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Abstract. In this paper, we present a stochastic interpretation of the
motion estimation problem. The usual optical flow constraint equation
(assuming that the points keep their brightness along time), embed for
instance within a Lucas-Kanade estimator, can indeed be seen as the min-
imization of a stochastic process under some strong constraints. These
constraints can be relaxed by imposing a weaker temporal assumption
on the luminance function and also in introducing anisotropic intensity-
based uncertainty assumptions. The amplitude of these uncertainties are
jointly computed with the unknown velocity at each point of the image
grid. We propose different versions depending on the various hypoth-
esis assumed for the luminance function. The substitution of our new
observation terms on a simple Lucas-Kanade estimator improves signifi-
cantly the quality of the results. It also enables to extract an uncertainty
connected to quality of the motion field.

Keywords: Optical flow, stochastic formulation, brightness consistency
assumption.

1 Introduction

Many computer vision problems are formulated on the basis of the spatial and
temporal variations of the image luminance:

df

dt
=

∂f

∂t
+ v · ∇f = 0, (1)

where ∇ is the gradient operator in the x and y directions. When the function f
denotes the luminance function this equation is referred in Computer Vision as
the Optical Flow Constraint Equation (ofce) or as the brightness consistency
assumption and constitutes the only available information for motion estimation
issues. Optical flow estimation has been studied intensively since the seminal
work of Horn and Schunck [12] and a huge number of methods based on diverse
variations of this constraint have been proposed in the literature [5, 9, 20, 22, 23].
Usually a data model constructed from this constraint is associated with some
spatial regularizers that promote motion fields with some spatial (and sometimes
temporal) coherency. Many authors have proposed on this basis very efficient
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techniques. Readers can refer to [4–6, 13, 15–17, 19, 24–26] for a non exhaustive
panel or [11] for a recent review. Comparative performance evaluations of some
of these techniques can be found in [1, 2, 10]. Among the developed approaches,
the techniques focused first on the design of new regularization terms (able for
instance to deal with occlusions, discontinuities or relying on physical grounds
[8, 11]) and second on the application of advanced minimization strategies. Sur-
prisingly, apart for some specific applications devoted to some specific types of
imagery (fluid, biology, infrared imagery, tomography, IRM, ..., see [21] for a
summary), only very few authors have worked on generic alternative data terms
to the classical brightness consistency assumption, despite the fact it plays a
crucial role in the motion estimation process.

The conventional optical flow constraint relation (1) is in fact defined as the
differential of a function known only on spatial and temporal discrete point posi-
tions (related to the image sequence spatio-temporal lattice). This is somewhat
a strong constraint since in practice, the grid points on which is defined the
luminance is transported by a flow itself known only up to the same discrete po-
sitions. It results from this discretization process an inherent uncertainty on the
points location that can reveal to be of important magnitude when are involved
strong motions, large inter frames lapse rate or crude spatial discretization as-
sociated for instance to large spatial scales measurements. The idea is therefore
to encode such a location uncertainty as a random variable and to incorporate
the uncertainty transportation into the brightness consistency assumption. This
is done using stochastic rules.

The paper is organized as follows: in section 2 we define a stochastic version of
the luminance function, by incorporating isotropic and anisotropic uncertainties.
From this formulation, two conservation constraints of the image luminance are
derived. If the velocity field is available or if we estimate it simultaneously, we
propose in section 3 a way to compute the associated uncertainty. Finally, section
4 presents a local multiscale Lucas and Kanade motion estimator based on the
brightness consistency stochastic models.

2 Stochastic Luminance Function and Conservation
Constraints

2.1 Notations – Conventions

In this paper we use the following conventions/notations:

– the image luminance is f ;
– we represent as a vector X = (X1, . . . , Xm)T a grid of 2D points, Xs ∈ R

2;
– the “pixel” grid of the images Xt−1 is represented by the position of a grid

X at the initial time, set to t − 1
– at time t−1, this grid is driven by a velocity field v(Xt−1, t−1) : R

2m×R
+ →

R
2m defined on the initial grid Xt−1 to generate the new point positions Xt

at time t.



