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Abstract. In this paper we present a fully data-driven and locally-
adaptive method for image reconstruction that is based on the concept
of statistical multiresolution estimation as introduced in [1]. It consti-
tutes a statistical regularization technique that uses a �∞-type distance
measure as data fidelity combined with a convex cost functional. The
resulting convex optimization problem is approached by a combination
of an inexact augmented Lagrangian method and Dykstra’s projection
algorithm.
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1 Introduction

In this paper we are concerned with the reconstruction of an unknown gray-
valued image u0 ∈ L2(Ω) with Ω = [0, 1]2 given the data

Yij = (Ku0)ij + εij , 1 ≤ i ≤ m, 1 ≤ j ≤ n. (1)

We assume that εij are independent and identically distributed Gaussian random
variables with E (ε11) = 0 and E

(
ε2
11

)
= σ2 > 0 and that K : L2(Ω) → R

m×n

is a linear and bounded operator. K is assumed to model image acquisition and
sampling at the same time, i.e. (Ku)ij is assumed to be a sample at the pixel
(i/m, j/n) of a smoothed version of u.

Numerous methods for reconstructing the image u0 from the data Y in the
recent literature are covered by a common variational idea: an estimator û of u0

is computed as the solution of the optimization problem

J(u) → inf s.t. sup
S∈S

c−1
S

∑

(i,j)∈S

|(Ku)ij − Yij |2 ≤ 1, (2)

where J : L2(Ω) → R is a convex and lower-semicontinuous regularization func-
tional. Moreover S denotes a system of subsets of the grid G = {1, . . . , m} ×
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{1, . . . , n} and {cS : S ∈ S} is a set of positive regularization parameters that
govern the trade-off between data-fit and regularity. Solutions of (2) are a special
case of statistical multiresolution estimators (SMRE) as studied in [1]. In this
context the statistic T : R

m×n → R defined by

T (v) = sup
S∈S

c−1
S

∑

(i,j)∈S

|vij |2 , v ∈ R
m×n (3)

is referred to as multiresolution (MR) statistic. Summarizing, we find the esti-
mator û of u0 such that J(u) is minimal und the condition T (Ku − Y ) ≤ 1.

The most popular instance of (2) is obtained by choosing S = {G}. Then,
the MR-statistic coincides with the quadratic fidelity and problem (2) can be
rewritten into

û(λ) ∈ argmin
u∈L2(Ω)

λ

2

∑

(i,j)∈G

|(Ku)ij − Yij |2 + J(u) (4)

for a suitable multiplier λ > 0. In the seminal work [2], for example, the authors
proposed the total variation semi-norm

J(u) =

{
|Du| (Ω) if u ∈ BV(Ω)
+∞ else

(5)

as penalization functional which has been a widely used model in imaging ever
since. Here, |Du| (Ω) denotes the total variation of the (measure-valued) gradient
of u which coincides with

∫
Ω |∇u| if u is smooth. Numerous efficient solution

methods for (2) [3–5] and various modifications have been suggested so far (cf.
[6–9] to name but a few).

However, the quadratic fidelity has an essential drawback: the information in
the residual is incorporated globally, that is each pixel value (Ku)ij − Yij con-
tributes equally to the statistic T independent of its spatial position. In practical
situations this is clearly undesirable: images usually contain features of different
scales and modality, i.e. constant and smooth portions as well as oscillating pat-
terns both of different sizes. A solution û of (2) with a global fidelity T is hence
likely to exhibit under- and oversmoothed regions at the same time.

Recently, also non-trivial choices of S that result in locally adaptive fidelity
measures were considered. In [10] S is chosen to consist of a partition of G which
is obtained beforehand by a Mumford-Shah segmentation. In [11, 12], a subset
S ⊂ G is fixed and afterwards S is defined as the collection of all translates of
S. Both approaches allow for an approximate solution of (2) by means of an
analogon of (4) with locally varying regularization parameter, i.e.

