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Abstract. We investigate coercive objective functions composed of a
data-fidelity term and a regularization term. Both of these terms are
non differentiable and non convex, at least one of them being strictly
non convex. The regularization term is defined on a class of linear opera-
tors including finite differences. Their minimizers exhibit amazing prop-
erties. Each minimizer is the exact solution of an (overdetermined) linear
system composed partly of linear operators from the data term, partly
of linear operators involved in the regularization term. This is a strong
property that is useful when we know that some of the data entries are
faithful and the linear operators in the regularization term provide a
correct modeling of the sought-after image or signal. It can be used to
tune numerical schemes as well. Beacon applications include super reso-
lution, restoration using frame representations, inpainting, morphologic
component analysis, and so on. Various examples illustrate the theory
and show the interest of this new class of objectives.

Keywords: Image processing, Inverse problems, Non-smooth analy-
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1 Introduction

We consider general linear problems where observed data v[i], 1 � i � q, are
related to an object of interest u ∈ R

p according to

v[i] = 〈ai, u〉 with perturbations, 1 � i � q .

The object u can be a signal or an n×m image rearranged into a p-length vector.
The family of linear operators {ai ∈ R

p, 1 � i � q} can be any. For instance,
it can describe direct observation, optical blurring, sub-sampling, missing data
problems, a Radon or a Fourier transform (e.g. in computational tomography),
and so on [6], [4], [1]. Following a regularization approach, see e.g. [10], [3], [5],
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[2], [9], given data v ∈ R
q, the sought-after solution û is defined as a minimizer

of an objective F(·, v) : R
p �→ R of the form

F(u, v) =
∑

I

ψ
(〈ai, u〉 − v[i]

)
+ β

∑

j∈J

ϕ(〈gj , u〉), β > 0 (1)

I = {1, · · · , q} and J = {1, · · · , r}. (2)

The linear operators {gj ∈ R
p, j ∈ J} can be any. In practice they produce finite

differences of various orders, or discrete Laplacian operators. Let {dj ∈ R
p, j ∈

J} denote one of these difference operators; another case of interest is when
gj = (W ∗)�dj where W ∗ is the synthesis operator of a tight frame transform
W . To avoid trivialities, it is assumed that

ai �= 0, ∀i ∈ I and gj �= 0, ∀j ∈ J .

Let us denote by A ∈ R
q×p and G ∈ R

r×p the matrices whose rows are all a�i
and all g�i , respectively:

A = [a1, · · · , aq]� and G = [g1, · · · , gr]� ,

where the superscript � stands for transposed. We assume that

H1 kerA ∩ kerG = {0}.
We adopt the classical notation

R+ = {t ∈ R : t � 0} and R
∗
+ = {t ∈ R : t > 0} .

We investigate the case when both ψ : R → R+ and ϕ : R → R+ are even
nondifferentiable at zero and concave on R+, where at least one of them is strictly
concave on R+. Thus ψ and ϕ share some features. The precise assumptions on
these functions are presented jointly.

H2 For f = ψ and f = ϕ, we have

1. f : R → R+ is even, C2 on R \ {0} and f(t) > f(0) = 0 if |t| �= 0;
2. f ′(0+) > 0 and f ′(t) > 0 on R

∗
+;

3. f ′′ is increasing on R
∗
+, f ′′(t) � 0, ∀t > 0 and lim

t↘0
f ′′(t) is well defined.

H3 At least one of the functions f = ψ or f = ϕ satisfy
f is strictly concave on R+: f ′′(t) < 0, ∀t > 0 and lim

t↘0
f ′′(t) < 0 .

Several examples of functions f are shown in Table 1 and plotted in Fig. 1.

1.1 Motivation

An illustration of a minimizer of F(·, v) in (1) for A = I, and (ψ, ϕ) satisfying
H2 and H3, is given in Fig. 2. One observes that restored samples either fit data
samples exactly or form constant patches.
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Table 1. Functions f
∣∣
R+

: R+ → R+ satisfying H2. All functions except (f6) satisfy

H3 as well. The functions (f3), (f4), (f5) and (f6) are coercive.

