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Abstract. Recently a new class of generalised diffusion filters called osmosis fil-
ters has been proposed. Osmosis models are useful for a variety of tasks in visual
computing. In this paper, we show that these filters are also beneficial outside
image processing and computer graphics: We exploit their use for the construc-
tion of better numerical schemes for hyperbolic partial differential equations that
model physical transport phenomena.

Our novel osmosis-based algorithm is constructed as a two-step, predictor-
corrector method. The predictor scheme is given by a Markov chain model of
osmosis that captures the hyperbolic transport in its advection term. By design,
it also incorporates a discrete diffusion process. The corresponding terms can
easily be identified within the osmosis model. In the corrector step, we subtract a
stabilised version of this discrete diffusion. We show that the resulting osmosis-
based method gives correct, highly accurate resolutions of shock wave fronts in
both linear and nonlinear test cases. Our work is an example for the usefulness of
visual computing ideas in numerical analysis.

Keywords: diffusion filtering, osmosis, diffusion-advection, drift-diffusion, hy-
perbolic conservation laws, finite difference methods, predictor-corrector schemes,
stabilised inverse diffusion.

1 Introduction

Hyperbolic differential equations (HDEs) model physical wave propagation and trans-
port processes. An important feature of solutions to such partial differential equations
(PDEs) is the formation of discontinuities, also called shocks. In image processing
shocks correspond to edges. Therefore, it seems natural that concepts from the nu-
merical approximation of HDEs can be useful for constructing discrete filters that deal
with the sharpening or evolution of edges. Rudin and Osher [1, 2] have exploited this
idea to define edge-enhancing processes. They use the same mechanism as in HDEs to
model so-called shock filters. When dealing with noisy images, one often aims at pre-
serving or enhancing edges, while in homogeneous image regions a smoothing should
take place. Corresponding to this idea, combinations of shock filters with mean curva-
ture motion [3] or with nonlinear diffusion [4] have been developed. Also, the concept
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of stabilised inverse diffusion (SID) has inspired interesting developments, both in a
linear [5, 6] and a nonlinear setting [7–9]. In particular, concepts from the numerics
of HDEs such as suitable combinations of one-sided differences have been applied to
stabilise discretisations of inverse diffusion [5, 9]. Similar ideas from the numerics of
HDEs dealing with an improved shock resolution have also been used for optical flow
computations [10].

While the influence of ideas from the numerics of HDEs on the field of image pro-
cessing is undeniable, up to now there are not many works that use techniques from
image analysis for improving numerical methods for HDEs. In [11–13] higher order
discretisations of HDEs that give a sharp shock resolution but suffer from oscillations
are combined with anisotropic diffusion filtering. There, anisotropic diffusion is used
to smooth oscillations without destroying the shocks. As an alternative procedure, one
may employ a classic first-order scheme featuring diffusive errors to capture the hyper-
bolic transport. Then, in a second step, the artificial blurring can be removed by linear
or nonlinear SID. This methodology is actually older than the SID-approach in image
processing, and it is called flux-corrected transport (FCT) [14]. Modern variations of it
have been developed for applications in image processing [15–17] and the numerics of
HDEs [18].

Our Contribution. The discussion above shows that so far only diffusion or inverse
diffusion processes have been used to correct numerical errors in schemes for HDEs.
The goal of the present paper is to propose a novel construction of predictor-corrector
schemes for HDEs that introduces a different mechanism. To this end, we make use
of the recently introduced class of osmosis filters for visual computing problems [19].
They can be regarded as nonsymmetric generalisation of diffusion filters that involve
a hyperbolic advection term which allows numerous applications beyond classic diffu-
sion filtering. In contrast to all previous works, we do not correct the numerical errors
of a classic HDE scheme by a diffusion filter, but we employ the hyperbolic term of the
osmosis process for predicting the hyperbolic transport in the HDE. The Markov chain
model corresponding to osmosis filters also includes a diffusion component. In the con-
text of HDEs, this is a reasonable feature, since it is well-known that numerical schemes
must incorporate a diffusive mechanism to approximate nonlinear shocks at the correct
position, cf. [20]. However, since this diffusion also blurs shocks, we supplement in
a corrector step SID to counter this undesired diffusion. As a benefit of the osmosis
model, we can do this in a straight forward fashion on a completely discrete basis; see
[16] for a similar use of this technique. In linear and nonlinear test cases, we com-
pare our method to a classic second-order MUSCL-Hancock scheme [21, 22] which
gives typical results for solvers in the field of HDEs. However, while the MUSCL-
Hancock scheme has a similar predictor-corrector format as our proposed method, our
approach is substantially easier to implement and much more efficient. We confirm that
our osmosis-based algorithm is not only competitive in quality to the MUSCL-Hancock
scheme, it even gives much sharper approximations at shocks.

