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Abstract. This paper is about extending the classical Non-Local Means
(NLM) denoising algorithm using general shapes instead of square
patches. The use of various shapes enables to adapt to the local geometry
of the image while looking for pattern redundancies. A fast FFT-based
algorithm is proposed to compute the NLM with arbitrary shapes. The
local combination of the different shapes relies on Stein’s Unbiased Risk
Estimate (SURE). To improve the robustness of this local aggregation,
we perform an anistropic diffusion of the risk estimate using a properly
modified Perona-Malik equation. Experimental results show that this
algorithm improves the NLM performance and it removes some visual
artifacts usually observed with the NLM.

Keywords: Image denoising, non-local means, spatial adaptivity, ag-
gregation, risk estimation, SURE.

1 Introduction

During the last decades, the problem of image denoising in the presence of addi-
tive white Gaussian noise has drawn a lot of efforts. A wide variety of strategies
were proposed, from partial differential equations (PDE) to transform-domain
methods (e.g., wavelets), approximation theory or stochastic analysis.

A major difficulty in image denoising is to handle efficiently regular parts while
preventing edges from being blurred, thus one needs spatial adaptive methods to
deal with images. In PDE-driven image processing, this is often achieved using
anisotropic diffusion [1–3]. Spatial adaptivity can also be reached by considering
adaptive neighborhood filters, as the Yaroslavsky [4] or Bilateral [5] filters, or by
applying Lepski’s method [6] (cf. [7, 8]). Though efficient at dealing with edges
and smooth regions, such methods cannot proceed efficiently in textured regions.

To overcome this drawback, many authors have proposed to work with small
sub-images, called patches, to take into account the redundancy in natural im-
ages, especially in textured parts. The interest of using patches lies in their
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robustness to noise. The Non-Local Means algorithm (NLM) [9] and its variants
[10, 11] are typical examples consisting in averaging similar pixels, measuring
their similarity with patches. Dictionnary learning on patches achieves state-of-
the-art performance for denoising [12–14]. The key point of this method is to
get a good representation for each patch of the image by using �1 regularization
or greedy algorithms. Another state-of-the-art method in denoising is BM3D
[15]. It also relies on patches and combines classical filtering techniques, such as
wavelet thresholding and Wiener’s Filter, applied in the space of patches.

The NLM is quite efficient at dealing with smooth regions and textures. How-
ever, since it uses patches with fixed (square) shape and scale over the whole
image, the performance is limited when dealing with edges with high contrast.
Such edges can appear in natural images and in high dynamic range images
(HDR) since these images present high contrasted features. They present few
redundancies in term of patches, and their denoising versions suffer from a per-
sistence of residual noise: this is called the noise halo. A way to overcome this
drawback is to use locally chosen scales and orientations of shapes. As far as
we know, few attempts have taken advantage of several patch sizes [13, 16] and
only one handle variable shapes rather than squares ([17], to improve the BM3D
algorithm).

In the NLM framework, spatial-adaptivity may be reached by locally selecting
the parameters according to a local estimate of the risk [18]. This relies on
Stein’s Unbiased Risk Estimate (SURE) [19] which was first used with NLM to
globally select the bandwidth [20]. SURE-based methods were widely used in
image processing [21, 22] after their introduction for wavelet thresholding [23].

Our contributions — We investigate the potential benefit of replacing the
simple square patches with more general shapes, in the classical NLM filter. We
give in Section 2 a general overview of the NLM method. We propose in Section
3 a fast algorithm, Non-Local Means with Shape-Adaptive Patches (NLM-SAP),
based on the FFT, which allows to compute the solution of the NLM for arbitrary
shapes. In Section 4, we locally select or combine the shape-based estimates by
measuring the performance of their associated denoisers with SURE. As in [18],
one has to regularize SURE to make a local decision. Since the choice of shape is
an anistropic decision, a specificity of our approach is that it uses an anisotropic
diffusion scheme in the spirit of Perona and Malik [1]. In Section 5, we illustrate
numerically, and above all visually, the gain in aggregating various shape-based
estimates: using adaptive patch shapes in the context of NLM reduces the noise
halo produced around edges.

