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Abstract. We consider left-invariant diffusion processes on DTI data
by embedding the data into the space R

3
� S2 of 3D positions and ori-

entations. We then define and solve the diffusion equation in a moving
frame of reference defined using left-invariant derivatives. The diffusion
process is made adaptive to the data in order to do Perona-Malik-like
edge preserving smoothing, which is necessary to handle fiber structures
near regions of large isotropic diffusion such as the ventricles of the brain.
The corresponding partial differential systems are solved using finite dif-
ference stencils. We include experiments both on synthetic data and on
DTI-images of the brain.

Keywords: DTI, DW-MRI, scale spaces, Lie groups, adaptive diffusion,
Perona-Malik diffusion.

1 Introduction

Diffusion-Weighted Magnetic Resonance Imaging (DW-MRI) are MRI techniques
for non-invasively measuring local water diffusion inside tissue. The water diffu-
sion profiles of the imaged area allow inference of the underlying tissue structure.
For instance in the brain, diffusion is less constrained parallel to nerve fibers than
perpendicular to them, and so the water diffusion gives information about the
fiber structures present. This allows for the extraction of clinical information
concerning biological fiber structures from DW-MRI scans.

The diffusion of water molecules in tissue over some time interval t can be
described by a diffusion propagator which is the probability density function
y �→ pt(Yt = y |Y0 = y0) of finding a water molecule at time t ≥ 0 and at position
y given that it started at y0 on t = 0. Here the family of random variables (Yt)t≥0

describes the distribution of water molecules over time. The function pt can be
directly related to MRI signal attenuation of diffusion weighted image sequences
and so can be estimated given enough measurements. The exact methods to do
this are described by e.g. Alexander [1].

Diffusion Tensor Imaging(DTI), introduced by Basser et al. [2] assumes that
pt can be described for each voxel by an anisotropic Gaussian function, i.e.

pt(Yt = y |Y0 = y0) =
1

√
(4πt)3 det(D(y0))

exp

(−(y− y0)
T D(y0)

−1(y− y0)

4t

)
,
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where D is a tensor field of 3×3 positive definite symmetric tensors that each
describe the local Gaussian diffusion process. The tensors contain 6 parameters
for each voxel, which means the tensor field requires at least 6 DW-MRI images.

The drawback of approximating pt with an anisotropic Gaussian function is
that it is only able to estimate one preferred direction per voxel. However, if
more complex structures such as crossing, kissing or diverging fibers are present
the Gaussian assumption fails, as was demonstrated by Alexander et al. [1].
In practice though, large areas of the brain can be approximated well with DTI
tensors and in the regions where complex fiber structures are present the diffusion
profile can be inferred by taking contextual information into consideration [12].

Since DTI tensors cannot contain information regarding crossings the DTI
data needs to be represented in a form that does allow crossing fiber structures. A
representation that suits these demands can be obtained by viewing a DTI image
as a probability function on positions and orientation: U : R

3×S2 → R
+, where

S2 =
{
x ∈ R

3 | ||x|| = 1
}

denotes the 2-sphere and where for each position y and
orientation n, U(y,n) gives the probability density that a water molecule starts
at y and travels in direction n. Using the Gaussian assumption this distribution
is given by

U(y,n) =
3

4π
∫

Ω trace{D(y′)}dy′n
T D(y)n, y ∈ R

3,n ∈ S2.

Such functions on position and orientation are then visualized by the surfaces
Sμ(U)(x) = {x + μ U(x,n)n | n ∈ S2} ⊂ R

3, which are called glyphs. A figure
is generated by visualizing all these surfaces for varying x and with a suitable
value for μ > 0 that determines the size of the glyphs. Note that for DTI data a
different visualization based on ellipsoids is commonly used, which isn’t suitable
to visualize crossing fibers.

To reduce noise and to infer information about fiber crossings contextual
information can be used. This enhancement is useful both for visualization pur-
poses and as a preprocessing step for other algorithms such as fiber tracking
algorithms, which may have difficulty in noisy or incoherent regions. This en-
hancement, done through linear and nonlinear adaptive diffusion processes, is
the main focus of this paper. Special attention is given to the implementation of
these algorithms through the use of finite difference schemes.