Paper Organisation. In Section 2, we briefly review diffusion filtering and its gen-
eralisation to osmosis filters. Then we show in Section 3 how to use osmosis models
to design novel predictor-corrector schemes for a fundamental class of HDEs, namely
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hyperbolic conservation laws. In Section 4, we present numerical experiments. The pa-
per is finished with a conclusion in Section 5.

2 Diffusion Filters and Osmosis

Diffusion filters. Let a continuous-scale 1-D signal u(x, t) be given where we associate
x and twith space and time. The diffusion PDE with positive diffusivity function g(x, t)
reads in 1D as

∂tu = ∂x (g ∂xu) . (1)

It has to be supplemented with an initial condition u(x, 0) := f(x), and in case of a
bounded domain also with boundary conditions.

In a discrete setting, we use a spatial mesh width h and define the pixel location xi by
xi := (i − 1/2)h for i ∈ {1, . . . , N}. Analogously, we introduce a time discretisation
tk = kτ , so that we obtain a discrete signal uk

i ≈ u(xi, tk). Then a standard finite
difference discretisation of (1) is given by the explicit scheme

uk+1
i − uk

i

τ
=

1
h

(
gk

i+1/2

uk
i+1 − uk

i

h
− gk

i−1/2

uk
i − uk

i−1

h

)
(2)

where gk
i+1/2 denotes the diffusivity between the computational cells i and i+ 1.

Using the mesh ratio r := τ
h2 , our scheme can be rewritten as

uk+1
i = uk

i − rgk
i+1/2u

k
i − rgk

i−1/2u
k
i + rgk

i+1/2u
k
i+1 + rgk

i−1/2u
k
i−1. (3)

It is convenient to express this as a matrix-vector multiplication of the form uk+1 =
Qkuk, where Qk is an (N ×N)-matrix with entries

qk
i,j :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − rgk
i−1/2 − rgk

i+1/2 (j = i)

rgk
i−1/2 (j = i− 1)

rgk
i+1/2 (j = i+ 1)

0 (else).

(4)

Let us briefly review some important properties of the matrix Qk; cf. [23]. Obviously,
the matrix is symmetric. Stability of the iterative scheme (3) can be shown if the entries
of Qk are nonnegative. Since the diffusivity is positive, all off-diagonals contain non-
negative entries, leaving only the diagonal entries without proper clarification. There-
fore, for all diagonal entries it must hold that

qk
i,i = 1 − rgk

i−1/2 − rgk
i+1/2 ≥ 0. (5)

This implies a stability condition on the time step size τ .
In order to implement homogeneous Neumann boundary conditions ∂xu = 0, we mod-
ify the entries for qk

1,1 and qk
N,N such that

qk
1,1 := 1 − rgk

3/2 and qk
N,N := 1 − rgk

N−1/2. (6)
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Fig. 1. Diffusion process visualised in terms of a Markov chain model

This can be interpreted as setting the missing terms gk
1/2 and gk

N+1/2 to 0. It should
be mentioned that it is also possible to implement Dirichlet boundary conditions or
periodic boundary conditions.

Furthermore, it holds that the sums over all entries in each column of Qk equal 1.
By the symmetry of Qk this also holds for the row sums. Both properties have an effect
on the evolution of the process: The unit column sums imply the preservation of the
average grey value. With the unit row sums it is possible to prove a discrete maximum-
minimum principle. Moreover, in [23] it is shown that the evolution converges to a
constant steady state that is identical to the average grey value of the initial signal. Let
us stress that the properties of the discrete minimum-maximum-principle and the trivial
steady state solution are consequences of the symmetry of Qk which implies that unit
column sums are equivalent to unit row sums.

We can also express diffusion using Markov chains. Markov chains are described
in terms of stochastic matrices that incorporate transition probabilities [24]. A stochas-
tic matrix is a matrix with only nonnegative entries and unit column sums. By taking
into account the positivity of the diffusivity and choosing a mesh ratio r such that (5)
is satisfied for all i, we can ensure that the matrix Qk contains only nonnegative en-
tries. Moreover, all column sums are 1. Thus, Qk is a stochastic matrix, and the entries
qk
i,j ≥ 0 can be interpreted as transition probabilities. In the Markov chain setting it

is convenient to use a graph-based representation of the diffusion model. It is given in
Figure 1.

