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Abstract. A new approximation of the Mumford-Shah model is pro-
posed for edge detection, which could handle open-ended curves and
closed curves as well. The essential idea is to treat the curves by nar-
row regions, and use a sharp interface technique to solve the approxi-
mate Mumford-Shah model. A fast algorithm based on the augmented
Lagrangian method is developed. Numerical results show that the pro-
posed model and method are very efficient and have the potential to be
used for edge detections for real complicated images.

1 Introduction

Edge detection is one of the fundamental problems for image processing and
computer vision [29], and its application also spans many other areas such as
boundary extraction and solid-liquid interface detection [39,8] in material science
and physics. In the context of image processing, edge detection is to find the
boundaries of objects in a digital image. Many methods have been developed for
this purpose. Classical approaches attempted to detect edges by discontinuities
in image intensity values. Witkin [43] proposed the scale space framework to
analyze images, where the extreme of the first gradient and zero-crossing of
the second gradient are used to detect edges. However, the edges are usually
disconnected, so Canny [11] proposed the so-called Canny edge detector to detect
disconnected edges. The main principle is to classify a pixel into the edges, if
the gradient magnitude of the pixel is larger than those of pixels at both sides
in the image domain. The Canny’s edge detector inspired many subsequential
works, e.g., Susan [33] and Canny-Deriche [18].

Another important class of methods are based on nonlinear isotropic diffusive
equations [13,1,30]. In general, such models are designed to prevent smoothing
near the edges and to encourage diffusion in the homogeneous regions. However,
they may break down when the gradient generated by noise is comparable to
the targeted edges. Along this line, some reaction and diffusion equations [35,42],
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edge flow [24], snake/active contour models [20,12,5] and universal gravity [34]
are also proposed for edge detection.

It is obviously impossible to summarize all the methods and the interested
readers are referred to [10,25,23,31] for a review of many other methods. Given the
vast amount of existing algorithms, we feel compelled to provide sufficient justifi-
cation for developing yet another method. Motivated by the success of piecewise
constant level set methods for image segmentation [22] and the recent developed
fast algorithms [6], we shall introduce a new edge detector based on a robust bi-
nary level set method for the Mumford-Shah model [27]. In contrast with image
segmentation, which is to find a partition of the image domain, edge detection
aims more at finding the discontinuities of the intensity function. Hence, we are
mostly concerned with the determination of open curves. However, there is no a
natural way to represent open curves, since there is no distinction of interior and
exterior regions. Accordingly, the standard level set methods [28] can not be di-
rectly applied. Among very few approaches for dealing with open curves, the work
of [32] for modeling spiral crystal growth used two level set functions to represent
the codimension-two boundary of the open curve by {x : φ(x) = 0 and ψ(x) > 0},
where φ, ψ are two signed distance function. In [7], an open-ended curve was rep-
resented by the “centerline” of the level set function defined on the curve, and
the motion of the curve was essentially driven by the evolution a small region sur-
rounding the curve. Interestingly, a recent work of Leung and Zhao [21] proposed
a grid based particle method to represent an open curve by the most relevant
points in the neighborhood on the discrete grids. The authors also commented
on the limitations of the methods in [32,7] for open curve evolution.

In this paper, we embed an open (or a closed) curve of interest in a narrow
region (or band) with the curve being part of the (one-sided) boundary (see
Figure 1 below for an illustration). From geometric point of view, such a region
is formed by the parallel curve (also known as the offset curve) [38]. We define a
binary piecewise constant level set function on the small region, and show that
the total variation of the level set function gives a good approximation of the
length of the curve. Moreover, we add intrinsic forces to enforce the level set
function to converge to binary values, and this helps to enhance and sharpen
the edges. Moreover, applying this notion to translate the Mumford-Shah model
leads to fast and robust algorithms for edge detection. On the other hand, we
simultaneously solve the edge set and the optimal piecewise smooth approxima-
tion of the given image in the Mumford-Shah model, so the proposed methods
can be used for mutliphase piecewise smooth image segmentation (which is yet
a challenging topic [40]).

The rest of the paper is organized as follows. In Section 2, we formulate the
Mumford-Shah model based on an embedding of the curve in a narrow band and
the binary piecewise constant level set method. In Section 3, we describe the fast
algorithm based on the augmented Lagrangian method. Section 4 is devoted
to the numerical experiments for detection of open curves and segmentation
of multiphase piecewise smooth images. Some concluding remarks are given in
Section 5.



