
From High Definition Image

to Low Space Optimization

Micha Feigin1, Dan Feldman2, and Nir Sochen1

1 Deparment of Mathematics, Tel-Aviv University Tel-Aviv, 69978, Israel
2 Center for Mathematics of Information

California Institute of Technology
Pasadena, CA 91125, USA

Abstract. Signal and image processing have seen in the last few years
an explosion of interest in a new form of signal/image characterization
via the concept of sparsity with respect to a dictionary. An active field
of research is dictionary learning: Given a large amount of example sig-
nals/images one would like to learn a dictionary with much fewer atoms
than examples on one hand, and much more atoms than pixels on the
other hand. The dictionary is constructed such that the examples are
sparse on that dictionary i.e each image is a linear combination of small
number of atoms.

This paper suggests a new computational approach to the problem of
dictionary learning. We show that smart non-uniform sampling, via the
recently introduced method of coresets, achieves excellent results, with
controlled deviation from the optimal dictionary. We represent dictionary
learning for sparse representation of images as a geometric problem, and
illustrate the coreset technique by using it together with the K−SVD
method. Our simulations demonstrate gain factor of up to 60 in com-
putational time with the same, and even better, performance. We also
demonstrate our ability to perform computations on larger patches and
high-definition images, where the traditional approach breaks down.

Keywords: Sparsity, dictionary learning, K−SVD, coresets.

1 Introduction

One of the major problems in image processing is image characterization. By
image characterization we mean a system that gets a two-dimensional function
or, in the discrete case, a matrix with non-negative entries, as a query and
provides an answer whether or not this function/matrix is an image. Other
option is that the system provides a probability measure on the space of all
two-dimensional such functions/matrices. We are still far from achieving this
ultimate goal, yet few breakthroughs where recorded since the inception of image
processing as a branch of scientific research. Many characterization, in the past,
used the decay rate of the coefficients of certain transformations. That led to a
characterization in a linear space of functions. In the last decade a new approach
that involves redundant representations and sparsity seems promising. In this

A.M. Bruckstein et al. (Eds.): SSVM 2011, LNCS 6667, pp. 459–470, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



460 M. Feigin, D. Feldman, and N. Sochen

framework, a signal is represented again as a superposition of signals. But unlike
the representation with a basis of a linear space, the number of basic signals
(a.k.a. atoms) in this new approach exceeds the dimension of the signal such that
a given signal may have many different representations. Uniqueness is achieved
only for a subset of signals which can be represented with a limited number of
atoms, called sparse signals. For this class of signals the sparsest representation
is unique. This approach shifts the focus of attention from the general law of
decay of coefficients to the outliers of such behavior, namely the large coefficients
of such an expansion. The class of sparse signals does not form a linear space
which reflects the non-linearity of the set of images. At the same time, we still
use linear techniques which helps a lot in practice.

The sparsity approach has appealing features for image processing, but it
suffers from few problems. First it is clear that sparsity is a notion which is
attached to a given dictionary. Clearly, there is no one universal dictionary that
can represent any image in a sparse way. This calls upon the need to construct
dictionary for each class of images or for each application. Constructing a dic-
tionary for a large number of images from the same class/application goes under
the name dictionary learning and is an active field of research. This is the main
topic of this paper, and we demonstrate our ideas on the K−SVD method [3].
Second is the very extensive use of computational time and in memory space.
Because of the prohibitive computational time and the numerical instabilities
in computing with large size matrices, sparsity techniques are applied to small
images only. In fact, 8×8 to 16×16 is the most common sizes in image process-
ing. It means that these are patches of images rather than images themselves.
Moreover, one may wish to construct dictionaries for the same class of images.
Using, implicitly, the approximate self-similarity nature of images it is costumed
to use the patches of an image as a class of similar patches and to construct a
dictionary per image. Here, again, the curse of limited space and time interfere
and high definition images (1024 × 1024 say) have a huge number of patches
of such a small size which makes the dictionary learning task computationally
prohibitive. This paper brings the spell of coresets to cure the curse of space and
time limitations. Informally, a coreset C for Y is a compressed representation of
Y that well approximates the original data in some problem-dependent sense.
The coreset C is used to give approximate answers for queries about Y .

