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Abstract. In this paper we propose a stochastic modeling of human
activity on a shape manifold. From a video sequence, human activity is
extracted as a sequence of shape. Such a sequence is considered as one
realization of a random process on shape manifold. Then Different ac-
tivities are modeled by manifold valued random processes with different
distributions. To solve the problem of stochastic modeling on a mani-
fold, we first regress a manifold values process to a Euclidean process.
The resulted process then could be modeled by linear models such as
a stationary incremental process and a piecewise stationary incremental
process. The mapping from manifold to Euclidean space is known as a
stochastic development. The idea is to parallelly transport the tangent
along curve on manifold to a single tangent space. The advantage of
such technique is the one to one correspondence between the process in
Euclidean space and the one on manifold. The proposed algorithm is
tested on database [5] and compared with the related work in [5]. The
result demonstrate the high accuracy of our modeling in characterizing
different activities.

1 Introduction

Human activity recognition is of great interest in a wide range of applications,
spanning areas such as security surveillance, person identification and content-
based image retrieval. In addition to security applications, the explosively in-
creasing daily usage of video cameras has and continues to motivate a increasing
interest in motion analysis and understanding in video for diverse applications.
Recent progress on human activity analysis from video data has been well doc-
umented in [9] [8].

Of the various possible representations of human activity [12], we choose to
view any given activity of interest as a shape sequence [5] [11]. Different shape
representations will lead to different shape manifolds. In Kendall’s shape theory
[13], a shape is considered to be a set of land marks on the boundary of an
object. Due to the simple geoemtry, the Kendall pre-shape space is the popular
platform for different modelings, which is invariant to translation and scaling,
and geometrically is a hyper sphere. For example, an AR/ARMA model of hu-
man activities was proposed in [11] by projecting the shape sequences onto the
tangent space of Kendall’s preshape space. To overcome the problem of system-
atically picking consistent landmarks of shapes, we consider a shape as a simple
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and closed planar curve. Such a shape formulation was proposed in [1] with a
numerically efficient computation for tangent space of each point on manifold
and the geodesic path between any two shapes.

With a similar goal of classifying the shape sequences as in [11], our goal in
this paper is to build stochastic model for the process on shape manifold and
then in return use the estimated model parameter to classify different activities.
The idea is to develop a stochastic model of a process on the shape manifold
(representing a shape sequence trajectory on a manifold) on a non-linear space by
regressing the problem onto a linear space. In [11] a shape on a preshape sphere
is projected onto a tangent space at the mean shape. Adopting such a tangent
approximation is, however, valid in only a sufficiently small neighborhood. The
invertibility of such a projection on pre-shape sphere only holds when the shape
sequence does not cross the “north or south poles” of the hypersphere. Generally
on a smooth manifold, the condition of such an orthogonal projection is restricted
to a local area of the manifold. In contrast, our proposed regression is intrinsically
constructed by a curve development [3] as a 1-1 mapping of an evolution curve
on any smooth manifold to a curve in a flat space.

We exploit the afore-described approach to develop in this paper, an intrinsic
stochastic model with a goal to classify activities. Assuming a proper human
silhouette segmentation1 of each frame in a video sequence of interest, a specific
activity may be summarized by a sequence of individual closed curves/shapes
in form of an evolution curve on the underlying shape manifold. Any reasonable
modeling for a activity, for instance like “running”, is expected to describe the
different data samples of “running”. In this paper, the set of the different rep-
resentative curves of “running” are viewed as the realizations of the “running
process”, which more precisely is a random process on the shape manifold. As
a result, any activity process of interest may hence be modeled as a manifold
valued random process.

In the balance of this paper, we first provide a brief (but sufficient for this
development) introduction to manifold geometry and to stochastic analysis on
manifolds. The preprocessing on shapes is introduced in Section 2, to make the
shape manifold finite dimensional. In Section 3, we introduce the stochastic curve
development for a human activity process as a mapping from a manifold to a flat
space. In Sections 4 and 5, we construct a connection on the shape manifold, and
derive the corresponding curve development result for a given human activity.

