nomenclature web prototype are mainly pharmaceu-

tical-knowledge experts with a limited knowledge of ontologies. It is not intended

for users with no knowledge about ontologies at all, but they do not need to be

ontology experts to get benefits from using the prototype. But the prototype is not

closed to those domain actors; it is open to any other kind of users, such as people

who want to retrieve semantic-enriched information about pharmaceutical

products, personnel from hospitals, governmental agencies, etc. Moreover, the

prototype provides functionalities to biomedicine, pharmacy, or health-care

researchers to assess about the models of the ontologies used by the prototype,

add new models, or discuss with other colleagues.

Fig. 20.4 Semantic Nomenclature web default perspective

20 http://code.google.com/webtoolkit/
21 http://www.json.org/

20 Integrating Product Information in the Pharmaceutical Sector 433

http://code.google.com/webtoolkit/
http://www.json.org/

A screenshot of the application can be shown in Fig. 20.4. This screenshot shows

different widgets used for selecting ontologies and querying and displaying the

results of the query.

20.6 Conclusion

In this chapter, we described how we applied the NeOn Methodology and the NeOn

Toolkit and some of its plugins on the development of an ontology network in the

scope of the Semantic Nomenclature use case developed within the NeOn project.

We explained the current situation and the interoperability problems posed by the

existence of multiple stakeholders, the heterogeneity of the different solutions for

drug description, and the huge amount of data involved, being this issue at the very

core of the semantic interoperability in eHealth effort. A detailed description of the

methodological activities carried out in the use case toward the definition of the

Semantic Nomenclature ontology network has been presented. As the NeOn Meth-

odology and the use case evolved in parallel, both received continuous feedback

from each other during the project life span. We have also briefly presented an

overview of the Semantic Nomenclature web application that takes advantage of

the underlying ontology network.

References

Candini J, Gómez-Pérez JM, Méndez V, Melero R, Pariente T, Herrero G (2010) Ontologies for

the pharmaceutical case studies. NeOn deliverable D8.6.1. http://www.neon-project.org/nw/

images/e/e8/NeOn_2010_D861.pdf

Gómez-Pérez JM, Pariente T, Buil-Aranda C, Herrero G (2007) Ontologies for the pharmaceutical

case studies. NeOn deliverable D8.3.1. http://tinyurl.com/32zxytz

434 T.P. Lobo and G.H. Cárcel

http://www.neon-project.org/nw/images/e/e8/NeOn_2010_D861.pdf
http://www.neon-project.org/nw/images/e/e8/NeOn_2010_D861.pdf
http://tinyurl.com/32zxytz

Index

A

Academic, 251

Accessibility, 68, 72, 78

Activity, 10, 307

Adapt, 239

Adoption and use, 208

Agile methodology, 62

AGROVOC, 386, 387, 391–393,

395, 398, 400, 404

Alignment, 84, 257–262, 266, 270, 271

annotation, 263, 268

API, 268, 269, 271

composition, 270

edition, 267, 269, 270, 274–275

editor, 271

evaluation, 265–267

format, 261, 267–269

inconsistent, 267

library, 267

life cycle, 259, 271, 275

metadata, 264, 268

metadata vocabulary, 268

ODPs, 37

rendering, 269, 271, 272, 275

repository, 264, 267

retrieving, 263, 271, 272

reusing, 259, 263, 275

selection, 264

server, 268, 269, 271, 272, 275

sharing, 263, 267, 269, 275

storing, 267–272, 275

threshold, 275

trimming, 267, 271, 272, 275

URI, 268

Analytic Hierarchy Process (AHP), 264

Annotate data, 385

Annotation, 67, 87, 289–290, 292, 294, 337

dialog, 61

AntiCP, 43

API, 338

Applicability of the method, 138, 143

Application, 74

OMEGA, 76

Protégé, 74, 75

Watson, 76

Appropriate linguistic assets, selection of, 24

Appropriate non-ontological resources,

selection of, 16

Appropriation, 69

Approving, 253

Aquatic resource, 399

Aquatic Science and Fisheries Information

System (ASFIS), 388

Aquatic Sciences and Fisheries Abstracts

(ASFA), 386, 388, 391–393, 395,

398, 399

Aquatic species, 388–389, 395

Architectural ODPs, 37

Architecture, 297

Argumentation, 86, 333

Aroma, 274

ASFA. See Aquatic Sciences and Fisheries

Abstracts (ASFA)