2 An Overview of the NLM

We focus on the problem of denoising: an observed image Y is assumed to be
a noisy version of an unobserved image f corrupted by a white Gaussian noise.
Let Ω ⊂ Z

2 be the indexing set of the pixels. For any pixel x ∈ Ω:

Y(x) = f(x) + ε(x) , (1)
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where ε is a centered Gaussian random variable with known variance σ2 and
the noise components ε(x) are independent. First, let us present the definition
of the NLM as introduced in [9]. For each pixel the output of the procedure is
a weighted average of the whole image. The weights used are selected using a
“metric” which determines whether two pixels are similar or not. The core idea
of the NLM is to create a metric governed by patches surrounding each pixel,
regardless of their position, i.e., non-local in the image space. For a fixed (odd)
width p, a patch Px is a subimage of width p, centered around the pixel x, and
the NLM estimator of f(x) is then:

f̂(x) =
∑

x′∈Ω ω(x, x′)Y(x′)
∑

x′∈Ω ω(x, x′)
, where ω(x, x′) = exp

(

−‖Px − Px′‖2
2,a

2h2

)

, (2)

where h > 0 is the bandwidth, ‖·‖2,a is a weighted Euclidean norm in R
|P|

(|P| = p2) using a Gaussian kernel, a controlling the concentration of the norm
around the central pixel. The denominator is a normalizing factor ensuring the
weights sum to one. Let us briefly recall the influence of each parameter.

The bandwidth h plays the same role as the bandwidth for kernel methods:
the larger the bandwidth, the smoother the image. In [11], the authors set its
value according to the quantile of a χ2 distribution, due to the metric they
consider to compare patches. We adapt this method for our more general shapes.

The search window size � determines the pixels to be averaged in Eq. (2).
The summation is restricted to an � × � search window W around the pixel of
interest. This was proposed in [9] for computational acceleration. However, some
authors have noticed that choosing locally the best search window [11] or using
small ones [18, 24] could benefit to the NLM.

The patch size p is usually set globally (between 5 and 9). Choosing p = 1
would lead to a method close to the Bilateral Filter [5] or Yaroslavsky Filter [4].

3 From Patches to Shapes: Beyond the Rare Patch Effect

The NLM algorithm suffers from a noise halo around edges, due to an abrupt
lack of redundancy of the image, sometimes referred to as the rare patch effect. It
occurs because the NLM has large variance around edges. Several solutions have
already been proposed to handle this drawback [16, 18, 25]. We extend the latter
two approaches by considering general shapes instead of simple square patches.
To deal with arbitrary shapes, we reformulate the way the distance between
pixels is measured. We generalize the distance ‖·‖2,a used in Eq. (2) by:

d2
S(x, x′) =

∑

τ∈Ω

S (τ) (Y(x + τ) − Y(x′ + τ))2 , (3)

where S encodes the shape we aim at. We can use several shapes, so we need to
choose the collection of shapes and a way to take the most of each proposed one.
We provide an efficient algorithm to compute the distances in Eq. (3). It relies on



234 C.-A. Deledalle, V. Duval, and J. Salmon

(a) (b)

Fig. 1. (a) Examples of shapes with the “central” pixel shown in red. Shapes are
grouped in four categories: F1. the disk family, F2. the half-pies family, F3. the quarter-
pies family and F4. the bands family. (b) Eight denoised images obtained for different
oriented pie slices. Each denoiser provides good performance in a specific target direc-
tion but suffers from noise halos in the other directions. The final aggregate (center)
takes advantage of every oriented-denoiser to provide high quality restored edges.

the FFT and is independent of the shape S. We extend to general shapes, works
initiated to speed up the NLM [26, 27] by computing the distances between
patches with “Summed Area Tables” (also referred to as “Integral Images”). We
modify the original algorithm by swapping the two loops: instead of considering
all the shifts for each pixel, we consider all the pixels for each shift (see Fig.
2 for details). This reduces the computational cost from O(|W | · |Ω| · |P|) to
O(|W | · |Ω| · log(|Ω|)), where |W | = �2, |Ω| is the image size and |P| = p2.

