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Abstract. We propose an adaptive norm strategy designed for the re-
storation of images contaminated by blur and noise. Standard Tikhonov
regularization can give good results with Gaussian noise and smooth
images, but can over-smooth the output. On the other hand, L1-TV (To-
tal Variation) regularization has superior performance with some non-
Gaussian noise and controls both the size of jumps and the geometry of the
object boundaries in the image but smooth parts of the recovered images
can be blocky. According to a coherence map of the image which is ob-
tained by a threshold structure tensor, and can detect smooth regions and
edges in the image, we apply L2-norm or L1-norm regularization to differ-
ent parts of the image. The solution of the resulting minimization problem
is obtained by a fast algorithm based on the half-quadratic technique re-
cently proposed in [2] for L1-TV regularization. Some numerical results
show the effectiveness of our adaptive norm image restoration strategy.

1 Introduction

The recent increase in the widespread use of digital imaging technologies in
consumer (e.g., digital camera and video) and other markets (e.g., medicine
imaging) has brought with it a simultaneous demand for image denoising and
deblurring.

The most common image degradation model, where the observed data f ∈ R
n2

are related to the underlying n × n image rearranged into a vector u ∈ R
n2

, is

f = Bu + e, (1)

where e ∈ R
n2

accounts for the perturbations and B is a n2 × n2 matrix repre-
senting the optical blurring.

The computation of a useful approximation of u can be accomplished by
replacing the linear system of equations (1) by a nearby system, whose solution
is less sensitive to the noise e. This replacement is commonly referred to as
regularization.
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The standard Tikhonov regularized solution of the inverse problem for two
dimensional image restoration of the observed image f , is the minimum of the
functional

J(u) =
1
p
‖Bu − f‖p

p +
μ

q
‖Au‖q

q, (2)

for p = 2, q = 2, where A is a regularization operator, and μ is the regular-
ization parameter that controls the trade-off between data fitting term and the
regularization term. The use of the Euclidean norm in (2) yields a least squares
problem to which many efficient algorithms exist [15,16]. However, the result is
only optimal when noise in the image f is white Gaussian noise, (e.g. no outliers)
and the solution is smooth, i.e., without discontinuities.

For the regularization term, there has been a growing interest in using the
L1 norm (q = 1). The minimization problem (2) with p = 2, q = 1, and A = ∇
(the gradient operator), becomes convex but non-smooth and it is denoted by
L2-TV regularization. While a number of algorithms [9,10], have been proposed
to solve this optimization problem, it remains a computationally expensive task
that can be prohibitively costly for large problems and for operators without a
fast implicit implementation or a sparse explicit matrix representation. Recently,
the L1-TV functional, corresponding to the choice p = 1, q = 1, A = ∇ in (2)
[2,12,13,11], has attracted attention due to a number of advantages, including
superior performance with non-Gaussian noise such as impulse noise. The solu-
tions are very stable with respect to outliers and moreover TV controls both the
size of jumps and the geometry of the object boundaries in the image.

The main goal of this work is to adaptively consider a suitable norm (q = 1 or
q = 2) according to the determined image structures (smooth regions or edges).
Although, the same presented framework can be considered on p, that is on the
data fitting term. The L2-norm regularization well restores corrupted images
with wide smooth regions but it oversmoothes the resulting images. On the other
hands, the L1-TV regularization has been successfully applied to restore images
because of its good property in preserving edges but in general, the resulting
images are blocky. Driven by a suitable map of the structures of the image, we
can apply the appropriate norm to selected parts of the image domain.

To achieve this aim, we introduce a measure of the coherence in the image
by mean of a threshold structure tensor [8] which provides a coherence map of
the image. Following the coherence map we use L2-norm for pixels in smooth
regions and L1-TV for pixels along edges and corners.

In Fig. 1(a) a simple test image is shown with a white square in a black
background corrupted by Gaussian blur and Gaussian noise. The restored image
obtained by solving (2) with p = 2, q = 2 is shown in Fig. 1(b), The restored
images with p = 1, q = 1 is shown in Fig. 1(c), while the proposed adaptive
approach is shown in Fig. 1(d). Comparing the images in Fig. 1(b),(c),(d) it is
clear how an adaptive choice can lead to denoised homogenous regions without
blocky effects. In fact it takes advantage of the L2 approach in the homogeneous
regions while keeping the edges thanks to the L1-TV method.

