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Abstract. The scale-invariant detection of image structure has been a
topic of study within computer vision and image analysis since long. To
date, Lindeberg’s scale selection method has probably been the most
fruitful and successful approach to this problem. It provides a general
technique to cope with the detection of structures over scale that can be
successfully expressed in terms of Gaussian differential operators. Any
detection or segmentation task would potentially benefit from a similar
approach to deal with scale. For many of the real-world image structures
of interest, however, it will often be impossible to explicitly design or
handcraft an operator that is capable of detecting them in a sensitive
and specific way. In this paper, we present an approach to the scale-
selection problem in which the construction of the detector is driven
by supervised learning techniques. The resulting classification method is
designed so as to achieve scale-invariance and may be thought of as a
supervised version of Lindeberg’s classical scheme.

Keywords: Scale selection, scale-invariance, image segmentation, de-
tection, learning and classification.

1 Introduction

Image structures, such as blobs, edges or corners, may appear in images at
different scales. To detect them, it is often desired for a detector to select the
locally appropriate scales. A well-known scale selection scheme was proposed
by Lindeberg [18,17] for image structures which can be detected by differential
operators, such as the Laplacian, the Hessian, etc. [27]. The operator under
consideration is multiplied with a scale-dependent normalization factor, i.e., it
is scale normalized, and applied to an image to get a response at all scales
and locations. Subsequently, the scale where the normalized detector attains the
maximum response over scales is selected as the local scale of the structure.
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Scale selection schemes have been at the basis of many successful computer
vision and image precessing applications [10,21,22,1,24]. A potential problem,
however, is that the schemes are merely applicable to the detection of relatively
simple structures. For more complicated or very specific structures, it will often
be impossible to explicitly design or handcraft an operator that is capable to
detect these. Examples of such structures range from blobs that are textured
or have a particular shape to faces, bikes, cars, potted plants, or other image
objects.

Next to scale selection, scale-invariance is a desired property in many com-
puter vision and image analysis tasks because an input image can have an ar-
bitrary and unknown inner scale. Informally, the ‘inner scale’ of a pixel is pro-
portional to the area in the real world that the pixel represents [8]. Employing
the proper scale normalization, differential operators in combination with Lin-
deberg’s scale selection are indeed scale-invariant [18]. As with scale selection,
many more advanced computer vision techniques rely, at a lower level, on some
form of Lindeberg’s approach to make the overall scheme scale-invariant as well
[21,22,1,24]. Other, more committed, attempts to achieve scale-invariance are to
offset scaling with the log-polar and Fourier transform [16,25,15] or to incorpo-
rate features from various scales and estimate the local scales of the image under
consideration [13,14].

1.1 Work’s Novelty and Related Methods

This paper develops a supervised learning approach [4,2] that allows one to con-
struct nontrivial, scale-invariant detection, classification, or segmentation ap-
proaches based on available training data in combination with general machine
learning and pattern recognition methods. All in all, the approach proposed can
be seen as a supervised variation to Lindeberg’s classical scheme [18,17].

One critical advantage of our proposal is that learning techniques enable one
to develop methods that can potentially handle the more complex structures en-
countered in real-world segmentation or detection tasks. Like for any supervised
learning scheme, in order to apply the technique one needs examples of the task
to solve, i.e., a training set. That is, we need to have a collection of raw images,
e.g. X-rays, and the desired corresponding output one would like to obtain from
them, e.g. an expert segmentation, in order for the learner, e.g. a classifier, to
be able to capture the desired relationship. Now, a second advantage is in fact
that our approach allows the user to pick the classifier and features of his or her
liking. A third critical advantage is that scale selection is made task-dependent
by integrating supervision into the selection process. The reason for doing so
is that, even when the image data remains the same, different tasks may re-
quire different scales to solve them at. Current selection schemes, which are all
unsupervised, obviously cannot accommodate this.

Also closely related to our work are face detection schemes that, at test phase,
take care of scale and location variations simply by applying the detector to all
scales and locations and afterwards finding its maximum responses [12,28]. In a
sense, these are supervised approaches that follow Lindeberg’s scheme as well. A
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crucial difference with our approach, however, is in the training of this detector.
The face detection techniques need a set of scale and location aligned faces at
training phase, which basically takes care of the problem of scale. In many seg-
mentation and detection setting, however, it is difficult to properly align different
training instances. Take for instance any medical image segmentation task, how
could one identify, even within a single image, the appropriate scale from loca-
tion to location? Our approach solves the scale selection problem implicitly and
does not rely on any a priori knowledge about inner scales in the training or test
phase.