We show that the optimization problem can be solved on the coreset, which is
much smaller, without sacrificing too much accuracy. Coresets techniques were
first introduced in the computational geometry field, and in the recent years
used to solve some well known open problems in computer science and machine
learning. The subject became more mature theoretically in the last few years.
Coresets present a new approach to optimization in general and have huge suc-
cess especially in tasks which use prohibitively large computation time and/or
memory space. In particular, coresets suggest ways to use existing serial al-
gorithms for distributed (parallel) computing, and provide solutions under the
streaming model, where the space (memory) for solving the problem at hand is
significantly smaller than its input size.



From High Definition Image to Low Space Optimization 461

2 Coresets for Dictionaries

Approximation algorithms in computational geometry often make use of random
sampling, feature extraction , and ε-samples. Coresets can be viewed as a general
concept that includes all of the above, and more. See a comprehensive (but not
so updated) survey on this topic in [1]. Coresets have been the subject of many
recent papers (see references in [1]) and several surveys [2, 4].

In our context, the input is an d × n matrix Y that represents n points in
R

d, and we consider a d× k matrix D, whose columns represent k points in R
d.

The matrix D is called a dictionary. Typically n is much larger than k, and k
is much larger than d. Let cost(·, ·) be some function of Y and D. We interpret
cost(Y, D) as the result of a query D on a matrix Y .

2.1 k-Dictionary Queries

Let D be a dictionary. The column vectors of the matrix D are called the points
of D. We write z ∈ D if z is one of the columns of D. Let y be a point (vector)
in R

d, and let err(y, D) be a non-negative real function that represents the error
of approximating y by D.

Through the rest of this section we won’t assume anything further about the
function err(·, ·). Following some possible definitions of err that are relevant for
this paper, when D is a d × k matrix:

1. err(y, D) = minx∈Rk ‖Dx − y‖2 is the Euclidean distance between the point
y and the subspace that is spanned by the columns of D.

2. err(y, D) = minx∈{ei} ‖Dx − y‖2 is the distance between y and its closest
point of D. Here, {ei} = {ei}k

1 denotes the standard base of R
k.

3. err(y, D) = minx∈Rk,‖x‖0=1 ‖Dx − y‖2 is the distance between y and the
closest line that intersects both the origin of R

d and a point in D. Here ‖x‖0

denotes the number of non-zeros entries of x.
4. For an integer j ≥ 0, errj(y, D) = minx∈Rk,‖x‖0≤j ‖Dx − y‖2 is the distance

between y and its closest subspace over the set of O
((

k
j

))
subspaces that

are spanned by at most j points of D.

More generally, we can replace ‖Dx − y‖2 by ‖Dx − y‖q
p for p, q ≥ 0 in the above

examples.

Problem 1 (k-Dictionary Query). The input to this problem is an integer k ≥ 1
and a d×n matrix Y . For a given (query) d×k dictionary D, the desired output
is cost(Y, D) =

∑
y∈Y err(y, D).

Suppose that, given y ∈ Y and a d × k dictionary D, the error err(y, D) can
be computed in time T . Then cost(Y, D) can be computed in O(Tn) time and
using O(dn) space. Here, “space” means memory, or number of non-zeros entries.
In this paper we wish to pre-process the input Y in such a way that an ε-
approximation of the output cost(Y, D) could be computed in time O(Tc) and
space O(dc), where c is sub-linear (actually, independent) in n. To this end, we
introduce the concept of ε-coreset for the k-dictionary problem.



462 M. Feigin, D. Feldman, and N. Sochen

2.2 Coreset for a Single k-Dictionary Query

A matrix C is called a weighted matrix if every column y ∈ C is associated with
a weight w(y) ≥ 0. For a weighted matrix C and a dictionary D, we define

cost(C, D) =
∑
y∈C

w(y)err(y, c).

