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Abstract. The sampling rate for signal reconstruction has been and re-
mains an important and central criterion in numerous applications. We
propose, in this paper, a new approach to determining an optimal sam-
pling rate for a 2D-surface reconstruction using the so-called Two-Thirds
Power Law. This paper first introduces an algorithm of a 2D surface re-
construction from a 2D image of circular light patterns projected on the
surface. Upon defining the Two-Thirds Power Law we show how the ex-
tracted spectral information helps define an optimal sampling rate of the
surface, reflected in the number of projected circular patterns required
for its reconstruction. This result is of interest in a number of applica-
tions such as 3D face recognition and development of new efficient 3D
cameras. Substantive examples are provided.

Keywords: Sampling rate, Reconstruction, The Two-Thirds Power Law,
Structured light patterns.

1 Introduction

Acquisition of 3D images using an active light source has garnered a lot of in-
terest, and has recently been an important topic in vision and image processing.
The basis of this active 3D imaging technique is in establishing a geometric re-
lationship between a 3D target and the 2D image of structured light patterns
projected on it. In the reconstruction, we assume that the position of the camera
and of the light source are known. We also assume that the camera satisfies a pin-
hole model and the projected light patterns are parallel [1]. The deformation of
the circular patterns projected on a 3D object provides sufficient information of
the latter’s geometrical properties, such as 3D coordinates. In [2], [3], [4] and [5],
various algorithms were proposed to improve an accuracy of reconstruction re-
sults using structured light patterns. Our approach to the reconstruction is based
on exploiting the deformed circular patterns projected on a 3D object [12]. Once
3D coordinates are extracted, the required minimum number of patterns to be
projected for an efficient reconstruction and minimal computational complexity,
is considered. This is tantamount to determining the required sampling rate on
the surface for its best reconstruction. Akin to determining the Shannon-Nyquist
Sampling Rate [6] for a 1D signal, our reconstruction of a 3D signal will seek for
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the nontrivial maximal frequency component. Although there have been many
contributions ([7], [8]) made for developing a sampling theorem, in this paper,
we use the Shannon-Nyquist Sampling Rate for a surface reconstruction. The
surface of interest has at each point of a projected pattern in R

3 two curvatures,
and we use the so-called Two-Thirds Power Law [11] to establish a relationship
(nonlinear) between a tangential velocity of a curve and these curvatures. Using
the equation V = rω, where V is a tangential velocity, r is the distance from
the reference point to an arbitrary point, and ω = 2πf is an angular velocity, we
may retrieve the maximum spatial frequency component of the patterns lying on
the object (directly related to curvature). The minimum number of patterns is
subsequently obtained from the maximum frequency component, which we refer
to as a ’curveling rate’ in this paper.

In the following section, we describe an algorithm to extract 3D coordinates
using the geometry of the problem. In Section 3, we estimate the frequency
components using the Two-Thirds Power Law and determine a corresponding
sampling rate using the Shannon-Nyquist Sampling Theorem. We also substanti-
ate our results by way of experiments in Section 4, followed by some concluding
remarks.

2 Geometric Recovery of Surface Coordinates

The substance of this part has appeared in [12] and we hence briefly summarize
it here for completeness.

2.1 Geometrical Representation

Let S ⊂ R
3 be a domain of a 3D object of interest, then a point Pw ∈ S is

represented as

Pw = {(xw, yw, zw) ∈ R
3}, (1)

where an index w is used to denote real world coordinates. Let L ⊂ R
3 be a

domain of a circular structured light source, with the origin defined as a center
of a pattern (or a curve), then a point PL ∈ L is represented as (see Fig. 1)

PL = {(xLij , yLij , zLij) ∈ R
3 | x2

Lij + y2
Lij = R2

j , zLij = 0}, (2)

with i = 1, 2, . . . , M, j = 1, 2, . . . , N respectively indexing the points on the
patterns, and the patterns themselves. Let S3 ⊂ R

3 be the domain of projected
circular patterns on a 3D object, then any point P3 ∈ S3 is represented as

P3 = {(xwij , ywij , zwij) ∈ R
3}, (3)

After the patterns projected, P3 and Pw defined in the intersection of S and
S3 are identical, upon projecting the circular light patterns, P3 and Pw are to
coincide as the intersection of S and S3,

P3 = {Pw | Pw ∈ S ∩ S3} or Pw = {P3 | P3 ∈ S ∩ S3}. (4)
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Let S2 ⊂ R
2 be a domain of a 2D image plane of a camera, then any point

P2 ∈ S2 is represented as

P2 = {(uij , vij) ∈ R
2}. (5)

The 3D reconstruction problem consists of establishing a relationship between
P3 ∈ S3, PL ∈ L and P2 ∈ S2 (Fig. 1). Let f : L → S3 be a map of a light

L

S3

S2

PL

P3

P2

X

Y
-Z

Light Source

Object

Camera (Image Plane)

