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Abstract. This paper presents a geodesic voting method to segment
tree structures, such as retinal or cardiac blood vessels. Many authors
have used minimal cost paths, or similarly geodesics relative to a weight
potential P, to find a vessel between two end points. Our goal focuses on
the use of a set of such geodesic paths for finding a tubular tree structures,
using minimal interaction. This work adapts the geodesic voting method
that we have introduced for the segmentation of thin tree structures to
the segmentation of tubular trees. The original approach of geodesic vot-
ing consists in computing geodesics from a set of end points scattered
in the image to a given source point. The target structure corresponds
to image points with a high geodesic density. Since the potential takes
low values on the tree structure, geodesics will locate preferably on this
structure and thus the geodesic density should be high. Geodesic vot-
ing method gives a good approximation of the localization of the tree
branches, but it does not allow to extract the tubular aspect of the
tree. Here, we use the geodesic voting method to build a shape prior
to constrain the level set evolution in order to segment the boundary
of the tubular structure. We show results of the segmentation with this
approach on 2D angiogram images and 3D simulated data.

1 Introduction

In this paper we present a novel method for the segmentation of tree structures.
These methods are based on minimal paths with a metric designed from the
images and can be applied to the segmentation of numerous structures, such as:
microglia extensions; neurovascular structures; blood vessel; pulmonary tree. The
vascular tree is modeled as a tubular structure. We consider among the methods
used to segment the vascular tree three classes of approaches according to the
method used to extract the tubular aspect of the tree: surface models; centerline
based models; and 4D curve models. The first category extracts directly the
surface of the vessel, see [1]. For the second approach, centerlines based models,
centerlines are extracted first and a second process is required to segment the
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vessel surface, see [2]. The last approach, 4D curve model, consists in segmenting
the vessel centerlines and surfaces simultaneously as a path in a (3D+radius)
space [3,4]. For a review of these methods, see [5,6].

Minimal paths techniques were extensively used for extraction of tubular tree
structures. These approaches are more robust than the region growing methods,
particularly in the presence of local perturbations due to the presence of stenosed
branches of the tree or imaging artefacts where the image information might be
insufficient to guide the growing process. Several minimal path techniques have
been proposed to deal with this problem [7,8,9]. These techniques consist in
designing a metric from the image in such a way that the tubular structures
correspond to geodesic paths according to this metric. Solving the problem from
the practical point of view consists of a front propagation from a source point
within a vessel which is faster on the branches of the vascular tree. These methods
required the definition by the user of a starting point (propagation source) and
end points. Each end point allows to extract a branch of the tree as a minimal
path from this point to the source point, the points located on the minimal path
are very likely located on the vessel of interest. Few works have been devoted to
reduce the interaction of the user in the segmentation of tree structure to the
initialization of the propagation from a single point. Authors of [10] defined a
stopping criteria from a medialness measure, the propagation is stopped when
the medialness drops below a given threshold. This method might suffer from the
same problem as the region growing, the medialness might drop below the given
threshold in the presence of pathology or imaging artefacts. Wink et al. [11]
proposed to stop the propagation when the geodesic distance reaches a certain
value. However, this method is limited to the segmentation of a single vessel and
the definition of the threshold of the geodesic distance is not straightforward.
Cohen and Deschamps [12] proposed to stop the propagation following a criterion
based on some geometric properties of the region covered by the front. In [9],
assuming the the total length of the tree structure to be visited is given, the
stopping criteriuon is based on the Euclidean length of the minimal path.

Li et al. [4] proposed a 4D curve model with a key point searching scheme to
extract multi-branch tubular structures. The vascular tree is a set of 4D minimal
paths, giving 3D centerlines and width. While this method has the advantage to
segment vessel centerlines and surfaces simultaneously, it requires the definition
of eight parameters. One point inside the tubular structure and the radius are
used to initialize the Fast marching propagation, three parameters are used to set
the Fast Marching potential and three distance parameters limit the propagation
to the inside of the tubular structure to avoid leakage outside the tree. These
last three parameters may require an important intervention of the user since
they are crucial to extract the whole structure. If these distance parameters are
not suitable, parts of the tree structure may be missed during the propagation.

