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Preface

The International Conference on Scale Space and Variational Methods in Com-
puter Vision (SSVM 2011, www.ssvm2011.org) was the third instance of the
conference born in 2007 as the joint edition of the Scale-Space Conferences
(since 1997, Utrecht) and the Workshop on Variational, Geometric, and Level set
Methods (VLSM) that first took place in Vancouver in 2001. Previous editions in
Ischia, Italy (2007), and Voss, Norway (2009), were very successful, materializing
the hope of the first SSVM organizers, Professors Sgallari, Murli and Paragios,
that the conference would ‘become a reference in the domain.’

This year, SSVM was held in Kibbutz Ein-Gedi, Israel—a unique place on
the shores of the Dead Sea, the global minimum on earth. Despite its small size,
Israel plays an important role on the worldwide scientific arena, and in particular
in the fields of computer vision and image processing.

Following the tradition of the previous SSVM conferences, we invited out-
standing scientists to give keynote presentations. This year, it was our pleasure
to welcome Haim Brezis (Rutgers University, USA; Technion, Israel; and Uni-
versity of Paris VI, France), Remco Duits, (Eindhoven University, The Nether-
lands), Stèphane Mallat (École Polytechnique, France), and Joachim Weickert
(Saarland University, Germany). Additionally, we had six review lectures on
topics of broad interest, given by experts in the field: Philip Rosenau (Tel Aviv
University, Israel), Jing Yuan (University of Western Ontario, Canada), Patrizio
Frosini (University of Bologna, Italy), Radu Horaud (INRIA, France), Gérard
Medioni (University of Southern California, USA), and Elisabetta Carlini (La
Sapienza, Italy).

From the submitted papers, 24 were selected to be presented orally and 44 as
posters. Over 100 people attended the conference, representing countries from all
over the world, including Austria, China, France, Germany, Hong Kong, Israel,
Italy, Japan, Korea, The Netherlands, Norway, Singapore, Slovakia, Switzer-
land, Turkey, and the USA. We would like to thank the authors for their con-
tributions, the members of the Program Committee for their dedication and
timely reviews, and to Yana Katz and Boris Princ for local arrangements and
organization without which this conference would not have been possible. Fi-
nally, our special thanks to the Technion Department of Computer Science, HP
Laboratories Israel, Haifa, Rafael Ltd., Israel, BBK Technologies Ltd., Israel,
and the European Community’s FP7 ERC/FIRST programs for their generous
sponsorship.

May–June 2011 Alfred M. Bruckstein
Bart ter Haar Romeny

Alexander M. Bronstein
Michael M. Bronstein



Organization

General Chairs

Alfred M. Bruckstein Technion, Haifa Israel
Bart ter Haar Romeny Eindhoven University of Technology,

The Netherlands

Local Chairs

Alex Bronstein Tel Aviv University, Israel
Michael Bronstein University of Lugano, Switzerland

Scientific and Program Committee

Luis Alvares Universidad de Las Palmas de Gran Canaria,
Spain

Thomas Brox University of Freiburg, Germany
Vicent Caselles Universitat Pompeu Fabra, Spain
Raymond Chan Chinese University of Hong Kong, SAR China
Laurent Cohen CEREMADE, France
Daniel Cremers Technical University of Munich, Germany
Françoise Dibos Université Paris 13, France
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Fiber Enhancement in Diffusion-Weighted MRI

Remco Duits1,2, Tom C.J. Dela Haije2, Arpan Ghosh1, Eric Creusen1,2,
Anna Vilanova2, and Bart ter Haar Romeny2

Eindhoven University of Technology, The Netherlands,
1 Department of Mathematics and Computer Science

2 Department of Biomedical Engineering
{R.Duits,A.Ghosh,E.J.Creusen,B.M.terhaarRomeny,A.Vilanova}@tue.nl,

T.C.J.Dela.Haije@student.tue.nl

Abstract. Diffusion-Weighted MRI (DW-MRI) measures local water
diffusion in biological tissue, which reflects the underlying fiber structure.
In order to enhance the fiber structure in the DW-MRI data we consider
both (convection-)diffusions and Hamilton-Jacobi equations (erosions)
on the space R3 � S2 of 3D-positions and orientations, embedded as a
quotient in the group SE(3) of 3D-rigid body movements. These left-
invariant evolutions are expressed in the frame of left-invariant vector
fields on SE(3), which serves as a moving frame of reference attached to
fiber fragments. The linear (convection-)diffusions are solved by a convo-
lution with the corresponding Green’s function, whereas the Hamilton-
Jacobi equations are solved by a morphological convolution with the
corresponding Green’s function. Furthermore, we combine dilation and
diffusion in pseudo-linear scale spaces on R3 � S2. All methods are tested
on DTI-images of the brain. These experiments indicate that our tech-
niques are useful to deal with both the problem of limited angular res-
olution of DTI and the problem of spurious, non-aligned crossings in
HARDI.

Keywords: DTI, HARDI, DW-MRI, sub-Riemannian geometry, scale
spaces, Lie groups, Hamilton-Jacobi equations, erosion.

1 Introduction

Diffusion-Weighted Magnetic Resonance Imaging (DW-MRI) involves magnetic
resonance techniques for non-invasively measuring local water diffusion in tissue.
Local water diffusion profiles reflect underlying biological fiber structure. For
instance in the brain, diffusion is less constrained parallel to nerve fibers than
perpendicular to them.

The diffusion of water molecules in tissue over time t is described by a transi-
tion density function pt, cf. [2]. Diffusion Tensor Imaging (DTI), introduced by
Basser et al. [3], assumes that pt can be described for each position y ∈ R3 by
an anisotropic Gaussian. If {Yt} denotes the stochastic process describing the
movement of water-molecules in R3, then one has

pt(Yt = y′ | Y0 = y) = (4πt)−
3
2 |det(D(y))|− 1

2 e−
(y′−y)T (D(y))−1(y′−y)

4t ,

A.M. Bruckstein et al. (Eds.): SSVM 2011, LNCS 6667, pp. 1–13, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



2 R. Duits et al.

where D is a tensor field of positive definite symmetric tensors on R3 estimated
from the MRI data. In a DTI-visualization one plots the surfaces

y + {v ∈ R3 | vTD−1(y)v = μ2}, (1)

where μ > 0 is fixed and y ∈ Ω with Ω some compact subset of R3. From now
on we refer to these surfaces as DTI-glyphs.

The drawback of this anisotropic Gaussian function approximation is the lim-
ited angular resolution of the corresponding probability density U : R3 � S2 →
R+ on positions and orientations

U(y,n) =
3

4π
∫

Ω
trace{D(y′)}dy′ nTD(y)n, y ∈ R3,n ∈ S2. (2)

Thereby unprocessed DTI is not capable of representing crossing fibers [2].
High Angular Resolution Diffusion Imaging (HARDI) is another recent DW-

MRI technique for imaging water diffusion processes in fibrous tissues. HARDI
provides for each position in R3 and for each orientation in S2 an MRI signal at-
tenuation profile, which can be related to the local diffusivity of water molecules
in the corresponding direction. As a result, HARDI images are distributions
(y,n) �→ U(y,n) over positions and orientations. HARDI is not restricted to
functions on S2 induced by a quadratic form and is thus capable of reflecting
crossing information. See Fig. 1, where a HARDI data set is depicted using glyph
visualization as defined below. In HARDI modeling the Fourier transform of the
estimated transition densities is typically considered at a fixed characteristic
radius (generally known as the b-value), cf. [8].

Definition 1. A glyph of a distribution U : R3 × S2 → R+ on positions and
orientations is a surface Sμ(U)(y) = {y+ μU(y,n) n | n ∈ S2} ⊂ R3 for some
y ∈ R3, and some suitably chosen μ > 0. A glyph visualization of the distribution
U : R3 × S2 → R+ is a visualization of a field y �→ Sμ(U)(y) of glyphs.

For the purpose of detecting and visualizing biological fibers, DTI and HARDI
data should be enhanced by fiber propagation models such that fiber junctions
are more visible and high frequency noise and non-aligned glyphs are reduced.
Promising research has been done on constructing diffusion/regularization pro-
cesses on the 2-sphere defined at each spatial locus separately [8,13] as an essen-
tial pre-processing step for robust fiber tracking. In these approaches position-
and orientation space are decoupled, and diffusion is only performed over the
angular part, disregarding spatial context. Consequently, these methods tend to
fail precisely at the interesting locations where fibres cross or bifurcate.

In contrast to previous work on enhancement of DW-MRI [8,13,15,5], we con-
sider both the spatial and the orientational part to be included in the domain,
so a HARDI dataset is considered as a function U : R3 × S2 → R+. Further-
more, we explicitly employ the proper underlying group structure, that arises by
embedding the coupled space of positions and orientations

R3 � S2 := SE(3)/({0} × SO(2))
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fibertrackingDTI HARDI

Fig. 1. This figure shows glyph visualizations of HARDI and DTI-images of a 2D-slice
in the brain where neural fibers in the corona radiata cross with neural fibers in the
corpus callosum. Here DTI and HARDI are visualized differently; HARDI is visualized
according to Def. 1, whereas DTI is visualized using Eq. (1).

as the partition of left cosets into the group SE(3) = R3 � SO(3) of 3D-rigid
motions. The group product on SE(3) is given by

(x, R) (x′, R′) = (x + Rx′, RR′),

for all positions x,x′ ∈ R3 and rotations R,R′ ∈ SO(3). Throughout this article
we use the following identification between the DW-MRI image (y,n)→ U(y,n)
and functions Ũ : SE(3)→ R given by

Ũ(y, R) = U(y, Rez) with ez = (0, 0, 1)T . (3)

The general advantage of our approach on SE(3) is that we can enhance the origi-
nal HARDI/DTI data using orientational and spatial neighborhood information
simultaneously. This can create crossings in DTI data and allows a reduction
of scanning directions in areas where the random walks that underly (hypo-
elliptic) diffusion [11, ch:4.2] on R3 � S2 yield reasonable fiber extrapolations,
cf. [11,19,18] and see Fig. 2. HARDI already produces more detailed information
about complex-fiber structures. Application of the same (hypo-elliptic) diffusion
on HARDI then removes spurious crossings, see Fig. 3 and [19]. Here we will
address the following issues that arise from our previous work [18,11,19]:

– Can we replace the grey-scale transformations [18,11,19] by Hamilton-Jacobi
equations (erosions) on R3 � S2 to visually sharpen the fibers in the data?

– Can we find the viscosity solutions of these Hamilton-Jacobi equations?
– Can we find analytic approximations for the viscosity solutions of these left-

invariant Hamilton-Jacobi equations on R3 � S2, similar to the analytic ap-
proximations of the linear left-invariant diffusions, cf. [11, ch:6.2]?

– Can we combine left-invariant diffusions and left-invariant dilations in a
pseudo-linear scale space on R3 � S2, generalizing [14] to DW-MRI images?

To address these issues, we introduce besides linear scale spaces, morphological
and pseudo-linear scale spaces, all defined on (R3 � S2)× R+:

(y,n, t) �→W (y,n, t) for all y ∈ R3,n ∈ S2, t > 0,

where the input DW-MRI image serves as initial condition W (y,n, 0) = U(y,n).
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Fig. 2. DTI and HARDI data containing fibers of the corpus callosum and the corona
radiata in a human brain, with b-value 1000s/mm2 on voxels of (2mm)3, cf. [18]. We
visualize a 10× 16-slice of interest (162 samples on S2 using icosahedron tessellations)
from 104 × 104 × 10 × (162 × 3) datasets. Top row: region of interest with fractional
anisotropy intensities with colorcoded DTI-principal directions. Middle row, DTI data
U visualized according to Eq.(1) resp. Def. 1. Bottom row: HARDI data (Q-ball with
l ≤ 4, [8]) of the same region, hypo-elliptically diffused DTI data (y,n) �→ W (y, n, t),
Eq. (9). We applied min-max normalization of W (y, ·, t) for all positions y.

HARDI data (Linear hypoelliptic diffusion (HARDI) )   
data)  ) 

H 2 2

dddddddddddddddddddaaaaaaaaaaaaaaaaaaaattttttttttttttttttaaaaaaaaaaaaaaaa))))))))))))))))))))  ))))))))))))))))))))) 

Fig. 3. Same settings as Fig:2, except for a different b-value and region of interest. The
(hypo-elliptic) diffusion, Eq. (9), is applied to the HARDI dataset.
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To get a preview of how these evolutions perform on the same neural DTI
dataset (different slice) considered in [18], see Fig. 4, where we used

V(U)(y,n) =

(
U(y,n) − Umin(y)

Umax(y) − Umin(y)

)2

, with Umin
max

(y) = min
max

{U(y,n) | n ∈ S2}. (4)

Fig. 4. DTI data of corpus callosum and corona radiata fibers in a human brain with
b-value 1000s/mm2 on voxels of (2mm)3. Top row: DTI-visualization according to
Eq. (1). The yellow box contains 13 × 22 × 10 glyphs with 162 orientations of the
input DTI-data depicted in the left image of the middle row. This input-DTI image
U is visualized using Eq. (2) and Rician noise ηr [11, Eq. 90] with σ = 10−4 has been
included. Operator V is defined in Eq. (4). Middle row, right: output of pseudo-linear
scale space, Eq. (12). Bottom row, left: output erosion, Eq. (11) using the diffused
DTI-data set as input, Eq. (9) with (D44 = 0.04, D33 = 1, t = 1), right: output of
non-linear diffusions with adaptive scalar diffusivity explained in our companion work
[7]. All evolutions are implemented by finite difference schemes, [9], with step size Δt.

1.1 Motivation for Morphological Scale Spaces on R3 � S2

Typically, if linear diffusions are directly applied to DTI the fibers visible in DTI
are propagated in too many directions. Therefore we combined these diffusions
with monotonic transformations in the codomain R+, such as squaring input and
output cf. [11,19,18]. Visually, this produces anatomically plausible results, cf. Fig. 2
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and Fig. 3, but does not allow large global variations in the data. This is often
problematic around ventricle areas in the brain, where the glyphs are usually larger
than those along the fibers as can be seen in the top row of Fig. 4. In order to
achieve a better way of sharpening the data where global maxima do not domi-
nate the sharpening of the data, cf. Fig.5, we propose morphological scale spaces
on R3�S2 where transport takes place orthogonal to the fibers, both spatially and
spherically, see Fig. 7. The result of such an erosion after application of a linear
diffusion is depicted down left in Fig. 4, where the diffusion has created crossings
in the fibers and where the erosion has visually sharpened the fibers.

Fig. 5. From left to right. Noisy artificial dataset, output diffused dataset (thresh-
olded), squared output diffused dataset as in [18,11,19], R3�S2-eroded output, Eq.(11),
diffused dataset, Eq. (9).

2 A Moving Frame of Reference for Scale Spaces on
R3 � S2

Evolutions on DW-MRI must commute with rotations and translations. There-
fore our evolutions on DW-MRI and the underlying metric-tensor are expressed
in a local frame of reference attached to fiber fragments. This frame of reference
{A1, . . . ,A6} consists of 6 left-invariant vector fields on SE(3) given by

AiŨ(y, R) = lim
h↓0

Ũ((y, R) ehAi)− Ũ((y, R) e−hAi)
2h

(5)

where {A1, . . . , A6} is the basis for the Lie-algebra at the unity element and
Te(SE(3)) � A �→ eA ∈ SE(3) is the exponential map in SE(3). For more ex-
plicit, non-trivial, analytical formulas of the exponential map and corresponding
left-invariant vector fields (5) we refer to [11, ch:3.3,Eq. 23–25,ch:5.1 Eq. 54].
However, these technical formulas are only needed for analytic approximation of
Green’s functions, see [11, ch:6]. In practice one uses finite difference approxima-
tions [11, ch:7], where spherical interpolation in between higher order tessellation
of the icosahedron can be done by means of the discrete spherical harmonic trans-
form [11, ch:7.1] or by triangular interpolation [7]. For an intuitive preview of this
moving frame of reference attached to points in R3�S2 = (SE(3)/({0}×SO(2)))
we refer to Fig. 7.

The associated left-invariant dual frame {dA1, . . . ,dA6} is determined by

〈dAi,Aj〉 := dAi(Aj) = δi
j , i, j = 1, . . . , 6, (6)
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where δi
j = 1 if i = j and zero else. Then all possible left-invariant metric tensors

on SE(3) are given by G(y,Rn) =
6∑

i,j=1

gij dAi
∣∣
(y,Rn)

⊗ dAj
∣∣
(y,Rn)

with gij ∈ C

and where y ∈ R3, n ∈ S2, and where Rn ∈ SO(3) is any rotation that maps ez

onto the normal n ∈ S2, i.e.

Rnez = n. (7)

Necessary and sufficient conditions on gij to induce a well-defined left-invariant
metric on R3 � S2 are derived in [9, App.E]. It turns out that the matrix [gij ]
must be constant and diagonal gij = 1

Dii δij , i, j = 1 . . . , 6 with Dii ∈ R+ ∪∞,
with D11 = D22, D44 = D55, D66 = 0. The metric is thereby parameterized by
the values of D11, D33 and D44, and we write the metric as a tensor product of
left-invariant co-vectors:

G =
1

D11
(dA1⊗ dA1 +dA2⊗ dA2) +

1

D33
(dA3⊗ dA3) +

1

D44
(dA4⊗ dA4+ dA5⊗ dA5)

The metric tensor on the quotient R3 � S2 = (SE(3)/({0} × SO(2))) now reads

G(y,n)

⎛⎝ 5∑
i=1

ciAi|(y,n) ,

5∑
j=1

djAi|(y,n)

⎞⎠ =
c1d1+c2d2

D11
+
c3d3

D33
+
c4d4+c5d5

D44
, (8)

where vector fields are described by the differential operators on C1(R3 × S2):

(Aj |(y,n) U)(y,n) = lim
h→0

U(y+hRnej ,n)−U(y−hRnej ,n)
2h ,

(A3+j |(y,n) U)(y,n) = lim
h→0

U(y,(RnRej ,h)ez)−U(y,(RnRej ,−h)ez)

2h , j = 1, 2, 3,

where Rej ,h denotes the counter-clockwise rotation around axis ej by angle h,
with e1 = (1, 0, 0)T , e2 = (0, 1, 0)T , e3 = (0, 0, 1)T . The induced metric is well-
defined on the quotient R3 �S2 since the choice of Rn, as defined in Eq.(7), does
not matter as the metric tensor is isotropic in the planes depicted in Fig. 7. In
the remainder of this article we sometimes use short notation Ai for Ai|(y,n).

3 The Evolution Equations for Scale Spaces on DW-MRI

The spherical and the spatial Laplacian can be expressed in the left-invariant
vector fields as ΔS2 = (A4)2 + (A5)2 and ΔR3 = (A1)2 + (A2)2 + (A3)2. These
Laplacians generate diffusion over S2 and R3 separately and are thereby likely to
destroy the fiber structure in DW-MRI, [11]. Therefore we introduce the follow-
ing evolutions (with time t > 0) for respectively, linear contour enhancement1:{

∂W
∂t (y,n, t) = ((D33(A3)2 + D44 ΔS2) W )(y,n, t) ,
W (y,n, 0) = U(y,n) , (9)

1 Eq. (9) boils down to hypo-elliptic diffusion and corresponds to Brownian motion
on R3 � S2 [11, ch:4.2], generalizing some of the results in [17,10,4] to 3D.
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for linear contour completion2:{
∂W
∂t (y,n, t) = ((−A3 + D44 ΔS2) W )(y,n, t) ,
W (y,n, 0) = U(y,n) ,

(10)

and for morphological scale spaces:⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂W
∂t (y,n, t) = ± 1

2η

(
G−1

(y,n)( dW (·, ·, t)|y,n , dW (·, ·, t)|y,n)
)η

= ± 1
2η

(
D11

(|A1W (y,n, t)|2 + |A2W (y,n, t)|2)+
D44

(|A4W (y,n, t)|2 + |A5W (y,n, t)|2) )η ,
W (y,n, 0) = U(y,n),

(11)

with η ∈ [12 , 1], cf. Fig. 6. Finally, for pseudo-linear scale spaces:⎧⎨⎩
∂W
∂t (y,n, t) = ((D33(A3)2 + D44ΔS2)W )(y,n, t)+
C
(
D33|A3W (y,n, t)|2 + D44

(|A4W (y,n, t)|2 + |A5W (y,n, t)|2)) ,
W (y,n, 0) = U(y,n),

(12)

where C > 0 balances between infinitesimal dilation and diffusion. These evo-

Fig. 6. The effect of η ∈ [ 1
2
, 1] on angular erosion Eq. (11), D44 = 0.4, D11 = 0 and

t = 0.4. Left: original glyph, right eroded glyphs (normalized) for η = 0.5, . . . , 1.0.

lutions are either solved by (morphological) convolution with the corresponding
Green’s function or by finite difference schemes. To get an intuition on the un-
derlying geometrical ideas behind these evolutions see Fig. 7.

4 Solving the Evolutions by Convolution on R3 � S2

Operators on DW-MRI data must commute with rotations and translations.
This means they must be left-invariant, i.e. they must commute with Lg for all
g = (x, R) ∈ SE(3), where

(LgU)(y,n) = U(g−1 · (y,n)) = U(R−1(y − x), R−1n),

for all U ∈ L2(R3 � S2), (y,n) ∈ R3 � S2. According to the theorem below, all
reasonable linear, left-invariant operators on DW-MRI are R3 �S2-convolutions.

2 Eq. (10) boils down to hypo-elliptic convection-diffusion, direction process on R3�S2

[11, ch:4.2], generalizing [16,12].
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d
iffu

sio
n

erosion

diff
usion

erosion

Fig. 7. A curve [0, 1] � s �→ γ(s) = (x(s),n(s)) → R3 � S2 consists of a spatial part
s �→ x(s) (left) and an angular part s �→ n(s) (right). Along this curve we have the
moving frame of reference {Ai|γ̃(s)}5

i=1 with γ̃(s) = (x(s), Rn(s)) where Rn(s) ∈ SO(3)

is any rotation such that Rn(s)ez = n(s) ∈ S2. Here Ai, with Ai = Ai|(0,I) denote the
left-invariant vector fields in SE(3), Eq. (5). To ensure that the diffusions and erosions
do not depend on the choice Rn(s) ∈ SO(3), Eq. (7), these left-invariant evolution
equations must be isotropic in the tangent planes span{A1,A2} and span{A4,A5}.
Diffusion/convection primarily takes place along A3 in space and (outward) in the
plane span{A4,A5} tangent to S2. Erosion takes place both inward in the tangent
plane span{A1,A2} in space and inward in the plane span{A4,A5}.

Theorem 1. Let K be a bounded operator from L2(R3 �S2) into L∞(R3 �S2).
Then there exists an integrable kernel k : (R3 � S2)× (R3 � S2) → C such that
‖K‖2 = sup

(y,n)∈R3�S2

∫
R3�S2

|k(y,n ; y′,n′)|2dy′dσ(n′) <∞, and we have

(KU)(y,n) =
∫

R3�S2
k(y,n ; y′,n′)U(y′,n′)dy′dσ(n′) ,

for almost every (y,n) ∈ R3 � S2 and all U ∈ L2(R3 � S2). Now Kk := K is
left-invariant iff k is left-invariant, meaning

∀g∈SE(3)∀y,y′∈R3∀n,n′∈S2 : k(g · (y,n) ; g · (y′,n′)) = k(y,n ; y′,n′).

Then to each positive left-invariant kernel k : R3 � S2 × R3 � S2 → R+ with∫
R3

∫
S2 k(0, ez ; y,n)dσ(n)dy = 1 we associate a unique probability density

p : R3 � S2 → R+ by means of p(y,n) = k(y,n ; 0, ez). The convolution now
reads

KkU(y,n) = (p ∗R3�S2 U)(y,n) =
∫
R3

∫
S2

p(RT
n′(y− y′), RT

n′n)U(y′,n′)dσ(n′)dy′,

where σ is the surface measure on S2 and where Rn′ ∈ SO(3) s.t. n′ = Rn′ez.

For a proof see [11]. Consequently, the linear scale spaces (9) and (10) are
solved by R3 � S2 convolution with the corresponding Green’s functions! Next
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we extend the ideas in [6,1] and replace the (+, ·)-algebra by the (max,+)-algebra
to solve the morphological scale spaces (11) by dilation and erosion on R3 � S2

given by

(k− ⊕R3�S2 U)(y, n) = sup
(y′,n′)∈R3�S2

[
k−(RT

n′(y− y′), RT
n′n) + U(y′,n′)

]
,

(k+ 	R3�S2 U)(y,n) = inf
(y′,n′)∈R3�S2

[
k+(RT

n′(y− y′), RT
n′n) + U(y′,n′)

]
.

(13)

where dilation kernels k− are negative and erosion kernels k+ are positive.

Definition 2. A viscosity solution of Eq. (11) is a bounded and continuous weak
solution W : (R3 � S2)× R+ → R of (11) such that

1. for any smooth function V : (R3 � S2)×R+ → R s.t. W − V attains a local
maximum at (y0,n0, t0) one has ∂V

∂t
(y0,n0, t0) ∓ (H(dV (·, ·, t)))(y0,n0) ≤ 0.

2. for any smooth function V : (R3 � S2)×R+ → R s.t. W − V attains a local
minimum at (y0,n0, t0) one has ∂V

∂t
(y0,n0, t0) ∓ (H(dV (·, ·, t)))(y0,n0) ≥ 0.

with Hamiltonian H(dV (·, ·, t)) = 1
2η

(
G−1(dV (·, ·, t), dV (·, ·, t)))η and with gra-

dient dV (y,n, t) =
∑5

i=1 AiV (·, t)|(y,n) dAi
∣∣
(y,n)

.

Theorem 2. The unique viscosity solutions of the Hamilton-Jacobi-Bellman
equations on R3 �S2, Eq. (11), are resp. given by (+ case) left-invariant erosion

W (y,n, t) = (kD11,D44,η,+
t �R3�S2 U)(y,n) (14)

and (− case) left-invariant dilation W (y,n, t) = (kD11,D44,η,−
t ⊕R3�S2 U)(y,n)

where kD11,D44,η,−
t = −kD11,D44,η,+

t and where

kD11,D44,η,+
t (y,n) := inf

γ = (x(·), R(·)) ∈ C∞((0, t), SE(3)),
γ(0) = (0, I = Rez ), γ(t) = (y, Rn),

〈 dA3
∣∣∣
γ

, γ̇〉 = 〈 dA6
∣∣∣
γ

, γ̇〉 = 0

t∫
0

Lη(γ(p), γ̇(p))
(
dp

ds

) 1
2η−1

dp ,

(15)
with spatial arclength s > 0 (of x(·)) and with Lagrangian

Lη(γ(p), γ̇(p)) := 2η−1
2η

(
1

D11 ((γ̇1(p))2 + (γ̇2(p))2)+ 1
D44 ((γ̇4(p))2+(γ̇5(p))2)

) η
2η−1

= 2η−1
2η

with γ̇i(p) = 〈dAi
∣∣
γ(p)

, γ̇(p)〉 and with R3 � S2-“erosion arclength” p given by

p(τ) =
τ∫
0

√
Gγ(τ̃)(γ̇(τ̃ ), γ̇(τ̃ )) dτ̃ =

τ∫
0

√ ∑
i∈{1,2,4,5}

|〈dAi|γ(τ̃),γ̇(τ̃)〉|2
Dii dτ̃ . (16)

For proof see our technical report [9, App.B]. The Lagrangian in Theorem 2
relates to the Hamiltonian in Def. 2 by Fenchel transform [1] on the Lie algebra
of left-invariant vector fields on SE(3), for all 1

2 ≤ η ≤ 1, cf. [9, App.B,ch:8.3].
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A sub-Riemannian manifold is a Riemannian manifold with the extra con-
straint that certain subspaces of the tangent space are prohibited. For example,
curves in (SE(3), dA1, dA2, dA6) are curves γ̃ : [0, 1]→ SE(3) such that

〈dA1
∣∣
γ̃(s)

, ˙̃γ(s)〉 = 〈dA2
∣∣
γ̃(s)

, ˙̃γ(s)〉 = 〈dA6
∣∣
γ̃(s)

, ˙̃γ(s)〉 = 0, (17)

for all s ∈ [0, 1]. Curves satisfying (17) are called horizontal curves in
SE(3) and we depicted such a curve in Fig. 7.

In [11, ch:6.2] we have analytically approximated the Green’s functions of
contour completion, Eq. (10) and contour enhancement, Eq. (9) that take place
on the sub-Riemannian manifold (SE(3), dA1, dA2, dA6). These Green’s func-
tions coincide with the diffusion kernels for respectively the direction process
and Brownian motion om R3 × S2 in probability theory, [9, ch:8]. Moreover,
in [9, App. A, B, C] we applied similar techniques to approximate the dila-
tion/erosion kernels that describe the growth of balls in the sub-Riemannian
manifold (SE(3), dA3, dA6), cf. Theorem 2. Again there exists a connection with
probability theory as these erosion kernels coincide with transition-cost densities
of Bellman-processes defined on (SE(3), dA3, dA6), see [9, ch:8.3].

The next theorem provides some of the approximations for the Green’s func-
tions, cf. [11, ch:6.2], [9, App.B]:

Theorem 3. Let 1 ≥ η > 1
2 , D11 > 0, D33 > 0, D44 > 0. Then for the morpho-

logical erosion (+) and dilation kernel (-) on R3 � S2 one can use the following
approximation

kD11,D44,±
t (y,n) ≈ (2η−1)(c−2η t)

− 1
2η−1

±2η

(( |c1|2+|c2|2
D11

+
|c4|2+|c5|2

D44

)2

+
|c3|2

D11D44

) η
2(2η−1)

for t > 0 small, where ñ(β̃, γ̃)) = (sin β̃,− cos β̃ sin γ̃, cos β̃ cos γ̃)T , c > 0, with
β̃ ∈ (−π

2 ,
π
2 ), γ̃ ∈ (−π

2 ,
π
2 ). For the Green’s functions of Eq. (9), the heat kernels,

we have the approximation

pD33,D44

t (y,n) ≈ 1
16π2(D33)2(D44)2t4

e−

√
|c1|2+|c2|2

D33D44 + |c6|2
D44 +

(
(c3)2

D33 + |c4|2+|c5|2
D44

)2

4t .

In both cases the functions ci := ci(y, α̃ = 0, β̃, γ̃) are given by

c(1) := (c1, c2, c3)T = y− 1
2 c(2) × y + q̃−2(1 − ( q̃

2 ) cot( q̃
2 )) c(2) × (c(2) × y),

c(2) := (c4, c5, c6)T = q̃
sin(q̃) ( sin γ̃ cos2( β̃

2 ) , sin β̃ cos2( γ̃
2 ) , 1

2 sin γ̃ sin β̃ )T

with q̃ = arcsin
√

cos4(γ̃/2) sin2(β̃) + cos2(β̃/2) sin2(γ̃).

For η = 1
2 we obtain the erosion kernel approximation (take η ↓ 1

2 in Theorem 3):

k
D11,D44, 1

2 ,−
t (y,n) ≈

⎧⎨⎩∞ if

√(
|c1|2+|c2|2

D11 + |c4|2+|c5|2
D44

)2

+ |c3|2
D11D44 ≥ t2 ,

0 else.
(18)
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The solutions of the pseudo-linear spaces, Eq. (12), are given by

W (y,n, t) = χ−1
C ( (et(D33(A3)2+D44ΔS2) ◦ χC ◦ U)(y,n) ),

i.e. a linear hypo-elliptic diffusion conjugated with the grey-value transformation
χC(I) = eC I−1

eC−1 if C �= 0 and χC(I) = I if C = 0, I ∈ R+, cf. [9, ch], [14].

Fig. 8. 1st row: Input DTI-data. 2nd row: Output squared linear diffusion on squared
data-set. 3rd row: Output erosion applied to the diffused dataset in the 2nd row.

5 Conclusion

We have developed crossing preserving, rotation- and translation covariant scale
spaces on DW-MRI. The underlying evolutions are convection-diffusion equa-
tions and Hamilton-Jacobi-Bellman equations of respectively stochastic and cost
processes cf. [9], on the space of positions and orientations R3 � S2. These scale
spaces are expressed in a moving frame of reference allowing (hypo-elliptic) dif-
fusion along fibers and erosion orthogonal to fibers. They extrapolate complex
fiber-structures (crossings) from DTI, while reducing non-aligned crossings in
HARDI. They can be implemented by finite difference methods [7] (e.g. Fig. 4
and Fig. 8), or by convolutions with analytic kernels (e.g. Fig. 1 and 2).
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Abstract. We consider left-invariant diffusion processes on DTI data
by embedding the data into the space R3 � S2 of 3D positions and ori-
entations. We then define and solve the diffusion equation in a moving
frame of reference defined using left-invariant derivatives. The diffusion
process is made adaptive to the data in order to do Perona-Malik-like
edge preserving smoothing, which is necessary to handle fiber structures
near regions of large isotropic diffusion such as the ventricles of the brain.
The corresponding partial differential systems are solved using finite dif-
ference stencils. We include experiments both on synthetic data and on
DTI-images of the brain.

Keywords: DTI, DW-MRI, scale spaces, Lie groups, adaptive diffusion,
Perona-Malik diffusion.

1 Introduction

Diffusion-Weighted Magnetic Resonance Imaging (DW-MRI) are MRI techniques
for non-invasively measuring local water diffusion inside tissue. The water diffu-
sion profiles of the imaged area allow inference of the underlying tissue structure.
For instance in the brain, diffusion is less constrained parallel to nerve fibers than
perpendicular to them, and so the water diffusion gives information about the
fiber structures present. This allows for the extraction of clinical information
concerning biological fiber structures from DW-MRI scans.

The diffusion of water molecules in tissue over some time interval t can be
described by a diffusion propagator which is the probability density function
y �→ pt(Yt = y |Y0 = y0) of finding a water molecule at time t ≥ 0 and at position
y given that it started at y0 on t = 0. Here the family of random variables (Yt)t≥0

describes the distribution of water molecules over time. The function pt can be
directly related to MRI signal attenuation of diffusion weighted image sequences
and so can be estimated given enough measurements. The exact methods to do
this are described by e.g. Alexander [1].

Diffusion Tensor Imaging(DTI), introduced by Basser et al. [2] assumes that
pt can be described for each voxel by an anisotropic Gaussian function, i.e.

pt(Yt = y |Y0 = y0) =
1√

(4πt)3 det(D(y0))
exp

(−(y− y0)
T D(y0)

−1(y− y0)

4t

)
,

A.M. Bruckstein et al. (Eds.): SSVM 2011, LNCS 6667, pp. 14–25, 2012.
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where D is a tensor field of 3×3 positive definite symmetric tensors that each
describe the local Gaussian diffusion process. The tensors contain 6 parameters
for each voxel, which means the tensor field requires at least 6 DW-MRI images.

The drawback of approximating pt with an anisotropic Gaussian function is
that it is only able to estimate one preferred direction per voxel. However, if
more complex structures such as crossing, kissing or diverging fibers are present
the Gaussian assumption fails, as was demonstrated by Alexander et al. [1].
In practice though, large areas of the brain can be approximated well with DTI
tensors and in the regions where complex fiber structures are present the diffusion
profile can be inferred by taking contextual information into consideration [12].

Since DTI tensors cannot contain information regarding crossings the DTI
data needs to be represented in a form that does allow crossing fiber structures. A
representation that suits these demands can be obtained by viewing a DTI image
as a probability function on positions and orientation: U : R3×S2 → R+, where
S2 =

{
x ∈ R3 | ||x|| = 1

}
denotes the 2-sphere and where for each position y and

orientation n, U(y,n) gives the probability density that a water molecule starts
at y and travels in direction n. Using the Gaussian assumption this distribution
is given by

U(y,n) =
3

4π
∫

Ω trace{D(y′)}dy′n
TD(y)n, y ∈ R3,n ∈ S2.

Such functions on position and orientation are then visualized by the surfaces
Sμ(U)(x) = {x + μU(x,n)n | n ∈ S2} ⊂ R3, which are called glyphs. A figure
is generated by visualizing all these surfaces for varying x and with a suitable
value for μ > 0 that determines the size of the glyphs. Note that for DTI data a
different visualization based on ellipsoids is commonly used, which isn’t suitable
to visualize crossing fibers.

To reduce noise and to infer information about fiber crossings contextual
information can be used. This enhancement is useful both for visualization pur-
poses and as a preprocessing step for other algorithms such as fiber tracking
algorithms, which may have difficulty in noisy or incoherent regions. This en-
hancement, done through linear and nonlinear adaptive diffusion processes, is
the main focus of this paper. Special attention is given to the implementation of
these algorithms through the use of finite difference schemes.

1.1 The Euclidean Motion Group SE(3)

A function on R3×S2 can also be seen as a function embedded in the Euclidean
motion group SE(3) = R3 � SO(3), where SO(3) represents the (noncommuta-
tive) group of 3D rotations defined as a matrix group by

SO(3) = {R | R ∈ R3×3,RT = R−1, det(R) = 1}.
Expressed in Euler angles, this becomes

R(α,β,γ) = Rex
γ Rey

β Rez
α , (1)
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where e1 = ex, e2 = ey and e3 = ez are the unit vectors in the coordinate axes
and Rei

α denotes a counterclockwise rotation of α around vector ei. Here, an
Euler angle parametrization is used that has a discontinuity at n = (±1, 0, 0),
so that the tangent space of SE(3) is well defined at the unity element (0, I).

For g, g′ ∈ SE(3) the group product and inverse are given by

gg′ = (x,R)(x′,R′) = (x + R · x′,RR′)

g−1 = (x,R)−1 = (−R−1x,R−1).

To get correspondence between SO(3) and S2, we introduce equivalence classes
on SO(3). Two group elements g, h ∈ SO(3) are equivalent if g−1h = Rez

α for
some angle α ∈ [0, 2π). This equivalence relation induces sections of equivalent
group members, called the left cosets of SO(3). If we associate SO(2) with
rotations around the z-axis, then formally we can use this equivalence to write
S2 ≡ SO(3)/SO(2) to denote these left cosets.

If we extend this equivalence relation to SE(3), i.e. g, h ∈ SE(3), g is equiva-
lent to h if g−1h = (0,Rez

α ), we obtain the left coset of SE(3) which equals the
space of positions and orientations. To stress that this space has been embedded
in SE(3) and to stress the induced (quotient)group structure we write the space
of positions and orientations as R3 � S2 := (R3 � SO(3))/({0} × SO(2)).

Now, we can express any function on position and orientation U : R3�S2 → R
with an equivalent function on SE(3) Ũ : R3 � SO(3) → R by solving for
(x,n) = (x,Rnez), where Rn is any rotation matrix that maps ez to n.

Every group element from SE(3) can be associated with a representation,
which is nothing else than an action that translates and rotates a function. The
left- and right-regular representations on L2(SE(3)) are given by

(Lg ◦ U)(h) = U(g−1h), g, h ∈ SE(3), U ∈ L2(SE(3))
(Rg ◦ U)(h) = U(hg). (2)

Duits and Franken [8,9] demonstrated that every reasonable linear operation
on functions on SE(3) must be left-invariant by showing that the orientation
marginal

∫
S2 U(y,n)dσ(n) commutes with rotations and translations only under

such operations, which explains our choice for left-invariant processes in this
paper. Formally an operator Φ : L2(SE(3))→ L2(SE(3)) is left invariant iff

∀g ∈ SE(3) : (Lg ◦ Φ ◦ U) = (Φ ◦ Lg ◦ U).

The right regular representation is left-invariant and can be used to generate
left-invariant derivatives, as is shown in the next section. It should be noted
that because of the non commutative structure of SE(3) the left regular repre-
sentation itself is not left-invariant.

1.2 Left-Invariant Derivatives

By viewing functions on R3 � S2 as probability density functions of oriented
particles, it becomes a natural idea to describe these particles in a moving co-
ordinate system. This is done by attaching a coordinate system to each point
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(x,R) ∈ SE(3) such that one of the spatial axes points in the direction of
n = Rnez . In this section we will introduce diffusion equations for these ori-
ented particles, and for these processes this coordinate system is the natural
choice to easily differentiate between motion forward, sideways and rotations.
We can obtain such a coordinate system by starting at the identity element
(0, I) of SE(3), which corresponds to (0, ez) and attaching a suitable coordinate
system using Euler angles. We express a basis of tangent vectors at the unity
element by

A1 = ∂x, A2 = ∂y, A3 = ∂z, A4 = ∂γ , A5 = ∂β , A6 = ∂α,

where we use the coordinate system in the parametrization of SE(3):(x, R) =
(x, y, z, R(α,β,γ)) (see Eq. (1)). Here Ai can be viewed both as tangent vectors
and as local differential operators.

We construct a moving frame of reference attached to fibers in the space
R3 � S2 by using the derivative of the right-regular representation R:

Ai|gU = (dR(Ai)U)(g) = lim
t↓0

U(g etAi)− U(g)
t

, i = 1, 2, 3, 4, 5, 6, (3)

where R is defined by Eq. (2) and etAi is the exponential map in SE(3) [8],
which can be seen as the group element obtained by traveling distance t in the
Ai direction from the identity element. We note that A6U(y,n) = 0, because
U(y,n) is constant within equivalence classes and that A1,A2,A4 and A5 are
defined on SE(3) and not on R3 � S2. We therefor use combinations of these
operators that are well-defined on R3 �S2 in the diffusion generator (see section
1.3).

Analytical formulas for these left-invariant derivatives, expressed in charts of
Euler angles can be found in [8] where they are used to analytically approximate
Green’s functions of convection diffusion processes. Here, we focus on the numer-
ical aspects, and instead give only the finite difference schemes (section 2) since
they do not suffer from the discontinuities of the Euler angle parametrization.

1.3 Convection-Diffusion Processes

The left-invariant derivatives given in the previous section can be used to write
the equations for diffusion processes on SE(3) [8], which can remove noise while
preserving complex structures such as crossings and junctions[12].

The general convection-diffusion equation with diffusion matrix D and con-
vection parameters a is given by:{

∂tW (y,n, t) = QD,a(A1,A2, . . . ,A5)W (y,n, t)
W (y,n, 0) = U(y,n)

(4)

where the convection-diffusion generator QD,a is given by

QD,a(A1,A2, . . . ,A5) =
5∑

i=1

⎛⎝−aiAi +
5∑

j=1

AiDijAj

⎞⎠ (5)
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and ai are convection parameters and Dij diffusion coefficients. In this paper,
ai = 0 for all i = 1, . . . , 6 because only pure diffusion processes are studied, but
other processes, like contour completion [4], can be obtained by also including
convection terms. In the linear case, ai and Dij are chosen constant and the
solution to these evolution equations can be obtained by an SE(3)-convolution
of the initial data with the process’s Green’s function [8,9,5] or by using finite
difference methods. SE(3)-convolutions (see [8]) are generally computationally
more expensive than finite difference stencils and they can not handle adaptive
schemes, so finite difference schemes are used exclusively in this paper.

2 Finite Difference Schemes for R3 � S2 Diffusion

To approximate the required left-invariant derivatives of the evolution equations
of Eq. (4), we use finite difference approximations [8] of Eq. (3). These derivatives
are approximated in the usual way, with the (conceptually) small difference that
the steps are taken in the Ai direction rather than the ei direction. The forward
finite difference approximation of the left-invariant derivatives are given by

Af
1U(y,n) = U(y+h Rnex , n)−U(y , n)

h
,

Af
2U(y,n) =

U(y+h Rney , n)−U(y , n)

h
,

Af
3U(y,n) = U(y+h Rnez , n)−U(y , n)

h
,

Af
4U(y, n) =

U(y , Rn R
ex
ha

ez)−U(y , n)

ha
,

Af
5U(y, n) =

U(y , Rn R
ey
ha

ez)−U(y , n)

ha
,

(6)

where h is the spatial stepsize and ha the angular step size in radians.
Analogously, the backward and central finite difference approximations can

be obtained. For example:

Ab
3U(y,n)= U(y , n)−U(y−h Rnez , n)

h
, Ab

4U(y,n)=
U(y , n)−U(y , Rn R

ex
−ha

ez)

ha
,

and

Ac
3U(y,n)=

U(y + h Rnez,n) − U(y − h Rnez,n)

2h
,

Ac
4U(y,n)=

U(y, RnRex
ha

ez) − U(y, RnRex
−ha

ez)

2ha
.

(7)

We take second order centered finite differences by applying the discrete opera-
tors in the righthand side of Eq. (7) twice (where we replaced 2h �→ h), e.g. we
have for p = 1, 2, 3:

((Ac
p)2U)(y,n) =

U(y + hRnep, n) − 2 U(y, n) + U(y − hRnep,n)

h2
,

((Ac
p+3)

2U)(y,n) =
U(y , Rn Rep,ha ez) − 2U(y,n) + U(y , Rn Rep,−ha ez)

ha
2

.

2.1 Efficient Computation of Left-invariant Derivatives

So far, all approximations assume U : R3 � S2 → R+ to be continuously dif-
ferentiable. In practice we have discretized functions U [i, j, k,nl], where i,j and



Numerical Schemes for Linear and Non-linear Enhancement of DW-MRI 19

k enumerate the discrete spatial grid and nl is an orientation from a tessella-
tion of the sphere enumerated by l ≤ No. The tessellation used in this paper is
obtained by taking an icosahedron and regularly subdividing each face into 16
triangles before projecting the vertices back to the sphere. Every vertex of this
shape becomes a sampling orientation and thus No = 162.

Because of this sampling, interpolation is necessary to approximate the (left-
invariant) derivatives. Spatially, any regular 3D interpolation scheme such as
linear interpolation or spline interpolation can be used. Since the approximations
in Eq. (6) are only first order accurate, we use linear interpolation.

Since the three spatial derivatives only require neighboring samples with the
same n, they can be efficiently computed through a regular R3 convolution or
correlation for each orientation separately.

ApU [i, j, k,nl] ≈ (Mp
l � U [·, ·, ·,nl]) [i, j, k] p = 1, 2, 3,

where � denotes the discrete spatial correlation and Mp
l can be obtained by

linear interpolation from the finite difference stencils Eq. (6). For example, in
the case of forward finite difference stencils

Mp
l [i, j, k] =

1
2h

(w1
l,p[i, j, k]− w2

l,p[i, j, k]),

with w1
l,p[i, j, k] = Nyp

l
[i, j, k] and w2

l,p[i, j, k] = δi0δj0δk0,

where yp
l = hRnl

ep and Nyp
l
[i, j, k] is the interpolation matrix required to in-

terpolate point yp
l . Assuming cubic voxels of size 1, |yp

l | < 1, and using linear
interpolation Nyp

l
[i, j, k] is given by

Ny[i, j, k] =
3∏

m=1

v(yp,l)
m [zm] , z = (i, j, k) i, j, k ∈ {−1, 0, 1},

va[b] =

⎧⎨⎩
1− |a| if b = 0

H(ab)|a| if b ∈ {−1, 1}
0 otherwise.

with heaviside function H(u) and where (yp,l)m and zm denote the m-th com-
ponent of vectors yp,l and z.

For angular interpolation, either linear interpolation or spherical harmonics
can be used. Spherical harmonics were used in previous work by Franken et al.
[10]. In terms of stability in the diffusion process, both perform equally well
(see section 2.2, Theorem 1), but Franken had to add an angular diffusion term
treg which in practice was very sensitive: when set too large the data becomes
too isotropic (destroying fiber structures) and when set too small the algorithm
becomes unstable. As we will show next, linear interpolation is also computa-
tionally cheaper.

The angular derivatives only require samples of neighbors with the same y
and can therefor be computed by a matrix multiplication for each point y:

Af
p+3U [i, j, k,nl] ≈ 1

h

No∑
l′=1

Mp
l l′U [i, j, k,nl′ ])− 1

h
U [i, j, k,nl], (8)
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where Mp
l l′ is the interpolation matrix to interpolate np,l = Rnl

Rep,hae3 and is
given by

Ml l′ =

⎧⎪⎨⎪⎩
1−

∑
nj∈Ap,l

(np,l − nl′) · (nj − nl′) if nl′ ∈ Ap,l

0 otherwise,

where Ap,l is the triangle that contains point np,l. Ap,l is sparse due to the linear
interpolation which enables Eq. (8) to be computed cheaply. If Mp

l l′ is created
using spherical harmonics then it becomes a full matrix and thus Eq. (8) is much
more expensive to calculate.

2.2 Numerical Contour Enhancement

The contour enhancement process on R3 � S2 can be obtained from Eq. (4) by
setting ai = 0 (no convection), D33 ≥ 0, D44 = D55 ≥ 0 and other diffusion coef-
ficients Dij are set to zero. These settings yield the following evolution equation{

∂tW (y,n, t) =
(
D33(A3)2 + D44((A4)2 + (A5)2)

)
W (y,n, t)

W (y,n, 0) = U(y,n) . (9)

This process can intuitively be understood as a discription of the Brownian
motion of oriented particles both in space (diffusion in direction n) and angular
(changing direction) [8]. The simulation of this PDE is done by taking standard
centered second order finite differences according to Eq. (2), and using a forward
Euler scheme for the time discretization:{

W (y,n, t+Δt) = W (y,n, t)+Δt
(
D33(Ac

3)
2+D44((Ac

4)
2+(Ac

5)
2)
)
W (y,n, t)

W (y,n, 0) = U(y,n).

Of these parameters, D44 and simulation time t are most important. D33 may
be set to 1, as changing D33 is equivalent to scaling D44 and t, while Δt needs
only be sufficiently small for the algorithm to remain stable and accurate.

Theorem 1. The stability bound for the Euler forward finite difference scheme
of the evolution described by Eq. (9) using the interpolation described in section
2.1 is given by

Δt ≤ 1
(4D11+2D33)

h2 + 4D44
h2

a

(10)

when using linear interpolation for the angular derivatives and by

Δt ≤ 1
4D11+2D33

h2 + D44
L(L+1)

2etreg L(L+1)

if treg.L(L+ 1) ≤ 1

Δt ≤ 1
4D11+2D33

h2 + D44
1

2etreg

if treg.L(L+ 1) > 1
(11)

when using spherical harmonics.

for proof see [4, Section 2.2.1] and [7, Appendix B].
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In terms of stability, both algorithms can be made equally stable because both
have regularizing parameters (ha for linear interpolation and treg for spherical
harmonics). There are, however other reasons to prefer linear interpolation over
spherical harmonics (see section 2.1).

3 Perona-Malik Diffusion on R3 � S2

Linear contour enhancement has the disadvantage that it performs diffusion
across areas where the gradient is very large. In particular, the neural tracts
of the brain are sometimes located near the ventricles of the brain. These ven-
tricles are structures that contain cerebrospinal fluid which shows up in DTI
as unrestricted, isotropic glyphs much larger in magnitude than the restricted,
anisotropic glyphs of the neural tracts. It is undesirable that these large isotropic
diffusion profiles start to interfere with the oriented structures of the neural
tracts when we apply a diffusion scheme, because they are likely to destroy fiber
structures. A Perona-Malik [11] type scheme for diffusion can separate these
two regions, and apply the diffusion within the neural tracts and within the
ventricles, but prevents transport from one to the other.

Our approach is similar to recent work by Burgeth et al. [3] who used adap-
tive, edge preserving diffusion on the DTI tensor components separately. The
difference is that here the diffusion considers both positions and orientations in
the domain and therefor separates two crossing fibers in the domain so that it
is better equipped to handle crossing structures.

We test the algorithm on a synthetic test image consisting of two crossing
fibers consisting of oriented glyphs surrounded by isotropic spheres, (see Fig. 1)
in which linear diffusion destroys the fiber structure, whereas nonlinear adaptive
diffusion both preserves the fiber structures and denoises the entire dataset.

Mutual influence of the anisotropic regions (fibers) and isotropic regions (ven-
tricles) is avoided by replacing the constant diffusivity D33 in 5 by

A3D33A3 �→ A3 ◦D33e
− (A3W (·,t))2

K2 ◦ A3. (12)

where for K → ∞, linear contour enhancement is obtained. The idea is to set
a soft threshold (determined by K) on the amount of diffusion in A3 direction.
Within homogeneous regions one expects |A3W (y,n, t)| to be small, whereas
in the transition areas between ventricles and white matter where one needs to
block the diffusion process, one expects a large |A3W (y,n, t)|.

To implement this, we propose the following discretization scheme

A3(D̃33A3)W (y,n, t)≈ D̃33(y+ 1
2
h,n)A3W (y+ 1

2
h,n, t)

h
− D̃33(y− 1

2
h,n)A3W (y− 1

2
h,n, t)

h

A3W (y +
1

2
h,n, t)≈ W (y + h, n, t) − W (y,n, t)

h
= Af

3W (y,n, t)

A3W (y − 1

2
h,n, t)≈ W (y,n, t) − W (y− h,n, t)

h
= Ab

3W (y,n, t)
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Fig. 1. Adaptive Perona-Malik diffusion based on the data. Top row: Artificial 15×15×
15×162 input data that is the sum of a noisy fiber part and a noisy isotropic part. For
the sake of visualization, we depict these parts separately. Bottom row left: Output of
linear diffusion with t = 1, D33 = 1,D44 = 0.04 and Δt = 0.01. Bottom right: Output of
Perona-Malik adaptive diffusion with D33 = 1, D44 = 0.015, K = 0.05, Δt = 0.01, t = 1

combining these three equations leads to

A3(D̃33A3)W (y,n, t)≈ D̃33(y + 1
2
h,n)Af

3W (y,n, t) − D̃33(y − 1
2
h, n)Ab

3W (y,n, t)

h

where for notational convenience h=hRnez and D̃33 =D33e
− (max(|Af

3 W |,|Ab
3W |))2

K2 .
The D̃33 terms can easily be calculated with linear interpolation. Combined with
the finite difference operators of section 2, this give the full discretization scheme.

The discretization scheme for D̃33 uses max(|Af
3W |, |Ab

3W |) because forward
and backwards finite difference schemes individually induce shifts near discon-
tinuities while central finite difference schemes sometimes allow diffusion across
region boundaries. This happens when fiber voxels have more than one isotropic
neighbor, then Ac

3W may be close to zero because the stencil does not depend on
the center point. Because of the spatial discretization and because every direction
n is considered, this is very likely to occur in almost all geometries.

4 Enhancement of DTI of the Human Brain

To test the algorithm on real data, a DTI brain scan was acquired from a healthy
volunteer with 132 gradient directions and a b-value of 1000s/mm2. Linear con-
tour enhancement (Eq. (9)) as well as Perona-Malik adaptive diffusion (Eq. (12))
was performed on it, as can be seen in Fig. 2.



Numerical Schemes for Linear and Non-linear Enhancement of DW-MRI 23

Fig. 2. DTI data of the corpus callosum and corona radiata fibers in a human brain with
b-value 1000s/mm2 and 132 gradient directions on voxels of (2mm)3. Top row: A coronal
slice of the original data with a region of interest in the yellow square. The region in the
blue square is shown for multiple values of K in Fig. 3. Middle row: The unprocessed
region of interest (left) and with added Rician noise(σ = 5 · 10−5, see [4] for definition)
and sharpening according to Eq.(13) (right). Bottom row: The result of linear contour
enhancement (left) and Perona-Malik diffusion (right). Marked in red are areas in which
the ventricles have induced crossing structures in the linear diffusion process.

Prčkovska et al. [12] showed that DTI combined with enhancement techniques
can extrapolate crossing information from contextual information. It is interest-
ing to see if such a method can be improved with a Perona-Malik type scheme,
especially since the ventricles may make such methods unreliable in those areas.

Since visualization of larger datasets is difficult, only coronal slices through the
center of the brain are depicted, where the ventricles are visible as large, isotropic
spheres. Because of the relative isotropy of real data, sharpening techniques have
to be employed. Squaring the input data is the simplest way to do this (and is
used here), but other techniques such as R3 � S2-erosions are also an option
[6]. For visualization, a min-max-normalization and another sharpening step are
used, given by operator

V(U)(y, n)=

(
U(y,n) − Umin(y)

Umax(y) − Umin(y)

)2

, with Umin
max

(y) = min
max

{U(y,n) | n ∈ S2}. (13)

From Fig. 2 it can be seen that the Perona-Malik method performs better than
linear contour enhancement. The first effect is visible on the boundary of the
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data. Linear contour enhancement diffuses signal outside of the boundaries of
the image (because of zero padding boundary conditions for the calculation of
derivatives), which causes artifacts visible as horizontal structures near the top
and bottom edges. The same zero padding ensures a large derivative at these
places so Perona-Malik does not suffer from this problem.

The second effect is visible around the ventricles (marked by red in Fig. 2).
Linear diffusion shows some crossing structures directly to the right of the ventri-
cles, while the surrounding glyphs do not suggest there should be any crossings
there. It also affects the fibers of the corpus callosum to the top left of the
ventricles by bending them a bit upwards and away from the ventricles.

Figure 3 shows the effect of parameter K on the diffusion profile of the area
of fiber crossings where it can be seen that setting K too small leads to a short-
coming of the algorithm to correctly infer crossing information while setting it
too large leads to the same result as linear diffusion.

Fig. 3. Area with fiber crossings of the corpus callosum and corona radiata for different
values of K. All images created with D33 = 1, D44 = 0.01, t = 1 and Δt = 0.01

5 Conclusion

We have developed an edge-preserving, adaptive Perona-Malik smoothing pro-
cess using finite difference schemes that can be used to remove high frequency
noise and extrapolate fiber crossing information from DTI data by embedding
the DTI data into a function on the space of positions and orientations R3 �S2.
Our experiments have shown that the adaptive diffusion process performs better
than linear processes in areas with large isotropic diffusion (such as the ventri-
cles of the brain) since at these areas adaptive diffusivity strongly reduces the
interference between isotropic glyphs in the ventricles and anisotropic glyphs of
the fibers.
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Abstract. Finding optimal inpainting data plays a key role in the field of image
compression with partial differential equations (PDEs). In this paper, we optimise
the spatial as well as the tonal data such that an image can be reconstructed
with minimised error by means of discrete homogeneous diffusion inpainting. To
optimise the spatial distribution of the inpainting data, we apply a probabilistic
data sparsification followed by a nonlocal pixel exchange. Afterwards we op-
timise the grey values in these inpainting points in an exact way using a least
squares approach. The resulting method allows almost perfect reconstructions
with only 5% of all pixels. This demonstrates that a thorough data optimisation
can compensate for most deficiencies of a suboptimal PDE interpolant.

Keywords: image compression, partial differential equations (PDEs), inpaint-
ing, optimisation, homogeneous diffusion.

1 Introduction

Research on PDE-based data compression suffers from poverty, but enjoys liberty [1,
2, 8, 18]: Unlike in pure inpainting research [14, 3], one has an extremely tight pixel
budget for reconstructing some given image. However, one is free to choose where and
how one spends this budget.

Let us explain the problem of PDE-based image compression in more detail. The
basic idea is to reconstruct some given image by inpainting from a sparse set of pixels
with a suitable partial differential equation (PDE). There is an evident tradeoff between
the number of pixels to store and the achievable reconstruction quality. Even if the
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Fig. 1. Reconstruction of the test image trui using only 5% of all pixels and homogeneous
diffusion inpainting. (a) Original image. (b) Unoptimised data (randomly selected from original
image). (c) Optimised tonal and spatial data

number of pixels and the PDE are already specified, we still have many degrees of
freedom: On one hand we can place the pixels wherever we want. On the other hand we
can freely choose the grey value (or colour value) in each selected pixel.

The goal of the present paper is to optimise this spatial and tonal data selection. In
order to show the real potential behind this approach, we choose an extremely simple
PDE that has a bad reputation for inpainting tasks: We interpolate with the steady state of
a homogeneous diffusion process, i.e. we solve the Laplace equation. Figure 1 illustrates
the huge potential that one can exploit with this optimisation. Even with homogeneous
diffusion and a pixel density of only 5%, astonishing results can be achieved. One should
note that we did not optimise our algorithm with respect to its runtime, as we regard
it as a proof-of-concept only. Thus, our methods can require several hours to days to
process typical images. However, we are confident that this runtime can be significantly
reduced, and are going to address this issue in our ongoing research.

Organisation of the paper. Section 2 gives a brief introduction to homogeneous dif-
fusion inpainting. In Section 3 we present two approaches that are applied sequentially
to optimise the pixel locations: a probabilistic sparsification method, followed by a
nonlocal pixel exchange. Afterwards, in Section 4, we show how the results can be
improved further by an exact optimisation of the tonal data. Finally, we summarise and
conclude our paper in Section 5.

Related work. The most similar work to our paper is a recent publication by Bel-
hachmi et al. [2] where a continuous analysis on spatially optimal data selection for
homogeneous diffusion interpolation is presented. Their framework is based on the
theory of shape optimisation and suggests to choose a pixel density that is an increasing
function of the modulus of the image Laplacian. In order to make this result applicable
to the practically relevant discrete setting, dithering techniques must be applied that can
introduce additional errors. In the experiments we compare our results with the ones
from [2]. It should be mentioned that in [2] no tonal optimisation is performed.

There is a long tradition to restore image data by homogeneous diffusion inpainting
from edges [5,7,9,13,20] or specific feature points in Gaussian scale space [10,11,12].
Although such features can be perceptually relevant, one cannot expect that they are
optimal w.r.t. some error norm.
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In order to come up with data-adaptive point distributions, some publications use
subdivision strategies in connection with anisotropic diffusion [8, 18]. They offer the
advantage that the resulting tree structures allow an inexpensive coding of the selected
pixels, but they severely constrain the set of admissible point distributions. For a more
sensitive interpolant such as homogeneous diffusion, this restriction is too prohibitive.

The holographic image representation presented in [4] maps the image into a se-
quence of sample pixels, such that any partition of this sequence allows for a recon-
struction of the whole image with similar quality. This requires the samples in each
portion to be equally optimal. On the contrary, our goal is to reduce the image to only
one set of optimal samples.

From the Green function of the Laplace operator it follows that homogeneous diffu-
sion inpainting involves radial basis functions. These functions are popular for scattered
data interpolation, and some of them have also been used for inpainting corrupted
images [6, 19]. However, such problems usually do not allow to optimise the location
and the grey values of the inpainting data set.

2 Image Inpainting with Homogeneous Diffusion

Continuous formulation. Let f(x) be a continuous grey value image, where x =
(x, y)� denotes the location within a rectangular image domain Ω ⊂ R × R. Fur-
thermore, let ΩK ⊂ Ω be a subset of the image domain, denoting known data. A
reconstruction u(x) by means of homogeneous diffusion inpainting can be obtained
by keeping known data and using them as Dirichlet boundary conditions, while solving
the Laplace equation on the set of unknown data Ω \ΩK :

u(x) = f(x) for x ∈ ΩK ,
Δu(x) = 0 for x ∈ Ω \ΩK ,

(1)

with homogeneous (reflecting) Neumann boundary conditions across the image bound-
ary ∂Ω. These two equations can be combined to a single equation

c(x)(u(x)− f(x))− (1 − c(x))Δu(x) = 0 , (2)

by using a confidence function c(x) which specifies whether a point is known or not:

c(x) =
{

1 for x ∈ ΩK ,
0 for x ∈ Ω \ΩK .

(3)

Discrete formulation. To apply the homogeneous inpainting process to a digital image,
we need a discrete formulation of Equation 2. The discrete version of a continuous
image f is represented as a one-dimensional vector f = (f1, . . . , fN )� = (fi)i∈J ,
where J = {1, . . . , N} denotes the set of all pixel indices. Analogously, u describes
the solution vector and c the binary pixel mask that indicates whether a pixel is known
or not. The set K contains the pixel indices i of known pixels, i.e. for which ci = 1.
The Laplacian Δu is discretised by means of finite differences [15]. Then the discrete
formulation reads

C(u− f)− (I −C)Au = 0 , (4)
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where I is the identity matrix, C := diag(c) is a diagonal matrix having the com-
ponents of c as diagonal entries, and A is a symmetric N × N matrix, describing
the discrete Laplace operator Δ with homogeneous Neumann boundary conditions. Its
entries are given by

ai,j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
h2

�

(j ∈ N�(i))

−
∑

�∈{x,y}

∑
j∈N�(i)

1
h2

�

(j = i)

0 (else) ,

(5)

whereN�(i) are the neighbours of pixel i in �-direction.
Reformulating Equation 4 yields a linear system of equations:

(C − (I −C)A)︸ ︷︷ ︸
=:M

u = Cf . (6)

This linear system of equations has a unique solution and can be solved efficiently by
using bidirectional multigrid methods [13].

3 Optimising Spatial Data

Now that we know how an image can be reconstructed by means of homogeneous
diffusion inpainting, let us optimise the spatial data. This means we are looking for
a pixel mask that selects for example only 5% of all pixels and that minimises the
reconstruction error.

The good news on the pixel selection is that it is a discrete problem and thus it is
finite and a global optimum exits. The bad news is that selecting the best 5% pixels of
a 256× 256 image offers already

(
65536
3277

) ≈ 1.72 · 105648 possible solutions.
We overcome this problem by introducing two optimisation approaches. The first one

is the probabilistic sparsification, which step by step removes pixels until the desired
amount of pixels is left. Since this method can be trapped in local minima, we apply in
a second step a method which we call nonlocal pixel exchange. It takes the mask that
was created by the probabilistic sparsification and tries to improve the result by globally
exchanging mask pixels with non-mask pixels.

3.1 Probabilistic Sparsification

Given an fixed discrete image f , let r(c,f) be a function which computes the solution
u of the discrete homogeneous inpainting process described by Equation 6, depending
on a mask c. Our goal is to obtain a pixel mask c, marking only a predefined fraction d
of all pixels J such that the mean squared error (MSE)

MSE(u) =
1
|J |
∑
i∈J

(fi − ui)2 (7)
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Input: Original image f , fraction p of mask pixels used for
candidate set, fraction q of candidate pixels that are finally
removed, desired pixel density d.

Output: Pixel mask c, s.t.
∑

i∈J ci = d · |J |.
Initialisation: c := (1, . . . , 1)�, thus K = J .

While |K| > d · |J | do

1. Choose randomly p · |K| pixel indices from K into a candidate set T .
2. For all i ∈ T reassign ci := 0.
3. Compute u := r(c, f ).
4. For all i ∈ T compute the local error ei = |ui − fi|.
5. For all i of the (1 − q) · |T | largest values of {ei|i ∈ T}, reassign ci := 1.
6. Update K and clear T .

Fig. 2. Probabilistic sparsification

is minimised. To obtain a suitable, approximatively optimal pixel mask, we suggest a
method that we call probabilistic sparsification.

In each iteration, we first randomly remove a fraction of mask pixels, inpaint, com-
pute the error in each removed pixel, and put a subset of the removed pixels with largest
error back into the mask again. Thus, pixels which are supposed to be least significant
are step by step removed until the desired fraction of pixels remains. The algorithm is
given in detail in Figure 2.

Note that our algorithm removes p · q · |K| pixels in each step. Thus, in the k-th
iteration, there are (1 − pq)k · |J | mask pixels left, since K is initially J . In total, we
need log(1−pq) d many steps to obtain the desired fraction d. Hence, the larger p and q
are chosen, the faster the algorithm converges. On the other hand, it is then more likely
that significant pixels are removed. Since we aim for an optimal pixel mask, we suggest
to choose small values, such as p = 0.02 and q = 0.02.

3.2 Nonlocal Pixel Exchange

The previously presented method has the disadvantage that once a pixel is removed
from the mask, it will never be put back again. Moreover, by selecting pixels randomly,
it might be possible that we also remove some significant pixels. To this end, we add a
post-optimisation step, called nonlocal pixel exchange.

In each iteration, we choose randomly a fixed amount of non-mask pixels into a
candidate set. A subset of those which exhibit the largest inpainting error, are exchanged
with randomly chosen mask pixels. If the inpainting error for the new mask does not
decrease, we reset the mask to its previous configuration. Thus, we allow mask pixels to
move globally as long as the reconstruction result improves. The details of the algorithm
are given in Figure 3.

For our experiments, we exchange only one pixel per iteration (n = 1) and keep the
candidate set small by choosing m = 10. Interestingly, the results cannot be improved
by larger candidate sets. Restricting it to this size adds some moderate amount of
randomness such that we are not trapped in the next local minimum.
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Input: Original image f , (pre-optimised) pixel mask c,
size m of candidate set and number n of mask pixels
exchanged per iteration.

Output: Post-optimised pixel mask c.
Initialisation: u := r(c,f ) and cnew := c.

Repeat:

1. Choose randomly m ≤ |K| pixel indices from J \ K into a candidate set T and compute
for all i ∈ T the local error ei = |ui − fi|.

2. Choose randomly n ≤ |T | pixel indices i from K and reassign cnew
i := 0.

3. For all i of the n largest values of {ei|i ∈ T}, reassign cnew
i := 1.

4. Compute unew := r(cnew, f ).
5. If MSE(u) > MSE(unew)

u := unew and c := cnew.
Update K.

else
Reset cnew := c.

6. Clear T .

Fig. 3. Nonlocal pixel exchange

3.3 Results

Let us now evaluate the capabilities of the probabilistic sparsification and the nonlocal
pixel exchange. To this end, we consider the test image trui, which is depicted in
Figure 1(a). We apply the probabilistic sparsification to select only 5% of all pixels. For
comparison, we choose the same amount of pixels randomly. In addition, we compare
our method with an inpainting mask which relies on the analytic approach of Belhachmi
et al. [2]: We first compute the Laplace magnitude |Δfσ| of the Gaussian presmoothed
original image, using a standard deviation σ. Then we rescale the obtained data and
apply electrostatic halftoning [17] such that we obtain a dithered version which contains
only 5% of all pixels. We decided to favour the electrostatic halftoning over simpler
dithering approaches, since it has proven to be the state-of-the-art method for discretis-
ing a continuous distribution function. In the following, we say “analytic approach”
when referring to this method and choose the standard deviation σ of the Gaussian
presmoothing such that the MSE is minimal.

The resulting masks as well as the corresponding reconstruction results are depicted
in Figure 6(a)–(c) and (e)–(g). As expected, the random mask gives poor quality re-
constructions. Comparing the reconstructed images of the analytic approach and the
probabilistic sparsification, we observe that the latter has a lower reconstruction error.
This shows that we cannot immediately deduce an optimal pixel set from the optimal
continuous theory.

If we now additionally apply the nonlocal pixel exchange to the mask that was
obtained by the probabilistic sparsification, we also get a visually more pleasant result
(see Figure 6(d) and (h)). The MSE is decreased to 23.21, which is much better than the
MSE of the analytic approach that is 49.47.
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Fig. 4. Convergence behaviour of the nonlocal
pixel exchange (m = 10, n = 1, 500,000
iterations) applied to the mask obtained by the
probabilistic sparsification (see Figure 6(c))
with 5% of all pixels

The plot in Figure 4 shows that the nonlocal pixel exchange achieves the most sig-
nificant improvement during the first 50,000 iterations. On the other hand, it illustrates
that after 500,000 iterations the real optimum is still not reached, even though we are
probably rather close to it.

4 Optimising Tonal Data

So far we explained how to obtain approximatively optimal positions for a predefined
amount of pixels. This is considered as spatial data optimisation. However, it is also
possible to optimise the data with respect to the tonal data (i.e. the co-domain).

For inpainting, we usually use the original grey values of the input image. Now we
allow arbitrary grey values and thus accept to introduce some error at the positions of
mask pixels in favour of a lower overall reconstruction error.

4.1 Grey Value Optimisation

Let us start by stressing that the homogeneous inpainting function r(c,f) is a lin-
ear function with respect to the grey values f . This allows us to formulate a least
squares approach, with which we can compute the optimal grey values for a given mask
exactly.

For a given mask c and given data f the solution u = r(c,f) of the discrete
homogeneous inpainting process (6) is given by

r(c,f) := M−1Cf . (8)

Since M only depends on c it follows directly that r is a linear function in f .

Least squares approximation. Our goal is to find grey values g such that MSE(r(c, g))
becomes minimal for a fixed mask c. To this end, we suggest the following minimisation
approach:

argmin
α

‖f − r(c,f + α)‖2 , (9)



Optimising Spatial and Tonal Data for Homogeneous Diffusion Inpainting 33

such that g = f + α. Let ei denote the vector with a 1 in the i-th coordinate and zeros
elsewhere. Then we call r(c, ei) the inpainting echo of the i-th pixel. By linearity and
α =

∑
i∈J αiei it follows that

r(c,f + α) = r(c,f) + r(c,α) = r(c,f) +
∑
i∈J

αir(c, ei) . (10)

Since the r(c, ei) is 0 if ci = 0 (i.e. i ∈ J \K), we get

r(c,f + α) = r(c,f) +
∑
i∈K

αir(c, ei) . (11)

For our minimisation problem (9), this means that αi can be chosen arbitrarily if i ∈
J \K . Thus, for the sake of simplicity, we set αi = 0 for i ∈ J \K . The remaining αi

with i ∈ K can be obtained by considering the least squares problem:

argmin
αK

‖UαK − b‖2 , (12)

where b = r(c,f) − f is a vector of size |J |, αK = (αi)i∈K is a vector of size |K|,
and U is a |J | × |K| matrix which contains the vectors r(c, ei), i ∈ K as columns.

Its solution is given by solving the normal equations:

U�UαK = U�b . (13)

Let us first prove that the matrix U�U is invertible: Since U contains the vectors
r(c, ei), i ∈ K as columns, it is sufficient to show that the vectors r(c, ei) with i ∈ K
are linearly independent. It holds that

r(c, ei) = M−1Cei
i∈K= M−1ei . (14)

Hence, r(c, ei) is the i-th column of M−1 and since M−1 exists [13], the vectors
r(c, ei) have to be linearly independent. Thus, U�U is invertible.

Iterative approach. The linear system given by Equation 13 can be solved exactly by
using standard methods such as an LU-decomposition. Since this is rather slow, we
suggest the following iterative solver.

Let us for a moment consider the simplified optimisation problem, where a vector g
and the inpainting result u = r(c, g) are initially given. We want to optimise only the
i-th grey value and keep the remaining grey values fixed:

argmin
α

‖f − r(c, g + αei)‖2 . (15)

Then the solution is

α =
r(c, ei)�(f − u)
r(c, ei)�r(c, ei)

. (16)

The optimised grey value can be computed as gi := gi+α. Moreover, provided we have
precomputed all inpainting echos r(c, ei), i ∈ K , we can not only efficiently compute
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Input: Original image f , attenuation factor ω.
Output: Optimised grey values g.

Initialisation: u := r(c,f ) and g := f .

Do

For all i ∈ K (randomly chosen):
1. Get the inpainting echo ui := r(c,ei).

2. Compute the correction term α :=
u�

i (f−u)

u�
i

ui
.

3. Set uold := u.
4. Update the reconstruction u := u + ω · α · ui .

and the grey value gi := gi + ω · α.

while |MSE(u) − MSE(uold)| > ε .

Fig. 5. Grey value optimisation

α, but also the inpainting result for the updated image g. To this end, we exploit again
the linearity of r:

r(c, g) := r(c, g + αei) = r(c, g) + α · r(c, ei) = u + α · r(c, ei) . (17)

If we apply this optimisation for each i ∈ K iteratively, and update the grey values
in each step directly, we obtain an algorithm which corresponds to the Gauss-Seidel
method [16] for the previously presented linear system of equations (see Equation 13).

Optimising one grey value at a time means that this grey value might be shifted
extremely in order to reduce the inpainting error in its neighbourhood. However, there
could be mask points nearby which are not optimised yet and a combined optimisation
would lead to a smaller shift for each of them. Thus, to prevent over- and undershoots
we suggest to introduce an attenuation factor ω. This can be seen as a variant of the
so-called successive over-relaxation method (SOR) [16] with under-relaxation instead
of over-relaxation. Figure 5 summarises our iterative algorithm.

We terminate our algorithm when the qualitative improvement from one to the next
iteration step decreases to a value smaller then ε = 0.001. Moreover, note that we
choose the indices i ∈ K randomly in each run. This allows more stable results, since
we do not rely on a specific pixel ordering for each run and thus the approximation error
is better distributed over the whole image.

4.2 Results

We apply the presented grey value optimisation to the test image trui and the mask
obtained by our spatial optimisation method (see Figure 6(d)). However, we actually
can use the grey value optimisation to optimise the grey values for any fixed mask.
Thus, for the sake of comparison, we also consider the random mask, the mask obtained
by the analytic approach, and the mask created with the probabilistic sparsification
(see Figure 6(a),(b) and (c)). The reconstruction results are depicted in the last row
of Figure 6.
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Fig. 6. Evaluation of different inpainting data using 5% of all pixels. Top row: Different
masks obtained by (a) random selection, (b) analytic approach (σ = 1.44), (c) probabilistic
sparsification (p = 0.02, q = 0.02, d = 0.05), (d) nonlocal pixel exchange (m = 10,
n = 1, 500,000 iterations) applied to (c). Middle row: (e-h) Reconstructions with homogeneous
diffusion inpainting using the masks (a-d). Bottom row: (i-l) As middle row but using optimal
tonal data

For all examples the MSE has decreased. However, we observe that the worse the
spatial data are selected, the larger the improvement that can be achieved by the grey
value optimisation. The explanation for this behaviour is simple. Both our spatial opti-
misation method as well as the analytic approach select the pixels depending on the grey
values of the original image. Thus, the spatial data are optimised by incorporating these
tonal data. If we choose random spatial data, it is more likely that we can compensate
bad locations by adapting the grey values.

Besides this observation, the smallest MSE of only 17.17 is obtained by the com-
bination of the presented spatial and tonal optimisation methods. To further evaluate
this combined approach, we apply it to two other test images. The results are depicted
in Figure 7. Moreover, Table 1 gives a comparison with the analytic approach and the
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original MSE: 8.14 original MSE: 19.38

Fig. 7. Reconstruction results with 5% of all pixels, spatially and tonally optimised, for the test
images walter and peppers256

Table 1. Comparison of the reconstruction error (MSE) with 5% of all pixels for different test
images and different inpainting data

unoptimised analytic approach spatially and tonally
(randomly selected) (|Δfσ| dithered) optimised

trui 198.90 49.47 (σ = 1.44) 17.17
walter 183.37 24.59 (σ = 1.37) 8.14

peppers256 179.22 49.71 (σ = 1.15) 19.38

results obtained with a random pixel mask. In all cases, we obtain by far the best
reconstruction results with our new approach. This confirms that it is a suitable method
for the selection of optimal inpainting data.

5 Conclusion

While many researchers have tried to find highly sophisticated PDEs for inpainting
problems with given data, we have investigated the opposite way: finding optimal data
for a given PDE. We have shown that even for the simplest inpainting PDE, namely
homogeneous diffusion, one can obtain reconstructions of astonishing quality using
only 5% of all pixels. However, this requires to optimise the data carefully in the domain
and the co-domain.

Since we are able to reduce the amount of data needed for high quality reconstruc-
tions drastically, our ongoing research addresses the problem how these data can be
encoded efficiently. This includes appropriate adaptations of the grey value optimisation
to quantised data. Moreover, we are interested in applying our optimisation framework
also to nonlinear inpainting methods. As a result, we might obtain similar qualitative
reconstructions with even less data, allowing further cuts in our pixel budget.
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diffusion. In: Denzler, J., Notni, G., Süße, H. (eds.) DAGM 2009. LNCS, vol. 5748,
pp. 452–461. Springer, Heidelberg (2009)

19. Uhlir, K., Skala, V.: Reconstruction of damaged images using radial basis functions. In:
Proc.13th European Signal Processing Conference (EUSIPCO), Antalya, Turkey, pp. 160–
163 (September 2005)

20. Zeevi, Y., Rotem, D.: Image reconstruction from zero-crossings. IEEE Transactions on
Acoustics, Speech, and Signal Processing 34, 1269–1277 (1986)

http://dx.doi.org/10.1007/s10092-010-0028-3
http://dx.doi.org/10.1007/s10092-010-0028-3


Nonlocal Surface Fairing

Serena Morigi, Marco Rucci, and Fiorella Sgallari

Department of Mathematics-CIRAM, University of Bologna, Bologna, Italy
{morigi,rucci,sgallari}@dm.unibo.it

Abstract. We propose a new variational model for surface fairing. We
extend nonlocal smoothing techniques for image regularization to surface
smoothing or fairing, with surfaces represented by triangular meshes.
Our method is able to smooth the surfaces and preserve features due
to geometric similarities using a mean curvature based local geometric
descriptor. We present an efficient two step approach that first smoothes
the mean curvature normal map, and then corrects the surface to fit the
smoothed normal field. This leads to a fast implementation of a feature
preserving fourth order geometric flow. We demonstrate the efficacy of
the model with several surface fairing examples.

1 Introduction

A surface smoothing method, in the following named fairing, removes undesir-
able noise and uneven edges from discrete surfaces. The fairing problem arises
mainly when creating high-fidelity computer graphics objects using imperfectly-
measured data from the real world, captured for example from 3D laser scanner
devices. Fairing can be applied either before or after generating the mesh from
sampled data. The advantage of denoising a mesh rather than a point-cloud, is
that the connectivity information implicitly defines the surface topology and can
be exploited as a means for fast access to neighboring samples.

The goal is to remove noise from a surface while keeping features, e.g. sharp
edges, corners and ridges. There are essentially two ways to represent surfaces.
Explicit representations, such as meshes, are most commonly used by the com-
puter graphics community, while implicit representations, usually based on level
set functions, are mostly considered by partial differential equations (PDEs)
community. Explicit surface representations offer a easier way to discretize dif-
ferential operators, but topological changes are harder to handle. However, for
smoothing processing driven by PDE models, the evolution is sufficiently slow
to avoid both topological modifications and triangle flips in triangular meshes.

In this paper we will focus on explicitly represented surfaces, that is we process
a triangular mesh M which represents a piecewise-linear approximation of a
smooth surfaceM. We assume that the surfaceM is a two-dimensional manifold
embedded in R3, and we denote by (Ω,X) a chart of M, where Ω ⊂ R2 is an
open reference domain and X is the corresponding coordinate map, that is the
parametrization of M at a given point. Let M be defined by a set T of triangles
Ti, i = 1, . . . , Nt, that cover M , and a set X of vertices Xi, i = 1, . . . , Nv, where
Xi ∈ R3 is the ith vertex.

A.M. Bruckstein et al. (Eds.): SSVM 2011, LNCS 6667, pp. 38–49, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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The most common surface degradation model, when the observed data X0 ∈
Rn3

are corrupted by a random variation of the vector field, is

X = X0 +
−→
E , (1)

where
−→
E ∈ Rn3

accounts for the vector perturbations.
We present an original two step approach which implements nonlocal surface

diffusion flow on surfaces represented by meshes. First, we smooth the mean
curvature normal map of a surface, and next we manipulate the surface to fit
the processed smoothed curvature normal vector field. We show we can efficiently
implement geometric fourth-order flow by solving a set of second order PDEs
discretized on the mesh M . Inspired by [7] we integrate a nonlocal approach into
this framework driven by a mean curvature based local geometric descriptor. We
look for patches that have similarities in order to reduce noise while preserving
the surface details.

Variational and PDE-based surface denoising models have had great success
in the past ten years. Several authors presented isotropic/anisotropic denoising
of surfaces applying image processing methodology based on linear/nonlinear
diffusion equations [1][11][12][13][14].

In [15] the authors propose a point cloud nonlocal denoising using the signed
distance function as local surface descriptor in a point-wise process. Similar
descriptors are used in the nonlocal denoising method proposed in [16] where
instead of the moving least square representation, the authors used local radial
basis functions. In [7] a nonlocal diffusion process is derived as steepest descent
of a nonlocal quadratic functional of weighted differences. This formulation is
an excellent framework for nonlocal variational image denoise, Bregman iter-
ations, and segmentation. A nonlocal heat equation for denoising surfaces has
been introduced in [8], where the signed distance function is used to define the
similarity weights, and the PDE evolution is solved using a level set formulation
on an implicitly defined surface.

Let us briefly introduce a key ingredient in our variational denoising formula-
tion. The Laplace-Beltrami on M, ΔM, is a local operator acting on a smooth
function η. When the mesh M approximates the manifold M, the discretization
of ΔM(η) on M , (denoted by L) evaluated at the vertex Xi, is given by

Lη(Xi) =
∑

j∈N(i)

wij(η(Xj)− η(Xi)), (2)

where N(i) is the set of 1-ring neighbor vertices of vertex Xi, and the weights wij

are positive numbers and satisfy the normalization condition
∑

j∈N(i) wij = 1.
The weights wij are “local”, thus the summation in (2) is “local”. Different
geometric discretizations of the Laplacian can be obtained for different choices
of the weights in (2), the most common, introduced by Meyer et al. in [3], is

wij = (cotαij + cotβij), (3)

where αij and βij are the two angles opposite to the edge in the two triangles
sharing the edge (Xj , Xi).



40 S. Morigi, M. Rucci, and F. Sgallari

The paper is organized as follows. We briefly describe the nonlocal image
denoising algorithm in Section 2. The variational nonlocal approach is described
in Section 3, and the proposed algorithm together with its numerical aspects
are discussed in Section 4. Numerical examples and comments are provided in
Section 5. Section 6 contains concluding remarks.

2 Nonlocal Means Image Denoising

Nonlocal denoising is an algorithm for image denoising introduced in [9]. The al-
gorithm aims to denoise a gray-scale image I, defined over a rectangular bounded
domain Ω, by replacing each pixel with a weighted mean of the neighborhoods.
The new value of the image pixel is

NL[I](x) =
∫

Ω

W (x, y)I(y)dy, (4)

where the convolution kernel W (x, y) is given by

W (x, y) = 1
C(x)e

−D(I(x),I(y))/c

D(I(x), I(y)) = ‖I(x)− I(y)‖22, y ∈ N(x)
(5)

with a normalization factor C(x) =
∫

Ω
W (x, y), N(x) represents a neighborhood

of x, and c is a filtering parameter which is related to the noise level. The simi-
larity between pixels is measured by the similarity kernel D in (5) and depends
on the similarity of gray-level intensities in the neighborhood of x and y, that
is, the algorithm not only compares the (color) value at a single pixel but the
geometrical configuration in a whole neighborhood. The algorithm gives excel-
lent results in image denoising (see [10],[9]). For a more detailed analysis on the
NL-means algorithm see [9].

3 The Nonlocal Variational Fairing

We propose a variational formulation in order to derive our nonlocal approach
to surface fairing.

For a surface parameterization X of M on a domain Ω, and a given vector
field f ∈ Rn3

, we consider the minimization of the following functional

InfX

∫
Ω

|∇WX |2 +
λ

2
(X − f)2dω, (6)

where λ > 0 is a regularization parameter and ∇W is a weighted gradient oper-
ator. The corresponding Euler-Lagrange descent flow can be written as

∂X

∂t
=
∫

Ω

(X(y)−X(x))W (x, y)dω + λ(f −X), (7)

with x, y ∈ Ω, (see [8] for a similar definition). Here W (x, y) is the weight
function, which satisfies W (x, y) ≥ 0, and is symmetric W (x, y) = W (y, x).
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For image processing the weight function can be defined as in (5). The spatial
discretization of (7) on the mesh M , is

∂Xi

∂t
=
∑

j∈N(i)

Wij(Xj −Xi) + λ(fi −Xi), (8)

where Xi denotes the value of X at the ith vertex, i = 1, . . . , Nv, and N(i) is
the set of 1-ring neighbor vertices of the ith vertex.

Let f(x) := (f1, f2, f3)(x) be a vector field on M, W (x, y) is the same for all
vector components. Let X(x) := (X1, X2, X3)(x) be the coordinate function vec-
tor on M , where X1 is the scalar function that defines the first coordinate of point
x ∈ M, and analogously for the second and the third coordinate scalar functions.
Then the regularizing formulation (8) for each vector component Xk, k = 1, 2, 3,
is

∂Xk
i

∂t
=
∑

j∈N(i)

Wij(Xk
j −Xk

i ) + λ(fk
i −Xk

i ), (9)

by initializing, e.g., each component k of X as Xk|t=0 = fk.
If we let Wij = wij , with wij defined by (3), then the regularized PDEs (9) can

be interpreted as the spatial discetization on M of the well know mean curvature
flow (MCF)

∂X

∂t
= �MX + λ(X0 −X), X |t=0 = X0, (10)

with initial surface X0. The first term in (10) is the regularization term, while
the second one is the fidelity term.

The mean curvature flow is known to have a strong regularization effect,
because it is the gradient flow for the area functional. In a discrete setting, the
mean curvature flow moves every vertex in the normal direction with the speed
equal to a discrete approximation of the mean curvature at the vertex. It is also
well known that the mean curvature flow performs well in smoothing (fairing)
but produces uneven distribution of vertices.

In [1] the authors present finite element schemes for MCF on triangulated
surfaces. analogously, in [2], implicit and explicit discretizations using cotangent
discretization are considered. Unfortunately, MCF not only decreases the geo-
metric noise due to unprecise measurements, but also smoothes out geometric
features such as edges and corners of the surfaces.

In view of (2) we propose the following nonlocal operator that we define the
weighted Laplace-Beltrami operator on M ,

LwXi =
∑

j∈N(i)

(Xj −Xi)Wijwij , (11)

where wij is defined as in (2), while Wij depends on a similarity measure between
ith and jth vertex. A proposal of similarity weight functions in surface processing
is discussed in Section 4.
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By initializing, e.g., with X |t=0 = X0, and using the nonlocal operator (11),
then (8) can be rewritten as

∂Xi

∂t
= LwXj + λ(X0

i −Xi). (12)

In Section 4, we apply the nonlocal variational approach to mesh fairing and de-
velop a new mesh smoothing method which solves a fourth order surface diffusion
equation on M.

4 Non Local Surface Diffusion Flow (NL-SDF)

Let H be the mean curvature function on the mesh M , defined as the sum of
the two principal curvatures H(X) = k1 + k2, and

−→
H (X) = H(X)

−→
N (X) be the

mean curvature normal vector field.
Replacing X with

−→
H in (9), and considering a uniform discretization of the

time interval [0, T ], T > 0, with a temporal time step dt, then (12) can be fully
discretized using a variety of explicit or implicit time integration schemes. In our
computational method, we used the forward Euler scheme which yields a first
order scheme in time. Therefore, applying an implicit scheme to (12), without
the fidelity term, we get the iterative scheme

(I − dtLw)
−→
Hn+1

i =
−→
Hn

i ,
−→
H |t=0 =

−→
H 0, (13)

where Lw is computed as given in (11), with initial condition
−→
H 0 determined

from X0.
The number of time iterations n is chosen by the user; from our experimental

work we tuned up nMAX ≤ 20 (see the numerical Section 5 for more details).
For image processing the weight function is defined by image features and

represents the similarity between two pixels, based on features in their neigh-
borhood, see [9]. Working with surfaces, the way of choosing weight Wij in (11)
should characterize the similarities between two local surface patches. We pro-
pose to use the mean curvature values. Therefore, according to (5), we define
the weights as follows

Wij = 1∑
j∈N(i) Wij

e−D(Xi,Xj)/σ,

D(Xi, Xj) = ‖H(Xi)−H(Xj)‖22, j ∈ N(i).
(14)

The parameter σ controls how much the similarities of two patches are penalized.
Larger σ gives results with sharper features. By using (14) we get a good mea-
surement of similarity, which penalizes the contribution in (11) of the vertices
with different curvature features and is rotationally invariant.

We propose a two-step strategy which first smoothes the normal vectors al-
lowing the mean curvature normals to diffuse on M , then the second step re-
fits the parameterization X according to a given mean curvature distribution.
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(a) (b) (c) (d)

Fig. 1. (a) The noise-free sphere mesh; (b) the perturbed sphere; (c) the smoothed
mean curvature vector field obtained by step 1; (d) reconstructed sphere by step 2.

The normal vector smoothing (13) is “nonlocal”. By this we mean that a “nonlo-
cal” operator is used which includes weights that penalize the similarity between
patches.

The nonlocal approach is described by the following algorithm, where in step
1 we solve (13) by a sequence of linear systems, the smoothed mean curvature
normal vector field is then plugged into the constrained least square problem in
step 2, which is solved by a LSQR iterative method. Here L is defined by (2)
and Lw as in (11).

Non Local SDF Algorithm
Given an initial position vector X0,

STEP 1: SOLVE FOR H:

For each n = 1, · · · , nMAX

(I − dtLw)
−→
Hn+1 =

−→
Hn

end for

STEP 2: PLUG IN
−→
H AND SOLVE FOR X:

minX‖LX −−→
H‖2

2 + λ‖X0 − X‖2
2

Fig. 1 shows how the two step NL-SDF algorithm works. A noise-free sphere
mesh together with the associated mean curvature normal field is shown in (Fig.
1 (a)). The mesh is perturbed by a randomly chosen noise vector field. The
perturbed sphere is illustrated in Fig. 1(b). The smoothed mean curvature vector
field obtained by applying 10 iterations of step 1 is shown in Fig. 1 (c), while
the recovered sphere resulting from applying step 2 using the smoothed normal
vector field, is shown in Fig. 1 (d).

We shall assume a certain level of connectivity in the mesh such that there
will not be any disjoint regions where no information is exchanged between them
throughout the evolution. Thus we assume that M consists of only one connected
mesh. The matrix L has rank(L) = Nv − k, where k is the number of connected
components of M , and it is positive semi-definite. Since we imposed that M is
connected, that is k = 1, then L has a zero eigenvalue with multiplicity 1. The
linear system derived from solving step 2 is uniquely solvable by fixing a vertex
to have an assigned value.

When the perturbation on the initial mesh affects only the magnitude of the
normal field, that is

−→
E in (1) are in the normal directions, we can replace

−→
H

with H in step 1 and step 2, thus processing the mean curvature scalar field
instead of the mean curvature normal vector field.
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In the following we theoretically justify the NL-SDF algorithm, which ap-
proaches to the solution of a fourth-order PDE representing a nonlocal surface
diffusion flow on M.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (l)

Fig. 2. fandisk mesh: (a) Noise-free mesh and its curvature map (e); (b) noisy mesh
and its curvature map (f); (c) restored mesh by the two step SDF and its curvature
map (g); (d) restored mesh by NL-SDF algorithm and its curvature map (h); (i) and
(l) zoomed details from (c) and (d), respectively.

Let us suppose that the weight functions W (x, y) are defined as in (14),
and λ = 0. Then the sequence {X(n)}, generated by the NL-SDF algorithm is
convergent to the solution X∗ of the fourth order Non Local Surface Diffusion
Flow (NL-SDF) on M

∂X

∂t
= �wMH(X), X(0) = X0, (15)

where �wM is a nonlocal Laplace Beltrami operator, and M is the piecewise
linear representation of M.
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We factorize (15) into a set of two nested second order PDEs

1. ∂
−→
H

∂t = �wM
−→
H (X),

−→
H (0) =

−→
H 0,

2. �MX =
−→
H,

(16)

implemented in step 1 and step 2 of the NL-SDF algorithm, respectively.

The nonlinear parabolic PDE (16).1 can be interpreted as a diffusion flow for the
vectors Hi. The unknown mean curvature vectors at the vertices are determined
by an implicit scheme which leads to a nonsingular linear system (I − dtLw),
with the matrix Lw defined as in (11) that discretizes �wM. The computed
mean curvature normals

−→
H i, i = 1, ..., Nv are then used to move each vertex ith,

according to the well known relation [3]

−→
H = H(X)

−→
N (X) = −�MX, (17)

where
−→
N (X) is the unit outward normal of the surface at point X . The dis-

cretization L in (2) with weights defined by (3) is shown to be convergent to the
Laplace-Beltrami operator �M applied to f ∈ C2(M) except for special cases,
see [17]. This justifies the use of L to discretize the second step.

On the other hands, considering the similarity weights Wij = 1, ∀i, j, and
λ = 0, then the NL-SDF algorithm approaches to the solution of the Surface
Diffusion Flow (SDF): ∂X

∂t = �MH(X).
Moreover, if M(t) is a closed surface then the volume of the bounded domain

computed by both NL-SDF and SDF is preserved.
In [4] the two step method is applied to solve the elliptic fourth order PDE

�MH = 0. A pioneer approach to the two-step denoising procedure with a
fourth order model is introduced in [18]. A level set formulation of a two step
geometric denoising via normal maps is also presented in [12].

5 Numerical Results

The results of the proposed algorithm are demonstrated applying perturbations
to the meshes shown in Fig. 2(a), Fig.3(a) and Fig.4(a). The meshes present
different characteristics in terms of details, “sharpness”, and level of refinement,
as summarized in Table 1.

Table 1. Data for the meshes used in the examples

Mesh Faces Vertices Volume c1 c2

fandisk 51784 25894 0.234024 -0.6 -0.6
oilpump 82176 41090 0.184494 -0.8 -0.8
igea 268686 134345 0.376882 0.8 0.8
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The meshes are corrupted by adding a perturbation vector
−→
Ei for each vertex

i of the mesh according to (1). We let
−→
Ei be a weighted sum of the normal vector−−−−→

N(Xi), and a random-direction unitary vector −→v ,

−→
Ei =

c1
−−−−→
N(Xi) + c2

−→v
ē

, c1, c2 ∈ [−1, 1], (18)

where ē is a scaling factor determined by the edge length average of the mesh,
and c1 and c2 are assigned scalar parameters that control the maximum length
of the corresponding vectors.

Table 2. Data for the examples shown in Fig. 2, 3 and 4

Mesh Algorithm dt nMAX ΔV (%) σ

fandisk MCF 0.013 10 8.11 × 10−4 -
fandisk SDF 0.139 10 0.89 × 10−4 -
fandisk NL-SDF 0.139 10 0.92 × 10−4 0.6
oilpump MCF 0.013 10 5.93 × 10−4 -
oilpump SDF 0.077 10 0.32 × 10−4 -
oilpump NL-SDF 0.022 10 0.32 × 10−4 0.5
igea MCF 0.146 20 3.90 × 10−4 -
igea SDF 0.141 20 0.02 × 10−4 -
igea NL-SDF 0.141 20 0.02 × 10−4 0.6

The amount of noise added to the meshes is then controlled by parameters
c1 and c2, whose values are reported in Table 1. The perturbed versions of the
meshes in the examples are shown in Fig. 2(b), Fig.3(b) and Fig.4(b).

Table 2 summarizes the experiments illustrated in this section. We compared
the performance of the proposed NL-SDF method with MCF and SDF algo-
rithms. The parameter λ for the fidelity term in step 2 of the algorithm is set to
be 0.5. In Table 2 for each mesh (first column), the algorithm applied is shown
in the second column, the corresponding time step used (dt) is provided in the
third column, while the number of iteration steps (nMAX) is in the fourth col-
umn. The differences in volume are labeled by ΔV %, and σ is the parameter in
the weight functions (14).

The three models compared NL-SDF, MCF and SDF are all discretized by
implicit schemes to avoid stability conditions on the time step. The time step dt
for the iterative process is automatically chosen using the formula

dt =
10ē

maxi(‖�iX‖) ,

where the denominator represents the maximum norm value of the displacement
vectors, and �i is the ith row of Lw. This choice allows for producing a good
quality denoised mesh, using about 5 to 20 iterations, independently on the mesh
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(a) (b) (c) (d)

(e) (f)

Fig. 3. olipump mesh: (a) noise-free mesh; (b) noisy mesh; (c) restored mesh by the
SDF algorithm; (d) restored mesh by NL-SDF algorithm; (e) and (f) zoomed details
from (c) and (d), respectively.

characteristics or the Laplacian weights in (2). In Fig.2 and Fig.3 we compare the
recovered fandisk and oilpump meshes by applying algorithms SDF and NL-
SDF. In Fig.2, second row, by false colors we represented the value of the norm of
the mean curvature vector associated to each vertex of the corresponding mesh
in the first row. In Fig. 4 we compare the recovered igea meshes by applying
algorithms MCF and NL-SDF. The example shown in Fig. 4 demonstrates that
the proposed method can produce better results even on more naturally smooth
meshes. From a visual inspection of Fig.2 and Fig.3, we can observe that, while
the SDF and MCF algorithms well accomplish the task of denoising the surface,
they fail in distinguishing the edges and sharp corners from the noise. The NL-
SDF algorithm clearly enhances sharp features of the object while removing the
noise in the flat areas. The overhead of computational effort for NL-SDF with
respect to SDF, is negligible and it consists in computing the weights Wij in
(14). The superiority of the NL-SDF method can be better appreciated in the
more detailed and sharp areas of the mesh, where the features are reconstructed
preserving the sharpness of the original noise-free mesh as shown in Fig.2(i), (l),
and Fig.3(e) and (f).

In Table 2 we labeled by ΔV (%) the difference between the volume of the
noise-free mesh (see Table 1, column marked by V olume), and the volume of
the restored mesh. The NL-SDF algorithm ensures that the volume of the mesh
is preserved after each smoothing iteration.

6 Conclusions

In this paper we present a novel two step algorithm that solves a nonlocal sur-
face diffusion flow PDE. The proposed similarity functions which measure the
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distance between two patches are based on the mean curvature values. This al-
lows for a fairing method which is able to remove spurious oscillations while
preserving and even restoring sharp features. Numerical experiments seem to
confirm that our algorithm is promising. We plan to extend the variational
framework to general weighted operators.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. igea mesh: (a) Noise-free mesh and its curvature map (e); (b) noisy mesh and
its curvature map (f); (c) the MCF smoothing and its curvature map (g); (d) restored
mesh by NL-SDF algorithm and its curvature map (h).
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16. Yoshizawa, S., Belyaev, A., Seidel, H.P.: Smoothing by Example: Mesh Denoising
by Averaging with Similarity-based Weights. In: Proc. IEEE International Confer-
ence on Shape Modeling and Applications (SMI), Matsushima, Japan, June 14-16,
pp. 38–44 (2006)

17. Xu, G.: Convergent Discrete Laplace-Beltrami Operators over Triangular Surfaces.
In: Proceedings of the Geometric Modeling and Processing 2004, GMP 2004 (2004)

18. Lysaker, M., Osher, S., Tai, X.C.: Noise Removal Using Smoothed Normals and
Surface Fitting. IEEE Transaction on Image Processing 13(10), 1345–1457 (2004)



Nonlocal Filters for Removing

Multiplicative Noise

Tanja Teuber1 and Annika Lang2

1 Department of Mathematics, University of Kaiserslautern, Germany
tteuber@mathematik.uni-kl.de

2 Seminar for Applied Mathematics, ETH Zurich, Switzerland
annika.lang@sam.math.ethz.ch

Abstract. In this paper, we propose nonlocal filters for removing multi-
plicative noise in images. The considered filters are deduced in a weighted
maximum likelihood estimation framework and the occurring weights
are defined by a new similarity measure for comparing data corrupted
by multiplicative noise. For the deduction of this measure we analyze
a probabilistic measure recently proposed for general noise models by
Deledalle et al. and study its properties in the presence of additive and
multiplicative noise. Since it turns out to have unfavorable properties
facing multiplicative noise we propose a new similarity measure consist-
ing of a density specially chosen for this type of noise. The properties
of our new measure are examined theoretically as well as by numerical
experiments. Afterwards, it is applied to define the weights of our non-
local filters and different adaptations are proposed to further improve
the results. Throughout the paper, our findings are exemplified for mul-
tiplicative Gamma noise. Finally, restoration results are presented to
demonstrate the good properties of our new filters.

1 Introduction

In 2005, Buades et al. introduced the well-known nonlocal (NL) means filter
[3]. For the restoration this filter uses information gained by comparing various
image regions, so-called patches, with each other. In detail, for a discrete image
f ∈ Rm,n, N = mn with pixels fi, i = 1, . . . , N , the restored pixels are set to be

ũi =
1
Ci

N∑
j=1

wNL(i, j)fj with Ci :=
N∑

j=1

wNL(i, j). (1)

If the image patches with centers fi, fj are given by fi+I , resp. fj+I for I
denoting an appropriate index set, then the weights are given by

wNL(i, j) = exp
(
− 1

h

∑
k∈I

gk|fi+k − fj+k|2
)
.

Here, h > 0 controls the amount of filtering. The vector g = (gk)k∈I represents
usually a sampled two dimensional Gaussian kernel with mean zero and standard
deviation a, which steers the influence of neighboring pixels on the weight.

A.M. Bruckstein et al. (Eds.): SSVM 2011, LNCS 6667, pp. 50–61, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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This filter has been extensively studied in the past five years and further
improved in various directions. An overview is for example given in [4]. One
improvement was that several authors proposed different approaches to adapt
the NL means filter to noise statistics. Kervrann et al. proposed the so-called
Bayesian NL means filter [10], which was applied for the removal of speckle noise
in ultrasound images in [5]. For Rician noise an approach was presented in [16].
Another relative of the original NL means filter in a probabilistic framework
was proposed by Deledalle et al. in [6]. Their approach involved a new noise
dependent similarity measure for the patch comparison and was demonstrated
to perform well for images corrupted by additive Gaussian noise, noise following
a Nakagami-Rayleigh distribution as well as Poisson noise studied in [7].

The aim of this paper is to present nonlocal filters for removing multiplicative
noise. To exemplify our results we concentrate on multiplicative Gamma noise.
Note that all missing proofs and further examples including different types of
noise can be found in [15]. In Section 2 we start by defining our filters by maxi-
mum likelihood estimation. For the weight definition we propose a new similarity
measure specially designed for comparing data corrupted by multiplicative noise.
To obtain this measure we analyze the similarity measure of [6] in the framework
of conditional densities in Section 3 and study its properties facing additive and
multiplicative noise. Since it turns out to be well suited for additive noise, but to
have unfavorable properties for multiplicative noise, we deduce our new measure
by logarithmically transformed random variables in Section 4. The advantages of
our measure are shown theoretically and by numerical experiments. In Section 5,
we consider variants of the weight definition, which further improve the results.
Finally, the very good performance of our novel nonlocal filters is demonstrated
for images corrupted by multiplicative Gamma noise in Section 6.

2 Nonlocal Filters for Multiplicative Noise

As proposed in [6,12], we will deduce our nonlocal filters by weighted maximum
likelihood estimation. Throughout this paper, all random variables are supposed
to be continuous and defined on a fixed probability space (Ω,F , P ). Moreover,
for a random variable X and a constant c ∈ R we denote by pcX the density
of the random variable cX . For x ∈ R with pX(x) > 0, the conditional density
of Y given X = x is defined by pY |X(· |x) := pY,X (·,x)

pX(x) , see, e.g., [9, p. 104].
Now, assume that for i = 1, . . . , N all noisy image pixels fi are realizations of
independent random variables Fi and the corresponding initial noise free pixels
ui are realizations of independent and identically distributed (i.i.d.) random
variables Ui. Moreover, suppose that all fi are corrupted by the same noise
model with equal parameters. Then, we define our restored pixels by

ũi := argmax
t

N∑
j=1

w(i, j) ln pFj |Uj
(fj | t) s.t. pU1(t) = · · · = pUN (t) > 0, (2)

where w(i, j) ∈ [0, 1] is ideally one if ui = uj and zero otherwise. If w = wNL,
we obtain for additive Gaussian noise and positive pUi that ũi is given by (1) as
outlined in [6]. For the case of multiplicative Gamma noise, we assume that
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Fi = UiVi, with pUi(t) = 0 ∀ t < 0, i = 1, . . . , N, (3)

where all Vi are continuous random variables with density

pVi(v) =
LL

Γ (L)
vL−1 exp(−Lv) 1R≥0(v), L ≥ 1 (4)

and Γ denotes the Gamma function. Besides, all Ui, Vi are considered pairwise
independent. Then, for j = 1, . . . , N and any fj, t > 0 with pUj (t) > 0 we have

pFj |Uj
(fj | t) =

1
|t| pVj

(
fj

t

)
=

LL

Γ (L)
fL−1

j

tL
exp

(
−L fj

t

)
. (5)

For fj > 0, j = 1, . . . , N , this implies

ũi = argmax
t> 0

pUi
(t)>0

N∑
j=1

w(i, j) ln pFj|Uj
(fj | t) = argmin

t> 0
pUi

(t)>0

N∑
j=1

w(i, j) (ln(t) +
fj

t
).

Similarly, H(f, u) :=
∑N

i=1 ln(ui) + fi

ui
has been deduced as a data fidelity

term for a variational approach to remove multiplicative Gamma noise in [1]. If
pUi(t) > 0 for t > 0 or pUi is simply unknown, we omit the restriction pUi(t) > 0
and obtain for fj > 0, j = 1, . . . , N , by the first order optimality condition that

ũi =
1
Ci

N∑
j=1

w(i, j)fj with Ci :=
N∑

j=1

w(i, j). (6)

Hence, we get for multiplicative Gamma noise an ordinary weighted average
filter like the original NL means filter in (1). Next, we would like to define the
weights similarly to wNL, but incorporate the statistics of the noise. By

wNL(i, j) =
∏
k∈I

sNL(fi+k, fj+k)
gk
h with sNL(x, y) := exp(−|x− y|2) (7)

we see that wNL(i, j) can be written as the product of all sNL(fi+k, fj+k)
gk
h ,

where fi+k, fj+k are pairs of pixels of two fix image patches. The function
sNL : R×R → (0, 1] acts as a similarity measure, where sNL(fi+k, fj+k) should
be close to 1 if ui+k = uj+k and close to 0 if not. Facing additive Gaussian noise,
sNL is known to perform well, but it can be far from optimal for other types of
noise. Hence, the challenge is now to find a suitable similarity measure for our
noise model.

3 The Similarity Measure of Deledalle et al.

To measure whether u1 = u2 by noisy observations f1, f2, Deledalle, Denis
and Tupin suggest in [6] to use a so-called ’similarity probability’ denoted by
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p(θ1 = θ2|f1, f2). In their paper, θi is a parameter depending deterministically
on ui and we set θi = ui for i = 1, 2. Since in general it is not clear what the
probability or even conditional density of U1 = U2 given F1 = f1, F2 = f2 is, see
e.g. [9, p. 111], we start by rewriting the ’similarity probability’ as a conditional
density: By definition we have for pFi(fi) > 0, i = 1, 2, that

p(u1 = u2| f1, f2) :=
∫

S

pU1|F1(u | f1) pU2|F2(u | f2) du (8)

and set S := supp(pUi). Applying the definition of the conditional density and
Jacobi’s Transformation Formula, see e.g., [13, p. 135f], we obtain that

p(u1 = u2|f1, f2) = pU1−U2|(F1,F2)(0 | f1, f2). (9)

Besides, we have

pU1−U2|(F1,F2)(0 | f1, f2) =

∫
S
pU1(u) pU2(u) pF1|U1(f1 |u) pF2|U2(f2 |u) du

pF1(f1) pF2(f2)
. (10)

Since normally pUi is unknown, Deledalle et al. propose to neglect this density
and pFi , i = 1, 2, on the right hand side and to consider only

sDDT (f1, f2) :=
∫

S

pF1|U1(f1 |u) pF2|U2(f2 |u) du. (11)

This measure is very close to the one investigated for block matching in [11]. To
study its properties we start by considering data corrupted by additive noise.

3.1 Properties in the Presence of Additive Noise

For i = 1, 2 let the random variables Vi be i.d.d. and follow some noise distribu-
tion. Moreover, let fi be corrupted by additive noise, i.e. fi := ui + vi and

Fi := Ui + Vi, i = 1, 2.

Here, vi is a realization of Vi and all Ui, Vi, i = 1, 2, are considered to be pairwise
independent. In this case, we can show that sDDT has the following properties:

Proposition 1. For our additive noise model with S = supp(pUi) = R we have

sDDT (f1, f2) = pV1−V2(f1−f2) = pF1−F2|U1−U2(f1−f2| 0 ), f1, f2 ∈ R. (12)

Moreover, sDDT is symmetric and has the following properties:

i) sDDT (f, f) = const for all f ∈ R,
ii) 0 ≤ sDDT (f1, f2) ≤ sDDT (f, f) = pV1−V2(0) for all f1, f2, f ∈ R.

For the proof of this and the following propositions see [15]. The last property
implies that sDDT (f1, f2) is maximal whenever f1 = f2 and that it is bounded so
that it can be scaled to the interval [0, 1], i.e. the range of sNL. For the special
case that Vi, i = 1, 2, are normally distributed with standard deviation σ, it
follows that
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Fig. 1. Left: Histogram of a constant image of gray value 50 corrupted by additive
Gaussian noise with σ = 20. Middle: Histogram of (sDDT (fi, f̃i)/c)N

i=1, where f , f̃ are
images with gray value distributions as on the left. Right: Same as in the middle, but
now f̃ represents a constant image of gray value 110 corrupted by noise.

sDDT (f1, f2) = 1
2
√

πσ
exp

(
− |f1−f2|2

4σ2

)
= c ( sNL(f1, f2) )

1
4σ2

with c := max
x,y∈R

sDDT (x, y) = 1
2
√

πσ
. The behavior of sDDT for additive Gaus-

sian noise is illustrated in Fig. 1. In the middle, the distribution of the values
sDDT (fi, f̃i)/c is depicted if both images f , f̃ are corrupted versions of the same
constant image. As expected, most values are close to 1, i.e. sDDT /c detected
that the corresponding noisy pixels belong to the same noise free pixel. Only a
few values are close to zero, where the measure did not recognize that also these
noisy pixels have the same initial gray value. On the right, where the initial gray
values have been different, most values sDDT (fi, f̃i)/c are close to zero and only
few pixels are falsely detected to correspond to the same noise free pixel.

3.2 Properties in the Presence of Multiplicative Noise

Next, we want to investigate the case of multiplicative noise. We suppose that
the random variables Vi, i = 1, 2, are i.i.d., pairwise independent with both Ui

and pVi(x) = 0 for x < 0. Besides, we assume that Fi follows the multiplicative
noise model (3) so that Fi > 0 almost surely for i = 1, 2. For this setting, we
obtain the following properties of sDDT :

Proposition 2. For our multiplicative noise model with S = supp(pUi) = R≥0

and f1, f2 > 0 it holds that

sDDT (f1, f2) =
∫ ∞

0

1
u2

pV1

(
f1

u

)
pV2

(
f2

u

)
du = pf2V1−f1V2(0). (13)

Besides, sDDT is symmetric and has the following properties:

i) sDDT (f, f) = 1
f pV1−V2(0) for all f = f1 = f2 > 0,

ii) sDDT is not bounded from above.

These properties stand in sharp contrast to the additive case. The first property
implies that sDDT always considers small values f = f1 = f2 more likely to
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Fig. 2. Left: Histogram of a constant image with gray value 50 corrupted by multi-
plicative Gamma noise with L = 16. Middle: Histogram of (sDDT (fi, f̃i))

N
i=1, where f ,

f̃ have gray value distributions as on the left. Right: Same as in the middle, but now
f̃ represents a constant image of gray value 110 corrupted by noise.

have the same initial gray value than bigger ones. Besides, the unboundedness
is problematic with regard to the weight definition of our nonlocal filters, since
a single pixel could get an arbitrarily large weight and dominate all others.

For multiplicative Gamma noise we obtain for f1, f2 > 0 and S = R≥0 that

sDDT (f1, f2) = L
Γ (2L− 1)
Γ (L)2

(f1f2)L−1

(f1 + f2)2L−1
∝ 1

f1 + f2

(
2 + f1

f2
+ f2

f1

)1−L

.

One may expect that for fixed f1, sDDT is maximal if f2 = f1. However, for
L > 1 and a given value f1 it is maximal for f2 = L−1

L f1. This is again in sharp
contrast to the properties of sDDT in the additive case. For L = 1 we have
sDDT (f1, f2) = 1

f1+f2
. Thus, sDDT (f1, f2) is large whenever f1, f2 are small.

Further properties of this measure are illustrated for L = 16 in Fig. 2. In contrast
to Fig. 1 (middle), the peak of the histogram at Fig. 2 (middle) is no longer at
the largest obtained value of the measure, but at some intermediate value. This
is not desirable with respect to the weight definition of a nonlocal filter, since
for a large number of pixels it would not definitely determine whether the true
pixels have been the same or not. Hence, sDDT does not seem to be optimal for
multiplicative noise.

4 A New Similarity Measure for Multiplicative Noise

To deduce a different measure for our multiplicative noise model, we consider
the transformed random variables F̃i = ln(Fi), Ũi = ln(Ui), Ṽi = ln(Vi), where

F̃i = ln(Fi) = ln(UiVi) = Ũi + Ṽi, i = 1, 2.

The new random variables F̃i follow an additive noise model now and the sup-
ports of pŨi

, pṼi
may be the whole of R. By computing (9) for these new random

variables we can show the following:

Lemma 1. For f1, f2 > 0 with pFi(fi) > 0 and S̃ = supp(pŨi
) it holds that

pŨ1−Ũ2|(F̃1,F̃2)
(0 | ln(f1), ln(f2)) = pU1

U2
|(F1,F2)

(1 | f1, f2). (14)



56 T. Teuber and A. Lang

Compared to (9), we have replaced U1−U2 = 0 by U1/U2 = 1 now. Next, we use
(10) for the transformed variables and omit pŨi

, pF̃i
, i = 1, 2. Supposing that

S̃ = R, i.e. S = R≥0, and using (12) for the right hand side, we thus obtain∫
S̃

pF̃1|Ũ1
(ln(f1) | t) pF̃2|Ũ2

(ln(f2) | t) dt = pṼ1−Ṽ2
(ln(f1)− ln(f2)).

Defining our new similarity measure by

s(f1, f2) := pṼ1−Ṽ2
(ln(f1)− ln(f2)) = pF̃1−F̃2|Ũ1−Ũ2

(ln(f1)− ln(f2) | 0), (15)

it has the following properties similar to sDDT for S = R in the additive case:

Proposition 3. For our multiplicative noise model and f1, f2 > 0 it holds that

s(f1, f2) = p f2
f1

V1
V2

(1) = f1
f2

pF1
F2

|U1
U2

(
f1
f2
| 1
)

=
∫ ∞

0

f1f2
u3 pV1

(
f1
u

)
pV2

(
f2
u

)
du.

(16)
Moreover, s(·, ·) is symmetric and has the following properties:

i) s(f, f) = const for all f > 0,
ii) 0 ≤ s(f1, f2) ≤ s(f, f) = pV1

V2
(1) for all f1, f2, f > 0.

Note that (16) differs from (13) only by the factor f1f2
u within the integral.

Regarding (12) and (14), our similarity measure is not exactly pF1
F2

|U1
U2

(f1
f2
| 1),

but a scaled version of it. For multiplicative Gamma noise we have

s(f1, f2) =
Γ (2L)
Γ (L)2

(f1f2)L

(f1 + f2)2L
=

Γ (2L)
Γ (L)2

(
2 +

f1

f2
+

f2

f1

)−L

, f1, f2 > 0,

with a maximum of c = pV1
V2

(1) = Γ (2L)
Γ (L)2

1
4L . Fig. 3 shows that for multiplicative

Gamma noise we obtain by s(·, ·)/c similar histograms as initially for additive
Gaussian noise in Fig. 1. Hence, a similar good performance can be expected if
applied for nonlocal filtering.
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Fig. 3. Left: Histogram of (s(fi, f̃i)/c)N
i=1, where f , f̃ are both constant images of gray

value 50 corrupted by multiplicative Gamma noise with L = 16. Right: Same as on the
left, but now f̃ represents a constant image of gray value 110 corrupted by noise.
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5 Weight Definition of Our Nonlocal Filters

For random variables Ui, Vi, Fi, i = 1, . . . , N , fulfilling the multiplicative noise
model in Subsection 3.2 with unknown distribution pUi , the weights can now be
defined similarly to (7) by

w(i, j) =
∏
k∈I

(
1
c
s(fi+k, fj+k)

) gk
h

=
∏
k∈I

(
p fj+k

fi+k

Vi+k
Vj+k

(1) / p Vi+k
Vj+k

(1)
) gk

h

. (17)

As before, h > 0 and g = (gk)k∈I represents a sampled two dimensional Gaussian
kernel with mean zero and standard deviation a, which we normalize such that∑

k∈I gk = 1. Besides, the index set I is set to be a squared grid of size l × l
centered at 0 using reflecting boundary conditions for f .

Fig. 4 (top) shows the histograms of the weights (17) for different constant
patches corrupted by multiplicative Gamma noise. As visible here, multiplying
the values of the similarity measure over a whole patch significantly changes the
histograms compared to Fig. 3. Now, the weights of the left histogram are all
larger than on the right. Unfortunately, the histogram on the left is no longer
maximal at 1. Even worse, weights close to 1 have never been assigned.

To overcome this drawback we propose an additional adaptation of the weights
inspired by the implementation of the NL means filter described at [2]. Here, we
use that for random variables X , Y and a continuous function b, where E(b(Y ))
exists, the conditional expectation of b(Y ) given X = x is

E(b(Y )|X = x) :=
∫ ∞

−∞
b(y) pY |X(y|x) dy ∀ x with pX(x) > 0,

see, e.g., [13, p. 168]. In detail, for two sets of random variables Fi+k = Ui+kVi+k,
Fj+k = Uj+kVj+k, k ∈ I, we set

bk

(
fi+k

fj+k

)
:=
(

1
c p fj+k

fi+k

Vi+k
Vj+k

(1)
) gk

h

=
(

1
c s(fi+k, fj+k)

) gk
h

and compute for disjoint index sets i + I, j + I the conditional expectation

μ := E
(∏

k∈I

bk

(
Fi+k

Fj+k

) ∣∣ (Ui+k

Uj+k
= 1
)

k∈I

)
=
∏
k∈I

E
(
bk

(
Fi+k

Fj+k

) ∣∣ Ui+k

Uj+k
= 1
)
.

Since w(i, j) is a realization of
∏

k∈I bk

(
Fi+k

Fj+k

)
, the variable μ denotes the value

we can expect for w(i, j) if the (non-overlapping) image patches fi+I , fj+I have
been generated from the same noise free patch. We can show that

μ =
∏
k∈I

∫ ∞

0

bk(t) p Vi+k
Vj+k

(t) dt.

using properties of the conditional expectation. For multiplicative Gamma noise
we obtain by technical computations that

μ =
∏
k∈I

4Lgk/hΓ (2L)
Γ (L)2

Γ (L(1 + gk

h ))2

Γ (2L(1 + gk

h ))
.
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Fig. 4. Histograms of the weights (17) (top) and (18) (bottom) used to compare N

different image patches fI , f̃I (l = 5, a = 1.5, h = 1, q = 0). Left: Both fI , f̃I are
image patches of gray value 50 corrupted by multiplicative Gamma noise with L = 16.
Right: Same as on the left, but now f̃I is of gray value 110 and corrupted by noise.

Now, we set for q ∈ [0, 1)

wμ,q(i, j) :=

⎧⎪⎨⎪⎩
1 if w(i, j) ≥ μ,
w(i,j)

μ if qμ ≤ w(i, j) < μ,

0 otherwise
∀ i, j ∈ {1, . . . , N} (18)

and use these weights in our nonlocal filters deduced from (2). Here, μ is used as
an approximation of the true expectation value for all overlapping image patches.

The effect of this additional adaptation compared to (17) is visualized in
Fig. 4 (bottom). The histogram for the image patches generated from the same
noise free patch has now a significant peak at 1. By setting, e.g., q = 0.5 we can
additionally achieve that all weights of the right histogram obtain an optimal
weight of 0 without effecting the weights of the left histogram.

As usually done, we finally restrict the number of patches being compared to
a so-called similarity window. Thus, we set all weights w(i, j), wμ,q(i, j) auto-
matically to zero if pixel j is outside of a squared image region of size ω × ω
centered at pixel i. This reduces the computational costs as well as the risk of
falsely assigning nonzero weights to a large number of patches.

Updating the Similarity Neighborhoods

In [6] Deledalle et al. suggest to refine the weights of their nonlocal filters iter-
atively using the former result u(r−1). To obtain u(r), the filter is again applied
to the initial noisy image using the new weights. The idea for this updating
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scheme was taken from [12]. In the following, we apply a variant of this updat-
ing strategy, where we perform only one updating step. For this second step we
use within the similarity windows for i, j = 1, . . . , N , i �= j the weights

w̃i,j(u(1)) = exp
(
− 1

d

∑
k∈Ĩ

g̃k Ksym

(
pFi+k|Ui+k

( · |u(1)
i+k), pFj+k|Uj+k

( · |u(1)
j+k)

))
and set w̃i,i(u(1)) = maxj w̃i,j(u(1)). Here, d > 0 and g̃ = (g̃k)k∈Ĩ is again
a sampled two dimensional Gaussian kernel with mean zero, but with standard
deviation ã. As before, g̃ is normalized such that

∑
k∈Ĩ g̃k = 1. Moreover, Ĩ = l̃×l̃

may vary from I. Usually, we choose ã < a and l̃ < l. Furthermore,

Ksym (pX , pY ) :=
∫ ∞

−∞
(pX(t)− pY (t)) ln

(
pX(t)
pY (t)

)
dt

denotes the symmetric Kullback-Leibler divergence of pX , pY . If we assume that
pUi(x) > 0 for all x ≥ 0, we can show using (5) that the sought symmetric
Kullback-Leibler divergence for multiplicative Gamma noise is given by

Ksym

(
pFi|Ui

( · |u(1)
i ), pFj |Uj

( · |u(1)
j )
)

= L
(u(1)

i − u
(1)
j )2

u
(1)
i u

(1)
j

for u
(1)
i , u

(1)
j > 0.

6 Numerical Results

Finally, we present two examples demonstrating the good performance of our
novel nonlocal filters for images corrupted by multiplicative Gamma noise. The
implementation was done with MATLAB and the parameters were chosen to
obtain the best visual results. Note that all images, especially the noisy one, are
displayed in the gray scale of the original image to have a consistent coloring
for each example. To this purpose, all image values outside of the range of the
original image are projected on this range.

For our first example we use the same test image as in [14, Fig. 6]. Obviously,
our reconstructions in Fig. 5 (bottom middle and right) are superior to the result
by the I-divergence - TV method at top left. Moreover, the difference of applying
(6) with weights w(i, j) or wμ,q(i, j) is illustrated. By using wμ,q(i, j) instead of
w(i, j) more noise has been removed, especially in the background. Moreover,
an appropriate value q helps to improve the contrast, e.g., visible at the camera,
and leads to sharper edges and contours. By the final updating step used for
Fig. 5 (bottom right) we further improved the contrast and small amounts of
possibly remained noise are finally removed.

Our second example in Fig. 6 shows our result for the noisy image in [8, Fig. 8].
For a better comparison we included its peak signal to noise ratio (PSNR) and
mean absolute-deviation error (MAE) as, e.g, defined in [8]. Obviously, our result
is superior or at least competitive to the results obtained by various methods in
[8, Fig. 8]. There, the best result was obtained by the proposed hybrid multi-
plicative noise removal method, which combines variational and sparsity-based
shrinkage methods involving curvelets and TV regularization.



60 T. Teuber and A. Lang

Fig. 5. Top: Original image with values in [0, 255] (left), corrupted version by multi-
plicative Gamma noise with L = 4 (middle) and restored image by the I-divergence -
TV model as presented in [14]. Bottom: Results by our new nonlocal filter (6) using
just (17) with l = 7, ω = 29, a = 1.5, h = 1 (left), using (18) with q = 0.35 (middle)

and after an additional updating step with l̃ = 3, ã = 0.5, d = 0.25 (right).

Fig. 6. Left: Original image of the French city of Nı̂mes (512 × 512) with values in
[1, 256], which has been corrupted by multiplicative Gamma noise with L = 4 in [8,
Fig. 8]. Right: Restoration result by our nonlocal filter (6) applied to the noisy image
using (18) and an additional updating step with l = 7, ω = 29, a = 2, h = 0.5, q = 0.7,

l̃ = 5, ã = 1, d = 0.1 (PSNR = 26.01, MAE = 8.60).
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Abstract. We present an efficient implementation of volumetric nonlinear an-
isotropic image diffusion on modern programmable graphics processing units
(GPUs). We avoid the computational bottleneck of a time consuming eigenvalue
decomposition in R3. Instead, we use a projection of the Hessian matrix along
the surface normal onto the tangent plane of the local isodensity surface and solve
for the remaining two tangent space eigenvectors. We derive closed formulas to
achieve this resulting in efficient GPU code. We show that our most complex
volumetric nonlinear anisotropic diffusion gains a speed up of more than 600
compared to a CPU solution.

1 Introduction and Motivation

Diffusion equations smooth out noise effectively and provide a scale space representa-
tion [1–5] of the image, when time is considered as a natural, continuous scale space
parameter. They are well known in the field of image processing and have been subject
to many enhancements during the last decades.

These equations are widely used for 2D images processing, see e.g. [3, 6] for an intro-
duction. Recent publications apply this diffusion for smoothing of normal maps [7], and
fairing of surfaces and functions on surfaces and meshes [8, 9], to mention only some
possibilities. Anisotropic diffusion of whole volume images or general meshes [10, 11]
and smoothing vector valued volume images [12] are also common tasks arising in
medical applications.

As this diffusion requires to solve second order partial differential equations (PDEs)
numerically for a rapidly increasing amount of discretized data, it is a perfect applica-
tion for modern graphic cards, which can easily handle large data sets. The current GPU
SIMD architecture allows to solve each iteration in a few milliseconds due to massively
parallel processing. This holds for equations that lead to an efficient parallelization.
However, this is at least difficult for most interesting, non-linear, PDEs due to the local
structure in each voxel that determines in which direction smoothing can be performed.

1.1 Contribution

As main contribution we show how one can obtain the so-called local structure frame
for volumetric data sets easily. This leads to nearly unconditional code, performing

A.M. Bruckstein et al. (Eds.): SSVM 2011, LNCS 6667, pp. 62–73, 2012.
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extremely well on GPUs. For this purpose, we build on a technique described by Had-
wiger et al. [13]. Anisotropic nonlinear diffusion on symmetric multiprocessor (SMP)
clusters for volumetric data was discussed in [14], showing a maximum speedup of 20
on SMP clusters with up to 30 processors. In our GPU approach, we do not need to
slice the volume and distribute it across a platform, as all shading processors of modern
GPUs can access the same memory. We therefore achieve speedups of up to 640 on a
comparably cheap GPU.

Volumetric anisotropic diffusion on GPUs using shader programs in the standard
graphics pipeline has been discussed in, e.g, the works by Jeong et al. [15], Zhao [16] or
Beyer et al. [17]. In contrast to this, our approach is based on NVidia’s CUDA which is
better suited for GPGPU (general purpose GPU) algorithms like volumetric diffusion.
Intermediate values, such as the Hessian, are recomputed on-the-fly in each iteration
and are stored temporarily in per-thread local memory. Therefore, larger data sets can
be processed on the GPU. Further, to our knowledge, we are the first to compute the
local structure frame in 2D in the context of volumetric diffusion. This significantly
simplifies the algorithm while the results of the diffusion are very good, see Fig. 1,
right, and 4.

2 Prerequisites

The linear homogeneous diffusion equation removes noise from images by solving the
heat equation, a second order parabolic PDE. Initial and boundary conditions are re-
quired to find a particular solution. A general diffusion equation can then be defined as
follows:

∂

∂t
Φ(x, t) = div (D∇Φ(x, t)) for x ∈ Ω, t > 0, (1)

Φ(x, 0) = Φ0(x) for x ∈ Ω, (2)

∂

∂n
Φ(x, 0) = 0 for x ∈ ∂Ω. (3)

Here, Φ denotes the noisy image function defined on a region Ω of the Euclidean space.
D is a function, which determines the diffusion speed through the medium. D is con-
stant (usually 1 or 1/2) in the linear case. The initial condition (2) initializes the func-
tion at time t = 0 with the original noisy image Φ0. The boundary values are defined
in (3) by their derivative in normal direction n to the border of the considered volume:
Since the directional derivative is assumed to be 0, no flow through the boundary ∂Ω is
induced.

Solving the heat equation for D = 1 at time t = 1/2 σ2 equates to convolving the
image function with a Gaussian of size σ (see [1, 3, 18]). Thus, this diffusion equation
has exactly the same smoothing characteristics as the well known Gaussian filter. In
particular boundaries blur out fast and therefore edge information gets lost quickly, see
Fig. 1, left.
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Fig. 1. 100 iterations of diffusion with a time step Δt = 0.05. Left: Homogeneous diffusion. The
frontal sinus destroys the surface structure of the forehead and small scaled details (e.g. lips, nose,
ears) are lost. Right: Nonlinear anisotropic diffusion (here: edge enhancing diffusion) steered by
a diffusion tensor based on local structure preserves fine scaled features.

2.1 Inhomogeneous Diffusion

In the context of image processing, the heat equation was modified significantly by
Perona and Malik [19] by replacing D in Eq. (1) with an edge detector, a monotonically
decreasing non-negative real function g, which attenuates the induced flow close to
edges and therefore effectively prevents edges from being washed out:

∂

∂t
Φ = div (g(|∇Φ|)∇Φ) , for x ∈ Ω, t > 0. (4)

Perona and Malik proposed the diffusivity functions g(∇Φ) = e−(|∇Φ|/λ)2 and g(∇Φ) =
1

1+(|∇Φ|/λ)2
. They designated this diffusion anisotropic, but it is only locally adapting

and still isotropic, as it is steered by a scalar diffusion coefficient. Weickert calls this
locally adapting diffusion inhomogeneous [3]. Inhomogeneous diffusion is able to pre-
serve edges over a long period of time, but its smoothing capabilities close to edges are
rather poor.

2.2 Nonlinear Anisotropic Diffusion

Weickert introduced a new nonlinear anisotropic diffusion, using a tensor for D in
Eq. (1). This allows for anisotropic adjustment of the diffusion flow [3, 6, 20]. The
diffusion tensor D aligns the diffusion flow along the surface structure and its exact
definition is mainly dependent on the desired results of the smoothing process.

Edge enhancing diffusion (EED) attenuates diffusion flow normal to the edge or sur-
face but promotes flow along the edge or parallel to the surface, see Fig. 1, right. Fur-
thermore, coherence enhancing diffusion (CED) trys to steer diffusion along line-like
structures and is able to reconnect interrupted lines [6]. In a hybrid approach, joining
EED and CED to locally adapting diffusion, one is able to enhance edges, smooth out
noise and to connect broken lines.
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In all cases the definition of a useful diffusion tensor involves the construction of a
local structure frame: One needs to find a transformation which aligns the coordinate
system orthogonally to the surface of the submanifold. Let V be such a coordinate
transformation, aligning the third axis normal to the surface, then we can define the
EED tensor D in three dimensions as follows:

D = V D∗V T = V

⎛⎝1 0 0
0 1 0
0 0 g(|∇Φ|)

⎞⎠V T . (5)

Matrix D transformed to the new basis V is a diagonal matrix D∗, as the diffusion flow
is aligned perfectly along the principal directions of the surface structure. The crucial
point when designing anisotropic diffusion is the efficient construction of this frame V .
The traditional way is to obtain this basis by analyzing the structure tensor, defined as
the outer product of the gradient ∇Φ with itself. In the next section, we will present a
method to find such a frame by efficiently analyzing the Hessian, which holds structural
information, as it describes the change of the surface normal.

3 Surface Structure and the Hessian

When defining a diffusion tensor, it is utterly important to find a basis V whose axes
are aligned exactly along the principal curvature directions of the surface. Theoretically,
this was also possible by eigen-decomposition of the structure tensor in 3D space. As
the structure tensor is a real symmetric matrix, the eigenvalues are real and the eigen-
vectors are existent. But the characteristic polynomial of a 3 × 3 matrix has degree 3
and therefore it is rather time consuming to solve for the roots.

On the other hand, the eigenvalues of a 2×2 matrix are computed easily by evaluating
only a few closed formulas. Especially for machine code executed on modern GPUs,
this is of advantage as the single execution paths are not divergent (not branching) and
parallel execution on the hardware is achieved ideally. In the following, we will show
how to obtain the structure frame V by evaluating closed formulas only.

3.1 Tangent Space Projection of the Hessian

The following considerations are aimed at finding a basis transformation V : R3 �→
R3 with as few computations as possible and which will describe a coordinate system
normal to the tangent plane of the isosurface at a given point. Despite that, the remaining
two basis vectors of V spanning the tangent plane should be aligned with the orthogonal
principal curvature directions.

Assuming that the inner region of a volume consists of higher density volumes, we

define the surface normal by the gradient ∇Φ =
[

∂Φ
∂x

∂Φ
∂y

∂Φ
∂z

]T
as n = −∇Φ/|∇Φ|.

Since∇Φ points towards the direction of the greatest density ascent inside the volume,
n lies inside the linear span of the gradient. Therefore it points into the direction the
surface moves when the iso value is increased. We can choose n(x) to be the first vector
of our frame V .
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n

g

(n · x) · n = nnT · x

(I − nnT ) · x

x

Fig. 2. Left: Projecting a point x into the span of the normal n and its complement. Right: The
local surface frame.

The curvature of a surface is defined as the ratio between change of surface normal
and change of position, which is described by the gradient of n: If we move in an
infinitesimal close area around the point x, the normal will change according to the
surface.

In [13] and [21] one finds methods on how to characterize the curvature of a surface
based on gradient informations and, moreover, how to obtain the principal curvature
directions. The derivative of the normal field ∇nT at some point x contains curvature
information of the surface. Note that ∇nT is a 3 × 3 matrix. According to Kindlmann
et al. [21] it holds that

∇nT = − 1
|∇Φ| (I − nnT )H. (6)

Here, I denotes the 3× 3 identity matrix, and H = ∇(∇Φ)T is the Hessian containing
all combinations of partial second order derivatives of the image Φ.

While the gradient describes the amount of change of Φ, the Hessian describes the
amount of change of the gradient, that is the amount of change of the surface normal
in an infinitesimal close region to a given point x. This amount of change of the gra-
dient can be decomposed into two components, namely the changes along the gradient
direction and changes in the tangent space. Only the latter is required for isosurface
curvature computation.

To perform the tangent space projection, we proceed as follows: We may omit the
scaling factor |∇Φ|−1 in Eq. (6) and concentrate on the remaining term. It is easy to
see that (nnT )x = (nx)n, and the operator (nnT ) projects any point x ∈ Ω onto the
linear span of the normal. Therefore we are able to define a linear map

P = (I − nnT ) =
(
I − ∇Φ(∇Φ)T

|∇Φ|2
)
. (7)

which projects any given point x into the complement of the linear span of n, which is
the iso surface (see Fig. 2).
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Projection P extracts the gradients change of direction from the Hessian inside the
tangent space. By using P we define the shape operator

S = PT H

|∇Φ|P. (8)

Since S is symmetric, solving the characteristic polynomial gives us three real roots and
associated orthogonal eigenvectors. Still, the computational overhead of a full eigen-
decomposition of a 3 × 3 matrix is rather high, especially as one eigenvector, the nor-
mal n, is already known. The remaining eigenvectors in the tangent plane are the prin-
ciple curvature directions with corresponding eigenvalues λ1,2 which amount to the
principle curvatures.

According to Hadwiger et al. [13], we can solve for the eigenvalues directly in 2D
tangent space without explicitly computing S. The transformation of S into any arbi-
trary orthogonal basis (u,v) of the tangent space is defined as

S′ =
(
s11 s12

s12 s22

)
= (u,v)T H

|∇Φ| (u,v). (9)

For finding an arbitrary orthogonal basis u, v in the tangent plane, we may proceed as
follows: We choose the canonical unit vector e1 = (1, 0, 0)T assuming that e1 ∦ n
holds and compute the cross product u = e1 ×n. In case u = 0 we compute the cross
product again, now using the second unit vector, e2 = (0, 1, 0)T . u is now normal to
n and therefore it must be part of the tangent plane. We finish the new basis by adding
v = u× n.

