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Abstract. One of the classical optimization models for image segmen-
tation is the well known Markov Random Fields (MRF) model. MRF
formulates many total variation and other optimization criteria used in
image segmentation. In spite of the presence of MRF in the literature,
the dominant perception has been that the model is not effective for im-
age segmentation. We show here that the reason for the non-effectiveness
is not due to the power of the model. Rather it is due to the lack of ac-
cess to the optimal solution. Instead of solving optimally, heuristics have
been engaged. Those heuristic methods cannot guarantee the quality of
the solution nor the running time of the algorithm.

We describe here an implementation of a very efficient polynomial
time algorithm, which is provably fastest possible, delivering the optimal
solution to the MRF problem, Hochbaum (2001). It is demonstrated
here that many continuous models, common in image segmentation, have
a discrete analogs to various special cases of MRF. As such they are
solved optimally and efficiently, rather than with the use of continuous
techniques such as PDE methods that can only guarantee convergence
to a local minimum.

The MRF algorithm is enhanced here demonstrating that the set of
labels can be any discrete set. Other enhancements include dynamic fea-
tures that permit adjustments to the input parameters and solves opti-
mally for these changes with minimal computation time. Modifications
in the set of labels (colors), for instance, are executed instantaneously.
Several theoretical results on the properties of the algorithm are proved
here and are demonstrated for examples in the context of medical and
biological imaging.

1 Introduction

Partitioning and grouping of similar objects plays a fundamental role in image
segmentation and in clustering problems. In such problems the goals are to group
together similar objects, or pixels in the case of image processing. Given an input
image, the objective of image segmentation is to recognize the salient features
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in the image. Each feature set is grouped together in one segment represented
by some uniform color area.

A noisy or corrupted image is characterized by lacking uniform color areas,
which are assumed to characterize a true image. Rather, in such image there are
adjacent pixels of different color areas. To achieve higher degree of uniform color
areas, it is reasonable to assign a penalty to neighboring pixels that have different
colors associated with them. On the other hand, the purpose of the segmentation
is to represent the “true” image. For that purpose the given assignment of colors
in the input image is considered to be the “priors” on the colors of the pixels, and
as such, the best estimate available on their true labels. Therefore, any change
in those priors is assigned a penalty for deviating from the priors.

The Markov Random Fields problem for image segmentation is to assign colors
to the pixels so that the total penalty is minimized. The penalty consists of
two terms. One is the separation penalty, or smoothing term, and the second is
the deviation penalty, or fidelity term. For this reason we refer to this penalty
minimization problem also as the separation-deviation problem. This problem
has been extensively studied over the past two decades, see e.g. [3], [5], [11], [12],
[16], [17]. The problem formulation, described in full detail in Section 3 is

(MRF) min
∑

i∈V Gi(xi) +
∑

i∈P

∑
j∈N(i) Fij(xi − xj)

subject to xi ∈ X ∀ i ∈ P.

It is noted that the concept of “colors” associated with pixels can be replaced
by any other scalar characterization of pixels or voxels, such as texture. We refer
here to colors as a representation of such characterizations.

The complexity of MRF depends on the form of the penalty functions. A full
classification of the problem’s complexity is given in [15] showing that for convex
penalty functions the problem is polynomially solvable, and for non-convex the
problem is NP-hard. The cases when the deviation penalty functions are convex
and the separation penalty functions are linear was shown by Hochbaum [15] to
be solvable in polynomial time using a parametric cut procedure. Furthermore,
it was shown that the complexity of the algorithm is the fastest possible. The
case when both separation and deviation penalty functions are convex were also
shown to be solvable very efficiently by [1,2]. For non-convex penalty functions
the MRF problem is NP-hard.

