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Abstract. We present an efficient implementation of volumetric nonlinear an-
isotropic image diffusion on modern programmable graphics processing units
(GPUs). We avoid the computational bottleneck of a time consuming eigenvalue
decomposition in R

3. Instead, we use a projection of the Hessian matrix along
the surface normal onto the tangent plane of the local isodensity surface and solve
for the remaining two tangent space eigenvectors. We derive closed formulas to
achieve this resulting in efficient GPU code. We show that our most complex
volumetric nonlinear anisotropic diffusion gains a speed up of more than 600
compared to a CPU solution.

1 Introduction and Motivation

Diffusion equations smooth out noise effectively and provide a scale space representa-
tion [1–5] of the image, when time is considered as a natural, continuous scale space
parameter. They are well known in the field of image processing and have been subject
to many enhancements during the last decades.

These equations are widely used for 2D images processing, see e.g. [3, 6] for an intro-
duction. Recent publications apply this diffusion for smoothing of normal maps [7], and
fairing of surfaces and functions on surfaces and meshes [8, 9], to mention only some
possibilities. Anisotropic diffusion of whole volume images or general meshes [10, 11]
and smoothing vector valued volume images [12] are also common tasks arising in
medical applications.

As this diffusion requires to solve second order partial differential equations (PDEs)
numerically for a rapidly increasing amount of discretized data, it is a perfect applica-
tion for modern graphic cards, which can easily handle large data sets. The current GPU
SIMD architecture allows to solve each iteration in a few milliseconds due to massively
parallel processing. This holds for equations that lead to an efficient parallelization.
However, this is at least difficult for most interesting, non-linear, PDEs due to the local
structure in each voxel that determines in which direction smoothing can be performed.

1.1 Contribution

As main contribution we show how one can obtain the so-called local structure frame
for volumetric data sets easily. This leads to nearly unconditional code, performing
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extremely well on GPUs. For this purpose, we build on a technique described by Had-
wiger et al. [13]. Anisotropic nonlinear diffusion on symmetric multiprocessor (SMP)
clusters for volumetric data was discussed in [14], showing a maximum speedup of 20
on SMP clusters with up to 30 processors. In our GPU approach, we do not need to
slice the volume and distribute it across a platform, as all shading processors of modern
GPUs can access the same memory. We therefore achieve speedups of up to 640 on a
comparably cheap GPU.

Volumetric anisotropic diffusion on GPUs using shader programs in the standard
graphics pipeline has been discussed in, e.g, the works by Jeong et al. [15], Zhao [16] or
Beyer et al. [17]. In contrast to this, our approach is based on NVidia’s CUDA which is
better suited for GPGPU (general purpose GPU) algorithms like volumetric diffusion.
Intermediate values, such as the Hessian, are recomputed on-the-fly in each iteration
and are stored temporarily in per-thread local memory. Therefore, larger data sets can
be processed on the GPU. Further, to our knowledge, we are the first to compute the
local structure frame in 2D in the context of volumetric diffusion. This significantly
simplifies the algorithm while the results of the diffusion are very good, see Fig. 1,
right, and 4.

2 Prerequisites

The linear homogeneous diffusion equation removes noise from images by solving the
heat equation, a second order parabolic PDE. Initial and boundary conditions are re-
quired to find a particular solution. A general diffusion equation can then be defined as
follows:

∂

∂t
Φ(x, t) = div (D∇Φ(x, t)) for x ∈ Ω, t > 0, (1)

Φ(x, 0) = Φ0(x) for x ∈ Ω, (2)

∂

∂n
Φ(x, 0) = 0 for x ∈ ∂Ω. (3)

Here, Φ denotes the noisy image function defined on a region Ω of the Euclidean space.
D is a function, which determines the diffusion speed through the medium. D is con-
stant (usually 1 or 1/2) in the linear case. The initial condition (2) initializes the func-
tion at time t = 0 with the original noisy image Φ0. The boundary values are defined
in (3) by their derivative in normal direction n to the border of the considered volume:
Since the directional derivative is assumed to be 0, no flow through the boundary ∂Ω is
induced.