Stochastic Models for Local Optical Flow Estimation 703

2.2 Stochastic Luminance Function

We first write the image luminance as the function of a stochastic process related
to the position of image points. If one assumes that the velocity v to estimate
transports the grid from Xt−1 to Xt up to a Brownian motion, we can write:

dXt = v(Xt−1, t − 1)dt + Σ(t, X t)dBt, (2)

where Bt = (B1
t , ...,B

m
t )T is a multidimensional standard Brownian motion of

R
2m, Σ a (2m × 2m) covariance matrix and dXt = Xt − Xt−1 represents the

difference between the grid positions. The luminance function f usually defined
on spatial points x = (x, y) at time t is here defined on the grid as a map
from R

+ × R
2m into R

m and is assumed to be C1,2(R+, R2m). Its differential is
obtained following the differentiation rules of stochastic calculus (the so called Îto
formulae) that gives the expression of the differential of any continuous function
of an Îto diffusion of the form in (2) (see [18] for an introduction to stochastic
calculus):

df(X t, t) =
∂f

∂t
dt +

∑

i=(1,2)

∂f(X t, t)

∂xi
dXi

t +
1

2

∑

(i,j)=(1,2)×(1,2)

∂2f(X t, t)

∂xi∂xj
d <Xi

t ,X
j
t > .

(3)

The term <X i
t ,X

j
t > denotes the joint quadratic variations of X i and Xj and

can be computed according to the following rules: < Bi,Bj >= δijt and <
h(t), h(t) >=< h(t), dBi >=< Bj , h(t) >= 0 where δij = 1 if i = j, δij = 0
otherwise, and h(t) is a deterministic function. Compared to classical differential
calculus, new terms related to the Brownian random terms have been introduced
in this stochastic formulation. A possible way to represent the stochastic part of
(2) is to use an isotropic uncertainty variance map σ(Xt, t) : R

+ × R
2m → R

m

Σ(X t, t)dBt = diag(σ(X t, t)) ⊗ I2dBt, (4)

where I2 is the (2 × 2) identity matrix, and ⊗ denotes the Kronecker prod-
uct. Alternatively, one can use anisotropic intensity-based uncertainties along
the normal (with a variance ση) and the tangent (with a variance στ ) of the
photometric contour following:

Σ(X t, t)dBt = diag(ση(X t, t)) ⊗ ηdBη
t + diag(στ (X t, t)) ⊗ τ dBτ

t , (5)

where the vectors

η=
1

|∇f |
(
fx

fy

)
, τ =

1
|∇f |

(−fy

fx

)
,

represent respectively the normal and tangent of the photometric isolines, Bη

and Bτ are two scalar independant multidimensional Brownian noises of R
m and

f• = ∂f(Xt, t)/∂• for • = (x, y). Let us now express the luminance variations
df(Xt, t) under such isotropic or anisotropic uncertainties.

Isotropic Uncertainties. Applying Îto formula (3) to the isotropic uncertainty
model yields a luminance variation defined as:

df(Xt, t) =
(

∂f

∂t
+ ∇f · v +

1
2
σ2Δf

)
dt + σ∇f · dBt. (6)
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Anisotropic Uncertainties. Considering the anisotropic uncertainty model
(5) and the mentioned properties regarding the quadratic variations, the term
df reads now:

df =

(
∂f

∂t
+∇f · v+

∇fT ∇2f∇f

2|∇f |2 (σ2
η − σ2

τ ) +
σ2

τΔf

2

)
dt + ση‖∇f‖dBη

t + στ∇fT τdBτ
t︸ ︷︷ ︸

=0

.

(7)

In this brightness variation model the stochastic term related to the uncer-
tainty along the tangent vanishes (since the projection of the gradient along
the level lines is null). It is straightforward to remark that the standard bright-
ness consistency assumption is obtained from (6) or (7) using zero uncertainties
(σ = ση = στ = 0). The proposed stochastic formulation enables thus to use a
softer constraint. From this formulation, let us now derive some generic models
for the evolution of the image luminance transported by a velocity field with
local uncertainties.