The main purpose of this paper is to show that the use of different shapes
allows to reduce the rare patch effect. Another alternative consists in properly
handling overlapping square patches. Indeed, we get |P| estimates for each pixel.
In [9, 11], those |P| estimates are uniformly averaged while a weighted average is
performed in [16]. In our framework, these blockwise approaches are equivalent
to combine |P| (possibly) decentered square shapes. Now, the challenge is to find
shapes with enough similar candidates in the search window. We have considered
new shapes: disks, bands and pies (see Fig 1).

4 Aggregation of Shape-Based Estimates

For any pixel x, we can build a collection of K pixel estimators f̂1(x), · · · , f̂K(x)
based on different shapes, as estimates of their corresponding performance. We
can now focus on different aggregation procedures.
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Algorithm 2D-FFT NLM for an arbitrary shape

Inputs: noisy image Y, 2D-FFT of the shape F(S)
Parameters: search window W , bandwidth h
Output: estimated image f̂
Initialize accumulator images A and B to zero
for all shift vector δ in the search window W do

Compute Δδ(x) := (Y(x)−Y(x + δ))2 for all pixels x

Compute the 2D-FFT F(Δδ)
Perform the convolution of Δδ by the shape S

d2
S (·, ·+ δ)←

(
F−1

(
F(S)F(Δδ)

))
(·)

for all pixels x in Ω do

Compute ω(x, x + δ) = exp

(

−d2
S(x, x + δ)

2h2

)

Update the accumulators A(x)← A(x) + ω(x, x + δ)Y(x + δ)

B(x)← B(x) + ω(x, x + δ)

end for
end for
Final (normalized) estimator f̂(x) = A(x)

B(x)
for all pixel x

Fig. 2. NLM pseudo-code for an arbitrary patch shape S. Pre-computations (2D-FFT)
of distances between shapes from the noisy image and shapes from its shifted version
leads to a complexity of O(|W | · |Ω| · log |Ω|), independent of the shape S.

4.1 Classical Methods

Uniformly weighted aggregation (UWA). The idea to give the same weight
to any shape-based estimator was already proposed for (possibly decentererd)
square patches in [9, 11], leading to the pixel-estimate f̂UWA(x). With few shapes
it is already an improvement in practice (see Table 2), but as the number of
shapes increases, we can take into account irrelevant positions. Moreover, such
a procedure still suffers from the rare patch effect.

Variance-based decision, Weighted Average (WAV). A possible way to
limit the noise halo is to adapt WAV-reprojection [16] to general shapes. The
idea, also proposed by Dabov et al. [15] in a different context, is to perform a
weighted average of the estimates f̂1(x), · · · , f̂K(x), where each weight is chosen
inversely proportional to the (estimated) variance of the corresponding estima-
tor. However, this method tends to over-smooth edges and thin details since it
does not consider the bias of each estimator.
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(a) Noise-free image (b) Noisy risk (c) Convolved risk (d) Aniso. diff. risk

Fig. 3. Maps of the estimated risk associated with disk shape. From left to right, the
noise-free image, the map of the risk without regularization, with convolution and with
regularization based on anisotropic diffusion. Low risks are black, high ones are white.