(f1) (f2) (f3) (f4) (f5) (f6)

f
∣∣
R+

α t

α t+ 1
1 − αt ln(αt+ 1) (t+ ε)α − εα tα t

α > 0 0 < α < 1 α > 0 0 < α < 1, ε > 0 0 < α < 1 ·

f ′∣∣
R∗
+

α
(αt+1)2

−αt lnα α
αt+1

α(t+ ε)α−1 αtα−1 1

f ′(0+) α − lnα α αεα−1 +∞ 1

f ′′∣∣
R∗
+

−2α2

(αt+1)3
−αt(lnα)2 −α2

(αt+1)2
α(α− 1)(t+ ε)α−2 α(α− 1)tα−2 0

lim
t↘0

f ′′(t) −2α2 −(lnα)2 −α2 α(α− 1)εα−2 −∞ 0
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Fig. 1. Plots of the PFs f
∣∣
R+

given in Table 1
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Fig. 2. F(u, v) =
∑p

i=1 ψ(u[i] − v[i]) + β
∑p−1

i=1 ϕ(u[i + 1] − u[i]) for ψ(t) = |t|0.7 and

ϕ(t) = α |t|
α |t|+1

. Note that H1 is satisfied and that (ψ,ϕ) satisfy H2 and H3. Data v are
plotted with “—”, each sample of the minimizer û is marked with “+”.
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Example 1. This example is quite illuminating. Given v ∈ R \ {0}, consider
F(·, v) : R �→ R for A = I, and a pair of functions (ψ, ϕ) satisfying H2 and H3:

F(u, v) = ψ(u− v) + βϕ(u) , ∀u ∈ R, (3)
F (u, v) = F(u, v), ∀u ∈ R \ {0, v}. (4)

Note that F is the restriction of F on R \ {0, v}.
The differential of order j of a function f with respect to its k-th argument

is denoted by Dj
kf . Since F is coercive, it does admit minimizers. Let û be a

minimizer of F(·, v). The necessary conditions for F to have a (local) minimum
at û �= 0 and û �= v, or equivalently, for F to have a (local) minimum at û,
namely D1F (û, v) = 0 and D2

1F (û, v) � 0, do not hold. Indeed, by H3, the
second derivatives on R \ {0, v} of ψ and ϕ are non positive and at least one of
them is negative. So

D2
1F (u, v) = ψ′′(u − v) + βϕ′′(u) < 0 ∀u ∈ R \ {0, v} .

Hence there is no minimizer such that û �= 0 and û �= v. In this way, F (·, v)
in (4) does not have minimizers. It follows that any minimizer of F(·, v) in (3)
satisfies

û ∈ {0, v}.
Example 2. Given v ∈ R, consider F(·, v) : R

2 �→ R as given below:

F(u, v) = ψ
(
u[1] + u[2] − v

)
+ β

(
ϕ(u[1]) + ϕ(u[2])

)
, 0 < β < 1 .

Let ψ = ϕ satisfy H2 and H3. Then F(·, v) has two strict global minimizers

û1 = [v, 0]� and û2 = [0, v]�

yielding F(û1, v) = F(û2, v) = βϕ(v) < ϕ(v) = ψ(v) = F(0, v). When ψ and ϕ
are nonsmooth and strictly nonconvex on R+, we have two strict global (sparse)
minimizers.

If ψ(t) = ϕ(t) = |t|, then F(·, v) is convex and reaches its minimum for

ût = (1 − t) [v, 0]� + t [0, v]� , 0 � t � 1 .

This yields F(ût, v) = β
∣∣v

∣∣, 0 � t � 1. The minimum is hence nonstrict.

1.2 Notations

Given a K × p matrix B with rows b�i , 1 � i � K, a K-length vector w and a
strictly increasing subsequence � ⊂ {1, · · · ,K}, say � = (�[1], · · · , �[n]) with
�[1] < · · · < �[n], where n = ��, we systematically denote

B� = [b�[1], · · · , b�[n]]� and w�[i] = w
[
�[i]

]
, 1 � i � n . (5)

We write B�
� for the transposed of B�. The range of B� reads R(B�). We

denote by 1l a column vector of whatever length appropriate to the context
composed of ones. If necessary, 1lK specifies that the vector is of length K.

The canonical basis of R
K is denoted

{
ei, i ∈ {1, · · · ,K}}.
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1.3 Outline of the Paper

Existence and strictness of local minimizers are shown in section 2. Section 3
reveals that a strict (local) minimizer is the unique solution of a linear system.
Stability of minimizers is studied in section 4. Section 5 focuses on the case when
ψ and ϕ are coercive and strictly nonconvex on R+. The numerical examples in
section 6 confirm the theoretical results. All proofs can be found in [7].

