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Abstract. In this paper, we propose fast and efficient algorithms for p-
elastica energy (p = 1 or 2). Inspired by the recent algorithm for Euler’s
elastica models in [16], the algorithm is extended to solve the problem
related to p-elastica energy based on augmented Lagrangian method. The
proposed algorithms are as efficient as the previous method in terms of
low computational cost per iteration. We provide an algorithm which
replaces fast Fourier transform (FFT) by a cheap arithmetic operation
at each grid point. Numerical tests on image inpainting are provided
to demonstrate the efficiency of the proposed algorithms. We also show
examples of using the proposed algorithms in curve reconstruction from
unorganized data set.
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1 Introduction

The curvature of the curve has been extensively used in minimization prob-
lems in image processing and computer vision. D. Mumford, M. Nitzberg, and
T. Shiota [14] introduced segmentation with depth to find a continuation curve
γ which minimizes Euler’s elastica energy (p = 2):

E(γ) =
∫

γ

(a+ b|κ|p) ds, (1)
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where κ is the curvature of the curve in R2, a and b are positive constants,
and p ≥ 1. In [2], Euler’s elastica problem is reduced to solve a set of algebraic
equations in Jacobi’s functions. Semicontinuity and relaxation properties of (1)
were presented in [6]. Following the work [14], Masnou and Morel [13] proposed
a variational formulation in the geometrical recovery of the missing parts from
a given image u0 : D\ D̃ ⊂ R2 → R, where D ⊃ D̃. In [13], an energy functional
to complete of all level lines of u0 is written by using change of variable and the
coarea formula from (1):

∫
D

(
a+ b

∣∣∣∣∇ · ∇u
|∇u|

∣∣∣∣
p)

|∇u|, (2)

where p ≥ 1. Note that the standard Lebesgue measure in R2 is omitted in
the rest of paper. The authors in [8] solved the minimization problem (2) with
p = 2 by using the Euler-Lagrange equation and the gradient descent method.
In [9], they showed that the curvature term is essential to achieve a connectivity
principle. The properties of variational model and the existence of minimizing
functional (2) are investigated by Ambrosio and Masnou [1]. The authors in [4]
proposed an energy functional minimization with two arguments, n which rep-
resents the normalized image gradient and a gray image (real-valued function)
u defined on D:

min
n,u

(∫
D
|∇ · n|p (c1 + c2|∇k ∗ u|) + ζ

∫
D

(|∇u| − n · ∇u)
)
,

|n| ≤ 1, ||u|| ≤ ||u0||L∞(D\D̃),

(3)

where c1 and c2 are positive constants, k denotes a Gaussian kernel; see [4] for
boundary conditions and the detail admissible sets. Note that the constraint
term |∇u| − n · ∇u in (3) is crucially used in [16]. The existence of minimizers
of a relaxed variant of (3) is proved in [5].

Efficient numerical algorithms for energy minimization related to the cur-
vature are studied very recently. The authors [15] used a linear programming
relaxation and the discrete elastica [7] to minimize energy functionals for image
segmentation and inpainting with curvature regularity. The algorithm in [15] is
independent of initialization and computes the global minimum. An improved
fast algorithm to the elastica model in [15] is introduced in [10]. The authors
in [3] proposed an efficient algorithm based on graph cuts for minimizing the
Euler’s elastica model for image denoising and inpainting. In [16], new variables
and several constraint conditions are introduced to change the Euler’s elastica
model into a constraint minimization and then augmented Lagrangian method
(ALM) is used to obtain a stationary point.

In this paper, we present fast and efficient algorithms for p-elastica energy:
∫

Ω

(
a+ b

∣∣∣∣∇ · ∇u
|∇u|

∣∣∣∣
p)

|∇u| + η

q

∫
Γ

|u− u0|q, (4)

where p ≥ 1, q ≥ 1, Ω is the domain of image u, and Γ � Ω is the domain
of a given image u0. The minimization of the functional (4) interpolates the
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values u0 on the boundary ∂Γ into the inpainting domain Ω \ Γ . Inspired by
the recent algorithm in [16], we extend the algorithm to minimize the p-elastica
energy (4). The proposed algorithms use less memory and lower computational
cost per iteration than [16]. Numerical tests on image inpainting are provided to
demonstrate the efficiency of the proposed algorithms. Moreover, we present a
model and numerical examples for curve reconstruction from unorganized data
set which has the same regularity term in (4) with p = 1.