The paper is organized as follows. We briefly describe the half-quadratic al-
gorithm for L1-TV image restoration in Section 2. The proposed model and its
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(a) (b) (c) (d)

Fig. 1. (a) corrupted image by white Gaussian noise with band = 5, sigma = 3 and
noise level ν = 0.05; (b) restoration by (2) with p = 2, q = 2, (SNR = 9.62); (c)
restoration by L1-TV (2) with p = 1, q = 1, (SNR = 20.30); (d) restoration by our
proposal (adaptive-norm model (11) with p = 1), (SNR = 20.93), μ1 = 0.5, μ2 = 90.

numerical aspects are discussed in Section 3. Numerical examples and comments
are provided in Section 4. Section 5 contains concluding remarks.

2 Description of the HQ-Algorithm for L1-TV
Regularization

Let us briefly summarize a recently proposed algorithm [2] that minimizes in a
fast and accurate way (2) with p = q = 1, that is, with the notation of [2],

min
u

⎧
⎨

⎩

n2
∑

i=1

|Bi u − fi|γ + μ|∇ui|β

⎫
⎬

⎭
, (3)

where Bi is the ith row of the discrete data fidelity operator B; and β and γ
are both small positive regularization parameters which prevents the denomina-
tor from vanishing in numerical implementations. The specification of β and γ
involves trade-offs between the quality of edges restored and the speed in con-
verging. Precisely, the smaller β and γ are, the higher quality of the restoration
on the edges will be. We used the notation

|∇ui|β =
(
(∇xui)2 + (∇yui)2 + β

)1/2
,

|Biu − fi|γ =
(
(Biu − fi)2 + γ

)1/2
,

where ∇x, ∇y are the first order finite difference operators in the horizontal and
vertical directions, respectively.

The proposed idea is based on an iterative reweighting of a half-quadratic
algorithm (HQA) for L1-TV image restoration. Half-quadratic regularization,
was introduced in [4,14], and is based on the following expression for the modulus
of a real, nonzero number x:

|x| = min
v>0

{

v x2 +
1

4 v

}

, (4)
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whose minimum is at v = 1
2 |x| , and the function in the curly bracket in (4) is

quadratic in x but not in v; hence the name half-quadratic.
By using (4), the minimum of the function in (3) can be found by applying

an alternate minimization procedure to minimize the operator L, i.e.,

min
u, v>0, w>0

L(u, v, w),

where

L(u, v, w) =
n2
∑

i=1

[

μ

(

vi|∇ui|2β +
1

4 vi

)

+ wi|Bi u − fi|2γ +
1

4wi

]

(5)

With the notation in [2], we need to perform in sequence the three iterative
minimizations, for each iteration step k, that is

v(k+1) = argmin
v>0

L(u(k), v, w(k)),

with explicit solution

v
(k+1)
i =

(
2|∇u

(k)
i |β

)−1

(6)

and
w(k+1) = argmin

w>0
L(u(k), v(k+1), w),

with explicit solution

w
(k+1)
i =

(
2|Biu

(k) − fi|γ
)−1

(7)

and
u(k+1) = argmin

u
L(u, v(k+1), w(k+1)), (8)

whose solution u can be found by imposing that:

∇u

(
L(u, v(k+1), w(k+1))

)
= 0. (9)

This leads to the sequence of linear systems for updating u(k+1):
[
μ AT D̂β(u(k))A + BT Dγ(u(k))B

]
u(k+1) = BT Dγ(u(k)) f, (10)

where A ∈ R
2n2×n2

is the matrix discretizing the gradient operator [∇T
x ; ∇T

y ]
with, e.g., first order finite differences (this is the choice in our experiments),
D̂β(u(k)) := diag(Dβ(u(k)), Dβ(u(k))), and the weight component matrices
Dβ(u(k)), Dγ(u(k)) are diagonal matrices whose ith entries are given by

(
Dβ(u(k))

)

i
= 2v

(k+1)
i =

1

|∇u
(k)
i |β

,
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(
Dγ(u(k))

)

i
= 2w

(k+1)
i =

1
|Bi u(k) − fi|γ , i = 1, ..., n2.