A (non-weighted) matrix Y is considered a weighted matrix with w(y) = 1 for
every y ∈ Y .

Definition 1 (ε-coreset). Let Y be an d × n matrix, and D be a set of d × k
dictionaries. Let C be a weighted d × c matrix. We say that C is an ε-coreset
for Y if, for every D ∈ D, we have

(1 − ε)cost(Y, D) ≤ cost(C, D)| ≤ (1 + ε)cost(Y, D). (1)

For example, it is easy to verify that Y is an ε-coreset of itself. However, an
ε-coreset C is efficient if c << n. In this case, cost(C, D) can be computed in
Tc << Tn time using only cd << nd space.

Algorithm Coreset(Y, D0, c).
Input: a d×n matrix Y , an integer c ≥ 1, and a matrix D0 (of arbitrary size).
Output: a weighted c × d matrix C that satisfies Theorem 1.

Pick a non-uniform random sample S = {s1, s2, · · · , sc} of c i.i.d. columns
from Y , where y ∈ Y is chosen with probability proportional to err(y, D0).
That is, for every s ∈ S and y ∈ Y , the probability that s = y is

pr(y) =
err(y, D0)∑

y∈Y err(y, D0)
=

err(y, D0)
cost(Y, D0)

.

Return the weighted matrix C whose columns are the vectors of S (in some
arbitrary order), where each y ∈ C is weighted by

w(y) =
1

c · pr(y)
. (2)

The following lemma can be easily proved using Chernoff-Hoeffding’s inequality.

Lemma 1. Let Y be a d× n matrix, and δ, ε > 0 be. Let C be the output of the
algorithm Coreset with input parameters Y , D0 and

c ≥ 10 ln(1/δ)
ε2

.

Let D be a fixed d × k dictionary. Then, with probability at least 1 − δ,

|cost(Y, D) − cost(C, D)| ≤ εcost(Y, D0) · max
y∈Y

err(y, D)
err(y, D0)

.



From High Definition Image to Low Space Optimization 463

Corollary 1. Let b ≥ 1 be an integer and D0 be a dictionary, such that for
every D ∈ D:

(i) cost(Y, D0) ≤ b · cost(Y, D).
(ii) err(y, D) ≤ err(y, D0) for every y ∈ Y .

Put ε, δ > 0. Let C be the weighted matrix that is returned by the algorithm
Coreset with input parameters c ≥ 10b2 ln(1/δ)/ε2 and D0. Then, for a fixed
dictionary D ∈ D (which is independent of C), we have

(1 − ε)cost(Y, D) ≤ cost(C, D) ≤ (1 + ε)cost(Y, D),

with probability at least 1 − δ.

Proof. We have cost(Y, D0) ≤ bcost(Y, D) by property (i). Replacing ε with ε/b
in Lemma 1 yields

|cost(Y, D) − cost(C, D)| ≤ (ε/b)cost(Y, D0)max
y∈Y

err(y, D)
err(y, D0)

≤ εcost(Y, D)max
y∈Y

err(y, D)
err(y, D0)

≤ εcost(Y, D),

where the last inequality follows from property (ii).

2.3 Coreset for all k-Dictionary Queries

In order to have an ε-coreset for a set D of more than one dictionary, there are
still two problems that remain to be solved. Firstly, we need to compute D0 that
satisfies Properties (i) and (ii) of Corollary 1 with sufficiently small b. This will be
handle in the next section for our specific applications. Secondly, Definition 1 of
ε-coreset demands that C will approximate cost(C, D) simultaneously for every
D ∈ D. However, Corollary 1 holds, with probability at least 1 − δ, only for a
fixed dictionary D ∈ D, i.e, a single query. If the size of D is finite, we can replace
δ with δ/|D| in Corllary 1 and use the union bound to obtain an ε-coreset for Y
of size

c = O

(
ln(|D|)b2 ln(1/δ)

ε2

)
. (3)

However, in the applications of this paper the size of D is infinite. In this case,
we use the result of [7] that is based on PAC-learning theory. Roughly speaking,
the result states that to obtain an ε-coreset, it suffices to replace the term ln(|D|)
in (3) by some dimension v that represents the complexity of the set D. This
dimension is similar to the classic notion of VC-dimension that is used in machine
learning [14]. Usually v is proportional to the number of parameters that are
needed to represent a dictionary D of D, which is, in the general case, the
number dk of entries in the matrix D.

