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Abstract. In this paper, we propose nonlocal filters for removing multi-
plicative noise in images. The considered filters are deduced in a weighted
maximum likelihood estimation framework and the occurring weights
are defined by a new similarity measure for comparing data corrupted
by multiplicative noise. For the deduction of this measure we analyze
a probabilistic measure recently proposed for general noise models by
Deledalle et al. and study its properties in the presence of additive and
multiplicative noise. Since it turns out to have unfavorable properties
facing multiplicative noise we propose a new similarity measure consist-
ing of a density specially chosen for this type of noise. The properties
of our new measure are examined theoretically as well as by numerical
experiments. Afterwards, it is applied to define the weights of our non-
local filters and different adaptations are proposed to further improve
the results. Throughout the paper, our findings are exemplified for mul-
tiplicative Gamma noise. Finally, restoration results are presented to
demonstrate the good properties of our new filters.

1 Introduction

In 2005, Buades et al. introduced the well-known nonlocal (NL) means filter
[3]. For the restoration this filter uses information gained by comparing various
image regions, so-called patches, with each other. In detail, for a discrete image
f ∈ R

m,n, N = mn with pixels fi, i = 1, . . . , N , the restored pixels are set to be

ũi =
1
Ci

N
∑

j=1

wNL(i, j)fj with Ci :=
N

∑

j=1

wNL(i, j). (1)

If the image patches with centers fi, fj are given by fi+I , resp. fj+I for I
denoting an appropriate index set, then the weights are given by

wNL(i, j) = exp
(

− 1
h

∑

k∈I

gk|fi+k − fj+k|2
)

.

Here, h > 0 controls the amount of filtering. The vector g = (gk)k∈I represents
usually a sampled two dimensional Gaussian kernel with mean zero and standard
deviation a, which steers the influence of neighboring pixels on the weight.
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This filter has been extensively studied in the past five years and further
improved in various directions. An overview is for example given in [4]. One
improvement was that several authors proposed different approaches to adapt
the NL means filter to noise statistics. Kervrann et al. proposed the so-called
Bayesian NL means filter [10], which was applied for the removal of speckle noise
in ultrasound images in [5]. For Rician noise an approach was presented in [16].
Another relative of the original NL means filter in a probabilistic framework
was proposed by Deledalle et al. in [6]. Their approach involved a new noise
dependent similarity measure for the patch comparison and was demonstrated
to perform well for images corrupted by additive Gaussian noise, noise following
a Nakagami-Rayleigh distribution as well as Poisson noise studied in [7].

The aim of this paper is to present nonlocal filters for removing multiplicative
noise. To exemplify our results we concentrate on multiplicative Gamma noise.
Note that all missing proofs and further examples including different types of
noise can be found in [15]. In Section 2 we start by defining our filters by maxi-
mum likelihood estimation. For the weight definition we propose a new similarity
measure specially designed for comparing data corrupted by multiplicative noise.
To obtain this measure we analyze the similarity measure of [6] in the framework
of conditional densities in Section 3 and study its properties facing additive and
multiplicative noise. Since it turns out to be well suited for additive noise, but to
have unfavorable properties for multiplicative noise, we deduce our new measure
by logarithmically transformed random variables in Section 4. The advantages of
our measure are shown theoretically and by numerical experiments. In Section 5,
we consider variants of the weight definition, which further improve the results.
Finally, the very good performance of our novel nonlocal filters is demonstrated
for images corrupted by multiplicative Gamma noise in Section 6.

2 Nonlocal Filters for Multiplicative Noise

As proposed in [6,12], we will deduce our nonlocal filters by weighted maximum
likelihood estimation. Throughout this paper, all random variables are supposed
to be continuous and defined on a fixed probability space (Ω,F , P ). Moreover,
for a random variable X and a constant c ∈ R we denote by pcX the density
of the random variable cX . For x ∈ R with pX(x) > 0, the conditional density
of Y given X = x is defined by pY |X(· |x) := pY,X (·,x)

pX(x) , see, e.g., [9, p. 104].
Now, assume that for i = 1, . . . , N all noisy image pixels fi are realizations of
independent random variables Fi and the corresponding initial noise free pixels
ui are realizations of independent and identically distributed (i.i.d.) random
variables Ui. Moreover, suppose that all fi are corrupted by the same noise
model with equal parameters. Then, we define our restored pixels by