The problem covered in the current work has also been discussed in [20],
where a supervised method was proposed by viewing classifiers as special types
of scale-dependent structure detectors or filters based on which some sort of scale
selection could be performed. One of the main shortcomings of this approach,
however, is that it is not scale-invariant. A key contributions of this work is to
remove this restriction.

1.2 Remark and Outline

To avoid confusion, we use the word structure to mean an image feature, e.g.
blobs, edges, or more complicated structures, and the word feature refers to the
supervised learning setting where it can mean any kind of measurement that can
be made in an image, e.g., Gaussian derivatives, N -jets, differential invariants,
texture features, etc.

The remainder of the paper is organized as follows. The next section sets
the stage more specifically, it provides some notations used in the paper, and
sketches the basics of supervised pixel-based segmentation techniques. Section 3
describes our proposed method. Some illustrative experiments can be found in
Section 4. Section 5 concludes the paper.

2 Scale Space Theory and Pixel-Based Segmentation

2.1 Scale Space and Gaussian Derivatives

We will employ linear, or Gaussian, scale space [7,17,27] and limit ourselves to
images on R

2, though this limitation is not essential. Given an image � : R
2 →

R, the multi-scale image representation L : R
2 × R

+ → R is obtained as a
convolution with a Gaussian kernel gσ for varying scale σ. That is, the scale
space representation of � is given by

L(x, y; σ) = (� ∗ gσ)(x, y) . (1)

The linear scale space representation is mainly used for its Gaussian image
derivatives and especially the so-called N -jet [6], which we denote by JN

σ [�].
The latter is the collection of all Gaussian image derivatives up to order N at
a particular scale σ [8,7,27]. N -jets are basic features that are often employed
in supervised image analysis techniques to capture the local image structure of
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interest (see, for instance, [9,19,11]). Also in our experiments, we will use N -
jets. The basic theory we present, however, can be used in combination with
other features and multi-scale image representations as well as long as scale can
properly be dealt with.

2.2 Supervised Pixel Classification

In the test phase, the trained classifier is applied to a new and previously unseen
image �j from which the same feature vectors are extracted. In this way, for every
location in �j , an estimate ĉj(x, y) of the true class label at (x, y) is obtained by
C[Fj(x, y)]. Most classifiers can also output an estimated posterior probability
P (cj(x, y) = k |Fj(x, y)) of the true class label cj(x, y) being equal to k given
the feature observed feature vector Fj(x, y)) [5] for which we note that

C[Fj(x, y)] = argmax
k∈{1,...,K}

P (cj(x, y) = k |Fj(x, y)) . (2)

The posteriors can be viewed as a confidence measure of the classification result
and the larger the posterior is, the more confident the classifier is. In this work,
we are going to extend the basic pixel-based classification scheme to incorporate
scale-invariance by exploiting these posteriors, interpreting them as the output
of a complex filter procedure, and apply Lindeberg’s idea of maxima selection
to it.

(2.3 . . . and Detection)

This work does not explicitly deal with the detection task. We do however want
to point out that detection can be formulated in terms of classification (see for
example [12,23,26,28]). In our setting, this would, for instance, mean that the
desired corresponding outputs that should be provided for the training phase are
not necessarily accurate expert segmentations. Instead, for supervised detection
it may suffice to label one or a few locations within the structure to be detected
with one class label, say object , while all other locations are labeled with the label
background . Strong local maxima among the posterior probabilities P (cj(x, y) =
object |Fj(x, y)) would correspond to a detection of a structure from the object
class.

3 Supervised Scale-Invariant Segmentation

Our method builds further on standard pixel-based segmentation but is ex-
tended so as to take into account scale variations. The idea is to build a clas-
sifier that can be applied to all image locations at all feature scales, i.e., in-
stead of considering classification results C[Fj(x, y)], we initially consider its
extension to C[Fj(x, y, σ)], which provides labels, or for our purpose posteriors
P (cj(x, y, σ) = k |Fj(x, y, σ)), for the complete scale space of an image �j .