Problems of total variations and regularization have been utilized in image
analysis for the purpose of denoising an image. These employ continuous method-
ologies. Recent works that provide approximate methods for solving MRF utilize
convex relaxations (e.g. Pock et al. [21]) along with primal-dual approaches, may
not converge to an optimal solution, and the running time cannot be determined
in advance. This is surprising, given that the exact discrete problem can be solved
within guaranteed polynomial time complexity. Moreover, digital images are in-
herently discrete, and considering them as continuous causes loss of accuracy.
The output of a continuous method must be mapped back to digital image infor-
mation, entailing further loss of accuracy. We demonstrate that several classical
continuous models are better represented with the MRF model and thus benefit
from the algorithmic efficiency of solving it.
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2 Relationship to Continuous Models

In the total variation method [19,23] the recorded image is represented by the
function which maps each pixel to its label (color). It is assumed that u0 can be
decomposed as u0 = u + v where u contains homogeneous regions with sharp
prominent edges, and v contains additional texture and noise. The goal of the
total variation method is to find u by minimizing the functional

∫

Ω

|∇u|dxdy + α||u− u0||.

This functional is define on the plane, where (x, y) designate the position of each
pixel in the image.

Although not immediately apparent, there is a connection between this prob-
lem and the MRF problem: The term |∇u| captures the difference between each
pixel and its neighborhood. The neighborhood can be set to any desirable set –
it is not restricted to the commonly used grid neighborhood. This gradient term
is thus the separation term. The second term α||u − u0|| is the deviation of the
mapped function u from the recorded image u0.

This total variation problem is solved by continuous techniques. One such
method solves the associated Euler-Lagrange equation

u = u0 +
1
2α
∇ · ( ∇u

||∇u|| ).

In contrast to MRF, this method does not guarantee to deliver an optimal
solution and its complexity is undetermined. For this problem MRF does deliver
an optimal solution to this problem, and in polynomial time.

In a more general set-up, the total variation regularization problem (TVR)
the image is represented as s(x) – a given function define on an open subset Ω,
and f(x) is its regularized version, or for images, it is called the denoising of s.
We define two real functions γ : R → [0,∞) and β : R → [0,∞) which assume
the value 0 for the argument of 0,

F (f) =
∫

Ω

γ(f(x)− s(x))dx

In the denoising literature F is called a fidelity term since it measures deviation
from s() which could be a noisy grayscale image. In our terminology, the fidelity
term is the deviation.

A second function is the total variations on f , TV (f): The discrete form of
the total variations function is represented as a function f on a grid of discrete
values in Ω and associated with a defined neighborhood of each grid point. Let
the set of neighboring pairs be denoted by E. Then the total variation of f
is

∑
[i,j]∈E β(f(i) − f(j)) for a function β often selected as the absolute value

function: β(x) = max{0, x}. For a constant α the total variation regularization
of s() is the function f that minimizes the weighted combination of the total
variations and fidelity of f :

min TV (f) + αF (f)
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Rudin, Osher and Fatemi [23] have studied TVRs of F where γ(y) = y2, and
Chan and Esedoglu [7] studied γ(y) = |y|.

Since MRF is solved in polynomial time for convex γ and convex β, conse-
quently, the problem of Chan and Esedoglu is a special case solved by parametric
cut, and the problem of Rudin et al. is a special case solved by the quadratic
convex dual of min cost network flow. Both cases are efficiently solvable and the
MRF algorithm guarantees an optimal solution in polynomial time.

The MRF problem can also be used to represent certain classes of the Mumford-
Shah problem, as well as several image analysis problems that are addressed with
the eigenvector technique. The details of these mappings are to be described in
the full version of this paper.

3 The Methodology

For the MRF model for the image segmentation problem the input is an image
constituting of a set of pixels each with a given color and a neighborhood relation
between pairs of pixels. The decision is to assign each pixel a color assignment,
that may be different from the given color of the pixel, so that neighboring pixels
will tend to have the same color assignment. The aim is to modify the given color
values as little as possible while penalizing changes in color between neighboring
pixels. The penalty function thus has two components: the deviation cost that
accounts for modifying the color assignment of each pixel, and the separation
cost that penalizes the extent of pairwise discontinuities in color assignment for
each pair of neighboring pixels.