ũi := argmax
t

N
∑

j=1

w(i, j) ln pFj |Uj
(fj | t) s.t. pU1(t) = · · · = pUN (t) > 0, (2)

where w(i, j) ∈ [0, 1] is ideally one if ui = uj and zero otherwise. If w = wNL,
we obtain for additive Gaussian noise and positive pUi that ũi is given by (1) as
outlined in [6]. For the case of multiplicative Gamma noise, we assume that
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Fi = UiVi, with pUi(t) = 0 ∀ t < 0, i = 1, . . . , N, (3)

where all Vi are continuous random variables with density

pVi(v) =
LL

Γ (L)
vL−1 exp(−Lv) 1R≥0(v), L ≥ 1 (4)

and Γ denotes the Gamma function. Besides, all Ui, Vi are considered pairwise
independent. Then, for j = 1, . . . , N and any fj, t > 0 with pUj (t) > 0 we have

pFj |Uj
(fj | t) =

1
|t| pVj

(

fj

t

)

=
LL

Γ (L)
fL−1

j

tL
exp

(

−L
fj

t

)

. (5)

For fj > 0, j = 1, . . . , N , this implies

ũi = argmax
t> 0

pUi
(t)>0

N
∑

j=1

w(i, j) ln pFj|Uj
(fj | t) = argmin

t> 0
pUi

(t)>0

N
∑

j=1

w(i, j) (ln(t) +
fj

t
).

Similarly, H(f, u) :=
∑N

i=1 ln(ui) + fi

ui
has been deduced as a data fidelity

term for a variational approach to remove multiplicative Gamma noise in [1]. If
pUi(t) > 0 for t > 0 or pUi is simply unknown, we omit the restriction pUi(t) > 0
and obtain for fj > 0, j = 1, . . . , N , by the first order optimality condition that

ũi =
1
Ci

N
∑

j=1

w(i, j)fj with Ci :=
N

∑

j=1

w(i, j). (6)

Hence, we get for multiplicative Gamma noise an ordinary weighted average
filter like the original NL means filter in (1). Next, we would like to define the
weights similarly to wNL, but incorporate the statistics of the noise. By

wNL(i, j) =
∏

k∈I

sNL(fi+k, fj+k)
gk
h with sNL(x, y) := exp(−|x − y|2) (7)

we see that wNL(i, j) can be written as the product of all sNL(fi+k, fj+k)
gk
h ,

where fi+k, fj+k are pairs of pixels of two fix image patches. The function
sNL : R×R → (0, 1] acts as a similarity measure, where sNL(fi+k, fj+k) should
be close to 1 if ui+k = uj+k and close to 0 if not. Facing additive Gaussian noise,
sNL is known to perform well, but it can be far from optimal for other types of
noise. Hence, the challenge is now to find a suitable similarity measure for our
noise model.

3 The Similarity Measure of Deledalle et al.

To measure whether u1 = u2 by noisy observations f1, f2, Deledalle, Denis
and Tupin suggest in [6] to use a so-called ’similarity probability’ denoted by
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p(θ1 = θ2|f1, f2). In their paper, θi is a parameter depending deterministically
on ui and we set θi = ui for i = 1, 2. Since in general it is not clear what the
probability or even conditional density of U1 = U2 given F1 = f1, F2 = f2 is, see
e.g. [9, p. 111], we start by rewriting the ’similarity probability’ as a conditional
density: By definition we have for pFi(fi) > 0, i = 1, 2, that

p(u1 = u2| f1, f2) :=
∫

S

pU1|F1(u | f1) pU2|F2(u | f2) du (8)

and set S := supp(pUi). Applying the definition of the conditional density and
Jacobi’s Transformation Formula, see e.g., [13, p. 135f], we obtain that

p(u1 = u2|f1, f2) = pU1−U2|(F1,F2)(0 | f1, f2). (9)

Besides, we have

pU1−U2|(F1,F2)(0 | f1, f2) =

∫

S
pU1(u) pU2(u) pF1|U1(f1 |u) pF2|U2(f2 |u) du

pF1(f1) pF2(f2)
. (10)

Since normally pUi is unknown, Deledalle et al. propose to neglect this density
and pFi , i = 1, 2, on the right hand side and to consider only

sDDT (f1, f2) :=
∫

S

pF1|U1(f1 |u) pF2|U2(f2 |u) du. (11)

This measure is very close to the one investigated for block matching in [11]. To
study its properties we start by considering data corrupted by additive noise.