2 Preliminaries

2.1 The Objective F Is Not Too Bad

Even though nonconvex and nonsmooth, F(·, v) does have minimizers. A general
strong sufficient condition is evoked below.

Lemma 1. Let (ψ, ϕ) satisfy H2 and H3. Let one of the following assumptions
hold true:

(a) rank (A) = p and ψ is coercive, i.e. lim
t→∞ψ(t) = ∞;

(b) H1 holds, and ψ and ϕ are coercive.

Then ∀ v ∈ R
q and ∀β > 0, the function F(., v) in (1) does admit a minimum.

We should emphasize that Lemma 1 gives only strong sufficient conditions for the
existence of a minimizer. They are not necessary, as illustrated by the example
given below.

Example 3. Consider F of the form (1) for p = 3 and q = 2 where

A =
[

1 0 0
0 0 1

]
, v =

[
1
3

]
,
g1 = [1 −1 0]�,
g2 = [0 1 −1]�, ψ(t) = |t| , ϕ(t) =

α|t|
α|t| + 1

. (6)

Assumptions H1, H2 and H3 are satisfied. The objective F reads

F(u, v) =
∣∣u[1] − v[1]

∣∣ +
∣∣u[3] − v[2]

∣∣ + β
(
ϕ(u[1] − u[2]) + ϕ(u[2] − u[3])

)
.

Clearly, F(., v) does not meet the conditions of Lemma 1 since rank (A) = 2 <
p = 3 and ϕ is not coercive. Nevertheless, one computes that for α = 1 and
β = 2 the global minimizer of F(., v) reads

û = [1 1 3]� . (7)

Below we show that if a (local) minimizer û fits exactly some data entries, the
relevant rows of A are almost surely linearly independent.

Lemma 2. For ν ⊆ {1, · · · , rankA} such that rankAν < �ν, consider the subset
Vν

def= {w ∈ R
�ν : w ∈ R(Aν) }. We have

(i) Vν � R
�ν is closed and L

�ν(Vν) = 0.
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(ii) Given v ∈ R
q such that vν ∈ R

�ν \ Vν , let û be a (local) minimizer of
u �→ F(u, v) satisfying

{
i ∈ I : 〈ai, û〉 = v[i]

}
= ν. Then rankAν = �ν .

Given v ∈ R
q, let û be a (local) minimizer of u �→ F(u, v). With each such û we

systematically associate the following subsets:

ν = {i ∈ I : 〈ai, û〉 = v[i]} and νc = I \ ν = {i ∈ I : 〈ai, û〉 �= v[i]} , (8)

σ = {i ∈ J : 〈gi, û〉 = 0} and σc = J \ σ = {i ∈ J : 〈gi, û〉 �= 0} . (9)

In the case of Example 3, we have ν = {1, 2} = I and σ = {1}, so νc = ∅ and
σc = {2}.

For (u, v) ∈ R
p × R

q, denote

ψi(u) = ψ
(〈ai, u〉 − v[i]

)
, ∀ i ∈ I, (10)

ϕi(u) = ϕ(〈gi, u〉), ∀ i ∈ J. (11)

Since (ψ, ϕ) are C2 on R \ {0}, one can expect that ψi and ϕj in (10)-(11) are
locally C2 provided that i �∈ ν and j �∈ σ.

Lemma 3. Given v ∈ R
q, let F(·, v) reach a (local) minimum at û. Let H2 and

H3 hold. Put

ρ = min
{

min
i∈νc

|〈ai, û〉 − v[i]|
‖ai‖2

, min
j∈σc

|〈gj , û〉|
‖gj‖2

}
.