û ∈ argmin
u∈L2(Ω)

1
2

∑

(i,j)∈G

λij |(Ku)ij − Yij |2 + J(u). (6)

In this work we amend this paradigm and present a numerical framework that
is capable of directly solving (2) without any restrictions to S. To this end we
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extend the algorithmic ideas in [1] and propose a combination of an inexact
augmented Lagrangian method [9, 13] with Dykstra’s projection algorithm [14].
We also propose a novel a priori parameter choice rule for the constants cS that
allows for a statistical interpretation of the latter. We illustrate the capability of
our approach by numerical examples, focusing on total variation regularization.

In the following we denote by |S| the cardinality of S ∈ S. We often refer to
|S| as the scale of S. We assume that m, n ∈ N are fixed and denote by 〈·, ·〉 and
‖·‖ the Euclidean inner-product and norm on R

m×n and by ‖u‖L2 the L2-norm
of u.

2 Statistical Multiresolution Estimation

In this section we review sufficient conditions that guarantee existence of SMRE,
that is of a solution of (2). Moreover we propose a statistically sound parameter
choice model for the constants cS and discuss how to choose the system S.

2.1 Existence of SMRE

For the time being, let {cS : S ∈ S} be a set of positive real numbers. We
rewrite (2) to an equality constrained problem by introducing the slack variable
v ∈ R

m×n. To be more precise, we aim for the solution of

J(u) + H(v) → inf s.t. Ku + v = Y (7)

where H denotes the indicator function on the feasible set C of (2), i.e.

C =
{
v ∈ R

m×n : T (v) ≤ 1
}

and H(v) =

{
0 if v ∈ C
∞ else

. (8)

Problems of type (7) are studied e.g. in [15, Chap. III]. There, Lagrangian mul-
tiplier methods are employed to solve (7). Recall the definition of the augmented
Lagrangian of (7):

Lλ(u, v; p) =
1
2λ

‖Ku + v − Y ‖2+J(u)+H(v)−〈p, Ku + v − Y 〉 , λ > 0. (9)

Here p ∈ R
m×n denotes the Lagrange multiplier for the linear constraint in

(7). It is well known that existence of a saddle point of Lλ follows from certain
constraint qualifications of the MR-statistic T . One typical example is given in
Proposition 1 (see [1, Thm. 2.1] for a proof).

Proposition 1. Assume that

1. there exists ū ∈ L2(Ω) such that J(ū) < ∞ and T (Kū − Y ) < 1 and that
2. for all c ∈ R, the following sets are bounded:

⎧
⎨

⎩
u ∈ L2(Ω) : sup

S∈S

∑

(i,j)∈S

|(Ku)ij − Yij |2 + J(u) ≤ c

⎫
⎬

⎭
. (10)
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Then, there exist û ∈ L2(Ω) and v̂, p̂ ∈ R
m×n such that

Lλ(û, v̂; p) ≤ Lλ(û, v̂; p̂) ≤ Lλ(u, v; p̂), ∀ (u ∈ L2(Ω), v, p ∈ R
m×n

)
.

Remark 1. 1. If û ∈ L2(Ω) and v̂, p̂ ∈ R
m×n are as in Proposition 1, then û

and v̂ solve (7) and hence û is an SMR estimator.
2. Assumption 1) in Proposition 1 is called Slater’s constraint qualification. It

is for instance satisfied if the set
{
Ku : u ∈ L2(Ω) and J(u) < ∞} is dense

in R
m×n.

3. If J is chosen as the total variation semi-norm (5), then a sufficient condition
for assumption (10) will be that there exists (i, j) ∈ G such that (K1)ij �=
0, where 1 ∈ L2(Ω) is the constant 1-function. This is immediate from
Poincaré’s inequality for functions in BV(Ω) (cf. [16, Thm.5.11.1]).