Osmosis as a Generalisation of Diffusion Filters. Following [19] let us now consider
a nonsymmetric extension of diffusion that is called osmosis. To this end, we assume
that we have semi-permeable membranes between adjacent pixels. An osmosis process
permits selective transport of particles such that the transition probabilities may be dif-
ferent, depending on the orientation. For example, the transition probability from pixel
i to pixel i+ 1 may differ from the transition probability from pixel i+ 1 to pixel i. In
the Markov model, this leads to the loss of the symmetry in the graph in Figure 1. This
is achieved by allowing different diffusivities in different orientation. Such oriented dif-
fusivities are called osmoticities. The forward osmoticity from pixel i to i + 1 at time
level k is denoted by g+,k

i+1/2, while g−,k
i+1/2 is the backward osmoticity from pixel i+ 1

to i. We choose these osmoticities such that the normalisation condition

g+,k
i+1/2 + g−,k

i+1/2 = 2 (7)

is fulfilled for all i; cf. [19]. Since osmoticities are also supposed to be nonnegative, we
conclude that in this case their range is in [0, 2].
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Fig. 2. Osmosis process visualised in terms of a Markov chain model

In Figure 2 we see a graph-based representation of osmosis. This new process is
expressed by the scheme

uk+1
i = uk

i − rg+,k
i+1/2u

k
i − rg−,k

i−1/2u
k
i︸ ︷︷ ︸

“outflow”

+ rg−,k
i+1/2u

k
i+1 + rg+,k

i−1/2u
k
i−1︸ ︷︷ ︸

“inflow”

(8)

This can be rewritten in matrix-vector notation uk+1 = P kuk with a matrix P k :=
(pk

i,j) with

pk
i,j :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 − rg−,k
i−1/2 − rg+,k

i+1/2 (j = i)

rg+,k
i−1/2 (j = i− 1)

rg−,k
i+1/2 (j = i+ 1)

0 (else).

(9)

Homogeneous Neumann boundary conditions are implemented by setting the osmotic-
ities in the boundary locations x1/2 and xN+1/2 to 0.

Let us comment on the structure of P k. As in the case with Qk, the system matrix (9)
is a stochastic matrix if r is chosen such that the diagonal entries of P k are nonnegative.
Since P k has unit column sums, it follows that osmosis preserves the average grey
value:

1
N

N∑
i=1

uk+1
i =

1
N

N∑
i=1

N∑
j=1

pk
i,ju

k
j =

1
N

N∑
j=1

(
N∑

i=1

pk
i,j

)
︸ ︷︷ ︸

=1

uk
j =

1
N

N∑
j=1

uk
j . (10)

However, P k is not symmetric. Thus, unit row sums cannot be guaranteed. As a con-
sequence, a discrete maximum-minimum principle does not hold, but the nonnegativity
of P k still implies that a nonnegative initial signal remains nonnegative after filter-
ing. More importantly, the lack of symmetry allows that osmosis can lead to nontrivial
steady states. This interesting property is analysed in detail in [19], where it is also
exploited for many applications.

As proven in [19], the scheme (8) with normalisation condition (7) approximates on
a fixed, given mesh of size h the 1-D osmosis PDE

∂tu + ∂x

(
g+ − g−

h
u

)
= ∂xxu (11)



Novel Schemes for Hyperbolic PDEs Using Osmosis Filters from Visual Computing 537

Fig. 3. Seamless image cloning with osmosis (with permission from [19]). From left to right: (a)
Original painting of Euler. (b) Original drawing of Lagrange (with to-be-cloned face selected).
(c) Direct cloning on top of Euler’s head. (d) Cloning with osmosis image editing. See [19] for
more details.

where g+ and g− are continuous-scale representations of the osmoticities. PDEs of this
type are called advection-diffusion equations or drift-diffusion equations.

It is straight forward to extend osmosis to higher dimensions and colour images; see
[19] for details. In [19] it is also shown that osmosis constitutes a versatile framework
for many visual computing problems such as clustering, data integration, focus fusion,
exposure blending, image editing, shadow removal, and compact image representation.
Fig. 3 illustrates this. Let us now explore a new application field for osmosis that goes
beyond visual computing tasks: the construction of better numerical schemes for hyper-
bolic conservation laws.