In this paper, we present a method to extract tree structures without using
any a priori information. Furthermore, the user has to provide only a single
point on the tree structure. The method is generic: it can be used to extract any
type of tree structure in 2D as well as in 3D. It is based on the geodesic voting
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method introduced in [13,14]. It consists in computing geodesics from a given
source point to a set of end points scattered in the image. The target structure
corresponds to image points with a high geodesic density. The geodesic density
is defined at each pixel of the image as the number of geodesics that pass over
this pixel. Since the potential takes low values on the tree structure, geodesics
will locate preferably on this structure and thus the geodesic density should be
high on the tree structure. While the original voting method allows to extract
tree structures it does not permit to extract the walls of the vessels. Here, we
introduce a shape prior constraint constructed from the geodesic voting method
to constrain the evolution of a level set active contour in order to extract the
walls of the tree. We use a Bayesian approach to introduce this prior into the
level set formulation. We end up with a minimization problem of a global energy
composed of two terms. The first term corresponds to a deformation energy for
a standard region based level set method and the second term introduces the
shape prior constraint. In Section 2, we present the tools needed in Section 3 to
introduce the new geodesic voting method. In Section 4, we applied our approach
to the segmentation of vessels from 2D angiogram images and 3D simulated data.

2 Background

2.1 Minimal Paths

In the context of image segmentation Cohen and Kimmel proposed, in [15], a
deformable model to extract contours between two points given by the user. The
model is formulated as finding a geodesic for a weighted distance:

min
y

∫ L

0

(
w + P (y(s))

)
ds, (1)

where s is the arclength, L is the length of the curve and the minimum is
considered over all curves y(s) traced on the image domain Ω that link the two
end points, that is, y(0) = x0 and y(L) = x1. The constant w imposes regularity
on the curve. P > 0 is a potential cost function computed from the image, it
takes lower values near the edges or the features. For instance P (y(s)) = I(y(s))
leads to darker lines while P (y(s)) = g(||∇I||) leads to edges, where I is the
image and g is a decreasing positive function.

To compute the solution associated to the source x0 of this problem, [15]
proposed a Hamiltonian approach: Find the geodesic weighted distance U that
solves the eikonal equation :

||∇U(x)|| = w + P (x) ∀x ∈ Ω (2)

The ray y is subsequently computed by back-propagation from the end point
x1 by solving the Ordinary Differential Equation (ODE): y′(s) = −∇U(y). To
solve the eikonal equation (2), we use the Fast Marching algorithm introduced
in [16]. The idea behind the Fast Marching algorithm is to propagate the wave
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in only one direction, starting with the smaller values of the action map U and
progressing to the larger values using the upwind property of the scheme. There-
fore, the Fast Marching method permits to solve the equation (2) in complexity
O

(
n log(n)

)
, where n is the number of grid points, for details see [16,15].

2.2 Geodesic Voting for Segmentation of Tree Structures

We have introduced in [13,14] a new concept to segment a tree structure from
only one point given by the user in the tree structure. This method consists in
computing the geodesic density from a set of geodesics extracted from the image.
Assume you are looking for a tree structure for which a potential cost function
has been defined as above and has lower values on this tree structure. First we
provide a starting point x0 roughly at the root of the tree structure and we
propagate a front in the whole image with the Fast Marching method, obtaining
the minimal action U. Then assume you consider an end point anywhere in the
image. Backtracking the minimal path from the end point you will reach the
tree structure somewhere and stay on it till the start point is reached. So a part
of the minimal path lies on some branches of the tree structure. The idea of
this approach is to consider a large number of end points {xk}N