2 Background

In this section we first provide a brief review of the required background in
differential geometry and stochastic differential equation to allow us to define a
shape manifold as a working space. We also describe the required tools of parallel
transportation and curve development on a shape manifold.

1 Note that errors in segmentation clearly imply errors down the processing stream,
and this investigation is a research topic in and of itself, and is left for future work.
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2.1 A Infinite Dimensional Shape Manifold

According to [1], a planar shape is a simple and closed curve α(s) in R
2,

α(s) : I → R
2, (1)

where an arc-length parameterization is adopted. A shape is represented by
a direction index function θ(t). With such a parameterization, θ(s) may be
associated to the shape by

∂α

∂s
= ejθ(s). (2)

Due to the fact that the rotation index for simple closed curve is restricted to 1
in [1], the ambient space of the manifold of θ is an affine space based on L

2,

θ ∈ A(L2). (3)

Further more, according to the restriction for a planar curve to be a closed
curve, and invariant over rigid Euclidean transformations. The shape manifold
M is defined as a level set of function φ : A(L2) → R3,

φ(θ) = (
∫ 2π

0

θds,

∫ 2π

0

cos(θ)ds,

∫ 2π

0

sin(θ)ds) (4)

Using the function φ defined above, in [1] the shape manifold M is defined as
following

M = φ−1(π, 0, 0) (5)

One of the most important properties of M is that the tangent space TM is well
defined. Such a property not only simplifies the analysis, but also makes possible
the numerical computation,

TθM = {f ∈ L
2|f ⊥ span{1, cos(θ), sin(θ)}} (6)

2.2 Connection on Manifold

To study a random process on manifold, we need to overcome the difficulty
resulted from the curvature of the manifold. The Riemannian structure of the
manifold can be defined by the connection in the principle bundle.In this paper
the connection is defined in the frame bundle F(M), which is a special case of
principle bundle.

Definition 1 (Principal Fiber Bundle). A principal fiber bundle is a set
(P, G, M), where P, M are C∞ manifolds, and G is a Lie group such that
(1) G acts freely on the right of P , P × G → P . For g ∈ G, we shall also write
Rg for the map g : P → P
(2) M is the quotient space of P by an equivalence relation under G (any shape
subjected to a g ∈ G is equivalent to itself), and the projection π : P → M is
C∞, so for m ∈ M , G is simply transitive on π−1(m)
(3) P is locally trivial. Thus for any open set U ⊂ M , π−1(U) ∼ U × G
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A point u in F(M) can be written as, u = (x, b), where m ∈ M and b =
e1, e2, ..., en is a orthogonal basis of the associated tangent space TmM . The
group G acting on a fibre is SO(n)). Referring the definition of principle bundle,
the equivalent class for each point m ∈ M is all the orthogonal basis for tangent
space TmM . The rotation matrix can be utilize to transform one basis to another.

Definition 2 (Connection). A connection on the principal bundle (P, G, M)
is a n-dimensional distribution H on P , where n = dim(M), such that
(1) H ∈ C∞

(2) for every p ∈ P , Hp + Vp = TpP , where Vp is a vertical space and Hp is a
horizontal space of TpP . A vector Y ∈ TpP is vertical if π∗(Y ) = 0
(3) for every p ∈ P , g ∈ G, (Rg)∗(Hp) = Hpg.

With the definition of a connection on a manifold in hand, we can achieve a
horizontal lift from a manifold to a linear frame bundle.A more expanded and
detailed discussion of connections may be found in [3] [4].