By using Eq. (9) we are now able to compute the eigenvalues λ1,2 of S′ by solving
the characteristic polynomial

det(S′ − λI) =
∣∣∣∣ s11 − λ s12

s12 s22 − λ

∣∣∣∣ = 0

⇒ λ1,2 =
trace(S′)

2
±
√

trace(S′)2

4
− det(S′). (10)

From the eigenvalues λ1,2 we compute the corresponding eigenvectors. The appropriate
formula in [13] is incorrect and can be found in the correct formulation in [22, p. 96].
The eigenvectors w∗

1,2 are computed with reference to the basis (u,v) at first, and
afterwards they are transformed back into 3D space:

w∗
1 =

(
w∗

1u

w∗
1v

)
=

⎧⎪⎪⎨⎪⎪⎩
(
λ1 − s22

s12

)
,(

1
0

)
,

for s12 �= 0

for s12 = 0

w∗
2 =

(
w∗

2u

w∗
2v

)
=

⎧⎪⎪⎨⎪⎪⎩
(
λ2 − s22

s12

)
,(

0
1

)
,

for s12 �= 0

for s12 = 0

(11)
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The transformation of the 2D eigenvectors into object space is accomplished by ex-
tending the tangent space basis with n to 3D and a retransformation into the original
orientation by means of V = {u,v,n}:

wi =

⎛⎝ux vx nx

uy vy ny

uz vz nz

⎞⎠⎛⎝w∗
iu

w∗
iv

0

⎞⎠ =

⎛⎝uxw
∗
iu + vxw

∗
iv

uyw
∗
iu + vyw

∗
iv

uzw
∗
iu + vzw

∗
iv

⎞⎠ . (12)

3.2 Algorithm: Retrieving the Diffusion Tensor

Building on the results of the previous sections, we now depict a compact and easy to
implement algorithm to define the anisotropic diffusion tensor. The core of our algo-
rithm is a 2× 2 eigen-decomposition of the Hessian projected into the tangent space of
the iso surface, computed with simple, closed formulas. The algorithm can be outlined
as follows:

1. Calculate the gradient∇Φ and the normal of the isosurface n = −∇Φ/|∇Φ|
2. Build the Hessian H = ∇(∇Φ)T (see Sect. 4)
3. Complete n with any arbitrary u and v to an orthonormal basis, whose u,v plane

is tangential to the isosurface
4. Using Eq. (9), project H into the tangent plane to obtain the 2× 2 matrix S′

5. Using Eq. (10) we can calculate the eigenvalues λ1,2

6. Now, using Eq. (11), we obtain the corresponding eigenvectors w∗
1,2 with respect

to the (u,v) basis
7. W.l.o.g. we might – if this was necessary for the definition of our diffusion tensor

– reorder the eigenvalues and eigenvectors: λ1 < λ2

8. Transform the 2D eigenvectors back to object space using Eq. (12), receiving the
3D eigenvectors w1,w2

9. Set V = (w1,w2,n) and V −1 = V T

10. Define D = V · diag(1, 1, g(∇Φ)) · V −1

The last step defines the EED diffusion tensor, smoothing along the isosurface and
attenuating the diffusion flow normal to the edge. It is further possible to define other
diffusion tensors with different properties upon the frame V .

4 Implementation

Our prototype was implemented using C for CUDA which allows for high-parallel com-
putations on NVidia GPUs. As divergent program execution – arising from conditional
code which leads to branching – and sequential calculations of the GPU multiprocessors
could eliminate speed advantages it is important to find a reduction of the dimension: As
one surface frame basis vector – the normal – is known, we can search for the remaining
ones in the hyper plane.

The volume data was stored as a 3D texture on the GPU. Coalesced memory access
is not possible when processing volumetric data, so the best speedup was achieved by
using cached texture memory. Clamping the textures automatically keeps track of all
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the border values: As gradients at the borders equal zero, no flow will be induced and
we avoid conditional code which would slow down the program.

Besides, we can access values between the grid centers and request the hardware to
do trilinear interpolation. This gives us a slight speedup for discretizing the Hessian as
explained below. Finally, and most important, texture memory is cached, which com-
pensates for the uncoalesced access and results in faster access to neighboring voxels.
Performing multiple iterations can be achieved by synchronizing all threads and copy-
ing the output back to the texture memory. Copying memory within the device is a
fast solution to circumvent the read only issue of texture memory. Each CUDA thread
processes one voxel at a time. The code was straight forward developed from the dis-
cretized formulation of the anisotropic diffusion.

4.1 Discretization

In the following Φ̂ denotes the discretized image function Φ : Ω ⊂ R3 �→ R. Each grid
point is associated with a value Φ̂x,y,z . Neighboring voxels are labeled Φ̂x− = Φ̂x−1,y,z,

likewise Φ̂x+ , Φ̂y− , Φ̂y+ , Φ̂z− and Φ̂z+ .
The isotropic grid structure provides a natural spatial discretizing scheme for cen-

tral differences. For temporal discretization we use forward differences. For nonlinear
anisotropic diffusion we obtain the following discretization:

Φ̂(t + Δt) ≈ Φ̂(t) + Δt · div(D(∇Φ)∇Φ)

= Φ̂(t) + Δt ·
(

∂

∂x

(
d11

∂Φ̂

∂x
+ d12

∂Φ̂

∂y
+ d13

∂Φ̂

∂z

)
+

∂

∂y

(
d12

∂Φ̂

∂x
+ d22

∂Φ̂

∂y
+ d23

∂Φ̂

∂z

)
+

∂

∂z

(
d13

∂Φ̂

∂x
+ d23

∂Φ̂

∂y
+ d33

∂Φ̂

∂z

))
(13)

The entries dij represent the components of the diffusion tensor D. We discretize
Eq. (13) over an isotropic grid with central differences.

The diffusion tensor of EED as defined in step 10 of the algorithm outlined in
Sect. 3.2 yields a symmetric matrix D consisting of the eigenvectors w1 and w2 of
the Hessian projected along n to the tangent plane of the isosurface:

D =

⎛⎝d11 d12 d13

d12 d22 d23

d13 d23 d33

⎞⎠ , (14)

with d11 = w1xw1x +w2xw2x +nxnxg(∇Φ) and accordingly for the remaining cases.
The eigenvalues from Eq. (10) and eigenvectors from Eq. (11) are obtained directly in
tangent space and are transformed back to object space, see Eq. (12).

The step size Δt needs to be small enough in order to guarantee numerical stability.
Following [14], Δt < 0.5/Nd, with Nd the dimension of the problem, i.e. 3. We used
the conservative value Δt = 0.05.



70 A. Schwarzkopf et al.

5 Results

The results of our GPU implementation as well as a CPU implementation for a volume
with size 5123 voxels are given in Table 1. Unless specified otherwise, the timings were
taken on a system consisting of an Intel Xeon E5430 CPU (2.66 GHz) and a NVidia
GeForce GTX 480 with 480 shader cores. The CPU variants were ported from the GPU
code in a straightforward way without any further optimizations.

The table shows the timings, separated into transfer times of the volume to the GPU
(obviously not applicable to CPU) and the times needed for one iteration of the code.
The speedups are given for one iteration alone. Since diffusion equations typically need
many iterations we neglect the transfer times and only take the iteration timings into
account. We achieve a speedup of about 170 to 320 for the homogeneous and inhomo-
geneous diffusion. For the nonlinear anisotropic diffusion (EED) the results are even
better: Five iterations require 10 minutes CPU time compared to 1 second on the GPU.
As other anisotropic diffusion equations have even higher arithmetic intensity one can
expect them to be even faster compared to their CPU variants.

The runtimes of single iterations are also visualized in Fig. 3. As the filters are inde-
pendent of the data, execution times are proportional to volume sizes and particularly
the fraction of CPU to GPU times is constant, so one can easily extrapolate to other data
sizes. Modern GPUs provide up to 4 GB memory, so it is possible to process data sets
with up to 8003 voxels on the GPU.

Table 1. Timings and speedups of one iteration step of the discretized PDE, Eq. (13), with a data
set of size 5123 voxels (CPU: Intel Xeon E5430; GPU: NVIDIA GTX 480)

Time ([ms]) Speedup
MemCpy Iteration Iteration

Linear cpu 0 1 917 1
homogeneous gpu 256 11 173

Nonlinear inhomo- cpu 0 33 499 1
geneous (Perona-Malik) gpu 281 105 320

Nonlinear cpu 0 118 717 1
anisotropic (EED) gpu 276 185 641

Overall it is important to acquire high-quality first and second order derivatives for
the gradient as well as the Hessian. Especially at the beginning of the diffusion process
significant noise components may disturb the discrete computation of the derivatives
enormously. To initialize the diffusion process optimally, usually some sort of (pre-)
filtering is applied to the image. for instance using a box, a Gaussian, or a median filter.
Bajaj et al. propose to use bilateral filtering, since it removes noise while preserving
edge or curvature information, which is important for constructing the diffusion ten-
sor [18]. The bilateral filter can be seen as an expansion to Gaussian filtering by apply-
ing an additional edge term [23–25]. In our GPU implementation we achieve a speedup
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Fig. 3. Runtimes for one iteration of the presented kernels from table 1 on a logarithmic scale
(CPU: Intel Xeon E5430; GPU: NVIDIA GTX 480)

Fig. 4. Restoring the functional data Φ(x, y, z) = |x| + |y| + |z| (2563 voxels). From Left to
Right: Ground truth, Gaussian noise added (≈ 20% voxels affected, variance 30%), after bilateral
prefiltering, after 100 iterations (Δt = 0.05) of homogeneous and edge enhancing diffusion,
respectively, of the prefiltered data set.

of 800 for the bilateral filter. Simpler filters also benefit from massively parallelization,
albeit less due to their simplicity. The box filter has a speed up factor of 43, the Gaus-
sian filter one of 151, and the median filter is 76 times faster. All filters took around 1
to 2 seconds on the 5123 data set.

In Fig. 4 an example of a 3D model endowed with a significant amount of noise is
given. Here applying the bilateral filter before the diffusion definitely makes sense.

6 Conclusions

Using the example of EED, we have shown that volumetric nonlinear anisotropic dif-
fusion can be mapped efficiently onto the GPU. As efficient GPU code should avoid
branching if possible, we derived closed formulas for the 3D eigenvalue analysis of the
shape operator that allows for reducing the problem from 3D object space onto 2D tan-
gent space: We have presented closed formulas for creating a structure frame along the
three principal curvature directions. Building on that, we defined the diffusion tensor
for nonlinear anisotropic diffusion and achieved over 600 times the speed compared
to a conventional CPU solution. Among the different possible pre-filters for very noisy
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images we have seen that the bilateral filter is a promising candidate for being processed
on the GPU, achieving 830 times the speed of our CPU solution.

As the technical development of GPUs is rapidly progressing and available memory
expands, increasingly larger data sets can be processed directly on the GPU. Apart from
scalar volume data, one could also process vector data sets on the GPU, as they arise,
for example in DW-MRI (diffusion-weighted magnetic resonance imaging). A starting
point for this could be 3D-RGBA-textures, representing 4D vectors. Another question
concerns automatic parameter detection. Presumably it was necessary to construct and
analyze complete or statistically representative image and gradient histograms, which
could be done directly on the GPU. Also, one could examine how CED or hybrid dif-
fusion performs on GPUs, as the arithmetic intensity is higher. Building on successful
(pre-)filtering and the diffusion process one could try to deal with segmentation as well,
in order to present a seamless GPU solution.
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Abstract. In this paper we present a fully data-driven and locally-
adaptive method for image reconstruction that is based on the concept
of statistical multiresolution estimation as introduced in [1]. It consti-
tutes a statistical regularization technique that uses a 
∞-type distance
measure as data fidelity combined with a convex cost functional. The
resulting convex optimization problem is approached by a combination
of an inexact augmented Lagrangian method and Dykstra’s projection
algorithm.

Keywords: statistical multiresolution, extreme-value statistics, total-
variation regularization, statistical inverse problems, statistical imaging.

1 Introduction

In this paper we are concerned with the reconstruction of an unknown gray-
valued image u0 ∈ L2(Ω) with Ω = [0, 1]2 given the data

Yij = (Ku0)ij + εij , 1 ≤ i ≤ m, 1 ≤ j ≤ n. (1)

We assume that εij are independent and identically distributed Gaussian random
variables with E (ε11) = 0 and E

(
ε2
11

)
= σ2 > 0 and that K : L2(Ω) → Rm×n

is a linear and bounded operator. K is assumed to model image acquisition and
sampling at the same time, i.e. (Ku)ij is assumed to be a sample at the pixel
(i/m, j/n) of a smoothed version of u.

Numerous methods for reconstructing the image u0 from the data Y in the
recent literature are covered by a common variational idea: an estimator û of u0

is computed as the solution of the optimization problem

J(u)→ inf s.t. sup
S∈S

c−1
S

∑
(i,j)∈S

|(Ku)ij − Yij |2 ≤ 1, (2)

where J : L2(Ω) → R is a convex and lower-semicontinuous regularization func-
tional. Moreover S denotes a system of subsets of the grid G = {1, . . . ,m} ×
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{1, . . . , n} and {cS : S ∈ S} is a set of positive regularization parameters that
govern the trade-off between data-fit and regularity. Solutions of (2) are a special
case of statistical multiresolution estimators (SMRE) as studied in [1]. In this
context the statistic T : Rm×n → R defined by

T (v) = sup
S∈S

c−1
S

∑
(i,j)∈S

|vij |2 , v ∈ Rm×n (3)

is referred to as multiresolution (MR) statistic. Summarizing, we find the esti-
mator û of u0 such that J(u) is minimal und the condition T (Ku− Y ) ≤ 1.

The most popular instance of (2) is obtained by choosing S = {G}. Then,
the MR-statistic coincides with the quadratic fidelity and problem (2) can be
rewritten into

û(λ) ∈ argmin
u∈L2(Ω)

λ

2

∑
(i,j)∈G

|(Ku)ij − Yij |2 + J(u) (4)

for a suitable multiplier λ > 0. In the seminal work [2], for example, the authors
proposed the total variation semi-norm

J(u) =

{
|Du| (Ω) if u ∈ BV(Ω)
+∞ else

(5)

as penalization functional which has been a widely used model in imaging ever
since. Here, |Du| (Ω) denotes the total variation of the (measure-valued) gradient
of u which coincides with

∫
Ω |∇u| if u is smooth. Numerous efficient solution

methods for (2) [3–5] and various modifications have been suggested so far (cf.
[6–9] to name but a few).

However, the quadratic fidelity has an essential drawback: the information in
the residual is incorporated globally, that is each pixel value (Ku)ij − Yij con-
tributes equally to the statistic T independent of its spatial position. In practical
situations this is clearly undesirable: images usually contain features of different
scales and modality, i.e. constant and smooth portions as well as oscillating pat-
terns both of different sizes. A solution û of (2) with a global fidelity T is hence
likely to exhibit under- and oversmoothed regions at the same time.

Recently, also non-trivial choices of S that result in locally adaptive fidelity
measures were considered. In [10] S is chosen to consist of a partition of G which
is obtained beforehand by a Mumford-Shah segmentation. In [11, 12], a subset
S ⊂ G is fixed and afterwards S is defined as the collection of all translates of
S. Both approaches allow for an approximate solution of (2) by means of an
analogon of (4) with locally varying regularization parameter, i.e.

û ∈ argmin
u∈L2(Ω)

1
2

∑
(i,j)∈G

λij |(Ku)ij − Yij |2 + J(u). (6)

In this work we amend this paradigm and present a numerical framework that
is capable of directly solving (2) without any restrictions to S. To this end we
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extend the algorithmic ideas in [1] and propose a combination of an inexact
augmented Lagrangian method [9, 13] with Dykstra’s projection algorithm [14].
We also propose a novel a priori parameter choice rule for the constants cS that
allows for a statistical interpretation of the latter. We illustrate the capability of
our approach by numerical examples, focusing on total variation regularization.

In the following we denote by |S| the cardinality of S ∈ S. We often refer to
|S| as the scale of S. We assume that m,n ∈ N are fixed and denote by 〈·, ·〉 and
‖·‖ the Euclidean inner-product and norm on Rm×n and by ‖u‖L2 the L2-norm
of u.

2 Statistical Multiresolution Estimation

In this section we review sufficient conditions that guarantee existence of SMRE,
that is of a solution of (2). Moreover we propose a statistically sound parameter
choice model for the constants cS and discuss how to choose the system S.

2.1 Existence of SMRE

For the time being, let {cS : S ∈ S} be a set of positive real numbers. We
rewrite (2) to an equality constrained problem by introducing the slack variable
v ∈ Rm×n. To be more precise, we aim for the solution of

J(u) + H(v)→ inf s.t. Ku+ v = Y (7)

where H denotes the indicator function on the feasible set C of (2), i.e.

C =
{
v ∈ Rm×n : T (v) ≤ 1

}
and H(v) =

{
0 if v ∈ C
∞ else

. (8)

Problems of type (7) are studied e.g. in [15, Chap. III]. There, Lagrangian mul-
tiplier methods are employed to solve (7). Recall the definition of the augmented
Lagrangian of (7):

Lλ(u, v; p) =
1
2λ
‖Ku + v − Y ‖2+J(u)+H(v)−〈p,Ku+ v − Y 〉 , λ > 0. (9)

Here p ∈ Rm×n denotes the Lagrange multiplier for the linear constraint in
(7). It is well known that existence of a saddle point of Lλ follows from certain
constraint qualifications of the MR-statistic T . One typical example is given in
Proposition 1 (see [1, Thm. 2.1] for a proof).

Proposition 1. Assume that

1. there exists ū ∈ L2(Ω) such that J(ū) <∞ and T (Kū− Y ) < 1 and that
2. for all c ∈ R, the following sets are bounded:⎧⎨⎩u ∈ L2(Ω) : sup

S∈S

∑
(i,j)∈S

|(Ku)ij − Yij |2 + J(u) ≤ c

⎫⎬⎭ . (10)
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Then, there exist û ∈ L2(Ω) and v̂, p̂ ∈ Rm×n such that

Lλ(û, v̂; p) ≤ Lλ(û, v̂; p̂) ≤ Lλ(u, v; p̂), ∀ (u ∈ L2(Ω), v, p ∈ Rm×n
)
.

Remark 1. 1. If û ∈ L2(Ω) and v̂, p̂ ∈ Rm×n are as in Proposition 1, then û
and v̂ solve (7) and hence û is an SMR estimator.

2. Assumption 1) in Proposition 1 is called Slater’s constraint qualification. It
is for instance satisfied if the set

{
Ku : u ∈ L2(Ω) and J(u) <∞} is dense

in Rm×n.
3. If J is chosen as the total variation semi-norm (5), then a sufficient condition

for assumption (10) will be that there exists (i, j) ∈ G such that (K1)ij �=
0, where 1 ∈ L2(Ω) is the constant 1-function. This is immediate from
Poincaré’s inequality for functions in BV(Ω) (cf. [16, Thm.5.11.1]).

2.2 An a Priori Parameter Selection Method

The choice of the regularization parameters cS in (2) is of utmost importance for
they determine the trade-off between smoothing and data-fit. We propose an a
priori parameter choice method that is based on quantile values of extremes of
transformed χ2 distributions.

To this end, observe that for S ∈ S the random variable

tS(ε) = σ−2
∑

(i,j)∈S

ε2
ij

is χ2-distributed with |S| degrees of freedom (d.o.f.). We first aim for trans-
forming tS(ε) to normality. It was shown in [17] that the fourth root transform
4
√
tS(ε) is approximately normal with mean and variance

μS = 4
√
|S| − 0.5 and σ2

S =
(
8
√
|S|
)−1

,

respectively. The fourth root transform outperforms other power transforms in
the sense that the Kullback-Leibler distance to the normal distribution is mini-
mized, see [17]. In particular, the approximation works well for small d.o.f.

Next, we consider the extreme value statistic

sup
S∈S

4
√
tS(ε)− μS

σS
. (11)

We note that due to the transformation of the random variable tS(ε) to normality
each scale contributes equally to the supremum in (11). Hence a parameter choice
strategy based on the statistic (11) - like the one suggested in Proposition 2 below
- is likely to balance the different scales occurring in S.

It is important to note that the random variable tS(ε) and tS′(ε) are inde-
pendent if and only if S ∩ S′ = ∅. As we do not assume that S consists of
pairwise disjoint sets, (11) constitutes an extreme value statistic of dependent
random variables. Except for special cases, little is known about the distribution
of such statistics as a consequence of which the empirical distribution of (11) is
considered in practice.
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Proposition 2. For α ∈ (0, 1) and S ∈ S let qα be the α-quantile of the statistic
(11) and set cS = (qασS + μS)4. Then we get for each solution of (2):

P(J(û) ≤ J(u0)) ≥ α. (12)

Proof. From (1) and monotonicity of the fourth root transform it follows that

P
(
T (Ku0 − Y ) ≤ 1

)
= P (tS(ε) ≤ cS ∀S ∈ S)

= P
(

4
√
tS(ε) ≤ qασS + μS ∀S ∈ S

)
= P

(
sup
S∈S

4
√
tS(ε)− μS

σS
≤ qα

)
= α.

In other words, the constants cS are chosen such that the true signal u0 satisfies
the constraints with probability α. By the fact that û is a solution of (2) it
follows that P(T (Ku0 − Y ) ≤ 1) ≤ P(J(û) ≤ J(u0)).

Remark 2. By the rule cS = (qασS + μS)4 in Proposition 2 the problem of
selecting the set of regularization parameters cS is reduced to the question on
how to choose the single value α ∈ (0, 1). The probability α plays the role of
a regularization parameter and allows for a precise statistical interpretation: it
constitutes a lower bound on the probability that the SMRE û is more regular
than the true object u0.

2.3 On the Choice of S
In the previous section we addressed the question on how to select the regular-
ization parameters {cS}S∈S for a given system of subsets S of the grid G. We
will now comment on the choice of S.

On the one hand, S should be chosen rich enough to resolve local features
of the image sufficiently well. On the other hand, it is desirable to keep the
cardinality of S small such that the optimization problem in (2) remains solvable
within reasonable time. We suggest two different choices of S, namely the set S0

of all discrete squares in G and the set S2 of dyadic partitions of G. The latter is
obtained by recursively splitting the grid into four equal subsets until the lowest
level of single pixels is reached. For the case m = n it can be formally defined as

S2 =
�log2(n)�⋃

l=1

{{
k2l, . . . , (k + 1)2l

}2
: k = 0, . . . , 2�log2(n)�

}
.

Obviously, S0 contains much more elements than S2 and is hence likely to achieve
a higher resolution. We indicate this behaviour in Figure 1.

Here, a solution ū of (4) of a natural image from perturbed data is depicted
(first row). Since this reconstruction method does not adapt the amount of reg-
ularization to the local image features, the reconstruction exhibits both over-
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Fig. 1. True signal u0, data Y with σ = 0.1 and solution of (4) ū with λ = 0.75 (upper
row). Oversmoothed regions identified on the scales |S| = 4, 8 and 16 (from left to
right) for the system S0 (middle row) and S2 (lower row).

and undersmoothed regions. The oversmoothed regions can be identified via the
MR-statistic T in (3) by marking those sets S in S for which

c−1
S

∑
(i,j)∈S

|Yij − (Kū)ij |2 > 1.

The union of these sets for the systems S0 (second row) and S2 (third row) are
highlighted in Figure 1 where we examine the scales |S| = 4, 8, 16 (from left to
right). The parameters cS are chosen according to Section 2.2 with α = 0.9.

3 Algorithmic Methodology

In what follows, we present an algorithmic approach to the numerical compu-
tation of SMRE in practice that extends the methodology in [1]. We use an
inexact Uzawa-type algorithm which decomposes the original problem into a se-
ries of subproblems which are substantially easier to solve.

3.1 Inexact Uzawa Algorithm

In order to compute the desired saddle point of the augmented Lagrangian func-
tion Lλ in (9), we use a modified version of the Uzawa-Algorithm (see e.g. [15,
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Chap. III]). Starting with some initial p0 ∈ Rm×n, the original algorithm consists
in iteratively computing

1. (uk, vk) ∈ argminu∈L2(Ω),v∈Rm×n Lλ(u, v; pk−1)
2. pk = pk−1 − λ(Kuk + vk − Y ).

Item 1. amounts to an implicit minimization step w.r.t. to the variabels u and v
whereas 2. constitutes an explicit maximization step for the Lagrange multiplier
p. The algorithm is usually stopped once the constraint in (7) is fulfilled up to
a certain tolerance (e.g. with respect to the L2-norm as described in Algorithm
1).

Rather than applying this algorithm in a straightforward manner, however,
we carry out two modifications. Firstly, we add in the k-th step the following
additional term to Lλ:

1
2

(
M ‖u− uk−1‖2L2 − ‖K(u− uk−1)‖2

)2

+
β

2
‖v − vk−1‖2 . (13)

Here M is chosen such that M ≥ ‖K‖2 and β ≥ 0. By adding (13) to Lλ the
distance to the previous iterate is additionally penalized. As a result, we won’t
have to evaluate K repeatedly within an iterative minimization scheme, but only
once at uk−1 as we will see when our algorithmic methodology will be addressed
in the following subsection. Secondly, we perform successive minimization w.r.t.
u and v instead of minimizing simultaneously. The resulting two subproblems
can be tackled much more efficiently than the original problem. For details, we
again refer to the next subsection .

After some rearrangements of the terms in Lλ and (13) and by exploiting the
fact that H is the indicator function of the convex set C, the modified Uzawa
algorithm with successive minimization can be summarized as in Algorithm 1. In
practice, Algorithm 1 is very stable and straightforward to implement, provided
that efficient methods to solve (14) and (15) are at hand. However, a sound con-
vergence analysis for Algorithm 1 in the present general setting is not available
so far (see e.g. [18] for the linear case and [1, Thm. 2.2] for the case when the
additional term in (13) is skipped).

3.2 Subproblems

Closer inspection of Algorithm 1 reveals that the original problem - computing a
saddle point of Lλ - has been replaced by an iterative series of subproblems (14)
and (15). We will now examine these two subproblems and propose methods
that are suited to solve them. Here we proceed as in [1].

We focus on (15) first. Note that the problem given there amounts to comput-
ing the L2-projection of vk := Y + αpk−1 −Kuk−1 onto the feasible region C as
defined in (8). Due to the supremum taken in the definition (3) of the statistic
T , we can decompose C into C =

⋂
S∈S CS where

CS =

⎧⎨⎩v ∈ Rm×n : c−1
S

∑
(i,j)∈S

|vij |2 ≤ 1

⎫⎬⎭ , (17)
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Algorithm 1. Inexact Uzawa Algorithm
Require: Y ∈ Rm×n (data), λ > 0 (step size), τ ≥ 0 (tolerance).
Ensure: (u[τ ], v[τ ]) is an approximate solution of (7) computed in k[τ ] iteration steps.

u0 ← 0L2 and v0 = p0 ← 0.
r ← ‖Ku0 + v0 − Y ‖ and k ← 0.
while r > τ do

k ← k + 1.
Minimize Lλ(·, vk−1; pk−1) + 1

2

(
M ‖· − uk−1‖2

L2 − ‖K(· − uk−1)‖2
)
:

uk ← argmin
u∈L2(Ω)

1

2
‖u − (uk−1 − K∗(Kuk−1 + vk−1 − (Y + λpk−1))‖2

L2 +
λ

M
J(u).

(14)

Minimize Lλ(uk, ·; pk−1) + β
2
‖· − vk−1‖2:

vk ← proj
C

(
Y + λpk−1 + βvk−1 − Kuk

1 + β

)
. (15)

Update dual variable:

pk ← pk−1 − λ−1(Kuk + vk − Y ). (16)

r ← max(‖Kuk + vk − Y ‖ , ‖K(uk − uk−1)‖).
end while
u[τ ] ← uk and v[τ ] ← vk and k[τ ] ← k.

i.e. each CS refers to the feasible region that would result if S contained S only.
Note that all CS are closed and convex sets. If we fix a CS and consider some
v /∈ CS, the projection from v onto CS can be stated explicitly as

(PCS (v))i,j =

{
vi,j if (i, j) /∈ S

vi,j(1 +
√
cS/

∑
(k,l)∈S |vk,l|2) if (i, j) ∈ S.

(18)

This insight leads us to the conclusion that any method which computes the
projection onto the intersection of closed and convex sets by projecting on the
individual sets only would be feasible to solve (15). As it turns out, Dykstra’s
Algorithm [14] works exactly in this way and is hence our method of choice to
solve (15). For a detailed statement of the algorithm and how the total number
of sets that enter it may be decreased to speed up runtimes, see [1, Sec. 2.3].

We now turn our attention to (14). In contrast to the standard version of
the Uzawa algorithm as stated in [15], this second subproblem in Algorithm 1
does not involve the inversion of the operator K, at least as long as a suitable
constant M is chosen in (13). For this reason, (14) here simply amounts to solving
an unconstrained denoising problem with a least-squares data-fit. Numerous
methods for a wide range of different choices of J are available in order to cope
with this problem. If J is chosen as the total variation seminorm, for example,
the methods introduced in [3–5] will be suited (we will use the one in [3]).
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4 Numerical Results

We conclude this paper by demonstrating the performance of SMRE as computed
by our methodology introduced in Section 3. We will show SMRE computed
for the denoising problem in Paragraph 4.1 as well as for deconvolution and
inpainting problems in Paragraph 4.2. When it comes down to computation, we
think of an image u as an m×n array of pixels rather than an element in L2(Ω).
Accordingly, the operator K is realized as a mn×mn matrix.

4.1 Denoising

In this paragraph we consider data Y given by (1) when K is the identity matrix
and u0 is the test image in Figure 1 (m = 341 and n = 512). We compute SMRE
based on the systems S0 and S2 as introduced in Paragraph 2.3 where we fixed
α = 0.9. To this end we utilize Algorithm 1 with M = 1 and β = 0, i.e. the
standard Uzawa Algorithm.

We compare our estimators to the global estimators û(λ) (λ > 0) as defined
in (4). We choose λ = λ2 and λ = λB such that the mean squared distance
and the mean symmetric Bregman distance to the true signal u0 is minimized,
respectively. To be more precise, we set

λ2 = E
(

argmin
λ>0

∥∥u0 − û(λ)
∥∥2
)

and λB = E
(

argmin
λ>0

Dsym
J (u0, û(λ))

)
, (19)

where the symmetric Bregman distance for J as in (5) reads as

Dsym
J (u, v) =

∫
Ω

( ∇u
|∇u| −

∇v
|∇v|

)
· (∇u−∇v) dx.

Since the parameters λ2 and λB are not accessible in practice as u0 is unknown,
we refer to û(λ2) and û(λB) as L2- and Bregman-oracle, respectively. In addition,
we compare our approach to the spatially adaptive TV (SA-TV) method as
introduced in [11]. The SA-TV algorithm approximates solutions of (2) for the
case where S constitutes the set of all translates of a fixed window S ⊂ G by
computing a solution of (6) with a suitable spatially dependent regularization
parameter λ. Starting from a (constant) initial parameter λ = λ0 the SA-TV
algorithm iteratively adjusts λ by increasing it in regions which were poorly
reconstructed before according to the MR statistic.

For our numerical comparisons, we used the SA-TV-Algorithm as formulated
in [11], considering square windows with side lengths 5 and 9, respectively. All
parameters involved in the algorithm were chosen as suggested in [11]. As a
breaking condition, we used the discrepancy principle which ended the recon-
struction process after exactly three iteration steps in all of our experiments.

The reconstructions are displayed in Figure 2. By visual inspection, we find
that the oracles are globally under- (L2) and over-regularized (Bregman),
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Fig. 2. Upper row: L2 - and Bregman oracles. Middle row: SA-TV reconstruction with
window size 5 and 9. Lower row: SMRE w.r.t. S2 and S0 with α = 0.9.

respectively. While the scalar parameter λ was chosen optimally w.r.t. the differ-
ent distance measures, it still cannot cope with the spatially varying smoothness
of the true object u0.

In contrast, SMRE and SA-TV reconstructions exhibit the desired locally
adaptive behaviour. Still the SMRE as formulated in this paper has the ad-
vantage that multiple scales are taken into account at once, while SA-TV only
adapts the parameter on a single given scale. As a result, SA-TV reconstruc-
tions are of varying quality for finer and coarser features of the object, while the
SMRE is capable of reconstructing such features equally well.

4.2 Deconvolution and Inpainting

We finally investigate the performance of our approach if the operator K in (1) is
non-trivial. To be exact, we consider inpainting and deconvolution problems. For
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the first we consider an inpainting domain that occludes 15% of the image with
noise level σ = 0.1 (upper left panel in Figure 3) and for the latter a Gaussian
convolution kernel with variance 2 and noise level σ = 0.02 (lower left panel in
Figure 3). For all experiments we use the dyadic system S2 and α = 0.9.

Fig. 3. Inpainting (upper row): data Y with σ = 0.1 (left) and SMRE (right). Decon-
volution (lower row): data Y with σ = 0.02 (left) and SMRE (right).

Note that in both cases we have K = K∗ and ‖K‖ = 1; we therefore set
M = 1.01 and β = M − 1 in (14) and (15), respectively. We use τ = 10−3

as breaking tolerance which results in both cases in k[τ ] ∼ 30 iterations in
Algorithm 1 and a total computation time of less than 4 min. The results are
depicted in the upper right and lower right images of Figure 3, respectively.

Again, the results indicate that a reasonable trade-off between data fit and
smoothing is found by the proposed a priori parameter choice rule and that the
amount of smoothing is adapted according to the image features.

5 Conclusion

In this paper we showed how statistical multiresolution estimators, that is so-
lutions of (2), can be employed for image reconstruction. We stressed that our
method, combined with an a priori parameter selection rule, locally adapts the
amount of regularization according to the image geometry. For the solution of
the optimization problem (2) we suggested an inexact Uzawa algorithm. The
performance of our method was illustrated for standard problems in imaging.
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Abstract. We focus on exact histogram specification when the input
image is quantified. The goal is to transform this input image into an
output image whose histogram is exactly the same as a prescribed one. In
order to match the prescribed histogram, pixels with the same intensity
level in the input image will have to be assigned to different intensity
levels in the output image. An approach to classify pixels with the same
intensity value is to construct a strict ordering on all pixel values by
using auxiliary attributes. Local average intensities and wavelet coeffi-
cients have been used by the past as the second attribute. However, these
methods cannot enable strict-ordering without degrading the image. In
this paper, we propose a variational approach to establish an image pre-
serving strict-ordering of the pixel values. We show that strict-ordering
is achieved with probability one. Our method is image preserving in the
sense that it reduces the quantization noise in the input quantified im-
age. Numerical results show that our method gives better quality images
than the preexisting methods.

Keywords: Exact histogram specification, strict-ordering, variational
methods, restoration from quantization noise, smooth nonlinear opti-
mization, convex minimization.

1 Introduction

Image histogram processing is the act of altering each individual pixel of an
image by modifying its dynamic range in order to improve the contrast of the
whole image. It is an important image processing task with many real-world
applications, such as contrast enhancement, segmentation, watermarking, among
many others.

In histogram processing, image intensity level is viewed as a random variable
characterized by its probability density function. The histogram of an image
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shows the empirical distribution of the intensity levels of its pixels. One of the
basic histogram processing problem is histogram equalization [10,18]. It aims to
find a transformation so that the output image has a uniform histogram. In the
continuous setting the random variable defined by the cumulative distribution
function of the intensity levels is uniformly distributed in [0, 1], and hence such
a function can always be found. More generally, we may want to yield an out-
put image with pre-specified histogram shapes. This problem is called histogram
specification or histogram matching. The prescribed histogram can be given ac-
cording to various needs. For example, it can be the histogram of another image,
a modified version of the original histogram [19], or a “weighted” histogram of
two histograms [6, 7].

Numerous methods have been proposed to modify the histogram of an input
image. The simplest method is histogram linear stretching [13]. Histogram clip-
ping method [19] limits the maximum number of pixels for each intensity level
to a given constant and the clipped pixels are then uniformly distributed among
the other intensity levels where the numbers of pixels are less than the clip limit.
Several other methods were proposed to preserve the mean brightness of the
input image [3, 12, 23]. In [20], Sapiro and Caselles proposed histogram modifi-
cation via image evolution equations. Arici et al. proposed a general framework
for histogram modification [1].

The principle behind histogram specification methods is straightforward for
real-valued (analog) images: the histogram of the input image and the prescribed
histogram should be equalized to uniform distribution first, say by Ti and Tt

respectively. Then the output image can be obtained from the composite trans-
formation T−1

t ◦ Ti. Since the images are real-valued, Ti and Tt are one-to-one
functions, and hence T−1

t ◦ Ti is well-defined. The principle fails, however, for
quantized (digital) images, which is the case of all digital video systems. The
reason is that for quantized images, the intensity levels of all pixels take a lim-
ited number of discrete values. Therefore their cumulative density functions are
staircase functions rather than strictly increasing functions like those for the
real-valued images. Indeed, there are groups of pixels with the same intensity
value. Some pixels in such a group will have to be mapped to pixels with dif-
ferent intensity values to match the prescribed histogram. This task cannot be
achieved without the use of some auxiliary information on pixel values.

Methods to obtain strict ordering for a quantized image were proposed in
[4, 5, 22]. Once all pixels are strictly ordered, the prescribed intensity values are
assigned exactly according to the specified histogram. Coltuc et al. considered
to use the average intensities of neighboring pixels as the auxiliary attribute [5].
Considering two pixels with the same intensity value, the mean values over the
neighborhoods centered on each pixel are compared to order these two pixels.
If the mean values are still the same, then they choose larger neighborhoods
and continue in the same way until all pixels are ordered. Wan and Shi ar-
gued that the local mean approach fails to sharpen the edges of the output
image [22]. They proposed to order the pixels according to the absolute values
of its wavelet coefficients. The wavelet-based approach tends to amplify the noise
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since a noise in a smooth region may be mistaken as an edge and hence is sharp-
ened. Post-processing approach or iterative methods can be applied to suppress
the amplified noises [2]. We emphasize that both the local mean approach and
the wavelet-based approach cannot realize strict ordering without degrading the
input quantized image. This is a major drawback.

In this paper, we propose a variational method that enables us to strictly
order the pixel values of a quantified image by restoring it from the quantization
noise. We prove that the pixels of the restored image can be totally-ordered
with probability equal to one. Our experimental results show that the proposed
method is very efficient and produces images of better quality than both the
local mean method [5] and the wavelet-based method [22].

The outline of the paper is as follows. In Section 2, we present the proposed
method. In Section 3, numerical examples are given to demonstrate the effec-
tiveness of the proposed model. Concluding remarks are given in Section 4.

2 Variational Approach for Exact Histogram Specification

In this section, we introduce the definition of strict-ordering and then we propose
our variational approach for exact histogram specification. First, let us present
the problem of exact histogram specification.

Consider an M -by-N input quantized image u whose pixel values live in the set
P = {p1, · · · , pL}. We assume, without loss of generality, that pi are in increasing
order. For 8-bit images, P = {0, · · · , 255}. Let the grid of u be denoted by

Ω := {x : x = (i, j), 1 ≤ i ≤M, 1 ≤ j ≤ N}.

The intensity of u at the pixel x is given by ux. Define

Ωk := {x ∈ Ω : ux = pk}, k = 1, 2, · · · , L.

The associated histogram of u is the L-tuple (|Ω1|, |Ω2|, . . . , |ΩL|), where | · |
denotes the cardinality of the set. The problem of exact histogram specification
that we consider can be stated as follows: given the input image u, obtained from
an original real-valued (analog) image uo by quantization, and a pre-specified
histogram h = (h1, h2, . . . , hL), find an output image v such that its histogram
is h and for any x,y ∈ Ω, we have vx ≤ vy if uo,x ≤ uo,y.

2.1 Sorting Algorithms

Since MN � L generally, there are many pixels that share the same intensity
value. In order to order strictly the pixels with the same intensity, auxiliary
information must be used. Combining the auxiliary information, we can create
a K-vector defined as

(
ux, κ

1
x, . . . , κ

K−1
x

)
for x ∈ Ω, where κi

x ∈ R is the i-th
auxiliary information of the pixel x. Our approach to determine the auxiliary
information will be outlined later.
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Now we can define an ascending ordering “≺” for pixels in Ω based on such
K-tuples. To facilitate the discussions, let κ0

x := ux. For any two pixels x and y
in Ω, we say that x ≺ y if for some 0 ≤ � ≤ K − 1

κj
x = κj

y for all 0 ≤ j ≤ �− 1 and κ�
x < κ�

y. (1)

For good choices of auxiliary information and K sufficiently large, one can in
principle sort all pixels x in Ω according to the ordering ≺. That is, we can order
the pixels x in Ω in such a way that x1 ≺ x2 ≺ . . . ≺ xNM .

Once such a strict-ordering is obtained, matching the input histogram to the
prescribed one is straightforward. This can be done by dividing the ordered list
from left to right into L groups. Starting from x1 on the list, the first h1 pixels
belong to the first group, and are assigned the intensity of p1. The next h2 pixels
belong to the second group and are assigned the intensity of p2, and so on until
all pixels are assigned to their new intensities.

Several ideas have been proposed for the auxiliary information. Coltuc et al.
proposed to use the local average intensities of a pixel’s neighborhood as auxiliary
information [5]. For pixels having the same intensity, if the average intensities
of their neighborhoods are the same, then a larger neighborhood will be chosen
to compute the average intensity. This procedure is repeated until all pixels are
ordered. The author claimed that K = 6 is appropriate for any application.
Wan and Shi proposed to order the pixels according to the absolute values of
the wavelet coefficients of the whole image [22]. Here we propose a variational
approach to obtain pertinent auxiliary information.

2.2 A Variational Approach

Let the input (digital) image u be obtained from an original real-valued (analog)
image uo by quantization. Since the pixels of uo have a continuous range, they can
be totally-ordered with probability one. The input image u contains quantization
noise. The most natural way to define the ordering for the pixels of u is to restore
the original real-valued image uo using u and a good prior knowledge. Such a
restoration can efficiently be done using a detail preserving variational method
as the one we are proposing here.

For any x ∈ Ω, let Nx ⊂ Ω be the set of neighboring pixels of x. In our
experiment, we choose Nx to be the four neighboring pixels of x in the vertical
and horizontal directions. Now we order the pixels by minimizing f in the cost
functional J : RM×N × RM×N → R given below

J (f, u) =
∑
x∈Ω

⎛⎝ψ
(
f(x)− u(x)

)
+ β

∑
y∈Nx

φ
(
f(x)− f(y)

)⎞⎠ . (2)

Here β > 0 is the regularization parameter and

H1 φ : R �→ R and ψ : R �→ R are even functions in Cs with s ≥ 2, such that
φ′′(t) > 0 and ψ′′(t) > 0, ∀t ∈ R.
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For instance we can choose

ψ(t) =
√
t2 + α1 and φ(t) =

√
t2 + α2 , α1 > 0, α2 > 0 (3)

which are C∞ and analytic. The minimizer of J in (2) is denoted by f̂ .
We know that the quantization noise is bounded, ‖uo− u‖∞ ≤ 0.5. This con-

straint should not be used explicitly however because many pixels may then be
stuck on the box constraint which will make strict ordering impossible. Instead,
the constraint can be satisfied in a relaxed way by using a slightly smoothed
�1 data-fidelity term like ψ in (3) for α1 � 0 and β � 0 in (2). By choosing
β � 0, data-fidelity is enhanced. If ψ(t) = |t|, some data entries would be kept
intact [15] and since data-fidelity is enhanced we would find f̂ = u. But taking ψ

as in (3) for α1 � 0 entails that f̂
≈
�= u. A prior holding for large classes of natural

images is that they are almost nowhere constant (see [11]) and that they involve
edges and fine structures. Nowhere constant implies that φ must be smooth at
the origin [16]. For edges and fine structures, φ must be affine or nonconvex away
from the origin. Since pixels must change no more than |0.5| for an image range
equal to 255, the best choice is a convex φ of the form (3) for α2 � 0. Below we
show that the pixels of f̂ can be ordered with probability one.

Definition 1. A function F : O �→ RM×N , where O is an open domain in
RM×N , is said to be a minimizer function relevant to J (·, O) if for every u ∈ O,
the point f̂ = F(u) is a strict local minimizer of J (·, u).

For any u ∈ RM×N , the functional J (·, u) in (2), satisfying H1, is strictly convex
and coercive, hence for any u and β > 0, it has a unique minimizer. What is
more, one can show that J has a unique minimizer function F : RM×N �→ RM×N

which is Cs−1 continuous, see [14].
We denote by LM×N the Lebesgue measure on M ×N subsets of matrices

using the isomorphism between M ×N real matrices and MN -length real vec-
tors. Our main theoretical results, proven in [14], are summarized below. The
components of the minimizer function F are denoted by Fx, x ∈ Ω.

Theorem 1. Let J in (2) satisfy H1. For its minimizer function F : RM×N �→
RM×N , define the sets Q and R as follows:

Q = {u ∈ RM×N : Fx(u) = Fy(u) , (x,y) ∈ Ω × Ω, x �= y} , (4)
R = {u ∈ RM×N : Fx(u) = uy , (x,y) ∈ Ω ×Ω, x �= y} . (5)

The sets Q and R are closed, and satisfy LM×N (Q) = 0 and LM×N (R) = 0 .

The set Q in (4) contains all possible u ∈ RM×N such that the minimizer
f̂ = F(u) might have two equal entries, Fx(u) = Fy(u) for some x �= y belonging
to Ω. The set R in (5) contains all possible u ∈ Rp such that the minimizer
f̂ = F(u) might contain some quantized entries, Fx(u) = uy for some x,y ∈ Ω.

Even though Q is not empty, since Q is closed and of null Lebesgue measure,
the chance that real-world quantized images u live in it is null. Thus, Fx(u) �=
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Fy(u), for x �= y, is a generic property of the minimizers F of J , as given
in (2) and satisfying H1. For any real-world quantized image u, the entries of
the minimizer f̂ = F(u) can be classified with probability one. In the numerous
experiments we have done, we never found natural quantized images belonging
to Q nor to R, i.e. in all cases we could perfectly order the pixels of f̂ .

There are many methods to compute the minimizer f̂ of J (·, u) in (2) [8, 9,
17, 21]. We applied fixed point iteration method [21] to find f̂ . Once we have
find the minimizer f̂ , we establish the ordering of the pixels based on the 2-tuple
(ux, f̂x) to produce the quantized output image v.

3 Experimental Results

The performance of the proposed method for exact histogram specification was
evaluated using extended numerical experiments. Some of them are presented
below. We compare our method with the local mean (LM) algorithm [5] for
K = 6 as recommended by the authors and with the wavelet-based algorithm
(WA) in [22]. For our method, we set αi, i = 1, 2, in (3) to 0.01, and β in (2)
to 0.1. We stop the iteration when the relative difference between the iterant is
less than 10−8.

In order to measure the results quantitatively, we start out with a given true
quantized image w with histogram hw; then we degrade it to obtain an input
quantized image u. By applying the three methods on u with prescribed his-
togram hw, we obtain an output image v which is in fact a restored version of
w. We use peak-signal-to-noise-ratio to measure the quality of the output image
v with respect to w. It is defined as PSNR = 20 log10(255NM/‖v − w‖2). We
tried two sets of degradation to obtain the input image u.

3.1 Contrast Compression

In our first set of degradation, the true quantized images w are chosen to be the
256-by-256 8-bit images of “Cameraman”, “Lenna” and “Peppers”. The input
image u is obtained from w by the degradation: u = round(ρ · w), where ρ < 1
is a constant. This situation arises when a picture is taken with insufficient
exposure time, or when we want to compress the image by reducing the number
of intensity levels. For example, a 7-bit image can be obtained from an 8-bit
image by using ρ = 0.5. The input images u for ρ = 0.3 are shown in the first
row of Figure 1. In the tests, we used LM, WA and our method to obtain the
output images v having a prescribed histogram hw.

The comparisons of LM, WA and our algorithm are shown in Table 1. We see
from the PSNR values that our method outperforms LM and WA in all cases.
In order to save space, we just show the output images v by our method, see
the second row of Figure 1. The difference images between the true image w and
the output image v are shown in Figure 2. We can discern more features in the
first row and the second row than in the third row. It demonstrates that our
algorithm yields the best restoration.



92 R. Chan, M. Nikolova, and Y.-W. Wen

Fig. 1. First row: the input images. Second row: the output images by our method.

Table 1. The PSNR (dB) between the true image w and the output image v

Cameraman Lenna Peppers

ρ LM WA Ours LM WA Ours LM WA Ours

0.8 55.97 55.86 56.07 55.64 55.50 55.73 55.98 55.68 56.05

0.7 54.15 54.07 54.33 53.93 53.77 53.98 54.17 53.82 54.24

0.6 52.96 52.84 53.09 52.69 52.50 52.74 52.93 52.64 53.02

0.5 51.93 51.84 52.06 51.67 51.51 51.74 51.97 51.66 52.04

0.4 49.24 49.12 49.45 49.01 48.72 49.15 49.40 48.90 49.58

0.3 47.16 46.98 47.42 46.74 46.32 47.00 47.19 47.42 47.50

0.2 44.07 33.87 44.46 43.70 43.14 44.07 44.39 43.57 44.94

0.1 38.75 38.55 39.36 38.72 37.83 39.38 39.44 38.36 40.38

One important indicator for a good exact histogram specification algorithm
is to see if it can establish a strict ordering for all the pixels. If a sorting method
yields two pixels sharing the same value we call them a pair-pixel, and consider
that as a failure of the method. Table 2 shows the numbers of pair-pixels pro-
duced by the three methods. We find that LM and WA have a high number of
pair-pixels while our method can give a total ordering of all pixels for all three
images. Incidentally, for the “Cameraman” image, when ρ = 0.1 there are 13,859
pair-pixels for WA. Compared with the image size, which has 65,532 pixels, the
ordering failure rate is about 21%.

3.2 Histogram Equalization Inversion

The second set of degradation is done as follows. Given the true quantized image
w with histogram hw, we apply each individual method to get the pixel ordering
of w. Then we use the ordering to match w to an image with uniform histogram.
The resulting image is used as the input image u of our experiment. Given u
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Fig. 2. The difference images between the true quantized image w and the output
image v. First row: LM method. Second row: WA method. Third row: our method.

Table 2. The numbers of pair-pixels from the three methods

Cameraman Lenna Peppers

ρ LM WA Ours LM WA Ours LM WA Ours

0.8 3 154 0 0 7 0 0 13 0

0.7 90 377 0 0 8 0 0 15 0

0.6 88 437 0 0 15 0 0 35 0

0.5 76 587 0 0 26 0 1 38 0

0.4 344 1,267 0 1 66 0 1 145 0

0.3 829 2,293 0 1 177 0 20 403 0

0.2 2,146 4,529 0 36 803 0 109 1,205 0

0.1 6,517 13,859 0 1,493 5,499 0 3,211 7,230 0

and the prescribed histogram hw, we apply each individual method to obtain
the output image v. If the ordering among the pixels is preserved by the method,
we should have v = w exactly.

For this experiment, we tried the three images in Section 3.1 together with 15
real 768-by-512 8-bit images available at http://r0k.us/graphics/kodak/. Color
images are converted to the gray-scale images first. Table 3 shows the PSNR of
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Table 3. The PSNR (dB) between the true image w and output images v

Image LM WA Ours Image LM WA Ours

Cameraman 48.25 48.44 48.79 Kadim07 43.74 43.83 48.09

Lenna 51.24 51.75 51.50 Kadim08 48.33 48.55 50.77

Peppers 51.99 52.66 52.14 Kadim09 44.85 44.94 48.71

Kadim01 41.77 41.81 43.36 Kadim10 44.74 44.85 47.29

Kadim02 43.32 43.38 45.12 Kadim11 45.26 45.35 46.63

Kadim03 44.69 44.76 47.95 Kadim12 40.66 40.70 45.64

Kadim04 45.92 45.99 46.86 Kadim13 47.42 47.58 50.39

Kadim05 49.41 49.71 49.81 Kadim14 45.76 45.86 47.19

Kadim06 44.88 44.95 48.80 Kadim15 49.00 49.23 49.71

Fig. 3. The difference image between w and v by LM (first row), WA (second row) and
our method (third row). Our method yields fewest features in the difference images.
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Fig. 4. Top-left corner: the given true quantized image w. The difference image between
w and the output image v by LM method (top-right), WA method (bottom-left) and
our method (bottom-right). Our method yields fewest features in the difference images.

Fig. 5. Top-left corner: the given true image w. The difference image between w and
the output image v by LM method (top-right), WA method (bottom-left) and our
method (bottom-right). Our method yields fewest features in the difference images.
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the results by the three methods. Figures 3–5 give the difference images between
w and v on “Cameraman”, “Lenna”, “Peppers” and two of the 15 images. We
notice from Table 3 that WA method yields better PSNR than LM method in
all images, but worse than our method in all cases except for the “Lenna” and
“Peppers” images. Though WA method yields better PSNR than our method
in those two cases, from Figure 3, we can discern more features in the difference
images by WA method than by our method. This indicates that our method is
more accurate.

4 Conclusions

In this paper, we propose a variational approach for exact histogram specifica-
tion. Since the energy we minimize is smooth, its minimizers enable us to strictly
order all the pixels in the image. Noticing also that our method reduces the quan-
tification noise, the obtained results outperform the preexisting methods.
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Abstract. The management of intra-fractional respiratory motion is be-
coming increasingly important in radiation therapy. Based on in advance
acquired accurate 3D CT data and intra-fractionally recorded noisy time-
of-flight (ToF) range data an improved treatment can be achieved. In this
paper, a variational approach for the joint registration of the thorax sur-
face extracted from a CT and a ToF image and the denoising of the
ToF image is proposed. This enables a robust intra-fractional full torso
surface acquisition and deformation tracking to cope with variations in
patient pose and respiratory motion. Thereby, the aim is to improve ra-
diotherapy for patients with thoracic, abdominal and pelvic tumors. The
approach combines a Huber norm type regularization of the ToF data
and a geometrically consistent treatment of the shape mismatch. The
algorithm is tested and validated on synthetic and real ToF/CT data
and then evaluated on real ToF data and 4D CT phantom experiments.

1 Introduction

In this paper, we propose a variational framework that simultaneously solves
denoising of time-of-flight (ToF) range data and its registration to a surface
extracted from computed tomography (CT) data. Thereby, we underline the
benefits of such a joint variational approach. As a case study we show its potential
for improvements in radiation therapy planning and treatment. Our algorithm is
tested on synthetic and real ToF/CT data using a rigid torso phantom with real
ToF data and a 4D CT phantom. We show that the method is capable to cope
both with deformations caused by a variation in the patient positioning and by
the respiratory motion.
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Compensation of Respiratory Motion as a Challenge in Radiation Therapy. The
management of respiratory motion in diagnostic imaging, interventional imaging
and therapeutic applications is an evolving field with many current and future
issues still to be adequately addressed. In particular, effects due to organ and
tumor motion attract considerable attention in radiation oncology [1]. Technolo-
gies that allow an increased dose to the tumor while sparing healthy tissue will
improve the balance between complication and cure. Besides a typical patient
setup error of 3-5 mm (1 standard deviation) with thoracic radiotherapy [2],
a fundamental source of error and uncertainties in radiation therapy is caused
by respiratory motion during delivery. Thus, real-time tumor-tracking methods
based on the proper identification of thorax deformations due to breathing will
significantly improve the radiation therapy. Recently, it has been demonstrated
that respiratory motion can be effectively monitored using real-time 3D surface
imaging [3]. Schaller et al. [4] presented a time-of-flight respiratory motion de-
tection system that estimates at the ToF frame rate of 25 fps two 1D-signals
for the thorax and abdomen movement, respectively. Fayad et al. [5] proposed
to use ToF as surrogate to develop a respiration model using PCA. In [6,7] a
patient specific respiration model for use in radiotherapy has been investigated.

Time-of-Flight Imaging. ToF imaging directly acquires 3D metric surface infor-
mation with a single sensor based on the phase shift ρ between an actively emit-
ted and the reflected optical signal [8]. Based on ρ, the radial distance (range) r
from the sensor element to the object can be computed as r = cρ

4πfmod
where fmod

denotes the modulation frequency and c the speed of light. The technology has
recently been proposed for diagnostic, interventional and therapeutic medical
applications such as patient positioning [9] and respiratory motion detection [4].
However, due to physical limitations of the sensor, depth data from ToF cam-
eras are subject to high temporal noise and exhibit systematic errors. Temporal
noise is usually reduced by temporal averaging and can be further smoothed by
employing edge preserving filters [10].

Joint Variational Methods in Imaging. Given a pre-fractionally acquired CT
image and an intra-fractionally recorded sequence of ToF images of a torso we
set up a variational approach, which combines the two highly intertwined tasks
of denoising the ToF image and registration of the ToF surface of the thorax with
the corresponding surface extracted from the CT data. Indeed, tackling each task
would benefit significantly from prior knowledge of the solution of the other tasks.
Joint variational methods have proven to be powerful approaches in imaging. E.g.
already in 2001 Yezzi, Zöllei and Kapur [11] and Unal et al. [12] have combined
segmentation and registration and Feron and Mohammad-Djafari [13] proposed
a Bayesian approach for the joint segmentation and fusion of images. Droske and
Rumpf proposed in [14] a variational scheme for morphological image denoising
and registration based on nonlinear elastic functionals. Recently, in [15] Buades
et al. proposed sharpening methods for images, based on joint denoising and
matching of images taken as an image burst.
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The paper is organized as follows. In Section 2, we introduce the model for
joint registration and denoising, including the functional definitions and varia-
tional formulations, while Section 3 covers the numerical implementations. In
Section 4, we study the parameter setting of the method and show experimental
results. Eventually, we draw a conclusion in Section 5.

2 A Joint Registration and Denoising Approach

In this section, we will describe the underlying geometric configuration, derive
the variational model and prove the existence of minimizers.

Geometric Configuration

Let us assume that we have already extracted a reliable surface GCT ⊂ R3 from
the given CT image. Now, given the ToF camera parameters, we denote by Gr

the corresponding (unknown) noise free surface geometry uniquely described by
the range data (ToF) r. Indeed, for each point ξ on the image plane Ω a range
value r(ξ) describes a position vector Xr(ξ) ∈ R3 with

Xr(ξ) = r(ξ)γ(ξ) ,

where the transformation γ : Ω → S2; γ(ξ) =
(
|ξ|2 + d2

f

)− 1
2

(ξ1, ξ2, df ) is based
on the pinhole camera model with df denoting the focal length. Now, the pre-
fractionally acquired surface GCT differs from the intra-fractionally found surface
Gr (cf. Fig. 1).

In our application scenario, the shape of Gr de-

Ω

Xr(ξ)

ξ

GCT

Gr
u(ξ)

φ(Xr(ξ))

Fig. 1. A geometric sketch
of the registration configu-
ration

pends on the actual positioning of the patient on
the therapy table and the current state of the res-
piratory motion at the acquisition time of the ToF
image. Hence, we consider a deformation φ match-
ing Gr and GCT in the sense that φ(Gr) ⊂ GCT and
that this deformation can best be represented by a
displacement u defined on the parameter domain Ω
with

φ(Xr(ξ)) = Xr(ξ) + u(ξ) .

To quantify the closeness of φ(Gr) to GCT we rep-
resent GCT by the corresponding signed distance
function d with d(x) := ±dist(x,GCT), where the
sign is positive outside the object domain bounded by GCT and negative inside.
In particular d = 0 on GCT. Furthermore, |∇d| = 1 and ∇d(x) is the outward
pointing normal on GCT. Based on this signed distance map we can define the
projection P (x) := x−d(x)∇d(x) of a point x in a neighborhood of GCT onto the
closest point on GCT. Thus |P (φ(x))−φ(x)| is a quantitative pointwise measure
for the closeness of φ(x) to GCT for x ∈ Gr .
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Variational Formulation

Now, we are in the position to develop a suitable variational framework which
allows us to cope with significantly noisy range data r0 from the ToF camera
and to simultaneously restore a reliable range function r∗ and extract a suitable
matching displacement u∗ as a minimizer of a functional

E [u, r] := Efid[r] + κEr,reg[r] + λEmatch[u, r] + μEu,reg[u]

consisting of a fidelity energy Efid for the range function r given the input range
function r0, a suitable variational prior Er,reg for the estimated range function,
a matching functional Ematch depending on both the range data r and the dis-
placement u, and finally a prior Eu,reg for the displacement. Here, κ, λ, μ are
positive constants which weight the contributions of the different energies.

Fidelity Energy for the Range Function. We confine here to a simple least square
type functional enforcing closeness of the restored range function r to the given
input data r0 and define

Efid[r] :=
∫

Ω

|r − r0|2 dξ .

Let us remark that nowadays ToF devices deliver together with a dense sequence
of range data frames an indicator of the reliability of the output separately for
each pixel. This allows to get rid of true outliers. Denoting by ri

0(ξ) the range
value at a position ξ ∈ Ω at time ti and by χi(ξ) the corresponding reliability
indicator (χi(ξ) = 1 if ri

0(ξ) is reliable and 0 else) we actually consider time
averaged input data and define at a particular time tj the input range function

r0 of our method as rj
0(ξ) =

(∑i=j
i=j−m χi(ξ)

)−1∑i=j
i=j−m χi(ξ)ri

0(ξ) for a fixed
m (in our application m = 4). In fact, in our model we take into account this
L2-fidelity term instead of a in general more robust L1-functional since in the
application considered here large outliers are already eliminated by this time
averaging using the reliability indicator of the ToF device.

Prior for the Range Function. Range images of the thorax taken from above
are characterized by steep gradients in particular at the boundary of the pro-
jected thorax surface and by pronounced contour lines. To preserve these features
properly a TV -type regularization prior for the range function is decisive. On
the other hand, we would like to avoid the well-known staircasing artifacts of a
standard TV regularization. Hence, we take into account a pseudo Huber norm
|y|δ =

√|y|2 + δ2 for y ∈ R2 and a suitably fixed regularization parameter δ > 0
and define

Er,reg[r] :=
∫

Ω

|∇r|δ dξ .

Decreasing this energy comes along with a strong smoothing in flat regions which
avoids staircasing and at the same time preserves large gradient magnitudes at
contour lines or boundaries.
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Matching Energy. The purpose of the matching functional is to ensure that
φ(Gr) ≈ GCT with φ(x) = x + u(x). Thus, we pick up the pointwise measure
|P (φ(x)) − φ(x)| of the mismatch at a position x ∈ Gr and obtain a first ansatz
for the functional

Ematch[u, r] :=
∫
Gr

|P (φ(x))−φ(x)|2 da=
∫
Ω

d(φ(Xr(ξ)))2
√

detDXr(ξ)TDXr(ξ) dξ .

Here, we have used that |∇d| = 1 and thus

|P (φ(x)) − φ(x)| = |d(φ(x))∇d(φ(x))| = |d(φ(x))| .
The area weight

√
detDXr(ξ)TDXr(ξ) with DXr(ξ) = Dr(ξ)⊗γ(ξ)+r(ξ)Dγ(ξ)

involves first derivatives of r, which can be regarded as a further first order prior
for the range function. We experimented with this at first glance geometrically
appealing approach, but observed a strong bias between this local weight for the
quality of the matching and the actual matching term d(φ(Xr(ξ)))2 leading to
less accurate matching results in particular in regions of steep gradients in r(·)
corresponding to edges or the boundary contour of Gr.
Thus, we considered the functional

Ematch[u, r] :=
∫

Ω

d(φ(Xr(ξ)))2 dξ =
∫

Ω

d(r(ξ)γ(ξ) + u(ξ))2 dξ .

This functional directly combines the range map r and the displacement u and
together with the corresponding prior functions both for r and u substantiates
the joined optimization approach of our method. In fact, an insufficient and
possibly noisy range function r prevents a regular and suitable matching dis-
placement and vice versa.

Prior for the Displacement. Finally, we have to take into account a regularizing
prior for the displacement u : Ω → R3. Here, we consider

Eu,reg[u] :=
∫

Ω

|Du(ξ)|2 dξ

with |A|2 := tr(ATA), which leads to satisfying results in our applications with
a moderate rigid body motion component in the underlying deformation. Let us
mention that a generalized model, which strictly incorporates rigid body motion
invariance will depend on the Cauchy Green strain tensor of the deformation
φ ◦Xr and thus again combines gradients of the range function r and the dis-
placement u in a functional of the type

∫
Ω W (D(φ ◦ Xr)T (ξ)D(φ ◦ Xr)(ξ)) dξ

with D(φ ◦Xr)(ξ) = (DXr(ξ) + Du(ξ)) for some energy density function W .

Joint Functional. All in all, we obtain the following joint functional

E [u, r] =
∫

Ω

|r − r0|2 + κ|∇r|δ + λd(r(ξ)γ(ξ) + u(ξ))2 + μ|Du(ξ)|2 dξ

and can postulate the following result concerning the existence of an optimal
range map and a corresponding optimal deformation.
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Theorem 1 (Existence of Minimizers). Let Ω be a bounded domain, GCT �=
∅ and bounded, and r0 ∈ L2(Ω). Then there exists a minimizer (u∗, r∗) of E [u, r]
on (H1,2(Ω))3 ×BV (Ω).

Proof. At first we observe that on a minimizing sequence the range functions are
uniformly bounded in BV (Ω) because of the uniform boundedness of Efid and
Er,reg. From GCT �= ∅ we deduce that d(·) is Lipschitz continuous. Furthermore,
d(·) has linear growth outside a sufficiently large ball due to the boundedness of
GCT. From this and the fact that the range maps are already uniformly bounded
in L2(Ω) we obtain that the displacements are uniformly bounded in (L2(Ω))3.
Taking into account the uniform bound on the displacement prior Eu,reg we
finally get that the displacements are uniformly bounded in (H1,2(Ω))3. Hence,
we can extract a subsequence for which the range functions converge weak–∗
in BV (Ω) and the displacements converge weakly in (H1,2(Ω))3. Finally, Efid

and Ematch are continuous in r and u, Er,reg is weakly lower semicontinuous on
BV (Ω), and Eu,reg is convex in the Jacobian of the displacement. Thus, by the
usual arguments of the direct method in the calculus of variations one verifies the
existence of a minimizing range function r∗ and a minimizing deformation u∗.

3 Numerical Minimization Algorithm

We consider a gradient descent method for the numerical minimization of the en-
ergy functional E [·, ·], which requires the computation of the first variations with
respect to the range function and the displacement, respectively. The variations
of E [u, r] in u and r are given as

∂uE [u, r](ψ)=
∫
Ω

2λd(rγ + u)(∇d)(rγ + u) · ψ + 2μDu : Dψ dξ ,

∂rE [u, r](ϑ)=
∫
Ω

2(r − r0)ϑ + κ
∇r · ∇ϑ√|∇r|2 + δ2

+ 2λd(rγ + u)(∇d)(rγ + u) · γ ϑ dξ

where ϑ : Ω → R is a scalar test function and ψ : Ω → R3 is vector-valued test
displacement. Furthermore, A : B = tr(ATB).

For the spatial discretization a piecewise bilinear Finite Element approxima-
tion on a uniform rectangular mesh covering the image domain Ω is applied.
The distance function d is precomputed using a fast marching method [16] and
stored on grid nodes. In the assembly of the functional gradient we use a Gauss
quadrature scheme of order 3. The total energy E is highly non-linear due to
the involved nonlinear distance function d and the pseudo Huber norm | · |δ.
We take a multiscale gradient descent approach [17], solving a sequence of joint
matching and denoising problems from coarse to fine scales. On each scale a
non-linear conjugate gradient method is applied on the space of discrete range
maps and discrete deformations. As initial data for the range function r we take
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into account the raw (time averaged) range data r0, respectively. The displace-
ment is initialized with the zero mapping. The gradient descent is performed
with respect to a regularizing metric

g((δr, δu), (δr, δu)) =
∫

Ω

|δr|2 +
σ2

2
|∇δr|2 + |δu|2 +

σ2

2
|Dδu|2

where δr and δu are increments in the range function r and the displacement u,
respectively. Furthermore, σ corresponds to a Gaussian type filter width acting
on the descent directions. As time step control the Armijo rule is taken into
account [18]. We stop iterating as soon as the energy decay is sufficiently small.

4 Validation and Application of the Model

To validate our model we have investigated the validation on a real CT and
synthetic ToF data (rigid torso phantom), on synthetic CT and ToF data (NCAT
respiration phantom), and finally the application to a real CT and real ToF data
(rigid torso phantom).

Underlying Data. CT data was acquired on a Siemens SOMATOM Sensation 64
for a male torso phantom at a resolution of 512×512×346 voxels with a spacing
of 0.95 × 0.95 × 2.50 mm3. The surface GCT with an approximate diameter of
33 cm is extracted from this data set using a thresholding based region growing
segmentation, a marching cube algorithm on the resulting binary segmentation
mask followed by a Laplacian mesh smoothing. ToF frame sequences were ac-
quired using a CamCube 3.0 ToF camera from PMD Technologies GmbH1 with
a resolution of 200×200 pixels, a frame rate of 40 Hz, a modulation frequency of
20 MHz, an infrared wavelength centered at 870 nm, an integration time of 750
μs, and a lens with 40◦×40◦ field of view. This frame rate renders a temporal av-
eraging over 5 frames as acceptable. At the clinical working distance of 1-1.5 m,
the noise level of the range measurements is σ2 ≈ 40 mm2. In addition we have
used the NCAT: 4D NURBS-based CArdiac-Torso phantom [19] and generated
(artificial) CT data for 16 states within one respiration cycle. For each state, the
phantom surface mesh is extracted with the segmentation and mesh generation
pipeline sketched above (voxel spacing (x,y,z): 3.125 × 3.125 × 3.125 mm3 and
overall resolution of 256× 256 × 191 voxels). The length of the underlying res-
piratory cycle is 5 s with an extent of diaphragm motion of 20 mm, an extent
of the AP chest expansion of 12 mm (respiration start phase: full exhale, full
inhale: 0.4). We generated a typical RT treatment scene by adding a treatment
table plane. The synthetic data generation follows the proposal in [20] but has
been simplified: Instead of simulating the photon mixing device we directly op-
erate on simulated distance values based on the z-buffer representation of a 3D
scene. We then approximate the temporal noise on a per-pixel basis by adding
an individual offset drawn from a standard normal with σ2 = 40 mm2. This
1 http://www.pmdtec.com/

http://www.pmdtec.com/
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Gr0

dist(φ(Gr∗),GCT) dist(Gr∗ ,GrGT) dist(φ(GrGT ),GCT) (u1(ξ), u2(ξ))

Fig. 2. Validation of the model on a male phantom GCT (top left and bottom left).
The first two lines correspond to results for the full torso incl. head, whereas the third
line refers to results for the thorax and abdomen part of the phantom. As quantitative
measure of the denoising and registration results we show the distance dist(Gr∗ ,GrGT)
on Gr∗ (middle left) and the distance dist(φ(GrGT ),GCT) on φ(GrGT ) (middle right)
color coded from −2mm to +2mm using the color bar on the left. Results in the first
row correspond to raw, non time averaged range data, whereas in the second and third
row a time averaging with m = 4 is taken into account. Furthermore, Gr0 for time
averaged range data r0 is shown (top right) and a color coding of the resulting in plane
displacement is rendered below for the full torso incl. head (second row) and the sole
torso (third row) in case of the time averaged range data (angle and length of the
vector (u1(ξ), u2(ξ)) are encoded as color and brightness, respectively).

variance is motivated by observations on real ToF data at the clinical working
distance of about 1-1.5 m. As rather large synthetic deformation we have taken
into account u1/2(x) = α(±x1(x2 − 1/2) + (1 − x1)(x1 − 1/2)) and u3(x) = 0
with a comparably large deformation scale parameter α = 0.1.

Algorithmic Validation Setup. The workflow of the preparatory phase of our
validation experiments is as follows: At first we load the torso mesh (real CT
phantom or NCAT). Next, we generate a ground truth range image rGT. Then,
we generate a synthetic ToF image by adding Gaussian noise with a particular
standard derivation σ: rnoisy = rGT +noiseσ2 . Furthermore, we deform the phan-
tom torso by the synthetic deformation (in the 2D table plane) to generate a
planning CT surface Gphantom

CT . Finally, we generate the discrete signed distance
function from the triangular planning CT surface on a 3D mesh of grid resolution
2573.
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non joint joint non joint joint
dist(Gr∗ ,GrGT) dist(φ(GrGT ),GCT)

Fig. 3. Comparison of denoising and subsequent registration to the proposed joint
approach for time averaged range data r0. The two left images show dist(Gr∗ ,GrGT)
on Gr∗ for the non joint (left) and joint approach (right). The two right images depict
the distance measure dist(φ(GrGT ),GCT) on φ(GrGT ) for the non joint (left) and joint
approach (right). The color coding is the same as in Fig. 2.

Validation Results for the Real CT and Synthetic Range Data. In Fig. 2, results
of our algorithm are shown for a phantom torso and artificially generated range
data. We compare the case of unfiltered range data with a suitable set of model
parameters (κ = 0.0004, λ = 10000, μ = 0.004) to the case of time averaged
range data with an adapted set of parameters (κ = 0.0001, λ = 2500, μ = 0.001).
In addition, we evaluate the benefits of the joint approach in comparison to an
algorithm, where one first denoises r0 and then computes a matching of Gr

and GCT. Fig. 3 shows that the joint approach is superior to the subsequent
denoising and registration approach. Obviously, incorporating prior knowledge
about the target shape GCT helps substantially in the denoising process. On the
other hand, proper denoising also renders the registration problem more robust.
Furthermore, we study the impact of different denoising models in Fig. 4, where
the proposed regularization using the pseudo Huber norm is compared to a
simple quadratic regularization energy κ

∫
Ω
|∇r|2 and an egde preserving TV

regularization of r. The oversmoothing effect of the quadratic model and the
staircasing artifacts of the TV model are clearly visible. Here, time averaged
ToF data has been investigated and κ = 0.0001.

Application Benchmark for a 4D CT Respiration Phantom. In Fig. 5, we consider
the joint denoising and registration of the synthetic ToF data (σ2 = 40mm2,
time averaging over 5 frames) based on the 4D CT respiration phantom with

Fig. 4. An experimental evaluation of different denoising models is performed. From left
to right the distance dist(Gr∗ ,GrGT) is color coded on Gr∗ for a quadratic regularization,
a TV regularization, and the proposed regularization via the pseudo Huber norm of
∇r. The color coding is the same as in Fig. 2.
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phase 3 phase 5 phase 7 phase 9

Fig. 5. Four different phases of a respiration cycle Gr0 for time averaged range data
r0 are depicted (first row). The distance dist(Gr∗ ,GrGT) on Gr∗ (second row) and the
distance dist(φ(GrGT ),GCT) on φ(GrGT ) (third row) are color-coded as in Fig. 2.

16 phases. Thereby, the phantom volume at full expiration is considered as the
CT geometry GCT (phase 1 out of 16). To speed up the algorithm we now take
into account the estimated deformation field and the denoised range data from
the previous phase as initial data for our algorithm on the next phase. Table 1
compares this to an initialization of r with r0 and u with the zero displacement.
We observe a reduction of the required gradient descent steps by a factor 1

3
without any change of the resulting minimal energy. Here, the model parameters
are κ = 0.0001, λ = 2500, μ = 0.001.

Application to Real CT and Real ToF Data. Finally, we study the performance
of our algorithm on real CT and real ToF data based on the rigid torso phantom
in Fig. 6. Here, we apply a time averaging of the range data over 5 frames and
use the parameters κ = 0.0001, λ = 2500, and μ = 0.001. We observe that
even topological artifacts (systematical errors of the ToF data due to intensity
related distance errors) can be removed and we obtain satisfying denoising and
matching results using the proposed joint denoising and registration approach.

Table 1. The number of non-linear CG steps are reported for different phases of a
respiration cycle for our method with and without initialization based on the previously
processed respiration phase.

respiration phases phase 3 phase 5 phase 7 phase 9

# it E [u∗, r∗] # it E [u∗, r∗] # it E [u∗, r∗] # it E [u∗, r∗]

No initial. 1743 1.778 1602 1.818 1781 1.832 1812 1.832
incremental initial. 662 1.778 418 1.818 538 1.832 470 1.832
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Fig. 6. On the left Gr0 for time averaged real ToF data and the underlying CT phantom
GCT are rendered in a single image using alternating slices. On the right the distance
dist(φ(Gr∗),GCT) on φ(Gr∗) is again color-coded as in Fig. 2.

5 Discussion and Conclusion

We have proposed a joint variational model for the denoising of ToF range data
and the simultaneous matching with a surface extracted from CT data. The
approach turned out to be of strong potential for the application in radiation
therapy, where respiratory motion has to be compensated to improve therapy
planning and treatment. The joint approach is capable of significantly reducing
systematic errors from ToF imaging and the obtained quantitative results are
within the intended tolerance margins. Based on this approach in a next step
a reliable 3D extension of the matching displacement onto the whole geometric
model can be computed, which would then finally allow an adaptive steering of
the beam in the radiation therapy.
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pean Union (Europäischer Fonds für regionale Entwicklung) and the Bayerisches
Staatsministerium für Wissenschaft, Forschung und Kunst, in the context of the
R&D program IUK Bayern under Grant No. IUK338/001.

References

1. Keall, P.J., Mageras, G.S., Balter, J.M., Emery, R.S., Forster, K.M., Jiang, S.B.,
Kapatoes, J.M., Low, D.A., Murphy, M.J., Murray, B.R., Ramsey, C.R., Herk,
M.B.V., Vedam, S.S., Wong, J.W., Yorke, E.: The management of respiratory mo-
tion in radiation oncology, report of AAPM task group 76. Med. Phys. 33(10),
3874–3900 (2006)

2. Essapen, S., Knowles, C., Norman, A., Tait, D.: Accuracy of set-up of thoracic
radiotherapy: prospective analysis of 24 patients treated with radiotherapy for
lung cancer. Br. J. Radiol. 75(890), 162–169 (2002)

3. Johnson, U., Landau, D., Lindgren-Turner, J., Smith, N., Meir, I., Howe, R.,
Rodgers, H., Davit, S., Deehan, C.: Real time 3D surface imaging for the anal-
ysis of respiratory motion during radiotherapy. International Journal of Radiation
Oncology Biology Physics 60(supplement 1), 603–604 (2004)

4. Schaller, C., Penne, J., Hornegger, J.: Time-of-Flight Sensor for Respiratory Motion
Gating. Medical Physics 35(7), 3090–3093 (2008)

5. Fayad, H., Pan, T., Roux, C., Le Rest, C., Pradier, O., Clement, J., Visvikis, D.:
A patient specific respiratory model based on 4D CT data and a time of flight
camera (TOF). In: Proceedings of IEEE NSS/MIC, pp. 2594–2598 (2009)



Joint ToF Image Denoising and Registration with a CT Surface 109

6. Fayad, H., Pan, T., Roux, C., Le Rest, C., Pradier, O., Visvikis, D.: A 2D-spline
patient specific model for use in radiation therapy. In: Proceedings of IEEE ISBI,
pp. 590–593 (2009)

7. McClelland, J., Blackall, J., Tarte, S., Chandler, A., Hughes, S., Ahmad, S., Lan-
dau, D., Hawkes, D.: A continuous 4D motion model from multiple respiratory
cycles for use in lung radiotherapy. Medical Physics 33(9), 3348–3358 (2006)

8. Kolb, A., Barth, E., Koch, R., Larsen, R.: Time-of-flight sensors in computer graph-
ics. In: Proceedings of Eurographics, pp. 119–134 (2009)

9. Schaller, C., Adelt, A., Penne, J., Hornegger, J.: Time-of-flight sensor for patient
positioning. In: Samei, E., Hsieh, J. (eds.) Proceedings of SPIE Medical Imaging,
vol. 7258, p. 726110 (2009)

10. Lindner, M., Schiller, I., Kolb, A., Koch, R.: Time-of-flight sensor calibration for
accurate range sensing. Computer Vision and Image Understanding 114(12), 1318–
1328 (2010); Special issue on Time-of-Flight Camera Based Computer Vision

11. Kapur, T., Yezzi, L., Zöllei, L.: A variational framework for joint segmentation
and registration. In: Proceedings of IEEE Workshop on Mathematical Methods in
Biomedical Image Analysis, pp. 44–51 (2001)

12. Unal, G., Slabaugh, G., Yezzi, A., Tyan, J.: Joint segmentation and non-rigid reg-
istration without shape priors. Technical Report SCR-04-TR-7495, Siemens Cor-
porate Research (2004)
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Abstract. We investigate coercive objective functions composed of a
data-fidelity term and a regularization term. Both of these terms are
non differentiable and non convex, at least one of them being strictly
non convex. The regularization term is defined on a class of linear opera-
tors including finite differences. Their minimizers exhibit amazing prop-
erties. Each minimizer is the exact solution of an (overdetermined) linear
system composed partly of linear operators from the data term, partly
of linear operators involved in the regularization term. This is a strong
property that is useful when we know that some of the data entries are
faithful and the linear operators in the regularization term provide a
correct modeling of the sought-after image or signal. It can be used to
tune numerical schemes as well. Beacon applications include super reso-
lution, restoration using frame representations, inpainting, morphologic
component analysis, and so on. Various examples illustrate the theory
and show the interest of this new class of objectives.

Keywords: Image processing, Inverse problems, Non-smooth analy-
sis, Non-convex analysis, Regularization, Signal processing, Variational
methods.

1 Introduction

We consider general linear problems where observed data v[i], 1 � i � q, are
related to an object of interest u ∈ Rp according to

v[i] = 〈ai, u〉 with perturbations, 1 � i � q .

The object u can be a signal or an n×m image rearranged into a p-length vector.
The family of linear operators {ai ∈ Rp, 1 � i � q} can be any. For instance,
it can describe direct observation, optical blurring, sub-sampling, missing data
problems, a Radon or a Fourier transform (e.g. in computational tomography),
and so on [6], [4], [1]. Following a regularization approach, see e.g. [10], [3], [5],
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[2], [9], given data v ∈ Rq, the sought-after solution û is defined as a minimizer
of an objective F(·, v) : Rp �→ R of the form

F(u, v) =
∑

I

ψ
(〈ai, u〉 − v[i]

)
+ β

∑
j∈J

ϕ(〈gj , u〉), β > 0 (1)

I = {1, · · · , q} and J = {1, · · · , r}. (2)

The linear operators {gj ∈ Rp, j ∈ J} can be any. In practice they produce finite
differences of various orders, or discrete Laplacian operators. Let {dj ∈ Rp, j ∈
J} denote one of these difference operators; another case of interest is when
gj = (W ∗)�dj where W ∗ is the synthesis operator of a tight frame transform
W . To avoid trivialities, it is assumed that

ai �= 0, ∀i ∈ I and gj �= 0, ∀j ∈ J .

Let us denote by A ∈ Rq×p and G ∈ Rr×p the matrices whose rows are all a�i
and all g�i , respectively:

A = [a1, · · · , aq]� and G = [g1, · · · , gr]� ,

where the superscript � stands for transposed. We assume that

H1 kerA ∩ kerG = {0}.
We adopt the classical notation

R+ = {t ∈ R : t � 0} and R∗
+ = {t ∈ R : t > 0} .

We investigate the case when both ψ : R → R+ and ϕ : R → R+ are even
nondifferentiable at zero and concave on R+, where at least one of them is strictly
concave on R+. Thus ψ and ϕ share some features. The precise assumptions on
these functions are presented jointly.

H2 For f = ψ and f = ϕ, we have

1. f : R → R+ is even, C2 on R \ {0} and f(t) > f(0) = 0 if |t| �= 0;
2. f ′(0+) > 0 and f ′(t) > 0 on R∗

+;
3. f ′′ is increasing on R∗

+, f ′′(t) � 0, ∀t > 0 and lim
t↘0

f ′′(t) is well defined.

H3 At least one of the functions f = ψ or f = ϕ satisfy
f is strictly concave on R+: f ′′(t) < 0, ∀t > 0 and lim

t↘0
f ′′(t) < 0 .

Several examples of functions f are shown in Table 1 and plotted in Fig. 1.

1.1 Motivation

An illustration of a minimizer of F(·, v) in (1) for A = I, and (ψ, ϕ) satisfying
H2 and H3, is given in Fig. 2. One observes that restored samples either fit data
samples exactly or form constant patches.
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Table 1. Functions f
∣∣
R+

: R+ → R+ satisfying H2. All functions except (f6) satisfy

H3 as well. The functions (f3), (f4), (f5) and (f6) are coercive.

(f1) (f2) (f3) (f4) (f5) (f6)

f
∣∣
R+

α t

α t + 1
1 − αt ln(αt + 1) (t + ε)α − εα tα t

α > 0 0 < α < 1 α > 0 0 < α < 1, ε > 0 0 < α < 1 ·

f ′∣∣
R∗
+

α
(αt+1)2

−αt ln α α
αt+1

α(t + ε)α−1 αtα−1 1

f ′(0+) α − ln α α αεα−1 +∞ 1

f ′′∣∣
R∗
+

−2α2

(αt+1)3
−αt(ln α)2 −α2

(αt+1)2
α(α − 1)(t + ε)α−2 α(α − 1)tα−2 0

lim
t↘0

f ′′(t) −2α2 −(ln α)2 −α2 α(α − 1)εα−2 −∞ 0

0 10

1

0 10

1

0 10

3

0 10
0

1

0 10

4

0 10

10

(f1) (f2) (f3) (f4) (f5) (f6)

Fig. 1. Plots of the PFs f
∣∣
R+

given in Table 1

70

−50

0

40

Fig. 2. F(u, v) =
∑p

i=1 ψ(u[i] − v[i]) + β
∑p−1

i=1 ϕ(u[i + 1] − u[i]) for ψ(t) = |t|0.7 and

ϕ(t) = α |t|
α |t|+1

. Note that H1 is satisfied and that (ψ, ϕ) satisfy H2 and H3. Data v are
plotted with “—”, each sample of the minimizer û is marked with “+”.



The Minimizers of Nonsmooth Nonconvex Objectives 113

Example 1. This example is quite illuminating. Given v ∈ R \ {0}, consider
F(·, v) : R �→ R for A = I, and a pair of functions (ψ, ϕ) satisfying H2 and H3:

F(u, v) = ψ(u− v) + βϕ(u) , ∀u ∈ R, (3)
F (u, v) = F(u, v), ∀u ∈ R \ {0, v}. (4)

Note that F is the restriction of F on R \ {0, v}.
The differential of order j of a function f with respect to its k-th argument

is denoted by Dj
kf . Since F is coercive, it does admit minimizers. Let û be a

minimizer of F(·, v). The necessary conditions for F to have a (local) minimum
at û �= 0 and û �= v, or equivalently, for F to have a (local) minimum at û,
namely D1F (û, v) = 0 and D2

1F (û, v) � 0, do not hold. Indeed, by H3, the
second derivatives on R \ {0, v} of ψ and ϕ are non positive and at least one of
them is negative. So

D2
1F (u, v) = ψ′′(u − v) + βϕ′′(u) < 0 ∀u ∈ R \ {0, v} .

Hence there is no minimizer such that û �= 0 and û �= v. In this way, F (·, v)
in (4) does not have minimizers. It follows that any minimizer of F(·, v) in (3)
satisfies

û ∈ {0, v}.
Example 2. Given v ∈ R, consider F(·, v) : R2 �→ R as given below:

F(u, v) = ψ
(
u[1] + u[2]− v

)
+ β

(
ϕ(u[1]) + ϕ(u[2])

)
, 0 < β < 1 .

Let ψ = ϕ satisfy H2 and H3. Then F(·, v) has two strict global minimizers

û1 = [v, 0]� and û2 = [0, v]�

yielding F(û1, v) = F(û2, v) = βϕ(v) < ϕ(v) = ψ(v) = F(0, v). When ψ and ϕ
are nonsmooth and strictly nonconvex on R+, we have two strict global (sparse)
minimizers.

If ψ(t) = ϕ(t) = |t|, then F(·, v) is convex and reaches its minimum for

ût = (1− t) [v, 0]� + t [0, v]� , 0 � t � 1 .

This yields F(ût, v) = β
∣∣v∣∣, 0 � t � 1. The minimum is hence nonstrict.

1.2 Notations

Given a K × p matrix B with rows b�i , 1 � i � K, a K-length vector w and a
strictly increasing subsequence � ⊂ {1, · · · ,K}, say � = (�[1], · · · , �[n]) with
�[1] < · · · < �[n], where n = ��, we systematically denote

B� = [b�[1], · · · , b�[n]]� and w�[i] = w
[
�[i]

]
, 1 � i � n . (5)

We write B�
� for the transposed of B�. The range of B� reads R(B�). We

denote by 1l a column vector of whatever length appropriate to the context
composed of ones. If necessary, 1lK specifies that the vector is of length K.

The canonical basis of RK is denoted
{
ei, i ∈ {1, · · · ,K}

}
.
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1.3 Outline of the Paper

Existence and strictness of local minimizers are shown in section 2. Section 3
reveals that a strict (local) minimizer is the unique solution of a linear system.
Stability of minimizers is studied in section 4. Section 5 focuses on the case when
ψ and ϕ are coercive and strictly nonconvex on R+. The numerical examples in
section 6 confirm the theoretical results. All proofs can be found in [7].

2 Preliminaries

2.1 The Objective F Is Not Too Bad

Even though nonconvex and nonsmooth, F(·, v) does have minimizers. A general
strong sufficient condition is evoked below.

Lemma 1. Let (ψ, ϕ) satisfy H2 and H3. Let one of the following assumptions
hold true:

(a) rank (A) = p and ψ is coercive, i.e. lim
t→∞ψ(t) = ∞;

(b) H1 holds, and ψ and ϕ are coercive.

Then ∀ v ∈ Rq and ∀β > 0, the function F(., v) in (1) does admit a minimum.

We should emphasize that Lemma 1 gives only strong sufficient conditions for the
existence of a minimizer. They are not necessary, as illustrated by the example
given below.

Example 3. Consider F of the form (1) for p = 3 and q = 2 where

A =
[

1 0 0
0 0 1

]
, v =

[
1
3

]
,

g1 = [1 −1 0]�,
g2 = [0 1 −1]�, ψ(t) = |t| , ϕ(t) =

α|t|
α|t|+ 1

. (6)

Assumptions H1, H2 and H3 are satisfied. The objective F reads

F(u, v) =
∣∣u[1]− v[1]

∣∣+ ∣∣u[3]− v[2]
∣∣+ β

(
ϕ(u[1]− u[2]) + ϕ(u[2]− u[3])

)
.

Clearly, F(., v) does not meet the conditions of Lemma 1 since rank (A) = 2 <
p = 3 and ϕ is not coercive. Nevertheless, one computes that for α = 1 and
β = 2 the global minimizer of F(., v) reads

û = [1 1 3]� . (7)

Below we show that if a (local) minimizer û fits exactly some data entries, the
relevant rows of A are almost surely linearly independent.

Lemma 2. For ν ⊆ {1, · · · , rankA} such that rankAν < �ν, consider the subset
Vν

def= {w ∈ R�ν : w ∈ R(Aν) }. We have

(i) Vν � R�ν is closed and L�ν(Vν) = 0.
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(ii) Given v ∈ Rq such that vν ∈ R�ν \ Vν , let û be a (local) minimizer of
u �→ F(u, v) satisfying

{
i ∈ I : 〈ai, û〉 = v[i]

}
= ν. Then rankAν = �ν .

Given v ∈ Rq, let û be a (local) minimizer of u �→ F(u, v). With each such û we
systematically associate the following subsets:

ν = {i ∈ I : 〈ai, û〉 = v[i]} and νc = I \ ν = {i ∈ I : 〈ai, û〉 �= v[i]} , (8)

σ = {i ∈ J : 〈gi, û〉 = 0} and σc = J \ σ = {i ∈ J : 〈gi, û〉 �= 0} . (9)

In the case of Example 3, we have ν = {1, 2} = I and σ = {1}, so νc = ∅ and
σc = {2}.

For (u, v) ∈ Rp × Rq, denote

ψi(u) = ψ
(〈ai, u〉 − v[i]

)
, ∀ i ∈ I, (10)

ϕi(u) = ϕ(〈gi, u〉), ∀ i ∈ J. (11)

Since (ψ, ϕ) are C2 on R \ {0}, one can expect that ψi and ϕj in (10)-(11) are
locally C2 provided that i �∈ ν and j �∈ σ.

Lemma 3. Given v ∈ Rq, let F(·, v) reach a (local) minimum at û. Let H2 and
H3 hold. Put

ρ = min
{

min
i∈νc

|〈ai, û〉 − v[i]|
‖ai‖2 , min

j∈σc

|〈gj , û〉|
‖gj‖2

}
.

We have ρ > 0. Let u ∈ B(û, ρ) def= {w ∈ Rp : ‖w − û‖2 < ρ} then

i ∈ νc ⇒ ψi(u) ∈ C2
(
B(û, ρ)

)
, (12)

j ∈ σc ⇒ ϕi(u) ∈ C2
(
B(û, ρ)

)
. (13)

2.2 (Local) Minimizers Are Strict

A local minimizer û is strict if there is a neighborhood O ⊂ RN , containing û,
such that F(û, v) < F(w, v) for any w ∈ O. Such a minimizer is isolated.

With a (local) minimizer û of F(·, v) we associate the manifolds given below:

Kû = {w ∈ Rp : Aνw = vν and Gσw = 0} , (14)
Kû = {w ∈ Rp : Aνw = 0 and Gσw = 0} , (15)

where ν and σ are defined in (8)-(9). Since

û ∈ Kû,

we are guaranteed that Kû is nonempty. Note that Kû is the vector subspace
tangent to Kû. Equivalently, for any w ∈ Kû we have û + w ∈ Kû: thus Kû

contains directions in which the (local) minimizer û might be nonstrict.
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Lemma 4. Consider F of the form (1). Let (ψ, ϕ) satisfy H2. For v ∈ Rq, let û
be a (local) minimizer of u �→ F(u, v). The subsets ν and σ read according to (8)
and (9), respectively. The vector subspace Kû is defined in (15) and we suppose
that

dim(Kû) � 1 .

(i) If ψ satisfies H3 and rankAν < rankA, then ∃w ∈ Kû such that Aw �= 0.
(ii) If ϕ satisfies H3 and rankGσ < rankG, then ∃w ∈ Kû such that Gw �= 0.
(iii) If ψ and φ satisfy H3 and we have rankAν <rankA or rankGσ <rankG, then

∃w ∈ Kû such that
[
Aw �= 0 or Gw �= 0

]
.

Given v ∈ Rq, we consider the function given below

F (·, v) : Kû �→ R

F (u, v) =
∑
i∈νc

ψ(〈ai, u〉 − v[i]) + β
∑
j∈σc

ϕ(〈gj , u〉) (16)

where Kû is defined in (14). Obviously, F (·, v) is the restriction of F(·, v) on Kû.
One can remind the function F in Example 1. For any w ∈ Kû we have

〈D2
1F (û, v)w,w〉 =

∑
i∈νc

ψ′′(〈ai, û〉 − v[i]
)〈ai, w〉2 + β

∑
i∈σc

ϕ′′(〈gj , û〉) 〈gj , w〉2 .

Lemma 5. Let F be such that (ψ, ϕ) satisfy H2. For v ∈ Rq, let û be a (local)
minimizer of F(·, v). Suppose that the vector subspace Kû in (15) satisfies

dim(Kû) � 1 .

Assume also that one of the following conditions is met:

1. ψ satisfies assumption H3 and rankAν < rankA ;
2. ϕ satisfies assumption H3 and rankGσ < rankG ;
3. ψ and φ satisfy H3, and we have rankAν < rankA or rankGσ < rankG .

Then there exists w ∈ Kû such that 〈D2
1F (û, v)w,w〉 < 0 .

In general, this lema states quite an unusual result: the restriction of F(·, v) on
Kû, namely F (·, v), does not have minimizers. The reader is invited to remind
the restricted function F in Example 1 since it does not have minimizers neither.

Next we show that the (local) minimizers of F(·, v) are strict in general.

Theorem 1. Consider F of the form (1). Let (ψ, ϕ) satisfy H2. For v ∈ Rq,
let û be a (local) minimizer of u �→ F(u, v). The subsets ν and σ are defined
according to (8) and (9), respectively, and the vector subspace Kû is defined in
(15). Assume also that one of the conditions 1, 2 or 3 in Lemma 5 is met. Then

Kû = {û} and Kû = {0} , (17)

so F(·, v) reaches a strict (local) minimum at û.
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Example 4. Let us consider again Example 3, p. 114. From the ingredients of F
given in (6), the minimizer in (7) and the definition of Kû in (14), on finds

Kû = {w ∈ R3 : 〈a1, w〉 = v[1], 〈a2, w〉 = v[2], 〈g1, w〉 = 0}
= {w ∈ R3 : w[1] = v[1], w[3] = v[2], w[1]− w[2] = 0}
= {w ∈ R3 : w[1] = v[1], w[3] = v[2], w[2] = w[1]}
= {w ∈ R3 : w[1] = w[2] = v[1], w[3] = v[2]}
= {w ∈ R3 : w[1] = 1, w[2] = 1, w[3] = 3} = {û}.

Then Kû = {0}.

Let us list the cases when we cannot guarantee that the minimum is strict.

1. rankAν = rankA and ψ meets H3 but ϕ does not.
Given the fact that Aν is defined according to (5), the condition given above
means that all ai, i ∈ νc are linear combinations of {ai, ∀i ∈ ν}. Then we
have the equivalence

[
Aνw = 0 ⇔ Aw = 0

]
. In the first instance, this

situation occurs when
Aû = v .

In case we wish to change some data equations (e.g. if there is some noise),
such a minimizer does not do the job. Otherwise, rankAν = rankA < q
means that we have reached the maximum among all data entries that can
be fitted exactly as far as in general v �∈ R(Aν) = R(A) whose dimension is
strictly smaller than the dimension of the data space.

2. rankGσ = rankG and ϕ meets H3 but ψ does not.
A similar reasoning than above shows that

Gσw = 0 ⇔ Gw = 0 .

For instance, if {gj , j ∈ J} are first-order differences, Gû = 0 means that
û is constant, i.e. û = c1l for any c ∈ R \ {0}. Such an û is certainly not a
meaningful solution.

We conclude that all these cases, excluded from Theorem 1, are quite pathological.

3 Either Fidelity or Prior

3.1 Strict Minimizers Solve Exactly Linear Systems

In spite of the high nonlinearity of the minimization problem, it is shown below
that every strict (local) minimizer of F(·, v) is the unique solution of a linear
system composed out of some elements of {ai, i ∈ I} and of {gj, j ∈ J}.

Theorem 2. Let (ψ, ϕ) satisfy H2 and H3. For û a (local) minimizer of F(·, v),
we posit the definitions of ν and σ in (8)-(9) and the one of Kû in (15). Assume
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also that one of the conditions 1, 2 or 3 in Lemma 5 is met. Then û is the unique
solution of the linear system of equations given below:

〈ai, û〉 = v[i] ∀i ∈ ν ,
〈gj , û〉 = 0 ∀j ∈ σ .

(18)

Let Hν,σ ∈ Rp×(�ν+�σ) read

Hν,σ =
[
A�

ν G�
σ

]�
. (19)

We have rankHν,σ = p . Let vν,σ∈R�ν+�σ have its first subvector equal to vν and
its second �σ-length subvector composed of zeros: vν,σ =

[
v�ν , (0 1l�σ)�

]�. Then

û = (H�
ν,σHν,σ)−1H�

ν,σvν,σ . (20)

Example 5. Let r = p and ai = gi = ei for i = 1, · · · , p. Then F reads

F(u, v) =
p∑

i=1

(
ψ
(
u[i]− v[i]

)
+ βϕ(u[i])

)
.

According to Theorem 2, we have

either û[i] = v[i] or û[i] = 0, ∀i ∈ {1, · · · , p} .
Next consider that gi are as in Fig. 2, i.e.

gi[j] =

⎧⎨⎩
−1 if j = i
1 if j = i + 1
0 if j �∈ {i, i+ 1}

for i ∈ {1, · · · , p− 1} .

Now

F(u, v) =
p∑

i=1

ψ
(
u[i]− v[i]

)
+ β

p−1∑
i=1

ϕ
(
u[i + 1]− u[i]

)
.

By Theorem 2 we find that

û[i] = v[i] or û[i] = û[i + 1], ∀{i, i + 1} ∈ I × I .

In words, the (local) minimizer is composed partly of constant patches, partly
of pixels that fit data samples exactly, as seen in Fig. 2.

On the role of the regularization parameter β > 0. Theorem 2 and in
particular the expression for a (local) minimizer û given in (20) does not make an
explicit reference to the regularization parameter β. Usually F(·, v) has numerous
(local) minimizers. According to the same theorem, each one of them is strict
and is the unique solution of a linear system of the form (18). Any other such
(local) minimizer û′ corresponds to different subsets ν′ ⊂ I and σ′ ⊂ J and in
general, F(û, v) �= F(û′, v). As far as a minimizer is determined by the subsets
ν′ ⊂ I and σ′ ⊂ J , the selection of different local minimizers, including the
global minimizer, is controlled by β.
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4 Local Stability of Strict Minimizers

Here we study how local minimizers do behave under variations of the data.

Definition 1. Let F : Rp × Rq → R and O ⊆ Rq be open. We say that U :
O → Rp is a (local) minimizer function for the family of functions F(·,O) =
{F(·, v) : v ∈ O} if for any v ∈ O, the function F(·, v) reaches a strict (local)
minimum at U(v).

Theorem 3. Let (ψ, ϕ) satisfy H2 and H3. For v ∈ Rq \ {0}, let û be a (local)
minimizer of u �→ F(u, v). We posit the definitions of ν and σ as given in (8)-(9),
and of Kû in (15). Assume also that one of the conditions 1, 2 or 3 in Lemma 5
is met. Then there exists  > 0 and a (local) minimizer function U

‖v′ − v‖2 <  ⇒ û′ = U(v′) (21)
U(v′) = (H�

ν,σHν,σ)−1H�
ν,σv

′
ν,σ (22)

where Hν,σ is defined according to (19).

Note that the (local) minimizer function U is linear with respect to data v. The
global minimizer function is piecewise linear with respect to data v.

5 A Special Case

Here we address a particular class of functions (ψ, ϕ), as given in H4 below.

H4 Assume the following:

– ψ and ϕ satisfy H2 and H3 ;
– ψ and ϕ are coercive ;
– ψ′(0+) = +∞ and ϕ′(0+) = +∞ .

Popular examples are �p “norms” for 0 < p < 1, see (f4) in Table 1.

Corollary 1. Theorems 2 and 3 holds true only under assumption 3.

It appears that each collection of ai’s and gj ’s of rank p corresponds to a (local)
minimizer of F(·, v). The result can be seen as the inverse of Theorem 2.

Theorem 4. Given v ∈ Rq, let ν ⊂ I and σ ⊂ J be such that the system of
linear equations given below does admit a unique solution û:

〈ai, û〉 = v[i] ∀i ∈ ν ,
〈gj , û〉 = 0 ∀j ∈ σ .

(23)

Then for any β > 0, û is a strict (local) minimizer of an objective F(·, v) of the
form (1) where (ψ, ϕ) satisfy H4.
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6 Numerical Examples

Here we consider a toy missing data recovery problem using F : Rp × Rq → R

F(u, v) =
∑
i∈I

ψ(〈ai, u〉 − v[i]) + β

p−2∑
i=1

ϕ
(
u[i + 2]− 2u[i+ 1] + u[i]

)
(24)

where p = 80 for ψ(t) = | t | 0.7 and ϕ(t) = α |t|
α |t|+1 . Here 〈gi, û〉 = 0 means that

û[i + 2]− 2û[i + 1] + û[i] = 0 , (25)

i.e. that three consecutive pixels form a piece of line. The original is shown in
Figs. 3 and 4(c) with a dashed line. It contains large polynomial, nearly affine
parts.

In the first experiment in Fig 3 we have ai = ei, i ∈ I for q = �I = 25. Thus
〈ai, u〉−v[i] = u[i]−v[i] in (24). Data samples are plotted with diamonds. These
few data samples are largely enough to interpolate all missing parts by affine
pieces. The minimizer is strict because ϕ meets H3.

1 80

−50

0

40

Fig. 3. Data v in �, minimizer û in thick line, original in dashed line. Results correspond
to α = 4 and β = 15.

In the second experiment in Fig. 4 the same original is considered. Ten data
samples (q = �I = 10) are produced using randomly generated {ai, i ∈ I}. The
10-length data vector v is shown in Fig. 4(a). Yet again, all polynomial parts
are interpolated via affine pieces satisfying (25). It is likely that the obtained
minimizers û yield just a local minimum of F(·, v). All data equations are satisfied
exactly. Missing parts are fitted using the 2nd order differences in (24). The
minimizer is strict because ϕ meets H3.

The numerical experiments corroborate the theoretical results presented above.
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1 10

−1100

−700

1 80

−50

0

40

(a) 10 observed data samples (b) Minimizer û in thick line, original in
v in (�), ai are random dashed line. Result for α = 4 and β = 350.

Fig. 4. Restoration from 10 random observations

7 Concluding Notes

We show that if ψ and ϕ are nonconvex and nonsmooth at zero, and at least one
of them is strictly nonconvex on R+, (local) minimizers are generally strict and
are given as the unique solution of a linear system composed of linear operators
coming from the data term and from the regularization term. This result provides
a flexible tool to check if an algorithm minimizing F(·, v) has found a strict local
minimum.
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Abstract. Image fusion is an imaging technique to visualize information
from multiple images in one single image, which is widely used in remote
sensing, medical imaging etc. In this work, we study two variational ap-
proaches to image fusion which are closely related to the standard TV-L2

and TV-L1 image approximation methods. We investigate their convex
optimization models under the perspective of primal and dual and pro-
pose the associated new image decompositions. In addition, we consider
the TV-L1 based image fusion approach and study the problem of fus-
ing two discrete-constrained images f1(x) ∈ L1 and f2(x) ∈ L2, where
L1 and L2 are the sets of linearly-ordered discrete values. We prove
that the TV-L1 based image fusion actually gives rise to an exact con-
vex relaxation to the corresponding nonconvex image fusion given the
discrete-valued constraint u(x) ∈ L1 ∪ L2. This extends the results for
the global optimization of the discrete-constrained TV-L1 image approx-
imation [7,30] to the case of image fusion. The proposed dual models also
lead to new fast and reliable algorithms in numerics, based on modern
convex optimization techniques. Experiments of medical imaging, remote
sensing and multi-focusing visibly show the qualitive differences between
the two studied variational models of image fusion.

1 Introduction

Imaging fusion technologies have been developed to be an effective way to show
different imagery information from various sources in one single image, which is
especially interesting in many areas, e.g. remote sensing [26,10], medical imaging
[24,27] and synthesis of multi-focused images [16,25]. More specifically, given two
or more information data which are from different sources and properly aligned,
image fusion integrates all such data into one visualized image, mostly with
higher spatial or spectral resolution. For example, given two images, which may
capture the same scene but with different focuses (see the left two images of
Fig. 1), fusing these two images clearly gives a better visual result (see the

A.M. Bruckstein et al. (Eds.): SSVM 2011, LNCS 6667, pp. 122–133, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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right two fused images of Fig. 1). In remote sensing and satellite imaging, the
fused image, which is merged by multispectral data, effectively conveys more
information [26,23]. In medical imaging, while both the Magnetic Resonance
(MR) and Computed Tomography (CT) imagery provide standard diagnostic
tools other than fluoroscopy and ultrasound techniques, it is well-known that a
CT scan will adequately highlight the bone structure details while soft tissue
information is not clearly visible; on the other hand, a T2 weighted MR scan
produces significantly better details for images of these tissues. In this respect,
it is highly desirable to have a combined view of CT and MR images, which
illustrates significant details both from both CT and MR inputs and assists
clinical diagnoses.

(a) (b) (c) (d)

Fig. 1. Multi-focus image fusion: (a) and (b) give two images exposed with different
focuses; (c) and (d) are the fused image computed by the proposed methods (1) and
(3) in this work.

Parallel to recent developments of image processing, many pixelwise image
fusion methods have been proposed to tackle such problem of combining multi-
ple images or informative data, e.g. the wavelet or contourlet based approaches
[19,18,27], high-pass filtering method [1,23] etc. In this paper, we concentrate on
the variational approaches to image fusion, which were explored in [20,25,15]. En-
ergy minimization and variational methods have been developed to be a standard
way to effectively and reliably handle many practical topics of image processing
and computer vision both in mathematics and numerics. Successful applications
include image denoising [22,8,30], image decomposition [2,17] and image segmen-
tation [9,8,29,28] etc. In this regard, variational image fusion methods [25,15,20]
provide such an elegant approach for the tradeoff between redundant imagery
information and image priors.

Contributions: In this work, we study the variational models to the integra-
tion of images with gray-scales, which were proposed or partially investigated by
[25,15]. We propose the convex optimization approach to the studied variational
problems under the novel duality-based perspective, and consider the exactness
of the reduced convex relaxation model to the nonconvex TV-L1 based image
fusion with the pixelwise constraint of discrete values. Our contributions can be
summarized as follows:
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We consider the two convex optimization models of image fusion based on
standard techniques of TV-L2 and TV-L1 image approximation. We propose
their equivalent convex formulations under the new perspective of primal and
dual. We show the studied image fusion models actually result in two new image
decompositions of the weighted input image, with helps of the proposed dual
forumations. In addition, we focus on the TV-L1 based image fusion method
and prove it gives an exact convex relaxation model to the corresponding image
fusion problem constrained by a linearly-ordered discrete-value set to each pixel,
i.e. it solves such nonconvex image fusion problem globally and exactly. This
properly extends the convex relaxation models of TV-L1 image approximation,
proposed by Chan et al [7] and Yuan et al [30], to TV-L1 based image fusion
applications. Clearly, direct and global solvers to such discrete-constrained im-
age fusion, especially over a large number of linearly-ordered discrete values for
instance medical imaging, definitely result in a high load of memory and com-
putation, e.g. graph-cuts method [5,14] and the continuous min-cut method [3].
To this end, the convex relaxation approach proposed in this work leads to a
much easier and more efficient approach to the given discrete-constrained opti-
mization problem. We also derive fast and reliable algorithms to the studied two
image fusion methods through their proposed dual formulations, which properly
avoids nonsmoothness of the energy functions and leads to simple and efficient
numerical implementations.

2 Convex Optimization Models

Given two input images f1(x) and f2(x), a total-variation based method for
image fusion was proposed by Wang et al [25] such that

min
u∈BV (Ω)

1
2

∫
Ω

w1 (u− f1)
2
dx +

1
2

∫
Ω

w2 (u− f2)
2
dx + α

∫
Ω

|∇u| dx (1)

where the functions ω1(x) and ω2(x) are the pixelwise weight functions such that

ω1(x) + ω2(x) = 1 , ω1,2(x) ≥ 0 ; ∀x ∈ Ω . (2)

In this work, we extend (1) to the convex optimization model with the L1-normed
data fidelity term:

min
u

∫
Ω

w1 |u− f1| dx +
∫

Ω

w2 |u− f2| dx + α

∫
Ω

|∇u| dx . (3)

Similar formulation as (3) was also studied in [15] where the weight functions
are given constant.

Clearly, both models (1) and (3) formulate the integration of two input images
as the problem of convex optimization which can be generalized as

min
u

∫
Ω

w1D1(f1 − u) dx +
∫

Ω

w2D2(f2 − u) dx + α

∫
Ω

|∇u| dx (4)
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where D1(·) and D2(·) are positive convex functions. In this work, we call (4),
along with (1) and (3), the primal model.

In the following parts, we investigate (4) under the perspective of primal and
dual and build up its connections to variational image decomposition.

2.1 Equivalent Convex Formulations

Let D∗
1(q) and D∗

2(q) be the respective conjugate of the convex function D1(v)
and D2(v) such that

D1(v) = max
q1

{vq1 −D∗
1(q1)} , D2(v) = max

q2
{vq2 −D∗

2(q2)} . (5)

For the model (1) where the functions D1 and D2 are in quadratic forms, i.e.
D1(v) = D2(v) = 1

2v
2 , we have

D∗
1(q) = D∗

2(q) =
1
2
q2 . (6)

For the problem (3) where both D1 and D2 are absolute functions, i.e. D1(v) =
D2(v) = |v| , we have

D∗
1(q) = D∗

2(q) = Iδ(q ∈ [−1, 1]) (7)

where Iδ(q ∈ [−1, 1]) is the characteristic function of the convex set q ∈ [−1, 1].
We also recall that the dual formulation of the total-variation function [13]

α

∫
Ω

|∇u| dx = max
p∈Cα

∫
Ω

u div p dx (8)

where Cα is a convex set defined by

Cα := {p | p ∈ C1
c (Ω,R2) , |p(x)| ≤ α , ∀x ∈ Ω } . (9)

By simple computation, in view of (5) and (8), the primal formulation (4) can
be rewritten as

min
u

max
q1,q2

max
p∈Cα

∫
Ω

w1 (q1f1 −D∗
1(q1)) dx +

∫
Ω

w2 (q2f2 −D∗
2(q2)) dx (10)

+ 〈div p− (w1q1 + w2q2), u〉 .
In this paper, we call (10) the equivalent primal-dual model of (4).

Observe that u is unconstrained and the convex formulation (10) suffices the
minimax theorem [11,12] for our cases (1) and (3) in this study, the min and
max operators of (10) are interchangeable. The minimization of (10) over u,
therefore, leads to the linear equality

w1q1 + w2q2 = div p , (11)

and the corresponding constrained maximization problem as follows

max
q1,q2

max
p∈Cα

∫
Ω

w1 (q1f1 −D∗
1(q1)) dx +

∫
Ω

w2 (q2f2 −D∗
2(q2)) dx (12)

s.t. w1q1 + w2q2 = div p .

Similarly, we call (12) the equivalent dual model of (4).
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2.2 Variational Image Decompositions

With helps of the conjugates (5), we will see that the optimum of the variational
image fusion (4) actually proposes a decomposition of the weighted input image
f(x) := w1(x)f1(x) + w2(x)f2(x), x ∈ Ω. More specifically, we have

Proposition 1. Given the optimum (q∗1 , q
∗
2 , p

∗, u∗) of the equivalent primal-dual
model (10), (q∗1 , q∗2 , p∗, u∗) just gives rise to the decomposition of the weighted
input image (w1f1 + w2f2)(x), x ∈ Ω, such that

f := w1f1 + w2f2 = u∗ + v∗ (13)

where
v∗ = w1v

∗
1 + w2v

∗
2 , v∗1 ∈ ∂D1(q∗1) , v∗2 ∈ ∂D2(q∗2) .

Proof. Observe the conjugate formulations (5), we have

f1 − u∗ = v∗1 ∈ ∂D1(q∗1) , f2 − u∗ = v∗2 ∈ ∂D2(q∗2) .

Recall that w1(x) + w2(x) = 1 for ∀x ∈ Ω, then we have

w1v
∗
1 + w2v

∗
2 = w1(f1 − u∗) + w2(f2 − u∗) = (w1f1 + w2f2)− u∗ .

Then (13) simply follows.

Consider the conjugates (6) and Prop. 1, the L2-norm based image fusion
problem (1) results in the following image decomposition:

Corollary 1. Given the optimum (q∗1 , q
∗
2 , p

∗, u∗) of the equivalent primal-dual
model (10) corresponding to (1), (q∗1 , q

∗
2 , p

∗, u∗) just gives rise to the decomposi-
tion of the weighted input image (w1f1 + w2f2)(x), x ∈ Ω, such that

f := w1f1 + w2f2 = u∗ + div p∗ . (14)

Proof. In view of (6), we have f1 − u∗ = q∗1 and f2 − u∗ = q∗2 . It follows

f := w1f1 + w2f2 = (w1q1 + w2q2) + u∗ .

In view of the linear equality constraint (11), i.e. w1q
∗
1 + w2q

∗
2 = div p∗, then

we prove Coro. 1.

Moreover, we also have

Corollary 2. The image fusion problem (1) is equivalent to

min
p∈Cα

‖(w1f1 + w2f2)− div p‖2 , (15)

i.e. the projection of the weighted input image (w1f1 + w2f2)(x), x ∈ Ω, to the
convex set divCα.
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Proof directly follows from the image decomposition model of Coro. 1 and (6).
Clearly, similar results of image decomposition and projections as Coro. 1 and
Coro. 2 were proposed in [6], which showed that TV-L2 image denoising amounts
to image decomposition (14) and projection (15) of the single input image f(x)
instead of the weighted image w1f1 + w2f2.

For the image fusion problem (3), it leads to image decomposition as follows:

Corollary 3. Given the optimum (q∗1 , q
∗
2 , p

∗, u∗) of the equivalent primal-dual
model (10) which is equivalent to (3), (q∗1 , q∗2 , p∗, u∗) just gives rise to the de-
composition of the weighted input image (w1f1 + w2f2)(x), x ∈ Ω, such that

f := w1f1 + w2f2 = u∗ + v∗ (16)

where
v∗ = w1v

∗
1 + w2v

∗
2 , v∗1 ∈ ∂IS(q∗1) , v∗2 ∈ ∂IS(q∗2) ,

IS is the characteristic function of the set S = {q | q(x) ∈ [−1, 1] , ∀x ∈ Ω }.
Its proof directly follows by the conjugates (7) and Prop. 1.

3 Global and Exact Optimization

Now we focus on the TV-L1 based approach (3) and consider the respective
discrete-valued optimization problem

min
u(x)∈L

∫
Ω

w1 |u− f1| dx +
∫

Ω

w2 |u− f2| dx + α

∫
Ω

|∇u| dx (17)

where we assume the two input images f1(x) and f2(x) take discrete values which
are linearly ordered such that

fi(x) ∈ (Li := {li1, . . . , lini
}) , li1 < li2 < . . . < lini

; i = 1 , 2 (18)

and L = L1 ∪ L2 is the combination set of L1 and L2. We also assume

L = {l1, . . . , ln} , l1 < l2 < . . . < ln , (19)

includes n discrete values.
In this section, we show that the TV-L1 based image fusion problem (3)

amounts to an exact convex relaxation model of the integer-constrained opti-
mization problem (17), i.e. the optimum of the convex optimization problem (3)
results in the global and exact integer-valued optimum of (17). A similar result
was recently proposed by [30], where the authors proved that the convex TV-L1

image approximation does give global and exact optima to the corresponding
discrete-constrained TV-L1 approximation. We directly state our result as the
following proposition and omit the proof, due to the limit space. Its detailed
proof can be derived by the same way as [30].
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Proposition 4. Given the optimum u∗(x) to (3) and the set of discrete values
L = {l1, . . . , ln}, l1 < . . . < ln, which is the combination of two sets (18) of
discrete image values given in f1(x) and f2(x), then for any given n− 1 values
γi, i = 1, . . . , n− 1, such that

l1 < γ1 < l2 < . . . < γn−1 < ln , (20)

we define the image function uγ(x) by the n− 1 upper level sets of u∗(x):

uγ(x) = l1 +
n−1∑
i=1

(li+1 − li)Uγi(x) . (21)

uγ(x) ∈ {l1, . . . , ln} and uγ(x) gives an exact and global optimum of (17).

4 Duality Based Algorithms

In this section, we propose fast numerical algorithms to image fusion problems
(1) and (3) through their respective dual formulations.

By Coro. 2, we observe that the image fusion problem (1) corresponds to the
projection of the image w1f1 + w2f2 to the convex set divCα. It directly leads
to the same duality-based algorithm as [6] proposed by Chambolle. We list its
iterative projected-gradient descent steps for computing the dual variable p as
follows:

pi+1 = ProjCα

(
pi + τ∇((w1f1 + w2f2)− div pi

))
,

where τ > 0 gives the step-size at each iteration.
With helps of (7) and (10), the TV-L1 based image fusion problem (3) can

be equally written as the following primal-dual formulation:

min
u

max
q1,q2

max
p∈Cα

∫
Ω

q1f1 dx +
∫

Ω

q2f2 dx + 〈div p− (q1 + q2), u〉 (22)

s.t. q1(x) ∈ [−w1(x), w1(x)] , q2(x) ∈ [−w2(x), w2(x)] . (23)

Also in view of (12), its equivalent dual model can be formulated as

max
q1,q2

max
p∈Cα

∫
Ω

q1f1 dx +
∫

Ω

q2f2 dx (24)

s.t. q1(x) ∈ [−w1(x), w1(x)] , q2(x) ∈ [−w2(x), w2(x)]
q1 + q2 = div p . (25)

We see that the image u(x) in the primal-dual formulation (22), which is what
we wish to obtain, just works as the multiplier function to the linear equality con-
straint (25) of the dual model (24). In addition, the energy function of (22) gives
the corresponding Lagrangian function to the dual formulation (24). Through
these observations, we define its augmented Lagrangian function as

Lc(q1, q2, p, u) = 〈q1, f1〉+〈q2, f2〉+〈div p− (q1 + q2), u〉− c

2
‖div p− (q1 + q2)‖2

where c > 0.
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In this work, we apply the classical augmented Lagrangian algorithm [21,4]
through its augmented Lagrangian function Lc(q1, q2, p, u), which includes the
following steps at k-th iteration:

1. Optimize qk+1
1 by fixing qk

2 , pk and uk, which gives

qk+1
1 := argmax

|q1(x)|≤w1(x)

〈q1, f1〉 − c

2

∥∥q1 − (div pk − qk
2 − uk/c)

∥∥2
.

It can be computed by the following step in a close form:

qk+1
1 = Proj|q1(x)|≤w1(x)(f1/c + (div pk − qk

2 (x)− uk/c)) ; (26)

2. Optimize qk+1
2 by fixing qk+1

1 , pk and uk, which gives

qk+1
2 := argmax

|q2(x)|≤w2(x)

〈q2, f2〉 − c

2

∥∥q2 − (div pk − qk+1
1 − uk/c)

∥∥2
.

It can be computed by the following step in a close form:

qk+1
2 = Proj|q2(x)|≤w2(x)(f2/c + (div pk − qk+1

1 (x) − uk/c)) ; (27)

3. Optimize pk+1 by fixing qk+1
1 , qk+1

2 and uk, which gives

pk+1 := arg min
p∈Cα

∥∥div p− (qk+1
1 + qk+1

2 + uk/c)
∥∥2

. (28)

It is the projection of (qk+1
1 + qk+1

2 + uk/c) to the convex set divCα.
4. Update uk+1 by

uk+1 = uk + c (qk+1
1 + qk+1

2 − div pk+1) ; (29)

and let k = k + 1, repeat until convergence.

The algorithm gives a splitting optimization framework over each dual variables
q1, q2 and p respectively, by exploring projection to their corresponding convex
set. To this end, we call it the multiplier-based algorithm to TV-L1 image fusion.
It explores three simple sub-steps: (26), (27) and (28) at each iteration, which
properly avoids tackling the nonsmooth terms in (3) in a direct way. The substeps
of (26) and (27) are easy and cheap to compute. For the projection substep (28),
we can use one or a few steps of the iterative projected-gradient decent algorithm
to approximately solve (28) as follows:

pi+1 = ProjCα

(
pi + τ∇{ div pi − ((qi+1

1 + qi+1
2 ) + ui/c

)})
. (30)

Interestingly, our experiments show that just one single step of the above itera-
tion (30), with a proper step-size τ , is needed to make the algorithm converge!
This implements the algorithm in a very fast way, mostly superlinear.
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5 Experiments

In this section, we first fuse two binary images to show the fundamental dif-
ferences between (1) and (3). Then experiments for both medical imaging and
remote sensing are given for comparisons. Experiment results may vary with
different choices of w1(x) and w2(x), but this is not the focus of this paper.

5.1 Fusing Binary Images

Given two binary images (see the two images on the leftside of Fig. 2), i.e.
f1,2(x) ∈ {0, 1}, we computed the fused image by both two approaches: (1) and
(3), where the weighted functions w1(x) and w2(x) are computed based image
edges. For the TV-L2 based method (1), we set α = 3 and its fused result u(x)
is shown by the 3rd image of Fig. 2. For the TV-L1 based method (3), we set
α = 1 and its fused result u(x) is shown by the last image of Fig. 2. Clearly, the
TV-L1 based method gives the binary optimum which takes the value either 0
or 1 nearly everywhere. This is in contrast to the resultby (1).

(a) (b) (c) (d)

Fig. 2. Fusing binary images: (a) and (b) give the two input binary image; (c) and
(d) show the results computed by the TV-L2 and TV-L1 based methods respectively.

5.2 Applications to Medical Imaging and Remote Sensing

Besides the fusion experiment of multi-focused images (shown in Fig. 1), we also
made fusion experiments for medical imaging and remote-sensing images. Both
experiments are computed by a Ubuntu desktop with AMD Athalon 64 X2 5600.
The TV-L1 based method (3) takes couple of seconds. Except one additional step
of (26) and (27), its algorithmic scheme has the same complexities as the fast TV-
L1 method proposed in [30]. All the images are adjusted into the same grayscale
range for comparisons. Fig. 3 shows the fusion experiment of medical imaging,
which integrates the images from CT and MRI (see Fig. 3). The TV-L1 based
method performs visually better than the TV-L2 based method in preserving
high-contrast and details (see the enlarged image patches for comparisons). Fig.
4 shows the image fusion experiment of remote sensing, where two images from
different spectral channels are fused by the studied two methods respectively.
Detailed comparison of the enlarged patches (see the images at 2nd row of Fig.
4) clearly indicates better visual result by the TV-L1 based method.
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Fig. 3. Fusing medical images. 1st row: the left two images show two input images
of spine discs by CT and MRI respectively; the right two images show the fused images
computed by (1) and (3) respectively. 2nd row: the left two images show the zoomed
image patches cropped by the red lines on the same position of CT and MRI images
respectively; the right two images show the fused results at the patched area computed
by (1) and (3) respectively.

Fig. 4. Fusing images from two spectral bands. At 1st row: the left two images
show the input images of remote sensing images from two different spectral channels;
the right two images show the fused images computed by (1) and (3) respectively. At
2nd row: the left two images show the zoomed image patches croped by the red lines
on the same position of the input images respectively; the right two images show the
fused results at the patched area computed by (1) and (3) respectively.
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6 Conclusion and Acknowledgements

In this work, we study two variational approaches to image fusion, which are
related to TV-L2 and TV-L1 image approximation, under the new perspective
in terms of primal and dual and show both result new image decompositions.
We focus on the TV-L1 based image fusion approach and consider fusing two
discrete-valued images. In this regard, we prove that the TV-L1 based image fu-
sion actually gives the exact convex relaxation to its corresponding image fusion
subject to the specified discrete-valued constraint. This extends recent develop-
ments for global optimization of the discrete-constrained TV-L1 image approxi-
mation [7,30] to the case of image fusion. The proposed dual models lead to fast
and reliable algorithmic schemes based on the standard convex optimization.
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Abstract. The Beltrami framework treats images as two dimensional
manifolds embedded in a joint features-space domain. This way, a color
image is considered to be a two dimensional surface embedded in a hybrid
special-spectral five dimensional {x, y, R,G, B} space. Image selective
smoothing, often referred to as a denoising filter, amounts to the process
of area minimization of the image surface by mean curvature flow. One
interesting variant of the Beltrami framework is treating local neighbor-
ing pixels as the feature-space. A distance is defined by the amount of
deformation a local patch undergoes while traversing its support in the
spatial domain. The question we try to tackle in this note is how to per-
form patch based denoising accurately, and efficiently. As a motivation
we demonstrate the performance of the Beltrami filter in patch-space,
and provide useful implementation considerations that allow for param-
eter tuning and efficient implementation on hand-held devices like smart
phones.

Keywords: Beltrami flow, patch-space, denoising.

1 Introduction

Following the success of the Non Local Means denoising method as introduced
by Buades et al. in [2] much attention has been devoted to developing various
types of patch based denoising techniques. A patch, in terms of an image, is
generally considered to be a square region of pixels of fixed size centered at
the coordinates of an image pixel. Peyrè in [6] studies patch based manifolds
while a more specific analysis of a generalized patch based denoising framework
is done by Tschumperlè and Brun in [12]. They show that the NL means [2]
and Bilateral [11] filters are isotropic versions of their patch based diffusion
framework by choosing a specific patch size and metric. In much the same way
Sochen et al. present the Beltrami framework and show in [8] how choices of
different metrics can be used to produce filtering methods like the anisotropic
diffusion process of Perona and Malik [5] as an example. Anisotropic diffusion
was also shown by Barash in [1] to have a strong connection to the Bilateral
filter through the adaptive smoothing filter and Elad in [4] demonstrated its
connection to other classical filtering techniques.

In [7] Maragos and Roussos, explore a generalization of the Beltrami flow us-
ing weighted patches. We will use a similar formulation while setting the weights

A.M. Bruckstein et al. (Eds.): SSVM 2011, LNCS 6667, pp. 134–143, 2012.
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of each neighboring pixel to be one. In this context, the Beltrami framework pro-
vides a general and natural substrate for diffusion based image manipulation and
naturally extends to higher dimensions. We will show how it can be applied to
an image manifold in patch-space with better visual results as well as the overall
PSNR compared to strictly local-differential techniques. We will discuss numer-
ical considerations and demonstrate how the use of an integral image eliminates
the algorithm’s dependency on the patch size allowing for good performance on
a modern smartphone.

Fig. 1. Examples of Beltrami patch denoising for color images. From top to bottom,
left to right a) Noisy F16, σ = 20 b) Denoised image, PSNR = 31.51dB c) Noisy Lena,
σ = 30 d) Denoised image, PSNR = 29.54dB e) Noisy Mandrill, σ = 50 f) Denoised
image, PSNR = 21.43dB.

2 The Beltrami Framework

We consider an image to be a 2D Riemannian manifold embedded in D = d+ 2
dimensional space where d = 1 for grayscale images and d = 3 for color images.
We can thus write the map X : Σ → M where X is the mapping of the image
manifold into the embedding space feature manifold M . For a grayscale mapping
we can write

X(σ1, σ2) = (x(σ1, σ2), y(σ1, σ2), z(σ1, σ2)). (1)

If we further specify that σ1 = x, σ2 = y and I is the image intensity map, then
from (1) we have the graph of I given by

X(x, y) = (x, y, I(x, y)). (2)

Both Σ and M are Riemannian manifolds and hence are equipped with metrics
G and H respectively which enable measurement of lengths over each manifold.
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We require the lengths as measured on each manifold to be the same. Thus we
can write that

ds2 = (dx dy dI)H

⎛⎝dxdy
dI

⎞⎠ = (dx dy)G
(
dx
dy

)
. (3)

We can equate these and write the result compactly using Einstein notation
where repeated upper and lower indices are summed over

guv = hij∂uX
i∂vX

j u, v = 1..2 i, j = 1..3 (4)

Here the meaning of ∂u,v is just the partial derivative with respect to x or y.
For the simple case in (4) where H = (hij) is the identity matrix we use the
chain rule dI = Ixdx+Iydy and determine that for (2) the induced metric tensor
G = (guv) is

G =
(

1 + I2
x IxIy

IxIy 1 + I2
y

)
. (5)

Having a metric enables us to define a measure on the manifold which, for a
Euclidean embedding in M , turns out to be the area of the surface as measured
by the local coordinates in Σ

S [X,G] =
∫∫ √

gdxdy = A =
∫∫ √

1 + I2
x + I2

ydxdy. (6)

Here g = div(G). There is a more general version of the above measure called the
Polyakov action which can be useful for non-Euclidean embeddings and details of
its application to the Beltrami framework can be found in [8]. We now minimize
the functional in (6) using the methods of variational calculus with the resulting
Euler-Lagrange relation given by

− d

dx

(
Ix√
g

)
− d

dy

(
Iy√
g

)
= −div

(√
gG−1∇I) = 0. (7)

We excersize freedom of paramaterization and multiply by g−1/2 which allows
(7) to be compactly written as ΔgI = 0 where Δg is the second order differential
operator of Beltrami. We now formulate a geometric flow of the manifold

It = ΔgI, (8)

which creates a scale space via the generalization of the Laplace operator onto
Riemannian manifolds. The discretized version of (8) allows us to perform it-
erative traversal through this scale space on a computer and produces a very
effective technique for denoising grayscale images when using the metric in (5).

3 Operating in Patch-Space

A patch is a window centered at a given pixel. We therefore define the mapping
P : Σ → Rnw2+2 in the form

P (x, y) =
(
x, y,

{
Ik (x+ iw, y + jw)

})
i, j = −w, .., w, k = 1, .., n. (9)
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Here w ∈ N is known as the window size or patch size, and n is the number of
channels in the image. For example, a single channel image where n = 1 and
w = 5 produces patches of size 11 × 11 centered about each pixel in the image
I. We can see that the above definition reduces to the grayscale embedding (2)
for w = 0 and n = 1 as described in the previous section. From here on we will
denote

{
Ik (x+ iw, y + jw)

}
i, j = −w, .., w k = 1, .., n, as Ik

i,j . Note that Ik is
simply the kth color channel. We wish to derive the induced metric tensor G for
this new embedding. For that goal we first consider the arclength measurement
in the embedding space which we assume to be Euclidean and therefore

ds2 = 〈dP ,dP 〉H = dx2 + dy2 +
∑
i,j,k

(
dIk

i,j

)2
. (10)

In reality, the coordinates x and y do not possess the same physical measure as
the intensity values of the image so we need to introduce a scaling factor into
the patch-space metric given by

hij =

{
δij

β2δij

i, j � 2
otherwise

, (11)

where δij is the Kronecker delta. Following the same procedure as before and
using the chain rule dIk

i,j = Ik
i,jxdx + Ik

i,jydy we pullback the metric from the
embedding to determine that the new induced metric tensor for the 2D image
manifold embedded into patch-space is given by

G =

(
1 + β2

∑
i,j,k I

k2
i,jx β2

∑
i,j,k I

k
i,jxI

k
i,jy

β2
∑

i,j,k I
k
i,jxI

k
i,jy 1 + β2

∑
i,j,k I

k2
i,jy

)
. (12)

This metric combined with (8) gives the Beltrami flow in patch-space as

It = ΔgI =
1√
g
div
(√
gG−1∇I) . (13)

4 Implementation and Results

We use the flow given by (13) to progress through the scale space on image
manifolds embedded into patch-space for both grayscale and color images. The
algorithm was tested on a desktop PC and the color version was efficiently imple-
mented on an iPhone 4 smartphone. To measure the success we visually inspected
the results as well as measured the standard Peak Signal to Noise Ratio for im-
ages: PSNR = 10log10

(
2552/E

[
(Iest − I)2

])
where Iest is the estimation of

the denoised version of I.

4.1 Parameter Optimization

Given an image with additive Gaussian white noise and standard deviation σ we
need to find a set of parameters that produces the best PSNR value. The normal
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approach is to fix β and change the number of iterations which allows traversal
of the scale space. The obvious disadvantage is that more iterations mean longer
execution times. One efficient alternative which has been used here is to fix
the number of iterations and vary β. This has the effect of artificially moving
through the scale space by causing a change of the distances on the embedded
image manifold. The output therefore depends on the window size, the number
of iterations of the update, and the parameter β. The time complexity of the
algorithm is O(KN2W 2) where K is the number of iterations, N is the width
of an image (assuming it is square) and W = 2w + 1 for a patch size w. We

Fig. 2. Example of PSNR as a func-
tion of β−2 with a typical global max-
imum

Fig. 3. Loglinear relationship between
σ and β−2. Error bars indicate one
standard deviation from the mean over
a set of different images.

fixed the variables depending on whether an image was grayscale or color. To
optimize for β we ran a non-linear optimization program with the PSNR as the
target function for a particular image. With the variables held constant except
for β, the PSNR function was found to always have a global maximum over the
search region. An example function is shown in Fig. 2. The analytical relationship
between β and σ is non-trivial however we determined experimentally that the
optimal value of β is approximately related to σ by a linear model in log space
for values of σ up to 1001 by the simple relation

log(β−2) = a log(σ) + b. (14)

Fig. 3 shows this relationship graphically. The graph was obtained by running
the optimization program for a set of different images and then fitting the model
in (14). It was found that the value of β that globally maximized the PSNR
of any representative image produced PSNR values very close to maximum in
other images corrupted by Gaussian noise with the same σ. The error bars in Fig.
3 show that there is almost negligible deviation from the mean for the optimal
1 Pixel intensity values range from 0 to 255.
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values of β for a given σ for different images. This fact is critical and illustrates
that a and b obtained from the log-linear model only need to be calculated once
for a predetermined window size, color type and iteration count. They can then
be used to generate a β for any given σ for any image. Alternatively, a densely
populated look-up table can be generated to relate the two for even greater
accuracy.

4.2 Reducing Time Complexity

The weights of nearby pixels are unitary in our method. We take advantage of
this property and eliminate the W 2 component by using an integral image to
calculate the sums in (12) for each color channel yielding running time complex-
ity of O(KN2). This allows for patch size independence in performance which
is especially important for a practical implementation on a mobile device.
For low values of K and images of size 256 × 256 the iPhone implementation
performs denoising in real time. A patch size of 5× 5 (w = 2) produced the best
results for grayscale images with negligible PSNR differences for the various it-
erations as shown in Table 1. The same behavior occurs for color images except

Table 1. PSNR results from denoising of the Cameraman image corrupted with
AGWN for σ = 20 using optimized β. Values are in dB.

w = 0 w = 1 w = 2 w = 3 w = 4

10 iterations 28.04 29.11 29.21 29.09 28.96

50 iterations 27.58 29.04 29.37 29.27 29.15

100 iterations 27.35 28.94 29.36 29.28 29.16

150 iterations 27.22 28.88 29.35 29.28 29.16

that the optimal patch size appears to be 7 × 7 (w = 3). The PSNR alone is
not enough as can be seen in Fig. 4. The denoising properties of the Beltrami
flow are reasonable for a small number of iterations, however higher quality vi-
sual results require more iterations. It was found that grayscale images are best
denoised by K = 150 iterations and w = 2, whereas color images require only
K = 10 iterations at a window size of w = 3.

Table 2. Run times in seconds for Patch Beltrami color denoising on an iPhone 4

N = 256 N = 512

K = 1 0.14 0.54

K = 5 0.65 2.60

K = 10 1.27 5.13

K = 20 2.55 10.37

K = 50 6.42 25.45
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Fig. 4. From left to right a) Noisy image at σ = 20 b) Denoised with 10 iterations,
PSNR = 29.21 c) Denoised with 150 iterations PSNR = 29.35 d) Original image

Running times for different iteration counts of the iPhone implementation
for color images are shown in Table 2. Depending on an application’s speed
requirements, K can be further reduced down to K = 1 with a gradual decrease
in output quality as shown in Fig. 5, where it is seen that after K = 10 there is
virtually no improvement. For each iteration the update of a pixel is independent
of the update of any other pixel, so the process is highly parallelizable, however
this characteristic has not been exploited in the current implementation.

Table 3. PSNR comparison between Regular Beltrami, Patch Beltrami and NL means
for some standard grayscale images. All values are in dB.