k=1 on the image
domain, and analyze the set of minimal paths yk obtained. For this we consider
a voting scheme along the minimal paths. When backtracking each path, you
add 1 to each pixel you pass over. At the end of this process, pixels on the tree
structure will have a high vote since many paths have to pass over it. On the
contrary, pixels in the background will generally have a low vote since very few
paths will pass over them. The result of this voting scheme is what we can call
the geodesic density. This means at each pixel the density of geodesics that pass
over this pixel. The tree structure corresponds to the points with high geodesic
density. The set of end points for which you consider the geodesics can be defined
through different choices. This could be all pixels over the image domain, random
points, scattered points according to some criterion, or simply the set of points
on the boundary of the image domain, see [14]. We define the voting score or
the geodesic density at each pixel p of the image by

μ(p) =
N∑

k=1

δp(yk) (3)

where the function δp(y) returns 1 if the path y crosses the pixel p, else 0. Once
the geodesic voting is made, the tree structure is obtained by a simple thresh-
olding of the geodesic density μ. As shown in Figure 1, the contrast between
the background and the tree is large and the threshold can be chosen easily. We
used for all experiments the following value

Th =
max(geodesic density)

100
(4)
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Fig. 1. Geodesic voting. First row: the left panel shows the synthetic tree, the red
cross represents the root of the tree; the center panel shows the set of end points
(here farthest points, see [14]); the right panel shows in blue the geodesics extracted
from the set farthest points to the root. Second row: the left panel shows the geodesic
density; the center panel shows the geodesic density after thresholding; the right panel
plots the effect of the variation of the threshold on the overlap ratio, the red cross
represents the value Th (given by the equation (4)).

as threshold to extract the tree structure using the voting maps. Figure 1 (panel:
second row on the right) shows the effect of the threshold on the overlap ratio1

that measures the similarity between the the manually segmented data A and
the segmentation result B. This figure shows that the threshold can be chosen
in a large range that contains the threshold Th, given by the equation (4).

2.3 Active Contours without Edges

In this section we describe the level set method that we will use in the next
section to introduce our active contour model. The active contour models con-
sist in evolving a curve (2D case) or surface (3D) constrained by image-based
energy toward the target structure. Chan and Vese [17] proposed a region based
model adapted to segment an image with poor boundaries (edge information).
This model is a piece-wise constant approximation of the Mumford and Shah
functional [18]:

V(φ, c1, c2) =
∫

Ω

(
λ1

(
u0 − c1

)2
Hε(φ) + λ2(u0 − c2)2(1 − Hε(φ))+

μδε(φ)|∇φ| + νHε(φ)
)
dx,

(5)

1 The overlap ratio is defined by the relation: O(A,B) = 2 |A∩B|
|A|+|B| , where |A| and |B|

are respectively the number of the foreground voxels in the image A and B. |A∩B|
is the number of voxels in the shared regions (intersection of the foreground of the
two images)
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where φ defines the boundary as its zero level set; Ω is the image domain; u0

is a given image function; λ1, λ2, ν, and μ are positive parameters; c1 and c2

are two scalar constants used to separate the image into two regions of constant
image intensities. The two last terms in the equation introduce regularization
constraints, where Hε and δε are respectively the regularized Heaviside and Dirac
functions, in this work they are approximated by:

Hε(τ) =
1
2

(
1 +

2
π

artang
(τ

ε

))
; δε(τ) =

1
π

ε

ε2 + τ2
. (6)

3 From the Voting Tree to the Tubular Tree

While the Chan and Vese energy constraint introduces regularization to smooth
the level set funcion φ and to deal with noise, it does not introduce a bias towards
the target structure. Bayesian models were proposed in the literature to incorpo-
rate prior knowledge about the target structure to constrain the evolution of the
level set [19]. The first level set method with prior knowledge about shape was
introduced by Leventon et al. [19]. Recent improvements of this approach were
proposed for example in [20]. The geodesic voting method described in Section
2.2 gives a good approximation of the localization of each branch of the tree.