2.3 Uncertainty Models for Luminance Conservation

Starting from a known grid Xt−1 and its corresponding velocity, the conserva-
tion of the image luminance can be quite naturally defined as the conditional
expectation E (df(Xt, t)|Xt−1) between t − 1 and t. To compute this term, we
exploit the fact (as shown in appendix A) that the expectation of any function
Ψ(Xt, t) of a stochastic process dXt (as in (2)) knowing the grid Xt−1 reads:

E(Ψ(Xt, t)|Xt−1) = Ψ(X t−1 + v, t) ∗ N (0, Σ), (8)

where N (0,Σ) is a multidimensional centered Gaussian. This latter relation
indicates that the expectation of a function Ψ(Xt, t) knowing the location Xt−1

under a Brownian uncertainty of variance Σ is obtained by a convolution of
Ψ(Xt−1 + v, t) with a centered Gaussian kernel of variance Σ.

Assuming Σ known, our new conservation model H(f, v) for the luminance
evolution is hence defined as (with gΣ a gaussian of variance Σ):

H(f, v) = gΣ ∗ (df(Xt−1 + v, t)) = gΣ ∗
(
∇f · v +

∂f

∂t
+ F(f)

)
, with (9)

F(f) =
1

2
σ2Δf for isotropic uncertainties or F(f) =

∇fT ∇2f∇f

2|∇f |2 (σ2
η−σ2

τ )+
σ2

τΔf

2
else.

(10)

If the brightness conservation constraint strictly holds, one obtains σ = ση =
στ = 0; the Gaussian kernels turn to Dirac distributions and relations (9), (10)
correspond to (1). The proposed model provides thus a natural extension of the
usual brightness consistency data model. In the next section we propose a way
to estimate the uncertainties ση and στ .
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3 Uncertainty Estimation

Assuming an observed motion field vobs that transports the luminance is avail-
able (we will describe in section 5 a local technique for this), it is possible to
estimate the uncertainties ση(x, t) and στ (x, t) for each location x at time t.

3.1 Estimation of ση

Computing the quadratic variation of the luminance function df between t − 1
and t yields, for the isotropic or anisotropic version:

d〈f(X t, t), f(X t, t)〉 = σ2
η(X t, t)‖∇f(X t, t))‖2, (11)

where σ = ση in the isotropic formulation. This quadratic variation can also be
approximated from the luminance f by
d〈f(Xt, t),f(Xt, t)〉 ≈ (f(Xt, t) − f(Xt−1, t − 1))2. Considering now that the
conditional expectation of both previous terms should be identical, one can es-
timate the variance by:

ση(X t) =

√
E (f(X t, t) − f(X t−1, t − 1))2

E (‖∇f(X t, t))‖2)
. (12)

The expectation in the numerator and denominator are then computed at the dis-
placed point Xt−1 +vobs(Xt−1) through the convolution of variance Σ(X t−1, t−
1). A recursive estimation process is thus emerging from equation (12). For the
anisotropic model the uncertainty along the tangent is also needed.

3.2 Estimation of στ

It is not possible to estimate uncertainty along the tangent of the photometric
contours in a similar way since, as shown in (7), this quantity does not appear
in the noise associated to the luminance variation and therefore is not involved
in the corresponding quadratic variations. Writing the Ito diffusion associated
to the velocity projected along the tangent yields

vobs
T τ = v(X t−1, t − 1)T τdt + στ (t,X t)dBτ

t . (13)

This scalar product constitutes a scalar Gaussian random field of mean μ =
v(Xt−1, t − 1)T τ (assuming v(x, t) is a deterministic function) and covariance
(diag(στ )). We assume that the scalar product vT τ and the tangent uncertainty
στ (t, x) are sufficiently smooth in space and can be respectively well approxi-
mated by the local empirical mean and variance over a local spatial neighborhood
N(x) of point x:

μ =
1

|N(x)|
∑

xi∈N(x)

(vobs(xi, t−1)T τ ), σ2
τ =

1

|N(x)| − 1

∑

xi∈N(x)

(vobs(xi, t−1)T τ−μ)2.