ASFIS. See Aquatic Science and Fisheries

Information System (ASFIS)

Assessment, 209

Assessment table, building, 119

Asymmetric, 294

Autocompletion, 288

Axioms, 282, 287

M.C. Suárez-Figueroa et al. (eds.), Ontology Engineering in a Networked World,
DOI 10.1007/978-3-642-24794-1, # Springer-Verlag Berlin Heidelberg 2012

435

B

Backtracking, 30

Best practices, 22, 37, 42

BioPortal, 268

Bluefin tuna, 385

Bottom-up approach, 99, 103, 240

C

Candidate knowledge resources,

looking for, 15

Candidate non-ontological resources,

assessment of, 16, 115, 140

Catalog, 72

Catch record, 394

Catch record ontology, 397

Catchment_area, 391

CatchRecord class taxonomy, 397

Categorization, 70, 109

Change ontology, 240

Chat, 323, 325, 333

Class expression, 285

Classification scheme, 15, 112

Classify data, 385

Cloning, 44

Coding system, 387

Codolight, 75, 82–84, 86, 87, 335, 340, 342

Collaboration, 47, 66, 82, 83, 333, 338, 340

collaborative ontology engineering, 66

COMA++, 269

Combination of scenarios, 14

Competency questions (CQs), 14, 38, 40, 55,

62, 94, 99, 106, 149, 151, 152

strategies for identifying, 99

technique, 94

Componency CP, 42

Composition, 44, 52

Conceptual model, 23

Configuration, 322–323, 325–326

Consensus evaluation, 118

Consistency, 237, 239

Construction, 236

Content ontology design patterns, 38, 39, 62

Content specific requirement, 98

Context, 184

Contextual statement, 40, 55, 62

Coordinating, 241

Core ontology, 41

Corolla, 84

Corpus, 181

Correspondence, 257, 258, 268, 270, 272

Cost, 241

Coverage, 350

Coverage calculation, 118, 134–135

CP catalogs, 48

CP composition, 41

CP specialization, 41

Create particular schedules from scratch, 307

Create particular schedules

in a guided way, 307

Cupboard, 268, 271, 272

Curation, 244, 247

Customer involvement, 45

Customer story, 46

D

Dashboard, 323, 325–327, 331, 333,

334, 338, 342

Data corpus, 247

Data gathering, 122

Data integration, 270

Data model

for classification schemes, 111

for thesauri, 111

Debugging, 368, 369, 373

Density, 350

Dependency, 244

Deploy, 251

Description logic (DL), 365

Description of a Project (DOAP), 87

Design aspect, 75, 83, 325, 329, 337

Design aspect OWL, 341

Design functionality, 85, 321, 325,

328, 337, 340

Design phase, 27

Design project, 85

Development project, 330

Development time, 297

Diagnosis, 238, 368

Dictionary, 181

DILIGENT, 3

Dimension, 386, 395

Discovery, 240, 250, 253

Distributed nature of network, 236

Divide-and-conquer paradigm, 47

Dock, 325, 332, 334

Document Viewer Panel, 402

Dolce-Lite, 154–156, 162, 163

Domain, 293, 386–390

coverage, 206, 208, 209

entity, 148

knowledge, 206

ODPs, 38

ontology, 41

Dynamics, 235

436 Index

E

E-connection, 215

e-invoicing, 410

Eclipse, 283, 295, 297, 298, 320, 322, 323, 330

Eclipse Public License, 295

EDIFACT, 407

EDIFACT Invoice Message Ontology

(EIMO), 415

EEZ. See Exclusive economic zone (EEZ)