354 Y. Li, D.M.J. Tax, and M. Loog

Ultimately, we are interested in a single overall segmentation and not a seg-
mentation for every scale. Here is where the scale selection comes in. For a par-
ticular image location (x, y) in �j we check over scale which class label receives
the highest posterior and assign that label to that location (cf. [20]):

ĉj(x, y) = argmax
k∈{1,...,K}

max
σ∈R+

P (cj(x, y, σ) = k |Fj(x, y, σ)) . (3)

This approach also solves the scale selection problem in a supervised way. It
draws the analogy with Lindeberg’s scheme and (implicitly) selects the scale at
which the classifier is most confident of its decision, i.e., where classes can be
best separated from each other.

The way this classification approach takes into account scale may already be
interesting in itself, but we aimed for the segmentation approach to be scale-
invariant.

3.1 Additional Remarks

Scale-invariance in the current context means that if we rescale an image �j with
a factor a > 0 to an image �j′ := �j ◦ Sa that the corresponding classification
result scales in the same way, i.e., ĉj′(x, y) = ĉj ◦ Sa. Now this is achieved by
relying on scale-invariant features. That is, we generally require that Fj(x, y, σ)
in the original image �j equals Fj′(ax, ay, aσ) in the scaled image �j′ . With this
choice of features, corresponding feature vectors are mapped to the same location
in feature space and therefore classified in the same way, which results in the
desired scale-invariance. In the case of Gaussian derivative features from an N -
jet at scale σ, this means for example that every nth order derivative should be
normalized by σn.

It is copacetic that there are no restrictions on the classification scheme to
use. With the choice of scale-invariant features, any choice of classifier results
in a scale-invariant segmentation approach and this allows us to employ the full
arsenal of machine learning and pattern recognition techniques [4,2].

4 Illustrative Experiments

Our contribution is primarily of a conceptual nature with no need for exten-
sive experimental validation. Nonetheless, we provide some basic, yet nontrivial,
illustrations of our scale-invariant segmentation approach as defined through
Equation (3). We applied the method to two different tasks. The first one is the
segmentation of two simple geometric shapes from the background. The second
one comprises a texture segmentation task.

4.1 Classifiers and Features

Before we can apply our segmentation scheme, we need to choose features to
describe for every location the relevant local image structure. In basically all of
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a.

b.

Fig. 1. a. Triangular and circular shapes and their corresponding segmentation used in
the training phase. The segmentation is formulated as a three-class pixel classification
problem. b. An example test image with triangles and circles of different size and the
corresponding classification result.

the experiments, we choose the scale-normalized 6-jet, which results in a total of
D = 28 features for every location. The normalization is depends on the order
n of the derivative; every derivative is scaled by σn, which makes the features
scale-invariant as required.

We also limit ourselves to a relatively straightforward classification tech-
nique, namely classical quadratic discriminant analysis (QDA) [4,2]. This classi-
fier makes multivariate normality assumptions about every individual class and
based on that constructs a classifier. For every class a feature mean and a class-
conditional covariance matrix should be estimated from the training data. This
quadratic model is accurate enough for our illustratory purposes and more ad-
vanced techniques such as support vector machines, nearest neighbor methods,
and boosting approaches provide little extras in the current setting.
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4.2 Shapes

Figure 1.a shows on the left examples of noisy triangles and circles, eight each,
that should be segmented from the equally noisy background. The right displays
the ground truth pixel labeling, which is used as training output. Obviously, a
simple blob detector would probably be able to pick out the 16 objects from
the input image. It would however be more challenging to design detectors that
are more specific and respond merely to one of the two geometric structures.
Our scheme therefore also tries to discriminate between the two different shapes
and should respond differently to them, i.e., by giving different label outputs.
Consequently, we model this problem as a three-class classification problem. The
gray-scale in the righthand image of Figure 1.a is of no significance and only
indicates that there are indeed three different classes in the image and which
pixels belong to which class.

The procedure is tested on the image on the left of Figure 1.b. It also contains
scaled versions of the triangular and circular shapes in order to test the scale-
invariance of our approach. After extraction the 6-jets from the training data
from a range of scales, a QDA is trained and applied to the test image. The
resulting segmentation can be found in Figure 1.b on the righthand side. It
shows that our procedure is fairly accurate and that the majority of the pixels
has been labeled correctly in spite of the relatively straightforward classifier and
scale space features. The most notable mistakes seem to be on the small scale
triangles. Some of these segmentations are deformed and the one at the top even
has been missed almost entirely. The main reasons for these glitches is that the
images used are discrete and the ‘size’ of the added noise does not scale with
the shape scale. As a result, scale-invariance will only hold approximately and
over a restricted range of scales, which is reflected in somewhat deteriorated
performance on the small scale structures.