Theorem 1. Let Y be a d × n matrix, ε, δ, b > 0 and v ≤ O(dk) be the di-
mension that corresponds to a set D of d × k matrices. Let D0 be a matrix as
defined in Corollary 1. Let C be the weighted matrix that is returned by the algo-
rithm Coreset with input parameters c ≥ v10b2 ln(1/δ)/ε2 and D0. Then, with
probability at least 1 − δ, C is an ε-coreset of Y .



464 M. Feigin, D. Feldman, and N. Sochen

3 Example Application: Approximating the Optimal
Dictionary

3.1 The k-Dictionary Problem

In this section we consider the following problem. The input is a parameter
k ≥ 1, a d × n matrix Y , and an error function err(·, ·). The output is a d × k
dictionary D∗ that minimizes cost(Y, D) =

∑
y∈Y err(y, D) over a given set

D ∈ D. For ε > 0, a (1 + ε)-approximation for this problem is a matrix D such
that cost(Y, D) ≤ (1 + ε)cost(Y, D∗).

For the error function 1, 2 and 3 in the beginning of Section 2.1 above, provable
(1+ε)-approximation algorithms are provided in [7–9], using coresets techniques.

For the more general and popular case in the context of sparse dictionaries
where j > 2 (the fourth error function in Section 2.1) D∗ minimizes the distances
to a set of

(
k
j

)
subspaces under constraints. Very little is known about minimizing

distances of points to multiple affine subspaces (that are neither points or lines).
For example, the problem of computing a pair of planes in three dimensional
space that minimize the sum (or sum of squared) distances from every point
to its closest plane is an open problem. This holds even for a corresponding
constant factor approximation.

In fact, it is not clear how to compute the closest distance to a set of subspaces
efficiently even for a given dictionary D and a point y ∈ y in time that is
polynomial in j. This is equivalent to answer Problem 1 for a matrix Y with
a single column y. Nevertheless, a lot of heuristics have been suggested over
the years for approximating distance to subspaces (called pursuit algorithms,
see a detailed description of these methods in [3]), for approximating points by
subspaces in general (see [6] and references therein), and for the k-dictionary
problem in particular (see references in [3]).

3.2 Coreset for the k-Dictionary Problem

We prove that, under natural assumptions on the input matrix Y and the set of
candidate dictionaries D, we can choose input parameters c and D0 such that
the algorithm Coreset(Y, D0, c) from Section 2.2 returns a small ε-coreset C
of Y .

There are two issues that need to be resolved: Firstly, it is not clear how
to compute b ≥ 1 and the input D0 from Theorem 1 that will satisfy the two
properties of Corollary 1. Note that the size c of the output coreset depends
on b, so we would like to choose D0 such that b is small. Secondly, we need to
compute the dimension v of the set D of all possible d × k dictionaries. Recall
that by Theorem 1, v is required in order to compute c.

In order to satisfy property (i), we use the fact that in our experiments on
both the synthetic and the real data, the variance of entries in every column
vector y of the input matrix Y is generally small. This is because y usually
represents a small block of pixels in an image. Letting D0 be the d × 1 matrix
(vector) of ones guarantees that err(y, D0) is not larger than the variance of y.



From High Definition Image to Low Space Optimization 465

Hence cost(Y, D0) =
∑

y∈Y err(y, D0) is the sum of these variances which is
usually not much larger than cost(Y, D) for every D ∈ D. This satisfies property
(i). Adding this vector D0 for every possible output dictionary D ∈ D satisfies
property (ii) since in this case err(y, D) ≤ err(y, D0) for every y ∈ Y .