In order to get an approximate L1-TV restoration, given an initial image f and an
initial guess for the recovered image u(0), there is just the need to apply an iter-
ative linear solver to (10) like conjugate gradients method for k = 0, 1, . . . , kmax.

We note that other reweighted least squares approachs can be considered
such as the one in [6] where an inexact Newton strategy is used to solve the
system (10).

3 The Adaptive Norm Algorithm (ANA)

The L1-TV restoration algorithm HQA, developed by [2] and summarized in Sec-
tion 2, works very well especially in presence of salt-and-pepper noise and near
edges and corners. On the other hand, with different types of image perturba-
tions, like the white Gaussian noise, and in the presence of smooth, homogeneous
regions and weak edges it can provide a less accurate restoration and can give
artifacts like, e.g., a blocky effect in smooth regions. A selective reweighted of
the half-quadratic approach is one of the possible natural ways to overcome these
well-known issues of the L1-TV restoration. With the word selective we mean
“using different norm for different pixels” of the image. To achieve this aim, one
could work with a norm continuously changing from 1 to 2, but this would lead
to the solution of a PDE derived from the variational problem similar to (2).
A preliminary step in this direction has been proposed by [18]. In contrast, we
choose not to change the norm continuously from 1 to 2, but, using a suitable
coherence map, we classify the pixels in the image as pixels belonging to homo-
geneous region or pixels belonging to edges or corners, and we associate them
with norm L2 or L1, respectively. Details on the construction of the coherence
map C are given in Section 3.1.

Driven by the coherence map, we use the L2 norm for smooth and homoge-
neous regions and the L1 norm near edges and corners. Let C be a diagonal
matrix with the ith entry (C)i = 1 if the ith pixel belongs to a homogeneous re-
gion identified by the coherence map, while (C)i = 0 near edges. Let C̄ = I −C,
with I the identity matrix. In view of this, we propose to modify the functional
in (2) to the following functional

Φ(u) = ‖Bu − f‖1
1 + μ1‖CAu‖1

1 + μ2‖C̄Lu‖2
2, (11)

where μ1, μ2 are regularization parameters, L is a regularization operator, such
as for example L = A or, e.g., the discrete Laplacian, and A is defined as in (10).
This new functional also caters for different regularization operators. Moreover,
the adaptive norm strategy can also be applied to the data fidelity term Bu− f
in (11).

The minimization of the functional (11) can be obtained in a way similar to
what is done for the half quadratic L1-TV and, in particular, by solving the
following linear systems for updating u(k+1)
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[
(μ1A

T CD̂β(u(k))CA + μ2L
T C̄L + BT Dγ(u(k))B

]
u(k+1) =

= BT Dγ(u(k))f (12)

where the weight component matrix D̂β(u(k)), incorporates the selective L1/L2

reweighted by the diagonal matrix C. We initialized the iterative process by
setting u(0) = f , and the coherence map is computed at each iteration step k.
In the following we will name our algorithm Adaptive Norm Algorithm (ANA).

In order to accelerate the solution of (12) the strategy used for sequences of
linear systems proposed in [1] can be used. However we found that stopping the
conjugate gradient solver after a few iterations already gives good results; see
Section 4 for numerical examples.

The model (11) allows the use of the techniques in [2] to prove the convergence
of sequence {u(k)} to a minimum of Φ(u). An analysis of the convergence of the
sequence {u(k)} generated by the proposed adaptive norm strategy can be based
on the analysis of the convergence of half-quadratic algorithm in [2].

3.1 The Coherence Matrix Construction

In order to detect if a pixel of the given image belongs to an edge or a homo-
geneous region, we need a strategy that is able to mark each pixel with a score
that we normalize in the range [0, 1].