CMan Lena Barbara House

Regular Beltrami 36.97 36.90 35.85 36.92
Patch Beltrami 37.70 38.11 37.01 38.16 σ = 5

NL means 33.91 37.55 36.06 38.05

Regular Beltrami 27.22 29.03 26.20 28.98
Patch Beltrami 29.35 32.05 28.71 32.13 σ = 20

NL means 29.37 31.56 29.86 31.97

Regular Beltrami 20.55 23.00 20.95 22.63
Patch Beltrami 23.83 27.13 23.52 26.88 σ = 50

NL means 23.93 26.46 24.26 26.09

Using the optimally chosen parameters, the denoising process can now be
used automatically with the only input parameter being σ as is the norm for
denoising images. The experiments in Table 3 reveal that apart from causing a
significant improvement over the original application of the Beltrami flow, the
new patch-based metric in fact produces results comparable to or even better
than the Non-Local means method [2]. Furthermore, the results are within about
2dB of the state of the art, such as the block matching algorithms of Dabov et
al. [3].

4.3 Residual Noise

Another way to compare the effectiveness of a denoising process is by evaluating
the residual as noise as introduced by Baudes et al. in [2]. Here, we look at
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Fig. 5. Optimized denoising for different values of K a) Noisy image, σ = 20, PSNR =
22.25 b) PSNR = 28.93, K = 1 c) PSNR = 29.91, K = 2 d) PSNR = 31.15,K = 5
e) PSNR = 31.45, K = 10 f) PSNR = 31.55, K = 40

the differences between the estimated output image and the noisy input image.
Ideally, the resulting difference image should also appear as Gaussian white noise.
Fig. 6 shows that patch based Beltrami flow produces significantly less structure
in the difference image compared to the original pixel based version.

Fig. 6. Method noise. From top to bottom, left to right a) Original image b) Noisy
image with σ = 20 c) Beltrami patch denoising. 150 iterations, w = 2 d) Method noise
for Beltrami patch denoising e) Regular Beltrami denoising f) Method noise for regular
Beltrami denoising.

4.4 Non-gaussian Denoising

In addition to filtering Gaussian noise, the Beltrami flow has other desirable
properties. The process tends to align colors along boundaries which lends itself
to solving the problem of antialiasing images with jagged, unmatched edges.
Another fundamental characteristic of the method is the traversal of a scale
space which flattens out smooth, weakly textured objects. An example of the
effect of applying the Beltrami patch filter in both types of examples is shown
in Fig. 7. It is interesting to note that a state of the art denoising method,
BM3D [3], copes very poorly with these two situations because it is optimized
for Gaussian noise removal alone.

5 Conclusions

We have shown that the extension of the original Beltrami filter with a more
general metric produces significantly better results than the original Beltrami
filter. The number of iterations required for denoising color images is K � 10
resulting in a relatively fast algorithm of time complexityO(KN2) permitting an
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Fig. 7. Removal of aliasing and block textures. From left to right, top to bottom a)
Photograph of truck with aliasing. b) Beltrami patch denoising, σ = 20 c) CBM3D
denoising, σ = 20 d) Photograph of castle with weak block textures e) Beltrami patch
denoising, σ = 20 f) BM3D denoising, σ = 20.

efficient implementation on a modern smartphone. We have also experimentally
determined the relationship between the image intensities and their coordinates
as posed in [8]. The proposed method produces PSNR values close to state of
the art techniques such as BM3D [3]. In addition to Gaussian denoising, the
process accurately removes weak textures and aliasing while preserving the fine
structure of the edges in images that other methods are not capable of dealing
with.

6 Future Work

Modern smartphones have powerful graphics processing units as well as accel-
erated vector engine hardware. Neither of these features were utilized for the
current application and further work is required to enable the method to work
at optimal speed. Although this note has focused mainly on the denoising prop-
erty of the Beltrami operator it would seem reasonable to further study other
applications of the operator in patch-space such as inverse diffusion and other
processes which control the eigen-values of the local diffusion operator. Many of
these techniques have already been developed for the original Beltrami flow such
as the FAB diffusion method as described by Gilboa et al. [9] and therefore it
would be prudent to extend their application to patch-space. The same can be
said for the short time Beltrami kernel as described by Spira et al. in [10] where
it is approximated by finding local geodesic distances on the manifold via the
fast marching method and the local metric tensor. The analysis and implemen-
tation of the same procedure would be a fruitful direction for future research in
patch-space based flows.
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Abstract. In this paper, a fast algorithm for Euler’s elastica func-
tional is proposed, in which the Euler’s elastica functional is reformu-
lated as a constrained minimization problem. Combining the augmented
Lagrangian method and operator splitting techniques, the resulting
saddle-point problem is solved by a serial of sub-problems. To tackle
the nonlinear constraints arising in the model, a novel fixed-point-based
approach is proposed so that all the sub-problems either are linear prob-
lems or have closed form solutions. Numerical examples are provided to
demonstrate the performance of the proposed method.

1 Introduction

Suppose that the observed image u0 is the original image u perturbed by additive
gaussian noise η

u0 = u+ η.

Our task is to recover the image u from the noisy image u0. The image denoising
problems are often solved by the variational methods using the total variation
minimization. Total variation was first introduced into image denoising in [13]
and played an important role since then. However, the total variation based
models always converge to a piecewise constant solution, which will cause the
staircasing effect in the results. To counteract the disadvantages, some high
order models are developed during recent years in [5,6,9,10]. The Euler’s elastica
model is one of the important high order models, which is defined based on the
curvature of the image. It was introduced into computer vision in [11] and has
been successfully applied in various applications such as image inpainting and
denoising etc. [1,3,4,6,10]. We first define the curvature of a level curve Γ as a
function of u in the following way

κ(u) = ∇ ·
( ∇u
|∇u|

)
. (1)
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We can express Euler’s elastica of the curve Γ using the curvature as the following
energy functional

E(Γ ) =
∫

Γ

(
a+ b · |κ|β

)
ds, (2)

where a, b are two tuning parameters and s is the arc length. In the functional
(2), the first term minimizes the total length and the second term minimizes
the power of the total curvature in the image. The power β can be set to either
β = 1 as in [10], or β = 2 as in [6]. In this work, we set β = 2, but the techniques
developed below can be extended to the case β = 1 without too many efforts.
Therefore, the following minimization problem for image denoising is concerned

min
u

∫
Ω

(
a+ b

(
∇ · ∇u

|∇u|
)2
)
|∇u| + μ

2

∫
Ω

(u− u0)2. (3)

The traditional ways to solve Euler’s elastica functional (3) are usually com-
plex and time consuming due to the high nonlinearity of the partial differential
equations (PDE) as in [6,10]. In [2,7], graph-cuts are applied to the high or-
der models and Euler’s elastica. Recently, the augmented Lagrangian method
[12,15] has been successfully used to solve the Euler’s elastica model in [14].
The authors provide us a fast algorithm by solving the sub-problems emerging
from the augmented Lagrangian functional using FFT. In their approach, one
quadratic penalty term in the augmented Lagrangian functional is relaxed to
the first order and a frozen coefficient method with FFT is used to solve the
coupled PDEs with variable coefficient. The high dependence of the FFT limits
the applications of the algorithm in Tai-Hahn-Chung formulation, especially for
the surface problems; see [8].

In this work, we propose a different augmented Lagrangian formulation for
Euler’s elastica model (3) and use the operator splitting technique to solve the
corresponding saddle-point problem as well. Instead of disposing of the quadratic
term in the sub-problem related to normal vector, we apply a fixed-point method
to find a closed form solution. Furthermore, we introduce a new variable into
the constrained problem to avoid to solve the PDE with variable coefficient. All
other linear problems are solved efficiently by the iterative solver. Therefore, the
proposed method is computationally economic in terms of both memory requests
and computation costs.

2 Augmented Lagrangian Method for Euler’s Elastica
Model

In this section, we propose an augmented Lagrangian formulation for the Euler’s
elastica energy (3). First, we introduce two extra variables p and n to cast the
functional (3) into a constrained minimization problem as follows

min
u,p,n

∫
Ω

(
a+ b(∇ · n)2

)
|p| + μ

2

∫
Ω

(u− u0)2,

s.t. p = ∇u; n =
p
|p| .

(4)
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The second constraint in (4) is equivalent to p = |p|n. Therefore, the correspond-
ing augmented Lagrangian functional for the constrained optimization problem
(4) is defined as follows

L(u,p,n; λ1,λ2) =
∫

Ω

(
a+ b(∇ · n)2

)
|p| + μ

2

∫
Ω

(u − u0)2 (5)

+
∫

Ω

λ1 · (p− |p|n) +
r1
2

∫
Ω

‖p− |p|n‖2 +
∫

Ω

λ2 · (p−∇u) +
r2
2

∫
Ω

‖p−∇u‖2,

where λ1 and λ2 are the Lagrange multipliers, r1 and r2 are positive penalty pa-
rameters. We aim to seek a saddle-point of the augmented Lagrangian functional
(5), named as

Find (u∗,p∗,n∗; λ∗
1,λ

∗
2), (6)

s.t.L(u∗,p∗,n∗; λ1,λ2) ≤ L( u∗ ,p∗,n∗; λ∗
1,λ

∗
2)

≤ L(u,p,n; λ∗
1,λ

∗
2), ∀(u,p,n; λ1,λ2).

In the forthcoming sections, we first review the existing algorithm [14] for solv-
ing the minimization problem (3) in the augmented Lagrangian formulations
in Section 3. Then, based on the augmented Lagrangian functional (5) a novel
algorithm is proposed in Section 4, in which the advantages of the proposed al-
gorithm compared to the existing augmented Lagrangian algorithm is discussed.
In Section 5, the numerical solution of each sub-problem emerging from the
augmented Lagrangian functional is discussed separately. Numerical results are
given in Section 6 to demonstrate the efficiency of our proposed method.

3 The Existing Algorithm

In this section, we give a brief review of the augmented Lagrangian method ap-
plied to Euler’s elastica in the Tai-Hahn-Chung formulation referred to [14]. It is
difficult to solve the augmented Lagrangian functional (5) efficiently because of
the non-differentiable quadratic term involving |p|. Therefore, the authors intro-
duce one more variable into the constrained problem (4), which is defined as

m = n and |m| ≤ 1.

By the constraint |m| ≤ 1, there exists the relationship |p|−m ·p ≥ 0, a.e. in
Ω. Therefore, the quadratic penalty term

∫
Ω

(|p| −m · p)2 in (5) can be relaxed
to a first order penalty term. The augmented Lagrangian functional (5) can be
reformulated as follows

L(u,p,n,m;λ1,λ2,λ3) =
∫

Ω

(
a+ b(∇ · n)2

)
|p| + μ

2

∫
Ω

(u− u0)2 (7)

+
∫

Ω

λ1(|p| − m · p) + r1

∫
Ω

(|p| − m · p) +
∫

Ω

λ2 · (p −∇u)

+
r2
2

∫
Ω

‖p−∇u‖2 +
∫

Ω

λ3 · (n− m) +
r3
2

∫
Ω

‖n− m‖2 + δR(m),

where δR is the indicator function defined on the set R; see [14].
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In [14], the energy functional (7) is decomposed into the following sub-problems

ε1(u) =
μ

2

∫
Ω

(u− u0)2 −
∫

Ω

λ2 · ∇u+
r2
2

∫
Ω

‖p−∇u‖2, (8)

ε2(p) =
∫

Ω

(
a+ b(∇ · n)2

)
|p| +

∫
Ω

λ1(|p| − m · p) (9)

+ r1

∫
Ω

(|p| − m · p) +
∫

Ω

λ2·p +
r2
2

∫
Ω

‖p−∇u‖2,

ε3(n) =
∫

Ω

b|p|(∇ · n)2 +
∫

Ω

λ3 · n +
r3
2

∫
Ω

‖n− m‖2, (10)

ε4(m) = −(λ1 + r1)
∫

Ω

p · m −
∫

Ω

λ3 · m +
r3
2

∫
Ω

‖n− m‖2 + δR(m). (11)

The above sub-problems are solved alternatively in one iteration of the algorithm.
For the u-sub problem, since its Euler-Lagrange equation is a linear PDE, it is
solved efficiently by the FFT. There are closed form solutions for the p-sub and
m-sub problems referred to [14]. The most difficult and time-consuming part is
to solve the Euler-Lagrange equation of the n-sub problem, which is

−2∇(b|p|∇ · n) + r3(n−m) + λ3 = 0. (12)

The coefficient of ∇ · n is a variable in (12), which makes it difficult to handle.
Aimed to use the FFT, a frozen coefficient method is applied to the coupled
PDEs in [14]. However, there are some drawbacks coming with this method.
First, the method needs the inner iterations. Second, to solve the coupled PDEs
(12), people have to apply the FFT twice in one iteration. Supposed that the
inner iteration of the n-sub problem is once, together with the once FFT used
in the u-sub problem, three times of FFT are involved in one outer iteration
of the algorithm in [14]. Both the above two points will increase the compu-
tational costs. Besides, there exist cases that the domain or boundary con-
dition assigned to the minimization problem (3) are not applicable to FFT.
Therefore, we consider to find a better way to solve the augmented Lagrangian
functional(5).

4 The Proposed Algorithm

In this section, we propose a more efficient algorithm to solve the augmented
Lagrangian functional (5). Unlike the algorithm in [14], we keep the two con-
straints in the optimization problem (4) and introduce one more variable, which
is defined as follows

h = ∇ · n.
We use the variable h to remove the variable coefficient in the n-sub prob-

lem (10) in the Tai-Hahn-Chung formulation [14]. Moreover, in our algorithm
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the quadratic penalty term instead of first order penalty term is used in p-sub
problem. To be precise, first, the Euler’s elastica model (3) is reformulated as
the following constrained optimization problem

min
u,p,n,h

∫
Ω

(a+ bh2)|p| + μ

2

∫
Ω

(u− u0)2,

s.t. p = ∇u; p = |p|n; h = ∇ · n.
(13)

And, by the augmented Lagrangian method [15], the constrained problem (13)
is changed into an unconstrained minimization problem as follows

L(u,p,n, h; λ1,λ2, λ3) =
∫

Ω

(a+ bh2)|p| + μ

2

∫
Ω

(u − u0)2 +
∫

Ω

λ1 · (p − |p|n)

+
r1
2

∫
Ω

‖p− |p|n‖2 +
∫

Ω

λ2 · (p −∇u)+ r2
2

∫
Ω

‖p −∇u‖2

+
∫

Ω

λ3(h−∇ · n) +
r3
2

∫
Ω

(h−∇ · n)2. (14)

To handle the difficulty caused by the quadratic penalty term
∫

Ω ‖p− |p|n‖2, a
novel fix-point-based technique is used, and details are postponed to Section 5.
We apply an iterative algorithm to solve the saddle-point problem corresponding
to the augmented Lagrangian functional (14); see Algorithm 1.

Algorithm 1. Augmented Lagrangian Method for the Euler’s elastica model
1. Initialization: u0, p0, n0, h0 and λ0

1, λ0
2, λ0

3.
2. For k = 0, 1, 2 . . ., compute (uk,pk,nk, hk) as an approximate minimizer of the

augmented Lagrangian functional with the Lagrange multiplier λk
1 , λk

2 and λk
3 ,

i.e.,
(uk,pk, nk, hk) ≈ arg minL(u,p,n, h; λk

1 , λk
2 , λk

3). (15)

3. Update the Lagrange multipliers:

λk+1
1 = λk

1 + r1(p
k − |pk|nk), (16)

λk+1
2 = λk

2 + r2(p
k −∇uk), (17)

λk+1
3 = λk

3 + r3(h
k −∇ · nk). (18)

Since the variables u, p, n, h are coupled together in the minimization problem
(15), it is difficult to solve all the variables simultaneously. Therefore, we use the
operator splitting method to separate the problem (15) into sub-problems. The
four sub-problems are given as follows

E1(u) =
μ

2

∫
Ω

(u− u0)2 −
∫

Ω

λ2 · ∇u+
r2
2

∫
Ω

||p−∇u||2, (19)
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E2(p) =
∫

Ω

(a+ bh2)|p| +
∫

Ω

λ1 · (p − |p|n) +
r1
2

∫
Ω

||p − |p|n||2 (20)

+
∫

Ω

λ2 · p +
r2
2

∫
Ω

||p−∇u||2,

E3(n) = −
∫

Ω

λ1 · |p|n +
r1
2

∫
Ω

||p − |p|n||2 −
∫

Ω

λ3∇ · n +
r3
2

∫
Ω

(h−∇ · n)2,

(21)

E4(h) =
∫

Ω

b|p|h2 +
∫

Ω

λ3h+
r3
2

∫
Ω

(h−∇ · n)2. (22)

Sub-problems (19) to (22) can be efficiently solved. We will discuss the specific
solution to each sub-problem in the forthcoming section.

5 Numerical Solutions for Subproblems

In this section, we explain how to find the minimizer of each sub-problem. We use
a staggered grid system as in Fig. 1 to solve the energy functional minimization
(19) to (22) and update the Lagrange multipliers from (16) to (18).

Fig. 1. Grid definition. The rule of indexing variables in the augmented Lagrangian
functional (5): u, h and λ3 are defined on •-nodes. The first and second component of
p, n, λ1 and λ2 are defined on ◦-nodes and �-nodes, respectively.

5.1 Notations

We first give some basic notations at the beginning. An image is regarded as a
function

u : {1, . . . ,M} × {1, . . . , N},
where M,N ≥ 2. We denote the Euclidean space RM×N as V and define another
inner product vector space: Q = V × V .

For a given (i, j) ∈ [1,M ]× [1, N ], we see that

u ∈ V, u(i, j) ∈ R and p ∈ Q, p(i, j) = (p1(i, j), p2(i, j)) ∈ R2,
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which is equipped with the standard Euclidean inner products as follows

(u, v)V =
∑
i,j

u(i, j)v(i, j) and (p,q)Q = (p1, q1)V + (p2, q2)V .

We will use the discrete backward and forward differential operators for u ∈ V ,
which are defined with periodic boundary condition as follows

∂−x u(i, j) =
{
u(i, j) − u(i− 1, j) 1 < i ≤M,
u(1, j) − u(M, j) i = 1.

∂−y u(i, j) =
{
u(i, j) − u(i, j − 1) 1 < j ≤ N,
u(i, 1)− u(i, N) j = 1.

∂+
x u(i, j) =

{
u(i+ 1, j) − u(i, j) 1 ≤ i < M,
u(1, j) − u(M, j) i = M.

∂+
y u(i, j) =

{
u(i, j + 1) − u(i, j) 1 ≤ j < N,
u(i, 1) − u(i, N) j = N.

5.2 Sub-problems

In the following, for each sub-problem, we denote the fixed Lagrange multipliers
in the previous (k − 1)th iteration as λ1 = λk

1 , λ2 = λk
2 and λ3 = λk

3 .

u-sub Problem. For the u-sub problem, the optimality condition of (19) gives
a linear equation of u, which is

(μ− r2Δ)u = μu0 −∇ · λ2 − r2∇ · p. (23)

Therefore, the discretized form of the equation (23) is(
μ− r2(∂−x ∂

+
x + ∂−y ∂

+
y )
)
u = g,

where
g = μu0 − (∂−x λ21 + ∂−y λ22) − r2(∂−x p1 + ∂−y p2).

The PDE problem (23) can be solved efficiently by a wide range of linear
iterative methods, such as Jacobi method, Gauss-Seidel method. In this work,
we choose to use one sweep of the Gauss-Seidel method, which is enough to
approximate the solution.

p-sub Problem. For the p-sub problem, it is difficult to solve the Euler-
Lagrange equation of (20) due to the non-differentiability element |p| in the
quadratic term. To avoid this situation, we consider to apply a fixed-point for-
mulation to the constraint p = |p|n in the kth iteration, which gives

p = |pk−1|n.
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To get rid of the nonlinearity and non-differentiability term, we use p−|pk−1|n to
replace p−|p|n in the quadratic penalty term in (20). Therefore, we reformulate
the energy functional of p-sub problem E2 as follows

E2(p)=
∫

Ω

(a+ bh2 − λ1 · n)|p| + r1 + r2
2

∫
Ω

||p − r1|pk−1|n + r2∇u− λ1 − λ2

r1 + r2
||2.

For the simplicity, let

c = a+ bh2 − λ1 · n and q =
r1|pk−1|n + r2∇u − λ1 − λ2

r1 + r2
.

Here, c can be either positive or negative. For each case, there is the closed form
solution for solving p-sub problem. If c is positive, we have the following closed
form solution for p

p(i, j) = max
{
0, 1 − c

(r1 + r2)|q(i, j)|
}
q(i, j).

And if c is negative, the solution for p is

p(i, j) =
(
1 − c

(r1 + r2)|q(i, j)|
)
q(i, j),

which belongs to the case when c is positive. Therefore, for each case the closed
form solution for p in (20) can be summarized as follows

p(i, j) = max
{
0, 1 − c

(r1 + r2)|q(i, j)|
}
q(i, j). (24)

n-sub Problem. For the n-sub problem, the Euler-Lagrange equation for the
energy (21) is the following linear coupled PDEs

−r3∇(∇ · n) + r1|p|2n = r1p|p| + λ1|p| − r3∇h−∇λ3.

Pay attention that the operator ∇(∇·) is singular. Since it is possible that
|p| = 0, we add a quadratic penalty term to (21) to avoid the singularity. There-
fore, we rewrite E3(n) as follows

E3(n) = −
∫

Ω

λ1 · |p|n +
r1
2

∫
Ω

||p− |p|n||2 −
∫

Ω

λ3∇ · n (25)

+
r3
2

∫
Ω

(h−∇ · n)2 +
γ

2

∫
Ω

||n − nk−1||2,

where γ is a positive constant. In the experiments, γ could be chosen to be a
very small number.

We have the following optimality condition for the n-sub problem (25) by its
Euler-Lagrange equation(

γ + r1|p|2 − r3∇(∇·)
)
n = γnk−1 + r1p|p| + λ1|p| − r3∇h−∇λ3. (26)
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The equation (26) is coupled PDEs of the variable n = (n1, n2). When we
compute the component n1, we use the n2 in previous iteration

(γ + r1|p|2 − r3∂
2
x)n1 = γnk−1

1 + r4∂x∂yn2 + r1p1|p| + λ11|p| − r3∂xh− ∂xλ3,

and vice versa, when solve n2, we use the n1 in previous iteration

(γ + r1|p|2 − r3∂
2
y)n2 = γnk−1

2 + r4∂y∂xn1 + r1p2|p| + λ12|p| − r3∂yh− ∂yλ3.

Similarly to the u-sub problem, the above linear PDEs can be efficiently solved
by the linear iterative methods. We still apply the one sweep Gauss-Seidel itera-
tion to solve the n-sub problem in our work. Compared to the frozen coefficient
FFT method in [14], the proposed method for the n-sub problem is easy to
implement and solves the PDEs with low computational cost.

h-sub Problem. For the h-sub problem, we have the Euler-Lagrange equation
of the functional (22) as follows

(2b|p| + r3)h = r3∇ · n− λ3. (27)

We can obtain a closed form solution for h by solving the first-order equation
(27). The minimizer of E4(h) is solved as follows

h =
r3∇ · n − λ3

2b|p| + r3
.

Based on the discussion of each sub problem, we can use Algorithm 2 to solve
the minimization problem (15). We set N = 1 for all experiments in Section 6.

Algorithm 2. Alternating minimization method to solve the sub problems of
Eqn. (15)
1. Initialization: uk+1,0 = uk, pk+1,0 = pk, nk+1,0 = nk and hk+1,0 = hk.
2. For n = 0, 1, . . . , N , compute uk+1,n+1 from Eqn. (23), pk+1,n+1 from Eqn. (24),

nk+1,n+1 from Eqn. (26) and hk+1,n+1 from Eqn. (27);
3. uk+1 = uk+1,N , pk+1 = pk+1,N , nk+1 = nk+1,N and hk+1 = hk+1,N .

6 Numerical Examples

In this section, we consider the applications of the proposed Algorithm 1 for
Euler’s elastica to image denoising problems. All experiments are implemented
in C++ language on a 2.4 GHz CPU and 4GB memory.

During the iterations, we define the relative error of the solution {uk| k =
1, 2, . . .} as

||uk − uk−1||L1

||uk−1||L1
, (28)
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and we stop the iteration when the relative error is less than the given error
tolerance. We define the numerical energy of the Euler’s elastica model as follows

Ek =
∫

Ω

(
a+ b(hk)2

)
|pk| + μ

2

∫
Ω

(uk − u0)2. (29)

During the iterations, we monitor the relative residuals of Lagrange multipliers
defined by

(Rk
1 , R

k
2 , R

k
3) =

( ||pk − |pk|nk||L1

|Ω| ,
||pk −∇uk||L1

|Ω| ,
||h−∇ · n||L1

|Ω|
)
. (30)

We also monitor the relative errors of the Lagrange multipliers:

(Lk
1 , L

k
2 , L

k
3) =

( ||λk
1 − λk−1

1 ||L1

||λk−1
1 ||L1

,
||λk

2 − λk−1
2 ||L1

||λk−1
2 ||L1

,
||λk

3 − λk−1
3 ||L1

||λk−1
3 ||L1

)
. (31)

We choose three synthetic and two real images from [14] to test the proposed
method. Therefore, we can compare the results from our algorithm with the
results in [14]. The Gaussian white noise with mean zero and the standard devi-
ation 10 is added to the test images. For all the experiments, we fix γ = 0.01. We
display the results of the synthetic images in Fig. 2 while we show the results of
real images in Fig. 3. In Table 1, we provide the size of the image, SNR, number
of iterations and computational time for the test images shown in Fig. 2 and
Fig. 3.

(a) (b) (c)

Fig. 2. Euler’s elastica based image denoising. We set a = 1, b = 10, μ = 1, r1 = 0.03,
r2 = 10 and r3 = 10000. The tolerance is 6 · 10−4 for (a) and 5 · 10−4 for (b) and (c).
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(a)

(b)

Fig. 3. Euler’s elastica based image denoising. From left to right: noisy image, denoised
image and difference between the denoised image and noisy image. We set a = 1, b = 2,
μ = 1, r1 = 0.02, r2 = 10 and r3 = 5000. The tolerance is 1 · 10−3 for (a) and 5 · 10−4

for (b).

Table 1. Numerical Results of Euler’s elastica model

images size SNR # of iteration time (sec)

Fig.2(a) 100 × 100 22.47 101 2.87
Fig.2(b) 100 × 100 25.35 109 3.11
Fig.2(c) 128 × 128 24.05 99 4.62
Fig.3(a) 256 × 256 18.23 84 15.21
Fig.3(b) 332 × 216 17.35 125 24.75

To test the performance of the proposed algorithm, we track the relative error
in u (28), the numerical energy (29), the residuals (30) and the relative error in
Lagrange multipliers (31) of the images in Fig. 3. We display the plots in Fig. 4.

7 Conclusion and Future Work

In this work, we propose a simple and efficient augmented Lagrangian approach
for Euler’s elastica. The operator splitting method is adopted to solve the saddle-
point problem arising in the augmented Lagrangian formulation. We artfully ap-
ply the fixed-point method to one sub-problem to get a closed form solution. All
the sub problems in our method can be solved efficiently by fast iterative methods
and closed form solution. As the numerical results of image denoising problems
demonstrate, our method yields good results in terms of computational time. We



A Fast Augmented Lagrangian Method for Euler’s Elastica Model 155

Fig. 4. Plots of (28), (29), (30) and (31) values versus iteration numbers for examples
shown in Fig. 3 (a) (Row One) and Fig. 3 (b) (Row Two)

would like to mention that the proposed algorithm can be easily applied to image
inpainting and zooming problems as well. Since numerical experiments suggest
the convergence of our algorithm, we hope to do some convergence analysis in
future.
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Abstract. Imaging restoration is an essential step in hybrid optical and
image processing system which relays on poor optics. The poor optics
makes the blur ill-conditioned and turns the deblurring process difficult
and unstable. Recently the idea of parallel optics (PO) was introduced.
In the parallel optics setup the optical system is composed of a main
system and an auxiliary system. The auxiliary system is designed to im-
prove the stability of the deblurring process by improving the condition
number of the blurring operator. In this paper we show that in one such
system the post processing acts as a noise filter hence allows to work with
noisy data in the auxiliary channel. Using the singular value decomposi-
tion we derive analytical limit for the difference in SNR requirements of
the auxiliary channel relative to that of the main channel. The gap be-
tween the SNR requirements of the two systems is analyzed theoretically
and proved to be as large as 27.68 [db]. Image restoration comparison
on simulations is performed between a blurred/noisy pair with average
SNR gap of 20 [db] and a system without an auxiliary system. The av-
erage Mean Square Error Improvement Factor (MSEIF) achieved by the
blurred/noisy pair, was 13.9 [db] higher than the system without a noisy
auxiliary system.

Keywords: deblurring, parallel optics, blurred and noisy image pair.

1 Introduction

Traditional optical design should typically include few optical elements to create
a required sharp image [9]. Due to its optical and mechanical complexity this
optical design is expensive in cost and volume. The advances in digital cameras
technology allow us the alternative design of a hybrid optical and image process-
ing imaging system, which is based on simple and low cost optics. The strategy in
such a design is that the poor optical performance, which are associate with the
low cost optics, is compensated by sophisticated image processing algorithms.
The process is done in a serial way (Fig. 1).

In [1] authors extended the optical system Depth Of Field (EDOF) on the ex-
panse by a Optical Phase Mask (OPM), the resulted poor but depth insensitive
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Fig. 1. Block diagram for a hybrid system

response was deblured. Similar approach was used for reducing zoom lens com-
plexity and dimensions [3]. OPM for EDOF was implemented in cellular cameras
[3], Other Hybrid EDOF approach was suggested in [4] where the optical system
chromatic aberration was used to gain one or more sharp channel (color), where
its high frequency information used to enhance the other two channel. In [5] by
using OPM poor space variant response was improved and followed by image
processing. Another hybrid system is the compound eye optics where series of
low resolution images which captured by single imaging system used for recon-
structing single high resolution image by supper resolution methods [6,7]. Other
system is the light field camera where by placing a system similar to the CMO in
the optical system image plane, one can recognize ray direction and reconstruct
sharp image of objects in various distances [8].

In order to have a bright image the optics should have high Numerical Aper-
ture (NA). However, in low cost optics this demand is necessarily accompanied
by Space Variant (SV) blur. This blur is modeled in the continuum as a linear
operator H(x, x′) acting on the image I(x) via

Iimg(x) =
∫
H(x, x′)Iobj(x′)dx′ (1)

where x, x′ ∈ R. In the discrete setup we arrange the image in row stack such
that an image with L pixels is a L dimensional vector and the operator is a
L× L matrix. In this notation the relation between the object and the image is
described as:

Iimg = H · Iobj . (2)

The columns of H are the main system PSFs for each field point. The Ill-
conditioning of the blur operator is manifesting itself in the condition number of
the matrix H . The condition number κ2 (H) for the L2 norm is bounded from
below by the ratio of the largest to smallest singular values of H

κ2 (H) =
σ1

σn
. (3)

Realizing the importance of improving the matrix condition for the hybrid, sim-
ple optics based, imaging system we are searching for an optical design that
improvs the matrix condition number. The optical design that realizes this idea
is achieved by adding an auxiliary optical system (O) [10] as shown in Fig. 2.

The two systems are imaging the same object and the output is superimposed
optically. The result is an effective new blur

H1 = H +O . (4)
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Fig. 2. The parallel optics process

The imaging process of the parallel optics system is:

Iimg = H1 · Iobj = H · Iobj +O · Iobj (5)

where the last stage in Fig. 2 depicts the deblurring process.
This paper deals with the design of the auxiliary system O and its properties.

In particular we will see how the auxiliary operator can be derived, under few
assumptions, from a functional. We will also demonstrate how the operator that
is derived in an analytical form can be realized via simple optical means. Finally
we will analyze the noise requirement of the auxiliary system in comparison to
the same requirement of the main system. Our analysis shows that we can start
from general mathematical requirement for the desired features of the auxiliary
system, derive the desired operator from a functional and realize this operator
with a simple optical design. Moreover, we find that the auxiliary system can
add considerable noise while improving the final result!

This paper is organized as follows: In section 2 we discuss a functional whose
minimization yields the regularization operator we need. We project this oper-
ator unto the space spanned by simple translation operators in section 3. Noise
analysis in section 4 shows that the auxiliary system can be much noisier than
in the usual setup. Section 5 presents the results of numerical simulation that
we performed and we summarize and conclude in section 6.

2 Regularization

The condition number of a matrix quantifies its distance to a singular matrix.
A regularization of the system means that an operator is added such that the
combined operator/matrix are further away from the singular matrix. In practice
this means that small and zero singular values of H are modified. This can be
analyzed via the singular value decomposition (SVD) of the main system:

H = USV t (6)

We impose that the auxiliary system is of the form [10]:

O = U (ΔS)V t (7)

Where ΔS is strong at least where the S singular values are weak. From the
arbitrary choice of ΔS we suggest to assume that the case of that the non zero
instance on ΔS diagonal equal to one.
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The desired operator O can be derived from a functional. We start by writing
a general regularization

S
(
Iobj

)
=

1
2

∫ (
Iimg(x) −

∫
H(x, x′)Iobj(x′)dx′

)2

dx+
μ

2

∫
(PIobj(x))2dx .

(8)
The operator P can be differential one or integral one. After discretization and
transforming to a row stack representation the functional reads

SD

(
Iobj

)
=

1
2

∥∥Iimg −H · Iobj
∥∥2

F
+
μ

2

∥∥P · Iobj
∥∥2

F
(9)

Minimizing SD with respect to Iobj yields the following

Ht
(
Iimg −H · Iobj

)
+ μP tP · Iobj = 0 (10)

Rearranging
HtIimg =

(
HtH + μP tP

) · Iobj . (11)

From Eq. 5 we find
HtIimg = Ht (H +O) · Iobj . (12)

Direct comparison leads to the following characterization of P

1
μ
HtO = P tP . (13)

Using the SVD and the fact that U and V are unitary matrices we find

HtO = V SU tU (ΔS)V t = V S (ΔS)V t (14)

from which we conclude

P =

√
SΔS

μ
V t . (15)

Thus, by defining that ΔS values to be 1 where S values are weak we force
a solution that minimize the error function by minimizing the influence of the
weakest singular values of the main system H i.e. improve the matrix condition.

3 Translation Based Operator Space

The required auxiliary system is determined mathematically, however optical im-
plementation of such a system is not obvious. In this section we investigate the
possibility to approximate the desired operator with simple optical design build-
ing blocks. In particular we will look into realization of operators via superpo-
sition of lenses with various transparency and linear phase shifts. In mathemat-
ical terms it boils down to superposition of translation operators with different
weights. we present the duality between the basic optical operation and matrix
representation of auxiliary optics with pixel confined PSF. This correspondence
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is elaborated in the next subsection. The required hardware is illustrated in figure
3. We add to the main system, an auxiliary optics with the same FOV magnifica-
tion with pixel and confined PSF such that Iaux = Iobj +n where n is the noise in
the auxiliary system. The constructed regularization O acts on Iaux. In practice,
however, the regularization operator is applied as a post-processing operation on
the noisy image before it is added to the main system’s blurred image.

Fig. 3. Optical hardware for implementing the Trajectories methods

3.1 Summary of the Trajectory Methods

Phase shifts are simple to achieve in optics. Moreover, phase shifts in the fre-
quency space are equivalent to translations in the spatial space. We will build
in this subsection an approximation scheme for operators via superposition of
these elementary optical operations.

Translations may be realized as operators acting on images. These operators
are represented as matrices after discretization of the problem. These matrices
have simple structure. The translation operators are defined via(

Tkl · Iobj
)
ij

=
∑
rs

(Tkl)ij,rs I
obj
rs = Iobj

i−k,j−l (16)

We use as before the row stack notation with only one index standing for the
translation. For conventional reasons we denote the translation operator in this
representation Ol. This is a L× L matrix. One key feature of these operators is
their orthogonality. Indeed

1
L
Tr(Ot

kOl) = δkl . (17)

The operators Ol span thus a large subspace in the space of all linear operators.
The question of completeness is out of scope in this paper and is differed to future
publication. Empirically one can check that it is a good scheme of approximation.
These operators are also called ”trajectories” by the authors of [12] Indeed, In
optics it is clear that the field of view allows many translations, hence we can
define a series of matrices which can be optically realized, and can serve as a
partial base to decompose the required (O) matrix.

O ≈
∑

wlOl (18)
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where wl is the weight associated with the translation Ol. The weights can be
realized optically as the transparency of the lens that add the l’th phase shift.
In figure 4 we show an example for 3X2 field of view (FOV) [11]. We show that
each Trajectories matrix is associated with an image. The FOV is fixed and
determine by the main system, designate by the black frame. From linearity
we use the Trajectories matrices weights for decompose the image of (O) by
the images of the Trajectories matrices. The decomposition can be stated as a
minimization problem

e(w1, . . . , wn) =

∥∥∥∥∥O −
n∑

l=1

wlOl

∥∥∥∥∥
2

F

(19)

the condition for extremum

∂e

∂wk
= −2

(
Ot −

∑
wlO

t
l

)
Ok = 0 (20)

Taking the trace and normalizing we finally find

1
L
Tr
(
OtOk

)
=
∑

wl
1
L
Tr
(
Ot

lOk

)
=
∑

wlδlk = wk (21)

In figure 5 we present the over all process in block schema, the auxiliary optics
matrix representation and image is post process to manipulate the required
target auxiliary system matrix O [11].

Fig. 4. Trajectories matr3ces and their related chessboard object image

4 Noise Contributors in Image Restoration

In the context of this work it is important to emphasize that the additive noise
in the auxiliary optics, is added before post processing and, thus, the post pro-
cessing has an influence on it. As mention above, typically this filtering causes
that the SNR requirements from the auxiliary optics can be lower than that of
the main system. In the next subsection we present an ideal limit for the gap
between the SNR requirements of the two systems.
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Fig. 5. Trajectories method schema for PO system implementation, the auxiliary sys-
tem is composed of auxiliary optics imaging and a series of shifted and weighted oper-
ations which are done by post processing

4.1 The Relative Immunity to Noise of the Auxiliary System

In this section show that the special structure of the Parallel Optics allow to
work with auxiliary system which inherently suffer from SNR which is much
lower of the main system. The image of an auxiliary optics with pixel confined
response is an darken replica of the object as seen in figure 3

Iaux = Iobj/AR (22)

AR is the illumination ratio between the main system to the auxiliary system

AR =
(
NAmain

NAaux

)2

(23)

In imaging systems the signal depends on the radiant optical power (Popt [Watt])
Detectors responsivity  ( [Watt/A]). The optical power is proportional to the
square or the system numerical aperture (NA) [13]:

Popt ∝ (NA)2 (24)

The additive noise of the imaging system have many sources, for simplicity we
assume that it is governing by the electronics noise which is the case in low illu-
mination. In addition we determine the signal as the peak to peak level relative
to zero mean level [14] the simplified SNR expression is [13]:

SNR =
(Popt)

2

σ2
n

� I2
s

σ2
n

(25)

Assuming that the reduction in the image contrast is governing by the NA:

Is = Popt ∝ (NA)2 (26)
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the ratio between the auxiliary system signal to the main system signal can be
determine by the NA ratio:

Iaux
s

Imain
s

=
(
NAaux

NAmain

)2

=
1
AR

(27)

AR is the square of the NA ratio Eq. (23). Implementing this ratio in the SNR,
under the assumption that both the auxiliary optics and the main system are
subjecting to the same noise level such that:

σn−aux = σn−main (28)

The relation between the main system SNR to the auxiliary lens SNR in [db] is:

SNRa
aux = 20log

(
Iaux
s

σn−aux

)
= 20log

(
Imain
s

σn−mainAR

)
= SNRmain−20log (AR)

(29)
Equation (23) is reflecting a conservative maximal SNR gap between the main
and the auxiliary SNR which point on the fact that in order to have pixel con-
fined response from simple auxiliary optics we pay in SNR. This may suggest
that the auxiliary system is more vulnerable to noise than the main system.
However, bellow we show that in the special case of the Trajectories system,
in terms of contribution to restoration noise the auxiliary system is generally
more tolerant to the working SNR level. As was mentioned above, in the special
implementation by the Trajectories method, based on the pixel confined auxil-
iary optics response, the required PO response is synthesized digitally with no
additional optical effort.

Indeed, with mild assumptions and using the singular value decomposition
the inputs noise ratio in output equilibrium is:

σ2
n−aux

α2
n−main

=

∥∥∥ S+ΔS
(S+ΔS)2+αI

∥∥∥2

F

AR2 ·
∥∥∥ (S+ΔS)ΔS

(S+ΔS)2+αI

∥∥∥2

F

(30)

where α is the Tikhonov regularization parameter. Assigning the standard devia-
tion in the auxiliary SNR according to (27) the gap in SNR requirement between
the main system and the auxiliary optics is found to be:

SNRb
aux = 20log

(
Iaux
s

σn−aux

)
= SNRmain − 20log

⎛⎜⎜⎝
√√√√√√
∥∥∥ (S+ΔS)

(S+ΔS)2+αI

∥∥∥2

F∥∥∥ (S+ΔS)ΔS

(S+ΔS)2+αI

∥∥∥2

F

⎞⎟⎟⎠ (31)

A full derivation of this limit will be presented in [15]. The multiplication by ΔS
narrows the bandwidth thus:∥∥∥∥∥ S +ΔS

(S +ΔS)2 + αI

∥∥∥∥∥
2

F

�
∥∥∥∥∥ (S +ΔS)ΔS

(S +ΔS)2 + αI

∥∥∥∥∥
2

F

(32)
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Hence for the same noise contribution to restoration we obtain

SNRb
aux < SNRmain (33)

In the system architecture, AR value is pre-determine by the required PSF of
the auxiliary optics and ΔS is pre determine by the requirements for matrix
condition improvements. AR tends to be larger than 1 thus to lower the auxiliary
system SNR in a given electronics noise (27). In the other hand the matrix ΔS
tend to be narrow band than the matrix S and, thus, to reduce the relative
contribution of the auxiliary system detection noise to the restoration corruption.
This in turns entails that the auxiliary system tends to be more tolerant in SNR
requirements than the main system (39). For the general case of parallel optics
the additive noise is added to the auxiliary system such as in figure 2, no filtering
done over the noise of the auxiliary system thus in equation (37)ΔS = Id, where
Id is the identity matrix hence there is no reduction in the noise contribution of
the auxiliary system to the restoration.

5 Numerical Examples

In this section we illustrate numerically the theoretical results. A study case was
taken from previous investigated Trajectories system [11]. The main system is
describe by 100X100 space variant PSF matrix (H), the matrix is ill-conditioned,
with condition number of κ = 87640. The image pixel’s size is 11.3?m. the image
size is 10X10, the image distance is 0.69 mm, the lens diameter is 0.4 mm and the
FOV is -/+ 4.67 deg. The auxiliary optics (Oaux), is a simple double convex lens
with 0.16 mm diameter. The auxiliary optics PSF is almost space invariant with
90 of the energy confined in the central pixel and 98% of the energy is confined
to 5X5 pixel area. We mould like to emphasize that this almost pixel confined
response achieved on the expense of the low NA. In simulations we use the 5X5
section as the auxiliary system fixed PSF, Performing the Trajectories method
we produce parallel optics system with condition number of κ = 5.75, for more
details see [11]. For investigating the average restoration quality as function of
the systems SNR, in each main SNR and auxiliary SNR pair we performed an
average over 300 image restoration realizations. The restoration quality measure
is taken as the Mean Square Error Improvement Factor (MSEIF) [16]:

MSEIF = 20log

(∥∥Iimg − Iobj
∥∥

2

‖Ires − Iobj‖2

)
(34)

In this function the restoration error is in the denominator and the blur error is
in the nominator. Both are measured relative to the ideal object (Iobj). When
MSIEF< 0 [db], the restored image (Ires) is worse than the blur study case
image (Iimg), therefore there is no use in restoration. Since the object range is
limited to 0 - 255 gray levels, it is reasonable to assume that imaging gray level
values below 0 and above 255 are out of the instrument range and can be limited
to 0 and 255 respectively.
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Fig. 6. Target. (A) The object, (B) The auxiliary optics image, (C) The blurred main
system image, (D) The main system restoration by regularization, (E) The Trajectories
restoration by regularization.

Fig. 7. PO. (A) The object, (B) The auxiliary optics image, (C) The blurred main
system image, (D) The main system restoration by regularization, (E) The Trajectories
restoration by regularization.

Calculating AR for this study case the auxiliary optics SNR is 15.9 [db] lower
then of the main system SNR. However in the aspect of noise contribution to
the restoration, the auxiliary optics SNR can be 27.68 [db] lower then the main
system SNR before it equally contribute to restoration error. Hence, the working
SNR of the auxiliary system can be 11.78 [db] lower than traditionally assumed.
In order to demonstrate the system’s performance we calculate the restoration
quality over ensemble of three different objects, “PO”, “Chessboard”, and “Tar-
get”. Simulation was carried out for four SNR levels 25, 35, 45 and 55 [db] when
AWGN was added to each image. The above limits suggest that the auxiliary
system is more tolerance to the working SNR then the main system. To verify
that, we calculate the MSEIF performance, once when the main SNR is 20 [db]
higher than the auxiliary SNR and once the opposite, results show that in all
cases the MSEIF score was higher when the low SNR was of the auxiliary system
with average gap was 5.4 [db]. Looking at the MSEIF scores, in Fig. 8, we see
that the auxiliary filtering allow us working in very low SNR values 5-15 [db] and
still score remarkable average MSEIF values of 15.38 to 33.21 [db] respectively,
which allow working with blurred/noisy pair for improving matrix condition by
the trajectories method. In figures 6, 7 we present two visual example of the
noisy/blurred pair image restoration: “Target”, and “PO” objects respectively.
Also shown the restoration of the main system without the auxiliary system. Al-
though the auxiliary optics image is corrupted by the noise, restoration results
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Fig. 8. Columns 1+2 are the SNR state Columns 3-5 are the MSEIF average results of
PO restoration. It was done by averaging MSEIF score of 300 restorations where in each
restoration a different noise pattern was randomly produced. Column 6 is the average
value of columns 3-5 Column 7 is the gap between the results in the two competitive
SNR states ( ex SNRmain=25 and SNRaux=5 Vs SNRmain=5 and SNRaux=25).

show both visually and in MSEIF score the advantage of adding the Trajecto-
ries over the use of the ”main system alone. The average MSEIF achieved by
the blurred/noisy pair, was 13.9 [db] higher than the system without the noisy
auxiliary system.

6 Summary and Conclusions

In this work we showed that the specific parallel optics configuration which use an
auxiliary channel based on post processing of auxiliary optics, the post processing
which come after the detection have a secondary effect of noise reduction in this
channel, hence its SNR requirements are significantly lower with compare to
those of the main channel. An analytical limits, for SNR gap between the main
and the auxiliary channels was developed in two cases. First assuming equal noise
we investigate the gap dependence in numerical aperture ratio of the channels.
Second the SNR gap dependency in post processing, assuming equal contribution
to restoration level. The derivation was demonstrate on ill space variant study
case where image restoration done by Tikhonov regularization. First by switching
the high and low SNR between the main and the auxiliary channels, we test the
claim, that the auxiliary channel is more tolerant to SNR level then the main
channel. The restoration results confirm that it is the case, the average MSEIF
value was 5.4 [db] to the favor of lower SNR in the auxiliary channel. Following
that we showed that the low SNR requirement of the auxiliary channel is allowing
blurred/noisy pair uses for parallel optics implementation. Comparing the main
system image restoration quality to that of the parallel optics to noisy auxiliary
system with SNR gap of 20 [db]. The average Mean Square Error Improvement
Factor (MSEIF) achieved by the blurred/noisy pair, was 13.9 [db] higher of the
system without the noisy auxiliary system.
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Abstract. In this paper, we propose fast and efficient algorithms for p-
elastica energy (p = 1 or 2). Inspired by the recent algorithm for Euler’s
elastica models in [16], the algorithm is extended to solve the problem
related to p-elastica energy based on augmented Lagrangian method. The
proposed algorithms are as efficient as the previous method in terms of
low computational cost per iteration. We provide an algorithm which
replaces fast Fourier transform (FFT) by a cheap arithmetic operation
at each grid point. Numerical tests on image inpainting are provided
to demonstrate the efficiency of the proposed algorithms. We also show
examples of using the proposed algorithms in curve reconstruction from
unorganized data set.

Keywords: p-elastica energy, Augmented Lagrangian method, Euler’s
elasitca, Image inpainting, Curve reconstruction, Unorganized data set.

1 Introduction

The curvature of the curve has been extensively used in minimization prob-
lems in image processing and computer vision. D. Mumford, M. Nitzberg, and
T. Shiota [14] introduced segmentation with depth to find a continuation curve
γ which minimizes Euler’s elastica energy (p = 2):

E(γ) =
∫

γ

(a+ b|κ|p) ds, (1)
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where κ is the curvature of the curve in R2, a and b are positive constants,
and p ≥ 1. In [2], Euler’s elastica problem is reduced to solve a set of algebraic
equations in Jacobi’s functions. Semicontinuity and relaxation properties of (1)
were presented in [6]. Following the work [14], Masnou and Morel [13] proposed
a variational formulation in the geometrical recovery of the missing parts from
a given image u0 : D\ D̃ ⊂ R2 → R, where D ⊃ D̃. In [13], an energy functional
to complete of all level lines of u0 is written by using change of variable and the
coarea formula from (1): ∫

D

(
a+ b

∣∣∣∣∇ · ∇u
|∇u|

∣∣∣∣p) |∇u|, (2)

where p ≥ 1. Note that the standard Lebesgue measure in R2 is omitted in
the rest of paper. The authors in [8] solved the minimization problem (2) with
p = 2 by using the Euler-Lagrange equation and the gradient descent method.
In [9], they showed that the curvature term is essential to achieve a connectivity
principle. The properties of variational model and the existence of minimizing
functional (2) are investigated by Ambrosio and Masnou [1]. The authors in [4]
proposed an energy functional minimization with two arguments, n which rep-
resents the normalized image gradient and a gray image (real-valued function)
u defined on D:

min
n,u

(∫
D
|∇ · n|p (c1 + c2|∇k ∗ u|) + ζ

∫
D

(|∇u| − n · ∇u)
)
,

|n| ≤ 1, ||u|| ≤ ||u0||L∞(D\D̃),

(3)

where c1 and c2 are positive constants, k denotes a Gaussian kernel; see [4] for
boundary conditions and the detail admissible sets. Note that the constraint
term |∇u| − n · ∇u in (3) is crucially used in [16]. The existence of minimizers
of a relaxed variant of (3) is proved in [5].

Efficient numerical algorithms for energy minimization related to the cur-
vature are studied very recently. The authors [15] used a linear programming
relaxation and the discrete elastica [7] to minimize energy functionals for image
segmentation and inpainting with curvature regularity. The algorithm in [15] is
independent of initialization and computes the global minimum. An improved
fast algorithm to the elastica model in [15] is introduced in [10]. The authors
in [3] proposed an efficient algorithm based on graph cuts for minimizing the
Euler’s elastica model for image denoising and inpainting. In [16], new variables
and several constraint conditions are introduced to change the Euler’s elastica
model into a constraint minimization and then augmented Lagrangian method
(ALM) is used to obtain a stationary point.

In this paper, we present fast and efficient algorithms for p-elastica energy:∫
Ω

(
a+ b

∣∣∣∣∇ · ∇u
|∇u|

∣∣∣∣p) |∇u| + η

q

∫
Γ

|u− u0|q, (4)

where p ≥ 1, q ≥ 1, Ω is the domain of image u, and Γ � Ω is the domain
of a given image u0. The minimization of the functional (4) interpolates the
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values u0 on the boundary ∂Γ into the inpainting domain Ω \ Γ . Inspired by
the recent algorithm in [16], we extend the algorithm to minimize the p-elastica
energy (4). The proposed algorithms use less memory and lower computational
cost per iteration than [16]. Numerical tests on image inpainting are provided to
demonstrate the efficiency of the proposed algorithms. Moreover, we present a
model and numerical examples for curve reconstruction from unorganized data
set which has the same regularity term in (4) with p = 1.

2 Review of ALM for Euler’s Elastica Model

In this section, the augmented Lagrangian method for Euler’s elastica model [16]
is briefly introduced and we discuss properties of the algorithm and possible
improvements in terms of computational cost. When p = 2 in (4), the authors [16]
proposed several new variables to change the energy minimization of (4) into the
constraint minimization problem:

min
v,u,m,p,n

∫
Ω

(
a+ b(∇ · n)2

) |p| + η

q

∫
Γ

|v − u0|q

with v = u, p = ∇u, n = m, |p| = m · p, |m| ≤ 1.
(5)

Note that the variable m plays an important role to avoid nonuniqueness of
a solution in the Euler-Lagrange equation for n-subproblem; see more details
in [16]. In order to solve the constraint optimization problem (5), the following
augmented Lagrangian functional is used:

L (v, u,m,p,n;λ1,λ2, λ3,λ4) =
∫

Ω

(
a+ b(∇ · n)2

) |p| + η

q

∫
Γ

|v − u0|q

+ r1

∫
Ω

(|p| − m · p) +
∫

Ω

λ1(|p| − m · p) +
r2
2

∫
Ω

|p−∇u|2

+
∫

Ω

λ2 · (p −∇u) +
r3
2

∫
Ω

(v − u)2 +
∫

Ω

λ3(v − u)

+
r4
2

∫
Ω

|n− m|2 +
∫

Ω

λ4 · (n − m) + δR(m),

(6)

where λ1, λ2, λ3, and λ4 are Lagrange multipliers, r1, r2, r3, and r4 are positive
penalty parameters, and an indicator function δR(·) on R = {m ∈ L2(Ω) | |m| ≤
1 a.e. in Ω} is defined by

δR(m) =
{

0 m ∈ R,
+∞ otherwise.

Note that the constraint |m| ≤ 1 is imposed by the indicator function and
then we have |p| − m · p ≥ 0, a.e. in Ω. That is, it is not necessarily to use
L2 penalization for the term multiplied by r1 which causes nonlinearity in the
p-subproblem.
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An iterative algorithm is suggested to find a stationary point of (6). Lagrange
multipliers λ0

1, λ0
2, λ

0
3, and λ0

4 and the variables v0, u0, m0, p0, and n0 are
initialized to zero. For k ≥ 0, an approximate minimizer(

vk+1, uk+1,mk+1,pk+1,nk+1
) � argmin

v,u,m,p,n
L(v, u,m,p,n;λk

1 ,λ
k
2 , λ

k
3 ,λ

k
4)

is obtained by alternatingly solving the subproblems. Let ṽ0 = vk, ũ0 = uk,
m̃0 = mk, p̃0 = pk, and ñ0 = nk. For l = 0, · · · , L − 1, minimizers ṽl+1, ũl+1,
m̃l+1, p̃l+1, and ñl+1 are approximately obtained by alternatingly minimizing
the following energy functionals:

E1(v) =
η

q

∫
Γ

|v − u0|q +
∫

Ω

r3
2
(
v − ũl

)2
+ λk

3v, (7)

E2(u) =
∫

Ω

r2
2

∣∣p̃l −∇u∣∣2 − λk
2 · ∇u+

r3
2
(
ṽl+1 − u

)2
+ λk

3(−u), (8)

E3(m) = δR(m) +
∫

Ω

r4
2

∣∣ñl − m
∣∣2 − λk

4 ·m − (r1 + λk
1)m · p̃l, (9)

E4(p) =
∫

Ω

(
a+ b

(∇ · ñl
)2) |p| + (r1 + λk

1)
(|p| − m̃l+1 · p)

+
∫

Ω

r2
2

∣∣p−∇ũl+1
∣∣2 + λk

2 · p, (10)

E5(n) =
∫

Ω

b(∇ · n)2
∣∣p̃l+1

∣∣+ r4
2

∣∣n− m̃l+1
∣∣2 + λk

4 · n. (11)

After L iterations, variables at (k + 1)th step are updated:(
vk+1, uk+1,mk+1,pk+1,nk+1

)
=
(
ṽL, ũL, m̃L, p̃L, ñL

)
.

A large number of iteration L may be necessary to find the minimizers of
the above functional L(v, u,m,p,n;λk

1 ,λ
k
2 , λ

k
3 ,λ

k
4). However, it is empirically

enough to use L = 1 according to recent literatures [17,19]. Lagrange multipliers
λk+1

1 , λk+1
2 , λk+1

3 , and λk+1
4 are updated by the standard method in augmented

Lagrangian method; see details in [16]. For q = 1 or 2, subproblems to minimize
E1(v), E3(m), and E4(p) can be solved by closed form formulas which only take
arithmetic operations at each grid point. Subproblems to minimize E2(u) and
E5(n) need to solve a linear partial differential equation (PDE) and a coupled
PDE with variable coefficients, respectively.

The most difficult and time-consuming process in the algorithm [16] is to solve
the Euler-Lagrange equation of (11):

−2∇ (b ∣∣p̃l+1
∣∣∇ · n)+ r4

(
n− m̃l+1

)
+ λk

4 = 0. (12)

A frozen coefficient method with FFT is suggested to solve (12) and it needs
an inner iteration. Since the equation is a coupled PDE, FFT is used twice per
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each inner iteration; see details in [16]. Since FFT is also used to solve the Euler-
Lagrange equation of (8), the algorithm needs FFT more than three times for
each outer iteration k. Therefore, if an algorithm uses FFT three times per outer
iteration, it will be optimal. Such an optimality can be achieved as long as the
variable coefficient b|pl+1| in (12) is eliminated.

When the boundary condition is directly imposed without using the fidelity
term η

q

∫
Γ
|u − u0|q in (5) and the irregular inpainting domain is assigned, it is

obvious that FFT cannot be used to solve the Euler-Lagrange equations of (8)
and (11). Moreover, there are also some applications in [12] which we cannot use
FFT in the augmented Lagrangian method [17]. In the case of u-subproblem (8),
even though FFT is not used, it does not make any difficulties to find the mini-
mizer because the Euler-Lagrange equation of (8) is a linear PDE:

−r2�u+ r3u = r3ṽ
l+1 + λk

3 − r2∇ · p̃l −∇ · λk
2 .

We can use linear iterative methods for symmetric positive definite matrix. How-
ever, it is not straightforward to solve the equation (12) in this manner. Con-
sidering some applications defined on a two dimensional surface in R3, it is
necessary to develop an algorithm to efficiently minimize p-elastica model (4)
without using FFT.

Note that one may use the gradient descent method to find a minimizer of (11).
If the explicit method is applied, a small time step should be used because of
large variation of |p̃l+1| in the domain and then it makes a slow convergence.
Since the coefficient b

∣∣p̃l+1
∣∣ in (12) varies in the domain and the equations are

coupled, the implicit method is difficult to be applied.

3 Proposed Algorithms

In this section, we propose two algorithms. The first method is designed to elim-
inate the variable coefficients in (12) and then an optimal number of using FFT
is achieved for each outer iteration. The second method replaces FFT procedure
in [16] for minimizing (8) and (17) into a very simple updating scheme and it is
memory efficient comparing with the first method. Both algorithms are as fast
as the algorithm in Section 2.

3.1 Method 1

In order to extend the algorithm [16] to solve the p-elastica problem (p = 1 or 2)
and remove the variable coefficient in (12), we simply introduce a new variable

g = ∇ · n. (13)

That is, we use the augmented Lagrangian functional for p-elastica problem with
the additional positive penalty parameter r5 and the Lagrange multiplier λ5:
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L1 (v, u,m,p, g,n;λ1,λ2, λ3,λ4, λ5) =
∫

Ω

(a+ b|g|p) |p| + η

q

∫
Γ

|v − u0|q

+ r1

∫
Ω

(|p| − m · p) +
∫

Ω

λ1(|p| − m · p) +
r2
2

∫
Ω

|p−∇u|2 + δR(m)

+
∫

Ω

λ2 · (p −∇u) +
r3
2

∫
Ω

(v − u)2 +
∫

Ω

λ3(v − u) +
r4
2

∫
Ω

|n − m|2

+
∫

Ω

λ4 · (n − m) +
r5
2

∫
Ω

(∇ · n − g)2 +
∫

Ω

λ5(∇ · n − g).

(14)

We use the same iterative algorithm for (6) to find a stationary point of (14). Af-
ter all variables and Lagrange multipliers are initialized to zero, an approximate
minimizer for k ≥ 0(

vk+1, uk+1,mk+1,pk+1, gk+1,nk+1
)

� argmin
v,u,m,p,g,n

L1(v, u,m,p, g,n;λk
1 ,λ

k
2 , λ

k
3 ,λ

k
4 , λ

k
5)

is obtained by alternatingly solving the subproblems. Letting ṽ0 = vk, ũ0 =
uk, m̃0 = mk, p̃0 = pk, g̃0 = gk, and ñ0 = nk, for l = 0, · · · , L − 1, we
find minimizers ṽl+1, ũl+1, m̃l+1, p̃l+1, g̃l+1, and ñl+1 of the following energy
functionals:

E1
1 (v) = E1(v), E1

2 (u) = E2(u), E1
3 (m) = E3(m),

E1
4 (p) =

∫
Ω

(
a+ b

∣∣g̃l
∣∣p) |p| + (r1 + λk

1)
(|p| − m̃l+1 · p)

+
∫

Ω

r2
2

∣∣p−∇ũl+1
∣∣2 + λk

2 · p, (15)

E1
5 (g) =

∫
Ω

b
∣∣p̃l+1

∣∣ |g|p +
r5
2
(∇ · ñl − g

)2
+ λk

5(−g), (16)

E1
6 (n) =

∫
Ω

r4
2

∣∣n − m̃l+1
∣∣2 + λk

4 · n +
r5
2
(∇ · n− g̃l+1

)2
+ λk

5∇ · n. (17)

After L iterations, we update(
vk+1, uk+1,mk+1,pk+1, gk+1,nk+1

)
=
(
ṽL, ũL, m̃L, p̃L, g̃L, ñL

)
.

In practice, L = 1 is used to make a consistent and fair comparison with the
algorithm in Section 2. For p and q = 1 or 2, there are closed form formulas to
find minimizers of E1

1 (v), E1
3 (m), E1

4 (p), and E1
5 (g) and it takes simply arithmetic

operations at each grid point. We use FFT to solve the Euler’s Lagrange equation
of E1

2 (u).
Now, the Euler-Lagrange equation of E1

6 (n) is a linear coupled PDE:

−r5∇ (∇ · n) + r4n = r4m̃l+1 − λk
4 − r5∇g̃l+1 + ∇λk

5 . (18)

The variable coefficient in (12) is removed and solution ñl+1 of PDE are unique
with a suitable boundary condition and the positive penalty parameter r4. In
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the discrete frequency domain, the coupled PDE (18) yields a 2 by 2 system of
equation for each frequency and the determinant of the coefficient matrix is not
zero if r4 > 0. Note that the operator ∇(∇·) is singular and then the coupled
PDE becomes unstable if r4 � 0. Unlike the iterative method for solving (12)
in [16], the coupled PDE (18) can be directly solved with just two FFT algorithms
to obtain a minimizer of E1

6 (n).
One may use the gradient descent method to find the minimizer of E1

6 (n) (17).
However, it introduces another variable for time step which should be properly
chosen depending on r4 and r5.

In numerical examples of Method 1, we use FFT for subproblems E1
2 (u)

and E1
6 (n) to make a fair comparison with the algorithm in Section 2.

3.2 Method 2

In this subsection, we propose an algorithm which is more effective than pre-
vious algorithms in terms of using memory and is as fast as the Method 1
in subsection 3.1 and the algorithm in Section 2. Note that the algorithms
for (6) and (14) need to use 14 and 16 arrays, respectively, which have the
same size as a given image u0. The easiest technique to reduce memory usage
is to eliminate unnecessary variables. Even though all variables in (14) play
an important role in separating nonlinear properties and dissolving higher or-
der derivatives in p-elastica model (4), the variable m may not be very cru-
cial because |n| ≤ 1 can be achieved by a brute force method. Therefore, we
simply propose the following augmented Lagrangian functional for p-elastica
problem:

L2 (v, u,p, g,n;μ1,μ2, μ3, μ4) =
∫

Ω

(a+ b|g|p) |p| + η

q

∫
Γ

|v − u0|q

+ c1

∫
Ω

(|p| − n · p) +
∫

Ω

μ1(|p| − n · p) +
c2
2

∫
Ω

|p−∇u|2

+
∫

Ω

μ2 · (p−∇u) +
c3
2

∫
Ω

(v − u)2 +
∫

Ω

μ3(v − u)

+
c4
2

∫
Ω

(∇ · n − g)2 +
∫

Ω

μ4(∇ · n− g), with |n| ≤ 1,

(19)

where μ1, μ2, μ3, and μ4 are Lagrange multipliers, c1, c2, c3, and c4 are positive
penalty parameters. Note that the algorithm for L2 needs 12 arrays which have
the same size as a given image u0.

We use the same iterative algorithm for (6) to find a stationary point of (19).
After all variables and Lagrange multipliers are initialized to zero, for k ≥ 0, an
approximate minimizer(
vk+1, uk+1,pk+1, gk+1,nk+1

) � arg min
v,u,m,p,g,n

L2(v, u,m,p, g,n;μk
1,μ

k
2 , μ

k
3 , μ

k
4)
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is obtained by alternatingly solving the subproblems. Letting ṽ0 = vk, ũ0 = uk,
p̃0 = pk, g̃0 = gk, and ñ0 = nk, for l = 0, · · · , L − 1, we find minimizers ṽl+1,
ũl+1, p̃l+1, g̃l+1, and ñl+1 of the following energy functionals:

E2
1 (v) =

η

q

∫
Γ

|v − u0|q +
∫

Ω

c3
2
(
v − ũl

)2
+ μk

3v, (20)

E2
2 (u) =

∫
Ω

c2
2

∣∣p̃l −∇u∣∣2 − μk
2 · ∇u+

c3
2
(
ṽl+1 − u

)2
+ μk

3(−u), (21)

E2
3 (p) =

∫
Ω

(
a+ b

∣∣g̃l
∣∣p) |p| + (c1 + μk

1)
(|p| − ñl+1 · p) ,

+
∫

Ω

c2
2

∣∣p −∇ũl+1
∣∣2 + μk

2 · p, (22)

E2
4 (g) =

∫
Ω

b
∣∣p̃l+1

∣∣ |g|p +
c4
2
(∇ · ñl − g

)2
+ μk

4(−g), (23)

E2
5 (n) =

∫
Ω

c4
2
(∇ · n− g̃l+1

)2
+ μk

4∇ · n − (c1 + μ1)n · p̃l+1. (24)

After L iterations, we update(
vk+1, uk+1,pk+1, gk+1,nk+1

)
=
(
ṽL, ũL, p̃L, g̃L, ñL

)
.

Similar to the Method 1, we observe that L > 1 does not make quite different
numerical results from using L = 1.

Now, one may easily notice that we have a huge problem in the n-subproblem
for minimizing the functional (24) whose the Euler-Lagrange equation is

−c4∇
(∇ · n− g̃l+1

)− (c1 + μ1) p̃l+1 −∇μk
4 = 0. (25)

Obviously, the solution of PDE is not unique because of the operator ∇ (∇·).
Comparing with (12) and (18), such a problem is caused by the lack of linear term
in the coupled PDE (25), which has been provided by the new variable m in the
augmented Lagrangian functionals in (6) and (14). However, we simply generate
a linear term by the linearization of L2 penalization for g = ∇ · n, inspired by
the linearized proximal alternating minimization algorithm in [20]. That is, the
energy functional (24) can be approximated by linearization of (∇ · n − g)2 at
ñl:

E2
5 (n) =

∫
Ω

μk
4∇ · n − (c1 + μ1)n · p̃l+1 +

c4
2
(∇ · n − g̃l+1

)2
�
∫

Ω

μk
4∇ · n − (c1 + μ1)n · p̃l+1

+
∫

Ω

c4
2

((∇ · ñl − g̃l+1
)2 − 2∇ (∇ · ñl − g̃l+1

) · (n− ñl
)

+ δ
∣∣n− ñl

∣∣2) ,
where δ is a constant. Therefore, we approximately obtain a minimizer ñl+1

of E2
5 (n) by a cheap arithmetic operation at each grid point:

ñl+1 = ñl +
1
c4δ

(
(c1 + μ1) p̃l+1 + c4∇

(∇ · ñl − g̃l+1
)

+ ∇μ4

)
. (26)
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Table 1. Computational costs are presented for Fig. 1: number of outer iteration /
computational time (sec)

Fig. 1-(a) Fig. 1-(b) Fig. 1-(c)

size 80 × 80 100 × 100 300 × 235

Algorithm in [16] 449/6.57 307/7.75 329/80.64
Method 1 177/2.23 323/6.90 430/79.97
Method 2 187/1.31 445/4.95 383/32.38

More interestingly, the closed form formula (26) is also obtained in a different
way. The linear term can be added by an explicit time discretization of the
gradient decent method. That is, if we use the gradient descent method for
approximately finding a minimizer of (24), we have

∂n
∂τ

= (c1 + μ1) p̃l+1 + c4∇
(∇ · n − g̃l+1

)
+ ∇μ4. (27)

Then, explicit Euler scheme gives the same formula as (26) with the time step
τ = 1

c4δ .
For p and q = 1 or 2, there are closed form formulas to find minimizers of

E2
1 (v), E1

4 (p), and E1
5 (g) and it takes simply arithmetic operations at each grid

point. In the proposed Method 2, we use the GS method for u-subproblem of
minimizing E2

2 (u). Considering a method for low computational cost, one sweep
of GS iteration is practically enough for approximately solving the equation. For
the n-subproblem E2

5 (n) (24), we use a simple and cost effective formula (26).

4 Numerical Results

We demonstrate numerical examples using the proposed algorithms in image
inpainting and curve reconstruction from unorganized points set. We use the
staggered grid system to obtain finite difference discretization of our models;
see more details in [16]. The test system is a Intel(R) Core(TM) i7 CPU Q720
1.6GHz with 4GB RAM.

4.1 Image Inpainting

Numerical tests on image inpainting are provided to demonstrate the efficiency
of the proposed algorithms. In Fig. 1, we choose the same examples shown in [16].
The inpainting results from Method 1 and Method 2 numerically show that the
curvature term works to connect the level curves of image on a large inpainting
domain.

In Table 1, the improved computational speed is demonstrated. In order to
show efficiency of our algorithms, we use smaller (or same) value of stoping crite-
rion (relative residuals) than [16]. Even though the number of outer iteration is
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(a) (b) (c)

Fig. 1. The red regions in the first row indicate the inpainting domain. The images in
the second and third row are image inpainting results from Method 1 and Method 2,
respectively. For all results obtained by Method 1, we use a = 1 and η = 103. The
remaining parameters are b = 50, r1 = 1, r2 = r3 = 20, r4 = 102, r5 = 1 in (a), b = 50,
r1 = 1, r2 = 102, r3 = 50, r4 = 5 · 102, r5 = 10 in (b), and b = 30, r1 = 2, r2 = 6 · 102,
r3 = 102, r4 = 103, r5 = 10 in (c). For all results obtained by Method 2, we use a = 1,
η = 103, and δ = 1. The remaining parameters are b = 10, c1 = 1, c2 = 5, c3 = 10,
c4 = 102 in (a), b = 50, c1 = 1, c2 = 50, c3 = 10, and c4 = 103 in (b), and b = 30,
c1 = 2, c2 = 4 · 102, c3 = 102, and c4 = 103 in (c).

larger than the algorithm in [16], the computational time in Method 2 is reduced
because we use a very cheap arithmetic operation at each grid point. Method 1
usually may have a similar computational cost to the algorithm in [16] because
the number of inner iteration in the frozen coefficient method for solving (12) is
empirically less than 5 in an early stage of outer iteration. Moreover, the number
of inner iteration tends to be reduced as long as the outer iteration is increased.
Since our results are obtained by smaller (or same) relative residual error bound
than [16] and they are converged faster than the previous method in Section 2,
the proposed algorithms improve the computational cost.

In Fig. 2, we also show the graphs (log scales on xy-axis) of residuals, relative
errors in Lagrange multipliers, relative error in u, and energy for Method 2 of
the example in Fig. 1-(a); see more details in [16]. The profile of graphs are
very similar to the results from Method 1 and [16]. The proposed algorithms are
numerically verified that they are practically faster than the previous algorithm
in [16].
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Fig. 2. From the left, the log scale plots of residuals, relative errors in Lagrange multi-
pliers, relative error in u, and energy on y-axis versus iteration on x-axis for Method 2
of the example in Fig. 1-(a). Note that graphs from Method 1 have almost same profiles.

4.2 Curve Reconstruction

To address a reconstruction problem, the following model∫
Ω

(
aψ + b

∣∣∣∣∇ · ∇u
|∇u|

∣∣∣∣) |∇u| + 1
2

∫
Γ

ηu((c1 − u0)2 − (c2 − u0)2) s.t. 0 ≤ u ≤ 1

is minimized by the proposed methods, where c1 and c2 are positive constants
and ψ is the unsigned distance function induced from the unorganized points
set. As in [18], u0 is an initial guess obtained with region-growing methods, and
the fidelity parameter is a function rather than a constant, which suggests that
to what extent the initial guess is faithful. Specifically, we use

η(x) =
{
cη ψ(x) > 5h,
0 ψ(x) ≤ 5h,

for each point x in the domain Ω, where h is the mesh size and cη is a constant.
For simplicity, we use the domain Ω = [−1, 1]× [−1, 1] and we update c1 and c2
for every 100 iterations in our implementation as [11]:

c1 =
1

A(R)

∫
R
u and c2 =

1
A(Ω \ R)

∫
Ω\R

u,

where R ≡ {x ∈ Ω : u(x) ≥ 0.5} and A(·) measures the area of a set.
To impose the constraint on u, a projection operator in [11] is carried on a

new variable v in the augmented Lagrangian formulations in Sections 2 and 3.
For example, in Method 1, the v-subproblem is solved as follows:{

ṽ = argminṽ Ẽ1(v) = argminṽ

∫
Ω

η
2 ṽf +

∫
Ω

r3
2

(
ṽ − ũl

)2 + λk
3 ṽ,

v = max{min{ṽ, 0}, 1}.
Since u converges to v, the constraint is therefore imposed on u correspondingly.
The same projection operation is used in Method 2 as well. In all experiments,
it is observed that u converges to a function between 0 and 1. Figure 3 presents
a reconstruction example.
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(a) (b) (c)

(d)

Fig. 3. (a) Noisy points set sampled from a circle; (b) The result produced by Method 1;
(c) The result produced by Method 2; (d) Error (28) vs. iteration times (loglog). In this
example, we use a = 1, b = 104, t = 2 · 104, r1 = 1, r2 = 0.1, r3 = 2 · 102, r4 = 2, and
r5 = 102 in Method 1. The parameters for Method 2 are a = 0.5, b = 104, t = 2 · 104,
c1 = 1, c2 = 0.1, c3 = 1.5 · 102, c4 = 30, and δ = 1.

(a) (b) (c)

Fig. 4. Results from different b in Method 2: (a) Noisy point set; (b) Reconstructed
curve with b = 1; (c)Reconstructed curve with b = 10. The remaining parameters are
selected as a = 1, t = 2 · 104, c1 = 1, c2 = 0.1, c3 = 2 · 102, c4 = 2, and δ = 1.

Fig. 3-(a) shows the points set with 5% noise sampled from a unit circle. From
the noisy points set, Fig. 3-(b) illustrates the reconstructed circle produced by
Method 1 and Fig. 3-(c) is the result with Method 2. It can be seen that Method 1
yields smoother result because it solves (18) completely. Fig. 3(d) gives the
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error against iteration times. Here, the error is the measurement of comparison
between the reconstructed curves and the exact unit circle as follows:

Eu =
|1exact − 1u|L1

|1exact|L1
, (28)

where 1u and 1exact are the indicator functions, which take value 1 or 0 for
each point in the domain. 1exact is an indicator function of the circle centered
at origin and with radius 0.3

1exact(x) =
{

1 ‖x‖ ≤ 0.3,
0 ‖x‖ > 0.3,

where |x| is the Euclidean length of the point x and

1u(x) =
{

1 u(x) > 0.5,
0 u(x) ≤ 0.5.

Although the convergent rates of Methods 1 and 2 are almost similar, Method 2
is much faster than Method 1 for each iteration.

Fig. 4 gives another reconstruction example by Method 2. Fig. 4-(a) shows
noisy points set sampled from a chinese character. Figs. 4-(b) and 2-(c) illustrate
reconstructed curves with different parameters. We numerically observe that a
better result is obtained by increasing parameter b.

5 Conclusion

We proposed two algorithms to efficiently solve the p-elastica model in image
inpainting and curve reconstruction from unorganized point set. Inspired by
the recent work [16], we used augmented Lagrangian method and extend the
algorithm in [16]. The first algorithm eliminates an inner iterative steps in [16]
and the second algorithm replaces FFT into a very cheap arithmetic operation.
From the numerical results, the efficiency of the algorithms are demonstrated.
In the future, we would like to extend the model in subsection 4.2 into 3D
to reconstruct a surface which minimizes its mean curvature. Moreover, the
Euler’s elastica model on the surface is a possible extension of using the proposed
Method 2.
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Abstract. We present in this paper a unifying generalization of the
Mumford-Shah functional, in the Ambrosio-Totorelli set up, and the Bel-
trami framework. The generalization of the Ambrosio-Tortorelli is in us-
ing a diffusion tensor as an indicator of the edge set instead of a function.
The generalization of the Beltrami framework is in adding a penalty term
on the metric such that it is defined dynamically from minimization of
the functional.

We show that we are able, in this way, to have the benefits of true
anisotropic diffusion together with a dynamically tuned metric/diffusion
tensor. The functional is naturally defined in terms of the vielbein-the
metric’s square root. Preliminary results show improvement on both the
Beltrami flow and the Mumford-Shah flow.

Keywords: Inhomogeneous diffusion, anisotropic diffusion, Mumford-
Shah functional, Ambrosio-Tortorelli functional, Beltrami framework.

1 Introduction

The seminal work of Mumford and Shah[6] was a breakthrough, both conceptu-
ally and technically. From conceptual standpoint it reveled the need to unify the
de-noising and edge detection problems into one problem where the two tasks
are simultaneously solved. Technically it introduced a continuous functional to
give the conceptual understanding a mathematical language and used calculus
of variations to derive partial differential equations for the solution. It was inter-
preted later, via the relation to statistical inference ideas, as the prior on images
that favors piecewise smooth functions over other possible functions.

In the early nineties the concept of inhomogeneous diffusion, coined
“anisotropic diffusion” by Perona and Malik [7], gained popularity. With this
method (which was discovered earlier in an independent manner in mathemat-
ical physics by Rosenau [8]) it was possible to construct a controlled non-linear
filtering that reduces noise on one hand and conserves the sharpness of the image
on the other. The relation between “anisotropic diffusion” and the variational
approach became clearer after the “Total Variation” (TV) functional was intro-
duced by Rudin, Osher and Fatemi [9] and was later generalized by Faugeras
and Deriche in the Φ-formalism [5]. In these inhomogeneous diffusion methods
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the form of the local diffusion coefficient is predefined in advance. Usually the
diffusion coefficient is given as a known function of the amplitude of the lo-
cal gradient. One can show that, similarly to the Mumford-Shah approach, all
these methods treat images as functions and impose piecewise smoothness as a
prior.

Inhomogeneous diffusion was linked to the Mumford-Shah functional by the
seminal work of Ambrosio and Tortorelli [1]. In that approach the set of disconti-
nuities in the image is represented by an auxiliary, soft indicator, function. This
function serves as a local diffusion coefficient in the Euler-Lagrange or gradient
descent equations for the image. The difference from other inhomogeneous dif-
fusion methods is in the fact that this diffusion coefficient is determined dynam-
ically by the minimization of the functional. This dynamic choice of discontinu-
ities position and magnitude enhances the performance of de-noising/de-blurring
algorithms [3,4].

Towards the end of the nineties another distinction, and consequently, an
advancement was achieved. Weickert in the “Coherence-Enhancing diffusion”
(CD) [11] and Sochen et al. in the “Beltrami flow” (BF) [10] introduced true
anisotropic diffusion where the local diffusion function was replaced with a full
rank diffusion tensor. The latter was linked in the Beltrami framework to a
Riemannian metric. In this approach the image is not a function any more but a
Riemannian manifold and the anisotropic diffusion is a consequence of diffusion
of the image on an image-induced non-flat manifold. Both in the CD and in
the BF the diffusion tensor’s form is given in advance either as a variant of the
structure tensor in CD or as the induced metric in the BF.

It is the aim of this paper to generalize the Beltrami framework and the
Mumford-Shah approach by extending the respective functionals to a unify-
ing one. The starting point is the seminal work of Ambrosio and Tortorelli
[1]. We extend their approach that treat the image and it set of discontinu-
ities as two different dynamical variables that should be optimized by the same
functional. We present in this work a functional where the (color) image and
the diffusion tensor are treated both as dynamical variables. We interpret the
diffusion tensor as a metric and end up with an extension of the Beltrami
framework.

The paper is organized as follows: We review inhomogeneous diffusion meth-
ods and its derivation as a minimization of a functional in Section 1. The
Mumford-Shah functional and the Ambrosio-Tortorelli approach are presented
in Section 2. In that section we will also point out to the relation of the minimiza-
tion of the Ambrosio-Tortorelli’s functional to inhomogeneous diffusion. Section 3
presents anisotropic diffusion via the Coherent diffusion and the Beltrami frame-
works. Generalizing the anisotropic diffusion in an “Ambrosio-Tortorelli like”
functional is presented In section 4. The generalization of the Mumford-Shah
functional is find to generalize the Polyakov action of the Beltrami framework
at the same time. preliminary results are shown in Section 5 and we summarize
and conclude in Section 6.
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2 Inhomogeneous Diffusion

2.1 Isotropic Diffusion

Inhomogeneous diffusion started with the work of Perona and Malik [7]. In or-
der to better situated this formalism we first discuss isotropic diffusion. In the
isotropic case the filtering of the image is done via the solution of the isotropic
diffusion equation

ut = cΔu = cdiv(∇u) = div(c∇u)
u(t = 0) = u0 .

where Δu is the Laplacian of u, div is the divergent, ∇u is the gradient and c
is a constant. This equation is called in image processing context linear scale-
space because of its relation to convolution with a Gaussian with time dependent
variance. The relation to linear filtering is done via the Green function (kernel)
of this Partial Differential Equation (PDE):

u(x, y, t) =
∫
G(x − x′, y − y′; t)u0(x′, y′)dx′dy′

G(x, y; t) =
1

4πt
e−

x2+y2

4t .

The relation of isotropic diffusion to the calculus of variations is given by the
functional

S[u] =
∫

||∇u(x, y)||22dxdy

and its gradient descent

ut =
∂u

∂t
= −δS

δu

2.2 Inhomogeneous Diffusion

The idea of Perona and Malik was to use isotropic-like filtering far from the edges
of the image and to reduce the smoothing near the edges in order to preserve the
sharpness of the image. This was achieved in the PDE formulation via a local
diffusion function

ut = div(c(x, y)∇u)
u(t = 0) = u0 .

The function c(x, y) is the local diffusion coefficient and is usually taken as a
monotonically decreasing function of ||∇u||2.

The relation to minimization of a functional was nicely formulated by the
Φ-formalism of Deriche and Faugeras [5]. The functional they proposed is

SΦ[u] =
∫
Φ (||∇u(x, y)||2) dxdy ,
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and the gradient descent equation is

ut = div

(
Φ′(||∇u(x, y)||2)
||∇u(x, y)||2 ∇u

)
u(t = 0) = u0 .

The relation to Perona-Malik is given by c(s) = Φ′(s)/s.

2.3 TV and MAP

Another approach that links functional minimization and inhomogeneous diffu-
sion is Total Variation. In the original paper the functional is given by

STV [u] =
∫ [

1
2

(h ∗ u(x, y) − u0(x, y))
2 + λ||∇u(x, y)||2

]
dxdy .

where h is a blur kernel and ∗ denotes convolution. The first term is called fidelity
term and the second term is referred to as the smoothing term. The smoothing
term is of the form of the Φ-formalism with Φ(s) = s. The gradient descent
equation reads

ut = λdiv
(

1
||∇u(x, y)||2∇u

)
− h̄ ∗ (h ∗ u(x, y) − u0(x, y))

u(t = 0) = u0 , h̄ = h(−x,−y) .
This equation is related to the Maximum A-posteriori Probability (MAP) method
of statistical inference. Indeed by the Bayes rule the conditional probability of
u given u0 denoted by P (u|u0) is given by P (u|u0, h) ∝ P (u0|u, h)P (u) where
P (u) is the prior on the space of images. The relation to TV is given by

P (u0|u, h) ∝ exp{−1
2

∫
(h ∗ u(x, y) − u0(x, y))

2
dxdy}

P (u) ∝ exp{−λ
∫

||∇u(x, y)||2dxdy}

The a-posteriori probability function is proportional to exp{−STV } and the
MAP approximation is given by

û = argmax
u

P (u|u0, h) = argmin
u

STV [u] .

We will refer to the relations between PDEs, functionals, filters and statistical
inference in all the following analysis.

3 The Mumford-Shah Functional

The Mumford-Shah functional aims to simultaneously solve the problems of de-
noising and edge detection. For this end the functional is formulated as

SMS [u,K] =
1
2

∫
Ω

(u− u0)
2
dxdy + λ

∫
Ω/K

||∇u||22dxdy + α (length of K) ,
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where the first term is the fidelity term. The second term dictates smoothing
far from the set K of image discontinuities. The set K is assumed to be a set
of continues curves and the last term is a penalty on the total length of these
curves. The minimization and analysis of this functional are not simple since the
set of discontinuities intervenes in the boundary of the integration. This is a free
boundaries problem which is notoriously difficult. One of the best ways to deal
with this problem is via the Γ -convergence technique, which was proposed by
Ambrosio and Tortorelli.

3.1 The Ambrosio-Tortorelli Functional

In this approach one constructs a series (or a one-parametric family) of func-
tionals that converge to a functional such that the limit of the series minimizers
converges to the minimizer of the limit functional. The functionals in the series
are easier to analyze. Ambrosio and Tortorelli suggested the following family of
ε dependent functionals

Sε
AT [u, v] =

∫
Ω

[
1
2

(u− u0)
2 +

λ

2
v2||∇u||22 + α

(
ε||∇v||22 +

(v − 1)2

4ε

)]
dxdy

which Γ -converges to the Mumford-Shah functional when ε → 0. Here v is an
auxiliary function that encodes the images discontinuity set: It approaches one
in smooth regions and approach zero near an edge. The gradient descent for the
image u leads to an inhomogeneous diffusion

ut = λdiv
(
v2∇u)− (u− u0)

u(t = 0) = u0 .

where the edge function v2 plays the role of local diffusion coefficient.
The great difference from the TV and the Φ-formalism is in the way this dif-

fusion coefficient is determined. In the latter methods the form of the diffusion
coefficient is predefined. Here, in the Ambrosio-Tortorelli approach, this coeffi-
cient is a dynamical variable that is found by minimizing of the functional! The
gradient descent equations read

vt = αεΔv −
(
λ||∇u||22v +

α(v − 1)
2ε

)
v(t = 0) = 1 .

The advantage of dynamic determination of the edge set or equivalently the
diffusion coefficient was shown in [3] for the case of de-blurring. The Ambrosio
Tortorelli functional was shown to perform better than the TV and the Beltrami
framework. The latter is the subject of the next section.
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4 The Beltrami Framework

In this framework a two-dimensional (multi-channel) image is considered to be
an imbedding of a surface in a higher dimensional manifold, or in more general
terms an image is a section of the spatial-feature trivial bundle. The section is
endowed with a metric and is, thus, a Riemannian manifold. The functional over
the space of sections is the Polyakov action:

SB [u,G] =
∫ ∑

rs

(∇ur)TG−1∇usHrs(u)
√

detGdxdy

where G is the metric of the image manifold, Hr,s are entries of the metric of
the spatial-feature space and the indices are for the different spatial and chan-
nel/feature, e.g. colors, of the image. One important parameter of the Beltrami
framework is the ratio between spatial distance and feature distance. This ratio,
termed here β is needed to measure distances in the combined spatial-feature
space.

The inner product on the manifold is

< f, h >G=
∫
f(x, y)h(x, y)

√
detGdxdy

The EL equations of the functional with respect to this inner product necessitate
division by

√
detG. Assuming that H is the identity matrix the gradient descent

equation for the image read

ur
t =

1√
detG

div
(√

detGG−1∇ur
)

.

Note thatG−1 plays the role of the diffusion tensor and leads to a true anisotropic
diffusion flow. The metric is determined by minimizing the functional. The an-
alytic solution is the induced metric.

5 The Beltrami-Mumford-Shah Functional

The main idea of this paper is to generalize the Mumford-Shah functional. In-
deed, one can rewrite the MS functional via the AT approach as follows

Sε
AT [u, v] =

∫
Ω

[
1

2
(u − u0)

2 +
λ

2
(∇u)T

(
v2 0
0 v2

)
∇u + α

(
ε||∇v||22 +

(v − 1)2

4ε

)]
dxdy

This is a suggestive form that can be easily generalized to

Sε
AT [u, V ] =

∫
Ω

[
1

2
(u − u0)

2 +
λ

2
(∇u)T V T V ∇u + α

(
ε||∇V ||2F +

||V − Id||2F
4ε

)]
dxdy ,

where

V =
(
v11 v12
v12 v22

)
, ||V ||2F = v2

11 + 2v2
12 + v2

22 .
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and ||∇V ||2F = ||Vx||2F + ||Vy ||2F . This turns the dynamic diffusion coefficient v
into a dynamic diffusion tensor V !

The next observation is that we can write

G−1 = V TV

and reinterpret the functional in a new way: Let u and u0 be functions on a
Riemannian manifold. We demand that the two functions be similar in the L2

norm on the manifold. The metric is G and V −1 is the vielbein i.e. the symmetric
square root of the metric. The fidelity and smoothness terms should be written
on the manifold. The penalty term regards the metric (or the vielbein) only. It
enforces it to be close to the identity matrix in smooth regions and drive the
metric to a singular matrix that aligns along the discontinuity near an strong
edge. The penalty regularizes the metric as well. The new functional, thus, read

Sε
BMS [u, V ] =

∫ [
1
2

(u− u0)
2 + λ (∇u)TV TV∇u] dxdy

detV

+ α

∫ (
ε||∇V ||2F +

||V − Id||2F
4ε

)
dxdy .

This functional generalizes the Mumford-Shah functional from a scalar diffu-
sion coefficient to a tensor one going from inhomogeneous smoothing to a true
anisotropic one. It also generalizes the Beltrami framework since the metric, that
serves here as the diffusion tensor, is not predefined but is a dynamical variable
that is fixed along the flow by the functional.

For multi-channel image, e.g. color image one may write

Sε
BMS [u, V ] =

∫ [
1
2

∑
r

(ur − ur
0)

2 +
λ

2

∑
r,s

(∇ur)TV TV∇usHr,s(u)

]
dxdy

detV

+ α

∫ (
ε||∇V ||2F +

||V − Id||2F
4ε

)
dxdy

where Hr,s is the metric in the feature space e.g. color space.
The minimization equations, assuming that Hab = δab, are

ua
t = λ(det V )div

(
1

detV
V TV∇ua

)
− (ur − ur

0)

(Vij)t = (V −1)ij

∑
a

(ua − ua
0) + αεΔVij − α(V − Id)ij

2ε
− λ

2

∑
r

(∇ur)TWij∇ur

where

W11 =
(
v11 v12
v12 0

)
, W22 =

(
0 v12
v12 v22

)
, W12 =

(
v12 2v11
2v22 v12

)
,
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6 Results

6.1 Numerical Implementation

Let
∂f

xu := u(x+ 1, y) − u(x, y)

and
∂f

y u := u(x, y + 1) − u(x, y)

be the forward finite difference approximation of ∂x(u) and ∂y(u) respectively.
Similarly, backward derivatives are defined as

∂b
xu := u(x, y) − u(x− 1, y)

and
∂b

yu := u(x, y) − u(x, y − 1).

The forward gradient is therefore

∇f (u) := (∂f
x , ∂

f
y )T (u),

and the the backward gradient is given by

∇b(u) := (∂b
x, ∂

b
y)T (u).

Numerical scheme of the functional derivatives takes the form:

δF,v11 = − v22
∑

c
(uc − uc

0)2

2(v11v22 − v2
12)2

+ λ
[
v11(∂f

xu)2 + 2v12∂f
x∂f

y u
]

+
α

2ε
(v11 − 1) − 2αε∇b · ∇f v11.

δF,v22 = − v11
∑

c
(uc − uc

0)2

2(v11v22 − v2
12)2

+ λ
[
v22(∂f

y u)2 + 2v12∂f
x∂f

y u
]

+
α

2ε
(v22 − 1) − 2αε∇b · ∇f v22.

δF ,v12 = − v12
∑

c
(uc − uc

0)2

(v11v22 − v2
12)2

+ λ
[
v12(∂f

xu)2 + v12(∂f
y u)2 + 2(v11 + v22)∂f

x u∂f
y u
]

+
α

ε
v12 − 4αε∇b · ∇f v12.

δF ,ur = (ur − ur
0) − λdet V∇b

(
1

detV
V TV∇fuc

)
Optimization was carried out using the alternate minimization technique using
the line search strategy. Descent direction was computed as gradient descent,
and step size was calculated by Armijo rule [2]. The algorithm stops whenever
all variables have reached convergence tolerance ε. The algorithm of Tensor-MS
method is given below.
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(a) Original image (b) Beltrami-Mumford-Shah flow.
PSNR= 30.21

(c) Mumford-Shah flow. PSNR= 29.56 (d) Beltrami flow. PSNR= 29.13

Algorithm Energy Descent(u0)

– Initialize u0 = u0, v
0
11 = 1, v0

22 = 1, v0
12 = 1, k = 0

– Do
1. τv11 = ArmijoStep(F , vk

11)
2. vk+1

11 = vk
11 − τv11δF ,v11(vk

11, v
k
22, v

k
12, u

k)
3. τv22 = ArmijoStep(F , vk

22)
4. vk+1

22 = vk
22 − τv22δF , v22(vk+1

11 , vk
22, v

k
12, u

k)
5. τv12 = ArmijoStep(F , vk

12)
6. vk+1

12 = vk
12 − τv12δF , v12(vk+1

11 , vk+1
22 , vk

12, u
k)

7. τu = ArmijoStep(F , uk)
8. uk+1 = vk

12 − τuδF ,u(vk+1
11 , vk+1

22 , vk+1
12 , uk)

– while ‖vk+1
11 − vk

11‖, ‖vk+1
22 − vk

22‖, ‖vk+1
12 − vk

12‖, ‖uk+1 − uk‖ ≥ ε
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Beltrami and MS methods are similarly implemented using the corresponding
derivatives. Parameter set for two images are given in the following table, where
in all cases tolerance was set to ε = 10−3.

Tensor MS MS Beltrami

α λ ε α λ ε λ β

Ballet 0.1 0.5 0.01 0.1 0.6 0.01 0.65 1.0

Lenna 0.1 0.5 0.1 0.1 0.6 0.01 0.68 1.0

6.2 Results

(e) Original image (f) Beltrami-Mumford-Shah flow.
PSNR= 32.57

(g) Mumford-Shah flow. PSNR= 31.99 (h) Beltrami flow. PSNR= 31.83

7 Summary and Conclusions

We present in this paper a unifying generalization of the Mumford-Shah func-
tional and the Beltrami framework. We show that we are able, in this way,
to have the benefits of true anisotropic diffusion together with a dynamically
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tuned metric/diffusion tensor. The functional is naturally defined in terms of
the vielbein-the metric’s square root. preliminary results show improvement on
both the Beltrami flow and the Mumford-Shah flow.
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Abstract. We propose an adaptive norm strategy designed for the re-
storation of images contaminated by blur and noise. Standard Tikhonov
regularization can give good results with Gaussian noise and smooth
images, but can over-smooth the output. On the other hand, L1-TV (To-
tal Variation) regularization has superior performance with some non-
Gaussian noise and controls both the size of jumps and the geometry of the
object boundaries in the image but smooth parts of the recovered images
can be blocky. According to a coherence map of the image which is ob-
tained by a threshold structure tensor, and can detect smooth regions and
edges in the image, we apply L2-norm or L1-norm regularization to differ-
ent parts of the image. The solution of the resulting minimization problem
is obtained by a fast algorithm based on the half-quadratic technique re-
cently proposed in [2] for L1-TV regularization. Some numerical results
show the effectiveness of our adaptive norm image restoration strategy.

1 Introduction

The recent increase in the widespread use of digital imaging technologies in
consumer (e.g., digital camera and video) and other markets (e.g., medicine
imaging) has brought with it a simultaneous demand for image denoising and
deblurring.

The most common image degradation model, where the observed data f ∈ Rn2

are related to the underlying n× n image rearranged into a vector u ∈ Rn2
, is

f = Bu+ e, (1)

where e ∈ Rn2
accounts for the perturbations and B is a n2 × n2 matrix repre-

senting the optical blurring.
The computation of a useful approximation of u can be accomplished by

replacing the linear system of equations (1) by a nearby system, whose solution
is less sensitive to the noise e. This replacement is commonly referred to as
regularization.

A.M. Bruckstein et al. (Eds.): SSVM 2011, LNCS 6667, pp. 194–205, 2012.
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The standard Tikhonov regularized solution of the inverse problem for two
dimensional image restoration of the observed image f , is the minimum of the
functional

J(u) =
1
p
‖Bu− f‖p

p +
μ

q
‖Au‖q

q, (2)

for p = 2, q = 2, where A is a regularization operator, and μ is the regular-
ization parameter that controls the trade-off between data fitting term and the
regularization term. The use of the Euclidean norm in (2) yields a least squares
problem to which many efficient algorithms exist [15,16]. However, the result is
only optimal when noise in the image f is white Gaussian noise, (e.g. no outliers)
and the solution is smooth, i.e., without discontinuities.

For the regularization term, there has been a growing interest in using the
L1 norm (q = 1). The minimization problem (2) with p = 2, q = 1, and A = ∇
(the gradient operator), becomes convex but non-smooth and it is denoted by
L2-TV regularization. While a number of algorithms [9,10], have been proposed
to solve this optimization problem, it remains a computationally expensive task
that can be prohibitively costly for large problems and for operators without a
fast implicit implementation or a sparse explicit matrix representation. Recently,
the L1-TV functional, corresponding to the choice p = 1, q = 1, A = ∇ in (2)
[2,12,13,11], has attracted attention due to a number of advantages, including
superior performance with non-Gaussian noise such as impulse noise. The solu-
tions are very stable with respect to outliers and moreover TV controls both the
size of jumps and the geometry of the object boundaries in the image.

The main goal of this work is to adaptively consider a suitable norm (q = 1 or
q = 2) according to the determined image structures (smooth regions or edges).
Although, the same presented framework can be considered on p, that is on the
data fitting term. The L2-norm regularization well restores corrupted images
with wide smooth regions but it oversmoothes the resulting images. On the other
hands, the L1-TV regularization has been successfully applied to restore images
because of its good property in preserving edges but in general, the resulting
images are blocky. Driven by a suitable map of the structures of the image, we
can apply the appropriate norm to selected parts of the image domain.

To achieve this aim, we introduce a measure of the coherence in the image
by mean of a threshold structure tensor [8] which provides a coherence map of
the image. Following the coherence map we use L2-norm for pixels in smooth
regions and L1-TV for pixels along edges and corners.

In Fig. 1(a) a simple test image is shown with a white square in a black
background corrupted by Gaussian blur and Gaussian noise. The restored image
obtained by solving (2) with p = 2, q = 2 is shown in Fig. 1(b), The restored
images with p = 1, q = 1 is shown in Fig. 1(c), while the proposed adaptive
approach is shown in Fig. 1(d). Comparing the images in Fig. 1(b),(c),(d) it is
clear how an adaptive choice can lead to denoised homogenous regions without
blocky effects. In fact it takes advantage of the L2 approach in the homogeneous
regions while keeping the edges thanks to the L1-TV method.

The paper is organized as follows. We briefly describe the half-quadratic al-
gorithm for L1-TV image restoration in Section 2. The proposed model and its
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(a) (b) (c) (d)

Fig. 1. (a) corrupted image by white Gaussian noise with band = 5, sigma = 3 and
noise level ν = 0.05; (b) restoration by (2) with p = 2, q = 2, (SNR = 9.62); (c)
restoration by L1-TV (2) with p = 1, q = 1, (SNR = 20.30); (d) restoration by our
proposal (adaptive-norm model (11) with p = 1), (SNR = 20.93), μ1 = 0.5, μ2 = 90.

numerical aspects are discussed in Section 3. Numerical examples and comments
are provided in Section 4. Section 5 contains concluding remarks.

2 Description of the HQ-Algorithm for L1-TV
Regularization

Let us briefly summarize a recently proposed algorithm [2] that minimizes in a
fast and accurate way (2) with p = q = 1, that is, with the notation of [2],

min
u

⎧⎨⎩
n2∑
i=1

|Bi u− fi|γ + μ|∇ui|β

⎫⎬⎭ , (3)

where Bi is the ith row of the discrete data fidelity operator B; and β and γ
are both small positive regularization parameters which prevents the denomina-
tor from vanishing in numerical implementations. The specification of β and γ
involves trade-offs between the quality of edges restored and the speed in con-
verging. Precisely, the smaller β and γ are, the higher quality of the restoration
on the edges will be. We used the notation

|∇ui|β =
(
(∇xui)2 + (∇yui)2 + β

)1/2
,

|Biu− fi|γ =
(
(Biu− fi)2 + γ

)1/2
,

where ∇x, ∇y are the first order finite difference operators in the horizontal and
vertical directions, respectively.

The proposed idea is based on an iterative reweighting of a half-quadratic
algorithm (HQA) for L1-TV image restoration. Half-quadratic regularization,
was introduced in [4,14], and is based on the following expression for the modulus
of a real, nonzero number x:

|x| = min
v>0

{
v x2 +

1
4 v

}
, (4)
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whose minimum is at v = 1
2 |x| , and the function in the curly bracket in (4) is

quadratic in x but not in v; hence the name half-quadratic.
By using (4), the minimum of the function in (3) can be found by applying

an alternate minimization procedure to minimize the operator L, i.e.,

min
u, v>0, w>0

L(u, v, w),

where

L(u, v, w) =
n2∑
i=1

[
μ

(
vi|∇ui|2β +

1
4 vi

)
+ wi|Bi u− fi|2γ +

1
4wi

]
(5)

With the notation in [2], we need to perform in sequence the three iterative
minimizations, for each iteration step k, that is

v(k+1) = argmin
v>0

L(u(k), v, w(k)),

with explicit solution

v
(k+1)
i =

(
2|∇u(k)

i |β
)−1

(6)

and
w(k+1) = argmin

w>0
L(u(k), v(k+1), w),

with explicit solution

w
(k+1)
i =

(
2|Biu

(k) − fi|γ
)−1

(7)

and
u(k+1) = argmin

u
L(u, v(k+1), w(k+1)), (8)

whose solution u can be found by imposing that:

∇u

(
L(u, v(k+1), w(k+1))

)
= 0. (9)

This leads to the sequence of linear systems for updating u(k+1):[
μAT D̂β(u(k))A+BT Dγ(u(k))B

]
u(k+1) = BT Dγ(u(k)) f, (10)

where A ∈ R2n2×n2
is the matrix discretizing the gradient operator [∇T

x ; ∇T
y ]

with, e.g., first order finite differences (this is the choice in our experiments),
D̂β(u(k)) := diag(Dβ(u(k)), Dβ(u(k))), and the weight component matrices
Dβ(u(k)), Dγ(u(k)) are diagonal matrices whose ith entries are given by(

Dβ(u(k))
)

i
= 2v(k+1)

i =
1

|∇u(k)
i |β

,
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(
Dγ(u(k))

)
i
= 2w(k+1)

i =
1

|Bi u(k) − fi|γ , i = 1, ..., n2.

In order to get an approximateL1-TV restoration, given an initial image f and an
initial guess for the recovered image u(0), there is just the need to apply an iter-
ative linear solver to (10) like conjugate gradients method for k = 0, 1, . . . , kmax.

We note that other reweighted least squares approachs can be considered
such as the one in [6] where an inexact Newton strategy is used to solve the
system (10).

3 The Adaptive Norm Algorithm (ANA)

The L1-TV restoration algorithmHQA, developed by [2] and summarized in Sec-
tion 2, works very well especially in presence of salt-and-pepper noise and near
edges and corners. On the other hand, with different types of image perturba-
tions, like the white Gaussian noise, and in the presence of smooth, homogeneous
regions and weak edges it can provide a less accurate restoration and can give
artifacts like, e.g., a blocky effect in smooth regions. A selective reweighted of
the half-quadratic approach is one of the possible natural ways to overcome these
well-known issues of the L1-TV restoration. With the word selective we mean
“using different norm for different pixels” of the image. To achieve this aim, one
could work with a norm continuously changing from 1 to 2, but this would lead
to the solution of a PDE derived from the variational problem similar to (2).
A preliminary step in this direction has been proposed by [18]. In contrast, we
choose not to change the norm continuously from 1 to 2, but, using a suitable
coherence map, we classify the pixels in the image as pixels belonging to homo-
geneous region or pixels belonging to edges or corners, and we associate them
with norm L2 or L1, respectively. Details on the construction of the coherence
map C are given in Section 3.1.

Driven by the coherence map, we use the L2 norm for smooth and homoge-
neous regions and the L1 norm near edges and corners. Let C be a diagonal
matrix with the ith entry (C)i = 1 if the ith pixel belongs to a homogeneous re-
gion identified by the coherence map, while (C)i = 0 near edges. Let C̄ = I−C,
with I the identity matrix. In view of this, we propose to modify the functional
in (2) to the following functional

Φ(u) = ‖Bu− f‖1
1 + μ1‖CAu‖1

1 + μ2‖C̄Lu‖2
2, (11)

where μ1, μ2 are regularization parameters, L is a regularization operator, such
as for example L = A or, e.g., the discrete Laplacian, and A is defined as in (10).
This new functional also caters for different regularization operators. Moreover,
the adaptive norm strategy can also be applied to the data fidelity term Bu− f
in (11).

The minimization of the functional (11) can be obtained in a way similar to
what is done for the half quadratic L1-TV and, in particular, by solving the
following linear systems for updating u(k+1)
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(μ1A

TCD̂β(u(k))CA+ μ2L
T C̄L+BTDγ(u(k))B

]
u(k+1) =

= BTDγ(u(k))f (12)

where the weight component matrix D̂β(u(k)), incorporates the selective L1/L2

reweighted by the diagonal matrix C. We initialized the iterative process by
setting u(0) = f , and the coherence map is computed at each iteration step k.
In the following we will name our algorithm Adaptive Norm Algorithm (ANA).

In order to accelerate the solution of (12) the strategy used for sequences of
linear systems proposed in [1] can be used. However we found that stopping the
conjugate gradient solver after a few iterations already gives good results; see
Section 4 for numerical examples.

The model (11) allows the use of the techniques in [2] to prove the convergence
of sequence {u(k)} to a minimum of Φ(u). An analysis of the convergence of the
sequence {u(k)} generated by the proposed adaptive norm strategy can be based
on the analysis of the convergence of half-quadratic algorithm in [2].

3.1 The Coherence Matrix Construction

In order to detect if a pixel of the given image belongs to an edge or a homo-
geneous region, we need a strategy that is able to mark each pixel with a score
that we normalize in the range [0, 1].

Coherence enhancing image smoothing has been introduced in [8] and success-
fully applied in image filtering by anisotropic diffusion. This type of nonlinear
diffusion includes the construction of a diffusion tensor which is built as follows.
Given an image u, and its Gaussian-smoothed version uσ, a regularized shape
descriptor is provided by

Sδ(∇uσ) := (Kδ ∗ (∇uσ ⊗∇uσ)) (13)

where Kδ is a Gaussian kernel with δ ≥ 0. The matrix Sδ is symmetric positive
semi-definite and its eigenvalues λ1 ≥ λ2 integrate the variation of the gray
values within a neighborhood of size O(δ). They describe the average contrast in
the corresponding eigendirections v1 and v2. The orientation of the eigenvector
v2, corresponding to the smaller eigenvalue, represents the direction of lowest
fluctuations, the so-called coherence orientation. In this way, constant areas are
characterized by λ1 = λ2 = 0, while straight edges give λ1 � λ2 = 0.

The normalized coherence value which measures the anisotropic structures
within a window of scale δ is thus defined as

c =
(λ1 − λ2)2

max{(λ1 − λ2)2} , c ∈ [0, 1]. (14)

Thus, for anisotropic structures, c approaches 1, while it tends to zero for
isotropic structures. Let ci be the coherence value obtained by computing (14)
for the ith pixel in the vectorized image u. We use a “selective” threshold param-
eter τ (typically 0 � τ < 1) to construct the diagonal matrix C, with (C)i = 1
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when the ith pixel belongs to a homogeneous region, that is when ci < τ , while
(C)i = 0 near edges. This aim to partition the image into homogeneous and
non-homogeneous regions, different partitioning will be further investigated.

(a) (b)

Fig. 2. Example 1:(a) Blur- and noise-free 320 × 320 image; (b) corrupted image by
symmetric Gaussian blur with band = 7 and sigma = 5, noise level ν = 0.02

4 Experiments and Results

Let u ∈ Rn2
represent a blur- and noise-free image. We generate an associated

blurred and noise-free image f̂ by multiplying u by a block Toeplitz matrix B ∈
Rn2×n2

with Toeplitz blocks. The matrix B represents a symmetric Gaussian
blurring operator and has two parameters band and sigma. The former specifies
the half-bandwidth of the Toeplitz blocks and the latter the variance of the
Gaussian point spread function. The larger the sigma is, the more the blurring
will be. A blur- and noise-contaminated image f ∈ Rn2

is obtained by adding
an error vector e ∈ Rn2

to f̂ .
Thus,

f = Bu+ e.

The corrupted image f ∈ Rn2
is assumed to be available and we would like to

determine the blur- and noise-free image u. In our experiments, e has normally
distributed entries with mean zero, scaled to yield a desired noise-level

ν =
‖e‖
‖u‖ .

In all the examples we take the parameters β = 10−3 and γ = 10−6 in (3) and
we consider periodic boundary conditions for the difference matrix A. Equation
(12) is solved by the conjugate gradient method where we stopped when the
Euclidean norm of the relative error between successive approximations is less
than 5·10−5. The solver is very fast and we do not need to accelerate the solution
of (12) by preconditioning strategies.
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(a) (b)

(c) (d)

Fig. 3. Example 1: (a) restoration by (2) with p = 1, q = 2, μ = 10 (SNR = 10.68);
(b) restoration by L1-TV (2) with p = 1, q = 1, μ = 0.5 (SNR = 15.72) (c) restoration
by ANA with p = 1, μ1 = 0.2, μ2 = 10 (SNR = 16.76); (d) restoration by ANA with
adaptivity also for the fidelity term, μ1 = 0.2, μ2 = 10 (SNR = 16.47)

The displayed restored images provide a qualitative comparison of the perfor-
mance of the proposed adaptive norm algorithm. A quantitative comparison is
given by the Signal-to-Noise Ratio (SNR),

SNR := 10 log10

‖u− E(u)‖2
2

‖û− u‖2
2

dB, (15)

where u denotes the blur- and noise-free image, û the restored image and E(u)
is the mean grey-level value of the original image.

The choice of the parameters μ1 and μ2 in (11) clearly affect the quality of
the restored image, in our experimentation we have empirically chosen μ1 in
the range [0, 1], and μ2 in the range [10, 100], but further investigations will
be planned. In the literature there are several regularization parameter selec-
tion methods for Tikhonov regularization problems (p = 2, q = 2), e.g. the
discrepancy principle, the L-curve and the Generalized Cross-Validation (GCV)
methods [7]. Recently in [17] a generalization of GCV for the case p = 2, q = 1
has been proposed.
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Table 1. Example 2: Results for restorations of image corrupted by Gaussian blur
corresponding to different band,sigma values, and noise-levels ν. μ1 = 0.2, μ2 = 5 (first
8 rows) μ1 = 0.5, μ2 = 10 (last 4 rows).

band sigma ν SNR(L1-TV) SNR(ANA)

7 5 0.01 22.09 22.90
7 5 0.02 20.08 20.95
7 5 0.05 16.74 17.61
7 5 0.1 13.69 15.20

5 3 0.01 23.63 24.53
5 3 0.02 21.07 22.16
5 3 0.05 18.02 18.76
5 3 0.1 15.10 15.68

3 1 0.01 26.35 26.78
3 1 0.02 23.20 23.98
3 1 0.05 18.69 19.38
3 1 0.1 14.62 15.35

(a) (b)

Fig. 4. Example 2: (a) corrupted 512 × 512 image by symmetric Gaussian blur with
band = 7 and sigma = 5, noise level ν = 0.02; (b) restoration by ANA with p = 1,
μ1 = 0.2, μ2 = 1 (SNR = 20.95).

Example 1. In this example the image in Fig. 2(a) is corrupted by Gaussian
noise, characterized by noise level ν = 0.02, and symmetric Gaussian blur with
band = 7 and sigma = 5. The corrupted image is shown in Fig. 2(b). The
restorations obtained by applying the three approaches (L2-TV, L1-TV, ANA)
are shown in Figure 3. In Fig. 3 (d) the reconstructed image is obtained by
solving (11) with the adaptivity also in the fidelity term. In all the algorithms
we have considered kmax = 40 outer steps in (12) but also less outer steps
give satisfactory results. Our ANA gives the best SNR = 16.76. From a visual
inspection of Fig. 3(c),(d), we observe that white − homogemous regions are
clearly better restored.
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(a) (b)

(c) (d)

Fig. 5. Example 3: (a) corrupted image (SNR = 9.43); (b) coherence map; (c) restora-
tion by L1-TV (2) with p = 1, q = 1, μ = 0.5 (SNR = 17.15) (d) restoration by ANA
with p = 1, μ1 = 0.5, μ2 = 80 (SNR = 17.47)
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Example 2. In this example a 512 × 512 image is contaminated by different
noise levels and incremental Gaussian blur. In Fig. 4(a) the corrupted image by
Gaussian noise, characterized by noise level ν = 0.02, and symmetric Gaussian
blur with band = 7 and sigma = 5 is shown, while Fig. 4(b) shows the image
restored by ANA using kmax = 30 outer steps. In Table 1, algorithms L1-TV
and ANA are compared and their SNR values are reported in the fourth and
fifth columns, respectively. Table 1 and other additional numerical experiments,
indicate that the performance of our method is better for images with quite large
homogenous regions, for medium blur and for quite high noise levels.
Example 3. In this example we test our approach on a photographic image
of size 800 × 800 corrupted by symmetric Gaussian blur with band = 5 and
sigma = 3 and noise level ν = 0.02, shown in Fig. 5(a). The results of applying
kmax = 10 outer steps in (12) are shown in Fig. 5(c), (d) for algorithm L1-TV
and ANA, respectively. We can appreciate the good quality results we get with
just a few steps, that demonstrate the efficiency of the algorithm. In Fig. 5(b)
the used coherence map is illustrated.

5 Conclusions

In this paper we propose a fast algorithm that allow L1 or L2-norm regulariza-
tion for different image areas according to the image structures (e.g., smooth
regions or edges). Numerical experiments seem to confirm that our algorithm is
promising. We plan to extend this framework to general L1-regularized problems
and to consider other choices for p and q in model (2).

Acknowledgments. This work has been partially supported by MIUR-Prin
2008, ex60% project by University of Bologna “Funds for selected research top-
ics” and by GNCS-INDAM.

References

1. Bertaccini, D., Sgallari, F.: Updating preconditioners for nonlinear deblurring and
denoising image restoration. Applied Numerical Mathematics 60, 994–1006 (2010)

2. Chan, R.H., Liang, H.X.: A fast and efficient half-quadratic algorithm for TV-L1
Image restoration, CHKU research report 370 (submitted, 2010),
ftp://ftp.math.cuhk.edu.hk/report/2010-03.ps.Z

3. Chan, T., Mulet, P.: On the convergence of the lagged diffusivity fixed point method
in total variation image restoration. SIAM J. Numer. Anal. 36, 354–367 (1999)

4. Geman, D., Yang, C.: Nonlinear image recovery with half-quadratic regularization
and FFTs. IEEE Trans. Image Proc. 4, 932–946 (1995)

5. Jacobson, M., Fessler, J.: An expanded theoretical treatment of iteration-dependent
majorize-minimize algorithms. IEEE Trans. Image Proc. 16, 2411–2422 (2007)

6. Rodriguez, P., Wohlberg, B.: Efficient minimization method for a generalized total
variation functional. IEEE Transactions on Image Processing 18, 322–332 (2009)

7. Hansen, P.: Rank-Deficient and Discrete Ill-Posed Problems. SIAM, Philadelphia
(1998)

ftp://ftp.math.cuhk.edu.hk/report/2010-03.ps.Z


An Adaptive Norm Algorithm for Image Restoration 205

8. Weickert, J., Scharr, H.: A scheme for coherence enhancing diffusion filtering with
optimized rotation invariance. J. of Visual Communication and Image Represen-
tation 13, 103–118 (2002)

9. Vogel, C., Oman, M.: Iterative methods for total variation denoising. SIAM J. Sci.
Comp. 17(1-4), 227–238 (1996)

10. Chambolle, A.: An algorithm for total variation minimization and applications. J.
of Math. Imaging and Vision 20, 89–97 (2004)

11. Nikolova, M.: A variational approach to remove outliers and impulse noise. J. of
Math. Imaging and Vision 20, 99–120 (2004)

12. Nikolova, M.: Minimizers of cost-functions involving nonsmooth datafidelity terms
application to the processing of outliers. SIAM J. Numerical Analysis 40, 965–994
(2002)

13. Chan, T.F., Esedoglu, S.: Aspects of total variation regularized L1 function ap-
proximation. SIAM J. Appl. Math. 65, 1817–1837 (2005)

14. Nikolova, M., Chan, R.: The equivalence of half-quadratic minimization and the
gradient linearization iteration. IEEE Trans. Image Proc. 16, 1623–1627 (2007)

15. Reichel, L., Sgallari, F., Ye, Q.: Tikhonov regularization based on generalized Krylov
subspace methods. Appl. Numer. Math. (2010), doi:10.1016/j.apnum.2010.10.002

16. Morigi, S., Reichel, L., Sgallari, F.: An interior-point method for large constrained
discrete ill-posed problems. J. Comput. Appl. Math. 233, 1288–1297 (2010)

17. Liao, H., Li, F., Ng, M.: On Selection of Regularization Parameter in Total Varia-
tion Image Restoration. Journal of the Optical Society of America A 26, 2311–2320
(2009)

18. Chen, Q., Montesinos, P., Sun, Q.S., Heng, P.A., Xia, D.S.: Adaptive total varia-
tion denoising based on difference curvature. Image and Vision Computing 28(3),
298–306



Variational Image Denoising

with Adaptive Constraint Sets

Frank Lenzen1,2, Florian Becker1, Jan Lellmann1,
Stefania Petra1, and Christoph Schnörr1
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Abstract. We propose a generalization of the total variation (TV) mini-
mization method proposed by Rudin, Osher and Fatemi. This generaliza-
tion allows for adaptive regularization, which depends on the minimizer
itself. Existence theory is provided in the framework of quasi-variational
inequalities. We demonstrate the usability of our approach by considering
applications for image and movie denoising.

Keywords: solution dependent adaptivity, quasi-variational inequali-
ties, spatio-temporal TV, anisotropic TV, image denoising.

1 Introduction

One of the most widely used methods for image denoising is total variation (TV)
minimization. The TV method proposed by Rudin, Osher and Fatemi in [13]
(ROF) consists in minimizing the functional

1
2
‖u− f‖2 + αTV(u), (1)

w.r.t. u over BV(Ω), Ω ⊂ Rd for given noisy data f . Here TV(u) is the to-
tal variation semi-norm and α is a regularization parameter. We consider the
formulation of the regularization term αTV(u) based on constraint sets:

αTV(u) = σC(u), C = divD, D = {p ∈ C∞
c (Ω; Rd) : ‖p(x)‖ ≤ α

}
, (2)

where σC is the support function of the set C and div is applied elementwise.
In this paper, we generalize the ROF functional (1) by introducing the de-

pendency C = C(u). This allows for variants of the TV method, where the set
C(u) locally adapts to the image content depending on the solution u itself.

A.M. Bruckstein et al. (Eds.): SSVM 2011, LNCS 6667, pp. 206–217, 2012.
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In the literature, adaptive TV methods have been proposed e.g. in [6,9], with
locally varying regularization parameter, and [1,14,15,10], where anisotropic reg-
ularization is steered by local structures. Except for [10], these methods gather
the required local information either in a preprocessing or as an additional un-
known of the variational problem, not depending on the minimizer itself. The
variational framework presented below differs from [10]; possible connections will
be explored in future work. Another kind of denoising methods are non-local
methods, cf. e.g. [11,8,3]. Although these methods can be applied in an iterated
fashion, a dependency of the regularization on the minimizer is not modeled
explicitly.

Our paper is organized as follows. In Sect. 2, the proposed generalization
of the TV minimization functional (1) is described. The mathematical frame-
work is presented in terms of variational inequalities. Considering a sequence of
convex variational inequalities, we provide an existence result for fixed points
(see Sect. 3), using only general assumptions on the convex set C(u). In partic-
ular, non-local information can be used in the definition of C(u). Moreover, we
provide a first basic algorithm. The usability of this novel concept is supported
by applications for image and movie denoising. In particular, we generalize the
approach of anisotropic TV with double orientations, proposed by Steidl & Teu-
ber [15] (Sect. 4), and present an anisotropic spatio-temporal TV method for
denoising image sequences (Sect. 5). In Sect. 6 we provide experimental results.
Concluding remarks are given in Sect. 7.

2 Problem

We begin with the primal TV denoising approach (1). Inserting (2) in (1) yields

min
u∈BV(Ω)

{
1
2
‖u− f‖2 + σC(u)

}
. (3)

We follow [4] to derive the corresponding dual problem. With the fact that
v ∈ ∂σC(u) ⇔ u ∈ ∂(σC)∗(v) = ∂(δC)(v) for the subdifferentials of the support
function σC and the indicator function δC , where ∗ denotes the Legendre-Fenchel
transform, we find ∂σC(u) = {v ∈ L2(Ω) : 〈u, v − u〉 ≥ 0, ∀u ∈ C}. Thus the
optimality condition for u minimizing (3) reads

f − u ∈ ∂σC(u) ⇔ 〈u, f − u− u〉 ≥ 0, ∀u ∈ C.
Using the additive decomposition f = u + v, we find v = ΠC(f), where ΠC
denotes the projection onto the closure C of C. Finally, we end up with the dual
problem

inf
p∈D

F (p), F (p) :=
1
2
‖f − div p‖2. (4)

In the following, we study generalized adaptive denoising approaches that take
into account dependencies of the primal and dual constraint sets C(u) and D(p),
respectively, on the solutions themselves. To this end, let

C(u) := div{p ∈ C∞
c (Ω,Rd) : p(x) ∈ D̃(x, u)}, (5)
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where D̃(x, u) : Ω × BV(Ω) ⇒ Rd is a set-valued mapping. In view of the dual
problem (4), we define D(x, p) := D̃(x, f − div p) and

D(p) := {p̃ ∈ C∞
c (Ω,Rd) : p̃(x) ∈ D(x, p)}. (6)

3 Approach

3.1 A Quasi-Variational Inequality

We approximate the space C∞
c (Ω,Rd) by a finite-dimensional space Rnd. Then

the set-valued mapping D in (4) takes the form

D : Rnd ⇒ Rnd, p �→ {p̃ ∈ Rnd : p̃i ∈ Di(p), i = 1, . . . , n}. (7)

Here, Di(p) : Rd ⇒ Rd, i = 1, . . . , n is the discrete analogue of D(x, p). Note that
in the finite dimensional setting D(p) is compact. In order to show existence
of a solution, if the constraint sets (5) and (6) vary, in analogy to [2, Prop.
4.7.1], we formulate our approach as a generalization of the variational inequality
corresponding to the dual problem (4): find p ∈ D(p) such that

〈∇F (p), p− p〉 ≥ 0, ∀p ∈ D(p). (8)

Notice the dependency of the dual constraint set on p, that significantly gener-
alizes the dual TV minimization problem.

3.2 Existence of Solutions

The existence of a solution to (8) can be shown under the following assumption:

Assumption 1. Di(p) : Rd ⇒ Rd, i = 1, . . . , n have the following properties:

1. For fixed p the set Di(p) is a closed convex subset of Rd.
2. There exists c > 0, such that for all i, p: {0} ⊂ Di(p) ⊂ Bc(0), where Bc(0)

is the closed unit ball. In particular, Di(p) is non-empty.
3. The projection ΠDi(p)(q) of q onto Di(p) for a fixed q is continuous w.r.t. p.

Proposition 1. Let F := 1
2‖f − div p‖2 and D be defined as in (7), such that

Di(p), i = 1, . . . , n satisfy Assumption 1. Then the problem

find p ∈ Rnd such that 〈∇F (p), p− p〉 ≥ 0, ∀p ∈ D(p) (9)

has a solution.

The proof of Proposition 1 utilizes the following theorem and lemma.

Theorem 2. (cf. Theorem 5.2 in [5]) Let G : Rm → Rm be a point-valued and
D : Rm ⇒ Rm be a set-valued mapping. Suppose that there exists a nonempty
compact convex set P such that
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1. D(P ) = ∪p∈PD(p) ⊆ P ;
2. D takes nonempty closed convex sets as values;
3. D is continuous, that is D(pk) → D(p) whenever pk → p, or in view of (2),

denoting the projection onto D by ΠD(p), equivalently ΠD(pk)(p) → ΠD(p)(p)
for all p

Then there exists p ∈ Rnd such that 〈G(p), p− p〉 ≥ 0 for all p ∈ D(p).

Lemma 1. Let D be defined as in (7). Assume that for every i = 1, . . . , n
and q ∈ Rd the projection ΠDi(p)(q) is continuous w.r.t. p. Then ΠD(p)(q) is
continuous for fixed q ∈ Rnd.

Proof. ΠD(q) can be written asΠD(p)(q) = (ΠD1(p)(q1), . . . , ΠDn(p)(qn))�. Thus
each component of ΠD(p) is continuous, from which the continuity of ΠD(p)
follows immediately. ��
Proof of Proposition 1: We apply Thm. 2. Conditions (1) and (2) follow from
Assumption 1, that, in turn, has to be verified later, see Prop. 2, 3 and 4.
Lemma 1 shows that also condition (3) holds. ��

3.3 Algorithm

We propose an algorithm for solving (9). Let us first consider the case where D
does not dependend on the dual variable p. The problem then can be solved by
a projected gradient method:

pk+1 = ΠD
(
pk − τ∇F (pk)

)
, 0 < τ < 2/L,

where L denotes the Lipschitz-constant of ∇F . In order to adapt to the depen-
dency of D on p, we propose to use

pk+1 = pk − 1
λ

(
pk −ΠDk

(
pk − τ∇F (pk)

))
, Dk := D(pk),

with sufficiently large λ ∈ (0, 1). In practice, two nested iterations, one outer iter-
ation for updating D and one inner iteration for updating p, are used. Providing
convergence results will be part of our future work. However, our experiments
show that this iteration converges for λ sufficiently large.

4 Adaptive Anisotropic TV Minimization for Image
Denoising

In order to improve the image quality of TV methods for denoising, Steidl &
Teuber [15], proposed an anisotropic TV method based on two independent
orientations. In this section, we demonstrate how this approach can be modified
in order to fit into the ansatz presented above. As a consequence, Prop. 1 provides
a theoretical underpinning. Before discussing the approach in [15] (Sect. 4.2), we
describe the required modifications by means of a simpler model (Sect. 4.1).
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4.1 Anisotropic TV with a Single Direction

Consider u ∈ L2(Ω), Ω ⊂ R2. The aim is to define a convex set D(p) (cf. (6))
satisfying Assumption 1 in order to derive an anisotropic TV measure.

In our approach, we are interested in a local description of the set D. To this
end, we define D(x, p) for any x ∈ Ω, based on local edge information obtained
from u = f − div p. To be precise, for an edge being present at a location x the
set D(x, p) will be defined as a square with one side parallel to the edge.

In order to detect edges, we utilize the structure tensor J(x, u) defined as
follows: Let

J0(x, u) := ∇uσ(x)∇uσ(x)�, (10)

where uσ := Kσ ∗ u is a smoothed version of u, obtained by convolution with a
Gaussian kernel Kσ with standard deviation σ > 0. The structure tensor J(x, u)
is given as

J(x, u) := Kρ ∗ J0(x, u), (11)

with ρ > 0. (Here the convolution is applied componentwise). Moreover, let
vi(x, u) and λi(x, u), i = 1, 2 be the eigenvectors and eigenvalues of J , respec-
tively. We assume w.l.o.g. that the eigenvalues of J(x, u) are ordered, λ1(x, u) ≥
λ2(x, u) ≥ 0, with corresponding eigenvectors v1(x, u) and v2(x, u). For simplic-
ity of notation, we omit the dependency of D, J , vi and λi on x in the following.

Consider for a moment some arbitrary r ∈ R2, ‖r‖ = 1. We define the square
S(r) with sides parallel to r and r⊥ as

S(r) := {p ∈ R2 : |r�p| ≤ α, |(r⊥)�p| ≤ α}. (12)

We would like to set D(p) = S(r(f − div p)) with r(u) = v1(u). But then the
projectionΠD(p) would not depend continuously on p, since the eigenvector v1(u)
in general does not depend continuously on the entries of J(u).

On the other hand, for S(r) as defined in (12), the mapping r → ΠS(r)

is continuous, as the following lemma shows. Moreover, u = f − div p depends
continuously on p. Thus, asserting the continuity of r(u) is sufficient to guarantee
the continuity of ΠD(p).

Lemma 2. Let S(r) be defined as in (12). Then ΠS(r)(q) depends continuously
on r for fixed but arbitrary q.

Proof. For q ∈ S(r), we have ΠS(r)(q) = q. For q �∈ S(r) the projection onto
S(r) can be calculated as follows: Let j∗ := argminj=1,...,4 ‖q − Πj(q)‖, where
Πj is the projection on the j-th side of the square. Then ΠS(r)(q) = Πj∗(q).

Each of the projections Πj is a composition of the orthogonal projection onto
a line and a projection from the line onto a line segment. Only the projection
onto the line depends on the parameter r. Since the orthogonal projectionΠ onto
a line {a+ tb | t ∈ R},‖b‖ = 1, which is given by Π(q) = a+ 〈q− a, b〉b, depends
continuously on a, b, the continuity of ΠS(r)(q) w.r.t. r follows. Obviously, the
transition between the cases q ∈ S(r) and q �∈ S(r) is continuous. ��
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In the following, we describe the construction of a vector r(u) depending con-
tinuously on u, such that r(u) = v1(u), if λ1(u) � λ2(u).

Note that the eigenvectors of J(u) ∈ R2×2 depend continuously on u, as long
as the eigenvalues λ1(u) and λ2(u) differ (cf. Theorem 3 in [12]). We define

coh(u) := λ1(u) − λ2(u) ≥ 0.

Note that coh(u) depends continuously on u, since the eigenvalues depend con-
tinuously on J(u) (cf. e.g. Theorem of Wielandt-Hoffman in [16]), and J(u),
which is a composition of convolution and differentiation, is continuous w.r.t. u.

Now let g : R+
0 → [0, 1] be a continuous and increasing function, such that

g(0) = 0 and limx→∞ g(x) = 1. Moreover, let I(p, q, t) : S1 ×S1 × [0, 1] → S1 be
a continuous interpolation from p to q on the unit sphere S1 with the properties,
that I(p, q, 1) = p, I(p, q, 0) = q and ‖I(p, q, t)− q‖ ≤ C‖t‖ for some C > 0. (For
example, a steady rotation of vector p onto q suffices.) We set

D(p) := S(r(f − div p)), (13)

where r(u) := I(v1(u), (1, 0)�, g(coh(u))). The set D(p) satisfies Assumption 1:

Proposition 2. Let D(p) be defined as in (13). Then

1. D(p) is closed, convex and satisfies {0} ⊂ D(p) ⊂ B√
2α(0).

2. For fixed q ∈ R2, u→ ΠD(p)(q) is continuous.

The proof of Prop. (2) utilizes the following lemma:

Lemma 3. Let q be fixed. Then r(u) = I(v1(u), q, g(coh(u))) depends continu-
ously on u.

Proof. We distinguish between the cases coh(u) > 0, and coh(u) = 0. In the
first case, v1(u) is an eigenvector to an isolated eigenvalue and thus depends
continuously on J(u), see [12]. Moreover coh(u) depends continuously on J(u)
(cf. [16]). Since J(u) is a composition of convolutions and differentiation, it
depends continuously on u; thus coh(u) and v1(u) are continuous. The continuity
of r(u) at u, coh(u) > 0 then follows from the continuity of I and g.

In the second case, coh(u) = 0, we find from the continuity of coh(u) that
coh(uk) → 0 for every sequence uk converging to u. Then the continuity of r(u)
follows from

‖r(uk) − r(u)‖ = ‖I(uk, q, g(coh(uk))) − I(u, q, g(coh(u)))‖
= ‖I(uk, q, g(coh(uk))) − q‖ ≤ Cg(coh(uk)) → 0,

using the properties of the interpolation I. ��
Proof of Prop. 2: (i) The set D(p) is a closed square with center 0 and sides
of length 2α > 0. (ii) Lemma 3 provides the continuity of r(u). Moreover, u =
f − div p depends continuously on p. Together with Lemma 2 the continuity of
D(p) follows. ��
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4.2 Anisotropic TV with Double Directions

Steidl & Teuber [15] proposed an anisotropic TV method based on the estimation
of two orientations r1, r2 : Ω → R2. They consider the variational problem:

min
u

1

2
‖u− f‖2 + α

(|r�1 ∇u| + |r�2 ∇u|) , (14)

where two models for obtaining r from the data f are proposed. As an alternative
to (14), they propose to use infimal convolution. In the dual formulation of (14)
the set D = D(f) is a parallelogram with sides ri, i = 1, 2:

P(r1, r2) := {p ∈ R2 : |r�1 p| ≤ α, |r�2 p| ≤ α}. (15)

In our considerations, we concentrate on the ’occlusion model’ described in [15].
Moreover, we consider ri depending on the unknown u := f − div p and, by
introducing slight changes of the original approach, guarantee the applicability
of the theoretical results of Sect. 3. The orientations ri are obtained as follows.

Let ν(u) :=
(
(∂xuσ)2, ∂xuσ∂yuσ, (∂yuσ)2

)�, where uσ is defined as in Sect. 4.1.
For the occlusion model, the following structure tensor is utilized:

J0(u) := ν(u)ν�(u), J(u) := Kρ ∗ J0(u),

where the convolution is applied componentwise.
Now let λ1(u) ≥ λ2(u) ≥ λ3(u) ≥ 0 denote the eigenvalues of J(u), and v1(u),

v2(u) and v3(u) the corresponding eigenvectors.
Analogously to the previous section, in view of the continuity of vi(u) we have

to deal with non-isolated eigenvalues. To this end, we define

coh1(u) := λ1(u) − λ2(u), coh2(u) := λ2(u) − λ3(u).

In order to define r1(u), r2(u), we consider the following cases:
Case 1 & 2 – corners (coh2(u) > 0): Steidl & Teuber distinguish between
the cases v3,1 �= 0 and v3,1 = 0 (v3,1 being the first entry of v3). In the case
v3,1 �= 0, they propose to use the unit vectors r11(u) ‖ (v3,1(u), y1(u))� and
r12(u) ‖ (v3,1(u), y2(u))�, where y1(u), y2(u) are the solutions of the quadratic
equation y2 + v3,2(u) y + v3,1(u) v3,3(u) = 0. Otherwise, the unit vectors r21(u) ‖
(v3,2(u), v3,3(u))� and r22(u) ‖ (−v3,3(u), v3,2(u))� can be used.
Case 3 – edges (coh2(u) ≈ 0, coh1(u) > 0): Since we can only guarantee that
eigenvalue λ1(u) is isolated, we determine r1, r2 depending on the eigenvector
v1(u). Along straight edges, the eigenvector v1 is parallel to the normal of the
edge. Therefore v1 and v⊥1 are suitable for defining the orientation for anisotropic
TV at edges. We set r31(u) ‖ (v1,1(u), v1,2(u))� and r32(u) ‖ (−v1,2(u), v1,1(u))�.
Case 4 – homogeneous regions (coh1(u) ≈ coh2(u) ≈ 0): We use the default
orientations r41(u) := (1, 0)� and r42(u) := (0, 1)�.

In general, r1(u), r2(u) have to be continuous interpolations between the above
cases. For i = 1, 2 let

ri(u) = I
(
I
(
r1i (u), r2i (u), g(|v3,1(u)|)

)
, I
(
r3i (u), r4i (u), g(coh1(u))

)
, g(coh2(u))

)
(16)

using g and I as defined in the previous section.
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Proposition 3. Let D(p) = P(r1(f − div p), r2(f − div p)) with P(r1, r2) being
the parallelogram defined in (15) and ri(u), i = 1, 2 defined as in (16).

1. D(p) is closed, convex and satisfies {0} ⊂ D(p) ⊂ B2α(0).
2. ΠD(p)(q) for fixed q depends continuously on p.

In particular, D(p) satisfies Assumption 1.

Proof. The first claim follows from the fact that D(p) is a closed parallelogram
with sides of length α. For the continuity ofΠD(p)(q), we observe that the vectors
rj
i (u), i = 1, 2, j = 1, . . . , 4 are defined in a way that they depend continuously

on u = f − div p. The continuity of ri(u), i = 1, 2 is guaranteed by smooth
interpolation (c.f. proof of Proposition 3). The proof of the continuity of P(r1, r2)
is analogous to the proof of Lemma 2. ��

5 Anisotropic Spatio-temporal TV Minimization

In the following we describe a spatio-temporal TV minimization approach. We
interpret time as third coordinate, thus u, f : Ω ⊂ R3 → R.

To obtain directional information, we utilize the three-dimensional structure
tensor Jρ(u) defined analogously to (10) and (11). Let λ1(u) ≥ λ2(u) ≥ λ3(u) > 0
denote the eigenvalues and v1(u), v2(u), v3(u) the eigenvectors of Jρ(u).

Let us assume that a two-dimensional surface is present in uσ(x). Then
λ1(u) � λ2(u) and v1(u) approximates the normal to this surface. The idea
is to penalize variations mainly in directions tangential to the surface. To this
end we set

D(p) := E(v1(f − div p), α, β),

where E(r, α, β) := {q ∈ R3 : |r�q|2/β2 + ‖q − rr�q‖2/α2 ≤ 1}, 0 < β � α.
In homogeneous regions, where a unique orientation r can not be estimated,

we chooseD(p) := Bα(0). A continuous transition between both cases is obtained
by defining

D(p) := E(r(f − div p), α̃(f − div p), β), (17)

where
coh1(u) := λ1(u) − λ2(u) � 0,

r(u) := I
(
v1(u), (0, 0, 1)�, g(coh1(u))

)
,

α̃(u) := g(coh1(u))α+ (1 − g(coh1(u)))β.