2.2 An a Priori Parameter Selection Method

The choice of the regularization parameters cS in (2) is of utmost importance for
they determine the trade-off between smoothing and data-fit. We propose an a
priori parameter choice method that is based on quantile values of extremes of
transformed χ2 distributions.

To this end, observe that for S ∈ S the random variable

tS(ε) = σ−2
∑

(i,j)∈S

ε2
ij

is χ2-distributed with |S| degrees of freedom (d.o.f.). We first aim for trans-
forming tS(ε) to normality. It was shown in [17] that the fourth root transform
4
√

tS(ε) is approximately normal with mean and variance

μS = 4
√
|S| − 0.5 and σ2

S =
(
8
√
|S|
)−1

,

respectively. The fourth root transform outperforms other power transforms in
the sense that the Kullback-Leibler distance to the normal distribution is mini-
mized, see [17]. In particular, the approximation works well for small d.o.f.

Next, we consider the extreme value statistic

sup
S∈S

4
√

tS(ε) − μS

σS
. (11)

We note that due to the transformation of the random variable tS(ε) to normality
each scale contributes equally to the supremum in (11). Hence a parameter choice
strategy based on the statistic (11) - like the one suggested in Proposition 2 below
- is likely to balance the different scales occurring in S.

It is important to note that the random variable tS(ε) and tS′(ε) are inde-
pendent if and only if S ∩ S′ = ∅. As we do not assume that S consists of
pairwise disjoint sets, (11) constitutes an extreme value statistic of dependent
random variables. Except for special cases, little is known about the distribution
of such statistics as a consequence of which the empirical distribution of (11) is
considered in practice.
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Proposition 2. For α ∈ (0, 1) and S ∈ S let qα be the α-quantile of the statistic
(11) and set cS = (qασS + μS)4. Then we get for each solution of (2):

P(J(û) ≤ J(u0)) ≥ α. (12)

Proof. From (1) and monotonicity of the fourth root transform it follows that

P
(
T (Ku0 − Y ) ≤ 1

)
= P (tS(ε) ≤ cS ∀S ∈ S)

= P

(
4
√

tS(ε) ≤ qασS + μS ∀S ∈ S
)

= P

(

sup
S∈S

4
√

tS(ε) − μS

σS
≤ qα

)

= α.

In other words, the constants cS are chosen such that the true signal u0 satisfies
the constraints with probability α. By the fact that û is a solution of (2) it
follows that P(T (Ku0 − Y ) ≤ 1) ≤ P(J(û) ≤ J(u0)).

Remark 2. By the rule cS = (qασS + μS)4 in Proposition 2 the problem of
selecting the set of regularization parameters cS is reduced to the question on
how to choose the single value α ∈ (0, 1). The probability α plays the role of
a regularization parameter and allows for a precise statistical interpretation: it
constitutes a lower bound on the probability that the SMRE û is more regular
than the true object u0.

2.3 On the Choice of S
In the previous section we addressed the question on how to select the regular-
ization parameters {cS}S∈S for a given system of subsets S of the grid G. We
will now comment on the choice of S.

On the one hand, S should be chosen rich enough to resolve local features
of the image sufficiently well. On the other hand, it is desirable to keep the
cardinality of S small such that the optimization problem in (2) remains solvable
within reasonable time. We suggest two different choices of S, namely the set S0

of all discrete squares in G and the set S2 of dyadic partitions of G. The latter is
obtained by recursively splitting the grid into four equal subsets until the lowest
level of single pixels is reached. For the case m = n it can be formally defined as

S2 =
�log2(n)�⋃

l=1

{{
k2l, . . . , (k + 1)2l

}2
: k = 0, . . . , 2�log2(n)�

}
.

Obviously, S0 contains much more elements than S2 and is hence likely to achieve
a higher resolution. We indicate this behaviour in Figure 1.