Formally, we are given a graph G = (V, A), or an image which is a set of pixels
V , with a real-valued intensity ri for each pixel i ∈ V . The neighborhood of pixel
i, which contains pixels adjacent to i, is denoted by N(i). The set of pairs of
nodes and their neighbors is denoted by A. So A = {(i, j)|j ∈ N(i)}. Note that
for every pair of neighbors {i, j} the graph G contains two arcs (i, j).(j, i) ∈ A.
We wish to assign each pixel i ∈ V an intensity xi that belongs to a discrete
finite set X = {i1, i2, . . . , ik} so that the sum over all pixels of the deviation cost
Gi(·) and the separation cost Fij(·) is minimized. Note that the values of xi do
not have to be selected from the same set as the value of ri, as shown here for the
first time in Lemma 1. The deviation function depends on the deviation of the
assigned color from the given intensity Gi(xi − ri). The separation is a function
of the difference in assigned intensities between adjacent pixels Fij(xi−xj). The
problem is stated as follows.

min
∑

i∈V Gi(xi) +
∑

i∈V

∑
j∈N(i) Fij(xi − xj)

subject to xi ∈ X ∀ i ∈ V.

We refer to the special case of the MRF problem with each variable xi taking
an integer value in an interval [�i, ui] as the separation-deviation problem.

The separation-deviation problem was shown in [1,2,15] to be solvable in poly-
nomial time when the functions Gi(·) and Fij(·) are convex. Note that when
those functions are not convex the problem is NP-hard, although when only the
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functions Gi(·) are nonlinear, and Fij(·) are convex the problem is solved in
pseudopolynomial time with run time that depends on the number of values of
X , k, [1]. The important case we will focus on here is with Gi(·) convex and
Fij(xi − xj) bi-linear forming a two piecewise linear function which is linear in
the range xi ≥ xj and linear in the range xj ≥ xi. For constants uij , uji the
function is defined as:

Fij(xi − xj) =

⎧
⎨

⎩

uij if xi > xj

0 if xi = xj

uji if xi < xj .

For convex functions Gi(·) and bi-linear functions Fij(·), the formulation is equiv-
alent to the following constrained optimization problem, referred to as (SD)
(standing for Separation-Deviation):

(SD) min
∑

j∈V Gj(rj , xj) +
∑

(i,j)∈A Fij(zij)
subject to xi − xj ≤ zij for (i, j) ∈ A

uj ≥ xj ≥ �j j = 1, . . . , n
zij ≥ 0 (i, j) ∈ A.

The complexity of this problem was shown in [15] to be O(T (n, m)+ n log U)
where T (n, m) is the complexity of solving the minimum cut problem on a graph
with n nodes and m arcs and U is the length of the interval for the color values –
the number of possible labels – or as we show here, |X |. For the formulation above
U = maxj{uj−�j}. The second complexity term is required to find the minima of
convex functions. In all our implementations the convex functions are piecewise
linear (e.g. absolute value function) or quadratic. In those cases the second term
vanishes and the complexity of the procedure is T (n, m). The algorithm used
solves the (SD) problem for any size of color set as a parametric minimum cut
problem, in the complexity of a single minimum cut procedure. The algorithm
used to solve the parametric minimum cut problem is the pseudoflow algorithm
of [14], for which the software is available to download at [8]. The complexity of
this algorithm was shown recently in [13] to be T (n, m) = O(mn log n2

m ).
We show next that the algorithm solving (SD) extends to the MRF problem

with xi ∈ X for any set of discrete values X . We first review the algorithm of
[15] and then prove, in Lemma 1, that it extends to the MRF problem with an
arbitrary discrete set of feasible values.

We define an s, t-graph Gα = (Vst, Ast) from the adjacency graph of the
image (V, A) where V is the set of pixels and A the set of adjacency arcs. For
� = minj �j and u = maxj uj, we choose a parameter value α ∈ (�, u). For each
arc (i, j) the arc capacity is uij .