Solving the heat equation for D = 1 at time t = 1/2 σ2 equates to convolving the
image function with a Gaussian of size σ (see [1, 3, 18]). Thus, this diffusion equation
has exactly the same smoothing characteristics as the well known Gaussian filter. In
particular boundaries blur out fast and therefore edge information gets lost quickly, see
Fig. 1, left.
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Fig. 1. 100 iterations of diffusion with a time step Δt = 0.05. Left: Homogeneous diffusion. The
frontal sinus destroys the surface structure of the forehead and small scaled details (e.g. lips, nose,
ears) are lost. Right: Nonlinear anisotropic diffusion (here: edge enhancing diffusion) steered by
a diffusion tensor based on local structure preserves fine scaled features.

2.1 Inhomogeneous Diffusion

In the context of image processing, the heat equation was modified significantly by
Perona and Malik [19] by replacing D in Eq. (1) with an edge detector, a monotonically
decreasing non-negative real function g, which attenuates the induced flow close to
edges and therefore effectively prevents edges from being washed out:

∂

∂t
Φ = div (g(|∇Φ|)∇Φ) , for x ∈ Ω, t > 0. (4)

Perona and Malik proposed the diffusivity functions g(∇Φ) = e−(|∇Φ|/λ)2 and g(∇Φ) =
1

1+(|∇Φ|/λ)2
. They designated this diffusion anisotropic, but it is only locally adapting

and still isotropic, as it is steered by a scalar diffusion coefficient. Weickert calls this
locally adapting diffusion inhomogeneous [3]. Inhomogeneous diffusion is able to pre-
serve edges over a long period of time, but its smoothing capabilities close to edges are
rather poor.

2.2 Nonlinear Anisotropic Diffusion

Weickert introduced a new nonlinear anisotropic diffusion, using a tensor for D in
Eq. (1). This allows for anisotropic adjustment of the diffusion flow [3, 6, 20]. The
diffusion tensor D aligns the diffusion flow along the surface structure and its exact
definition is mainly dependent on the desired results of the smoothing process.

Edge enhancing diffusion (EED) attenuates diffusion flow normal to the edge or sur-
face but promotes flow along the edge or parallel to the surface, see Fig. 1, right. Fur-
thermore, coherence enhancing diffusion (CED) trys to steer diffusion along line-like
structures and is able to reconnect interrupted lines [6]. In a hybrid approach, joining
EED and CED to locally adapting diffusion, one is able to enhance edges, smooth out
noise and to connect broken lines.
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In all cases the definition of a useful diffusion tensor involves the construction of a
local structure frame: One needs to find a transformation which aligns the coordinate
system orthogonally to the surface of the submanifold. Let V be such a coordinate
transformation, aligning the third axis normal to the surface, then we can define the
EED tensor D in three dimensions as follows:

D = V D∗V T = V

⎛
⎝

1 0 0
0 1 0
0 0 g(|∇Φ|)

⎞
⎠V T . (5)

Matrix D transformed to the new basis V is a diagonal matrix D∗, as the diffusion flow
is aligned perfectly along the principal directions of the surface structure. The crucial
point when designing anisotropic diffusion is the efficient construction of this frame V .
The traditional way is to obtain this basis by analyzing the structure tensor, defined as
the outer product of the gradient ∇Φ with itself. In the next section, we will present a
method to find such a frame by efficiently analyzing the Hessian, which holds structural
information, as it describes the change of the surface normal.

3 Surface Structure and the Hessian

When defining a diffusion tensor, it is utterly important to find a basis V whose axes
are aligned exactly along the principal curvature directions of the surface. Theoretically,
this was also possible by eigen-decomposition of the structure tensor in 3D space. As
the structure tensor is a real symmetric matrix, the eigenvalues are real and the eigen-
vectors are existent. But the characteristic polynomial of a 3 × 3 matrix has degree 3
and therefore it is rather time consuming to solve for the roots.