2 Review of ALM for Euler’s Elastica Model

In this section, the augmented Lagrangian method for Euler’s elastica model [16]
is briefly introduced and we discuss properties of the algorithm and possible
improvements in terms of computational cost. When p = 2 in (4), the authors [16]
proposed several new variables to change the energy minimization of (4) into the
constraint minimization problem:

min
v,u,m,p,n

∫
Ω

(
a+ b(∇ · n)2

) |p| + η

q

∫
Γ

|v − u0|q

with v = u, p = ∇u, n = m, |p| = m · p, |m| ≤ 1.
(5)

Note that the variable m plays an important role to avoid nonuniqueness of
a solution in the Euler-Lagrange equation for n-subproblem; see more details
in [16]. In order to solve the constraint optimization problem (5), the following
augmented Lagrangian functional is used:

L (v, u,m,p,n;λ1,λ2, λ3,λ4) =
∫

Ω

(
a+ b(∇ · n)2

) |p| + η

q

∫
Γ

|v − u0|q

+ r1

∫
Ω

(|p| − m · p) +
∫

Ω

λ1(|p| − m · p) +
r2
2

∫
Ω

|p−∇u|2

+
∫

Ω

λ2 · (p −∇u) +
r3
2

∫
Ω

(v − u)2 +
∫

Ω

λ3(v − u)

+
r4
2

∫
Ω

|n− m|2 +
∫

Ω

λ4 · (n − m) + δR(m),

(6)

where λ1, λ2, λ3, and λ4 are Lagrange multipliers, r1, r2, r3, and r4 are positive
penalty parameters, and an indicator function δR(·) on R = {m ∈ L2(Ω) | |m| ≤
1 a.e. in Ω} is defined by

δR(m) =
{

0 m ∈ R,
+∞ otherwise.

Note that the constraint |m| ≤ 1 is imposed by the indicator function and
then we have |p| − m · p ≥ 0, a.e. in Ω. That is, it is not necessarily to use
L2 penalization for the term multiplied by r1 which causes nonlinearity in the
p-subproblem.
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An iterative algorithm is suggested to find a stationary point of (6). Lagrange
multipliers λ0

1, λ0
2, λ

0
3, and λ0

4 and the variables v0, u0, m0, p0, and n0 are
initialized to zero. For k ≥ 0, an approximate minimizer

(
vk+1, uk+1,mk+1,pk+1,nk+1

) � argmin
v,u,m,p,n

L(v, u,m,p,n;λk
1 ,λ

k
2 , λ

k
3 ,λ

k
4)

is obtained by alternatingly solving the subproblems. Let ṽ0 = vk, ũ0 = uk,
m̃0 = mk, p̃0 = pk, and ñ0 = nk. For l = 0, · · · , L − 1, minimizers ṽl+1, ũl+1,
m̃l+1, p̃l+1, and ñl+1 are approximately obtained by alternatingly minimizing
the following energy functionals:

E1(v) =
η

q

∫
Γ

|v − u0|q +
∫

Ω

r3
2

(
v − ũl

)2
+ λk

3v, (7)

E2(u) =
∫

Ω

r2
2

∣∣p̃l −∇u∣∣2 − λk
2 · ∇u+

r3
2

(
ṽl+1 − u

)2
+ λk

3(−u), (8)

E3(m) = δR(m) +
∫

Ω

r4
2

∣∣ñl − m
∣∣2 − λk

4 ·m − (r1 + λk
1)m · p̃l, (9)

E4(p) =
∫

Ω

(
a+ b

(∇ · ñl
)2

)
|p| + (r1 + λk

1)
(|p| − m̃l+1 · p)

+
∫

Ω

r2
2

∣∣p−∇ũl+1
∣∣2 + λk

2 · p, (10)

E5(n) =
∫

Ω

b(∇ · n)2
∣∣p̃l+1

∣∣ +
r4
2

∣∣n− m̃l+1
∣∣2 + λk

4 · n. (11)

After L iterations, variables at (k + 1)th step are updated:
(
vk+1, uk+1,mk+1,pk+1,nk+1

)
=

(
ṽL, ũL, m̃L, p̃L, ñL

)
.