In order to remove speckles and similar kinds of distortions, an adaptation of (17)
is required. This is due to the fact that at speckles, v1(u) is in direction of
(0, 0, 1)�. Using (17) with the above α̃ then would lead to a penalization of ∇u
mainly in spatial directions, which is not suitable for removing distortions of
medium/large scale in spatial directions. Instead we propose to use (17) with

α̃(u) = g(coh1(u))g(φ(u))α + (1 − g(coh1(u))g(φ(u)))β, (18)

where φ(u) is the angle between v1(u) and (0, 0, 1)�. The above modification
leads to stronger smoothing of surfaces parallel to the x1, x2-axes.
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Fig. 1. 2D anisotropic TV filtering of artificial test image. Left: noisy test images,
middle: filtering with the standard ROF model, right: anisotropic filtering with double
directions. All images are scaled with respect to the intensity range of the original test
image. Undesirable smoothing effects are considerably reduced on the right.

Fig. 2. 2D anisotropic filtering of real-world test image. Left: noisy test images, middle:
result of standard ROF minimization, right: result of anisotropic TV minimization with
double directions. Undesirable smoothing effects are considerably reduced on the right,
see Fig. 3 for detailed views.

Proposition 4. The set D(p) defined in (17) with the above definitions of α̃(u)
satisfies Assumption 1.

Proof. The set D(p) is a closed ellipsoid and therefore is convex. Its half-axes
are bounded by max{α, β}, thus 0 ⊂ D(p) ⊂ Bmax{α,β}(0). The projection
onto the ellipsoid E(r, α̃, β) can be expressed as a continuous function of r, α̃,
β and one distinct root of a rational function, see [7]. In a surrounding of this
root, the function depends continuously on the half-axes. Thus the root depends
continuously on r, α̃ and β. r and α̃ depend continuously on u = f − div p, as
coh1(u) and φ(u) do. Moreover, u depends continuously on p. ��

6 Experiments

6.1 Anisotropic TV Minimization with Double Directions

We present experimental results for the anisotropic TV model with D(p) as
defined in (15) and r1, r2 as defined in (16). We compare this method with
standard ROF minimization, using the same regularization parameter α. We
consider two different test images, both with artificial noise.
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Fig. 3. Zoom into two regions of the filtered images shown in Fig. 2. Left: standard
ROF, middle: anisotropic TV minimization with D = D(f), right: adaptive anisotropic
TV minimization with D = D(p). It can be observed that adaptivity of the TV regu-
larization improves with increasing number of iterations.

For the first test image (cf. Fig. 1, left) we use α = 0.6 and 10 outer iter-
ation steps. The results of the standard and anisotropic TV model are shown
in Fig. 1, middle and right, respectively. A comparison shows, that anisotropic
TV minimization better reconstructs corners of parallelogram and produces less
smoothing at corners (as already demonstrated in [15]).

The second test image is a real world image with artificial noise, cf. Fig. 2,
left. The result of standard ROF and anisotropic TV minimization for α = 0.4
and 10 outer iteration steps is depicted in Fig. 2, middle and right, respectively.

In order to highlight differences, we zoom into two regions of the image: Fig. 3
shows the results for the standard ROF model (left), the result of applying
anisotropic TV minimization with double directions, where the constraint set
depends only on the data f , i.e. D = D(f) (middle), and the result of anisotropic
TV with the constraint set depending on the solution, D = D(p) (right). It can
be observed that anisotropic filtering leads to an improved and more regular
reconstruction of edges and less stair-casing. If the constraint sets depend on
the solution itself, an adaption to local structures can be observed during the
iterations, see Fig. 3, bottom right. Here, the reconstruction of the characters
improves when using fully adaptive constraint sets.

6.2 Adaptive Motion-Based TV Minimization for Image Sequences

In our example for spatio-temporal TV minimization, we consider an image
sequence taken with a time-of-flight (ToF) camera, see Fig. 4 (4 frames out of the
whole sequence). ToF cameras provide a depth map of the captured scene. The
noise and speckles, which can be observed in the original data, are introduced
by the camera system.
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Fig. 4. Four exemplarily selected frames of a sequence of depth maps taken with a
time-of-flight camera

Fig. 5. (a) one of the original frames with real noise. (b) frame filtered with standard
2D ROF. (c) frame filtered with standard 3D ROF. (d) frame filtered with proposed
adaptive TV minimization. Only the spatio-temporal methods are able to remove both
noise and speckles. Anisotropic TV keeps the result sharper than isotropic 3D TV
minimization.

Fig. 6. Zoom into two regions of the depth map shown in Fig. 5. First column: original
data, second column: result of standard 2D ROF filtering, third column: 3D ROF
filtering, fourth column: proposed adaptive TV minimization. Only the spatio-temporal
methods are able to remove both noise and speckles. Anisotropic TV keeps the result
sharper than 3D ROF minimization.

For filtering, we propose to use spatio-temporal anisotropic TV with D(p)
as defined in (17) and α̃ defined as in (18). As parameters, we chose α = 0.3,
β = 0.001 and 10 steps for the outer iteration. The result for one specific frame
is depicted in Fig. 5, right. We compare this method with standard 2D ROF
(Fig. 5, second left) and 3D ROF in the spatio-temporal domain (Fig. 5, second
right), using the same parameter α = 0.3. Additionally, we zoom into two image
regions, see Fig. 6. We observe that standard 2D ROF filtering provides a good
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noise removal with preserving edges, but is not able to remove the speckles. 3D
ROF filtering removes both noise and speckles, but introduces some blurring
of edges, which is due to the stair-casing effect in 3D. The proposed adaptive
anisotropic TV comprises both the advantages of the 2D and 3D isotropic model:
it removes noise and speckles, while edges in each individual frame are kept sharp.

7 Conclusion

In this work we have presented a general approach for adaptive total variation.
Existence results as well as a first basic algorithm have been provided. Several
applications demonstrate the usability of our concept. As future work, we will
support our framework with convergence results and investigate efficient numer-
ical solvers.
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Abstract. In this paper, we provide a new model for simultaneous de-
noising and illumination correction. A variational framework based on
local maximum likelihood estimation (MLE) and a nonlocal regulariza-
tion is proposed and studied. The proposed minimization problem can
be efficiently solved by the augmented Lagrangian method coupled with
a maximum expectation step. Experimental results show that our model
can provide more homogeneous denoisng results compared to some ear-
lier variational method. In addition, the new method also produces good
results under both Gaussian and non-Gaussian noise such as Gaussian
mixture, impulse noise and their mixtures.

1 Introduction

Image denoising is a fundamental technique of image processing. A large number
of denoising methods have been proposed. It is common to assume that the noise
is additive, i.e.

f(x) = u(x) + n(x),

where f, u, n : Ω ⊆ R2 �→ R are the observed noisy image, true image and
noise, respectively. Image denoising is to recover u for any given f and a priori
knowledge of n. Variational method is one of the most efficient methods. It has
now grown as a popular and widely used tool in image processing. Since the
ROF model was proposed in [1], many variants based on total variation (TV)
had been designed for different denoising tasks due to its good edges-preserving
properties. Extending ROF, the authors in [2, 3, 4, 5] have used L1 norm or its
linear combinations as the fidelity term to removing impulse noise. In order
to better preserve some small structures such as textures, an efficient method
called nonlocal mean was discussed in [6]. Motivated by the nonlocal mean and
the graph theory, the nonlocal TV variational framework base on nonlocal op-
erators was proposed in [7]. In [8], it was extended to nonlocal Mumford-Shah
regularizers for image restoration. However, all these methods do not consider

A.M. Bruckstein et al. (Eds.): SSVM 2011, LNCS 6667, pp. 218–230, 2012.
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the varying illumination in the images. Moreover, it is also hard to treat cases
that the intensity values are inhomogeneous.

Illumination correction or bias field correction is very important for real im-
ages. The artifacts caused by smooth, spatially varying illumination, although
not usually a problem for visual inspection, can dramatically impede automated
processing of the images. A widely accepted bias model, such as in MRI data, is
the multiplicative bias field, which assumes that the observed signal f is equal
to an uncorrupted signal u scaled by some bias β, i.e. f = βu. Then the appli-
cation of a logarithmic transformation to the intensities allows the artifact to be
modeled as an additive bias field ln f = lnu+ lnβ. There are some works based
on this logarithmic additive model for image segmentation such as [9,10,11] etc..

Motivated by modeling the illumination bias with a multiplicative field in
segmentation problem, in this paper, we propose an unified model for denoising
and correcting illumination simultaneously with different types of noise include
Gaussian noise, impulse noise and their mixtures. Our model is built on MLE and
nonlocal regularization. To be different from the traditional regularized MLE,
we construct a novel block-based adaptive data-fidelity term to handle inho-
mogeneous illumination and the noise. Besides, our approach do not need any
additional constraints such as regularization on the bias function β to keep it
smooth. Anther superiority of this model is that it can work well under different
types noise like Gaussian, impulse noise, Gaussian noise plus impulse noise. The
new model can be efficiently optimized by an extended augmented Lagrangian
method (ALM) for nonlocal regularization according to the recently proposed
ALM framework [13, 14] together with a maximum expectation process. These
algorithms extend the Split-Bregman method of [17].

The rest of the paper is organized as follows: Section 2 gives our proposed
model. Section 3 contains the optimization algorithms, while numerical experi-
ments are presented in Section 4

2 The Proposed Model

2.1 Some Model Assumptions

In this paper, we consider the noise model with illumination bias

f(x) = β(x)(u(x) + n(x)), (1)

where f is an observed noisy image, u stands for the ground truth image, n
represents noise and β is a illumination bias function. In order to get a suitable
denoising cost functional, we have the following assumptions:

– A1: the noise n(x) at each location x is a realization of a random variable ξ
with Gaussian mixture probability density function (PDF)

∑K
k=1 γkpk(z; ck,

σ2
k). Here pk(z; ck, σ2

k) is the 1-D Gaussian PDF parameterized by mean ck
and variance σ2

k, and γk is the mixture ratio which satisfies
∑K

k=1 γk = 1.
This is an extended Gaussian noise model.
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– A2: the bias function β(x) > 0, and β is smoothly varying. Motivated
by [12], we use the following method to describe the smoothness of β: In a
small neighborhood Ox centered at x, β satisfies β(y) ≈ β(x) when y ∈ Ox.

Now, we suppose the intensity value of the observed pixels at location x,
namely f(x), is a realization of a random variable η, then according to assump-
tion A1 and model (1), we have

Proposition 1. The PDF of η has the expression

pη(z) =
K∑

k=1

γk√
2πσkβ(x)

exp
(
− [z − ckβ(x) − u(x)β(x)]2

2σ2
kβ

2(x)

)
.

In the next, we shall use this PDF to construct a local data-fidelity in terms of
MLE and some model assumptions.

2.2 The Local Fidelity Term

Let us construct a new local data term according to the pixel density function in
the section. Let Θ = {γ1, · · · , γK , c1, · · · , cK , σ2

1 , · · · , σ2
K , β} is a parameter set.

By independence assumption of f(x), the PDF expression in the proposition 1
and a likelihood process, one can get the continuous functional in a neighborhood
Oy centered at y

Ly(u,Θ; f) =
∫

Oy

ln
K∑

k=1

γk√
2πσkβ(x)

exp
(
− [f(x) − ckβ(x) − u(x)β(x)]2

2σ2
kβ

2(x)

)
dx.

Note that β(x) can be replaced by β(y) when x ∈ Oy in terms of assumption
A2, thus Ly becomes

Ly(u,Θ; f) =
∫

Oy

ln
K∑

k=1

γk√
2πσkβ(y)

exp
(
− [f(x) − ckβ(y) − u(x)β(y)]2

2σ2
kβ

2(y)

)
dx.

At this time, we get a local data fidelity term Dy(u,Θ) = −Ly(u,Θ; f(x)) in
Oy. If we consider the different contributions to the fidelity Dy in terms of the
distance from the neighborhood center, then we can assign some weights to
different pixels. A common choice for this is the so-called Gaussian smoothness,
and thus we get a cost functional

Dy(u, Θ) = −
∫

Oy

Gσ(y − x) ln
K∑

k=1

γk√
2πσkβ(y)

exp

(
− [f(x) − ckβ(y) − u(x)β(y)]2

2σ2
kβ2(y)

)
dx.

Here Gσ is a Gaussian kernel with a given standard deviation σ. Our objective
is to recover all the degraded pixels. Thus we need to minimize all the local data
fidelity. We shall use the cost functional

D(u, Θ) =

∫
Ω

Dy(u, Θ)dy = −
∫

Ω

∫
Oy

Gσ(y − x) ln
K∑

k=1

γk√
2πσkβ(y)

exp

⎛⎝−
[
f(x)
β(y) − ck − u(x)]2

2σ2
k

⎞⎠ dxdy.
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Using properties of the Gaussian kernel, Gσ(y−x) ≈ 0 when x �∈ Oy by choosing
an appropriate σ, the neighborhoodOy in the second integration can be dropped.
However, this new data-fidelity term is not easy to minimize due to the log-sum
function. We use the conclusion of the following proposition [15,16] to overcome
this difficult.

Proposition 2. For all αk(x) > 0, let Δ = {φ(x) = (φ1(x), · · · , φk(x)) :∑K
k=1 φk(x) = 1, φk(x) > 0}, then

− ln
K∑

k=1

αk(x) exp(−ψk(x)) = min
φ(x)∈Δ

{
K∑

k=1

(ψk(x) − ln αk(x))φk(x) +
K∑

k=1

φk(x) log φk(x)

}
.

By applying Proposition 2 with αk(x)=
γk√

2πσkβ(y)
, ψk(x)=

[ f(x)
β(y) − ck − u(x)]2

2σ2
k

,

D(u,Θ) becomes

D(u,Θ) =
∫

Ω

∫
Ω

Gσ(y − x) min
φ(x)∈Δ

{∑K
k=1[

( f(x)
β(y)−ck−u(x))2

2σ2
k

− ln γk

+ ln(
√

2πσkβ(y)) + lnφk(x)]φk(x)}dxdy.
Unlike the common methods to choose the negative log-likelihood as the data-
fidelity term, we introduce a functional E(u,Θ, φ) with an additional variable
φ:

E(u, Θ, φ) =∫
Ω

∫
Ω

Gσ(y − x)
K∑

k=1

⎡⎣ ( f(x)
β(y) − ck − u(x))2

2σ2
k

− ln γk + ln(
√

2πσkβ(y)) + ln φk(x)

⎤⎦ φk(x)dxdy,

and consider the the minimization problem

(u∗, Θ∗, φ∗) = argmin
u,Θ,φ∈Δ

E(u,Θ, φ) (2)

to be solved by the following alternative minimization procedure:⎧⎨⎩
φν+1 = arg min

φ∈Δ
E(uν , Θν , φ),

(uν+1, Θν+1) = arg min
u,Θ

E(u,Θ, φν+1). (3)

Actually, the above iteration scheme can be interpreted as the well-known
expectation-maximization (EM) algorithm. The updating of φ and Θ corre-
sponding to the E-step and M-step, respectively. One can also prove that

Proposition 3. The sequence uν, Θν produced by iteration scheme (3) satisfies
D(uν+1, Θν+1) � D(uν , Θν).

Thus we can take E(u,Θ, φ) as the data-fidelity term. Compared to the model
that directly usesD(u,Θ), we get some close-form solutions for the sub-problems
when optimizing E(u,Θ, φ).
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2.3 Nonlocal TV

Nonlocal regularization could preserve repeated structures and textures and at
the same time remove noise. The nonlocal denoising method was first proposed
by Buades etc. [6]. In [7], Gilboa and Osher defined a variational framework based
nonlocal operators. Let us review some definitions and notations on nonlocal TV
regularization. Let Ω ⊂ R2, H1 = L2(Ω), H2 = L2(Ω × Ω) and ω(x, y) ∈ H2

be a nonnegative symmetric weight function. The nonlocal gradient operator
∇ω : H1 �→ H2 is defined as the vector of all partial derivatives at x such that:

(∇ω ◦ u)(x) �→ ∇ωu(x, y) 	 (u(y) − u(x))
√
ω(x, y).

The inner product in H1 and H2 is defined as

< u, v >H1=
∫

Ω

u(x)v(x)dx, < p, q >H2=
∫

Ω

∫
Ω

p(x, y)q(x, y)dydx.

Naturally, the isotropic L1 and L2 norms in H2 is

||p||1 =
∫

Ω

√∫
Ω

p(x, y)2dydx, ||p||2 =

√∫
Ω

∫
Ω

p(x, y)2dydx.

The nonlocal divergence operator divω : H2 �→ H1 is given by the standard
adjoint relation

< ∇ωu, p >H2= − < divωp, u >H1 ,

which leads to

divωp(x) =
∫

Ω

(p(x, y) − p(y, x))
√
ω(x, y)dy.

Thus the nonlocal Laplacian operator Δω : H1 �→ H1 is given by

Δωu(x) = divω∇ωu(x) = 2
∫

Ω

(u(y) − u(x))ω(x, y)dy.

With these notations, the nonlocal TV functional

Rω(u) = ||∇ωu||1 =
∫

Ω

√∫
Ω

(u(x) − u(y))2ω(x, y)dydx.

In this paper, we shall use the following weighting function [6]:

ωf(x, y) = exp{−
∫

Ω Ga(z)(f(x+ z) − f(y + z))2dz
2h2

}. (4)
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2.4 The Proposed Cost Functional

The data-fidelity term E(u,Θ, φ) together with the nonlocal TV norm yield
the following new cost functional for simultaneous denoising and illumination
correction :

J(u,Θ, φ) = E(u,Θ, φ) + μ||∇ωu||1,
where μ > 0 is a regularization parameter.

We need to impose some constraint condition on the parameters

Θ = {γ1, · · · , γK , c1, · · · , cK , σ2
1 , · · · , σ2

K , β}

and φ. For γk, we require
∑K

k=1 γk = 1 since it represents the mixture ratio. The
φk(x) is actually a probability distribution of the pixel f(x) contaminated by
the noise comes from the k-th Gaussian distribution with mean ck and variance
σk. Thus, the constraint φ ∈ Δ can guarantee this.

3 Algorithm: Augmented Lagrangian Method and EM

Operator splitting is an efficient method to solve L1 minimization. In recent
years, many efficient algorithms based on operator splitting have appeared, such
as split Bregman method [17], augmented Lagrangian method (ALM) [13, 14],
Douglas-Rachford splitting [18] and so on. These methods are all equivalent un-
der certain conditions. In [13, 14], the authors only considered the local L1 reg-
ularization, here we extend the split Bregman method [17] following the frame-
work of Tai and Wu [13, 14]. The nonlocal TV in our model can be efficiently
optimized with ALM.

In order to apply augmented Lagrangian method, the original minimization
problem

(u∗, Θ∗, φ∗) = arg min
u,Θ,φ∈Δ

J(u,Θ, φ)

is reformulated as a constraint optimization minimization problem:

(u∗, d∗, Θ∗, φ∗) = arg min
u,d,Θ,φ∈Δ

E(u,Θ, φ) + μ||d||1 s.t. d = ∇ωu. (5)

The augmented Lagrangian functional for this constrained minimization problem
is:

L(u, d,Θ, φ, λ) = E(u,Θ, φ) + μ||d||1+ < λ, (d−∇ωu) >H2 +
r

2
||d−∇ωu||22,

where the Lagrangian multiplier λ(x, y) ∈ H2, and r > 0 is a penalty parameter.
It can be shown that one of the saddle points (û, d̂, Θ̂, φ̂, λ̂) of L(u, d,Θ, φ, λ)
is a solution of (5). We can search a saddle point by the following alternative
algorithm: {

(uν+1, dν+1, Θν+1, φν+1) = argmin
u,d,Θ,φ∈Δ

L(u, d,Θ, φ, λν ),

λν+1 = λν + r(dν+1 −∇ωu
ν+1).

(6)
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First, let us derive the updating formulations for uν+1 and dν+1. Denote

H(u) =
∫

Ω

∫
Ω

Gσ(y − x)
K∑

k=1

[ f(x)
β(y)ν − cνk − u(x)]2

2(σ2
k)ν

φν
k(x)dxdy.

Ignoring the constant terms, the minimization problem for u and d can be rewrit-
ten as

(uν+1, dν+1) = argmin
u,d

H(u) + μ|d|1 +
r

2
||d−∇ωu+

λν

r
||22.

We define b = −λ
r , together with the second updating formula in (6), one get

the following iterative scheme:{
(uν+1, dν+1) = argmin

u,d
H(u) + μ|d|1 + r

2 ||d−∇ωu− bν ||22,
bν+1 = bν + ∇ωu

ν+1 − dν+1.
(7)

Note that (7) actually is the split Bregman iteration and b is the Bregman
vector [19]. We shall use an alternative minimization for u and d. The Euler-
Lagrange equation for u is:

(

K∑
k=1

φν
k

(σ2
k)ν

− r�ω)u =

K∑
k=1

φν
k

(σ2
k)ν

[
f(x)

∫
Ω

Gσ(y − x)
1

β(y)ν
dy − cν

k

]
+ rdivω(bν − dν),

(8)

The above equation is linear. Its approximate solution uν+1 can be easily com-
puted by a Gauss-Seidel process.

Once uν+1 and bν is known, the minimizer dν+1 is given by the following
shrinkage operation:

dν+1 = shrink(∇ωu
ν+1 + bν ,

μ

r
) =

∇ωu
ν+1 + bν

|∇ωuν+1 + bν | max{|∇ωu
ν+1 + bν | − μ

r
, 0}
(9)

For φν+1
k and Θν+1, both of them have explicit solutions. To simplify the nota-

tions, we define

qν
k(x) 	 γν

k√
(σ2

k)ν
exp

(
− 1

2(σ2
k)ν

∫
Ω

Gσ(y − x)
(
f(x)
βν(y)

− cνk − uν+1(x)
)2

dy

)
,

sν+1(y) 	
K∑

l=1

∫
Ω

Gσ(y − x)
cν+1
l + uν+1(x)

(σ2
l )ν+1

f(x)φν+1
l (x)dx,

tν+1(y) 	
K∑

l=1

1
(σ2

l )ν+1

∫
Ω

Gσ(y − x)f2(x)φν+1
l (x)dx.
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Then the solutions for the E-step and M-step are given by:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φν+1
k (x) =

qν
k(x)

K∑
l=1

qν
l (x)

,

γν+1
k =

∫
Ω

φν+1
k (x)dx∫
Ω

1dx
,

cν+1
k =

∫
Ω

φν+1
k (x)[f(x)

∫
Ω

Gσ(y − x)
1

βν(y)
dy − uν+1(x)]dx∫

Ω

φν+1
k (x)dx

,

(σ2
k)ν+1 =

∫
Ω

φν+1
k (x)

∫
Ω

Gσ(y − x)
(
f(x)
βν(y)

− cν+1
k − uν+1(x)

)2

dydx∫
Ω

φν+1
k (x)dx

,

βν+1(y) =
−sν+1(y) +

√
(sν+1(y))2 + 4tν+1(y)

2
.

(10)
Our algorithm with weight ω updating can be summarized as in the following:
Algorithm 1 (ALM-EM algorithm). Given K, Choosing Θ0, u0, φ0, b0, d0,
and the parameters μ, r. Let ν = 0 and calculate the initial weight ωf . Do:
1. ALM step: updating uν+1, dν+1 and bν+1 according to (8), (9) and the second
equation in (7), respectively.
2. If ||uν+1 − uν ||22 < 10−5||uν ||22, end the algorithm; else go to the next step.
3. E-step: updating φν+1 using the first equation of (10).
4. M-step: updating the parameter set Θν+1 using in (10).
5. Updating weight: if mod(ν + 1, 5) == 1, compute ωuν+1/βν+1

using (4). Set
ν = ν + 1, and go to the ALM step.

4 Numerical Experiments

4.1 Parameters and Initial Values Selection

In this section, we give some guidelines and criterions on selection of the param-
eters and initial values. Here we suppose the observed image f(x) ∈ [0, 1].

The parameter K is the number of the Gaussian PDF and it usually set to
2 or 3. Larger K can better models the true distribution of noise in some real
applications, but the algorithm would be more time-consuming. In this paper,
we set K = 2 for all the experiments.

The σ in the Gaussian kernel Gσ controls the smoothness of bias function β.
Generally speaking, we need to choose a large value to keep the β smooth due to
the fact that the illumination or intensity inhomogeneity in an images is often
slow-varying. In our tests, we choose σ = 10.
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The regularization parameter μ depends on the noise level. We find that μ in
our model is not so sensitive to the noise level as in the nonlocal ROF model. This
might be related to the fact that the introduction of the noise variance parameter
σ2

k, and σ2
k can adaptively balance the data-fidelity and the nonlocal TV terms

together with μ. Experimental results show that μ ∈ [1, 15] can yield good results
for different noise levels. In the experiments, unless otherwise specified, we set
μ = 5. In addition, we set penalty parameter r = 200.

The initial value b0 = d0 = 0, γ0
1 = γ0

2 = 1
2 , c

0
1 = c02 = 0, σ2

1 = 0.1, σ2
2 =

0.01, φ1 = 1, φ2 = 0 are used. We can assume the desirable β to be around 1,
and thus we set β0 = (Gσ ∗ f + 1.5)/2. Finally, we let u0 = Gσ ∗ f

β .

4.2 Experimental Results

We first mention that the proposed model will reduced to the nonlocal ROF
model by setting control parameter β = 1 and others in Θ to be equal, i.e.
γ1 = γ2, σ

2
1 = σ2

2 , and so on. Thus if the illumination of an image is very
homogeneous and the noise obeys a single Gaussian distribution, our method
produces similar results as the nonlocal ROF model.

The superiority of our model is that it can work well under inhomogeneous
illumination even with noise mixing. We shall tests these out.

Fig. 1 shows the results of the nonlocal ROF model [7] and our model under
Gaussian mixture noise. The original image is displayed in Fig.1(i), one can
find that the illumination of the original image itself is not homogeneous and
the intensity on the left side is slightly lighter than the one on the right. We
add noise and get the observed image f as shown in Fig.1(a). Here, the image
f is corrupted by two additive white Gaussian noise with standard deviation
75
255 and 20

255 , respectively. The mixture ratio is about 1 : 3. As can be seen
from the Fig.1(b) and Fig.1(c), the denoising result provided by the proposed
method is better than the nonlocal ROF model. Firstly, the intensity of the
reconstructed image in Fig.1(c) is more homogeneous than the one in Fig.1(b).
This is caused by the use of β in our model. It can correct the inhomogeneous
illumination. Secondly, our method can better preserve details in the texture
areas and simultaneously clean the noise in the flat areas by adaptively adjusting
the data term and nonlocal TV term through the control parameters σ2

k and φk.
We use PSNR = 10 log10

1
var(f−f̂)

to evaluate the quality of the denoising images,

where f, f̂ are observed and reconstructed images, respectively. For the proposed
model, obviously, we need to define f̂ = βu and then calculate the PSNR to
make comparisons with other methods. The PSNR values for nonlocal ROF
and the proposed are 23.94 and 27.34, respectively. Some estimated functions
and parameters in the proposed approach are illustrated in Fig.1(d)-1(g). For
visualization, we normalized β in [0,1] in Fig.1(d). The corrected noisy image
can be found in Fig.1(e). We also calculate the variances σf , σ f

β
of noisy image f

and the corrected image f
β respectively. We get σf = 0.0576, σ f

β
= 0.0486, which

indicates the intensity in the latter image is more uniform. As mentioned earlier,
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(a) Noisy (b) Nonlocal ROF (c) Proposed

(d) Estimated β (e) Correction f
β

(f) φ1f

(g) φ2f (h) The removed noise (i) Original

Fig. 1. A Comparison of nonlocal ROF [7] and the proposed model. (a)noisy image
with PSNR= 17.01; (b) result with nonlocal ROF, PSNR= 23.94; (c) u, result with
the proposed model, PSNR= 27.34 ; (d) the estimated bias function β; (e) the cor-
rected image f

β
; (f),(g) the estimated pixels with high level noise and low level noise,

respectively; (h) the removed noise by the proposed method, i.e. f
β
−u; (i) the original

image.
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(a) Impulse & Gaussian noise (b) AMF [20]

(c) Proposed (d) Estimated β

Fig. 2. Results under impulse noise plus Gaussian noise. (a)noisy image; (b) denois-
ing with adaptive median filter (AMF) in [20], PSNR=23.47; (c) denoising with the
proposed model, PSNR= 27.16 ; (d) the estimated bias function β;

(a) Observed f (b) Estimated u (c) Estimated β (d) f
β

Fig. 3. Applying to MR image
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our model can group the pixels into several clusters using different variances of
the noise. In Fig. 1(f) and 1(g), the finally estimated partitions are displayed.

A denoising result with the proposed model under impulse noise plus Gaus-
sian noise are given in Fig. 2. In this experiment, the image is contaminated by
25% salt-and-pepper noise together with Gaussian noise with standard devia-
tion 15

255 . Here we take the common used adaptive median filter (AMF) [20] for
comparison. It can be seen the AMF can clean impulse noise efficiently, but it
fails in removing Gaussian noise and retaining the textures. Compared with the
AMF, our method can give much better results. The denoised images and the
estimated bias function provided by our method are displayed in the last two
figures.

Fig. 3 shows result of applying the algorithm to MR images. In this experi-
ment, we need to tune the regularization parameter μ = 15 to get a smoothed
image since the level of noise in the images is low. The denoised, corrected images
and the estimated bias function β with the proposed algorithm are all illustrated
in the last three figures. A benefit of the intensity correction is that the corrected
images can be segmented easily with some center-based clustering methods such
as Chan-Vese model, but it is very difficult to obtain a desirable segmentation
result from the original data f .

5 Conclusion

We have presented an approach for simultaneous illumination correction and
denoising. Numerical experiments demonstrated the method is very superior for
mixed noise (e.g. impulse noise, Gaussian noise plus impulse noise etc.) compared
to some earlier proposed nonlocal variational PDE based models. In addition,
the non-uniform illumination function in the original data can be estimated and
corrected by using the bias function. Our method can be extended to image
segmentation, registration and some other computer vision problems.
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Abstract. This paper is about extending the classical Non-Local Means
(NLM) denoising algorithm using general shapes instead of square
patches. The use of various shapes enables to adapt to the local geometry
of the image while looking for pattern redundancies. A fast FFT-based
algorithm is proposed to compute the NLM with arbitrary shapes. The
local combination of the different shapes relies on Stein’s Unbiased Risk
Estimate (SURE). To improve the robustness of this local aggregation,
we perform an anistropic diffusion of the risk estimate using a properly
modified Perona-Malik equation. Experimental results show that this
algorithm improves the NLM performance and it removes some visual
artifacts usually observed with the NLM.

Keywords: Image denoising, non-local means, spatial adaptivity, ag-
gregation, risk estimation, SURE.

1 Introduction

During the last decades, the problem of image denoising in the presence of addi-
tive white Gaussian noise has drawn a lot of efforts. A wide variety of strategies
were proposed, from partial differential equations (PDE) to transform-domain
methods (e.g., wavelets), approximation theory or stochastic analysis.

A major difficulty in image denoising is to handle efficiently regular parts while
preventing edges from being blurred, thus one needs spatial adaptive methods to
deal with images. In PDE-driven image processing, this is often achieved using
anisotropic diffusion [1–3]. Spatial adaptivity can also be reached by considering
adaptive neighborhood filters, as the Yaroslavsky [4] or Bilateral [5] filters, or by
applying Lepski’s method [6] (cf. [7, 8]). Though efficient at dealing with edges
and smooth regions, such methods cannot proceed efficiently in textured regions.

To overcome this drawback, many authors have proposed to work with small
sub-images, called patches, to take into account the redundancy in natural im-
ages, especially in textured parts. The interest of using patches lies in their
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robustness to noise. The Non-Local Means algorithm (NLM) [9] and its variants
[10, 11] are typical examples consisting in averaging similar pixels, measuring
their similarity with patches. Dictionnary learning on patches achieves state-of-
the-art performance for denoising [12–14]. The key point of this method is to
get a good representation for each patch of the image by using �1 regularization
or greedy algorithms. Another state-of-the-art method in denoising is BM3D
[15]. It also relies on patches and combines classical filtering techniques, such as
wavelet thresholding and Wiener’s Filter, applied in the space of patches.

The NLM is quite efficient at dealing with smooth regions and textures. How-
ever, since it uses patches with fixed (square) shape and scale over the whole
image, the performance is limited when dealing with edges with high contrast.
Such edges can appear in natural images and in high dynamic range images
(HDR) since these images present high contrasted features. They present few
redundancies in term of patches, and their denoising versions suffer from a per-
sistence of residual noise: this is called the noise halo. A way to overcome this
drawback is to use locally chosen scales and orientations of shapes. As far as
we know, few attempts have taken advantage of several patch sizes [13, 16] and
only one handle variable shapes rather than squares ([17], to improve the BM3D
algorithm).

In the NLM framework, spatial-adaptivity may be reached by locally selecting
the parameters according to a local estimate of the risk [18]. This relies on
Stein’s Unbiased Risk Estimate (SURE) [19] which was first used with NLM to
globally select the bandwidth [20]. SURE-based methods were widely used in
image processing [21, 22] after their introduction for wavelet thresholding [23].

Our contributions — We investigate the potential benefit of replacing the
simple square patches with more general shapes, in the classical NLM filter. We
give in Section 2 a general overview of the NLM method. We propose in Section
3 a fast algorithm, Non-Local Means with Shape-Adaptive Patches (NLM-SAP),
based on the FFT, which allows to compute the solution of the NLM for arbitrary
shapes. In Section 4, we locally select or combine the shape-based estimates by
measuring the performance of their associated denoisers with SURE. As in [18],
one has to regularize SURE to make a local decision. Since the choice of shape is
an anistropic decision, a specificity of our approach is that it uses an anisotropic
diffusion scheme in the spirit of Perona and Malik [1]. In Section 5, we illustrate
numerically, and above all visually, the gain in aggregating various shape-based
estimates: using adaptive patch shapes in the context of NLM reduces the noise
halo produced around edges.

2 An Overview of the NLM

We focus on the problem of denoising: an observed image Y is assumed to be
a noisy version of an unobserved image f corrupted by a white Gaussian noise.
Let Ω ⊂ Z2 be the indexing set of the pixels. For any pixel x ∈ Ω:

Y(x) = f(x) + ε(x) , (1)
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where ε is a centered Gaussian random variable with known variance σ2 and
the noise components ε(x) are independent. First, let us present the definition
of the NLM as introduced in [9]. For each pixel the output of the procedure is
a weighted average of the whole image. The weights used are selected using a
“metric” which determines whether two pixels are similar or not. The core idea
of the NLM is to create a metric governed by patches surrounding each pixel,
regardless of their position, i.e., non-local in the image space. For a fixed (odd)
width p, a patch Px is a subimage of width p, centered around the pixel x, and
the NLM estimator of f(x) is then:

f̂(x) =
∑

x′∈Ω ω(x, x′)Y(x′)∑
x′∈Ω ω(x, x′)

, where ω(x, x′) = exp

(
−‖Px − Px′‖2

2,a

2h2

)
, (2)

where h > 0 is the bandwidth, ‖·‖2,a is a weighted Euclidean norm in R|P|

(|P| = p2) using a Gaussian kernel, a controlling the concentration of the norm
around the central pixel. The denominator is a normalizing factor ensuring the
weights sum to one. Let us briefly recall the influence of each parameter.

The bandwidth h plays the same role as the bandwidth for kernel methods:
the larger the bandwidth, the smoother the image. In [11], the authors set its
value according to the quantile of a χ2 distribution, due to the metric they
consider to compare patches. We adapt this method for our more general shapes.

The search window size � determines the pixels to be averaged in Eq. (2).
The summation is restricted to an � × � search window W around the pixel of
interest. This was proposed in [9] for computational acceleration. However, some
authors have noticed that choosing locally the best search window [11] or using
small ones [18, 24] could benefit to the NLM.

The patch size p is usually set globally (between 5 and 9). Choosing p = 1
would lead to a method close to the Bilateral Filter [5] or Yaroslavsky Filter [4].

3 From Patches to Shapes: Beyond the Rare Patch Effect

The NLM algorithm suffers from a noise halo around edges, due to an abrupt
lack of redundancy of the image, sometimes referred to as the rare patch effect. It
occurs because the NLM has large variance around edges. Several solutions have
already been proposed to handle this drawback [16, 18, 25]. We extend the latter
two approaches by considering general shapes instead of simple square patches.
To deal with arbitrary shapes, we reformulate the way the distance between
pixels is measured. We generalize the distance ‖·‖2,a used in Eq. (2) by:

d2
S(x, x′) =

∑
τ∈Ω

S (τ) (Y(x + τ) − Y(x′ + τ))2 , (3)

where S encodes the shape we aim at. We can use several shapes, so we need to
choose the collection of shapes and a way to take the most of each proposed one.
We provide an efficient algorithm to compute the distances in Eq. (3). It relies on
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(a) (b)

Fig. 1. (a) Examples of shapes with the “central” pixel shown in red. Shapes are
grouped in four categories: F1. the disk family, F2. the half-pies family, F3. the quarter-
pies family and F4. the bands family. (b) Eight denoised images obtained for different
oriented pie slices. Each denoiser provides good performance in a specific target direc-
tion but suffers from noise halos in the other directions. The final aggregate (center)
takes advantage of every oriented-denoiser to provide high quality restored edges.

the FFT and is independent of the shape S. We extend to general shapes, works
initiated to speed up the NLM [26, 27] by computing the distances between
patches with “Summed Area Tables” (also referred to as “Integral Images”). We
modify the original algorithm by swapping the two loops: instead of considering
all the shifts for each pixel, we consider all the pixels for each shift (see Fig.
2 for details). This reduces the computational cost from O(|W | · |Ω| · |P|) to
O(|W | · |Ω| · log(|Ω|)), where |W | = �2, |Ω| is the image size and |P| = p2.

The main purpose of this paper is to show that the use of different shapes
allows to reduce the rare patch effect. Another alternative consists in properly
handling overlapping square patches. Indeed, we get |P| estimates for each pixel.
In [9, 11], those |P| estimates are uniformly averaged while a weighted average is
performed in [16]. In our framework, these blockwise approaches are equivalent
to combine |P| (possibly) decentered square shapes. Now, the challenge is to find
shapes with enough similar candidates in the search window. We have considered
new shapes: disks, bands and pies (see Fig 1).

4 Aggregation of Shape-Based Estimates

For any pixel x, we can build a collection of K pixel estimators f̂1(x), · · · , f̂K(x)
based on different shapes, as estimates of their corresponding performance. We
can now focus on different aggregation procedures.
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Algorithm 2D-FFT NLM for an arbitrary shape

Inputs: noisy image Y, 2D-FFT of the shape F(S)
Parameters: search window W , bandwidth h
Output: estimated image f̂
Initialize accumulator images A and B to zero
for all shift vector δ in the search window W do

Compute Δδ(x) := (Y(x) − Y(x + δ))2 for all pixels x

Compute the 2D-FFT F(Δδ)
Perform the convolution of Δδ by the shape S

d2
S (·, · + δ) ←

(
F−1

(
F(S)F(Δδ)

))
(·)

for all pixels x in Ω do

Compute ω(x, x + δ) = exp

(
−d2

S(x, x + δ)

2h2

)
Update the accumulators A(x) ← A(x) + ω(x, x + δ)Y(x + δ)

B(x) ← B(x) + ω(x, x + δ)

end for
end for
Final (normalized) estimator f̂(x) = A(x)

B(x)
for all pixel x

Fig. 2. NLM pseudo-code for an arbitrary patch shape S. Pre-computations (2D-FFT)
of distances between shapes from the noisy image and shapes from its shifted version
leads to a complexity of O(|W | · |Ω| · log |Ω|), independent of the shape S.

4.1 Classical Methods

Uniformly weighted aggregation (UWA). The idea to give the same weight
to any shape-based estimator was already proposed for (possibly decentererd)
square patches in [9, 11], leading to the pixel-estimate f̂UWA(x). With few shapes
it is already an improvement in practice (see Table 2), but as the number of
shapes increases, we can take into account irrelevant positions. Moreover, such
a procedure still suffers from the rare patch effect.

Variance-based decision, Weighted Average (WAV). A possible way to
limit the noise halo is to adapt WAV-reprojection [16] to general shapes. The
idea, also proposed by Dabov et al. [15] in a different context, is to perform a
weighted average of the estimates f̂1(x), · · · , f̂K(x), where each weight is chosen
inversely proportional to the (estimated) variance of the corresponding estima-
tor. However, this method tends to over-smooth edges and thin details since it
does not consider the bias of each estimator.
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(a) Noise-free image (b) Noisy risk (c) Convolved risk (d) Aniso. diff. risk

Fig. 3. Maps of the estimated risk associated with disk shape. From left to right, the
noise-free image, the map of the risk without regularization, with convolution and with
regularization based on anisotropic diffusion. Low risks are black, high ones are white.

4.2 SURE-Based Methods

In [20], a closed-form expression of SURE for the NLM allows to select the best
bandwidth h for the whole image. Our approach is different and closer to the
one in [18] (where SURE locally determines the parameter h and p), since we
use SURE to locally combine the shape-based estimators. Stein’s Lemma [19]
still holds when considering shapes: for the pixel x and the k-th shape-based
estimate

rk(x) = (f̂k(x) − Y(x))2 + 2σ2 ∂ f̂k(x)
∂ε(x)

− σ2 , (4)

is an unbiased estimate of the risk. Thanks to Eq. (2), the derivative is:

∂ f̂k(x)
∂ε(x)

=

(
1 +

∑
x′

Y(x′)
∂ω(x, x′)
∂ε(x′)

−
(∑

x′ Y(x′)ω(x, x′)
Cx

)∑
x′′

∂ω(x, x′′)
∂ε(x)

)
/Cx.

where Cx =
∑

x′ ω(x, x′). Our shape-based norm defined in Eq. (3) leads to the
following expression of the derivative of the weights ω(x, x′):

∂ω(x, x′)
∂ε(x′)

=
S (0)

[
Y(x) − Y(x′)

]
+ S (x− x′)

[
Y(x) − Y(2x− x′)

]
h2

. (5)

where S encodes the shape of our k-th shape-based estimator. Combining the last
equations leads to unbiased risk estimates r1(x), · · · , rK(x) for our K denoisers.

Minimizer of the risk estimates (MRE). A simple proposition is to select
the shape that minimizes the local risk estimates we have at hand:

f̂MRE(x) := f̂k∗(x) where k∗ = argmin
k

rk(x) . (6)

This rule is all the more relevant as the estimators are different. Selecting the
locally optimal shape yields satisfying results, but combining some of the best
performing estimators may improve the results.
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(a) Cameraman (b) City (c) Windmill (d) Lake

Fig. 4. Chosen 256 × 256 noise-free images for our experiments

Exponentially Weighted Aggregation (EWA). It might be better to com-
bine several estimators rather than just selecting one. This happens if the best
estimators are diversified enough or if the risk of the MRE was wrongly under-
estimated. Thus, we have used the statistical method of Exponentially Weighted
Aggregation, studied for instance in [28] and adapted for patch-based denois-
ing in [29]. It consists in aggregating the estimators by performing a weighted
average, with higher weights for estimators with low risks:

f̂EWA(x) :=
K∑

k=1

αk f̂k(x) , with αk =
exp(−rk(x)/T )∑K

k′=1 exp(−rk′(x)/T )
.

The temperature T > 0 is a smoothing parameter that controls the confidence
attributed to the risk estimates. If T → ∞, the EWA is simply the uniform
aggregate f̂UWA defined before. Conversely, if T → 0, then f̂EWA → f̂MRE.

The problem of using SURE to take a local decision for each pixel x is difficult
since this estimator has large oscillations (see Fig. 3), so that regularizing the
risk maps r1, · · · , rK is required.

4.3 Regularizing the Risk Maps with Anisotropic Diffusion

To make the risk estimates more robust, it is necessary to regularize it. The
convolution of the risk map is an efficient way to estimate the local risk in view
of setting h since on both sides of an edge a large value of h should be used [18].
Here, the anisotropy of the shapes implies that on one side of an edge the risk
may be low whereas it may be high on the other side.

Since convolutions diffuse the risks across the edge, the risk maps become
blurred and their comparison becomes difficult. To diffuse the risks on each side
of edges, we have adopted a heat equation with spatially and timely dependent
coefficients (inspired by the Perona-Malik equation [1]).

More precisely, we let the risk maps r1, · · · , rK evolve according to:⎧⎨⎩
∂rk

∂t
(x, t) = div (g(|∇u(x, t)|)∇rk(x, t)) ,

rk(x, 0) = (f̂k(x) − Y(x))2 + 2σ2 ∂ f̂k(x)
∂ε(x) − σ2 ,

(7)
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Table 1. Gain in using anisotropic or mixture of isotropic and anisotropic shapes in
terms of PSNR/SSIM. The studied patch shapes are the isotropic disks, the half-pies,
the quarter-pies, the bands and some combination of them (see Fig. 1.a).

σ = 20 Cameraman City Windmill Lake

Disk shapes (F1) 29.45/0.832 28.16/0.885 30.97/0.904 28.68/0.863

Half-pie shapes (F2) 29.43/0.832 28.08/0.886 30.97/0.906 28.60/0.863
Quarter-pie shapes (F3) 29.31/0.831 27.87/0.883 30.95/0.909 28.49/0.862
band shapes (F4) 29.46/0.832 28.05/0.885 31.05/0.906 28.61/0.862

Combination: F1, F2 29.50/0.833 28.21/0.887 31.11/0.907 28.73/0.865
Combination: F1, F2, F3, F4 29.50/0.833 28.20/0.887 31.19/0.909 28.72/0.865

where g(x) = exp(−x2/κ2), the parameter κ controls the anisotropy of the dif-
fusion (the larger κ, the more isotropic the diffusion), and u is the smoothed
noisy image which jointly evolves using the Perona-Malik equation:{

∂u

∂t
(x, t) = div (g(|∇u(x, t)|)∇u(x, t)) ,

u(x, 0) = Y(x) .
(8)

Curiously, we have noticed that we obtain better risk maps by diffusing
√

rk

instead of rk itself. Figure 3 shows that this regularization procedure provides
smooth risk maps, following edges of the underlying noise-free image, and finer
than without regularization or with convolution.

5 Numerical and Visual Results

The corrupted images are obtained from 256 × 256 images: cameraman, city,
windmill and lake1 (Fig. 4). These images are interesting to study since they
present highly contrasted edges for which the classical NLM suffers from the rare
patch effect. In all the experiments, unless otherwise specified, the NLM-SAP is
used with the following default parameters: the search window width � = 11
px, the shape family combines 15 shapes from families F1 and F2 (Fig. 1.a)
with shape areas of 12.5, 25 and 50 px2, we use EWA with T = 0.02σ2 and
anisotropic risk regularization with 50 iterations, time-step dt = 1/8 and κ = 30.
The parameter h is adapted to the size of the shapes using the rule given by
[11]. For the central pixel, we set its central weight as recommended in [24].

Table 1 gives numerical results for different families. The compared fami-
lies are (see Fig. 1.a): the disks, the half-pies, the quarter-pies and the bands
and combinations of these families. Our experiments show that suitable families
should contain isotropic shapes, directional shapes and various scales of shapes.
Increasing the number of shapes does not necessarily improve the quality.

Table 2 presents the numerical performance for the four aggregation proce-
dures: UWA, WAV, MRE and EWA. MRE suffers from brutal transitions, since
it selects only one shape per pixel, while EWA evolves in a smoother way due
to the weighted combination of shapes for each pixel and provides best results.
1 Images from L. Condat’s database: http://www.greyc.ensicaen.fr/~lcondat

http://www.greyc.ensicaen.fr/~lcondat
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Table 2. Comparisons of different aggregation procedures in terms of PSNR/SSIM:
UWA, WAV, MRE and EWA

σ = 20 Cameraman City Windmill Lake

UWA 29.40/0.830 27.99/0.880 30.76/0.897 28.53/0.858
WAV 29.46/0.830 27.98/0.879 30.82/0.898 28.48/0.856
MRE 29.33/0.829 28.02/0.885 30.88/0.905 28.58/0.862
EWA 29.50/0.833 28.21/0.887 31.11/0.907 28.73/0.865

We have studied the influence of the regularization of the risk maps on the
aggregation results. Three methodologies are compared: aggregation using the
noisy risk maps (i.e., SURE maps), the convolved risk maps (using a disk kernel
of radius 4) and the risk maps obtained by anisotropic diffusions (Fig. 3). The
choices of the local sizes and orientations of the patch shapes are more relevant
with the maps obtained by anisotropic diffusions, in terms of scale adaptivity,
feature directions and spatial coherency (Fig. 5). Using anisotropic diffusion,
the NLM-SAP acts as expected, selecting big sizes of shapes, even around edges,
since the shape orientations have been chosen properly to reduce the rare patch
effect.

(a) Noisy risk (b) Convolved risk (c) Anisotropic diff.

Fig. 5. (top) Average areas and (bottom) average orientations of selected shapes for
different risk maps. From left to right, results using the noisy risk maps, the convolved
risk maps and the risk maps obtained by anisotropic diffusions. The average areas and
the average orientations are represented using gray level colors.
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Table 3. Comparisons of denoising approaches for various noise levels in terms of
PSNR/SSIM: pixelwise NLM [9], blockwise NLM using UWA reprojection [9], blockwise
NLM using WAV reprojection [16], pixelwise NL-means using SURE-based adaptive
bandwidth selection [18], BM3D denoiser [15], and our proposed NLM-SAP.

Cameraman City Windmill Lake

σ = 5

NLM [9] 36.92/0.951 35.87/0.965 38.10/0.972 36.76/0.964
UWA Blockwise NLM [9] 36.99/0.953 35.94/0.966 38.18/0.973 36.77/0.963
WAV Blockwise NLM [16] 37.31/0.956 36.34/0.972 38.79/0.978 37.10/0.970
SURE adaptive NLM [18] 37.46/0.956 36.76/0.975 39.14/0.978 37.28/0.970
BM3D [15] 38.17/0.962 37.48/0.978 39.91/0.983 38.15/0.977
NLM-SAP 37.80/0.957 37.26/0.975 39.60/0.979 37.92/0.974

σ = 10

NLM [9] 32.46/0.905 31.11/0.932 33.62/0.945 32.07/0.926
UWA Blockwise NLM [9] 32.43/0.913 30.99/0.926 33.49/0.942 32.04/0.924
WAV Blockwise NLM [16] 32.84/0.922 31.48/0.941 34.07/0.953 32.37/0.936
SURE adaptive NLM [18] 33.11/0.918 32.11/0.948 34.78/0.954 32.61/0.935
BM3D [15] 34.06/0.931 33.15/0.956 35.84/0.966 33.63/0.950
NLM-SAP 33.44/0.914 32.84/0.950 35.28/0.955 33.27/0.940

σ = 20

NLM [9] 28.72/0.820 27.11/0.870 30.04/0.897 28.12/0.855
UWA Blockwise NLM [9] 28.88/0.830 27.02/0.868 29.92/0.890 28.14/0.860
WAV Blockwise NLM [16] 29.16/0.838 27.27/0.877 30.17/0.901 28.12/0.865
SURE adaptive NLM [18] 29.49/0.845 27.85/0.889 30.96/0.906 28.46/0.867
BM3D [15] 30.35/0.871 29.07/0.912 32.07/0.936 29.38/0.895
NLM-SAP 29.50/0.833 28.21/0.887 31.11/0.907 28.73/0.865

Comparisons have been performed with the classical (pixelwise) NLM [9], the
blockwise NLM using UWA reprojection [9], the blockwise NLM using WAV re-
projection [16], the pixelwise NL-means using SURE-based adaptive bandwidth
selection [18], BM3D [15], and our proposed NLM-SAP approach. Table 3 shows
that NLM-SAP outperforms all other NLM improvements. NLM-SAP brings
a gain of PSNR of about 1 dB compared to the classical NLM. The BM3D
approach leads to better numerical results than all NLM variants. While the
presence of the rare patch effect is well illustrated by the noise halos for NLM,
BM3D and NLM-SAP have reduced a lot this phenomenon. Our NLM-SAP pro-
vides smooth results with accurate details: the quality of the images we obtained
challenges those by BM3D.

6 Conclusion

We have addressed the problem of the rare patch effect arising in the NLM and
responsible of the noise halos around edges. Our method consists in substituting
the square patches of fixed size by spatially adaptive shapes. A fast implemen-
tation based on the FFT has been proposed to handle arbitrary shapes. Several
estimates are obtained by using different patch shapes, and we have extended
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Fig. 6. Comparisons of the NLM [9], the BM3D [15] and the proposed NLM-SAP on
images damaged by additive white Gaussian noise with standard deviation σ = 20

SURE-based approaches to aggregate them. The SURE-based risk maps require
regularization, and diffusions can be satisfactorily used. Future work is to reduce
computation time and treat other regularization strategies.
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Abstract. We propose a variational approach to unsupervised texture
segmentation that depends on very few parameters and is robust to imag-
ing conditions. First, the uneven illumination in the observed image is
removed by the proposed image decomposition model that approximates
the illumination and well retains the textures and features in the image.
Then, from the obtained intrinsic image, we introduce a new data, multi-
scale local entropy, which is the entropy of each location’s neighborhood
histogram with various scales. The proposed segmentation model uses
multiscale local entropy as data. Together with a length penalizing term,
minimizing the energy functional locates the contours so that the local
entropy within each region is similar to one another. Since entropy is the
only feature, there are very few parameters. Moreover, the segmentation
model can be solved by a fast global minimization method. Experimental
results on natural images show the proposed method is able to robustly
segment various texture patterns with uneven illumination in the original
images.

1 Introduction

One of the challenges of unsupervised texture segmentation is due to the dif-
ficulties to well define textures. There are many tools to analyze texture, from
statistical models to filtering methods, to geometric approaches. There have
been a large number of texture features: orientations, scales, frequencies, etc.
Therefore, partitioning an image domain into several texture regions, or identify
homogeneous regions in the sense of texture, without any given knowledge is
very difficult. One of the earliest unsupervised segmentation model [1] approx-
imates an image by a piecewise smooth image and a length penalizing term in
an energy functional to locate the boundary of each region. This model satisfies
many desired mathematical properties but is difficult to solve in practice. In
[2], the one-dimensional contour/edge set is approximated by a two-dimensional
smooth function, making the functional easier to solve. The model in [3] approx-
imates an image by a piecewise constant image and furthermore incorporates
the level set method with the variational model, which makes it easy to solve.
However, these classical methods do not handle textures, especially when the
average intensities of each texture region are similar.
	 Kangyu Ni was supported by the US NSF-DMS grant #0652833.
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There has been numerous works on texture segmentation. For instance, the
authors in [4], [5], and [6] use Gabor transforms to represent texture features for
segmentations and authors in [7] use wavelet transforms. These generally have a
large set of texture features and therefore involve selecting a large set of param-
eters. Probability density function (PDF)/ histogram-based approaches, such as
[8], [9], [10], [11], and [12], also involve some parameters associated with the as-
sumptions on the histograms or selected texture features. Methods in [13], [14],
[15], [16], and [17] use the entire PDFs or histograms without extracting pre-
defined features for segmentation using histogram distances, such as χ2 statistics,
mutual information, Kullback-Leibler divergence, and Bhattacharyya distance.
The data of the histogram is not limited to intensity. Any features and trans-
forms of the image can be used. However, finding the solutions of these methods
requires differentiating histograms with respect to the contour or region. Local
histogram-based methods [18] do not require histograms to be differentiated and
can employ a fast global minimization method. However, the scale of the local
histogram windows is fixed and has to be chosen. In this paper, we introduce a
new data, multiscale local entropy, which is the entropy of a local neighborhood’s
histogram with various scales. Therefore, the window size is unbiased.

Another challenge of unsupervised texture segmentation is due to the imaging
conditions/nuisance factors in real images. Most of the above-mentioned segmen-
tation models are not robust to imaging conditions, because these are not taken
into account in the segmentation models. The proposed segmentation model
in [19] simultaneously estimates the illumination and reflectance and segments
the image using reflectance. This allows global smooth changes within a region
due to uneven lighting and is therefore robust with respect to nuisance factors.
However, this model approximates images by piecewise constant functions and
therefore does not handle textures. Note also the Mumford-Shah segmentation
model, even though is difficult to solve, also deals with smooth changes in the
image. However, it also does not handle textures.

For robust texture segmentation, we add a pre-processing step that approx-
imately decomposes an image into an illuminance component and a reflectance
component. The image model is described in section 2.1. The proposed decom-
position model is described in section 2.2. For segmentation, we only use the
reflectance component. In section 2.3, we proposed a new data for texture seg-
mentation, multiscale local entropy. The segmentation model is described in sec-
tion 2.4. Finally, we show some experimental results in section 3 and conclude
in section 4.

2 Methodology

2.1 Image Model

The image of a natural scene captured by a camera does not solely depend on
the objects in the scene. The lighting condition, or illumination, also plays an
important role. Therefore, for robust image segmentation, illumination should
be taken into account. Let I : [0, 1] × [0, 1] → [0, 1] be the observed image after
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normalization. One simple way to express the image with illumination is by the
following multiplicative model:

I(x) = U(x)V (x), (1)

where x ∈ [0, 1] × [0, 1], U is the illumination and V is the reflectance, or the
intrinsic image structure. This model was formulated in [20] and was used for
robust segmentation in [21] and [19]. Multiplicative noise model has been used
for denoising and deblurring in [22] and segmentation in [23].

From this image model (1), we wish to find the reflectance component V and
then use it for texture segmentation. To obtain V , we first take log of (1), which
transforms the product model into the following sum:

log I = logU + logV. (2)

It is easier to decompose this additive expression than the multiplicative expres-
sion. In the next section, we provide a variational decomposition model for (2).

2.2 Image Decomposition

We take a variational PDE-based approach to decompose log I. Let f = log I,
the decomposition is found by solving the following minimization problem:

min
u

1
2

∫
|∇u|2 + λ

∫
|f − u|, (3)

where λ is a parameter that controls the balance between the two penalty terms.
The first term of the energy functional uses the �2 norm on the gradient of u
because the illuminance component is approximately smooth. Note that more
accurately the illumination is piecewise smooth, but the above approximation
will suffice for the purpose of segmentation. The second term uses the �1 norm,
rather than the �2 norm, on the residual, f−u, in order to better capture texture.

The solution of (3) can be found by using the gradient descent method:

du

dt
= �u+ λ

f − u

|f − u| , (4)

where the parameter λ can be chosen by methods, such as in [24].
Figure 1 demonstrates this image decomposition method using several im-

ages from the Yale Face Database. The images, in row (a) from left to right,
have lighting from different directions: center, right, and left, respectively. Row
(b) shows the respective illumination components U , and row (c) shows the
respective reflectance components V . For all three decompositions, the param-
eter λ = 0.0004. These experiments show the robustness of extracting the nui-
sance factors from the intrinsic image structure using the method described here.
Specifically, the illumination components desirably exclude the image structure,
and the reflectance components show uniform lighting on the faces. In addition,
note that this decomposition model does not take into account shadows as part
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Fig. 1. Model (3) robustly decomposes images of faces with various lighting conditions
into the illumination and intrinsic components. Row (a) shows original images I, row
(b) shows illumination components U, row (c) shows reflectance components V, and
row (d) shows vertical sum of intensity for each image

of illuminance and therefore is present in the reflectance component. Moreover,
even though the areas with less lighting in the original images do not look as
sharp in the reflectance image compared to the areas with more lighting orig-
inally, all areas possess similar levels of illuminance. This can also be seen in
plots row (d), which shows the vertical sum of intensity for each original image,
illumination, and reflectance components. For instance, since the lighting of the
original image in the third row is from the left, we have high-left and low-right
profile for the original image, high-left and low-right smooth profile for the il-
lumination component, and more or less horizontal profile for the reflectance
component.
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2.3 Entropy Profile

In this section, we propose a descriptor that is calculated based on the reflectance
component V and will be used for the proposed segmentation model described
in the next section. First, let hx,s be the probability density function of image
intensity on the square patch centered at location x with scale s. Note that in
the discrete setting, the dimension of the patch is (2s + 1) × (2s + 1). Then,
define Hx,s as the entropy of hx,s by

Hx,s = −
∫ 1

0

hx,s(y) log(hx,s(y)) dy . (5)

For a fixed location x, the entropy profile, Hx(s), is a function of scale. In the
following, we analyze the proposed entropy profile with a few examples..

Fig. 2 (a) is a synthetic image consisting of two textures with the same infor-
mation (entropy) and different scales. The regions of each texture are indicated
in (b). Four locations are selected in (c), and their respective entropy profiles
are depicted in (e). Since both locations a and b are in the same texture region,
their entropy profiles resemble each other. Similarly, the profiles of c and d resem-
ble each other. In (f), the scale of entropy profile is adjusted by the logarithm,
which is denoted by log-scale. Since entropy changes less as scale increases, en-
tropy profiles in log-scale are more distinguishable. Figure (g) represents the
median entropy profiles over all locations in each texture region, and (h) is the
median entropy profiles in log-scale. The median entropy profiles are shown here
because in the next section, the proposed segmentation model approximates the
homogeneity of each region by using median entropy profile.

Fig. 3 illustrates with a synthetic image of two textures with the same scale
and different information (entropy). Similarly, we see in (f) that the difference
between profiles from different textures in log-scale is more prominent than with-
out taking logarithms. Interestingly, the difference in entropy profiles in this case
is in the vertical direction, instead of the horizontal direction in the previous ex-
ample in Fig. 2. This is because the textures in Fig. 2 differ in scale and textures
in Fig. 3 differ in information. However, if two textures have the same infor-
mation and scale, the proposed entropy profile will not be able to distinguish
them.

Fig. 4 shows a different perspective of entropy using a real image. Instead
of looking at a entropy profile Hx(s), which is a function of scale with a fixed
location, each image is an entropy map Hs(x), which is defined as the entropy
of each location with a fixed scale. The scales are from 1 to 24, from left to right
and top to bottom. Each row shares the same color bar at the end of the row,
where dark red represents the highest value and dark blue represents the lowest
value. The entropy maps change quickly when the scales are small, as shown in
the first row, and do not change very much when the scales are large, as shown
in the third and fourth rows. Therefore, for segmentation, we use log-scale for
the scale in entropy maps.
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Fig. 2. The entropy profiles Hx(s) of textures with same information and different
scales are distinct

2.4 Texture Segmentation

The proposed texture segmentation model uses the entropy profile Hx(s) of the
reflectance component V in

min
u,H1,H2

∫
|∇u(x)| dx+ λ

∫
u(x) d(H1, Hx) + [1 − u(x)] d(H2, Hx) dx , (6)

where 0 ≤ u ≤ 1, H1 and H2 are unknown histograms, λ is a parameter, and
the distance between two histograms is defined as
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Fig. 3. The entropy profiles Hx(s) of textures with same scale and different information
are distinct

d(H1, Hx) =
∫

|H1(s) −Hx(s)| log(s) ds, (7)

which incorporates log-scale. The variable u represents the segmented regions.
The set of u close to 1 is inside the contour and the set of u close to 0 is outside
the contour. According to [25], minimizing this energy functional with respect
to u is a convex problem. The data terms encourage finding contours so that the
local entropy profiles are similar to one another within each region. The proposed
segmentation model (6) resembles the local histogram based segmentation model



250 B.-W. Hong, K. Ni, and S. Soatto

0

1

2

3

4

5

6

3.5

4

4.5

5

5.5

6

6.5

7

4.5

5

5.5

6

6.5

7

7.5

4.5

5

5.5

6

6.5

7

7.5

Fig. 4. Entropy maps Hs(x) of the center image in Fig. 5 (a) with scale from 1 to 24,
from left to right and top to bottom. The difference in maps becomes small when the
scale increases.

with the Wasserstein distance in [18]. Nevertheless, it is in essence different, since
entropy profile takes into account of various scales, rather than using a fixed-size
window. As a result, this segmentation is more robust than local histogram-
based methods, whose patch size needs to be close to the texture scale in the
image.

To solve (6), we may follow the fast global minimization method described in
[18] and [26]. Therefore, without repeating the derivations, the minimization is
solved by repeating the following steps until convergence:

H1(s)= weighted (by u(x)) median of Hx(s) (8)
H2(s)= weighted (by 1 − u(x)) median of Hx(s) (9)

−→p (x)=
−→p (x) + δt ∇(div−→p (x) − v(x)/θ)

1 + δt |(div−→p (x) − v(x)/θ)| (10)

u(x)= v(x) − θ div−→p (x) (11)
v(x)= max{min{u(x) − θλrx,H1,H2 , 1}, 0}, (12)

where θ is a parameter, δt is a time-step that is ≤ 1
8 (δx)2, −→p (x) = (p1(x), p2(x)),

and
rx,H1,H2 =

∫
|H1(s) −Hx(s)| − |H2(s) −Hx(s)| ds.

The initializations can be arbitrary since this is a global minimization model.
Therefore, one may initially choose an arbitrary contour and let u = 1 inside the
contour and u = 0 outside the contour. Initializations for v and −→p can be done
by setting v = u and −→p = −→0 .
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(a) image (b) illuminance (c) reflectance

Fig. 5. Model (3) robustly decomposes real images from Berkeley segmentation
database. The reflectance components appear to have even lighting.

Fig. 2 (d) and fig. 3 (d) show the segmentation model (6) is able to accurately
distinguish two textures, in which one pair of textures has the same information
but different scales and the other pair has the same scale but different informa-
tions.

3 Experimental Results

Fig. 5 evaluates the proposed decomposition model with a few images from the
Berkeley segmentation database, as shown in column (a). Their respective illu-
minance components U are shown in column (b), and the reflectance components
V are shown in column (c). The illuminance appears to be faithfully extracted.
As one can see, for instance, the front of the cheetah body is more illuminated
than other areas in the original image. The left side of the background is less
illuminated than other areas in the original image. Therefore, the reflectance in
(c) desirably looks flat because the lighting is forced to be homogeneous. Similar
observations can be made for the other two images.

Fig. 6 shows segmentation results using the proposed model (6) and other
methods for the purpose of comparison. Row (b) shows segmentation results
using the fast global minimization of active contour (GAC) in [26], which ap-
proximates an image by a piecewise constant function and therefore performs
poorly for images with rich texture patterns. Rows (c) and (d) show segmentation
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(a)

(b)

(c)

(d)

(e)

Fig. 6. (a) are the original images. (b) are the segmentation results by the fast global
minimization of active contour (GAC) in [26]. (c) are the results by local histogram
based segmentation using the Wasserstein distance (LHSWD) [18] with scale = 10. (d)
are the results by LHSWD with scale = 30. (e) are the results by the proposed method,
which is more robust to illumination than GAC and LHSWD and is able to segment
the texture patterns more accurately.

results by the local histogram based segmentation method using the Wasserstein
distance (LHSWD) in [18]. For the local histograms, the binning size is 100 and
the scale sizes are 10 and 30 for (c) and (d), respectively. The parameters are
θ = 0.001 and λ = 1. Row (e) shows results of the proposed method with the
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same parameters θ and λ. The results are far better as one can see that the
patterns of tiger, cheetah, and fish are more accurately segmented. We believe
that this is due to two reasons. First, illuminance in an image plays an important
role in segmentation, and it is to beneficial to even out the illuminance. Second,
all scales of local histograms were taken into account, rather than using a fixed
scale.

4 Conclusion

We propose a method for texture segmentation that is robust to imaging condi-
tions using very few parameters. We propose a multiscale local entropy as a data
descriptor and an image decomposition model for illumination removal. While
it is possible to put the decomposition and segmentation models in one formu-
lation, it is in practice difficult to solve. Therefore, the decomposition is done as
a pre-processing step. The experimental results show that the proposed method
is able to accurately segment natural images that contain texture patterns. In
the future, we would like to analyze and extend the use of entropy profile.

Acknowledgments. This work was supported by the Korea Research Founda-
tion Grant funded by the Korean Government (NRF-2010-220-D00078).
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Abstract. This article introduces a new image segmentation method
that makes use of non-local comparisons between pairs of patches of fea-
tures. A non-local energy is defined by summing the interactions between
pairs of patches inside and outside the segmented domain. A maximum
radius of interaction can be adapted to fit the amount of variation of the
features inside and outside the region to be segmented. This non-local
energy is minimized using a level set approach. The corresponding curve
evolution defines a non-local active contour that converges to a local
minimum of our energy. In contrast to previous segmentation methods,
this approach only requires a local homogeneity of the features inside
and outside the region to be segmented. This does not impose a global
homogeneity as required by region-based segmentation methods. This
comparison principle is also less sensitive to initialization than edge-
based approaches. We instantiate this novel framework using patches
of intensity or color values as well as Gabor features. This allows us
to segment regions with smoothly varying intensity or colors as well as
complicated textures with a spatially varying local orientation.

1 Introduction

Image segmentation refers to the process of partitioning an image into several
regions or locating objects and boundaries. This paper considers a variational
minimization problem for segmentation, which aims to find a contour represent-
ing the boundary of objects, by minimizing an energy functional composed of a
contour smoothing term and an attraction term that pulls the contour towards
the object boundaries. The curve (locally) minimizing the energy functional, lo-
cated at the object boundaries, is obtained by curve evolution or active contours:
starting with a given initial curve and evolving it to the correct steady state,
the object boundaries. Active contours have been represented either by explicit
parametric representation [1] or by the implicit level set representation of [2].
The level set representation has widely been used because it allows automatic
topology changes of the contour such as merging and breaking, and the computa-
tions are made on a fixed rectangular grid. Many existing active contour models
segment an image according to edge information and/or region information.

Edge-based approaches. Edge-based active contour models use edge detection
functions depending on the image gradient and evolve contours towards sharp
gradients of pixel intensity. The first work was the snakes model by Kass et al.
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[1]. Then, many edge-based active contour models such as balloon [3], geometric
[4], [5], [6] models were proposed. In particular, Caselles et al. [6] proposed an
intrinsic geometric model, geodesic active contours, where the curve evolution
is handled by the level set method [2] proposed by Osher and Sethian. In this
model, the evolving curve moves by mean curvature, but with an extra factor in
the speed, by the stopping edge-function. Therefore, the curve stops on the edges,
where the edge-function vanishes. Although these classical snakes or geometric
active contour models are quite effective, they are usually not robust to noise
because noise also has large gradients. These models need in addition to perform
a-priori smoothing, to smooth out the noise. This can therefore produce a not
very accurate location of edges.

Region-based approaches. Region-based active contour models incorporate re-
gion information so that image within each segmented region has a homogeneous
characteristics, such as intensities and textures. A region-based energy for an ac-
tive contour was proposed in [7]. This was a reduced form of the Mumford-Shah
functional [8] where the image was approximated by a piecewise smooth function
inside objects and a smooth background. Chan and Vese [9] proposed an active
contours without edges model, which is also based on techniques of curve evolu-
tion and level set methods, but the gradient-based information is replaced by a
criterion related to region homogeneity. This model approximates an image by a
two-phase piecewise constant function. The active contours without edges model
was also extended to vector valued images [10] and to texture segmentation [11].

Kimmel [12] proposed a hybrid model by incorporating a more general weigh-
ted arc-length in the active contours without edges model. Sagiv et al. [13]
applied the integrated approach, by incorporating multi-channel approaches [10],
[11], to the problem of texture segmentation.

In this article, we propose an active contour model with a novel energy func-
tional using pairwise interaction of features inside and outside the object, which
allows to only constrain the local homogeneity, in contrast to the Chan-Vese
approach. The local homogeneity property allows our model to capture regions
with features that vary spatially in a smooth way, as well as to segment several
separated objects with different features.

Several region-based methods [14], [15], [16] have been proposed to address
the segmentation of locally homogeneous images using piecewise smooth image
models. We extend these methods by making use of patches. Our approach is
also conceptually different, since it makes use of pairwise patches comparison,
and thus does not require the estimation of a piecewise smooth parameter.

Image features. In this work, we consider different image features based on given
images. The choice of features is difficult and critical to get an optimal segmen-
tation result. For a scalar image, the gray-level value or intensity can be enough
to characterize each pixel. If the image is composed of multiple channels (such as
color images), then each pixel is described by a vector of intensities. For texture
images, the pixel intensity value does not give pertinent information. A very
popular class of texture features are the filter-based features of the given image.
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For instance, Gabor filter has often been implemented in texture segmentation
[17], [11], [13] because it can segment images having region differences in spatial
frequency, density of elements, orientation and phase. In particular, Sandberg
et. al [11] incorporated the multiple Gabor transforms, obtained by convolving
the Gabor functions with the original textured image, with the vector valued
active contours without edges algorithm [10]. A recent promising image feature
to represent and process textures is the image intensity patch around the cur-
rent pixel. The information on a close neighborhood around the current pixel is
extracted and leads to semi-local information at each pixel. The patch idea as
feature vector was first introduced for texture synthesis [18], [19], then for image
denoising, illustrated in the following paragraph.

We incorporate the patch idea with selected image features: for instance, for
texture images, we use Gabor transforms as image features, and we consider the
non-local interaction between pairs of patches of the features.

Non-local image processing. Nonlocal methods in image processing have been
explored in many papers because they are well adapted to texture denoising.
Buades et al [20] proposed to compute the weight matrix with patch differences
and denoise the image with a non-local averaging, which is the well-known non-
local means filter. Kinderman et al. [21], Gilboa and Osher [22], and Peyré et
al. [23] proposed non-local energy functionals, and these functionals were used
to solve various image processing problems such as denoising, inpainting, super-
resolution and compressive sensing. The idea of functionals on nonlocal-graphs,
in a regularization process, has also been used for image segmentation in a semi-
supervised [24], [25], [26] (an extension of the work of Shi and Malik [29]) or an
unsupervised [27], [28] settings.

In our work, we use a non-local energy that enforces the similarity of features
both located either inside or outside the object. Using a level set formulation, this
defines an attraction term pulling the contour towards the object boundaries.
This is contrast to the existing non-local based segmentation methods that use
non-local energy terms only as regularization terms.

Contributions. This article introduces a novel non-local energy for image/texture
segmentation. In contrast to existing energy, we use pairwise interaction of fea-
tures, which allows to only constrain the local homogeneity. This local homo-
geneity is crucial to capture regions with smoothly spatially varying features,
such as color gradient or oriented textures. This is also useful to segment several
separated objects with different features.

2 Non-local Active Contours

The goal is to segment an image f : [0, 1]2 → Rd, where d is dimensionality of
the feature space. For instance one might consider d = 1 for gray-valued images,
d = 3 for color images. To segment a texture image, f(x) is computed as a high
dimensional vectors which is the output of a directional filter bank.
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Since we aim at proposing a generic segmentation framework, we do not spec-
ify the exact nature of the features in this section. Sections 3.2 and 3.3 detail
some typical examples of features spaces.

2.1 Pairwise Patch Interaction

To be able to be less sensitive to noise in the image, we consider patches of
features around each pixel x ∈ [0, 1]2:

∀ t ∈ [−τ/2, τ/2]2, px(t) = f(x+ t).

Patch-based processing of images has been used extensively for a very long time
in stereo and image matching in general, and has been very popular since the
introduction of the non-local means denoising method.

Similarly to non-local denoising, we consider the non-local interaction between
pairs of patches, measured using a weighted L2 distance

d(px, py) =
∫

t

Ga(t)||px(t) − py(t)||2dt where Ga(t) = e−
||t||2
2a2 .

The Gaussian weight is used to give more influence to the central pixel.

2.2 Pairwise Interaction Energy

In its simplest form, the segmentation problem corresponds to the computation
of some region Ω ⊂ [0, 1]2 that should capture the objects of interest. This is
usually performed in some variational framework where Ω solves an optimization
problem.

The local homogeneity of the region (and of its complementary) is measured
by considering all possible pairwise patch interaction at a given scale σ > 0. This
gives rise to the following pairwise interaction energy of a region

E(Ω) =
∫∫

Ω×Ω

Gσ(x−y)d(px, py)dxdy+
∫∫

Ωc×Ωc

Gσ(x−y)d(px, py)dxdy. (1)

where Ωc = [0, 1]2\Ω is the complementary of the region.
The parameter σ > 0 is important since it controls the scale of the local

homogeneity one requires for the segmented object. If the region is made of
a nearly constant pattern, one should use a large σ. In contrast, if the region
exhibits fast feature variations, σ should be chosen smaller. For simplicity, we
use the same scale for both inside and outside the region, but one could of course
use two distinct parameters.

2.3 Non-local Active Contour Energy

In order to perform the segmentation, we use a level set framework [2] where
one computes a function ϕ : [0, 1] → R so that Ω = {x \ ϕ(x) > 0}.



Non-local Active Contours 259

The integration inside and outside the domain is carried over using a smoothed
Heaviside function

H(x) =
1
2

+
1
π

atan(x/ε).

The parameter ε should be chosen small enough to obtain a sharp region bound-
ary, but not too small to avoid numerical instabilities. In the numerical examples,
we use ε = 1/n for a discretized image of n× n pixels.

The energy (1) on regions is turned into an energy on the level set function
ϕ, enforcing the similarity of features located inside and outside Ω,

E(ϕ) =
∫∫

ρ(H(ϕ(x)), H(ϕ(y)))Gσ(x − y)d(px, py)dxdy

where ρ is an indicator function such that ρ(u, v) = 1 if u = v, 0 otherwise.
In practice, we used ρ(u, v) = 1 − |u − v|. The meaning of this term is a way
to consider only pairs of points for which ϕ has the same sign. Note that other
binary interaction function ρ could be used as well, such as ρ(u, v) = uv + (1 −
u)(1 − v) (when u = H(ϕ(x)), v = H(ϕ(y))) and ρ(u, v) = 1 − |u− v|2.

To enforce the regularity of the extracted region, following previous works in
active contours, we penalize the length of the boundary, which is computed as

L(ϕ) =
∫

||∇H(ϕ(x))||dx =
∫
H ′(ϕ(x))||∇ϕ(x)||dx (2)

where ∇H(ϕ(x)) is the gradient at point x of the function H(ϕ).
Our non-local active contour method compute the segmentation as a station-

ary point of the energy
min

ϕ
E(ϕ) + γL(ϕ)

where γ > 0 is a parameter that should be adapted to the expected regularity
of the boundary of the region.

Using the gradient descent with an artificial time t � 0 leads to the evolution
equation for ϕ:

∂ϕ

∂t
= − (∇E(ϕ) + γ∇L(ϕ)) , (3)

where the gradients are computes as

∇E(ϕ)(x) =
∫

(∂1ρ)(H(ϕ(x)), H(ϕ(y)))Gσ(x− y)d(px, py)dy H ′(ϕ(x)),

∇L(ϕ)(x) = −div
( ∇ϕ(x)
||∇ϕ(x)||

)
H ′(ϕ(x)).

Numerical implementation details. The segmentation is applied to a discretized
image f of n×n pixels. The length energy (2) is computed using a finite difference
approximation of the gradient.

The algorithm consists of two steps: given an image f , the weight function
w(x, y) = Gσ(x − y)d(px, py) is constructed based on the selected features, and
then the evolution equation (3) for ϕ is solved with an explicit scheme. Note
that H ′(ϕ) is replaced by ||∇ϕ||. To ensure the stability of the level set evolution
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(3), one needs to re-initialize it from time to time. This corresponds to replacing
ϕ by the signed distance function to the level set {x \ ϕ(x) = 0}.

The size of the windowing function Gσ(x− y) depends on the initial curve: if
the initial curve is far away from the object boundaries, then a large windowing
function may be required. Here, 31×31 or 41×41 are used with a fixed σ = 10 for
100×100 or 200×200 images. The choice of the size of patch and the parameter a
in Ga depends on the image features: for instance, for image features depending
on intensity, 3 × 3 patch with a = 0.5 is used.

3 Experimental Results and Comparisons

This section presents experimental results with synthetic and real images.

3.1 Hybrid Region/Edge Based Active Contours

We compare our approach with both region-based and edge-based active contour
segmentation methods. We compare our method with segmentations obtained
by minimizing a hybrid energy of the form

min
ϕ,p

αEr(ϕ, p) + (1 − α)Ec(ϕ) + γL(ϕ) (4)

where α weights the influence of the region term Er and the edge term Ec:

Er(ϕ, p) = λ1

∫
H(ϕ(x))d(px, p1)dx+ λ2

∫
(1 −H(ϕ(x)))d(px, p2)dx,

Ec(ϕ) = μ

∫
||∇H(ϕ(x))||g(x)dx,

with positive parameters λ1, λ2, μ and a positive edge function g, and where
p represents the expected constant value of the features inside and outside the
object. In particular, we consider the geodesic active contour model (α = 0,
GAC model [6]) with adding balloon force term ηg(x)||∇ϕ(x)||, the region-based
model (α = 1) of Chan and Vese [9], and the integrated region/edge based model
(α = 1/2) of Sagiv et al. [13], called IAC model:

GAC:
∂ϕ

∂t
= μ||∇ϕ||div

(
g
ϕ

||ϕ||
)

+ ηg||∇ϕ||,

Chan-Vese:
∂ϕ

∂t
= ||∇ϕ||

{
− λ1d(px, p1) + λ2d(px, p2) + γdiv

(
ϕ

||ϕ||
)}

,

IAC:
∂ϕ

∂t
=

1
2
||∇ϕ||

{
μdiv

(
g
ϕ

||ϕ||
)
− λ1d(px, p1) + λ2d(px, p2)

}
,

where ηg||∇ϕ|| is a balloon force term that helps to avoid poor local minima by
forcing moving the curve forward/outward (depending on the sign of η). Note
that, in practice, we use an edge function g(x) = 1

δ2+Gb1∗‖∇(Gb2∗f)(x)‖p with
δ2 = 0.1 and p, b1, b2 > 0, and then we normalize it from 0 to 1. And we let
λ1 = λ2 = 1.
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Our model: k = 0 k = 20 k = 50 k = 150 Chan-Vese

Fig. 1. Detection of object with spatially varying background or object, and compar-
ison with Chan-Vese model (α = 1) in (4). 100 × 100 image and 31 × 31 windowing
function are used. k is the iteration number.

3.2 Gray-Level and Color Features

The simplest features f(x) are the values of the image itself.
In the numerical examples, we use the edge function with p = 1, Gb1 with

b1 = 0.5 (or 1 for noisy image) and Gb2 = 1.
In Fig. 1 and 2, we test our method on several synthetic images with spatially

varying background and/or object, or with several separated objects with differ-
ent intensities. In all the examples, our model correctly detects the objects. This
is due to the local homogeneity property of our model mentioned in Section 2.3,
which is contrast to the two-phase Chan-Vese model requiring a global homo-
geneity in each region. The first example in Fig. 1 well demonstrates the effect
of this property. The second example shows in addition the detection of interior
contour. In the first example in Fig. 2, the bottom object has spatially varying
intensities, and moreover the intensities of its left side are close to the ones of the
background. Thus, Chan-Vese model (see Fig. 3) fails to segment this piecewise
smooth object, regarding its left side as background, while our model captures
the boundary with small gradients. Furthermore, Fig. 2 shows the detection of
multiple separated objects with different intensities, unlike two phase Chan-Vese
model. Lastly, we note that our model needs small number of iterations (around
150 iterations) to obtain final curves, even with an explicit scheme.

Fig. 3 presents the results of existing edge-based and/or region-based models,
given in (4): α = 0 with balloon force term ηg(x)||∇ϕ(x)|| (geodesic model),
α = 1/2 (integrated active contour model), α = 1 (region-based Chan-Vese
model). For the IAC model, two final curves are shown with two different but
close parameters μ (μ1 > μ2). Because μ is a balancing term between the region-
based and edge-based energies, when μ > μ1 (or μ < μ2), the model tends to
act like the geodesic snake model (or Chan-Vese model). Thus, with the given
initial curves, all the models fail to detect the correct object boundaries. Note
that, with good initial curves surrounding all the boundaries, IAC model was
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k = 0 k = 10 k = 20 k = 50 final curve

Fig. 2. Detection of objects with spatially varying object, or with several separated
objects with different intensities, or with various shapes, using our model. k is the
iteration number, and final curves are obtained at k = 80 (top) and k = 120 (bottom).

α = 0 with balloon force α = 1/2 and two different μ α = 1

Fig. 3. Final curves of models given in (4): α = 0 with balloon force term (GAC),
α = 1/2 (IAC) with two different but close parameters μ, α = 1 (Chan-Vese). GAC:
μ = 1, η = −0.3. IAC: (top) μ = 3.6 and 3.5, (bottom) μ = 1 and 0.9. IAC and
Chan-Vese models used initial curves given in Fig. 2.

Fig. 4. Detection of objects from blurred and/or noisy images. 1st column: initial curves
used, 2nd-5th columns: final curves of our model (Top) and IAC model (Bottom).
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able to detect the boundaries, as shown in the 2nd column in Fig. 4, with large
values of μ, while in our model one circle around objects as an initial curve was
enough for segmentation. Thus, our model is less sensitive to the choice of initial
curves than edge-based active contour models.

Fig. 4 presents how our model works on noisy images, and detection of objects
with blurred boundaries. The 2nd-4th columns present a clear and clean image
(2nd), given in Fig. 2, and a blurred and noisy version of it, respectively. However,
IAC model fails to locate boundaries with small gradients in blurred or noisy
images, even with good initial curves. These examples show that our model
detects object boundaries with small gradients as well as that it is not sensitive
to noise unlike edge-based models.

In Fig. 5, we test our method on real color images. We compare our model with
the vector-valued Chan-Vese model [10] and IAC model. By using an initial curve
near the boundary of object(s) and a small windowing function, our model could
detect the boundary of non-homogeneous object(s). The segmentation result is
fairly good, comparing with Chan-Vese model and IAC model that only capture
part of object(s). On the other hand, these examples also show a limitation of our
model: in order to detect the boundary of non-homogeneous objects, the initial
curve needs to be located near the object boundary so that a small windowing
function can be used.

3.3 Gabor Features

To segment a texture image, one can use the energy of the output of a dictionary
multi-scale filter bank. Given an image f0, one computes each f(x) ∈ Rd as the
magnitude of d complex filters

∀ � ∈ {0, . . . , d− 1}, f�(x) = |f0 ! h�| (5)

with ∀x = (x1, x2) ∈ [0, 1]2 and h�(x) = e
2iπ
n η�(cos(θ�)x1+sin(θ�)x2)Gs�

(x).
The parameter η� > 0 is the frequency of the filtering, θ� ∈ [0, π) is the orien-

tation and s� > 0 is the spacial width of the filter. In the numerical examples,
the parameters η�, θ�, s� are fine-tuned to obtain the best texture representa-
tion. Note that the energies (4) incorporating Gabor features and multi-channel
approach have been used for texture segmentation in [11] (Gabor based multi-
channel Chan-Vese model) and [13] (IAC model).

Fig. 6 presents our texture segmentation result and comparison with Ga-
bor based Chan-Vese model [11]. In this case, we use d = 8 filters with η� ∈
{2, 2.5, 3, 3.5}, θ� ∈ {0, π/2}, s� = 2. Gabor based Chan-Vese model fails to de-
tect the object on the top right side (even with d = 64 filters with η� ∈ {2, 3, 4, 5},
θ� ∈ {0, π/4, π/2, 3π/4}, s� ∈ {2, 2√2, 4, 4

√
2}) because the intensity values of

that object in Gabor transforms are very small compared with the ones of the
other objects and close to the one of the background. But, our model detects all
the objects well due to the local homogeneity.
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initial curve our model Chan-Vese model IAC model

Fig. 5. Real color images. Final curves of our model, vector-valued Chan-Vese model
[10], and integrated active contour model (IAC).

original our model CV model with d = 8 (left) and 64 (right)

Fig. 6. Texture segmentation with Gabor transforms. Comparison with Gabor based
Chan-Vese model [11].

original our model CV model IAC model: edge function, final curve

Fig. 7. Texture segmentation with Gabor transforms. Image composed of a background
and an object with smoothly varying features. Comparison with Gabor based Chan-
Vese model [11] and IAC model [13].
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In Fig. 7, the images are composed of a background and an object with
smoothly varying features. Here, we use d = 4 filters with η� ∈ {0.7, 1.6}, θ� = 0,
s� ∈ {4, 4√2} in the first example, and d = 8 filters with η� ∈ {2, 3, 4, 5}, θ� = 0,
s� ∈ {4, 4√2} in the second one. Due to a reason similar with the one in Fig. 1,
Gabor based Chan-Vese model [11] fails to segment the actual object boundary,
while our model detects it. For the IAC model, we use p = 2, Gb1 = 1, Gb2

with b2 = 3.75 (top), 0.5 (bottom) for the edge function. IAC model detects
the object in the first example but not in the second one, which depends on the
edge function g(x). However, our model could segment the object in both cases
without any prior work on the edge function like the IAC model.

Conclusion

In this article, we have proposed a novel non-local energy for image/texture
segmentation. We have compared our active contour model with state of the
art. We have illustrated the superiority of our model over the existing region-
based and/or edge-based active contour models. Due to the local homogeneity
property, our segmentation model could detect regions with smoothly spatially
varying features and segment several separated object with different features.
Furthermore, our model is less sensitive to the choice of initial curves as well as
to noise than edge-based active contour models.
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References

1. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. Interna-
tional Journal of Computer Vision 1, 321–331 (1988)

2. Osher, S., Sethian, J.: Fronts propagating with curvature-dependent speed: Al-
gorithms based on Hamilton-Jacobi formulations. Journal of Computational
Physics 79, 12–49 (1988)

3. Cohen, L.: On active contour models and balloons. CVGIP: Image Underst. 53,
211–218 (1991)
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Abstract. We demonstrate the possibility of coding parts, features that
are higher level than boundaries, using a modified AT field after aug-
menting the interaction term of the AT energy with a non-local term
and weakening the separation into boundary/not-boundary phases. The
iteratively extracted parts using the level curves with double point sin-
gularities are organized as a proper binary tree. Inconsistencies due to
non-generic configurations for level curves as well as due to visual changes
such as occlusion are successfully handled once the tree is endowed with
a probabilistic structure. The work is a step in establishing the AT func-
tion as a bridge between low and high level visual processing.

Keywords: phase fields, non-local variational shape analysis.

1 Introduction

The phase field of Ambrosio and Tortorelli [1] (AT function) serving as a contin-
uous indicator for the boundary/not-boundary state at every domain point has
proven to be an indispensable tool in image and shape analysis. It is a minimizer
of an energy composed of two competing terms: One term favors configurations
that take values close to either 0 or 1 (separation into boundary/not-boundary
phases) and the other term encourages local interaction in the domain by penal-
izing spatial inhomogeneity. A parameter controls the relative influence of these
two terms, hence, the interaction. As this ”interaction” parameter tends to 0,
the separation term is strongly emphasized; consequently, the field tends to the
characteristic function 1 − χS of the boundary set S and the AT energy tends
(following the Γ convergence framework [4]) to the boundary length.

In computer vision, the AT function first appeared as a technical device to ap-
ply gradient descent to the Mumford-Shah functional [15]. Over the years, it has
been extended in numerous ways to address a rich variety of visual applications.
Earlier works include Shah and colleagues [22,23,25,19], March and Dozio [13],
Proesman, Pauwels and van Gool [21], Teboul et al. [29]. During the last couple
of years we have witnessed an increasing number of promising works modifying
or extending Ambrosio-Tortorelli/Mumford-Shah based models. Some examples
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are Bar, Sochen and Kiryati [3], Rumpf and colleagues [6,20], Erdem, Sancar-
Yilmaz and Tari [7], Patz and Preusser [17], Jung and Vese [9]. These works
together with many others collaboratively established the role of AT function in
variational formulations that jointly involve region and boundary terms.

In the majority of the works, the AT function serves as an auxiliary vari-
able to facilitate discontinuity-preserving smoothing and boundary detection.
Relatedly, the interaction parameter is chosen sufficiently small to better local-
ize boundaries. In contrast, Shah and Tari, starting with [27,28] in late 90’s,
have focused on the ability of the AT function in coding morphologic proper-
ties of shapes, regions construed by boundaries. Relatedly, they have weakened
boundary/not-boundary separation either by choosing a large interaction pa-
rameter or by other means [2] and focused on the geometric properties of the
level curves after constructing the AT function (reviewed in [24]) for shapes as

arg min
v

∫∫
Ω

1
ρ

(v(x) − χΩ(x))2︸ ︷︷ ︸
boundary/interior

separation

+ρ |∇v(x)|2︸ ︷︷ ︸
local interaction

dxdy

with v(x) = 0 for x = (x, y) ∈ ∂Ω (1)

where Ω ∈ R2 is a bounded open set with a boundary ∂Ω (denoting a shape);
χΩ(x) is the shape indicator function which attains 1 in Ω and 0 on ∂Ω; ρ is
the parameter. The first term forces strong boundary/interior separation while
the second one forces smoothness.

The AT function of shape is related to a variety of morphological concepts.
For instance, it is a weighted distance transform [11,12] with its level curves
approximating curvature-dependent motion [16,10]. Thus, it enables extraction
of local symmetries and skeletons directly from grayscale images; that is, it
bridges image segmentation and shape description. The ability of level curves in
coding morphological information is also exploited by Droske and Rumpf [20] to
measure equivalence of two shapes in a registration problem.

In this paper, following Shah and Tari [27,28,2], we explore and extend the
ability of an AT-like field in coding features that are at a higher level than
boundaries. Whereas the previous works focus on local symmetry axes, we focus
on shape’s intuitive components as coded via upper and lower level sets. Our
constructions are based on a new field obtained as the minimizer of a modified
AT energy. We discuss the geometry of the level curves of the new minimizer and
exploit it to extract a part hierarchy tree endowed with a probabilistic structure.

The considered modification involves an additive augmentation of the inter-
action term with a non-local term in a way that the upper and lower zero level
sets of the minimizer yield disjoint domains [26] within which the minimizer is
morphologically equivalent to the AT function. Following the pioneering work of
Buades, Coll and Morel [5], UCLA group formulated interesting non-local vari-
ational formulations, including non-local versions of the Ambrosio-Tortorelli/
Shah approximations of the Mumford-Shah functional [9,8] by replacing local
image derivatives with non-local ones. This kind of modification is very different
from our modification which modifies the phase field itself.
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In this paper, we focus on shapes. Nevertheless, the long term goal of our work
is to bridge low level processes such as segmentation and image registration
with the high level process of shape abstraction. Integration of the presented
developments to Mumford-Shah type models via coupled PDEs framework is a
future work.

2 A Modified Energy and Its Minimizer

Let us consider∫∫
Ω

1
ρ
(ω(x) − f(x))2 + ρ

[
|∇ω(x)|2 + (Ex∈Ωω(x))2

]
dxdy

with ω(x) = 0 for x = (x, y) ∈ ∂Ω (2)

where Ex∈Ωω(x) is the expectation of ω given by 1
|Ω|
∫∫

ω(x) dxdy and f(x) is
the distance transform. The new energy to be minimized is composed of three
terms and obtained by modifying the AT energy in (1) in two aspects.

Firstly, the interaction term of (1) is additively augmented with (Ex∈Ωω(x))2.
This new term forces the minimizer to acquire a low average value with the aver-
age being computed over the entire domain. At a first glance, this seems to favor
spatial homogeneity by forcing the minimizer to attain values close to zero. Yet,
the minimum of

∫∫
(Ex∈Ωω(x))2 dxdy is also reached when ω oscillates, that

is, when it attains both negative and positive values adding up to 0. In this
respect, the third term is a separation term partitioning Ω into subdomains of
opposing signs. Due to the influence of the |∇.|2 term which penalizes spatial
inhomogeneities, locations of identical sign tend to form spatial groups. Obvi-
ously, the minimizer of

∫∫
Ω

[
|∇ω(x)|2 + (Ex∈Ωω(x))2

]
dxdy subject to homoge-

nous Dirichlet boundary condition is the flat function ω = 0 unless accompanied
by an external inhomogeneity.

Indeed, the purpose of the second modification is to influence spatial group-
ing of positive and negative values of ω in a particular way that the sign change
separates the gross structure from the boundary detail. In particular, the up-
per zero level set {Ω+ = (x, y) ∈ Ω : ω(x, y) > 0} covers central regions whereas
the lower zero level set {Ω− = (x, y) ∈ Ω : ω(x, y) < 0} covers peripheral regions
containing limbs, protrusions and boundary texture or noise. Towards this end,
the indicator χΩ(x) is replaced by a weighted indicator that is a monotonically
increasing function of the shortest distance to the boundary, namely, the distance
transform. As before, the first term favors separation of the domain into phases;
however, the phases are the level curves of the distance transform. Since, how-
ever, the level curves of the AT function in (1) are equivalent to the level curves
of a smooth distance transform [28], this change merely scales ω without quali-
tatively affecting the geometry of its level curves. Nevertheless, when the terms
considered together, the minimizer tends to have positive values at central loca-
tions and negative values at peripheral locations because the penalty incurred
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by assigning negative values to central locations with higher positive f values is
higher than the penalty incurred by assigning negative values to locations with
lower f values.

Similar to the AT function, the new minimizer is a compromise between inho-
mogeneity and homogeneity though the inhomogeneity is forced both externally
(by f) and internally (by the third term); or it is the best approximation of an
external inhomogeneity f subject to internal constraints.

The parameter ρ should be chosen large enough so that the attachment to
the external inhomogeneity should not dominate over the tendency to interact.
Indeed, in the absence of the third term, a good practice is to chose ρ at least
on the order of the maximum thickness for the diffusive effect of |∇.|2 to influ-
ence the entire shape ([2]; Fig. 1 in [28]). The same argument also holds here
since the effect of the third term is to partition Ω into subdomains within which
ω is morphologically similar to the AT function. Additionally, notice that the ex-
pression responsible for sign change,

∫∫
ω(x) dxdy, has been already normalized

by 1
|Ω| . As such, ρ should be larger than

√|Ω|.
In Fig. 1 (a), an illustration for a 1-D case is given. ω is plotted for four differ-

ent values of ρ ranging between
√|Ω| and 0.5∗ |Ω|. Naturally, ω gets flatter as ρ

increases. (The flattening can be avoided by scaling either f or ω.) Nevertheless,
the locations of the extrema and the zero crossings remain the same unless ρ is
significantly smaller than

√|Ω|. Similarly in 2-D, the geometry of the level curves
is stable as long as ρ is chosen suitably large. Illustrative level curves are de-
picted in Fig. 1 (b-c). Absolute values of ω separately normalized within regions
of identical sign are used for convenience of color visualization. Zero level curves
separate central and peripheral structures in the form of upper and lower zero
level sets: {Ω+ = (x, y) ∈ Ω : ω(x, y) > 0} and {Ω− = (x, y) ∈ Ω : ω(x, y) < 0}.
The peripheral structure includes all the detail: limbs, protrusions, and bound-
ary texture or noise. In contrast, the central structure is a very coarse blob-like
form; it can even be thought as an interval estimate of the center whereas the
centroid is the point estimate.

(a) (b) (c)

Fig. 1. (a) ω for an interval for varying values of ρ ranging between
√|Ω| and 0.5∗|Ω|.

(b) Illustrative level curves of ω.
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Most commonly, Ω+ is a simply connected set. Of course, it may also be
either disconnected or multiply connected. For instance, it is disconnected for
a dumbbell-like shape (two blobs of comparable radii combined through a thin
neck) whereas it is multiply connected for an annulus formed by two concentric
circles. Indeed, the annulus gets split into three concentric rings where the middle
ring is the Ω+. For quite a many shapes, however, Ω+ is a simply connected set.

Firstly, shapes obtained by protruding a blob as well as shapes whose periph-
eral parts are smaller or thinner than their main parts always have a simply
connected Ω+. This is expected: When the width of a part is small, the highest
value of f inside the part is small. That is, the local contribution to (ω − f)2

incurring due to negative values is less significant for such a part as compared
to locations with higher positive values of f . Consequently, ω tends to attain
negative values on narrow or small parts as well as on protrusions. Shapes with
holes also have a simply connected Ω+ as long as the holes are far from the
center.

Secondly, even a dumbbell-like shape may have a simply connected Ω+. This
happens if the join area, namely, the neck is wide enough. Nevertheless, this does
not cause any representational instability: Whereas the Ω+ for a blob-like shape
has a unique maximum located roughly at its centroid, the Ω+ for a dumbbell-
like shape has two local maxima indicating two bodies. Each body is captured
by a connected component of an upper level set whose bounding curve passes
through a saddle point. At a saddle point p, such that ω(p) = s, the s − level
curve has a double point singularity, i.e. it forms a cross. As such, the upper level
set {Ωs = (x, y) ∈ Ω+ : ω(x, y) > s} yields two disjoint connected components
capturing the two parts of the central structure.

In contrast to Ω+, the peripheral structure Ω− is often multiply connected.
Indeed, its hole(s) are carved by Ω+. It is also possible that Ω− is disconnected.
For instance, for an annulus, it is two concentric rings. Additionally, Ω− may be
disconnected when there are several elongated limbs organized around a rather
small central body, e.g., a palm tree. Ω+, being small, is tolerated to grow and
reach to the most concave parts of the shape boundary creating a split of Ω−
by the zero-level curve. Similar to those in Ω+, the level curves in Ω− that are
passing through saddle points provide further partitioning. The partitions are in
the form of lower level sets {Ωs = (x, y) ∈ Ω− : ω(x, y) < s}.

To sum up, within both Ω+ and Ω−, nested open sets (upper level sets inside
Ω+ and lower level sets inside Ω−) characterize the domain. The level curves
bounding the level sets are either closed curves or closed curves with crossing
points. The ones with crossing points are of particular interest because the re-
spective level set is partitioned at those points into two distinct connected com-
ponents. A crossing of a level curve occurs at a saddle point of ω. Of course, each
lower level set may contain other saddle points. Consequently, the partitioning
is binary and iterative and determined by the order of saddle points.

It is not generically possible that a level curve has singular points of higher
order because such singular points are unstable and may be removed by a
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slight change in ω. It is also highly unlikely that a connected component of an
s − level curve has two distinct crossing points. This issue is tackled in §3 via
randomization.

3 Randomized Hierarchy Tree

Since the partitioning inside both the Ω+ and Ω− of a shape are iterative and
binary, the parts can be organized starting from the second level in the form
of a proper binary tree. Let the shape be the root node and its children be
the upper and lower zero level sets, namely, the disjoint regions of the central
and peripheral structures. Suppose the central and peripheral structures are
respectively composed of Nc and Np disjoint sets. Let us enumerate the nodes
holding these sets as 11, 12, · · · , 1Nc for the Ω+ and as 21, 22, · · · , 2Np for the
Ω−. This is the second level of the tree and the first level of the partitioning. Of
course, the root may have more than two children. Nevertheless, starting from
the children of the root, each subtree is a proper binary tree because all the splits
inside an Ω+ or Ω− occur at saddle points; that is, each connected component
of the second level and its children either get split into two level sets or remain
as they are. We call this hierarchical organization as the Initial Part Tree. A
hypothetical initial part tree is illustrated in Fig. 2 (a). In a real example, the
nodes hold application dependently selected attributes of the respective level
sets.

Binary splits according to saddle points produce collections of parts which
are at the leaf level consistent across visual changes. However, the hierarchi-
cal order and granularity of parts are not necessarily consistent. For instance, a
weak saddle is easily removed when the shape is slightly smoothed. Likewise, cer-
tain non-generic configurations such as level curves with spatially distinct saddle
point singularities or triple point singularities cannot occur; indeed, such config-
urations are easily replaced by one of the corresponding generic configurations
which may differ for similar shapes. Furthermore, when a shape is occluded by
another shape, added peripheral parts change the positions of some of the pre-
vious level sets in the hierarchy. Nevertheless, the relative values of ω at saddle
points prompting consecutive splits are stable indicators of the organizational
hierarchy. Of course, attempting to convert a saddle point value to a tree depth
by discretization brings back the previous robustness issue.

Instead, we use the difference between the values of two successive saddle
points as a measure of saliency for the partitioning prompted by the latter saddle
point. Converting the saliency measure to a probability measure and considering
probability measures for all nodes, we endow the initial part tree with a random
structure from which possible re-organizations of the initial hierarchy tree are to
be sampled. We call the new structure as the Randomized Part Hierarchy
Tree. Below, we give the details of the randomization procedure. In contrast
to the respective initial part tree, a random sample from a randomized part
hierarchy tree is not necessarily a proper binary tree.

The randomization starts from level 3 nodes and propagates through their
children. Recall that this is the first level of nodes that are created via saddle
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points. For each pair of siblings, there are two possible events: The pair of siblings
either maintain their depth (no change in the local tree structure) or inherit the
depth of their parent (change in the local tree structure). In the latter case,
the node and its sibling replace their parent and become the children of their
grandparent. The probabilities of the two events are derived from a quantity
which we denote by Dω. It is a property of a split meaning that the Dω values
of a pair of siblings are identical. Specifically, it is the difference between the
saddle point values of a node and its parent divided by the saddle point value of
the node. Because the magnitude of the saddle point value of a node is always
greater than that of its parent, 0 < Dω ≤ 1; the equality is attained at level 3.

A small value of Dω implies that the consecutive saddle points are closer in
value; that is, a slight change in their value changes their order hence the local
tree structure. Equivalently a large value of Dω implies that the consecutive
saddle points are well separated, therefore, the local structure is stable. We re-
quire that the probability p that a local structure change is necessary approaches
1 as Dω approaches to the smallest possible value which is 0. Equivalently, p
should approach 0 as Dω approaches to its largest possible value. The function
e−4Dω is a good candidate for estimating p; there is less than 2% chance for
reorganization since e−4 = 0.018 for the largest possible Dω.

(a) (b) (c) (d)

Fig. 2. (a) An initial part tree (a) and its possible re-organizations (b-d). A random
sample should be in one of the four forms. See the text.

Let us consider the initial part tree in Fig. 2 (a). Assume that Dω = 0.301
for nodes 211 and 212. With probability (1 − p) = 0.7, the local structure is
preserved, whereas with probability p = 0.3 nodes 211 and 212 replace their
parent and become children of their grandparent, the root. Assume that Dω =
0.128 for 2111 and 2112. Then with probability (1− q) = 0.4, the local structure
is preserved, while with probability q = 0.6 nodes 2111 and 2112 replace their
parent and become children of their grandparent which is either node 21 with
(1−p) = 0.7 or the root with p = 0.3. Thus, there are four possible organizations:
With probability (1 − p)(1 − q) = 0.28, the entire structure is preserved. With
probability (1 − p)q = 0.42, the tree is re-organized as in (b). With probability
p(1 − q) = 0.12, the tree is re-organized as in (c). With probability pq = 0.18,
the tree is re-organized as in (d).
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4 Experimental Results and Discussion

To evaluate the effectiveness of endowing the part hierarchy tree with a prob-
abilistic structure, we consider a pairwise matching problem. It is formulated
as finding a maximal clique in the joint association graph of the pair of trees
to be matched, e.g. [18]. At each experiment, each of the two randomized part
hierarchy trees is independently sampled several times and then all the sample
pairs are matched. The trees in the sample pair that yields the highest matching
score are called as the winning re-organizations.

Depending on the application, various properties related to the level sets
stored at nodes can be used as node attributes. For instance, we extract parts
enclosing each of the stored level sets and then use their area and the maximum
ω values inside them as attributes. We remark that the maximum value of ω
is related to the part width for the finest parts. Because boundaries of stored
level sets pass through saddle points, an enclosing part is easily obtained as a
morphologic watershed zone, whose seed is the respective level set [14]. Both to
keep illustrations simple and resource requirements low, we require that each
part to neighbor the central structure and each seed and part to have a certain
size. Specifically, splits are performed only through the saddle points that reside
on the boundaries of the watershed zones that are touching to the closure of the
central structure and any split producing a seed that is less than 0.05% of the
shape or a part that is less than 0.5% of the shape is ignored.

We present four illustrative examples. In each case, correct associations are
found despite several order and granularity inconsistencies resulting from oc-
cluders, non-generic splits and weak saddles.

The first example is a matching between a human silhouette and its occluded
version. The winning re-organizations for each of the two trees are shown in
Fig. 3. At each node, the watershed (enclosing part) is depicted as dark gray
and the respective level set (seed part) depicted as black is superimposed on the
part; the neighboring part (the light gray) is also shown even though it is not
used for the matching. Due to page limits, we cannot provide the initial trees
and probability distributions, but the numbering of the nodes already reveals
the structure of the initial binary tree.

Firstly, notice that the arms on the left and on the right reside at different lev-
els in both of the initial trees as revealed by their respective five versus four digit
node numbers. Ideally, the almost symmetric upper bodies (nodes 211) should
contain two distinct saddle points p1 and p2 such that ω(p1) = ω(p2) = s; that
is, two distinct saddle points on a single s − level curve should simultaneously
yield the three nodes: 21111, 2112 (arms) and 21112 (head). However, certain
configurations including this one are not generic; even the slightest perturba-
tion imposes a strict order on the saddle points. Thus, firstly, the combination
of the head and either one of the arms is separated from the other arm then
the head-arm combination is partitioned. Nevertheless, in each case, the saddle
point value separating the head and arm on the left combination from the arm
on the right is very close to the saddle point value separating the head from the
arm on the left; e.g., for the first shape, the respective saddle point values after
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Fig. 3. The winning re-organizations for two shapes. The numbering of the nodes reveal
their order in the initial binary tree. See the text.

normalization with respect to the global maximum of ω are −0.683 and −0.687
while the saddle point value separating the entire upper body from the entire
lower body is −0.053. Clearly, the hierarchical order between the upper body
and its children is more stronger than the hierarchical order among its children.
We remark that even though the arm re-organization is not necessary for find-
ing correct part correspondences since the structures of the upper bodies are al-
ready the same for the two initial trees, the left and right arms are brought to the
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same level. This is because the probabilities of retaining the initial binary local
structures is very low due to the closeness of the consecutive saddle point values.

Secondly, notice that the legs of the occluded figure are at the sixth level
whereas the legs of the un-occluded one are at the fourth level, as revealed
by their node numbers. This is due to the influence of two additional parts
(watershed regions) belonging to the occluder and poses a challenge for the tree
matching. Nevertheless, the legs are brought to the same level as well as all of
the corresponding parts and correct associations are found: 11 ⇔ 11 (central
regions), 211 ⇔ 211 (upper bodies), 21111 ⇔ 21111 (arms on the left), 21112 ⇔
21112 (heads), 2112 ⇔ 2112 (arms on the right), 212 ⇔ 21212 (lower bodies)
2121 ⇔ 212121 (legs on the left) 2122 ⇔ 212122 (legs on the right).

In the next three examples, due to limited space, only the matchings where at
least one member of the matching pair is a leaf are depicted even though entire
hierarchical structures are matched. Non-leaf nodes are circled. These examples
also demonstrate the necessity of not restricting the correspondence search to leaf
nodes. The matching between a cat and a horse in Fig. 4 illustrates a granularity
inconsistency. Due to a weak saddle marked by the arrow in the left, the front
legs of the horse are not further partitioned. Nevertheless, this inconsistency is
resolved by matching the respective leaf node of the horse tree to a non-leaf node
of the cat tree, the parent of the two nodes each holding a front leg of the cat.

Fig. 4. A granularity inconsistency. Due to the weak saddle marked by the arrow in the
left, the part of the horse corresponding to its front legs cannot be further partitioned.
Nevertheless, it is correctly associated to a non-leaf node of the cat.

Fig. 5 (a) depicts the matching of the same horse to another horse. In addition
to the previous granularity inconsistency, there are several order inconsistencies
which are not noticeable at the leaf level presentation. For instance, the rear
body of the first horse firstly splits into the fourth leg and tail versus the third
leg, and then the fourth leg is separated from the tail. On the other hand, the
rear body of the second horse after a spurious division gets splits into the rear
legs versus the tail, and then the two legs are separated. Consequently, a two
level difference between the third leg of the first horse (node 2121) and the third
leg of the second horse (node 212221) is formed. Despite both granularity and
order inconsistencies, all of the parts are correctly matched.

The final example (Fig. 5 (b)) involves several difficulties due to three weak
saddles resulting with three unintuitive partitions for the second cat: Firstly,
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(a) (b)

Fig. 5. Two more cases involving both level and granularity inconsistencies

its head is fragmented; secondly, its rear body goes through a spurious division
causing an erroneous shift in the levels of its sub-parts; thirdly, its fourth leg
and tail are not separated. Nevertheless, the selected clique contains all of the
correct associations. The rear body and its parts for the second cat are properly
lifted one level up; consequently, the correct associations of the parts of the rear
bodies are found successfully. The head of the first cat matches to the parent
of the two leaves holding two unintuitive parts of the head of the second cat.
The two head fragments of the second cat as well as the fourth leg and the tail
of the first cat are correctly excluded from the selected clique as there are no
corresponding parts in the other tree.
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Abstract. This paper investigates a convex relaxation approach for
minimum description length (MDL) based image partitioning or labeling,
which proposes an energy functional regularized by the spatial smooth-
ness prior joint with a penalty for the total number of appearences or
labels, the so-called label cost prior. As common in recent studies of con-
vex relaxation approaches, the total-variation term is applied to encode
the spatial regularity of partition boundaries and the auxiliary label cost
term is penalized by the sum of convex infinity norms of the labeling
functions. We study the proposed such convex MDL based image par-
tition model under a novel continuous flow maximization perspective,
where we show that the label cost prior amounts to a relaxation of the
flow conservation condition which is crucial to study the classical du-
ality of max-flow and min-cut! To the best of our knowledge, it is new
to demonstrate such connections between the relaxation of flow conser-
vation and the penalty of the total number of active appearences. In
addition, we show that the proposed continuous max-flow formulation
also leads to a fast and reliable max-flow based algorithm to address
the challenging convex optimization problem, which significantly out-
performs the previous approach by direct convex programming, in terms
of speed, computation load and handling large-scale images. Its numeri-
cal scheme can by easily implemented and accelerated by the advanced
computation framework, e.g. GPU.

1 Introduction

In this work, we study image labeling with the minimum description length prin-
ciple (MDL) which naturally leads to regularities on both the spatial features,
e.g. the minimum perimeter, and the total number of ’appearence’ models. The
MDL principle provides both an important concept of information theory and
powerful tool to compress data, which states that ’the best hypothesis for a given
set of data is the one that leads to the best compression of the data’ (we refer to
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[22] for a detailed review). It naturally leads to use fewer symbols or models to
describe the given data [14]. In fact, such requirement of model reduction have
been considered in model fitting problems of computer vision for a long history,
e.g. image segmentation [18,31,25], motion segmentation [20,24] etc.

In image segmentation or partitioning, it boils down to the penalization of
the total number of appearence models or segments in addition to fitting data
and regularities of segmentation boundaries. For the given n models/labels li,
i = 1 . . . n, Zhu and Yuille [31] proposed to partition images based on the mini-
mization of the following energy function:

min
Ωi

n∑
i=1

{ ∫
Ωi

ρ(li, x) dx + λ

∫
∂Ωi

ds
}

+ γM , (1)

where Ωi, i = 1, . . . , n, are homogeneous partitions corresponding to li, M =
#{ 1 ≤ i ≤ n |Ωi �= ∅} gives the number of nonempty partitions, i.e. the so-called
label cost prior. The data fidelity function ρ(li, x) = − logP (Ix|li) is a negative
log-likelihood for model li at pixel x. The second term in (1) describes the total
perimeter of the partitions and favors spatially regular boundaries with mini-
mum length. Zhu and Yuille applied a local searching method, namely region
competition, to approximate the highly nonconvex optimization problem (1).
Their method slowly converges to a local minimum. Such MDL principle was
further developed in the evolution of level sets to assist merging, e.g. [17,6,1].
On the other hand, the label cost prior was also considered in the recent devel-
opments of graph cuts: Hoeim et al [16] introduced a technique of α−expansion
combined with MDL to the application of object recognition; Delong et al [9]
independently developed another α−expansion method which can efficiently op-
timize more general energy functions with incorporated label cost prior.

Recently, Yuan & Boykov [29] studied the MDL based image partitioning
problem (1) in the spatially continuous setting such that

min
ui(x)∈{0,1}

n∑
i=1

{ ∫
Ω

ui(x)ρ(li, x) dx + λ

∫
Ω

|∇ui| dx
}

+ γM , (2)

subject to
∑n

i=1 ui(x) = 1, where ui(x) ∈ {0, 1}, i = 1 . . . n, is the indicator
function of Ωi ⊂ Ω. Here M is the total number of ’active’ partitions and the
total-variation terms encode the total perimeter of partitions. The authors [29]
proposed a convex relaxation formulation of (2) as

min
ui(x)

n∑
i=1

{ ∫
Ω

ui(x)ρ(li, x) dx + λ

∫
Ω

|∇ui(x)| dx
}

+ γ

n∑
i=1

max
x∈Ω

ui(x) (3)

s.t.
n∑

i=1

ui(x) = 1 , ui(x) ≥ 0 ; ∀x ∈ Ω (4)

where the labeling functions ui(x), i = 1 . . . n, are relaxed by the pixelwise
simplex constraint (4) and the label cost term in (2) is encoded by the sum
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of convex infinity norms of ui(x) instead. (3) proposes the minimization of a
convex energy function over a convex constraint. It was optimized globally by a
direct convex programming based solver in [29], which is not feasible to handle
large-scale image data and highly time-consuming.

Actually, the first two terms of (3) together with the pixelwise convex con-
straint (4) correspond to the convex relaxation formulation of the minimal par-
tition model, i.e. Potts model,

min
ui(x)

n∑
i=1

∫
Ω

{
ui(x)ρ(li, x) + λ |∇ui|

}
dx , subject to (4) . (5)

(5) was actively studied during the last years, e.g. [7,19,2,3,27], and fast al-
gorithms were developed at the same time, upon standard theories of convex
optimization. It is well-known that the regularities of the partition boundaries,
i.e. the second term of (3) helps to smooth out small-scale partitions, hence
reduce the total number of ’appearences’ implicitly. However, only considering
such smoothness prior often fails to recover correct labeling results and often
leads to either over-partition or over-smoothness (see Fig. 1). This is in contrast
to the model (3) which explicitly couples the label cost prior. Its result possesses
optimalities of both geometry and model simplicity. We show this by Fig. 1.

(a) (b) (c) (d)

Fig. 1. (a) shows the given image. (b) shows the image partition result of (3) computed
by the proposed method in this paper. It gives only two segments left along with
properly smoothed boundaries! (c)-(d) show the partition results computed by the
Potts model (5) without the label cost prior, which give the results either oversegmented
(more labels) or oversmoothed. In this example we have used 11 evenly spaced labels.

Contributions: we focus on the convex relaxation model (3) of the MDL based
image partition and propose a novel flow maximization perspective, i.e. the con-
tinuous max-flow formulation which is dual to (3). We show that the label cost
prior in (3) just corresponds to a new flexible flow conservation constraint on
the proposed continuous max-flow formulation, i.e. relaxation of flow conserva-
tion amounts to minimizing the number of ’active’ labels! This is new to the
best knowledge of the authors. It is in contrast to the crucial flow conservation
condition of the classical max-flow models, where the flow excess given at each
image node or pixel strictly vanishes, e.g. [27,26]. Moreover, we derive an efficient
and reliable max-flow based algorithm which significantly outperforms the direct
convex programming based method proposed by [29] in terms of speed, memory
load and handling large-scale data. Compared to graph-cut based approaches
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[16,9], our continuous max-flow approach comes with an elegant mathemati-
cal theory and is computed in the spatially continuous setting, which properly
avoids metrication errors and can be easily implemented and accelerated on the
advanced computation environment, e.g. GPU.

2 Previous Works

2.1 Convex Relaxation Approaches

Image labeling subject to the minimum perimeter, i.e. the Potts model, was in-
tensively studied in both graph configuration [5] and spatially continuous settings
[7,27] etc. Current studies [19,7,3,27,30] focus on computing the associated con-
vex relaxation formulation (5) in the spatially continuous context, which avoid
directly tackling the non-convex energies, as level-sets or active-contour method,
and can be solved efficiently.

Let the convex set S denote the pixelwise simplex constraint (4) of u(x) =
(u1(x), . . . , un(x))T. [30,19] proposed an optimization method which involves two
substeps within each iteration: one explores the pointwise simplex constraint
u(x) ∈ S and the other tackles the total-variation term. In [7,23], Pock et al
introduced a variant implementation of the constraint u(x) ∈ S, i.e. a tighter
relaxation based on a multi-layered configuration, and gives a more complex con-
straint on the concerning dual variable p to avoid multiple counting. In contrast
to the works of [30,19,7,23] which tried to compute the labeling functions u(x)
of (5) directly, Bae et al [3] proposed to solve (5) based on its equivalent dual
formulation. The nonsmooth dual formulation can then be efficiently approxi-
mated by a smooth convex energy function.

Max-Flow and Flow Conservation: In the very recent studies of [26,28,27],
Yuan et al proposed the new continuous max-flow model which regards (5) as its
dual formulation in the spatially continuous setting. As the hard constraint of
the proposed max-flow model, the flow conservation condition should be strictly
satisfied.

For the Potts model (5), i.e. n ≥ 3, the spatially continuous flow configurations
are given as [27]: Let Ωi, i = 1 . . . n, be the n copies of the image domain Ω.
For each x ∈ Ω, the source flow ps(x) streams from the source s to the same
position x of each Ωi, i = 1 . . . n, simultaneously. For each x ∈ Ω, the sink flow
pi(x) is directed from x of each Ωi, i = 1 . . . n, to the sink t. The spatial flow
fields qi(x), i = 1 . . . n, are defined within each Ωi, i = 1 . . . n.

The sink and spatial flow fields pi(x) and qi(x), i = 1 . . . n, are constrained
by the capacities such that

|qi(x)| ≤ Ci(x) , pi(x) ≤ ρ(li, x) ; i = 1 . . . n . (6)

Especially, at each x ∈ Ω, the source flow ps(x), the sink and spatial flows pi(x)
and qi(x), i = 1 . . . n, satisfy the exact flow conservation conditions:

div qi(x) − ps(x) + pi(x) = 0 , i = 1 . . . n . (7)
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Likewise, the continuous max-flow problem is formulated as [27]:

max
ps,p,q

∫
Ω

ps(x) dx (8)

subject to (6) and (7). [27] proved that (8) is dual to (5). Clearly, the three
types of flow fields ps(x), pi(x) and qi(x), i = 1 . . . n, are connected by the
flow conservation constraints (7). The labeling functions ui(x), i = 1 . . . n, just
amount to the Lagrangian multipliers to the crucial flow-conservations [27].

Clearly, the flow conservation condition (7) plays the central role in the studies
of the continuous max-flow model (8), and so for the theories of continuous max-
flow and min-cut [26,28].

2.2 Convex Relaxed MDL Approach

Now we review the convex relaxation approach [29] to the challenging nonconvex
problem (2): Given n labels {l1, . . . , ln}, if the maximum of the labeling function
uk(x) ∈ {0, 1}, 1 ≤ k ≤ n, over the whole image domain Ω is 1, there must be
some pixel x ∈ Ω which is labeled by lk, i.e. the label lk must present in the final
image labeling result. Hence we can apply the sum of labeling functions’ infinity
norms

∑n
i=1 maxx∈Ω ui(x) to denote the total number M of ’active’ models.

Then, (2) can be equivalently reformulated by

min
ui(x)∈{0,1}

n∑
i=1

{∫
Ω

ui(x)ρ(li, x) dx + λ

∫
Ω

|∇ui| dx
}

+ γ

n∑
i=1

max
x∈Ω

ui(x) (9)

s.t.
n∑

i=1

ui(x) = 1 , ∀x ∈ Ω .

Relax the binary constraint of the labeling functions ui(x) ∈ {0, 1} together with∑n
i=1 ui(x) = 1 to the pointwise simplex constraint (4), i.e. u(x) := (u1(x), . . . ,

un(x))T ∈ S. The nonconvex optimization problem (9) can then be written as
the continuous convex optimization problem (3), i.e.

min
u(x)∈S

n∑
i=1

{∫
Ω

ui(x)ρ(li, x) dx + λ

∫
Ω

|∇ui(x)| dx
}

+ γ
n∑

i=1

max
x∈Ω

ui(x) (10)

where S denotes the pointwise simplex constraint (4). Obviously, the convex
constrained convex optimization problem (10) can be solved globally. Its third
term penalizes the infinity norm of each labeling function ui(x), i = 1 . . . n,
which amounts to convex relaxation of the label cost prior.

3 Continuous Max-Flow Approach

In this section, we adopt the flow setting proposed in [27] and introduce a novel
continuous max-flow formulation which is dual to the convex relaxed MDL-based
labeling model (3) or (10). We show the label cost term is reduced to new flexible
flow conservation constraints.
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3.1 Continuous Max-Flow Formulation

In this section, we adopt the flow-maximization configurations and notations
proposed in [27] and follow discussions in the above section.

By virtue of such continuous flow settings, the flow capacity constraints of
flows pi(x) and qi(x), at x ∈ Ω, are given in the same way as (6).

The flow conservation condition is formulated in a new flexible way:(
div qi−ps+pi

)
(x) ∈ Rγ

i , R
γ
i := {ri(x) |

∫
Ω

|ri(x)| dx ≤ γ } ; i=1 . . . n . (11)

Note: The new flow conservation condition (11) proposes that at each x ∈ Ω,
the total in-coming flow is not balanced by the total out-going flow. However, the
total absolute flow excesses associated with each label li, i = 1 . . . n, is controlled
below γ as (11). This is in contrast to the exact flow conservation condition (7)
in the classical max-flow theory, where the total in-coming flow should be strictly
balanced by the total out-going flow.

We propose our new continuous max-flow model such that

max
ps,p,q,r

{
P (ps, p, q) :=

∫
Ω

ps(x) dx
}

(12)

subject to (6) and (11). In the following section, we study the equivalence be-
tween the proposed continuous max-flow formulation (12) and the convex relaxed
MDL-based labeling model (3) or (10), especially for the case where C(x) = λ.

3.2 Equivalent Primal-Dual Model

We introduce the multiplier functions ui(x), i = 1, . . . , n, to the new flow con-
servation condition (11). Therefore, we have its equivalent primal-dual model:

max
ps,p,q,r

min
u

{
E(ps, p, q, r;u) :=

∫
Ω

ps dx +
n∑

i=1

∫
Ω

ui(div qi − ps+pi − ri) dx
}

(13)

s.t. pi(x) ≤ ρ(li, x) , |qi(x)| ≤ Ci(x) ;
∫

Ω

|ri(x)| dx ≤ γ ; i = 1 . . . n.

Rearranging the energy function E(ps, p, q, r;u) of (13), we have

E =
∫

Ω

(1−
n∑

i=1

ui) ps dx +
n∑

i=1

{∫
Ω

ui pi dx −
∫

Ω

ui ri dx +
∫

Ω

ui div qi dx
}
. (14)

For the primal-dual model (13), the conditions of the minimax theorem [11] are
all satisfied. That is, the constraints of flows are convex, and the energy function
is linear to both the multiplier u and the flow functions ps, p and q, hence convex
l.s.c. for fixed u and concave u.s.c. for fixed ps, p and q. This confirms the strong
dualities of (13) and the existence of at least one saddle point [11,12]. It follows
that the min and max operators of (13) can be interchanged:

max
ps,p,q,r

{
min

u
E(ps, p, q, r;u)

}
= min

u

{
max

ps,p,q,r
E(ps, p, q, r;u)

}
. (15)
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3.3 Equivalent Dual Model

Now we consider the optimization of (13) by switching the max-min order of
the left hand side of (15), i.e. first maximizing E(ps, p, q, r;u) over the functions
ps(x), p(x), q(x) and r(x). Then we have

Proposition 1. The maximization of (13) over the flow functions ps(x), p(x),
q(x) and r(x) amounts to the following dual model:

min
u(x)∈S

D(u) :=
n∑

i=1

{∫
Ω

ui(x) ρ(li, x) dx +
∫

Ω

Ci(x) |∇ui| dx
}

+γ
n∑

i=1

max
x∈Ω

ui(x)

(16)

which is equivalent to (3) and (10) for the special case when C(x) = λ.

To see Prop. 1, we follow the same analyzes as [26,28] , which gives

max
pi(x)≤ρ(li,x)

∫
Ω

uipi dx =
∫

Ω

ui(x)ρ(li, x) dx (17)

together with ui(x) ≥ 0, i = 1 . . . n.
For the maximization of (14) over qi and ri, i = 1 . . . n, it is well-known [13,15]

that
max

|qi(x)|≤Ci(x)

∫
Ω

ui div qi dx =
∫

Ω

Ci(x) |∇ui| dx , (18)

and by the symmetry of the L1-ball Rγ
i , we have

max
ri(x)∈Rγ

i

−
∫

Ω

uiri dx = γ max
x∈Ω

ui(x) . (19)

Moreover, observe the source flow ps(x) is unconstrained, then the maximiza-
tion of (14) over ps gives 1 −∑n

i=1 ui(x) = 0, ∀x ∈ Ω. Therefore, we have

Proposition 2. The continuous max-flow model (12), the primal-dual model
(13) and the dual model (16) are equivalent to each other.

4 Fast Continuous Max-Flow Algorithm

Observe that the energy function of the primal-dual model (13) is nothing but
the Lagrangian function of the proposed max-flow formulation (12) and the
labeling functions ui(x), i = 1 . . . n, give the corresponding multipliers to the
introduced new flow conservation constraints (11). Observe this, we derive the
new algorithm for (3) based on its equivalent continuous max-flow model (12).

We define the augmented Lagrangian function

Lc(ps, p, q, r, u) :=

∫
Ω

ps dx +
n∑

i=1

〈ui, div qi − ps + pi − ri〉 − c

2

n∑
i=1

‖div qi − ps + pi − ri‖2
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where c > 0 and the auxiliary L2 penalty term facilitates the vanishing of
div qi(x) − ps(x) + pi(x) − ri(x) at each x ∈ Ω.

Now we construct our multiplier-based max-flow algorithm based on the aug-
mented Lagrangian scheme [4]. Each k-th iteration includes the following steps:

– Maximize the energy Lc(ps, p, q, r, u) over the spatial flows qi(x), i = 1 . . . n,
by fixing other variables, which amounts to:

qk+1
i := arg max

‖qi‖∞≤λ
− c

2

∥∥div qi − Ck(x)
∥∥2

, (20)

where
Ck(x) = −pk

i (x) + pk
s(x) + rk

i (x) + uk
i (x)/c .

(20) can be approximated by a Chambolle-like projection-descent step [8].
– Maximize the energy Lc(ps, p, q, r, u) over the sink flows pi(x), i = 1 . . . n,

by fixing other variables, which corresponds to

pk+1
i := arg max

pi(x)≤ρ(�i,x)
− c

2

∥∥pi −Dk
∥∥2

, (21)

where
Dk(x) = − div qk+1

i (x) + pk
s(x) + rk

i (x) + uk
i (x)/c .

(21) can be directly computed pointwise at each x ∈ Ω.
– Maximize the energy Lc(ps, p, q, r, u) over ri(x), i = 1 . . . n, by fixing other

variables, which amounts to

rk+1
i := arg max

ri(x)∈Rγ
i

− c
2

∥∥ri − F k
∥∥2

(22)

where
F k(x) = div qk+1

i (x) − pk
s(x) + pk

i (x) − uk
i (x)/c .

(22) can be addressed by the projection of F k(x) to the L1-ball Rγ
i with the

fast projection algorithm of linear O(N) complexity [21,10].
– Optimize the energy Lc(ps, p, q, r, u) over the unconstrained source flow ps

and

pk+1
s := arg max

ps

∫
Ω

ps dx− c

2

n∑
i=1

∥∥ps −Gk
∥∥2

(23)

where
Gk(x) = pk+1

i (x) + div qk+1
i (x) − rk+1

i (x) − uk
i (x)/c .

Finally, update the multiplier functions ui(x), i = 1 . . . n, as follows

uk+1
i =uk

i − c (div qk+1
i − pk+1

s + pk+1
i ) . (24)

Both (23) and (24) can be computed in a closed form.
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Fig. 2. Image segmentation with 15 labels. From left to right: input image (508 ×
336); labeling with Potts model; label cost model with γ = 250; label cost model with
γ = 1000. Top: Full image. 2nd - 4th row: zoomed parts (red-line croped areas of the
input image). Visible differences can be clearly noticed in the zoomed images.

5 Numerical Experiments

Experiments demonstrate the advantages of the label cost model over Potts
model and the superior efficiency of the new max-flow algorithm over the previ-
ous SOCP method [29]. Gray scale image segmentation can be modeled as (1)
with the data term

ρ(li, x) = |f(x) − li|p , i = 1 . . . n ; p = 1 or 2

where l1, ..., ln are predefined gray values, for instance the gaussian distribution
model of images. For colour image segmentation, the labels are instead colour
vectors (lj1...l

j
n), where j ∈ {r, g, b}. The data term is modeled as

ρ(�i, x) =
∑

j∈{r,g,b}

∣∣∣f(x) − lji

∣∣∣p , i = 1, . . . , n ; p = 1 or 2 .

In the experiments of Fig. 2 - 3, �1, ...�n are chosen as evenly spaced gray values
in the interval between the smallest and largest gray value. For the color image,
�1, ..., �n are evenly spaced color vectors. The results of Potts model are shown in
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Fig. 3. Top: labeling by 11 labels. From left to right: input (481 × 321); Potts model
λ = 0.1; MDL model λ = 0.1, γ = 2000; MDL model λ = 0.1, γ = 3000. Middle:
labeling by 21 labels. From left to right: input (321 × 481); Potts model λ = 0.05;
MDL model λ = 0.05, γ = 3000; MDL model λ = 0.05, γ = 8000, Bottom: labeling
by 21 labels. From left to right: input (321 × 481); Potts model λ = 0.15; MDL model
λ = 0.15, γ = 2000; MDL model λ = 0.15, γ = 3000.

the 2nd coloumns. It may produce more labels than desired. On the other hand,
the label cost prior, 3rd and 4th coloumn, greatly greatly helps to generate
less labels along with properly smoothed edges, such that the objects are more
clearly distinguished. The label cost model allows to reduce the number of labels
without simultaneously oversmoothing the partition boundaries, as Potts model
does (see also Fig. 1).

The efficiency of the proposed max-flow algorithm is significantly superior
to the SOCP implementation in [29]. Whereas [29] requires several hours to
converge for even one small input image (150 × 150), the proposed max-flow
algorithm converges around 2 minutes for a large image (about 500×500) (serial
matlab implementation). The convergence is just a little slower than the max-
flow algorithm [27] without label cost prior, due to the projections onto the
L1-ball (22). The algorithm [29] even fails to converge when the problem size is
too big, due to the intense memory requirement. For instance, the problem in
Fig. 3 bottom (21 labels) could not be handled by [29] for the Ubuntu desktop
we used (Intel Xeon 3.06G, 16G Memory).
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6 Conclusions

We studied a convex relaxed MDL based labeling model (3) in this work, and
showed its effectiveness for image partitioning in minimizing both the total num-
ber of ’active’ labels and the perimeter of partitions [29]. More specially, we pro-
posed and investigated a novel continuous max-flow model which is dual to (3).
We showed that the label cost prior introduced in (3) just corresponds to the new
flexible constraint of flow conservation under the flow-maximization perspective.
This is in contrast to the strict flow balance for the classical max-flow/min-cut
theories. In numerics, the proposed continuous max-flow model naturally leads
to a new fast max-flow based algorithm, which greatly outperforms the direct
convex programming method proposed in [29] in terms of efficiency, computation
load, implementation on GPUs, and handling large-scale image data.

Acknowledgements. This research has been supported by Canadian NSERC
discovery grant 298299-2007 RGPIN and accelerator grant for exceptional new
opportunities 349757-2007 RGPAS, the Norwegian Research Council (eVita
project 166075), MOE (Ministry of Education) Tier II project T207N2202 and
IDM project NRF2007IDMIDM002-010.
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Abstract. A new approximation of the Mumford-Shah model is pro-
posed for edge detection, which could handle open-ended curves and
closed curves as well. The essential idea is to treat the curves by nar-
row regions, and use a sharp interface technique to solve the approxi-
mate Mumford-Shah model. A fast algorithm based on the augmented
Lagrangian method is developed. Numerical results show that the pro-
posed model and method are very efficient and have the potential to be
used for edge detections for real complicated images.

1 Introduction

Edge detection is one of the fundamental problems for image processing and
computer vision [29], and its application also spans many other areas such as
boundary extraction and solid-liquid interface detection [39,8] in material science
and physics. In the context of image processing, edge detection is to find the
boundaries of objects in a digital image. Many methods have been developed for
this purpose. Classical approaches attempted to detect edges by discontinuities
in image intensity values. Witkin [43] proposed the scale space framework to
analyze images, where the extreme of the first gradient and zero-crossing of
the second gradient are used to detect edges. However, the edges are usually
disconnected, so Canny [11] proposed the so-called Canny edge detector to detect
disconnected edges. The main principle is to classify a pixel into the edges, if
the gradient magnitude of the pixel is larger than those of pixels at both sides
in the image domain. The Canny’s edge detector inspired many subsequential
works, e.g., Susan [33] and Canny-Deriche [18].

Another important class of methods are based on nonlinear isotropic diffusive
equations [13,1,30]. In general, such models are designed to prevent smoothing
near the edges and to encourage diffusion in the homogeneous regions. However,
they may break down when the gradient generated by noise is comparable to
the targeted edges. Along this line, some reaction and diffusion equations [35,42],

A.M. Bruckstein et al. (Eds.): SSVM 2011, LNCS 6667, pp. 291–301, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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edge flow [24], snake/active contour models [20,12,5] and universal gravity [34]
are also proposed for edge detection.

It is obviously impossible to summarize all the methods and the interested
readers are referred to [10,25,23,31] for a review of many other methods. Given the
vast amount of existing algorithms, we feel compelled to provide sufficient justifi-
cation for developing yet another method. Motivated by the success of piecewise
constant level set methods for image segmentation [22] and the recent developed
fast algorithms [6], we shall introduce a new edge detector based on a robust bi-
nary level set method for the Mumford-Shah model [27]. In contrast with image
segmentation, which is to find a partition of the image domain, edge detection
aims more at finding the discontinuities of the intensity function. Hence, we are
mostly concerned with the determination of open curves. However, there is no a
natural way to represent open curves, since there is no distinction of interior and
exterior regions. Accordingly, the standard level set methods [28] can not be di-
rectly applied. Among very few approaches for dealing with open curves, the work
of [32] for modeling spiral crystal growth used two level set functions to represent
the codimension-two boundary of the open curve by {x : φ(x) = 0 and ψ(x) > 0},
where φ, ψ are two signed distance function. In [7], an open-ended curve was rep-
resented by the “centerline” of the level set function defined on the curve, and
the motion of the curve was essentially driven by the evolution a small region sur-
rounding the curve. Interestingly, a recent work of Leung and Zhao [21] proposed
a grid based particle method to represent an open curve by the most relevant
points in the neighborhood on the discrete grids. The authors also commented
on the limitations of the methods in [32,7] for open curve evolution.