1.1 The Euclidean Motion Group SE(3)

A function on R
3×S2 can also be seen as a function embedded in the Euclidean

motion group SE(3) = R
3

� SO(3), where SO(3) represents the (noncommuta-
tive) group of 3D rotations defined as a matrix group by

SO(3) = {R | R ∈ R
3×3,RT = R−1, det(R) = 1}.

Expressed in Euler angles, this becomes

R(α,β,γ) = Rex
γ Rey

β Rez
α , (1)
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where e1 = ex, e2 = ey and e3 = ez are the unit vectors in the coordinate axes
and Rei

α denotes a counterclockwise rotation of α around vector ei. Here, an
Euler angle parametrization is used that has a discontinuity at n = (±1, 0, 0),
so that the tangent space of SE(3) is well defined at the unity element (0, I).

For g, g′ ∈ SE(3) the group product and inverse are given by

gg′ = (x,R)(x′,R′) = (x + R · x′,RR′)

g−1 = (x,R)−1 = (−R−1x,R−1).

To get correspondence between SO(3) and S2, we introduce equivalence classes
on SO(3). Two group elements g, h ∈ SO(3) are equivalent if g−1h = Rez

α for
some angle α ∈ [0, 2π). This equivalence relation induces sections of equivalent
group members, called the left cosets of SO(3). If we associate SO(2) with
rotations around the z-axis, then formally we can use this equivalence to write
S2 ≡ SO(3)/SO(2) to denote these left cosets.

If we extend this equivalence relation to SE(3), i.e. g, h ∈ SE(3), g is equiva-
lent to h if g−1h = (0,Rez

α ), we obtain the left coset of SE(3) which equals the
space of positions and orientations. To stress that this space has been embedded
in SE(3) and to stress the induced (quotient)group structure we write the space
of positions and orientations as R

3
� S2 := (R3

� SO(3))/({0} × SO(2)).
Now, we can express any function on position and orientation U : R

3
�S2 → R

with an equivalent function on SE(3) Ũ : R
3

� SO(3) → R by solving for
(x,n) = (x,Rnez), where Rn is any rotation matrix that maps ez to n.

Every group element from SE(3) can be associated with a representation,
which is nothing else than an action that translates and rotates a function. The
left- and right-regular representations on L2(SE(3)) are given by

(Lg ◦ U)(h) = U(g−1h), g, h ∈ SE(3), U ∈ L2(SE(3))
(Rg ◦ U)(h) = U(hg). (2)

Duits and Franken [8,9] demonstrated that every reasonable linear operation
on functions on SE(3) must be left-invariant by showing that the orientation
marginal

∫
S2 U(y,n)dσ(n) commutes with rotations and translations only under

such operations, which explains our choice for left-invariant processes in this
paper. Formally an operator Φ : L2(SE(3)) → L2(SE(3)) is left invariant iff

∀g ∈ SE(3) : (Lg ◦ Φ ◦ U) = (Φ ◦ Lg ◦ U).

The right regular representation is left-invariant and can be used to generate
left-invariant derivatives, as is shown in the next section. It should be noted
that because of the non commutative structure of SE(3) the left regular repre-
sentation itself is not left-invariant.

1.2 Left-Invariant Derivatives

By viewing functions on R
3

� S2 as probability density functions of oriented
particles, it becomes a natural idea to describe these particles in a moving co-
ordinate system. This is done by attaching a coordinate system to each point
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(x,R) ∈ SE(3) such that one of the spatial axes points in the direction of
n = Rnez . In this section we will introduce diffusion equations for these ori-
ented particles, and for these processes this coordinate system is the natural
choice to easily differentiate between motion forward, sideways and rotations.
We can obtain such a coordinate system by starting at the identity element
(0, I) of SE(3), which corresponds to (0, ez) and attaching a suitable coordinate
system using Euler angles. We express a basis of tangent vectors at the unity
element by

A1 = ∂x, A2 = ∂y, A3 = ∂z, A4 = ∂γ , A5 = ∂β , A6 = ∂α,

where we use the coordinate system in the parametrization of SE(3):(x, R) =
(x, y, z, R(α,β,γ)) (see Eq. (1)). Here Ai can be viewed both as tangent vectors
and as local differential operators.