On the other hand, the eigenvalues of a 2×2 matrix are computed easily by evaluating
only a few closed formulas. Especially for machine code executed on modern GPUs,
this is of advantage as the single execution paths are not divergent (not branching) and
parallel execution on the hardware is achieved ideally. In the following, we will show
how to obtain the structure frame V by evaluating closed formulas only.

3.1 Tangent Space Projection of the Hessian

The following considerations are aimed at finding a basis transformation V : R
3 �→

R
3 with as few computations as possible and which will describe a coordinate system

normal to the tangent plane of the isosurface at a given point. Despite that, the remaining
two basis vectors of V spanning the tangent plane should be aligned with the orthogonal
principal curvature directions.

Assuming that the inner region of a volume consists of higher density volumes, we

define the surface normal by the gradient ∇Φ =
[

∂Φ
∂x

∂Φ
∂y

∂Φ
∂z

]T
as n = −∇Φ/|∇Φ|.

Since ∇Φ points towards the direction of the greatest density ascent inside the volume,
n lies inside the linear span of the gradient. Therefore it points into the direction the
surface moves when the iso value is increased. We can choose n(x) to be the first vector
of our frame V .
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n

g

(n · x) · n = nnT · x

(I − nnT ) · x

x

Fig. 2. Left: Projecting a point x into the span of the normal n and its complement. Right: The
local surface frame.

The curvature of a surface is defined as the ratio between change of surface normal
and change of position, which is described by the gradient of n: If we move in an
infinitesimal close area around the point x, the normal will change according to the
surface.

In [13] and [21] one finds methods on how to characterize the curvature of a surface
based on gradient informations and, moreover, how to obtain the principal curvature
directions. The derivative of the normal field ∇nT at some point x contains curvature
information of the surface. Note that ∇nT is a 3 × 3 matrix. According to Kindlmann
et al. [21] it holds that

∇nT = − 1
|∇Φ| (I − nnT )H. (6)

Here, I denotes the 3× 3 identity matrix, and H = ∇(∇Φ)T is the Hessian containing
all combinations of partial second order derivatives of the image Φ.

While the gradient describes the amount of change of Φ, the Hessian describes the
amount of change of the gradient, that is the amount of change of the surface normal
in an infinitesimal close region to a given point x. This amount of change of the gra-
dient can be decomposed into two components, namely the changes along the gradient
direction and changes in the tangent space. Only the latter is required for isosurface
curvature computation.

To perform the tangent space projection, we proceed as follows: We may omit the
scaling factor |∇Φ|−1 in Eq. (6) and concentrate on the remaining term. It is easy to
see that (nnT )x = (nx)n, and the operator (nnT ) projects any point x ∈ Ω onto the
linear span of the normal. Therefore we are able to define a linear map

P = (I − nnT ) =
(

I − ∇Φ(∇Φ)T

|∇Φ|2
)

. (7)

which projects any given point x into the complement of the linear span of n, which is
the iso surface (see Fig. 2).
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Projection P extracts the gradients change of direction from the Hessian inside the
tangent space. By using P we define the shape operator

S = PT H

|∇Φ|P. (8)

Since S is symmetric, solving the characteristic polynomial gives us three real roots and
associated orthogonal eigenvectors. Still, the computational overhead of a full eigen-
decomposition of a 3 × 3 matrix is rather high, especially as one eigenvector, the nor-
mal n, is already known. The remaining eigenvectors in the tangent plane are the prin-
ciple curvature directions with corresponding eigenvalues λ1,2 which amount to the
principle curvatures.

According to Hadwiger et al. [13], we can solve for the eigenvalues directly in 2D
tangent space without explicitly computing S. The transformation of S into any arbi-
trary orthogonal basis (u, v) of the tangent space is defined as

S′ =
(

s11 s12

s12 s22

)
= (u, v)T H

|∇Φ| (u, v). (9)

For finding an arbitrary orthogonal basis u, v in the tangent plane, we may proceed as
follows: We choose the canonical unit vector e1 = (1, 0, 0)T assuming that e1 ∦ n
holds and compute the cross product u = e1 ×n. In case u = 0 we compute the cross
product again, now using the second unit vector, e2 = (0, 1, 0)T . u is now normal to
n and therefore it must be part of the tangent plane. We finish the new basis by adding
v = u × n.