3.1 Properties in the Presence of Additive Noise

For i = 1, 2 let the random variables Vi be i.d.d. and follow some noise distribu-
tion. Moreover, let fi be corrupted by additive noise, i.e. fi := ui + vi and

Fi := Ui + Vi, i = 1, 2.

Here, vi is a realization of Vi and all Ui, Vi, i = 1, 2, are considered to be pairwise
independent. In this case, we can show that sDDT has the following properties:

Proposition 1. For our additive noise model with S = supp(pUi) = R we have

sDDT (f1, f2) = pV1−V2(f1−f2) = pF1−F2|U1−U2(f1−f2| 0 ), f1, f2 ∈ R. (12)

Moreover, sDDT is symmetric and has the following properties:

i) sDDT (f, f) = const for all f ∈ R,
ii) 0 ≤ sDDT (f1, f2) ≤ sDDT (f, f) = pV1−V2(0) for all f1, f2, f ∈ R.

For the proof of this and the following propositions see [15]. The last property
implies that sDDT (f1, f2) is maximal whenever f1 = f2 and that it is bounded so
that it can be scaled to the interval [0, 1], i.e. the range of sNL. For the special
case that Vi, i = 1, 2, are normally distributed with standard deviation σ, it
follows that
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Fig. 1. Left: Histogram of a constant image of gray value 50 corrupted by additive
Gaussian noise with σ = 20. Middle: Histogram of (sDDT (fi, ˜fi)/c)N

i=1, where f , ˜f are
images with gray value distributions as on the left. Right: Same as in the middle, but
now ˜f represents a constant image of gray value 110 corrupted by noise.

sDDT (f1, f2) = 1
2
√

πσ
exp

(

− |f1−f2|2
4σ2

)

= c ( sNL(f1, f2) )
1

4σ2

with c := max
x,y∈R

sDDT (x, y) = 1
2
√

πσ
. The behavior of sDDT for additive Gaus-

sian noise is illustrated in Fig. 1. In the middle, the distribution of the values
sDDT (fi, ˜fi)/c is depicted if both images f , ˜f are corrupted versions of the same
constant image. As expected, most values are close to 1, i.e. sDDT /c detected
that the corresponding noisy pixels belong to the same noise free pixel. Only a
few values are close to zero, where the measure did not recognize that also these
noisy pixels have the same initial gray value. On the right, where the initial gray
values have been different, most values sDDT (fi, ˜fi)/c are close to zero and only
few pixels are falsely detected to correspond to the same noise free pixel.

3.2 Properties in the Presence of Multiplicative Noise

Next, we want to investigate the case of multiplicative noise. We suppose that
the random variables Vi, i = 1, 2, are i.i.d., pairwise independent with both Ui

and pVi(x) = 0 for x < 0. Besides, we assume that Fi follows the multiplicative
noise model (3) so that Fi > 0 almost surely for i = 1, 2. For this setting, we
obtain the following properties of sDDT :

Proposition 2. For our multiplicative noise model with S = supp(pUi) = R≥0

and f1, f2 > 0 it holds that

sDDT (f1, f2) =
∫ ∞

0

1
u2

pV1

(

f1

u

)

pV2

(

f2

u

)

du = pf2V1−f1V2(0). (13)

Besides, sDDT is symmetric and has the following properties:

i) sDDT (f, f) = 1
f pV1−V2(0) for all f = f1 = f2 > 0,

ii) sDDT is not bounded from above.

These properties stand in sharp contrast to the additive case. The first property
implies that sDDT always considers small values f = f1 = f2 more likely to
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Fig. 2. Left: Histogram of a constant image with gray value 50 corrupted by multi-
plicative Gamma noise with L = 16. Middle: Histogram of (sDDT (fi, ˜fi))

N
i=1, where f ,

˜f have gray value distributions as on the left. Right: Same as in the middle, but now
˜f represents a constant image of gray value 110 corrupted by noise.

have the same initial gray value than bigger ones. Besides, the unboundedness
is problematic with regard to the weight definition of our nonlocal filters, since
a single pixel could get an arbitrarily large weight and dominate all others.

For multiplicative Gamma noise we obtain for f1, f2 > 0 and S = R≥0 that

sDDT (f1, f2) = L
Γ (2L − 1)

Γ (L)2
(f1f2)L−1

(f1 + f2)2L−1
∝ 1

f1 + f2

(

2 + f1
f2

+ f2
f1

)1−L

.