(14)

The relations in (9-10) provide new models for the variation of the image lu-
minance under isotropic or anisotropic uncertainties. In this section we have
presented a technique to estimate such uncertainties from an available veloc-
ity field. The next section focuses on application of those extended brightness
consistency models for motion estimation.
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4 Application of the Proposed Luminance Models

This section aims at defining a simple local motion estimator that embeds the
proposed evolution models as an observation term. As the classical Optical Flow
Constraint Equation –OFCE– based on (1), an observation model based on a
stochastic evolution of the luminance in (9) is subject to the aperture problem.
Similarly to the well-known Lucas-Kanade estimator, we cope this difficulty by
assuming constant flow within a Gaussian windowing function of variance σ�.
Therefore, the minimum variance estimate v gives:

(
gσ�∗gΣ∗

[
f2

x fxfy

fxfy f2
y

])
v=−gσ� ∗ gΣ ∗(F(f)+ft)

[
fx

fy

]
. (15)

Let us note that in our model the Gaussian windowing function can be inter-
preted as the distribution of a new isotropic constant uncertainty term related to
the grid resolution and independent of the motion uncertainties that do depend
on the image data.

A main advantage of such a formulation of the multiresolution setup is to
naturally get rid of the use of a pyramidal image representation. With all these
elements, we can define the incremental local motion estimation technique:

Incremental Algorithm

1. Initializations :
– Fix an initial resolution level � = L
– Define f̃(Xt−1, t) := f(Xt−1, t) ; v = 0;

2. Estimation for the level �
(a) Initializations :

– n = 1; v0 = 0;
– Fix a normal uncertainty σ0

η

– Fix a tangent uncertainty σ0
τ (if anisotropic formulation)

(b) Estimate σn
η by relation (12)

(c) Estimate σn
τ by measuring the tangential uncertainty of v (relation (14))

(d) Find vn by local inversions of the system (15)
(e) Update motion field : v := v + vn

(f) Warp the image f(Xt, t) : f̃(Xt−1) = f(Xt−1 + v, t)
(g) n := n + 1
(h) Loop to step (b) until convergence (|vn| < ε);

3. Decrease the multiresolution level : σ� = λσ�

4. Loop to step 2 until convergence (σ� < σ�
min).

The previous framework is a natural and simple implementation of a local mo-
tion estimation technique using the proposed models for the evolution of the
luminance. A quantitative and qualitative evaluation of such an estimator, with
comparisons to the classic OFCE will be presented in the next section.

5 Experimental Results

We present in this section some experimental results of the local motion esti-
mator described in section 4. We show examples on synthetic fluid images and
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on the Middleburry database1. It is important to outline that the estimator de-
fined in section 4 constitutes only a local technique whose aim is only to valid,
compare and qualify the observation model based on stochastic uncertainties vs
the usual ofce in (1). Hence, its performances have to be compared to other lo-
cal approaches. As a first benchmark we analyze the results obtained on images
depicting the evolution of a 2D turbulent fluid flow.

Fluid Images: We used a pair of synthetic images obtained by DNS (Direct
Numerical Simulation of Navier-Stokes equations) and representing a 2D tur-
bulent flow. Numerical values of average angular error (AAE) [3] and of the
Root Mean Square Error (RMSE) are used as criteria to compare our estima-
tors (isotropic and anisotropic) with some of the state-of-the-art approaches
are depicted in table 1. The comparison is done with the following techniques:
Horn & Schunck (HS) [12], a commercial software based on correlation (COM,
DaVis 7.2 from LaVision GmbH), a pyramidal incremental implementation of
the Lucas-Kanade estimator (LK) [14], the proposed framework in section 4 with
the OFCE as an observation model (OFCE) (i.e with a zero uncertainty), two
fluid-dedicated dense motion estimators based on a Div-Curl smoothing with
different minimization strategies (DC1–DC2, [8, 27]), a fluid-dedicated dense
motion estimator based on a turbulence subgrid model in the data-term (TUR,
[7]).

In figure 1, we present an image of the sequence, the estimated flow with the
proposed method (anisotropic version) and the error flow field. We have also
plotted the velocity spectra of the different techniques and compared them with
the ground truth. These spectra are represented in a log-log coordinate and
a standard-log coordinate system in order to highlight small and large scales
respectively.