We construct a moving frame of reference attached to fibers in the space
R

3
� S2 by using the derivative of the right-regular representation R:

Ai|gU = (dR(Ai)U)(g) = lim
t↓0

U(g etAi) − U(g)
t

, i = 1, 2, 3, 4, 5, 6, (3)

where R is defined by Eq. (2) and etAi is the exponential map in SE(3) [8],
which can be seen as the group element obtained by traveling distance t in the
Ai direction from the identity element. We note that A6U(y,n) = 0, because
U(y,n) is constant within equivalence classes and that A1,A2,A4 and A5 are
defined on SE(3) and not on R

3
� S2. We therefor use combinations of these

operators that are well-defined on R
3
�S2 in the diffusion generator (see section

1.3).
Analytical formulas for these left-invariant derivatives, expressed in charts of

Euler angles can be found in [8] where they are used to analytically approximate
Green’s functions of convection diffusion processes. Here, we focus on the numer-
ical aspects, and instead give only the finite difference schemes (section 2) since
they do not suffer from the discontinuities of the Euler angle parametrization.

1.3 Convection-Diffusion Processes

The left-invariant derivatives given in the previous section can be used to write
the equations for diffusion processes on SE(3) [8], which can remove noise while
preserving complex structures such as crossings and junctions[12].

The general convection-diffusion equation with diffusion matrix D and con-
vection parameters a is given by:

{
∂tW (y,n, t) = QD,a(A1,A2, . . . ,A5)W (y,n, t)
W (y,n, 0) = U(y,n)

(4)

where the convection-diffusion generator QD,a is given by

QD,a(A1,A2, . . . ,A5) =
5∑

i=1

⎛

⎝−aiAi +
5∑

j=1

AiDijAj

⎞

⎠ (5)
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and ai are convection parameters and Dij diffusion coefficients. In this paper,
ai = 0 for all i = 1, . . . , 6 because only pure diffusion processes are studied, but
other processes, like contour completion [4], can be obtained by also including
convection terms. In the linear case, ai and Dij are chosen constant and the
solution to these evolution equations can be obtained by an SE(3)-convolution
of the initial data with the process’s Green’s function [8,9,5] or by using finite
difference methods. SE(3)-convolutions (see [8]) are generally computationally
more expensive than finite difference stencils and they can not handle adaptive
schemes, so finite difference schemes are used exclusively in this paper.

2 Finite Difference Schemes for R
3

� S2 Diffusion

To approximate the required left-invariant derivatives of the evolution equations
of Eq. (4), we use finite difference approximations [8] of Eq. (3). These derivatives
are approximated in the usual way, with the (conceptually) small difference that
the steps are taken in the Ai direction rather than the ei direction. The forward
finite difference approximation of the left-invariant derivatives are given by

Af
1U(y,n) = U(y+h Rnex , n)−U(y , n)

h
,

Af
2U(y,n) =

U(y+h Rney , n)−U(y , n)

h
,

Af
3U(y,n) = U(y+h Rnez , n)−U(y , n)

h
,

Af
4U(y, n) =

U(y , Rn R
ex
ha

ez)−U(y , n)

ha
,

Af
5U(y, n) =

U(y , Rn R
ey
ha

ez)−U(y , n)

ha
,

(6)

where h is the spatial stepsize and ha the angular step size in radians.
Analogously, the backward and central finite difference approximations can

be obtained. For example:

Ab
3U(y,n)= U(y , n)−U(y−h Rnez , n)

h
, Ab

4U(y,n)=
U(y , n)−U(y , Rn R

ex
−ha

ez)

ha
,

and

Ac
3U(y,n)=

U(y + h Rnez,n) − U(y − h Rnez,n)

2h
,

Ac
4U(y,n)=

U(y, RnRex
ha

ez) − U(y, RnRex
−ha

ez)

2ha
.

(7)

We take second order centered finite differences by applying the discrete opera-
tors in the righthand side of Eq. (7) twice (where we replaced 2h �→ h), e.g. we
have for p = 1, 2, 3:

((Ac
p)2U)(y,n) =

U(y + hRnep, n) − 2 U(y, n) + U(y − hRnep,n)

h2
,

((Ac
p+3)

2U)(y,n) =
U(y , Rn Rep,ha ez) − 2U(y,n) + U(y , Rn Rep,−ha ez)

ha
2

.

2.1 Efficient Computation of Left-invariant Derivatives

So far, all approximations assume U : R
3

� S2 → R
+ to be continuously dif-

ferentiable. In practice we have discretized functions U [i, j, k,nl], where i,j and
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k enumerate the discrete spatial grid and nl is an orientation from a tessella-
tion of the sphere enumerated by l ≤ No. The tessellation used in this paper is
obtained by taking an icosahedron and regularly subdividing each face into 16
triangles before projecting the vertices back to the sphere. Every vertex of this
shape becomes a sampling orientation and thus No = 162.