In this paper, we embed an open (or a closed) curve of interest in a narrow
region (or band) with the curve being part of the (one-sided) boundary (see
Figure 1 below for an illustration). From geometric point of view, such a region
is formed by the parallel curve (also known as the offset curve) [38]. We define a
binary piecewise constant level set function on the small region, and show that
the total variation of the level set function gives a good approximation of the
length of the curve. Moreover, we add intrinsic forces to enforce the level set
function to converge to binary values, and this helps to enhance and sharpen
the edges. Moreover, applying this notion to translate the Mumford-Shah model
leads to fast and robust algorithms for edge detection. On the other hand, we
simultaneously solve the edge set and the optimal piecewise smooth approxima-
tion of the given image in the Mumford-Shah model, so the proposed methods
can be used for mutliphase piecewise smooth image segmentation (which is yet
a challenging topic [40]).

The rest of the paper is organized as follows. In Section 2, we formulate the
Mumford-Shah model based on an embedding of the curve in a narrow band and
the binary piecewise constant level set method. In Section 3, we describe the fast
algorithm based on the augmented Lagrangian method. Section 4 is devoted
to the numerical experiments for detection of open curves and segmentation
of multiphase piecewise smooth images. Some concluding remarks are given in
Section 5.
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2 Formulation of the Model

Given an image I on an open bounded domain Ω ∈ R2, Mumford and Shah in
their seminal paper [27] suggested minimizing the following functional to find a
piecewise smooth approximation u of I and the edge set Γ :

E(u, Γ ) =
α

2

∫
Ω

(u − I)2dx +
β

2

∫
Ω\Γ

|∇u|2dx + |Γ |, (1)

where |Γ | is the length of the edges picked from all over the image domain, and
α, β are positive parameters to balance three terms. They also conjectured that
E has a minimizer and the edges (the discontinuity Γ ) are the union of a finite set
of C1,1 embedded curves with three possible configurations [4]: (i) a crap tip (look
like a half-line or a single arc ends without meeting others); (ii) a triple junction
(three curves meeting at their endpoints with 2π/3 angle between each pair);
and (iii) boundary points (a curve meets ∂Ω perpendicularly). The Mumford-
Shah model and conjecture have inspired deep mathematical investigation and
extensive applications [4,17]. The reduced model (without the second term called
the piecewise constant Mumford-Shah model), together with an appropriate level
set implementation, becomes a fundamental tool for piecewise constant image
segmentation (see, e.g., [15,22]). We are interested in detecting Γ by solving the
full model (1). The first issue is to characterize the edge set. An important idea
is to associate Γ with the jump Γu of the unknown u, and this leads to the
remarkable approximation of (1) by Ambrosio and Tortorelli [2,3]:

Eε(u, Γ ) =
α

2

∫
Ω

(u−I)2dx+
β

2

∫
Ω

v2|∇u|2dx+
∫

Ω

(
ε|∇v|2+ 1

4ε
(v−1)2

)
dx, (2)

where v is an auxiliary variable such that v ≈ 0 if x ∈ Γu, and v ≈ 1 otherwise. A
rigorous analysis (see [2,9]) shows that the last term converges to |Γ | in Gamma-
convergence sense [16]. The width of transition from v = 0 to 1 is about O(ε).

In what follows, we take a different point of view to characterize Γ and approx-
imate its length. Based on Mumford and Shah conjecture, we assume that the
targeted edge set Γ consists of a finite union of simple (i.e., non-self-intersecting)
curves with suitable regularity. Let r be a single curve in the edge set Γ with a
definite parameterization: r(t) = (x(t), y(t)), t ∈ [0, 1]. Without loss of general-
ity, we assume that r(t) is regular (i.e., |r′(t)| �= 0 for all t ∈ (0, 1)), and it has
finite length and curvature. Recall that the parallel or offset curve generated by
r(t) is defined by (cf. [19,38]):

rd(t) = r(t) + d n(t), ∀t ∈ [0, 1], (3)

where n(t) is the unit normal to r(t) at each point, and d is a preassigned signed
distance. This defines a positive (exterior, d > 0) or negative (interior, d < 0)
offset (see some examples in Figure 1). For clarity of presentation, we denote the
total length of r and rd by L and Ld, respectively. According to Lemma 3.1 in
[19], the total length of rd is

Ld =
∫ 1

0

|1 + κd| |r′|dt =
∫ L

0

|1 + κd| ds = |L + dΔθ|, (4)
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where κ is the curvature and Δθ is the total angle of rotation of the normal n
to r between t = 0 and t = 1, measured in the right-handed sense. Moreover,
the area Ad between the generator r and the offset rd is given by

Ad =
1
2
(L + Ld)|d|. (5)

The interested reader may refer to [19] for detailed analysis.
Hereafter, we assume that 0 < d � 1, and denote the corresponding (closed)

narrow band (with area Ad) by Rd. Recall that the total variation of the indicator
function 1

Rd
characterizes the perimeter of Rd, so we deduce from (3) that

TV (1
Rd

) = 2L + O(d), 0 < d � 1, (6)

where

TV (u) = sup
p∈S

∫
Ω

u divp dx, S :=
{

p ∈ C1
c (Ω; R2) : |p| ≤ 1

}
. (7)

We introduce an auxiliary function φ to approximate the characteristic function:

1
Rd

≈ 1 + φ

2
, 1 − 1

Rd
≈ 1 − φ

2
. (8)

In other words, φ ≈ 1 if x ∈ Rd and φ ≈ −1 otherwise. More importantly, we
enforce the constraint φ2 = 1, which acts as an intrinsic force and enables to
enhance and sharpen the edges.

After collecting all the necessary facts, we present the approximation of the
Mumford-Shah model (1):

min
u,φ2=1

{α

2

∫
Ω

(1 − φ)2|∇u|2dx +
β

2

∫
Ω

|u − I|2dx + TV (φ)
}

. (9)

Compared with (2), we characterize and approximate the edge set and the length
term in a different manner. The use of total variation regularization, together
with the constraint, can be viewed as a sharp interface approach. It appears
that the presence of TV-term and the constraint may increase the difficulty in
resolving the model. To alleviate this concern, we next introduce a fast dual-type
algorithm based on the Augmented Lagrangian method (ALM).

3 Description of the Algorithm

In this section, we introduce the algorithm to minimize the model (9). For clarity,
we use boldface letters to denote vectors. As in [37], we handle the total variation
term by introducing an auxiliary variable q, and reformulate (9) as

min
u,φ2=1,
q=∇φ

{α

2

∫
Ω

(1 − φ)2|∇u|2dx +
β

2

∫
Ω

|u − I|2dx +
∫

Ω

|q|dx
}
. (10)
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d
d d

Fig. 1. The closed narrow region Rd formed by the curve Γ : r(t) and its exterior
parallel curve (dashed line) for closed curves and open curves (the dotted lines con-
nected the corresponding starting points and end-points of the curve Γ and its exterior
parallel curve, respectively), where the dot-dashed line is the interior parallel curve.
The last one is an example of an intersected curve that can be split into simple open
or closed curves.

The augmented Lagrangian formulation for this constrained problem takes the
form

min
u,φ,q,

max
p,λ

{
L(u, φ, q; p, λ)

:=
α

2

∫
Ω

(1 − φ)2|∇u|2dx +
β

2

∫
Ω

|u − I|2dx +
∫

Ω

|q|dx + (p, q −∇φ)

+
r

2

∫
Ω

(q −∇φ)2dx +
1
2

∫
Ω

λ · (φ2 − 1)dx +
rφ

2

∫
Ω

(φ2 − 1)2dx
}
,

(11)

where p and λ are the Lagrange multipliers, and r and rφ are positive constants.
Thus the minimizer problem (11) is to seek a saddle point of the augmented

Lagrangian functional L(u, φ, q; p, λ). But the problem (11) is not convex for
both variables φ, u, which means a global minimizer may not be guaranteed.

A typical approach (see, e.g., [41,44]) is to split the problem (11) into several
subproblems and minimize them consecutively.

It is clear that the optimality conditions for p and λ leads to the constraint:
q = ∇φ and φ2 = 1, respectively. Therefore, we consider the following three
subproblems:

• u-subproblem: Given φ, q,

min
u

{α

2

∫
Ω

(1 − φ)2|∇u|2dx +
β

2

∫
Ω

(u − I)2dx
}
. (12)

• φ-subproblem: Given u, q, p, λ,

min
φ

{α

2

∫
Ω

(1 − φ)2|∇u|2dx + (p, q −∇φ) +
r

2

∫
Ω

(q −∇φ)2dx

+
1
2

∫
Ω

λ · (φ2 − 1)dx +
rφ

2

∫
Ω

(φ2 − 1)2dx
}
.

(13)

• q-subproblem: Given u, φ, p,

min
q

{∫
Ω

|q|dx + (p, q) +
r

2

∫
Ω

(q −∇φ)2dx
}

. (14)
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The optimality conditions for (12)-(14) yield

−αdiv((1 − φ)2∇u) + β(u − I) = 0, (15)

α(φ − 1)|∇u|2 + divp + rdiv(q −∇φ) + λφ + 2rφ(φ2 − 1)φ = 0, (16)

q

|q| + p + r(q −∇φ) = 0. (17)

Since q = ∇φ and φ2 = 1, we find from (16) that

α(φ − 1)|∇u|2 + divp + λφ = 0. (18)

That is, (
λ + α|∇u|2)φ = −(divp − α|∇u|2). (19)

Using the constraint φ2 = 1 to (19) again yields

(divp − α|∇u|2)2 = (λ + α|∇u|2)2,
which implies the relation between λ and p :

λ = −divp or λ = divp − 2α|∇u|2. (20)

Therefore, we obtain from (19) that∣∣divp − α|∇u|2∣∣φ = −(divp − α|∇u|2). (21)

Since q = ∇φ, we derive from (17) that

p = − q

|q| = − ∇φ

|∇φ| ⇒ ∇φ + |∇φ|p = 0. (22)

In summary, we need to solve the system for (u, φ, p) :⎧⎪⎨⎪⎩
∣∣divp − α|∇u|2∣∣φ = −(divp − α|∇u|2),
∇φ + |∇φ|p = 0,

− αdiv((1 − φ)2∇u) + β(u − I) = 0.

(23)

Since the binary level set function φ is expected to satisfy φ2 = 1, we adopt a
MBO-type projection (see [26,36]):

φ = PB

(
divp − α|∇u|2) with PB(t) :=

{
1, if t ≤ 0,

−1, if t > 0.
(24)

The second equation in (23) can be solved in a very similar idea in [14]. For
fixed φ, the last linear equation for u can be solved efficiently. We summarize
the algorithm as follows.



Robust Edge Detection Using Mumford-Shah Model 297

Algorithm

1. Initialization: set p0 = 0 and u0 = I;
2. For k = 0, 1, · · · ,

(i) Compute
φk+1 = PB

(
divpk − α|∇uk|2);

(ii) Update p by the Chambolle’s algorithm:

pk+1 =
pk + τ∇φk+1

1 + τ |∇φk+1| ; (25)

(iii) Update u by

uk+1 = uk + τ̃
{
αdiv((1 − φk+1)∇uk) − β(uk − I)

}
; (26)

3. End for till some stopping rule meets.

Some remarks are in order.

• Using the augmented Lagrangian formulation, we derive the simplified sys-
tem (23), which does not depend on the parameters r, rφ and λ. Hence,
the algorithm might be more efficient than the algorithm, e.g., the Uzawa
method, for the full model.

• The Lagrangian multiplier p turns out to be a dual variable, so the above
algorithm is based on the primal-dual formulation with the complexity com-
parable to the fast algorithm in [14] for image denoising.

• An inner iteration can be applied to the equation for u, and it can be solved
more efficiently other than (26). Indeed, a much deeper study can be con-
ducted for (23), although we find the above algorithm works well.

4 Numerical Experiments

In this section, we provide numerical results to show the efficiency and robustness
of the proposed model and algorithm. We also compare our method with Canny
edge detector [11]. In the numerical tests, we take α = 10, β = 1, τ = 0.12
and τ̃ = 10−4. The stopping rule is based on the maximum pixel-wise errors
‖φk+1 − φk‖∞ ≤ 10−2 and ‖uk+1 − uk‖∞ ≤ 10−4.

We first test two images configured with some typical open-ended and closed
curves as boundaries in Figure 2. In particular, the testing image in Figure 2
(e) consists of objects with multiple constant intensities (i.e., multi-phases). We
see that in all cases, the proposed method produces much sharper edges than
the commonly used Canny detector. Indeed, the binary level set function φ con-
verges to the expected values, that is, 1 in the very narrow region surrounding
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(a) Original image (b) Canny method (c) Proposed method
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(e) Original image (f) Canny method (g) Proposed method (h) φ profile

Fig. 2. Two tests of edge detection by Canny method and our proposed method

the curves, and −1 elsewhere. Under the stopping criterion, our proposed al-
gorithm takes about 30 iterations to converge. In fact, satisfactory results can
usually be obtained within 10 iterations. Moreover, the algorithm is robust for
the initialization and parameters. The sharp interface model together with the
fast algorithm could be a very promising tool for real image processing.

Next, we test our method for images with more features. In Figure 3, we show
the results of our method and compare it with the results obtained by Canny
edge detector, and the Ambrosio-Tortorelli method (2). In the comparison, we
take the same parameters α = 10, β = 1 as our proposed method, and the
time step is 10−4 and the ε in (2) is 10−4. The stopping rule is based on the
maximum pixel-wise errors ‖vk+1 − vk‖∞ ≤ 10−6 and ‖uk+1 − uk‖∞ ≤ 10−6.
Observe that our new algorithm is able to detect all the meaningful edges. More
importantly, the smooth approximate solution u produces a very satisfactory
recovery of the original image. Once again, the outcome of the proposed method
is better than that of the Canny approach. We point out that our algorithm for
the Cameraman image with size 256-by-256 takes about 5 seconds with about
200 iterations to converge, while that of the Ambrosio-Tortorelli method takes
more than 20 seconds and 900 iterations.

5 Concluding Remarks

In this paper, we propose a new approach to approximate the Mumford-Shah
model for edge detection. Some features of this work are highlighted below.

• An edge is viewed as a narrow region, and a binary level set method is applied
to formulate the model. Therefore, compared with the approximation in
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Fig. 3. Column 1: original images; Column 2: detected edges by the Canny method;
Column 3: detected edges by the Ambrosio-Tortorelli method; Column 4: detected
edges by our proposed method; Column 5: reconstructed image u by our proposed
method.

Ambrosio and Tortorelli [2], the total variation regularization is adopted to
approximate the length of edge set. In general, our method can be regarded
as a sharp interface approach.

• A fast primal-dual algorithm based on the augmented Lagrangian method is
proposed, which contains the minimal number of parameters and is naturally
initialized. The computational cost is comparable to that of the efficient
algorithm in [14].
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Abstract. In this paper, we aim to develop a criterion to select scale
parameters, which control pre-smoothing for edge detection. We first
formalise the Canny edge detector which extracts the zeros of bilinear
form of the first- and the second-order derivatives of image intensity.
Then, we show the bifurcation property of the edge curves at the singular
points in the linear scale space. Finally using the scale space hierarchy
of the singular point, we derive a criterion to select scale parameters for
edge detection.

1 Introduction

In this paper, we first show that segment edges detected by the Canny edge
detector [1, 2] is a zero-crossing set defined by second-order differentials of an
image [2–4] in the linear scale space [5–9]. Using this geometrical property of
the segment edges, we second show a bifurcation property of edge segments in
the linear scale space. This bifurcation property allows us to select appropriate
scales for the accurate detection of the segment and the unification of segments
extracted in various scales.

The segmentation of an image with high resolution inherently suffers from
the oversegmentation problem, in which invalid segments are misinterpreted as
pattern features of the image. In most cases, the oversegmentation due to ran-
domness in the image, such as texture and noise, is suppressible by low-pass
filtering or smoothing the image. However, smoothing operation reduces the im-
age features as well. The segmentation of the smoothed image fails to extract
valid segments related to the target objects in the image. This is the under-
segmentation problem. Therefore, the selection of image resolution is crucial to
avoid under- and oversegmentation.

A typical smoothing operation is the Gaussian convolution with an appropri-
ate deviation [5, 6], which corresponds to the bandwidth of a low-pass filter. The
Gaussian scale-space theory provides a mathematical framework on the multi-
resolution analysis of images with the Gaussian filter. A mathematical framework
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for the analysis of images smoothed by Gaussian filtering is the Gaussian scale-
space theory [5, 6, 8, 9]. Since the Canny edge [1, 2] is a collection of singular
curves in the linear scale space, we derive a method to select Gaussian smoothing
operation using the scale space hierarchy of the singular point. This geometrical
property also defines a hierarchical relations amon segments crossing the scales
in the scale space.

2 Gaussian Scale Space

The scale space images are described as images blurred by Gaussian filtering
[5, 6, 10]. The convolution of an N -dimensional grey-scale image f(x), x ∈ RN

and the isotropic Gaussian kernel with the deviation σ =
√

2τ derives a one-
parameter family of non-negative functions,

f(x, τ) = G(x,
√

2τ) ∗ f(x), (1)

where “∗” expresses the N -dimensional convolution. The function f(x, τ) is the
solution of the partial differential equation

∂

∂τ
f(x, τ) = f(x, τ), f(x, 0) = f(x), τ > 0. (2)

The Gaussian scale space is a (N + 1)-dimensional space (x, τ), in which the
generalised image f(x, τ) is defined. The generalised image satisfies the scale-
space axioms: non-negativity, linearity, scaling invariance, translation invariance,
rotation invariance, and non-enhancement of local extrema [5, 7, 8, 18]. As the
geometric features of the scale-space image are reduced with increasing scale,
the structure of the image is simplified.

Next, we briefly summarise singular points in the scale space.

Definition 1. Stationary points S are defined as points where the spatial gra-
dient vanishes, that is,

S = {x | ∇f(x, τ) = 0}. (3)

The structure of an image indicated by the critical curves in scale space has
been investigated by various authors [10, 16, 19]. The bifurcation properties of
image features in the scale space imply that the image structure across the scale
is hierarchical.

Definition 2. The annihilation point is a singular point where detH(x, τ) = 0,
for the Hessian matrix H(x, τ) of f(x, τ).

The singular stationary points are also called the catastrophe points [16] in the
scale-space theory.

Definition 3. Catastrophe points T are the points where both the spatial gradi-
ent and the determinant of the Hessian matrix vanish, that is,

T = {(x, τ) | ∇f(x, τ) = 0, detH(x, τ) = 0}. (4)

Every singular point generically has a zero eigenvalue, or a zero principal cur-
vature since detH(x, τ) =

∏
λi(τ) = 0. The singular points are the points at

which the stationary points meet in the scale space [15].
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3 Segmentation Using Second-Order Derivatives

Enomoto et al. [3], and later Krueger et al. [2], define an edge manifold using
the spatial gradient and the Hessian of the image.

Definition 4. The edge manifold is defined as the set of points

E = {x | ∇f�H∇f = 0}. (5)

E is called the edge surface and the edge line for a 3D image and a 2D image,
respectively.

The critical points where ∇f = 0 are in E of an image of arbitrary dimension.
The edge line E of a two-dimensional image includes the points at which H is
degenerated and ∇f is in the null space of H. Such null space is equivalent to
the subspace perpendicular to the edge direction. The edge line E also includes
the points at which ∇f and H∇f are mutually perpendicular, if H is regular.
Such regular points are found near the saddle points where the two eigenvalues
of H are positive and negative.

One of the practical methods to extract the image segments is the Canny edge
detection [1]. For each pre-determined deviation τi for i = 1, 2, . . . n, edges of the
image f(x) are detected by the following procedure.

Image Smoothing The image f(x) is smoothed by a Gaussian filter with the
deviation τi to yield fi(x) = G(x, τi) ∗ f(x).

Differentiation Compute the gradient ∇fi(x).
Edge Decision Assume the normal direction n to the edge to be the direction

of the gradient, that is, n = ∇fi(x). Edge points are the points of inflection
of fi(x) in the direction of n.

Ei =
{

x | ∂2

∂n2
fi(x) = 0

}
. (6)

The smoothing and differentiation can be combined into a convolution of Gaus-
sian derivatives. The detection of zero crossing in eq. (6) is implemented as
hysteresis thresholding using a pair of thresholds. The ratio of two thresholds is
regulated on the basis of the signal-to-noise ratio of the image[1].

Canny observed edges with small deviations τi [1]. From the viewpoint of the
scale-space theory, the Canny edge Ei can be regarded as the scale-space version
of the edge manifold denoted by eq. (5). Since the directional derivative in the
direction of n is calculated as ∂fi/∂n = n�∇fi, equation (6) can be described
as

∂2fi

∂n2
= n�∇(n�∇fi) = n�Hin. (7)

Here,∇fi and Hi are the spatial gradient and the Hessian matrix of the Gaussian-
smoothed image fi = f(x, τi), that is, the scale-space image. Therefore, we rede-
fine the Canny edge in the scale-space fashion.
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Definition 5. The Canny edge in the scale space is defined as a one-parameter
family of the edge manifold

E(τ) = {x|∇f(x, τ)�H(x, τ)∇f(x, τ) = 0}. (8)

Figure 1 shows segments extracted using the Canny operation for various scale
parameters. Segments are white regions. Although, with small scale parameters,
the operation extracts principal regions, with large scale parameters, the Canny
operator extracts blurred regions. Therefore, for stable region extraction, the
selection of the scale parameter is an essential task.

(a) τ = 010 (b) τ = 020 (c) τ = 030 (d) τ = 040

Fig. 1. Edge curves in the linear scale space. Segments are white regions. With small
scale parameters, the operation extracts principal regions. However, with large scale
parameters, the Canny operator extracts blurred regions.

4 Scale Space Hierarchy

The trajectory of the singular points is called the stationary curves[10] or the
critical curves [15].

Definition 6. Stationary curves are the trajectories of stationary points in scale
space.

Zhao et al. [10] showed that the stationary curves are solutions to the system of
differential equations

H
dx(τ)

dτ
= −∇Δf(x(τ), τ). (9)

Equation (9) indicates that the spatial velocity of the critical point with respect
to scale becomes infinite at the annihilation point. Therefore, each top endpoint
of the critical curves in scale space is a singular point, and does not have any
connections by the critical curves to a higher scale, generically.

Using the principal axis coordinates of H(x, τ), eq. (9) is redescribed as

dp

dτ
= −Λ−1∇pΔf, (10)
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where p(τ) = V �x(τ), and ∇p = V �∇ is the gradient operator in the principal
axis coordinates. In the principal axis coordinates, the annihilation event [13,
14, 17], is modeled as

f(x, τ) = x3
1 + 6x1τ +

N∑
i=2

γi(x2
i + 2τ), (11)

where
∑N

i=2 γi �= 0 and ∀γi �= 0. τ is the scale parameter so that the annihilation
event occurs at τ = 0. For N -dimensional (N > 1) images, it is sufficient to
consider the catastrophes in a two-dimensional case described as

f(x1, x2, τ) = x3
1 + 6x1τ + γ(x2

2 + 2τ). (12)

This model of the scale-space image f(x1, x2, τ) has a local maximum and a
saddle point if τ < 0 and γ < 0. These two stationary points meet at the origin
at τ = 0. The parameterised stationary curves are obtained from eqs. (10) and
(12) as

p(τ) = (±√−2τ, 0)�, (13)

where the upper and lower signs correspond to the saddle curve and local max-
imum curve, respectively. The principal curvatures (λ1, λ2) are (

√−2τ, 2γ) on
the saddle curve and (−√−2τ, 2γ) on the local maximum curve. Therefore, the
zero principal curvature direction at the annihilation scale s = 0 is in the x1-
axis. The pattern of the spatial gradient field [11, 12] clarifies the topological
structure explicitly.

Definition 7. The figure field F is defined as the negative of the vector field of
the scale-space image.

F = −∇f(x, τ) (14)

Definition 8. The figure-flow curves are the directional flux curves of the figure
field.

The figure field can be considered as the current density flow of the image inten-
sity with respect to scale, since the figure field satisfies the continuity equation.

Proposition 1. The figure field F satisfies the equation of continuity

∂f

∂τ
+ ∇�F = 0. (15)

Equation (15) is directly obtained from eqs. (2) and (14).
Setting ∇p = V �∇, eqs. (12) and (14) imply that

F = −(3x2
1 + 6τ, 2γx2)�. (16)
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Fig. 2. Surface plot of f(x1, x2) and corresponding figure flow curves (a) before, (b)
at, and (c) after the Fold catastrophe event

The solution for f(x1, x2, τ) is

x2 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

A

∣∣∣∣x1 −
√−2τ

x1 +
√−2τ

∣∣∣∣
γ

3
√−2τ

(τ < 0)

A exp
(
− 2γ

3x1

)
(τ = 0)

A exp
(

2γ

3
√

2τ
tan−1 x1√

2τ

)
(τ > 0) .

(17)

These relations show that the antidirectional figure-flow curve coincides with the
zero principal curvature direction, the p1-axis.

Definition 9. A nongeneric figure-flow curve starts or ends at a singular point.
An antidirectional figure-flow curve is defined as the figure-flow curve which
ends at the annihilation point of the local maximum and saddle, or starts at the
annihilation point of the local minimum and saddle.

The motion of the stationary points described by eq. (9) implies the following
geometrical properties of the annihilation point:

– The annihilation point is singular.
– The velocity of a stationary point is infinite at the annihilation point.
– The direction of the velocity of a stationary point is in that of the zero

principal curvature at the annihilation point.
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P

Q

(a) (b)

P

P Q

(c)

Fig. 3. Contour map of scale-space image and figure-flow curves at annihilation scale.
(a) Annihilation of local maximum. The antidirectional figure-flow curve (solid line)
links the annihilation point P and the local maximum Q. (b) Annihilation of local
minimum. The antidirectional figure-flow curve to the boundary of the image indicates
the connection to the point at infinity. (c)The connection by the stationary points and
the antidirectional figure-flow curve define the hierarchical structure of the image.

Considering the infinite velocity at the annihilation point, the antidirectional
figure-flow curve can be regarded as the continuation of the stationary curve
at the annihilation scale. The antidirectional figure-flow curve connects the an-
nihilation point and another local extremum. Since we can regard the figure
field as the density flow of the image intensity with respect to scale, the image
intensity of the annihilation point is provided only by the local maximum at
the annihilation scale. Therefore, the local maximum is identified as the par-
ent of the annihilation point. In the same manner as the local maximum, the
antidirectional figure-flow curve identifies a local minimum as the parent of the
annihilation point of a local minimum and a saddle point. Therefore, the connec-
tion of the local minima involves the local minimum at infinity. These topological
properties of the singular points are shown in Fig. 3. Figure 3(a) shows the anni-
hilation of the local maximum. The antidirectional figure-flow curve (solid line)
links the annihilation point P and the local maximum Q. Figure 3(b) shows the
annihilation of the local minimum. The antidirectional figure-flow curve to the
boundary of the image indicates the connection to the point at infinity. Figure
3(c) shows that the connection by the stationary points and the antidirectional
figure-flow curve define the hierarchical structure of the image.

5 Segment Edge Curve Bifurcation

We analyse topological property of the edge-lines when a saddle point merges to
a local maximum or minimum point.

Setting γ > 0 and ε to be a small positive constant, in the neighbourhood of
extrema, an image in the linear scale space is expressed as

f(x1, x2, τ) = −{x4
1 + 12x2

1τ + 12τ2 + εx1 + γ(x2
2 + 2τ),

}
. (18)
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Fig. 4. The edge bifurcation in the neighbourhood of two local maximal points. (a)
Before a pair of maximal points is merged, the edge curve is locally ∞-shaped. (b) A
nonsimple curve becomes a simple loop. (c) Then, a closed curve disappears, since the
image is smoothed by filtering.

If ε = 0 and ε �= 0, the curve corresponds to the cusp catastrophe of two local
maxima and a saddle and the fold catastrophe of a local maximum and a saddle.
From eq. (18), since we have the relations

∇f = −(4x2
1+24x1τ+ε, 2γx2)�, H∇f = −(12(x2

1+2τ)(4x3
1+12x1τ+ε), 4γ2x2)�

(19)
the edge curve is expressed as

12(x2
1 + 2τ)(4x3

1 + 12x1τ + ε) + 8γ3x2
2 = 0 (20)

For a negative value τ , eq. (20) yields a ∞-shape curve as shown in Fig. 4 (a).
Then, for τ = 0, since these two local maximal point is merged to a single local
maximum as shown in Fig. 4(c), a local closed curve disappears.

For γ < 0, we have the relations

f(x1, x2, τ) = x4
1 + 12x2

1τ + 12τ2 + εx1 + γ(x2
2 + 2τ), (21)

and

∇f = (4x2
1 +24x1τ + ε, 2γx2)�, H∇f = (12(x2

1 +2τ)(4x3
1 +12x1τ + ε), 4γ2x2)�

(22)
the edge curve is expressed as

12(x2
1 + 2τ)(4x3

1 + 12x1τ + ε) + 8γ3x2
2 = 0 (23)
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Fig. 5. Bifrucation of the local saddle point and a pair of local maximal points. (a) A
pair of looped curves. (b) A pair of looped curves is merged. (c) A pair of simple curves
contacts each other at a point.

In the scale space, eq. (23) changes from a pair of separate curves to a loop as
shown in Fig. 5.

Figure 6 shows the transition of the edge curve in the scale space for

f(x, y) =
3
4

exp
(
− (x + 3)2

22
− (y − 3)2

22

)
+exp

(
− (x − 3)2

22
− (y + 3)2

2

)
. (24)

The curve configurations of Fig. 6, which is computed for a prob image, coincide
with that of Figs. 4 and 5.

Using the stationary curves, for the point detH(x, τ) �= 0, Zhao [10] defined
the stable points.

Definition 10. For s(τ) = |dx(τ)
dτ |, the stable points V on the trajectory curves

of singular points are

V = V0 ∪ Vi,

V0 = {(x, τ) | s(τ) = 0} (25)
Vi = {(x, τ) | isolated points sτ (τ) = 0, sττ (τ) = 0},

where sτ (τ) = ds(τ)
dτ and sττ(τ) = d2s(τ)

dτ2 .

Denoting a stable point on the stationary curves as (xi, τi), the region

R(xi, τi) = {x||x − xi| ≤
√

2τi} (26)



Bifurcation of Segment Edge Curves in Scale Space 311

(a) τ = 010 (b) τ = 060 (c) τ = 110 (d) τ = 160

(e) τ = 020 (f) τ = 070 (g) τ = 120 (h) τ = 170

Fig. 6. Bifurcation of edge curves in the linear scale space. The bifurcation of the

Canny edge for image f(x, y) = 3
4

exp
(
− (x+3)2

22 − (y−3)2

22

)
+ exp

(
− (x−3)2

22 − (y+3)2

2

)
is shown.

expresses a dominant part of f(x, τi). Therefore, the stable points define dom-
inant parts of an image in the scale space. We use this property of the stable
points for the extraction of segments in the scale space.

Setting P to be the collection of the scale parameters for the saddles in the
scale space, we order the elements of P as

0 < τ1 ≤ τ2 ≤ · · · < τn ≤ ∞. (27)

The scale parameter τ∗
i ∈ [τi, τi+1] does not produce any saddle points in the

scale space. Furthermore, the parameters of stable points satisfy the condition
τ ∈ [τi, τi+1]. We introduce a selection criterion for the scale parameter of the
Canny edge detector.

Proposition 2. We select scales {τ∗
i }n

i=1 for the Canny edge detection from
scales at stable points on stationary curves.

Figure 7 shows the results of segmentation based on this criterion. In the figure,
from top to bottom, images, stable points, and segments in the linear scale space
are shown. The criterion derive a theoretical methodology for the selection of
scale parameters for the Canny edge detector.
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(a) τ = 50 (b) τ = 120 (c) τ = 170

(d) τ = 50 (e) τ = 120 (f) τ = 170

Fig. 7. Stationary points of stable state and segments. Top to bottom, images, station-
ary points, and segments in the linear scale space. Segment edges are extracted for τ∗

which satisfies the condition S(x, τ ) = 0.

6 Conclusions

We have first showed that segment edges detected by Canny edge detector is
a zero-crossing set defined by second order differential of images in the linear
scale space. Using this geometrical property of the segment edges, we have ex-
amined the bifurcation property of edge segments in the linear scale space. This
bifurcation property allows the selection of scales for the accurate detection of
segments and the unification of segments extracted in various scales.

This research was supported by “Computational anatomy for computer-aided
diagnosis and therapy: Frontiers of medical image sciences” funded by Grant-in-
Aid for Scientific Research on Innovative Areas, MEXT, Japan, Grants-in-Aid
for Scientific Research founded by Japan Society of the Promotion of Sciences
and Grant-in-Aid for Young Scientists (A), NEXT, Japan.
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Abstract. The Potts model is a well established approach to solve dif-
ferent multi-label problems. The classical Potts prior penalizes the total
interface length to obtain regular boundaries. Although the Potts prior
works well for many problems, it does not preserve fine details of the
boundaries. In recent years, non-local regularizers have been proposed
to improve different variational models. The basic idea is to consider
pixel interactions within a larger neighborhood. This can for example
be used to incorporate low-level segmentation into the regularizer which
leads to improved boundaries. In this work we study such an extension
for the multi-label Potts model. Due to the increased model complexity,
the main challenge is the development of an efficient minimization algo-
rithm. We show that an accelerated first-order algorithm of Nesterov is
well suited for this problem, due to its low memory requirements and
its potential for massive parallelism. Our algorithm allows us to mini-
mize the non-local Potts model with several hundred labels within a few
minutes. This makes the non-local Potts model applicable for computer
vision problems with many labels, such as multi-label image segmenta-
tion and stereo.

1 Introduction

The multiphase partitioning problem consists in finding a certain label for every
pixel, tiling the image domain into multiple pairwise disjoint regions. Starting
with the seminal work of Mumford and Shah [21] research on computing minimal
partitions was ignited by typical Computer Vision problems such as segmenta-
tion, stereo or 3D reconstruction. In a discrete version, the Potts model [26], has
been known much longer. It was originally invented to model phenomena in solid
state mechanics in 1952 and generalizes the two-state model of Ising [18] (1925).
The Potts model is a special case of the general multi-labeling problem, relying
on a pairwise interaction term that does not assume any ordering of the labels.
Minimizing the Potts energy is known to be NP-hard and in general cannot be
solved exactly in reasonable time. For this reason various approximations have
been proposed to convexify the optimization problem and hence to approximate
its solution as effectively as possible.
	 This work was supported by the BRIDGE project HD-VIP (no. 827544).
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For the two label case, Chan and Vese [12] used the level set framework for
optimization but do not yield any optimality. Later, Chan et al . [11] showed
in a continuous setting that optimality for this problem can be achieved by
solving this problem on a relaxed convex set. As the optimization task of the
Potts model was originally formulated in a discrete setting, graph cut based
approaches have often been used to solve such multi-label tasks. Most notable are
move making algorithms of Boykov et al . [4] approximately minimizing the Potts
model by solving a sequence of globally optimal binary segmentation problems.
Although such sequential approaches often generate useful solutions, non of them
is able to find a global minimizer. Ishikawa [17] showed that an exact solution
can be computed in polynomial time for certain cases, namely when the labels
are linearly ordered and the pairwise term is a convex function. Recently, it
was shown by Pock et al . [25] that the same is true in the continuous case.
Unfortunately, the constraint of having linearly ordered labels is not fulfilled in
the segmentation task.

For solving the Potts model, several convex relaxations were proposed by e.g.
Zach et al . [34], Lellmann et al . [19], Bae et al . [2] and Pock et al . [24], whereas
the latter provides the tightest relaxation with respect to the original problem.
The Potts formulation in a spatially continuous setting is given as the energy
minimization problem

min
El

{1
2

K∑
l=1

Per (El; Ω) +
K∑

l=1

∫
El

fl(x) dx
}

,

s.t.
K⋃

l=1

El = Ω, Ei ∩ Ej = ∅ ∀i �= j,

(1)

where the first term measures the interface length of the set El enforcing smooth
label boundaries and the second term is the data term, a point-wise defined
weighting function. Minimizing such an energy partitions the image domain Ω ⊆
R2 into K pairwise disjoint regions El.

Rewriting the Potts model in terms of a convex total variation optimization
problem (cf . [34,24,27]) yields the minimization task

min
u

{E(u)} = min
u

{
J(u) + λ

K∑
l=1

∫
Ω

ul(x)fl(x) dx

}
,

s.t. ul(x) ≥ 0 ,
K∑

l=1

ul(x) = 1 , ∀x ∈ Ω

(2)

with the labeling function u = (u1, . . . , uK) : Ω → [0, 1]K and the weighting
function f = (f1, . . . , fK) : Ω → RK . The regularizer J(u) can for example be a
simple total variation regularization

J(u) =
1
2

K∑
l=1

∫
Ω

|∇ul(x)| dx (3)
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(a) (b)

Fig. 1. An example of segmenting an image into 3 different regions. (a) shows the effect
on minimizing the interface length and lose fine details like the tiny hairs (although
an edge weighing is used) whereas the proposed method (b) is able to preserve those
details.

where the minimization results in the perimeter as in (1). As a more sophisticated
variant an anisotropic regularization like

J(u) =
1
2

K∑
l=1

∫
Ω

√
∇ul(x)T D(x)∇ul(x) dx (4)

can be used. D(x) denotes a symmetric tensor for weighting the total variation
regularization. A simple variant of this tensor is the weighted total variation∫

Ω
g(x)|∇u|dx, studied by Bresson et al . in [7]. It can be obtained by setting

D(x) = diag(g(x), g(x))

with an edge detector function g(x), often defined as g(x) = e−α|∇I|β , with the
image gradient ∇I and some α, β > 0 forcing the total variation regularization
towards strong image edges and hence improving the labeling quality. On the
other hand, a major drawback is its sensitivity to noise.

In this paper we pursue a different approach to overcome this problem. We
include a larger neighborhood in the regularizer J(u) of the multiphase partition-
ing problem. Adapting the regularization towards local image structures enables
the approach to obtain more accurate label boundaries without the dependence
on an edge weighting function, which can be very sensitive to noise and strong
texture. A result of this approach is depicted in Figure 1. It compares the result
of the Potts model incorporating neighborhood relations to the edge-weighted
variant on an image of the multi-label benchmark data set [27]. Especially fine
structures are preserved and the segmentation results get enhanced towards the
users expectations. A related approach was introduced in the field of unsuper-
vised segmentation by Bresson et al . [6] where non-local variants of specialized
energy functionals are presented by extending the Chan-Vese segmentation [12]
and the Mumford-Shah segmentation [21]. While this paper concentrates on
the two-label case, we study non-local generalizations of the multi-label Potts
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model. The main challenge hereby is the development of an efficient minimiza-
tion algorithm. To achieve this we adopt the accelerated first-order algorithm
of Nesterov [22]. Using this algorithm, we are able to compute the Potts model
with several hundred labels.

The contribution of the paper is the definition of the non-local Potts model
within a variational framework (Section 2) . The efficient minimization using Nes-
terov’s algorithm (Section 3) makes the approach applicable to various Computer
Vision Problem. In Section 4 some applications demonstrate the achieved im-
provements on multi-label segmentation and on disparity estimation of a stereo
image pair. The shown examples provide insight into the possibilities of the non-
local Potts model and we are convinced that the evident improvements can also
be transferred to other Computer Vision problems. Finally, Section 5 concludes
our work.

2 Non-local Potts Model

The main intention of the proposed approach is to enhance the labeling quality
especially at the label boundaries. Therefore we exploit the affinity of neighboring
pixels and steer the regularization towards coherent regions. In terms of image
restoration such neighborhood relations have been introduced with e.g. the bilat-
eral filtering [29] or non-local means [9], a generalization of the Yaroslavsky filter
[32]. For image inpainting, patch-based methods for texture synthesis [14] are re-
lated to such non-local approaches and also in stereo applications, Yoon et al . [33]
incorporated a so-called soft-segmentation to associate certain neighboring pix-
els for the regularization process. Consequently, the variational interpretation of
these neighborhood filters leads to non-local total variation regularization [8,15].
Recently, the approach of non-local regularization in a variational framework
was also introduced in the field of optical flow estimation [28,31]. To incorporate
neighborhood relations directly into the objective function the non-local total
variation regularizer is formulated as

J(u) =
K∑

l=1

∫
Ω

∫
Nx

w(x, y) |ul(y) − ul(x)| dy dx , (5)

where the function w(x, y) defines the support weights between the pixel x and
its neighbors y. The neighborhood system Nx ⊆ Ω contains all pixels y with a
certain photometric and geometric vicinity around x. The support weight within
Nx is defined in the sense of [33,31] using a low level segmentation combining an
Euclidean distance in a color space Δc(x, y) (e.g. Lab, RGB or grayscale) and
the spatial proximity Δp(x, y) as the Euclidean distance yielding

w(x, y) = e
−
(

Δc(x,y)
α +

Δp(x,y)
β

)
. (6)

The parameters α and β weight the influence of color similarity and proximity.
An exemplary neighboring patch of a specific pixel x is depicted in Figure 2.
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(a) (b) (c) (d) (e)

Fig. 2. Exemplar patch (b) of an image (a), the resultant proximity weighting (c),
color similarities (d) and the final weighting (e) for the specific neighborhood. x is
denoted as a dark red pixel in the center of (c-e), blue color means small weights
(reduce regularization influence) and the increasing reddish color shows an increase in
the weighting function (strengthen the regularizer).

Using the non-local TV regularizer (5) in the Potts energy (2) yields the
energy minimization problem

min
u

{
K∑

l=1

∫
Ω

∫
Nx

w(x, y) |ul(y) − ul(x)| dy dx + λ

K∑
l=1

∫
Ω

ul(x)fl(x) dx

}
,

s.t. ul(x) ≥ 0 ,

K∑
l=1

ul(x) = 1 .

(7)

3 Minimization

Let us first introduce the discrete setting. We consider a Cartesian grid G of size
Mx × My

G = {(1, 1) ≤ (hx, hy) ≤ (Mx, My)} ,

with the pixel size h and (x, y) the discrete pixel location on the grid. For the
ease of presentation we will enumerate the discrete pixel locations (x, y) with an
index i, for example by scanning the image domain line by line. The discretized
labeling function u is defined on the unit simplex

U =
{
u = (u1, . . . , uK) ∈ [0, 1]K×Mx×My :

(ul)i ≥ 0,
K∑

l=1

(ul)i = 1 , i = 1 . . .Mx × My

}
. (8)

The non-negative discrete weighting function for the non-local regularization be-
tween discrete pixels i and j is defined as wi,j ≥ 0. Ni defines the set of neighbors
for pixel i, where N = |Ni| is the number of pixels within the neighborhood.
The weight matrix (wi,j) is defined as

wi,j =

{
e
−
( (Δc)i,j

α +
(Δp)i,j

β

)
if j ∈ Ni

0 else .
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Now, we are ready to define the non-local gradient operator

(∇wul)i,j = wi,j ((ul)j − (ul)i) ,

which simply holds the weighted non-local pixel differences. Then, (7) can be
rewritten in the discrete setting as the following minimization problem

min
u

{∑
l

‖∇wul‖	1 + λ
∑

l

〈ul, fl〉
}

. (9)

Minimizing (9) depicts a convex and non-smooth optimization problem. Solving
it with off-the-shelf LP solvers or first-order primal-dual approaches [10] has
the problem that each non-local link will demand for a dual variable. For a
512× 512 image, 32 labels and a neighborhood size of 15× 15 pixels this results
in at least one billion dual variables. Hence, these approaches are not feasible
for our purposes.

Instead we rely on an old first-order algorithm proposed by Nesterov [22] in
1983, which can be used to minimize a differentiable convex function of a convex
set. Furthermore, Nesterov’s algorithm comes along with an improved conver-
gence rate. It can be shown that Nesterov’s algorithm can approach the optimal
function value with rate O(1/n2), where n is the number of iterations. This rate
of convergence is still sublinear but improves the convergence rate of standard
projected gradient schemes by one order of magnitude. Recently, there are sev-
eral improved variants using Nesterov’s algorithmic framework [3,30,1,13] and
Nesterov himself proposed new algorithms [23]. The major benefit of Nesterov’s
first-order primal method is that the algorithm only depends on function values
and gradient evaluations which removes the need of the large amount of dual
variables. In order to apply Nesterov’s algorithm for our problem (9) we have to
find a differentiable approximation of the �1 norm. We do this by replacing any
| · | function by Huber’s function [16].

|q|ε =

{ |q|2
2ε |q| ≤ ε

|q| − ε
2 else .

The function is quadratic for small values of ε and linear for the others.

Algorithm: Nesterov’s algorithm for the non-local Potts model: We choose u0 =
0, ū0 = 0, t0 = 1 and iterate for n ≥ 0.⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

u
n+ 1

2
l = ūn

l − 1
L

(
∇T

w

∇wūn
l

max{ε, |∇wūn
l |}

+ fl

)
, l = 1, . . . , K

un+1 =
∏

U

(
un+ 1

2

)
tn+1 =

1
2

(
1 +

√
1 + 4(tn)2

)
ūn+1

l = un+1
l +

tn − 1
tn+1

(
un+1

l − un
l

)
, l = 1, . . . , K

(10)

Here, L = ||∇w|| is the norm of the non-local operator which we compute as
L = 4N

ε and tn a variable over-relaxation parameter. The projection
∏

U is an
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orthogonal projection onto the unit simplex U . It is known that this projection
is highly separable and it can be performed in a finite number of iterations. An
exemplary method for computing such successive projections is given in [20].

Although Nesterov’s algorithm allows to precompute the maximum number
of iterations which are necessary to find an approximate solution in terms of the
function values, we found it to be more practical to stop the iterations after the
maximal change between two successive iterations is below some threshold. In
Figure 3 we compare the convergence of the algorithm for different smoothing pa-
rameters ε for an unsupervised segmentation problem. Increasing the smoothing
behavior of the Huber function improves the rate of convergence but worsens the
approximation quality of the �1 norm which introduces inaccurate label bound-
aries. For all our experiments we set ε = 0.01. Observe that after 300 iterations
the minimum energy is already attained. For this setup the algorithm runs with
120 iterations/second for an image with size Mx×My = 404×320, with K = 10
number of labels and a neighborhood size of 7 × 7 pixels.
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(c) ε = 0.001 (d) ε = 0.01 (e) ε = 0.1 (f) ε = 1.0

Fig. 3. Comparing convergence behavior of different smoothing parameters ε. (b) is
the color-coded labeling result for ε = 0.01 with the marked crop region for (c)-(f)
showing a single label ul for varying ε demonstrating the smoothing effect on label
borders for increasing smoothing factors.
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4 Applications

4.1 Multi-label Segmentation

Image segmentation is one of the fundamental Computer Vision problems and
therefore a vast amount of literature investigates this task. For a general overview
on object segmentation we refer to [5]. Very recent work of Santner et al . [27]
demonstrates the usage of (2) for interactive multi-label segmentation. There,
the data term is modeled with different types of features. For a comparison
of three different regularization terms, namely the total variation, the edge-
weighted and the proposed non-local regularization, we compute a color his-
togram of scribbles drawn by the user and use this as a feature for the data term
in the sense of [27].

Fig. 4. Comparing different regularization terms in terms of interactive multi-label seg-
mentation (cf . [27]): TV regularization (first column), edge-weighted TV regularization
(second column) and the proposed non-local variant (third column). The scribbles are
the users input to mark the corresponding region.

In the first row of Figure 4 the improvement on fine details are visible over all
three variants. The edge-weighted TV already yields reasonable accuracy when it
comes to segmentation boundaries and with the non-local variant the borders are
accurately segmenting the desired region including all fine details. The example
in the second row of Figure 4 demonstrates the drawbacks on solely using edges
to steer the regularization strength. Sometimes edges that do not coincide with
label borders pull the label boundaries away from the desired objects. In Figure 7
we demonstrate especially the improvements on fine details, elongated regions
and cavities between labels on segmentation results of the benchmark data set
[27].

Next, we want to show the effects when the edge-weighting function of (4)
is modified to obtain accurate label boundaries. In Figure 5 an unsupervised
labeling routine splits the image domain into several piecewise constant regions.
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The data term is solely based on RGB values that are clustered with a stan-
dard mean-shift algorithm. Tuning the edge-detector function towards accurate
boundaries also introduces some clutter within label regions as a direct conse-
quence of having strong edges within those areas. This weights the regularizer
to obtain more and smaller labels and therefore introduces clutter. Using the
proposed non-local regularization yields the same precise label borders but also
gains a smoother result and keeps coherent regions together.

(a) (b) (c)

Fig. 5. Unsupervised segmentation splitting an input image (a) into K = 10 piecewise
constant regions. The tuned edge-weighted regularization (b) achieves nice boundaries
but exhibits more clutter within regions compared to the non-local regularization (c).

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6. Disparity estimation of an input image pair (a,e) from the Middlebury stereo
data set (http://vision.middlebury.edu/stereo); (b,f) the ground truth disparities; dis-
parity estimation with the Potts model (c,g) and the non-local Potts model (d,h);

4.2 Stereo

As we have already shown the improvements on the image segmentation problem
we want to continue with a second Computer Vision problem. We use the Potts
model for stereo estimation. The data term for the disparities are modeled using
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Fig. 7. Multi-Label Segmentation: Comparing results from the edge-weighted Potts
model (left image of each pair) and the non-local Potts model (right image of each
pair)

absolute differences on gray values. The labels correspond to distinct disparities.
For the example in Figure 6 the benefits of the proposed method become ap-
parent with more details and crisper label borders. For the Tsukuba image pair
(cf . first row of Figure 6) the calculation for Mx × My × K = 384 × 288 × 16
takes 25 seconds for 500 iterations. For the Cones data set (cf . second row) with
Mx × My × K = 450 × 375 × 61 the nonlocal Potts model takes 305 seconds
to converge in 1000 iterations. We use a 15 × 15 neighborhood region for the
non-local regularization in both examples.

5 Conclusion

Based on a variational formulation of the Potts model we showed how to in-
corporate neighborhood relations with a non-local total variation regularization
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term. Utilizing low-level image segmentation to steer the regularization towards
local image structure enables the method to preserve fine details in the labeling
process. The benefits are demonstrating on two typical Computer Vision ap-
plications and evident improvements are demonstrated by a comparison with a
total variation regularization and its edge-weighted variant. The version of Nes-
terov’s algorithm yields a memory-conscious algorithm and enables the usage of
large neighborhoods and several labels with reasonable computational effort.
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Abstract. The use of discriminative dictionaries is exploited for the
segmentation of sulci in digital photos of the human cortex. Manual
segmentation of the geometry of sulci by an experienced physician on
training data is taken into account to build pairs of such dictionaries.
It is demonstrated that this approach allows a robust segmentation of
these brain structures on photos of the brain as long as the training data
contains sufficiently similar images. Concerning the methodology an im-
proved minimization algorithm for the underlying variational approach
is presented taking into account recent advances in orthogonal matching
pursuit. Furthermore, the method is stable since it ensures an energy
decay in the dictionary update.

1 Introduction

In neurosurgery, a major challenge is the adaption of pre-surgery acquired brain
images and cortex geometry to the intra-interventional brain configuration. Dig-
ital photos can be easily taken through the microscope and provide information
on the currently observed brain shift. Sulci are the most prominent geometric
characteristics visible on such photos. As illustrated by Figure 1, the detection
of sulci in such images is a very challenging task. For instance, some of the sulci
are covered by blood vessels while the very same blood vessels also cover part of
the gyri. Therefore, pixelwise segmentation approaches based on the color values
cannot be sufficient to handle this segmentation problem, not even when color
distributions learned from images manually marked by an expert are used. In
this paper, we use the concept of learned discriminative dictionaries to segment
the geometry of sulci in 2D digital photos. Thereby, on a training data set an
experienced physician marks the sulci geometry, which will then be used to built
a suitable discriminative dictionary.
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Nowadays, sparse signal representations based on overcomplete dictionaries
are used for a wide range of signal and image processing tasks. The key assump-
tion of these models is that finite dimensional signals can be well approximated
by sparse linear combinations of so-called atoms or atom signals. Due to their
finite dimensionality, the signals and the atoms are considered to be elements
of RN . A set of atoms d1, . . . , dK is called dictionary and represented by the
matrix D ∈ RN×K whose j-th column is the atom dj .

There are two main variants of the sparse approximation problem, the error-
constrained approaches and the sparsity-constrained approaches. Here, we are
considering an approach of the latter type: For a given input signal y (in our
application a patch from a digital photo of the brain) we ask for its best approx-
imation under the constraint that at most L ∈ N atoms are used, i. e.

min
x∈RK

‖y − Dx‖2 such that ‖x‖0 ≤ L,

where ‖·‖0 denotes the l0 “norm”, i. e. the number of nonzero components.
One of the major challenges in the context of sparse representations is the

design of suitable dictionaries. The sparse representation itself usually is just a
means to an end and used to solve a certain task like, for instance, denoising or
compression. Thus, the dictionary has to be tailored to the actual imaging task.
In general, there are two distinct approaches to dictionary design: The simpler
and more traditional route is to use a predefined dictionary generated by a
transform like the short-time Fourier transform [2], the wavelet [12], curvelet [6]
or contourlet transform [8], to name just a few. The more sophisticated approach
is to learn the dictionary from the input data or some representative training
data. A very popular and highly efficient representative of this kind is the K-SVD
algorithm [1].

Like K-SVD, most of the existing dictionary learning algorithms aim at gener-
ating reconstructive dictionaries, i. e. dictionaries that are optimized to sparsely
represent a certain class of input signals or images. In this paper, our goal is
to detect sulci on the human cortex in digital photographs. Thus, we need to
distinguish between different types of signals which gives rise to so-called discrim-
inative dictionaries. These kind of dictionaries not only aim to give a suitable
representation of a given type of signals, but are also optimized to be not as
suitable for the reconstruction of a different given class of signals. Mairal et al.
[10] introduced a variational approach to learning discriminative dictionaries for
local image analysis and presented a multiscale extension applied to class-specific
edge detection [11].

Zhao et al. [15] combine the discriminative dictionary model from [10] with ad-
ditional pre- and post-processing stages to optimize the discriminative approach
for text detection in images. Zhang and Li [14] propose a different route to dis-
criminative dictionary learning: They extend the K-SVD algorithm to solve for a
dictionary and a classifier simultaneously and claim that this kind of algorithm
is less likely to get stuck in local minima than the one from [10]. Let us remark
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here, that their K-SVD extension still uses an alternating minimization scheme
to solve a non-convex minimization problem. Hence, there is no guarantee that
the global optimum is finally found.

The contributions of this paper are twofold: On the one hand, we introduce an
improved minimization algorithm for the variational approach to discriminative
dictionaries from [10]. This algorithm is more efficient because it incorporates
recent advances in orthogonal matching pursuit made by Rubinstein et al. [13]
and it is more stable since it ensures an energy decay in the dictionary update
unlike the truncated Newton iteration used in [10,11]. On the other hand, we
study the applicability of discriminative dictionaries to detect sulci on the intra-
operative digital photographs of the human cortex. As we will see in this paper,
manually marked images can indeed be used to learn a discriminative dictionary
pair and thereby allow to detect sulci on images as long as the training data
contains sufficiently similar brain images.

Fig. 1. Four typical digital photographs of the exposed human cortex (top row) and
the sulci regions of the cortex manually marked by an expert (bottom row)

2 Learning Discriminative Dictionaries

Given M input patches y1, ..., yM ∈ RN , a reconstructive dictionary tailored to
these patches can be learned with the minimization problem

min
X∈RK×M ,D∈RN×K

M∑
l=1

R(yl, D, xl) such that ‖xl‖0 ≤ L for 1 ≤ l ≤ M.

Here, xl denotes the l-th column of X and R(y, D, x) := ‖y − Dx‖2 is the re-
construction error of a patch y ∈ RN for a dictionary D ∈ RN×K and dictionary
coefficients x ∈ RK . Well-known algorithms to tackle this minimization problem
are the method of optimal directions (MOD) [9] or K-SVD [1].
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Denoting the coefficients of the sparse best approximation of y using D by

x∗(y, D) := argmin
x∈RK ,‖x‖0≤L

R(y, D, x),

the best approximation error is R(y, D) := R(y, D, x∗(y, D)). Then the mini-
mization problem for reconstructive dictionary learning is equivalent to

min
D∈RN×K

M∑
l=1

R(yl, D). (1)

With this notation we can formulate the discriminative dictionary approach of
Mairal et al. [10]. Since our application, the detection of sulci on the human
cortex, only requires two labels, we here explicitly formulate only the two label
case. The extension to multiple labels is straightforward and our algorithm can
be easily adapted to more than two labels.

Given input patches y1, ..., yM1+M2 of two different classes P1 and P2, where
Pi := {yl : l ∈ Si}, S1 = {1, . . . , M1} and S2 = {M1 + 1, . . . , M1 + M2}, a pair
of discriminative dictionaries can be found solving the minimization problem

min
D1,D2

2∑
i=1

1
Mi

∑
l∈Si

[
Cλ

(
(−1)i+1(R(yl, D2) −R(yl, D1))

)
+ λγR(yl, Di)

]
. (2)

Here, Cλ denotes the logistic loss function, i. e. Cλ(s) = ln(1+exp(−λs)), and λ, γ
are nonnegative constant parameters. The last summand is already known from
the reconstructive learning problem (1) and handles the reconstructive properties
of our dictionary pair. The first summand is responsible for the discriminative
properties of the dictionaries. For instance, for i = 1 and l ∈ S1 we have

Cλ

(
(−1)2(R(yl, D2) −R(yl, D1))

){≈ 0 R(yl, D1) � R(yl, D2)
� 0 R(yl, D1) � R(yl, D2).

(3)

In other words, this logistic loss term is small, if and only if D1 is more suitable
to reconstruct P1 (the signals from the first class) than D2 is.

3 Minimization Algorithm

The discriminative minimization problem (2) is highly nonconvex and requires
a carefully chosen numerical minimization strategy. Like [10], our minimization
strategy is based on the K-SVD algorithm and consists of a sparse coding stage
and a codebook update stage.

In the sparse coding stage, the sparse approximation coefficients are com-
puted for all patches using the current estimates for both dictionaries, i. e.
xi

l ≈ x∗(yl, Di) for i = 1, 2 and l = 1, . . . , M1 +M2, cf. Algorithm 1.1. Instead of
using OMP for this as suggested in [10,11], we propose to use the Batch-OMP
algorithm from [13]. This algorithm is based on the fact that the same dictionary



330 B. Berkels et al.

is used to code a large set of signals. In particular, it exploits the fact that in the
atom selection step of OMP neither the residual r nor the coefficients x need to
be known, but only DT r. As shown in [13], Batch-OMP is almost an order of
magnitude faster than OMP when used on sufficiently many input signals.

In [11], a different way to speed up the algorithm from [10] is proposed: Also
noting that the sparse coding stage is computationally expensive, they propose
to update the dictionaries and the coefficients with fixed sparsity pattern in the
codebook update stage by alternating till convergence instead of doing so only
once to reduce the number of sparse coding steps. This idea is complementary
to our proposal to speed up the algorithm and thus can be used in combination
with it.

In the codebook update stage, the dictionaries and the coefficients are updated
while keeping the obtained sparsity pattern fixed during the sparse coding stage.
[10,11] propose to do this update with a truncated Newton method. “Truncated”
here refers to the fact that this method neglects the second derivatives of Cλ.
In our experiments with manually marked images of the human cortex, this
algorithm unfortunately had numerically stability problems and didn’t always
produce sufficiently discriminative dictionary pairs. This is most likely because
the truncated Newton method does not guarantee an energy decay of the target
functional due to the lack of an appropriate step size control. Furthermore, Cλ

is not approximately linear at 0, the transition between the nearly linear and
the nearly constant part of Cλ which is the important transition region between
the two cases outlined in (3). Therefore, neglecting of the second derivatives of
Cλ is questionable.

To update a single entry of one of the dictionaries, we use a step size controlled
gradient descent on the functional from (2) while freezing the coefficients, i. e.
R(yl, Di) is approximated by R(yl, Di, x

i
l) and thus we use the functional

E[D1, D2] =
2∑

i=1

1
Mi

∑
l∈Si

[
Cλ

(
(−1)i+1(R(yl, D2, x

2
l ) − R(yl, D1, x

1
l ))
)

+ λγR(yl, Di, x
i
l)
]

and update d1
j by d1

j − τ∂d1
j
E[D1, D2] where τ is determined using the Armijo

rule [3,5]. Note that the specific choice of the step size control is not important
here, but it is important to use a step size control that guarantees an energy
decay. Like K-SVD, we assume the dictionary entries to be normalized, i. e.∥∥di

j

∥∥ = 1, and therefore scale the dictionary entry accordingly after the gradient
descent update. Using a straightforward calculation one obtains

∂d1
j
E[D1, D2] = 2

2∑
i=1

∑
l∈Si

wi
l(x

1
l )j

(
D1x

1
l − yl

)
,

where

wi
l =

1
Mi

(
(−1)iC′

λ

(
(−1)i+1(R(yl, D2, x

2
l ) − R(yl, D1, x

1
l ))
)

+ δi1λγ
)
.
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Denoting the j-th entry of x1
l by (x1

l )j and using

E1
l [D, j] =

(
yl − Dx1

l + (x1
l )jdj

)
as well as the indices of patches that use d1

j , i. e. ω1
j :=

{
l : (x1

l )j �= 0
}
, the

variation can be expressed as

∂d1
j
E[D1, D2] = 2

2∑
i=1

∑
l∈Si∩ω1

j

wi
l (x

1
l )j

[
(x1

l )jd
1
j − E1

l [D1, j]
]
.

Replacing the sum
∑

l∈Si
by
∑

l∈Si∩ω1
j

is crucial to keep the computational cost
for the codebook update stage within reasonable limits. The same replacement
can be done in E when it needs to be evaluated for the Armijo rule. After
updating a dictionary entry, we update the corresponding coefficients keeping
the sparsity pattern. Similarly to the representation of ∂d1

j
E, one now obtains

∂(x1
l )j

E =
2∑

i=1

wi
l∂(x1

l )j
R(yl, D1, x

1
l ) = ∂(x1

l )j
R(yl, D1, x

1
l )

2∑
i=1

wi
l .

Therefore, ∂(x1
l )j

E = 0 holds when ∂(x1
l )j

R(yl, D1, x
1
l ) = 0. Using

∂(x1
l )j

R(yl, D1, x
1
l ) = 2

(
(x1

l )j

∥∥d1
j

∥∥2 − E1
l [D1, j] · d1

j

)
and

∥∥d1
j

∥∥2
= 1 leads to the update formula (x1

l )j ← E1
l [D1, j]·d1

j . The dictionary
D2 and its corresponding coefficients can be updated analogously.

Like [10], we use an ascending series for the parameter λ and a descending
series for γ. Since our codebook update stage is guaranteed not to increase E, we
do not need the sophisticated strategy to adaptively adjust the parameters used
in [10]. Instead, in all our experiments, we simply used λ = 100k and γ = 1/k
in the k-iteration of the algorithm. A sketch of this computational procedure is
given in Algorithm 1.1.

4 Segmentation with Discriminative Dictionaries

For the detection of sulci in images of the human cortex, we assume to be
given a number of human cortex images where the sulci were manually marked
by a physician. These images are then separated into small patches of a user
selectable patch size and the patches are divided into two sets, sulci and non-
sulci patches depending on whether the central pixel of the patch belongs to
the sulci region marked by the physician. Using these two sets of patches, a
discriminative dictionary pair is learned using the Algorithm 1.1.

Using this dictionary pair, images can be segmented into sulci and non-sulci
regions using a binary Mumford–Shah model where the reconstruction errors
with the two dictionaries are used as the two indicator functions. A global min-
imizer of this model is calculated using the convex reformulation of the problem
proposed in [4] and using [7, Algorithm 2] to efficiently calculate a minimizer of
the convex functional.
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Algorithm 1.1: General minimization strategy
given input patches y1, ..., yM1+M2 of two different classes P1 and P2;
initialize D1 and D2 with K-SVD from P1 and P2 respectively;
initialize k = 0;
repeat

k ← k + 1;
λ = 100k, γ = 1/k;
Sparse coding stage;
for i = 1 to 2 do

for l = 1 to M1 + M2 do
Calculate xi

l ≈ x∗(yl, Di) using Batch-OMP;
end

end
Codebook update stage;
for i = 1 to 2 do

for j = 1 to K do
Calculate ωi

j =
{
l : (xi

l)j �= 0
}
;

di
j ← di

j − τ∂di
j
E determining τ using the Armijo rule;

di
j ← di

j/
∥∥di

j

∥∥;
for l ∈ ωi

j do
(xi

l)j ← Ei
l [Di, j] · di

j .;
end

end

end

until convergence ;

5 Results

As first experiment we verify the general applicability of our discriminative dic-
tionary approach to detect sulci on intra-operative images of the human cortex.
For this we learn a discriminative dictionary pair from a single manually marked
image as described in the previous section. The first row of Figure 2 shows that in
this optimal case, the segmentation almost perfectly matches the manual mark-
ings made by the expert. Here, we used a patch size of 13 × 13, and K = 256,
L = 4 and γ = 0.00002 as parameters, where γ denotes the weighting of the
regularity term in the Mumford–Shah model segmentation model.

In order to cut down the computational time given the fact that there are
considerably more non-sulci than sulci input patches, we randomly selected 30%
of the non-sulci patches instead of using all of them for the dictionary learning
in a second experiment, cf. second row of Figure 2. Indeed, this only slightly
reduces the accuracy of the segmentation. Henceforth, we only use 30% of the
non-sulci patches to learn the dictionaries in the remaining experiments.

In the next experiment, we use three frames from an intra-operative video, all
with sulci manually marked by a physician, to learn a discriminative dictionary
pair. We use the same values for K, L and γ as in the previous experiments and
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Fig. 2. Discriminative dictionary pairs learned from the manually marked image shown
on the left of Figure 1 and segmentation of this image based on these dictionary pairs.
In the top row all available non-sulci patches were used to learn the dictionaries, while
in the bottom row only 30% of the non-sulci patches were used.

a patch size of 12×12 and 20×20. Figure 3 shows the resulting dictionaries while
Figure 4 shows the segmentation obtained with these dictionaries. Segmentation
on the frames already used in the learning phase is almost perfect. There are only
a few minor artifacts compared to the manual segmentation performed by the
physician. Although not surprising, this confirms that a discriminative dictionary
pair has no problems encoding information from multiple input frames. It can
also be seen from this figure that increasing the patch size from 12×12 to 20×20
slightly improves the results. The second row of Figure 4 is more interesting: It
shows that the dictionaries can also be used to segment frames that were not
used during the learning process. The dictionary based segmentation shows some
artifacts away from the cortex region, but this is due to the fact that images
used to learn the dictionaries were cropped to the cortex region and thus the
dictionaries cannot contain information about these areas. This kind of effect can
also be seen inside the cortex region: On the top right of the manual markings
of the physician for this image is a small sulci that is not found in the dictionary
based segmentation. This is just natural since the physician did not mark this
sulci in the frames that were used for the learning, cf. top row of Figure 4.

In the final set of experiments, we use thirteen manually marked images, the
three images already used in the previous experiment and ten from another intra-
operative video to learn discriminative dictionaries. We use the same values for
K, L and γ as in the previous experiments and a patch size of 13×13 and 19×19.
Figure 5 shows the resulting dictionaries while Figure 6 shows the segmentation
obtained with these dictionaries on multiple frames. The first three images were
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Fig. 3. Discriminative dictionary pairs with patch size of 12×12 (left pair) and 20×20
(right pair) learned from three frames of an intra-operative video

Fig. 4. Two cortex images (first column), manual segmentation of the sulci by an expert
(second column) and segmentation obtained using the dictionaries from Figure 3 of
patch size 12 × 12 (third column) and 20 × 20 (forth column). Note that the manual
marking from the top row was used during the dictionary learning but the one from
the bottom row was not.

Fig. 5. Discriminative dictionary pairs with patch size of 13 × 13 (left pair) and 19 ×
19 (right pair) learned from a total of thirteen different frames originating from two
different intra-operative videos
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Fig. 6. Multiple cortex images (first column), manual segmentation of the sulci by an
expert (second column) and segmentation obtained using the dictionaries from Figure 5
of patch size 13× 13 (third column) and 19× 19 (forth column). Note that the manual
markings from the first three rows were used during the dictionary learning but the
markings from the other rows were not
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used in the dictionary learning process, so it comes as no surprise that the
obtained segmentations are close to the manual markings. One observation here
is remarkable though. In the image shown in the third row, the physician did
not mark the sulci in the lower right part of the image even though he marked
that sulci in other frames of the same video sequence, for instance in the frame
shown in the second row. Nevertheless, the dictionary based segmentation is able
to detect traces of these sulci because underlying information is encoded of more
than just the marking of this single image and thus the method can average out
conflicting markings.

The remaining four rows show results of the dictionary based segmentation on
images that were not used while learning the dictionaries. While the segmenta-
tion understandably is not as good on these frames as on the frames used during
the learning, the sulci structures are still clearly identified in the forth to sixth
row. Here, it is also evident that increasing the patch size from 13×13 to 19×19
has a positive effect on the quality of the segmentation. With the larger patch
size the width of the detected sulci is more accurate and there are less artifacts in
the non-sulci regions. Finally, in the last row, the limits of the dictionary based
segmentation approach become visible. The cortex region in this frame differs
too much from the cortex regions in the learning frames and thus the sulci are
not properly detected here.

6 Conclusion

We have studied the applicability of discriminative dictionaries to segment the
geometry of sulci in intra-operative digital photographs of the human cortex.
It turned out that human cortex images manually marked by an experienced
physician can be used to learn discriminative dictionary pairs that allow for a
robust segmentation of these brain structures on photos of the cortex as long as
the training data contains sufficiently similar images.

Furthermore, we have presented an improved minimization strategy for the
discriminative dictionary functional of Mairal et al. [10] that is more efficient by
leveraging recent advances in orthogonal matching pursuit and more stable due
to a new dictionary update step that ensures an energy decay.
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Abstract. One of the classical optimization models for image segmen-
tation is the well known Markov Random Fields (MRF) model. MRF
formulates many total variation and other optimization criteria used in
image segmentation. In spite of the presence of MRF in the literature,
the dominant perception has been that the model is not effective for im-
age segmentation. We show here that the reason for the non-effectiveness
is not due to the power of the model. Rather it is due to the lack of ac-
cess to the optimal solution. Instead of solving optimally, heuristics have
been engaged. Those heuristic methods cannot guarantee the quality of
the solution nor the running time of the algorithm.

We describe here an implementation of a very efficient polynomial
time algorithm, which is provably fastest possible, delivering the optimal
solution to the MRF problem, Hochbaum (2001). It is demonstrated
here that many continuous models, common in image segmentation, have
a discrete analogs to various special cases of MRF. As such they are
solved optimally and efficiently, rather than with the use of continuous
techniques such as PDE methods that can only guarantee convergence
to a local minimum.

The MRF algorithm is enhanced here demonstrating that the set of
labels can be any discrete set. Other enhancements include dynamic fea-
tures that permit adjustments to the input parameters and solves opti-
mally for these changes with minimal computation time. Modifications
in the set of labels (colors), for instance, are executed instantaneously.
Several theoretical results on the properties of the algorithm are proved
here and are demonstrated for examples in the context of medical and
biological imaging.

1 Introduction

Partitioning and grouping of similar objects plays a fundamental role in image
segmentation and in clustering problems. In such problems the goals are to group
together similar objects, or pixels in the case of image processing. Given an input
image, the objective of image segmentation is to recognize the salient features
	 Research supported in part by NSF award No. DMI-0620677 and CBET-0736232.

A.M. Bruckstein et al. (Eds.): SSVM 2011, LNCS 6667, pp. 338–349, 2012.
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in the image. Each feature set is grouped together in one segment represented
by some uniform color area.

A noisy or corrupted image is characterized by lacking uniform color areas,
which are assumed to characterize a true image. Rather, in such image there are
adjacent pixels of different color areas. To achieve higher degree of uniform color
areas, it is reasonable to assign a penalty to neighboring pixels that have different
colors associated with them. On the other hand, the purpose of the segmentation
is to represent the “true” image. For that purpose the given assignment of colors
in the input image is considered to be the “priors” on the colors of the pixels, and
as such, the best estimate available on their true labels. Therefore, any change
in those priors is assigned a penalty for deviating from the priors.

The Markov Random Fields problem for image segmentation is to assign colors
to the pixels so that the total penalty is minimized. The penalty consists of
two terms. One is the separation penalty, or smoothing term, and the second is
the deviation penalty, or fidelity term. For this reason we refer to this penalty
minimization problem also as the separation-deviation problem. This problem
has been extensively studied over the past two decades, see e.g. [3], [5], [11], [12],
[16], [17]. The problem formulation, described in full detail in Section 3 is

(MRF) min
∑

i∈V Gi(xi) +
∑

i∈P

∑
j∈N(i) Fij(xi − xj)

subject to xi ∈ X ∀ i ∈ P.

It is noted that the concept of “colors” associated with pixels can be replaced
by any other scalar characterization of pixels or voxels, such as texture. We refer
here to colors as a representation of such characterizations.

The complexity of MRF depends on the form of the penalty functions. A full
classification of the problem’s complexity is given in [15] showing that for convex
penalty functions the problem is polynomially solvable, and for non-convex the
problem is NP-hard. The cases when the deviation penalty functions are convex
and the separation penalty functions are linear was shown by Hochbaum [15] to
be solvable in polynomial time using a parametric cut procedure. Furthermore,
it was shown that the complexity of the algorithm is the fastest possible. The
case when both separation and deviation penalty functions are convex were also
shown to be solvable very efficiently by [1,2]. For non-convex penalty functions
the MRF problem is NP-hard.

Problems of total variations and regularization have been utilized in image
analysis for the purpose of denoising an image. These employ continuous method-
ologies. Recent works that provide approximate methods for solving MRF utilize
convex relaxations (e.g. Pock et al. [21]) along with primal-dual approaches, may
not converge to an optimal solution, and the running time cannot be determined
in advance. This is surprising, given that the exact discrete problem can be solved
within guaranteed polynomial time complexity. Moreover, digital images are in-
herently discrete, and considering them as continuous causes loss of accuracy.
The output of a continuous method must be mapped back to digital image infor-
mation, entailing further loss of accuracy. We demonstrate that several classical
continuous models are better represented with the MRF model and thus benefit
from the algorithmic efficiency of solving it.
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2 Relationship to Continuous Models

In the total variation method [19,23] the recorded image is represented by the
function which maps each pixel to its label (color). It is assumed that u0 can be
decomposed as u0 = u + v where u contains homogeneous regions with sharp
prominent edges, and v contains additional texture and noise. The goal of the
total variation method is to find u by minimizing the functional∫

Ω

|∇u|dxdy + α||u − u0||.

This functional is define on the plane, where (x, y) designate the position of each
pixel in the image.

Although not immediately apparent, there is a connection between this prob-
lem and the MRF problem: The term |∇u| captures the difference between each
pixel and its neighborhood. The neighborhood can be set to any desirable set –
it is not restricted to the commonly used grid neighborhood. This gradient term
is thus the separation term. The second term α||u − u0|| is the deviation of the
mapped function u from the recorded image u0.

This total variation problem is solved by continuous techniques. One such
method solves the associated Euler-Lagrange equation

u = u0 +
1
2α

∇ · ( ∇u

||∇u|| ).

In contrast to MRF, this method does not guarantee to deliver an optimal
solution and its complexity is undetermined. For this problem MRF does deliver
an optimal solution to this problem, and in polynomial time.

In a more general set-up, the total variation regularization problem (TVR)
the image is represented as s(x) – a given function define on an open subset Ω,
and f(x) is its regularized version, or for images, it is called the denoising of s.
We define two real functions γ : R → [0,∞) and β : R → [0,∞) which assume
the value 0 for the argument of 0,

F (f) =
∫

Ω

γ(f(x) − s(x))dx

In the denoising literature F is called a fidelity term since it measures deviation
from s() which could be a noisy grayscale image. In our terminology, the fidelity
term is the deviation.

A second function is the total variations on f , TV (f): The discrete form of
the total variations function is represented as a function f on a grid of discrete
values in Ω and associated with a defined neighborhood of each grid point. Let
the set of neighboring pairs be denoted by E. Then the total variation of f
is
∑

[i,j]∈E β(f(i) − f(j)) for a function β often selected as the absolute value
function: β(x) = max{0, x}. For a constant α the total variation regularization
of s() is the function f that minimizes the weighted combination of the total
variations and fidelity of f :

min TV (f) + αF (f)
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Rudin, Osher and Fatemi [23] have studied TVRs of F where γ(y) = y2, and
Chan and Esedoglu [7] studied γ(y) = |y|.

Since MRF is solved in polynomial time for convex γ and convex β, conse-
quently, the problem of Chan and Esedoglu is a special case solved by parametric
cut, and the problem of Rudin et al. is a special case solved by the quadratic
convex dual of min cost network flow. Both cases are efficiently solvable and the
MRF algorithm guarantees an optimal solution in polynomial time.

The MRF problem can also be used to represent certain classes of the Mumford-
Shah problem, as well as several image analysis problems that are addressed with
the eigenvector technique. The details of these mappings are to be described in
the full version of this paper.

3 The Methodology

For the MRF model for the image segmentation problem the input is an image
constituting of a set of pixels each with a given color and a neighborhood relation
between pairs of pixels. The decision is to assign each pixel a color assignment,
that may be different from the given color of the pixel, so that neighboring pixels
will tend to have the same color assignment. The aim is to modify the given color
values as little as possible while penalizing changes in color between neighboring
pixels. The penalty function thus has two components: the deviation cost that
accounts for modifying the color assignment of each pixel, and the separation
cost that penalizes the extent of pairwise discontinuities in color assignment for
each pair of neighboring pixels.

Formally, we are given a graph G = (V, A), or an image which is a set of pixels
V , with a real-valued intensity ri for each pixel i ∈ V . The neighborhood of pixel
i, which contains pixels adjacent to i, is denoted by N(i). The set of pairs of
nodes and their neighbors is denoted by A. So A = {(i, j)|j ∈ N(i)}. Note that
for every pair of neighbors {i, j} the graph G contains two arcs (i, j).(j, i) ∈ A.
We wish to assign each pixel i ∈ V an intensity xi that belongs to a discrete
finite set X = {i1, i2, . . . , ik} so that the sum over all pixels of the deviation cost
Gi(·) and the separation cost Fij(·) is minimized. Note that the values of xi do
not have to be selected from the same set as the value of ri, as shown here for the
first time in Lemma 1. The deviation function depends on the deviation of the
assigned color from the given intensity Gi(xi − ri). The separation is a function
of the difference in assigned intensities between adjacent pixels Fij(xi −xj). The
problem is stated as follows.

min
∑

i∈V Gi(xi) +
∑

i∈V

∑
j∈N(i) Fij(xi − xj)

subject to xi ∈ X ∀ i ∈ V.

We refer to the special case of the MRF problem with each variable xi taking
an integer value in an interval [�i, ui] as the separation-deviation problem.

The separation-deviation problem was shown in [1,2,15] to be solvable in poly-
nomial time when the functions Gi(·) and Fij(·) are convex. Note that when
those functions are not convex the problem is NP-hard, although when only the
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functions Gi(·) are nonlinear, and Fij(·) are convex the problem is solved in
pseudopolynomial time with run time that depends on the number of values of
X , k, [1]. The important case we will focus on here is with Gi(·) convex and
Fij(xi − xj) bi-linear forming a two piecewise linear function which is linear in
the range xi ≥ xj and linear in the range xj ≥ xi. For constants uij , uji the
function is defined as:

Fij(xi − xj) =

⎧⎨⎩
uij if xi > xj

0 if xi = xj

uji if xi < xj .

For convex functions Gi(·) and bi-linear functions Fij(·), the formulation is equiv-
alent to the following constrained optimization problem, referred to as (SD)
(standing for Separation-Deviation):

(SD) min
∑

j∈V Gj(rj , xj) +
∑

(i,j)∈A Fij(zij)
subject to xi − xj ≤ zij for (i, j) ∈ A

uj ≥ xj ≥ �j j = 1, . . . , n
zij ≥ 0 (i, j) ∈ A.

The complexity of this problem was shown in [15] to be O(T (n, m)+ n log U)
where T (n, m) is the complexity of solving the minimum cut problem on a graph
with n nodes and m arcs and U is the length of the interval for the color values –
the number of possible labels – or as we show here, |X |. For the formulation above
U = maxj{uj−�j}. The second complexity term is required to find the minima of
convex functions. In all our implementations the convex functions are piecewise
linear (e.g. absolute value function) or quadratic. In those cases the second term
vanishes and the complexity of the procedure is T (n, m). The algorithm used
solves the (SD) problem for any size of color set as a parametric minimum cut
problem, in the complexity of a single minimum cut procedure. The algorithm
used to solve the parametric minimum cut problem is the pseudoflow algorithm
of [14], for which the software is available to download at [8]. The complexity of
this algorithm was shown recently in [13] to be T (n, m) = O(mn log n2

m ).
We show next that the algorithm solving (SD) extends to the MRF problem

with xi ∈ X for any set of discrete values X . We first review the algorithm of
[15] and then prove, in Lemma 1, that it extends to the MRF problem with an
arbitrary discrete set of feasible values.

We define an s, t-graph Gα = (Vst, Ast) from the adjacency graph of the
image (V, A) where V is the set of pixels and A the set of adjacency arcs. For
� = minj �j and u = maxj uj, we choose a parameter value α ∈ (�, u). For each
arc (i, j) the arc capacity is uij .

We add to the set of nodes V a source s and sink t, Vst = V ∪ {s, t}. Next let
G′

i(α) be the subgradient of Gi() at α, Gi(α) − Gi(α − 1). Let the subgradient
value of function Gi(x) to be equal to M at values of x > ui, and to −M
for values x < �i, for M a suitably large value. With this extension the box
constraints are uniform for all variables, u ≥ xj ≥ � we replace the weights of
the nodes and set, for each node v ∈ V , by an arc adjacent to the source of
capacity csv = max{0, G′

v(α)}, and an arc adjacent to the sink t of capacity
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Fig. 1. The graph Gα

cvt = max{0,−G′
v(α)}. Let the set of arcs of positive capacity adjacent to the

source be denoted by As, and the set of arcs of positive capacity adjacent to the
sink, At. The remainder of the arcs, for each arc (i, j), j ∈ N(i) have capacities
uij . Let the minimum cut ({s} ∪ S, S̄ ∪ {t}) in the graph Gα partition V to
S = Sα and V \ S = S̄α. The graph Gα is illustrated in Fig. 1 for an example of
a grid graph (V, A) describing the adjacencies. Note however that the algorithm
described works for any type of graph, rather than for grid graphs only.

Let the optimal solution to (SD) be x∗ = (x∗
j ). The key to the efficient algo-

rithm to the (SD) problem is the threshold theorem:

Theorem 1 (The threshold theorem [15]). The optimal solution x∗ to (SD)
satisfies x∗

j < α for all j ∈ Sα, and x∗
j ≥ α for all j ∈ S̄α.

The threshold theorem means that for each node we can determine whether the
corresponding variable’s value in an optimal solution is < α or ≥ α, depending
on whether the respective node belongs to the source or the sink set of the cut.
See Fig. 2 for illustration.

By solving for each value of α in the range, the threshold theorem can be
used to establish a partition of the nodes in the graph, and the corresponding
variables, to sets where in each set all variables get the same value (and same
color) in an optimal solution.

Instead of solving for each value of α we find all the breakpoints where the
cut set is changing. Let Sλq be the minimal source set obtained by solving
the minimum cut problem in the graph corresponding to parameter λq. Then,
for a sequence of monotone increasing values of the parameter, λ0 < λ1 <
λ2 . . . < λp, we get a nested collection of source sets of the respective mini-
mum cuts: {s} = Sλ1 ⊂ Sλ2 ⊂ . . . ⊂ Sλp ⊂ V . See Fig 3 for illustration. When
λ0 ≤ � then the set of nodes of value < λ0 is empty. For λp ≥ u the set of nodes
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Fig. 2. The threshold theorem: The dashed line represents the arcs of the cut

of value < λp is V . Therefore, in the optimal corrected image, all pixels in
Sq = Sλq \ Sλq−1 , q = 2, 3, . . . , p have intensity strictly less than λq and greater
or equal than λq−1.

Notice that it is sufficient to generate the values of the breakpoints as integers.
That is because the values of the variables determined in each set of the partition
can take only integer values, so the smallest integer value in the interval [λq−1, λq)
will be the value assigned to all nodes/variables in the set Sq. Hence the values
of the breakpoints λi do not need to be contained in the set X . However, we will
let the set X consist of labels that are integer values.

Since the source set does not change for any α ∈ [λq−1, λq), we conclude that
for all j ∈ Sq x∗

j is equal to the smallest value in X that is ≥ λq−1.
Consider the extension of (SD) to (SD’):

(SD’) min
∑

i∈V Gi(xi) +
∑

i∈V

∑
j∈N(i) Fij(xi − xj)

subject to xi ∈ X ∀ i ∈ V.

Fig. 3. The parametric cut
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Lemma 1. Given the set of integer breakpoints λ0 < λ1 < λ2 . . . < λp, the
optimal solution to (SD’) restricted to any set of colors is generated in linear
time.
Proof: The proof is constructive. Let X = {i1, . . . , ik}. Let V be the set of all
the pixels/nodes.
For i1 let λ	1 be the largest breakpoint smaller or equal to i1, λ	1 = argmax λ	j ≤
i1. Assign to all variables with nodes in S1 ∪ . . . ∪ S	1 the value i1. Update
V ← V \ {S1 ∪ . . . ∪ S	1}. Let i	 be the largest value in X less than λ	1+1.
Update X ← X \ {i1, . . . , i	}.

The following iterative step is repeated until all variables values have been
assigned and V = ∅.
Iterative step:
Let iq be the first (smallest) value in X . Then iq ≥ λ	1+1. Let λ	q be the largest
breakpoint smaller or equal to iq, λ	q = argmax λ	j ≤ iq. Assign to all variables
with nodes in Sq ∪ . . . ∪ S	q the value iq. Update V ← V \ {Sq ∪ . . . ∪ S	q}. Let
i	 be the largest value in X less than λ	q+1. Update X ← X \ {iq, . . . , i	}.

The correctness of the procedure follows from the threshold theorem. ��

Noisy Image True Image

Fig. 4. Brain image 1, true and noisy

4 Experimental Results

4.1 Denoising by Modifying the Ratio between the Separation and
Deviation Penalties

The implementation solves the MRF problem with parametric coefficients S and
D multiplying the respective terms of separation and deviation. Note that only
changes in the ratio S

D have an effect on the optimal solution, rather than the
actual values of S and D.

(MRF) min D
∑

j∈V Gj(rj − xj) + S
∑

(i,j)∈A uij |xi − xj |
subject to xi ∈ X for i ∈ V .
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S = 30 S = 40 S = 50

S = 60 S = 70 S = 80

Fig. 5. The output for increasing values of S when applied to noisy brain image 1

The effect of modifying the ratio S
D is illustrated here for two examples of brain

images. The first set of true and noisy images are given in Fig. 4. In that image
there are four small lesions. We then apply the separation-deviation algorithm
with D = 2 and for increasing values of S, as shown in Fig. 5. The lesions show
very clearly in the high separation (S values of 60 or 70) images in yellow color.

4.2 Increasing Deviation for a Selected Color

The algorithmic tool allows to select a particular color, either by the color code,
or by clicking on a pixel that has the desired color. The deviation penalty is
then increased for all integer color codes in a small interval around the selected
color. For color code q the interval is [q − 5, q + 5]. The size of this interval can
be adjusted by the user.

Effect of increasing Deviation penalty for selected 

color (orange )

k = 5, D = 2, S = 70

Fig. 6. Increased deviation penalty for a selected color in brain image 1
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We show here, for brain image 1, that if the color orange is selected, then
it shows as the color of 3 out of the 4 lesions, see Fig. 6 above. When the
deviation for that color is increased the lesions become better segmented and
more prominent. Of course, the color orange also appears in other areas of the
brain shell where it is of no clinical significance. This issue will be addressed
in the next prototype of the interactive tool, where the deviation increase will
apply only in a user-defined window.

4.3 Comparison of Image Segmentation with Separation-deviation
to the Normalized Cut Approach

We now compare our software for image segmentation with the normalized cut
approach introduced by Shi and Malik, [25]. This normalized cut approach uti-
lizes the spectral technique in finding the Fielder eigenvalue and the correspond-
ing eigenvector. The method is described and Shi’s software implementation is
provided in: http://www.cis.upenn.edu/~jshi/software/

The input to that code is the number of desired segments in the output image.

8 segments 12 segments

20 segments16 segments

Fig. 7. Normalized cut software segmentation of true brain image 2 for 8, 12, 16 and
20 segments

The code preprocesses the input image, first by converting it to gray scale
and then resizing it to 160 × 160. The algorithm is then applied to the the
preprocessed image.

We show here the segmentation of a brain image, brain image 2. This is shown
in Fig. 7. Only the 20 segments begins to show the lesion area, but still does not
delineate it correctly. This is compared in Fig. 8 to the segmented and traced
lesions found with the solution of (SD) applied to the same image. (The software
of Shi requires to convert the image first to gray scale, which is why it is not
presented in color.)

http://www.cis.upenn.edu/~jshi/software/
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“Normalized Cut” Segmentation (20 segments) S-D Model Segmentation

Fig. 8. Comparison of the normalized cut software segmentation and the (SD) segmen-
tation of the true brain image 2

5 Conclusions

We demonstrate here that the MRF algorithm is an effective technique for regu-
larization and denoising of images, in theory and in practice. Since the algorithm
delivers an optimal solution, and is provably fastest possible, it gives better qual-
ity results than any alternative methodology, in terms of minimizing the objec-
tive function. The algorithm is shown here to segment successfully the salient
features in true images, and to be able to identify hidden important features and
de-blur noisy images. These capabilities make the algorithm a useful addition to
a segmentation tool box.
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Abstract. The scale-invariant detection of image structure has been a
topic of study within computer vision and image analysis since long. To
date, Lindeberg’s scale selection method has probably been the most
fruitful and successful approach to this problem. It provides a general
technique to cope with the detection of structures over scale that can be
successfully expressed in terms of Gaussian differential operators. Any
detection or segmentation task would potentially benefit from a similar
approach to deal with scale. For many of the real-world image structures
of interest, however, it will often be impossible to explicitly design or
handcraft an operator that is capable of detecting them in a sensitive
and specific way. In this paper, we present an approach to the scale-
selection problem in which the construction of the detector is driven
by supervised learning techniques. The resulting classification method is
designed so as to achieve scale-invariance and may be thought of as a
supervised version of Lindeberg’s classical scheme.

Keywords: Scale selection, scale-invariance, image segmentation, de-
tection, learning and classification.

1 Introduction

Image structures, such as blobs, edges or corners, may appear in images at
different scales. To detect them, it is often desired for a detector to select the
locally appropriate scales. A well-known scale selection scheme was proposed
by Lindeberg [18,17] for image structures which can be detected by differential
operators, such as the Laplacian, the Hessian, etc. [27]. The operator under
consideration is multiplied with a scale-dependent normalization factor, i.e., it
is scale normalized, and applied to an image to get a response at all scales
and locations. Subsequently, the scale where the normalized detector attains the
maximum response over scales is selected as the local scale of the structure.
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Scale selection schemes have been at the basis of many successful computer
vision and image precessing applications [10,21,22,1,24]. A potential problem,
however, is that the schemes are merely applicable to the detection of relatively
simple structures. For more complicated or very specific structures, it will often
be impossible to explicitly design or handcraft an operator that is capable to
detect these. Examples of such structures range from blobs that are textured
or have a particular shape to faces, bikes, cars, potted plants, or other image
objects.

Next to scale selection, scale-invariance is a desired property in many com-
puter vision and image analysis tasks because an input image can have an ar-
bitrary and unknown inner scale. Informally, the ‘inner scale’ of a pixel is pro-
portional to the area in the real world that the pixel represents [8]. Employing
the proper scale normalization, differential operators in combination with Lin-
deberg’s scale selection are indeed scale-invariant [18]. As with scale selection,
many more advanced computer vision techniques rely, at a lower level, on some
form of Lindeberg’s approach to make the overall scheme scale-invariant as well
[21,22,1,24]. Other, more committed, attempts to achieve scale-invariance are to
offset scaling with the log-polar and Fourier transform [16,25,15] or to incorpo-
rate features from various scales and estimate the local scales of the image under
consideration [13,14].

1.1 Work’s Novelty and Related Methods

This paper develops a supervised learning approach [4,2] that allows one to con-
struct nontrivial, scale-invariant detection, classification, or segmentation ap-
proaches based on available training data in combination with general machine
learning and pattern recognition methods. All in all, the approach proposed can
be seen as a supervised variation to Lindeberg’s classical scheme [18,17].

One critical advantage of our proposal is that learning techniques enable one
to develop methods that can potentially handle the more complex structures en-
countered in real-world segmentation or detection tasks. Like for any supervised
learning scheme, in order to apply the technique one needs examples of the task
to solve, i.e., a training set. That is, we need to have a collection of raw images,
e.g. X-rays, and the desired corresponding output one would like to obtain from
them, e.g. an expert segmentation, in order for the learner, e.g. a classifier, to
be able to capture the desired relationship. Now, a second advantage is in fact
that our approach allows the user to pick the classifier and features of his or her
liking. A third critical advantage is that scale selection is made task-dependent
by integrating supervision into the selection process. The reason for doing so
is that, even when the image data remains the same, different tasks may re-
quire different scales to solve them at. Current selection schemes, which are all
unsupervised, obviously cannot accommodate this.

Also closely related to our work are face detection schemes that, at test phase,
take care of scale and location variations simply by applying the detector to all
scales and locations and afterwards finding its maximum responses [12,28]. In a
sense, these are supervised approaches that follow Lindeberg’s scheme as well. A
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crucial difference with our approach, however, is in the training of this detector.
The face detection techniques need a set of scale and location aligned faces at
training phase, which basically takes care of the problem of scale. In many seg-
mentation and detection setting, however, it is difficult to properly align different
training instances. Take for instance any medical image segmentation task, how
could one identify, even within a single image, the appropriate scale from loca-
tion to location? Our approach solves the scale selection problem implicitly and
does not rely on any a priori knowledge about inner scales in the training or test
phase.

The problem covered in the current work has also been discussed in [20],
where a supervised method was proposed by viewing classifiers as special types
of scale-dependent structure detectors or filters based on which some sort of scale
selection could be performed. One of the main shortcomings of this approach,
however, is that it is not scale-invariant. A key contributions of this work is to
remove this restriction.

1.2 Remark and Outline

To avoid confusion, we use the word structure to mean an image feature, e.g.
blobs, edges, or more complicated structures, and the word feature refers to the
supervised learning setting where it can mean any kind of measurement that can
be made in an image, e.g., Gaussian derivatives, N -jets, differential invariants,
texture features, etc.

The remainder of the paper is organized as follows. The next section sets
the stage more specifically, it provides some notations used in the paper, and
sketches the basics of supervised pixel-based segmentation techniques. Section 3
describes our proposed method. Some illustrative experiments can be found in
Section 4. Section 5 concludes the paper.

2 Scale Space Theory and Pixel-Based Segmentation

2.1 Scale Space and Gaussian Derivatives

We will employ linear, or Gaussian, scale space [7,17,27] and limit ourselves to
images on R2, though this limitation is not essential. Given an image � : R2 →
R, the multi-scale image representation L : R2 × R+ → R is obtained as a
convolution with a Gaussian kernel gσ for varying scale σ. That is, the scale
space representation of � is given by

L(x, y;σ) = (� ∗ gσ)(x, y) . (1)

The linear scale space representation is mainly used for its Gaussian image
derivatives and especially the so-called N -jet [6], which we denote by JN

σ [�].
The latter is the collection of all Gaussian image derivatives up to order N at
a particular scale σ [8,7,27]. N -jets are basic features that are often employed
in supervised image analysis techniques to capture the local image structure of
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interest (see, for instance, [9,19,11]). Also in our experiments, we will use N -
jets. The basic theory we present, however, can be used in combination with
other features and multi-scale image representations as well as long as scale can
properly be dealt with.

2.2 Supervised Pixel Classification

In the test phase, the trained classifier is applied to a new and previously unseen
image �j from which the same feature vectors are extracted. In this way, for every
location in �j , an estimate ĉj(x, y) of the true class label at (x, y) is obtained by
C[Fj(x, y)]. Most classifiers can also output an estimated posterior probability
P (cj(x, y) = k |Fj(x, y)) of the true class label cj(x, y) being equal to k given
the feature observed feature vector Fj(x, y)) [5] for which we note that

C[Fj(x, y)] = argmax
k∈{1,...,K}

P (cj(x, y) = k |Fj(x, y)) . (2)

The posteriors can be viewed as a confidence measure of the classification result
and the larger the posterior is, the more confident the classifier is. In this work,
we are going to extend the basic pixel-based classification scheme to incorporate
scale-invariance by exploiting these posteriors, interpreting them as the output
of a complex filter procedure, and apply Lindeberg’s idea of maxima selection
to it.

(2.3 . . . and Detection)

This work does not explicitly deal with the detection task. We do however want
to point out that detection can be formulated in terms of classification (see for
example [12,23,26,28]). In our setting, this would, for instance, mean that the
desired corresponding outputs that should be provided for the training phase are
not necessarily accurate expert segmentations. Instead, for supervised detection
it may suffice to label one or a few locations within the structure to be detected
with one class label, say object , while all other locations are labeled with the label
background . Strong local maxima among the posterior probabilities P (cj(x, y) =
object |Fj(x, y)) would correspond to a detection of a structure from the object
class.

3 Supervised Scale-Invariant Segmentation

Our method builds further on standard pixel-based segmentation but is ex-
tended so as to take into account scale variations. The idea is to build a clas-
sifier that can be applied to all image locations at all feature scales, i.e., in-
stead of considering classification results C[Fj(x, y)], we initially consider its
extension to C[Fj(x, y, σ)], which provides labels, or for our purpose posteriors
P (cj(x, y, σ) = k |Fj(x, y, σ)), for the complete scale space of an image �j .
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Ultimately, we are interested in a single overall segmentation and not a seg-
mentation for every scale. Here is where the scale selection comes in. For a par-
ticular image location (x, y) in �j we check over scale which class label receives
the highest posterior and assign that label to that location (cf. [20]):

ĉj(x, y) = argmax
k∈{1,...,K}

max
σ∈R+

P (cj(x, y, σ) = k |Fj(x, y, σ)) . (3)

This approach also solves the scale selection problem in a supervised way. It
draws the analogy with Lindeberg’s scheme and (implicitly) selects the scale at
which the classifier is most confident of its decision, i.e., where classes can be
best separated from each other.

The way this classification approach takes into account scale may already be
interesting in itself, but we aimed for the segmentation approach to be scale-
invariant.

3.1 Additional Remarks

Scale-invariance in the current context means that if we rescale an image �j with
a factor a > 0 to an image �j′ := �j ◦ Sa that the corresponding classification
result scales in the same way, i.e., ĉj′(x, y) = ĉj ◦ Sa. Now this is achieved by
relying on scale-invariant features. That is, we generally require that Fj(x, y, σ)
in the original image �j equals Fj′(ax, ay, aσ) in the scaled image �j′ . With this
choice of features, corresponding feature vectors are mapped to the same location
in feature space and therefore classified in the same way, which results in the
desired scale-invariance. In the case of Gaussian derivative features from an N -
jet at scale σ, this means for example that every nth order derivative should be
normalized by σn.

It is copacetic that there are no restrictions on the classification scheme to
use. With the choice of scale-invariant features, any choice of classifier results
in a scale-invariant segmentation approach and this allows us to employ the full
arsenal of machine learning and pattern recognition techniques [4,2].

4 Illustrative Experiments

Our contribution is primarily of a conceptual nature with no need for exten-
sive experimental validation. Nonetheless, we provide some basic, yet nontrivial,
illustrations of our scale-invariant segmentation approach as defined through
Equation (3). We applied the method to two different tasks. The first one is the
segmentation of two simple geometric shapes from the background. The second
one comprises a texture segmentation task.

4.1 Classifiers and Features

Before we can apply our segmentation scheme, we need to choose features to
describe for every location the relevant local image structure. In basically all of
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a.

b.

Fig. 1. a. Triangular and circular shapes and their corresponding segmentation used in
the training phase. The segmentation is formulated as a three-class pixel classification
problem. b. An example test image with triangles and circles of different size and the
corresponding classification result.

the experiments, we choose the scale-normalized 6-jet, which results in a total of
D = 28 features for every location. The normalization is depends on the order
n of the derivative; every derivative is scaled by σn, which makes the features
scale-invariant as required.

We also limit ourselves to a relatively straightforward classification tech-
nique, namely classical quadratic discriminant analysis (QDA) [4,2]. This classi-
fier makes multivariate normality assumptions about every individual class and
based on that constructs a classifier. For every class a feature mean and a class-
conditional covariance matrix should be estimated from the training data. This
quadratic model is accurate enough for our illustratory purposes and more ad-
vanced techniques such as support vector machines, nearest neighbor methods,
and boosting approaches provide little extras in the current setting.
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4.2 Shapes

Figure 1.a shows on the left examples of noisy triangles and circles, eight each,
that should be segmented from the equally noisy background. The right displays
the ground truth pixel labeling, which is used as training output. Obviously, a
simple blob detector would probably be able to pick out the 16 objects from
the input image. It would however be more challenging to design detectors that
are more specific and respond merely to one of the two geometric structures.
Our scheme therefore also tries to discriminate between the two different shapes
and should respond differently to them, i.e., by giving different label outputs.
Consequently, we model this problem as a three-class classification problem. The
gray-scale in the righthand image of Figure 1.a is of no significance and only
indicates that there are indeed three different classes in the image and which
pixels belong to which class.

The procedure is tested on the image on the left of Figure 1.b. It also contains
scaled versions of the triangular and circular shapes in order to test the scale-
invariance of our approach. After extraction the 6-jets from the training data
from a range of scales, a QDA is trained and applied to the test image. The
resulting segmentation can be found in Figure 1.b on the righthand side. It
shows that our procedure is fairly accurate and that the majority of the pixels
has been labeled correctly in spite of the relatively straightforward classifier and
scale space features. The most notable mistakes seem to be on the small scale
triangles. Some of these segmentations are deformed and the one at the top even
has been missed almost entirely. The main reasons for these glitches is that the
images used are discrete and the ‘size’ of the added noise does not scale with
the shape scale. As a result, scale-invariance will only hold approximately and
over a restricted range of scales, which is reflected in somewhat deteriorated
performance on the small scale structures.

4.3 Textures

Experiments similar to those in the previous subsection have been performed on
two times two Brodatz textures [3]. The two pairs of textures can be found in
Figures 2 and 4. For both pairs, we use the two images as the training set and
assume them to be from different classes. The corresponding test images, which
include both textures from the training set, are displayed in Figures 3.a and 5.a,
respectively. All four images are constructed from scaled versions of the original
training textures, one of which is in a circular area in the center while the other
fills the remainder of the image. The aim is to segment the one texture from the
other.

All texture intensities have been normalized to mean zero and unit standard
deviation. As a result, a generic blob detector is unable to localize the textur-
ized blobs in the middle of the test images. We really need to employ more
rich features that are capable of capturing the relevant higher-order structure
and combine these in order to perform the detection or segmentation successfully.
This is what QDA, the classifier, does. Figures 3.b and 5.b give the segmentations
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Fig. 2. Two training images taken from the Brodatz collection of textures [3]. On the
left is D53, the right shows D55.

a.

b.

Fig. 3. a. Two example test images in which the texture scales are varied and set
differently from those in the training set in Figure 2. Both images contain both textures.
b. Segmentation results obtained with 6-jets in combination with QDA.
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Fig. 4. Compare to Figure 2. Two training images taken from the Brodatz textures
collection [3]. On the left is D33, the right displays D34.

a.

b.

Fig. 5. Compare to Figure 3. a. Two example test images in which the texture scales are
varied and set differently from those in the training set in Figure 4. Both images contain
both training textures. b. Segmentation results obtained with 6-jets in combination
with QDA.
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Fig. 6. Segmentation results obtained with 2-jets in combination with QDA. Compare
to Figure 3.b.

for the test images in Figures 3.a and 5.a, respectively. As for the results in
the previous subsection, similar comments can be made about the reasons for
misclassification in these experiments. In the case of these textures, however,
there may be two additional reasons at play. First of all, textures are generally
more difficult to segment than a shape consisting of a homogenous intensities
even though the latter may be noisy. Secondly, the training set does not contain
any examples of the two textures bordering, which causes unreliable classification
results at such boundaries in the test images. It is indeed at these locations where
the segmentation seems most inaccurate.

The first texture segmentation task is probably simpler than the second one.
There is a strong difference in orientation between the two textures, which ba-
sically sets them apart and one might suspect that a descriptor based on simple
second-order, or even first-order, derivatives should be able to capture this dif-
ference. Figure 6 shows what happens to the segmentations corresponding to the
test images in Figure 3.a if we replace the 6-jets with 2-jets in our procedure.
Indeed, to quite a large extent the segmentation is still successful, but the results
cannot match the accuracy from those in Figure 3.b, which shows the importance
of including higher-order derivatives. Results using the 1-jet are worse even.

5 Discussion and Conclusion

A scale-invariant supervised approach to image segmentation has been presented
that draws inspiration from Lindeberg’s classical scale selection approach. There
are two major advantages compared to other supervised scale-invariant segmen-
tation techniques. Firstly, we are not necessarily committed to specific features
that have been designed to achieve invariance in a rather intricate way, as for
example in [15]. Our scheme allows the inclusion of any scale-invariant feature
set, allowing for very problem specific choices. More important might be the sec-
ond point, which is the fact that we stay close to the general pixel classification
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framework and can exploit the full arsenal of powerful pattern recognition and
machine learning techniques. In our experiments, we only scratched the surface
of possible techniques. They nonetheless show the potential of the approach.

Possibly the most restricting feature of our method is that it is supervised,
so we do need training data in order for our approach to work. As a general
rule, we may expect to need more complex features, more complex classifiers,
and a larger number of examples, with an increasingly complex segmentation
problem that we want to tackle. The interplay of these aspects of learning are
at the core of general pattern recognition and machine learning research. It is
however interesting to study these aspects within the more confined context of
image segmentation and detection as this may lead to stronger, more generally
applicable guidelines to come to the selection of the right classifier, the right
features, etc.

One specific topic for further research we want to mention here concerns
Equation (3) and in particular the maximum operator over all scales, which
basically picks out a single scale and allows for a close link with Lindeberg’s
scale-selection scheme. The question remains however if we can do better. An
answer might be found in the analysis of the deep structure of the probabilistic
posterior scale space (cf. [7,17,27]).
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Abstract. This paper presents a geodesic voting method to segment
tree structures, such as retinal or cardiac blood vessels. Many authors
have used minimal cost paths, or similarly geodesics relative to a weight
potential P, to find a vessel between two end points. Our goal focuses on
the use of a set of such geodesic paths for finding a tubular tree structures,
using minimal interaction. This work adapts the geodesic voting method
that we have introduced for the segmentation of thin tree structures to
the segmentation of tubular trees. The original approach of geodesic vot-
ing consists in computing geodesics from a set of end points scattered
in the image to a given source point. The target structure corresponds
to image points with a high geodesic density. Since the potential takes
low values on the tree structure, geodesics will locate preferably on this
structure and thus the geodesic density should be high. Geodesic vot-
ing method gives a good approximation of the localization of the tree
branches, but it does not allow to extract the tubular aspect of the
tree. Here, we use the geodesic voting method to build a shape prior
to constrain the level set evolution in order to segment the boundary
of the tubular structure. We show results of the segmentation with this
approach on 2D angiogram images and 3D simulated data.

1 Introduction

In this paper we present a novel method for the segmentation of tree structures.
These methods are based on minimal paths with a metric designed from the
images and can be applied to the segmentation of numerous structures, such as:
microglia extensions; neurovascular structures; blood vessel; pulmonary tree. The
vascular tree is modeled as a tubular structure. We consider among the methods
used to segment the vascular tree three classes of approaches according to the
method used to extract the tubular aspect of the tree: surface models; centerline
based models; and 4D curve models. The first category extracts directly the
surface of the vessel, see [1]. For the second approach, centerlines based models,
centerlines are extracted first and a second process is required to segment the
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vessel surface, see [2]. The last approach, 4D curve model, consists in segmenting
the vessel centerlines and surfaces simultaneously as a path in a (3D+radius)
space [3,4]. For a review of these methods, see [5,6].

Minimal paths techniques were extensively used for extraction of tubular tree
structures. These approaches are more robust than the region growing methods,
particularly in the presence of local perturbations due to the presence of stenosed
branches of the tree or imaging artefacts where the image information might be
insufficient to guide the growing process. Several minimal path techniques have
been proposed to deal with this problem [7,8,9]. These techniques consist in
designing a metric from the image in such a way that the tubular structures
correspond to geodesic paths according to this metric. Solving the problem from
the practical point of view consists of a front propagation from a source point
within a vessel which is faster on the branches of the vascular tree. These methods
required the definition by the user of a starting point (propagation source) and
end points. Each end point allows to extract a branch of the tree as a minimal
path from this point to the source point, the points located on the minimal path
are very likely located on the vessel of interest. Few works have been devoted to
reduce the interaction of the user in the segmentation of tree structure to the
initialization of the propagation from a single point. Authors of [10] defined a
stopping criteria from a medialness measure, the propagation is stopped when
the medialness drops below a given threshold. This method might suffer from the
same problem as the region growing, the medialness might drop below the given
threshold in the presence of pathology or imaging artefacts. Wink et al. [11]
proposed to stop the propagation when the geodesic distance reaches a certain
value. However, this method is limited to the segmentation of a single vessel and
the definition of the threshold of the geodesic distance is not straightforward.
Cohen and Deschamps [12] proposed to stop the propagation following a criterion
based on some geometric properties of the region covered by the front. In [9],
assuming the the total length of the tree structure to be visited is given, the
stopping criteriuon is based on the Euclidean length of the minimal path.

Li et al. [4] proposed a 4D curve model with a key point searching scheme to
extract multi-branch tubular structures. The vascular tree is a set of 4D minimal
paths, giving 3D centerlines and width. While this method has the advantage to
segment vessel centerlines and surfaces simultaneously, it requires the definition
of eight parameters. One point inside the tubular structure and the radius are
used to initialize the Fast marching propagation, three parameters are used to set
the Fast Marching potential and three distance parameters limit the propagation
to the inside of the tubular structure to avoid leakage outside the tree. These
last three parameters may require an important intervention of the user since
they are crucial to extract the whole structure. If these distance parameters are
not suitable, parts of the tree structure may be missed during the propagation.

In this paper, we present a method to extract tree structures without using
any a priori information. Furthermore, the user has to provide only a single
point on the tree structure. The method is generic: it can be used to extract any
type of tree structure in 2D as well as in 3D. It is based on the geodesic voting
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method introduced in [13,14]. It consists in computing geodesics from a given
source point to a set of end points scattered in the image. The target structure
corresponds to image points with a high geodesic density. The geodesic density
is defined at each pixel of the image as the number of geodesics that pass over
this pixel. Since the potential takes low values on the tree structure, geodesics
will locate preferably on this structure and thus the geodesic density should be
high on the tree structure. While the original voting method allows to extract
tree structures it does not permit to extract the walls of the vessels. Here, we
introduce a shape prior constraint constructed from the geodesic voting method
to constrain the evolution of a level set active contour in order to extract the
walls of the tree. We use a Bayesian approach to introduce this prior into the
level set formulation. We end up with a minimization problem of a global energy
composed of two terms. The first term corresponds to a deformation energy for
a standard region based level set method and the second term introduces the
shape prior constraint. In Section 2, we present the tools needed in Section 3 to
introduce the new geodesic voting method. In Section 4, we applied our approach
to the segmentation of vessels from 2D angiogram images and 3D simulated data.

2 Background

2.1 Minimal Paths

In the context of image segmentation Cohen and Kimmel proposed, in [15], a
deformable model to extract contours between two points given by the user. The
model is formulated as finding a geodesic for a weighted distance:

min
y

∫ L

0

(
w + P (y(s))

)
ds, (1)

where s is the arclength, L is the length of the curve and the minimum is
considered over all curves y(s) traced on the image domain Ω that link the two
end points, that is, y(0) = x0 and y(L) = x1. The constant w imposes regularity
on the curve. P > 0 is a potential cost function computed from the image, it
takes lower values near the edges or the features. For instance P (y(s)) = I(y(s))
leads to darker lines while P (y(s)) = g(||∇I||) leads to edges, where I is the
image and g is a decreasing positive function.

To compute the solution associated to the source x0 of this problem, [15]
proposed a Hamiltonian approach: Find the geodesic weighted distance U that
solves the eikonal equation :

||∇U(x)|| = w + P (x) ∀x ∈ Ω (2)

The ray y is subsequently computed by back-propagation from the end point
x1 by solving the Ordinary Differential Equation (ODE): y′(s) = −∇U(y). To
solve the eikonal equation (2), we use the Fast Marching algorithm introduced
in [16]. The idea behind the Fast Marching algorithm is to propagate the wave
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in only one direction, starting with the smaller values of the action map U and
progressing to the larger values using the upwind property of the scheme. There-
fore, the Fast Marching method permits to solve the equation (2) in complexity
O
(
n log(n)

)
, where n is the number of grid points, for details see [16,15].

2.2 Geodesic Voting for Segmentation of Tree Structures

We have introduced in [13,14] a new concept to segment a tree structure from
only one point given by the user in the tree structure. This method consists in
computing the geodesic density from a set of geodesics extracted from the image.
Assume you are looking for a tree structure for which a potential cost function
has been defined as above and has lower values on this tree structure. First we
provide a starting point x0 roughly at the root of the tree structure and we
propagate a front in the whole image with the Fast Marching method, obtaining
the minimal action U. Then assume you consider an end point anywhere in the
image. Backtracking the minimal path from the end point you will reach the
tree structure somewhere and stay on it till the start point is reached. So a part
of the minimal path lies on some branches of the tree structure. The idea of
this approach is to consider a large number of end points {xk}N

k=1 on the image
domain, and analyze the set of minimal paths yk obtained. For this we consider
a voting scheme along the minimal paths. When backtracking each path, you
add 1 to each pixel you pass over. At the end of this process, pixels on the tree
structure will have a high vote since many paths have to pass over it. On the
contrary, pixels in the background will generally have a low vote since very few
paths will pass over them. The result of this voting scheme is what we can call
the geodesic density. This means at each pixel the density of geodesics that pass
over this pixel. The tree structure corresponds to the points with high geodesic
density. The set of end points for which you consider the geodesics can be defined
through different choices. This could be all pixels over the image domain, random
points, scattered points according to some criterion, or simply the set of points
on the boundary of the image domain, see [14]. We define the voting score or
the geodesic density at each pixel p of the image by

μ(p) =
N∑

k=1

δp(yk) (3)

where the function δp(y) returns 1 if the path y crosses the pixel p, else 0. Once
the geodesic voting is made, the tree structure is obtained by a simple thresh-
olding of the geodesic density μ. As shown in Figure 1, the contrast between
the background and the tree is large and the threshold can be chosen easily. We
used for all experiments the following value

Th =
max(geodesic density)

100
(4)
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Fig. 1. Geodesic voting. First row: the left panel shows the synthetic tree, the red
cross represents the root of the tree; the center panel shows the set of end points
(here farthest points, see [14]); the right panel shows in blue the geodesics extracted
from the set farthest points to the root. Second row: the left panel shows the geodesic
density; the center panel shows the geodesic density after thresholding; the right panel
plots the effect of the variation of the threshold on the overlap ratio, the red cross
represents the value Th (given by the equation (4)).

as threshold to extract the tree structure using the voting maps. Figure 1 (panel:
second row on the right) shows the effect of the threshold on the overlap ratio1

that measures the similarity between the the manually segmented data A and
the segmentation result B. This figure shows that the threshold can be chosen
in a large range that contains the threshold Th, given by the equation (4).

2.3 Active Contours without Edges

In this section we describe the level set method that we will use in the next
section to introduce our active contour model. The active contour models con-
sist in evolving a curve (2D case) or surface (3D) constrained by image-based
energy toward the target structure. Chan and Vese [17] proposed a region based
model adapted to segment an image with poor boundaries (edge information).
This model is a piece-wise constant approximation of the Mumford and Shah
functional [18]:

V(φ, c1, c2) =
∫

Ω

(
λ1

(
u0 − c1

)2
Hε(φ) + λ2(u0 − c2)2(1−Hε(φ))+

μδε(φ)|∇φ| + νHε(φ)
)
dx,

(5)

1 The overlap ratio is defined by the relation: O(A,B) = 2 |A∩B|
|A|+|B| , where |A| and |B|

are respectively the number of the foreground voxels in the image A and B. |A∩B|
is the number of voxels in the shared regions (intersection of the foreground of the
two images)
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where φ defines the boundary as its zero level set; Ω is the image domain; u0

is a given image function; λ1, λ2, ν, and μ are positive parameters; c1 and c2
are two scalar constants used to separate the image into two regions of constant
image intensities. The two last terms in the equation introduce regularization
constraints, whereHε and δε are respectively the regularized Heaviside and Dirac
functions, in this work they are approximated by:

Hε(τ) =
1
2

(
1 +

2
π

artang
(τ
ε

))
; δε(τ) =

1
π

ε

ε2 + τ2
. (6)

3 From the Voting Tree to the Tubular Tree

While the Chan and Vese energy constraint introduces regularization to smooth
the level set funcion φ and to deal with noise, it does not introduce a bias towards
the target structure. Bayesian models were proposed in the literature to incorpo-
rate prior knowledge about the target structure to constrain the evolution of the
level set [19]. The first level set method with prior knowledge about shape was
introduced by Leventon et al. [19]. Recent improvements of this approach were
proposed for example in [20]. The geodesic voting method described in Section
2.2 gives a good approximation of the localization of each branch of the tree.

In this section we introduce a shape prior constraint using a Bayesian frame-
work to segment the walls of the tree structure. The idea is to use the geodesic
voting method to construct the shape prior that constrains the evolution of the
level set propagation. After thresholding the geodesic density μ defined by the
equation (3) we get an approximation of the target tree structure as explained in
Section 2.2. However this geodesic density does not allow to extract the tubular
aspect of the tree. Indeed the thresholded geodesic density gives only an approx-
imation of the centerlines of the tree structure. Our aim here is to use this rough
tree skeleton to build a prior that constrains the evolution of level set active
contour in order to extract the boundary of the tree.

From now on we call the voting tree the tree structure obtained after thresh-
olding the geodesic density. To construct the shape prior from the voting tree
we use the largest radius of the tubular structure. The largest radius is obtained
from the target image. It does not have to be precise: it is sufficient to inspect
the target tree visually and to give an approximate value. A uniformly tubular
tree containing the target tree structure is obtained by morphological dilation of
the voting tree with a radius that corresponds to the largest radius of the tubular
tree. The prior that we will use to constrain the level set method corresponds
to the signed distance from the boundary S of the tubular tree obtained after
dilatation, which we denote φ̃. The signed distance φ̃ is defined by:

φ̃(x) =
{
D(x), if x is inside S,
−D(x), otherwise,

where D is a distance from S: D(x) = inf
y∈S

d(x,S) with d a given metric, we use

in this work the Euclidean metric. The distance φ̃ is then used to constrain the
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level set evolution in the target image. Let P(φ|φ̃, u) be the posterior probability
of the level set φ given the image function u and the level set shape prior. The
Bayesian formulation of this probability is given by Bayes’ theorem:

P(φ|φ̃, u) =
P(φ̃, u|φ) P(φ)

P(φ̃, u)
∝ P(φ̃|φ) P(u|φ) P(φ) (7)

where P(φ̃|φ) is the shape prior term, we suppose that this probability follows a
Gaussian distribution and that P(u|φ) P(φ) is derived from the Chan and Vese
model, see equation (5). Therefore, the maximum of the posterior probability (7)
is equivalent to the lowest energy of the (− log) functional, and after integration
over the image domain we end up with the following Bayesian model:

Eb(φ, c1, c2) = V(φ, c1, c2) + γ

∫
Ω

(φ− φ̃)2

2σ2
δε(φ)dx, (8)

the factor term δε allows us to restrict the shape prior within the region of
interest. For a fixed φ, we deduce the values of c1 and c2:

c1(φ) =

∫
Ω

u0Hε(φ)dx∫
Ω

Hε(φ)dx
, c2(φ) =

∫
Ω

u0

(
1−Hε(φ)

)
dx∫

Ω

(
1−Hε(φ)

)
dx

(9)

As usual, we use an artificial parameter t in the Euler-Lagrange formulation
associated to Equation (8) :

∂φ

∂t
=
(
μdiv

( ∇φ
|∇φ|

)− ν − λ1(u0 − c1)2 + λ2(u0 − c2)2
)
δε(φ)+

γ

2σ2

(
2
(
φ− φ̃) δε(φ) +

(
φ− φ̃)2 ∂δε

∂φ
(φ)
)

= 0

in Ω × R+; φ(x, 0) = φ0(x) in Ω;
δε(φ)
|∇φ|

∂φ

∂n
= 0 on ∂Ω

(10)

The estimation of the solution of the model (8) can be summarized in the fol-
lowing steps:

– initialize φ0 = φ̃, n = 0;
– compute c1(φn) and c2(φn) by the relations (9);
– compute φn+1 by solving the PDE (10) with respect to φ;
– update periodically the level set φn by a signed distance;
– repeat these three steps until convergence (φn is stationary).

Figure 2 illustrates the segmentation with our approach and shows a comparison
with a classical level set method, we will give more detains in the next section.
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Fig. 2. Segmentation of vessels from a 2D angiogram image. First row: the left panel
shows a 2D angiogram image;the center panel shows in red the voting tree; the right
panel shows in red the voting tree after morphological dilatation. Second row: the left
panel shows the signed distance computed from the dilated voting tree; the center panel
shows in red the segmentation results obtained with a Chan and Vese method without
shape prior; the right panel shows the segmentation result obtained with our approach.

4 Results and Discussion

We show results obtained with our algorithm on 2D images, see Table 1 and
Figure 3. We applied our approach on ten cropped retinal images provided by
DRIVE (Digital Retinal Images for Vessel Extraction) [21]. The DRIVE data
were acquired using a Canon CR5 non-mydriatic 3CCD camera with a 45 de-
gree field of view (FOV). Each image was captured using 8 bits per color plane at
768 by 584 pixels. The FOV of each image is circular with a diameter of approx-
imately 540 pixels. For this database, the images have been cropped around the
FOV. The DRIVE data is composed of 40 images for which manual segmenta-
tions are also provided. Considering the complexity of the retinal images and the
properties of our algorithm, we have cropped ten different images from the 40 im-
ages availabe and evaluated our method on them. In tables 1 and 1, we compare
our approach using the three evaluation measures: Dice, Specificity, and Sensi-
tivity. The maximum value of the Dice index is 1, which corresponds to a perfect
overlap between the manual and automatic segmentations. It shows that the re-
sults obtained with our approach are coherent with the manual segmentation.
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Fig. 3. Segmentation of vessels from one of the ten cropped 2D-retinal images given in
table 1. First row: the left panel shows the original image; the center panel shows in
red the farthest points detected; the right panel shows in blue the paths extracted from
the farthest points to the source point. Second row: the left panel shows the computed
geodesic density (green corresponds to a low density and red to a high density); the
center panel shows the manual segmentation; the right panel shows the segmentation
result obtained with our approach.

For our experiments we have considered the following potential P (x) = I(x)3,
where I is the grayscale intensity image of the DRIVE images. Figure 3 shows
the segmentation result obtained with our approach. The shape prior allows
us to constrain the propagation inside the tubular tree. Figure 2 (second row,
center column) shows that the propagation without shape constraints (γ = 0 in
the Equation (8)) can leak outside the tree structure.

We have also applied our approach on 3D simulated data of carotid bifurcation
lumen created from the simulated data provided by MICCAI challenge [22], by
adding Gaussian noise, see figure 4. The results obtained for these simulated
data are better than those obtained for the DRIVE data in terms of the following
overlap metrics: Dice, sensitivity, and specificity.
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Fig. 4. Lumen segmentation from 3D simulated data (MIP visualization). The left
panel shows the original image, the center panel shows the geodesic density, the right
panel shows the segmentation result obtained with our approach.

Table 1. Comparison of our segmentations with the manual segmentation, on the
ten cropped images from the DRIVE data, in terms of the following statistics: Dice
similarity, sensitivity and specificity

Test data T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Dice index 0.93 0.73 0.73 0.72 0.67 0.71 0.79 0.78 0.73 0.80

Sensitivity 0.91 0.61 0.64 0.58 0.53 0.60 0.70 0.70 0.70 0.70

Specificity 0.95 0.90 0.83 0.95 0.90 0.95 0.90 0.88 0.93 0.78

Table 2. Mean and standard deviation values of the statistics: Dice measure, sensitiv-
ity, and specificity, for all the data test

Statistics Dice measure Sensitivity Specificity

Mean 0.76 0.67 0.90

Standard deviation 0.07 0.10 0.05

5 Conclusion

In this paper we have presented a new method for the segmentation of tree struc-
tures. This method is adapted to segment automatically tubular tree structure
from a single point given by the user, no a priori information about the tree
is required. In contrast, the methods previously described in the literature for
the segmentation of tree structures are not fully automatic and require a pri-
ori information of the tree to be segmented. We have applied our approach to
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segment tubular tree structures from 2D retinal images and compared it with the
manual segmentation on ten images. The next step is to validate our approach
in 3D on a large data set.
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Abstract. We introduce an algorithm for active contour segmentation
in which the level set function encoding the contour is processed by me-
dian filtering using morphological amoebas. These are adaptive structure
elements introduced by Lerallut et al. which can be combined with differ-
ent morphological operations. Recently it has been proven that iterated
amoeba median filtering of an image approximates the well-known self-
snakes partial differential equation. Following this approach we prove a
partial approximation property of amoeba active contours with respect
to geodesic active contours. Experiments prove the viability of the algo-
rithm and confirm the theoretical results.

1 Introduction

The concept of morphological amoebas for structure-adaptive morphological fil-
tering has been introduced by Lerallut et al. [19,20]. In this approach, structure
elements adapt flexibly to image structures by taking into account spatial dis-
tance of pixels as well as image contrast. By penalising large deviations in image
values, amoebas can grow around corners or along anisotropic image features.
Once amoeba structure elements are constructed, a great variety of morpholog-
ical filters can be applied.

One candidate for the filtering step is median filtering which assigns to each
pixel the median of all grey-values of the given image within the structure ele-
ment as its new grey-value. A classic result by Guichard and Morel [13] estab-
lishes a relation to partial differential equation (PDE) based image filtering: In
its continuous-scale limit median filtering approximates mean curvature motion
[2], i.e. the PDE ut = |∇u| div(∇u/|∇u|).

Median filtering with amoeba structure elements has been investigated in
[19,20]. In [29] it was proven that iterated amoeba median filtering approximates
the self-snakes image filter PDE [23,30], i.e. that a space-continuous formulation
of amoeba median filtering asymptotically equals a time step of the self-snakes
evolution. As in [13] the time step size goes to zero with the square of the radius
of the structure element (amoeba).

Self-snakes stand in close relationship to geodesic active contours [9,15], a well-
established PDE method for image segmentation. In view of the approximation

A.M. Bruckstein et al. (Eds.): SSVM 2011, LNCS 6667, pp. 374–385, 2012.
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property between amoeba median filtering and self-snakes it is natural to ask
whether a similar amoeba-based process can be designed that performs an active
contour segmentation. In this paper, we will demonstrate that this is indeed
possible and that the resulting algorithm has similar properties as geodesic active
contours. For a special case we will prove an approximation property in the
same sense as in [13,29]. While the main contribution of the present paper is
of theoretical nature, the new discrete approach to active contours might also
turn out useful in applications because nonstandard discretisations of this kind
may reduce e.g. numerical dissipation effects that are difficult to circumvent with
finite-difference schemes.

Related work. The discrete filters that are in the focus of the present paper take
their motivation from two sources: first, the classic median filter as introduced
by Tukey [26] which has developed into a standard tool in image processing later
on, see e.g. [16]; second, the idea of image-adaptive structure elements [6,7,24,28]
which also includes Lerallut et al.’s morphological amoebas [19,20]. The space-
continuous description of amoebas resorts to the representation of an image by
an image manifold which has been used in the context of the Beltrami framework
[14,31] and also underlies the bilateral filter [3,25].

Geodesic active contours were formulated by Caselles et al. [9] and Kichenas-
samy et al. [15], based on earlier work on active contours [8,21].

The paradigmatic PDE approximation result by Guichard and Morel [13] for
the median filter has been followed by results for further discrete filters [3,11,27],
for amoeba median filtering see [29].

Structure of the paper. In Section 2 we describe morphological amoebas and
develop the amoeba active contour algorithm. By a space-continuous analysis
in Section 3 approximation of the geodesic active contour PDE is proven in the
radially symmetric case. Experiments demonstrate the viability of the approach,
and its similarity to geodesic active contours, see Section 4. Conclusions are
presented in Section 5.

2 Amoeba Active Contour Filtering

Let us recall first the principle of amoeba filters as introduced in [19,20].
The first step of any amoeba filter consists in the construction of image-

adaptive structure elements, called amoebas, for all pixels in the image. The
structure element for pixel p is made up by those pixels which are close to p
in some amoeba metric. Instead of considering only the spatial distance in the
image domain, as for non-adaptive morphological structure elements, the amoeba
metric measures the distance of pixels along the image manifold, i.e. a surface
interpolating the R3 points (x, y, σf(x, y)). Here, (x, y) are point coordinates in
the image domain, f(x, y) is the grey-value at (x, y), and the scaling parameter
σ > 0 weights grey-value differences (tonal distances) against spatial distances.

In the second step, some morphological operation is applied to the image with
the previously computed structure elements, such as dilation, erosion, opening or
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closing. As a particularly interesting example, median filtering has been studied
in [19,20,29]. Like the non-adaptive median filter, this filter can be iterated,
giving rise to iterated amoeba median filtering.

Space-discrete and space-continuous amoeba metrics. Concerning the
amoeba metric, let us discuss first the space-continuous setting. Natural choices
for the Riemannian metric on the image manifold {(x, y, σf(x, y))} are those in-
duced by metrics in the embedding space R3. The simplest case, the Euclidean
metric, leads to the amoeba metric ds2 = d2s

2 = dx2 + dy2 + σ2df2. An al-
ternative is an L1 metric ds = |dx| + |dy| + σ|df | which, however, lacks the
desirable rotational invariance in space and will not be considered further here.
As a compromise, one can choose a combined L2-L1 metric that is Euclidean in
the two spatial dimensions but L1 in combining the spatial and tonal distances,
ds = d1s =

√
dx2 + dy2 + σ|df |. A straightforward generalisation is

ds = dϕs = ϕ
(√

dx2 + dy2, σ df
)

(1)

where ϕ is a twice differentiable nonnegative function, homogeneous of degree 1,
strictly increasing in both variables, and fulfils the triangle inequality, see [29].

The distance d(p, q) between two points p = (xp, yp, σfp), q = (xq, yq, σfq) on
the image manifold is the minimum of the expression

Lϕ(C) :=
∫

C

dϕs , (2)

taken over all curves C on the image manifold that connect p and q. Note,
however, that for q → p and smooth u, this distance is asymptotically equal to
the corresponding distance of p and q in R3, i.e.

d(p, q) ≈ ϕ

(√
(xp − xq)2 + (yp − yq)2, σ|fp − fq|

)
. (3)

In a digitised image, a space-discrete formulation of the distance measurement
is used. Following [19,20,29] d(p, q) is the minimum of

Lϕ(c) :=
m−1∑
k=0

ϕ
(√

(xk − xk+1)2 + (yk − yk+1)2, σ|fk − fk+1|
)

(4)

over all discrete curves (p0 = p, p1, . . . , pm = q), where pk = (xk, yk, σfk). A
discrete curve is a sequence of points in which each pair of subsequent points are
neighbours in the image domains. In [19,20], this model is used with dϕ ≡ d1

and 4-neighbourhoods, while [29] uses general dϕ and 8-neighbourhoods. We will
follow the latter model, notwithstanding that, as [29] mentions, accuracy could
be further improved by digital distance transforms [4,5,17,18].

Active contours. In an active contour algorithm [8,21], a contour curve evolves
from some initial shape towards a shape that separates the given image into two
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segments (typically, a foreground object and the background). The initial shape
is provided either by user interaction or some automatic method.

The evolution equation for geodesic active contours [9,15] is given by

ct = (g(|∇f |)κ− 〈∇g(|∇f |),n〉)n (5)

where n is the inward normal vector, and κ the curvature of the contour curve c.
The nonnegative “edge-stopping function” g depends monotonically decreasing
on the local gradient of the input image f . The name geodesic active contours
indicates that the contour found by this evolution is a local minimum of the arc
length, thus, a geodesic, in some image-dependent metric.

The contour c that evolves according to (5) can be represented in different
ways, which leads to different implementations of the active contour method.
The concept of a contour as parametric curve leads to a representation by
sample points. This is on one hand comparably efficient since it represents a
curve as a truly one-dimensional object; on the other hand, the evolution of
sample points to inter-pixel positions necessitates interpolation. Moreover, due
to length changes of the evolving curve over- and undersampling occurs, re-
quiring re-sampling steps in the algorithms. Further difficulties are encountered
when segments with multiple connected components cause the need for topology
changes in the contour.

Alternatively, level-set methods [22] represent the contour c as zero-level set
of a function u over the two-dimensional image domain. For example, a signed
distance function of the contour can serve this purpose. The evolution equation
(5) is then rewritten into an evolution of u = u(x, y, t) as

ut = |∇u| div
(
g(|∇f |) ∇u|∇u|

)
= g(|∇f |)uξξ + 〈∇g,∇u〉 (6)

where ξ denotes a unit vector in level line direction of u, ξ ⊥ ∇u. Topology
changes are implicitly handled in this case, and resampling becomes a non-issue.
However, the numerical evaluation in a 2D spatial domain raises the computa-
tional cost. This can be mitigated by narrow-band approaches [1] that restrict
the computation to the immediate neighbourhood of the actual contour.

In all cases, the contour evolution takes place under the influence of the image
being segmented; the image itself is not changed in this process.

Here lies the difference between active contours (snakes) and self-snakes. A
self-snakes evolution is obtained from an active contour evolution in level-set
formulation by identifying the level-set function for the contour with the image,
thereby evolving the image itself.

Active contour filtering using morphological amoebas. To design an
amoeba-based algorithm for active contours, the identification of input image
and evolving image must be removed, leading to the following procedure:

1. Compute amoeba structure elements based on the input image f .
2. Initialise the evolving image u with a level-set function for the initial contour.
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3. Evolve the image u by median filtering with the amoebas from Step 1 as
structure elements.

In contrast to the iterated amoeba median filtering as described in [29], amoe-
bas depend on the immutable input image and are therefore computed just once
for the entire evolution. This saves computational expense and opens the way
for further computational optimisations.

Introduction of dilation/erosion terms. Particularly if the initial contour
is far from the actual segment boundary, and if the segment boundary is of
complex topology, the geodesic active contour evolution (5) or (6) can stop in
an undesired local minimum away from the desired contour. For such cases it
is recommended in the literature [10,15] to modify (5) by an additional force
term ±νn. This “balloon force” resembles morphological dilation or erosion and
pushes the evolution into a chosen direction, thereby preventing it from stopping
prematurely in regions with little contrast.

A similar behaviour can be achieved in the amoeba-based active contour
model. To this end, one can bias the median filter: Instead of always select-
ing the element with index m/2 within the ordered sequence g0, . . . , gm of the
grey-values in the amoeba, one chooses the element with index αm for some
α �= 1/2 (the α-quantile), or the element with index m/2 + b with some fixed
offset b. We will use the latter modification in one of our experiments.

3 Space-Continuous Analysis

We turn now to analysing the amoeba active contour filter in a space-continuous
setting, and aim at establishing a relationship to a PDE formulation. Analogous
to the proceeding in [29], we approximate the input image f and the level-set
function u locally by Taylor expansions up to second order, and compute then
approximately the amoeba shape, and the median of u within that shape.

For the purposes of the present contribution, we restrict ourselves to the
Euclidean amoeba metric dϕ ≡ d2. We will not carry out an analysis in full
generality but consider the special case in which the input image and initial
contour are radially symmetric, which in particular implies that the level lines
of the level-set function u and of the input image f always coincide. This special
case is motivated by the idea that relevant parts of the segment boundary found
by an active contour evolution should be almost aligned with level lines of the
input image. Also, analysis of the biased method is beyond the scope of the
present paper.

We consider expansions of σf and u within a �-neighbourhood of (x0, y0) =
(0, 0). Here, (0, 0) is not the centre of radial symmetry; we assume that ∇u and
∇f do not vanish at this point. Without loss of generality, we assume u(0, 0) = 0,
f(0, 0) = 0, and assume that the gradients of u and f are in x direction. The
Taylor expansions of u and f then read

σf(x, y) = αx+ γx2 + δy2 +O(�3) (7)

u(x, y) = μx+ νx2 + λy2 +O(�3) . (8)
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Due to the required radial symmetry the mixed monomial xy does not occur.
By the locally invertible coordinate transform z = μx+ νx2 + λy2 we obtain

σf =
α

μ
z +

β

μ2
z2 +O(�3) (9)

u = z +O(�3) . (10)

Note that the curvatures of level lines of σf and u are equal, such that the
coordinate transform straightens not only the level lines of u but also those of
σf , making the y2 contribution vanish.

The contour of the amoeba A with centre p = (0, 0) and amoeba radius � is
made up by all those points q = (x, y) for which d2(p, q) = �2, i.e. x2 + y2 +
(σf(x, y))2 − �2 = O(�4) or

y2

(
1− 2λ

μ2
z

)
+
(

1 + α2

μ2
z2 + 2

(
αβ

μ3
− ν

μ4

)
z3

)
− �2 = O(�4) . (11)

A given level line u = z of u intersects the contour of A in two points. Their
y coordinates are solutions of (11), understood as quadratic equation for y, i.e.
y = ±Y (z) +O(�3) with

Y (z) =

√
�2 − 1 + α2

μ2
z2

(
1 +

λ

μ2
z − αβ/μ3 − ν/μ4

�2 − (1 + α2)z2/μ2
z3

)
. (12)

Thus, the length of the level line segment within A is up to O(�3) equal to 2Y (z).
It is nonnegative for z ∈ [Z−, Z+] where

Z± = ± �μ√
1 + α2

+O(�2) , (13)

and goes to zero with O(
√|z − Z±|) when approaching the boundaries.

