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Abstract. The Potts model is a well established approach to solve dif-
ferent multi-label problems. The classical Potts prior penalizes the total
interface length to obtain regular boundaries. Although the Potts prior
works well for many problems, it does not preserve fine details of the
boundaries. In recent years, non-local regularizers have been proposed
to improve different variational models. The basic idea is to consider
pixel interactions within a larger neighborhood. This can for example
be used to incorporate low-level segmentation into the regularizer which
leads to improved boundaries. In this work we study such an extension
for the multi-label Potts model. Due to the increased model complexity,
the main challenge is the development of an efficient minimization algo-
rithm. We show that an accelerated first-order algorithm of Nesterov is
well suited for this problem, due to its low memory requirements and
its potential for massive parallelism. Our algorithm allows us to mini-
mize the non-local Potts model with several hundred labels within a few
minutes. This makes the non-local Potts model applicable for computer
vision problems with many labels, such as multi-label image segmenta-
tion and stereo.

1 Introduction

The multiphase partitioning problem consists in finding a certain label for every
pixel, tiling the image domain into multiple pairwise disjoint regions. Starting
with the seminal work of Mumford and Shah [21] research on computing minimal
partitions was ignited by typical Computer Vision problems such as segmenta-
tion, stereo or 3D reconstruction. In a discrete version, the Potts model [26], has
been known much longer. It was originally invented to model phenomena in solid
state mechanics in 1952 and generalizes the two-state model of Ising [18] (1925).
The Potts model is a special case of the general multi-labeling problem, relying
on a pairwise interaction term that does not assume any ordering of the labels.
Minimizing the Potts energy is known to be NP-hard and in general cannot be
solved exactly in reasonable time. For this reason various approximations have
been proposed to convexify the optimization problem and hence to approximate
its solution as effectively as possible.
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For the two label case, Chan and Vese [12] used the level set framework for
optimization but do not yield any optimality. Later, Chan et al . [11] showed
in a continuous setting that optimality for this problem can be achieved by
solving this problem on a relaxed convex set. As the optimization task of the
Potts model was originally formulated in a discrete setting, graph cut based
approaches have often been used to solve such multi-label tasks. Most notable are
move making algorithms of Boykov et al . [4] approximately minimizing the Potts
model by solving a sequence of globally optimal binary segmentation problems.
Although such sequential approaches often generate useful solutions, non of them
is able to find a global minimizer. Ishikawa [17] showed that an exact solution
can be computed in polynomial time for certain cases, namely when the labels
are linearly ordered and the pairwise term is a convex function. Recently, it
was shown by Pock et al . [25] that the same is true in the continuous case.
Unfortunately, the constraint of having linearly ordered labels is not fulfilled in
the segmentation task.

For solving the Potts model, several convex relaxations were proposed by e.g.
Zach et al . [34], Lellmann et al . [19], Bae et al . [2] and Pock et al . [24], whereas
the latter provides the tightest relaxation with respect to the original problem.
The Potts formulation in a spatially continuous setting is given as the energy
minimization problem

min
El

{1
2

K∑
l=1

Per (El; Ω) +
K∑

l=1

∫

El

fl(x) dx
}

,

s.t.
K⋃

l=1

El = Ω, Ei ∩ Ej = ∅ ∀i �= j,

(1)

where the first term measures the interface length of the set El enforcing smooth
label boundaries and the second term is the data term, a point-wise defined
weighting function. Minimizing such an energy partitions the image domain Ω ⊆
R

2 into K pairwise disjoint regions El.
Rewriting the Potts model in terms of a convex total variation optimization

problem (cf . [34,24,27]) yields the minimization task

min
u

{E(u)} = min
u

{
J(u) + λ

K∑
l=1

∫

Ω

ul(x)fl(x) dx

}
,

s.t. ul(x) ≥ 0 ,
K∑

l=1

ul(x) = 1 , ∀x ∈ Ω

(2)

with the labeling function u = (u1, . . . , uK) : Ω → [0, 1]K and the weighting
function f = (f1, . . . , fK) : Ω → R

K . The regularizer J(u) can for example be a
simple total variation regularization

J(u) =
1
2

K∑
l=1

∫

Ω

|∇ul(x)| dx (3)
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(a) (b)

Fig. 1. An example of segmenting an image into 3 different regions. (a) shows the effect
on minimizing the interface length and lose fine details like the tiny hairs (although
an edge weighing is used) whereas the proposed method (b) is able to preserve those
details.

where the minimization results in the perimeter as in (1). As a more sophisticated
variant an anisotropic regularization like

J(u) =
1
2

K∑
l=1

∫

Ω

√
∇ul(x)T D(x)∇ul(x) dx (4)

can be used. D(x) denotes a symmetric tensor for weighting the total variation
regularization. A simple variant of this tensor is the weighted total variation∫

Ω
g(x)|∇u|dx, studied by Bresson et al . in [7]. It can be obtained by setting

D(x) = diag(g(x), g(x))

with an edge detector function g(x), often defined as g(x) = e−α|∇I|β , with the
image gradient ∇I and some α, β > 0 forcing the total variation regularization
towards strong image edges and hence improving the labeling quality. On the
other hand, a major drawback is its sensitivity to noise.