Definition 3 (Horizontal Lift). Let γ be a piecewise C∞ curve in M , γ :
[0, 1] → M . Let p ∈ π−1(γ(0)). Then there exists a unique lift γ̃ of γ such that
γ̃∗(t) ∈ Hγ̃(t) and γ̃(0) = p. We say that γ̃ is the horizontal lift of γ that starts
at p ∈ P

3 Dynamics of Human Activity on a Shape Manifold

Hsu in [2] proposes an efficient analysis framework to construct an invertible
mapping from a manifold-valued random process to a Euclidean-valued random
process. The essence of the mapping is to compute a Euclidean process that
can drive a stochastic differential equation (SDE) to generate a manifold-valued
random process. In a Euclidean space the random process have been extensively
studied and there are many tools available for modeling. In contrast to the
orthogonal projection method onto a tangent space around a mean, Hsu’s theory
provides a one to one correspondence between a process on a manifold and one
on a Euclidean space. This improved accuracy of representation is primarily due
to the so-called “rolling without sliding” property of a parallel transport.
As in [2], any random process on the shape manifold, may then be written as a
solution to some SDE(X0, V, Z). Generally we have,

Xt = X0 +
∫ t

0

∑
i

Vi(Xs) ◦ dZi
s, (7)

where, X0 is the initial condition, Vi is a smooth vector field defined on M and
Zi

s is a Euclidean valued random process driving Equation (7). The stochastic
integration here is the Stratonovich integration. More intuitively Equation (7)
can be understood as dXt =

∑
i Vi(Xs) ◦ dZi

s. Thus the dynamic described by
Equation (7) is characterized by both a vector field V and a driving process Zt.
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However, the form of the Euclidean process Z is varies with different choices
of V . In contrast to our goal to construct a 1 − 1 mapping from manifold pro-
cess to Euclidean process, there is no one one correspondence X ↔ Z without
proper knowledge about V . In [2] this problem is solved by setting V equal to
the horizontal lift of Xt, which in unique for a given connection. Provided the
uniqueness of horizontal lift, the resulting driving process Zt will have the one
one correspondence to Xt. Let the vector field Ut be the horizontal lift of Xt in
F (M), Equation (7) may be rewritten as

Xt = X0 +
∫ t

0

∑
i

U i(Xs) ◦ dW i
s . (8)

According to the definition of the orthogonal frame bundle and stochastic hori-
zontal lift in Section 2 we know the horizontal vector field U(t) can be written
as,

Ut = {e1, e2, · · · , ei, · · · , en} (9)

where ei is the basis of TXtM . In Equation 8 the differential dXt is represented
in a selected basis Ut with corresponding driving process Wt. For an orthogonal
basis one can write , Consequently, the stochastic development of Xt is,

dWt = U−1
t ◦ dXt (10)

∀i = 1, 2, 3, · · · Equation 10 can be represented in vector as

dW i
t =< ei, dXt > (11)

Such rewriting of Equation (7) provides a representation of the random process
Xt on a manifold with the Euclidean random process Wt, which generate the
original process Xt by acting on vector field Ut as in Equation (8). In the above
discussion, we provide a 1−1 mapping from Xt ∈ M to Wt ∈ Rdim(M). The crit-
ical point for implementing such a mapping is the specific form of the connection
H which we discuss in Section 4.

4 Flat Connection on a Shape Manifold

The construction of connection H is critical to the implementation of the curve
development. Theoretically there may exist many different choices of H for a
given manifold. Once the exact form of H is determined, the geometry of a
manifold is specified accordingly. Among different kind of connections, we adopt
the flat connection H for the efficiency of calculation. Flat connection do not
always exist. However if the frame bundle F (M) of a manifold M has a global
section then the flat connections are easy to define. In the following, we provide a
constructive proof of the existence of the global section. Thus the implementation
of the flat connection proceeds by constructing a smooth global section σ : M →
F(M) of the linear frame bundle F(M). Then for each m ∈ M we define Hσ(m)
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to be the tangent space of the submanifold σ(M) at σ(m) ∈ F (M). Let u be
any point of fiber over m ∈ M . Then there is a unique g ∈ GL(n) such that,

u = Rg(σ(m)) (12)