Coherence enhancing image smoothing has been introduced in [8] and success-
fully applied in image filtering by anisotropic diffusion. This type of nonlinear
diffusion includes the construction of a diffusion tensor which is built as follows.
Given an image u, and its Gaussian-smoothed version uσ, a regularized shape
descriptor is provided by

Sδ(∇uσ) := (Kδ ∗ (∇uσ ⊗∇uσ)) (13)

where Kδ is a Gaussian kernel with δ ≥ 0. The matrix Sδ is symmetric positive
semi-definite and its eigenvalues λ1 ≥ λ2 integrate the variation of the gray
values within a neighborhood of size O(δ). They describe the average contrast in
the corresponding eigendirections v1 and v2. The orientation of the eigenvector
v2, corresponding to the smaller eigenvalue, represents the direction of lowest
fluctuations, the so-called coherence orientation. In this way, constant areas are
characterized by λ1 = λ2 = 0, while straight edges give λ1 � λ2 = 0.

The normalized coherence value which measures the anisotropic structures
within a window of scale δ is thus defined as

c =
(λ1 − λ2)2

max{(λ1 − λ2)2} , c ∈ [0, 1]. (14)

Thus, for anisotropic structures, c approaches 1, while it tends to zero for
isotropic structures. Let ci be the coherence value obtained by computing (14)
for the ith pixel in the vectorized image u. We use a “selective” threshold param-
eter τ (typically 0 	 τ < 1) to construct the diagonal matrix C, with (C)i = 1
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when the ith pixel belongs to a homogeneous region, that is when ci < τ , while
(C)i = 0 near edges. This aim to partition the image into homogeneous and
non-homogeneous regions, different partitioning will be further investigated.

(a) (b)

Fig. 2. Example 1:(a) Blur- and noise-free 320 × 320 image; (b) corrupted image by
symmetric Gaussian blur with band = 7 and sigma = 5, noise level ν = 0.02

4 Experiments and Results

Let u ∈ R
n2

represent a blur- and noise-free image. We generate an associated
blurred and noise-free image f̂ by multiplying u by a block Toeplitz matrix B ∈
R

n2×n2
with Toeplitz blocks. The matrix B represents a symmetric Gaussian

blurring operator and has two parameters band and sigma. The former specifies
the half-bandwidth of the Toeplitz blocks and the latter the variance of the
Gaussian point spread function. The larger the sigma is, the more the blurring
will be. A blur- and noise-contaminated image f ∈ R

n2
is obtained by adding

an error vector e ∈ R
n2

to f̂ .
Thus,

f = Bu + e.

The corrupted image f ∈ R
n2

is assumed to be available and we would like to
determine the blur- and noise-free image u. In our experiments, e has normally
distributed entries with mean zero, scaled to yield a desired noise-level

ν =
‖e‖
‖u‖ .

In all the examples we take the parameters β = 10−3 and γ = 10−6 in (3) and
we consider periodic boundary conditions for the difference matrix A. Equation
(12) is solved by the conjugate gradient method where we stopped when the
Euclidean norm of the relative error between successive approximations is less
than 5·10−5. The solver is very fast and we do not need to accelerate the solution
of (12) by preconditioning strategies.
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(a) (b)

(c) (d)

Fig. 3. Example 1: (a) restoration by (2) with p = 1, q = 2, μ = 10 (SNR = 10.68);
(b) restoration by L1-TV (2) with p = 1, q = 1, μ = 0.5 (SNR = 15.72) (c) restoration
by ANA with p = 1, μ1 = 0.2, μ2 = 10 (SNR = 16.76); (d) restoration by ANA with
adaptivity also for the fidelity term, μ1 = 0.2, μ2 = 10 (SNR = 16.47)

The displayed restored images provide a qualitative comparison of the perfor-
mance of the proposed adaptive norm algorithm. A quantitative comparison is
given by the Signal-to-Noise Ratio (SNR),

SNR := 10 log10

‖u − E(u)‖2
2

‖û − u‖2
2

dB, (15)

where u denotes the blur- and noise-free image, û the restored image and E(u)
is the mean grey-level value of the original image.