Another option that will satisfy the above two properties is relevant when
running a heuristic that uses several iterations in order to compute D∗. In this
case, we may run the heuristic on the original input data Y only for a single
iteration, and choose D0 to be the returned dictionary. Property (i) will hold
under the assumption that the ratio b between the initial dictionary and the
rest of the dictionaries that will be computed by the heuristic is not very large.
Property (ii) will be satisfied under the assumption that err(y, ·) is highest on
the first iteration of the heuristic, for every column y of Y .

We chose the first option (where D0 = (1, · · · , 1)), for practical reasons (due
the simplicity of implementation), and for theoretical reasons (since the second
option assumes that the heuristic is based on iterations). Interestingly enough,
we found out that existing heuristics (such as the K−SVD algorithm in [3])
already add such a constant vector D0 for every dictionary that they output, for
different reasons. We summarize our decision and its justification in the following
theorem.

Theorem 2. Let D0 = (1, . . . , 1)T be the d-dimensional vector of ones. Let D
be a set of d × k dictionaries, such that each D ∈ D contains D0, and suppose
that OPT = minD∈D cost(Y, D) > 0. Let v denote the dimension of D.

Let Y be a d×n matrix, and define b = cost(Y, D0)/OPT . Let c ≥ 10vb2 ln(1/δ)/ε2

for some ε, δ > 0. Then Coreset(Y, D0, c) returns, with probability at least 1 − δ,
an ε-coreset of Y .

Determining c. Although the set of dictionaries that a heuristic tests (queries)
during its running time is finite, we still cannot use the union bound with Corol-
lary 1, since these dictionaries depend on the input coreset C. However, it is
reasonable to assume that, for a given Y , not all the possible d × k matrices
D have a positive probability (over the randomness of C) to be queried by the
algorithm. That is, we believe that the dimension v of the candidate set D is
significantly smaller than dk, but a more involved theoretical analysis of the
corresponding heuristic is needed. Also, it is not clear how to compute b in The-
orem 2. Practically, we will simply apply the algorithm Coreset with a value
of c that is determined by the available memory and time at hand. Hence, the
parameters δ, ε, b and v that are defined in Theorem 2 will be used only for the
theoretical analysis. Nevertheless, they guarantee that the required sample size
c is generally “small” for a reasonable values of δ and ε. The theoretical bound
on c also teaches us about the relation between the input parameters. For ex-
ample, the fact that c in Theorem 1 is independent of n implies that the ratio
between the computation time of cost(Y, D) and cost(C, D) converges to infinity
for asymptotically large n, while the error that is introduced by the coresets
remains approximately the same. Indeed, we observe these two phenomenas in
our experiments; see Fig. 1(a) and 2(a).



466 M. Feigin, D. Feldman, and N. Sochen

4 Experimental Results

Hardware. We ran the experiments on a standard personal modern Laptop.
Namely, IBM Lenovo W500, as provided by the manufacturer, without addi-
tional hardware. In particular, we used the CPU “Intel Core 2 Duo processor
T9600 (2.80 GHz)” with 2GB memory. See manufacturer’s website (http://www-
307.ibm.com/pc/support/site.wss/document.do?lndocid=MIGR-71785) for ex-
act hardware details.
Software. The operation system that we used is “Windows Vista Business” and
the Matlab version is 2010b. For the K−SVD and OMP algorithms, we used the
implementation of Rubinstien that was generously uploaded on the Internet [13].
This implementation was used as a “black box” without changing a line of code.
The time and space improvements are therefore only due to the replacing of the
original input matrix Y with its coreset.