Because of this sampling, interpolation is necessary to approximate the (left-
invariant) derivatives. Spatially, any regular 3D interpolation scheme such as
linear interpolation or spline interpolation can be used. Since the approximations
in Eq. (6) are only first order accurate, we use linear interpolation.

Since the three spatial derivatives only require neighboring samples with the
same n, they can be efficiently computed through a regular R

3 convolution or
correlation for each orientation separately.

ApU [i, j, k,nl] ≈ (Mp
l � U [·, ·, ·,nl]) [i, j, k] p = 1, 2, 3,

where � denotes the discrete spatial correlation and Mp
l can be obtained by

linear interpolation from the finite difference stencils Eq. (6). For example, in
the case of forward finite difference stencils

Mp
l [i, j, k] =

1
2h

(w1
l,p[i, j, k] − w2

l,p[i, j, k]),

with w1
l,p[i, j, k] = Nyp

l
[i, j, k] and w2

l,p[i, j, k] = δi0δj0δk0,

where yp
l = hRnl

ep and Nyp
l
[i, j, k] is the interpolation matrix required to in-

terpolate point yp
l . Assuming cubic voxels of size 1, |yp

l | < 1, and using linear
interpolation Nyp

l
[i, j, k] is given by

Ny[i, j, k] =
3∏

m=1

v(yp,l)
m [zm] , z = (i, j, k) i, j, k ∈ {−1, 0, 1},

va[b] =

⎧
⎨

⎩

1 − |a| if b = 0
H(ab)|a| if b ∈ {−1, 1}

0 otherwise.

with heaviside function H(u) and where (yp,l)m and zm denote the m-th com-
ponent of vectors yp,l and z.

For angular interpolation, either linear interpolation or spherical harmonics
can be used. Spherical harmonics were used in previous work by Franken et al.
[10]. In terms of stability in the diffusion process, both perform equally well
(see section 2.2, Theorem 1), but Franken had to add an angular diffusion term
treg which in practice was very sensitive: when set too large the data becomes
too isotropic (destroying fiber structures) and when set too small the algorithm
becomes unstable. As we will show next, linear interpolation is also computa-
tionally cheaper.

The angular derivatives only require samples of neighbors with the same y
and can therefor be computed by a matrix multiplication for each point y:

Af
p+3U [i, j, k,nl] ≈ 1

h

No∑

l′=1

Mp
l l′U [i, j, k,nl′ ]) − 1

h
U [i, j, k,nl], (8)
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where Mp
l l′ is the interpolation matrix to interpolate np,l = Rnl

Rep,hae3 and is
given by

Ml l′ =

⎧
⎪⎨

⎪⎩

1 −
∑

nj∈Ap,l

(np,l − nl′) · (nj − nl′) if nl′ ∈ Ap,l

0 otherwise,

where Ap,l is the triangle that contains point np,l. Ap,l is sparse due to the linear
interpolation which enables Eq. (8) to be computed cheaply. If Mp

l l′ is created
using spherical harmonics then it becomes a full matrix and thus Eq. (8) is much
more expensive to calculate.

2.2 Numerical Contour Enhancement

The contour enhancement process on R
3

� S2 can be obtained from Eq. (4) by
setting ai = 0 (no convection), D33 ≥ 0, D44 = D55 ≥ 0 and other diffusion coef-
ficients Dij are set to zero. These settings yield the following evolution equation

{
∂tW (y,n, t) =

(
D33(A3)2 + D44((A4)2 + (A5)2)

)
W (y,n, t)

W (y,n, 0) = U(y,n) .
(9)

This process can intuitively be understood as a discription of the Brownian
motion of oriented particles both in space (diffusion in direction n) and angular
(changing direction) [8]. The simulation of this PDE is done by taking standard
centered second order finite differences according to Eq. (2), and using a forward
Euler scheme for the time discretization:
{

W (y,n, t+Δt) = W (y,n, t)+Δt
(
D33(Ac

3)
2+D44((Ac

4)
2+(Ac

5)
2)

)
W (y,n, t)

W (y,n, 0) = U(y,n).