Efficiency, 246

eHealth, 423

Electronic invoice, 408

Enterprise Resource Planning (ERP), 409

Entity Label Mode, 284

Entity Properties View, 284, 289, 292, 294

Error, 60

Evaluation, 49, 194, 208, 209

approach, 202

example, 210

framework, 200

metric, 199, 200

result, 203

Evaluation goal and approach, 196

adoption and use, 199

application/task, 199

domain coverage, 197

quality of modeling, 197–198

Evolution, 258

Exclusive economic zone (EEZ), 389, 399

Expansion, 354

key concept, 354

Experiment, 62, 245

Exploration, 352, 353, 355, 357, 361

eXtensible Business Reporting Language

(XBRL) Ontology project, 415

Extension point, 297, 309, 320, 330

External, 247

External resource service, 131–132

Extract lexical entry, 116

Extracting terminology

and frequency, 101, 104

Extraction, 249, 251

eXtreme Design (XD), 45, 62

principles, 45–47

process, 47–53

eXtreme Design Tools (XD Tools), 58

F

FAO. See Food and Agriculture Organization

of United Nation (FAO)

Filling card, 32, 95, 308

Filling card template, 32

Fine-turning, 248

Fish stock aka aquatic resource, 389–390

Fisheries, 245

commodity, 386, 398

data, 389

ontology, 394

ontology, network of, 394

Fisheries Stock Depletion Assessment

System (FSDAS), 398, 401–403

Fishery and pharmaceutical domain, 6

Fishing technique, 386

Five-phase + merging phase waterfall ontology

network life cycle model, 26, 28, 31

Five-phase waterfall ontology network life

cycle model, 26, 27, 31

Flexible scenarios, 11

Folk, 15

Folksonomy, 110

Food and Agriculture Organization

of United Nation (FAO), 383–404

geopolitical ontology, 388, 394, 399

thesauri, 387–388

Formal CQ, 166, 167

Forward engineering, 142

Foundational ontology, 41

Four-phase waterfall ontology network

life cycle model, 26, 31

Frame, 43, 72

Frame of reference, 195, 199, 202, 203

FrameNet, 43

Friend of a Friend (FOAF), 87

fromCountry, 398
fromFishingArea, 398
FSDAS. See Fisheries Stock Depletion

Assessment System (FSDAS)

Functional, 294

Functional and non-functional requirements,

identification of, 106

Functional ontology requirement, 98, 103

Functionality, 374

G

Gantt, 321

Gantt chart, 307, 314

Generic, 237

Generic entity, 148

Geographical demarcation, 390

Glossary, 72

Glossary of processes and activity, 306

Gold standard, 199, 205, 207

gOntt, 303–307, 316

Grouping functional requirement, 99

Index 437

Guideline, 32, 173, 237

Guidelines for Scheduling Ontology

Development, 313–315

H

Harmony, 269

Hiding, 356

High-level, 254

Hypernym, 185

Hyponym, 185

I

i2Ont, 417–419

Identify, 249

iMerge, 270

Impact, 241

Implementation, 113, 242–243

Implementation phase, 27

Import, 44, 52, 56, 290

Incoherence, 366

Inconsistency, 242, 366, 367

Incremental life cycle model, 428

Industry, 414

Inference tests, 46, 53

Informal CQ, 152, 166, 167

Information realization CP, 41

Initial plan, 307, 314

Initiation phase, 27

Integration, 47, 49, 57

Integration effort, 158

Intended end users, identification of, 97, 102

Intended uses, identification of, 98, 103

Interaction, 86

Internationalized ontology, 173

Interoperability, 65, 69, 72, 78, 87, 88, 335, 338

computational, 340

conceptual, 320

conceptual interoperability, 66

functional interoperability, 66

linguistic interoperability, 66

semantic interoperability, 69

social interoperability, 66, 340

syntactical interoperability, 69

Inverse, 294

Invoice exchange, 408

Invoicing backbone ontology (IBO), 415

Irreflexive, 294

ISSCAAP, 388, 395, 399

ISSCFC, 395, 399

ISSCFG, 395

Iteration, 28, 313

Iterative development, 46

Iterative-incremental ontology network life

cycle model, 25, 28, 30, 313

J

Justification, 247

K

Kali-ma dashboard, 309

KAON2, 269

KC-Viz, 344, 351, 353, 358, 361
dashboard, 356

expanding, 353

functionality, 358

hiding, 353

inspecting, 353

preferences menu, 356

KCE, 351, 358, 361

Key concept, 350, 361

Knowledge resource, 108

Knowledge reuse, 210

Knowledge type, 85, 337, 341

L

Label translation(s), evaluation of, 24

LabelTranslator, 183

Laboratory, 414

Land area, 389

Large marine ecosystem (LME), 389, 399

Layered, 240

Levels of abstraction, 19

Lexicalization, 79–82

Lexico-Syntactic ODPs, 37

Lexicon, 15

Linguistic information, 76, 79, 400

Linguistic model, 77

Linked Data, 11, 41, 272, 336, 432

Linked Data initiative, 11

Linked Open Data, 388

LME. See Large marine ecosystem (LME)

