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Abstract. We present in this paper a unifying generalization of the
Mumford-Shah functional, in the Ambrosio-Totorelli set up, and the Bel-
trami framework. The generalization of the Ambrosio-Tortorelli is in us-
ing a diffusion tensor as an indicator of the edge set instead of a function.
The generalization of the Beltrami framework is in adding a penalty term
on the metric such that it is defined dynamically from minimization of
the functional.

We show that we are able, in this way, to have the benefits of true
anisotropic diffusion together with a dynamically tuned metric/diffusion
tensor. The functional is naturally defined in terms of the vielbein-the
metric’s square root. Preliminary results show improvement on both the
Beltrami flow and the Mumford-Shah flow.

Keywords: Inhomogeneous diffusion, anisotropic diffusion, Mumford-
Shah functional, Ambrosio-Tortorelli functional, Beltrami framework.

1 Introduction

The seminal work of Mumford and Shah[6] was a breakthrough, both conceptu-
ally and technically. From conceptual standpoint it reveled the need to unify the
de-noising and edge detection problems into one problem where the two tasks
are simultaneously solved. Technically it introduced a continuous functional to
give the conceptual understanding a mathematical language and used calculus
of variations to derive partial differential equations for the solution. It was inter-
preted later, via the relation to statistical inference ideas, as the prior on images
that favors piecewise smooth functions over other possible functions.

In the early nineties the concept of inhomogeneous diffusion, coined
“anisotropic diffusion” by Perona and Malik [7], gained popularity. With this
method (which was discovered earlier in an independent manner in mathemat-
ical physics by Rosenau [8]) it was possible to construct a controlled non-linear
filtering that reduces noise on one hand and conserves the sharpness of the image
on the other. The relation between “anisotropic diffusion” and the variational
approach became clearer after the “Total Variation” (TV) functional was intro-
duced by Rudin, Osher and Fatemi [9] and was later generalized by Faugeras
and Deriche in the Φ-formalism [5]. In these inhomogeneous diffusion methods
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the form of the local diffusion coefficient is predefined in advance. Usually the
diffusion coefficient is given as a known function of the amplitude of the lo-
cal gradient. One can show that, similarly to the Mumford-Shah approach, all
these methods treat images as functions and impose piecewise smoothness as a
prior.

Inhomogeneous diffusion was linked to the Mumford-Shah functional by the
seminal work of Ambrosio and Tortorelli [1]. In that approach the set of disconti-
nuities in the image is represented by an auxiliary, soft indicator, function. This
function serves as a local diffusion coefficient in the Euler-Lagrange or gradient
descent equations for the image. The difference from other inhomogeneous dif-
fusion methods is in the fact that this diffusion coefficient is determined dynam-
ically by the minimization of the functional. This dynamic choice of discontinu-
ities position and magnitude enhances the performance of de-noising/de-blurring
algorithms [3,4].

Towards the end of the nineties another distinction, and consequently, an
advancement was achieved. Weickert in the “Coherence-Enhancing diffusion”
(CD) [11] and Sochen et al. in the “Beltrami flow” (BF) [10] introduced true
anisotropic diffusion where the local diffusion function was replaced with a full
rank diffusion tensor. The latter was linked in the Beltrami framework to a
Riemannian metric. In this approach the image is not a function any more but a
Riemannian manifold and the anisotropic diffusion is a consequence of diffusion
of the image on an image-induced non-flat manifold. Both in the CD and in
the BF the diffusion tensor’s form is given in advance either as a variant of the
structure tensor in CD or as the induced metric in the BF.

It is the aim of this paper to generalize the Beltrami framework and the
Mumford-Shah approach by extending the respective functionals to a unify-
ing one. The starting point is the seminal work of Ambrosio and Tortorelli
[1]. We extend their approach that treat the image and it set of discontinu-
ities as two different dynamical variables that should be optimized by the same
functional. We present in this work a functional where the (color) image and
the diffusion tensor are treated both as dynamical variables. We interpret the
diffusion tensor as a metric and end up with an extension of the Beltrami
framework.