Of these parameters, D44 and simulation time t are most important. D33 may
be set to 1, as changing D33 is equivalent to scaling D44 and t, while Δt needs
only be sufficiently small for the algorithm to remain stable and accurate.

Theorem 1. The stability bound for the Euler forward finite difference scheme
of the evolution described by Eq. (9) using the interpolation described in section
2.1 is given by

Δt ≤ 1
(4D11+2D33)

h2 + 4D44
h2

a

(10)

when using linear interpolation for the angular derivatives and by

Δt ≤ 1
4D11+2D33

h2 + D44
L(L+1)

2etreg L(L+1)

if treg.L(L + 1) ≤ 1

Δt ≤ 1
4D11+2D33

h2 + D44
1

2etreg

if treg.L(L + 1) > 1
(11)

when using spherical harmonics.

for proof see [4, Section 2.2.1] and [7, Appendix B].
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In terms of stability, both algorithms can be made equally stable because both
have regularizing parameters (ha for linear interpolation and treg for spherical
harmonics). There are, however other reasons to prefer linear interpolation over
spherical harmonics (see section 2.1).

3 Perona-Malik Diffusion on R
3

� S2

Linear contour enhancement has the disadvantage that it performs diffusion
across areas where the gradient is very large. In particular, the neural tracts
of the brain are sometimes located near the ventricles of the brain. These ven-
tricles are structures that contain cerebrospinal fluid which shows up in DTI
as unrestricted, isotropic glyphs much larger in magnitude than the restricted,
anisotropic glyphs of the neural tracts. It is undesirable that these large isotropic
diffusion profiles start to interfere with the oriented structures of the neural
tracts when we apply a diffusion scheme, because they are likely to destroy fiber
structures. A Perona-Malik [11] type scheme for diffusion can separate these
two regions, and apply the diffusion within the neural tracts and within the
ventricles, but prevents transport from one to the other.

Our approach is similar to recent work by Burgeth et al. [3] who used adap-
tive, edge preserving diffusion on the DTI tensor components separately. The
difference is that here the diffusion considers both positions and orientations in
the domain and therefor separates two crossing fibers in the domain so that it
is better equipped to handle crossing structures.

We test the algorithm on a synthetic test image consisting of two crossing
fibers consisting of oriented glyphs surrounded by isotropic spheres, (see Fig. 1)
in which linear diffusion destroys the fiber structure, whereas nonlinear adaptive
diffusion both preserves the fiber structures and denoises the entire dataset.

Mutual influence of the anisotropic regions (fibers) and isotropic regions (ven-
tricles) is avoided by replacing the constant diffusivity D33 in 5 by

A3D33A3 �→ A3 ◦ D33e
− (A3W (·,t))2

K2 ◦ A3. (12)

where for K → ∞, linear contour enhancement is obtained. The idea is to set
a soft threshold (determined by K) on the amount of diffusion in A3 direction.
Within homogeneous regions one expects |A3W (y,n, t)| to be small, whereas
in the transition areas between ventricles and white matter where one needs to
block the diffusion process, one expects a large |A3W (y,n, t)|.

To implement this, we propose the following discretization scheme

A3(D̃33A3)W (y,n, t)≈ D̃33(y+ 1
2
h,n)A3W (y+ 1

2
h,n, t)

h
− D̃33(y− 1

2
h,n)A3W (y− 1

2
h,n, t)

h

A3W (y +
1

2
h,n, t)≈ W (y + h, n, t) − W (y,n, t)

h
= Af

3W (y,n, t)

A3W (y − 1

2
h,n, t)≈ W (y,n, t) − W (y− h,n, t)

h
= Ab

3W (y,n, t)
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Fig. 1. Adaptive Perona-Malik diffusion based on the data. Top row: Artificial 15×15×
15×162 input data that is the sum of a noisy fiber part and a noisy isotropic part. For
the sake of visualization, we depict these parts separately. Bottom row left: Output of
linear diffusion with t = 1, D33 = 1,D44 = 0.04 and Δt = 0.01. Bottom right: Output of
Perona-Malik adaptive diffusion with D33 = 1, D44 = 0.015, K = 0.05, Δt = 0.01, t = 1

combining these three equations leads to

A3(D̃33A3)W (y,n, t)≈ D̃33(y + 1
2
h,n)Af

3W (y,n, t) − D̃33(y − 1
2
h, n)Ab

3W (y,n, t)

h

where for notational convenience h=h Rnez and D̃33 =D33e
− (max(|Af

3 W |,|Ab
3W |))2

K2 .
The D̃33 terms can easily be calculated with linear interpolation. Combined with
the finite difference operators of section 2, this give the full discretization scheme.