We add to the set of nodes V a source s and sink t, Vst = V ∪ {s, t}. Next let
G′

i(α) be the subgradient of Gi() at α, Gi(α) −Gi(α − 1). Let the subgradient
value of function Gi(x) to be equal to M at values of x > ui, and to −M
for values x < �i, for M a suitably large value. With this extension the box
constraints are uniform for all variables, u ≥ xj ≥ � we replace the weights of
the nodes and set, for each node v ∈ V , by an arc adjacent to the source of
capacity csv = max{0, G′

v(α)}, and an arc adjacent to the sink t of capacity
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Fig. 1. The graph Gα

cvt = max{0,−G′
v(α)}. Let the set of arcs of positive capacity adjacent to the

source be denoted by As, and the set of arcs of positive capacity adjacent to the
sink, At. The remainder of the arcs, for each arc (i, j), j ∈ N(i) have capacities
uij . Let the minimum cut ({s} ∪ S, S̄ ∪ {t}) in the graph Gα partition V to
S = Sα and V \ S = S̄α. The graph Gα is illustrated in Fig. 1 for an example of
a grid graph (V, A) describing the adjacencies. Note however that the algorithm
described works for any type of graph, rather than for grid graphs only.

Let the optimal solution to (SD) be x∗ = (x∗
j ). The key to the efficient algo-

rithm to the (SD) problem is the threshold theorem:

Theorem 1 (The threshold theorem [15]). The optimal solution x∗ to (SD)
satisfies x∗

j < α for all j ∈ Sα, and x∗
j ≥ α for all j ∈ S̄α.

The threshold theorem means that for each node we can determine whether the
corresponding variable’s value in an optimal solution is < α or ≥ α, depending
on whether the respective node belongs to the source or the sink set of the cut.
See Fig. 2 for illustration.

By solving for each value of α in the range, the threshold theorem can be
used to establish a partition of the nodes in the graph, and the corresponding
variables, to sets where in each set all variables get the same value (and same
color) in an optimal solution.

Instead of solving for each value of α we find all the breakpoints where the
cut set is changing. Let Sλq be the minimal source set obtained by solving
the minimum cut problem in the graph corresponding to parameter λq. Then,
for a sequence of monotone increasing values of the parameter, λ0 < λ1 <
λ2 . . . < λp, we get a nested collection of source sets of the respective mini-
mum cuts: {s} = Sλ1 ⊂ Sλ2 ⊂ . . . ⊂ Sλp ⊂ V . See Fig 3 for illustration. When
λ0 ≤ � then the set of nodes of value < λ0 is empty. For λp ≥ u the set of nodes
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Fig. 2. The threshold theorem: The dashed line represents the arcs of the cut

of value < λp is V . Therefore, in the optimal corrected image, all pixels in
Sq = Sλq \ Sλq−1 , q = 2, 3, . . . , p have intensity strictly less than λq and greater
or equal than λq−1.

Notice that it is sufficient to generate the values of the breakpoints as integers.
That is because the values of the variables determined in each set of the partition
can take only integer values, so the smallest integer value in the interval [λq−1, λq)
will be the value assigned to all nodes/variables in the set Sq. Hence the values
of the breakpoints λi do not need to be contained in the set X . However, we will
let the set X consist of labels that are integer values.

Since the source set does not change for any α ∈ [λq−1, λq), we conclude that
for all j ∈ Sq x∗

j is equal to the smallest value in X that is ≥ λq−1.
Consider the extension of (SD) to (SD’):

(SD’) min
∑

i∈V Gi(xi) +
∑

i∈V

∑
j∈N(i) Fij(xi − xj)

subject to xi ∈ X ∀ i ∈ V.

Fig. 3. The parametric cut
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Lemma 1. Given the set of integer breakpoints λ0 < λ1 < λ2 . . . < λp, the
optimal solution to (SD’) restricted to any set of colors is generated in linear
time.
Proof: The proof is constructive. Let X = {i1, . . . , ik}. Let V be the set of all
the pixels/nodes.
For i1 let λ�1 be the largest breakpoint smaller or equal to i1, λ�1 = argmax λ�j ≤
i1. Assign to all variables with nodes in S1 ∪ . . . ∪ S�1 the value i1. Update
V ← V \ {S1 ∪ . . . ∪ S�1}. Let i� be the largest value in X less than λ�1+1.
Update X ← X \ {i1, . . . , i�}.

The following iterative step is repeated until all variables values have been
assigned and V = ∅.
Iterative step:
Let iq be the first (smallest) value in X . Then iq ≥ λ�1+1. Let λ�q be the largest
breakpoint smaller or equal to iq, λ�q = argmax λ�j ≤ iq. Assign to all variables
with nodes in Sq ∪ . . . ∪ S�q the value iq. Update V ← V \ {Sq ∪ . . . ∪ S�q}. Let
i� be the largest value in X less than λ�q+1. Update X ← X \ {iq, . . . , i�}.