The horizontal subspace Hu is then defined as

Hu = Rg∗(Hσ(m)) (13)

In the construction of the smooth section σ, we smoothly assign to each point
θ ∈ M a basis {Ek}k=1,2,3... for the tangent space TθM . From Section 2, we
know that the tangent space of M can be written as

TθM̂ = {v ∈ S|v ⊥ span{1, cos(θ), sin(θ)}} (14)

To construct smoothly distributed basis {Ek}k=1,2,3... on manifold, we first con-
struct a Fourier-like global section σ̃ in the ambient space A(L2[0, 2π]),

σ̃ : θ → {1, cosθ, sinθ, ..., cosiθ, siniθ, . . .} (15)

Then σ̃ is properly projected to the tangent space TM as σ : θ → {Ek}k=1,2,3...

following the geometry defined by Equation (14). The details of this procedure
implementation are as as follows, Firstly, one can easily show that the following
set of continuous functions is a linearly independent set,

{1, cosθ, sinθ, ..., cosiθ, siniθ, ...} (16)

Let Bi be the result of a Gram Schmidt orthogonalization of the above basis in
ambient space.

{v1, v2, v3, Bi=1,2,3,···} =
ON{1, cosθ, sinθ, ..., cosiθ, siniθ, ...}

where {v1, v2, v3} are the first three basis vectors from the Gram Schmidt pro-
cedure which correspond to the normal space of the tangent space,

span{v1, v2, v3} = span{1, cos(θ), sin(θ)} (17)

These basis vectors are excluded because they are orthogonal to the tangent
space of M . Then Bi is the ambient representation of the basis of TθM . The
orthogonal projection from L2 onto S can be written as a Fourier approximation
of Bi and denoted by B̂i. Letting φj denote the Fourier basis functions, it follows
that

B̂i =
N∑

j=1

< Bi, φj > φ∗
j (18)

where < Bi, φj > is the inner product defined in L2 In such setting, we would
smooth assign a basis for TmM̃ by a Gram Schmidt procedure applied to B̂i(k)=k.

Ek = ON{B̂1, B̂2, B̂3, · · · B̂N} (19)
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Thus the resulted global section used to define the connection H is,

σ : θ ∈ M → Ek (20)

In the shape manifold M equipped with the flat connection H as defined in
Equation (21), the horizontal lift Ut of Xt with initial condition U0 is computed
as following.

Ut = Rg ◦ σ(Xt) (21)

where g ◦ σ(X0) = U0.
In the ambient space A(S), ∀t, Ut, σ(Xt) can be represented by N ×N invert-

ible matrix. For example, Ut = [e1, e2, · · · , eN ], where ei ∈ RN span the tangent
space TmM . In such setting Ut can be calculated as a matrix multiplication in
the ambient space.

(Ut)ij =
∑

k

gikσ̇(Xt)kj (22)

where g · σ(X0) = U0. Consequently the development Wt of Xt can be written
as,

Wt =
∫ t

0

(Ut)−1dXt (23)

In Figure (1), a few numerical results are demonstrated for Wt for three activities:
walking, running and bending.
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Fig. 1. curve development of Xt ∈ M in R
N=30: (a) the original shape sequence rep-

resented by angle functions Xt (b) the horizontal lift U1, U2, U3. (c) the development
(Ut)

−1dXt

5 Stochastic Analysis in a Euclidean Space

As discussed in the Section 3, the random process Xt on the shape manifold
is now mapped to a Euclidean random process Wt. The recognition for human
activity is thus reduced to comparing different processes in the flat space. In this
section, we show that the resulted Wt exhibits a strong non-stationarity trend.
A stationarity test is performed on Wt with the “double windows” method as
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proposed in [6]. The evolutionary spectrum shows that ‖Wt‖2 is non-stationary
for most of the activity in the motion data base in [5]. The evolution spectrum
Ytis estimated by a double sliding window method.