Localization, 78

Localization manager, 176

Logging, 242, 246

Logical dependency, 308

Logical ODPs, 37

M

Machine translation (MT), 181

Maintenance phase, 27

438 Index

Manchester syntax, 285–286, 288

Manual evaluation, 209

Manual refinement, 124

Mappings, 21, 373

Maturity model, 175

Mereology, 168

Merging phase, 28

Metadata, 67–70, 72–75, 236, 384, 385

administrative metadata, 68

descriptive metadata, 68

structural metadata, 68

Metalevel, 66

Metalevel vocabulary, 65

Methodological guideline, 4, 16, 18, 308

for ontology requirements specification, 94

for processes and activities, 32

for specifying ontology requirement, 93, 94

Methodology, 67, 88, 326, 329

METHONTOLOGY, 3

Middle out strategy, 99

Mini-projects, 28

Minimal inconsistent subset (MIS), 376

Minimal unsatisfiability-preserving

subset (MUPS), 376

MIS. See Minimal inconsistent subset (MIS)

Model management, 270

Modeling solution, 37

Modification, 237

Modular design, 46

Modularization, 42, 213, 214

Modularization criteria, 222

Module, 148, 214

Multilingual conceptual model, 25

Multilingual ontology, 24, 172

Multilingualism, 66, 73, 76–78, 173

localization, 66

translation, 81

MUPS. See Minimal unsatisfiability-

preserving subset (MUPS)

Music industry ontology, 53

N

N-ary relation, 41

NAFO. See Northwest Atlantic Fishery
Organization (NAFO)