4.1 Synthetic Data

As in previously reported works [3, 10, 11], we first try to construct coresets of
synthetic data. In [3] it was shown how the K−SVD algorithm approximated
the original dictionary D∗ that generated a synthetic data matrix Y . In the
following experiments we replace Y by its (usually much smaller) coreset C, and
compare the results of applying K−SVD on C instead of Y . The construction
of C is done using algorithm Coreset with D0 and different values of c, as
defined in Theorem 2. The construction of the generative dictionary D∗ and the
input matrix Y was based on the suggested experiments in [3]. Generating the
dictionary D∗ and the matrix Y . A random (dictionary) matrix D∗ of size d×k =
20×50 was generated with i.i.d. uniformly distributed entries. Each column was
normalized to a unit norm. Then, a 20× n matrix Y was produced for different
values of n. Each column y of Y was created using a linear combination D∗x of
‖x‖0 = j = 3 random and independent different columns of D∗, with uniformly
distributed i.i.d. coefficients. White Gaussian noise with varying signal-to-noise
ratio (SNR) σ = 20 was added to the resulting vector D∗x. That is, Y =
D∗X + N where N is a matrix that represents the Gaussian noise in each entry,
and every column x of X corresponds to a column vector y in Y as defined
above. We run the experiment with 11 different assignments for n, that were
approximately doubled in every experiment: from n = 585 to n = 500, 000.
For every such value of n, 50 trials were conducted, when in every trial new
dictionary D∗ and matrices Y and X were constructed.
Applying K−SVD on Y . We run the K−SVD implementation of [13], where the
maximum number of iterations was set to 40. The rest of parameters were the
defaults of the implementation in [13]. We denote the output dictionary by DY .
Generating the coreset C. We implemented and run the algorithm Coreset(c, D0)
from Section 2.2 on the input matrix Y where the size of the coreset was set to
c = 5000. The parameter D0 was always set to be the column vector of d ones.
See Section 3.2 for more details.



From High Definition Image to Low Space Optimization 467

(a) (b)

Fig. 1. Comparison of the differences between the dictionaries DY DC and D∗ over
the number n of rows in the matrix Y . The dictionaries DY , DC are respectively the
dictionaries that were constructed using the original matrix Y , and its coreset C. The
original generator dictionary of Y is denoted by D∗.

Applying K−SVD on C. We called to the K−SVD algorithm using the same
parameters as the above call for Y , except for the maximum number of iterations.
After setting the number of iterations to 40 for the input C (as in the runs on
Y ), we got results that are only slightly worse than on Y , but significantly faster
(up to 100 times). We therefore decided to sacrifice time in order to get better
results, and used 120 iterations on the K−SVD with the input C. We denote the
output dictionary by DC .
Approximating the sparse coefficients matrix. In order to approximate the entries
of the matrix X , we used the OMP heuristic as defined in [12] and implemented
in [13]. The objective of OMP is to minimize ‖Y − DY XY ‖F for the given dic-
tionary DY and the input matrix Y , over every matrix XY whose columns are
sparse (‖x‖0 = j = 3 for every column x ∈ XY ). This is done by minimizing
‖y − DY x‖F for every column y ∈ Y (one by one) over the set of j-sparse vectors
x. Similarly, we computed XC that suppose to minimize ‖Y − DCXC‖ using the
OMP heuristic, as done for Y and DY .
Measurement. To measure how close DY is to D∗, compared to the difference
between DC and D∗, we used the same error measurement Distance(D, D∗) that
was used in the original K−SVD paper [3], and implemented in [13]. The com-
putation of Distance(D, D∗) for two dictionaries D and D∗ is done by sweeping
through the columns of D∗ and finding the closest column (in distance) in the
computed dictionary D, measuring the distance via 1 − |dT

i d̃i|, where di is a
column in D∗ and d̃i is its corresponding element in the recovered dictionary D.
The average distance is denoted by Distance(D, D∗). That is, Distance(D, D∗)
is the sum of distances over every i, 1 ≤ i ≤ k, divided by k. The Results. In
Fig. 2(a) we compare the difference (the y-axis) between the dictionaries (the
two lines) for different values of n (the x-axis). For example, the dotted line show
the average value, for every assignment of n, of Distance(DC , D∗) over the 50
trials , between the generation dictionary D∗ and the dictionary that returned
when running K−SVD with the input matrix Y . The variance over the sets of 50
experiments that corresponds to the average in Fig 2(a) is shown in Fig. 2(b).