The choice of the parameters μ1 and μ2 in (11) clearly affect the quality of
the restored image, in our experimentation we have empirically chosen μ1 in
the range [0, 1], and μ2 in the range [10, 100], but further investigations will
be planned. In the literature there are several regularization parameter selec-
tion methods for Tikhonov regularization problems (p = 2, q = 2), e.g. the
discrepancy principle, the L-curve and the Generalized Cross-Validation (GCV)
methods [7]. Recently in [17] a generalization of GCV for the case p = 2, q = 1
has been proposed.
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Table 1. Example 2: Results for restorations of image corrupted by Gaussian blur
corresponding to different band,sigma values, and noise-levels ν. μ1 = 0.2, μ2 = 5 (first
8 rows) μ1 = 0.5, μ2 = 10 (last 4 rows).

band sigma ν SNR(L1-TV) SNR(ANA)

7 5 0.01 22.09 22.90
7 5 0.02 20.08 20.95
7 5 0.05 16.74 17.61
7 5 0.1 13.69 15.20

5 3 0.01 23.63 24.53
5 3 0.02 21.07 22.16
5 3 0.05 18.02 18.76
5 3 0.1 15.10 15.68

3 1 0.01 26.35 26.78
3 1 0.02 23.20 23.98
3 1 0.05 18.69 19.38
3 1 0.1 14.62 15.35

(a) (b)

Fig. 4. Example 2: (a) corrupted 512 × 512 image by symmetric Gaussian blur with
band = 7 and sigma = 5, noise level ν = 0.02; (b) restoration by ANA with p = 1,
μ1 = 0.2, μ2 = 1 (SNR = 20.95).

Example 1. In this example the image in Fig. 2(a) is corrupted by Gaussian
noise, characterized by noise level ν = 0.02, and symmetric Gaussian blur with
band = 7 and sigma = 5. The corrupted image is shown in Fig. 2(b). The
restorations obtained by applying the three approaches (L2-TV, L1-TV, ANA)
are shown in Figure 3. In Fig. 3 (d) the reconstructed image is obtained by
solving (11) with the adaptivity also in the fidelity term. In all the algorithms
we have considered kmax = 40 outer steps in (12) but also less outer steps
give satisfactory results. Our ANA gives the best SNR = 16.76. From a visual
inspection of Fig. 3(c),(d), we observe that white − homogemous regions are
clearly better restored.
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(a) (b)

(c) (d)

Fig. 5. Example 3: (a) corrupted image (SNR = 9.43); (b) coherence map; (c) restora-
tion by L1-TV (2) with p = 1, q = 1, μ = 0.5 (SNR = 17.15) (d) restoration by ANA
with p = 1, μ1 = 0.5, μ2 = 80 (SNR = 17.47)
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Example 2. In this example a 512 × 512 image is contaminated by different
noise levels and incremental Gaussian blur. In Fig. 4(a) the corrupted image by
Gaussian noise, characterized by noise level ν = 0.02, and symmetric Gaussian
blur with band = 7 and sigma = 5 is shown, while Fig. 4(b) shows the image
restored by ANA using kmax = 30 outer steps. In Table 1, algorithms L1-TV
and ANA are compared and their SNR values are reported in the fourth and
fifth columns, respectively. Table 1 and other additional numerical experiments,
indicate that the performance of our method is better for images with quite large
homogenous regions, for medium blur and for quite high noise levels.
Example 3. In this example we test our approach on a photographic image
of size 800 × 800 corrupted by symmetric Gaussian blur with band = 5 and
sigma = 3 and noise level ν = 0.02, shown in Fig. 5(a). The results of applying
kmax = 10 outer steps in (12) are shown in Fig. 5(c), (d) for algorithm L1-TV
and ANA, respectively. We can appreciate the good quality results we get with
just a few steps, that demonstrate the efficiency of the algorithm. In Fig. 5(b)
the used coherence map is illustrated.

5 Conclusions

In this paper we propose a fast algorithm that allow L1 or L2-norm regulariza-
tion for different image areas according to the image structures (e.g., smooth
regions or edges). Numerical experiments seem to confirm that our algorithm is
promising. We plan to extend this framework to general L1-regularized problems
and to consider other choices for p and q in model (2).
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