Robust Edge Detection Using Mumford-Shah Model 293

2 Formulation of the Model

Given an image I on an open bounded domain Ω ∈ R
2, Mumford and Shah in

their seminal paper [27] suggested minimizing the following functional to find a
piecewise smooth approximation u of I and the edge set Γ :

E(u, Γ ) =
α

2

∫
Ω

(u− I)2dx +
β

2

∫
Ω\Γ

|∇u|2dx + |Γ |, (1)

where |Γ | is the length of the edges picked from all over the image domain, and
α, β are positive parameters to balance three terms. They also conjectured that
E has a minimizer and the edges (the discontinuity Γ ) are the union of a finite set
of C1,1 embedded curves with three possible configurations [4]: (i) a crap tip (look
like a half-line or a single arc ends without meeting others); (ii) a triple junction
(three curves meeting at their endpoints with 2π/3 angle between each pair);
and (iii) boundary points (a curve meets ∂Ω perpendicularly). The Mumford-
Shah model and conjecture have inspired deep mathematical investigation and
extensive applications [4,17]. The reduced model (without the second term called
the piecewise constant Mumford-Shah model), together with an appropriate level
set implementation, becomes a fundamental tool for piecewise constant image
segmentation (see, e.g., [15,22]). We are interested in detecting Γ by solving the
full model (1). The first issue is to characterize the edge set. An important idea
is to associate Γ with the jump Γu of the unknown u, and this leads to the
remarkable approximation of (1) by Ambrosio and Tortorelli [2,3]:

Eε(u, Γ ) =
α

2

∫
Ω

(u−I)2dx+
β

2

∫
Ω

v2|∇u|2dx+
∫

Ω

(
ε|∇v|2+ 1

4ε
(v−1)2

)
dx, (2)

where v is an auxiliary variable such that v ≈ 0 if x ∈ Γu, and v ≈ 1 otherwise. A
rigorous analysis (see [2,9]) shows that the last term converges to |Γ | in Gamma-
convergence sense [16]. The width of transition from v = 0 to 1 is about O(ε).

In what follows, we take a different point of view to characterize Γ and approx-
imate its length. Based on Mumford and Shah conjecture, we assume that the
targeted edge set Γ consists of a finite union of simple (i.e., non-self-intersecting)
curves with suitable regularity. Let r be a single curve in the edge set Γ with a
definite parameterization: r(t) = (x(t), y(t)), t ∈ [0, 1]. Without loss of general-
ity, we assume that r(t) is regular (i.e., |r′(t)| �= 0 for all t ∈ (0, 1)), and it has
finite length and curvature. Recall that the parallel or offset curve generated by
r(t) is defined by (cf. [19,38]):

rd(t) = r(t) + dn(t), ∀t ∈ [0, 1], (3)

where n(t) is the unit normal to r(t) at each point, and d is a preassigned signed
distance. This defines a positive (exterior, d > 0) or negative (interior, d < 0)
offset (see some examples in Figure 1). For clarity of presentation, we denote the
total length of r and rd by L and Ld, respectively. According to Lemma 3.1 in
[19], the total length of rd is

Ld =
∫ 1

0

|1 + κd| |r′|dt =
∫ L

0

|1 + κd| ds = |L+ dΔθ|, (4)
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where κ is the curvature and Δθ is the total angle of rotation of the normal n
to r between t = 0 and t = 1, measured in the right-handed sense. Moreover,
the area Ad between the generator r and the offset rd is given by

Ad =
1
2
(L + Ld)|d|. (5)

The interested reader may refer to [19] for detailed analysis.
Hereafter, we assume that 0 < d� 1, and denote the corresponding (closed)

narrow band (with areaAd) by Rd. Recall that the total variation of the indicator
function 1

Rd
characterizes the perimeter of Rd, so we deduce from (3) that

TV (1
Rd

) = 2L+O(d), 0 < d� 1, (6)

where

TV (u) = sup
p∈S

∫
Ω

u divp dx, S :=
{

p ∈ C1
c (Ω; R2) : |p| ≤ 1

}
. (7)

We introduce an auxiliary function φ to approximate the characteristic function:

1
Rd

≈ 1 + φ

2
, 1 − 1

Rd
≈ 1 − φ

2
. (8)

In other words, φ ≈ 1 if x ∈ Rd and φ ≈ −1 otherwise. More importantly, we
enforce the constraint φ2 = 1, which acts as an intrinsic force and enables to
enhance and sharpen the edges.

After collecting all the necessary facts, we present the approximation of the
Mumford-Shah model (1):

min
u,φ2=1

{α
2

∫
Ω

(1 − φ)2|∇u|2dx +
β

2

∫
Ω

|u− I|2dx + TV (φ)
}
. (9)

Compared with (2), we characterize and approximate the edge set and the length
term in a different manner. The use of total variation regularization, together
with the constraint, can be viewed as a sharp interface approach. It appears
that the presence of TV-term and the constraint may increase the difficulty in
resolving the model. To alleviate this concern, we next introduce a fast dual-type
algorithm based on the Augmented Lagrangian method (ALM).