Here, a solution ū of (4) of a natural image from perturbed data is depicted
(first row). Since this reconstruction method does not adapt the amount of reg-
ularization to the local image features, the reconstruction exhibits both over-
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Fig. 1. True signal u0, data Y with σ = 0.1 and solution of (4) ū with λ = 0.75 (upper
row). Oversmoothed regions identified on the scales |S| = 4, 8 and 16 (from left to
right) for the system S0 (middle row) and S2 (lower row).

and undersmoothed regions. The oversmoothed regions can be identified via the
MR-statistic T in (3) by marking those sets S in S for which

c−1
S

∑

(i,j)∈S

|Yij − (Kū)ij |2 > 1.

The union of these sets for the systems S0 (second row) and S2 (third row) are
highlighted in Figure 1 where we examine the scales |S| = 4, 8, 16 (from left to
right). The parameters cS are chosen according to Section 2.2 with α = 0.9.

3 Algorithmic Methodology

In what follows, we present an algorithmic approach to the numerical compu-
tation of SMRE in practice that extends the methodology in [1]. We use an
inexact Uzawa-type algorithm which decomposes the original problem into a se-
ries of subproblems which are substantially easier to solve.

3.1 Inexact Uzawa Algorithm

In order to compute the desired saddle point of the augmented Lagrangian func-
tion Lλ in (9), we use a modified version of the Uzawa-Algorithm (see e.g. [15,
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Chap. III]). Starting with some initial p0 ∈ R
m×n, the original algorithm consists

in iteratively computing

1. (uk, vk) ∈ argminu∈L2(Ω),v∈Rm×n Lλ(u, v; pk−1)
2. pk = pk−1 − λ(Kuk + vk − Y ).

Item 1. amounts to an implicit minimization step w.r.t. to the variabels u and v
whereas 2. constitutes an explicit maximization step for the Lagrange multiplier
p. The algorithm is usually stopped once the constraint in (7) is fulfilled up to
a certain tolerance (e.g. with respect to the L2-norm as described in Algorithm
1).

Rather than applying this algorithm in a straightforward manner, however,
we carry out two modifications. Firstly, we add in the k-th step the following
additional term to Lλ:

1
2

(
M ‖u − uk−1‖2

L2 − ‖K(u − uk−1)‖2
)2

+
β

2
‖v − vk−1‖2

. (13)

Here M is chosen such that M ≥ ‖K‖2 and β ≥ 0. By adding (13) to Lλ the
distance to the previous iterate is additionally penalized. As a result, we won’t
have to evaluate K repeatedly within an iterative minimization scheme, but only
once at uk−1 as we will see when our algorithmic methodology will be addressed
in the following subsection. Secondly, we perform successive minimization w.r.t.
u and v instead of minimizing simultaneously. The resulting two subproblems
can be tackled much more efficiently than the original problem. For details, we
again refer to the next subsection .

After some rearrangements of the terms in Lλ and (13) and by exploiting the
fact that H is the indicator function of the convex set C, the modified Uzawa
algorithm with successive minimization can be summarized as in Algorithm 1. In
practice, Algorithm 1 is very stable and straightforward to implement, provided
that efficient methods to solve (14) and (15) are at hand. However, a sound con-
vergence analysis for Algorithm 1 in the present general setting is not available
so far (see e.g. [18] for the linear case and [1, Thm. 2.2] for the case when the
additional term in (13) is skipped).

3.2 Subproblems

Closer inspection of Algorithm 1 reveals that the original problem - computing a
saddle point of Lλ - has been replaced by an iterative series of subproblems (14)
and (15). We will now examine these two subproblems and propose methods
that are suited to solve them. Here we proceed as in [1].