By using Eq. (9) we are now able to compute the eigenvalues λ1,2 of S′ by solving
the characteristic polynomial

det(S′ − λI) =
∣∣∣∣
s11 − λ s12

s12 s22 − λ

∣∣∣∣ = 0

⇒ λ1,2 =
trace(S′)

2
±
√

trace(S′)2

4
− det(S′). (10)

From the eigenvalues λ1,2 we compute the corresponding eigenvectors. The appropriate
formula in [13] is incorrect and can be found in the correct formulation in [22, p. 96].
The eigenvectors w∗

1,2 are computed with reference to the basis (u, v) at first, and
afterwards they are transformed back into 3D space:

w∗
1 =

(
w∗

1u

w∗
1v

)
=

⎧⎪⎪⎨
⎪⎪⎩

(
λ1 − s22

s12

)
,

(
1
0

)
,

for s12 �= 0

for s12 = 0

w∗
2 =

(
w∗

2u

w∗
2v

)
=

⎧⎪⎪⎨
⎪⎪⎩

(
λ2 − s22

s12

)
,

(
0
1

)
,

for s12 �= 0

for s12 = 0

(11)
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The transformation of the 2D eigenvectors into object space is accomplished by ex-
tending the tangent space basis with n to 3D and a retransformation into the original
orientation by means of V = {u, v, n}:

wi =

⎛
⎝

ux vx nx

uy vy ny

uz vz nz

⎞
⎠
⎛
⎝

w∗
iu

w∗
iv

0

⎞
⎠ =

⎛
⎝

uxw∗
iu + vxw∗

iv

uyw
∗
iu + vyw∗

iv

uzw
∗
iu + vzw

∗
iv

⎞
⎠ . (12)

3.2 Algorithm: Retrieving the Diffusion Tensor

Building on the results of the previous sections, we now depict a compact and easy to
implement algorithm to define the anisotropic diffusion tensor. The core of our algo-
rithm is a 2× 2 eigen-decomposition of the Hessian projected into the tangent space of
the iso surface, computed with simple, closed formulas. The algorithm can be outlined
as follows:

1. Calculate the gradient ∇Φ and the normal of the isosurface n = −∇Φ/|∇Φ|
2. Build the Hessian H = ∇(∇Φ)T (see Sect. 4)
3. Complete n with any arbitrary u and v to an orthonormal basis, whose u, v plane

is tangential to the isosurface
4. Using Eq. (9), project H into the tangent plane to obtain the 2 × 2 matrix S′

5. Using Eq. (10) we can calculate the eigenvalues λ1,2

6. Now, using Eq. (11), we obtain the corresponding eigenvectors w∗
1,2 with respect

to the (u, v) basis
7. W.l.o.g. we might – if this was necessary for the definition of our diffusion tensor

– reorder the eigenvalues and eigenvectors: λ1 < λ2

8. Transform the 2D eigenvectors back to object space using Eq. (12), receiving the
3D eigenvectors w1, w2

9. Set V = (w1, w2, n) and V −1 = V T

10. Define D = V · diag(1, 1, g(∇Φ)) · V −1

The last step defines the EED diffusion tensor, smoothing along the isosurface and
attenuating the diffusion flow normal to the edge. It is further possible to define other
diffusion tensors with different properties upon the frame V .

4 Implementation

Our prototype was implemented using C for CUDA which allows for high-parallel com-
putations on NVidia GPUs. As divergent program execution – arising from conditional
code which leads to branching – and sequential calculations of the GPU multiprocessors
could eliminate speed advantages it is important to find a reduction of the dimension: As
one surface frame basis vector – the normal – is known, we can search for the remaining
ones in the hyper plane.