In this paper we pursue a different approach to overcome this problem. We
include a larger neighborhood in the regularizer J(u) of the multiphase partition-
ing problem. Adapting the regularization towards local image structures enables
the approach to obtain more accurate label boundaries without the dependence
on an edge weighting function, which can be very sensitive to noise and strong
texture. A result of this approach is depicted in Figure 1. It compares the result
of the Potts model incorporating neighborhood relations to the edge-weighted
variant on an image of the multi-label benchmark data set [27]. Especially fine
structures are preserved and the segmentation results get enhanced towards the
users expectations. A related approach was introduced in the field of unsuper-
vised segmentation by Bresson et al . [6] where non-local variants of specialized
energy functionals are presented by extending the Chan-Vese segmentation [12]
and the Mumford-Shah segmentation [21]. While this paper concentrates on
the two-label case, we study non-local generalizations of the multi-label Potts
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model. The main challenge hereby is the development of an efficient minimiza-
tion algorithm. To achieve this we adopt the accelerated first-order algorithm
of Nesterov [22]. Using this algorithm, we are able to compute the Potts model
with several hundred labels.

The contribution of the paper is the definition of the non-local Potts model
within a variational framework (Section 2) . The efficient minimization using Nes-
terov’s algorithm (Section 3) makes the approach applicable to various Computer
Vision Problem. In Section 4 some applications demonstrate the achieved im-
provements on multi-label segmentation and on disparity estimation of a stereo
image pair. The shown examples provide insight into the possibilities of the non-
local Potts model and we are convinced that the evident improvements can also
be transferred to other Computer Vision problems. Finally, Section 5 concludes
our work.

2 Non-local Potts Model

The main intention of the proposed approach is to enhance the labeling quality
especially at the label boundaries. Therefore we exploit the affinity of neighboring
pixels and steer the regularization towards coherent regions. In terms of image
restoration such neighborhood relations have been introduced with e.g. the bilat-
eral filtering [29] or non-local means [9], a generalization of the Yaroslavsky filter
[32]. For image inpainting, patch-based methods for texture synthesis [14] are re-
lated to such non-local approaches and also in stereo applications, Yoon et al . [33]
incorporated a so-called soft-segmentation to associate certain neighboring pix-
els for the regularization process. Consequently, the variational interpretation of
these neighborhood filters leads to non-local total variation regularization [8,15].
Recently, the approach of non-local regularization in a variational framework
was also introduced in the field of optical flow estimation [28,31]. To incorporate
neighborhood relations directly into the objective function the non-local total
variation regularizer is formulated as

J(u) =
K∑

l=1

∫

Ω

∫

Nx

w(x, y) |ul(y) − ul(x)| dy dx , (5)

where the function w(x, y) defines the support weights between the pixel x and
its neighbors y. The neighborhood system Nx ⊆ Ω contains all pixels y with a
certain photometric and geometric vicinity around x. The support weight within
Nx is defined in the sense of [33,31] using a low level segmentation combining an
Euclidean distance in a color space Δc(x, y) (e.g. Lab, RGB or grayscale) and
the spatial proximity Δp(x, y) as the Euclidean distance yielding

w(x, y) = e
−

(
Δc(x,y)

α +
Δp(x,y)

β

)
. (6)

The parameters α and β weight the influence of color similarity and proximity.
An exemplary neighboring patch of a specific pixel x is depicted in Figure 2.



318 M. Werlberger et al.

(a) (b) (c) (d) (e)

Fig. 2. Exemplar patch (b) of an image (a), the resultant proximity weighting (c),
color similarities (d) and the final weighting (e) for the specific neighborhood. x is
denoted as a dark red pixel in the center of (c-e), blue color means small weights
(reduce regularization influence) and the increasing reddish color shows an increase in
the weighting function (strengthen the regularizer).

Using the non-local TV regularizer (5) in the Potts energy (2) yields the
energy minimization problem

min
u

{
K∑

l=1

∫

Ω

∫

Nx

w(x, y) |ul(y) − ul(x)| dy dx + λ

K∑
l=1

∫

Ω

ul(x)fl(x) dx

}
,

s.t. ul(x) ≥ 0 ,

K∑
l=1

ul(x) = 1 .