Namespaces, 290

Naming ODPs, 37

Natural category, 350

Navigation, 286, 345, 348, 356, 357

middle-out, 343

top-down, 345

NeOn, 404

NeOn Access Rights Model, 87

NeOn Foundation, 295

NeOn Glossary of Processes

and Activities, 10–12, 305

NeOn Methodology, 3, 9, 10, 94,

315, 329, 340, 426–430

NeOn Methodology framework, 11

NeOn plugin, 403

NeOn plugin ODEMapster, 403

NeOn project, 385, 403

NeOn technology, 403

NeOn Toolkit, 5, 58, 74, 155, 209, 271–273,

306, 320, 322, 323, 327–332,

334, 340, 394, 403

alignment plugin, 271–272

plugin, 303 (), 337

user interface, 326

NeOn update site, 295

Network development, 305

Networked ontology, 2, 339

Networked world, 1

New ontology development paradigm, 108

Nomenclature, 423

Non-functional ontology requirements,

98, 103

Non-ontological resource, 10, 15, 109

re-engineering process, 16

reuse process, 15

reusing, 133, 139

reverse engineering, 16, 121, 136, 142

search and reuse of, 106

selection of, 120, 141

transformation, 16, 123, 142

NOR terms, semantics of relations among, 127

NOR2O, 127

NORs, categorization of, 113

Northwest Atlantic Fishery

Organization (NAFO), 396

O

OAEI, 266

OBO, 155, 156, 162, 163

Obtained ontology evaluation, 164

ODEDialect, 261

ODEMapster processor, 391

ODP Detail, 58

ODP portal, 58

ODP Registry, 58

ODP Selector, 59

On-To-Knowledge, 3

OnaGui, 270

Online, 252

Index 439

ONTOCOM model, 305

Ontological requirement, 38

Ontological resource forward engineering, 18

Ontological resource re-engineering model, 19

Ontological resource re-engineering process,

18, 19, 22

Ontological resource restructuring, 18

Ontological resource reuse process, 17, 18,

21, 22

Ontological resource reverse engineering, 18

Ontology, 10, 194, 262, 264–266,

270–273, 282, 305, 330,

347, 385, 386, 388, 396

adapting, 164

algebra, 217

alignment, 21, 272

application, 206

assessment, 17, 18

change, 250

comparison, 17, 18

conceptualization activity, 15

core, 36

design pattern reuse process, 23

design time matching, 270

development, 3, 9, 194

development life cycle, 315

development process, 10

development project, 332

documentation, 67

domain, 263

engineering, 1, 9, 258, 270, 276

engineering life cycle, 281

engineering life cycle activity, 4

enrichment, 23, 163

evaluation, 195, 210, 269

extension activity, 24

feature, 207

formalization activity, 15

forward engineering, 16, 124, 137

implementation activity, 15

integration, 18

label translation(s), obtaining, 24

label(s) to be localized, selection of, 24

language, 72

localization, 24, 171

management, 258–259

matching, 257–262, 269, 271, 272, 275

design time, 259, 260

runtime, 259, 260

merged, 261

merging, 21, 22, 263, 269, 270

modularization, 23, 71, 83, 194

module, 10, 106

module composition, 217–218

module composition plugin, 231

module extraction, 216

module extraction plugin, 230

network, 2, 10, 51, 58, 82–84, 196,

205, 237, 266, 333, 390

network development process, 25

networked, 258, 275

evaluation, 193, 196, 203

partitioning, 215, 226

partitioning plugin, 228

project, 82, 83, 85, 322, 327, 331, 334

pruning, 23, 163

quality, 202

re-engineering activity, 17

reference, 36

repository, 17

requirement, 94

restructuring activity, 23

reuse, 106, 147, 344

search, 17, 18, 106

selection, 17, 18, 194

semantic nomenclature, 429

shape, 347

size, 347

specialization activity, 24

statement, 10

summary, 351, 360

translation, 163, 263, 275

update, 25, 182

upper-level, 257, 258, 263

validation, 195

verbalization, 76

verification, 196

version, 258

Ontology Alignment Evaluation Initiative

(OAEI), 265, 398

Ontology-based system, 385

Ontology design patterns (ODPs), 10, 22, 35,

36, 61, 83–85, 106, 204, 205, 429

Ontology Navigator, 283, 284, 287, 289

Ontology network life cycle model, 10, 15,

25, 305, 306

Ontology project execution, 303, 307, 315

Ontology requirements specification

activity, 14, 93, 94, 106

tasks for, 96

Ontology requirements specification document

(ORSD), 14, 93, 106, 148, 151, 313

Ontology requirements specification

document (ORSD) template, 95, 97

implementation language, 97

intended end users, 97

440 Index

intended uses, 97