One may expect that for fixed f1, sDDT is maximal if f2 = f1. However, for
L > 1 and a given value f1 it is maximal for f2 = L−1

L f1. This is again in sharp
contrast to the properties of sDDT in the additive case. For L = 1 we have
sDDT (f1, f2) = 1

f1+f2
. Thus, sDDT (f1, f2) is large whenever f1, f2 are small.

Further properties of this measure are illustrated for L = 16 in Fig. 2. In contrast
to Fig. 1 (middle), the peak of the histogram at Fig. 2 (middle) is no longer at
the largest obtained value of the measure, but at some intermediate value. This
is not desirable with respect to the weight definition of a nonlocal filter, since
for a large number of pixels it would not definitely determine whether the true
pixels have been the same or not. Hence, sDDT does not seem to be optimal for
multiplicative noise.

4 A New Similarity Measure for Multiplicative Noise

To deduce a different measure for our multiplicative noise model, we consider
the transformed random variables ˜Fi = ln(Fi), ˜Ui = ln(Ui), ˜Vi = ln(Vi), where

˜Fi = ln(Fi) = ln(UiVi) = ˜Ui + ˜Vi, i = 1, 2.

The new random variables ˜Fi follow an additive noise model now and the sup-
ports of p

˜Ui
, p

˜Vi
may be the whole of R. By computing (9) for these new random

variables we can show the following:

Lemma 1. For f1, f2 > 0 with pFi(fi) > 0 and ˜S = supp(p
˜Ui

) it holds that

p
˜U1−˜U2|( ˜F1, ˜F2)

(0 | ln(f1), ln(f2)) = pU1
U2

|(F1,F2)
(1 | f1, f2). (14)
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Compared to (9), we have replaced U1−U2 = 0 by U1/U2 = 1 now. Next, we use
(10) for the transformed variables and omit p

˜Ui
, p

˜Fi
, i = 1, 2. Supposing that

˜S = R, i.e. S = R≥0, and using (12) for the right hand side, we thus obtain
∫

˜S

p
˜F1|˜U1

(ln(f1) | t) p
˜F2|˜U2

(ln(f2) | t) dt = p
˜V1−˜V2

(ln(f1) − ln(f2)).

Defining our new similarity measure by

s(f1, f2) := p
˜V1−˜V2

(ln(f1) − ln(f2)) = p
˜F1− ˜F2|˜U1−˜U2

(ln(f1) − ln(f2) | 0), (15)

it has the following properties similar to sDDT for S = R in the additive case:

Proposition 3. For our multiplicative noise model and f1, f2 > 0 it holds that

s(f1, f2) = p f2
f1

V1
V2

(1) = f1
f2

pF1
F2

|U1
U2

(

f1
f2

| 1
)

=
∫ ∞

0

f1f2
u3 pV1

(

f1
u

)

pV2

(

f2
u

)

du.

(16)
Moreover, s(·, ·) is symmetric and has the following properties:

i) s(f, f) = const for all f > 0,
ii) 0 ≤ s(f1, f2) ≤ s(f, f) = pV1

V2
(1) for all f1, f2, f > 0.

Note that (16) differs from (13) only by the factor f1f2
u within the integral.

Regarding (12) and (14), our similarity measure is not exactly pF1
F2

|U1
U2

(f1
f2

| 1),

but a scaled version of it. For multiplicative Gamma noise we have

s(f1, f2) =
Γ (2L)
Γ (L)2

(f1f2)L

(f1 + f2)2L
=

Γ (2L)
Γ (L)2

(

2 +
f1

f2
+

f2

f1

)−L

, f1, f2 > 0,

with a maximum of c = pV1
V2

(1) = Γ (2L)
Γ (L)2

1
4L . Fig. 3 shows that for multiplicative

Gamma noise we obtain by s(·, ·)/c similar histograms as initially for additive
Gaussian noise in Fig. 1. Hence, a similar good performance can be expected if
applied for nonlocal filtering.
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Fig. 3. Left: Histogram of (s(fi, ˜fi)/c)N
i=1, where f , ˜f are both constant images of gray

value 50 corrupted by multiplicative Gamma noise with L = 16. Right: Same as on the
left, but now ˜f represents a constant image of gray value 110 corrupted by noise.
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5 Weight Definition of Our Nonlocal Filters