The paper is organized as follows: We review inhomogeneous diffusion meth-
ods and its derivation as a minimization of a functional in Section 1. The
Mumford-Shah functional and the Ambrosio-Tortorelli approach are presented
in Section 2. In that section we will also point out to the relation of the minimiza-
tion of the Ambrosio-Tortorelli’s functional to inhomogeneous diffusion. Section 3
presents anisotropic diffusion via the Coherent diffusion and the Beltrami frame-
works. Generalizing the anisotropic diffusion in an “Ambrosio-Tortorelli like”
functional is presented In section 4. The generalization of the Mumford-Shah
functional is find to generalize the Polyakov action of the Beltrami framework
at the same time. preliminary results are shown in Section 5 and we summarize
and conclude in Section 6.



The Beltrami-Mumford-Shah Functional 185

2 Inhomogeneous Diffusion

2.1 Isotropic Diffusion

Inhomogeneous diffusion started with the work of Perona and Malik [7]. In or-
der to better situated this formalism we first discuss isotropic diffusion. In the
isotropic case the filtering of the image is done via the solution of the isotropic
diffusion equation

ut = cΔu = cdiv(∇u) = div(c∇u)
u(t = 0) = u0 .

where Δu is the Laplacian of u, div is the divergent, ∇u is the gradient and c
is a constant. This equation is called in image processing context linear scale-
space because of its relation to convolution with a Gaussian with time dependent
variance. The relation to linear filtering is done via the Green function (kernel)
of this Partial Differential Equation (PDE):

u(x, y, t) =
∫

G(x − x′, y − y′; t)u0(x′, y′)dx′dy′

G(x, y; t) =
1

4πt
e−

x2+y2

4t .

The relation of isotropic diffusion to the calculus of variations is given by the
functional

S[u] =
∫

||∇u(x, y)||22dxdy

and its gradient descent

ut =
∂u

∂t
= −δS

δu

2.2 Inhomogeneous Diffusion

The idea of Perona and Malik was to use isotropic-like filtering far from the edges
of the image and to reduce the smoothing near the edges in order to preserve the
sharpness of the image. This was achieved in the PDE formulation via a local
diffusion function

ut = div(c(x, y)∇u)
u(t = 0) = u0 .

The function c(x, y) is the local diffusion coefficient and is usually taken as a
monotonically decreasing function of ||∇u||2.

The relation to minimization of a functional was nicely formulated by the
Φ-formalism of Deriche and Faugeras [5]. The functional they proposed is

SΦ[u] =
∫

Φ (||∇u(x, y)||2) dxdy ,
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and the gradient descent equation is

ut = div

(
Φ′(||∇u(x, y)||2)
||∇u(x, y)||2 ∇u

)

u(t = 0) = u0 .

The relation to Perona-Malik is given by c(s) = Φ′(s)/s.

2.3 TV and MAP

Another approach that links functional minimization and inhomogeneous diffu-
sion is Total Variation. In the original paper the functional is given by

STV [u] =
∫ [

1
2

(h ∗ u(x, y) − u0(x, y))2 + λ||∇u(x, y)||2
]

dxdy .

where h is a blur kernel and ∗ denotes convolution. The first term is called fidelity
term and the second term is referred to as the smoothing term. The smoothing
term is of the form of the Φ-formalism with Φ(s) = s. The gradient descent
equation reads

ut = λdiv
(

1
||∇u(x, y)||2∇u

)
− h̄ ∗ (h ∗ u(x, y) − u0(x, y))

u(t = 0) = u0 , h̄ = h(−x,−y) .