468 M. Feigin, D. Feldman, and N. Sochen

(a) (b)

Fig. 2. (a) Ratio between running times of K−SVD over coreset C and original input
Y . (b) The distance between the approximated dictionary DC and the generating
dictionary D for different sizes of coreset C.

The comparison between the running times appears in Fig 2. The x-axis shows
the values of n as in Fig. 2, while the y-axis is the ratio between the running time
of constructing DY , the dictionary of Y , and the running time of constructing
DC , the dictionary of C. The construction time for DC is the sum of the time
it took to construct the coreset C from Y , and the time for constructing DC

from C.
Discussion. In Fig. 2(a) we see that the coreset is usually good at least as the
original set for reconstructing the generating dictionary D∗. By Theorem 2, the
quality of the coreset C depends on its size c, but not of n. Indeed, the error in
Fig. 2 seems to be independent of the value of n. In Fig. 2(b) we see that the
results are also more stable on the coreset runs.

Since the size of the coreset is the same (c = 5000), the value of n is getting
larger, and the running time of the K−SVD algorithm is linear in the rows of
the input matrix (c or n), it is not surprising that the ratio between running
times grows linearly with the value of n; see Fig. 2(a). For n = 500K in Fig 2(a),
the ratio between the running time is approximately 1:30 (0.032). For n = 1M
this ratio is approximately 1:60. However due to time and memory constraints
we didn’t repeat the experiment for n = 1M 50 times.
The role of the sample size c. By Theorem 2, the size c of the coreset C is poly-
nomial in 1/ε, where ε represents the desired quality of the coreset. In Fig. 2(b)
we show results for additional set of experiments for a constant n = 500K and
different values of the coreset size c. The number of iterations is still 120, and
the rest of the parameters remain the same as in the previous experiments. The
y-axis is the log of the distance between the dictionaries (base 10) over 50 trials.
Indeed, it seems that the error is reduced roughly linearly with the size of c.

4.2 Coresets for High-Definition Images

In [5] it is explained how to apply image denoising using the algorihtm K−SVD.
Fortunately, source code was also provided by Rubinstein [13]. We downloaded
high-definition images from the movie “Inception”’ that was recently released by



From High Definition Image to Low Space Optimization 469

(a) (b)

Fig. 3. (a) Noisy Image with SNR= 50. The resulting PSNR is 14.15dB. (b) Denoised
image using [5] on the small coreset. The resulting PSNR is ∼ 30.9.

Warner Bros; see web page “http://collider.com/new-inception-images-posters-
christopher-nolan/34058/”. We used only one of the images, whose size is 4752×
3168 = 15, 054, 336 pixels; see Fig. 3. We added a Gaussian noise of SNR = 50
which yields a noisy image of PSNR = 14.15. Then, we partition the noisy image
into 8 × 8 blocks as explained in [5], and convert the blocks into a matrix Y of
approximately n = 12M vectors of dimension d = 8 × 8 = 64. We then hoped
to apply the K−SVD as explained in [5] using the default parameters in [13].
However, we got “out of memory” error from Matlab already in the construction
of Y .

So, instead, we constructed a coreset C of Y in the streaming model us-
ing one pass over Y . In this model, coresets are constructed (using our algo-
rithm Coreset) from subsets of columns of Y that are loaded one by one and
deleted from memory. When there are too many coresets in memory, a coreset
for the union of coresets is constructed and the original coresets are deleted. See
details in [8]. After constructing such a coreset C of size c = 10000 for all the
columns of Y , we apply the K−SVD on the coreset using sparsity j = 10, and
k = 256 atoms, and 40 iterations. The PSNR was increased, on average of 10
experiments, from 14.15 to 30.9, with variance of ∼ 0.002, while the average
time for constructing the dictionary was 69 seconds with variance of ∼ 7.2

5 Conclusions and Further Work

We tried to repeat our experiments on real data where Y is partitioned into larger
blocks of size d = 50 × 50 = 2500 and an overcomplete dictionary of k > 3000.
Although the construction of C was fast, the running time of the OMP algorithm
(that is used by K−SVD and the denoising procedure for applying the dictionary)
is extremely slow when d and k are so large. Besides running time problems, it is
noted in [3, 5, 13] that K−SVD does not scale for high dimensional spaces (i.e,
large blocks size). We believe that this problem can be solved using recent and
more involved coresets techniques of clustering data in high dimensional space,
and coresets for the OMP algorithm. We leave this for future papers.