Fig. 1. Geometrical representation of the experimental setup

projection and g : S3 → S2 be a map of reflection respectively, then the relevant
relationships for surface reconstruction, are

f(PL) = P3, g(P3) = P2. (6)

Recall that we assume parallel light projection which preserves (xLij , yLij) (i.e.
near field projection) and hence the preservation after the pattern projection
onto a 3D object so that we have

I : (xLij , yLij) → (xwij , ywij), ∀i, j, (7)

where I is an identity function. and as discussed previously, under the assumption
of parallel projection, (xLij , yLij) and (xwij , ywij) obey the following constraints
:

x2
Lij + y2

Lij = R2
i , x2

wij + y2
wij = R2

i , (8)

where i denotes the ith positioned pattern. While coordinates (xLij , yLij) are
preserved, we note that the depth(zwij) varies and depends on the surface shape.
We refer to these variation of depth, zwij , a deformation factor. This, in effect,
summarizes the reconstruction problem as one of analyzing deformed circular
patterns and of depth recovery.
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2.2 Mathematical Model

This section details the reconstruction technique of real world 3D coordinates
of an object from a planar image of its circularly pattern-lighted surface. The
geometrical structure, describing the physical measurement setup, is defined in
3D space and the reference plane is chosen prior to the reconstruction. To solve a
reconstruction problem, we opt for two distinct coordinate systems, (X, Z) and
(Y, Z) domains(Fig. 2). From Fig. 2, along with associated attributes, we can
solve the 3D reconstruction problem. Assuming again that the structured light

O(0,0)

D(0,D)

Image Plane

-Z

X

A

B

C

P(xwij, zwij)

Optical
Center

Reference
Point

E

P (ywij, zwij)

P’(0, zwij) A (Optical Center)

Image Plane

C (vij, f)

Y

-Z

X - Z domain analysis Y - Z domain analysis

Fig. 2. (X − Z) and (Y − Z) domain analysis

patterns remain parallel, the camera is calibrated to a pinhole model, and its
locations together with a chosen reference plane of an object and light source
(shown in Fig. 2), we can write the following,

AO = d, AB = f, BO =
√

d2 − f2 = d1,

d cos(∠AOB) = d cos θ2 =
√

d2 − f2,

OC = |−−→OB + −−→
BC|. (9)

Note that the point C(uij , vij) defined in the 2D image plane, is the result of
the reflection of point P , A is the optical center and B is the origin point in the
2D image plane. Since the coordinate system of a 3D object and that of a 2D
image plane are different, and upon denoting the ∠(AOE) by θ1, we transform
the domain S2 to S3 associated with (X, Z) domain, we can write

θ1 + θ2 = θ,

A : (−d cos θ1, d sin θ1),
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B : (−d1 cos θ, d1 sin θ),
C : (−d2 cos θ, d2 sin θ), (10)

where θ1, θ2, θ, d, d1 and d2 are known calibrated quantities. Using the inter-
section point A of lines PC and DB (see Fig. 2), we can write a relationship
between xw and zw. To completely reconstruct the 3D coordinates (xw , yw, zw),
we can show the (Y, Z) domain analysis (Fig. 2). Using the above relationships,
we can determine 3D coordinates of the deformed curves on a surface,

F (xwij) = zwij, H(xwij) = zwij . (11)

In [12], we detailed the above relationships and illustrated the approach.

3 Sampling Rate Determination

Using the 2D images of the projected patterns on a surface, and the development
described above, we proceed to the surface reconstruction. Each image consists
of all curves resulting of the structured circular light patterns. Upon the recovery
of 3D real coordinates, the required minimum number of circular patterns for 3D
reconstruction is considered. In this section, we develop the minimum sampling
rate, to in turn, specify the necessary number of circular patterns required for
reconstruction. Recall that the required minimum number of circular pattern is
referred to as a curveling rate, and preceding its determination, a maximal fre-
quency component of an object should be retrieved. To estimate the frequencies,
we apply the Two-Thirds Power Law [10] which unveils a relationship between
the motion of a shape/curve and its characteristics. Specifically, the radius of
curvature(R) of on an osculating circle around a closed curve, and its tangential
velocity(V ) satisfy the Eq. (12), where K is a constant depending on duration
of the motion [10], and α and β are parameters to be estimated [9]. Note that
the parameter β is very close to two thirds (2/3), as has been shown by [13].
Projected circular patterns on a 3D object (Fig. 3) have two tangential vectors.
Hence, each 3D point of the surface of interest, has two curvature components
(κ1ij and κ2ij), the first derivatives of tangential vectors, T1ij and T2ij with
respect to the arc length (see Fig. 4). The two-thirds power law can be written
as

V = rω = K ·
(

R

1 + αR

)1−β

, (12)

where r is a distance between the reference point(i.e. nosetip) and the arbitrary
point of the object (Fig. 4). According to Eq. (12), we can acquire two frequency
components corresponding to κ1ij and κ2ij , respectively.