We have ρ > 0. Let u ∈ B(û, ρ) def= {w ∈ R
p : ‖w − û‖2 < ρ} then

i ∈ νc ⇒ ψi(u) ∈ C2
(
B(û, ρ)

)
, (12)

j ∈ σc ⇒ ϕi(u) ∈ C2
(
B(û, ρ)

)
. (13)

2.2 (Local) Minimizers Are Strict

A local minimizer û is strict if there is a neighborhood O ⊂ R
N , containing û,

such that F(û, v) < F(w, v) for any w ∈ O. Such a minimizer is isolated.
With a (local) minimizer û of F(·, v) we associate the manifolds given below:

Kû = {w ∈ R
p : Aνw = vν and Gσw = 0} , (14)

Kû = {w ∈ R
p : Aνw = 0 and Gσw = 0} , (15)

where ν and σ are defined in (8)-(9). Since

û ∈ Kû,

we are guaranteed that Kû is nonempty. Note that Kû is the vector subspace
tangent to Kû. Equivalently, for any w ∈ Kû we have û + w ∈ Kû: thus Kû

contains directions in which the (local) minimizer û might be nonstrict.
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Lemma 4. Consider F of the form (1). Let (ψ, ϕ) satisfy H2. For v ∈ R
q, let û

be a (local) minimizer of u �→ F(u, v). The subsets ν and σ read according to (8)
and (9), respectively. The vector subspace Kû is defined in (15) and we suppose
that

dim(Kû) � 1 .

(i) If ψ satisfies H3 and rankAν < rankA, then ∃w ∈ Kû such that Aw �= 0.
(ii) If ϕ satisfies H3 and rankGσ < rankG, then ∃w ∈ Kû such that Gw �= 0.
(iii) If ψ and φ satisfy H3 and we have rankAν<rankA or rankGσ<rankG, then

∃w ∈ Kû such that
[
Aw �= 0 or Gw �= 0

]
.

Given v ∈ R
q, we consider the function given below

F (·, v) : Kû �→ R

F (u, v) =
∑

i∈νc

ψ(〈ai, u〉 − v[i]) + β
∑

j∈σc

ϕ(〈gj , u〉) (16)

where Kû is defined in (14). Obviously, F (·, v) is the restriction of F(·, v) on Kû.
One can remind the function F in Example 1. For any w ∈ Kû we have

〈D2
1F (û, v)w,w〉 =

∑

i∈νc

ψ′′(〈ai, û〉 − v[i]
)〈ai, w〉2 + β

∑

i∈σc

ϕ′′(〈gj , û〉) 〈gj , w〉2 .

Lemma 5. Let F be such that (ψ, ϕ) satisfy H2. For v ∈ R
q, let û be a (local)

minimizer of F(·, v). Suppose that the vector subspace Kû in (15) satisfies

dim(Kû) � 1 .

Assume also that one of the following conditions is met:

1. ψ satisfies assumption H3 and rankAν < rankA ;
2. ϕ satisfies assumption H3 and rankGσ < rankG ;
3. ψ and φ satisfy H3, and we have rankAν < rankA or rankGσ < rankG .

Then there exists w ∈ Kû such that 〈D2
1F (û, v)w,w〉 < 0 .

In general, this lema states quite an unusual result: the restriction of F(·, v) on
Kû, namely F (·, v), does not have minimizers. The reader is invited to remind
the restricted function F in Example 1 since it does not have minimizers neither.

Next we show that the (local) minimizers of F(·, v) are strict in general.

Theorem 1. Consider F of the form (1). Let (ψ, ϕ) satisfy H2. For v ∈ R
q,

let û be a (local) minimizer of u �→ F(u, v). The subsets ν and σ are defined
according to (8) and (9), respectively, and the vector subspace Kû is defined in
(15). Assume also that one of the conditions 1, 2 or 3 in Lemma 5 is met. Then

Kû = {û} and Kû = {0} , (17)

so F(·, v) reaches a strict (local) minimum at û.
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Example 4. Let us consider again Example 3, p. 114. From the ingredients of F
given in (6), the minimizer in (7) and the definition of Kû in (14), on finds

Kû = {w ∈ R
3 : 〈a1, w〉 = v[1], 〈a2, w〉 = v[2], 〈g1, w〉 = 0}

= {w ∈ R
3 : w[1] = v[1], w[3] = v[2], w[1] − w[2] = 0}

= {w ∈ R
3 : w[1] = v[1], w[3] = v[2], w[2] = w[1]}

= {w ∈ R
3 : w[1] = w[2] = v[1], w[3] = v[2]}

= {w ∈ R
3 : w[1] = 1, w[2] = 1, w[3] = 3} = {û}.

Then Kû = {0}.

Let us list the cases when we cannot guarantee that the minimum is strict.