A large number of iteration L may be necessary to find the minimizers of
the above functional L(v, u,m,p,n;λk

1 ,λ
k
2 , λ

k
3 ,λ

k
4). However, it is empirically

enough to use L = 1 according to recent literatures [17,19]. Lagrange multipliers
λk+1

1 , λk+1
2 , λk+1

3 , and λk+1
4 are updated by the standard method in augmented

Lagrangian method; see details in [16]. For q = 1 or 2, subproblems to minimize
E1(v), E3(m), and E4(p) can be solved by closed form formulas which only take
arithmetic operations at each grid point. Subproblems to minimize E2(u) and
E5(n) need to solve a linear partial differential equation (PDE) and a coupled
PDE with variable coefficients, respectively.

The most difficult and time-consuming process in the algorithm [16] is to solve
the Euler-Lagrange equation of (11):

−2∇ (
b
∣∣p̃l+1

∣∣∇ · n)
+ r4

(
n− m̃l+1

)
+ λk

4 = 0. (12)

A frozen coefficient method with FFT is suggested to solve (12) and it needs
an inner iteration. Since the equation is a coupled PDE, FFT is used twice per
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each inner iteration; see details in [16]. Since FFT is also used to solve the Euler-
Lagrange equation of (8), the algorithm needs FFT more than three times for
each outer iteration k. Therefore, if an algorithm uses FFT three times per outer
iteration, it will be optimal. Such an optimality can be achieved as long as the
variable coefficient b|pl+1| in (12) is eliminated.

When the boundary condition is directly imposed without using the fidelity
term η

q

∫
Γ
|u − u0|q in (5) and the irregular inpainting domain is assigned, it is

obvious that FFT cannot be used to solve the Euler-Lagrange equations of (8)
and (11). Moreover, there are also some applications in [12] which we cannot use
FFT in the augmented Lagrangian method [17]. In the case of u-subproblem (8),
even though FFT is not used, it does not make any difficulties to find the mini-
mizer because the Euler-Lagrange equation of (8) is a linear PDE:

−r2�u+ r3u = r3ṽ
l+1 + λk

3 − r2∇ · p̃l −∇ · λk
2 .

We can use linear iterative methods for symmetric positive definite matrix. How-
ever, it is not straightforward to solve the equation (12) in this manner. Con-
sidering some applications defined on a two dimensional surface in R3, it is
necessary to develop an algorithm to efficiently minimize p-elastica model (4)
without using FFT.

Note that one may use the gradient descent method to find a minimizer of (11).
If the explicit method is applied, a small time step should be used because of
large variation of |p̃l+1| in the domain and then it makes a slow convergence.
Since the coefficient b

∣∣p̃l+1
∣∣ in (12) varies in the domain and the equations are

coupled, the implicit method is difficult to be applied.

3 Proposed Algorithms

In this section, we propose two algorithms. The first method is designed to elim-
inate the variable coefficients in (12) and then an optimal number of using FFT
is achieved for each outer iteration. The second method replaces FFT procedure
in [16] for minimizing (8) and (17) into a very simple updating scheme and it is
memory efficient comparing with the first method. Both algorithms are as fast
as the algorithm in Section 2.

3.1 Method 1

In order to extend the algorithm [16] to solve the p-elastica problem (p = 1 or 2)
and remove the variable coefficient in (12), we simply introduce a new variable

g = ∇ · n. (13)

That is, we use the augmented Lagrangian functional for p-elastica problem with
the additional positive penalty parameter r5 and the Lagrange multiplier λ5:
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L1 (v, u,m,p, g,n;λ1,λ2, λ3,λ4, λ5) =
∫

Ω

(a+ b|g|p) |p| + η

q

∫
Γ

|v − u0|q

+ r1

∫
Ω

(|p| − m · p) +
∫

Ω

λ1(|p| − m · p) +
r2
2

∫
Ω

|p−∇u|2 + δR(m)

+
∫

Ω

λ2 · (p −∇u) +
r3
2

∫
Ω

(v − u)2 +
∫

Ω

λ3(v − u) +
r4
2

∫
Ω

|n − m|2

+
∫

Ω

λ4 · (n − m) +
r5
2

∫
Ω

(∇ · n − g)2 +
∫

Ω

λ5(∇ · n − g).