ω1ij = 2πf1ij =
1

r1ij
·
(

R1ij

1 + αR1ij

)1−β

, (13)
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Fig. 3. Simulation of projection of circular patterns, (a). 3D face model, (b). Circular
patterns, (c). Overlaying patterns.

ω2ij = 2πf2ij =
1

r2ij
·
(

R2ij

1 + αR2ij

)1−β

, (14)

r1ij = r2ij = rij , i = 1, 2, . . . , M, j = 1, 2, . . . , N, (15)

where R1ij and R2ij are 1
κ1ij

and 1
κ2ij

, respectively, and M is the number of
points of each curve and N is a number of curves(patterns) on the surface. To
determine the minimum sampling rate(2×max(fij)) which is determined by the
Nyquist Rate, the maximum frequency component, max(fij) is required, and we
define max(fij) as

max(fij) = max[sup(f1ij), sup(f2ij)]. (16)

Using a relationship between a frequency component, fij and the corresponding
rij , the maximum frequency is calculated. Prior to measuring the maximum
fij , sup(f1ij) and sup(f2ij) should be acquired, and each of which satisfies the
following,

sup(fkij) ≤ 1
2π

sup

(
1

rkij
·
(

Rkij

1 + αRkij

)1−β)

, k = 1, 2. (17)

Prior to measurement of curvatures and rij ’s of all the points of the deformed
circular patterns, a normalization of data points is carried out. The normalization
yields the determination of the intrinsic characteristics of each curve projection
on the surface.



562 D. Lee and H. Krim

1ij

Pij

1ijT

X

Y

Z

2ijT

rij

Ref.
Point

Fig. 4. Two tangential vectors of a point on a 3D object. The first derivative of a
tangential vector is a curvature.

4 Experimental Results

To substantiate the measurement of frequency components steps, some simu-
lated examples are shown in this section. Initial number of projected patterns are
different from each other and related to the characteristics of objects. The max-
imum frequency component of the jth curve, max[(fij)]Nj=1, measured through
all the points of a curve is shown in Fig. 5. From the simulated result in Fig. 5,
the maximum frequency component is 0.1501 and the minimum sampling rate
is 0.1501 × 2 = 0.3002. To substantiate the determination of the above surface
sampling rate, we propose some numerical examples. The initial number (Nini)
of the projected patterns are determined by the characteristics of the surface.
The first (Fig. 6)and the second (Fig. 9) example surfaces consists of 89 and
110 circular patterns, respectively. These numbers correspond to infinite sam-
pling rate in a continuous domain. Curveling rate(Ns), the minimum number of
patterns defined as

Ns = �2 × max[fij ]
M, N
i=1,j=1 × Nini	, (18)

and estimated Nini, max[fij ] and Ns are provided in Table.1. To evaluate the
accuracy of a reconstruction, the L2-norm distance between the original(SO ⊂
R

3) and the reconstructed surfaces(SR ⊂ R
3) is computed through all the pixels.

d2(SO, SR) = ||SO − SR||2 =

(
∑

pO,pR∈R3

[pO − pR]2
)1/2

, (19)

where d2(SO, SR) is an L2-norm distance(geometric error), and pO ∈ SO and
pR ∈ SR represent 3D Euclidean coordinates of the original and the
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Fig. 5. Maximum frequency components of curves(from the j = 1th to Nth curve)
on the 3D face model(Fig. 6). Frequency is defined in a unit space(arc length) and
quantities are relative each other. In this example, max[fij ] is 0.1501 and the sampling
rate is 0.3002.

Table 1. Estimated curveling rate of two face models

Nini max[fij ] Ns

Face 1 89 0.1501 27
Face 2 110 0.1984 44

reconstructed surfaces, respectively. Simulated examples of SR and d2(SO, SR)
are shown in Fig.s. 7, 8, 10 and 11.

5 Conclusion and Future Works

In this paper we have presented an algorithm to determine the sampling rate
of a surface (or defining the minimum number of light patterns to be projected
on a surface whose maximal curvatures may be known) subjected to an active
light source probing. Such a rate, in turn plays a key role in the efficient rep-
resentation of a surface and its subsequent reconstruction from these patterns.
While our primary application of interest lies in the area of biometrics and face
modeling, the two-thirds-based sampling criterion may be exploited in many
different settings where surface representation and sampling are of interest (e.g.
surface archiving). We have also shown some illustrative examples. Although
our sampling rate does not recover the surface perfectly as the Shannon-Nyquist
Sampling Rate does for 1D signals, the sampling criterion we proposed does not
show a considerable information loss to be recognized. In the future, there are
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some technical issues to be considered - quantifying the algorithm efficiency (i.e.
computational complexity) and the reconstruction accuracy compared to the
previous methods is needed and being in progress.
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