This equation is related to the Maximum A-posteriori Probability (MAP) method
of statistical inference. Indeed by the Bayes rule the conditional probability of
u given u0 denoted by P (u|u0) is given by P (u|u0, h) ∝ P (u0|u, h)P (u) where
P (u) is the prior on the space of images. The relation to TV is given by

P (u0|u, h) ∝ exp{−1
2

∫
(h ∗ u(x, y) − u0(x, y))2 dxdy}

P (u) ∝ exp{−λ

∫
||∇u(x, y)||2dxdy}

The a-posteriori probability function is proportional to exp{−STV } and the
MAP approximation is given by

û = argmax
u

P (u|u0, h) = argmin
u

STV [u] .

We will refer to the relations between PDEs, functionals, filters and statistical
inference in all the following analysis.

3 The Mumford-Shah Functional

The Mumford-Shah functional aims to simultaneously solve the problems of de-
noising and edge detection. For this end the functional is formulated as

SMS [u, K] =
1
2

∫
Ω

(u − u0)
2
dxdy + λ

∫
Ω/K

||∇u||22dxdy + α (length of K) ,
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where the first term is the fidelity term. The second term dictates smoothing
far from the set K of image discontinuities. The set K is assumed to be a set
of continues curves and the last term is a penalty on the total length of these
curves. The minimization and analysis of this functional are not simple since the
set of discontinuities intervenes in the boundary of the integration. This is a free
boundaries problem which is notoriously difficult. One of the best ways to deal
with this problem is via the Γ -convergence technique, which was proposed by
Ambrosio and Tortorelli.

3.1 The Ambrosio-Tortorelli Functional

In this approach one constructs a series (or a one-parametric family) of func-
tionals that converge to a functional such that the limit of the series minimizers
converges to the minimizer of the limit functional. The functionals in the series
are easier to analyze. Ambrosio and Tortorelli suggested the following family of
ε dependent functionals

Sε
AT [u, v] =

∫
Ω

[
1
2

(u − u0)
2 +

λ

2
v2||∇u||22 + α

(
ε||∇v||22 +

(v − 1)2

4ε

)]
dxdy

which Γ -converges to the Mumford-Shah functional when ε → 0. Here v is an
auxiliary function that encodes the images discontinuity set: It approaches one
in smooth regions and approach zero near an edge. The gradient descent for the
image u leads to an inhomogeneous diffusion

ut = λdiv
(
v2∇u

) − (u − u0)
u(t = 0) = u0 .

where the edge function v2 plays the role of local diffusion coefficient.
The great difference from the TV and the Φ-formalism is in the way this dif-

fusion coefficient is determined. In the latter methods the form of the diffusion
coefficient is predefined. Here, in the Ambrosio-Tortorelli approach, this coeffi-
cient is a dynamical variable that is found by minimizing of the functional! The
gradient descent equations read

vt = αεΔv −
(

λ||∇u||22v +
α(v − 1)

2ε

)

v(t = 0) = 1 .

The advantage of dynamic determination of the edge set or equivalently the
diffusion coefficient was shown in [3] for the case of de-blurring. The Ambrosio
Tortorelli functional was shown to perform better than the TV and the Beltrami
framework. The latter is the subject of the next section.
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4 The Beltrami Framework

In this framework a two-dimensional (multi-channel) image is considered to be
an imbedding of a surface in a higher dimensional manifold, or in more general
terms an image is a section of the spatial-feature trivial bundle. The section is
endowed with a metric and is, thus, a Riemannian manifold. The functional over
the space of sections is the Polyakov action:

SB [u, G] =
∫ ∑

rs

(∇ur)T G−1∇usHrs(u)
√

detGdxdy

where G is the metric of the image manifold, Hr,s are entries of the metric of
the spatial-feature space and the indices are for the different spatial and chan-
nel/feature, e.g. colors, of the image. One important parameter of the Beltrami
framework is the ratio between spatial distance and feature distance. This ratio,
termed here β is needed to measure distances in the combined spatial-feature
space.