(14)

We use the same iterative algorithm for (6) to find a stationary point of (14). Af-
ter all variables and Lagrange multipliers are initialized to zero, an approximate
minimizer for k ≥ 0

(
vk+1, uk+1,mk+1,pk+1, gk+1,nk+1

)
� argmin

v,u,m,p,g,n
L1(v, u,m,p, g,n;λk

1 ,λ
k
2 , λ

k
3 ,λ

k
4 , λ

k
5)

is obtained by alternatingly solving the subproblems. Letting ṽ0 = vk, ũ0 =
uk, m̃0 = mk, p̃0 = pk, g̃0 = gk, and ñ0 = nk, for l = 0, · · · , L − 1, we
find minimizers ṽl+1, ũl+1, m̃l+1, p̃l+1, g̃l+1, and ñl+1 of the following energy
functionals:

E1
1 (v) = E1(v), E1

2 (u) = E2(u), E1
3 (m) = E3(m),

E1
4 (p) =

∫
Ω

(
a+ b

∣∣g̃l
∣∣p) |p| + (r1 + λk

1)
(|p| − m̃l+1 · p)

+
∫

Ω

r2
2

∣∣p−∇ũl+1
∣∣2 + λk

2 · p, (15)

E1
5 (g) =

∫
Ω

b
∣∣p̃l+1

∣∣ |g|p +
r5
2

(∇ · ñl − g
)2

+ λk
5(−g), (16)

E1
6 (n) =

∫
Ω

r4
2

∣∣n − m̃l+1
∣∣2 + λk

4 · n +
r5
2

(∇ · n− g̃l+1
)2

+ λk
5∇ · n. (17)

After L iterations, we update
(
vk+1, uk+1,mk+1,pk+1, gk+1,nk+1

)
=

(
ṽL, ũL, m̃L, p̃L, g̃L, ñL

)
.

In practice, L = 1 is used to make a consistent and fair comparison with the
algorithm in Section 2. For p and q = 1 or 2, there are closed form formulas to
find minimizers of E1

1 (v), E1
3 (m), E1

4 (p), and E1
5 (g) and it takes simply arithmetic

operations at each grid point. We use FFT to solve the Euler’s Lagrange equation
of E1

2 (u).
Now, the Euler-Lagrange equation of E1

6 (n) is a linear coupled PDE:

−r5∇ (∇ · n) + r4n = r4m̃l+1 − λk
4 − r5∇g̃l+1 + ∇λk

5 . (18)

The variable coefficient in (12) is removed and solution ñl+1 of PDE are unique
with a suitable boundary condition and the positive penalty parameter r4. In
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the discrete frequency domain, the coupled PDE (18) yields a 2 by 2 system of
equation for each frequency and the determinant of the coefficient matrix is not
zero if r4 > 0. Note that the operator ∇(∇·) is singular and then the coupled
PDE becomes unstable if r4 � 0. Unlike the iterative method for solving (12)
in [16], the coupled PDE (18) can be directly solved with just two FFT algorithms
to obtain a minimizer of E1

6 (n).
One may use the gradient descent method to find the minimizer of E1

6 (n) (17).
However, it introduces another variable for time step which should be properly
chosen depending on r4 and r5.

In numerical examples of Method 1, we use FFT for subproblems E1
2 (u)

and E1
6 (n) to make a fair comparison with the algorithm in Section 2.

3.2 Method 2

In this subsection, we propose an algorithm which is more effective than pre-
vious algorithms in terms of using memory and is as fast as the Method 1
in subsection 3.1 and the algorithm in Section 2. Note that the algorithms
for (6) and (14) need to use 14 and 16 arrays, respectively, which have the
same size as a given image u0. The easiest technique to reduce memory usage
is to eliminate unnecessary variables. Even though all variables in (14) play
an important role in separating nonlinear properties and dissolving higher or-
der derivatives in p-elastica model (4), the variable m may not be very cru-
cial because |n| ≤ 1 can be achieved by a brute force method. Therefore, we
simply propose the following augmented Lagrangian functional for p-elastica
problem:

L2 (v, u,p, g,n;μ1,μ2, μ3, μ4) =
∫

Ω

(a+ b|g|p) |p| + η

q

∫
Γ

|v − u0|q

+ c1

∫
Ω

(|p| − n · p) +
∫

Ω

μ1(|p| − n · p) +
c2
2

∫
Ω

|p−∇u|2

+
∫

Ω

μ2 · (p−∇u) +
c3
2

∫
Ω

(v − u)2 +
∫

Ω

μ3(v − u)

+
c4
2

∫
Ω

(∇ · n − g)2 +
∫

Ω

μ4(∇ · n− g), with |n| ≤ 1,

(19)

where μ1, μ2, μ3, and μ4 are Lagrange multipliers, c1, c2, c3, and c4 are positive
penalty parameters. Note that the algorithm for L2 needs 12 arrays which have
the same size as a given image u0.