ontology requirements, 97

functional requirements, 97

non-functional requirements, 97

pre-glossary of terms, 97

purpose, 97

scope, 97

Ontology requirements specification

filling card, 95

Ontology statements (e.g., using Watson), 106

OntoMas, 264

Open Biological and Biomedical

Ontology, 154

Open world, 66

Operator, 218, 223

OR Connector, 132

Organize data, 385

OSGi, 296, 298–299, 339

Oswebsite, 155, 156, 162, 163

OWL, 86, 261, 262, 269, 273, 337,

339, 340, 387, 391

API, 297, 299, 337

class, 292–293

import, 392

perspective, 283

priorVersion, 392

property, 293–294

rendering, 271

sameAs, 269

trimming, 271

OWL 2, 86, 285, 292, 299

OWL import, 42

OWLDoc plugin, 394

P

Pair design, 47

Parameter, 249–250

Part of CQs, 152

Part of relation, 148

Part-of CP, 42

Partition, 215

Partitioning, 215

Pattern, 253

Pattern for re-engineering non-ontological

resource (PR-NOR),

template of, 125–127

Pattern(s), 35

selection, 51

Pattern-based design approach, 4

Pharmaceutical, 414

PharmaInnova, 419

PharmaInnova Ontology (PIO), 416

Pipeline, 323, 338

Place CP, 41

Plan, 303 (), 305

Planning, 101, 241–242, 303 (), 304

Plugin, 295, 299, 306–313, 320, 322,

325, 327–331, 333, 335,

338–340, 364, 403

Plugin wiki, 300

Popularity, 350

PR-NOR software library, modules of, 129

Pre-glossary of terms, 101

Precision, 266

Precision calculation, 116, 134

Prescriptive methodological guideline, 10, 32

Presentation ODPs, 37

Prioritized, 240

Problem space, 38

Process, 10, 236

Processes and activities, 325, 326, 340

Project, 283

Prompt, 270

Propagated, 243

Property chain, 294

Protégé, 269, 270

Protégé ontology library, 154

Purpose, scope, and implementation language,

identification of, 97, 102

Q

QName, 285

Quality, 250

Quality assurance (QA), 176

Quality evaluation, 119

Quality of modeling, 203, 205, 209, 210

Query, 377, 385

mediator, 269

mediators, 261, 263

transformation, 259

transforming, 263

translating, 269

translation, 262, 272, 275, 276

Query Composition Panel, 402

Query Result Panel, 402

R

R2O-ODEMapster, 429

RaDON, 375, 430

Range, 293

Ranking, 240

RDF, 86, 269, 337, 388, 391, 394, 404

RDFS, 86, 341

Index 441

Re-engineering, 15, 107

methodological guidelines for, 120

non-ontological resource, 135, 142

ODP, 37

pattern for, 123

phase, 28

Real-world case study, 6

Reasoner, 251

Reasoning, 83, 86, 326, 327, 336, 339, 363

ODP, 37

requirement, 40, 55, 62

Recall, 266

Reengineering non-ontological resource, 390

Reference data, 386–387, 395, 400

Reference tables (RT), 387

Reference tables management

system (RTMS), 387

References, 287

Reflexive, 294

Registry, 74, 87, 327, 341

Centrasite, 74

Oyster, 74

Reliability, 158

Repair, 238

Repairing, 373

Repository, 73

BioPortal, 74, 75

Cupboard, 74

Represented, 240

Requesting, 238–241

Requirement analysis, 67, 82

Requirement story, 48

Requirements, 48, 51, 54, 62

identification of, 98, 103

prioritization of, 100, 104

Resource Detail Panel, 402

Resource restriction and assignment, 314

Resource transformation, 136

Result Panel, 402

Reusability, 213

Reuse, 15, 36, 62, 65–67, 69, 208, 236

Reuse economic cost, 157

Reuse phase, 27

Reuse-centric process, 9

Reusing, 107

methodological guideline for, 115

Reusing and re-engineering knowledge

resource, 11

Reusing non-ontological resource, 390

Reusing ontological resource, 390

Reusing ontology design pattern, 390

Revision, 367, 370, 371

Role, 244, 246

Rondo, 270

Runtime, 297

S

Saliency mechanism, 348, 358

Scenario-based approach, 3

Scenario-based methodology, 10

Scenarios, 31

for building ontologies and

ontology networks, 10, 11

localizing ontological resource, 14, 24

of NeOn Methodology, 306

restructuring ontological resource, 14, 23

reusing and merging ontological

resource, 13, 21

reusing and re-engineering non-ontological

resource, 13, 15

reusing and re-engineering

ontological resource, 13, 18

reusing, merging, and re-engineering

ontological resource, 13, 22

reusing ontological resource, 13, 17

reusing ontology design

pattern (ODPs), 13, 22

from specification to

implementation, 12, 14

Schedule, 305, 330

Scheduling, 101, 106, 304, 305

Scheduling activity, 15, 305