Figure 2 shows several results of the evolutionary spectrum, T1 = 11, T2 = 51.
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Fig. 2. The evolutionary spectrum of ‖Wt‖: a1, a2, a3 are the EPSD corresponding to
the original shape sequence (a), (b), (c) in figure 1;

Given the non-stationary Euclidean process Wt, which is a stochastic devel-
opment of Xt, we first analyze it as a Brownian motion. As in Section 5.1, a
self-covariance matrix K of the increment dWt of Wt is estimated from observa-
tions. We subsequently proceed to discuss activity classification by introducing
a metric for K. Computing the increments of Wt to achieve stationarity also
carries a potential of increasing the noise, particularly when the process is non-
homogeneous.

According to the comparison in5.1, the performance of the Brownian Motion
Model is sufficient for the classification of human activities. However, from the
view of model fitting, the Brownian motion model still assume the first order
incremental dWt to be stationary, which is still not necessarily truth for all the
data. Instead of imposing the strong assumption of higher order stationarity, in
Subsection 5.2, we further introduce random process segmentation according to
the local stationarity. While additional computational cost is incurred to segment
the process Wt, we develop the piece-wise Brownian model to further relax the
assumption of global stationarity and the resulted modeling can be better fitted
to different data.

In the experiments, we test both of the two model on the activity classification
database in [5]. The experiment result is compared with [5] and [11] for each of
the database. The activity data in [5] includes 10 different activities. Each one
has 9 video sequence for 9 different actors. We perform level set segmentation
to extract the contour of shape as in [14].

5.1 Human Activity as a Brownian Motion on Manifold

In this section we model Wt as a Euclidean Brownian motion. Consequently,
the model for Xt is a Brownain motion on the shape manifold M , which can be
written as the following stochastic differential equation on M ,

Xt = X0 +
∫ t

0

∑
i

U i(Xs) ◦ dW i
s . (24)
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where Wt is a high dimensional Euclidean Brownian motion and U(X) is the
horizontal field calculated in Section 4.

Then by the distribution of dWt we can characterize different activities. Since
dWt is IID and Gaussian, the time sampling is used as the sampling for random
variable dW . We next proceed to estimate the covariance matrix K(dW i, dW j)
as the feature of choice for the underlying distribution.

K(dW i, dW j) = E((dW i − E(dW i))(dW j − E(dW j))) (25)

where dW i is the ith element of the vector dW . The distance between two dif-
ferent covariance matrices is defined by the Frobenius norm as,

D(K1, K2) = ‖K1 − K2‖F . (26)

The results of D(K1, K2) for the data base in [5] is shown in Figure 3. Using
the distance matrix D, we may carry the recognition/classification task by using,
for example, the leave-one-out algorithm. The nearest neighborhood algorithm
is used for classification. If we let NB be the total number of realizations of B.
and N(B, A) the number of realizations of B classified as A activity, we have

P (A|B) =
N(B, A)
N(B)

(27)

 

 

bend jack jump pjump run side skip walk wave1wave2

bend

jack

jump

pjump

run

side

skip

walk

wave1

wave2

0.2

0.4

0.6

0.8

1

1.2

(a1)

 

 

bend jack jump pjump run side skip walk wave1wave2

bend

jack

jump

pjump

run

side

skip

walk

wave1

wave2

0

0.5

1

1.5

2

2.5

(a2)

Fig. 3. (a1) Distance matrix for database in [5] with Brownian Motion (a2) Distance
matrix for database in [5] with Piece-wise Brownian Motion

To perform a consistent comparison of results published in [5], we need to
change our experiment to the same setting. In [5] the number of activity obser-
vations is increased by segmenting any video sequence for a given activity into
many overlapped chunks. The segments are assumed independent and the classi-
fication is carried out. The performance of our proposed method is summarized
in the following tables.
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Table 1. Table of recognition rate. the number in () is the result in [5].