4.3 Textures

Experiments similar to those in the previous subsection have been performed on
two times two Brodatz textures [3]. The two pairs of textures can be found in
Figures 2 and 4. For both pairs, we use the two images as the training set and
assume them to be from different classes. The corresponding test images, which
include both textures from the training set, are displayed in Figures 3.a and 5.a,
respectively. All four images are constructed from scaled versions of the original
training textures, one of which is in a circular area in the center while the other
fills the remainder of the image. The aim is to segment the one texture from the
other.

All texture intensities have been normalized to mean zero and unit standard
deviation. As a result, a generic blob detector is unable to localize the textur-
ized blobs in the middle of the test images. We really need to employ more
rich features that are capable of capturing the relevant higher-order structure
and combine these in order to perform the detection or segmentation successfully.
This is what QDA, the classifier, does. Figures 3.b and 5.b give the segmentations
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Fig. 2. Two training images taken from the Brodatz collection of textures [3]. On the
left is D53, the right shows D55.

a.

b.

Fig. 3. a. Two example test images in which the texture scales are varied and set
differently from those in the training set in Figure 2. Both images contain both textures.
b. Segmentation results obtained with 6-jets in combination with QDA.
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Fig. 4. Compare to Figure 2. Two training images taken from the Brodatz textures
collection [3]. On the left is D33, the right displays D34.

a.

b.

Fig. 5. Compare to Figure 3. a. Two example test images in which the texture scales are
varied and set differently from those in the training set in Figure 4. Both images contain
both training textures. b. Segmentation results obtained with 6-jets in combination
with QDA.
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Fig. 6. Segmentation results obtained with 2-jets in combination with QDA. Compare
to Figure 3.b.

for the test images in Figures 3.a and 5.a, respectively. As for the results in
the previous subsection, similar comments can be made about the reasons for
misclassification in these experiments. In the case of these textures, however,
there may be two additional reasons at play. First of all, textures are generally
more difficult to segment than a shape consisting of a homogenous intensities
even though the latter may be noisy. Secondly, the training set does not contain
any examples of the two textures bordering, which causes unreliable classification
results at such boundaries in the test images. It is indeed at these locations where
the segmentation seems most inaccurate.

The first texture segmentation task is probably simpler than the second one.
There is a strong difference in orientation between the two textures, which ba-
sically sets them apart and one might suspect that a descriptor based on simple
second-order, or even first-order, derivatives should be able to capture this dif-
ference. Figure 6 shows what happens to the segmentations corresponding to the
test images in Figure 3.a if we replace the 6-jets with 2-jets in our procedure.
Indeed, to quite a large extent the segmentation is still successful, but the results
cannot match the accuracy from those in Figure 3.b, which shows the importance
of including higher-order derivatives. Results using the 1-jet are worse even.

5 Discussion and Conclusion

A scale-invariant supervised approach to image segmentation has been presented
that draws inspiration from Lindeberg’s classical scale selection approach. There
are two major advantages compared to other supervised scale-invariant segmen-
tation techniques. Firstly, we are not necessarily committed to specific features
that have been designed to achieve invariance in a rather intricate way, as for
example in [15]. Our scheme allows the inclusion of any scale-invariant feature
set, allowing for very problem specific choices. More important might be the sec-
ond point, which is the fact that we stay close to the general pixel classification
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framework and can exploit the full arsenal of powerful pattern recognition and
machine learning techniques. In our experiments, we only scratched the surface
of possible techniques. They nonetheless show the potential of the approach.

Possibly the most restricting feature of our method is that it is supervised,
so we do need training data in order for our approach to work. As a general
rule, we may expect to need more complex features, more complex classifiers,
and a larger number of examples, with an increasingly complex segmentation
problem that we want to tackle. The interplay of these aspects of learning are
at the core of general pattern recognition and machine learning research. It is
however interesting to study these aspects within the more confined context of
image segmentation and detection as this may lead to stronger, more generally
applicable guidelines to come to the selection of the right classifier, the right
features, etc.

One specific topic for further research we want to mention here concerns
Equation (3) and in particular the maximum operator over all scales, which
basically picks out a single scale and allows for a close link with Lindeberg’s
scale-selection scheme. The question remains however if we can do better. An
answer might be found in the analysis of the deep structure of the probabilistic
posterior scale space (cf. [7,17,27]).
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