4.2 SURE-Based Methods

In [20], a closed-form expression of SURE for the NLM allows to select the best
bandwidth h for the whole image. Our approach is different and closer to the
one in [18] (where SURE locally determines the parameter h and p), since we
use SURE to locally combine the shape-based estimators. Stein’s Lemma [19]
still holds when considering shapes: for the pixel x and the k-th shape-based
estimate

rk(x) = (f̂k(x) − Y(x))2 + 2σ2 ∂ f̂k(x)
∂ε(x)

− σ2 , (4)

is an unbiased estimate of the risk. Thanks to Eq. (2), the derivative is:

∂ f̂k(x)
∂ε(x)

=

(

1 +
∑

x′
Y(x′)

∂ω(x, x′)
∂ε(x′)

−
(∑

x′ Y(x′)ω(x, x′)
Cx

)∑

x′′

∂ω(x, x′′)
∂ε(x)

)

/Cx.

where Cx =
∑

x′ ω(x, x′). Our shape-based norm defined in Eq. (3) leads to the
following expression of the derivative of the weights ω(x, x′):

∂ω(x, x′)
∂ε(x′)

=
S (0)

[
Y(x) − Y(x′)

]
+ S (x − x′)

[
Y(x) − Y(2x − x′)

]

h2
. (5)

where S encodes the shape of our k-th shape-based estimator. Combining the last
equations leads to unbiased risk estimates r1(x), · · · , rK(x) for our K denoisers.

Minimizer of the risk estimates (MRE). A simple proposition is to select
the shape that minimizes the local risk estimates we have at hand:

f̂MRE(x) := f̂k∗(x) where k∗ = argmin
k

rk(x) . (6)

This rule is all the more relevant as the estimators are different. Selecting the
locally optimal shape yields satisfying results, but combining some of the best
performing estimators may improve the results.
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(a) Cameraman (b) City (c) Windmill (d) Lake

Fig. 4. Chosen 256 × 256 noise-free images for our experiments

Exponentially Weighted Aggregation (EWA). It might be better to com-
bine several estimators rather than just selecting one. This happens if the best
estimators are diversified enough or if the risk of the MRE was wrongly under-
estimated. Thus, we have used the statistical method of Exponentially Weighted
Aggregation, studied for instance in [28] and adapted for patch-based denois-
ing in [29]. It consists in aggregating the estimators by performing a weighted
average, with higher weights for estimators with low risks:

f̂EWA(x) :=
K∑

k=1

αk f̂k(x) , with αk =
exp(−rk(x)/T )

∑K
k′=1 exp(−rk′(x)/T )

.

The temperature T > 0 is a smoothing parameter that controls the confidence
attributed to the risk estimates. If T → ∞, the EWA is simply the uniform
aggregate f̂UWA defined before. Conversely, if T → 0, then f̂EWA → f̂MRE.

The problem of using SURE to take a local decision for each pixel x is difficult
since this estimator has large oscillations (see Fig. 3), so that regularizing the
risk maps r1, · · · , rK is required.

4.3 Regularizing the Risk Maps with Anisotropic Diffusion

To make the risk estimates more robust, it is necessary to regularize it. The
convolution of the risk map is an efficient way to estimate the local risk in view
of setting h since on both sides of an edge a large value of h should be used [18].
Here, the anisotropy of the shapes implies that on one side of an edge the risk
may be low whereas it may be high on the other side.

Since convolutions diffuse the risks across the edge, the risk maps become
blurred and their comparison becomes difficult. To diffuse the risks on each side
of edges, we have adopted a heat equation with spatially and timely dependent
coefficients (inspired by the Perona-Malik equation [1]).

More precisely, we let the risk maps r1, · · · , rK evolve according to:
⎧
⎨

⎩

∂rk

∂t
(x, t) = div (g(|∇u(x, t)|)∇rk(x, t)) ,

rk(x, 0) = (f̂k(x) − Y(x))2 + 2σ2 ∂ f̂k(x)
∂ε(x) − σ2 ,

(7)
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Table 1. Gain in using anisotropic or mixture of isotropic and anisotropic shapes in
terms of PSNR/SSIM. The studied patch shapes are the isotropic disks, the half-pies,
the quarter-pies, the bands and some combination of them (see Fig. 1.a).