We use the same iterative algorithm for (6) to find a stationary point of (19).
After all variables and Lagrange multipliers are initialized to zero, for k ≥ 0, an
approximate minimizer

(
vk+1, uk+1,pk+1, gk+1,nk+1

) � arg min
v,u,m,p,g,n

L2(v, u,m,p, g,n;μk
1,μ

k
2 , μ

k
3 , μ

k
4)
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is obtained by alternatingly solving the subproblems. Letting ṽ0 = vk, ũ0 = uk,
p̃0 = pk, g̃0 = gk, and ñ0 = nk, for l = 0, · · · , L − 1, we find minimizers ṽl+1,
ũl+1, p̃l+1, g̃l+1, and ñl+1 of the following energy functionals:

E2
1 (v) =

η

q

∫
Γ

|v − u0|q +
∫

Ω

c3
2

(
v − ũl

)2
+ μk

3v, (20)

E2
2 (u) =

∫
Ω

c2
2

∣∣p̃l −∇u∣∣2 − μk
2 · ∇u+

c3
2

(
ṽl+1 − u

)2
+ μk

3(−u), (21)

E2
3 (p) =

∫
Ω

(
a+ b

∣∣g̃l
∣∣p) |p| + (c1 + μk

1)
(|p| − ñl+1 · p)

,

+
∫

Ω

c2
2

∣∣p −∇ũl+1
∣∣2 + μk

2 · p, (22)

E2
4 (g) =

∫
Ω

b
∣∣p̃l+1

∣∣ |g|p +
c4
2

(∇ · ñl − g
)2

+ μk
4(−g), (23)

E2
5 (n) =

∫
Ω

c4
2

(∇ · n− g̃l+1
)2

+ μk
4∇ · n − (c1 + μ1)n · p̃l+1. (24)

After L iterations, we update(
vk+1, uk+1,pk+1, gk+1,nk+1

)
=

(
ṽL, ũL, p̃L, g̃L, ñL

)
.

Similar to the Method 1, we observe that L > 1 does not make quite different
numerical results from using L = 1.

Now, one may easily notice that we have a huge problem in the n-subproblem
for minimizing the functional (24) whose the Euler-Lagrange equation is

−c4∇
(∇ · n− g̃l+1

) − (c1 + μ1) p̃l+1 −∇μk
4 = 0. (25)

Obviously, the solution of PDE is not unique because of the operator ∇ (∇·).
Comparing with (12) and (18), such a problem is caused by the lack of linear term
in the coupled PDE (25), which has been provided by the new variable m in the
augmented Lagrangian functionals in (6) and (14). However, we simply generate
a linear term by the linearization of L2 penalization for g = ∇ · n, inspired by
the linearized proximal alternating minimization algorithm in [20]. That is, the
energy functional (24) can be approximated by linearization of (∇ · n − g)2 at
ñl:

E2
5 (n) =

∫
Ω

μk
4∇ · n − (c1 + μ1)n · p̃l+1 +

c4
2

(∇ · n − g̃l+1
)2

�
∫

Ω

μk
4∇ · n − (c1 + μ1)n · p̃l+1

+
∫

Ω

c4
2

((∇ · ñl − g̃l+1
)2 − 2∇ (∇ · ñl − g̃l+1

) · (n− ñl
)

+ δ
∣∣n− ñl

∣∣2) ,
where δ is a constant. Therefore, we approximately obtain a minimizer ñl+1

of E2
5 (n) by a cheap arithmetic operation at each grid point:

ñl+1 = ñl +
1
c4δ

(
(c1 + μ1) p̃l+1 + c4∇

(∇ · ñl − g̃l+1
)

+ ∇μ4

)
. (26)
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Table 1. Computational costs are presented for Fig. 1: number of outer iteration /
computational time (sec)

Fig. 1-(a) Fig. 1-(b) Fig. 1-(c)

size 80 × 80 100 × 100 300 × 235

Algorithm in [16] 449/6.57 307/7.75 329/80.64
Method 1 177/2.23 323/6.90 430/79.97
Method 2 187/1.31 445/4.95 383/32.38