P (act1|act2) bend jack jump pjump run side skip walk wave1 wave2

bend 1 0 0 0 0 0 0 0 0 0

jack 0 1 (0.98) 0 (0.02) 0 0 0 0 0 0 0

jump 0 0(0.02) 1 (0.971) 0 0 0 0 0 0 0

pjump 0.0556(0) 0 0 0.944(1) 0 0 0 0 0 0

run 0 0 0 0(0.108) 0.944(0.892) 0.0556 (0) 0 0 0 0

side 0 0 0 0 0 1 0 0 0 0

skip 0 0 0 0 0 0 1 0 0 0

walk 0 0 0 0(0.09) 0 0(0.09) 0 1(0.948) 0(0.35) 0

wave1 0 0 0 0(0.09) 0 0 0 0(0.019) 1(0.972) 0

wave2 0 0 0 0 0 0 0 0 0(0.09) 1(0.991)

From the above comparison, our manifold valued Brownian motion model
achieve better performance for almost all the activities except slightly lower for
case “pJump”.

5.2 Human Activity as a Piecewise Brownian Motion on Manifold

Alternatively to assuming dWt to be stationary, we directly address the non-
stationarity by segmenting the Wt into several local stationary segments. For
each segment we carry out the Brownian motion modeling. Such a topic has been
extensively investigated in time series analysis [6]. We apply a sliding window
computation of an evolution spectrum Yt,ω of dWt as in [6] and detect transient
points.

0 10 20 30 40 50 60 70 80 90 100

−2

0

2

(a)

Fig. 4. Nonstationary time series segmentation: (a),(b),(c) is the segmentation results
of activity bending, running, skipping

For the ith segment of dWt, we estimate Ki according to Equation 25. We
next define the distance between two sequence dW1t and dW2t is defined by

Dseg(K1, K2) =median(mini(Dcov(K1i, K2j)))+

median(minj(Dcov(K1i, K2j))).

The distance matrix is calculated for both the databases according to the above
equation. The result is illustrated as in figure 3.

In Figure 3, we show that the distance matrix Dcov calculated from the same
data set as in [5]. By then using the conditional probability of recognition, as a
performance metric as in Equation (27 ), we demonstrate the classification per-
formance in table 5.2. However here we provide no comparison with the result
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Table 2. Table of recognition rate for data base in [5]

P (act1|act2) bend jack jump pjump run side skip walk wave1 wave2

bend 0.7778 0 0 0.1111 0 0 0 0 0.1111 0

jack 0 0.7778 0 0 0.1111 0 0 0 0 0.1111

jump 0 0 0.5556 0.2222 0 0.1111 0 0.1111 0 0

pjump 0.2222 0 0.1111 0.3333 0 0.1111 0.1111 0 0.1111 0

run 0 0 0 0 1 0 0 0 0 0

side 0 0 0 0 0 1 0 0 0 0

skip 0 0 0 0 0 0 1 0 0 0

walk 0 0 0 0 0 0 0 1 0 0

wave1 0 0 0 0.2222 0 0 0 0 0.5556 0.2222

wave2 0 0 0 0 0 0 0 0 0.4444 0.5556

in [5]. Because as mentioned in the previous section, in [5] the data sample is
increase by segment the original sequence into small overlapping chunks. Such
setting is making our stationary segmentation trivial. If following the same way
as in [5], then each small chunk would be a signal stationary segment. There-
fore as for the modified database, the piecewise brownian model is the same as
the global brownian model. So here we only provide our result on the original
database.

6 Conclusion

In this paper, we provide a systematic framework for the stochastic modeling
of human activity on shape manifold. In theory, such framework is one one
mapping from random process on manifold to the random process in Euclidean
space. In the resulted flat space, the representative random process of activity
is modeled as both global and local Brownian Motion process.The experiment
well demonstrate the performance of the proposed modelings of activities.
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