On table 1, one can immediately observe that compared to the other local
approaches, our method provides very good results since the global accuracy
is highly superior than the Lucas-Kanade (LK) and the commercial software
(COM). Compared to dense techniques (HS, DC1 and DC2), our numerical
results are in the same order of magnitude which is a very relevant point. They
are competitive with some dense estimation techniques dedicated to fluid flows
analysis with advanced smoothing terms (DC1–DC2, [8, 27]). The comparison
between the results OFCE, ISO and ANI is very interesting since it highlights
the benefit of the stochastic formulation of the image luminance.

If now one observes the spectra of the velocity we see that the small scales
(right part of the graph in fig. 1(g)) are much better recovered by the proposed
estimators than by the dense estimators. These latter are generally difficult to
estimate and often smoothed out with the spatial regularizers introduced in the
dense techniques. Even if the Lucas-Kanade technique seems to exhibit better
results on small scales, when observing the figure 1(h), it is obvious to note that
large scales are badly estimated with this approach and this yields a very poor
overall accuracy (see table 1). As for the large scales the results are comparable

1 http://vision.middlebury.edu/flow/

http://vision.middlebury.edu/flow/
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with the best dense dedicated techniques. We believe hence that our estimator
constitutes an appealing alternative to usual local PIV methods. Let us now
describe the accuracy of the observation term on some images of the middleburry
database.

Table 1. Quantitative comparisons on the DNS sequence

LK COM HS DC 1 DC 2 TUR OFCE ISO ANISO

AAE 6.07o 4.58o 4.27o 4.35o 3.04o 4.49o 4.53o 3.59o 3.12o

RMSE 0.1699 0.1520 0.1385 0.1340 0.09602 0.1490 0.1243 0.1072 0.0961

(a) (b) (c) (d) (e)
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(f) (g) (h)

Fig. 1. Results on the DNS sequence : Top (a): an image of the sequence; (b): the
estimated flow ; (c): the real flow; (d): the difference flow represented with the coding
color in (e); Bottom (f): visualisation of the estimated flow; (g-h): Spectra of the
velocity compared with ground truth and to several method: (g): log-log representation
(highlights small scales on the right part) and (h): non log-log representation (highlights
large scales on the left part). Color are : Red : ground truth; Green : our approach
(anisotropic version); Blue : Lucas-Kanade [14]; Purple : Horn and Schunck [12]; Cyan:
Div-Curl smoothing [8] and Black: Div-Curl in mimetic discretization [27]

Middleburry Database: We have tested our approaches on the “Dimetrodon”,
“Yosemite” and “Venus” sequences. For these sequences ground truths com-
parisons with others state-of-the-art approaches are available. The dimetrodon
sequence is illustrated in figure 2.

The quantitative results are presented in the table 2. When comparing the
three first columns that use exactly the same technique but based on the usual
OFCE (relation (1)), our luminance model with isotropic (ISO) and anisotropic
(ANISO) uncertainties (relation (10)), it immediately points out that the pro-
posed models enable to enhance significantly the quality of the results. This fair
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comparison of the three observation models onto the same estimator promotes
the use of a stochastic formulation under anisotropic uncertainties. In fact this
latter version is a softer constraint than the OFCE which, as shown previously,
assumes implicitly a perfect measurement without any incertitudes. The esti-
mated motion fields under the anisotropic luminance formulation is represented
on figure fig.2 (c) and can be compared with the ground truth in fig.2(d).

Let us in addition remind that the motion estimation technique that has
been developed for comparing the models of luminance is quite simple (based
on Lucas and Kanade). Therefore, as expected, the errors are mainly localized
on discontinuities. However it is very informative to observe that despite the
simplicity of this technique, our results in table 2 are very competitive and
sometimes outperform advanced dense techniques with a specific process for
discontinuities. Apart from regions exhibiting motion discontinuities and where
the error can be important, the difference fields of fig.2(d) reveals very good
results (white areas) in the other locations. This suggests that the luminance
models introduced in this paper is usefull in allowing a global improvement of
accuracy. More than the estimated motion fields, such a technique is able to
extract the associated uncertainty areas. The norm of the global uncertainty√

σ2
η + σ2

τ map obtained at the end of the process with the best estimator (the

anisotropic one) is plotted in fig.2(e). As expected, homogeneous areas where
the aperture problem holds correspond to high values whereas small values are
linked to photometric contours. Such output of our method is very promising
since it it highlights the main structures of the images and gives an indicator
of the quality of the estimation. To justify this last point, we have depicted in
fig.2(f) the reconstructed errors when we take into account for the evaluation
only the points where the incertitude is bellow a given value (blue lines) and the
corresponding percentage of points used for the computation (red lines).