The inner product on the manifold is

< f, h >G=
∫

f(x, y)h(x, y)
√

det Gdxdy

The EL equations of the functional with respect to this inner product necessitate
division by

√
detG. Assuming that H is the identity matrix the gradient descent

equation for the image read

ur
t =

1√
det G

div
(√

detGG−1∇ur
)

.

Note that G−1 plays the role of the diffusion tensor and leads to a true anisotropic
diffusion flow. The metric is determined by minimizing the functional. The an-
alytic solution is the induced metric.

5 The Beltrami-Mumford-Shah Functional

The main idea of this paper is to generalize the Mumford-Shah functional. In-
deed, one can rewrite the MS functional via the AT approach as follows

Sε
AT [u, v] =

∫
Ω

[
1

2
(u − u0)

2 +
λ

2
(∇u)T

(
v2 0
0 v2

)
∇u + α

(
ε||∇v||22 +

(v − 1)2

4ε

)]
dxdy

This is a suggestive form that can be easily generalized to

Sε
AT [u, V ] =

∫
Ω

[
1

2
(u − u0)

2 +
λ

2
(∇u)T V T V ∇u + α

(
ε||∇V ||2F +

||V − Id||2F
4ε

)]
dxdy ,

where

V =
(

v11 v12

v12 v22

)
, ||V ||2F = v2

11 + 2v2
12 + v2

22 .
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and ||∇V ||2F = ||Vx||2F + ||Vy ||2F . This turns the dynamic diffusion coefficient v
into a dynamic diffusion tensor V !

The next observation is that we can write

G−1 = V T V

and reinterpret the functional in a new way: Let u and u0 be functions on a
Riemannian manifold. We demand that the two functions be similar in the L2

norm on the manifold. The metric is G and V −1 is the vielbein i.e. the symmetric
square root of the metric. The fidelity and smoothness terms should be written
on the manifold. The penalty term regards the metric (or the vielbein) only. It
enforces it to be close to the identity matrix in smooth regions and drive the
metric to a singular matrix that aligns along the discontinuity near an strong
edge. The penalty regularizes the metric as well. The new functional, thus, read

Sε
BMS [u, V ] =

∫ [
1
2

(u − u0)
2 + λ (∇u)T V T V ∇u

] dxdy

detV

+ α

∫ (
ε||∇V ||2F +

||V − Id||2F
4ε

)
dxdy .

This functional generalizes the Mumford-Shah functional from a scalar diffu-
sion coefficient to a tensor one going from inhomogeneous smoothing to a true
anisotropic one. It also generalizes the Beltrami framework since the metric, that
serves here as the diffusion tensor, is not predefined but is a dynamical variable
that is fixed along the flow by the functional.

For multi-channel image, e.g. color image one may write

Sε
BMS [u, V ] =

∫ [
1
2

∑
r

(ur − ur
0)

2 +
λ

2

∑
r,s

(∇ur)T V T V ∇usHr,s(u)

]
dxdy

detV

+ α

∫ (
ε||∇V ||2F +

||V − Id||2F
4ε

)
dxdy

where Hr,s is the metric in the feature space e.g. color space.
The minimization equations, assuming that Hab = δab, are

ua
t = λ(det V )div

(
1

detV
V T V ∇ua

)
− (ur − ur

0)

(Vij)t = (V −1)ij

∑
a

(ua − ua
0) + αεΔVij − α(V − Id)ij

2ε
− λ

2

∑
r

(∇ur)T Wij∇ur

where

W11 =
(

v11 v12

v12 0

)
, W22 =

(
0 v12

v12 v22

)
, W12 =

(
v12 2v11

2v22 v12

)
,
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6 Results

6.1 Numerical Implementation

Let
∂f

xu := u(x + 1, y) − u(x, y)

and
∂f

y u := u(x, y + 1) − u(x, y)

be the forward finite difference approximation of ∂x(u) and ∂y(u) respectively.
Similarly, backward derivatives are defined as

∂b
xu := u(x, y) − u(x − 1, y)

and
∂b

yu := u(x, y) − u(x, y − 1).