In this section we introduce a shape prior constraint using a Bayesian frame-
work to segment the walls of the tree structure. The idea is to use the geodesic
voting method to construct the shape prior that constrains the evolution of the
level set propagation. After thresholding the geodesic density μ defined by the
equation (3) we get an approximation of the target tree structure as explained in
Section 2.2. However this geodesic density does not allow to extract the tubular
aspect of the tree. Indeed the thresholded geodesic density gives only an approx-
imation of the centerlines of the tree structure. Our aim here is to use this rough
tree skeleton to build a prior that constrains the evolution of level set active
contour in order to extract the boundary of the tree.

From now on we call the voting tree the tree structure obtained after thresh-
olding the geodesic density. To construct the shape prior from the voting tree
we use the largest radius of the tubular structure. The largest radius is obtained
from the target image. It does not have to be precise: it is sufficient to inspect
the target tree visually and to give an approximate value. A uniformly tubular
tree containing the target tree structure is obtained by morphological dilation of
the voting tree with a radius that corresponds to the largest radius of the tubular
tree. The prior that we will use to constrain the level set method corresponds
to the signed distance from the boundary S of the tubular tree obtained after
dilatation, which we denote φ̃. The signed distance φ̃ is defined by:

φ̃(x) =
{

D(x), if x is inside S,
−D(x), otherwise,

where D is a distance from S: D(x) = inf
y∈S

d(x,S) with d a given metric, we use

in this work the Euclidean metric. The distance φ̃ is then used to constrain the
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level set evolution in the target image. Let P(φ|φ̃, u) be the posterior probability
of the level set φ given the image function u and the level set shape prior. The
Bayesian formulation of this probability is given by Bayes’ theorem:

P(φ|φ̃, u) =
P(φ̃, u|φ) P(φ)

P(φ̃, u)
∝ P(φ̃|φ) P(u|φ) P(φ) (7)

where P(φ̃|φ) is the shape prior term, we suppose that this probability follows a
Gaussian distribution and that P(u|φ) P(φ) is derived from the Chan and Vese
model, see equation (5). Therefore, the maximum of the posterior probability (7)
is equivalent to the lowest energy of the (− log) functional, and after integration
over the image domain we end up with the following Bayesian model:

Eb(φ, c1, c2) = V(φ, c1, c2) + γ

∫
Ω

(φ − φ̃)2

2σ2
δε(φ)dx, (8)

the factor term δε allows us to restrict the shape prior within the region of
interest. For a fixed φ, we deduce the values of c1 and c2:

c1(φ) =

∫
Ω

u0 Hε(φ)dx∫
Ω

Hε(φ)dx
, c2(φ) =

∫
Ω

u0

(
1 − Hε(φ)

)
dx∫

Ω

(
1 − Hε(φ)

)
dx

(9)

As usual, we use an artificial parameter t in the Euler-Lagrange formulation
associated to Equation (8) :

∂φ

∂t
=

(
μdiv

( ∇φ

|∇φ|
) − ν − λ1(u0 − c1)2 + λ2(u0 − c2)2

)
δε(φ)+

γ

2σ2

(
2
(
φ − φ̃

)
δε(φ) +

(
φ − φ̃

)2 ∂δε

∂φ
(φ)

)
= 0

in Ω × R
+; φ(x, 0) = φ0(x) in Ω;

δε(φ)
|∇φ|

∂φ

∂n
= 0 on ∂Ω

(10)

The estimation of the solution of the model (8) can be summarized in the fol-
lowing steps:

– initialize φ0 = φ̃, n = 0;
– compute c1(φn) and c2(φn) by the relations (9);
– compute φn+1 by solving the PDE (10) with respect to φ;
– update periodically the level set φn by a signed distance;
– repeat these three steps until convergence (φn is stationary).

Figure 2 illustrates the segmentation with our approach and shows a comparison
with a classical level set method, we will give more detains in the next section.
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Fig. 2. Segmentation of vessels from a 2D angiogram image. First row: the left panel
shows a 2D angiogram image;the center panel shows in red the voting tree; the right
panel shows in red the voting tree after morphological dilatation. Second row: the left
panel shows the signed distance computed from the dilated voting tree; the center panel
shows in red the segmentation results obtained with a Chan and Vese method without
shape prior; the right panel shows the segmentation result obtained with our approach.