(7)

3 Minimization

Let us first introduce the discrete setting. We consider a Cartesian grid G of size
Mx × My

G = {(1, 1) ≤ (hx, hy) ≤ (Mx, My)} ,

with the pixel size h and (x, y) the discrete pixel location on the grid. For the
ease of presentation we will enumerate the discrete pixel locations (x, y) with an
index i, for example by scanning the image domain line by line. The discretized
labeling function u is defined on the unit simplex

U =
{
u = (u1, . . . , uK) ∈ [0, 1]K×Mx×My :

(ul)i ≥ 0,
K∑

l=1

(ul)i = 1 , i = 1 . . .Mx × My

}
. (8)

The non-negative discrete weighting function for the non-local regularization be-
tween discrete pixels i and j is defined as wi,j ≥ 0. Ni defines the set of neighbors
for pixel i, where N = |Ni| is the number of pixels within the neighborhood.
The weight matrix (wi,j) is defined as

wi,j =

{
e
−

( (Δc)i,j
α +

(Δp)i,j
β

)
if j ∈ Ni

0 else .
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Now, we are ready to define the non-local gradient operator

(∇wul)i,j = wi,j ((ul)j − (ul)i) ,

which simply holds the weighted non-local pixel differences. Then, (7) can be
rewritten in the discrete setting as the following minimization problem

min
u

{∑
l

‖∇wul‖�1 + λ
∑

l

〈ul, fl〉
}

. (9)

Minimizing (9) depicts a convex and non-smooth optimization problem. Solving
it with off-the-shelf LP solvers or first-order primal-dual approaches [10] has
the problem that each non-local link will demand for a dual variable. For a
512× 512 image, 32 labels and a neighborhood size of 15× 15 pixels this results
in at least one billion dual variables. Hence, these approaches are not feasible
for our purposes.

Instead we rely on an old first-order algorithm proposed by Nesterov [22] in
1983, which can be used to minimize a differentiable convex function of a convex
set. Furthermore, Nesterov’s algorithm comes along with an improved conver-
gence rate. It can be shown that Nesterov’s algorithm can approach the optimal
function value with rate O(1/n2), where n is the number of iterations. This rate
of convergence is still sublinear but improves the convergence rate of standard
projected gradient schemes by one order of magnitude. Recently, there are sev-
eral improved variants using Nesterov’s algorithmic framework [3,30,1,13] and
Nesterov himself proposed new algorithms [23]. The major benefit of Nesterov’s
first-order primal method is that the algorithm only depends on function values
and gradient evaluations which removes the need of the large amount of dual
variables. In order to apply Nesterov’s algorithm for our problem (9) we have to
find a differentiable approximation of the �1 norm. We do this by replacing any
| · | function by Huber’s function [16].

|q|ε =

{ |q|2
2ε |q| ≤ ε

|q| − ε
2 else .

The function is quadratic for small values of ε and linear for the others.

Algorithm: Nesterov’s algorithm for the non-local Potts model: We choose u0 =
0, ū0 = 0, t0 = 1 and iterate for n ≥ 0.

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

u
n+ 1

2
l = ūn

l − 1
L

(
∇T

w

∇wūn
l

max{ε, |∇wūn
l |}

+ fl

)
, l = 1, . . . , K

un+1 =
∏

U

(
un+ 1

2

)

tn+1 =
1
2

(
1 +

√
1 + 4(tn)2

)

ūn+1
l = un+1

l +
tn − 1
tn+1

(
un+1

l − un
l

)
, l = 1, . . . , K

(10)

Here, L = ||∇w|| is the norm of the non-local operator which we compute as
L = 4N

ε and tn a variable over-relaxation parameter. The projection
∏

U is an
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orthogonal projection onto the unit simplex U . It is known that this projection
is highly separable and it can be performed in a finite number of iterations. An
exemplary method for computing such successive projections is given in [20].