σ = 20 Cameraman City Windmill Lake

Disk shapes (F1) 29.45/0.832 28.16/0.885 30.97/0.904 28.68/0.863

Half-pie shapes (F2) 29.43/0.832 28.08/0.886 30.97/0.906 28.60/0.863
Quarter-pie shapes (F3) 29.31/0.831 27.87/0.883 30.95/0.909 28.49/0.862
band shapes (F4) 29.46/0.832 28.05/0.885 31.05/0.906 28.61/0.862

Combination: F1, F2 29.50/0.833 28.21/0.887 31.11/0.907 28.73/0.865
Combination: F1, F2, F3, F4 29.50/0.833 28.20/0.887 31.19/0.909 28.72/0.865

where g(x) = exp(−x2/κ2), the parameter κ controls the anisotropy of the dif-
fusion (the larger κ, the more isotropic the diffusion), and u is the smoothed
noisy image which jointly evolves using the Perona-Malik equation:

{
∂u

∂t
(x, t) = div (g(|∇u(x, t)|)∇u(x, t)) ,

u(x, 0) = Y(x) .
(8)

Curiously, we have noticed that we obtain better risk maps by diffusing
√

rk

instead of rk itself. Figure 3 shows that this regularization procedure provides
smooth risk maps, following edges of the underlying noise-free image, and finer
than without regularization or with convolution.

5 Numerical and Visual Results

The corrupted images are obtained from 256 × 256 images: cameraman, city,
windmill and lake1 (Fig. 4). These images are interesting to study since they
present highly contrasted edges for which the classical NLM suffers from the rare
patch effect. In all the experiments, unless otherwise specified, the NLM-SAP is
used with the following default parameters: the search window width � = 11
px, the shape family combines 15 shapes from families F1 and F2 (Fig. 1.a)
with shape areas of 12.5, 25 and 50 px2, we use EWA with T = 0.02σ2 and
anisotropic risk regularization with 50 iterations, time-step dt = 1/8 and κ = 30.
The parameter h is adapted to the size of the shapes using the rule given by
[11]. For the central pixel, we set its central weight as recommended in [24].

Table 1 gives numerical results for different families. The compared fami-
lies are (see Fig. 1.a): the disks, the half-pies, the quarter-pies and the bands
and combinations of these families. Our experiments show that suitable families
should contain isotropic shapes, directional shapes and various scales of shapes.
Increasing the number of shapes does not necessarily improve the quality.

Table 2 presents the numerical performance for the four aggregation proce-
dures: UWA, WAV, MRE and EWA. MRE suffers from brutal transitions, since
it selects only one shape per pixel, while EWA evolves in a smoother way due
to the weighted combination of shapes for each pixel and provides best results.
1 Images from L. Condat’s database: http://www.greyc.ensicaen.fr/~lcondat

http://www.greyc.ensicaen.fr/~lcondat
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Table 2. Comparisons of different aggregation procedures in terms of PSNR/SSIM:
UWA, WAV, MRE and EWA

σ = 20 Cameraman City Windmill Lake

UWA 29.40/0.830 27.99/0.880 30.76/0.897 28.53/0.858
WAV 29.46/0.830 27.98/0.879 30.82/0.898 28.48/0.856
MRE 29.33/0.829 28.02/0.885 30.88/0.905 28.58/0.862
EWA 29.50/0.833 28.21/0.887 31.11/0.907 28.73/0.865

We have studied the influence of the regularization of the risk maps on the
aggregation results. Three methodologies are compared: aggregation using the
noisy risk maps (i.e., SURE maps), the convolved risk maps (using a disk kernel
of radius 4) and the risk maps obtained by anisotropic diffusions (Fig. 3). The
choices of the local sizes and orientations of the patch shapes are more relevant
with the maps obtained by anisotropic diffusions, in terms of scale adaptivity,
feature directions and spatial coherency (Fig. 5). Using anisotropic diffusion,
the NLM-SAP acts as expected, selecting big sizes of shapes, even around edges,
since the shape orientations have been chosen properly to reduce the rare patch
effect.

(a) Noisy risk (b) Convolved risk (c) Anisotropic diff.