The part of the amoeba A in which u takes values z ∈ [a, b] ⊆ [Z−, Z+]
has an area approximately given by the integral 2

∫ b

a Y (z)τ(z) dz where τ(z) :=
∂x/∂z = 1/μ− 2νz/μ2 +O(�2) represents the inverse density of level lines. The
median M of u within A therefore satisfies the condition

M∫
Z−

Y (z)τ(z) dz =

Z+∫
M

Y (z)τ(z) dz +O(�4) , (14)

which yields, with a loss of accuracy due to the approximation of the integration
boundaries via (13),


μ/
√

1+α2∫
0

(
Y (z)τ(z)− Y (−z)τ(−z))dz = 2

M∫
0

Y (z)τ(z) dz +O(�7/2) . (15)
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Since M = O(�2) and Y (0) = �, we have
∫M

0 Y (z)τ(z) dz = �M/μ+O(�4), and
by the substitution z = �μζ/

√
1 + α2 we obtain

M =
(λ − 2ν)�2

1 + α2

∫ 1

0

ζ
√

1− ζ2 dζ − (αβμ+ ν)�2

(1 + α2)2

∫ 1

0

ζ3 dζ√
1− ζ2

+O(�5/2)

=
�2

6

(
2λ− 4ν
1 + α2

− 4αβμ− 4ν
(1 + α2)2

)
+O(�5/2) . (16)

Based on the expansions (9), (10) and the variable substitution for z we can
express the coefficients in terms of derivatives of u and f . We have μ = ux,
ν = 1

2uxx, λ = 1
2uyy, α = σfx, β = γ − αν/μ = σ

2 (fxx − fxuxx/ux). Giving up
our special choice of coordinates, we replace x and y by unit vectors η ‖ ∇f and
ξ ⊥ ∇f in gradient and level line direction, respectively. Thus the last equation
expresses that, in the radially symmetric case, one step of the amoeba active
contour filter asymptotically approximates for �→ 0 one time step of size �2/6
of an explicit scheme for the PDE

ut =
uξξ

1 + σ2|∇f |2 −
2σ2fηfηηuη

(1 + σ2|∇f |2)2 = g(|∇f |)uξξ + 〈∇g(|∇f |),∇u〉 , (17)

i.e. (6) with the Perona-Malik-type edge stopping function (compare [9,15])

g(s) := (1 + σ2s2)−1 . (18)

It is still an open question whether this approximation property holds in exactly
the same form for situations other than the radially symmetric case discussed
here. Nevertheless, even this partial equivalence result links amoeba active con-
tours to the framework of PDE active contour methods and makes it an inter-
esting candidate for a non-standard discrete realisation of active contours.

4 Experiments

Our first experiment (Figure 1) demonstrates the viability of the amoeba active
contour approach and its similarity to geodesic active contours. Starting from an
initial contour that generously surrounds almost the entire image area of the test
image, Figure 1(a), our amoeba active contour algorithm adapts to the outline
of the depicted human head section within 600 iterations with amoeba radius 10,
see Figure 1(b, c). By our approximation result (16) the corresponding evolution
time for an active contour PDE is T = 10000.

Indeed, computation of geodesic active contours (6) up to T = 10000 by an
explicit finite difference scheme gives a similar result, see Figure 1(d). Slight
differences, in particular a stronger rounding of contours, can be attributed to
the blurring effect of the central difference approximation of derivatives.

The theoretical link between amoeba active contours and geodesic active con-
tours established in Section 3 is rooted in a space-continuous setting. In fact,
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a b

c d

Fig. 1. (a) MR image of a human head with initial contour. (b) Amoeba active con-
tours (unbiased), amoeba radius � = 10, σ = 0.1, 200 iterations. (c) Amoeba active
contours, same parameters but 600 iterations. (d) Geodesic active contours (6) with
edge-stopping function (18), σ = 0.1, computed by an explicit time-stepping scheme
with time step size τ = 0.25, 40000 iterations.

the application of both filters to digital images reveals some differences in de-
tail which can be attributed to their fundamentally different discrete realisation.
The already mentioned numerical dissipation of finite difference discretisations
stands in contrast to the very fine adaptivity of amoeba shapes to image struc-
tures, which is also reflected in the resulting active contours.

Furthermore, while the disposition to “lock in”, i.e. become stationary at
image structures with strong gradients, is a feature of both active contour ap-
proaches, such a behaviour is more pronounced in the case of amoeba active con-
tours. The reason is that the underlying median filter already in its non-adaptive
formulation possesses non-constant steady states, so called root signals [12].
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a b c d

e f g

Fig. 2. (a) MR image with initial contour (detail). (b) Amoeba active contours (unbi-
ased), amoeba radius � = 10, σ = 0.1, 20 iterations. (c) Same but � = 12, σ = 0.1, 10
iterations. (d) Same but � = 12, σ = 0.1, 60 iterations. (e) Geodesic active contours
(6), σ = 0.1, τ = 0.25, 960 iterations. (f) Same but 3000 iterations. (g) Same but
57600 iterations.

It is therefore natural also for an amoeba median filter to develop root sig-
nals, the more if the amoeba shapes themselves are kept fixed as in our case.
This property contributes on one hand to stabilising the segmentation result. On
the other hand it means that some minimal amoeba size is needed for reasonable
segmentation. Experiments suggest that � should not be smaller than 10.

As speed optimisation has not been in the focus of our work so far, a proper
comparison of the two active contour algorithms in terms of runtimes cannot be
made at this point. To this end, additional optimisation effort for both algorithms
would be required. To state a rough trend we mention that in our present, non-
optimised implementations both algorithms are roughly comparable in speed, the
amoeba-based algorithm being about 15 % faster than the PDE scheme in the
case of Figure 1(c) vs. (d) (but sometimes also a bit slower in other examples).

In our second experiment (Figure 2) we use the same test image as before
but aim at segmenting the cerebellum. As our initial contour, Figure 2(a), is not
very precise, the amoeba active contour with amoeba radius � = 10, the amoeba
active contour locks in at some sharp contours outside the desired region (b).
With a slightly enlarged amoeba radius � = 12 a fairly good segmentation is
reached (c). Further evolution of the amoeba contours becomes stationary at a
contour that cuts off some small details (d). Running geodesic active contours
up to evolution time T = 240 (which matches the amoeba evolution of the third
frame above) still does not segment the cerebellum well (e); this is achieved only
after considerably longer evolution time (f). Continuing geodesic active contour
evolution, again a stationary contour is reached, see Figure 2(g).
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a b

c d

Fig. 3. (a) MR image with initial contour (detail). (b) Amoeba active contours with
dilation bias, amoeba radius � = 20, σ = 2.0, bias b = 10, 5 iterations. The bias
b = 10 means that within each amoeba the 10-th greyvalue above the median index
was chosen. (c) Same but 15 iterations. (d) Same but 30 iterations.

In our third experiment (Figure 3) we demonstrate the modification of amoeba
active contours by a dilation bias b = 10 in order to force an expansive evolution
of the contour. Thus, within each increasing sequence of grey-values of an amoeba
the value 10 positions after the median was selected (the maximum if the amoeba
contained less than 20 pixels). Together with amoeba radius � = 20 and a
comparatively large contrast parameter σ = 2.0 this allowed to segment the
corpus callosum from a small initial contour within the structure.

5 Conclusion

In this paper we have developed a new variant of an active contour algorithm for
image segmentation based on iterated amoeba median filtering of a level-set func-
tion. We proved that in a radially symmetric setting the continuous-scale limit
of our amoeba active contour method coincides with the well-known geodesic
active contour equation. Experiments verify that both algorithms behave struc-
turally similar. Due to their entirely different discrete filter strategies, they differ
in the representation of contour details.

Ongoing work is directed at extending our theoretical analysis. This will in-
clude the study of non-radially symmetric situations as well as different amoeba
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metrics and the relation between the biased approach and additional force terms.
A further goal are algorithmic optimisations.

The revenue of this effort will be, firstly, a deeper theoretical insight into the
relations between discrete and continuous image filters will be gained. Secondly,
based on the so established approximation properties genuinely discrete filters
can be used as unconventional discretisations of PDE filters and improve the
practical implementation of the latter.

Acknowledgements. The author thanks Michael Breuß for helpful discussions
on the topic. Implementation is partially based on earlier work by Oliver Vogel.
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Abstract. We combine in this paper the topological gradient, which is
a powerful method for edge detection in image processing, and a variant
of the minimal path method in order to find connected contours. The
topological gradient provides a more global analysis of the image than
the standard gradient, and identifies the main edges of an image. Several
image processing problems (e.g. inpainting and segmentation) require
continuous contours. For this purpose, we consider the fast marching
algorithm, in order to find minimal paths in the topological gradient
image. This coupled algorithm quickly provides accurate and connected
contours. We present then two numerical applications, to image inpaint-
ing and segmentation, of this hybrid algorithm.

Keywords: topological gradient, fast marching, contour completion.

1 Introduction

Contour detection is a major issue in image processing. For instance, in classifi-
cation and segmentation, the goal is to split the image into several parts. This
problem is strongly related to the detection of the connected contours separating
these parts. It is quite easy to detect edges using local image analysis techniques,
but the detection of continuous contours is more complicated and needs a global
analysis of the image.

Several image processing problems like image inpainting and denoising (or en-
hancement) are classically solved without detecting edges and contours. The goal
of image enhancement is to denoise the image without blurring it. A classical
idea is to identify the edges in order to preserve them, and to smooth the image
outside them. In this particular case, contour completion is not prerequisite, as
the quality of the result is not much related to the completeness of the identi-
fied edges. But for most of the other image processing problems (segmentation,
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inpainting, classification), the detection of connected contours can drastically
simplify the resolution and improve the quality of the results. For instance, the
image segmentation problem is a very good example, as the goal is to split the
image into its characteristic parts. In other words, one has to find connected
contours, which define different subsets of the image.

For solving all these problems, various approaches have been considered in
the literature. By lack of space, we will only give a general quote on the most
commonly used models: the structural approach by region growing, the stochastic
approaches and the variational approaches, which are based on various strategies
like level set formulations, the Mumford-Shah functional, active contours and
geodesic active contours methods or wavelet transforms.

Another approach to define edges as cracks, is based on the topological asymp-
totic analysis [8, 2]. The goal of topological optimization is to look for an optimal
design (i.e. a subset) and its complementary. Finding the optimal subdomain is
equivalent to identifying its characteristic function. At first sight, this problem
is not differentiable. But the topological asymptotic expansion gives the varia-
tion of a cost function j(Ω) when we switch the characteristic function from one
to zero in a small region [9]. More precisely, we consider the perturbation of the
main domain Ω by the insertion of a small crack (or hole) σρ: Ωρ = Ω\σρ, ρ being
the size of the crack. The topological sensitivity theory provides then an asymp-
totic expansion of the considered cost function when the size of the crack tends
to zero. It takes the general form: j(Ωρ)− j(Ω) = f(ρ)g(x)+o(f(ρ)), where f(ρ)
is an explicit positive function going to zero with ρ, and g(x) is the topological
gradient at point x. Then, in order to minimize the criterion (or at least its first
order expansion), one has to insert small cracks at points where the topological
gradient is the most negative. An efficient edge detection technique, based on the
topological gradient, was introduced in [8]. But the identified edges are usually
not connected, and the results can be degraded. This is beyond the scope of this
paper to give a more detailed description, which can be found in [8, 2].

In the inpainting problem, we assume that there is a hidden part of the image,
and our goal is to recover this part from the known part of the image. Here the
interior of the missing part is not empty, it is neither a random set nor a narrow
line, we assume that it is a quite large part of the image. This problem has
been widely studied and some of the most common approaches are: learning
approches (neural networks, radial basis functions, . . . ) [13, 14], minimization
of an energy cost function based on a total variation norm [3], morphological
component analysis methods separating texture and cartoon [7].

We now consider the crack detection technique, within the framework of the
identification of the image edges, either in the hidden part of the image for the
inpainting application, or in the whole image for the segmentation application
[2]. The topological asymptotic analysis provides very quickly the location of the
edges, as they are precisely defined as the most negative points of the topological
gradient. The main issue of such a technique is the need for connected contours.
This can easily be understood as the hidden part of the image is filled using the
Laplace operator in each subdomain of the missing zone, and a discontinuous
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contour would lead to some blurred reconstruction. Up to now, one had to thresh-
old the topological gradient with a not too small value, in order to identify con-
nected contours, but this leads to thick identified edges, and also to consider
more noisy points as potential edges. In order to overcome this limitation, we
consider a minimal path technique for connecting the edges.

Minimal paths have been first introduced for finding the global minimum of
active contour models, using the fast marching technique [4]. They have then
been used to find contours or tubular structures and also for perceptual grouping
using a path or a set of paths minimizing a functional [5, 15, 6, 12, 10]. In our case,
the energy to be minimized will be proportional to the topological gradient. As
the topological gradient takes its minimal values on the edges of the image, the
idea is indeed to find contours for contour completion from the various minima
and small values of the topological gradient.

For perceptual grouping, a set of keypoints is considered as starting points and
a set of minimal paths connecting some pairs of these keypoints is considered as
a contour completion. This approach is extremely satisfactory in 2D problems,
with quite few key points. It is also extremely fast. In 3D images, minimal paths
find tubular structures, but in order to identify minimal surfaces, this approach
is much more difficult to consider. It was dealt in the case of a surface connecting
two curves in [1]. We only consider here the 2D case.

The application of the minimal path technique to the topological gradient al-
lows us to obtain an automatic identification of the main (missing or not) edges
of the image. These edges will be continuous, by construction, and will allow
us to simply apply the Laplace operator to fill the image for inpainting appli-
cations, or will directly provide the segmented image, with very good results.
Another advantage of this technique is to be very fast, as it does not degrade
the O(n. log(n)) complexity of the topological gradient based algorithm intro-
duced in [2]. We also refer to these citations for the inpainting and segmentation
algorithms by topological asymptotic expansion, and for a detailed presenta-
tion of the topological gradient. We assume here that the topological gradient is
available.

In section 2, we propose an algorithm based on the minimal path and fast
marching techniques in order to identify the valley lines of the topological gra-
dient, which correspond to the main edges of the image. Then, we report the
results of several numerical experiments in section 3. We also compare this hy-
brid scheme with the fast marching algorithm applied to the standard gradient.
Two particular image processing problems are considered: segmentation and in-
painting. Finally, some conclusions are given in section 4.

2 A 2D Algorithm Based on the Minimal Paths and Fast
Marching Methods

2.1 Minimal Paths

In this section, we describe the standard minimal path technique, adapted to
our needs. We refer to [4] for more details about the minimal paths method.
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In the following, let Ω be the considered image domain. We assume that Ω
is a regular subset of R2. In order to compute some minimal paths, we need to
define a potential function, measuring in some sense for any point of Ω the cost
for a path to contain this point. As we want to identify paths in the topological
gradient image, and considering that this potential function must be positive,
we will define a potential function as follows:

P (x) = g(x)−min
y∈Ω

{g(y)}, ∀x ∈ Ω, (1)

where g is the topological gradient, defined in all the domain Ω. We can see that
the points where the topological gradient g reaches its minimal values are quite
costless. We denote by C(s) a path, or curve, in the image, where s represents
the arclength. We now define a functional, measuring the cost of such a path:

J(C) =
∫

C

(P (C(s)) + α) ds, (2)

where α is a positive real coefficient that represents regularization. In our ap-
plications, α is usually very small, as the goal is to connect the most negative
parts of the topological gradient, whatever the Euclidean distance is.

We now consider a key point x0 ∈ Ω of the image, and x will represent any
point of the image. The energy J(C) of a given path C can be seen as a distance
between the two endings of C, weighted by the potential function. The goal is
to find the minimal energy integrated along the path C. We can now define the
weighted distance between key point x0 and point x by

D(x;x0) = inf
C∈A(x,x0)

J(C) = inf
C∈A(x,x0)

∫
C

(P (C(s)) + α) ds, (3)

where A(x, x0) is the set of all paths going from point x0 to point x in the image.
The distance D(x;x0) introduced in equation (3) is then simply the instant t

at which the front, initialized at key point x0, reaches point x. An efficient way
to compute this distance function is the fast marching algorithm, and is justified
by the fact that the distance satisfies the following Eikonal equation

‖∇xD(x;x0)‖ = P (x) + α, (4)

with the initialization D(x0;x0) = 0. We refer to [4, 11, 1, 15, 10, 12] for more
details about the fast marching technique and the justification of equation (4).
If n is the size of the image, the complexity of this fast marching method is
bounded by O(n. log(n)), which is also the complexity of the topological gradient
algorithm.

2.2 Multiple Minimal Paths

The main issue is now to extend this minimal path technique to more than one
keypoint, in order to connect several points. This is exactly what we need, in
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order to connect the identified edges by the topological gradient, as we have many
identified keypoints (for example all negative local minima of the topological
gradient) that we want to connect. As explained in [5], the first step of a multiple
minimal path algorithm is to reduce the set of keypoints, for computational
reasons. Moreover, the selected keypoints should not be too close one to each
other. One usually chooses a total number N of keypoints, and the first one.
Then the N − 1 other keypoints can be chosen for instance as described in [5].

The next step consists of connecting these N points. One has to compute
the distance function from each of these key points, and the common minimal
paths algorithms provide then the Voronöı diagram of the distance and the
corresponding saddle points (minimal distance along the edges of the diagram,
maximal distance from the keypoints). The Voronöı diagram defines a partition
of the image in as many subsets as the number of keypoints. Each subset is
defined by the set of points that are closer to the corresponding keypoint than
to all others. The saddle points minimize the distance function on the edges of
the diagram: minimal distance on the edge, maximal distance to the keypoints.
It is useful to compute these saddle points to save computation time since it
reduces the domain of the image where the fast marching computes or updates
the weighted distance map..

Finally, the idea is to consider the saddle-points as initial conditions for min-
imizing the distance function. For each saddle-point as an initial point, a min-
imization is performed towards each of the two corresponding keypoints (recall
that the saddle-points are located at the interface between two subsets of the
Voronöı diagram). Each minimization produces a path between the saddle-point
(initial condition) and a keypoint (local minimum of the distance function). This
step is usually called back-propagation, as it consists of a gradient descent from
the saddle-point, back to the linked keypoints. The back-propagation step is
straightforward as there is no local minimum of the distance function, except
the keypoints. The union of all these paths gives a continuous path, connecting
the keypoints together.

The interesting part of the approach introduced in [5] is that each keypoint
should not be connected to all the others, but only to at most two others, as
we are looking for a set of closed connected path. Thus, the keypoints have
to be ordered automatically in a way such that they are only connected to
the other keypoints that are closest to them in the energy sense [5]. For this
reason, we sort all the saddle-points from smaller to larger distance, and we
first try to connect the pairs of keypoints corresponding to the saddle-points of
smallest distance. These keypoints are indeed more likely to be connected than
distant keypoints, corresponding to saddle-points of large potential. Once the
close keypoints are connected, we repeat the process with the new closest pairs
of keypoints, provided each point remains connected to at most two other ones.
At the end of the process, all the keypoints are connected to at most two other
keypoints, and the union of all minimal paths between the keypoints represents
one (or several) continuous contour of the image. An interesting feature of this
method is that the key points are by construction widely distributed around.
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If all the selected keypoints are on the same contour of the image, we are
almost sure that at the end, they will all be connected together and we will
retrieve the corresponding contour, as the potential function (related to the
topological gradient) is very low on this contour. If, on the contrary, one keypoint
is not part of the contour, the large values of the topological gradient, and hence
of the potential function, will isolate this keypoint from the other ones, and it
will not disturb the contour completion process.

2.3 Main Algorithm

The hybrid algorithm we propose is then the following:

Fast marching algorithm applied to the topological gradient:
• Compute the topological gradient of the image.
• Set N the number of keypoints and choose the N keypoints: the main one

will be for example the global minimum of the topological gradient, the other
ones being the most negative local minima of the topological gradient.

• Compute the distance function (3) with all these keypoints, and the corre-
sponding Voronöı diagram.

• Compute the set of saddle-points: on each edge of the Voronöı diagram,
determine the point of minimal distance.

• Sort all these points of minimal distance, from smaller to larger distance.
• For each of these saddle-points, from smaller to larger distance, check if it

will not be used to connect two keypoints, one of which is already connected
to two other keypoints.

• If this is not the case, perform the back-propagation from this point: use
this saddle-point as an initialization for a descent type algorithm in order to
connect the two corresponding keypoints.

It is straightforward to see that this algorithm converges, and that at con-
vergence, all the keypoints are connected to at most two other keypoints. This
provides one or several continuous contours, containing the keypoints. As the
first keypoint is usually the global minimum of the topological gradient, it is
on one of the main edges of the image. Consequently, using this algorithm, we
can identify this edge. Then, it is possible to restart the algorithm, using other
keypoints that are not on this identified edge, by initializing for instance the first
keypoint as the minimum of the topological gradient outside the neighborhood
of this edge.

3 Numerical Experiments

3.1 Numerical Results for 2D Segmentation

We first consider a two dimensional grey level image, represented in figure 1 on the
left. The opposite of the Euclidian norm of its standard gradient is represented on
the right. Note that we represent its opposite in order to have comparable images
with the topological gradient, which has negative values (see below).
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Fig. 1. Top: Original image (left); L2 norm of its (standard) gradient (right). Bottom:
Topological gradient (left); edges by thresholding the topological gradient (right).

Fig. 2. Admissible set of points in blue, and 3 keypoints automatically selected in
black (left); distance function (middle) computed from these 3 keypoints with the fast
marching algorithm and identified minimal paths between the keypoints. Correspond-
ing Voronöı diagram, with the 3 keypoints and saddle points ; (right).

The topological gradient is represented on the bottom part of figure 1. As
it quantifies in a global way whether a pixel is part of an edge or not, it is
much less sensitive to noise and small variations of the image than the standard
gradient. For instance, the topological gradient takes much larger absolute values
on the edges than outside, contrary to the standard gradient. In the segmentation
algorithm presented in [2], the idea until now was to threshold the topological
gradient in order to define the edge set. Such a threshold is represented in figure 1
on the right side. One can see that, in order to obtain at least the main connected
edge, the threshold coefficient has been set to a low value, leading to add many
unwanted points to the edge set, but also to thick edges. And even in this case,
the main contour is not totally continuous. Then, the idea is to apply the variant
of the fast marching algorithm we proposed in section 2.3.
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Using an automatic thresholding for identifying the most negative values of
the topological gradient, figure 2 shows on the left the set of points (or admissible
keypoints, in blue), in which we will choose the keypoints for the minimal path
algorithm. The first keypoint is set to the minimum of the topological gradient.
Then, we have set the number of keypoints to N = 3. From the first keypoint,
we start the minimal path algorithm, and we choose the second keypoint as
being the point (in the admissible set) maximizing the weighted distance to the
first keypoint. Then, we start again the minimal path algorithm from these two
points, and we set the third keypoint in a similar way. These three keypoints are
represented by black points in the left side of figure 2. Note that the keypoints can
also be (manually) provided by the user, for instance with the aim of identifying
a specific edge of the image.

From these keypoints, we run the minimal path algorithm, in order to compute
the distance map. Figure 2 shows on the middle this distance function. One
can clearly see that the distance does not correspond to the Euclidean metric
in the plane, as the distance remains very small on the common edge of the
3 keypoints, whereas it takes much larger values outside. The corresponding
Voronöı diagram is represented in figure 2 on the right. The three keypoints are
still represented by black points. Each color represents the subset Ωi of points
that are closer to keypoint i than to the others. For any i �= j, we consider
the interface Γij = Ωi ∩ Ωj between two subsets of the Voronöı diagram. Γij

represents then the set of points equidistant from keypoints i and j. We now
minimize the distance function on Γij in order to find a saddle-point: same
distance to keypoints i and j, minimal distance on Γij . These saddle points are
represented by blue points on the right side of figure 2.

From these saddle points, the idea is finally to perform a descent-type algo-
rithm in order to minimize the distance function from the saddle points to the
keypoints. We consider a saddle-point on an edge Γij as an initial condition for
two minimizations of the distance function, one towards each of the correspond-
ing keypoints (i and j). Each of these two minimizations provides a continuous
path from the saddle-point to one of the two keypoints. The union of these two
paths connects the two keypoints. This process is done for all pairs of consecutive
keypoints.

The final set of paths is represented in green on the distance function in figure
2 (middle). The three keypoints are also represented (in white). These paths
correspond to the contour of the original image that contains the 3 keypoints.
By applying again this algorithm, with other keypoints (selected outside the first
identified contours), it is possible to detect other contours of the image.

Finally, we illustrate the fact that the topological gradient provides better in-
formation about the edges of the image than the standard gradient, as previously
observed (see figure 1). Figure 3 shows the original image where we have manu-
ally selected 3 keypoints in blue on an edge of the image. From these keypoints,
we have run the fast marching algorithm applied to both the standard gradient
and the topological gradient (hybrid scheme) and the identified paths are then
represented. The topological gradient clearly provides the best identification of
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Fig. 3. Original image with 3 selected keypoints (left); Contours identified by the fast
marching algorithm applied to the standard gradient (middle) and topological gradient
(right)

the edge. This can easily be explained by the bad shape of the standard gradient
in this region (see figure 1). On the contrary, the topological gradient is less
sensitive to small local variations, and the edge is more visible in figure 1.

3.2 Numerical Results for a New Way of 2D Inpainting

We now consider another application of this technique to image inpainting and
improve the results presented in [2]. The idea of the topological gradient algo-
rithm is to identify the missing edges in the occluded part of the image, and then
to reconstruct the image from the solution of a Poisson problem with Neumann
boundary conditions (see references in [2]). In this application also, it is crucial
to have connected contours, otherwise the reconstruction with the Laplacian will
not be satisfactory. Figure 4 shows an example of image, in which we added a
mask on a quite large part of the image (� 800 pixels). The goal of inpainting is
to reconstruct as precisely as possible the original image from the occluded im-
age. We also want the inpainted image to have sharp (unblurred) edges. Figure
4 shows the corresponding topological gradient, provided by the inpainting algo-
rithm (see [2] for more details about this algorithm). In this case, the topological
gradient gives some information about the most probable location of the missing
edges. In [2], the idea is then to threshold the topological gradient, and define
the edge set of the occluded zone as being the set of points below the threshold.
The main issue is that the identified missing edges must be connected in order
to avoid blurry effects (due to the Laplacian) in the reconstruction. Then, the
threshold is sometimes set manually in order to have connected contours. In our
example, the identified edge set is represented by white points in figure 4.

Figure 4 shows the corresponding inpainted image. One can see that the re-
construction is not very good, particularly in the top part. This is mainly due
to the fact that the identified edges are either connected but thick with a lot of
wrong identifications (if the threshold is too small) or discontinuous (otherwise).

The idea of our method is to apply the fast marching algorithm on the topo-
logical gradient obtained during the inpainting process, in order to identify con-
nected contours in the hidden part of the image.
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Fig. 4. Top: Occluded image (by a white rectangle) (left); zoom of the occluded zone
and topological gradient (right); Bottom: Inpainted image using the edge set from the
topological gradient and zoom of the occluded zone, and edge set (right)

After thresholding the topological gradient, several points (identified by blue
circles) have been identified and define the admissible set of keypoints, repre-
sented in figure 5-left. We choose then the most negative point of the topological
gradient as the first keypoint, and then the further admissible point as the sec-
ond one. The keypoints are represented by a large black point on the same
image. They are located on the edge of the domain, as the inpainting topological
gradient always takes its minimal values there.

Then the minimal path algorithm is run, and it provides a path between the
keypoints, represented in green in figure 5-right. We can see that the path follows
very well the valley line of the topological gradient, from one side to the other. By
choosing 3 keypoints instead of 2, there will be another keypoint on the bottom
edge, near the first one, and it will simply add a small contour located all along
on the edge of the domain, and consequently there is absolutely no impact on
the reconstruction of the hidden part of the image.

Figure 5 shows on the right the same identified path represented on the oc-
cluded image. This allows one to see that the path clearly gives a good ap-
proximation of the missing edges, and also that the topological gradient is very
powerful for this identification problem. The corresponding identified edge set is
represented in figure 6-left. This image should be compared with the thresholded
edge set of figure 4-right. And we can conclude that the minimal path algorithm
is an excellent tool for extracting the valley lines of the topological gradient.

Finally, using this minimal path as the set of missing edges in the occluded
zone, the inpainting topological gradient algorithm produces a much better re-
constructed image, shown in figure 6. The quality of the image is very good, as
the missing edges used for the reconstruction are connected, and the Laplace
operator will not produce any blurring effect due to a discontinuous contour.
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Fig. 5. Admissible set of keypoints (left); selected keypoints on the topological gra-
dient and minimal path between the keypoints represented on the occluded image as
corresponding identified missing edge (right)

Fig. 6. Inpainted image using the fast marching algorithm for closing the contours
identified by the topological gradient in the hidden part of the image, and corresponding
zoom

This example confirms that the quality of all topological gradient applications
in image processing can be improved, by replacing a thresholding technique by
a minimal path algorithm.

4 Conclusions and Perspectives

We have introduced a hybrid scheme, based on one side on the topological gradi-
ent for edge detection, and on the other side on the fast marching and minimal
paths methods for contour completion. These approaches allow us to extract
connected contours in 2D images, and to solve the main issue of all topological
gradient based algorithms for image processing problems (discontinuity of the
edges). Moreover, the minimal path algorithm does not degrade the complexity
of the topological asymptotic analysis.

We have considered two specific applications in image processing: segmenta-
tion and inpainting. In the first one (segmentation), we showed that the topolog-
ical gradient is more efficient than the standard gradient for edge detection, and
the hybrid scheme provides better results than the fast marching method applied
to the standard gradient of the image. In the second application (inpainting), we
showed that the hybrid scheme particularly improves the quality of the inpainted
image, as the contour completion ensures a non-blurred inpainted image, and as
it also helps removing the manual thresholding of the topological gradient.
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An interesting and natural perspective is to apply this hybrid scheme to 3D
images and movies. The topological gradient can very easily be extended to 3D
images as well as the minimal path technique.
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Abstract. Most segmentation methods are based on a relatively simple
score, designed to lend itself to relatively efficient optimization. We take
the opposite approach and suggest more complex segmentation scores
that are based on a mixture of on-line and off-line learning processes and
rely on rich descriptors. The score is evaluated by a segmentation process
which uses exploration-exploitation to search for good segments in vari-
ous scales and shapes. We test our algorithm in a foreground-background
segmentation task, given a minimal prior which is just a single seed point
inside the object of interest. Results on two image databases are pre-
sented and compared with earlier approaches.

1 Introduction

Most recent segmentation algorithms are based on optimizing a quality func-
tion (a score), which depends on different criteria. Optimizing nontrivial quality
measures over a large set of possible segmentations is not an easy task. There-
fore, the quality measures designed in this context are compromised for the sake
of an elegant and effective optimization process, and while they are intuitively
plausible, they are often simplistic. In the spectral approaches, for example, the
optimal solution is elegantly specified by a single (or few) eigenvectors, but the
quality measure is the simple (normalized) sum of pairwise similarities [1].

This paper proposes the opposite approach: we use a learning based score
which relies on a rich characterization describing the segment and the back-
ground. For example, we use the distribution of superpixels scores inside and
outside the segment as 10 features. This gives a more detailed description than
a single scalar representing the distance between these distributions. We found
that the richer description yield better results.

We propose two (alternative) scores: One, denoted direct, generates the score
directly from a discriminative classifier response, and another, denoted indirect,
generates the score from several such responses. For both scores, the richer de-
scription together with training on realistic segment candidates leads to a reliable
and accurate segment evaluation.

To test the score utility we construct a simple segmentation algorithm and
test it on the task of weakly supervised segmentation: the algorithm gets as
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c© Springer-Verlag Berlin Heidelberg 2012
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input an image and a point inside the desired object. Using a mixed exploration-
exploitation approach, it searches for the best segment in the image that contains
this point.

The proposed approach is related to learning edge detection scores (e.g., [2,3]),
but is closer to the the work of Ren and Malik [4], who also train a classifier
to distinguish between good and bad image segmentations. The proposed ap-
proach differs from their work in several important issues: a. a much richer set
of characteristics, derived (partially) from on-line training, b. an indirect score
shown to performs better than direct scoring, c. a training process which uses
near misses (in contrast to the strongly erroneous segmentation used in [4]).

While the focus of this paper is on the segmentation score, the search algo-
rithm, used to test the score, gives an iterative segmentation algorithm. This part
of the paper is related, of course, to earlier iterative segmentation approaches
which were based either on active contours (e.g., [5]), graph cuts (e.g., [6]) or
the composition approach [7]. Unlike these earlier approaches, our algorithm can
recover from local score maxima and uses two different scores, a simple one for
proposing the segmentation and a more complex and reliable one, relying on
online learning and a rich set of descriptor, for evaluating it. Many iterative
segmentation approaches use extensive user interaction to get very accurate seg-
mentation [8,9]. We however, aim to achieve fully automatic segmentation. The
minimal information provided is used only to identify the desired segment. See
section 5 for a further discussion of previous work.

The main contributions of this paper are therefore:

1. A new segmentation score, based on discriminative offline trained classifier.
We show that this score performs better than simpler measures.

2. Feature generation using an online learning process capable of adapting to
the features that discriminate the segment from those outside it.

3. A mixed exploration-exploitation search procedure which, together with the
score, forms a new segmentation algorithm.

We describe the score in section 2 and the search procedure which relies on it in
section 3. Experiments and discussion follow in sections 4 and 5.

2 Segment Score

We propose to estimate the quality of a segment using a classifier based approach.
Its advantage over intuitively specified scores is that we may use a rich set
of characteristics, which, as we found, indeed improves the segmentation score
accuracy. The learning process provides a systematic method for combining these
features. The input to the off-line training process is a set of images along with
manually marked ground truth segments. Additional segments are generated
during the training process and used with the ground truth segments to generate
positive and negative examples for training the classifiers. In general, we consider
segment hypothesis hi to be better than segment hypothesis hj if hi better
overlaps the ground truth than hj . We measure this overlap in terms of F-
measure: (F = 2∗Precision∗Recall

Precision+Recall ).
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We considered two (alternative) variations for generating a score using classifiers:
Direct scoring independently estimates the score of every segment hypothesis.
Indirect scoring estimates the score of each segment hypothesis by comparing
it with other available hypotheses.

Both scores rely on classifiers which are trained off-line and use diverse set
of features: the boundary size and the shape, the type of junctions along the
boundary, and so forth. We augment this characterizations with features, gen-
erated by a classifier, trained on-line to discriminate between the image parts
inside and outside the segment. This online learning replaces the commonly used
distance between distributions. We next describe the score and its components.

We would like to emphasize that we use classifiers in different parts of the
score estimation procedure. We use offline trained classifiers for estimating the
segment score (sections 2.2, 2.3). We also use online\offline trained classifiers to
generate features (section 2.1).

2.1 Feature Generation

Feature Generation Using a Discriminative Online Classifier. In a good
segmentation the region inside the segment tends to be more homogeneous than
the full image and different from the region outside the segment. This intuitive
observation is often quantified by demanding a low variance within the segment
[5], or a large distance between the distributions inside and outside it [8]. The
first method is clearly too simple for realistic heterogeneous objects. The second
approach is better but requires the construction of the two distributions, which
in turn either requires many samples or uses restrictive parametric assumptions.

We propose, instead, to quantify the difference between the inside and outside
regions of the segment using a classifier, trained online, on examples from these
regions. We start by over-segmenting the image and describing every superpixel
by a vector of features quantifying its size, shape, color, and texture. Let SP =
{spi} be the set of superpixels in the image. The objects of classification are
adjacent pairs of such superpixels, which gave better discrimination than single
superpixels. Let SPP = {sppij = (spi, spj)|spi is adjacent to spj} be the set
of adjacent superpixel pairs. Every superpixel pair in SPP is characterized by a
feature vector composed of the feature vectors of its component superpixels, of
the common boundary length and of the relative position.

The online learning is done in the context of a particular segment hypothesis.
Superpixels pairs for which both superpixels are inside (outside) the segment
hypothesis are used as positive (negative) examples for training the classifier. A
gentle boost classifier trained on SPP using cross-validation produces a decision
value φ′(sppij) for every superpixel pair. The score φ(spi) assigned to every
single superpixel is the average of the decision values associated with all super-
pixel pairs in which it participates. Denote this score the SP-score. See Figure 2.
The set of scores assigned to all the superpixels inside and outside the segment
hypothesis is described by two 5-bin histograms, which specify 10 components
in the feature vector describing the hypothesis.
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Fig. 1. Masks (13×13) for creating junction feature vectors. Top: masks for the binary
segment hypothesis image. Bottom: masks for the edge probability image.

This approach has several advantages over the alternatives described above:
First, being based on discriminative learning, it neither makes assumptions re-
garding the features distribution nor requires a large number of examples. There-
fore it matches the limited number of superpixels. Second, it performs feature
selection and ignores features which do not distinguish between inner and outer
superpixels. Third, it characterizes the similarity between the appearance inside
and outside using two histograms of SP-scores. This gives a detailed, informa-
tive, description to the classifier. Finally, the score assigned to every superpixel,
reflects its affinity with the segment and is useful for guiding and accelerating
the segment search process.

Junctions-based features. A junction is a pixel touching at least 3 different
superpixels. The properties of junctions that lie on the hypothesized boundary
tell about the validity of the hypothesis. It is relatively difficult to parameterize
the appearance of junctions. Therefore, we adopt an approximate analysis: Every
junction is described by 14 inner products. The first between 8 masks and a
window in the edge probability map [2]. The others between 6 other masks and a
window in the hypothesis binary representation (1 inside the segment hypothesis
and 0 outside it); See Figure 1. A boosting based classifier is trained offline (using
cross-validation) to distinguish junctions lying on the boundary of true segments
from those which do not. The junction classifier achieved 72.6% accuracy. The
distribution of the junctions score (decision values) was represented by a 5-bin
histogram, which provides 5 features to the segment classifier.

2.2 Directly Estimated Segment Score

The segment score may be specified directly or indirectly. In the direct approach,
a (boosting) segment classifier is used for independently estimating the score of
every segmentation hypothesis. The classifier uses a vector of features describing
the hypothesized segment and the image. The segment classifier’s decision value
is used as the score for the hypothesis.

To train this classifier we use sets of good and bad segments as examples,
from all the relevant images in the database (using cross-validation). The pos-
itive (good) examples are simply manually marked segments. Taking negative
examples as “random segments”, as suggested by [4], would make classification
easy but not reflect the true difficulty of scoring during the search. Therefore, the
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negative examples are generated (automatically) by simulating the hypothesis
search process with a simulated segment score, which is a noisy version of the
F-measure associated with the hypothesis. This way, we get examples similar to
those created by the real search process. To increase the number of positive ex-
amples, we added small variations of the ground truth hypotheses. While these
hypotheses introduce some error to the training set, our tests show that this
technique benefits the overall performance.

2.3 Enhanced, Indirect Estimation of the Segment Score

Alternatively, we may use a classifier that examines a pair of segmentation hy-
potheses hi, hj and decide which one is better. Many such comparisons are then
used to rank all the segmentation hypotheses. Our classifier uses a combined
feature vector (V (hi), V (hj), F (hi, hj)) where V (h) is the feature vector asso-
ciated with h and F (hi, hj) is the overlap between hi and hj. The training is
done over segment pairs from the entire database, where each pair consists of
two segment hypotheses from the same image. One segment is considered better
if its overlap with the ground truth segment is larger (in terms of F-measure).
In the segment evaluation (test) phase, all pairs of all the segments considered
so far by the segment search procedure are compared.

For a pair of segment hypotheses (hi, hj), this classifier outputs the probability
P (F (hi) > F (hj)) Where F (·) is the F-measure of the segment hypothesis and
the ground truth. By assuming independence of these pairwise probabilities, we
may estimate the probability that a segment hi better overlaps the ground truth
segment than all other available segment hypotheses in H:

IndirectScore(hi) = P (F (hi) > max
j �=i

F (hj)) =
∏
j �=i

P (F (hi) > F (hj)) (1)

This choice of the indirect score worked better than other methods we tested: a.
using FAS-Tournament task [10] to search for hypotheses ordering with minimal
number of contradictions and b. ordering hypotheses by the number of wins over
other hypotheses in H.

A major advantage of the pairs classifier is the ease of generating positive
and negative examples for the training process. In fact, every pair of segment
examples which differ in their F-measure provides a positive and a negative
example. We found that both direct and indirect scores lead to good results, but
that the latter is more accurate and more stable.

3 Segment Search

The algorithm uses the score described above to search for the best segment
which contains the input seed. The search process maintains a collection of seg-
ment hypothesesH = {h1, h2, . . . , h‖H‖}, and uses them to suggest new hypothe-
ses to be tested. The hypothesis collection is initialized with a fixed number (12)
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Fig. 2. Examples of segment hypotheses (first row) and their corresponding online
superpixel scores (second row). Columns:1,2,4,5 initial hypotheses, Columns:3,6: Final
hypotheses reached by the algorithm.

of initial segment hypotheses, which are disks and rectangles of various scales;
see Figure 2 for examples. Every search step chooses one “base hypothesis” from
the collection H and generates a few new related hypotheses. The scores of the
new hypotheses are evaluated and these hypotheses are added to H.

3.1 Selecting a Base Hypothesis

The base hypothesis is selected so that it is likely to lead to a good new related
hypothesis. The criterion is based on an exploration-exploitation mixture.

Exploitation component: The new hypothesis h is close to the base hy-
pothesis hi = base(h) and is likely to be good if the score of the base
segment hi itself is good. Moreover, h is likely to be better than hi if
score(hi) > score(base(hi)). A simple score summing these two intuitive
considerations is a(hi) = score(hi) + [score(hi) − score(base(hi))] Denote
the relative exploitation grade EtGrade(hi) as the fraction of hypotheses in
H having an a(·) score lower than hi’s.

Exploration component: Selecting base hypotheses which are not similar
to previously examined segment hypotheses is expected to result in a
wider search. Let the F-measure F (h1, h2) ∈ [0, 1] be the measure of similar-
ity. Then b(hi) = 1−maxhj∈H\{hi} F (hi, hj) is a simple score reflecting the
exploration preference. Denote the relative exploration grade ErGrade(hi)
as the fraction of hypotheses in H having a b(·) score lower
than hi’s.

The final score for choosing the base segment hypothesis is

pref(hi) = αErGrade(hi) + (1− α)EtGrade(hi) (2)

where α is a weight decreasing with iteration count. The hypothesis hi which
maximizes pref(hi) is selected as base hypothesis for the next iteration. This
exploration-exploitation would encourage a wider search in the first search iter-
ations while focusing on the best hypotheses in the last iterations.
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Initialization:

• Compute over-segmentation for the input image.
• Generate several initial segment hypotheses centered at the input seed (disks and

rectangles of different size) and add them to H.

Iterative search for a good segment:

1. Choose a base segment hypothesis h ∈ H using exploration-exploitation strategy.
2. Use h to generate several new segment hypotheses and add them to H.
3. Evaluate the scores of the newly added hypotheses.
4. If using indirect score, re-evaluate the scores of all other hypotheses in H.
5. Repeat steps 1-4 until maximal number of iterations is reached.
6. Output the highest scored segment hypothesis in H.

Fig. 3. Algorithm Summary

3.2 Generating New Hypotheses

To generate a new hypothesis h from base(h), we find a segment minimizing an
energy function E, composed of a data term and a boundary term. The data
term is specified using the online classifier associated with base(h), which speci-
fies a SP-score φ(si) for every superpixel. The distribution of these scores, inside
base(h) and outside it, are approximated by two Gaussians. A posterior prob-
ability P (li|φ(si)) (li ∈ {in, out}) easily follows. The boundary term penalizes
long boundaries without strong edge support.

E = −
∑

i

logP (li|φ(si))− λ
∑
i,j

(li �= lj) logP (Edgesi,sj ). (3)

The first sum is over all superpixels and the second is over adjacent superpixel
pairs. P (Edgesi,sj ) is the edge probability [2], corresponding to the boundary
between si and sj . The hypothesis is found by minimizing the energy E using the
min-cut algorithm [11]. Several (3, in our implementation) new hypotheses are
generated in each iteration, using different λ values. All of them are evaluated
by the classifier based score and inserted into the hypothesis set H. Figure 3
summarizes our algorithm’s main steps.

4 Experiments

4.1 Data and Implementation Details

Data. We used two image databases, GrabCut (50 color images) [6], and Weiz-
mann [12] (100 grayscale images). We used the images for which the ground truth
segmentation contained a single connected component. (All Grabcut images and
89/100 of the Weizmann images).
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Table 1. A superpixel descriptor

# Description

1 Mean brightness.
2* Mean chroma components in

LAB space (*color images)
3 Mean gradient components

and gradient size
2 Superpixel (area, perimeter)
8 Gradient orientations

weighted histogram
18 Gabor filter responses [17]
1 Mean log probability of

the superpixels border [2]

Table 2. Features for the segment classifier

# Description

10 SP-scores distribution for (in,out).
2 Mean SP-scores near boundary SP (in,out).
3 Accuracy of the online classifier:

(inner, outer, mean) SP.
5 Boundary junctions decision value distribution.
5 Boundary probability distribution[2]
1 Mean of (positiveCurvature)2

1 Mean of (negativeCurvature)2

2 Segment area (including, excluding) holes.
divided by image size.

1 Segment area (including holes).
divided by (outerBorderLength)2

Initialization. A seed point is specified by eroding the ground truth segment
(by 5 pixels) and selecting the point in it closest to the center of mass.

Over-Segmentation. We used the watershed over-segmentation algorithm [13].
To avoid very large superpixels which behave like outliers in the learning pro-
cesses, small amplitude smoothed noise was added to the image.

Initial Hypothesis. We used 12 initial hypotheses: 4 disks, 4 horizontal and
4 vertical rectangles, with area, roughly 2,4,8 and 20 percent of the image size.
All initial hypotheses were centered at the seed coordinate; see Figure 2.

Learning. We used the [14] implementation for the gentle-boost learning [15],
with decision trees as weak classifiers. The online classifier uses (5,2) trees (i.e.,
5 decision trees with 2 branches each). Both the segment and segment pair
classifiers used (40,8) trees. The junction classifier used (20,8) trees. We chose
gentle-boost for its robustness to outliers [16], which is important for training the
online classifier using erroneous hypotheses containing mislabeled superpixels.

The Online Classifier. Every superpixel pair is described by a feature vector
containing the features of each superpixel (Table 1), the difference in the super-
pixels’ center of mass, the common border length, and the edge log probability
of this border.

The Segment Classifier. The features used to describe the segment are listed
in Table 2. The segment classifier is trained on an equal number of positive and
negative example segments.

4.2 Score Validity

To test the scores independently of the search, we used a search algorithm that
relies on the simulated score (a noisy version of the F-measure). Of all hypotheses
generated from one image, we chose the best one according to various criteria,
and recorded its true F-measure. See Table 3.
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Table 3. The F-measure of the hypotheses selected by different scores

Algorithm Mean F Median F

Best possible hypothesis 0.96 0.97
Best generated hypothesis 0.94 0.96
Indirect score 0.87 0.92
Direct score 0.86 0.92
Direct Score - Minimal Features + SP scores distribution 0.85 0.91
Direct score - Minimal Features 0.83 0.89

The first row in Table 3 corresponds to the best hypothesis specifiable by the
oversegmentation (and limited by its inaccuracy). The second row corresponds
to the limitation of the search mechanism, due mostly to the inaccuracy of
MinCut when the segment of interest has very thin parts. The best results are
obtained with the indirect score, followed by the direct score; See Figure 4 (a,b),
which also demonstrate the improved stability and monotonic behavior of the
indirect score. We experimented with different types of feature vectors. The last
line corresponds to a minimal feature vector containing the segment size, the
online classifier accuracy, and the boundary log probability. This is roughly the
same information used to specify the MinCut. The segmentation achieved by this
score is not as good as that achieved when the distribution of superpixels scores
is added as 10 more features, which in turn is lower than the score calculated
with the full feature set.

For the indirect score, the segment pair classifier is the main procedure “be-
hind the scenes.” We tested this classifier separately and found a very good cor-
relation between the decision value produced and the difference in F-measures;
see Figure 4 (b,c,d).

4.3 Segmentation Results

The search algorithm (section 3) provides hypotheses and tests them using the
score. A typical search progression is described in Figure 4 (e,f), which shows
the quality of the hypotheses (F-measures) as the search progresses.

Tables 4, 5 compare the segmentation accuracy achieved by the proposed
algorithms, the GrabCut algorithms, [6] (implementation of [18] and optimized
smoothness parameter), [19] and the segmentation-by-composition [7] on the
databases.

The accuracy of our algorithm (Weizmann database) is similar to that of
[7] but is much faster (∼3 minutes in Matlab on a standard PC). Note that
our initialization is automatic. Also note that while our algorithm is initialized
only by a single seed point and [6] is initialized with a full bounding box, our
algorithm is as accurate as [6] over the GrabCut database and better than [6]
over Weizmann’s database. The algorithm of [19] indeed achieves better results,
but requires much more informative and user demanding initialization: it gets
a tightly specified bounding box in which the segment must be close enough to
each side of the box.
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Fig. 4. (a,b): Comparison of direct (a) and indirect (b) scores of hypotheses from a
single image. (c,d): Pair classifier statistics: (c) The decision value of the pair classifier
is highly correlated with the difference in F-measures (the error bars represent the
standard-deviation). (d) A higher absolute value of the pair classifier decision value
implies a higher probability for correct decision. (e,f): The F-measures associated with
the search in two typical images. Note that the exploration continues and may provide
hypotheses with lower scores than that of hypotheses found earlier.

Table 4. Segmentation accuracy (F-measure) on the Weizmann database

Algorithm Initialization Mean F Median F

Direct score single pixel seed 0.83 0.89
Indirect score single pixel seed 0.87 0.92
Indirect score (Min Features) single pixel seed 0.84 0.91
Indirect score (Min Features+Junctions) single pixel seed 0.845 0.91
Indirect score (Min Features+
SP scores distribution) single pixel seed 0.86 0.915
GrabCut [6] bounding box 0.8 0.87
Segmentation By Composition∗ [7] single pixel seed∗∗ 0.87±0.1 -

Table 5. Segmentation accuracy on the GrabCut color image database

Algorithm Initialization Mean Error in the Bounding Box

Indirect score single pixel seed 8.35%
GrabCut [6] bounding box 7.2-8.9%
GrabCut-Pinpoint [19] bounding box 3.7-4.5%
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Fig. 5. Segmentation results (Indirect score): Columns 1,4: Original image. Columns
2,5: initial (automatically set) seed (in green) and segmentation results (in red).
Columns 3,6: The extracted segment (background removed).

Examples of our results are shown Figure 5. Note that while some segmen-
tation tasks seem easy, some involve heterogeneous descriptors in the segment
and/or outside it. Some of the inaccuracies may be attributed to true segmen-
tation ambiguity while others are probably caused by over-fitting of the online
classifier or inaccuracy in the initial over-segmentation process.

5 Discussion

This paper proposed a discriminative classifier approach for evaluating image
segmentations. Particular insights from this work are:

1. The simple scores used for segmentation hypotheses generation are not the
best for their evaluation.

2. Using a rich set of segment descriptors for evaluating the segment quality is
practical (when using classification tools) and provides improved, state-of-
the-art segment evaluation.
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3. Indirect scoring, based on segment comparison, leads to better evaluation
results and to better segmentations. Interestingly, humans find it easier to
answer the question “which segment is better?” than to answer the question
“how good is this segment?”.

It is instructive to relate our work to the segmentation by composition ap-
proach [7]. In [7] a pixel gets a high score if it is inside a (preferably large)
region which matches the segment statistics (e.g., can be constructed from other
regions in the segment) and it does not belong to a large region which matches
the background statistics. The criterion applied in our approach is, in principle
similar but is expressed using the online classifier score. Our algorithm is in a
sense simpler than [7] because it does not calculate an explicit construction in
various scales. Yet, being discriminative, it is able to select the relevant features
automatically and achieves comparable results.

We believe that the proposed scores may be used to improve segmentation algo-
rithms. One practical application for these scores is selecting the best segment out
of a group of segment hypotheses produced by different algorithms\parameters.
We are now working on a multiscale extension to this algorithm, and on more ef-
fective search methods.
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Abstract. Framelets have been used successfully in various problems
in image processing, including inpainting, impulse noise removal, super-
resolution image restoration, etc. Segmentation is the process of iden-
tifying object outlines within images. There are quite a few efficient
algorithms for segmentation that depend on the partial differential equa-
tion modeling. In this paper, we apply the framelet-based approach to
identify tube-like structures such as blood vessels in medical images. Our
method iteratively refines a region that encloses the possible boundary
or surface of the vessels. In each iteration, we apply the framelet-based
algorithm to denoise and smooth the possible boundary and sharpen the
region. Numerical experiments of real 2D/3D images demonstrate that
the proposed method is very efficient and outperforms other existing
methods.

1 Introduction

In this paper, we consider the segmentation problem of branching tubular objects
from 2D and 3D images. This kind of problem arises in several application fields,
for example, extracting roads in aerial photography, and anatomical surfaces of
tubular structures like blood vessels in Magnetic Resonance Angiography (MRA)
images. Because of the necessity to obtain as much fine details as possible in real
time, automatic, robust and efficient methods are needed.

There are several vessel segmentation algorithms that are based on deformable
models, see [21] for an extended review. Because the explicit deformable model
representation is usually impractical, level set techniques to evolve a deformable
model have been introduced, and they provide implicit representation of a de-
formable model. However, the level set segmentation approach is computation-
ally more expensive as it needs to cover the entire domain of interest, which
is generally one dimension higher than the original one. Interested readers are
referred to recent literature on the level set segmentation strategy for tubular
structures [18,20,24].

A new model for active contours to detect objects in a given image based
on techniques of curve evolution, Mumford-Shah functional and level sets was

A.M. Bruckstein et al. (Eds.): SSVM 2011, LNCS 6667, pp. 411–422, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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proposed in [10]. A generalization of the active contour without edges model was
proposed in [23] for object detection using logic operations. This logic framework
suffers from the same limits as in the active contour model and is not suitable
for detecting tubular structures.

In [16], a geometric deformable model for the segmentation of tubular-like
structures was proposed. The model is characterized mainly by two components:
the mean curvature flow and the directionality of the tubular structures. The
major advantage of this technique is the ability to segment twisted, convoluted
and occluded structures without user interactions; and it can follow the branch-
ing of different layers, from thinner to larger structures. The dependence on the
grid resolution chosen to solve the discretized partial differential equation (PDE)
model is still an open problem. The authors in [16] have also applied a variant of
the proposed PDE model to the challenging problem of composed segmentation
in [17].

There are some work on texture classification and segmentation using wavelets
or wavelet frames [25,1]. Framelet-based approach is a versatile and effective
tool for many different applications in image processing, see [4,7,8,3]. Recently,
the authors in [13] proposed to combine the framelet-based image restoration
model of [5] and the total variation based segmentation model of [10,9,2] to do
segmentation. In this paper, we also derive a segmentation algorithm that uses
the framelet-based approach. However our method is not based on minimizing
any variational model and hence it is different from the method in [13]. In fact,
our algorithm gradually updates an interval that contains pixel values of possible
boundary pixels. Like the method in [16], our method also has the ability to
segment twisted, convoluted and occluded structures. In addition, our method
is very effective in denoising and can extract more details from the given image.

The rest of the paper is organized as follows. In Section 2, we recall some
basic facts about tight frames and framelet-based algorithms. Our segmentation
algorithm is given in Section 3. Section 4 discusses how to find an interval that
contains pixel values of possible boundary pixels. In Section 5 we test our algo-
rithm on various real 2D and 3D images. Comparisons with other methods will
be also given. Conclusions are given in Section 6.

2 Framelet-Based Algorithm

In this section, we briefly introduce the framelet-based algorithm. For theories
of tight frames and framelets, we refer the readers to [11] for more details. In
order to apply the framelet-based algorithm, one only needs to know the filters
corresponding to the framelets. For the framelets derived from the piecewise
linear B-spline, the corresponding filters are:

h0 =
1
4
[1, 2, 1], h1 =

√
2

4
[1, 0, −1], h2 =

1
4
[−1, 2, −1], (1)

see [22]. The framelet coefficients of any given vector v corresponding to filter
hi can be obtained by convolving hi with v. In matrix terms, we can construct,
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for each filter, its corresponding filter matrix which is just the Toeplitz matrix
with diagonals given by the filter coefficients, e.g. H0 = 1

4 tridiag[1, 2, 1]. Then
the 1D framelet forward transform is given by

A =

⎡⎣H0

H1

H2

⎤⎦ . (2)

To apply the framelet transform onto v is equivalent to computing Av, and Hiv
gives the framelet coefficients corresponding to the filter hi, i = 1, 2, 3.

The d-dimensional framelet system is constructed by tensor products from
the 1D framelets, see [14]. For example, in 2D, there are nine framelets given
by hij ≡ hT

i ⊗ hj for i, j = 1, 2, 3, where hi is given in (1). For any 2D image
f , the framelet coefficients with respect to hij are obtained by convolving hij

with f . In 3D, there are twenty-seven filters and the framelet coefficients can
also be obtained by convolutions. Let A represent the corresponding framelet
forward transform matrix (cf. (2)). In 2D case, A will be a stack of nine block-
Toeplitz-Toeplitz-block matrices, see [4]. In this notation, given any image f , the
matrix-vector product A · vec(f) gives all the framelet coefficients. Here vec(f)
denotes the vector obtained by concatenating the columns of f .

All framelet transforms have a very important property, the “perfect recon-
struction property”: ATA = I, the identity matrix, see [22]. Unlike the wavelets,
in general, AAT �= I. The framelet-based algorithms, as given in [8,4,3], are of
the following generic form:

f (i+ 1
2 ) = U(f (i)), (3)

f (i+1) = AT Tλ(Af (i+ 1
2 )), i = 1, 2, . . . . (4)

Here f (i) is an approximate solution, U is a problem-dependent operator, and
Tλ(·) is the soft-thresholding operator defined as follows. Given vectors v =
[v1, · · · , vn]T and λ = [λ1, · · · , λn]T , Tλ(v) ≡ [tλ1(v1), · · · , tλn(vn)]T , where

tλk
(vk) ≡

{
sgn(vk)(|vk| − λk), if |vk| > λk,
0, if |vk| ≤ λk.

(5)

For how to choose λk, see [15].
Algorithm (4) is usually called the isotropic framelet-based algorithm. This is

because the thresholding operator Tλ is applied on all the framelet coefficients
Af (i+ 1

2 ) in (4). In [7], the anisotropic framelet-based algorithm was proposed.
The main idea is that the filter h1 in (1) is the central-difference apart from a
scalar multiple. Hence the corresponding framelet coefficients are related to the
gradient ∇f of the image f . One should therefore rotate these coefficients along
the tangential and normal direction, and threshold only the components along
the tangential direction, see [26]. For the coefficients corresponding to other
filters, we threshold as in the isotropic framelet-based algorithm. In [7], it was
shown that the anisotropic thresholding scheme can give better restoration than
the isotropic one, and can follow edges more closely. Later in the numerical tests,
we have tried both thresholding schemes, and found that anisotropic thresholding
can give the tubular structures better.
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3 Framelet-Based Algorithm for Segmentation

The technology of MRA imaging is based on detection of signals from flowing
blood and suppression of signals from other static tissues, so that the blood
vessels appear as high intensity regions in the image, see Fig. 1(a). The structures
to be segmented are vessels of variable diameters which are close to each other.
Partial occlusions and intersections make the segmentation very challenging.
Moreover, the real image can be affected by speckle noise. In general in medical
images, speckle noise and weak edges make it difficult to identify the structures
in the image. Fortunately, the MRA images also contain some properties that can
be used to construct our algorithm. From Fig. 1(a), we see that the pixels near
the boundary of the vessels are not exactly of one value, but they are in some
range, whereas the values of the pixels in other parts are far from this range.
Thus the main idea of our algorithm is to approximate this range accurately.
We will obtain the range iteratively by a framelet-based algorithm. The main
steps are as follows. Suppose in the beginning of the ith iteration, we are given
an approximate image f (i), and an approximate range [αi, βi] for αi ≤ βi which
contains the pixel values of all the possible boundary pixels. Then we (i) use
the range to threshold the image into three parts—below, inside, and above the
range; (ii) denoise and smooth the inside part by the framelet-based algorithm to
get a new image f (i+1); and (iii) refine the range to [αi+1, βi+1] by using f (i+1).
We stop when f (i+1) becomes a binary image. In the followings, we elaborate
each of the steps. Without loss of generality, we assume all images have dynamic
range in [0, 1].

Step (i): Thresholding the Image into Three Parts. Using the range
[αi, βi] ⊆ [0, 1], we can separate the image f (i) into three parts—below, inside,
and above the range, see Fig. 1(b). To emphasize the boundary, we threshold
those pixel values that are smaller than αi to 0, those larger than βi to 1, and
those in between, we stretch them between 0 and 1 using a simple linear contrast
stretch, see [19]. More precisely, let Ω be the index set of all the pixels in the
image, f (i)

j be the pixel value of pixel j in image f (i), and

Mi = max{f (i)
j | αi ≤ f

(i)
j ≤ βi, j ∈ Ω},

mi = min{f (i)
j | αi ≤ f

(i)
j ≤ βi, j ∈ Ω}.

Then we define

f
(i+ 1

2 )
j =

⎧⎪⎪⎨⎪⎪⎩
0, if f (i)

j ≤ αi,
f
(i)
j −mi

Mi−mi
, αi ≤ f

(i)
j ≤ βi, for all j ∈ Ω.

1, if βi ≤ f
(i)
j ,

(6)

Fig. 1(c) shows the threshold and stretched image from Fig. 1(b). In the follow-
ing, we write (6) simply as f (i+ 1

2 ) = U(f (i)) (cf. (3)), and we denote

Λ(i) = {j | mi < f
(i)
j < Mi, j ∈ Ω}, (7)
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the index set for pixels with values inside the range (mi,Mi), i.e., the index set
for pixels of f (i+ 1

2 ) with values neither 0 nor 1. Our next step is to denoise and
smooth the image f (i+ 1

2 ) on Λ(i).

(a) (b) (c)

Fig. 1. (a) Given image. (b) Three parts of the given image (green–below, red–in
between, and yellow–above). (c) Threshold and stretched image by (6) (yellow pixels
are with value 0 or 1).

Step (ii): Framelet-Based Iteration. To denoise and smooth the image
f (i+ 1

2 ) on Λ(i), we apply the framelet-based iteration (4) on Λ(i). More pre-

cisely, if j �∈ Λ(i), then we set f (i+1)
j = f

(i+ 1
2 )

j ; otherwise, we use (4) to get

f
(i+1)
j . To write it out clearly, let f (i+ 1

2 ) = vec(f (i+ 1
2 )), and P (i) be the diagonal

matrix where the diagonal entry is 1 if the corresponding index is in Λ(i), and 0
otherwise. Then

f (i+1) ≡ (I − P (i))f (i+ 1
2 ) + P (i)AT Tλ(Af (i+ 1

2 )). (8)

By reordering the entries of the vector f (i+1) into columns, we obtain the image
f (i+1). Note that the effect of (8) is to denoise and smooth the image on Λ(i),
see [4]. Since the pixel values of all pixels outside Λ(i) are either 0 or 1, the
cost of matrix-vector multiplications in (8), such as Af (i+ 1

2 ), can be reduced
significantly by taking advantage of this.

Step (iii): Refining the Range. The process of finding the new range [αi+1,
βi+1] from f (i+1) is very similar to the process of finding the initial interval
[α0, β0] from the given image. We postpone it till the next section. We will see
that [αi+1, βi+1] � [0, 1] for all i ≥ 0. This point guarantees the convergence of
our method, see Theorem 1.

Stopping Criterion. We stop the iteration when all the pixels of f (i+ 1
2 ) are ei-

ther of value 0 or 1, or equivalently when |Λ(i)| = 0. For the binary image f (i+ 1
2 ),

all the pixels with value 1 constitute the tubular structures. In the numerical
tests, we use the matlab command “contour” and “isosurface” respectively
to obtain the boundary of f (i+ 1

2 ) in 2D and 3D respectively.
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4 Initializing and Refining the Range

In this section, we discuss how to find [αi, βi] given f (i). When i = 0, the initial
guess f (0) is chosen to be the given image. Recall that [αi, βi] is an interval
containing the pixel values of the possible boundary pixels. Our idea of finding
it is as follows: (i) find the average μ(i) of the pixel values of the possible boundary
pixels; and (ii) determine a suitable interval [αi, βi] � [0, 1] that contains μ(i).

For i = 0, since we do not have any knowledge of where the boundary will
possibly be, we use the gradient of f (0) to find it. Define the gradient image g
of f (0) as:

gj =

[
d∑

=1

(∂x�
f

(0)
j )2

]1/2

, for all j ∈ Ω,

where ∂x�
is the forward-difference in the x-direction, and d = 2 for 2D and

d = 3 for 3D. Our first approximation of the boundary is composed of those pixels
where gj > ε for a given ε. (In our numerical tests, we choose ε ∈ [10−3, 10−1].)
Thus let Γ = {j | gj > ε, j ∈ Ω}, the index set of those pixels; and let μΓ be the
average of f (0) on Γ , i.e.

μΓ =
1
|Γ |

∑
j∈Γ

f
(0)
j ,

where |Γ | is the cardinality of Γ . Obviously the smaller the ε is, the larger
cardinality of |Γ | will be.

Naturally, those pixels in Γ can be separated into two parts by μΓ : one part
contains the pixels near to the tubulars (yellow part of Fig. 1(b)), and the other
part is near to the background (green part of Fig. 1(b)). More precisely, we define

Γ+ = {j | fj > μΓ , j ∈ Γ} and Γ− = {j | fj < μΓ , j ∈ Γ}.

Let μ+ and μ− be the averages of f (0) on Γ+ and Γ− respectively. Note that μ+

(and respectively μ−) is the average of those possible boundary pixels that are
close to the tubulars (and respectively close to the background). We use them
to compute μ(0), the average of the possible boundary pixels. Define

Λ(−1) = {j | μ− < f
(0)
j < μ+, j ∈ Ω}.

Then
μ(0) =

1
|Λ(−1)|

∑
j∈Λ(−1)

f
(0)
j . (9)

For i ≥ 0, we define μ(i+1) similarly as in (9):

μ(i+1) =
1

|Λ(i)|
∑

j∈Λ(i)

f
(i+1)
j , (10)

where Λ(i) is given by (7) and f (i+1) is given by (8).
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Finally we discuss how to choose the interval [αi, βi] that contains μ(i) for
i ≥ 0. Our idea is first to compute coarse interval [αL

i , β
H
i ] that contains μ(i) by

αL
i =

1

|{j : f (i)
j ≤ μ(i)}|

∑
{j:f

(i)
j ≤μ(i)}

f
(i)
j , βH

i =
1

|{j : f (i)
j ≥ μ(i)}|

∑
{j:f

(i)
j ≥μ(i)}

f
(i)
j ,

where j ∈ Λ(i−1) for i ≥ 1 and j ∈ Ω for i = 0. From the above formulas, we can
see that [αL

i , β
H
i ] will never be [0, 1] if the given image is not a binary image.

(If αL
i = βH

i , then all remaining pixels have the same pixel value. Hence we set
them all to 1 and the image is thus a binary image, and the algorithm stops.)

Next we compute, for all α ∈ [αL
i , β

H
i ] (αL

i �= βH
i ),

c(α) ≡ 1

|{j : f (i)
j ≥ α}|

∑
{j:f

(i)
j ≥α}

f
(i)
j − 1

|{j : f (i)
j ≤ α}|

∑
{j:f

(i)
j ≤α}

f
(i)
j ,

where j ∈ Ω. Let the range of c(α) be [cm, cM ] and � = cM − cm. Then

αi ≡ min{α ∈ [αL
i , β

H
i ] | c(α) = c(μ(i))− γ�}, (11)

βi ≡ max{α ∈ [αL
i , β

H
i ] | c(α) = c(μ(i)) + γ�}. (12)

Here γ ∈ (0, 1/2) is a parameter that controls the length of the interval [αi, βi].
Clearly the larger the interval is, the more pixels are to be considered as possible
boundary pixels. So the smaller the γ is, the faster convergence of our method
will have. In the numerical tests, we choose γ = 1/5. We give the full algorithm
below and show that it always converges to a binary image.

Algorithm: Framelet-based algorithm for segmentation
1. Initialize: set f (0) = f , μ(0) by (9), and [α0, β0] by (11) and (12).
2. Do i = 0, 1, . . . , until stopped

(a) Compute f (i+ 1
2 ) = U(f (i)) by (6).

(b) Stop if f (i+ 1
2 ) is a binary image.

(c) Update f (i+ 1
2 ) to f (i+1) by (8).

(d) Update μ(i+1) by (10), and then [αi+1, βi+1] by (11) and (12).
3. Extract the boundary from the binary image f (i+ 1

2 ).

Theorem 1. Our framelet-based algorithm will converge to a binary image.

Proof. Obviously, we just need to prove that |Λ(i)| = 0 at some finite step i, see
(6) and (7). If the given image f (0) is a binary image, we are done. Without loss of
generality, we assume that f (0) is not a binary image. Given Λ(i−1) defined by (7)
for any i ≥ 1, note that the pixel values of those pixels not in Λ(i−1) will not be
changed by (8), i.e., they will stay at either 0 or 1. Then [αi, βi] will be obtained
by (11) and (12), where [αi, βi] ⊆ [αL

i , β
H
i ] � [0, 1]. Since [mi,Mi] ⊆ [αi, βi],

we have mi �= 0 or Mi �= 1. By (6) and (7), the pixels satisfying f (i) ≤ mi

or f (i) ≥ Mi are set to 0 or 1 respectively. Thus, there will be at least one
pixel in Λ(i−1) with value neither 0 nor 1 that is set to 0 or 1 by (6). Hence
|Λ(i)| < |Λ(i−1)|, where | · | denotes the cardinality of the set. Since |Λ(0)| is
finite, there must exist some i such that |Λ(i)| = 0.
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Finally, let us estimate the computation cost of our method for a given image
with n pixels: (i) the cost of computing each μ(i) and [αi, βi] is O(n), see (9)–(12)
respectively; and (ii) the cost of steps (a) and (c) in the above algorithm is O(n),
see (6) and (8). Hence the cost of our method is O(n) per iteration. We remark
that our algorithm usually converges within a few iterations, see the numerical
results in the next section.

5 Numerical Examples

In this section, we test our proposed framelet-based segmentation method on
three 2D/3D real images. All the data are obtained from [16] and [17]. We
use the piece-wise linear filters given in (1) with only the first level, i.e. no
downsampling. We tried both isotropic and anisotropic thresholding schemes,
see the discussion at the end of Section 2. The thresholding parameters λk used
in (5) are chosen to be λk ≡ 2−1/2 for isotropic thresholding. For anisotropic
thresholding, λk = 0.1×2−1/2 for the components along the tangential direction
and λk = 2−1/2 for other coefficients.

(a) (b) (c) (d) (e)

Fig. 2. Carotid vascular system segmentation. (a) Given image. (b) and (c) Results
by the methods in [10] and [16] respectively. (d) and (e) Results by our method with
isotropic and anisotropic thresholding schemes respectively.

Example 1. The test image is a 182 × 62 MRA image of a carotid vascular
system, see Fig. 2(a). The results by our method using isotropic and anisotropic
thresholding are given by Fig. 2(d) and (e) respectively. With the parameters
γ = 1/5 and ε = 1.6 × 10−2, our method converges in 6 iterations for both
thresholding schemes. The first and second rows of Table 1 give |Λ(i)| at each
iteration, from which, we can see that only very few pixels (comparing with |Ω| =
182 × 62 = 11, 284) need to be classified after 3 iterations. For the purpose of
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 3. Kidney vascular system segmentation. (a) and (b) Results by the methods
in [10] and [16] respectively. (c) and (d) Results by our method with isotropic and
anisotropic thresholding respectively. (e)–(g) and (i)–(k) Zoomed in rectangular parts
of (b) and (c) respectively. (h) and (l) Superimposed boundaries inside the ellipses of
(c) and (d) (red—in (c), green—in (d), and black–intersection of (c) and (d)).

Table 1. Cardinality of Λ(i) at each iteration of the three examples

n = |Ω| |Λ(0)| |Λ(1)| |Λ(2)| |Λ(3)| |Λ(4)| |Λ(5)| |Λ(6)| |Λ(7)| |Λ(8)| |Λ(9)|
Fig. 2(d) 11284 2374 307 83 23 7 1 0 - - -
Fig. 2(e) 11284 2374 233 48 13 5 1 0 - - -
Fig. 3(c) 66049 8314 1834 565 137 29 18 4 0 - -
Fig. 3(d) 66049 8314 1557 406 95 19 5 1 0 - -
Fig. 4(d) 8120601 104329 21333 5460 1430 326 70 9 3 1 0
Fig. 4(e) 8120601 104329 20020 4984 1260 299 72 19 6 0 -

comparison, we also give the results by the methods in [10] and [16] respectively,
see Fig. 2(b) and (c). Clearly, the result of Fig. 2(b) is not satisfactory since the
tubulars obtained are disconnected. By comparing the parts inside the rectangles
in Fig. 2 (c) with those in Fig. 2(d) and (e), we see that our method can extract
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(a) (b) (c)

(d) (e) (f)

Fig. 4. Segmentation of the kidney volume data set. (a) Given CTA image. (b) Result
by the method in [17]. (d) and (e) Results by our method with isotropic and anisotropic
thresholding respectively. (c) and (f) Zoomed in the bottom-left corners of (d) and (e)
respectively.

more details than the method in [16]. Finally, the parts inside the ellipses of
Fig. 2(d) and (e) demonstrate that the anisotropic thresholding keeps the edge
better than isotropic thresholding.

Example 2. The test image is a 257 × 257 MRA image of a kidney vascular
system as shown in Fig. 1(a). This example shows the ability of our method
to reconstruct structures which present small occlusions along the coherence
direction. With the parameters γ = 1/5 and ε = 5×10−3, our method converges
in 7 iterations for both thresholding schemes. The third and fourth rows in
Table 1 give |Λ(i)| at each iteration. The result of Fig. 3(a) by the method in
[10] is not good since it can not connect the small occlusions along the coherence
direction, while this can be done by our method and the method in [16], see Fig.
3(b), (c) and (d). Furthermore, our method is better than the method in [16]
by comparing the rectangular parts of Fig. 3(b) with those in Fig. 3(c) and (d),
since our method can detect smoother edges. More precisely, see Fig. 3(e)–(g)
and (i)–(k), which are the results of zooming in the rectangular parts of Fig.
3(b) and (c) respectively. This also shows that our method is very effective in
denoising. In order to compare Fig. 3(c) with (d) explicitly, we superimpose the
boundaries of them, see Fig. 3(h) and (l). Clearly, the boundary of the tubulars
is tighter and more pixels at the tips are obtained by anisotropic thresholding.
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Example 3. This is a 3D example where we extracted a volumetric data set of
size 201 × 201 × 201 from a 436 × 436 × 540 CTA (Computed Tomographic
Angiography) image of the kidney vasculature system, see Fig. 4(a). With the
parameters γ = 1/5 and ε = 6×10−2, our method converges in 9 and 8 iterations
for isotropic and anisotropic thresholding respectively. The last two rows in Table
1 show |Λ(i)| at each iteration. By comparing our method with the method in
[17], the results show that our method can give many more details, see Fig.
4(b), (d) and (e). The zoomed in bottom-left corners of Fig. 4(d) and (e) clearly
give the difference of the results of our method by isotropic and anisotropic
thresholding, see Fig. 4(c) and (f). We see that more pixels at the tips of the
tubular structures are detected and the tubular structures are connected better
by the anisotropic thresholding than by the isotropic thresholding.

6 Conclusions and Future Work

In this paper, we introduced a new segmentation method based on the framelet-
based approach. The numerical results demonstrate the ability of our method for
segmenting tubular structures. The method can be implemented fast and give
very accurate, smooth boundaries or surfaces. In addition, since the pixel values
of more and more pixels will be set to either 0 or 1 during the iteration, by
taking advantage of this, one can construct a sparse data structure to accelerate
the method. Moreover, one can use different tight frame systems such as those
from contourlets and curvelets [12,6] to better capture the boundary. These are
directions we will explore in the future.
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Weakly Convex Coupling

Continuous Cuts and Shape Priors

Bernhard Schmitzer and Christoph Schnörr

University of Heidelberg

Abstract. We introduce a novel approach to variational image segmen-
tation with shape priors. Key properties are convexity of the joint energy
functional and weak coupling of convex models from different domains
by mapping corresponding solutions to a common space. Specifically,
we combine total variation based continuous cuts for image segmenta-
tion and convex relaxations of Markov Random Field based shape priors
learned from shape databases. A convergent algorithm amenable to large-
scale convex programming is presented. Numerical experiments demon-
strate promising synergistic performance of convex continuous cuts and
convex variational shape priors under image distortions related to noise,
occlusions and clutter.

1 Introduction

1.1 Overview, Related Work

Various continuous variational approaches to image labeling and segmentation
have been presented in the recent literature [4,14,13] based on tight convex re-
laxations of the underlying combinatorial problem. While the relaxation of the
binary two-class case can be shown to compute the global combinatorial optimum
after thresholding [4], the non-binary case of multiple labels [14,13] also returns
high-quality combinatorial solutions in practice, as numerical experiments based
on primal-dual iterations show. Unlike algorithms for fully discrete graph-cut ap-
proaches [2] that may get stuck in a poor local minimum in the nonbinary case,
their continuous convex counterparts do not suffer from such problems. More-
over, a broad range of robust first-order minimization algorithms from sparse
convex programming are available for efficiently solving such large-scale prob-
lems [9,3].

Variational approaches comprise a data term and a regularization term. In
connection with image labeling, the data term is a linear form that does not
impose any restriction on the type of image features to be processed. Concerning
the regularization term, a large class of alternatives to the standard Potts prior
has been suggested in [12], all of which do not compromise convexity of the
variational approach.

While features and regularization terms can be handled quite flexibly within
a convex variational framework, this is not the case for another major clue
to reliable segmentations: shape. Substantial research work has been done on
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variational representations of shape statistics as additional penalty terms, rang-
ing from sampled contours and kernel techniques from machine learning to so-
phisticated manifolds of invariant shape representations [6,18,16]. Analogous
ideas have been applied to embedding functions in connection with level set based
approaches to shape representation and segmentation [5,7,11]. In this connection,
we point out two properties of prior work that motivated the work presented in
this paper:

– shape representations may not conform to the representation of image seg-
mentations (contour spaces vs. regions or set of pixels after discretization);

– shape penalty functionals are nonconvex (except for the less attractive case
of Gaussian shape statistics based on sampled contours);

– nonconvex level set based functionals have been used for image segmentation;
– adding a shape penalty functional compromises convexity of the overall ap-

proach.

1.2 Contribution, Organization

The approach introduced in this paper comprises

(i) separate convex modeling of variational approaches to segmentation and
shape priors, respectively, and

(ii) weak convex coupling of these models in terms of a convex, but possibly
indefinite, quadratic form

‖Ax−Bμ‖2, (1)

that measures similarity of segmentations x and shapes μ, respectively,
mapped to a common space by linear mappings A and B.

As a consequence, our corresponding approach avoids all deficiencies of previous
approaches, from the viewpoint of optimization.

Concerning (i) and segmentation, we use convex models of continuous cuts
as introduced in [4,14,13]. Concerning (i) and shape priors, we apply strength-
ened local polytope convex relaxations of binary Markov Random Fields (MRFs)
[17,8,15] whose structure and parameters are learned offline from a shape database
using large-scale convex optimization in a preprocessing step [10]. Concerning
(ii), we adopt the framework presented in [1] for coupling two proper convex and
lower semicontinuous functionals defined on different spaces.

The main objective of this paper is to introduce the general framework. There-
fore, we make no attempt to present a complete list of fully-fledged model com-
ponents, but rather confine ourselves to demonstrating the key aspect – coupling
of convex models – using preliminary versions of individual models. Specifically,
concerning segmentation, we merely employ binary continuous cuts [4] and de-
liberately do not elaborate the issue of feature extraction, having in mind that, as
discussed in the previous section, any image features computed in a preprocessing
step could be used. We apply two different MRF models as shape priors in order
to indicate the potential of this research direction: a naive MRF directly defined
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on the pixel grid, and a hierarchically defined MRF that compares favourably
from the viewpoint of learning and automatically extracts a part-based proba-
bilistic representation of object shapes taken from different viewpoints. Under
strong noise levels simulating feature imperfections, we numerically demonstrate
promising synergistic performance of convex continuous cuts and convex varia-
tional shape priors.

(a) (b) (c) (d)

Fig. 1. Binary image segmentation: (a) noisy input, (b) only continuous cuts with low
regularization, (c) only continuous cuts with strong regularization, (d) convex coupling
of continuous cuts with low regularization and shape prior

Our approach is general and can be extended in various directions. We indicate
this below as we go along.

2 Variational Models

2.1 Segmentation by Continuous Cuts

We adopt the approach [4] for globally optimal foreground-background separa-
tion by convex optimization.

Let Ω denote the uniform pixel grid of size |Ω| = N corresponding to the
domain [0, 1]2 ⊂ R2, and G ∈ R2N×N a discrete gradient matrix corresponding
to functions x : Ω → C, C = [0, 1]N . Given any similarity values s : Ω → RN

extracted from image data beforehand, that locally indicate fore- or background
in terms of its components si, i = 1, . . . , N , we look for a minimizer xmin ∈ C of
the functional

ETV(x) = αTV(x) + 〈x, s〉, (2)

where α > 0 is a regularization parameter, and the (discretized) total variation
measure as regularizer is given by

TV(x) =
N∑

i=1

‖(Gx)i‖ =
N∑

i=1

(
(Gx)2i,1 + (Gx)2i,2

)1/2

= σD(Gx) = sup
z

{〈Gx, z〉 − δD(z) : z ∈ R2N
}
,

D = {z ∈ R2N : (zi,1)2 + (zi,2)2 ≤ 1, 1 ≤ i ≤ N}.
In [4] it is pointed out how these minimizers are related to finding an optimal

solution to the two-level Mumford-Shah energy functional by thresholding.
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2.2 MRF Based Shape Priors

General Variational Formulation. Shape priors consist of feature vectors y
of binary variables yi, 1 ≤ i ≤M and are defined statistically in terms of a joint
distribution

P (y) =
1

Z(θ)
exp (〈θ, φ(y)〉) (3)

Z(θ) =
∑

y∈{0,1}M

exp (〈θ, φ(y)〉) ,

where plausible choices corresponding to familiar shapes are assigned a higher
probability. The form of φ(y) is given by an associated undirected graph G
with vertices V = {1, . . . ,M} and edges E ⊆ {(i, j) : 1 ≤ i < j ≤ M}. Then
φ(y) = (y1, y2, . . . , yM , . . . , yiyj , . . .), (ij) ∈ E.

This corresponds to a minimally represented binary graphical model [17] with
strictly convex and essentially smooth log-partition function Z(θ), for any choice
of the model parameters θ ∈ R(|V |+|E|). These parameters are learned from shape
databases, as described in Section 3.
The most probable configuration ymax is given as solution to the problem

argmax
y

{〈θ, φ(y)〉 : y ∈ {0, 1}M
}
.

This discrete combinatorial problem can be reformulated as linear problem on
the marginal polytope M(G) of the graph G[17]:

max
y

{〈θ, φ(y)〉 : y ∈ {0, 1}M
}

= sup
μ
{〈θ, μ〉 : μ ∈M(G)} .

As the number of constraints that define M(G) grows exponentially with the
size of the graph, this problem is in general unfeasible. Thus one is forced to
relax the optimization set to the local polytope L(G) and to check carefully
the global optimum of this convex relaxation. Methods have been proposed to
tighten the standard local polytope relaxation by identifying and reintroducing
violated constraints of the original optimization set, see for example [15].

Whatever set of constraints one chooses, they can be written as Ncon affine
inequalities leading to the variational problem formulation

inf
μ

{
EMRF(μ) : Kμ ≤ k, K ∈ RNcon×(|V |+|E|), k ∈ RNcon

}
(4)

with
EMRF(μ) = −〈θ, μ〉.

3 Variational Shape Priors

We describe two specific instances of the general framework (3).
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3.1 Ising Shape Prior

As a baseline, we investigate a direct application of the two dimensional Ising
Model: Every pixel is treated as binary feature, hence M = N in (3).

The set E of edges defining the model is determined by the model parame-
ters θ. Vanishing parameter values indicate missing edges. Parameter values are
determined using an approach proposed by Hoefling and Tibshirani [10]. The
corresponding algorithm maximizes the pseudo-likelihood of a set of training
samples T as a function of the parameter vector θ, constrained by a �1-norm
penalty ρ‖θ‖1. This penalty enforces sparse connectivity of the graph which is
desirable for various reasons: Learning dense graphs tends to overfit the training
data; dense graphs lead to a larger linear problem, and the local polytope relax-
ation tends to become weak. In our simulations about 3% of all possible edges
were actually existent (see Fig. 2a).

In the training data some pixels were either always black or always white. As
they do not contain any correlation information about other pixels they have
been removed from the learning procedure and their unary θ-weight has been
set to ±∞ by hand. The corresponding vertices have no connections to other
vertices.

3.2 Hierarchical Part Based Shape Prior

Besides the “flat” Ising Model discussed above, we also study a simple hierarchi-
cal model that can demonstrate the benefits of articulated object descriptions
and support nonlocal interactions without compromising sparsity. Shapes will
be decomposed into a torso and successive limbs. Limbs may depend on another
and on the torso: E.g. a lower arm is only expected if the upper arm is present
which, in turn, can only be present if the torso is there. Our model learns such
statistical relationships from data and penalizes implausible constellations as
follows.

First the set of training samples is divided into groups of characteristic views,
i.e. viewpoints of the object that yield similar shapes. Then to each group the
following procedure is applied: pixels in the image are combined into families
depending on the sample subsets in which they are active (=1) or not (=0). For
example, usually there will be a “torso” family of pixels that are active in every
sample of a specific view, and a “background” family of pixels that are always
black in that group.

Correspondingly, a hierarchical dependency graph of families is constructed
for every group: family i of pixels is considered dependend on family j if family
j is always active if i is active.

This relation is transitive, and the dependency graph only represents the
transitive reduction of this relation to keep the representation minimal. As to
be expected, in all these graphs the torso-families will be the root vertices.

Using the groups of characteristic views and their dependency graphs a joint
prior-graph with parameter vector θ is constructed in the following way: The
core of the graph is constituted by the torso-families of all characteristic view
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(a) Plot of the adjacency matrix
of the graph G of the Ising prior
learned from a set of training sam-
ples. The nodes corresponding to
pixels of constant value in all train-
ing samples are not shown. Density:
approx. 3%.

(b) Illustration of the graph struc-
ture of the hierarchical part based
prior: The nodes of the fully con-
nected subgraph in the center rep-
resent the different possible torsos.

Fig. 2. Illustrating the two MRF based priors

groups. They are fully connected amongst each other. Then to each torso node
the dependency graph of the associated characteristic view is appended (compare
Fig. 2b). The parameter vector is initialized with θi = 0, 1 ≤ i ≤ M, θij =
0, (ij) ∈ E. Then all pairs of torso nodes are considered: Plausibility dictates
that at most one torso can be present at a time. Thus the simultaneous presence
of two torsos has to be penalized. Therefore all θij where i and j are two different
torso nodes, are set to −p where p is the positive penalty parameter. Then
all dependency graphs of the torso nodes are processed: Whenever a node i is
dependend on a node j then θi will be decreased by p and θij will be increased
by p. Thus the unlikely case where yi is 1 while yj is 0 will be penalized by −p
relative to the other possible combinations.

We are aware that this preliminary version of our learning procedure is some-
what heuristic, but fully data driven and controlled just by a single user param-
eter p.

The grouping into pixel families and the introduction of a partial ordering
relation on the vertices capture some of the most striking features of the sample
data. A learning procedure that maximizes the likelihood would deduce similar
relations. Thus this step is only an approximation where the explicit forming of
families each corresponding to one vertex helps reducing the problem size and
simplifies the graph structure.

The clustering into characteristic views subsequently allows multiple vertices
to be associated with the same pixel. This simplifies differentiating “for what
reason” (i.e. which characteristic view) a pixel is white. Hence, no further edges
between different views are required which drastically reduces the number of
cycles in the graph and thus supports the applied polytope relaxations.
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4 Coupling Convex Models

In this section an approach by Attouch et al.[1] is briefly introduced. We will
subsequently use its potential for combining TV-based segmentation with shape
prior knowledge in a variational framework.

4.1 Variational Approach

The approach [1] is based on the following functional jointly defined on two real
Hilbert spaces U and V :

E(x, μ) = f(x) + g(μ) +
λ

2
Q(x, μ), x ∈ U , μ ∈ V , (5)

where

U ,V : real Hilbert spaces,
f : U → R ∪ {+∞}
g : V → R ∪ {+∞} : closed convex proper functions,

Q : (x, μ) ∈ U × V → R+ : nonnegative, quadratic form.

A minimizing pair of vectors (x, μ) is given by the limit of the series generated
by the following alternating proximal update steps:

xn+1 = argmin
ξ

{
f(ξ) + λ

2Q(ξ, μn) + βf

2 ‖ξ − xn‖2 : ξ ∈ U
}
,

μn+1 = argmin
η

{
g(η) + λ

2Q(xn+1, η) + βg

2 ‖η − μn‖2 : η ∈ V
}
.

(6)

Here λ ≥ 0 is a coupling constant that regulates the strength of the interaction.
βf > 0 and βg > 0 are damping constants that affect the convergence rate of the
algorithm but not convergence itself. Indeed, as we work in finite-dimensional
Euclidean spaces, [1, Thm. 2.1] immediately yields

Theorem 1. The sequence (xn, μn) generated by algorithm (6) converges to a
minimum (x∞, μ∞) of the functional E in (5). Moreover, f(xn) → f(x∞),
g(μn)→ g(μ∞), Q(xn, μn) → Q(x∞, μ∞), ‖xn+1−xn‖ → 0 and ‖μn+1−μn‖ →
0 as n→∞.

We point out that this result is non-trivial because functionals f and g are
required to be convex and closed, but may be non-smooth, as in our applications.
As a consequence, heuristic alternating minimization without complementing
proper proximal point mappings, as is sometimes done in the field of computer
vision, might not yield a minimizing sequence.

From the viewpoint of modeling, the result is appealing as well, because the
quadratic form Q(·, ·) enables to couple and to compare points from “two differ-
ent worlds” in various mathematically sound ways in a common third space.
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4.2 Shape Constrained Cuts

We present a preliminary application of the idea of coupling two convex func-
tionals to the image segmentation problem. We set U = RN ,V = R|V |+|E|, and
investigate the following joint energy:

E(x, μ) = λ1ETV(x) + λ2EMRF(μ) +
λ

2
‖x− Pμ‖2

+δC(x) + sup
ω

{
〈ω,Kμ〉 −

(
δ

R
Ncon
+

(ω) + 〈ω, k〉
)}

, (7)

where P is a linear mapping to be specified. Note that the terms in the second
line constrain solutions x ∈ U , μ ∈ V , to the optimization problem to the convex
sets x ∈ C and {μ : Kμ ≤ k}, respectively.

Comparison to Eq. (5) yields

f(x) = λ1ETV(x) + δC(x) (8)

g(μ) = λ2EMRF(μ) + sup
ω

{
〈ω,Kμ〉 −

(
δ

R
Ncon
+

(ω) + 〈ω, k〉
)}

(9)

Q(x, μ) = ‖x− Pμ‖2 . (10)

It is easy to verify that these choices satisfy the criteria that are required for the
sequence generated by (6) to converge.

In our example we chose the coupling space to which x and μ are mapped to
be identical with the space x lives in. Thus the matrix A in Eq. (1) is the identity
on RN . The matrix P in the coupling term maps the initially abstract feature
vector μ to the pixel space. The coupling then encourages the segmentation
proposal x to be close to the image represented by the features μ under this
map. In our setup μ contains not only rows for unary marginals of variables
yi but also pairwise marginals of yiyj corresponding to edges (ij) ⊂ E. These
pairwise marginals are not considered by the map.

In the Ising-Model prior P takes the marginals of the pixel features yi and
maps them to the appropriate pixel positions i in the image space. It is given by(

I|V |×|V | 0|V |×|E|
)

where In×n denotes the n-dimensional identity matrix and 0m×n a m×n matrix
with all entries being 0.

For the hierarchical part based prior, in each column of P that corresponds
to a unary marginal of a pixel family the entries of the corresponding pixels
are 1. The subspace of pairwise marginals is again ingored. Despite the unusual
generation of the parameter vector θ this model is still part of the family given
by Eq. (3).

5 Experiments and Discussion

5.1 Setup

Training Data. Shape priors are learned from 2D views of 3D object models.
The training samples are views of the model from equidistant angles rotated
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around its vertical axis. We chose a fixed window size that in applications may
cover different region sizes of a given image, corresponding to different levels of
a multiscale representation of the image.

In the first scenario the training data consist of 25×25 pixel views of a bunny
(see Fig. 3). To demonstrate the generality of our approach a second scenario
with 50× 50 pixel views of a horse was also studied.

Fig. 3. Some of the training samples of scenario 1: 25 × 25 pixel b/w views of a 3D-
model of a bunny

In scenario 1 the Ising prior was trained with 50 equidistant views, the hier-
archical part based model with 100 equidistant views.

Input Data. As input data new views with random angles between the training
views were taken and distorted to simulate noise, occlusion and clutter.

Gaussian noise of mean μnoise = 0 and some standard deviation σnoise followed
by projecting each pixel value onto the interval [0, 1] simulates feature imperfec-
tions. Occlusion by another object in the foreground was simulated by drawing
black circles on the input image. Clutter could be generated by other objects
in the image with texture similar to the object in question and was simulated
by drawing white circles on the input image. In the given setup the similarity
vector s was obtained by s = (1/2)N − u where (1/2)N denotes the vector of
length N with each entry being 1/2 and u : Ω → C is the distorted input image.

Parameter Values. Unless otherwise noted in the simulations the following pa-
rameter settings have been used: TV regularization parameter α = 0.5 (eqn. (2)),
part based MRF implausibility penalty p = 100 (cf. Section 3.2), coupling con-
stants λ1 = λ2 = 1, λ = 10 (joint energy (7)), proximal damping parameters
βf = βg = 0.01 (algorithm (6)). By default the noise level was set to σnoise = 0.75.

The part based MRF penalty p is chosen to be on a higher energy scale than
the continuous cuts segmentation to favour segmentations of familiar shapes.
The coupling parameter λ was set to a high value to make the difference of x
and Pμ negligible. In plots that illustrate segmentation results only x is shown
but Pμ would not look much different.

5.2 Results

Figure 4 shows (a) several input images with distortions and each time the
segmentations given by (b) the uncoupled continuous cuts approach, (c) the
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(a) (b) (c) (d) (e)

Fig. 4. Modelling different kinds of distortion: Row 1: noise σnoise = 0.50, row 2: clutter,
row 3: occlusion. Segmentation results: (a) input, (b) only continuous cuts, (c) Ising
prior, (d) part based prior, (e) ground truth.

(a) (b) (c) (d)

Fig. 5. Segmentation results of the coupled part based prior for various coupling
strengths λ: (a) ground truth and noise-distorted input. The upper row shows x, the
lower row Pμ: (b) λ = 0.1, (c) λ = 1, (d) λ = 10.

Fig. 6. Four pairs of noisy input, and part based prior supported segmentations of
different views. All views were processed with the same prior.

coupled Ising prior and (d) the coupled simple part based prior. Furthermore,
distortions due to noise, occlusion and clutter was examined, as described in the
previous section.
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(a) (b) (c) (d)

Fig. 7. Binary image segmentation of a horse: (a) noisy input, (b) only continuous cuts
with high scale resolution α = 0.1, (c) only continuous cuts with low scale resolution
α = 0.3, (d) coupled shape prior with high scale resolution α = 0.1. Without prior a
high resolution (b) can not filter out noise, with low resolution (c) details (legs) are
lost. The prior can help to distinguish noise and details.

Clearly the coupling to a shape prior enhances the segmentation results: In
row 1 the ears of the bunny are lost to regular segmentation while they are still
restored by the coupled models. Similarly dealing with clutter and occlusion
works much better with prior.

In Figure 5 it is shown how increased coupling strength forces the variables
x and μ to correspond to the same image. In our simulations it turned out that
most of the times a large coupling constant yields best results.

6 Conclusions and Further Work

We introduced a novel approach to variational image segmentation with shape
priors. Key properties are convexity of the joint energy functional and weak
coupling of convex models from different domains by mapping corresponding so-
lutions to a common space. Specifically, we combined state-of-the-art variational
approaches for TV-based image segmentation and for MRF-based learning of im-
age classes from examples. A convergent algorithm amenable to large-scale con-
vex programming was presented. Numerical experiments demonstrated promis-
ing synergistic performance of convex continuous cuts and convex variational
shape priors under (simulated) noise, occlusion and clutter.

Our further work will further explore components of the coupling quadratic
form Q in (5). For example, linear mappings that represent collections of linear
shape features could be used to compare shapes after projecting them onto a
low-dimensional feature space. Another line of research concerns elaborating the
part-based variational shape prior so as to cope with several objects simultane-
ously and efficiently.
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Abstract. This paper proposes a new definition of the averaging of dis-
crete probability distributions as a barycenter over the Monge-Kantorovich
optimal transport space. To overcome the time complexity involved by the
numerical solving of such problem, the original Wasserstein metric is re-
placed by a sliced approximation over 1D distributions. This enables us to
introduce a new fast gradient descent algorithm to compute Wasserstein
barycenters of point clouds.

This new notion of barycenter of probabilities is likely to find applica-
tions in computer vision where one wants to average features defined as
distributions. We show an application to texture synthesis and mixing,
where a texture is characterized by the distribution of the response to a
multi-scale oriented filter bank. This leads to a simple way to navigate
over a convex domain of color textures.

Keywords: Optimal transport, texture synthesis and mixing, barycen-
ter of distributions.

1 Introduction

This paper considers the use of the Monge-Kantorovich optimal transport the-
ory [1] in image synthesis. Optimal transport cost has been widely used as a
metric to compare histogram features, often referred to as the “Earth Mover’s
Distance”, since the seminal work of Rubner et al. [2]. Another interesting as-
pect of transportation approaches which is investigated here is the transportation
mapping itself. Indeed, it allows various image modifications, such as e.g. color
transfer [3], texture mapping [4], or contrast equalization of video [5] (see [6] for
other applications).
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1.1 Previous Work on Texture Synthesis and Mixing

Texture synthesis is a popular problem in computer graphics, which consists in
synthesizing a new image f visually similar to a given exemplar f0.

Texture synthesis by recopy. Synthesis with high fidelity to the exemplar is per-
formed by copying pixels with some coherence constraints on small patches [7,8].
The quality of the synthesis is improved by copying patches or more general sets
of pixels [9,10,11,12,13].

Texture synthesis by statistical modeling. While copy-based methods probably
yield the best synthesis quality, they often copy large blocks from the original
input, and offer little or indirect control about the synthesis process.

Procedural methods use parametric models of textures, for instance built on
top of a Gaussian noise [14]. They are popular in image synthesis because of
their ease of use and their low computational cost.

Texture modeling considers sets of statistical constraints learned from the
exemplar, and use the stationarity of the texture for the estimation. Popular
approaches use Markov random fields [15,16] or Gibbs distributions built on top
of multiscale filters [17].

The wavelet decomposition is often use to build statistical models, with first
order histograms [18,19] or higher order constraints [20].

Texture mixing. The texture mixing problem consists in synthesizing a new
texture from a collection {f j}j∈J of exemplars. The mixing should integrate in
a meaningful way the colors and texture attributes of the exemplars.

Heeger and Bergen [18] and Bar-Joseph et al. [21] perform the mixing by com-
bining multiscale wavelet coefficients. Averaging statistics of grouplet coefficients
enables the mixing of geometrical turbulent textures [22].

Patch-based methods perform mixing using patches from the set of exemplars,
which creates non-homogeneous textures, see for instance [23,9,13]. These meth-
ods tend to produce clusters of features and offer little understanding about the
mixing process and how to control it.

Texture metamorphosis approaches [24,25,26] perform the mixing by finding
correspondences between elementary features (or textons) between the textures,
and progressively morphing between the shapes of the features. These methods
are extended by Matusik et al. [27] to perform convex combination of textures,
by warping patches and averaging 1D histograms.

1.2 Contributions

The main theoretical contribution of this work is the introduction of a novel def-
inition for the barycenter of statistical distributions in the Monge-Kantorovich
space. We also propose an approximate definition more amenable for numerical
computations which rely on 1-D projections. We then introduce a Newton gradi-
ent descent algorithm to compute the corresponding Wasserstein barycenter. The
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last contribution of the paper is a general framework for the statistical synthesis
of color textures, that encompasses several existing texture models as partic-
ular cases. This general framework, together with the Wasserstein barycenter
computation, allows to perform color texture mixing.

2 Wasserstein Distance and Its Approximation

This paper considers discrete density distributions in Rd that are represented
as point clouds X = {Xi}i∈I ⊂ Rd, where I = {1, . . . , N} is the list of point
indexes. Since any permutation of X corresponds to the same distribution, one
considers metrics taking into account

[X ] =
{
(Xσ(j))

N−1
j=0 \ σ ∈ ΣN

}
, (1)

where ΣN is the set of all permutations of N elements. The methods developed
in the paper can be extended to weighted point clouds and density defined
continuously over Rd.

2.1 Wasserstein Distance

The quadratic Wasserstein distance W2(X,Y ) between two point clouds of same
size |I| = N is defined as

W2(X,Y )2 = min
σ∈ΣN

Wσ(X,Y ) where Wσ(X,Y ) =
∑
i∈I

||Xi − Yσ(i)||2. (2)

We note that the methods developed in this paper extend to arbitrary strictly
convex distances such as ||Xi − Yσ(i)||p for p > 1. One can prove that Wp defines
a metric on the set of discrete distributions [X ].

Linear program formulation. Computing this distance requires to compute the
optimal assignment i �→ σ�(i) that minimizes Wσ(X,Y ) in (2). It is possible to
recast this problem as a linear programming one

W2(X,Y )2 = min
P∈PN

∑
i,j∈I2

Pi,j ||Xi − Yj ||2 (3)

where PN is the set of bistochastic matrices, i.e. nonnegative matrices which
rows and columns sum to 1. The problem (3) can be solved with standard lin-
ear programming algorithms and more dedicated methods in O(N2.5 log(N))
operations (see [28]).

1D case. The case d = 1 has some special structure that allows for a much faster
solution. Indeed, if one denotes by σX and σY the permutations that order the
points

∀ 0 � i < N − 1, XσX (i) � XσX (i+1) and YσY (i) � YσY (i+1) (4)
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the optimal permutation σ� that minimizes (2) is

σ� = σY ◦ σ−1
X , (5)

so that point XσX (i) is assigned to the point YσY (i). The Wasserstein distance
together with the optimal assignment can thus be computed in O(N log(N))
operations using a fast sorting algorithm.

2.2 Sliced Wasserstein Distance

The computation of the Wasserstein distance W2 is however computationally too
demanding for the application to image processing we have in mind, whereN can
be quite large. Moreover, W2 is too difficult to handle in problems requiring the
optimization of point clouds with functional involving the Wasserstein distance.

For these reasons, we now consider an alternative metric between distribu-
tions, which is based on transport costs between 1-D projections. We denote
by SW2 the Sliced Wasserstein Distance defined as the sum of 1-D quadratic
Wasserstein distances between projected point clouds

SW2(X,Y )2 =
∫

θ∈Ω

W2(Xθ, Yθ)2 dθ where Xθ = {〈Xi, θ〉}i∈I ⊂ R

=
∫

θ∈Ω

min
σθ∈ΣN

∑
i∈I

|〈Xi − Yσθ(i), θ〉|2 dθ ,
(6)

where Ω =
{
θ ∈ Rd \ ||θ|| = 1

}
is the unit sphere. The Sliced Wasserstein dis-

tance allows us to use the special case of the 1-D assignment, that can be solved
in closed form easily using (5).
Remark: This metric is used in [29] to perform shape retrieval.

3 Barycenter in Wasserstein Space

3.1 Wasserstein Barycenter

Given a family Y = {Y j}j∈J of point clouds, we are interested in computing a
weighted average point cloud X�, that is defined, by analogy to the Euclidean
setting as the minimizer of Problem (B)

(B) Bar(ρj , Y
j)j∈J ∈ argmin

X
EY(X) =

∑
j∈J

ρjW2(X,Y j)2, (7)

where {ρj � 0}j∈J is a set of weights, that is constrained to satisfy
∑

j ρj = 1.
Except in the special case of normal distributions [30], there is no known

closed form solution to the problem (7). Independently to our work, Agueh and
Carlier have performed a mathematical analysis of this problem [31]. They show
the existence of a solution and a dual formulation for continuous distributions.
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1D case. In the 1D case, the Wasserstein barycenter can be computed in
O(N log(N)) operations using the permutations σY j that order the sets of values
Y j ⊂ R as in (4). The barycenter then reads

∀ 0 � i < N,
(
Bar(ρj , Y

j)j∈J

)
i
=
∑
j∈J

ρjY
j
σ

Y j (i).

This barycenter was used for texture mixing applications in [27]. This paper
generalizes this approach to point clouds in arbitrary dimensions.

Sliced Wasserstein barycenter. If one considers the problem (B) over arbitrary
densities (not necessary clouds of a fixed number N of points, and not even
necessary discrete), Agueh and Carlier demonstrate in [31] that the barycenter
can be found by solving a linear problem1. It can be shown that if the densities
of Y are supported on N discrete points, then the barycenter is supported on
at most N |J| points. The difficulty with this approach is that the computation
time is polynomial inN |J|, which is prohibitive for imaging applications, and that
there is a combinatorial explosion of the cardinality of the barycenter solution.
Moreover, the restriction of problem (B) to point clouds (Equation (7)) boils
down to a multi-assignment problem, which unfortunately turns out to be NP-
hard [28].

To solve simultaneously these two issues, we propose to define a “Sliced
Wasserstein Barycenter” that approximate the original one

(S-B) S-Bar(ρj , Y
j)j∈J ∈ argmin

X
SEY(X) =

∑
j∈J

ρjSW2(X,Y j)2 . (8)

One should note at this point that the minimizer of SEY , which is easier to
manipulate, has also the desired property of being restricted to point clouds with
the same dimension as the measure set Y = {Y j}j∈J . In practice, as detailed
in Section 3.2, a fast computation of an approximate barycenter is obtained by
performing a gradient descent of this energy, which leads to a local minimizer.

3.2 Gradient Descent Algorithm

Finding the barycenter by minimizing (8) corresponds to the minimization of a
non-convex functional. This energy is discretized using a finite set ω of directions,
with |ω| > d. In the numerical experiment, we use random directions drawn from
the uniform distribution on the unit sphere of Rd.

SEY(X) =
∑
θ∈ω

SEYθ
(X) where SEYθ

(X) =
1
2

∑
j∈J

ρjW2(Xθ, Y
j
θ )2 . (9)

It is possible to find a stationary point of this functional with a gradient descent
algorithm.
1 Note that the proof given in [31] for the continuous case can be extended to our

discrete setting.
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Newton gradient descent. The algorithm starts from some initial point cloud
X(0) ⊂ Rd, that can be for instance chosen to be any of the clouds Y j , and sets
k = 0. At each iteration k, the point cloud X(k) is updated with the following
Newton descent step:

X(k+1) = X(k) − η H−1
∑
θ∈ω

∇SEYθ
(X(k)) (10)

where ∇SEYθ
(X(k)) is the gradient of SEYθ

at point X(k), H ∈ Rd×d is the
Hessian matrix and η > 0 the fixed step size. H−1 refers to as the inverse of the
Hessian matrix, which is invertible since we choose ω s.t. |ω| > d.

Gradient computation. For each θ ∈ ω, computing the gradient ∇SEYθ
(X(k))

requires, for each j ∈ J , to compute the optimal 1-D assignment σj
θ that mini-

mizes

min
σj

θ
∈ΣN

∑
i∈I

|(X(k)
θ )i − (Y j

θ )σj
θ(i)|2.

This is computed as detailed in (5) by sorting the values of X(k)
θ and Y j

θ , which
requires O(N log(N)) operations.

Each element i of the gradient may then be expressed as∑
θ∈ω

∇SEYθ
(X(k))i = HX

(k)
i −

∑
θ∈ω,j∈J

ρj〈Y j

σj
θ(i)

, θ〉θ

where the Hessian matrix reads

H = ∇2
∑
θ∈ω

SEYθ
(X(k)) =

∑
θ∈ω

θθT =

(∑
θ∈ω

θiθj

)
0�i,j<d

.

Observe that the Hessian matrix is independent of point X and thus can be
precomputed.

Convergence of the algorithm. The convergence of the proposed algorithm can
be proven2 for any η ∈]0, 2[ (the case where η = 1 corresponding to the classical
Newton descent step, which has been used in all numerical experiments).

Numerical examples. Figures 1 and 2 show 2-D illustrations of point clouds
obtained by the proposed Sliced Wasserstein barycenter algorithm, using |ω| =
20 directions (for theses examples with N = 5.103 points, 100 iterations are
required in average). Note that the obtained barycenter actually depends on the
initialization X(0) of the algorithm.

2 The proof is omitted here due to the lack of space.



Wasserstein Barycenter and Its Application to Texture Mixing 441

Fig. 1. Sliced Wasserstein barycenters S-Bar(1 − ρ, Y 1, ρ, Y 2) for an increasing values
of ρ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. Color of points depends on their index in Y 1 (i.e. the
ring)

Fig. 2. Two examples (left and right panels) of barycenters S-Bar(ρj , Y
j)j=1,2,3. The

top, bottom left, and bottom right corners of each triangle display respectively the
distribution Y 1, Y 2, Y 3. The color of the obtained point clouds corresponds to the
weighted average of colors of distributions.

3.3 Computing the Projection on a Distribution

In many applications, one is not only interested in computing the Wasserstein
distance W2(X,Y ), but also in the optimal permutation σ� that minimizes
Wσ(X,Y ) in (2). This optimal permutation allows one to compute the orthogo-
nal projection

Proj[Y ](X)i = Xσ
(i) (11)

where the set [Y ] of all the point clouds that represent the same statistical
distribution as Y is defined in (1).

Sliced projection. Observe also that in the special case of two distributions
(|J | = 2) with initialization X(0) := Y 1 and with weights {ρ1 = 0, ρ2 = 1},
our algorithm is similar to the original algorithm proposed in [29] to compute
an approximate projection of point cloud Y 1 onto Y 2 (i.e. approximate optimal
assignment). The only difference here is that, as suggested in [29], we make use
of a stochastic gradient descent (i.e. using random set of orientations ωk ∈ Ω at
each iteration k). It should be mentioned that such a gradient descent strategy
is not stable when considering our barycentric energy.
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We thus define the Sliced Projection of as the point clouds X(∞) where X(k)

is converging
S-Proj[Y ](X) = X(∞). (12)

Figure 3 shows on a 2-D example (with N = 103 and |ωk| = 10) that the sliced
projection is in practice very close to the orthogonal projection Proj[Y ].

Fig. 3. Left: initial distribution X ⊂ R2. Middle: sliced projection S-Proj[Y ](X) =

X(∞) defined in (12). Right: Wasserstein projection Proj[Y ](X) defined in (11), com-

puted by linear programming. Color of points only depends on their index in Y 1 (i.e. the
ring).

4 Texture Synthesis and Mixing

This section applies the sliced Wasserstein barycenter (8) and the sliced Wasser-
stein projection (12) to perform texture mixing.

4.1 Multiscale Oriented Decompositions

We consider color textures exemplars f j ∈ RP×3 of P pixels, where each pixel
value is a 3D vector f j(x) ∈ R3. A general framework for texture modeling makes
use of the projection of the image on a set of atoms {ψ,n}∈L,n. All the atoms
ψ,n ∈ RP for a given � ∈ L typically share a common scale and orientation,
while n indexes a position.

Similarly to several previous works [18,19,20], we use a steerable wavelet tight
frame [32]. In this case, the atoms ψ,n, where � = (s, θ), are parametrized by a
dyadic scale 2s (that indicates the size of the atoms), an orientation θ ∈ [0, π)
and a position 2sn ∈ [0, 1]2.

For the numerical experiments, we considered 4 dyadic scales and 4 orien-
tations, together with a coarse scale frame (low pass residual) and a high fre-
quency frame (details). The total number of frames in our experiments is thus
|L| = 4× 4 + 2 = 18.

4.2 First Order Statistical Mixing

First order texture model. Following the work of Heeger and Bergen [18], the
simplest texture model considers the first order statistics of the projection on
the frames atoms. The model thus retains the distributions
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∀ � ∈ L, ∀ j ∈ J, Y ,j = {〈f j, ψ,n〉}n.

All the models are computed in O(|J |P log(P )) operations with the fast steerable
pyramid transform [32]. Note that each coefficient 〈f j , ψ,n〉 ∈ R3 is a 3D vector
obtained by projecting each channel of f j onto the atom ψ,n.

First order texture mixing. Given a set {ρj}j∈J of weights, the first step of the
mixing algorithm computes the barycentric model from the exemplar distribu-
tions, for both all scale and orientation � ∈ L and for the pixel values

∀ � ∈ L, Y  = S-Bar(ρj , Y
,j)j∈J ⊂ R3 and Y = S-Bar(ρj , f

j)j∈J ⊂ R3

using the gradient descent algorithm detailed in Section 3.2 for |J | distributions
in R3.

Following [18], the synthesis of the mixed texture is then obtained by iter-
atively enforcing the statistical distribution using projections. The algorithm
starts from a random white noise color image f (0) ∈ RP×3. At iteration k, the
algorithm computes the set of coefficients 〈f (k), ψ,n〉, and enforces the statistical
constraints using the sliced projections

∀ � ∈ L, {c(k)
,n}n = S-Proj[Y �]({〈f (k), ψ,n〉}n) (13)

using the stochastic gradient descent for only one distribution in R3. Since the
steerable pyramid is a tight frame, an intermediate image is reconstructed in
O(P log(P )) operations as

f̃ (k) =
∑

∈L,n

c
(k)
,nψ,n. (14)

The color pixel values distribution is then enforced as

{f (k+1)(x)}x = ˜Proj[Y ]({f̃ (k)(x)}x)

using once again the gradient descent method for a single distribution in R3.
Figure 4 shows the mixing of two and three textures using this first order

model. Observe that this first order method generalizes the original method of
Heeger and Bergen [18] by taking into account color distributions (whereas the
original framework considers only 1D distributions obtained by a PCA change
of color representation) and also by mixing several distributions.

4.3 Higher Order Statistical Mixing

Joint distribution model. The main limitation of the Heeger-Bergen method [18]
and our extension is that it does not take into account the spatial correlation
between wavelet coefficients. As a result, it yields poor synthesis results in the
case of structured textures, such as a text or a brick-wall. Portilla and Simoncelli
show in [20] that imposing self- and cross-correlation constraints between the
scale and orientation of the steerable frames enables to preserve higher order
statistical features in the texture synthesis process. The main limitations of this
approach are firstly that the definition of the constraints are not fully generic, so
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Fig. 4. Texture Interpolation of three textures using the first order statis-
tical model. Left: The three original textures are given at the vertices of a triangle.
Right: Details of interpolations on the edges of the triangle.

that the projectors have to be designed by hand; secondly, the authors showed
that it yields poor results for texture mixing.

This section extends the first order model described in Section 4.2 to handle
higher order statistical features. Following the methodology introduced by Por-
tilla and Simoncelli, we consider for each index � – in addition to aforementioned
the 3D-distributions Y ,j – the joint distributions of wavelet coefficients located
in different spatial positions, i.e.

∀ � ∈ L, ∀ j ∈ J, C,j
N = {Y ,j{m},m ∈ N (n)}n ⊂ R3|N |.

where N (n) = n+N is a given neighborhood pattern around each n. The joint
distribution C,j

N thus has 3 × |N | dimensions. In the following experiments, N
is defined as a square neighborhood of size 4×4, but more sophisticated pattern
could be implemented.

Higher order statistical texture mixing. The texture mixing framework intro-
duced in section 4.2 is extended to take into account the joint distributions
{C,j

N }j∈J . In a preliminary stage, the sliced Wasserstein barycenters C
N =

S-Bar(ρj , C
,j
N )j∈J ⊂ R3|N | are computed using the stochastic gradient descent

algorithm. Then, during the iterated synthesis algorithm, for each � ∈ L, the
coefficients {c(k)

,n}n defined in (13) are clustered into blocks and projected into
the statistical constraints

∀ � ∈ L, {ĉ(k)
,n}n = S-Proj[C�

N ]({c(k)
,m,m ∈ N (n)}n)

The images f (k+1) are then reconstructed fromthese coefficients {ĉ(k)
,n}n using (14).

An example is proposed in Figure 5 to illustrate this high-order texture mixing
framework. The proposed algorithm is therefore run on point clouds with at most
N = 216 points in R16 with |ω| = 10 directions. It should be noticed that the
authors of [20] already introduced a color model, but that was not published.
However, our method is the first extension of such joint probability constraints
to texture mixing.



Wasserstein Barycenter and Its Application to Texture Mixing 445

Original f1 ρ = 0 .0 ρ = 0.2 ρ = 0.4

ρ = 0.6 ρ = 0.8 ρ = 1.0 Original f2

Fig. 5. High Order Texture Interpolation between two textures

5 Conclusion

This paper has tackled the problem of defining average of histograms and dis-
tributions features. This shows that optimal distance metrics are useful beyond
pairwise comparison of distributions.

The second point made by this paper is that the optimal transport in itself
encompasses important information and enables to enforce complicated, high
dimensional, statistical features. This paper presented an illustrative example in
the field of texture synthesis.

Some extensions of this work are foreseen. First, more complex statistical
information could be modeled using adaptive neighborhood N , requiring a sta-
tistical learning step before the texture synthesis. Moreover, the extension of the
proposed framework for any Wassertein metricWp (with p � 1) is currently stud-
ied to obtain a more general definition of barycenter, including a “Wasserstein
median” when p = 1.
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Abstract. Gaussian convolution is of fundamental importance in linear
scale-space theory and in numerous applications. We introduce iterated
extended box filtering as an efficient and highly accurate way to compute
Gaussian convolution. Extended box filtering approximates a continuous
box filter of arbitrary non-integer standard deviation. It provides a much
better approximation to Gaussian convolution than conventional iterated
box filtering. Moreover, it retains the efficiency benefits of iterated box
filtering where the runtime is a linear function of the image size and does
not depend on the standard deviation of the Gaussian. In a detailed
mathematical analysis, we establish the fundamental properties of our
approach and deduce its error bounds. An experimental evaluation shows
the advantages of our method over classical implementations of Gaussian
convolution in the spatial and the Fourier domain.

Keywords: Gaussian scale-space, box filter, image processing, com-
puter vision.

1 Introduction

Convolution with a Gaussian is one of the most widely used linear filter opera-
tions in signal and image processing. It forms the backbone of Gaussian scale-
space theory [4,9,13] which has been introduced in Japanese and English papers
of Iijima [8] long before it became popular in the western world by Witkin’s
work [16]. The strong regularisation properties of Gaussian convolution render
the filtered signal infinitely times differentiable and stabilise the numerical eval-
uation of higher order derivatives. Gaussian convolution is inevitable for the
detection of edges [2,11] and interest points [6,10] that play a central role in
computer vision. The rapid decay properties of the Gaussian both in the spatial
and the Fourier domain and the fact that it is the only filter that is rotationally
invariant and separable under convolution make Gaussian convolution a perfect
low-pass filter in linear systems theory.
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Many applications require an accurate and efficient implementation of Gaus-
sian convolution in order to ensure the high quality of the results, to meet runtime
requirements, or even to guarantee convergence. However, this can be challeng-
ing: It comes down to a convolution of the input signal with a kernel function
with infinite support. The m-dimensional Gaussian kernel

Kσ(x) =
1

(2πσ2)
m
2

exp
(
− |x|2

2 · σ2

)
(1)

of standard deviation σ has a characteristic ‘bell curve’ shape which drops off
rapidly towards ±∞. This is why in practice one often applies a discrete convo-
lution with a sampled and renormalised kernel that is cut off at n · σ. However,
this method becomes inefficient for large σ, as the number of operations grows
linearly in the number of samples of both the signal and the kernel. A more
efficient alternative for those cases is the computation as a point-wise multipli-
cation in the frequency domain [1]. To this end, a Fourier transform is applied
to both the kernel and the signal, the multiplication is performed, and the result
is transformed back into the spatial domain. Since the Gaussian kernel in the
frequency domain can immediately be evaluated, this method reduces to two
fast Fourier transforms, and one point-wise multiplication.

Although these spatial and Fourier-based implementations are the most pop-
ular algorithms for Gaussian convolution, and their trade-offs are well investi-
gated [5], there are also further alternatives: Approximations with recursive fil-
ters [3,17] offer a runtime behaviour that scales linearly in the number of pixels.
However, these filters require a special boundary treatment and a higher imple-
mentational effort than other methods which poses additional challenges [14].
Since Gaussian scale-space is equivalent to evolving the image under a homo-
geneous diffusion problem, one can also implement Gaussian convolution with
efficient numerical methods for partial differential equations, e.g. with implicit
finite difference schemes [7]. Unfortunately, this requires the fast solution of lin-
ear systems of equations which is also a nontrivial task. Gaussian convolution
can also be approximated by discrete convolution with binomial kernels. They
have a finite support and offer some interesting properties from an implemen-
tational viewpoint, but do not allow to approximate Gaussians with arbitrary
standard deviations. This can constitute a drawback in scale-space applications
which aim at representations at arbitrary scales.

A simple but extremely fast discrete approximation of Gaussian smoothing
can be achieved by convolution with iterated box filters [15]. A box filter uses
a normalised kernel with identical coefficients within its finite support. By the
central limit theorem, a sufficiently high number of iterations with a box filter
approximates a Gaussian arbitrarily well. However, this has the same drawback
as convolution with binomial kernels: It introduces a quantisation to the range
of standard deviations that can be approximated.

In our paper we address this problem. We advocate a modification of the
box filter that is based on a new discretisation of the continuous box kernel. In
particular, we concentrate on establishing important properties of the resulting
extended box filter: It combines the simplicity and algorithmic efficiency of the
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conventional box filter with a good approximation of theoretic properties of
Gaussian filtering. In an experimental evaluation, we show that the extended
box filter approximates the Gaussian filter significantly better than a classical
box filter and offers advantages over spatial and Fourier-based approximations of
Gaussian convolution. Moreover, our method introduces only marginal runtime
overheads over classical box filtering.

Our paper is structured as follows. In Section 2, we first recapitulate the basic
notations and definitions of conventional box filtering. Thereafter, we present
our new method in Section 3. After an experimental evaluation in Section 4, we
conclude with a summary in Section 5.

2 Conventional Box Filtering

Box filters are usually defined in a purely discrete context. However, in order
to derive a new discretisation in this paper, we start with a short review of a
continuous definition:

Definition 1. A continuous box filter BΛ with a real-valued length Λ ∈ R+ :=
{a ∈ R : a > 0} is a convolution

(BΛ ∗ f)(x) :=

∞∫
−∞

BΛ(x− y) · f(y) dy (2)

of a signal f with a box kernel

BΛ(x) :=

{
1
Λ , x ∈ (−λ, λ)
0, else

(3)

for x ∈ R and Λ = 2λ.

In the literature, one usually finds the continuous length Λ being rounded to the
closest odd integer L [15]:

Definition 2. A discrete box filter BL of length L = h(2l + 1), l ∈ N0, and
sampled at an equidistant grid of spacing h > 0 is a convolution

(BL ∗ f)(hk) :=
∑
m∈Z

BL(h(k −m)) · f(hm) (4)

of a signal f with a discrete box kernel

BL(hk) :=

{
h
L , −l � k � l

0, else
(5)

for k ∈ Z.
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-hl -h... 0 h ... hl

L
h

L
-hl -h... 0 h ... hl

Λ
h

hw

h
Λ

-hl-h hl+h

Fig. 1. Visualisation of box kernels. Top: Continuous box kernel BΛ (dotted) and its
conventional discrete approximation BL. Bottom: Corresponding discrete extended
box kernel EΛ.

An illustration of this construction is depicted in Figure 1. Note that we
introduce an arbitrary grid spacing h, and couple the length L to a multiple of
this distance. For h → 0, BL thus approaches BΛ (cf. Definition 1). If we set
h = 1, we obtain the formulation in [15].

On discrete data, it can be implemented very efficiently in an iterative ‘sliding
window’ manner, i.e.

(BL ∗ f)i = (BL ∗ f)i−1 +
h

L
(fi+l − fi−l−1) , (6)

with (·)k or fk denoting the discrete value at sampling point hk. After the
initialisation of the first sample, the method needs one multiplication and two
additions per pixel and dimension, independent of the size of the kernel. Thus,
it enjoys a linear complexity in time.

A d-fold convolution of the kernel with the signal approximates a Gaussian
convolution. This removes artefacts that arise from the piecewise linearity of the
box kernel, as well as from the lack of a rotational invariance property in the
multi-dimensional case. The resulting operation is equivalent to the convolution
with a Cd−1-continuous kernel Bd

L of variance σ2(Bd
L) [15]:

σ2(Bd
L) = d

L2 − 1
12

. (7)

Note that this formula only allows a discrete set of standard deviations to be
chosen. In the literature, it is suggested to handle this problem by a series of box
filters of different length [15]. Unfortunately, this idea does not solve the problem:
By practical considerations, d is typically chosen from the range {3, 4, 5}, such
that the distance between admissible σ cannot be reduced arbitrarily. Moreover,
the kernel resulting from a convolution of box kernels with different lengths does
not fulfil the continuity properties mentioned above.
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In contrast to this suggestion, we are now going to derive a better discreti-
sation of the continuous formulation which does not have this problem by con-
struction. Still, it possesses all advantages of the discrete box filter.

3 Extended Box Filter

Our goal is now to find a better discretisation EΛ of the continuous box filter
BΛ than is given by the conventional discrete approximation BL. In doing so,
we focus in particular on the following criteria:

1. EΛ must be continuous over Λ to allow kernels with arbitrary variance.
2. For Λ = L ∈ Nodd, it must equal the discrete box filter BL of length L.
3. For h→ 0, it must approach the continuous case, i.e. lim

h→0
σ2(EΛ) = σ2(BΛ).

To this end, we decompose Λ into an integer part and a real-valued remainder:

Λ = h(2l + 1 + 2α) = L+ 2hα (8)

such that 0 � α < 1 and l ∈ N0. With this formalism, we are now able to set up
an ‘extended’ variant of the discrete box filter:

Definition 3. An extended box filter EΛ with a real-valued length Λ ∈ R+ and
discretised on a uniform grid of spacing h > 0 is a convolution

(EΛ ∗ f)(hk) :=
∑
m∈Z

EΛ(h(k −m)) · f(hm) (9)

of a signal f with an extended box kernel

EΛ(hk) :=

⎧⎪⎨⎪⎩
h
Λ , −l � k � l

hw, k ∈ {−(l+ 1), l + 1}
0, else

(10)

with

l :=
⌊
Λ

2h
− 1

2

⌋
, w :=

1
2

(
1
h
− 2l+ 1

Λ

)
, (11)

and k ∈ Z. �x� denotes the so-called floor function, which computes the largest
integer not greater than x ∈ R.

Both constraints in (11) are necessary in order to ensure that all weights sum up
to 1. A visualisation of the extended box kernel (10) is depicted in Figure 1. It is
immediately clear that our new filter preserves many advantages of the original
box filter. It is separable in space, and an efficient ‘sliding-window’ implemen-
tation is still possible and beneficial: Apart from the first value in a row, only
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four additions and two multiplications are needed per pixel and dimension (since
both weighting factors are constants):

(EΛ ∗ f)i = (EΛ ∗ f)i−1 +
( h
Λ
− hw

)
(fi+l − fi−l−1)

+ hw (fi+l+1 − fi−l−2) . (12)

This means, the computational complexity of a box filtering step is in O(n)
in the number of pixels, and is thus in particular independent of the length of
the chosen box kernel. Let us now discuss some mathematical properties of our
construction. First of all, we immediately see that w depends proportionally on
α (cf. Figure 1):

w =
1
2h

(
1− (2l + 1)h

Λ

)
=

1
2h

(
1− Λ − 2αh

Λ

)
=

1
2h
· 2αh
Λ

=
α

Λ
. (13)

Using this equivalence, we can formulate the variance of EΛ by considering the
components of Λ only. Like for the conventional box filter, we regard the more
general case for a convolution kernel that corresponds to a d-fold application of
a single extended box kernel EΛ:

Theorem 1. The variance σ2(Ed
Λ) of a d-fold iterated extended box kernel is

given by

σ2(Ed
Λ) =

dh3

3Λ
(
2l3 + 3l2 + l+ 6α(l + 1)2

)
. (14)

Proof. By symmetry considerations, we see that the expectation value of EΛ is
zero. For the variance σ2(EΛ) of one (non-iterated) box kernel, it follows

σ2(EΛ) =
l+1∑

k=−(l+1)

EΛ(hk) · (hk − 0)2

=
l∑

k=−l

h

Λ
(hk)2 + hw (−(hl + h))2 + hw(hl + h)2

=
2h3

Λ

l∑
k=1

k2 + 2h3w(l + 1)2

(13)
=
h3

3Λ
(
2l3 + 3l2 + l + 6α(l + 1)2

)
.

From probability theory, we obtain the variance σ2(Ed
Λ) for the iterated extended

box kernel as the sum of single variances. This concludes the proof. �

For h = 1 and Λ = 2l + 1 ∈ Nodd, i.e. α = 0, this is just a generalisation of
Equation (7). This means that the extended box filter falls back to the notion
of the conventional box filter in these cases:
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Theorem 2. The extended box kernel EΛ constitutes a generalisation of the
discrete box kernel BL for the case h = 1, i.e. EL = BL for L ∈ Nodd and

∀L ∈ Nodd : lim
Λ→L+

σ2(Ed
Λ) = σ2(Bd

L) and lim
Λ→(L+2)−

σ2(Ed
Λ) = σ2(Bd

L+2). (15)

Proof. It is clear that EL = BL for L ∈ Nodd, because in this case we get α = 0
and w = 0. Thus, it immediately follows that lim

Λ→L+
σ2(Ed

Λ) = σ2(Bd
L). So, it

remains to show the case Λ → (L + 2)−, for which we first consider a single
extended box kernel EΛ:

lim
Λ→(L+2)−

σ2(EΛ) = lim
Λ→(L+2)−

1
3Λ
(
2l3 + 3l2 + l + 3(Λ− L)(l + 1)2

)
=

1
3(L+ 2)

(2l3 + 9l2 + 13l+ 6)

=
1

3(2l+ 3)
(2l + 3)(l2 + 3l+ 2)

=
(L+ 2)2 − 1

12
,

where we have used that α = Λ−L
2 and L = 2l + 1. It follows immediately that

lim
Λ→(L+2)−

σ2(Ed
Λ) = σ2(Bd

Λ).

This shows that Ed
Λ is a consistent generalisation of Bd

L with respect to Λ. �

Now that we have shown that the extended box filter extends the previous dis-
crete definition, we want to show that it is a good discretisation of the continuous
box filter we are about to approximate:

Theorem 3. The extended box kernel EΛ is a suitable discretisation of a box
kernel BΛ in the continuous domain, i.e. for d-fold application,

1. its variance approximates the continuous analogue arbitrarily well:

lim
h→0

σ2(Ed
Λ) = σ2(Bd

Λ), and (16)

2. the order of consistency is O(h2).

Proof. We can deduce an approximation of the continuous setting by computing
the limit of σ2(Ed

Λ) for the grid spacing h → 0. Since we are interested in the
order of consistency, we must consider the variance in (14) and rewrite it:

σ2(Ed
Λ) =

(2hl)3

12Λ
+ dh

(2hl)2

4Λ
+ dh2 2hl

6Λ
+ 2dh3α

Λ
(l2 + 2l + 1)

= d
(2hl)3

12Λ
+ dh(1 + 2α)

(2hl)2

4Λ
+ dh2(1 + 12α)

2hl
6Λ

+ dh3 2α
Λ
.
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Input: Signal u0, standard deviation σ, iterations d.
Output: Signal ud := Ed

Λ ∗ u0

l ← largest integer such that σ2(Bd
L) ≤ σ2 (by (7))

α ← (2l + 1)
l(l + 1) − 3σ2

d

6(σ2

d
− (l + 1)2)

(by σ2(Ed
Λ) ≤ σ2, (8), and (14))

w ← α

2l + 1 + 2α
, ŵ ← 1 − α

2l + 1 + 2α
(by (8) and (13))

For all j ∈ {1, . . . , d}
Compute uj[0] (for the first pixel)
For all i > 0
Compute uj[i] ← uj[i-1] + w · (uj−1[i+l+1] - uj−1[i-l-2])

+ ŵ · (uj−1[i+l ] - uj−1[i-l-1])

Fig. 2. Algorithm for 1-D extended box filtering. Boundaries can be handled on-the-fly.

Now we replace 2hl by Λ− (1 + 2α)h and get for the first three terms:

d
(Λ − (1 + 2α)h)3

12Λ
=

dΛ2

12
− dh

4
(1 + 2α)Λ+

dh2

4
(1 + 2α)2 +O(h3),

dh(1 + 2α)
(Λ − (1 + 2α)h)2

4Λ
=

dh

4
(1 + 2α)Λ− dh2

2
(1 + 2α)2 +O(h3),

dh2(1 + 12α)
Λ− (1 + 2α)h

6Λ
=

dh2

6
(1 + 12α) +O(h3).

Finally, this yields

σ2(Ed
Λ) =

dΛ2

12
− h2 · d

12
(
12α2 − 12α+ 1

)
+O(h3).

Thus, the consistency order is O(h2) and we can state that

lim
h→0

σ2(Ed
Λ) = d

Λ2

12
= d

Λ
2∫

− Λ
2

1
Λ
· x2dx = d

∞∫
−∞

BΛ(x)x2dx = σ2(Bd
Λ). �

4 Experiments

In order to investigate the properties of the extended box filter on real data,
we have implemented the algorithm for application on images. Technically, this
means we are dealing with 2-D images f ∈ Ω ⊂ R2, and assume reflecting
boundary conditions to preserve the average grey value. Using the separability of
the kernel, we apply a ‘sliding window’ technique in both directions (cf. Figure 2).
This operation is highly parallel, and can thus be significantly accelerated by the
streaming SIMD extension mechanism (SSE) of modern desktop processors, by
use of all CPU cores, and by graphics processors.
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a. b. c.

d. e. f.

Fig. 3. Visual quality for Boat, 512 × 512 pixels. a: Original, b: conventional and c:
extended box filtering with d = 3, σ = 5.0, d: Discrete Gaussian filtering with σ = 5.0
(truncated at 10σ), and e,f: differences of b and c to d, respectively, scaled by a factor
10 to increase visibility. 50% grey means the error is zero.

4.1 Qualitative Gain

Our aim in designing the extended box filter is to propose a fast but accurate
way to perform Gaussian convolution for arbitrary standard deviations. Conse-
quently, we are interested in the accuracy of the proposed method.

To evaluate the accuracy, we use the well-known Boat test image from the USC
SIPI database (cf. Figure 3a), and convolve it with discrete box kernels. These
results are then compared to a ground truth obtained by a convolution with a
discretised Gaussian kernel that has been truncated at 10σ and renormalised.
Please note that this ground truth is also subject to discretisation artefacts and
may not exactly reflect the desired solution. A more complicated alternative to
this implementation has been proposed in [12], but this variant also suffers from
similar truncation problems. Finally, let us note that we chose the Boat test
image as a good representative for many real-world examples, since it contains
many different frequencies and both homogeneous and textured regions.

In the first part of our experiment, we use conventional box kernels and a vary-
ing number of iterations d, and compare these results to the reference solution.
Instead of focussing on one specific standard deviation σ, we evaluate many dif-
ferent values. As an error measure for equivalence, we use the mean square error
(MSE) given by

MSE(a, b) =
1
N

N∑
i=1

(ai − bi)2, (17)
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Fig. 4. Plot of the mean square error to discrete Gaussian convolution on Boat, 512×
512 pixels, depending on σ and d. a: Conventional box filter. b: Extended box filter.

where N describes the number of pixels. The results for this experiment are
given in Figure 4a. For large σ, we see that a box filter of order d = 5 is already
sufficient to approximate the Gaussian very well. However, one also realises that
small standard deviations cannot be represented well at all. This effect is caused
by the integer length of the box kernel, and re-occurs for larger d and larger σ
for similar reasons.

In the second part, we repeated the same experiment with the proposed ker-
nel. This is shown in Figure 4b. Compared to the conventional box filter, the
novel approach attenuates errors much stronger. For any σ, an order of d = 5
yields almost identical results to Gaussian filtering. This justifies our model as
a qualitatively equal alternative.

To conclude this experiment, we compare the visual quality of both ap-
proaches. Figure 3 depicts a sample output of both methods under a standard
deviation σ = 5.0, and further shows the desired result as given by Gaussian
convolution. Albeit the visual quality differences are relatively low, the differ-
ence images show that our extended box filter performs much better than the
conventional box filtering.

4.2 Runtime

In the last experiment, we are interested in the tradeoff between the accuracy
and the runtime of extended box filtering compared to other techniques. To this
end, we convolve the Boat test image using a discrete Gaussian truncated at 3σ,
an FFT-based approach, a conventional, and an extended box filter (both with
d = 5). Runtimes were acquired on a single-core 3.2 GHz Pentium 4 with 2MB
L2 cache and 2 GB RAM.

Table 1 shows the results of this experiment. The truncated Gaussian con-
vinces for small standard deviations, but scales linearly in σ such that this
method becomes infeasible for large σ. Although the runtime of all remaining
methods is independent from the standard deviation, box filters have a clear
advantage if we consider larger images: While they only scale linearly in the
number of pixels n, the FFT-based methods have a complexity of O(n log(n)).
In return, the FFT-based approach offers a much better approximation quality
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Table 1. CPU runtime t in milliseconds vs. mean square error (MSE) between the
result and the ground truth for different techniques on Boat (512 × 512 pixels)

σ = 0.5 σ = 5.0 σ = 25.0
MSE t MSE t MSE t

Truncated Gaussian 0.000 8 0.001 45 0.007 148
FFT-based 1.032 148 0.000 148 0.000 148
Conventional box 9.580 0 1.400 26 0.154 27
Extended box 0.030 41 0.051 43 0.098 43

for large σ. In this context, the extended box filter is a good tradeoff between
classical box filtering and the FFT-based approaches: It provides a convincing
approximation quality for all standard deviations at a slightly higher runtime
than a classical box filter.

5 Summary

In view of the omnipresence of Gaussian convolution in scale-space theory and
its numerous applications in image processing and computer vision, it is surpris-
ing that one can still come up with novel algorithms that are extremely simple
and offer a number of advantages. In our paper we have shown that a small
modification of classical box filtering leads to an extended box filter which can
be iterated in order to approximate Gaussian convolution with high accuracy
and high efficiency. In contrast to classical box filtering, it does not suffer from
the restriction that only a distinct set of standard deviations of the Gaussian
are allowed. Although the main focus of our paper is on establishing the essen-
tial mathematical properties of extended box filtering, we have also presented
experiments that illustrate the advantages over spatial and Fourier-based imple-
mentations of Gaussian convolution. In our ongoing research we will perform a
more extensive evaluation with a large number of alternative implementations,
taking also into account the potential of modern parallel hardware such as GPUs.
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Abstract. Signal and image processing have seen in the last few years
an explosion of interest in a new form of signal/image characterization
via the concept of sparsity with respect to a dictionary. An active field
of research is dictionary learning: Given a large amount of example sig-
nals/images one would like to learn a dictionary with much fewer atoms
than examples on one hand, and much more atoms than pixels on the
other hand. The dictionary is constructed such that the examples are
sparse on that dictionary i.e each image is a linear combination of small
number of atoms.