3 Description of the Algorithm

In this section, we introduce the algorithm to minimize the model (9). For clarity,
we use boldface letters to denote vectors. As in [37], we handle the total variation
term by introducing an auxiliary variable q, and reformulate (9) as

min
u,φ2=1,
q=∇φ

{α
2

∫
Ω

(1 − φ)2|∇u|2dx +
β

2

∫
Ω

|u− I|2dx +
∫

Ω

|q|dx
}
. (10)
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d
d d

Fig. 1. The closed narrow region Rd formed by the curve Γ : r(t) and its exterior
parallel curve (dashed line) for closed curves and open curves (the dotted lines con-
nected the corresponding starting points and end-points of the curve Γ and its exterior
parallel curve, respectively), where the dot-dashed line is the interior parallel curve.
The last one is an example of an intersected curve that can be split into simple open
or closed curves.

The augmented Lagrangian formulation for this constrained problem takes the
form

min
u,φ,q,

max
p,λ

{
L(u, φ, q; p, λ)

:=
α

2

∫
Ω

(1 − φ)2|∇u|2dx +
β

2

∫
Ω

|u− I|2dx +
∫

Ω

|q|dx + (p, q −∇φ)

+
r

2

∫
Ω

(q −∇φ)2dx +
1
2

∫
Ω

λ · (φ2 − 1)dx +
rφ
2

∫
Ω

(φ2 − 1)2dx
}
,

(11)

where p and λ are the Lagrange multipliers, and r and rφ are positive constants.
Thus the minimizer problem (11) is to seek a saddle point of the augmented

Lagrangian functional L(u, φ, q; p, λ). But the problem (11) is not convex for
both variables φ, u, which means a global minimizer may not be guaranteed.

A typical approach (see, e.g., [41,44]) is to split the problem (11) into several
subproblems and minimize them consecutively.

It is clear that the optimality conditions for p and λ leads to the constraint:
q = ∇φ and φ2 = 1, respectively. Therefore, we consider the following three
subproblems:

• u-subproblem: Given φ, q,

min
u

{α
2

∫
Ω

(1 − φ)2|∇u|2dx +
β

2

∫
Ω

(u− I)2dx
}
. (12)

• φ-subproblem: Given u, q,p, λ,

min
φ

{α
2

∫
Ω

(1 − φ)2|∇u|2dx + (p, q −∇φ) +
r

2

∫
Ω

(q −∇φ)2dx

+
1
2

∫
Ω

λ · (φ2 − 1)dx +
rφ
2

∫
Ω

(φ2 − 1)2dx
}
.

(13)

• q-subproblem: Given u, φ,p,

min
q

{∫
Ω

|q|dx + (p, q) +
r

2

∫
Ω

(q −∇φ)2dx
}
. (14)
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The optimality conditions for (12)-(14) yield

−αdiv((1 − φ)2∇u) + β(u− I) = 0, (15)

α(φ − 1)|∇u|2 + divp + rdiv(q −∇φ) + λφ+ 2rφ(φ2 − 1)φ = 0, (16)

q

|q| + p + r(q −∇φ) = 0. (17)

Since q = ∇φ and φ2 = 1, we find from (16) that

α(φ − 1)|∇u|2 + divp + λφ = 0. (18)

That is, (
λ+ α|∇u|2)φ = −(

divp − α|∇u|2). (19)

Using the constraint φ2 = 1 to (19) again yields

(divp − α|∇u|2)2 = (λ + α|∇u|2)2,
which implies the relation between λ and p :

λ = −divp or λ = divp − 2α|∇u|2. (20)

Therefore, we obtain from (19) that
∣∣divp − α|∇u|2∣∣φ = −(

divp − α|∇u|2). (21)

Since q = ∇φ, we derive from (17) that

p = − q

|q| = − ∇φ
|∇φ| ⇒ ∇φ+ |∇φ|p = 0. (22)

In summary, we need to solve the system for (u, φ,p) :
⎧⎪⎨
⎪⎩

∣∣divp − α|∇u|2∣∣φ = −(
divp − α|∇u|2),

∇φ+ |∇φ|p = 0,

− αdiv((1 − φ)2∇u) + β(u − I) = 0.

(23)

Since the binary level set function φ is expected to satisfy φ2 = 1, we adopt a
MBO-type projection (see [26,36]):

φ = PB

(
divp − α|∇u|2) with PB(t) :=

{
1, if t ≤ 0,
−1, if t > 0.