More interestingly, the closed form formula (26) is also obtained in a different
way. The linear term can be added by an explicit time discretization of the
gradient decent method. That is, if we use the gradient descent method for
approximately finding a minimizer of (24), we have

∂n
∂τ

= (c1 + μ1) p̃l+1 + c4∇
(∇ · n − g̃l+1

)
+ ∇μ4. (27)

Then, explicit Euler scheme gives the same formula as (26) with the time step
τ = 1

c4δ .
For p and q = 1 or 2, there are closed form formulas to find minimizers of

E2
1 (v), E1

4 (p), and E1
5 (g) and it takes simply arithmetic operations at each grid

point. In the proposed Method 2, we use the GS method for u-subproblem of
minimizing E2

2 (u). Considering a method for low computational cost, one sweep
of GS iteration is practically enough for approximately solving the equation. For
the n-subproblem E2

5 (n) (24), we use a simple and cost effective formula (26).

4 Numerical Results

We demonstrate numerical examples using the proposed algorithms in image
inpainting and curve reconstruction from unorganized points set. We use the
staggered grid system to obtain finite difference discretization of our models;
see more details in [16]. The test system is a Intel(R) Core(TM) i7 CPU Q720
1.6GHz with 4GB RAM.

4.1 Image Inpainting

Numerical tests on image inpainting are provided to demonstrate the efficiency
of the proposed algorithms. In Fig. 1, we choose the same examples shown in [16].
The inpainting results from Method 1 and Method 2 numerically show that the
curvature term works to connect the level curves of image on a large inpainting
domain.

In Table 1, the improved computational speed is demonstrated. In order to
show efficiency of our algorithms, we use smaller (or same) value of stoping crite-
rion (relative residuals) than [16]. Even though the number of outer iteration is
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(a) (b) (c)

Fig. 1. The red regions in the first row indicate the inpainting domain. The images in
the second and third row are image inpainting results from Method 1 and Method 2,
respectively. For all results obtained by Method 1, we use a = 1 and η = 103. The
remaining parameters are b = 50, r1 = 1, r2 = r3 = 20, r4 = 102, r5 = 1 in (a), b = 50,
r1 = 1, r2 = 102, r3 = 50, r4 = 5 · 102, r5 = 10 in (b), and b = 30, r1 = 2, r2 = 6 · 102,
r3 = 102, r4 = 103, r5 = 10 in (c). For all results obtained by Method 2, we use a = 1,
η = 103, and δ = 1. The remaining parameters are b = 10, c1 = 1, c2 = 5, c3 = 10,
c4 = 102 in (a), b = 50, c1 = 1, c2 = 50, c3 = 10, and c4 = 103 in (b), and b = 30,
c1 = 2, c2 = 4 · 102, c3 = 102, and c4 = 103 in (c).

larger than the algorithm in [16], the computational time in Method 2 is reduced
because we use a very cheap arithmetic operation at each grid point. Method 1
usually may have a similar computational cost to the algorithm in [16] because
the number of inner iteration in the frozen coefficient method for solving (12) is
empirically less than 5 in an early stage of outer iteration. Moreover, the number
of inner iteration tends to be reduced as long as the outer iteration is increased.
Since our results are obtained by smaller (or same) relative residual error bound
than [16] and they are converged faster than the previous method in Section 2,
the proposed algorithms improve the computational cost.

In Fig. 2, we also show the graphs (log scales on xy-axis) of residuals, relative
errors in Lagrange multipliers, relative error in u, and energy for Method 2 of
the example in Fig. 1-(a); see more details in [16]. The profile of graphs are
very similar to the results from Method 1 and [16]. The proposed algorithms are
numerically verified that they are practically faster than the previous algorithm
in [16].
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Fig. 2. From the left, the log scale plots of residuals, relative errors in Lagrange multi-
pliers, relative error in u, and energy on y-axis versus iteration on x-axis for Method 2
of the example in Fig. 1-(a). Note that graphs from Method 1 have almost same profiles.