This paper suggests a new computational approach to the problem of
dictionary learning. We show that smart non-uniform sampling, via the
recently introduced method of coresets, achieves excellent results, with
controlled deviation from the optimal dictionary. We represent dictionary
learning for sparse representation of images as a geometric problem, and
illustrate the coreset technique by using it together with the K−SVD
method. Our simulations demonstrate gain factor of up to 60 in com-
putational time with the same, and even better, performance. We also
demonstrate our ability to perform computations on larger patches and
high-definition images, where the traditional approach breaks down.

Keywords: Sparsity, dictionary learning, K−SVD, coresets.

1 Introduction

One of the major problems in image processing is image characterization. By
image characterization we mean a system that gets a two-dimensional function
or, in the discrete case, a matrix with non-negative entries, as a query and
provides an answer whether or not this function/matrix is an image. Other
option is that the system provides a probability measure on the space of all
two-dimensional such functions/matrices. We are still far from achieving this
ultimate goal, yet few breakthroughs where recorded since the inception of image
processing as a branch of scientific research. Many characterization, in the past,
used the decay rate of the coefficients of certain transformations. That led to a
characterization in a linear space of functions. In the last decade a new approach
that involves redundant representations and sparsity seems promising. In this
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framework, a signal is represented again as a superposition of signals. But unlike
the representation with a basis of a linear space, the number of basic signals
(a.k.a. atoms) in this new approach exceeds the dimension of the signal such that
a given signal may have many different representations. Uniqueness is achieved
only for a subset of signals which can be represented with a limited number of
atoms, called sparse signals. For this class of signals the sparsest representation
is unique. This approach shifts the focus of attention from the general law of
decay of coefficients to the outliers of such behavior, namely the large coefficients
of such an expansion. The class of sparse signals does not form a linear space
which reflects the non-linearity of the set of images. At the same time, we still
use linear techniques which helps a lot in practice.

The sparsity approach has appealing features for image processing, but it
suffers from few problems. First it is clear that sparsity is a notion which is
attached to a given dictionary. Clearly, there is no one universal dictionary that
can represent any image in a sparse way. This calls upon the need to construct
dictionary for each class of images or for each application. Constructing a dic-
tionary for a large number of images from the same class/application goes under
the name dictionary learning and is an active field of research. This is the main
topic of this paper, and we demonstrate our ideas on the K−SVD method [3].
Second is the very extensive use of computational time and in memory space.
Because of the prohibitive computational time and the numerical instabilities
in computing with large size matrices, sparsity techniques are applied to small
images only. In fact, 8×8 to 16×16 is the most common sizes in image process-
ing. It means that these are patches of images rather than images themselves.
Moreover, one may wish to construct dictionaries for the same class of images.
Using, implicitly, the approximate self-similarity nature of images it is costumed
to use the patches of an image as a class of similar patches and to construct a
dictionary per image. Here, again, the curse of limited space and time interfere
and high definition images (1024 × 1024 say) have a huge number of patches
of such a small size which makes the dictionary learning task computationally
prohibitive. This paper brings the spell of coresets to cure the curse of space and
time limitations. Informally, a coreset C for Y is a compressed representation of
Y that well approximates the original data in some problem-dependent sense.
The coreset C is used to give approximate answers for queries about Y .

We show that the optimization problem can be solved on the coreset, which is
much smaller, without sacrificing too much accuracy. Coresets techniques were
first introduced in the computational geometry field, and in the recent years
used to solve some well known open problems in computer science and machine
learning. The subject became more mature theoretically in the last few years.
Coresets present a new approach to optimization in general and have huge suc-
cess especially in tasks which use prohibitively large computation time and/or
memory space. In particular, coresets suggest ways to use existing serial al-
gorithms for distributed (parallel) computing, and provide solutions under the
streaming model, where the space (memory) for solving the problem at hand is
significantly smaller than its input size.
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2 Coresets for Dictionaries

Approximation algorithms in computational geometry often make use of random
sampling, feature extraction , and ε-samples. Coresets can be viewed as a general
concept that includes all of the above, and more. See a comprehensive (but not
so updated) survey on this topic in [1]. Coresets have been the subject of many
recent papers (see references in [1]) and several surveys [2, 4].

In our context, the input is an d × n matrix Y that represents n points in
Rd, and we consider a d× k matrix D, whose columns represent k points in Rd.
The matrix D is called a dictionary. Typically n is much larger than k, and k
is much larger than d. Let cost(·, ·) be some function of Y and D. We interpret
cost(Y,D) as the result of a query D on a matrix Y .

2.1 k-Dictionary Queries

Let D be a dictionary. The column vectors of the matrix D are called the points
of D. We write z ∈ D if z is one of the columns of D. Let y be a point (vector)
in Rd, and let err(y,D) be a non-negative real function that represents the error
of approximating y by D.

Through the rest of this section we won’t assume anything further about the
function err(·, ·). Following some possible definitions of err that are relevant for
this paper, when D is a d× k matrix:

1. err(y,D) = minx∈Rk ‖Dx− y‖2 is the Euclidean distance between the point
y and the subspace that is spanned by the columns of D.

2. err(y,D) = minx∈{ei} ‖Dx− y‖2 is the distance between y and its closest
point of D. Here, {ei} = {ei}k

1 denotes the standard base of Rk.
3. err(y,D) = minx∈Rk,‖x‖0=1 ‖Dx− y‖2 is the distance between y and the

closest line that intersects both the origin of Rd and a point in D. Here ‖x‖0
denotes the number of non-zeros entries of x.

4. For an integer j ≥ 0, errj(y,D) = minx∈Rk,‖x‖0≤j ‖Dx− y‖2 is the distance

between y and its closest subspace over the set of O
((

k
j

))
subspaces that

are spanned by at most j points of D.

More generally, we can replace ‖Dx− y‖2 by ‖Dx− y‖q
p for p, q ≥ 0 in the above

examples.

Problem 1 (k-Dictionary Query). The input to this problem is an integer k ≥ 1
and a d×n matrix Y . For a given (query) d×k dictionary D, the desired output
is cost(Y,D) =

∑
y∈Y err(y,D).

Suppose that, given y ∈ Y and a d × k dictionary D, the error err(y,D) can
be computed in time T . Then cost(Y,D) can be computed in O(Tn) time and
using O(dn) space. Here, “space” means memory, or number of non-zeros entries.
In this paper we wish to pre-process the input Y in such a way that an ε-
approximation of the output cost(Y,D) could be computed in time O(Tc) and
space O(dc), where c is sub-linear (actually, independent) in n. To this end, we
introduce the concept of ε-coreset for the k-dictionary problem.
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2.2 Coreset for a Single k-Dictionary Query

A matrix C is called a weighted matrix if every column y ∈ C is associated with
a weight w(y) ≥ 0. For a weighted matrix C and a dictionary D, we define

cost(C,D) =
∑
y∈C

w(y)err(y, c).

A (non-weighted) matrix Y is considered a weighted matrix with w(y) = 1 for
every y ∈ Y .

Definition 1 (ε-coreset). Let Y be an d × n matrix, and D be a set of d × k
dictionaries. Let C be a weighted d × c matrix. We say that C is an ε-coreset
for Y if, for every D ∈ D, we have

(1− ε)cost(Y,D) ≤ cost(C,D)| ≤ (1 + ε)cost(Y,D). (1)

For example, it is easy to verify that Y is an ε-coreset of itself. However, an
ε-coreset C is efficient if c << n. In this case, cost(C,D) can be computed in
Tc << Tn time using only cd << nd space.

Algorithm Coreset(Y,D0, c).
Input: a d×nmatrix Y , an integer c ≥ 1, and a matrixD0 (of arbitrary size).
Output: a weighted c× d matrix C that satisfies Theorem 1.

Pick a non-uniform random sample S = {s1, s2, · · · , sc} of c i.i.d. columns
from Y , where y ∈ Y is chosen with probability proportional to err(y,D0).
That is, for every s ∈ S and y ∈ Y , the probability that s = y is

pr(y) =
err(y,D0)∑

y∈Y err(y,D0)
=

err(y,D0)
cost(Y,D0)

.

Return the weighted matrix C whose columns are the vectors of S (in some
arbitrary order), where each y ∈ C is weighted by

w(y) =
1

c · pr(y)
. (2)

The following lemma can be easily proved using Chernoff-Hoeffding’s inequality.

Lemma 1. Let Y be a d× n matrix, and δ, ε > 0 be. Let C be the output of the
algorithm Coreset with input parameters Y , D0 and

c ≥ 10 ln(1/δ)
ε2

.

Let D be a fixed d× k dictionary. Then, with probability at least 1− δ,

|cost(Y,D)− cost(C,D)| ≤ εcost(Y,D0) ·max
y∈Y

err(y,D)
err(y,D0)

.
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Corollary 1. Let b ≥ 1 be an integer and D0 be a dictionary, such that for
every D ∈ D:

(i) cost(Y,D0) ≤ b · cost(Y,D).
(ii) err(y,D) ≤ err(y,D0) for every y ∈ Y .

Put ε, δ > 0. Let C be the weighted matrix that is returned by the algorithm
Coreset with input parameters c ≥ 10b2 ln(1/δ)/ε2 and D0. Then, for a fixed
dictionary D ∈ D (which is independent of C), we have

(1− ε)cost(Y,D) ≤ cost(C,D) ≤ (1 + ε)cost(Y,D),

with probability at least 1− δ.
Proof. We have cost(Y,D0) ≤ bcost(Y,D) by property (i). Replacing ε with ε/b
in Lemma 1 yields

|cost(Y,D)− cost(C,D)| ≤ (ε/b)cost(Y,D0)max
y∈Y

err(y,D)
err(y,D0)

≤ εcost(Y,D)max
y∈Y

err(y,D)
err(y,D0)

≤ εcost(Y,D),

where the last inequality follows from property (ii).

2.3 Coreset for all k-Dictionary Queries

In order to have an ε-coreset for a set D of more than one dictionary, there are
still two problems that remain to be solved. Firstly, we need to compute D0 that
satisfies Properties (i) and (ii) of Corollary 1 with sufficiently small b. This will be
handle in the next section for our specific applications. Secondly, Definition 1 of
ε-coreset demands that C will approximate cost(C,D) simultaneously for every
D ∈ D. However, Corollary 1 holds, with probability at least 1 − δ, only for a
fixed dictionaryD ∈ D, i.e, a single query. If the size of D is finite, we can replace
δ with δ/|D| in Corllary 1 and use the union bound to obtain an ε-coreset for Y
of size

c = O

(
ln(|D|)b2 ln(1/δ)

ε2

)
. (3)

However, in the applications of this paper the size of D is infinite. In this case,
we use the result of [7] that is based on PAC-learning theory. Roughly speaking,
the result states that to obtain an ε-coreset, it suffices to replace the term ln(|D|)
in (3) by some dimension v that represents the complexity of the set D. This
dimension is similar to the classic notion of VC-dimension that is used in machine
learning [14]. Usually v is proportional to the number of parameters that are
needed to represent a dictionary D of D, which is, in the general case, the
number dk of entries in the matrix D.

Theorem 1. Let Y be a d × n matrix, ε, δ, b > 0 and v ≤ O(dk) be the di-
mension that corresponds to a set D of d × k matrices. Let D0 be a matrix as
defined in Corollary 1. Let C be the weighted matrix that is returned by the algo-
rithm Coreset with input parameters c ≥ v10b2 ln(1/δ)/ε2 and D0. Then, with
probability at least 1− δ, C is an ε-coreset of Y .
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3 Example Application: Approximating the Optimal
Dictionary

3.1 The k-Dictionary Problem

In this section we consider the following problem. The input is a parameter
k ≥ 1, a d × n matrix Y , and an error function err(·, ·). The output is a d × k
dictionary D∗ that minimizes cost(Y,D) =

∑
y∈Y err(y,D) over a given set

D ∈ D. For ε > 0, a (1 + ε)-approximation for this problem is a matrix D such
that cost(Y,D) ≤ (1 + ε)cost(Y,D∗).

For the error function 1, 2 and 3 in the beginning of Section 2.1 above, provable
(1+ε)-approximation algorithms are provided in [7–9], using coresets techniques.

For the more general and popular case in the context of sparse dictionaries
where j > 2 (the fourth error function in Section 2.1)D∗ minimizes the distances
to a set of

(
k
j

)
subspaces under constraints. Very little is known about minimizing

distances of points to multiple affine subspaces (that are neither points or lines).
For example, the problem of computing a pair of planes in three dimensional
space that minimize the sum (or sum of squared) distances from every point
to its closest plane is an open problem. This holds even for a corresponding
constant factor approximation.

In fact, it is not clear how to compute the closest distance to a set of subspaces
efficiently even for a given dictionary D and a point y ∈ y in time that is
polynomial in j. This is equivalent to answer Problem 1 for a matrix Y with
a single column y. Nevertheless, a lot of heuristics have been suggested over
the years for approximating distance to subspaces (called pursuit algorithms,
see a detailed description of these methods in [3]), for approximating points by
subspaces in general (see [6] and references therein), and for the k-dictionary
problem in particular (see references in [3]).

3.2 Coreset for the k-Dictionary Problem

We prove that, under natural assumptions on the input matrix Y and the set of
candidate dictionaries D, we can choose input parameters c and D0 such that
the algorithm Coreset(Y,D0, c) from Section 2.2 returns a small ε-coreset C
of Y .

There are two issues that need to be resolved: Firstly, it is not clear how
to compute b ≥ 1 and the input D0 from Theorem 1 that will satisfy the two
properties of Corollary 1. Note that the size c of the output coreset depends
on b, so we would like to choose D0 such that b is small. Secondly, we need to
compute the dimension v of the set D of all possible d × k dictionaries. Recall
that by Theorem 1, v is required in order to compute c.

In order to satisfy property (i), we use the fact that in our experiments on
both the synthetic and the real data, the variance of entries in every column
vector y of the input matrix Y is generally small. This is because y usually
represents a small block of pixels in an image. Letting D0 be the d × 1 matrix
(vector) of ones guarantees that err(y,D0) is not larger than the variance of y.
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Hence cost(Y,D0) =
∑

y∈Y err(y,D0) is the sum of these variances which is
usually not much larger than cost(Y,D) for every D ∈ D. This satisfies property
(i). Adding this vector D0 for every possible output dictionary D ∈ D satisfies
property (ii) since in this case err(y,D) ≤ err(y,D0) for every y ∈ Y .

Another option that will satisfy the above two properties is relevant when
running a heuristic that uses several iterations in order to compute D∗. In this
case, we may run the heuristic on the original input data Y only for a single
iteration, and choose D0 to be the returned dictionary. Property (i) will hold
under the assumption that the ratio b between the initial dictionary and the
rest of the dictionaries that will be computed by the heuristic is not very large.
Property (ii) will be satisfied under the assumption that err(y, ·) is highest on
the first iteration of the heuristic, for every column y of Y .

We chose the first option (where D0 = (1, · · · , 1)), for practical reasons (due
the simplicity of implementation), and for theoretical reasons (since the second
option assumes that the heuristic is based on iterations). Interestingly enough,
we found out that existing heuristics (such as the K−SVD algorithm in [3])
already add such a constant vector D0 for every dictionary that they output, for
different reasons. We summarize our decision and its justification in the following
theorem.

Theorem 2. Let D0 = (1, . . . , 1)T be the d-dimensional vector of ones. Let D
be a set of d × k dictionaries, such that each D ∈ D contains D0, and suppose
that OPT = minD∈D cost(Y,D) > 0. Let v denote the dimension of D.

Let Y be a d×nmatrix, and define b = cost(Y,D0)/OPT . Let c ≥ 10vb2 ln(1/δ)/ε2

for some ε, δ > 0. Then Coreset(Y,D0, c) returns, with probability at least 1− δ,
an ε-coreset of Y .

Determining c. Although the set of dictionaries that a heuristic tests (queries)
during its running time is finite, we still cannot use the union bound with Corol-
lary 1, since these dictionaries depend on the input coreset C. However, it is
reasonable to assume that, for a given Y , not all the possible d × k matrices
D have a positive probability (over the randomness of C) to be queried by the
algorithm. That is, we believe that the dimension v of the candidate set D is
significantly smaller than dk, but a more involved theoretical analysis of the
corresponding heuristic is needed. Also, it is not clear how to compute b in The-
orem 2. Practically, we will simply apply the algorithm Coreset with a value
of c that is determined by the available memory and time at hand. Hence, the
parameters δ, ε, b and v that are defined in Theorem 2 will be used only for the
theoretical analysis. Nevertheless, they guarantee that the required sample size
c is generally “small” for a reasonable values of δ and ε. The theoretical bound
on c also teaches us about the relation between the input parameters. For ex-
ample, the fact that c in Theorem 1 is independent of n implies that the ratio
between the computation time of cost(Y,D) and cost(C,D) converges to infinity
for asymptotically large n, while the error that is introduced by the coresets
remains approximately the same. Indeed, we observe these two phenomenas in
our experiments; see Fig. 1(a) and 2(a).
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4 Experimental Results

Hardware. We ran the experiments on a standard personal modern Laptop.
Namely, IBM Lenovo W500, as provided by the manufacturer, without addi-
tional hardware. In particular, we used the CPU “Intel Core 2 Duo processor
T9600 (2.80 GHz)” with 2GB memory. See manufacturer’s website (http://www-
307.ibm.com/pc/support/site.wss/document.do?lndocid=MIGR-71785) for ex-
act hardware details.
Software. The operation system that we used is “Windows Vista Business” and
the Matlab version is 2010b. For the K−SVD and OMP algorithms, we used the
implementation of Rubinstien that was generously uploaded on the Internet [13].
This implementation was used as a “black box” without changing a line of code.
The time and space improvements are therefore only due to the replacing of the
original input matrix Y with its coreset.

4.1 Synthetic Data

As in previously reported works [3, 10, 11], we first try to construct coresets of
synthetic data. In [3] it was shown how the K−SVD algorithm approximated
the original dictionary D∗ that generated a synthetic data matrix Y . In the
following experiments we replace Y by its (usually much smaller) coreset C, and
compare the results of applying K−SVD on C instead of Y . The construction
of C is done using algorithm Coreset with D0 and different values of c, as
defined in Theorem 2. The construction of the generative dictionary D∗ and the
input matrix Y was based on the suggested experiments in [3]. Generating the
dictionary D∗ and the matrix Y . A random (dictionary) matrixD∗ of size d×k =
20×50 was generated with i.i.d. uniformly distributed entries. Each column was
normalized to a unit norm. Then, a 20× n matrix Y was produced for different
values of n. Each column y of Y was created using a linear combination D∗x of
‖x‖0 = j = 3 random and independent different columns of D∗, with uniformly
distributed i.i.d. coefficients. White Gaussian noise with varying signal-to-noise
ratio (SNR) σ = 20 was added to the resulting vector D∗x. That is, Y =
D∗X +N where N is a matrix that represents the Gaussian noise in each entry,
and every column x of X corresponds to a column vector y in Y as defined
above. We run the experiment with 11 different assignments for n, that were
approximately doubled in every experiment: from n = 585 to n = 500, 000.
For every such value of n, 50 trials were conducted, when in every trial new
dictionary D∗ and matrices Y and X were constructed.
Applying K−SVD on Y . We run the K−SVD implementation of [13], where the
maximum number of iterations was set to 40. The rest of parameters were the
defaults of the implementation in [13]. We denote the output dictionary by DY .
Generating the coreset C. We implemented and run the algorithm Coreset(c,D0)
from Section 2.2 on the input matrix Y where the size of the coreset was set to
c = 5000. The parameter D0 was always set to be the column vector of d ones.
See Section 3.2 for more details.
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(a) (b)

Fig. 1. Comparison of the differences between the dictionaries DY DC and D∗ over
the number n of rows in the matrix Y . The dictionaries DY , DC are respectively the
dictionaries that were constructed using the original matrix Y , and its coreset C. The
original generator dictionary of Y is denoted by D∗.

Applying K−SVD on C. We called to the K−SVD algorithm using the same
parameters as the above call for Y , except for the maximum number of iterations.
After setting the number of iterations to 40 for the input C (as in the runs on
Y ), we got results that are only slightly worse than on Y , but significantly faster
(up to 100 times). We therefore decided to sacrifice time in order to get better
results, and used 120 iterations on the K−SVD with the input C. We denote the
output dictionary by DC .
Approximating the sparse coefficients matrix. In order to approximate the entries
of the matrix X , we used the OMP heuristic as defined in [12] and implemented
in [13]. The objective of OMP is to minimize ‖Y −DYXY ‖F for the given dic-
tionary DY and the input matrix Y , over every matrix XY whose columns are
sparse (‖x‖0 = j = 3 for every column x ∈ XY ). This is done by minimizing
‖y −DY x‖F for every column y ∈ Y (one by one) over the set of j-sparse vectors
x. Similarly, we computed XC that suppose to minimize ‖Y −DCXC‖ using the
OMP heuristic, as done for Y and DY .
Measurement. To measure how close DY is to D∗, compared to the difference
between DC and D∗, we used the same error measurement Distance(D,D∗) that
was used in the original K−SVD paper [3], and implemented in [13]. The com-
putation of Distance(D,D∗) for two dictionaries D and D∗ is done by sweeping
through the columns of D∗ and finding the closest column (in distance) in the
computed dictionary D, measuring the distance via 1 − |dT

i d̃i|, where di is a
column in D∗ and d̃i is its corresponding element in the recovered dictionary D.
The average distance is denoted by Distance(D,D∗). That is, Distance(D,D∗)
is the sum of distances over every i, 1 ≤ i ≤ k, divided by k. The Results. In
Fig. 2(a) we compare the difference (the y-axis) between the dictionaries (the
two lines) for different values of n (the x-axis). For example, the dotted line show
the average value, for every assignment of n, of Distance(DC , D

∗) over the 50
trials , between the generation dictionary D∗ and the dictionary that returned
when running K−SVD with the input matrix Y . The variance over the sets of 50
experiments that corresponds to the average in Fig 2(a) is shown in Fig. 2(b).
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(a) (b)

Fig. 2. (a) Ratio between running times of K−SVD over coreset C and original input
Y . (b) The distance between the approximated dictionary DC and the generating
dictionary D for different sizes of coreset C.

The comparison between the running times appears in Fig 2. The x-axis shows
the values of n as in Fig. 2, while the y-axis is the ratio between the running time
of constructing DY , the dictionary of Y , and the running time of constructing
DC , the dictionary of C. The construction time for DC is the sum of the time
it took to construct the coreset C from Y , and the time for constructing DC

from C.
Discussion. In Fig. 2(a) we see that the coreset is usually good at least as the
original set for reconstructing the generating dictionary D∗. By Theorem 2, the
quality of the coreset C depends on its size c, but not of n. Indeed, the error in
Fig. 2 seems to be independent of the value of n. In Fig. 2(b) we see that the
results are also more stable on the coreset runs.

Since the size of the coreset is the same (c = 5000), the value of n is getting
larger, and the running time of the K−SVD algorithm is linear in the rows of
the input matrix (c or n), it is not surprising that the ratio between running
times grows linearly with the value of n; see Fig. 2(a). For n = 500K in Fig 2(a),
the ratio between the running time is approximately 1:30 (0.032). For n = 1M
this ratio is approximately 1:60. However due to time and memory constraints
we didn’t repeat the experiment for n = 1M 50 times.
The role of the sample size c. By Theorem 2, the size c of the coreset C is poly-
nomial in 1/ε, where ε represents the desired quality of the coreset. In Fig. 2(b)
we show results for additional set of experiments for a constant n = 500K and
different values of the coreset size c. The number of iterations is still 120, and
the rest of the parameters remain the same as in the previous experiments. The
y-axis is the log of the distance between the dictionaries (base 10) over 50 trials.
Indeed, it seems that the error is reduced roughly linearly with the size of c.

4.2 Coresets for High-Definition Images

In [5] it is explained how to apply image denoising using the algorihtm K−SVD.
Fortunately, source code was also provided by Rubinstein [13]. We downloaded
high-definition images from the movie “Inception”’ that was recently released by
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(a) (b)

Fig. 3. (a) Noisy Image with SNR= 50. The resulting PSNR is 14.15dB. (b) Denoised
image using [5] on the small coreset. The resulting PSNR is ∼ 30.9.

Warner Bros; see web page “http://collider.com/new-inception-images-posters-
christopher-nolan/34058/”. We used only one of the images, whose size is 4752×
3168 = 15, 054, 336 pixels; see Fig. 3. We added a Gaussian noise of SNR = 50
which yields a noisy image of PSNR = 14.15. Then, we partition the noisy image
into 8 × 8 blocks as explained in [5], and convert the blocks into a matrix Y of
approximately n = 12M vectors of dimension d = 8 × 8 = 64. We then hoped
to apply the K−SVD as explained in [5] using the default parameters in [13].
However, we got “out of memory” error from Matlab already in the construction
of Y .

So, instead, we constructed a coreset C of Y in the streaming model us-
ing one pass over Y . In this model, coresets are constructed (using our algo-
rithm Coreset) from subsets of columns of Y that are loaded one by one and
deleted from memory. When there are too many coresets in memory, a coreset
for the union of coresets is constructed and the original coresets are deleted. See
details in [8]. After constructing such a coreset C of size c = 10000 for all the
columns of Y , we apply the K−SVD on the coreset using sparsity j = 10, and
k = 256 atoms, and 40 iterations. The PSNR was increased, on average of 10
experiments, from 14.15 to 30.9, with variance of ∼ 0.002, while the average
time for constructing the dictionary was 69 seconds with variance of ∼ 7.2

5 Conclusions and Further Work

We tried to repeat our experiments on real data where Y is partitioned into larger
blocks of size d = 50 × 50 = 2500 and an overcomplete dictionary of k > 3000.
Although the construction of C was fast, the running time of the OMP algorithm
(that is used by K−SVD and the denoising procedure for applying the dictionary)
is extremely slow when d and k are so large. Besides running time problems, it is
noted in [3, 5, 13] that K−SVD does not scale for high dimensional spaces (i.e,
large blocks size). We believe that this problem can be solved using recent and
more involved coresets techniques of clustering data in high dimensional space,
and coresets for the OMP algorithm. We leave this for future papers.
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Abstract. According to the Uniformization Theorem any surface can
be conformally mapped into a flat domain, that is, a domain with zero
Gaussian curvature. The conformal factor indicates the local scaling in-
troduced by such a mapping. This process could be used to compute
geometric quantities in a simplified flat domain. For example, the com-
putation of geodesic distances on a curved surface can be mapped into
solving an eikonal equation in a plane weighted by the conformal fac-
tor. Solving an eikonal equation on the weighted plane can then be done
with regular sampling of the domain using, for example, the fast march-
ing method. The connection between the conformal factor on the plane
and the surface geometry can be justified analytically. Still, in order to
construct consistent numerical solvers that exploit this relation one needs
to prove that the conformal factor is bounded.

In this paper we provide theoretical bounds over the conformal fac-
tor and introduce optimization formulations that control its behavior. It
is demonstrated that without such a control the numerical results are
unboundedly inaccurate. Putting all ingredients in the right order, we
introduce a method for computing geodesic distances on a two dimen-
sional manifold by using the fast marching algorithm on a weighed flat
domain.

1 Introduction

Consistent and efficient distance computation on various domains is a key com-
ponent in many important applications. Several papers tackle the problem of
geodesic distance computation on triangulated surfaces. The celebrated fast
marching method [7,9] enabled the solution in isotropic inhomogeneous domains
that are regularly sampled. It was later generalized [3] through a geometric
interpretation of the numerical update step, that enabled consistent and effi-
cient computation of distances in anisotropic domains. So far, the fast marching
method was implemented on manifolds given as either a triangulated mesh, a
parametrized surface [10,8], or implicitly defined in a narrow band numerically
sampled with a regular grid [5]. Traditionally, the fast marching method is ex-
ecuted on the manifold itself where some parametrization is provided. In these
cases, usually there is some processing involved in order to overcome the iregu-
larity of the numerical sampling. This is the case for the unfolding initialization
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step in [3]. Here, in order to avoid this procedure, we use a conformal mapping
of a given surface and compute distances in a simplified domain. In other words,
we conformally map the original curved surface into a flat plane in which we run
the fast marching using the conformal factor as a local weight.

1.1 Introduction to Conformal Mapping

Let us consider a two dimensional parametrized manifold X ∈ R3. It can be
defined by the functions x, y, z : R2 → R, such that (α, β) ∈ R2 defines a
coordinate in X given by X = (x(α, β), y(α, β), z(α, β)). Such a parametrization
induces a metric G, a scalar product 〈u, v〉G = uTGv, a gradient ∇G· = G−1∇·
where ∇· is the usual gradient with respect to α and β, and a Laplace Beltrami

operator ΔG· =
1√
g
∇T

(√
gG−1∇·) where g = det(G). We would like to map

the surface X defined by this manifold into D ∈ R2, preserving the angles of
intersections of corresponding curves. That is, given any two curves in X , their
images in D have to intersect at the same angle as in X . A conformal mapping
is a mapping function that has this property at each and every point, and can
be introduced by two functions (u(α, β), v(α, β)) that map our manifold in D

and obey the following condition ∇u =
GR√
g
∇v, where R =

(
0 1

−1 0

)
. This

restriction over (u, v) implies four properties

1. ΔGu = 0.
2. ΔGv = 0.
3. 〈∇Gu,∇Gv〉G = 0.
4. 〈∇Gu,∇Gu〉G = 〈∇Gv,∇Gv〉G.

This is equivalent to the Cauchy-Riemann condition if we take the metric G = I.
Denoting by J the Jacobian of the mapping (α, β) → (u, v), the previous

conditions can be written as( ‖∇Gu‖2
G 〈∇Gu,∇Gv〉G

〈∇Gu,∇Gv〉G ‖∇Gv‖2
G

)
= ‖∇Gu‖2

GI ⇔ (∇Gu,∇Gv)T G(∇Gu,∇Gv) = ‖∇Gu‖2
GI

⇔ (∇u,∇v)T G−1(∇u,∇v) = ‖∇Gu‖2
GI

⇔ JG−1JT = ‖∇Gu‖2
GI

⇔ G−1 = ‖∇Gu‖2
GJ−1J−T

⇔ JT J = G‖∇Gu‖2
G.

Hence, any mapping is conformal with respect to a metric G if and only if
there exists a scalar function μ, refered to as the conformal factor, such that its
jacobian J satisfies JTJ = μ2G. We also note that∥∥∥∥(dudv

)∥∥∥∥2

=
(
dα
dβ

)T

JTJ

(
dα
dβ

)
=
(
dα
dβ

)T

μ2G

(
dα
dβ

)
= μ2

∥∥∥∥(dαdβ
)∥∥∥∥2

G

.

It follows that
∥∥∥∥(dαdβ

)∥∥∥∥
G

=
1
μ

∥∥∥∥(dudv
)∥∥∥∥ .
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Such a mapping would allow us to compute distances on any metric space with
a generalized metric G using the computation of distance in an inhomogeneous
isotropic flat manifold.

2 Construction of a Discrete Harmonic Map

We start with a theorem that would be useful for our conformal map construc-
tion.

Theorem 1. Given a metric G defined on a regular domain D, and a function
f defined on ∂D, the solution f of the following problem

argmin
f∈C2(D)

f(x)=f0(x) ∀x∈∂D

{∫
D

‖∇Gf‖2G
}

satisfies ΔGf = 0 and f(x) = f0(x) ∀x ∈ ∂D.

The main idea when constructing a discrete conformal map according to Polthier
[6] is to find a triangulation T = {T1, . . . , TNT } (where Ti is a triangle, and NT is
the number of triangles) of our map withNV vertices, and search for a continuous
function uminimizing the Dirichlet energy. For example, we could find u given by

u(γ) = u0(γ) +
NV∑
i=1

uiφi(γ), where ui are some coefficients, and φi are functions

satisfying

1. φi ∈ C0(M)
2. φi(Vj) = δij ∀i, j ∈ {1, . . . , NV }
3. φi is linear in each triangle.

Vj designating the jth vertex of T. After introducing these prerequisites, one
can construct the function u, denoted as the discrete harmonic map, using the
minimization problem expression of the harmonic function. It can be shown [6]
that the discrete Laplace Beltrami operator applied to u at a vertex Vi can be
expressed as

Δu(Vi) =
∑

edges (i,j) at i

(cot(θij) + cot(ψij))(ui − uj),

where uj = u(Vj) and θij and ψij represent the angles supporting the edge ViVj ,
where Vj is a neighbor of Vi , and ui = u(Vi). We then have to solve the following
system of equations to find an harmonic function u∑

edges (i,j) at i

(cot(θij) + cot(ψij))(ui − uj) = 0, ∀i. (1)

After u has been computed, we have to find another conjugate discrete harmonic

function v, such that ∇v =
GR√
g

(∇u) . Next, we have to compute the gradient
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of u and perform a rotation by
π

2
. For that goal, Polthier [6] proposed to define

a mid-edge grid. For each edge (Vi, Vj), define a vertex at the mid-edge as V ∗
s =

Vi + Vj

2
. This way, each triangle (V1, V2, V3) is associated with a new triangle

(V ∗
1 , V

∗
2 , V

∗
3 ). If we define Ψr, the function associated to the vertex V ∗

r in the
mid-edge grid (or, equivalently to the edge (Vi, Vj) in the regular grid) we can
show that(

v3 − v1
v3 − v2

)
=

1
2

(
(u2 − u1) cot(θ21) + (u2 − u3) cot(θ23)
(u2 − u1) cot(θ21) + (u3 − u1) cot(θ31)

)
,

where vr, vs are the values of v on the mid-edge vertices V ∗
r , V

∗
s located along

the edges (Vi, Vj), (Vj , Vk) (respectively), and θjk is the oriented angle supporting
the edge (j, k).

We end up with an algorithm, summarized for example in [4,6], that computes
the mid-edge conformal flattening.

Algorithm 1. Mid-Edge discrete conformal map
Require: T triangulation of the space Ω

Choose a face to cut, C = {Vic , Vjc , Vkc} ∈ T, and solve:∑
j∈N (i)

(ui − uj) (cot(θij) + cot(ψij)) = 0 ∀i /∈ {ic, jc, kc}

Set arbitrary value for u on C and solve :(
vj − vk

vj − vl

)
=

1

2

(
(ul − uk) cot(θlk) + (ul − uj) cot(θlj)
(ul − uk) cot(θlk) + (uj − uk) cot(θjk)

)

For the mid-edge vertex V ∗
r =

Vp + Vq

2
, set the value of the conformal map on the

midedge grid

u∗
r =

up + uq

2
, v∗

r = vr

We also have the value of the conformal factor for each triangle Tk =(Vp, Vq, Vr)

μ(Tk) = ‖∇u(xq)‖
=

(
1

2 area Tq

(
(ur − uq)

2 cot(θp) + (up − uq)
2 cot(θr) + (ur − up)

2 cot(θq)
)) 1

2 .

3 Fast Marching on the Conformal Map

In the following experiments, we conformally mapped several functions into R2

and run the fast marching algorithm on the conformal map using the confor-
mal factor as a local scaling of a uniform isotropic metric tensor. That is, we
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numerically solve the eikonal equation ||∇f(x, y)‖ = μ(x, y). When mapping a
surface, we have to take care of the boundary conditions. The way we define the
boundary of our target map is important, and can help us control the conformal
factor and thereby the numerical accuracy of our scheme. Without controlling
the boundary, all the points of the surface boundary could be mapped to a line.
While uniforming the metric and solving one problem, we encounter a new one,
that is, a non-uniform conformal factor. The conformal factor observes the cur-
vature of the surface on one hand, but, yields a challenging highly non-uniformly
sampled numerical domain to operate on the other.

In our first example, Figure 1, we map the surface z = f(x, y) = exp(−0.2x2−
0.5y2) without controlling the boundary.

Fig. 1. Left to right, top to bottom: Original surface, midedges surface, conformal map,
and zoom in

If we zoom in the area with the smallest triangles we observe that there
are three points around which small triangles are concentrated. These points
correspond to the corners of the original surface. When we compute the geodesic
distances from the corner point (−2,−2) to the rest of the surface points, the
result presented in Figure 2 demonstrates numerical inaccuracies caused by the
lack of control over the conformal factor.



476 Y. Aflalo and R. Kimmel

Fig. 2. Geodesic distance from the point (-2,-2) computed with FMM on the conformal
map (Left) and with the FMM on the triangulated domain (Rigth)

Our next challenge would be to bound the ratio between the smallest con-
formal factor and the largest one on the map. Actually, in the above example,
the areas ratio is in the order of 10−13 and the conformal factor ratio is 10−7.
Therefore, it is not trivial to numerically approximate geodesic distances using
the FMM on the uniform grid obtained by sampling an arbitrary conformal map.
Next, we try to overcome this problem by manipulating the boundary points of
the conformal map.

3.1 Controlling the Conformal Factor

We would like to bound the minimal conformal factor. For that goal, we start by
studying the computational aspect of the problem. We could try to manipulate
the boundary conditions. In Polthier’s algorithm, the scheme involves in finding
u and v. We find u by solving the system of equations (1). More precisely, this
system of equations is defined for each vertex i that does not belong to the
boundary of our domain. Define A to be the matrix of cotangent weights, such
that the previous equations can be written as Au = 0. Let us define Ã to be
the matrix obtained by removing from A the rows and columns that correspond
to boundary points. As an example, if the point n belongs to the boundary of
our domain, we remove from A the nth row and the nth column. We introduce
also P the matrix whose rows are the rows of A corresponding to the removed
points from A, and ũ a vector representing the values of u along the boundary
in a lexicographic order. ũ is filled with the ui where i ∈ B, B being the set of
indices of the points along the boundary.

Then, it can be shown that there exists a matrix M whose columns are taken
from the identity matrix and from the matrix Ã−1P such that u = Mũ. It
can be also shown that there exist matrices Ki such that μ(xi)2 = uTKiu =
ũ′ (M ′KiM) ũ.

We would like to control the ratio between the smallest conformal factor and
the largest one. We do so by maximizing the following expression

max
uj

mini μ(xi)2

maxi μ(xi)2
,

s.t.
uj ∈ [0, 1], ∀j ∈ B.
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Actually, the conformal map we get contains some irregularities as some regions
of our map are associated with high conformal factor, that are numerically real-
ized as large triangles while some other regions to small conformal factors that
correspond to small triangles. Then, when using the conformal factor, we should
work with fine grid determined by the smallest triangle to preserve the numerical
accuracy captured by the triangulated mesh.

The above problem can be reformulated as

max
ũj

[
mini ũ

′ (M ′KiM) ũ
maxi ũ′ (M ′KiM) ũ

]
,

s.t.
ũj ∈ [0, 1], ∀j.

Since ũ represents the first coordinate of the boundary points, to avoid foldovers,
we have to make sure that its coordinates are increasing and decreasing at most
once. The coordinates of ũ have to grow up to an index from which they decrease.
This constraint can be written as

Au � 0, A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 0 . . . . . . . . .
0 1 −1 0 . . . . . .
...

. . . . . . . . . . . .
...

0 . . . −1 1 0 . . .
...

. . . . . . . . . . . .
...

0 . . . . . . . . . −1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Actually, without the previous constraint, we could get a conformal map with
foldovers as shown in Fig. 3.

Fig. 3. Unconstrained optimal conformal map
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Since the conformal factor can be normalized by restricting ũj ∈ [0, 1], ∀j, we
can rewrite our problem and its dual.⎧⎪⎪⎪⎨⎪⎪⎪⎩

max
ũ

[
min

i
ũ′ (M ′KiM) ũ

]
,

s.t.
ũj ∈ [0, 1], ∀j
Aũ � 0.

⇒

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min

i

[
max

ũ
ũ′ (M ′KiM) ũ

]
.

s.t.
ũj ∈ [0, 1], ∀j
Aũ � 0.

This leads us to the solution of the non-convex optimization problem

max
ũ

ũ′Kũ

s.t.
Bũ � b.

(2)

Solving Problem (2) by manipulating the values of u along the boundary, the
areas ratio in our example can be increased to 0.34 and the conformal factor
ratio becomes 0.59. We can then obtain accurate results, see Fig. 4 and can
compare the error between consistent geodesic distances (computed with the
Tosca toolbox[1]), and the geodesic distances computed with FMM on a flat
regularly sampled domain. We notice that in this case, the error is of the same
order as that of the FMM.

We repeat the experiment for another surface given by the peaks function of
Matlab with the same boundary condition, see Fig. 4.

So far, we demonstrated the difficulties of working with conformal mapping
and showed that manipulating the boundary conditions can lead to a consistent
scheme. Next provide more motivation for maximizing the conformal factor.

4 Bounding the Conformal Factor

Let us consider S, a smooth surface embedded in R3, and G its induced metric.
If u : S → R is a function defined on the surface, we can define another metric
Ḡ = e2uG, that is conformal to the original metric, since the two metrics are
proportional. The Gaussian curvature k̄ of the new metric changes by [2]

k̄ = e−2u(k −ΔGu)

where k is the original Gaussian curvature, and ΔG the Laplace-Beltrami oper-
ator. In the case of a conformal mapping to the plane, the target curvature of
the new metric is zero. Then, the above relation becomes

ΔGu = k.

Let us introduce a fundamental property of the Laplace-Beltrami operator:
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Fig. 4. Left to right, top to bottom: Original surface, midedges surface, geodesic
distance with FMM on the surface, geodesic distance with FMM on the conformal

map,conformal map optimized for max
μmin

μmax
, the difference between the geodesic

distances
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Definition 1. A linear differential operator L of order n on a domain Ω in Rd

given by

Lf =
∑

‖α‖�n

aα(x)∂αf

is called elliptic if for every x in Ω and every non-zero ξ in Rd,∑
‖α‖=n

aα(x)ξα �= 0.

Lemma 1. The Laplace-Beltrami operator is an elliptic operator.

Proof. We have ΔGf = trace
(
G−1∇2f

)
+ vt∇f where vj =

1√
g

∑
i

∂i

(√
ggij

)
.

Then, the ΔG highest order derivative terms are given by trace
(
G−1∇2f

)
. Tak-

ing a vector ξ �= 0 ∈ R2, we have, with the notation of Lemma 1,
∑

‖α‖=2

aα(x)ξα =

trace
(
ξTG−1ξ

) �= 0 since G−1 is a positive definite matrix. This proves that the
Laplace-Beltrami operator is elliptic.

The following lemma gives us an upper bound over the conformal factor when
the target domain is bounded.

Lemma 2. Given a C∞ domain C ∈ R2, with a metric G, there exists a func-
tion b such that for any function f : C :→ R s.t. ∀p ∈ ∂C : f(p) = 0, and a
positive real number k such that ‖ΔGf‖ � k, we have

sup
x∈C

{‖f(x)‖} � b(k).

Proof. According to the elliptic regularity theorem, for any q ∈]1,∞[, if C is
regular, if ΔG is an elliptic operator, and if ΔGf ∈ Lq(C), then f ∈ W 2,q(C)
where W 2,q(C) is the (2, q)-Sobolev space of C, and there exists a function gG

C (q)
that depends only on C, G and q such that

‖f‖W 2,q � gG
C (q)‖ΔGf‖Lq .

Moreover, the Sobolev injection theorem states that if q > 2, then there exists a
function hG

C(q) that depends only on C and q such that

‖f‖C2(C) � hG
C(q)‖f‖W 2,q

where ‖f‖C1(C) = sup
x∈C

{‖f(x)‖}. We can then conclude that

sup
x∈C

{‖f(x)‖} � hG
C(q)gG

C (q)μ(C)k = b(k).
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Using the relation u = logμ, we can choose the conformal factor such that μ = 1
on ∂C. The previous lemma states that logμ is upper bounded, which proves
that μ is lower and upper bounded, and that

sup |μ|
inf |μ| � e2b(k).

This bound justifies using the conformal map for numerically computing geo-
metric measures like geodesic distances. We can then conclude that since it is
possible to find a boundary condition for the conformal factor that leads to a
global upper bound over the ratio, our optimization programming on the confor-
mal factor is justified. The computation of geometric quantities in the conformal
mapping in this case is thereby consistent.

5 Conclusions

Conformal mapping a surface to a plain is a powerful as analysis procedure.
Still, in order to justify its usage as a computational tool one needs to control
the numerical behavior of this mapping. We proved that a lower bound over
the ratio between the minimal and the maximal conformal factor exists. We
demonstrated that this theoretical bound does not help much in practice. Next,
we formulized optimization problems that maximize this ratio. It allowed us to
efficiently and accurately compute geodesic distances using regular sampling of
the plain.
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Polyakov Action on (ρ, G)-Equivariant Functions

Application to Color Image Regularization
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Abstract. We propose a new mathematical model for color images tak-
ing into account that color pixels change under transformation of the
light source. For this, we deal with (ρ,G)-equivariant functions on prin-
cipal bundles, where ρ is a representation of a Lie group G on the color
space RGB. We present an application to image regularization, by mini-
mization of the Polyakov action associated to the graph of such functions.
We test the groups IR+∗, DC(3) of contractions and dilatations of IR3

and SO(3) with their natural matrix representations, as well as IR+∗ with
its trivial representation. We show that the regularization has denoising
properties if the representation is unitary and segmentation properties
otherwise.

Keywords: Differential geometry-Fiber bundle-Polyakov functional-
Color image regularization.

1 Introduction

Over the last years, mathematical models of images are more and more so-
phisticated and abstract in order to incorporate more information about images
[1],[3],[6],[7]. In this paper, we consider a new framework for color images, dealing
with fiber bundles, that generalizes the framework of manifolds [9]. Differential
geometry of manifolds has been widely investigated in image processing/analysis
[5]. In particular, the notion of Riemannian metric has been introduced in order
to provide a measure of variations of images [8]. Lately, vector bundles have been
introduced in order to take also into account the vector aspect of the color space
RGB [2]. Inspired by geometric models in physics [4], we propose a new math-
ematical representation for a color image, as a (ρ,G)-equivariant function on a
principal bundle of the form Ω ×G, where Ω ⊂ IR2 is the domain of the image
and (ρ,G) is a Lie group representation. This model allows to take into account
that the image of an observed scene is dependent of the light source, and that
modifications of the light source modify the image. By the (ρ,G)-equivariance,
we assume that the modifications of the light source can be represented by the
action of a Lie group G, and that the pixels of the color image change following
the representation ρ on the vector space IR3 embedding the color space RGB. In
this paper, we propose an application of this new model to image regularization.

A.M. Bruckstein et al. (Eds.): SSVM 2011, LNCS 6667, pp. 483–494, 2012.
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The graph ϕ of such a function realizes the embedding of the manifold Ω×G into
the manifold Ω×G× IR3. Then, we consider the corresponding Polyakov action
S(ϕ, h,Q) where Q is a Riemannian metric on Ω×G× IR3 and h is the induced
metric on Ω × G. Minimizing the functional with respect to the embedding ϕ
provides the evolution equations of the regularization process. We test the group
IR+∗, DC(3) of contractions and dilatations of IR3 and SO(3) with their natural
matrix representations, as well as IR+∗ with its trivial representation.

2 Color Images as (ρ, G)-Equivariant Functions on
Principal Bundles

2.1 The General Construction

Definition 1 (Principal bundle). A smooth locally trivial principal bundle is
a quadruplet (P, π,X,G) such that:
-X and P are two C∞ manifolds, G is a Lie group, π:P �−→ X is a surjective
map such that the preimage π−1(x) of x ∈ X is diffeomorphic to G, and there
is a transitive and free action of G on π−1(x).
-for each x ∈ X, there exist a open set U ⊃ x and a diffeomorphism Φ:U×G −→
π−1(U) such that π ◦ Φ(y, g) = y ∀y ∈ U, ∀g ∈ G.

The principal bundle is trivial if there exists a diffeomorphism Φ:U × G −→ P
such that π ◦ Φ(y, g) = y ∀y ∈ X, ∀g ∈ G.

Definition 2 (Group representation). Let G be a Lie group, and V be a vec-
tor space endowed with a topology. A representation ρ of G on V is a continuous
group morphism from G to GL(V ). Assuming that V is endowed with a scalar
product < , >, the representation ρ is said to be unitary if it satisfies

< ρ(g)(v), ρ(g)(w) >=< v,w >, ∀v, w,∈ V, g ∈ G

Definition 3 ((ρ,G)-equivariant function on principal bundle). Let (ρ,G)
be a group representation on IRn. A function f ∈ C∞(P, IRn) is (ρ,G)-equivariant
if it satisfies

f(p · g) = ρ(g)f(p)

where · denotes the action of G on the fibers.

Let I:Ω ⊂ IR2 −→ IR3 be a color image given with its coordinates (I1, I2, I3)
in the RGB color space. In this paper, we embed RGB into the manifold IR3

in the cartesian coordinates system (z1, z2, z3). Endowing the manifold IR3 of a
vector space structure, we have

I(x1, x2) = I1(x1, x2)e1 + I2(x1, x2)e2 + I3(x1, x2)e3

in the corresponding basis (e1, e2, e3).
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Let (ρ,G) be a Lie group representation on IR3. Under its action on IR3, the
group G acts on the basis (e1, e2, e3). Let P be the set of basis obtained by the
transformations of (e1, e2, e3) under the action of the group G, denoted by ·. The
action of G on P is transitive and free. Denoting by π the projection of Ω × P
on Ω such that

π(x1, x2, g · (e1, e2, e3)) = (x1, x2),

the quadruplet (Ω × P , π,Ω,G) forms a trivial principal bundle. The global
diffeomorphism Φ:Ω ×G −→ Ω × P is given by

Φ(x1, x2, g) = (x1, x2, g · (e1, e2, e3))
From the function I, we construct a (ρ,G)-equivariant function J on the principal
bundle (Ω × P , π,Ω,G) defined by

J(x1, x2, g · (e1, e2, e3)) = ρ(g)I(x1, x2) (1)

In particular, we have

J(x1, x2, (e1, e2, e3)) = I(x1, x2) (2)

since ρ(e) = Id by definition of a group representation ρ.

2.2 Interpretation of the (ρ, G)-Equivariance for Color Images

By the function J we construct, we take into account that some transformations
of the light source induce color changes on the image. Indeed, by (2) we assign
the basis (e1, e2, e3) to the light source of the original image I, that we assume
to be composed of red, green and blue lights. Then, we assimilate a basis change
given by the action g �−→ g · (e1, e2, e3) to a modification of the light source. By
(1), the representation ρ tells how the pixels of the color image change under this
basis change, and consequently under the corresponding modification of the light
source. By the use of the fiber bundle context, we allow that the transformation
of the light source change with respect to the points of Ω.

We consider the groups SO(3), and DC(3) of dilatations and contractions of
IR3, with their natural representations on IR3, as well as (IR+∗,×) with both its
natural and trivial representations on IR3. Let v ∈ IR3 of coordinates (v1, v2, v3)
in the basis (e1, e2, e3).

The Group (IR+∗, ×). The action of exp(a) ∈ IR+∗ on the basis (e1, e2, e3)
gives the basis

(exp(a)e1, exp(a)e2, exp(a)e3) (3)

This basis change may be interpreted as a homogeneous modification of the
intensities of the red, green and blue lights that compose the original light source.

The natural representation of (IR+∗,×) on IR3 is the map defined by

ρ(exp(a)): (v1, v2, v3) �−→ (exp(a)v1, exp(a)v2, exp(a)v3)

This representation makes the colors change in the same way as the light source
does in (3).
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The trivial representation of (IR+∗,×) on IR3 is the map defined by

ρ(exp(a)): (v1, v2, v3) �−→ (v1, v2, v3)

This representation makes the colors be invariant with respect to a modification
of the light source of the form (3).

The Group DC(3). We define the group DC(3) of dilatations and contractions
of IR3 as the group of linear transformations represented by the matrices of the
form diag(exp(a), exp(b), exp(c)) in the basis (e1, e2, e3). The action of such a
transformation on the basis (e1, e2, e3) gives the basis

(exp(a)e1, exp(b)e2, exp(c)e3) (4)

This basis change may be interpreted as an inhomogeneous modification of the
intensities of the red, green and blue lights that compose the original light source.

The natural representation of DC(3) on IR3 is the map defined by ρ(g): v �−→
(exp(a)v1, exp(b)v2, exp(c)v3) where the matrix representation of g is given by
diag(exp(a), exp(b), exp(c)) in the basis (e1, e2, e3).

This representation makes the colors change as the light source does in (4).

The Group SO(3). Let A be the matrix representing the rotationR in the basis
(e1, e2, e3). The action of R on the basis (e1, e2, e3) gives a new basis represented
by the matrix A in the basis (e1, e2, e3).

This basis change may be interpreted as a modification of the three lights
composing the original light source in both intensity, saturation and hue.

The natural representation of SO(3) on IR3 is the map defined by

ρ(R): v �−→ A

⎛⎝ v1v2
v3

⎞⎠
This representation makes the colors change as the light source does.

We have seen that the natural representations of the groups (IR+∗,×), DC(3)
and SO(3) on IR3 make the colors change in the same way as the basis do. Hence,
colors are treated as covectors and not as vectors.

3 Minimization of the Polyakov Action Related to the
Graph of (ρ, G)-Equivariant Functions: A Case Study

Following the notations of Section 2.1, the graph of the function J ◦ Φ given by

ϕ: (x1, x2, g) �−→ (x1, x2, g, ρ(g)I(x1, x2))

realizes an embedding of the manifold P = Ω × G into P × IR3. Endowing the
manifolds P and P × IR3 of Riemannian metrics h and Q, we can consider the
corresponding Polyakov action S(ϕ, h,Q) given by

S(ϕ, h,Q) =
∫

P

hμν ∂ϕ
i

∂xμ

∂ϕj

∂xν
Qij

√
hdP (5)
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In this section, we minimize the functionnal (5) with respect to the embedding
ϕ, where h is the metric on P induced by the metric Q on P × IR3. We test for
the different group representations studied in Section 2.2, from which we propose
an application to color image regularization.

The Euler-Lagrange equations with respect to the embedding ϕ are

− 1
2
√
h
Qil ∂S

∂ϕl
= Δhϕ

i + Γ i
jk∂μϕ

j∂νϕ
khμν (6)

where Δh is the Laplace-Beltrami operator on the Riemannian manifold (P, h),
and Γ i

jk are the Levi-Cevita coefficients of the Riemannian manifold (P × IR3, Q)
with respect to the frame induced by a coordinates system on P × IR3.

We deduce that the problem of finding the embedding ϕ minimizing the
Polyakov action is dependent of the metric Q we construct on the embedding
manifold Ω ×G× IR3. In this paper, we construct Riemannian metrics Q of the
form Q = Q1 ⊕ Q2 ⊕ Q3 where Q1, resp. Q2, resp. Q3 is a Riemannian metric
on Ω, resp. G , resp. IR3. In particular, we construct bi-invariant metrics on G.

3.1 The Case (ρ, G) Is the Natural Representation of (IR+∗, ×) on
IR3

Riemannian Geometry of (IR+∗, ×). The map

ψ: a �−→ exp(a)

is a global chart of (IR+∗,×), and makes a be a coordinates system of (IR+∗,×).
The metric given by γ, for some constant γ, in the frame (∂/∂a) is bi-invariant.

The Induced Metric h. The map J ◦ Φ:Ω × IR+∗ −→ IR3 is defined by

J ◦ Φ(x1, x2, exp(a)) = (exp(a)I1(x1, x2), exp(a)I2(x1, x2), exp(a)I3(x1, x2))

Then, let us consider the embedding

ϕ: (x1, x2, exp(a)) �−→ (x1, x2, exp(a), J ◦ Φ(x1, x2, exp(a)))

of Ω× IR+∗ into Ω× IR+∗× IR3. We equipp Ω× IR+∗× IR3 with the Riemannian
metric Q given by

Q = diag(1, 1, γ, λ, λ, λ)
in the frame (∂/∂x1, ∂/∂x2, ∂/∂a, ∂/∂z1, ∂/∂z2, ∂/∂z3), for strictly positive con-
stants λ and γ. Then, the induced metric h on Ω× IR+∗ has a symmetric matrix
representation, given by
h11(x1, x2, exp(a)) = 1 + λ exp(2a)(

∑3
k=1 I

k
x1

(x1, x2)
2)

h12(x1, x2, exp(a)) = λ exp(2a)(
∑3

k=1 I
k
x1

(x1, x2)Ik
x2

(x1, x2))
h13(x1, x2, exp(a)) = λ exp(2a)(

∑3
k=1 I

k
x1

(x1, x2)Ik(x1, x2))
h22(x1, x2, exp(a)) = 1 + λ exp(2a)(

∑3
k=1 I

k
x2

(x1, x2)
2)

h23(x1, x2, exp(a)) = λ exp(2a)(
∑3

k=1 I
i
x2

(x1, x2)Ik(x1, x2))
h33(x1, x2, exp(a)) = γ + λ exp(2a)(

∑3
k=1 I

k(x1, x2)
2)

in the frame (∂/∂x1, ∂/∂x2, ∂/∂a).
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Minimization with Respect to the Embedding ϕ. All the coefficients of
the Levi-Cevita connection of the Riemannian manifold (P × IR3, Q) equal zero
in the frame (∂/∂x1, ∂/∂x2, ∂/∂a, ∂/∂z1, ∂/∂z2, ∂/∂z3). Then, from the mini-
mization of the Polyakov action with respect to the embedding, we obtain the
following evolution equations for i = 4, 5, 6 in (6)

∂J i−3

∂t
= ΔhJ

i−3 (7)

3.2 The Case (ρ, G) Is the Trivial Representation of (IR+∗, ×) on
IR3

The Induced Metric h. From Section 2, the map J ◦ Φ:Ω × IR+∗ −→ IR3 is

J ◦ Φ(x1, x2, exp(a)) = (I1(x1, x2), I2(x1, x2), I3(x1, x2))

Then, let us consider the embedding

ϕ: (x1, x2, exp(a)) �−→ (x1, x2, exp(a), I1(x1, x2), I2(x1, x2), I3(x1, x2))

of Ω× IR+∗ into Ω× IR+∗× IR3. We equipp Ω× IR+∗× IR3 with the Riemannian
metric Q given by

Q = diag(1, 1, γ, λ, λ, λ)

in the frame (∂/∂x1, ∂/∂x2, ∂/∂a, ∂/∂z1, ∂/∂z2, ∂/∂z3), for strictly positive con-
stants λ, γ. Then, the induced metric h onΩ×IR+∗ is given by h(x1, x2, exp(a)) =⎛⎜⎜⎜⎜⎝

1 + λ(
∑3

k=1 I
k
x1

(x1, x2)
2) λ(

∑3
k=1 I

k
x1

(x1, x2)Ik
x2

(x1, x2)) 0

λ(
∑3

k=1 I
k
x1

(x1, x2)Ik
x2

(x1, x2)) 1 + λ(
∑3

k=1 I
k
x2

(x1, x2)
2) 0

0 0 γ

⎞⎟⎟⎟⎟⎠
in the frame (∂/∂x1, ∂/∂x2, ∂/∂a).

Minimization with Respect to the Embedding ϕ. By properties of the
metric h and the function J , equations (7) may be written ∂Ii−3/∂t = ΔgI

i−3,
where g is the Riemannian metric on Ω of matrix representation given by
gij(x1, x2) = δij + λ(

∑3
k=1 I

k
xi

(x1, x2)Ik
xj

(x1, x2))) in the frame (∂/∂x1, ∂/∂x2).

3.3 The Case (ρ, G) Is the Natural Representation of DC(3) on IR3

Riemannian Geometry of DC(3). The map

ψ: (a1, a2, a3) �−→ diag(exp(a1), exp(a2), exp(a3))

is a global chart of DC(3), and makes (a1, a2, a3) be a coordinates system of
DC(3).

The metric on DC(3) given by the matrix representation diag(γ, γ, γ) in the
frame (∂/∂a1, ∂/∂a2, ∂/∂a3), for some constant γ is bi-invariant.



Polyakov Action on (ρ, G)-Equivariant Functions 489

The Induced Metric h. The map J ◦ Φ:Ω× DC(3) −→ IR3 is defined by
J ◦ Φ(x1, x2, exp(a1), exp(a2), exp(a3)) =

(exp(a1)I1(x1, x2), exp(a2)I2(x1, x2), exp(a3)I3(x1, x2))

Then, let us consider the embedding ϕ: (x1, x2, exp(a1), exp(a2), exp(a3)) �−→
(x1, x2, exp(a1), exp(a2), exp(a3), J ◦ Φ(x1, x2, exp(a1), exp(a2), exp(a3))

of Ω× DC(3) into Ω× DC(3) ×IR3 given by the graph of the function J ◦Φ. We
equipp Ω× DC(3) ×IR3 with the Riemannian metric Q given by

Q = diag(1, 1, γ, γ, γ, λ, λ, λ)

in the frame (∂/∂x1, ∂/∂x2, ∂/∂a1, ∂/∂a2, ∂/∂a3, ∂/∂z1, ∂/∂z2, ∂/∂z3), for strictly
positive constants λ and γ. Hence, the induced metric h on Ω× DC(3) has a sym-
metric matrix representation, given by hij(x1, x2, exp(a1), exp(a2), exp(a3)) =⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

δij + λ
(∑3

k=1 exp(2ak)Ik
xi(x1, x2)Ik

xj (x1, x2)
)

if i, j ≤ 2

λ exp(2aj−2) I
j−2
xi (x1, x2)Ij−2(x1, x2) if i ≤ 2 and j ≥ 3

δij(γ + λ exp(2aj−2)Ij−2(x1, x2)
2) if i, j ≥ 3

in the frame (∂/∂x1, ∂/∂x2, ∂/∂a1, ∂/∂a2, ∂a3).

Minimization with Respect to the Embedding ϕ. All the coefficients of
the Levi-Cevita connection of the Riemannian manifold (P × IR3, Q) equal zero
in the frame (∂/∂x1, ∂/∂x2, ∂/∂a1, ∂/∂a2, ∂/∂a3, ∂/∂z1, ∂/∂z2, ∂/∂z3). Then,
from the minimization of the Polyakov action with respect to the embedding,
we obtain the following evolution equations for i = 6, 7, 8 in (6)

∂J i−5

∂t
= ΔhJ

i−5

3.4 The Case (ρ, G) Is the Natural Representation of SO(3) on IR3

Riemannian Geometry of SO(3). The Euler angles (θ1, θ2, θ3) determine a
chart ψ of SO(3) given by

ψ(θ1, θ2, θ3) =

⎛⎝1 0 0
0 cos θ1 sin θ1
0 − sin θ1 cos θ1

⎞⎠⎛⎝ cos θ2 0 sin θ2
0 1 0

− sin θ2 0 cos θ2

⎞⎠⎛⎝ cos θ3 sin θ3 0
− sin θ3 cos θ3 0

0 0 1

⎞⎠
and make (θ1, θ2, θ3) be a coordinates system of SO(3).

The Riemannian metric given by the matrix representation

B =

⎛⎝ γ 0 γ sin θ2
0 γ 0

γ sin θ2 0 γ

⎞⎠
in the frame (∂/∂θ1, ∂/∂θ2, ∂/∂θ3), for some constant γ, is bi-invariant.
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The Induced Metric h. The map J ◦ Φ:Ω× SO(3) −→ IR3 is defined by

J(x1, x2, ψ(θ1, θ2, θ3)) = ψ(θ1, θ2, θ3)

⎛⎝ I1(x1, x2)
I2(x1, x2)
I3(x1, x2)

⎞⎠
Then, let us consider the embedding

ϕ: (x1, x2, ψ(θ1, θ2, θ3)) �−→ (x1, x2, ψ(θ1, θ2, θ3), J(x1, x2, ψ(θ1, θ2, θ3))

of Ω× SO(3) into Ω× SO(3) ×IR3. We equipp Ω× SO(3) ×IR3 with the Rie-
mannian metric Q given by

Q = diag(1, 1)⊕B ⊕ diag(λ, λ, λ)
in the frame (∂/∂x1, ∂/∂x2, ∂/∂θ1, ∂/∂θ2, ∂/∂θ3, ∂/∂z1, ∂/∂z2, ∂/∂z3), for strictly
positive constant λ and γ. The induced metric h on Ω× SO(3) has a symmetric
matrix representation given by hij(x1, x2, θ1, θ2, θ3)=⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δij + λ[
∑3

k=1 Ij

xi(x1, x2)I
j

xj (x1, x2)] if i, j ≤ 2

λ[sin θ2(I
1

xi(x1, x2)I
2(x1, x2)−I2

xi(x1, x2)I
1(x1, x2))+cos θ2 sin θ3(I

3
xi(x1, x2)I

1(x1, x2)
−I1

xi(x1, x2)I3(x1, x2)) + cos θ2 cos θ3(I
2

xi(x1, x2)I
3(x1, x2) − I3

xi(x1, x2)I
2(x1, x2))]

if i ≤ 2 and j = 3

λ[cos θ3(I
1

xi(x1, x2)I
3(x1, x2) − I3

xi(x1, x2)I
1(x1, x2)) + sin θ3(I

2
xi(x1, x2)I

3(x1, x2)
−I3

xi(x1, x2)I
2(x1, x2))] if i ≤ 2 and j = 4

λ[I1
xi(x1, x2)I

2(x1, x2) − I2
xi(x1, x2)I

1(x1, x2)] if i ≤ 2 and j = 5

γ + λ[(sin2 θ3 + cos2 θ3 sin2 θ2)I
1(x1, x2)

2 + (cos2 θ3 + sin2 θ2 sin2 θ3)I
2(x1, x2)

2

+cos2 θ2I
3(x1, x2)

2 + 2(− sin θ3 cos θ3 + sin θ3 cos θ3 sin2 θ2)I
1(x1, x2)I

2(x1, x2)
−2(sin θ2 cos θ2 cos θ3)I

1(x1, x2)I3(x1, x2)−2(sin θ2cosθ2 sin θ3)I
2(x1, x2)I3(x1, x2)]

if i = j = 3

λ[−(cos θ2 cos θ3 sin θ3)I
1(x1, x2)

2+(cos θ2 cos θ3 sin θ3)I
2(x1, x2)

2+(cos θ2 cos2 θ3

− cos θ2 sin2 θ3)I
1(x1, x2)I

2(x1, x2) − (sin θ2 sin θ3)I
1(x1, x2)I

3(x1, x2)+
(sin θ2 cos θ3)I

2(x1, x2)I
3(x1, x2)] if i = 3 and j = 4

γ sin θ2 + λ[sin θ2(I
1(x1, x2)

2 + I2(x1, x2)
2) − cos θ2 cos θ3I

1(x1, x2)I
3(x1, x2)

− cos θ2 sin θ3I
2(x1, x2)I

3(x1, x2)] if i = 3 and j = 5

γ + λ[(cos2 θ3)I
1(x1, x2)

2 + (sin2 θ3)I
2(x1, x2)

2 + I3(x1, x2)
2

+2(cos θ3 sin θ3)I
1(x1, x2)I

2(x1, x2)] if i = j = 4

λ[cos θ3I
2(x1, x2)I

3(x1, x2) − sin θ3I
1(x1, x2)I

3(x1, x2)] if i = 4 and j = 5

γ + λ[I1(x1, x2)
2 + I2(x1, x2)

2] if i = j = 5

in the frame (∂/∂x1, ∂/∂x2, ∂/∂θ1, ∂/∂θ2, ∂/∂θ3).
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Minimization with Respect to the Embedding ϕ. On the Riemannian
manifold (P × IR3, Q), the non-zero coefficients of the subsequent Levi-Cevita
connection in the frame (∂/∂x1, ∂/∂x2, ∂/∂θ1, ∂/∂θ2, ∂/∂θ3, ∂/∂z1, ∂/∂z2, ∂/∂z3)
are

Γ 3
54 = Γ 5

34 = 1/(2λ3 cos θ2) Γ 5
54 = Γ 3

34 = − tan θ2/(2λ3) Γ 4
35 = −1/(2λ3)

Then, from the minimization of the Polyakov action with respect to the embed-
ding, we obtain the following evolution equations for i = 6, 7, 8 in (6)

∂J i−5

∂t
= ΔhJ

i−5

4 Experiments

The minimization of the Polyakov action (5) with respect to the embedding leads
to the PDEs

∂Jk

∂t
= ΔhJ

k, k = 1, 2, 3 (8)

for all the group representations presented in this paper, i.e. we obtain heat
equations associated to the Laplace-Beltrami operator Δh on manifolds of the
form Ω ×G, for different Riemannian metrics h and Lie groups G.

For the purpose of application to image regularization, we compute the dis-
crete approximation of the solution of (8) at the points (x1, x2, e), by

Jk
t+dt(x1, x2, e) = Jk

t (x1, x2, e) + dt ΔhJ
k
t (x1, x2, e) (9)

of initial condition Jk
0 (x1, x2, e) = Ik(x1, x2).Fig. 1 shows results of the regular-

ization process (9) applied to images on Fig. 1(a) and Fig. 1(b), for the different
group representations we have considered. These representations may be classi-
fied into two categories: the unitary and the non unitary representations with
respect to the Euclidean scalar product on IR3. The natural representations of
IR+∗ and DC(3) are the non unitary representations, whereas the trivial rep-
resentation of IR+∗ and the natural representation of SO(3) are the unitary
representations.

Then, we observe that the properties of the different regularizations are related
to the properties of the corresponding group representations of being unitary or
not.

Indeed, the regularization induced by the natural representation of the group
DC(3) provides an increase of the contrast (Fig. 1(e)), and the regularization in-
duced by the natural representation of the group IR+∗ emphasizes edges (Fig. 1(f)).
Hence, these two representations appear to be relevant for applications to image
segmentation. Conversely, the regularizations induced by the trivial representa-
tion of IR+∗ (Fig. 1(c) and Fig. 1(g)) and the natural representation of SO(3)
(Fig. 1(d) and Fig. 1(h)) appear to be relevant for applications to image denoising.
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(a) (b)

(c) (Trivial, IR+∗): λ =
0.01, dt=0.1, 20 iter.

(d) (Natural, SO(3)): λ =
0.0001, γ = 2, dt = 0.1, 15
iter.

(e) (Natural, DC(3)): λ =
0.00001, γ = 2, dt = 0.1,
10 iter.

(f) (Natural, IR+∗): λ =
0.0001, γ = 1, dt = 0.1,
20 iter.

(g) (Trivial, IR+∗): λ =
0.001, dt=0.1, 50 iter.

(h) (Natural, SO(3)):
λ = 0.001, γ = 30,
dt = 0.1, 50 iter.

Fig. 1. Images regularizations for different group representations (ρ, G)
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In Section 3.2, we have shown that the regularization induced by the trivial repre-
sentation of IR+∗ corresponds to the Beltrami flow [8], whose denoising properties
are well-known. Besides a denoising property, the regularization induced by the
natural representation of SO(3) has an extra parameter γ, that seems to control
the luminance of the image, as it can be seen on Fig. 1(d) and Fig. 1(h). At last,
let us mention that the parameters of the experiments (λ, γ, dt and the number of
iterations) have been chosen in order to emphasize the properties of the regular-
izations.

5 Conclusion

In this paper, we have proposed a new framework for color images, dealing with
(ρ,G)-equivariant functions on principal bundles. In this context, we have re-
lated the action of the Lie group G on the fibers with transformations of the
light source of the original image. We have proposed an application to color image
regularization by the use of the Polyakov action on graphs of (ρ,G)-equivariant
functions on principal bundles, for some particular group representations (ρ,G).
We have shown that the regularization has denoising properties if the repre-
sentation is unitary and segmentation properties otherwise. By studying more
closely the physical properties of colors, we expect to determine more relevant
Lie group representations in the context of color image processing and analysis.
By the metrics on the embedding manifolds we constructed, the minimization of
Polyakov action with respect to the embedding yielded heat equations associated
to the Laplace-Beltrami operators on the embedded manifolds. In this paper, the
metrics on the embedded manifolds were chosen as the metrics induced by the
metrics of the embedding manifolds. Further work will be devoted to determine
the metrics minimizing the corresponding Polyakov action. Indeed, whereas for
embedded manifolds of dimension 2, the metric minimizing the functional corre-
sponds to the metric induced by the metric of the embedding manifold, it does
not hold for manifolds of greater dimension anymore.
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Abstract. A new surface reconstruction method is proposed based on
graph cuts and local swap. We novelly integrate a curvature based vari-
ational model and Delaunay based tetrahedral mesh framework. The
minimization task is performed by graph cuts and local swap sequen-
tially. The proposed method could reconstruct surfaces with important
features such as sharp edges and corners. Various numerical examples
indicate the robustness and effectiveness of the method.

1 Introduction

Reconstructing a surface from an unorganized point data set is a significant
and challenging problem in the field of computer graphics. The development of
scanner techniques and their wide applications in the areas such as animation
industry, medical imaging, and archeology have boosted the demand of a good
reconstruction method. Extensive research has been conducted and tremendous
advances have been made. Therefore, a robust reconstruction method which
could recover the surface with the sharp features motivates this study.

Most surface reconstruction methods could be classified into two groups, ex-
plicit methods and implicit methods. Explicit methods are local geometric ap-
proaches based on Delaunay triangulation and dual Voronoi diagram [3,2,4,13].
One advantage of these methods is their theoretical guarantee that there exists
a sub-complex of Delaunay triangulation of the data set, which is homeomor-
phic to the ground truth surface given a sufficient sampling. However, due to
the insufficient sampling density at the sharp features, the explicit approaches
could not reconstruct the desired features. Sharp features are high frequency por-
tion in the signal processing language, which means the normal data acquisition
resolution could not fulfill the sufficient requirement.

In the last two decades, some researchers turned to the implicit methods to
gain flexibility of representation and mathematical facilities [16,35,34,15,26,27,
5,22]. The success of the weighted minimal surface model in [35] and its variants
prove the effectiveness of this methodology. The most popular regularization
term added in the variational model is based on the area, which is designed

A.M. Bruckstein et al. (Eds.): SSVM 2011, LNCS 6667, pp. 495–507, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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for noise removal but not for feature preservation. The application of Euler’s
elastica model in image processing inspires the graphic community and some
works oriented to curvature have been proposed, see [15]. However, most of
implicit reconstruction methods utilize the regular grid to discretize the energy
functional. The consequence of this framework is the staircasing observed in the
reconstructed surface. Some smoothing post-processing is needed more or less,
but the procedure weakens the feature sharpness.

Graph cuts techniques from combinational optimization have been used in
vision problems to find the global minimum of energy functionals for a long
time [7,9,8]. Recently, it is also widely used in the field of solving of higher order
models [19,6] and surface reconstruction problem [17,18,20,21,25,28,32]. It is a
useful tool that can minimize energy functions over implicitly defined surfaces.
Compared with the iterative ways such as gradient descent, the main advantages
of graph cuts are the efficiency and ability to find global minima.

In this study, we propose a novel method for surface reconstruction. The
weighted minimal surface model in [35] has been added with a curvature term.
The variational model is first discretized on the tetrahedral mesh. A graph is
constructed dual to the mesh and graph cuts are applied. The high order curva-
ture term as well as the closeness term are assigned to the graph edge weights.
The energy is calculated based on the last iteration result and graph cuts are
performed iteratively. Local swap will be applied on each element of the explicit
surface, which is regarded as the mesh partition. The curvature based energy
functional is then calculated on 2-manifolds and the change of the energy will
be recorded.

Our method integrates Delaunay-based tetrahedral mesh and curvature based
variational model. It also takes the advantages of both. The Delaunay triangu-
lation guarantees the existence of reliable recovered surface to the ground truth
given sufficient sampling. The curvature based model helps to preserve the fea-
tures. More important is that the tetrahedral mesh guarantees the better capa-
bility of representing piecewise smooth surfaces with sharp corners and cusps.
The earlier works based on grid intrinsically could not obtain the sharp fea-
tures. The input data points are represented by grid data at first place. The
precise information is coarsened. Consequently the ground truth are difficult to
be reconstructed exactly. In our method, ground truths could be reconstructed
exactly, which will be seen in our examples.

The rest of this paper is organized as follows. In Section 2, we review some
related works and give an overview of our proposed method. In Section 3, we
propose a graph cuts based method as the first stage, global minimization. In
Section 4, the local swap method is proposed to recover the remaining features.
In Section 5, various numerical experiments are conducted and the results are
shown.

2 An Overview of the Proposed Method

We proposed a new method based on the surface model by Zhao et al. in [35],
which is solved by a gradient descent method. In [15], Franchini et al. also solved
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this model. The signed distance function d(x) and the curvature κ(x) are calcu-
lated on the regular mesh grid. The level set was computed by local RBF recon-
struction. In the mean time, models that minimize curvature based functionals
have been demonstrated to perform particularly well to avoid the staircasing
effect. The Euler’s elastica model is of central importance such curvature based
model, which was first introduced in image processing in [24, 11, 23] and later
in [6, 29].

Inspired by the performance of Euler’s elastica model in imaging, we introduce
the curvature term into the model for surface reconstruction. We also calculate
curvature on tetrahedral mesh to avoid staircasing.

Zhao et al. proposed the weighted minimal surface model as follows:

EZhao(Γ ) =
[∫

Γ

dp(x)ds
] 1

p

. 1 ≤ p ≤ ∞, (1)

where Γ is an arbitrary surface and ds is the surface area. d(x) = d(x, P ) here
is the distance function from the point x to the nearest point of data set P .

The Euler’s elastica of a curve C is given by the energy

EEL(C) =
∫
C

(a+ b · |k|β(x))dl, (2)

where a and b are two parameters and k is the curvature of C at position x. By
setting b = 0, EEL(C) measures the total length of the curve. If a = 0, EEL(C)
measures the total curvature of the curve. For solving this kind of curvature
based model, traditionally, the Euler-Lagrange or gradient descent equations
are derived. In [6], in order to accelerate the convergence of solution, based on
the general formulation of energy functional, we can solve the problem via graph
cuts by the connection between minimization problems and binary MRFs.

Our method has been motivated by these methods which adopt the weighted
surface area and the curvature function. We firstly introduce our model which
can recover not only the smooth parts but also the features such as sharp edges
and corners as follows:

E(Γ ) =
∫

Γ

(d(x) + λ|κ(x)|)ds . (3)

Here distance function for each point d(x) is the fidelity term and λ|κ(x)| is the
regularization term which replaced area term in the Zhao et al.’s model, κ(x)
is the mean curvature at position x. Given the input data set P , we add the
non-geometric background points Q; generate mesh in a Delaunay way in order
to have the reasonable Delaunay triangulations P ∪Q. Then we proposed a two
stage strategy:

1. We use graph cuts to minimize the energy functional based on the primal
mesh and dual graph. Assign the graph weight according to the energy func-
tional to some extent to get the surface initialization which is for the curva-
ture based evolution;
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2. Based on the explicit surface obtained by the first stage, we use local swap
here to recover the features without oscillation.

The flowchart of our method is as shown in Fig. 1, and we will describe the
details in the following two sections.

Fig. 1. Flowchart of the proposed method

3 Global Minimization for Surface Reconstruction via
Graph Cuts

In this section, a curvature based variational model will be proposed for surface
reconstruction and solved by graph cuts. This new energy functional is a gener-
alization from that of the weighted minimal surface model, which is also related
to the geodesic active contours approaches [10,12]. This functional is minimized
on an unstructured tetrahedral mesh framework. The method can handle many
reconstruction difficulties such as noise, undersampling and non-uniformity.

In this method, the unstructured tetrahedral mesh Th is used instead of struc-
tured grids, which provides more flexibility and effectiveness. Normally, we use
{Ki}N

i=1 to denote all N tetrahedra in Th. In such mesh framework, the sur-
face Γ can be approximated by Γh, a sub-complex of Th. Therefore, our energy
functional (3) can be approximated by:

E(Γh) =
∫

Γh

(d(x) + λ|κ(x)|)ds .

For convenience reason, we do not distinct Γ and Γh in the rest of this paper.
The surface triangulation Γh can be thought of as the union of the triangular
faces shared by tetrahedra in different partitions. In this section, we only discuss
two phase problems, in which the ground truth surface S simply separates the
embedding domain X ⊂ R3 into two connected regions, inside and outside.

We define the level set function:

φΓh
(Ki) =

{
c1 if Ki inside Γh,
c2 if Ki outside Γh.

If we denote Γi,j = Ki∩Kj, which means the shared face of the two neighboring
tetrahedrons Ki and Kj , then we have Γh =

⋃
Γi,j .
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We define indication function 1{T} as:

1{T} =
{

1 if the statement T is true,
0 if the statement T is false.

Hence the energy formulation can be discretized as follows:

E(Γh) =
∑
i,j

(di,j + λ|κi,j |)Si,j1{φΓh
(Ki) �=φΓh

(Kj)} , (4)

where

di,j =

∫
Γi,j

d(x)ds∫
Γi,j

ds
, Si,j =

∫
Γi,j

ds , κi,j =

∫
Γi,j

κ(x)ds∫
Γi,j

ds
. (5)

In level set formulation, the curvature can be calculated by signed distance
function as follows:

κ(xi) = ∇ ·
( ∇d(xi, Γ )
|∇d(xi, Γ )|

)
.

In [30], Tong et al. give the corresponding discretization of curvature in details.
In order to focus on the steady state solution and not the evolution sequence
itself, we first initialize:

κ0(xi) = 0,

and

κn(xi) = ∇ ·
( ∇d(xi, Γ

n)
|∇d(xi, Γn)|

)
.

The energy functional in each iteration is:

E(Γn+1) =
∫

Γ n+1
(d(x) + λ|κn(x)|)ds =

∑
i,j

(di,j + λ|κn
i,j |)Sn

i,j1{φΓh
(Ki) �=φΓh

(Kj)} .

(6)

Therefore, the energy functional can be minimized efficiently by graph cuts, since
it is graph representable. A graph dual to the whole mesh is built according to
the energy functional and applied with max-flow/min-cut algorithms as in Fig.
2. The two neighboring tetrahedron Ki,Kj can be expressed as two neighboring
nodes in the graph i, j respectively. We use triangulation to express the element
and small circle is the corresponding graph node for graph cuts computation.
In Fig. 3, the weight on the edge (i, j) now is set to di,j + λ|κn

i,j |, which can be
calculated from (5).

By graph cuts, the proposed energy functional could be minimized globally.
However, the iteration result is not satisfactory. The global minimization tech-
nique, i.e. graph cuts, is not the main reason for the undesirable result. The
reason is the inaccuracy of the curvature calculation. The tetrahedral mesh is
intrinsically a much sparser representation compared with the grid represen-
tation. The calculation based on such a sparse framework could not obtain a
desirable result. From the results of this stage, we can observe that some ele-
ments have been recovered. However it is far away from the ground truth. Hence,
the local swap based on more precise calculation would be applied sequentially.
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Fig. 2. Primal mesh and dual graph Fig. 3. Graph edge weight assignment

4 Feature Sensitive Local Minimization

Once the tetrahedral mesh is established, finding the embedded surface is equiv-
alent to finding the labeling for all tetrahedra to partition the whole mesh. For
each surface Γ , there is one corresponding labeling L. The labeling L is a local
minimum with respect to the energy functional in (3) if E(L) ≤ E(L′) for any
L′ “near to” L. In the environment of discrete tetrehedral mesh, the labelings
near to L are those within the swap of a single tetrahedron. This move is usu-
ally referred to by standard moves in computer vision. One good example of the
standard moves is simulated annealing [31]. In this section, the object of the
swap operation is only changed from image pixels to volumetric tetrahedra.

When the explicit surface expression is obtained, we will adopt the method
of [23]. The operator K maps a point xi on the surface to the vector:

K(xi) = 2κ(xi)n(xi),

where n(xi) is the normal vector. The mean curvature normal operator K, known
as the Laplace-Beltrami operator for the surface S, is a generalization of Lapla-
cian from flat spaces to manifolds [14]. By using the Gauss’ theorem, the integral
of the Laplace-Beltrami operator reduces to the following form:∫ ∫

AM

K(x)dA =
1
2

∑
j∈N1(i)

(cotαi,j + cotβi,j)(xi − xj), (7)

where AM is the 1-ring neighborhood surface area around the point xi, αi,j and
βi,j are the two angles opposite to the edge in the two triangles sharing the edge
(xi, xj) as in Fig. 4, and N1(i) is the set of 1-ring neighbor vertices of vertex i.

The mean curvature normal operator is:

K(xi) =
1

2AM

∑
j∈N1(i)

(cotαi,j + cotβi,j)(xi − xj). (8)

Therefore, the discretization of energy functional (3) can be written as we men-
tioned:

E(Γh) =
∑

i

(di + λ|κi|)Γi, (9)
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Fig. 4. 1-ring neighbors and angles op-
posite to an edge

Fig. 5. The change of energy for each
local swap

where

Γh =
⋃
Γi, di =

1
3

3∑
j=1

d(vij), κi =
1
3

3∑
j=1

κ(vij). (10)

vij , j = 1, 2, 3 are three vertices of Γi.
For each known surface, the energy functional could be calculated explicitly

by (9). Hence for the labeling swap of a single tetrahedral, the change of energy
could also be calculated locally. This swap and comparing procedure is illustrated
in Fig. 5. This local swap of a single tetrahedral has the counterpart in image
processing field, i.e. stimulated annealing. What is worth mentioning is that
stimulated annealing has been questioned of sensitive to the initial labeling. But
in our cases, this local swap seldom encounters such problem since the initial
labeling is determined by the global minimization stage. This good initial surface
makes the local stage work less likely to stuck in a local minimum far away from
the global one.

Algorithm 1. Local Swap Procedure
– Step1: Start with the initial surface Γ ;
– Step2: For each element, swap it to the other partition and obtain the new surface

Γ ′;
– Step3: Re-calculate the after energy of (9):E(Γ ′), and compare E(Γ ′) with E(Γ ),

Step3.1: If E(Γ ′) < E(Γ ), confirm this swap;
Step3.2: If E(Γ ′) ≥ E(Γ ), undo this swap.

5 Numerical Experiments

In this section, various examples are presented to illustrate the effectiveness, effi-
ciency and robustness of the proposed method. All experiments were conducted
on a PC with Intel Pentium 4 CPU of 3.2GHz and 4GB memory and all exam-
ples were synthesized by ourselves. In the mesh generation stage, we adopted
the incremental insert algorithm implemented by CGAL [1]. All surfaces are
rendered by MeshLab. Only points locations were utilized in the algorithm.
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We start by giving illustrative reconstruction examples in Fig. 6 which clearly
show the advantage of using curvature information over total variation (TV).
As is shown, our algorithm perfectly recovers the sharp edges of cubes. Total
variation on the other hand, just recovers the smooth faces. Some more identical
examples were also approached in [33,15], readers could compare the performance
and find we have recovered the most features.

(a) TV reconstruction result (b) Our reconstruction result

Fig. 6. The comparison of TV result and our result

For all these experiments, we set the value of λ to 0.1. Table 1 gives the
sizes of data sets of four surface examples and corresponding CPU time counted
in seconds. The first column gives the examples’ names. The second column
contains the numbers of data points P . The third column is the mesh generation
time. The fourth column is the number of generated tetrahedra, the fifth the
graph cuts iteration cycles, the sixth the graph cuts time, the seventh the local
swap iteration cycles, and the eighth the local swap time.

Table 1. Statistics of four examples

Example
Data
Set

Mesh
Generation
Time

Tetrahedra
Number

Global
Iteration
Cycle

Total
Graph Cuts
Time

Local
Iteration
Cycle

Total
Swap
Time

two cubes 2472 24.1 175851 3 0.33 5 5.57

two spheres 2653 34.2 218119 3 0.42 4 0.31

female symbol 4530 41.8 307968 3 0.63 7 11.57

bolt 2357 34.9 223346 3 0.41 6 2.57

The following figures include data points sets in the first row and the recon-
structed surfaces in the second row. In Fig. 7 from left to right, two geometries
from basic boolean operation are shown: the unions of two cubes and two spheres.
In Fig. 8, surface reconstruction results of four little complicated geometries are
shown. In Fig. 9, two platonic solids, i.e. a dodecahedron and an icosahedron,
a bucky ball model and a brilliant cut diamond are shown. In Fig. 10, four
interesting CAD models are shown, all of which have sharp edges or corners.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7. The unions of geometries

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 8. A perforated cube, two tangling ones, male and female symbol models
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 9. Two platonic solids: dodecahedron and icosahedron, a buckyball and a brilliant
cut diamond

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 10. Four CAD models from left to right are: power wheel, tear drop, dumb bell
and bolt
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From all our reconstructed examples, most features are recovered especially
the sharp edges. The reconstructed surfaces are almost the ground truth surfaces
except some place “over-enhancement”. The accuracy of our feature-preserving
operation will be improved and better performance could be expected in our
future works.
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Abstract. We study objectives Fd combining a quadratic data-fidelity
and an �0 regularization. Data d are generated using a full-rank M × N
matrix A with N > M . Our main results are listed below.

Minimizers û of Fd are strict if and only if length(support(û))� M
and the submatrix of A whose columns are indexed by support(û) is full
rank. Their continuity in data is derived. Global minimizers are always
strict.

We adopt a weak assumption on A and show that it holds with prob-
ability one. Data read d = Aü where length(support(ü))� M −1 and the
submatrix whose columns are indexed by support(ü) is full rank. Among
all strict (local) minimizers of Fd with support shorter than M − 1, the
exact solution û = ü is the unique vector that cancels the residual. The
claim is independent of the regularization parameter. This û = ü is usu-
ally a strict local minimizer where Fd does not reach its global minimum.
Global minimization of Fd can then prevent the recovery of ü.

A numerical example (A is 5 × 10) illustrates our main results.

Keywords: under-determined systems of linear equations, variational
methods, �0 regularization, linear programming, sparse representation,
solution analysis, exact recovery, global minimizers.

1 Introduction

Let A ∈ RM×N be a matrix such that rankA = M < N. Given a data vector
d ∈ RM , we consider an objective function Fd : RN �→ R of the form

Fd(u) = ‖Au− d‖2 + β
∑
i∈IN

φ(u[i]), β > 0, (1)

φ(t) =
{

0 if t = 0
1 if t �= 0 t ∈ R, (2)

IN = {1, · · · , N} , (3)
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where ‖ · ‖ is the �2-norm, β is a regularization parameter and u[i] is the ith
entry of the vector u. By an abuse of language, the penalty in (1)-(2) is called
the �0 norm: ‖u‖0 =

∑
i∈IN

φ(u[i]) = !
{
i ∈ IN : u[i] �= 0

}
where ! stands for

cardinality. The columns of A are denoted by ai, i ∈ IN . It is assumed that
ai �= 0, ∀i ∈ IN .

We focus on the (local) minimizers û of an objective Fd of the form (1)-(2):

û ∈ RN such that Fd(û) = min
u∈O

Fd(u) , (4)

where O is a neighborhood of û.
Finding the minimum of Fd in (1)-(2) is an NP -hard numerical problem [5].
The function φ in (2) served as a regularizer for a long time. In the context of

Markov random fields it was used by Geman and Geman in 1984 [9] and Besag in
1986 [1] as a prior in MAP energies to restore labeled images. The MAP objective
reads F(u) =

∥∥Au−d∥∥2+β
∑

k φ(Dku), where Dk is a finite differences operator
and φ is given by (2). This label-designed form is known as the Potts prior model,
or the multi-level logistic model [2], [12]. Leclerc [11] proposed in 1989 the same
prior to restore piecewise constant images. Various stochastic and continuation-
based algorithms were proposed. Recently, this MAP objective was successfully
applied to reconstruct 3D tomographic images using stochastic continuation [16]
and stochastic relaxation [17] by Robini and Magnin.

Problems involving the minimization of Fd in (1)-(2) arise in image process-
ing, morphologic component analysis, compression, dictionary building, inverse
problems, compressive sensing, machine learning, among many other fields. The
hard-thresholding method proposed by Donoho and Johnstone [7] amounts to
minimize (1)-(2) where u[i] are the coefficients of a signal or an image expanded
in a wavelet basis (M = N). When M < N , various (strong) conditions on ‖u‖0
(often ‖u‖0 is replaced by ‖u‖p for 0 < p � 1) and on the relationship between
the columns of A (typically, pseudo-orthogonality) are needed to conceive nu-
merical schemes approximating a minimizer of Fd, to establish local convergence
and derive the asymptotic of the obtained solution. Haupt and Nowak [10] inves-
tigate the statistical performances of the global minimizer of (1)-(2) and propose
an iterative bound-optimization procedure. In [18] the authors reformulate the
problem so that an approximate solution can be found using difference of convex
functions programming. Blumensath and Davies [3] propose an iterative thresh-
olding scheme to find an approximate solution and prove local convergence.
Several other references can be evoked, e.g. [15], [8].

Our goal is to analyze the (local) minimizers û (4) of objectives Fd of the
form (1)-(2). We provide a new understanding of the minimization problem.
We clarify the possibility to recover exactly an original ü from data d = Aü
as a (local) minimizer of Fd.

The minimization of (1)-(2) might seem close to its constraint variants:

given ε � 0, minimize ‖u‖0 subject to ‖Au− d‖2 � ε , (5)
given K ∈ IM , minimize ‖Au− d‖2 subject to ‖u‖0 � K . (6)
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The latter problems are abundantly studied in the context of sparse recovery
in different fields. An excellent account (involving an exhaustive description of
the state of the art) is given in [4], see also the book [13]. We emphasize that
in general, in a non asymptotic framework, there is no equivalence between the
problems stated in (5) and (6), and the minimization of Fd in (1)-(2). The reason
is that all these problems are nonconvex.

1.1 Notations and Definitions

A local minimizer û is strict if that there is a neighborhood O ⊂ RN containing
û, such that Fd(û) < Fd(v) for any v ∈ O; such a minimizer is isolated. The
identity matrix of size K × K is denoted IK . We will often use the notation
introduced in (3), namely IK = {1, · · · ,K}.
Definition 1. For any u ∈ RK , the support σu of u is defined as

σu
def=
{
i ⊂ IK : u[i] �= 0

}
, σu[1] < · · · < σu[! σu] ; (7)

note that the elements of σu are sorted in a strictly increasing order.

For any subset ω ⊂ IK , we denote ωc def= IK \ω. Given a matrix A ∈ RM×N and
a vector u ∈ RN , with any strictly increasing subsequence ω ⊂ IN , say

ω =
(
ω[1], · · · , ω[r]

)
where r = ! ω ,

we associate the following submatrix Aω and subvector uω

Aω
def=
(
aω[1], · · · , aω[r]

) ∈ RM×r , (8)

uω
def=
(
u
[
ω[1]

]
, · · · , u[ω[r]

]) ∈ Rr , (9)

as well as the zero-padding operator Zω : Rr → RN that inverts (9),

u = Zω(uω), u[i] =
{

0 if i �∈ ω ,
uω[k] for the unique k such that ω[k] = i .

(10)

For σu given by (7), we have the identity Au = Aσuuσu = AZσu(uσu), ∀u ∈ RN .
We denote by AT

ω the transposed of Aω.
In what follows, it is systematically assumed that subsequences ω ⊂ IN are

sorted in a strictly increasing order.

Definition 2. A subset S ⊂ RK is said to be negligible (in RK) if S is closed
in RK and its Lebesgue measure in RK is null, LK(S) = 0. A property is said
to hold for a.e. v ∈ RK if it holds for all v ∈ RK \ S.

Thus, if a property holds for a.e. v ∈ RK , then it holds on a subset of RK which
is open and dense in RK . By a slight abuse of language, we can say that it holds
true with probability one.
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1.2 Content of the Paper

Section 2 deals with local minimizers in general. Section 3 is devoted to strict
minimizers of Fd and section 4—to global minimizers. Necessary and sufficient
conditions to recover exactly an original ü from data d = Aü as a (local) mini-
mizer of Fd, are presented in section 5 under a weak assumption on A shown to
hold for a.e. A. A numerical toy example (M = 5, N = 10) in section 6 illustrates
the main theoretical results. The proofs of all statements are outlined in [14].

2 Local Minimizers

The theory starts with a seemingly warning result.

Lemma 1. For any d ∈ RM and for any β > 0, Fd in (1)-(2) has a (local)
minimum at û = 0 ∈ RN and the latter is strict.

Initialization with zero of a surrogate algorithm can be a bad choice.

2.1 Minimizers of Fd Solve Linear Programming Problems

It is shown below that finding a local minimizer of Fd is equivalent to solving a
linear programming problem.

Theorem 1. Given d ∈ RM and ω ⊂ IN , consider the problem (Pω ) below

(Pω )

⎧⎪⎨⎪⎩
min
v∈RN

‖Av − d‖2 ,

subject to v[i] = 0, ∀i ∈ ωc = IN \ ω .

(11)

Let û solve problem (Pω ) . Then û is a (local) minimizer of Fd in (1)-(2) and

σû ⊆ ω ,

where σû is defined according to (7).

The reciprocal statement is quite obvious.

Lemma 2. Let Fd have a (local) minimum at û. Set σ̂ def= σû. Then û solves
problem (Pω ) for ω = σ̂ .

Remark 1. Problem (Pω ) is equivalent to finding a solution ûω of the problem
below

min
v∈R ω

∥∥Aωv − d
∥∥2 (12)

and setting û = Zω(ûω), where Zω is given in (10). The problem in (12) always
admits a solution. Using Theorem 1, û is a minimizer Fd and hence it reads

û = Zω(ûω) where ûω satisfies (AT
ωAω)ûω = AT

ωd . (13)
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One notes that ûω is the least squares solution with respect to the submatrix
Aω. It is well known that such a solution cannot deal with noisy data [19], [6].

Remark 1 shows that in general, a minimizer û of Fd cannot properly reduce
any noise corrupting the data d since Aω is typically far from being unitary.

Since (13) is a linear problem equivalent to (Pω ) , we can say that (Pω ) is
linear as well.

Most of the results presented in what follows are based on Theorem 1 and
Lemma 2. Some direct consequences of these statements are evoked next.

Corollary 1. For any d ∈ RM , the function Fd has a global minimizer.

By Lemma 2, if a minimizer û satisfies Fd(û) > βM , we are guaranteed that û
is a non strict minimizer.

Corollary 2. Given d ∈ RM , consider Fd. Then for any ω ⊂ IN , Fd has a
(local) minimizer û such that σû ⊆ ω.

3 Strict Minimizers

3.1 Necessary and Sufficient Conditions

Theorem 2. For a minimizer û of Fd, denote σ̂ = σû. The minimizer û is
strict if and only if

rankAσ̂ = ! σ̂ � M . (14)

Furthermore, û = Zσ̂(ûσ̂) and ûσ̂ reads

ûσ̂ =
(
AT

σ̂Aσ̂

)−1
AT

σ̂ d . (15)

This statement is quite intuitive in the light of Lemma 2 and Remark 1. Note
that (14) is a necessary and sufficient condition for (12) to have a unique solution.

The result in (14) allows us to verify if an algorithm minimizing Fd has
converged to a strict (local) minimum, or not.

The next statement is constructive in the sense that it indicates how to escape
from a nonstrict local minimum.

Proposition 1. Let ū be a local minimizer of Fd. Define σ̄ def= σū according to
(7) and Aσ̄ as in (8). Assume that

rankAσ̄ < min{M, ! σ̄} .

Then Fd has a minimizer û such that σ̂ def= σû � σ̄ and hence

Fd(û) � Fd(ū)− β .
More precisely,

û ∈ ū− Lσ̄ for Lσ̄ =
{
Zσ̄(v) ∈ RN : v ∈ kerAσ̄ \ {0} ⊂ R� σ̄

}
,

where Zσ̄ is defined according to (10).
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Let ū be a local minimizer of Fd such that rankAσ̂ < !σū. By Proposition 1, ū
is a nonstrict local minimizer. If a minimization scheme finds such an ū, we will
find a strictly deeper minimizer in any direction belonging to Lσ̄.

Let us take stock of the available facts.

– Originals ü such that ! σü > M cannot be recovered. To recover originals
with ! σü � M , we do not need to consider minimizers û with ! σû > M .

– A minimizer û of Fd is strict if and only if rankAσû
= ! σû � M .

– Noise in data d cannot be properly reduced at a (local) minimizer û of Fd.
– Strict minimizers enable exact unambiguous recovery.

These facts motivate the definition below.

Definition 3. For any r ∈ IM , define Ωr as a subset of r-length supports corre-
sponding to full column rank M×r submatrices of A by the following 3 properties:⎧⎪⎪⎨⎪⎪⎩

(1) Ωr ⊆
{
ω ⊂ IN : ω[1] < · · · < ω[r], ! ω = r = rankAω

}
;

(2) if (",ω) ∈ Ωr ×Ωr, " �= ω ⇒ A� �= Aω ;
(3) Ωr is maximal : if " ⊂ IN satisfies !" = r = rankA�

⇒ ∃ω ∈ Ωr : A� = Aω .

(16)

Define as well

Ω
def=

M−1⋃
t=1

Ωt and Ω
def= Ω ∪ΩM . (17)

The components of each ω ∈ Ωr are arranged in increasing order. This prevents
the situation when two submatrices corresponding to two different supports are
composed out of the same columns but placed in a different order. The cardinality
of Ωr is upper bounded:

!Ωr � N !
r!(N − r)! .

All strict (local) minimizers of Fd have their supports in Ω. If there is an ω ∈
IN \Ω with ! ω = rankAω, then there is " ∈ Ω such that Aω = A�. We will see
that all global minimizers of Fd are strict (Theorem 4) so they are listed in Ω
as well.

3.2 Stability of Strict (local) Minimizers

Here we explore the behavior of the strict local minimizers of Fd with respect
to variations of d.

Corollary 3. Let û �= 0 be a (local) minimizer of Fd satisfying σ̂ def= σû ∈ Ω
where Ω is given in (17). Define

Nσ̂
def= span

(
kerAT

σ̂

) ⊂ RM .

Then dim Nσ̂ = M − ! σ̂ � 1. For any d ′ ∈ Nσ̂, the relevant Fd+d ′ reaches a
strict (local) minimum at the same point û.
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All data living in the (M−! σ̂)-dimensional vector subspace Nσ̂ yield the same
strict (local) minimizer û.

This result shows that minimizing Fd compresses the data.

Even though Fd can admit numerous strict (local) minimizers, we show that
each one of them is continuous in d.

Definition 4. Let Fd : RM → R and O ⊆ RM be an open domain. We say that
U : O → RN is a local minimizer function for the family FO

def= {Fd : d ∈ O}
if for any d ∈ O, the function Fd reaches a strict local minimum at U(d).

Theorem 3. Let û be a (local) minimizer of Fd satisfying σ̂ = σû ∈ Ω. Then:

(i) There exists a local minimizer function U : RM → RN such that ∀d ′ ∈ RM ,

û′ def= U(d ′) = Zσ̂(û′σ̂) for û′σ̂ =
(
AT

σ̂Aσ̂

)−1
AT

σ̂ d
′

is a strict (local) minimizer of Fd ′ satisfying σû′ ⊆ σ̂ and U(d) = û.
(ii) There is a closed subset Dσ̂ ⊂ RM with LM (Dσ̂) = 0 such that

d ′ ∈ RM \Dσ̂ ⇒ σû′ = σ̂ ,

for û′ = U(d ′). Moreover, d ′ �→ Fd ′
(U(d ′)

)
is C∞ on RM \Dσ̂ which is an

open and dense subset of RM .

Obviously, U is linear with respect to d ′ and (ii) holds true for a.e. d ′ ∈ RM .
Note that d ′ �→ Fd ′

(U(d ′)
)

is discontinuous on Dσ̂. This explains why global
minimizers can correspond to various σ̂ ∈ Ω when data d ′ ranges over RM .

4 Global Minimizers

It is useful to state the following quite intuitive result:

Lemma 3. Given d ∈ RM , if û is a global minimizer of Fd, then

Fd(û) � βM and ! σû � M .

A minimizer û of Fd such that σû > M cannot be global for any β > 0.
We have a (strong) sufficient condition for the obtention of a null global

minimizer.

Lemma 4. Consider that β � ‖d‖2. Then Fd has a global minimum at û = 0.

There are also good news on global minimizers, as seen below.

Theorem 4. If û is a global minimizer of Fd, then rankAσ̂ = ! σ̂ � M , where
σ̂

def= σû. All global minimizers of Fd are strict, for any d ∈ RM and any β > 0.
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In [14], abstract conditions on β that ensure exact recovery of an original ü
with ! σü � M − 1 as a global minimizer of Fd are derived. Actually, they seem
hard to exploit in practice.

The statement below provides a simple and strong necessary condition for a
global minimizer of Fd.

Theorem 5. Let Fd reach a global minimum at û. Then

either û[i] = 0 or |û[i]| �
√
β

‖ai‖2 , ∀i ∈ IN . (18)

Observe that the bound does not depend on d.

5 Exact Recovery

5.1 Originals with an M-Length Support

Remind that all matrices belonging to ΩM—see (16)—are invertible. Hence for
any ω ∈ ΩM , the solution given in (15) in Theorem 2 reads ûω = A−1

ω d.

Proposition 2. For ü ∈ RN with "̈ = σü ∈ ΩM , let d = Aü ∈ RM . Define the
set

UM
def=
{
û ∈ RN : σû ∈ ΩM , ‖Aû− d‖2 = 0

}
.

There is a negligible subset QM ⊂ RM such that if ü�̈ ∈ RM \QM , we have

!UM = !ΩM .

Each û ∈ UM is a strict (local) minimizer of Fd and Fd(û) = βM , ∀û ∈ UM .

This proposition shows that an original ü with ! σü = M cannot (with probability
one) be recovered exactly by minimizing Fd.

5.2 An Assumption on A That Holds for a.e. A

We ask the following question: what conditions ensure that

AT
ωAω �= AT

ωA�

(
AT

�A�

)−1
AT

�Aω , (ω,") ⊂ Ωr ×Ωt, t ∈ IM , r ∈ It ? (19)

The issue of this question is crucial for exact recovery. The next lemma shows a
situation when (19) systematically fails.

Lemma 5. Let (",ω) ∈ Ωt ×Ωr for t ∈ IM and r ∈ It. Then

" ⊆ ω ⇒ AT
�A� = AT

� Aω(AT
ωAω)−1AT

ω A� .

It turns out that this (un)property is good for exact recovery.
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Proposition 3. Let ü ∈ RN be such that "̈ def= σü ∈ Ω and d = Aü . Then a
(local) minimizer û of Fd satisfies û = ü if and only if

ω ∈ {" ∈ Ω : "̈ ⊆ "} and û solves (Pω ) .

This claim is independent of the value of β.

We can also note that Aω(AT
ωAω)−1AT

ω = IM , ∀ω ∈ ΩM , in which case

AT
� Aω(AT

ωAω)−1AT
ω A� = AT

�A�, ∀" ∈ Ωr, ∀r ∈ IM .

This result, combined with Proposition 2, is the reason why we restrict our
attention only to Ωt and Ωr for (t, r) ∈ IM−1 × IM−1.

Proposition 4. For t ∈ IM−1 and r ∈ It, define the subsets of matrices:

Ht =
⋃

�∈Ωt

{
Aω : ω ∈ Ωt, " �= ω, Aω(AT

ωAω)−1AT
ω = A�(AT

�A�)−1AT
�

}
,

Ar(t) =
⋃

ω∈Ωt

{
A� : " ∈ Ωr, " �⊆ ω AT

�A� = AT
� Aω(AT

ωAω)−1AT
ω A�

}
.

Then:

(i) For any t ∈ IM−1, the set Ht is included in a finite union of subspaces of
dimension M − t× t in the space of all M × t matrices, hence its Lebesgue
measure in the latter space is null.

(ii) For any t ∈ IM−1 and r ∈ It each set Ar(t) is included in a finite union of
subspaces of dimension M − t× r in the space of all M × r matrices, hence
its Lebesgue measure in the latter space is null.

Example 1. Here we give some elements belonging to the negligible subsets ex-
hibited in Proposition 4. Let B ∈ RM×t satisfies rank(B) = t � M − 1. Define

H = B(BTB)−1BT . (20)

For any real invertible t× t matrix W consider C = BW ∈ RM×t. Then

C(CTC)−1CT = BW (WTBTBW )−1WTBT

= B(BTB)−1BT = H .

Given two subsets (ω,") ∈ (Ωt × Ωt) with ω �= ", finding a matrix W such
that AωW = A� is seldom possible: W contains t2 unknowns while there are
Mt > t2 equations to be satisfied and W must be invertible.

Let H read as in (20) andW be a t×r matrix with rank(W ) = r � t. Consider
that C = BW ∈ RM×r. Then

CTHC = CT B(BTB)−1BT C

= WTBTB(BTB)−1BTBW = (BW )T BW = CTC .

Given (ω,") ∈ (Ωt ×Ωr) for 1 � r � t � M − 1, " �⊆ ω, finding a W such that
AωW = A� is yet again seldom possible: W has rt unknowns that must satisfy
Mr > tr equations.
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Proposition 4 tells us that the assumption on A formulated in H1 below fails
to hold only for a negligible subset of matrices A:

H 1 The matrix A ∈ RM×N , N > M , is such that for any t ∈ IM−1 and r ∈ It

(",ω) ∈ (Ωr ×Ωt), " �⊆ ω ⇒ AT
�A� �= AT

� Aω

(
AT

ωAω

)−1
AT

ω A� .

5.3 Necessary and Sufficient Conditions

For r ∈ IM−1 put

Θ�,ω
def=
{
v ∈ Rr : vTAT

�

(
IM −Aω

(
AT

ωAω

)−1
AT

ω

)
A�v = 0,

(",ω) ∈ (Ωr ×Ωt) and " �⊆ ω
}
,

Θr =
⋃

�∈Ωr

M−1⋃
t=r

⋃
ω∈Ωt

Θ�,ω . (21)

We would not like that originals ü such that r = ! σü have their non zero part
living in Θr. For such originals we cannot catch the exact solution as a (local)
minimizer of Fd. We evaluate the chance that our wish is satisfied.

Lemma 6. Let H1 holds. For any r ∈ IM−1, the set Θr in (21) is a finite union
of (closed) vector subspaces of dimension at most equal to r − 1 so Lr(Θr) = 0.

Since Θr in (21) is negligible, an original ü with ! σü = r � M −1 satisfies üσü ∈
Rr \ Θr with probability one. Next we give necessary and sufficient conditions
for the exact recovery of such an original ü as a (local) minimizer of Fd.

Theorem 6. Let A satisfy H1. Let an original ü with "̈
def= σü ∈ Ω satisfy

ü�̈ ∈ Rr \Θr, where Θr is negligible in Rr (Lemma 6). Consider that

d = Aü .

Then a (local) minimizer û of Fd satisfies û = ü if and only if û solves the
problem below

min
ω∈Ω

{
‖Aū− d‖2 : ū solves (Pω )

}
, (22)

where (Pω ) is formulated in (11). This claim holds true for any r ∈ IM−1. It is
independent of the value of β.

Let A meet H1. For a.e. original ü with "̈ def= σü ∈ Ω and data d = Aü , finding
the exact solution û = ü as a (local) minimizer of Fd amounts to solve the
nonlinear problem in (22).

In words, among all strict (local) minimizers of Fd with support shorter than
M − 1, the exact solution û = ü is the unique vector yielding a null residual
‖Aû− d‖2 = 0.
Theorem 6 provides a comfortable tool enabling to check if an algorithm
minimizing Fd has found the exact solution, or not.
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Next we learn that the exact solution can be “just” a local minimizer of Fd.

Corollary 4. Let A satisfy H1. Let an original ü with "̈ def= σü satisfy "̈ ∈ Ω
and ü�̈ ∈ Rr \Θr where Θr is negligible in Rr (Lemma 6). Suppose that

∃ i ∈ "̈ such that
∣∣ ü[i] ∣∣ < β

‖ai‖2 ,

where ai is the ith column of A. Consider that d = Aü . Than Fd has a strict
minimizer such that û = ü and the latter is different from any global minimizer:

Fd(û) > min
v∈RN

Fd(v) .

This statement follows from Theorems 5 and 6. It tells us that the global mini-
mizer of Fd cannot provide exact recovery for large classes of originals ü.

Theorem 6 and Corollary 4 clearly show that striving after global minimiza-
tion of Fd can prevent the recovery of the exact solution.

6 Numerical Toy-Example

Consider the objective Fd in (1)-(2) for A and d as given below.

A =

⎡⎢⎢⎢⎢⎣
7 6 5 2 8 7 6 1 2 7
2 8 1 8 2 3 7 1 5 6
5 9 1 2 9 6 2 4 8 1
1 7 0 2 0 4 6 9 9 2
3 7 9 1 4 4 1 3 8 1

⎤⎥⎥⎥⎥⎦
ü = [0 4 5 0 9 8 0 0 0 0]T ,

d = Aü .

(23)

We chose only integers in (23) for better readability. The arbitrary matrix A
has M = 5 rows and N = 10 columns and it satisfies H1—the test was done
using exhaustive search. For "̈ def= σü we have ! "̈ = M − 1, hence "̈ ∈ Ω (see
Definition 3). For any β > 0, one finds that û = ü is the unique strict (local)
minimizer of Fd having a support shorter thanM−1 and yielding ‖Aû−d‖2 = 0.
This corroborates Theorem 6. For β = 1, û = ü is the global minimizer of Fd.
For β = 100 and β = 105, û = ü is no longer a global minimizer. This confirms
Corollary 4. For β = 105 > ‖d‖2, the global minimizer is ū = 0, as stated in
Lemma 4. All minimizers are calculated using exhaustive combinatorial search.

7 Concluding Remarks

A consequence of Theorem 1 and Lemma 2 is that for any β > 0, no noise
corrupting the data d can be properly reduced at a minimizer of Fd. Equation
(14) in Theorem 2 allows us to easily check if an algorithm minimizing Fd has
converged to a strict local minimum, or not.

Assumption H1 holds for a.e. A. Under this assumption, Theorem 6 provides
an easy rigorous tool to verify if an algorithm has found, or not, an exact solution
whose support is strictly shorter than M . For large classes of data, this exact
solution is a local minimizer of Fd which is different from any global minimizer
(Corollary 4). Then global minimization of Fd can prevent exact recovery.
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Abstract. We develop an observational technique for the stereoscopic
reconstruction of the wave form of oceanic sea states via a variational
stereo method. In the context of active surfaces, the shape and radiance
of the wave surface are obtained as minimizers of an energy functional
that combines image observations and smoothness priors. To obey the
quasi Gaussianity of oceanic waves observed in nature, a given statistical
wave law is enforced in the stereo variational framework as a weak con-
straint. Multigrid methods are then used to solve the partial differential
equations derived from the optimality conditions of the augmented en-
ergy functional. An application of the developed method to two sets of
experimental stereo data is finally presented.

1 Introduction

In recent years there has been a growing interest in vision-based remote-sensing
observational technology for the measurement of oceanic sea states [7,2,17,5].
This topic is a major concern in ocean engineering because it has a broad im-
pact: the understanding of space-time dynamics of ocean waves enables better
forecasting of extreme events, improved design of off-shore structures, validation
of theoretical models, etc. Vision systems are non-intrusive, have economical
advantages over traditional instrumentation (wave gauges and ultrasonic instru-
ments or buoys) and provide spatio-temporal data whose statistical content is
richer than that of previous monitoring methods, but they require more process-
ing power to extract information from the observed video data. The application
of vision tools, such as stereography, to oceanography dates back to the first
experiments with stereo cameras mounted on a ship by Schumacher [12] in 1939.
Stereography gained popularity in studying the dynamics of oceanographic phe-
nomena during the 1980s due to advances in hardware. For example, Shemdin
et al. [14] applied stereography for the directional measurement of short ocean
waves. Recently, Benetazzo [2] successfully incorporated epipolar techniques in

� Research supported by ONR grant BAA 09-012: “Ocean Wave Dissipation and en-
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the Wave Acquisition Stereo System (WASS) and showed that the accuracy of
WASS is comparable to the accuracy obtained from traditional instrumentation.
An alternative trinocular imaging system (ATSIS) for measuring the temporal
evolution of 3-D surface waves was proposed in [17].

The three-dimensional reconstruction of an object’s surface from multiple im-
ages is a classical problem in computer vision [10,6,13], and it is still an extremely
active research area. There are many 3-D reconstruction algorithms available in
the literature and they are designed under different assumptions that provide a
variety of trade-offs between speed, accuracy and viability. Traditional image-
based stereo methods typically consist of two steps: first, image points are de-
tected and matched across images to establish local correspondences; then depth
is inferred by back-projection of correspondences. This is the strategy used in re-
cent observational systems [2,17], and it has the advantages of being simple and
fast. However, it also has some major disadvantages that motivated the research
on improved stereo reconstruction methods [4,18,8] based on variational theory.
Firstly, correspondences rely on strong textures and image matching. They can
be poorly estimated if the objects in the scene have a smooth radiance, and
can also suffer from the presence of noise and local minima. Furthermore, each
space point is reconstructed independently. Therefore, the recovered surface of
an object is obtained as a collection of scattered 3-D points. Thus, the hypothe-
sis of the continuity of the surface is not exploited in the reconstruction process.
The breakdown of traditional stereo methods in these situations is evidenced by
“holes” in the reconstructed surface, which correspond to unmatched image re-
gions [10,2]. This phenomenon may be dominant in the case of the ocean surface,
which, by nature, is generally continuous and contains little texture.

Modern object-based computer vision methods that rely on Calculus of Vari-
ations and Partial Differential Equations (PDE), are able to overcome the dis-
advantages of traditional stereo [4,18,1,8]. For instance, unmatched regions are
avoided by building an explicit model of the smooth surface to be estimated
rather than representing it as a collection of scattered 3-D points. Thus, vari-
ational methods provide dense and coherent surface reconstructions. Surface
points are reconstructed by exploiting the continuity (coherence) hypothesis in
the full two-dimensional domain of the surface.

Variational stereo methods combine correspondence establishment and shape
reconstruction into one single step and they are less sensitive to matching prob-
lems of local correspondences. The reconstructed surface is obtained by mini-
mization of an energy functional designed for the stereo problem. The solution
is obtained in the context of active surfaces by deforming an initial surface via
a gradient descent PDE derived from the necessary optimality conditions of the
energy functional, the so-called Euler-Lagrange (EL) equations. In parallel to the
advances in vision tools, the oceanographic community has developed statistical
and spectral models for the characterization of oceanic sea states [9,19,15,16]
that clearly indicate that oceanic waves are quasi-Gaussian in nature.

Up to date, both traditional and variational stereo techniques do not include
in the reconstruction process the prior information of Gaussianity of waves,
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which is usually verified a posteriori [2,5]. In this paper, we present a novel
variational framework in which a statistical distribution is enforced as a prior
into the stereo reconstruction of water waves via a weak constraint. Motivated
by the characteristics of the target object in the scene, i.e., the ocean surface,
we first introduce the graph surface representation in the formulation of the
reconstruction problem. Then, we cast the problem as a variational optimization
problem and show how a priori knowledge of statistical wave height models can
be weakly enforced in the variational framework to aid the recovery of the surface
shape. The performance of the algorithm is validated on experimental data and
the statistics of the reconstructed surface are also analyzed. Concluding remarks
are finally presented.

2 The Variational Framework

2.1 Multi-Image Setup and Graph Surface Representation

Let S be a smooth surface in R3 with generic local coordinates (u, v) ∈ R2. Let
{Ii}Nc

i=1 be a set of images of a static scene acquired by cameras with known
calibration parameters {Pi}Nc

i=1. Space points are mapped into image points ac-
cording to the pinhole camera model [6]. A surface point (or, in general a 3-D
point) X = (X,Y, Z)� with homogeneous coordinates X̄ = (X,Y, Z, 1)� is
mapped to point xi = (xi, yi)� in the i-th image with homogeneous coordi-
nates x̄i = (xi, yi, 1)� ∼ PiX̄, where the symbol ∼ means equality up to a
nonzero scale factor and Pi = Ki[Ri | ti] is the 3 × 4 projection matrix with
the intrinsic (Ki) and extrinsic (Ri, ti) calibration parameters of the i-th camera.
Point Ci = (C1

i , C
2
i , C

3
i )� satisfying PiC̄i = 0 is the optical center of the i-th

camera. Let πi : R3 → R2 note the projection maps, xi = πi(X), and Ii(xi) be
the image intensity at xi.

In the variational context of active surfaces, we present a different approach to
the reconstruction problem presented in [18,4] (level set approach) by exploiting
the hypothesis that the surface of the water can be represented in the form of a
graph or elevation map:

Z = Z(X,Y ), (1)

where Z is the height of the surface with respect to a domain plane that is pa-
rameterized by coordinates X and Y . Indeed, slow varying, non-breaking waves
admit this simple representation with respect to a plane orthogonal to grav-
ity direction. The graph representation of the water surface presents some clear
advantages over the more general level set representation of [4,8,18,5]. Surface
evolution is simpler to implement since the surface is not represented in terms
of an auxiliary higher dimensional function (the level set function). The surface
is evolved directly via the height function (1) discretized over a fixed 2-D grid
defined on the X − Y plane. The latter also implies that for the same amount
of physical memory, higher spatial resolution (finer details) can be achieved in
the graph representation than with the level set. The X − Y plane becomes
the natural common domain to parameterize the geometrical and photometric
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properties of surfaces. This simple identification does not exist in the level set
approach [18]. Finally, the graph representation allows for fast numerical solvers
besides gradient descent, like Fast Poisson Solvers, Cyclic Reduction, Multigrid
Methods, Finite-Element Methods (FEM), etc. In the level set framework, the
range of solvers is not as diverse.

However, there are also some minor disadvantages. A world frame properly
oriented with the gravity direction must be defined in advance to represent the
surface as a graph with respect to this plane. This is not trivial a priori and
might pose a problem if only the information from the stereo images is used
[2]. Surface evolution is constrained to be in the form of a graph and this may
differ from the evolution obtained for an unconstrained surface. As a result, more
iterations may be required to evolve the active surface to reach convergence.

2.2 Proposed Energy Functional

Consider the 3-D reconstruction problem from a collection of Nc ≥ 2 images (we
will exemplify with Nc = 2). We investigate a generative model of the images
that allows for the joint estimation of the shape of the surface S and the radiance
function on the surface f as minimizers of an energy functional. Let the energy
functional be the sum of a data fidelity term Edata and two regularizing terms:
a geometry smoothing term Egeom and a radiance smoothing term Erad,

E(S, f) = Edata(S, f) + αEgeom(S) + βErad(f), (2)

where α, β ∈ R+. The data fidelity term measures the photo-consistency of
the model: the discrepancy between the observed images Ii and the radiance
model f ,

Edata =
Nc∑
i=1

Ei, Ei =
∫

Ωi

φi dxi, (3)

where a possible photometric matching criterion is

φi = 1
2

(
Ii(xi)− f(xi)

)2
. (4)

The region of the image domain where the scene is projected is denoted by Ωi.
Assuming that the surface of the scene is represented as a graph Z = Z(u, v), a
point on the surface has coordinates

X(u, v) =
(
u, v, Z(u, v)

)�
. (5)

The chain of operations to obtain the intensity Ii(xi) given a surface point with
world coordinates X(u) ≡ S(u), u = (u, v)�, is

X(u) �→ X̃i = MiX + pi
4 �→ xi �→ Ii(xi), (6)

where X̃i = (X̃i, Ỹi, Z̃i)� are related to the coordinates of X in the i-th camera
frame, xi = (X̃i/Z̃i, Ỹi/Z̃i)� is the projection of X in the i-th image plane and
Pi = [Mi |pi

4], with Mi = KiRi ≡ (ni
1,n

i
2,n

i
3)

� and pi
4 = Kiti. Also, |Mi| = det(Mi).
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The radiance model f is specified by a function f̂ defined on the surface S.
Then, f in (4) is naturally defined by f(xi) = f̂(π−1

i (X)), where π−1
i denotes the

back-projection operation from a point in the i-th image to the closest surface
point with respect to the camera. By abusing notation, let us use f to denote the
parameterized radiance f(u), understanding that f(xi) in (4) reads the back-
projected value in f̂(X(u)) = f(u).

Motivated by the common parameterizing domain of the shape and radiance of
the surface and to obtain the simplest diffusive terms in the necessary optimality
conditions of the energy (2), let the regularizers be

Egeom =
∫

U

1
2‖∇Z(u)‖2 du, Erad =

∫
U

1
2‖∇f(u)‖2 du, (7)

where ∇Z(u) = (Zu, Zv)�, ∇f(u) = (fu, fv)� and subscripts indicate the
derivative with respect to that variable.

The definition of the data fidelity term as an integral over the image domain
(rather than over the parameter space U) has two advantages: (i) the data term
is independent of the choice of domain for the graph, and (ii) the resulting
optimality conditions for the minimization of (2) lack image derivatives, which
are transferred to the radiance model and can be controlled by the regularizer
Erad. This desirable property is inherited from the modeling and mathematical
principles that we follow from [18]. The resulting algorithm is less sensitive to
image noise than other variational approaches for stereo 3-D reconstruction.

Once all terms in (2) have been specified, they are expressed over a common
domain: the parameter space. The Jacobian of the change of variables between
integration domains for the data term is, by applying the chain rule to (6),

Ji =
∣∣∣∣dxi

du

∣∣∣∣ = −|Mi|Z̃−3
i (X−Ci) · (Xu ×Xv), (8)

where Xu ×Xv is proportional to the outward unit normal N to the surface at
X(u, v), and Z̃i = ni

3 · (X−Ci) > 0 is the depth of the point X with respect to
the i-th camera (located at Ci). With this change, energy (3) becomes

Ei =
∫

Ωi

φi dxi =
∫

U

φiJi du, (9)

where the last integral is over U : the part of the parameter space whose surface
projects on Ωi in the i-th image. Observe that the Jacobian weights the photo-
metric error φi proportionally to the cosine of the angle between the unit normal
to the surface at X and the projection ray (the ray joining the optical center of
the camera and X): (X−Ci) ·(Xu×Xv). After collecting terms (7) and (9), and
noting that the shape X of the surface solely depends on the height (Eqn. (5)),
energy (2) becomes

E(Z, f) =
∫

U

L(Z,∇Z, f,∇f, u, v) du. (10)

where subscripts indicate the derivative with respect to that variable, and the
integrand is the so-called Lagrangian L.
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2.3 Energy Minimization. Optimality Condition

The energy (10) depends on two functions: the shape Z and the radiance f of
the surface. To find a minimizer of such a functional, we derive the necessary op-
timality condition by setting to zero the first variation of the functional, yielding
a coupled system of PDEs (EL equations) along with boundary conditions:

g(Z, f)− αΔZ = 0 in U, (11)

b(Z, f) + α
∂Z

∂ν
= 0 on ∂U, (12)

−∑Nc

i=1(Ii − f)Ji(Z)− βΔf = 0 in U, (13)

β
∂f

∂ν
= 0 on ∂U, (14)

where the non-linear terms due to the data fidelity energy are

g(Z, f)=∇f ·∑Nc

i=1|Mi|Z̃−3
i (Ii − f)(u − C1

i , v − C2
i ), (15)

b(Z, f)=
∑Nc

i=1φi|Mi|Z̃−3
i

(
(u− C1

i )νu + (v − C2
i )νv

)
.

The Laplacians ΔZ and Δf arise from the regularizing terms (7), and ∂ ∗ /∂ν is
the the directional derivative along ν = (νu, νv)�, the normal to the integration
domain U in the parameter space. A simple classification of the PDEs can be
done as follows. For a fixed shape, (13) and (14) form a linear elliptic PDE (of
the inhomogeneous Helmholtz type) with Neumann boundary conditions. On
the other hand, for a fixed radiance, (11) and (12) lead to a nonlinear elliptic
equation in the height Z with nonstandard boundary conditions.

Difficult EL equations, such as (11)-(14), are commonly solved by the steady-
state of gradient descent PDEs that evolve the unknown functions in artificial
time t. This is the context of the so-called active surfaces. Due to the asymmetry
in the complexity of the PDEs, a minimization strategy consisting of a nested
iterative scheme is proposed: an outer loop performs a gradient descent in the
height, and an inner loop implements a direct optimization for the radiance.
Starting from an initial approximate solution, there are two phases within each
iteration: (1) compute the optimal radiance for a fixed shape, and (2) evolve
the shape, leaving the radiance fixed. To simplify the equations, we approximate
the boundary condition (12) by a simpler, homogeneous Neumann boundary
condition. This can be interpreted as if the data fidelity term vanished close to
the boundary and it is a reasonable assumption since the major contribution to
the energy is given by the terms in U , not at the boundary.

Numerical Solution. The optimality PDEs are discretized on a rectangular 2-
D grid in the parameter space and then solved numerically using finite-difference
methods. Direct optimization of the radiance is achieved by using stationary iter-
ative methods (Jacobi or Gauss-Seidel). Forward differences in time and central
differences in space approximate the derivatives in the gradient descent PDE for
the height, yielding an explicit updating scheme. The von Neumann stability
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analysis of the linearized PDE yields a time step Δt ≤ 1/(4α
h2 + 1

2 max |ġ(Z)|),
where ġ(Z) is the derivative of (15) and the maximum is taken over the 2-D
discretized grid at current time t. The time step may change at every iteration.

Both updating schemes (stationary methods for f and the time-stepping
method for Z) are used as relaxation procedures inside a multigrid method [3]
that approximately solves the EL equations. Multigrid methods are the most
efficient numerical tools for solving elliptic boundary value problems.

3 Weak Enforcement of Wave Height Distributions

The flexibility of the variational framework allows us to incorporate properties
of the physics of the waves in the model that would be otherwise difficult to take
into account in image-based stereo methods. For example, we may include global
statistical properties in the form of a weak constraint by considering an extra
energy term that penalizes the deviation of the statistics of the reconstructed
surface with respect to some target statistics derived from a physical model.
In particular, we may penalize the deviation of the height distribution of the
water surface with respect to a physically-justified Gaussian model and drive
the surface evolution toward (weakly) satisfying such a global property.

If Z(u, v) = Z(u) is the height of the surface (wave) and it is interpreted as a
random variable, then its cumulative distribution function (CDF) is

cdfZ(Z0) = P (Z ≤ Z0) =
1
A

∫
U

H(Z0 − Z(u))du,

where H(·) is the Heaviside function and A =
∫

U du is the area of the (fixed)
domain of integration. Suppose (2) is augmented with an extra energy term
γEcdf(S), γ > 0, that measures the discrepancy between a target height CDF
that we wish to enforce, G(Z), and the experimental CDF of the height:

Ecdf(Z) =
∫ ∞

−∞
1
2

(
G(ẑ)− cdfZ(ẑ)

)2
dẑ. (16)

To compute the first variation of (16), we can directly use the definition of the
Gâteaux derivative or augment Z with an artificial time variable, Z = Z(u, t),
so that the energy depends on t, differentiate with respect to this variable and
exploit the relationship between both derivatives. Carrying out operations in the
distributional sense,

d
dt
Ecdf =

d
dt

∫ ∞

−∞
1
2

(
G(ẑ)− 1

A

∫
U

H(ẑ − Z(u))du
)2dẑ

=
∫ ∞

−∞

(
G(ẑ)− cdfZ(ẑ)

)( 1
A

∫
U

δ(ẑ − Z(u))Ztdu
)
dẑ

=
∫

U

1
A

∫ ∞

−∞

(
G(ẑ)− cdfZ(ẑ)

)
δ(ẑ − Z(u))dẑ Ztdu

=
∫

U

∇ZEcdf Ztdu,
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where δ is the Dirac delta function and the gradient of (16) with respect to Z is

∇ZEcdf(Z(u)) =
1
A

(
G(Z(u))− cdfZ(Z(u))

)
. (17)

As a result of the statistical penalty, a new non-linear term of the form (17)
appears in the EL equation (11), while the boundary condition remains un-
changed. It is as if the nonlinear term (15) in the PDEs (11) was replaced by
g(Z) ← g(Z) + γ∇ZEcdf(Z). Multigrid methods are still suitable to efficiently
solve the new non-linear PDE. However, the time-stepping smoother requires an
additional constraint on the time step: the maximum height increment must be
of the order of the bin size used to estimate the experimental CDF so that each
iteration does not drastically change the CDF of the surface height.

Another reasonable energy to measure the statistical discrepancy between
the empirical distribution of the wave field and the one dictated by the physical
model is the L2 difference between probability density functions (PDFs):

Epdf(Z) =
∫ ∞

−∞
1
2

(
Ġ(ẑ)− pdfZ(ẑ)

)2dẑ, (18)

where Ġ(Z) is the target PDF that we wish to enforce. Following similar steps
as before, the EL equation (11) would have instead an extra term of the form

∇ZEpdf(Z(u)) = − 1
A

d
dZ
(
Ġ(Z(u))− pdfZ(Z(u))

)
. (19)

Enforcing the statistical constraint via the L2 difference of characteristic func-
tions (i.e. the Fourier transform of the PDFs) is, by Parseval’s theorem, equiva-
lent to the above PDF approach.

Theoretical probabilistic models that can be used as target physical wave
height distributions are presented in [15,16]. These models are quasi-Gaussian
distributions that capture the asymmetry present in real life water waves, which
have steep crests and shallow troughs.

4 Applications

Experiment 1. Images of ”Canale della Giudecca” in Venice (Italy). Figs. 1 and
2 show an example of a reconstructed water surface from images of the Venice
Canal. Cropped images in Fig. 1 are of size 600×450 pixels and show the region
of interest to be reconstructed. Fig. 1 also displays the modeled images created
by the generative model within our variational method. The data fidelity term
compares the intensities of the original and modeled images in the highlighted
region. As observed, the modeled image is a good match of the original image.
Fig. 2 shows the converged values of the unknowns of the problem: the height and
the radiance of the surface, as well as the 3-D representation of the reconstructed
surface obtained by combining both 2-D functions. In this experiment, the values
of the weights of the regularizers were empirically determined: α = 0.035 and
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Fig. 1. Left: projection on image 1 of the boundary of the estimated graph, which has
been discretized by a grid of 129× 513 points. Center: modeled image (computed form
surface height and radiance) superimposed on original image 1. Right: modeled image
2 superimposed on original image 2.

Fig. 2. Form left to right: (1) estimated height function Z(u, v) (shape of the water
surface) in pseudo-color; (2) height represented by greyscale intensities, from dark (low)
to white (high); (3) estimated radiance function f(u, v) (texture on the surface); (4)
perspective, three-dimensional wire-frame representation of the estimated surface shape
(height) according to grid points; (5) texture-mapped surface obtained by incorporating
the radiance function in the wire-frame model. In (4) and (5) the vertical axis has been
magnified by a factor of 5 with respect to the horizontal axes for visualization purpose.

β = 0.01. At the finest of the 5-level multigrid [3] algorithm, the gradient descent
PDEs are discretized on a 2-D grid with 129× 513 points. The distance between
grid points is h = 5 cm. Therefore, the grid covers an area of 6.45×25.65m2. An
example of a surface discretized at the finest grid level is also shown in Fig. 2.
The high density of the surface representation is typical of variational methods.
The step size h must be chosen so that it approximately matches the resolution
in the images: a displacement of 1 pixel is observable at the finest grid level
in the multigrid framework and it corresponds to a physical displacement of at
least h. Due to perspective, the maximum value of h is determined by the grid
points closest to the cameras.

Experiment 2. We apply our variational method, with and without statistical
regularizer, to a pair of stereo images acquired at an off-shore platform in the
Black Sea. Two cameras mounted 12 m above the mean sea level and with a
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Fig. 3. Original image (left), modeled image superimposed on original image (center),
error image (right).
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Fig. 4. Pseudo-colored Z(u, v) without statistical regularizer (left). Z(u, v) (center)
and f(u, v) (right) with statistical regularizer.

baseline of 2.5 meters acquire images of size 1624 × 1236 pixels. Fig. 3 (left)
shows a sample image from one of the cameras. A grid with 513×513 points and
resolution h = 2.5 cm, covering an area of 13 × 13m2, is used to discretize the
graph of the surface. Roughly, 1 image pixel corresponds to a physical displace-
ment of 1.06 cm (1.88 cm) for grid points near (resp. far from) the cameras. Both
displacements are of the same order as h. A 6-level full multigrid method [3] with
400 iterations per level, 2 V-cycles per iteration, and 1 pre- and post-relaxation
sweeps per cycle, is performed on the linearized optimality PDEs to reach a local
solution. The weights of the regularizers used are: α = 0.1 and β = 0.025. Fig. 4
(left) shows the converged height function of the reconstructed surface without
imposing a weak statistical constraint, i.e., γ = 0. Fig. 5 shows the corresponding
observed PDF using normalized height ξ = (Z − μZ)/σZ (zero mean and unit
variance). Note the deviations from Gaussianity with large kurtosis. Further,
the associated omni-directional spectrum S(k) is also shown in Fig. 5 (dashed
line). In a polar-reference frame, S(k) is computed from the two-dimensional
power spectrum Ψ of the wave surface Z as S(k) =

∫ 2π

0 Ψ(k, θ)k dθ, where k is
the wavenumber and θ is the angle. According to the wave turbulence theory of
Zakharov [19], the spectrum tail initially decays as k−2.5 as a result of an energy
cascade from large to small scales up to ∼ 10 rad/m and then switch to a k−3

equilibrium range [11].
Next, 200 V-cycles of multigrid are carried out using the energy augmented by

(16), γEcdf with γ/A = 10−2, to drive the surface toward the target
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Fig. 5. Left: Observed PDF of the reconstructed wave surface Z with (solid line) and
without (dash line) statistical regularization. The Gaussian distribution is plotted for
comparison (dotted line). Right: Observed omni-directional spectrum S(k) of the re-
constructed surface Z with (solid line) and without (dash line) statistical regularizer.

distribution: Gaussian for simplicity, although other distributions could have
been used [15,16]. The converged height and radiance functions are shown in
Fig. 4. Both, Z and f generate the modeled image in Fig. 3. The absolute er-
ror image with respect to the input image is also displayed. There are subtle
differences between height functions with and without the statistical constraint.
Both solutions correctly capture the (almost breaking) wave front moving toward
the camera. Now, two non-linear terms (photometric fidelity and statistical con-
straint) compete to evolve the surface. The regions that change the most due
to the statistical regularizer are those with smooth texture, corresponding to
small photometric error. The statistical regularizer leaves the photometric error
and omni-directional spectrum (Fig. 5, right) almost unchanged while signifi-
cantly modifying the PDF of the height map. The new reconstructed surface is
quasi-Gaussian as clearly shown in Fig. 5.