We focus on (15) first. Note that the problem given there amounts to comput-
ing the L2-projection of vk := Y + αpk−1 − Kuk−1 onto the feasible region C as
defined in (8). Due to the supremum taken in the definition (3) of the statistic
T , we can decompose C into C =

⋂
S∈S CS where

CS =

⎧
⎨

⎩
v ∈ R

m×n : c−1
S

∑

(i,j)∈S

|vij |2 ≤ 1

⎫
⎬

⎭
, (17)
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Algorithm 1. Inexact Uzawa Algorithm
Require: Y ∈ R

m×n (data), λ > 0 (step size), τ ≥ 0 (tolerance).
Ensure: (u[τ ], v[τ ]) is an approximate solution of (7) computed in k[τ ] iteration steps.

u0 ← 0L2 and v0 = p0 ← 0.
r ← ‖Ku0 + v0 − Y ‖ and k ← 0.
while r > τ do

k← k + 1.
Minimize Lλ(·, vk−1; pk−1) + 1

2

(
M ‖· − uk−1‖2L2 − ‖K(· − uk−1)‖2

)
:

uk ← argmin
u∈L2(Ω)

1

2
‖u− (uk−1 −K∗(Kuk−1 + vk−1 − (Y + λpk−1))‖2L2 +

λ

M
J(u).

(14)

Minimize Lλ(uk, ·; pk−1) + β
2
‖· − vk−1‖2:

vk ← proj
C

(
Y + λpk−1 + βvk−1 −Kuk

1 + β

)
. (15)

Update dual variable:

pk ← pk−1 − λ−1(Kuk + vk − Y ). (16)

r ← max(‖Kuk + vk − Y ‖ , ‖K(uk − uk−1)‖).
end while
u[τ ]← uk and v[τ ]← vk and k[τ ]← k.

i.e. each CS refers to the feasible region that would result if S contained S only.
Note that all CS are closed and convex sets. If we fix a CS and consider some
v /∈ CS, the projection from v onto CS can be stated explicitly as

(PCS (v))i,j =

{
vi,j if (i, j) /∈ S

vi,j(1 +
√

cS/
∑

(k,l)∈S |vk,l|2) if (i, j) ∈ S.
(18)

This insight leads us to the conclusion that any method which computes the
projection onto the intersection of closed and convex sets by projecting on the
individual sets only would be feasible to solve (15). As it turns out, Dykstra’s
Algorithm [14] works exactly in this way and is hence our method of choice to
solve (15). For a detailed statement of the algorithm and how the total number
of sets that enter it may be decreased to speed up runtimes, see [1, Sec. 2.3].

We now turn our attention to (14). In contrast to the standard version of
the Uzawa algorithm as stated in [15], this second subproblem in Algorithm 1
does not involve the inversion of the operator K, at least as long as a suitable
constant M is chosen in (13). For this reason, (14) here simply amounts to solving
an unconstrained denoising problem with a least-squares data-fit. Numerous
methods for a wide range of different choices of J are available in order to cope
with this problem. If J is chosen as the total variation seminorm, for example,
the methods introduced in [3–5] will be suited (we will use the one in [3]).
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4 Numerical Results

We conclude this paper by demonstrating the performance of SMRE as computed
by our methodology introduced in Section 3. We will show SMRE computed
for the denoising problem in Paragraph 4.1 as well as for deconvolution and
inpainting problems in Paragraph 4.2. When it comes down to computation, we
think of an image u as an m×n array of pixels rather than an element in L2(Ω).
Accordingly, the operator K is realized as a mn × mn matrix.

4.1 Denoising

In this paragraph we consider data Y given by (1) when K is the identity matrix
and u0 is the test image in Figure 1 (m = 341 and n = 512). We compute SMRE
based on the systems S0 and S2 as introduced in Paragraph 2.3 where we fixed
α = 0.9. To this end we utilize Algorithm 1 with M = 1 and β = 0, i.e. the
standard Uzawa Algorithm.