The volume data was stored as a 3D texture on the GPU. Coalesced memory access
is not possible when processing volumetric data, so the best speedup was achieved by
using cached texture memory. Clamping the textures automatically keeps track of all
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the border values: As gradients at the borders equal zero, no flow will be induced and
we avoid conditional code which would slow down the program.

Besides, we can access values between the grid centers and request the hardware to
do trilinear interpolation. This gives us a slight speedup for discretizing the Hessian as
explained below. Finally, and most important, texture memory is cached, which com-
pensates for the uncoalesced access and results in faster access to neighboring voxels.
Performing multiple iterations can be achieved by synchronizing all threads and copy-
ing the output back to the texture memory. Copying memory within the device is a
fast solution to circumvent the read only issue of texture memory. Each CUDA thread
processes one voxel at a time. The code was straight forward developed from the dis-
cretized formulation of the anisotropic diffusion.

4.1 Discretization

In the following Φ̂ denotes the discretized image function Φ : Ω ⊂ R
3 �→ R. Each grid

point is associated with a value Φ̂x,y,z . Neighboring voxels are labeled Φ̂x− = Φ̂x−1,y,z,

likewise Φ̂x+ , Φ̂y− , Φ̂y+ , Φ̂z− and Φ̂z+ .
The isotropic grid structure provides a natural spatial discretizing scheme for cen-

tral differences. For temporal discretization we use forward differences. For nonlinear
anisotropic diffusion we obtain the following discretization:

Φ̂(t + Δt) ≈ Φ̂(t) + Δt · div(D(∇Φ)∇Φ)

= Φ̂(t) + Δt ·
(

∂

∂x

(
d11

∂Φ̂

∂x
+ d12

∂Φ̂

∂y
+ d13

∂Φ̂

∂z

)
+

∂

∂y

(
d12

∂Φ̂

∂x
+ d22

∂Φ̂

∂y
+ d23

∂Φ̂

∂z

)
+

∂

∂z

(
d13

∂Φ̂

∂x
+ d23

∂Φ̂

∂y
+ d33

∂Φ̂

∂z

))
(13)

The entries dij represent the components of the diffusion tensor D. We discretize
Eq. (13) over an isotropic grid with central differences.

The diffusion tensor of EED as defined in step 10 of the algorithm outlined in
Sect. 3.2 yields a symmetric matrix D consisting of the eigenvectors w1 and w2 of
the Hessian projected along n to the tangent plane of the isosurface:

D =

⎛
⎝

d11 d12 d13

d12 d22 d23

d13 d23 d33

⎞
⎠ , (14)

with d11 = w1xw1x +w2xw2x +nxnxg(∇Φ) and accordingly for the remaining cases.
The eigenvalues from Eq. (10) and eigenvectors from Eq. (11) are obtained directly in
tangent space and are transformed back to object space, see Eq. (12).

The step size Δt needs to be small enough in order to guarantee numerical stability.
Following [14], Δt < 0.5/Nd, with Nd the dimension of the problem, i.e. 3. We used
the conservative value Δt = 0.05.
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5 Results

The results of our GPU implementation as well as a CPU implementation for a volume
with size 5123 voxels are given in Table 1. Unless specified otherwise, the timings were
taken on a system consisting of an Intel Xeon E5430 CPU (2.66 GHz) and a NVidia
GeForce GTX 480 with 480 shader cores. The CPU variants were ported from the GPU
code in a straightforward way without any further optimizations.

The table shows the timings, separated into transfer times of the volume to the GPU
(obviously not applicable to CPU) and the times needed for one iteration of the code.
The speedups are given for one iteration alone. Since diffusion equations typically need
many iterations we neglect the transfer times and only take the iteration timings into
account. We achieve a speedup of about 170 to 320 for the homogeneous and inhomo-
geneous diffusion. For the nonlinear anisotropic diffusion (EED) the results are even
better: Five iterations require 10 minutes CPU time compared to 1 second on the GPU.
As other anisotropic diffusion equations have even higher arithmetic intensity one can
expect them to be even faster compared to their CPU variants.