We then strongly believe that the stochastic models presented can be exploited
in the future to design dense estimators relying on the proposed brightness con-
sistency model.

Table 2. Quantitative results and comparisons on the Dimetrodon, Yosemite and
Venus sequence

Results on the Dimetrodon sequence

Met. OFCE ISO ANISO Bruhn et al. Black, Ana. Pyr. LK Med. Pla.TM Zitnick et al

Ang. err. 7.95o 3.95o 2.85o 10.99o 9.26o 10.27o 15.82o 30.10o

Results on the Yosemite sequence

Met. OFCE ISO ANISO Bruhn et al. Black, Ana. Pyr. LK Med. Pla.TM Zitnick et al

Ang. error 4.47o 3.12o 2.89o 1.69o 2.65o 5.22o 11.09o 18.50o

Results on the Venus sequence

Met. OFCE ISO ANISO Bruhn et al. Black, Ana. Pyr. LK Med. Pla.TM Zitnick et al

Ang. error 12.02o 10.23o 8.42o 8.73o 7.64o 14.61o 15.48o 11.42o
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Fig. 2. Dimetrodon sequence (a): an image of the sequence; (b): the ground truth;
(c): The estimated motion field with our approach in anisotropic version; (d): difference
velocity field and (e): the extracted uncertainty map ση and (f): evolution of the error
and percentage of correct motion fields when one takes into account only velocity fields
with smaller values of

√
σ2

η + σ2
τ

6 Conclusion

In this paper an observation model for optical flow estimation has been intro-
duced. The new operator is based on a stochastic modeling of the brightness
consistency uncertainty. This data model constitutes a natural extension of the
usual brightness consistency assumption. Isotropic and anisotropic uncertainty
models have been presented. From this new data term, we have designed a sim-
ple local motion estimator where the multiresolution is also interpreted in term
of a spatial uncertainty.

The performances of this local estimator have been validated on synthetic
fluid flows issued from Direct Numerical Simulations and on the middleburry
synthetic database. In the first case, the results have exhibited significant per-
formances, especially in the recovery of small scales that are generally smoothed
out by spatial regularizers of dense approaches. As for the middleburry database,
the simple local implementation of the presented data-term outperforms local
approaches. We therefore believe that this stochastic modeling is a very promis-
ing alternative to the usual deterministic OFCE for all optical-flow methods.

A Expectation of a Function of a Stochastic Process

The conditional expectation given Xt−1 of any function Ψ(Xt, t) of a stochastic
process defined through Îto diffusion (3) and discretized through an Euler scheme
Xt = Xt−1 + v(Xt−1)dt + Σ1/2(Bt+1 − Bt) may be written as:
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E(Ψ(X t, t)|X t−1) =

∫

R

Ψ(X t, t)p(X t|X t−1)dX t. (16)

As the process Xt is known up to the Brownian motion ΣdBt, the probability
p(Xt|Xt−1) is a multidimensional Gaussian of variance Σ

√
dt (dt = 1 here) and

we get:

E(Ψ(X t)|X t−1) =
1√

2πdet(Σ)
1
2

∫

R

Ψ(X t, t) exp
(−(X t−1+v−X t)Σ

−1(X t−1+v−X t)
)
dX t.

(17)
By a change of variable Yt = Xt−1 + v − Xt, this expectation can be written
as:

E(Ψ(X t, t)|X t−1) =
1√

2πdet(Σ)1/2

∫

R

Ψ(X t−1+v−Yt, t)exp
(−YtΣ

−1Yt

)
dYt

= Ψ(X t−1 + v, t) ∗ N (0, Σ).

(18)
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