We compare our estimators to the global estimators û(λ) (λ > 0) as defined
in (4). We choose λ = λ2 and λ = λB such that the mean squared distance
and the mean symmetric Bregman distance to the true signal u0 is minimized,
respectively. To be more precise, we set

λ2 = E
(

argmin
λ>0

∥
∥u0 − û(λ)

∥
∥2
)

and λB = E
(

argmin
λ>0

Dsym
J (u0, û(λ))

)
, (19)

where the symmetric Bregman distance for J as in (5) reads as

Dsym
J (u, v) =

∫

Ω

( ∇u

|∇u| −
∇v

|∇v|
)
· (∇u −∇v) dx.

Since the parameters λ2 and λB are not accessible in practice as u0 is unknown,
we refer to û(λ2) and û(λB) as L2- and Bregman-oracle, respectively. In addition,
we compare our approach to the spatially adaptive TV (SA-TV) method as
introduced in [11]. The SA-TV algorithm approximates solutions of (2) for the
case where S constitutes the set of all translates of a fixed window S ⊂ G by
computing a solution of (6) with a suitable spatially dependent regularization
parameter λ. Starting from a (constant) initial parameter λ = λ0 the SA-TV
algorithm iteratively adjusts λ by increasing it in regions which were poorly
reconstructed before according to the MR statistic.

For our numerical comparisons, we used the SA-TV-Algorithm as formulated
in [11], considering square windows with side lengths 5 and 9, respectively. All
parameters involved in the algorithm were chosen as suggested in [11]. As a
breaking condition, we used the discrepancy principle which ended the recon-
struction process after exactly three iteration steps in all of our experiments.

The reconstructions are displayed in Figure 2. By visual inspection, we find
that the oracles are globally under- (L2) and over-regularized (Bregman),
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Fig. 2. Upper row: L2 - and Bregman oracles. Middle row: SA-TV reconstruction with
window size 5 and 9. Lower row: SMRE w.r.t. S2 and S0 with α = 0.9.

respectively. While the scalar parameter λ was chosen optimally w.r.t. the differ-
ent distance measures, it still cannot cope with the spatially varying smoothness
of the true object u0.

In contrast, SMRE and SA-TV reconstructions exhibit the desired locally
adaptive behaviour. Still the SMRE as formulated in this paper has the ad-
vantage that multiple scales are taken into account at once, while SA-TV only
adapts the parameter on a single given scale. As a result, SA-TV reconstruc-
tions are of varying quality for finer and coarser features of the object, while the
SMRE is capable of reconstructing such features equally well.

4.2 Deconvolution and Inpainting

We finally investigate the performance of our approach if the operator K in (1) is
non-trivial. To be exact, we consider inpainting and deconvolution problems. For
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the first we consider an inpainting domain that occludes 15% of the image with
noise level σ = 0.1 (upper left panel in Figure 3) and for the latter a Gaussian
convolution kernel with variance 2 and noise level σ = 0.02 (lower left panel in
Figure 3). For all experiments we use the dyadic system S2 and α = 0.9.

Fig. 3. Inpainting (upper row): data Y with σ = 0.1 (left) and SMRE (right). Decon-
volution (lower row): data Y with σ = 0.02 (left) and SMRE (right).

Note that in both cases we have K = K∗ and ‖K‖ = 1; we therefore set
M = 1.01 and β = M − 1 in (14) and (15), respectively. We use τ = 10−3

as breaking tolerance which results in both cases in k[τ ] ∼ 30 iterations in
Algorithm 1 and a total computation time of less than 4 min. The results are
depicted in the upper right and lower right images of Figure 3, respectively.

Again, the results indicate that a reasonable trade-off between data fit and
smoothing is found by the proposed a priori parameter choice rule and that the
amount of smoothing is adapted according to the image features.

5 Conclusion

In this paper we showed how statistical multiresolution estimators, that is so-
lutions of (2), can be employed for image reconstruction. We stressed that our
method, combined with an a priori parameter selection rule, locally adapts the
amount of regularization according to the image geometry. For the solution of
the optimization problem (2) we suggested an inexact Uzawa algorithm. The
performance of our method was illustrated for standard problems in imaging.
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