(24)

The second equation in (23) can be solved in a very similar idea in [14]. For
fixed φ, the last linear equation for u can be solved efficiently. We summarize
the algorithm as follows.
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Algorithm

1. Initialization: set p0 = 0 and u0 = I;
2. For k = 0, 1, · · · ,

(i) Compute
φk+1 = PB

(
divpk − α|∇uk|2);

(ii) Update p by the Chambolle’s algorithm:

pk+1 =
pk + τ∇φk+1

1 + τ |∇φk+1| ; (25)

(iii) Update u by

uk+1 = uk + τ̃
{
αdiv((1 − φk+1)∇uk) − β(uk − I)

}
; (26)

3. End for till some stopping rule meets.

Some remarks are in order.

• Using the augmented Lagrangian formulation, we derive the simplified sys-
tem (23), which does not depend on the parameters r, rφ and λ. Hence,
the algorithm might be more efficient than the algorithm, e.g., the Uzawa
method, for the full model.

• The Lagrangian multiplier p turns out to be a dual variable, so the above
algorithm is based on the primal-dual formulation with the complexity com-
parable to the fast algorithm in [14] for image denoising.

• An inner iteration can be applied to the equation for u, and it can be solved
more efficiently other than (26). Indeed, a much deeper study can be con-
ducted for (23), although we find the above algorithm works well.

4 Numerical Experiments

In this section, we provide numerical results to show the efficiency and robustness
of the proposed model and algorithm. We also compare our method with Canny
edge detector [11]. In the numerical tests, we take α = 10, β = 1, τ = 0.12
and τ̃ = 10−4. The stopping rule is based on the maximum pixel-wise errors
‖φk+1 − φk‖∞ ≤ 10−2 and ‖uk+1 − uk‖∞ ≤ 10−4.

We first test two images configured with some typical open-ended and closed
curves as boundaries in Figure 2. In particular, the testing image in Figure 2
(e) consists of objects with multiple constant intensities (i.e., multi-phases). We
see that in all cases, the proposed method produces much sharper edges than
the commonly used Canny detector. Indeed, the binary level set function φ con-
verges to the expected values, that is, 1 in the very narrow region surrounding
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(a) Original image (b) Canny method (c) Proposed method
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(d) φ profile

(e) Original image (f) Canny method (g) Proposed method (h) φ profile

Fig. 2. Two tests of edge detection by Canny method and our proposed method

the curves, and −1 elsewhere. Under the stopping criterion, our proposed al-
gorithm takes about 30 iterations to converge. In fact, satisfactory results can
usually be obtained within 10 iterations. Moreover, the algorithm is robust for
the initialization and parameters. The sharp interface model together with the
fast algorithm could be a very promising tool for real image processing.

Next, we test our method for images with more features. In Figure 3, we show
the results of our method and compare it with the results obtained by Canny
edge detector, and the Ambrosio-Tortorelli method (2). In the comparison, we
take the same parameters α = 10, β = 1 as our proposed method, and the
time step is 10−4 and the ε in (2) is 10−4. The stopping rule is based on the
maximum pixel-wise errors ‖vk+1 − vk‖∞ ≤ 10−6 and ‖uk+1 − uk‖∞ ≤ 10−6.
Observe that our new algorithm is able to detect all the meaningful edges. More
importantly, the smooth approximate solution u produces a very satisfactory
recovery of the original image. Once again, the outcome of the proposed method
is better than that of the Canny approach. We point out that our algorithm for
the Cameraman image with size 256-by-256 takes about 5 seconds with about
200 iterations to converge, while that of the Ambrosio-Tortorelli method takes
more than 20 seconds and 900 iterations.

5 Concluding Remarks

In this paper, we propose a new approach to approximate the Mumford-Shah
model for edge detection. Some features of this work are highlighted below.

• An edge is viewed as a narrow region, and a binary level set method is applied
to formulate the model. Therefore, compared with the approximation in
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Fig. 3. Column 1: original images; Column 2: detected edges by the Canny method;
Column 3: detected edges by the Ambrosio-Tortorelli method; Column 4: detected
edges by our proposed method; Column 5: reconstructed image u by our proposed
method.

Ambrosio and Tortorelli [2], the total variation regularization is adopted to
approximate the length of edge set. In general, our method can be regarded
as a sharp interface approach.

• A fast primal-dual algorithm based on the augmented Lagrangian method is
proposed, which contains the minimal number of parameters and is naturally
initialized. The computational cost is comparable to that of the efficient
algorithm in [14].
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