Fig. 5. (top) Average areas and (bottom) average orientations of selected shapes for
different risk maps. From left to right, results using the noisy risk maps, the convolved
risk maps and the risk maps obtained by anisotropic diffusions. The average areas and
the average orientations are represented using gray level colors.
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Table 3. Comparisons of denoising approaches for various noise levels in terms of
PSNR/SSIM: pixelwise NLM [9], blockwise NLM using UWA reprojection [9], blockwise
NLM using WAV reprojection [16], pixelwise NL-means using SURE-based adaptive
bandwidth selection [18], BM3D denoiser [15], and our proposed NLM-SAP.

Cameraman City Windmill Lake

σ = 5

NLM [9] 36.92/0.951 35.87/0.965 38.10/0.972 36.76/0.964
UWA Blockwise NLM [9] 36.99/0.953 35.94/0.966 38.18/0.973 36.77/0.963
WAV Blockwise NLM [16] 37.31/0.956 36.34/0.972 38.79/0.978 37.10/0.970
SURE adaptive NLM [18] 37.46/0.956 36.76/0.975 39.14/0.978 37.28/0.970
BM3D [15] 38.17/0.962 37.48/0.978 39.91/0.983 38.15/0.977
NLM-SAP 37.80/0.957 37.26/0.975 39.60/0.979 37.92/0.974

σ = 10

NLM [9] 32.46/0.905 31.11/0.932 33.62/0.945 32.07/0.926
UWA Blockwise NLM [9] 32.43/0.913 30.99/0.926 33.49/0.942 32.04/0.924
WAV Blockwise NLM [16] 32.84/0.922 31.48/0.941 34.07/0.953 32.37/0.936
SURE adaptive NLM [18] 33.11/0.918 32.11/0.948 34.78/0.954 32.61/0.935
BM3D [15] 34.06/0.931 33.15/0.956 35.84/0.966 33.63/0.950
NLM-SAP 33.44/0.914 32.84/0.950 35.28/0.955 33.27/0.940

σ = 20

NLM [9] 28.72/0.820 27.11/0.870 30.04/0.897 28.12/0.855
UWA Blockwise NLM [9] 28.88/0.830 27.02/0.868 29.92/0.890 28.14/0.860
WAV Blockwise NLM [16] 29.16/0.838 27.27/0.877 30.17/0.901 28.12/0.865
SURE adaptive NLM [18] 29.49/0.845 27.85/0.889 30.96/0.906 28.46/0.867
BM3D [15] 30.35/0.871 29.07/0.912 32.07/0.936 29.38/0.895
NLM-SAP 29.50/0.833 28.21/0.887 31.11/0.907 28.73/0.865

Comparisons have been performed with the classical (pixelwise) NLM [9], the
blockwise NLM using UWA reprojection [9], the blockwise NLM using WAV re-
projection [16], the pixelwise NL-means using SURE-based adaptive bandwidth
selection [18], BM3D [15], and our proposed NLM-SAP approach. Table 3 shows
that NLM-SAP outperforms all other NLM improvements. NLM-SAP brings
a gain of PSNR of about 1 dB compared to the classical NLM. The BM3D
approach leads to better numerical results than all NLM variants. While the
presence of the rare patch effect is well illustrated by the noise halos for NLM,
BM3D and NLM-SAP have reduced a lot this phenomenon. Our NLM-SAP pro-
vides smooth results with accurate details: the quality of the images we obtained
challenges those by BM3D.

6 Conclusion

We have addressed the problem of the rare patch effect arising in the NLM and
responsible of the noise halos around edges. Our method consists in substituting
the square patches of fixed size by spatially adaptive shapes. A fast implemen-
tation based on the FFT has been proposed to handle arbitrary shapes. Several
estimates are obtained by using different patch shapes, and we have extended
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Fig. 6. Comparisons of the NLM [9], the BM3D [15] and the proposed NLM-SAP on
images damaged by additive white Gaussian noise with standard deviation σ = 20

SURE-based approaches to aggregate them. The SURE-based risk maps require
regularization, and diffusions can be satisfactorily used. Future work is to reduce
computation time and treat other regularization strategies.
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