The forward gradient is therefore

∇f (u) := (∂f
x , ∂f

y )T (u),

and the the backward gradient is given by

∇b(u) := (∂b
x, ∂b

y)T (u).

Numerical scheme of the functional derivatives takes the form:

δF,v11 = − v22
∑

c
(uc − uc

0)2

2(v11v22 − v2
12)2

+ λ
[
v11(∂f

xu)2 + 2v12∂f
x∂f

y u
]

+
α

2ε
(v11 − 1) − 2αε∇b · ∇f v11.

δF,v22 = − v11
∑

c
(uc − uc

0)2

2(v11v22 − v2
12)2

+ λ
[
v22(∂f

y u)2 + 2v12∂f
x∂f

y u
]

+
α

2ε
(v22 − 1) − 2αε∇b · ∇f v22.

δF ,v12 = − v12
∑

c
(uc − uc

0)2

(v11v22 − v2
12)2

+ λ
[
v12(∂f

xu)2 + v12(∂f
y u)2 + 2(v11 + v22)∂f

x u∂f
y u

]
+

α

ε
v12 − 4αε∇b · ∇f v12.

δF ,ur = (ur − ur
0) − λdet V ∇b

(
1

detV
V T V ∇fuc

)

Optimization was carried out using the alternate minimization technique using
the line search strategy. Descent direction was computed as gradient descent,
and step size was calculated by Armijo rule [2]. The algorithm stops whenever
all variables have reached convergence tolerance ε. The algorithm of Tensor-MS
method is given below.
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(a) Original image (b) Beltrami-Mumford-Shah flow.
PSNR= 30.21

(c) Mumford-Shah flow. PSNR= 29.56 (d) Beltrami flow. PSNR= 29.13

Algorithm Energy Descent(u0)

– Initialize u0 = u0, v
0
11 = 1, v0

22 = 1, v0
12 = 1, k = 0

– Do
1. τv11 = ArmijoStep(F , vk

11)
2. vk+1

11 = vk
11 − τv11δF ,v11(vk

11, v
k
22, v

k
12, u

k)
3. τv22 = ArmijoStep(F , vk

22)
4. vk+1

22 = vk
22 − τv22δF , v22(vk+1

11 , vk
22, v

k
12, u

k)
5. τv12 = ArmijoStep(F , vk

12)
6. vk+1

12 = vk
12 − τv12δF , v12(vk+1

11 , vk+1
22 , vk

12, u
k)

7. τu = ArmijoStep(F , uk)
8. uk+1 = vk

12 − τuδF ,u(vk+1
11 , vk+1

22 , vk+1
12 , uk)

– while ‖vk+1
11 − vk

11‖, ‖vk+1
22 − vk

22‖, ‖vk+1
12 − vk

12‖, ‖uk+1 − uk‖ ≥ ε
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Beltrami and MS methods are similarly implemented using the corresponding
derivatives. Parameter set for two images are given in the following table, where
in all cases tolerance was set to ε = 10−3.

Tensor MS MS Beltrami

α λ ε α λ ε λ β

Ballet 0.1 0.5 0.01 0.1 0.6 0.01 0.65 1.0

Lenna 0.1 0.5 0.1 0.1 0.6 0.01 0.68 1.0

6.2 Results

(e) Original image (f) Beltrami-Mumford-Shah flow.
PSNR= 32.57

(g) Mumford-Shah flow. PSNR= 31.99 (h) Beltrami flow. PSNR= 31.83

7 Summary and Conclusions

We present in this paper a unifying generalization of the Mumford-Shah func-
tional and the Beltrami framework. We show that we are able, in this way,
to have the benefits of true anisotropic diffusion together with a dynamically
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tuned metric/diffusion tensor. The functional is naturally defined in terms of
the vielbein-the metric’s square root. preliminary results show improvement on
both the Beltrami flow and the Mumford-Shah flow.
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