For random variables Ui, Vi, Fi, i = 1, . . . , N , fulfilling the multiplicative noise
model in Subsection 3.2 with unknown distribution pUi , the weights can now be
defined similarly to (7) by

w(i, j) =
∏

k∈I

(

1
c

s(fi+k, fj+k)
)

gk
h

=
∏

k∈I

(

p fj+k
fi+k

Vi+k
Vj+k

(1) / p Vi+k
Vj+k

(1)
)

gk
h

. (17)

As before, h > 0 and g = (gk)k∈I represents a sampled two dimensional Gaussian
kernel with mean zero and standard deviation a, which we normalize such that
∑

k∈I gk = 1. Besides, the index set I is set to be a squared grid of size l × l
centered at 0 using reflecting boundary conditions for f .

Fig. 4 (top) shows the histograms of the weights (17) for different constant
patches corrupted by multiplicative Gamma noise. As visible here, multiplying
the values of the similarity measure over a whole patch significantly changes the
histograms compared to Fig. 3. Now, the weights of the left histogram are all
larger than on the right. Unfortunately, the histogram on the left is no longer
maximal at 1. Even worse, weights close to 1 have never been assigned.

To overcome this drawback we propose an additional adaptation of the weights
inspired by the implementation of the NL means filter described at [2]. Here, we
use that for random variables X , Y and a continuous function b, where E(b(Y ))
exists, the conditional expectation of b(Y ) given X = x is

E(b(Y )|X = x) :=
∫ ∞

−∞
b(y) pY |X(y|x) dy ∀ x with pX(x) > 0,

see, e.g., [13, p. 168]. In detail, for two sets of random variables Fi+k = Ui+kVi+k,
Fj+k = Uj+kVj+k, k ∈ I, we set

bk

(

fi+k

fj+k

)

:=
(

1
c p fj+k

fi+k

Vi+k
Vj+k

(1)
)

gk
h

=
(

1
c s(fi+k, fj+k)

)

gk
h

and compute for disjoint index sets i + I, j + I the conditional expectation

μ := E

(

∏

k∈I

bk

(

Fi+k

Fj+k

)

∣

∣

(

Ui+k

Uj+k
= 1

)

k∈I

)

=
∏

k∈I

E

(

bk

(

Fi+k

Fj+k

)

∣

∣

Ui+k

Uj+k
= 1

)

.

Since w(i, j) is a realization of
∏

k∈I bk

(

Fi+k

Fj+k

)

, the variable μ denotes the value
we can expect for w(i, j) if the (non-overlapping) image patches fi+I , fj+I have
been generated from the same noise free patch. We can show that

μ =
∏

k∈I

∫ ∞

0

bk(t) p Vi+k
Vj+k

(t) dt.

using properties of the conditional expectation. For multiplicative Gamma noise
we obtain by technical computations that

μ =
∏

k∈I

4Lgk/h Γ (2L)
Γ (L)2

Γ (L(1 + gk

h ))2

Γ (2L(1 + gk

h ))
.
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Fig. 4. Histograms of the weights (17) (top) and (18) (bottom) used to compare N

different image patches fI , ˜fI (l = 5, a = 1.5, h = 1, q = 0). Left: Both fI , ˜fI are
image patches of gray value 50 corrupted by multiplicative Gamma noise with L = 16.
Right: Same as on the left, but now ˜fI is of gray value 110 and corrupted by noise.

Now, we set for q ∈ [0, 1)

wμ,q(i, j) :=

⎧

⎪

⎨

⎪

⎩

1 if w(i, j) ≥ μ,
w(i,j)

μ if qμ ≤ w(i, j) < μ,

0 otherwise
∀ i, j ∈ {1, . . . , N} (18)

and use these weights in our nonlocal filters deduced from (2). Here, μ is used as
an approximation of the true expectation value for all overlapping image patches.

The effect of this additional adaptation compared to (17) is visualized in
Fig. 4 (bottom). The histogram for the image patches generated from the same
noise free patch has now a significant peak at 1. By setting, e.g., q = 0.5 we can
additionally achieve that all weights of the right histogram obtain an optimal
weight of 0 without effecting the weights of the left histogram.

As usually done, we finally restrict the number of patches being compared to
a so-called similarity window. Thus, we set all weights w(i, j), wμ,q(i, j) auto-
matically to zero if pixel j is outside of a squared image region of size ω × ω
centered at pixel i. This reduces the computational costs as well as the risk of
falsely assigning nonzero weights to a large number of patches.