The correctness of the procedure follows from the threshold theorem. �

Noisy Image True Image

Fig. 4. Brain image 1, true and noisy

4 Experimental Results

4.1 Denoising by Modifying the Ratio between the Separation and
Deviation Penalties

The implementation solves the MRF problem with parametric coefficients S and
D multiplying the respective terms of separation and deviation. Note that only
changes in the ratio S

D have an effect on the optimal solution, rather than the
actual values of S and D.

(MRF) min D
∑

j∈V Gj(rj − xj) + S
∑

(i,j)∈A uij |xi − xj |
subject to xi ∈ X for i ∈ V .
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S = 30 S = 40 S = 50

S = 60 S = 70 S = 80

Fig. 5. The output for increasing values of S when applied to noisy brain image 1

The effect of modifying the ratio S
D is illustrated here for two examples of brain

images. The first set of true and noisy images are given in Fig. 4. In that image
there are four small lesions. We then apply the separation-deviation algorithm
with D = 2 and for increasing values of S, as shown in Fig. 5. The lesions show
very clearly in the high separation (S values of 60 or 70) images in yellow color.

4.2 Increasing Deviation for a Selected Color

The algorithmic tool allows to select a particular color, either by the color code,
or by clicking on a pixel that has the desired color. The deviation penalty is
then increased for all integer color codes in a small interval around the selected
color. For color code q the interval is [q − 5, q + 5]. The size of this interval can
be adjusted by the user.

Effect of increasing Deviation penalty for selected 

color (orange )

k = 5, D = 2, S = 70

Fig. 6. Increased deviation penalty for a selected color in brain image 1
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We show here, for brain image 1, that if the color orange is selected, then
it shows as the color of 3 out of the 4 lesions, see Fig. 6 above. When the
deviation for that color is increased the lesions become better segmented and
more prominent. Of course, the color orange also appears in other areas of the
brain shell where it is of no clinical significance. This issue will be addressed
in the next prototype of the interactive tool, where the deviation increase will
apply only in a user-defined window.

4.3 Comparison of Image Segmentation with Separation-deviation
to the Normalized Cut Approach

We now compare our software for image segmentation with the normalized cut
approach introduced by Shi and Malik, [25]. This normalized cut approach uti-
lizes the spectral technique in finding the Fielder eigenvalue and the correspond-
ing eigenvector. The method is described and Shi’s software implementation is
provided in: http://www.cis.upenn.edu/~jshi/software/

The input to that code is the number of desired segments in the output image.

8 segments 12 segments

20 segments16 segments

Fig. 7. Normalized cut software segmentation of true brain image 2 for 8, 12, 16 and
20 segments

The code preprocesses the input image, first by converting it to gray scale
and then resizing it to 160 × 160. The algorithm is then applied to the the
preprocessed image.

We show here the segmentation of a brain image, brain image 2. This is shown
in Fig. 7. Only the 20 segments begins to show the lesion area, but still does not
delineate it correctly. This is compared in Fig. 8 to the segmented and traced
lesions found with the solution of (SD) applied to the same image. (The software
of Shi requires to convert the image first to gray scale, which is why it is not
presented in color.)

http://www.cis.upenn.edu/~jshi/software/


348 D.S. Hochbaum et al.

“Normalized Cut” Segmentation (20 segments) S-D Model Segmentation

Fig. 8. Comparison of the normalized cut software segmentation and the (SD) segmen-
tation of the true brain image 2

5 Conclusions

We demonstrate here that the MRF algorithm is an effective technique for regu-
larization and denoising of images, in theory and in practice. Since the algorithm
delivers an optimal solution, and is provably fastest possible, it gives better qual-
ity results than any alternative methodology, in terms of minimizing the objec-
tive function. The algorithm is shown here to segment successfully the salient
features in true images, and to be able to identify hidden important features and
de-blur noisy images. These capabilities make the algorithm a useful addition to
a segmentation tool box.
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