3 Osmosis Schemes for HDEs

Hyperbolic conservation laws. We aim at constructing numerical approximations of
HDEs that can be written as

∂tu + ∂x(φ(u)) = 0. (12)

Such equations are called hyperbolic conservation laws (HCLs). This is a fundamental
class of PDEs with many applications in science and engineering [25]. The design of
numerical schemes for HCLs can easily be transferred to other specific HDEs. The
function φ in (12) is called flux function. Its properties, like e.g. linearity or convexity,
are important for the features one can expect from solutions of such PDEs. We will
write φ in the format of a velocity times the underlying density function, i.e. φ(u) = au,
where a := a(u) may be nonlinear. This is a very basic choice in the field of HCLs,
naturally arising in many settings [25].

Comparing the differential formula for osmosis (11) with the general form of HCLs
(12), one can immediately identify the flux φ(u) and the corresponding flux within the
osmosis advection term

φ(u) =
g+ − g−

h
u. (13)
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In addition, there is the diffusion term ∂xxu. The general idea we pursue in the following
is to determine useful expressions for g+ and g−, so that we can capture the hyperbolic
transport by the osmosis model.

Selection of the Osmoticities. For the general construction of osmosis-based algo-
rithms, we stick for simplicity to the 1-D situation. The methodology can be extended
to the 2-D case in a straight forward fashion.

In order to approximate the flux φ(u) = a(u)u of the hyperbolic transport contained
in (11), we choose as osmoticities

g+,k
i+1/2 := 1 +

h ak
i+1/2

2
and g−,k

i+1/2 := 1 −
h ak

i+1/2

2
(14)

with velocities ak
i+1/2 defined at pixel borders. This setting makes the osmotic transport

identical to the desired format a(u)u. Let us discuss two examples.

– Example 1: Osmoticities for linear advection.
The linear advection equation

∂tu + α∂xu = 0 (15)

is a standard example of HDEs, defined via φ(u) := αu with α ∈ R. In order to
approximate (15), we set all velocities ak

i+1/2 to the same value α.

– Example 2: Osmoticities for Burgers’ equation.
Burgers’ equation is a classic test case for nonlinear HDEs:

∂tu + ∂x

(
1
2
u2

)
= 0, i.e. φ(u) =

1
2
u2. (16)

Rewriting the flux in the format φ(u) = a(u)u leads to the discrete expression

ak
i+1/2 = a(uk

i , u
k
i+1) :=

1
2
uk

i + uk
i+1

2
(17)

after approximating the density uk
i+1/2 at the border between pixels i and i+ 1 by

averaging.

Subtracting the Diffusion. Our osmosis scheme contains the diffusive term ∂xxuwhich
leads to an additional smoothing of the signal. In order to compensate for this effect,
we apply a method similar to the fully discrete SID step in [17].

If we use our definitions of g±i±1/2 from (14) within the osmosis filter (8) and carry
out further computations, we obtain

ũk
i = uk

i − τ

h

(
ak

i+1/2

uk
i+1 + uk

i

2
− ak

i−1/2

uk
i + uk

i−1

2

)
︸ ︷︷ ︸

(A)

+ r (uk
i+1 − 2uk

i + uk
i−1)︸ ︷︷ ︸

(B)

. (18)
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The term (A) corresponds to the update formula of an explicit scheme for discretising
the hyperbolic transport, while (B) is a discretisation of a time step performed with
linear diffusion. It should be noted that (18) varies from the standard Lax-Friedrichs
scheme by controlling the diffusive part (B) with the same time step size τ as the trans-
port term (A), see also [25–27].

Let us now subtract the effect of the latter by performing a SID step in the same style
as in [16, 17]. This gives the total, corrected result

uk+1
i := ũk

i − cki+1/2 + cki−1/2 (19)

where cki±1/2 denote the fluxes of the stabilised inverse diffusion:

cki+1/2 := minmod
(
ũk

i − ũk
i−1, η

k
i+1/2

(
ũk

i+1 − ũk
i

)
, ũk

i+2 − ũk
i+1

)
(20)

with the minmod function

minmod(a, b, c) :=

⎧⎨
⎩

max(a, b, c) if a > 0 and b > 0 and c > 0
min(a, b, c) if a < 0 and b < 0 and c < 0
0 else.

(21)

Thereby, ηk
i+1/2 := r is the antidiffusion coefficient, as identified in (B). The other

arguments of the minmod function serve as stabilisers.

The Complete Algorithm. Now we can summarise our method in a nutshell.

Osmosis-based Method for Approximating ∂tu+ ∂x(φ(u)) = 0.
Step 1: Determine the velocity function a for a given flux function

φ(u) = a(u)u.
Step 2: Compute the osmoticities according to (14).
Step 3: Perform one predictor step by applying the osmosis scheme (18).
Step 4: Perform the corrector step (19).
Step 5: Repeat steps 2 to 4 until the stopping time is reached.