The discretization scheme for D̃33 uses max(|Af
3W |, |Ab

3W |) because forward
and backwards finite difference schemes individually induce shifts near discon-
tinuities while central finite difference schemes sometimes allow diffusion across
region boundaries. This happens when fiber voxels have more than one isotropic
neighbor, then Ac

3W may be close to zero because the stencil does not depend on
the center point. Because of the spatial discretization and because every direction
n is considered, this is very likely to occur in almost all geometries.

4 Enhancement of DTI of the Human Brain

To test the algorithm on real data, a DTI brain scan was acquired from a healthy
volunteer with 132 gradient directions and a b-value of 1000s/mm2. Linear con-
tour enhancement (Eq. (9)) as well as Perona-Malik adaptive diffusion (Eq. (12))
was performed on it, as can be seen in Fig. 2.
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Fig. 2. DTI data of the corpus callosum and corona radiata fibers in a human brain with
b-value 1000s/mm2 and 132 gradient directions on voxels of (2mm)3. Top row: A coronal
slice of the original data with a region of interest in the yellow square. The region in the
blue square is shown for multiple values of K in Fig. 3. Middle row: The unprocessed
region of interest (left) and with added Rician noise(σ = 5 · 10−5, see [4] for definition)
and sharpening according to Eq.(13) (right). Bottom row: The result of linear contour
enhancement (left) and Perona-Malik diffusion (right). Marked in red are areas in which
the ventricles have induced crossing structures in the linear diffusion process.

Prčkovska et al. [12] showed that DTI combined with enhancement techniques
can extrapolate crossing information from contextual information. It is interest-
ing to see if such a method can be improved with a Perona-Malik type scheme,
especially since the ventricles may make such methods unreliable in those areas.

Since visualization of larger datasets is difficult, only coronal slices through the
center of the brain are depicted, where the ventricles are visible as large, isotropic
spheres. Because of the relative isotropy of real data, sharpening techniques have
to be employed. Squaring the input data is the simplest way to do this (and is
used here), but other techniques such as R

3
� S2-erosions are also an option

[6]. For visualization, a min-max-normalization and another sharpening step are
used, given by operator

V(U)(y, n)=

(
U(y,n) − Umin(y)

Umax(y) − Umin(y)

)2

, with Umin
max

(y) = min
max

{U(y,n) | n ∈ S2}. (13)

From Fig. 2 it can be seen that the Perona-Malik method performs better than
linear contour enhancement. The first effect is visible on the boundary of the
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data. Linear contour enhancement diffuses signal outside of the boundaries of
the image (because of zero padding boundary conditions for the calculation of
derivatives), which causes artifacts visible as horizontal structures near the top
and bottom edges. The same zero padding ensures a large derivative at these
places so Perona-Malik does not suffer from this problem.

The second effect is visible around the ventricles (marked by red in Fig. 2).
Linear diffusion shows some crossing structures directly to the right of the ventri-
cles, while the surrounding glyphs do not suggest there should be any crossings
there. It also affects the fibers of the corpus callosum to the top left of the
ventricles by bending them a bit upwards and away from the ventricles.

Figure 3 shows the effect of parameter K on the diffusion profile of the area
of fiber crossings where it can be seen that setting K too small leads to a short-
coming of the algorithm to correctly infer crossing information while setting it
too large leads to the same result as linear diffusion.

Fig. 3. Area with fiber crossings of the corpus callosum and corona radiata for different
values of K. All images created with D33 = 1, D44 = 0.01, t = 1 and Δt = 0.01

5 Conclusion

We have developed an edge-preserving, adaptive Perona-Malik smoothing pro-
cess using finite difference schemes that can be used to remove high frequency
noise and extrapolate fiber crossing information from DTI data by embedding
the DTI data into a function on the space of positions and orientations R

3
� S2.

Our experiments have shown that the adaptive diffusion process performs better
than linear processes in areas with large isotropic diffusion (such as the ventri-
cles of the brain) since at these areas adaptive diffusivity strongly reduces the
interference between isotropic glyphs in the ventricles and anisotropic glyphs of
the fibers.
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