Although Nesterov’s algorithm allows to precompute the maximum number
of iterations which are necessary to find an approximate solution in terms of the
function values, we found it to be more practical to stop the iterations after the
maximal change between two successive iterations is below some threshold. In
Figure 3 we compare the convergence of the algorithm for different smoothing pa-
rameters ε for an unsupervised segmentation problem. Increasing the smoothing
behavior of the Huber function improves the rate of convergence but worsens the
approximation quality of the �1 norm which introduces inaccurate label bound-
aries. For all our experiments we set ε = 0.01. Observe that after 300 iterations
the minimum energy is already attained. For this setup the algorithm runs with
120 iterations/second for an image with size Mx×My = 404×320, with K = 10
number of labels and a neighborhood size of 7 × 7 pixels.
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(a) (b)

(c) ε = 0.001 (d) ε = 0.01 (e) ε = 0.1 (f) ε = 1.0

Fig. 3. Comparing convergence behavior of different smoothing parameters ε. (b) is
the color-coded labeling result for ε = 0.01 with the marked crop region for (c)-(f)
showing a single label ul for varying ε demonstrating the smoothing effect on label
borders for increasing smoothing factors.
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4 Applications

4.1 Multi-label Segmentation

Image segmentation is one of the fundamental Computer Vision problems and
therefore a vast amount of literature investigates this task. For a general overview
on object segmentation we refer to [5]. Very recent work of Santner et al . [27]
demonstrates the usage of (2) for interactive multi-label segmentation. There,
the data term is modeled with different types of features. For a comparison
of three different regularization terms, namely the total variation, the edge-
weighted and the proposed non-local regularization, we compute a color his-
togram of scribbles drawn by the user and use this as a feature for the data term
in the sense of [27].

Fig. 4. Comparing different regularization terms in terms of interactive multi-label seg-
mentation (cf . [27]): TV regularization (first column), edge-weighted TV regularization
(second column) and the proposed non-local variant (third column). The scribbles are
the users input to mark the corresponding region.

In the first row of Figure 4 the improvement on fine details are visible over all
three variants. The edge-weighted TV already yields reasonable accuracy when it
comes to segmentation boundaries and with the non-local variant the borders are
accurately segmenting the desired region including all fine details. The example
in the second row of Figure 4 demonstrates the drawbacks on solely using edges
to steer the regularization strength. Sometimes edges that do not coincide with
label borders pull the label boundaries away from the desired objects. In Figure 7
we demonstrate especially the improvements on fine details, elongated regions
and cavities between labels on segmentation results of the benchmark data set
[27].

Next, we want to show the effects when the edge-weighting function of (4)
is modified to obtain accurate label boundaries. In Figure 5 an unsupervised
labeling routine splits the image domain into several piecewise constant regions.
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The data term is solely based on RGB values that are clustered with a stan-
dard mean-shift algorithm. Tuning the edge-detector function towards accurate
boundaries also introduces some clutter within label regions as a direct conse-
quence of having strong edges within those areas. This weights the regularizer
to obtain more and smaller labels and therefore introduces clutter. Using the
proposed non-local regularization yields the same precise label borders but also
gains a smoother result and keeps coherent regions together.

(a) (b) (c)

Fig. 5. Unsupervised segmentation splitting an input image (a) into K = 10 piecewise
constant regions. The tuned edge-weighted regularization (b) achieves nice boundaries
but exhibits more clutter within regions compared to the non-local regularization (c).

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6. Disparity estimation of an input image pair (a,e) from the Middlebury stereo
data set (http://vision.middlebury.edu/stereo); (b,f) the ground truth disparities; dis-
parity estimation with the Potts model (c,g) and the non-local Potts model (d,h);

4.2 Stereo

As we have already shown the improvements on the image segmentation problem
we want to continue with a second Computer Vision problem. We use the Potts
model for stereo estimation. The data term for the disparities are modeled using
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Fig. 7. Multi-Label Segmentation: Comparing results from the edge-weighted Potts
model (left image of each pair) and the non-local Potts model (right image of each
pair)

absolute differences on gray values. The labels correspond to distinct disparities.
For the example in Figure 6 the benefits of the proposed method become ap-
parent with more details and crisper label borders. For the Tsukuba image pair
(cf . first row of Figure 6) the calculation for Mx × My × K = 384 × 288 × 16
takes 25 seconds for 500 iterations. For the Cones data set (cf . second row) with
Mx × My × K = 450 × 375 × 61 the nonlocal Potts model takes 305 seconds
to converge in 1000 iterations. We use a 15 × 15 neighborhood region for the
non-local regularization in both examples.

5 Conclusion

Based on a variational formulation of the Potts model we showed how to in-
corporate neighborhood relations with a non-local total variation regularization
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term. Utilizing low-level image segmentation to steer the regularization towards
local image structure enables the method to preserve fine details in the labeling
process. The benefits are demonstrating on two typical Computer Vision ap-
plications and evident improvements are demonstrated by a comparison with a
total variation regularization and its edge-weighted variant. The version of Nes-
terov’s algorithm yields a memory-conscious algorithm and enables the usage of
large neighborhoods and several labels with reasonable computational effort.
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