Scheduling Ontology Engineering

Project, 303–316

Schema matching, 258

SEALS, 265, 266

Search, 287

Search non-ontological resource, 16, 115

Search Panel, 402

SEEMP Project, 132

Segmentation, 216

Select, 249, 251

Selecting, 313–314

Selecting the ontology network life

cycle model, 313

Semantic fidelity evaluation, 188

Semantic nomenclature, 326, 327, 329,

332, 334, 424–426

drug data, 426

interoperability, 424

pharmaceutical data, 424

Semantic nomenclature application, 432–434

cicero NeOn Service, 432

cupboard NeOn service, 432

Dailymed, 432

442 Index

DBPedia, 432

Diseasome, 432

Drugbank, 432

Google Web Toolkit (GWT), 433

JSON, 433

NeOn Methodology, 432

NeOn Toolkit, 432

Semantic Nomenclature case study, 102

Semantic nomenclature ontology

network, 430–431

ATC, 430

BOTPlus, 431

Digitalis, 431

MeSH, 430

NCI, 430

OpenGALEN, 430

RxNorm, 430

SPC, 430

UMLS Metathesaurus, 430

Semantic relation disambiguator, 131

Semantic Web, 2

Semantic wiki, 58

Semiautomatic, 247

Sensemaking, 346, 352, 361

Sequential phase, 25

Serialization, 284

Set of requirements, validation of, 100, 104

Sigma, 154

Sindice, 154

Sindice13, 17

Single part whole, 155, 156, 162, 163

Situation CP, 41

Six-phase + merging phase waterfall ontology

network life cycle model, 26, 28, 31

Six-phase waterfall ontology network life

cycle model, 26, 28, 31

SKOS, 261, 262, 269, 387, 391, 393, 398

SmartProducts network of ontology, 346

SmartProducts ontology, 344, 345

SME, 410

Software Ontology Model (SOM), 87

Software requirements document, 93

Software specification, 93

Source, 248

SPARQL, 330, 377

Cupboard, 75

SPARQL query, 40

Specialization, 44, 52

Specialization wizard, 61

Statement level, 149

Statistic, 290

Stock, 390

Stress test, 46, 53

Suggestion, 61

SUMO-OWL, 154–156, 162–164, 168

Support activity, 14

Swoogle, 153

Swoogle11, 17

Symmetric, 294

T

Task, 86

Task-oriented design, 47

Taxonomic code, 389

Taxonomy, 72, 292, 294

Technique, 250

Template for writing the ontology

requirement specification

document (ORSD), 106

Temporal dependency, 308

Terminology, 181

Test, 56

Test-driven design, 46

Thesauri/Thesaurus, 15, 72, 172, 181

Threshold, 253

Time interval CP, 38, 40

Time-consuming, 254

Tool-based support, 247

Tool-oriented guidelines, 254

Tools, 237

Top-down, 240, 246

Top-down strategy, 99

Transformation, 242

Transformer, 130

Transitive, 294

Translation, 24

Traversal method, 216

Trigger, 309

Tutorial, 300

Two-step wizard, 307

Types of potential knowledge

resources to be reused, 313

U

UBL, 407

UBL Invoicing Ontology (UBLIO), 415

Understandability effort, 157

Unit test, 49, 53

Update and change, 238

Update site, 320

Updating initial plan, 314

Upper ontology, 72

URI, 400, 401

Usability, 68

Index 443

User interface (UI), 320, 322, 323, 330

User profile, 325, 331, 332

V

Validate, 250, 251, 253

Validation, 243–244, 252

Validation task criteria, 100

Verification, 106, 243–244

Verification test, 46, 53

Version, 235, 242, 250, 253

View extracted, 216

Visualization, 343, 346, 352, 356, 357

Visualization method, 359–360

context + focus and distortion, 360

indented list, 359

information landscape, 360

node-link and tree, 359

space-filling, 360

zoomable visualization, 360

Vocabulary, 65, 67

metadata vocabulary, 66

W

Warning, 61

WaterArea, 391

Waterfall life cycle model family, 25s

Waterfall model, 25, 313

Waterfall ontology network life

cycle model, 25

Watson, 153–155, 168, 272

Watson12, 17

Weak supplementation principle, 169

Web ontology language OWL 2, 282

Web service, 299

Widget, 323, 325, 327, 328, 333,

334, 338, 340, 342

Wiki, 300

WordNet, 274

Workflow, 32, 85, 86, 244, 246, 308, 313

Workspace, 282

WSMT, 270

X

XBRL. See eXtensible Business
Reporting Language (XBRL)

Ontology project

XD analyzer, 60

XD tool, 62

XML, 275, 398

XMPP, 325, 334

XSLT, 275

Z

Zooming, 348, 357

444 Index

	Ontology Engineering in a Networked World
	Foreword
	Preface
	Contents
	Chapter 1: Introduction: Ontology Engineering in a Networked World
	Part I: NeOn Methodology Framework
	Part II: Ontology Engineering Activities
	Part III: The NeOn Toolkit
	Part IV: Case Studies
	Index