4 Results and Discussion

We show results obtained with our algorithm on 2D images, see Table 1 and
Figure 3. We applied our approach on ten cropped retinal images provided by
DRIVE (Digital Retinal Images for Vessel Extraction) [21]. The DRIVE data
were acquired using a Canon CR5 non-mydriatic 3CCD camera with a 45 de-
gree field of view (FOV). Each image was captured using 8 bits per color plane at
768 by 584 pixels. The FOV of each image is circular with a diameter of approx-
imately 540 pixels. For this database, the images have been cropped around the
FOV. The DRIVE data is composed of 40 images for which manual segmenta-
tions are also provided. Considering the complexity of the retinal images and the
properties of our algorithm, we have cropped ten different images from the 40 im-
ages availabe and evaluated our method on them. In tables 1 and 1, we compare
our approach using the three evaluation measures: Dice, Specificity, and Sensi-
tivity. The maximum value of the Dice index is 1, which corresponds to a perfect
overlap between the manual and automatic segmentations. It shows that the re-
sults obtained with our approach are coherent with the manual segmentation.
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Fig. 3. Segmentation of vessels from one of the ten cropped 2D-retinal images given in
table 1. First row: the left panel shows the original image; the center panel shows in
red the farthest points detected; the right panel shows in blue the paths extracted from
the farthest points to the source point. Second row: the left panel shows the computed
geodesic density (green corresponds to a low density and red to a high density); the
center panel shows the manual segmentation; the right panel shows the segmentation
result obtained with our approach.

For our experiments we have considered the following potential P (x) = I(x)3,
where I is the grayscale intensity image of the DRIVE images. Figure 3 shows
the segmentation result obtained with our approach. The shape prior allows
us to constrain the propagation inside the tubular tree. Figure 2 (second row,
center column) shows that the propagation without shape constraints (γ = 0 in
the Equation (8)) can leak outside the tree structure.

We have also applied our approach on 3D simulated data of carotid bifurcation
lumen created from the simulated data provided by MICCAI challenge [22], by
adding Gaussian noise, see figure 4. The results obtained for these simulated
data are better than those obtained for the DRIVE data in terms of the following
overlap metrics: Dice, sensitivity, and specificity.
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Fig. 4. Lumen segmentation from 3D simulated data (MIP visualization). The left
panel shows the original image, the center panel shows the geodesic density, the right
panel shows the segmentation result obtained with our approach.

Table 1. Comparison of our segmentations with the manual segmentation, on the
ten cropped images from the DRIVE data, in terms of the following statistics: Dice
similarity, sensitivity and specificity

Test data T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Dice index 0.93 0.73 0.73 0.72 0.67 0.71 0.79 0.78 0.73 0.80

Sensitivity 0.91 0.61 0.64 0.58 0.53 0.60 0.70 0.70 0.70 0.70

Specificity 0.95 0.90 0.83 0.95 0.90 0.95 0.90 0.88 0.93 0.78

Table 2. Mean and standard deviation values of the statistics: Dice measure, sensitiv-
ity, and specificity, for all the data test

Statistics Dice measure Sensitivity Specificity

Mean 0.76 0.67 0.90

Standard deviation 0.07 0.10 0.05

5 Conclusion

In this paper we have presented a new method for the segmentation of tree struc-
tures. This method is adapted to segment automatically tubular tree structure
from a single point given by the user, no a priori information about the tree
is required. In contrast, the methods previously described in the literature for
the segmentation of tree structures are not fully automatic and require a pri-
ori information of the tree to be segmented. We have applied our approach to
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segment tubular tree structures from 2D retinal images and compared it with the
manual segmentation on ten images. The next step is to validate our approach
in 3D on a large data set.
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