1. rankAν = rankA and ψ meets H3 but ϕ does not.
Given the fact that Aν is defined according to (5), the condition given above
means that all ai, i ∈ νc are linear combinations of {ai, ∀i ∈ ν}. Then we
have the equivalence

[
Aνw = 0 ⇔ Aw = 0

]
. In the first instance, this

situation occurs when
Aû = v .

In case we wish to change some data equations (e.g. if there is some noise),
such a minimizer does not do the job. Otherwise, rankAν = rankA < q
means that we have reached the maximum among all data entries that can
be fitted exactly as far as in general v �∈ R(Aν) = R(A) whose dimension is
strictly smaller than the dimension of the data space.

2. rankGσ = rankG and ϕ meets H3 but ψ does not.
A similar reasoning than above shows that

Gσw = 0 ⇔ Gw = 0 .

For instance, if {gj , j ∈ J} are first-order differences, Gû = 0 means that
û is constant, i.e. û = c1l for any c ∈ R \ {0}. Such an û is certainly not a
meaningful solution.

We conclude that all these cases, excluded from Theorem 1, are quite pathological.

3 Either Fidelity or Prior

3.1 Strict Minimizers Solve Exactly Linear Systems

In spite of the high nonlinearity of the minimization problem, it is shown below
that every strict (local) minimizer of F(·, v) is the unique solution of a linear
system composed out of some elements of {ai, i ∈ I} and of {gj, j ∈ J}.

Theorem 2. Let (ψ, ϕ) satisfy H2 and H3. For û a (local) minimizer of F(·, v),
we posit the definitions of ν and σ in (8)-(9) and the one of Kû in (15). Assume
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also that one of the conditions 1, 2 or 3 in Lemma 5 is met. Then û is the unique
solution of the linear system of equations given below:

〈ai, û〉 = v[i] ∀i ∈ ν ,
〈gj , û〉 = 0 ∀j ∈ σ .

(18)

Let Hν,σ ∈ R
p×(�ν+�σ) read

Hν,σ =
[
A�

ν G�
σ

]�
. (19)

We have rankHν,σ = p . Let vν,σ ∈R
�ν+�σ have its first subvector equal to vν and

its second �σ-length subvector composed of zeros: vν,σ =
[
v�ν , (0 1l�σ)�

]�. Then

û = (H�
ν,σHν,σ)−1H�

ν,σvν,σ . (20)

Example 5. Let r = p and ai = gi = ei for i = 1, · · · , p. Then F reads

F(u, v) =
p∑

i=1

(
ψ

(
u[i] − v[i]

)
+ βϕ(u[i])

)
.

According to Theorem 2, we have

either û[i] = v[i] or û[i] = 0, ∀i ∈ {1, · · · , p} .
Next consider that gi are as in Fig. 2, i.e.

gi[j] =

⎧
⎨

⎩

−1 if j = i
1 if j = i+ 1
0 if j �∈ {i, i+ 1}

for i ∈ {1, · · · , p− 1} .

Now

F(u, v) =
p∑

i=1

ψ
(
u[i] − v[i]

)
+ β

p−1∑

i=1

ϕ
(
u[i+ 1] − u[i]

)
.

By Theorem 2 we find that

û[i] = v[i] or û[i] = û[i+ 1], ∀{i, i+ 1} ∈ I × I .

In words, the (local) minimizer is composed partly of constant patches, partly
of pixels that fit data samples exactly, as seen in Fig. 2.

On the role of the regularization parameter β > 0. Theorem 2 and in
particular the expression for a (local) minimizer û given in (20) does not make an
explicit reference to the regularization parameter β. Usually F(·, v) has numerous
(local) minimizers. According to the same theorem, each one of them is strict
and is the unique solution of a linear system of the form (18). Any other such
(local) minimizer û′ corresponds to different subsets ν′ ⊂ I and σ′ ⊂ J and in
general, F(û, v) �= F(û′, v). As far as a minimizer is determined by the subsets
ν′ ⊂ I and σ′ ⊂ J , the selection of different local minimizers, including the
global minimizer, is controlled by β.
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4 Local Stability of Strict Minimizers

Here we study how local minimizers do behave under variations of the data.