4 Numerical Experiments

We illustrate the quality of our osmosis-based algorithm with several standard examples
from the field of HDEs. Thereby, we focus our attention on the shocks that are the most
interesting features of hyperbolic PDEs.

For comparison with standard methods for HDEs, we employ a second-order high-
resolution MUSCL-Hancock method [21, 22]. This classic method gives typical results
for high-resolution solvers in this field.

Linear Advection in 1D. In our first experiment we consider the linear advection equa-
tion (15) with α = 1 and periodic boundary conditions. We apply it for transporting a
box-like initial signal

f(x) :=
{

1 (10 ≤ x < 30)
0 (else).

(22)
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Fig. 4. Linear advection experiment. (a) Left: Results at t = 60. (b) Right: Close-up on the right
edge of the signal.
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Fig. 5. Burgers’ Equation. (a) Left: Results at t = 250. (b) Right: Close-up on the right edge of
the signal.

As numerical parameters we choose N := 200, h := 1, and τ := 0.25. In Figure 4 we
show a snapshot taken after 240 time steps of numerical solutions computed by our new
scheme and the reference method, together with the exact solution. We observe that our
osmosis method gives much sharper discontinuities than the MUSCL-Hancock scheme
and comes closer to the exact solution.

Nonlinear Burgers’ Equation in 1D. Now we consider the Burgers’ equation (16)
under the same parameter settings and the same initial condition as in the first test.
By the nonlinear evolution, the box signal is shifted to the right. The discontinuity at
the right hand side of the box travels as a shock while the rest of the signal is gradually
shifted, transforming the box into a ramp. Figure 5 shows the numerical solutions at t =
250 for our osmosis-based scheme as well as for the MUSCL-Hancock implementation,
together with the exact solution. Both methods give reasonable approximations in this
test case.

Nonlinear 2D Experiment. As already mentioned, extending osmosis to 2D is straight
forward: One only has to define osmoticities as proposed in (14) for x- and y-direction.
Note that our resulting scheme is rotationally invariant w.r.t. the diffusion part, since
this is given in 2D by the isotropic Laplace operator [19]. The 2-D MUSCL-Hancock
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Fig. 6. Steady-state result for the 2-D test. Left: MUSCL-Hancock scheme. Right: Osmosis
scheme. Top row: Top-down view. Bottom row: Different angle, showing the shock region in
detail.

scheme is presumably comparable in this respect, as it uses information from a diamond-
shaped stencil of 13 nodes [21, 22].

For our 2-D experiment we consider the nonlinear problem from [11] where the
steady state is sought. It combines Burgers’ equation with linear advection by choosing
the flux function φ(u) = 1

2u
2 in x-direction, and ψ(u) = u in y-direction. As initial

state on our domain [0, 100]× [0, 100] we take

f(x, y) :=

⎧⎪⎪⎨
⎪⎪⎩

1.5 (x = 1)
−2.5x+ 1.5 (y = 1)
−1 (x = 100)
0 (else).

(23)

These values also define non-zero Dirichlet boundary conditions on three borders of
our domain. On the remaining border (at y = 100) we impose homogeneous Neumann
boundary conditions. We implement the process in a straight forward way using the
osmoticities for Burgers’ equation and linear advection in x- and y-direction, respec-
tively. The problem is discretised on a grid of size 100× 100, and the numerical steady
state obtained at t = 250 is depicted in Fig. 6. In the smooth regions, our method
performs comparable to the MUSCL-Hancock scheme, but we obtain a much sharper
shock resolution.
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5 Conclusion

We have developed a novel class of schemes for approximating HCLs. They combine
recently developed osmosis filters for resolving transport with a stabilised inverse dif-
fusion step. We have shown the strength of our approach for resolving solutions with
shocks, which are important features in the fields of hyperbolic differential equations.

Quite frequently, new results in visual computing benefit from the use of modern
techniques from numerical analysis. Our work is an example for a fertilisation in the
inverse direction. Note that the key for obtaining the results in our paper is the use of a
very recent technique from visual computing. However, we do not only propose a novel
construction of numerical schemes for HDEs, we also introduce a new application of
osmosis filters. Therefore, this paper is an example for the useful interaction of visual
computing ideas and numerical analysis. In our future work we will investigate if also
other modern PDE-based methods from image analysis can be used with benefit in
numerical analysis.

Acknowledgments. The authors gratefully acknowledge the funding given by the
Deutsche Forschungsgemeinschaft (DFG), grant We2602/8-1.
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