Updating the Similarity Neighborhoods

In [6] Deledalle et al. suggest to refine the weights of their nonlocal filters iter-
atively using the former result u(r−1). To obtain u(r), the filter is again applied
to the initial noisy image using the new weights. The idea for this updating



Nonlocal Filters for Removing Multiplicative Noise 59

scheme was taken from [12]. In the following, we apply a variant of this updat-
ing strategy, where we perform only one updating step. For this second step we
use within the similarity windows for i, j = 1, . . . , N , i �= j the weights

w̃i,j(u(1)) = exp
(

− 1
d

∑

k∈˜I

g̃k Ksym

(

pFi+k|Ui+k
( · |u(1)

i+k), pFj+k|Uj+k
( · |u(1)

j+k)
)

)

and set w̃i,i(u(1)) = maxj w̃i,j(u(1)). Here, d > 0 and g̃ = (g̃k)k∈˜I is again
a sampled two dimensional Gaussian kernel with mean zero, but with standard
deviation ã. As before, g̃ is normalized such that

∑

k∈˜I g̃k = 1. Moreover, ˜I = ˜l×˜l

may vary from I. Usually, we choose ã < a and ˜l < l. Furthermore,

Ksym (pX , pY ) :=
∫ ∞

−∞
(pX(t) − pY (t)) ln

(

pX(t)
pY (t)

)

dt

denotes the symmetric Kullback-Leibler divergence of pX , pY . If we assume that
pUi(x) > 0 for all x ≥ 0, we can show using (5) that the sought symmetric
Kullback-Leibler divergence for multiplicative Gamma noise is given by

Ksym

(

pFi|Ui
( · |u(1)

i ), pFj |Uj
( · |u(1)

j )
)

= L
(u(1)

i − u
(1)
j )2

u
(1)
i u

(1)
j

for u
(1)
i , u

(1)
j > 0.

6 Numerical Results

Finally, we present two examples demonstrating the good performance of our
novel nonlocal filters for images corrupted by multiplicative Gamma noise. The
implementation was done with MATLAB and the parameters were chosen to
obtain the best visual results. Note that all images, especially the noisy one, are
displayed in the gray scale of the original image to have a consistent coloring
for each example. To this purpose, all image values outside of the range of the
original image are projected on this range.

For our first example we use the same test image as in [14, Fig. 6]. Obviously,
our reconstructions in Fig. 5 (bottom middle and right) are superior to the result
by the I-divergence - TV method at top left. Moreover, the difference of applying
(6) with weights w(i, j) or wμ,q(i, j) is illustrated. By using wμ,q(i, j) instead of
w(i, j) more noise has been removed, especially in the background. Moreover,
an appropriate value q helps to improve the contrast, e.g., visible at the camera,
and leads to sharper edges and contours. By the final updating step used for
Fig. 5 (bottom right) we further improved the contrast and small amounts of
possibly remained noise are finally removed.

Our second example in Fig. 6 shows our result for the noisy image in [8, Fig. 8].
For a better comparison we included its peak signal to noise ratio (PSNR) and
mean absolute-deviation error (MAE) as, e.g, defined in [8]. Obviously, our result
is superior or at least competitive to the results obtained by various methods in
[8, Fig. 8]. There, the best result was obtained by the proposed hybrid multi-
plicative noise removal method, which combines variational and sparsity-based
shrinkage methods involving curvelets and TV regularization.
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Fig. 5. Top: Original image with values in [0, 255] (left), corrupted version by multi-
plicative Gamma noise with L = 4 (middle) and restored image by the I-divergence -
TV model as presented in [14]. Bottom: Results by our new nonlocal filter (6) using
just (17) with l = 7, ω = 29, a = 1.5, h = 1 (left), using (18) with q = 0.35 (middle)

and after an additional updating step with ˜l = 3, ã = 0.5, d = 0.25 (right).

Fig. 6. Left: Original image of the French city of Nı̂mes (512 × 512) with values in
[1, 256], which has been corrupted by multiplicative Gamma noise with L = 4 in [8,
Fig. 8]. Right: Restoration result by our nonlocal filter (6) applied to the noisy image
using (18) and an additional updating step with l = 7, ω = 29, a = 2, h = 0.5, q = 0.7,
˜l = 5, ã = 1, d = 0.1 (PSNR = 26.01, MAE = 8.60).
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