Definition 1. Let F : R
p × R

q → R and O ⊆ R
q be open. We say that U :

O → R
p is a (local) minimizer function for the family of functions F(·,O) =

{F(·, v) : v ∈ O} if for any v ∈ O, the function F(·, v) reaches a strict (local)
minimum at U(v).

Theorem 3. Let (ψ, ϕ) satisfy H2 and H3. For v ∈ R
q \ {0}, let û be a (local)

minimizer of u �→ F(u, v). We posit the definitions of ν and σ as given in (8)-(9),
and of Kû in (15). Assume also that one of the conditions 1, 2 or 3 in Lemma 5
is met. Then there exists � > 0 and a (local) minimizer function U

‖v′ − v‖2 < � ⇒ û′ = U(v′) (21)
U(v′) = (H�

ν,σHν,σ)−1H�
ν,σv

′
ν,σ (22)

where Hν,σ is defined according to (19).

Note that the (local) minimizer function U is linear with respect to data v. The
global minimizer function is piecewise linear with respect to data v.

5 A Special Case

Here we address a particular class of functions (ψ, ϕ), as given in H4 below.

H4 Assume the following:

– ψ and ϕ satisfy H2 and H3 ;
– ψ and ϕ are coercive ;
– ψ′(0+) = +∞ and ϕ′(0+) = +∞ .

Popular examples are 
p “norms” for 0 < p < 1, see (f4) in Table 1.

Corollary 1. Theorems 2 and 3 holds true only under assumption 3.

It appears that each collection of ai’s and gj ’s of rank p corresponds to a (local)
minimizer of F(·, v). The result can be seen as the inverse of Theorem 2.

Theorem 4. Given v ∈ R
q, let ν ⊂ I and σ ⊂ J be such that the system of

linear equations given below does admit a unique solution û:

〈ai, û〉 = v[i] ∀i ∈ ν ,
〈gj , û〉 = 0 ∀j ∈ σ .

(23)

Then for any β > 0, û is a strict (local) minimizer of an objective F(·, v) of the
form (1) where (ψ, ϕ) satisfy H4.
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6 Numerical Examples

Here we consider a toy missing data recovery problem using F : R
p × R

q → R

F(u, v) =
∑

i∈I

ψ(〈ai, u〉 − v[i]) + β

p−2∑

i=1

ϕ
(
u[i+ 2] − 2u[i+ 1] + u[i]

)
(24)

where p = 80 for ψ(t) = | t | 0.7 and ϕ(t) = α |t|
α |t|+1 . Here 〈gi, û〉 = 0 means that

û[i+ 2] − 2û[i+ 1] + û[i] = 0 , (25)

i.e. that three consecutive pixels form a piece of line. The original is shown in
Figs. 3 and 4(c) with a dashed line. It contains large polynomial, nearly affine
parts.

In the first experiment in Fig 3 we have ai = ei, i ∈ I for q = �I = 25. Thus
〈ai, u〉−v[i] = u[i]−v[i] in (24). Data samples are plotted with diamonds. These
few data samples are largely enough to interpolate all missing parts by affine
pieces. The minimizer is strict because ϕ meets H3.

1 80

−50

0

40

Fig. 3. Data v in �, minimizer û in thick line, original in dashed line. Results correspond
to α = 4 and β = 15.

In the second experiment in Fig. 4 the same original is considered. Ten data
samples (q = �I = 10) are produced using randomly generated {ai, i ∈ I}. The
10-length data vector v is shown in Fig. 4(a). Yet again, all polynomial parts
are interpolated via affine pieces satisfying (25). It is likely that the obtained
minimizers û yield just a local minimum of F(·, v). All data equations are satisfied
exactly. Missing parts are fitted using the 2nd order differences in (24). The
minimizer is strict because ϕ meets H3.

The numerical experiments corroborate the theoretical results presented above.
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(a) 10 observed data samples (b) Minimizer û in thick line, original in
v in (�), ai are random dashed line. Result for α = 4 and β = 350.

Fig. 4. Restoration from 10 random observations

7 Concluding Notes

We show that if ψ and ϕ are nonconvex and nonsmooth at zero, and at least one
of them is strictly nonconvex on R+, (local) minimizers are generally strict and
are given as the unique solution of a linear system composed of linear operators
coming from the data term and from the regularization term. This result provides
a flexible tool to check if an algorithm minimizing F(·, v) has found a strict local
minimum.
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