4.2 Curve Reconstruction

To address a reconstruction problem, the following model
∫

Ω

(
aψ + b

∣∣∣∣∇ · ∇u
|∇u|

∣∣∣∣
)
|∇u| + 1

2

∫
Γ

ηu((c1 − u0)2 − (c2 − u0)2) s.t. 0 ≤ u ≤ 1

is minimized by the proposed methods, where c1 and c2 are positive constants
and ψ is the unsigned distance function induced from the unorganized points
set. As in [18], u0 is an initial guess obtained with region-growing methods, and
the fidelity parameter is a function rather than a constant, which suggests that
to what extent the initial guess is faithful. Specifically, we use

η(x) =
{
cη ψ(x) > 5h,
0 ψ(x) ≤ 5h,

for each point x in the domain Ω, where h is the mesh size and cη is a constant.
For simplicity, we use the domain Ω = [−1, 1]× [−1, 1] and we update c1 and c2
for every 100 iterations in our implementation as [11]:

c1 =
1

A(R)

∫
R
u and c2 =

1
A(Ω \ R)

∫
Ω\R

u,

where R ≡ {x ∈ Ω : u(x) ≥ 0.5} and A(·) measures the area of a set.
To impose the constraint on u, a projection operator in [11] is carried on a

new variable v in the augmented Lagrangian formulations in Sections 2 and 3.
For example, in Method 1, the v-subproblem is solved as follows:

{
ṽ = argminṽ Ẽ1(v) = argminṽ

∫
Ω

η
2 ṽf +

∫
Ω

r3
2

(
ṽ − ũl

)2 + λk
3 ṽ,

v = max{min{ṽ, 0}, 1}.
Since u converges to v, the constraint is therefore imposed on u correspondingly.
The same projection operation is used in Method 2 as well. In all experiments,
it is observed that u converges to a function between 0 and 1. Figure 3 presents
a reconstruction example.
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(a) (b) (c)

(d)

Fig. 3. (a) Noisy points set sampled from a circle; (b) The result produced by Method 1;
(c) The result produced by Method 2; (d) Error (28) vs. iteration times (loglog). In this
example, we use a = 1, b = 104, t = 2 · 104, r1 = 1, r2 = 0.1, r3 = 2 · 102, r4 = 2, and
r5 = 102 in Method 1. The parameters for Method 2 are a = 0.5, b = 104, t = 2 · 104,
c1 = 1, c2 = 0.1, c3 = 1.5 · 102, c4 = 30, and δ = 1.

(a) (b) (c)

Fig. 4. Results from different b in Method 2: (a) Noisy point set; (b) Reconstructed
curve with b = 1; (c)Reconstructed curve with b = 10. The remaining parameters are
selected as a = 1, t = 2 · 104, c1 = 1, c2 = 0.1, c3 = 2 · 102, c4 = 2, and δ = 1.

Fig. 3-(a) shows the points set with 5% noise sampled from a unit circle. From
the noisy points set, Fig. 3-(b) illustrates the reconstructed circle produced by
Method 1 and Fig. 3-(c) is the result with Method 2. It can be seen that Method 1
yields smoother result because it solves (18) completely. Fig. 3(d) gives the
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error against iteration times. Here, the error is the measurement of comparison
between the reconstructed curves and the exact unit circle as follows:

Eu =
|1exact − 1u|L1

|1exact|L1
, (28)

where 1u and 1exact are the indicator functions, which take value 1 or 0 for
each point in the domain. 1exact is an indicator function of the circle centered
at origin and with radius 0.3

1exact(x) =
{

1 ‖x‖ ≤ 0.3,
0 ‖x‖ > 0.3,

where |x| is the Euclidean length of the point x and

1u(x) =
{

1 u(x) > 0.5,
0 u(x) ≤ 0.5.

Although the convergent rates of Methods 1 and 2 are almost similar, Method 2
is much faster than Method 1 for each iteration.

Fig. 4 gives another reconstruction example by Method 2. Fig. 4-(a) shows
noisy points set sampled from a chinese character. Figs. 4-(b) and 2-(c) illustrate
reconstructed curves with different parameters. We numerically observe that a
better result is obtained by increasing parameter b.

5 Conclusion

We proposed two algorithms to efficiently solve the p-elastica model in image
inpainting and curve reconstruction from unorganized point set. Inspired by
the recent work [16], we used augmented Lagrangian method and extend the
algorithm in [16]. The first algorithm eliminates an inner iterative steps in [16]
and the second algorithm replaces FFT into a very cheap arithmetic operation.
From the numerical results, the efficiency of the algorithms are demonstrated.
In the future, we would like to extend the model in subsection 4.2 into 3D
to reconstruct a surface which minimizes its mean curvature. Moreover, the
Euler’s elastica model on the surface is a possible extension of using the proposed
Method 2.
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