The runtimes of single iterations are also visualized in Fig. 3. As the filters are inde-
pendent of the data, execution times are proportional to volume sizes and particularly
the fraction of CPU to GPU times is constant, so one can easily extrapolate to other data
sizes. Modern GPUs provide up to 4 GB memory, so it is possible to process data sets
with up to 8003 voxels on the GPU.

Table 1. Timings and speedups of one iteration step of the discretized PDE, Eq. (13), with a data
set of size 5123 voxels (CPU: Intel Xeon E5430; GPU: NVIDIA GTX 480)

Time ([ms]) Speedup
MemCpy Iteration Iteration

Linear cpu 0 1 917 1
homogeneous gpu 256 11 173

Nonlinear inhomo- cpu 0 33 499 1
geneous (Perona-Malik) gpu 281 105 320

Nonlinear cpu 0 118 717 1
anisotropic (EED) gpu 276 185 641

Overall it is important to acquire high-quality first and second order derivatives for
the gradient as well as the Hessian. Especially at the beginning of the diffusion process
significant noise components may disturb the discrete computation of the derivatives
enormously. To initialize the diffusion process optimally, usually some sort of (pre-)
filtering is applied to the image. for instance using a box, a Gaussian, or a median filter.
Bajaj et al. propose to use bilateral filtering, since it removes noise while preserving
edge or curvature information, which is important for constructing the diffusion ten-
sor [18]. The bilateral filter can be seen as an expansion to Gaussian filtering by apply-
ing an additional edge term [23–25]. In our GPU implementation we achieve a speedup
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Fig. 3. Runtimes for one iteration of the presented kernels from table 1 on a logarithmic scale
(CPU: Intel Xeon E5430; GPU: NVIDIA GTX 480)

Fig. 4. Restoring the functional data Φ(x, y, z) = |x| + |y| + |z| (2563 voxels). From Left to
Right: Ground truth, Gaussian noise added (≈ 20% voxels affected, variance 30%), after bilateral
prefiltering, after 100 iterations (Δt = 0.05) of homogeneous and edge enhancing diffusion,
respectively, of the prefiltered data set.

of 800 for the bilateral filter. Simpler filters also benefit from massively parallelization,
albeit less due to their simplicity. The box filter has a speed up factor of 43, the Gaus-
sian filter one of 151, and the median filter is 76 times faster. All filters took around 1
to 2 seconds on the 5123 data set.

In Fig. 4 an example of a 3D model endowed with a significant amount of noise is
given. Here applying the bilateral filter before the diffusion definitely makes sense.

6 Conclusions

Using the example of EED, we have shown that volumetric nonlinear anisotropic dif-
fusion can be mapped efficiently onto the GPU. As efficient GPU code should avoid
branching if possible, we derived closed formulas for the 3D eigenvalue analysis of the
shape operator that allows for reducing the problem from 3D object space onto 2D tan-
gent space: We have presented closed formulas for creating a structure frame along the
three principal curvature directions. Building on that, we defined the diffusion tensor
for nonlinear anisotropic diffusion and achieved over 600 times the speed compared
to a conventional CPU solution. Among the different possible pre-filters for very noisy
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images we have seen that the bilateral filter is a promising candidate for being processed
on the GPU, achieving 830 times the speed of our CPU solution.

As the technical development of GPUs is rapidly progressing and available memory
expands, increasingly larger data sets can be processed directly on the GPU. Apart from
scalar volume data, one could also process vector data sets on the GPU, as they arise,
for example in DW-MRI (diffusion-weighted magnetic resonance imaging). A starting
point for this could be 3D-RGBA-textures, representing 4D vectors. Another question
concerns automatic parameter detection. Presumably it was necessary to construct and
analyze complete or statistically representative image and gradient histograms, which
could be done directly on the GPU. Also, one could examine how CED or hybrid dif-
fusion performs on GPUs, as the arithmetic intensity is higher. Building on successful
(pre-)filtering and the diffusion process one could try to deal with segmentation as well,
in order to present a seamless GPU solution.
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