470 M. Feigin, D. Feldman, and N. Sochen

References

1. Agarwal, P.K., Har-Peled, S., Varadarajan, K.R.: Approximating extent measures
of points. Journal of the ACM 51(4), 606–635 (2004)

2. Agarwal, P.K., Har-Peled, S., Varadarajan, K.R.: Geometric approximations via
coresets. Combinatorial and Computational Geometry - MSRI Publications 52,
1–30 (2005)

3. Aharon, M., Elad, M., Bruckstein, A.: K-SVD: An Algorithm for Designing Over-
complete Dictionaries for Sparse Representation. IEEE Transactions on Signal Pro-
cessing 54(11), 4311–4322 (2006)

4. Czumaj, A., Sohler, C.: Sublinear-time approximation algorithms for clustering via
random sampling. Random Struct. Algorithms (RSA) 30(1-2), 226–256 (2007)

5. Elad, M., Aharon, M.: Image denoising via sparse and redundant representations
over learned dictionaries. IEEE Trans. Image Processing 15(12), 3736–3745 (2006)

6. Feldman, D., Fiat, A., Segev, D., Sharir, M.: Bi-criteria linear-time approximations
for generalized k-mean/median/center. In: Proc. 23rd ACM Symp. on Computa-
tional Geometry (SOCG), pp. 19–26 (2007)

7. Feldman, D., Langberg, M.: A unified framework for approximating and clustering
data (submitted, 2010) manuscript

8. Feldman, D., Monemizadeh, M., Sohler, C.: A PTAS for k-means clustering based
on weak coresets. In: Proc. 23rd ACM Symp. on Computational Geometry (SoCG),
pp. 11–18 (2007)

9. Har-Peled, S.: Low rank matrix approximation in linear time (2006) manuscript
10. Kreutz-Delgado, K., Murray, J.F., Rao, B.D., Engan, K., Lee, T.W., Sejnowski,

T.J.: Dictionary learning algorithms for sparse representation. Neural Computa-
tion 15(2), 349–396 (2003)

11. Lesage, S., Gribonval, R., Bimbot, F., Benaroya, L.: Learning unions of orthonor-
mal bases with thresholded singular value decomposition. In: IEEE International
Conference on Acoustics, Speech, and Signal Processing, ICASSP 2005, vol. 5,
IEEE, Los Alamitos (2005)

12. Pati, Y.C., Rezaiifar, R., Krishnaprasad, P.S.: Orthogonal matching pursuit: Re-
cursive function approximation with applications to wavelet decomposition. In:
1993 Conference Record of The Twenty-Seventh Asilomar Conference on Signals,
Systems and Computers, pp. 40–44. IEEE, Los Alamitos (2002)

13. Rubinstein, R.: Technical report,
http://www.cs.technion.ac.il/~ronrubin/software/ksvdbox13.zip

14. Vapnik, V.N., Chervonenkis, A.Y.: On the uniform convergence of relative fre-
quencies of events to their probabilities. Theory of Probability and its Applica-
tions 16(2), 264–280 (1971)

http://www.cs.technion.ac.il/~ronrubin/software/ksvdbox13.zip

	From High Definition Imageto Low Space Optimization
	Introduction
	Coresets for Dictionaries
	k-Dictionary Queries
	Coreset for a Single k-Dictionary Query
	Coreset for all k-Dictionary Queries

	Example Application: Approximating the Optimal Dictionary
	The k-Dictionary Problem
	Coreset for the k-Dictionary Problem

	Experimental Results
	Synthetic Data
	Coresets for High-Definition Images

	Conclusions and Further Work
	References