5 Conclusion

Variational stereo is more powerful, flexible, and rigorous, albeit computation-
ally expensive, than earlier traditional, image-based stereo methods. Therefore,
we follow this research path by developing a variational stereo method for the
case of smooth surfaces representable in the form of a graph supporting a smooth
radiance function. Moreover, we show how global properties of ocean waves, such
as statistical distributions, can be incorporated in the variational stereo recon-
struction framework via a weak constraint. We successfully apply this method
in two experiments to reconstruct a small region of the surface of the ocean.
The variational stereo method developed can be naturally extended in several
ways to process sequences of stereo images to generate a coherent space-time
reconstruction of ocean waves. In future research we plan to investigate new en-
ergy terms to incorporate more global and/or local properties of the dynamics
of ocean waves such as the wave equation, etc.
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Abstract. Recently a new class of generalised diffusion filters called osmosis fil-
ters has been proposed. Osmosis models are useful for a variety of tasks in visual
computing. In this paper, we show that these filters are also beneficial outside
image processing and computer graphics: We exploit their use for the construc-
tion of better numerical schemes for hyperbolic partial differential equations that
model physical transport phenomena.

Our novel osmosis-based algorithm is constructed as a two-step, predictor-
corrector method. The predictor scheme is given by a Markov chain model of
osmosis that captures the hyperbolic transport in its advection term. By design,
it also incorporates a discrete diffusion process. The corresponding terms can
easily be identified within the osmosis model. In the corrector step, we subtract a
stabilised version of this discrete diffusion. We show that the resulting osmosis-
based method gives correct, highly accurate resolutions of shock wave fronts in
both linear and nonlinear test cases. Our work is an example for the usefulness of
visual computing ideas in numerical analysis.

Keywords: diffusion filtering, osmosis, diffusion-advection, drift-diffusion, hy-
perbolic conservation laws, finite difference methods, predictor-corrector schemes,
stabilised inverse diffusion.

1 Introduction

Hyperbolic differential equations (HDEs) model physical wave propagation and trans-
port processes. An important feature of solutions to such partial differential equations
(PDEs) is the formation of discontinuities, also called shocks. In image processing
shocks correspond to edges. Therefore, it seems natural that concepts from the nu-
merical approximation of HDEs can be useful for constructing discrete filters that deal
with the sharpening or evolution of edges. Rudin and Osher [1, 2] have exploited this
idea to define edge-enhancing processes. They use the same mechanism as in HDEs to
model so-called shock filters. When dealing with noisy images, one often aims at pre-
serving or enhancing edges, while in homogeneous image regions a smoothing should
take place. Corresponding to this idea, combinations of shock filters with mean curva-
ture motion [3] or with nonlinear diffusion [4] have been developed. Also, the concept
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of stabilised inverse diffusion (SID) has inspired interesting developments, both in a
linear [5, 6] and a nonlinear setting [7–9]. In particular, concepts from the numerics
of HDEs such as suitable combinations of one-sided differences have been applied to
stabilise discretisations of inverse diffusion [5, 9]. Similar ideas from the numerics of
HDEs dealing with an improved shock resolution have also been used for optical flow
computations [10].

While the influence of ideas from the numerics of HDEs on the field of image pro-
cessing is undeniable, up to now there are not many works that use techniques from
image analysis for improving numerical methods for HDEs. In [11–13] higher order
discretisations of HDEs that give a sharp shock resolution but suffer from oscillations
are combined with anisotropic diffusion filtering. There, anisotropic diffusion is used
to smooth oscillations without destroying the shocks. As an alternative procedure, one
may employ a classic first-order scheme featuring diffusive errors to capture the hyper-
bolic transport. Then, in a second step, the artificial blurring can be removed by linear
or nonlinear SID. This methodology is actually older than the SID-approach in image
processing, and it is called flux-corrected transport (FCT) [14]. Modern variations of it
have been developed for applications in image processing [15–17] and the numerics of
HDEs [18].

Our Contribution. The discussion above shows that so far only diffusion or inverse
diffusion processes have been used to correct numerical errors in schemes for HDEs.
The goal of the present paper is to propose a novel construction of predictor-corrector
schemes for HDEs that introduces a different mechanism. To this end, we make use
of the recently introduced class of osmosis filters for visual computing problems [19].
They can be regarded as nonsymmetric generalisation of diffusion filters that involve
a hyperbolic advection term which allows numerous applications beyond classic diffu-
sion filtering. In contrast to all previous works, we do not correct the numerical errors
of a classic HDE scheme by a diffusion filter, but we employ the hyperbolic term of the
osmosis process for predicting the hyperbolic transport in the HDE. The Markov chain
model corresponding to osmosis filters also includes a diffusion component. In the con-
text of HDEs, this is a reasonable feature, since it is well-known that numerical schemes
must incorporate a diffusive mechanism to approximate nonlinear shocks at the correct
position, cf. [20]. However, since this diffusion also blurs shocks, we supplement in
a corrector step SID to counter this undesired diffusion. As a benefit of the osmosis
model, we can do this in a straight forward fashion on a completely discrete basis; see
[16] for a similar use of this technique. In linear and nonlinear test cases, we com-
pare our method to a classic second-order MUSCL-Hancock scheme [21, 22] which
gives typical results for solvers in the field of HDEs. However, while the MUSCL-
Hancock scheme has a similar predictor-corrector format as our proposed method, our
approach is substantially easier to implement and much more efficient. We confirm that
our osmosis-based algorithm is not only competitive in quality to the MUSCL-Hancock
scheme, it even gives much sharper approximations at shocks.

Paper Organisation. In Section 2, we briefly review diffusion filtering and its gen-
eralisation to osmosis filters. Then we show in Section 3 how to use osmosis models
to design novel predictor-corrector schemes for a fundamental class of HDEs, namely
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hyperbolic conservation laws. In Section 4, we present numerical experiments. The pa-
per is finished with a conclusion in Section 5.

2 Diffusion Filters and Osmosis

Diffusion filters. Let a continuous-scale 1-D signal u(x, t) be given where we associate
x and twith space and time. The diffusion PDE with positive diffusivity function g(x, t)
reads in 1D as

∂tu = ∂x (g ∂xu) . (1)

It has to be supplemented with an initial condition u(x, 0) := f(x), and in case of a
bounded domain also with boundary conditions.

In a discrete setting, we use a spatial mesh width h and define the pixel location xi by
xi := (i − 1/2)h for i ∈ {1, . . . , N}. Analogously, we introduce a time discretisation
tk = kτ , so that we obtain a discrete signal uk

i ≈ u(xi, tk). Then a standard finite
difference discretisation of (1) is given by the explicit scheme

uk+1
i − uk

i

τ
=

1
h

(
gk

i+1/2

uk
i+1 − uk

i

h
− gk

i−1/2

uk
i − uk

i−1

h

)
(2)

where gk
i+1/2 denotes the diffusivity between the computational cells i and i+ 1.

Using the mesh ratio r := τ
h2 , our scheme can be rewritten as

uk+1
i = uk

i − rgk
i+1/2u

k
i − rgk

i−1/2u
k
i + rgk

i+1/2u
k
i+1 + rgk

i−1/2u
k
i−1. (3)

It is convenient to express this as a matrix-vector multiplication of the form uk+1 =
Qkuk, where Qk is an (N ×N)-matrix with entries

qk
i,j :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1− rgk

i−1/2 − rgk
i+1/2 (j = i)

rgk
i−1/2 (j = i− 1)

rgk
i+1/2 (j = i+ 1)

0 (else).

(4)

Let us briefly review some important properties of the matrix Qk; cf. [23]. Obviously,
the matrix is symmetric. Stability of the iterative scheme (3) can be shown if the entries
of Qk are nonnegative. Since the diffusivity is positive, all off-diagonals contain non-
negative entries, leaving only the diagonal entries without proper clarification. There-
fore, for all diagonal entries it must hold that

qk
i,i = 1− rgk

i−1/2 − rgk
i+1/2 ≥ 0. (5)

This implies a stability condition on the time step size τ .
In order to implement homogeneous Neumann boundary conditions ∂xu = 0, we mod-
ify the entries for qk

1,1 and qk
N,N such that

qk
1,1 := 1− rgk

3/2 and qk
N,N := 1− rgk

N−1/2. (6)
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i − 1 i i + 1

1 − rgk
i−1/2 − rgk

i+1/2

rgk
i−1/2

rgk
i−1/2 rgk

i+1/2

rgk
i+1/2

Fig. 1. Diffusion process visualised in terms of a Markov chain model

This can be interpreted as setting the missing terms gk
1/2 and gk

N+1/2 to 0. It should
be mentioned that it is also possible to implement Dirichlet boundary conditions or
periodic boundary conditions.

Furthermore, it holds that the sums over all entries in each column of Qk equal 1.
By the symmetry of Qk this also holds for the row sums. Both properties have an effect
on the evolution of the process: The unit column sums imply the preservation of the
average grey value. With the unit row sums it is possible to prove a discrete maximum-
minimum principle. Moreover, in [23] it is shown that the evolution converges to a
constant steady state that is identical to the average grey value of the initial signal. Let
us stress that the properties of the discrete minimum-maximum-principle and the trivial
steady state solution are consequences of the symmetry of Qk which implies that unit
column sums are equivalent to unit row sums.

We can also express diffusion using Markov chains. Markov chains are described
in terms of stochastic matrices that incorporate transition probabilities [24]. A stochas-
tic matrix is a matrix with only nonnegative entries and unit column sums. By taking
into account the positivity of the diffusivity and choosing a mesh ratio r such that (5)
is satisfied for all i, we can ensure that the matrix Qk contains only nonnegative en-
tries. Moreover, all column sums are 1. Thus, Qk is a stochastic matrix, and the entries
qk
i,j ≥ 0 can be interpreted as transition probabilities. In the Markov chain setting it

is convenient to use a graph-based representation of the diffusion model. It is given in
Figure 1.

Osmosis as a Generalisation of Diffusion Filters. Following [19] let us now consider
a nonsymmetric extension of diffusion that is called osmosis. To this end, we assume
that we have semi-permeable membranes between adjacent pixels. An osmosis process
permits selective transport of particles such that the transition probabilities may be dif-
ferent, depending on the orientation. For example, the transition probability from pixel
i to pixel i+ 1 may differ from the transition probability from pixel i+ 1 to pixel i. In
the Markov model, this leads to the loss of the symmetry in the graph in Figure 1. This
is achieved by allowing different diffusivities in different orientation. Such oriented dif-
fusivities are called osmoticities. The forward osmoticity from pixel i to i + 1 at time
level k is denoted by g+,k

i+1/2, while g−,k
i+1/2 is the backward osmoticity from pixel i+ 1

to i. We choose these osmoticities such that the normalisation condition

g+,k
i+1/2 + g−,k

i+1/2 = 2 (7)

is fulfilled for all i; cf. [19]. Since osmoticities are also supposed to be nonnegative, we
conclude that in this case their range is in [0, 2].
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i − 1 i i + 1

1 − rg−,k
i−1/2 − rg+,k

i+1/2

rg−,k
i−1/2

rg+,k
i−1/2 rg+,k

i+1/2

rg−,k
i+1/2

Fig. 2. Osmosis process visualised in terms of a Markov chain model

In Figure 2 we see a graph-based representation of osmosis. This new process is
expressed by the scheme

uk+1
i = uk

i − rg+,k
i+1/2u

k
i − rg−,k

i−1/2u
k
i︸ ︷︷ ︸

“outflow”

+ rg−,k
i+1/2u

k
i+1 + rg+,k

i−1/2u
k
i−1︸ ︷︷ ︸

“inflow”

(8)

This can be rewritten in matrix-vector notation uk+1 = P kuk with a matrix P k :=
(pk

i,j) with

pk
i,j :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1− rg−,k

i−1/2 − rg+,k
i+1/2 (j = i)

rg+,k
i−1/2 (j = i− 1)

rg−,k
i+1/2 (j = i+ 1)

0 (else).

(9)

Homogeneous Neumann boundary conditions are implemented by setting the osmotic-
ities in the boundary locations x1/2 and xN+1/2 to 0.

Let us comment on the structure of P k. As in the case with Qk, the system matrix (9)
is a stochastic matrix if r is chosen such that the diagonal entries of P k are nonnegative.
Since P k has unit column sums, it follows that osmosis preserves the average grey
value:

1
N

N∑
i=1

uk+1
i =

1
N

N∑
i=1

N∑
j=1

pk
i,ju

k
j =

1
N

N∑
j=1

(
N∑

i=1

pk
i,j

)
︸ ︷︷ ︸

=1

uk
j =

1
N

N∑
j=1

uk
j . (10)

However, P k is not symmetric. Thus, unit row sums cannot be guaranteed. As a con-
sequence, a discrete maximum-minimum principle does not hold, but the nonnegativity
of P k still implies that a nonnegative initial signal remains nonnegative after filter-
ing. More importantly, the lack of symmetry allows that osmosis can lead to nontrivial
steady states. This interesting property is analysed in detail in [19], where it is also
exploited for many applications.

As proven in [19], the scheme (8) with normalisation condition (7) approximates on
a fixed, given mesh of size h the 1-D osmosis PDE

∂tu + ∂x

(
g+ − g−

h
u

)
= ∂xxu (11)
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Fig. 3. Seamless image cloning with osmosis (with permission from [19]). From left to right: (a)
Original painting of Euler. (b) Original drawing of Lagrange (with to-be-cloned face selected).
(c) Direct cloning on top of Euler’s head. (d) Cloning with osmosis image editing. See [19] for
more details.

where g+ and g− are continuous-scale representations of the osmoticities. PDEs of this
type are called advection-diffusion equations or drift-diffusion equations.

It is straight forward to extend osmosis to higher dimensions and colour images; see
[19] for details. In [19] it is also shown that osmosis constitutes a versatile framework
for many visual computing problems such as clustering, data integration, focus fusion,
exposure blending, image editing, shadow removal, and compact image representation.
Fig. 3 illustrates this. Let us now explore a new application field for osmosis that goes
beyond visual computing tasks: the construction of better numerical schemes for hyper-
bolic conservation laws.

3 Osmosis Schemes for HDEs

Hyperbolic conservation laws. We aim at constructing numerical approximations of
HDEs that can be written as

∂tu + ∂x(φ(u)) = 0. (12)

Such equations are called hyperbolic conservation laws (HCLs). This is a fundamental
class of PDEs with many applications in science and engineering [25]. The design of
numerical schemes for HCLs can easily be transferred to other specific HDEs. The
function φ in (12) is called flux function. Its properties, like e.g. linearity or convexity,
are important for the features one can expect from solutions of such PDEs. We will
write φ in the format of a velocity times the underlying density function, i.e. φ(u) = au,
where a := a(u) may be nonlinear. This is a very basic choice in the field of HCLs,
naturally arising in many settings [25].

Comparing the differential formula for osmosis (11) with the general form of HCLs
(12), one can immediately identify the flux φ(u) and the corresponding flux within the
osmosis advection term

φ(u) =
g+ − g−

h
u. (13)
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In addition, there is the diffusion term ∂xxu. The general idea we pursue in the following
is to determine useful expressions for g+ and g−, so that we can capture the hyperbolic
transport by the osmosis model.

Selection of the Osmoticities. For the general construction of osmosis-based algo-
rithms, we stick for simplicity to the 1-D situation. The methodology can be extended
to the 2-D case in a straight forward fashion.

In order to approximate the flux φ(u) = a(u)u of the hyperbolic transport contained
in (11), we choose as osmoticities

g+,k
i+1/2 := 1 +

h ak
i+1/2

2
and g−,k

i+1/2 := 1 −
h ak

i+1/2

2
(14)

with velocities ak
i+1/2 defined at pixel borders. This setting makes the osmotic transport

identical to the desired format a(u)u. Let us discuss two examples.

– Example 1: Osmoticities for linear advection.
The linear advection equation

∂tu + α∂xu = 0 (15)

is a standard example of HDEs, defined via φ(u) := αu with α ∈ R. In order to
approximate (15), we set all velocities ak

i+1/2 to the same value α.

– Example 2: Osmoticities for Burgers’ equation.
Burgers’ equation is a classic test case for nonlinear HDEs:

∂tu + ∂x

(
1
2
u2

)
= 0, i.e. φ(u) =

1
2
u2. (16)

Rewriting the flux in the format φ(u) = a(u)u leads to the discrete expression

ak
i+1/2 = a(uk

i , u
k
i+1) :=

1
2
uk

i + uk
i+1

2
(17)

after approximating the density uk
i+1/2 at the border between pixels i and i+ 1 by

averaging.

Subtracting the Diffusion. Our osmosis scheme contains the diffusive term ∂xxuwhich
leads to an additional smoothing of the signal. In order to compensate for this effect,
we apply a method similar to the fully discrete SID step in [17].

If we use our definitions of g±i±1/2 from (14) within the osmosis filter (8) and carry
out further computations, we obtain

ũk
i = uk

i −
τ

h

(
ak

i+1/2

uk
i+1 + uk

i

2
− ak

i−1/2

uk
i + uk

i−1

2

)
︸ ︷︷ ︸

(A)

+ r (uk
i+1 − 2uk

i + uk
i−1)︸ ︷︷ ︸

(B)

. (18)
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The term (A) corresponds to the update formula of an explicit scheme for discretising
the hyperbolic transport, while (B) is a discretisation of a time step performed with
linear diffusion. It should be noted that (18) varies from the standard Lax-Friedrichs
scheme by controlling the diffusive part (B) with the same time step size τ as the trans-
port term (A), see also [25–27].

Let us now subtract the effect of the latter by performing a SID step in the same style
as in [16, 17]. This gives the total, corrected result

uk+1
i := ũk

i − cki+1/2 + cki−1/2 (19)

where cki±1/2 denote the fluxes of the stabilised inverse diffusion:

cki+1/2 := minmod
(
ũk

i − ũk
i−1, η

k
i+1/2

(
ũk

i+1 − ũk
i

)
, ũk

i+2 − ũk
i+1

)
(20)

with the minmod function

minmod(a, b, c) :=

⎧⎨⎩
max(a, b, c) if a > 0 and b > 0 and c > 0
min(a, b, c) if a < 0 and b < 0 and c < 0
0 else.

(21)

Thereby, ηk
i+1/2 := r is the antidiffusion coefficient, as identified in (B). The other

arguments of the minmod function serve as stabilisers.

The Complete Algorithm. Now we can summarise our method in a nutshell.

Osmosis-based Method for Approximating ∂tu+ ∂x(φ(u)) = 0.
Step 1: Determine the velocity function a for a given flux function

φ(u) = a(u)u.
Step 2: Compute the osmoticities according to (14).
Step 3: Perform one predictor step by applying the osmosis scheme (18).
Step 4: Perform the corrector step (19).
Step 5: Repeat steps 2 to 4 until the stopping time is reached.

4 Numerical Experiments

We illustrate the quality of our osmosis-based algorithm with several standard examples
from the field of HDEs. Thereby, we focus our attention on the shocks that are the most
interesting features of hyperbolic PDEs.

For comparison with standard methods for HDEs, we employ a second-order high-
resolution MUSCL-Hancock method [21, 22]. This classic method gives typical results
for high-resolution solvers in this field.

Linear Advection in 1D. In our first experiment we consider the linear advection equa-
tion (15) with α = 1 and periodic boundary conditions. We apply it for transporting a
box-like initial signal

f(x) :=
{

1 (10 ≤ x < 30)
0 (else).

(22)
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Fig. 4. Linear advection experiment. (a) Left: Results at t = 60. (b) Right: Close-up on the right
edge of the signal.
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Fig. 5. Burgers’ Equation. (a) Left: Results at t = 250. (b) Right: Close-up on the right edge of
the signal.

As numerical parameters we choose N := 200, h := 1, and τ := 0.25. In Figure 4 we
show a snapshot taken after 240 time steps of numerical solutions computed by our new
scheme and the reference method, together with the exact solution. We observe that our
osmosis method gives much sharper discontinuities than the MUSCL-Hancock scheme
and comes closer to the exact solution.

Nonlinear Burgers’ Equation in 1D. Now we consider the Burgers’ equation (16)
under the same parameter settings and the same initial condition as in the first test.
By the nonlinear evolution, the box signal is shifted to the right. The discontinuity at
the right hand side of the box travels as a shock while the rest of the signal is gradually
shifted, transforming the box into a ramp. Figure 5 shows the numerical solutions at t =
250 for our osmosis-based scheme as well as for the MUSCL-Hancock implementation,
together with the exact solution. Both methods give reasonable approximations in this
test case.

Nonlinear 2D Experiment. As already mentioned, extending osmosis to 2D is straight
forward: One only has to define osmoticities as proposed in (14) for x- and y-direction.
Note that our resulting scheme is rotationally invariant w.r.t. the diffusion part, since
this is given in 2D by the isotropic Laplace operator [19]. The 2-D MUSCL-Hancock
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Fig. 6. Steady-state result for the 2-D test. Left: MUSCL-Hancock scheme. Right: Osmosis
scheme. Top row: Top-down view. Bottom row: Different angle, showing the shock region in
detail.

scheme is presumably comparable in this respect, as it uses information from a diamond-
shaped stencil of 13 nodes [21, 22].

For our 2-D experiment we consider the nonlinear problem from [11] where the
steady state is sought. It combines Burgers’ equation with linear advection by choosing
the flux function φ(u) = 1

2u
2 in x-direction, and ψ(u) = u in y-direction. As initial

state on our domain [0, 100]× [0, 100] we take

f(x, y) :=

⎧⎪⎪⎨⎪⎪⎩
1.5 (x = 1)
−2.5x+ 1.5 (y = 1)
−1 (x = 100)
0 (else).

(23)

These values also define non-zero Dirichlet boundary conditions on three borders of
our domain. On the remaining border (at y = 100) we impose homogeneous Neumann
boundary conditions. We implement the process in a straight forward way using the
osmoticities for Burgers’ equation and linear advection in x- and y-direction, respec-
tively. The problem is discretised on a grid of size 100× 100, and the numerical steady
state obtained at t = 250 is depicted in Fig. 6. In the smooth regions, our method
performs comparable to the MUSCL-Hancock scheme, but we obtain a much sharper
shock resolution.
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5 Conclusion

We have developed a novel class of schemes for approximating HCLs. They combine
recently developed osmosis filters for resolving transport with a stabilised inverse dif-
fusion step. We have shown the strength of our approach for resolving solutions with
shocks, which are important features in the fields of hyperbolic differential equations.

Quite frequently, new results in visual computing benefit from the use of modern
techniques from numerical analysis. Our work is an example for a fertilisation in the
inverse direction. Note that the key for obtaining the results in our paper is the use of a
very recent technique from visual computing. However, we do not only propose a novel
construction of numerical schemes for HDEs, we also introduce a new application of
osmosis filters. Therefore, this paper is an example for the useful interaction of visual
computing ideas and numerical analysis. In our future work we will investigate if also
other modern PDE-based methods from image analysis can be used with benefit in
numerical analysis.

Acknowledgments. The authors gratefully acknowledge the funding given by the
Deutsche Forschungsgemeinschaft (DFG), grant We2602/8-1.
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Abstract. The increasing computing power of modern smartphones opens the
door for interesting mobile image analysis applications. In this paper, we explore
the arising possibilities but also discuss remaining challenges by implementing
linear and nonlinear diffusion filters as well as basic variational optic flow ap-
proaches on a modern Android smartphone. To achieve low runtimes, we present
a fast method for acquiring images from the built-in camera and focus on effi-
cient solution strategies for the arising partial differential equations (PDEs): Lin-
ear diffusion is realised by approximating a Gaussian convolution by means of an
iterated box filter. For nonlinear diffusion and optic flow estimation we use the
recent fast explicit diffusion (FED) solver. Our experiments on a recent smart-
phone show that linear/nonlinear diffusion filters can be applied in realtime/near-
realtime to images of size 176×144. Computing optic flow fields of a similar
resolution requires some seconds, while achieving a reasonable quality.

1 Introduction

The prevailing problems in image analysis – such as solving partial differential equa-
tions (PDEs)– have widely been considered to be a challenging and computationally in-
tensive task. If favourable results had to be computed in a reasonable time, researchers
were forced to port their algorithms from desktop architectures to super-computers,
which are difficult to work on, not to mention their immense costs.

In the near future, however, this trend could go in the completely opposite direc-
tion: On the algorithmic side, researchers spend more and more efforts on simple, yet
efficient solution strategies. On the hardware side, the computing power of modern
embedded systems such as smartphones is steadily increasing. Furthermore, powerful
application development frameworks for standard programming languages ease the im-
plementation on such platforms. Joining the ongoing work from the two mentioned
research directions could thus allow to perform challenging image analysis tasks on
small handheld devices that are already today in almost everybody’s trouser pocket.

In order to prove the basic feasibility of this ambitious goal, the present paper shows
some prototypical examples by implementing linear and nonlinear diffusion filters [1],
as well as two variational optic flow approaches [2,3] on a recent smartphone (HTC
Desire, 1 GHz) running the Android operating system. As users expect mobile image
analysis applications to achieve interactive runtimes, we put an emphasis on efficient,
but still simple to implement solvers for the occurring partial differential equations
(PDEs). In the linear diffusion case, we analytically solve the PDE. This comes down to

A.M. Bruckstein et al. (Eds.): SSVM 2011, LNCS 6667, pp. 544–555, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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a Gaussian convolution of the image, which is approximated by an iterated box filter [4]
that achieves a realtime performance for camera images of size 240×160 pixels. In the
nonlinear case where an analytical solution is not possible, we opt for an explicit solver
that is speeded up by the recently proposed fast explicit diffusion scheme [5], resulting in
a near-realtime performance. A similar explicit solver, however operating in a coarse-
to-fine manner is used for optic flow estimation. Here, our implementation allows to
compute flow fields on standard test sequences in the order of some seconds, while
achieving a reasonable quality in terms of error measures.

Related Work. Several earlier works applied image analysis on smartphones for tasks
like image enhancement and image-based applications. To our surprise there is no dif-
fusion framework with interactive runtimes on smartphones, yet.

A general image processing framework for the Android platform including basic
operations such as a box filter has been proposed by Wells [6]. A closed-source non-
linear diffusion filter is available for the iPhone [7], but it does not allow to tune any
parameters and is rather slow (20 seconds for an image with 320×320 pixels). Another
algorithm that shares principle properties with diffusion schemes is the coherence en-
hancing shock filter for the iPhone [8] that only needs about 3 seconds on a similar
resolution. Recently, the OpenCV framework has been ported to Android devices [9]. It
includes many filters and also computer vision methods, e.g. linear diffusion as well as
a pyramidal Lucas and Kanade [10] and a Horn and Schunck optic flow algorithm [3].
Based on this framework, there is also an implementation of the combined local-global
(CLG) optic flow method [2,11]. However, these approaches cannot provide the optimal
runtime possible on mobile devices since OpenCV introduces an additional abstraction
layer which was not optimised for particular platforms like Android. Furthermore, stan-
dard numerical solvers are used that additionally decrease the performance. Also sparse
feature matching approaches based on SIFT or SURF features [12] have been consid-
ered on mobile platforms. While SIFT is too slow for interactive applications, SURF
only takes about 3 ms per match [13], but does not give dense matches.

Image analysis techniques are also used in more complex applications. Before mo-
bile phones were equipped with gyroscopic sensors, simple optic flow approaches al-
lowed to detect the ego-motion of the phone [14], turning them into wireless pointing
devices. Today, similar techniques are still of interest when a highly accurate estimation
of the velocity or viewing direction is needed: Recently, a sparse feature matching al-
gorithm was used to create freehand cylindrical panoramas on an Android phone [15].
Related techniques are also used in augmented reality applications [16] where a prede-
fined pattern is recognised and tracked in a live stream from the camera. However, all
these techniques are strongly restricted by the computational power of the device. Ad-
vanced algorithms are thus usually computed in the cloud, i.e. on remote servers [13].

Paper Organisation. In Sec. 2 we present the models and the solvers for diffusion
filtering and optic flow estimation. Apart from basic Android development concepts,
Sec. 3 discusses the image acquisition and further optimisations. Screenshots and a
performance analysis of our application are presented in Sec. 4. We conclude in Sec. 5
by a summary and an outlook on future work.
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2 Models and Solvers

2.1 Diffusion Filtering

We assume to be given a greyscale image f(x, y) : Ω → R, where (x, y)� ∈ Ω denotes
the location within the rectangular image domainΩ ⊂ R2. Our goal is then to compute
a gradually smoothed result u(x, y, t) : Ω × [0, T ] → R, where t ∈ [0, T ] represents
the evolution time of the filter, i.e. a larger evolution time leads to a stronger smoothing,
and u(x, y, 0) = f(x, y).

Homogeneous Diffusion. The most basic diffusion filter is a linear, homogeneous dif-
fusion process [17] that computes the unknown u as the solution of the parabolic partial
differential equation (PDE)

ut = div (∇u) = #u := uxx + uyy , (1)

with reflecting boundary conditions. Colour images are treated channel-wise.
It is well-known that an analytical solution to (1) can be computed as u(x, y, t) =

(K√
2t ∗ f)(x, y), where Kσ denotes a Gaussian of standard deviation σ, and ∗ is the

convolution operator. Homogeneous diffusion filtering thus comes down to a Gaussian
convolution of the given image. A straightforward way to implement this for discrete,
digital images is to perform a discrete convolution with a sampled and truncated Gaus-
sian. However, there are more efficient implementations, e.g. by a d-fold iterated box
filter (IBF). This filter approximates the 2-D Gaussian kernelKσ by a convolution

Kσ = BL ∗BL ∗ . . . ∗BL︸ ︷︷ ︸
d-times

with BL(x, y) :=

{
1

L2 , x, y ∈ [−L
2 ,

L
2 ]

0, else
, (2)

withL=2 l+1, and l ∈ N [4]. EachBL can be applied consecutively and is separable in
space. Moreover, its implementation requires only two additions per pixel and direction
using a sliding-window algorithm: The solution ṽk at position k of a 1-D signal v is
given by ṽk = ṽk−1−vk−l−1+vk+l. Thus, box filters are independent from the standard
deviation of the kernel. However, their runtime depends on the number of iterations d,
resulting in a trade-off between the approximation error and the runtime.

Nonlinear Isotropic Diffusion. The major problem of homogeneous diffusion is the
blurring of semantically important image edges as the filter performs the same smooth-
ing at each location. To overcome this problem, Perona and Malik [1] introduced a
nonlinear diffusion process

ut = div
(
g
(|∇u|2) ∇u) = ∂x

(
g
(|∇u|2) ux

)
+ ∂y

(
g
(|∇u|2) uy

)
, (3)

where the decreasing diffusivity function g(|∇u|2) := (1 + |∇u|2/λ2)−1 reduces the
smoothing at evolving edges that are indicated by large values of |∇u|2. The parameter
λ serves as a contrast parameter. Catté et al. [18] later proposed a regularised version
where the result u (that occurs in the argument of g) is presmoothed by a Gaussian
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convolution with standard deviation σp. This has several advantages, like reducing the
staircasing artefacts and the sensitivity to noise. To process colour images, we apply the
filter to each channel, but use a joint diffusivity function where we sum up the gradient
magnitudes of each channel in the argument of g.

In the nonlinear case, no analytical solution exists which leaves us with computing
an approximate solution by discretising the PDE. The simplest solution scheme is given
by an explicit finite difference discretisation of (3) that reads as

uk+1
i,j − uk

i,j

τ
=

1
hx

(
gi+1,j + gi,j

2
uk

i+1,j − uk
i,j

hx
− gi,j + gi−1,j

2
uk

i,j − uk
i−1,j

hx

)

+
1
hy

(
gi,j+1 + gi,j

2
uk

i,j+1 − uk
i,j

hy
− gi,j + gi,j−1

2
uk

i,j − uk
i,j−1

hy

)
, (4)

where uk
i,j ≈ u(i hx, j hy, k τ) with hx and hy denoting the grid size in x- and y-

direction, τ is the time step size and gi,j approximates the value of the diffusivity at grid
point (i, j). Occurring derivatives have been discretised using standard finite difference
approximations. Solving (4) for the update uk+1

i,j then gives the actual iterative scheme.
Explicit schemes are simple to implement, but stability can only be guaranteed for

small time step sizes ((τ/h2
x + τ/h2

y) ≤ 0.5). Thus, a lot of iterations are needed to
reach a reasonably large evolution time. This restriction has recently been eased in the
fast explicit diffusion (FED) scheme [5]. Here, some extremely large (unstable) time
steps are used in combination with some small (stable) steps. As could be shown, the
combination of variable step sizes within one cycle guarantees unconditional stability of
the whole scheme. This allows FED to advance faster than any other explicit scheme:
While classical explicit schemes with n fixed time steps achieve a stopping time in
O(n), FED lifts this to O(n2). However, as the result is only guaranteed to be stable
after a whole cycle, it is important to update the diffusivities g after the completion of
a cycle, and not in between. For computing the varying FED step sizes τk , we use the
available open source library1.

Note that we do not discuss anisotropic diffusion filters [19] in this paper. However,
they can be implemented in a similar way as the presented nonlinear isotropic filters.

2.2 Variational Optic Flow

For optic flow estimation we are given an image sequence f(x, y, z), where z denotes
the temporal dimension of the sequence. We further assume that the sequence has been
presmoothed by a Gaussian convolution of standard deviation σf . We then aim at com-
puting the flow field w := (u, v, 1)� that describes the displacements from time z to
z+1. Using a variational approach, the flow field is found by minimising an energy func-
tional consisting of a data term that models constancy assumptions on image features,
and a smoothness term that enforces the flow field to be smoothly varying in space.

1 available at http://www.mia.uni-saarland.de/Research/SC FED.shtml
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The energy proposed in the seminal variational optic flow approach of Horn and
Schunck [3] can be written as

E(u, v) =
∫

Ω

(
w�J w + α

(|∇u|2 + |∇v|2) ) dxdy , (5)

using the motion tensor notation J := (fx, fy, fz)� (fx, fy, fz) and where the param-
eter α steers the influence of the smoothness term. To minimise the above energy, we
solve the corresponding elliptic Euler-Lagrange equations, which give a necessary con-
dition for a minimiser. For the energy (5), the Euler-Lagrange equations are given by

0 = J11u+ J12v + J13 − α#u , (6)

0 = J12u+ J22v + J23 − α#v , (7)

where Jmn denotes the entry in row m and column n of the matrix J .
Similar to the solution of the diffusion PDEs, we solve the Euler-Lagrange equations

by a stabilised, explicit gradient descent scheme which reads as

uk+1
i,j − uk

i,j

τ
= #uk

i,j −
1
α

(
[J11]

k
i,j u

k+1
i,j + [J12]

k
i,j v

k
i,j + [J13]

k
i,j

)
, (8)

vk+1
i,j − vk

i,j

τ
= #vk

i,j −
1
α

(
[J12]

k
i,j u

k
i,j + [J22]

k
i,j v

k+1
i,j + [J23]

k
i,j

)
, (9)

where the stabilisation is achieved by using the new value at time level k + 1 for u
and v in the first and second equation, respectively. The derivatives occurring in the
expressions [Jmn]ki,j are discretised by central finite differences. Solving the equations

(8) and (9) for the unknown increments uk+1
i,j and vk+1

i,j then gives the iterative solution
scheme, which we again speed up by using variable FED time step sizes. Additionally,
we embed the solution in a multiscale coarse-to-fine strategy (CFED) that computes
solutions on small image resolutions and uses them (after upsampling) as initialisation
on the next finer scale. This results in a further speed-up as the number of required
solver iterations at each level is reduced and because iterations on coarse scales are fast
to compute.

If we are given colour image sequences, we sum up the data terms for all channels.
This comes down to summing up the motion tensors of each channel in a joint tensor.
Furthermore, to increase the robustness of our approach, we follow Bruhn et al. [2] and
convolve the entries of the motion tensor J with a Gaussian of standard deviation ρ.
This results in a combined local-global (CLG) optic flow approach.

3 Implementation on an Android Phone

3.1 Android Basics

Android is an open software platform, i.e. an operating system and software stack for
different sorts of devices which has been presented by Google in 2007. It is based on
a Linux Kernel and allows to build own applications through the Android Application
Framework by using large parts of Java SE and Android-specific classes.
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The building blocks of applications are Activity objects. They are attached to
a certain View representing the graphical user interface (GUI). With the help of an
Intent one can specify a certain task and trigger an activity that implements the
task. In this way, one can for example capture an image from the camera within a few
lines of code. The visual content of an application is organized in a hierarchy of views.
Examples for views are different layouts, but also widgets such as scroll bars or check
boxes. A view hierarchy is specified in an external XML layout file that assigns an ID
to each view. By referring to the ID, a view can be loaded within the application as
a programmable object that can be configured and attached to event listeners for user
input, e.g. gestures on the touch screen.

For implementing performance-critical application parts like our diffusion filters,
we use the Native Development Kit (NDK). It allows to implement routines in native
languages such as C/C++, resulting in a significant speedup compared to Java imple-
mentations; see our experiments in Sec. 4. The NDK also supports a set of commonly
used system headers for native APIs like the math library. The incorporation of native
code in the application uses a provided build system that lists the native source files
and integrates the shared libraries into the application project. These can then be easily
accessed in terms of the Java Native Interface (JNI) [20]. Finally, the NDK allows for
optimisations to the underlying hardware by targeting specific instruction sets for the
ARM platform, such as the instruction-level parallelism (NEON).

For more information on Android application development, we refer the interested
reader to the excellent textbook of Meier [21].

3.2 Image Processing with Android

Instead of capturing images from the camera via a predefined intent, we use a realtime
camera stream by directly accessing the camera hardware. This is achieved by using
the Camera class and applying three steps: (i) Image Acquisition: Obtain the camera
frames as raw byte data in YUV format and convert them into the more convenient
RGB format for further processing. (ii) Image Processing: Apply algorithms to the
RGB image (or to a greyscale version). (iii) Visualisation: Build a bitmap structure
from the processed data and set it as content of an image overlay.

Retrieval of Camera Data. Fortunately, accessing the camera hardware in Android
is rather simple and can be achieved within a few lines of code; see [21], pp. 377–
381. One starts by adding a CAMERA permission to the application manifest, which
enables to retrieve a Camera object by calling Camera.open(). A SurfaceView
providing a dedicated drawing Surface can then be attached to the camera. Inter-
nal camera parameters such as the preview size and the frame rate can be retrieved
and modified by a Camera.Parameters object. On creation and destruction of the
underlying surface, the camera starts and stops its preview, respectively. Implement-
ing the PreviewCallback interface, raw frame data can be obtained by calling
PreviewCallback.onPreviewFrame().
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YUV Conversion. Each camera frame is represented in a raw byte array which stores
the image row-wise and encodes color information using the YCbCr colour space.
Specifically, a planar YUV format (YUV 4:2:0 (NV21)) is used where a plane of 8
bit luma (Y) samples is followed by an interleaved V/U plane containing 8 bit of 2× 2
subsampled chroma samples.

For image processing applications, it is most convenient to represent the images in
a planar RGB format where all colour channels are orthogonal and represented in the
same resolution. Thus, the obtained raw YUV data first has to be converted before ap-
plying the respective filters. Unfortunately, the Android framework still lacks such a
conversion functionality which leaves us with writing our own conversion routine. Us-
ing ARM’s built-in Vector Floating Point Architecture (VFP) that provides hardware
support for half-, single- and double-precision floating point arithmetics, we extract in
our conversion routine separated, two dimensional float channels, which are aggregated
into a packed 32-bit integer format (ARGB) after processing. Whereas the luminance
channel alone provides data for a greyscale format, the conversion into RGB compo-
nents requires computationally more expensive steps, as can be seen in the the following
YUV to RGB conversion formula:⎛⎝RG

B

⎞⎠ =

⎡⎣1.164 0.000 1.596
1.164 −0.391 −0.813
1.164 2.018 0.000

⎤⎦⎛⎝⎛⎝YU
V

⎞⎠−
⎛⎝ 16

128
128

⎞⎠⎞⎠ . (10)

For an efficient implementation of the above conversion, we follow [22] and use fixpoint
arithmetics and process four pixels simultaneously by moving pointers on two scan
lines. However, instead of using SIMD (Single Instruction, Multiple Data) instructions
for an efficient access to precomputed lookup tables, we directly optimise the RGB
calculations. Details on these optimisations will be presented in Sec. 3.4.

3.3 Software Design

To save as much system resources as possible, we only created one Activity that in-
corporates our two main classes: A FilterCamera and a Filter base class. A
FilterCamera object specifies a FrameLayout that is set as the main content view
of the application. It subsumes all components necessary for a camera preview that are
discussed in Sec. 3.2. The preview can then be overlaid by at most one Filter object.

We designed the diffusion filters as “cartridges” that can be plugged into the cam-
era object and unplugged again. The base class represents a general filter object that
provides a filtered image overlay, a user interface that may also be hidden, as well as
a resizing option. The filter functionality itself comes with the implementation of the
PreviewCallback interface and is specified by subclasses which represent objects
for the different filters. The actual filtering routines are externalised and encapsulated
within a global code library that uses native C libraries via the JNI.

3.4 Optimisations

Since the Android platform is based on a Linux kernel, it constitutes a good basis
for image processing applications. Many concepts known from traditional desktop ar-
chitectures carry over immediately. Moreover, the JNI allows to execute time-critical
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algorithms as low-level operations. To this end, algorithms can be developed device-
independently in C or C++, where the compilers provide strategies for automatic code
optimisation. However, interactions with special devices such as the camera, display, or
user interface still require special care and must be optimised manually.

An example for such a critical point is the visualisation of images on the display.
Android supports many pixel formats including 32-bit RGBA, but it is very time con-
suming to transfer buffers encoded in this format to the GPU. Furthermore, our algo-
rithms must rely on floating point accuracy to ensure the best possible approximation
of the continuous model. On the other hand, the display of our smartphone can only
visualise a rather small range of colour values. We thus encode and compress our re-
sults in the RGB565 format. Because this format uses only 16 bits per pixel it can be
uploaded to the GPU much faster, without sacrificing visual quality. Additionally, we
tried to optimise our diffusion and optic flow algorithms that take the major part of the
total runtime. Common strategies like loop unrolling or reduction of reads and writes
to RAM accelerated the process significantly. However, experiments indicated that no
improvement can be achieved by exploiting hardware-specific extensions such as the
NEON SIMD unit, probably because many operations are based on stencil operations
which cause offset memory fetches. We were surprised that even purely data-parallel
operations such as the YUV to RGB conversion could not be accelerated. This might
be caused by the high costs for memory reads, or because the compiler by default auto-
vectorises such operations already in the scalar case.

4 Experiments

4.1 Our Interactive Camera Applications

We first show screenshots of our interactive diffusion filtering application in Fig. 1.
As test device we used an HTC Desire smartphone, with a Snapdragon ARMv7 CPU
(1 GHz), 576 MB RAM running Android 2.2 (Froyo). The top left picture shows the
application in its idle state. Besides a live preview, the GUI shows two buttons for
toggling the selected filter as well as a filter user interface (FUI). The latter shows
several statistics like the frame rate and is displayed in the upper left corner of the GUI;
see the upcoming screenshots. Furthermore, the user can save an image to the phones
image gallery and can toggle the autofocus of the camera. The two following pictures
show the context menus for filter and resolution selection. The second row of Fig. 1
shows filter results with linear diffusion on RGB colour images. As one can see, the
filter interface offers a slider for tuning the standard deviation of the Gaussian kernel.
In the settings dialog, the user can change the type of approximation by means of an
iterated box filter or a discrete Gaussian convolution. The accuracy factor determines
the number of iterations or length of the sampling interval as a multiple of the standard
deviation, respectively. Moreover, a split mode can be activated, which leaves the left
half of the preview unfiltered. Analogously, the third row shows results for nonlinear
isotropic diffusion filtering. Here, the user can tune the contrast parameter λ and noise
scale σp and the stopping time T . The settings dialog allows to choose among various
diffusivity functions and the number of outer FED cycles M .
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Fig. 1. Our interactive camera application. First row: (a) GUI with camera preview and controls
(image gallery (G), autofocus (A) and image capture). (b) Filter selection. (c) Resolution selec-
tion. Second row: (d) Linear diffusion for RGB colour images. (e) Same in split-screen mode (left
half remains unfiltered). (f) Settings dialog. Third row: (g)–(i) Same as above, but for nonlinear
isotropic diffusion with the Perona Malik diffusivity [1].

Despite the efficient algorithms and the powerful computing platform, we could not
achieve an optic flow estimation of reasonable quality in realtime. We thus implemented
another simple application where the optic flow computation is performed in an offline
process; see Fig. 2. Here, the user can pick two subsequent images of the same size from
the gallery, specify the parametric settings and invoke the flow calculation. Besides the
seminal approach of Horn and Schunck [3], our application also encompasses the CLG
method of Bruhn et al. [2] where it achieves runtimes of about 10 seconds for images
of size 316× 252 pixels.

4.2 Performance Analysis

We now turn to a detailed performance analysis of the linear and nonlinear diffusion
routines. To this end, we used simple time stamps that are placed before and after the
invocation of a procedure. Resulting runtimes have been averaged over 100 frames to
reduce the influence of distorting factors like background processes.

Linear Diffusion. For linear diffusion, we compare two solution strategies: (i) a dis-
crete convolution with a sampled Gaussian and (ii) an approximation via an iterated box
filter (IBF). For both strategies, we exploit separability and symmetry of the two dimen-
sional filter masks. Additionally, we compare implementations of the two strategies in
Java and native C (using the JNI). Considering the achieved runtimes shown in Table 1,
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Fig. 2. Offline optic flow application. First row: (a) First image of the Yosemite without clouds
sequence. (b) Second image. (c) Progress dialog. Second row: (d) Result with the Horn and
Schunck model (CFED solver) (α = 394, σf = 1.0, T = 300, M = 1 ⇒ AAE = 5.49◦).
Flow field visualised by colour code shown in bottom left corner. (e) Result with the CLG model
(ρ = 3.03, other parameters as before ⇒ AAE = 5.12◦). (f) Parameter adjustment dialog.

two observations can be made: The IBF solver is significantly faster than the Gaussian
solver, and the native C implementation outperforms its Java counterpart. Furthermore,
using greyscale instead of RGB images will give a speedup of a factor 3.

Table 1. Benchmark of linear diffusion on RGB images data with varying resolution and fixed
stopping time (T = 10). We compare implementations based on a discrete Gaussian convolution
with σ =

√
2T ≈ 4.47 (Gauss) and an approximation via an iterated box filter (IBF). Addition-

ally, we compare a Java to a native C implementation (using the JNI). We wish to note that using
the full camera resolution of 5 MP seems infeasible for interactive/realtime applications.

Java C
Resolution [px] Gauss IBF Gauss IBF

176 × 144 370 ms 91 ms 361 ms 49 ms
240 × 160 571 ms 168 ms 564 ms 88 ms
320 × 240 1174 ms 444 ms 1141 ms 241 ms

Nonlinear Isotropic Diffusion. In the nonlinear diffusion case, we spent some efforts
to analyse the runtime fractions of the different processing steps; see Fig. 3. As one can
see, the major part of the computation time (98%) is spent for the FED scheme. This
is good news as it shows that the runtime of the pre- and post-processing steps (image
acquisition, YUV conversion, visualisation, etc.) can be neglected and no further opti-
misations are required in this respect. It is thus more interesting to further analyse the
runtime fractions in the FED scheme itself. Interestingly, the update of the nonlinear
operator which comes down to computing the diffusivities after each FED cycle con-
sumes 18% of the time. The rest is spent for the actual iteration steps. As the nonlinear
update consumes a considerable amount of time, we also analysed its building blocks,
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which are a presmoothing that takes 68% of the time and the computation of the diffu-
sivity. Note that the presmoothing is already efficiently realised by two IBF iterations.
With a naive implementation, the fraction of the presmoothing would be even higher.

Fig. 3. Runtime analysis for nonlinear Perona-Malik diffusion on RGB images (176×144 pixels,
M = 2, λ = 4, σp = 1.0, T = 10, resulting in 2 inner FED steps). Brackets give fraction w.r.t.
overall running time of 588.1 ms.

5 Conclusions and Outlook

Our paper showed that recent smartphones offer a promising platform for the devel-
opment of challenging mobile image analysis applications. As a proof-of-concept, we
presented efficient implementations of linear and nonlinear diffusion as well as basic
variational optic flow methods on an Android smartphone (HTC Desire). A main ob-
servation is that a careful choice of the solver for the arising PDEs is a key to good
performance. For linear diffusion, we used a classical iterated box filter, whereas we
opted for the recent FED solver and its coarse-to-fine variant in the context of nonlinear
diffusion and optic flow, respectively. These solvers allow for small runtimes and are
simple enough to be easily implemented as well as optimised on a mobile platform.

We hope that our work sparks the development of further interesting image analysis
applications on mobile devices like smartphones. Here, efficient denoising methods are
interesting because the small image sensors and the simple camera optics are prone to
noise, especially in low light conditions. Moreover, using optic flow algorithms allows
to port challenging computational photography applications like panorama stitching or
high dynamic range imaging to mobile platforms.
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Abstract. The sampling rate for signal reconstruction has been and re-
mains an important and central criterion in numerous applications. We
propose, in this paper, a new approach to determining an optimal sam-
pling rate for a 2D-surface reconstruction using the so-called Two-Thirds
Power Law. This paper first introduces an algorithm of a 2D surface re-
construction from a 2D image of circular light patterns projected on the
surface. Upon defining the Two-Thirds Power Law we show how the ex-
tracted spectral information helps define an optimal sampling rate of the
surface, reflected in the number of projected circular patterns required
for its reconstruction. This result is of interest in a number of applica-
tions such as 3D face recognition and development of new efficient 3D
cameras. Substantive examples are provided.

Keywords: Sampling rate, Reconstruction, The Two-Thirds Power Law,
Structured light patterns.

1 Introduction

Acquisition of 3D images using an active light source has garnered a lot of in-
terest, and has recently been an important topic in vision and image processing.
The basis of this active 3D imaging technique is in establishing a geometric re-
lationship between a 3D target and the 2D image of structured light patterns
projected on it. In the reconstruction, we assume that the position of the camera
and of the light source are known. We also assume that the camera satisfies a pin-
hole model and the projected light patterns are parallel [1]. The deformation of
the circular patterns projected on a 3D object provides sufficient information of
the latter’s geometrical properties, such as 3D coordinates. In [2], [3], [4] and [5],
various algorithms were proposed to improve an accuracy of reconstruction re-
sults using structured light patterns. Our approach to the reconstruction is based
on exploiting the deformed circular patterns projected on a 3D object [12]. Once
3D coordinates are extracted, the required minimum number of patterns to be
projected for an efficient reconstruction and minimal computational complexity,
is considered. This is tantamount to determining the required sampling rate on
the surface for its best reconstruction. Akin to determining the Shannon-Nyquist
Sampling Rate [6] for a 1D signal, our reconstruction of a 3D signal will seek for

A.M. Bruckstein et al. (Eds.): SSVM 2011, LNCS 6667, pp. 556–567, 2012.
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the nontrivial maximal frequency component. Although there have been many
contributions ([7], [8]) made for developing a sampling theorem, in this paper,
we use the Shannon-Nyquist Sampling Rate for a surface reconstruction. The
surface of interest has at each point of a projected pattern in R3 two curvatures,
and we use the so-called Two-Thirds Power Law [11] to establish a relationship
(nonlinear) between a tangential velocity of a curve and these curvatures. Using
the equation V = rω, where V is a tangential velocity, r is the distance from
the reference point to an arbitrary point, and ω = 2πf is an angular velocity, we
may retrieve the maximum spatial frequency component of the patterns lying on
the object (directly related to curvature). The minimum number of patterns is
subsequently obtained from the maximum frequency component, which we refer
to as a ’curveling rate’ in this paper.

In the following section, we describe an algorithm to extract 3D coordinates
using the geometry of the problem. In Section 3, we estimate the frequency
components using the Two-Thirds Power Law and determine a corresponding
sampling rate using the Shannon-Nyquist Sampling Theorem. We also substanti-
ate our results by way of experiments in Section 4, followed by some concluding
remarks.

2 Geometric Recovery of Surface Coordinates

The substance of this part has appeared in [12] and we hence briefly summarize
it here for completeness.

2.1 Geometrical Representation

Let S ⊂ R3 be a domain of a 3D object of interest, then a point Pw ∈ S is
represented as

Pw = {(xw, yw, zw) ∈ R3}, (1)

where an index w is used to denote real world coordinates. Let L ⊂ R3 be a
domain of a circular structured light source, with the origin defined as a center
of a pattern (or a curve), then a point PL ∈ L is represented as (see Fig. 1)

PL = {(xLij , yLij , zLij) ∈ R3 | x2
Lij + y2

Lij = R2
j , zLij = 0}, (2)

with i = 1, 2, . . . ,M, j = 1, 2, . . . , N respectively indexing the points on the
patterns, and the patterns themselves. Let S3 ⊂ R3 be the domain of projected
circular patterns on a 3D object, then any point P3 ∈ S3 is represented as

P3 = {(xwij , ywij , zwij) ∈ R3}, (3)

After the patterns projected, P3 and Pw defined in the intersection of S and
S3 are identical, upon projecting the circular light patterns, P3 and Pw are to
coincide as the intersection of S and S3,

P3 = {Pw | Pw ∈ S ∩ S3} or Pw = {P3 | P3 ∈ S ∩ S3}. (4)
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Let S2 ⊂ R2 be a domain of a 2D image plane of a camera, then any point
P2 ∈ S2 is represented as

P2 = {(uij , vij) ∈ R2}. (5)

The 3D reconstruction problem consists of establishing a relationship between
P3 ∈ S3, PL ∈ L and P2 ∈ S2 (Fig. 1). Let f : L → S3 be a map of a light

L

S3

S2

PL

P3

P2

X

Y
-Z

Light Source

Object

Camera (Image Plane)

Fig. 1. Geometrical representation of the experimental setup

projection and g : S3 → S2 be a map of reflection respectively, then the relevant
relationships for surface reconstruction, are

f(PL) = P3, g(P3) = P2. (6)

Recall that we assume parallel light projection which preserves (xLij , yLij) (i.e.
near field projection) and hence the preservation after the pattern projection
onto a 3D object so that we have

I : (xLij , yLij) → (xwij , ywij), ∀i, j, (7)

where I is an identity function. and as discussed previously, under the assumption
of parallel projection, (xLij , yLij) and (xwij , ywij) obey the following constraints
:

x2
Lij + y2

Lij = R2
i , x2

wij + y2
wij = R2

i , (8)

where i denotes the ith positioned pattern. While coordinates (xLij , yLij) are
preserved, we note that the depth(zwij) varies and depends on the surface shape.
We refer to these variation of depth, zwij , a deformation factor. This, in effect,
summarizes the reconstruction problem as one of analyzing deformed circular
patterns and of depth recovery.
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2.2 Mathematical Model

This section details the reconstruction technique of real world 3D coordinates
of an object from a planar image of its circularly pattern-lighted surface. The
geometrical structure, describing the physical measurement setup, is defined in
3D space and the reference plane is chosen prior to the reconstruction. To solve a
reconstruction problem, we opt for two distinct coordinate systems, (X,Z) and
(Y, Z) domains(Fig. 2). From Fig. 2, along with associated attributes, we can
solve the 3D reconstruction problem. Assuming again that the structured light

O(0,0)

D(0,D)

Image Plane

-Z

X

A

B

C

P(xwij, zwij)

Optical
Center

Reference
Point

E

P (ywij, zwij)

P’(0, zwij) A (Optical Center)

Image Plane

C (vij, f)

Y

-Z

X - Z domain analysis Y - Z domain analysis

Fig. 2. (X − Z) and (Y − Z) domain analysis

patterns remain parallel, the camera is calibrated to a pinhole model, and its
locations together with a chosen reference plane of an object and light source
(shown in Fig. 2), we can write the following,

AO = d, AB = f, BO =
√
d2 − f2 = d1,

d cos(∠AOB) = d cos θ2 =
√
d2 − f2,

OC = |−−→OB +−−→BC|. (9)

Note that the point C(uij , vij) defined in the 2D image plane, is the result of
the reflection of point P , A is the optical center and B is the origin point in the
2D image plane. Since the coordinate system of a 3D object and that of a 2D
image plane are different, and upon denoting the ∠(AOE) by θ1, we transform
the domain S2 to S3 associated with (X,Z) domain, we can write

θ1 + θ2 = θ,

A : (−d cos θ1, d sin θ1),
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B : (−d1 cos θ, d1 sin θ),
C : (−d2 cos θ, d2 sin θ), (10)

where θ1, θ2, θ, d, d1 and d2 are known calibrated quantities. Using the inter-
section point A of lines PC and DB (see Fig. 2), we can write a relationship
between xw and zw. To completely reconstruct the 3D coordinates (xw , yw, zw),
we can show the (Y, Z) domain analysis (Fig. 2). Using the above relationships,
we can determine 3D coordinates of the deformed curves on a surface,

F (xwij) = zwij, H(xwij) = zwij . (11)

In [12], we detailed the above relationships and illustrated the approach.

3 Sampling Rate Determination

Using the 2D images of the projected patterns on a surface, and the development
described above, we proceed to the surface reconstruction. Each image consists
of all curves resulting of the structured circular light patterns. Upon the recovery
of 3D real coordinates, the required minimum number of circular patterns for 3D
reconstruction is considered. In this section, we develop the minimum sampling
rate, to in turn, specify the necessary number of circular patterns required for
reconstruction. Recall that the required minimum number of circular pattern is
referred to as a curveling rate, and preceding its determination, a maximal fre-
quency component of an object should be retrieved. To estimate the frequencies,
we apply the Two-Thirds Power Law [10] which unveils a relationship between
the motion of a shape/curve and its characteristics. Specifically, the radius of
curvature(R) of on an osculating circle around a closed curve, and its tangential
velocity(V ) satisfy the Eq. (12), where K is a constant depending on duration
of the motion [10], and α and β are parameters to be estimated [9]. Note that
the parameter β is very close to two thirds (2/3), as has been shown by [13].
Projected circular patterns on a 3D object (Fig. 3) have two tangential vectors.
Hence, each 3D point of the surface of interest, has two curvature components
(κ1ij and κ2ij), the first derivatives of tangential vectors, T1ij and T2ij with
respect to the arc length (see Fig. 4). The two-thirds power law can be written
as

V = rω = K ·
(

R

1 + αR

)1−β

, (12)

where r is a distance between the reference point(i.e. nosetip) and the arbitrary
point of the object (Fig. 4). According to Eq. (12), we can acquire two frequency
components corresponding to κ1ij and κ2ij , respectively.

ω1ij = 2πf1ij =
1
r1ij

·
(

R1ij

1 + αR1ij

)1−β

, (13)



A Sampling Theorem for a 2D Surface 561

−100
−50

0
50

100

−100

0

100

−70

−60

−50

−40

−30

−20

−10

0

X

3D face model

Y

Z

−100 0 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

X

Projected 
circular patterns

Y

−100
−50

0
50

100

−100

0

100

−70

−60

−50

−40

−30

−20

−10

0

X

Projected circular patterns 
onto the 3D face model

Y

Z
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ω2ij = 2πf2ij =
1
r2ij

·
(

R2ij

1 + αR2ij

)1−β

, (14)

r1ij = r2ij = rij , i = 1, 2, . . . ,M, j = 1, 2, . . . , N, (15)

where R1ij and R2ij are 1
κ1ij

and 1
κ2ij

, respectively, and M is the number of
points of each curve and N is a number of curves(patterns) on the surface. To
determine the minimum sampling rate(2×max(fij)) which is determined by the
Nyquist Rate, the maximum frequency component, max(fij) is required, and we
define max(fij) as

max(fij) = max[sup(f1ij), sup(f2ij)]. (16)

Using a relationship between a frequency component, fij and the corresponding
rij , the maximum frequency is calculated. Prior to measuring the maximum
fij , sup(f1ij) and sup(f2ij) should be acquired, and each of which satisfies the
following,

sup(fkij) ≤ 1
2π
sup

(
1
rkij

·
(

Rkij

1 + αRkij

)1−β)
, k = 1, 2. (17)

Prior to measurement of curvatures and rij ’s of all the points of the deformed
circular patterns, a normalization of data points is carried out. The normalization
yields the determination of the intrinsic characteristics of each curve projection
on the surface.
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Fig. 4. Two tangential vectors of a point on a 3D object. The first derivative of a
tangential vector is a curvature.

4 Experimental Results

To substantiate the measurement of frequency components steps, some simu-
lated examples are shown in this section. Initial number of projected patterns are
different from each other and related to the characteristics of objects. The max-
imum frequency component of the jth curve, max[(fij)]Nj=1, measured through
all the points of a curve is shown in Fig. 5. From the simulated result in Fig. 5,
the maximum frequency component is 0.1501 and the minimum sampling rate
is 0.1501× 2 = 0.3002. To substantiate the determination of the above surface
sampling rate, we propose some numerical examples. The initial number (Nini)
of the projected patterns are determined by the characteristics of the surface.
The first (Fig. 6)and the second (Fig. 9) example surfaces consists of 89 and
110 circular patterns, respectively. These numbers correspond to infinite sam-
pling rate in a continuous domain. Curveling rate(Ns), the minimum number of
patterns defined as

Ns = $2×max[fij ]
M, N
i=1,j=1 ×Nini%, (18)

and estimated Nini, max[fij ] and Ns are provided in Table.1. To evaluate the
accuracy of a reconstruction, the L2-norm distance between the original(SO ⊂
R3) and the reconstructed surfaces(SR ⊂ R3) is computed through all the pixels.

d2(SO, SR) = ||SO − SR||2 =

( ∑
pO,pR∈R3

[pO − pR]2
)1/2

, (19)

where d2(SO, SR) is an L2-norm distance(geometric error), and pO ∈ SO and
pR ∈ SR represent 3D Euclidean coordinates of the original and the
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on the 3D face model(Fig. 6). Frequency is defined in a unit space(arc length) and
quantities are relative each other. In this example, max[fij ] is 0.1501 and the sampling
rate is 0.3002.

Table 1. Estimated curveling rate of two face models

Nini max[fij ] Ns

Face 1 89 0.1501 27
Face 2 110 0.1984 44

reconstructed surfaces, respectively. Simulated examples of SR and d2(SO, SR)
are shown in Fig.s. 7, 8, 10 and 11.

5 Conclusion and Future Works

In this paper we have presented an algorithm to determine the sampling rate
of a surface (or defining the minimum number of light patterns to be projected
on a surface whose maximal curvatures may be known) subjected to an active
light source probing. Such a rate, in turn plays a key role in the efficient rep-
resentation of a surface and its subsequent reconstruction from these patterns.
While our primary application of interest lies in the area of biometrics and face
modeling, the two-thirds-based sampling criterion may be exploited in many
different settings where surface representation and sampling are of interest (e.g.
surface archiving). We have also shown some illustrative examples. Although
our sampling rate does not recover the surface perfectly as the Shannon-Nyquist
Sampling Rate does for 1D signals, the sampling criterion we proposed does not
show a considerable information loss to be recognized. In the future, there are
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some technical issues to be considered - quantifying the algorithm efficiency (i.e.
computational complexity) and the reconstruction accuracy compared to the
previous methods is needed and being in progress.
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Abstract. The stippling technique places black dots such that their
density gives the impression of tone. This is the first paper that relates
the distribution of stippling dots to the classical mathematical question
of finding ’optimal’ nodes for quadrature rules. More precisely, we con-
sider quadrature error functionals on reproducing kernel Hilbert spaces
(RKHSs) with respect to the quadrature nodes and suggest to use opti-
mal distributions of these nodes as stippling dot positions. Interestingly,
in special cases, our quadrature errors coincide with discrepancy func-
tionals and with recently proposed attraction-repulsion functionals. Our
framework enables us to consider point distributions not only in R2 but
also on the torus T2 and the sphere S2. For a large number of dots the
computation of their distribution is a serious challenge and requires fast
algorithms. To this end, we work in RKHSs of bandlimited functions,
where the quadrature error can be replaced by a least squares functional.
We apply a nonlinear conjugate gradient (CG) method on manifolds to
compute a minimizer of this functional and show that each step can be
efficiently realized by nonequispaced fast Fourier transforms. We present
numerical stippling results on S2.

1 Introduction

The traditionally artistic stippling technique places black dots to approximate
different tones. For an illustration see Fig. 1. Stippling is closely related to
dithering, where the dots have to lie on the image grid, see, e.g. [17] and the
references therein. A popular stippling method proposed in [18] is based on
weighted centroidal Voronoi tessellations and Lloyd’s iterative algorithm [13,5].
A capacity-constrained variant of Lloyd’s algorithm was introduced in [3]. Re-
cently, a novel stippling approach was proposed in [21]: Consider a gray-value
image u : G → [0, 1] on a grid G := 1

n (Z/nZ)× 1
m (Z/mZ). Since ’black’ is 0 and

’white’ 1, we use the weight w := 1 − u. Now one intends to find the positions
pi ∈ [0, 1]2, i = 1, . . . ,M , ofM black dots by minimizing the attraction-repulsion
functional

E(p) :=
M∑
i=1

∑
x∈G

w(x)‖pi − x‖2 − λ

2

M∑
i,j=1

‖pi − pj‖2, p :=
(
pi

)M
i=1

∈ R2M . (1)

A.M. Bruckstein et al. (Eds.): SSVM 2011, LNCS 6667, pp. 568–579, 2012.
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Here λ := 1
M

∑
x∈G w(x) is an equilibration parameter between the first sum

which describes attracting forces caused by the image gray values and the second
one which enforces repulsion between dots. The original idea for considering

Fig. 1. Left: Original image. Right: Stippling result on T2 with M = 20000 dots.

minimizers of this functional as ’good’ dot positions comes from electrostatic
principles used in [17]. This paper is related to the continuous version of the above
attraction-repulsion functional with more general functions ϕ : [0,∞)→ R:

Eϕ(p) :=
λ

2

M∑
i,j=1

ϕ(‖pi − pj‖2)−
M∑
i=1

∫
[0,1]2

w(x)ϕ(‖pi − x‖2) dx. (2)

where w : [0, 1]2 → [0, 1] and λ := 1
M

∫
[0,1]2

w(x) dx. The function ϕ(r) = −r
was used in (1) and ϕ(r) = − log(r) in [17] . In [21] the authors mentioned
ϕ(r) = −rτ , 0 < τ < 2 and ϕ(r) = r−τ , τ > 0 for r �= 0.

Contribution. In this paper we relate stippling processes with the classical math-
ematical question of finding best nodes for quadrature rules. We provide theo-
retical results on the connection between seemingly different concepts, namely
quadrature rules, attraction-repulsion functionals, L2–discrepancies and least
squares functionals. For the later approach we provide numerical minimization
algorithms.

In the theoretical part, we start with worst case quadrature errors on RKHSs
in dependence on the quadrature nodes. While in the literature, this was mainly
done for constant weights w ≡ 1, see [10,15], we incorporate a weight function
related to the image into the quadrature functional. The corresponding quadra-
ture error errK(p) which depends on the reproducing kernel K can be defined
for RKHSs on X ∈ {R2, [0, 1]2} as well as for RKHSs on compact manifolds
like X ∈ {T2, S2}. We aim to minimize this quadrature error in order to obtain
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optimal quadrature nodes p. It turns out that for special kernels K (on special
spaces X ) this quadrature error (or at least its minimizers) covers the following
approaches:

1. Attraction-Repulsion Functionals
An interesting case of RKHSs appears for radial kernels K(x, y) = ϕ(‖x −
y‖2) depending only on the distance of the points. We will show that in this
case the quadrature error errK(p) can be considered as a generalization of
(2) which works not only on [0, 1]2 but also to compact manifolds. Hence
our approach goes far beyond the setting in [21] or [17]. To get the special
functional (1) from our general quadrature error we must stress conditionally
positive definite, radial kernels of order 1.

2. L2–Discrepancies
We prove that for X ∈ {[0, 1]2,T2, S2} and discrepancy kernels K, the
quadrature errors on RKHSs defined by these kernels coincide with L2–
discrepancy functionals. For various applications of L2–discrepancy functio-
nals, see [15] and the references therein. Interestingly, this is also related
to ’capacity constraints’ in stippling techniques, see [2,3]. Note that a rela-
tion between the distance kernels K(x, y) = ‖x− y‖2 on T2 and S2 and the
corresponding discrepancy kernels was shown numerically in [9].

3. Least Squares Functionals
Finally, we consider RKHSs of bandlimited functions with bandlimited ker-
nels on X ∈ {T2, S2}. The reason for addressing these spaces is that we want
to approximate functions on X by bandlimited functions in order to apply
fast Fourier techniques. We prove that for these RKHSs the quadrature error
can be rewritten as a least squares functional.

In the numerical part we approximate functions and kernels on X ∈ {T2, S2}
by their bandlimited versions and minimize the corresponding quadrature error
which takes in this case the form of a least squares functional. Due to the page
limitation we restrict our attention to the sphere S2. We are not aware of any
results on S2–stippling in the literature. Note that a stippling example on the
torus T2 was given in Fig. 1. We propose a nonlinear CG method on manifolds
to compute a minimizer of the least squares functional on S2. This method was
also successfully used for the approximation of spherical designs, i.e., for w ∼ 1
in [8] and is generalized in this paper. In particular, each CG step can be re-
alized in an efficient way by the nonequispaced fast spherical Fourier transform
(NFSFT). This reduces the asymptotic complexity of the proposed algorithm
drastically, e.g., from O(MN2) to O(N2 log2N +M log2(1/ε)) arithmetic oper-
ations per iteration step, where ε is the described accuracy and N corresponds to
the bandwidth. In other words, only by the help of the NFSFT the computation
becomes possible in a reasonable time.

Organization of the paper. In Sect. 2 we introduce our quadrature framework
in RKHSs and show the relation to the attraction-repulsion functional. Sect. 3
relates this approach to discrepancy functionals. Sect. 4 deals with band-limited
functions on S1,T2 and S2. We show that in this case the quadrature error can
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be written as a least squares functional. Moreover, we address the topic that
bandlimited functions can be evaluated at a point set in a fast way by using the
nonequispaced fast (spherical) Fourier transform. The same holds true for the
evaluation of the functional itself. In Sect. 5, we propose a minimizing procedure
on S2 by the CG method, where each iteration step can be efficiently computed
by the NFSFT. Finally, Sect. 6 shows stippling results on S2 and Sect. 7 concludes
the paper. Due to the page limitation proofs of certain theorems of this paper
are given in the preprint [9].

2 Quadrature Errors in RKHSs

Let X ∈ {R2, [0, 1]2,T2, S2}. For notational reasons, we restrict our attention
to two dimensions although the results are also true for arbitrary dimensions.
A symmetric function K : X × X → R is said to be positive semi-definite
if for any M ∈ N points x1, . . . , xM ∈ X and any a = (a1, . . . , aM )T �= 0 the
relation aT (K(xi, xj))

M
i,j=1 a ≥ 0 holds true and positive definite if we have strict

inequality. A (real) reproducing kernel Hilbert space (RKHS) is a Hilbert space
having a reproducing kernel, i.e., a function K : X × X → R which fulfills

Kx := K(·, x) ∈ HK and f(x) = 〈f,K(·, x)〉HK , ∀x ∈ X , ∀f ∈ HK .

To every RKHS there corresponds a unique positive semi-definite kernel and
conversely given a positive semi-definite function K there exists a unique RKHS
of real-valued functions having K as its reproducing kernel. By ‖·‖HK we denote
the norm of HK . For more information on RKHSs we refer to [1].

In the following, let w : X → R≥0 be a nontrivial, continuous function which
fulfills hw(x) :=

∫
X w(y)K(x, y) dy ∈ HK . We are interested in approximating

Iw(f) :=
∫
X
f(x)w(x) dx for f ∈ HK

by a quadrature rule

Q(f,p) := λ
M∑
i=1

f(pi), λ :=
1
M

∫
X
w(x) dx

for appropriately chosen points pj ∈ X . In the literature mainly the case w ≡ 1
was considered, see [10,15] and the references therein. In this paper, we have
incorporated an image related weight w into the functional. The worst case
quadrature error is given by

errK(p) := sup
f∈HK

‖f‖HK
≤1

|Iw(f)−Q(f,p)| = ‖Iw −Q(·,p)‖H∗
K
. (3)

In the following we will see that this quadrature error covers various known
functionals if we choose the kernel in an appropriate way. To start with, the
following theorem shows a relation between the quadrature error functional and
the attraction-repulsion functional (2). For a proof we refer to [9].
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Theorem 1. (Quadrature Error and Attraction-Repulsion Functional)
Let K be a positive semi-definite function and HK the associated RKHS. Then
the relation

errK(p)2 = 2λEK(p) + ‖hw‖2HK

holds true, where

EK(p) :=
λ

2

M∑
i,j=1

K(pi, pj)−
M∑
i=1

∫
X
w(x)K(pi, x) dx. (4)

In particular, the minimizers of errK and EK coincide.

We see that for radial kernels K(x, y) := ϕ(‖x − y‖2) with some function ϕ :
[0,∞)→ R, the functional (4) has the form of an attraction-repulsion functional,
where the first sum steers the repulsion of the dots and the second one the
attraction. However, we have to ensure that the kernel is positive semi-definite.
Positive definite, radial kernels on R2 are for example the inverse multiquadrics
K(x, y) := (ε2 + ‖x− y‖22)−τ , ε > 0, τ > 1 related to ϕ(r) := r−τ in (2). These
kernels and other positive semi-definite kernels do not lead to the functional (1).

Nevertheless, in the rest of this section, we will see how the attraction-repulsion
functional in (1) fits into our quadrature setting. Of course choosing X := R2

and the radial kernelK(x, y) := −‖x−y‖2 yields exactly (1). Unfortunately, this
kernel is not positive semi-definite. However, it is conditionally positive definite
of order 1. Recall that a radial function Φ(x) := ϕ(‖x‖2) is conditionally positive
definite of order 1 if for any M ∈ N points x1, . . . , xM ∈ R2 the relation

aT (Φ(xi − xj))
M
i,j=1 a > 0 ∀a = (a1, . . . , aM )T �≡ 0 with

M∑
i=1

ai = 0.

holds true. Although these kernels are in general not positive semi-definite, the
following slight modification of such kernels given by

K̃Φ(x, y) := Φ(x− y)− Φ(y)− Φ(x) + Φ(0) + 1 (5)

defines again a positive semi-definite kernel K̃Φ(x, y) which gives rise to a RKHS
HK̃Φ

. The spaces HK̃Φ
can be characterized as in [23]. Now it is not hard to show

that the modification K̃ of a kernel K(x, y) = Φ(x − y) by (5) does not change
the minimizer of the functional, i.e., then the minimizers of EK and EK̃ coincide.
In particular, we have for K(x, y) := −‖x− y‖2 that EK and EK̃ have the same
minimizers, so that we can work with the original kernel K.

Finally, we mention with respect to various choices of ϕ in (2) that other
examples of conditionally positive definite, radial functions of order 1 are Φ(x) :=
−‖x‖τ

2 , 0 < τ < 2 and the multiquadrics Φ(x) := −(ε2 + ‖x‖22)τ , 0 < τ < 1.

3 Discrepancies

The quadrature errors considered in the previous section are closely related to
discrepancies which adds another interesting point of view. In the following we



Quadrature Nodes Meet Stippling Dots 573

consider X ∈ {[0, 1]2, S1,T2, S2} as metric spaces with measure μX and metric
dX . Let D := X × [0, R] and let B(c, r) := {x ∈ X : dX (c, x) ≤ r} be the ball
centered at c ∈ X with radius 0 ≤ r ≤ R. By 1B(c,r) we denote the characteristic
function of B(c, r). Then the kernel defined by

KB(x, y) :=
∫ R

0

∫
X

1B(c,r)(x)1B(c,r)(y) dμX (c) dr =
∫ R

0

μX (B(x, r) ∩ B(y, r)) dr

(6)
is positive semi-definite. Consider for example the sphere S2 := {x ∈ R3 :
‖x‖2 = 1} with the parameterization in spherical coordinates x = x(θ, ϕ) :=
(sin θ cosϕ, sin θ sinϕ, cos θ)T, (ϕ, θ) ∈ [0, 2π) × [0, π]. The geodesic distance on
S2 reads dS2(x, y) = arccos(x · y) and the surface measure is given by μS2(x) =
sin θdθdϕ. The balls are spherical caps and the area of the intersection of two
caps B(c, r), 0 ≤ r < π with center distance d is

a(r, d) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, 0 ≤ r ≤ d/2,

4
[
arccos

(
sin d

2
/ sin r

)− cos r arccos
(
tan d

2
cot r

)]
, d

2
< r < π

2
,

4r − 2d, r = π
2
,

4
[
arccos

(
sin d

2
/ sin r

)− cos r arccos
(
tan d

2
cot r

)]
, π

2
< r < π − d

2
,

−4π cos r, π − d
2
≤ r < π.

The corresponding discrepancy kernel is KB(d) =
∫ π

0 a(r, d) dr. For examples of
discrepancy kernels on [0, 1]d, S1 and T2 and their relations to distance kernels
Φ(x, y) = −‖x− y‖2, we refer to [15,9].

Integration on the RKHSs HKB is related to the notation of discrepancy. Set
t := (c, r) ∈ D and dt := dμX (c) dr. We define the L2-discrepancy as

discB2 (p) :=

⎛⎝∫
D

(∫
X
w(x)1B(t)(x) dx − λ

M∑
i=1

1B(t)(pi)

)2

dt

⎞⎠
1
2

. (7)

The expression in the inner brackets relates the integral of w on B(c, r) with the
number of points contained in B(c, r) for fixed (c, r) ∈ D. The discrepancy is
then the squared error of their differences taken over all t ∈ D. This point of
view is closely related to capacity-constrained methods used in [2,3]. The relation
between the discrepancy and the quadrature error is given by the next theorem.

Theorem 2. (Quadrature Error and L2-Discrepancy)
Let KB be defined by (6) and let HKB be the associated RKHS of functions on
X . Then errKB given by (3) and discB2 determined by (7) coincide

errKB(p) = discB2 (p).

4 Least Squares Functionals for Bandlimited Functions

Let X ∈ {T2, S2} and let {ψl : l ∈ N} be an orthonormal basis of L2(X ). Then
any real-valued function w ∈ L2(X ) can be written in the form
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w(x) =
∞∑

l=1

ŵlψl(x), ŵl = 〈f, ψl〉L2 =
∫
X
w(x)ψl(x) dx.

In order to develop fast algorithms for the efficient computation of minimizers
p̂ of functionals EK we will work in spaces of bandlimited functions ΠN (X ) :=
span{ψl : l = 1, . . . , dN} of dimension dN := dimΠN (X ). More precisely, we
will use the spaces ΠN (S1) := span{ e−2πin(·) : n = −N/2, . . . , N/2}, ΠN (T2) :=
span{ e−2πin(·) : n = (n1, n2), nj = −N/2, . . . , N/2, j = 1, 2} with even N and
ΠN (S2) := span{Y k

n : n = 0, . . . , N ; k = −n, . . . , n}. Here Y k
n denote the spher-

ical harmonics of degree n and order k, see [14]. We will apply bandlimited
kernels of the form

KN (x, y) :=
dN∑
l=1

λlψl(x)ψl(y) (8)

with λl > 0. These kernels are reproducing kernels for the RKHSs HKN :=
ΠN (X ) with the inner product 〈f, g〉HKN

=
∑dN

l=1 f̂lĝl/λl. For the efficient com-
putation of minimizers of EKN it is useful to rewrite the functional in weighted
least squares form.

Theorem 3. (Quadrature Error and Least Squares Functional)
Let the kernel KN be given by (8). Then the relation errKN (p)2 = EN(p) holds
true, where

EN(p) :=
dN∑
l=1

λl

∣∣∣∣∣λ
M∑
i=1

ψl(pi)− ŵl

∣∣∣∣∣
2

= ‖Λ 1
2F (p)‖22

with Λ := diag(λl)dN

l=1 and F (p) = (Fl(p))dN

l=1, Fl(p) := λ
M∑
i=1

ψl(pi) − ŵl. In

particular, the functionals EKN and EN have the same minimizers.

Note that for X = S2 and w ≡ 1 there is a close relation between the minimizers
EN (p) and spherical designs, see [19,8,9].

The evaluation of bandlimited functions

f(pi) =
dN∑
l=1

f̂lψl(pi), i = 1, . . . ,M

on X ∈ {S1,T2, S2} can be written in matrix-vector form as f = AN f̂ , where

f := (f(pi))
M
i=1, f̂ :=

(
f̂l

)dN

l=1
appropriately ordered and

AN :=

⎧⎪⎪⎨⎪⎪⎩
F N =

(
e−2πinpi

)
i=1,...,M;n=−N/2,...,N/2

for S1,

F 2,N =
(

e−2πi(n1,n2)T·pi

)
i=1,...,M;ni=−N/2,...,N/2,i=1,2

for T2,

Y N = (Y n
k (pi))i=1,...,M;n=0,...,N, |k|≤n for S2.

The main reason for working in spaces of bandlimited function is the existence
of fast algorithms for the matrix-vector multiplication with AN and A

T

N .
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Theorem 4. (Fast Evaluation of Bandlimited Functions)
The nonequispaced fast Fourier transform (NFFT) and the nonequispaced fast
spherical Fourier transform (NFSFT) realize the multiplication of a vector with
the matrix AN , resp. A

T

N , with the following number of arithmetic operations:
O(N logN + M log(1/ε)) for S1, O(N2 logN + M log2(1/ε)) for T2 and
O(N2 log2N +M log2(1/ε)) for S2, where ε is the prescribed accuracy.

For the NFFT we refer to [6,4,16,12] and for the NFSFT to [11,12]. It can
be shown that using these algorithms the same complexity is required for the
evaluation of EN (p).

5 Efficient Minimization Algorithm on S2

In this section, we describe the computation of a local minimizers of EN in an
efficient way for given ŵl, l = 1, . . . , dN . We restrict our attention to the case
X = S2, where we will only work with kernels of the form

KN (x, y) :=
N∑

n=0

n∑
k=−n

λnY
k
n (x)Y k

n (y). (9)

such that

EN (p) =
N∑

n=0

n∑
k=−n

λn|λ
m∑

i=1

Y k
n (pi)− ŵk

n|2.

Using the considerations of the previous section similar algorithms can be de-
duced for X ∈ {S1,T2}.

Due to the good experiences in connection with spherical designs in [8] we
apply the nonlinear CG method on the manifold M := (S2)M , cf. [20].

Algorithm: (CG algorithm on Riemannian manifolds)
Initialization: p(0), h(0) := ∇EN (p(0)), d(0) = −h(0)

For r = 0, 1, . . . repeat until a convergence criterion is reached

1. αr := −〈d(r),h(r)〉/〈d(r),HEN (p(r))d(r)〉
2. p(r+1) := expp(r)

(
αrd

(r)
)

3. h(r+1) := ∇EN (p(r+1))

4. Compute βr by βr := 〈h(r+1),HEN (p(r+1))d̃
(r)〉

〈d̃(r)
,HEN (p(r+1))d̃

(r)〉 , d̃
(r)

:= P g(αr)(d
(r)).

5. d(r+1) := −h(r+1) + βrd̃
(r)

Here expp : TpM → M denotes the exponential map from the tangent space
TpM to the manifold and P g(αr)(d

(r)) the parallel transport of d(r) ∈ Tp(r)M
along the geodesics g. For the manifold notation including the concept of parallel
transport we refer to [22].

Each CG step requires the evaluation of the gradient of EN and the multi-
plication of the Hessian of EN with a vector. By the following corollary both
computations can be done in an efficient way.
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Theorem 5. (Fast Evaluation of ∇EN and Multiplication with HEN)
For a given point p ∈ (S2)M and given ŵk

n, the gradient ∇EN (p) can be evaluated
with the arithmetic complexity O(N2 log2N +M log2(1/ε)). The multiplication
of a vector with the Hessian HEN (p) can be computed with the same complexity.

For the proof we refer to the accompanying paper [9].

6 Numerical Results on S2

In this section, we present some stippling results on S2. The proposed algo-
rithms were implemented in Matlab R2010a, where the mex-interface to the
NFFT library [12] was used. The internal library parameters were set as follows:
cutoff parameter m = 9, threshold parameter κ = 1000, flags PRE PSI and
PRE PHI HUT. From the sampling points x := (xi)L

i=1 ∈ (S2)L of the function
w we obtain approximate Fourier coefficients

ŵk
n :=

L∑
i=1

ωiw(xi)Y k
n (xi), l = 1, . . . , dN , (10)

where the quadrature weights ωi are chosen such that
∫

S2 f(x)dx =
∑L

i=1 ωif(xi)
for all f ∈ ΠN (S2). Note that the above sums can be evaluated in an efficient way
by the NFSFT. As kernel we use the bandlimited version of the distance kernel
Φ(x − y) = −‖x− y‖2 = −2 sin(dS2(x, y)/2), x, y ∈ S2, where the coefficients in
(9) are explicitly given by

λn =
16π

(2n+ 3)(2n+ 1)(2n− 1)
, n ∈ N0.

We apply the CG algorithm for randomly distributed initial points p(0).
The first example uses the topography map of the earth from Matlab. This

map consists of the earth’s elevation data. Since the values ranging from −7473
to 5731 we have scaled them to [0, 1], in order to avoid negative values. The data
is sampled on the grid x := (x (πi/180, πj/180))180,360

i=1,j=1. For this grid we have
computed nonnegative quadrature weights ωi,j for a polynomial degree N = 179
by the simple CG algorithm proposed in [7]. After applying the quadrature rule
(10) we obtain a polynomial approximation w =

∑179
n=0

∑n
k=−n ŵ

k
nY

k
n of the

earth’s topography, see the left-hand side of Figure 2. For M = 200000 and a
kernel of bandwidth N = 1000, our algorithm obtained after r = 3600 iterations
the right image in Figure 2, where one iteration takes about 1.5 minutes.

We remark that a naive evaluation of the attraction-repulsion functional (1)
requires at least O(M2) arithmetic operations. If we approximate the kernel
K(x, y) = ‖x − y‖2 by bandlimited kernels KN of the form (8) with N2 ∼ M ,
then every step in the proposed nonlinear CG method needs O(M log2M +
M log2(1/ε)) arithmetic operations. For a crude illustration of the performance
gain in our implementation to a naive one we run our algorithm with the slow
NDFST and fast NFSFT. Under the above assumption one iteration step with
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the NDFST needs also O(M2) operations. In our examples, the algorithm takes
per iteration about 1.5 minutes versus 3 hours with the NDFST. This reveals
the importance of fast algorithms for huge numbers of points.

Fig. 2. Left: Original image. Right: Stippling result with M = 200000 points.

In the second example we map a section of the left bitmap of Figure 1 on
the sphere by the same grid as in the first example. The stippling result after
r = 500 iterations is presented in Figure 3, where we used M = 100000 points
and a bandwidth N = 1000.

7 Conclusions

In this paper, we had a look at the stippling problem from different points of view.
Our framework arises primarily from approximation theory but touches many
different areas in mathematics as well. The proposed setting is quite general and
enables us to consider in some sense ’optimal’ point distributions not only in
R2 but also on the torus T2 and the sphere S2. Note that even in the seemingly
easiest case w ≡ 1 the search for optimal point configurations in more than one
dimension is a very tough problem which originated many publications. In this
case for translationally invariant kernels on T2, S2 the attraction term in (4) is
constant and can be omitted.

We have clarified the relation of our quadrature error functionals to recently
applied attraction-repulsion functionals and to L2-discrepancy functionals. For
bandlimited functions on S1,T2 and S2 we suggested to rewrite the quadrature
error functional in a least squares form. This is summarized in the figure below.
Then the nonlinear CG algorithm can be applied in conjunction with efficient
NF(S)FTs for stippling on S2.
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Fig. 3. Left: Original image. Right: Stippling result with M = 100000 points.

Quadrature Errors in RKHSs for positive semidefinite kernels K

↓ ↓ ↓
Attraction-Repulsion

for K(x, y) := ϕ(‖x − y‖2)
↔ L2–Discrepancies

for discrepancy K
↔ Least Squares

for bandlimited K
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3. Balzer, M., Schlömer, T., Deussen, O.: Capacity-constrained point distributions: A
variant of Lloyd’s method. ACM Transactions on Graphics 28(3), Article 86 (2009)

4. Beylkin, G.: On the fast Fourier transform of functions with singularities. Appl.
Comput. Harmon. Anal. 2, 363–381 (1995)

5. Du, Q., Faber, V., Gunzburger, M.: Centroidal Voronoi tessellations: Applications
and algorithms. SIAM Review 41, 637–676 (1999)

6. Dutt, A., Rokhlin, V.: Fast Fourier transforms for nonequispaced data. SIAM J.
Sci. Stat. Comput. 14, 1368–1393 (1993)
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Abstract. Similarity and correspondence are two fundamental archetype
problems in shape analysis, encountered in numerous application in com-
puter vision and pattern recognition. Many methods for shape similarity
and correspondence boil down to the minimum-distortion correspondence
problem, in which two shapes are endowed with certain structure, and one
attempts to find the matching with smallest structure distortion between
them. Defining structures invariant to some class of shape transformations
results in an invariant minimum-distortion correspondence or similarity.
In this paper, we model shapes using local and global structures, formu-
late the invariant correspondence problem as binary graph labeling, and
show how different choice of structure results in invariance under various
classes of deformations.

1 Introduction

Recent works in computer vision and shape analysis [1–4] have shown that differ-
ent approaches to shape similarity and correspondence can be considered as in-
stances of the minimum distortion correspondence problem, in which two shapes
are endowed with certain structure, and one attempts to find the best (least dis-
torting) matching between these structures. Examples of such structures include
multiscale heat kernel signatures [5–7], local photometric properties [8, 9], eigen-
functions of the Laplace-Beltrami operator [10–13], triplets of points [14, 15], and
geodesic [2, 3, 16], diffusion [17], and commute time [10, 18] distances. By defining
a structure invariant under certain class of transformations (e.g. non-rigid defor-
mations), one obtains correspondence invariant under that class (in the above
example, deformation invariant matching). The Gromov-Hausdorff distance [19]
is an important particular case of the minimum distortion correspondence prob-
lem, in which the matched structures are metric spaces, invariant to isometries
of the metric structures.

Some settings of the minimum distortion correspondence problem can be re-
formulated as labeling problems [20], such that the objective function can be
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optimized efficiently using the recently developed discrete optimization algo-
rithms. For example, the dual-decomposition strategy [21], introduced by [22]
to perform pairwise Markov random field (MRF) inferences, provides a power-
ful technique to solve such labeling problems. Based on such a strategy, Tor-
resani et al. proposed a pairwise graph matching algorithm [20] to compute
correspondence between images using a criterion combining local features and
Euclidean distances between nearby features. Such an approach showed better
performance than feature-only based methods in deformable 2D object tracking.
The increased performance attributed to the use of inter-feature distances as a
geometric consistency constraint. However, Euclidean distances are not defor-
mation invariant and can be applied only locally, thus limiting the usefulness of
such a constraint.

Main Contribution. In this paper, we study the minimum distortion cor-
respondence problem in the context of non-rigid shape analysis. We formulate
invariant correspondence as a minimizer of a distortion criterion based on struc-
tures invariant to some classes of transformations. In particular, we use local
and global structures invariant to important classes of transformations such as
non-rigid deformations, changes in topology, and scaling. By such an axiomatic
construction of invariant structures, we obtain invariant correspondence. In par-
ticular, we show scale invariant shape matching using only singleton and pair-
wise interactions without higher-order terms. Compared to Torresani et al. [20],
our use of global structures in non-rigid shapes provides a better regulariza-
tion to the problem and is better motivated geometrically. Yet, it also increases
the computational complexity of the optimization. To address this problem, we
use hierarchical matching, in which candidate correspondences are restricted to
neighborhoods of matching points from coarser levels.

While the described axiomatic approach is suitable for modeling geometric
shape transformations such as bendings, it is not applicable to intra-class shape
variations (e.g. different appearances of a human shape). To cope with this case,
we show a probabilistic extension of our framework, in which local and global
structures are replaced with respective multidimensional distributions, account-
ing for shape variability.

Related Work. Feature-based shape matching methods for non-rigid shapes
were used in numerous recent works [5, 8, 12]. Tree-based [23] and branch-
and-bound techniques [24] were used to find the matches between the feature
points. Elad and Kimmel [16] used multidimensional scaling (MDS) to repre-
sent shapes in a low-dimensional Euclidean space and compare them as rigid
objects. The use of an intermediate embedding space was eliminated in [2] using
the Gromov-Hausdorff formalism [19]. Bronstein et al. [3] proposed an MDS-
like algorithm referred to as generalized MDS (GMDS) for the computation of
the Gromov-Hausdorff distance and deformation invariant correspondence be-
tween shapes. This framework was extended in [17] using diffusion geometry
instead of the geodesic one. In [25], Mémoli extended [2, 3] by modeling shapes
as metric-measure spaces. He introduced the Gromov-Wasserstein distance based
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on measure coupling between two metric-measure spaces, and formulated it as
a quadratic assignment problem (QAP). Thorstensen and Keriven [9] extended
the GMDS framework to textured shapes introducing photometric stress as a
local matching term in addition to geodesic distance distortion. Dubrovina and
Kimmel [13] generalized this approach for the matching of textureless shapes
using Laplace-Beltrami eigenfunctions as local geometric descriptors. Mateus et
al. [11] showed a non-rigid shape correspondence approach with inexact graph
matching based on spectral embedding. In the image domain, Torresani et al.
[20] used graph labeling problem to match 2D images.

2 Problem Formulation

Our shape model is an extension of the metric model used in [2, 3, 16]. We assume
that the shapes are endowed with local and global structure, and try to find such
a correspondence between the shapes that best preserves these structures. The
structures are defined having in mind certain invariance properties required in
the particular problem, as discussed in Section 3. Given a shape X , modeled as
a connected surface (possibly with boundary) embedded into R3 (or R2 in case
of planar shapes), its local structure is modeled by a vector field fX : X → Rm

referred to as a local descriptor. The global structure of the shape is modeled as
a metric dX : X × X → R, defined as a positive-definite subadditive function
between pairs of points on X .

Given two shapes X and Y with the local descriptors fX and fY and met-
rics dX and dY , respectively, we define a bijective correspondence between X
and Y as C ⊂ X × Y satisfying ∀x ∈ X ∃!y ∈ Y such that (x, y) ∈ C and
∀y ∈ Y ∃!x ∈ X such that (x, y) ∈ C. A good correspondence should match
similar descriptors between corresponding points and similar metrics between
corresponding pairs of points. This can be quantified using first- and second-
order distortion terms, dis(C) = ‖f(C)‖ and dis(C × C) = ‖d(C × C)‖, measuring
the quality of correspondence of local and global structures, respectively. (here,
f(C) is a |C| × 1 vector with elements ‖fX(x)− fY (y)‖ for all (x, y) ∈ C; d(C ×C)
is a |C|2× 1 vector with elements |dX(x, x′)− dY (y, y′)| for all (x, y), (x′, y′) ∈ C;
and ‖ · ‖ is some norm). In particular,

dis2(C) =
∑

(x,y)∈C
‖fX(x) − fY (y)‖2;

dis2(C × C) =
∑

(x,y),(x′,y′)∈C
(dX(x, x′)− dY (y, y′))2.

The optimal correspondence is found by minimizing a combination of first- and
second-order distortion terms,

min
C

dis(C) + βdis(C × C), β ≥ 0. (1)

The minimizer of problem (1) is the minimum distortion correspondence between
X and Y . The minimum of problem (1) can be interpreted as the similarity of
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X and Y .1 A particular theoretically important case is a minimum-distortion
correspondence with an L∞ second-order distortion term, referred to as the
Gromov-Hausdorff distance [19]:

dGH(X,Y ) =
1
2

min
C

max
(x,y),(x′,y′)∈C

|dX(x, x′)− dY (y, y′)|.

3 Invariance

The choice of the local and global structures (fX , fY and dX , dY ) defines the in-
variance properties of the correspondence. Assume that the shape Y = τ(X) is
obtained fromX by means of some transformation τ from a class T . If fX◦τ = fY
and dX ◦ (τ × τ) = dY for all τ ∈ T , our structures are invariant under the class
of transformations T . As a result, correspondence obtained by the solution of
problem (1) is also invariant under T . Important invariance classes can be ad-
dressed by appropriate definition of the descriptors and the metric. In particular,
we are interested in inelastic deformations (bendings), changing the embedding
of the shape without changing its intrinsic structure; topological transformations,
resulting in local changes in the connectivity of the shape, appearing as holes or
“gluing” two points on the surface; and scaling.

3.1 Choice of the Metric

Geodesic Metric. One of the most straightforward definitions of a metric on
a surface is the geodesic metric, measuring the length of a shortest path between
points x and x′,

dX(x, x′) = min
γ∈Γ (x,x′)

�(γ),

where Γ (x, x′) denotes the set of all admissible paths between x and x′, γ is
some admissible path, and �(γ) is its length. The geodesic metric is intrinsic,
dependent only on local distance structure of the shape, and is thus invariant
to inelastic deformations [2, 3, 16]. A notable drawback of the geodesic distance
is its sensitivity to topological transformations. Connectivity changes alter the
admissible paths Γ (e.g., gluing the fingers of the hand creates new paths that
have not existed before), and, since the geodesic distance takes the minimum
over all path lengths, sometimes the change in the geodesic metric can be very
significant.

Diffusion Metric. A more robust definition of an intrinsic metric based on
heat diffusion properties has been recently popularized by Lafon et al. [27]. Heat
1 The minimizer of problem (1) is not necessarily unique, i.e., there may be two differ-

ent correspondences C �= C′ with dis(C) = dis(C′). Such situations are typical when
the shapes have intrinsic symmetries. Intrinsic symmetry is manifested by the exis-
tence of a self-isometry of X with respect to the metric dX , i.e., an automorphism
g : X → X satisfying dX = dX ◦ (g × g) [24, 26].
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diffusion on manifolds is governed by the heat equation
(
ΔX + ∂

∂t

)
u = 0, where

u is the heat distribution and ΔX is the positive semi-definite Laplace-Beltrami
operator (LBO), which can be roughly thought of as a generalization of the
Laplacian to non-Euclidean domains. The heat kernel hX,t(x, z) is the solution of
the heat equation with a point heat source at point x at time t = 0. For compact
manifolds, the Laplace-Beltrami operator has discrete eigendecomposition of the
form ΔXφi = λiφi, where λ0 = 0, λ1, ... ≥ 0 are eigenvalues and φ0, φ1, ... are
eigenfunctions. Using the eigenbasis of ΔX , the heat kernel can be presented as

hX,t(x, z) =
∞∑

i=0

e−λitφi(x)φi(z). (2)

A family of metrics

dX,t(x, y) = ‖hX,t(x, ·) − hX,t(y, ·)‖L2(X) =
∞∑

i=1

e−2λit(φi(x)− φi(y))2, (3)

parameterized by the time scale t, is referred to as diffusion metrics. Diffusion
metric is inversely related to the connectivity of points x and y by paths of length
t. Unlike the geodesic distance which measures the length of the shortest path,
the diffusion metric has an averaging effect over all paths connecting two points.
As a result, diffusion metric is less sensitive to topology and connectivity changes
[17]. With an appropriate selection of the time scale t, the effect of topological
noise can be reduced.

Commute-Time Metric. At the same time, the need to select the scale
parameter is a disadvantage, as it depends on the shape scale. Moreover, the
diffusion metric is not scale invariant, since scale change affects the eigenvalues
λi and eigenfunctions φi. A different metric,

δX(x, y) =
∞∑

i=1

1
λi

(φi(x) − φi(y))2, (4)

called the commute time (or resistance [28]) distance, is similar in its spirit to the
diffusion metric, while being scale-invariant. The commute time metric measures
the connectivity of points by paths of any length and is related to the expected
time it takes a random walk initiating at point x go through point y and return
to x.

3.2 Choice of the Descriptor

Similarly to our motivation in the selection of the metric, the choice of the
local descriptor is also dictated by the desired invariance properties. Due to
their locality, many types of descriptors are usually less susceptible to changes
as a result of non-rigid deformations. However, some descriptors have explicit
invariance properties by construction.
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Table 1. Invariance properties of local (top rows) and global (bottom rows) structures

Structure Bending Topology Scale

Local histogram [24] Yes No No
LBO eigenfunctions [12, 13] Yes No Yes
HKS [5] Yes Approx No
SI-HKS [7] Yes Approx Yes

Geodesic metric [2, 3] Yes No No
Diffusion metric [17] Yes Approx No
Commute-time metric [18] Yes Approx Yes

Heat Kernel Signature. Sun et al. [5] introduced intrinsic descriptors based
on multi-scale heat kernels, referred to as heat kernel signatures (HKS). The HKS
is constructed at every point of the shape by considering the values of the heat
kernel diagonal at multiple time scales, fX(x) = (hX,t1(x, x), . . . , hX,tn(x, x)),
where t1, . . . , tn are some time scale. The HKS is invariant to inelastic deforma-
tions and was also shown to be insensitive to topological transformations [6].

Scale-Invariant Heat Kernel Signature. The disadvantage of HKS is the
lack of scale invariance. In a follow-up work, Bronstein and Kokkinos [7] intro-
duced a scale-invariant modification of HKS, referred to as SI-HKS. The main
idea is to sample the time scales logarithmically (t = ατ ) such that shape scal-
ing corresponds to a scale-space shift. Such a shift is then undone by taking the
magnitude of the Fourier transform w.r.t. τ . The SI-HKS enjoys the invariance
properties of HKS, while in addition also being scale-invariant.

4 Correspondence as a Graph Labeling Problem

Our minimum-distortion correspondence problem can be formulated as a binary
labeling problem with uniqueness constraints [20] in a graph with vertices defined
as pairs of points and edges defined as quadruplets. More formally, let V =
{(x, y) : x ∈ X, y ∈ Y } = X×Y be the set of pairs of points from X and Y , and
let E = {((x, y), (x′, y′)) ∈ V × V and (x, y) �= (x′, y′)}. Let L = {0, 1} further
denote the set of binary labels. We can represent a correspondence C ⊆ V as
binary labeling u ∈ LV of the graph (V , E), as follows: u(x, y) = 1 iff (x, y) ∈ C
and 0 otherwise. When using L2 distortions, the correspondence problem (1) can
be reformulated as:

min
u∈LV

∑
(x,y)∈V

ux,y(‖fX(x) − fY (y)‖ − γ) +

β
∑

((x,y),(x′,y′))∈E
ux,yux′,y′ |dX(x, x′)− dY (y, y′)|2

s.t.
∑

y

ux,y ≤ 1 ∀x ∈ X ;
∑

x

ux,y ≤ 1 ∀y ∈ Y. (5)

where γ > 0 is an occlusion term [20] to penalize unmatched points. We can
choose a sufficiently large γ to ensure the bijective correspondence and the equiv-
alence of the two problems.
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In general, optimization of this energy is NP-hard [29]. Here, we adopt the
graph matching algorithm [20] based on dual-decomposition to perform the op-
timization of (5). The key idea of this approach is, instead of minimizing di-
rectly the energy (5) of the original problem, to maximize a lower bound on it
by solving the dual to the linear programming (LP) relaxation of (5). Such ap-
proaches demonstrate good global convergence behavior [22]. We first decompose
the original problem, which is too complex to solve directly, into a series of sub-
problems, each of which is smaller and solvable. After getting the solution of the
sub-problems, we combine them using a projected-subgradient scheme to get the
solution of the original problem. In the numerical experiments, following [20], we
decomposed problem (5) into a linear subproblem, a maxflow subproblem and a
set of local subproblems.

4.1 Hierarchical Matching

Assuming for simplicity |X | = |Y | = N , the number of vertices in the graph is
|V| = N2 and the number of edges, assuming full connectivity, is O(N4). The
complexity of problem (5) is O(|V|2|E|) multiplied by the number of iterations,
i.e., O(N8). This complexity can be reduced by adopting a hierarchical match-
ing strategy: after finding a coarse correspondence between a small number of
points, correspondence between nearby points only is looked for. This allows to
significantly reduce the graph size.

Let x1, x2, . . . denote a progressive sampling of the shape X , such that Xn =
{x1, . . . , xn} constitutes an rn-covering of X (i.e., dX(X,Xn) ≤ rn, where dX is
some metric on X). Such a sequence of points can be found using e.g. farthest
point sampling (FPS) strategy [30], in which x1 is selected arbitrarily and the
next point is selected as xk+1 = arg maxx∈X mini=1,...,k dX(x, xi). Same way,
Yn = {y1, . . . , yn} will denote an r′n-covering of Y .

At the first stage of hierarchical matching, correspondence is found between
XN1 and YN1 , where N1 is some small number (in our experiments, it varied
between 4 and 10), solving the labeling problem (5) on the full graph (V1 =
XN1 × YN1 , E1 = {((x, y), (x′, y′)) ∈ V1 × V1 and (x, y) �= (x′, y′)}. The solution
provides a coarse correspondence C1 ⊂ XN1 × YN1 .

At the (k + 1)st level, correspondence is found between XNk+1 and YNk+1

(the number of points is increased by a factor typically 2 ≤ q = Nk+1/Nk ≤
4), restricting the correspondence candidates for points within a certain radius
around x to points within a certain radius around y, where (x, y) ∈ Ck. This
way, the (k + 1)st level labeling problem is solved on the graph with vertices

Vk+1 =
{(xi, yi) ∈ XNk+1 × YNk+1 : ∃(x, y) ∈ Ck s.t. dX(x, xi) < ρrk, dY (y, yi) < ρr′k},

where ρ > 1, and Ek+1 = {((x, y), (x′, y′)) ∈ Vk+1 × Vk+1 and (x, y) �= (x′, y′)}.
For ρ ≈ 1, the size of the ρrk-neighborhood in XNk+1 of a point from XNk

contains O(q) points. Thus, |Vk+1| = O(q2Nk), and |Ek+1| = O(q4N2
k ) points, a

significant reduction compared to O(N2
k+1) vertices and O(N4

k+1) edges in a full
graph. As a result, the complexity of the optimization becomes O(N4).
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5 Probabilistic Matching and Shape Prototypes

While invariance to geometric transformations such as bending can be accounted
by the selection of local (descriptor) and global (metric) structures, many types
of shape variability cannot be accounted for in this way. For example, variabil-
ity within the shape class (e.g. fat or thin man) results in different local and
global structures that cannot be modeled geometrically. At the same time, such
a variability can be modeled statistically. Instead of fX and dX , we now have
distributions fX ∼ FX and dX ∼ DX , e.g., Gaussian mixture model for distances,

pxx′(d) =
K∑

k=1

πxx′k
1√

2πσxx′k
exp

{
− (d− μxx′k)2

2σ2
xx′k

}
,

K∑
k=1

πxx′k = 1; ∀x �= x′ ∈ X,

and descriptors,

px(f) =
K∑

k=1

πxk

exp
{− 1

2 (f − μxk)TΣ−1
xk (f − μxk)

}
(2π)m/2(det Σxk)1/2

,

K∑
i=1

πxk = 1; ∀x ∈ X,

where p denotes probability density. The distance distribution between points
x and x′ is parameterized by Dxx′ = {μxx′k, σ

2
xx′k, πxx′k}K

k=1; the distribution
of descriptors at each points x is parameterized by Fx = {μxk,Σxk, πxk}K

i=1,
where μxk are m × 1 vectors and Σxk are m × m matrices. We call X =
((Fx)x∈X , (Dxx′)x �=x′∈X) a shape prototype.

In this probabilistic setting, given a shape Y , we determine the correspondence
between Y and the prototype X by solving a problem similar to (5), with the
distortion terms replaced by negative log-likelihood functions,

min
u∈LV

−
∑

(x,y)∈V
ux,y(log px(fY (y)) + γ)−

β
∑

((x,y),(x′,y′))∈E
ux,yux′,y′ log pxx′(dY (y, y′))

s.t.
∑

y

ux,y ≤ 1 ∀x ∈ X ;
∑

x

ux,y ≤ 1 ∀y ∈ Y. (6)

6 Results

To assess the performance of the presented approach, we performed multiple ex-
periments of shape correspondence and similarity computation under a variety of
transformations. Shapes from the TOSCA [31] and Princeton [32] datasets were
used in our experiments. Textured shapes acquired with a multicamera system
were taken from the INRIA Grenoble dataset [8]. The shapes were represented
as triangular meshes with 2000-10000 vertices. Textures were given as RGB val-
ues for each vertex. Geodesic distances were computed using fast marching [33].
Diffusion and commute time metrics were computed using the spectral formu-
lae (3) and (4) taking the first 100 eigenvalues. The Laplace-Beltrami operator
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was approximated using cotangent weights [34]. The heat kernel was approxi-
mated using formula (2). Hierarchical matching was implemented in MATLAB
with discrete optimization module in C++. Typical running times for pairwise
shape matching in the following experiments were about 10− 20 sec.

Invariance and the Choice of the Metric/Descriptor. In the first exper-
iment, matching was performed between eight points with equal weight given to
the local and global distortion terms in the optimization problem. Three com-
binations of first- and second-order structures were used: geodesic metric/HKS
descriptor, diffusion metric/HKS descriptor, and commute time metric/SI-HKS
descriptor. Figure 1 shows the result of correspondence computation between
shapes with different transformations for different choice of metric/descriptor.
All three methods are invariant to bendings (first row; note that correspondence
is defined up to an intrinsic symmetry). The combination geodesic metric/HKS
descriptor is sensitive to topology (a human with hands glued to legs, second
row) and scale. The combination diffusion metric/HKS descriptor is insensitive
to topology but sensitive to scale. Finally, commute time metric with SI-HKS
descriptor are invariant to all of the above.

Shape Prototypes. In the second experiment, a shape prototype was created
based on 64 examples of a human shape, in which the length of the hands
and legs and the size of the head varied. Distance and descriptor distributions
were represented using Gaussian mixtures with 5 components. Figure 2 shows
a comparison of deterministic and probabilistic matching. Using deterministic
matching, the shape of a humanoid alien from the Princeton database is matched
to the human shape from TOSCA dataset incorrectly (second column from left),
because of different proportions of the head, legs, and hands. On the other hand,
matching to the human shape prototype using probabilistic matching produced
correct symmetric correspondence (third column). Figure 2 (columns four and
five) shows additional examples of shape prototype matching. These results show
that the probabilistic matching framework allows to address shape variability
that cannot be simply accommodated into the metric model by choosing the
metric.

7 Conclusions

We presented a generic framework for invariant matching between shapes, in
which matching is performed by minimizing the distortion of local and global
geometric structures under the correspondence. Using structures invariant to
pre-defined classes of transformations (or, using their statistical distributions if
such transformations cannot be modeled explicitly) allows obtaining invariant
matching between shapes. Our approach generalizes many previous works in the
field, in particular, methods based on metric distortion minimization [2, 3, 17]
and global and local features [9, 13, 20], allowing incorporating many existing
geometries and local descriptors [5, 7, 8]. In particular, it extends the Gromov-
Hausdorff framework [2, 3, 19]. Formulating the problem as graph labeling, we
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Geodesic / HKS Diffusion / HKS Commute time / SI-HKS

Fig. 1. Invariance to different types of transformations and the choice of the met-
ric/descriptor. Shown is matching between isometric deformations (first row), shapes
with different topology (second row), and shapes with different scale (third row), us-
ing geodesic metric and HKS descriptors (left), diffusion metric and HKS descriptors
(middle), and commute time metric and scale-invariant HKS descriptors (right).

Fig. 2. Matching of an alien shape to the human shape (first column from left) using
deterministic (second column) and probabilistic (third column) approaches. Columns
four and five: additional probabilistic matching examples.
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use powerful optimization method recently developed for this class of problems
which are known to have favorable convergence properties. Our approach is
especially appropriate for the challenging problems of finding similarity and cor-
respondence between non-rigid shapes.

Limitations and Extensions. The problem of symmetric correspondences, in-
herent to all approaches based on intrinsic structures, cannot be resolved without
resorting to some side information. There are a few potential cures to this prob-
lem. First, providing some initial correspondence between the shapes could be
used to restrict the vertex set, ruling out symmetric correspondences. Second, ex-
ploiting shape orientation could be used to find orientation-consistent matches.
Finally, higher-order distortions (in particular, third-order between triplets of
points) can be combined to resolve the symmetry problem [15].
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Abstract. Finding a match between partially available deformable
shapes is a challenging problem with numerous applications. The prob-
lem is usually approached by computing local descriptors on a pair of
shapes and then establishing a point-wise correspondence between the
two. In this paper, we introduce an alternative correspondence-less ap-
proach to matching fragments to an entire shape undergoing a non-rigid
deformation. We use diffusion geometric descriptors and optimize over
the integration domains on which the integral descriptors of the two parts
match. The problem is regularized using the Mumford-Shah functional.
We show an efficient discretization based on the Ambrosio-Tortorelli ap-
proximation generalized to triangular meshes. Experiments demonstrat-
ing the success of the proposed method are presented.

Keywords: deformable shapes, partial matching, partial correspondence,
partial similarity, diffusion geometry, Laplace-Beltrami operator, shape
descriptors, heat kernel signature, Mumford-Shah regularization.

1 Introduction

In many real-world settings of the shape recognition problem, the data are de-
graded by acquisition imperfections and noise, resulting in the need to find partial
similarity of objects. Such cases are common, for example, in face recognition,
where the facial surface may be partially occluded by hair. In other applications,
such as shape retrieval, correct semantic similarity of two objects is based on
partial similarity – for example, a centaur is partially similar to a human because
they share the human-like upper body [15].

In rigid shape analysis, modifications of the popular iterative closest point
(ICP) algorithm are able to deal with partial shape alignment by rejecting points
with bad correspondences (e.g., by thresholding the product of local normal vec-
tors). However, it is impossible to guarantee how large and regular the resulting
corresponding parts will be.

Bronstein et al. [4] formulated non-rigid partial similarity as a multi-criterion
optimization problem, in which one tries to find the corresponding parts in two
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shapes by simultaneously maximizing significance and similarity criteria (in [4],
metric distortion [14, 19, 5] was used as a criterion of similarity, and part area
as significance). The problem requires the knowledge of correspondence between
the shapes, and in the absence of a given correspondence, can be solved by
alternating between weighted correspondence finding and maximization of part
area. In [4], a different significance criterion based on statistical occurrence of
local shape descriptors was used.

One of the drawbacks of the above method is its tendency in some cases to
find a large number of disconnected components, which have the same area as
a larger single component. The same authors addressed this problem using a
Mumford-Shah [22, 10]-like regularization for rigid [3] and non-rigid [2] shapes.

Recent works on local shape descriptors (see, e.g., descriptors [16, 33, 24, 11,
18, 21, 32, 29, 27, 9]) have led to the adoption of bags of features [28] approach
popular in image analysis for the description of 3D shapes [21, 23, 30]. Bags of
features allows to some extent finding partial similarity, if the overlap between
the parts is sufficiently large.

In this paper, we present an approach for correspondence-less partial match-
ing of non-rigid 3D shapes. Our work is inspired by the recent work on partial
matching of images [12]. The main idea of this approach, adopted here, is to find
similar parts by comparing part-wise distributions of local descriptors. This re-
moves the need of correspondence knowledge and greatly simplifies the problem.

The rest of the paper is organized is as follows. In Section 2, we review the
mathematical background of diffusion geometry, which is used for the construc-
tion of local descriptors. Section 3 deals with the partial matching problem and
Section 4 addresses its discretization. Section 5 presents experimental results.
Finally, Section 6 concludes the paper.

2 Background

Diffusion Geometry. Diffusion geometry is an umbrella term referring to ge-
ometric analysis of diffusion or random walk processes. We models a shape as
a compact two-dimensional Riemannian manifold X . In it simplest setting, a
diffusion process on X is described by the partial differential equation(

∂

∂t
+Δ

)
f(t, x) = 0, (1)

called the heat equation, where Δ denotes the positive-semidefinite Laplace-
Beltrami operator associated with the Riemannian metric of X . The heat equa-
tion describes the propagation of heat on the surface and its solution f(t, x) is
the heat distribution at a point x in time t. The initial condition of the equa-
tion is some initial heat distribution f(0, x); if X has a boundary, appropriate
boundary conditions must be added.

The solution of (1) corresponding to a point initial condition f(0, x) = δ(x, y),
is called the heat kernel and represents the amount of heat transferred from x
to y in time t due to the diffusion process. The value of the heat kernel ht(x, y)
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can also be interpreted as the transition probability density of a random walk
of length t from the point x to the point y.

Using spectral decomposition, the heat kernel can be represented as

ht(x, y) =
∑
i≥0

e−λitφi(x)φi(y). (2)

Here, φi and λi denote, respectively, the eigenfunctions and eigenvalues of the
Laplace-Beltrami operator satisfying Δφi = λiφi (without loss of generality,
we assume λi to be sorted in increasing order starting with λ0 = 0). Since
the Laplace-Beltrami operator is an intrinsic geometric quantity, i.e., it can be
expressed solely in terms of the metric of X , its eigenfunctions and eigenvalues as
well as the heat kernel are invariant under isometric transformations (bending)
of the shape.

Heat Kernel Signatures. By setting y = x, the heat kernel ht(x, x) expresses
the probability density of remaining at a point x after time t. The value ht(x, x),
sometimes referred to as the auto-diffusivity function, is related to the Gaussian
curvature K(x) through

ht(x, x) ≈ 1
4πt

(
1 +

1
6
K(x)t+O(t2)

)
. (3)

This relation coincides with the well-known fact that heat tends to diffuse slower
at points with positive curvature, and faster at points with negative curvature.
Under mild technical conditions, the set {ht(x, x)}t>0 is fully informative in the
sense that it allows to reconstruct the Riemannian metric of the manifold [29].

Sun et al. [29] proposed constructing point-wise descriptors referred to as
heat kernel signatures (HKS) by taking the values of the discrete auto-diffusivity
function at point x at multiple times, p(x) = c(x)(ht1 (x, x), ..., htd

(x, x)), where
t1, ..., td are some fixed time values and c(x) is chosen so that ||p(x)||2 = 1 . Such
a descriptor is a vector of dimensionality d at each point. Since the heat kernel
is an intrinsic quantity, the HKS is invariant to isometric transformations of the
shape.

A scale-invariant version of the HKS descriptor (SI-HKS) was proposed in [9].
First, the heat kernel is sampled logarithmically in time. Next, the logarithm and
a derivative with respect to time of the heat kernel values are taken to undo the
multiplicative constant. Finally, taking the magnitude of the Fourier transform
allows to undo the scaling of the time variable.

Bags of Features. Ovsjanikov et al. [23] and Toldo et al. [30] proposed con-
structing global shape descriptors from local descriptors using the bag of features
paradigm [28]. In this approach, a fixed “geometric vocabulary”is computed by
means of an off-line clustering of the descriptor space. Next, each point de-
scriptor is represented in the vocabulary using vector quantization. The bag of
features global shape descriptor is then computed as the histogram of quantized
descriptors over the entire shape.
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3 Partial Matching

In what follows, we assume to be given two shapes X and Y with correspond-
ing point-wise descriptor fields p and q defined on them (here we adopt HKS
descriptors, though their quantized variants or any other intrinsic point-wise de-
scriptors can be used as well). Assuming that Y is a part of an unknown shape
that is intrinsically similar to X , we aim at finding a part X ′ ⊆ X having the
same area A of Y such that the integral shape descriptors computed on X ′ and
Y coincide as closely as possible. In order to prevent the parts from being frag-
mented and irregular, we penalize for their boundary length. The entire problem
can be expressed as minimization of the following energy functional

E(X ′) =
∥∥∥∥∫

X′
pda− q

∥∥∥∥2

+ λrL(∂X ′) (4)

under the constraint A(X ′) = A, where A denotes area and q =
∫

Y

qda. The

first term of the functional constitutes the data term while the second one is the
regularity term whose influence is controlled by the parameter λr.

Discretization of the above minimization problem with a crisp set X ′ results
in combinatorial complexity. To circumvent this difficulty, in [2, 3] it was pro-
posed to relax the problem by replacing the crisp partX ′ by a fuzzy membership
function u on X , replacing the functional E by a generalization of the Mumford-
Shah functional [22] to surfaces. Here, we adopt this relaxation as well as the
approximation of the Mumford-Shah functional proposed by Ambrosio and Tor-
torelli [1]. This yields the problem of the form

min
u,ρ,σ

D(u) + λrR(u; ρ)

s.t.
∫

X

uda = A, (5)

with the data term

D(u) =
∥∥∥∥∫

X

puda− q
∥∥∥∥2

(6)

and the Ambrosio-Tortorelli regularity term

R(u; ρ) =
λs

2

∫
X

ρ2‖∇u‖2da+ λbε

∫
X

‖∇ρ‖2da+
λb

4ε

∫
X

(1 − ρ)2da, (7)

where ρ is the so-called phase field indicating the discontinuities of u, and ε > 0
is a parameter.

The first term of R above imposes piece-wise smoothness of the fuzzy part u
governed by the parameter λs. By setting a sufficiently large λs, the parts become
approximately piece-wise constant as desired in the original crisp formulation
(4). The second term of R is analogous to the boundary length term in (4) and
converges to the latter as ε→ 0.
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We minimize (5) using alternating minimization comprising the following two
iteratively repeated steps:
Step 1: fix ρ and solve for u

min
u

∥∥∥∥∫
X

puda− q
∥∥∥∥2

+ λr
λs

2

∫
X

ρ2‖∇u‖2da s.t.
∫

X

uda = A. (8)

Step 2: fix the part u and solve for ρ

min
ρ

λs

2

∫
X

ρ2‖∇u‖2da+ λbε

∫
X

‖∇ρ‖2da+
λb

4ε

∫
X

(1− ρ)2da. (9)

4 Discretization and Numerical Aspects

We represent the surfaceX as triangular mesh with n faces constructed upon the
samples {x1, . . . ,xm} and denote by a = (a1, . . . , am)T the corresponding area
elements at each vertex. A = diag{a} denote the diagonal m×m matrix created
out of a. The membership function u is sampled at each vertex and represented
as the vector u = (u1, . . . , um)T. Similarly, the phase field is represented as the
vector ρ = (ρ1, . . . , ρm)T.

Descriptors. The computation of the discrete heat kernel ht(x1,x2) requires
computing discrete eigenvalues and eigenfunctions of the discrete Laplace-
Beltrami operator. The latter can be computed directly using the finite ele-
ments method (FEM) [26], of by discretization of the Laplace operator on the
mesh followed by its eigendecomposition. Here, we adopt the second approach
according to which the discrete Laplace-Beltrami operator is expressed in the
following generic form,

(Δf)i =
1
ai

∑
j

wij(fi − fj), (10)

where fi = f(xi) is a scalar function defined on the mesh, wij are weights,
and ai are normalization coefficients. In matrix notation, (10) can be written as
Δf = A−1Wf , where f is an m× 1 vector and W = diag

{∑
l �=i wil

}
− wij .

The discrete eigenfunctions and eigenvalues are found by solving the gener-
alized eigendecomposition [17] WΦ = AΦΛ, where Λ = diag{λl} is a diagonal
matrix of eigenvalues and Φ = (φl(xi)) is the matrix of the corresponding eigen-
vectors.

Different choices of W have been studied, depending on which continuous
properties of the Laplace-Beltrami operator one wishes to preserve [13, 31]. For
triangular meshes, a popular choice adopted in this paper is the cotangent weight
scheme [25, 20], in which

wij =
{

(cotβij + cotγij)/2 : xj ∈ N (xj);
0 : else, (11)

where βij and γij are the two angles opposite to the edge between vertices xi

and xj in the two triangles sharing the edge.
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Data Term. Denoting by P d×m the matrix of point-wise descriptors on X
(stored in columns), we have∫

puda ≈ Pdiag{A}u (12)

This yields the following discretization of the data term (6)

D(u) = ‖PAu− q‖2 = uTATPTPAu− 2qTPAu + qTq. (13)

Gradient Norm. We start by deriving the discretization of a single term
ρ2‖∇u‖2da in some triangle t of the mesh. Let us denote by xi,xj and xk the
vertices of the triangle and let Xt = (xj −xi,xk −xi) be the 3× 2 matrix whose

columns are the vectors forming the triangle, and by αt = 1
2

√
det(XT

t Xt) its area.
Let also Dt be the sparse 2×mmatrix with +1 at indices (1, j) and (2, k), and−1
at (1, i) and (2, i). Dt is constructed in such a way to give the differences of values
of u on the vertices of the triangle with respect to the values at the central ver-
tex, Dtu = (uj − ui, uk − ui)T. The gradient of the function u is constant on the
triangle and can be expressed in these terms by gt = (XT

t Xt)−1/2Dtu = Gtu.
In order to introduce the weighting by ρ2, let S be an n ×m sparse matrix

with the elements sti = 1
3 for every vertex i belonging to the triangle t and

zero otherwise. In this notation, Sρ is a per-triangle field whose elements are
the average values of ρ on each of the mesh triangles. We use the Kroenecker
product of S with 1 = (1, 1)T to define the 2n × n matrix S ⊗ 1 formed by
replicating twice each of the rows of S. This yields∫

ρ2‖∇u‖2da ≈
∑

t

‖(Sρ)tGtu‖2αt =

=

∥∥∥∥∥∥∥diag{(S⊗ 1)ρ}

⎛⎜⎝
√
α1G1

...√
αnGn

⎞⎟⎠
∥∥∥∥∥∥∥

2

= uTGTS(ρ)Gu, (14)

where G is the matrix containing
√
αtGt stacked as rows, and S(ρ) = diag{(S⊗

1)ρ}2.
Discretized Alternating Minimization. We plug in the results obtained so
far into the two steps of the alternating minimization problem (8)–(9). For fixed
ρ, the discretized minimization problem (8) w.r.t. u can be written as

min
u

uT

(
ATPTPA + λr

λs

2
GTS(ρ)G

)
u− 2qTPAu s.t. aTu = A(15)

Let us now fix u. In a triangle t, we denote g2
t = ‖Gtu‖2 and let R(u) =

diag{α1g
2
1 , . . . , αng

2
n}. Using this notation, we obtain the following discretization

of the integrals in the regularization term (7)∫
X

ρ2‖∇u‖2da ≈
∑

t

(Sρ)2t g
2
tαt = ρTSTR(u)Sρ. (16)



598 J. Pokrass, A.M. Bronstein, and M.M. Bronstein

Similar to the derivation of (14),∫
‖∇ρ‖2da ≈ ρTSGTGSρ, (17)

and ∫
X

(1− ρ)2da ≈ ρTAρ− 2aTρ + 1Ta. (18)

The discretized minimization problem (9) w.r.t. ρ becomes

min
ρ

ρT
(
2ελsSTR(u)S + 4ε2λbSGTGS + λbA

)
ρ− 2λbaTρ. (19)

Since the above is an unconstrained quadratic problem, it has the following
closed-form solution

ρ =
(

2ελs

λb
STR(u)S + 4ε2SGTGS + A

)−1

a. (20)

5 Results

In order to test our approach, we performed several partial matching experiments
on data from the SHREC 2010 benchmark [8,7] and the TOSCA dataset [6].1 The
datasets contained high-resolution (10K-50K vertices) triangular meshes of hu-
man and animal shapes with simulated transformations, with known groundtruth
correspondence between the transformed shapes. In our experiments, all the
shapes were downsampled to approximately 2500 vertices. Parts were cut by
taking a geodesic circle of random radius around a random center point.

For each part, the normalized HKS descriptor was calculated at each vertex
belonging to the part. To avoid boundary effects (see Figure 1), descriptors close
to the boundary were ignored when calculating q in (4). The distance from the
boundary was selected in accordance to the time scales of the HKS. We used ten
linearly spread samples in range [65, 90] for the descriptors and the according
distance taken from edge was set to 15. Two to three iterations of the alternating
minimization procedure were used, exhibiting fast convergence (Figure 2). After
three iterations the member function u typically ceased changing significantly.
The phase map ρ assumed the values close to 1 in places of low gradient of the
membership function u, and less than 1 in high gradient areas (Figure 2). The
importance of the regularization step is is evident observing the change in u
in Figure 2. Figure 3 shows the influence of the parameter λr, controlling the
impact of the regularization. For too small values of λr, two equally weighted
matches are obtained due to symmetry (left). The phenomenon decreases with
the increase of the influence of the regularization penalty. However, increasing λr

more causes incorrect matching (second and third columns from the right) due

1 Both datasets are available online at http://tosca.cs.technion.ac.il

http://tosca.cs.technion.ac.il
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to low data term influence. Increasing it even more starts smoothing the result
(rightmost column) until eventually making the membership function uniform
over the entire shape. The resulting membership function u was thresholded in
such a way that the outcome area will be as close as possible to the query area.
Figures 4–6 show examples of matching results after thresholding. Notice that
in Figure 4 the matching result sometimes contain the symmetric counter part
of the result due to invariance of the HKS descriptor to intrinsic symmetry. (in
this figure, the threshold was adjusted to the value of 0.35 when the membership
functions weights are split between two symmetric parts as in Figure 3). The
method is robust to shape deformations and geometric and topological noise as
depicted in Figure 6. Note that the figures show part-to-whole shape matching,
but because of the low scale HKS descriptors the same procedure works for
matching to other parts as well.

Fig. 1. An RGB visualization of the first three component of HKS descriptors computed
on the full shape (left) and on a part of the shape (center). The L2 difference between
the two fields is depicted in the rightmost figure. Note that the difference is maximal
on the boundary decaying fast away from it; the error decay speed depends on the
scale choice in the HKS descriptor.

Table 1 summarizes quantitative evaluation that was performed on a subset of
the SHREC database, for which groundtruth correspondence and its bilaterally
symmetric counterpart were available. This subset included a male, a dog and a
horse shape classes with different geometric, topological and noise deformations
(98 shapes in total). The query set was generated by selecting a part from a
deformed shape (1000 queries in each deformation category) and matched to the
null shape with parameters and thresholds as described above.

Complexity. The code was implemented in Matalb with some parts written in
C with MEX interface. The quadratic programming problem (8) in Step 1 was
solved using QPC2 implementation of a dual active set method. The experiments
were run on 2.3GHz Intel Core2 Quad CPU, 2GB RAM in Win7 32bit environ-
ment. The running time (including re-meshing and descriptor calculation) per
part was 40− 50 sec.
2 available online at http://sigpromu.org/quadprog

http://sigpromu.org/quadprog
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Fig. 2. Convergence of the alternating minimization procedure. Depicted are the mem-
bership function u (top row) and the phase field ρ (bottom row) at the first three
iterations.

Fig. 3. The influence of the parameter λr, controlling the impact of regularization. The
leftmost figure depicts a query part; figures on the right are the membership function
u for different values of λr.

Table 1. Part matching performance on transformed shapes from the SHREC bench-
mark. At each query a random part (location and size) was selected from a deformed
shape and matched to the null shape. Overlap is reported compared to the groundtruth
correspondence between the shapes (in parentheses taking into account the intrinsic
bilateral symmetry).

Transformation Queries Avg. overlap

Isometry 1000 75% (85%)
Isometry + Shotnoise 1000 75% (85%)
Isometry + Noise 1000 71% (82%)
Isometry + Microholes 1000 68% (82%)
Isometry + Holes 1000 66% (76%)

All 5000 71% (82%)
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Fig. 4. Examples of matching of random parts of shapes (first row) to approximately
isometric deformations of the shapes (second row). Color code indicates different parts.

Fig. 5. Examples of matching of random parts of shapes (first row) to to approximately
isometric deformations of the shapes (second row).

Fig. 6. Results of matching a part of shape (first row) to shapes distorted by different
transformations (second row). Shown left-to-right are: shot noise, noise, micro holes
and holes.
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6 Conclusions

We presented a framework for finding partial similarity between shapes which
does not rely on explicit correspondence. The method is based on regularized
matching of region-wise local descriptors, and can be efficiently implemented. Ex-
perimental results show that our approach performs well in challenging match-
ing scenarios, such as the presence of geometric and topological noise. In the
future work, we will extend the method to the setting of two partially-similar
full shapes, in which two similar parts have to be found in each shape, and then
consider a multi-part matching (puzzle) scenario.
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Hierarchical Matching of Non-rigid Shapes
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Abstract. Detecting similarity between non-rigid shapes is one of the
fundamental problems in computer vision. While rigid alignment can be
parameterized using a small number of unknowns representing rotations,
reflections and translations, non-rigid alignment does not have this ad-
vantage. The majority of the methods addressing this problem boil down
to a minimization of a distortion measure. The complexity of a matching
process is exponential by nature, but it can be heuristically reduced to
a quadratic or even linear for shapes which are smooth two-manifolds.
Here we model shapes using both local and global structures, and provide
a hierarchical framework for the quadratic matching problem.

Keywords: Shape correspondence, Laplace-Beltrami, diffusion geome-
try, local signatures.

1 Introduction

The paper addresses the problem of finding point-correspondences between non-
rigid almost isometric shapes. The correspondence is required for various ap-
plications such as shape retrieval, registration, deformation, shape morphing,
symmetry, self-similarity detection, to name a few.

A common approach to detect correspondence between shapes differing by a
certain class of transformations consists of employing invariant properties un-
der those transformations to formulate a measure of dissimilarity between the
shapes, and minimize it in order to find the correct matching. Here we use
a matching scheme based on local and global surface properties, namely, local
surface descriptors and global metric structures. The proposed method is demon-
strated with two different types of metrics - geodesic and diffusion, and different
surface descriptors, that include histograms of geodesic and diffusion distances,
heat kernel signatures [33], and related descriptors based on the Laplace-Beltrami
operator [12].

The main issue we address is the matching complexity. Given two shapes
represented by triangular meshes, direct comparison of their pointwise surface
descriptors and metric structures is combinatorial in nature (see [24] for the met-
ric comparison problem). Our main contribution is a multi-resolution matching
algorithm that can handle a large number of points, and still produces a corre-
spondence consistent in terms of both pointwise and pairwise surface properties.

� Equal contributors.

A.M. Bruckstein et al. (Eds.): SSVM 2011, LNCS 6667, pp. 604–615, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Hierarchical Matching of Non-rigid Shapes 605

According to the proposed scheme, at the lowest resolution we solve the exact
correspondence problem, up to the approximation introduced by the optimiza-
tion algorithm. We then propagate this information to higher resolutions thus
refining the solution.

The rest of the paper is organized as follows: a brief review of some previous
efforts is presented in the next section. Section 2 presents the correspondence
problem formulation, followed by Section 3, reviewing relevant mathematical
background. Section 4 presents the suggested multi-resolution algorithm. Sec-
tion 5 contains numerical results, and comparison to the state-of-art algorithms,
followed by Section 6 that concludes the paper.

1.1 Non-Rigid Correspondence in a Brief

Zigelman et al . [39], and Elad and Kimmel [13] suggested a method for matching
isometric shapes by embedding them into a Euclidian space using multidimen-
sional scaling (MDS), thus obtaining isometry invariant representations, followed
by rigid shape matching in that space. Since it is generally impossible to embed
a non-flat 2D manifold into a flat Euclidean domain without introducing some
errors, the inherited embedding error affects the matching accuracy of all meth-
ods of this type. For that end, Jain et al . [17] and Mateus et al . [21] suggested
alternative isometry-invariant shape representations, obtained by using eigende-
composition of discrete Laplace operators. The Global Point Signature (GPS)
suggested by Rustamov [31] for shape comparison employs the discrete Laplace-
Beltrami operator, which, at least theoretically, captures the shape’s geometry
more faithfully. The Laplace-Beltrami operator was later employed by Sun et al .
[33], and Ovsjanikov et al . [25], to construct their Heat Kernel Signature (HKS)
and Heat Kernel Maps, respectively. Zaharescu et al . [37] suggested an extension
of 2D descriptors for surfaces, and used them to perform the matching. While
linear methods, such as [37,25] produce good results, once distortions start to
appear, ambiguity increases, and alternative formulations should be thought of.
Adding the proposed approach as a first step in one of the above linear dense
matching algorithms can improve the final results. Hu and Hua [16] used the
Laplace-Beltrami operator for matching using prominent features, and Dubrov-
ina and Kimmel [12] suggested employing surface descriptors based on its eigen-
decomposition, combined with geodesic distances, in a quadratic optimization
formulation of the matching problem. The above methods, incorporating pair-
wise constraints, tend to be slow due to high computational complexity. Wang et
al . [36] used a similar problem formulation, casted as a graph labeling problem,
and experimented with different surface descriptors and metrics.

Memoli and Sapiro [24], Bronstein et al . [6], and Memoli [22,23] compared
shapes using different approximations of the Gromov-Hausdorff distance [14].
Bronstein et al . [7] used the approach suggested in [6] with diffusion geometry,
in order to match shapes with topological noise, and Thorstensen and Keriven
[35] extended it to handle surfaces with textures. The methods in [24,22,23]
were intended for surface comparison rather than matching, and as such they
do not produce correspondence between shapes. At the other end, the GMDS
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algorithm [7] results in a non-convex optimization problem, therefore it requires
good initializations in order to obtain meaningful solutions, and can be used as a
refinement step for most other shape matching algorithms. Other algorithms em-
ploying geodesic distances to perform the matching were suggested by Anguelov
et al . [1], who optimized a joint probabilistic model over the set of all possible
correspondences to obtain a sparse set of corresponding points, and by Tevs et
al . [34] who proposed a randomized algorithm for matching feature points based
on geodesic distances between them. Zhang et al . [38] performed the matching
using extremal curvature feature points and a combinatorial tree traversal algo-
rithm, but its high complexity allowed them to match only a small number of
points.Lipman and Funkhouser [20] used the fact that isometric transformation
between two shapes is equivalent to a Möbius transformation between their con-
formal mappings, and obtained this transformation by comparing the respective
conformal factors. However, there is no guarantee that this result minimizes the
difference between pairwise geodesic distances of matched points.

Self-similarity and symmetry detection are particular cases of the correspon-
dence detection problem. Instead of detecting the non-rigid mapping between
two shapes, [28,26,18] search for a mapping from the shape to itself, and thus
are able to detect intrinsic symmetries.

2 Problem Formulation

The problem formulation we use is based on comparison of local and global sur-
face properties that remain approximately invariant under non-rigid ε-isometric
transformations. Given a shape X , we assume that it is endowed with a metric
dX : X × X → R+ ∪ {0}, measuring distances on X , and pointwise structure
fX : X → Rd, which is represented by a set of d-dimensional descriptors.

Given two shapes X and Y , endowed with metrics dX , dY and descriptors
fX , fY , we would like to find correspondence that best preserves these properties.
We denote the correspondence between X and Y by a mapping C : X × Y →
{0, 1} such that

C(x, y) =
{

1, x ∈ X corresponds to y ∈ Y ,
0, otherwise. (1)

In order to measure how well the correspondence C preserves the geometric
structures of the shapes we use the following dissimilarity function based on
global and local shape properties,

dis (C) = dislin (C) + λ · disquad (C) . (2)

The first term, dislin (C), measures the dissimilarity between the descriptors of
the two shapes

dislin (C) =
∑

x∈X,y∈Y

dF (fX(x), fY (y)) C(x, y), (3)
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where dF is some metric in the descriptor space. dislin (C) is a linear function of
the correspondence C. The second term, disquad (C), measures the dissimilarity
between the metric structures of the two shapes

disquad (C) =
∑

x,x̃∈X
y,ỹ∈Y

(dX(x, x̃)− dY (y, ỹ))2C(x, y)C(x̃, ỹ), (4)

and it is a quadratic function of C. The parameter λ ≥ 0 (Eq. (2) ) determines
the relative weight of the linear and the quadratic terms in the total dissimilarity
measure. The optimal matching, denoted here by C∗, is obtained by minimizing
the dissimilarity measure dis (C). In order to avoid a trivial solution C∗(x, y) =
0, ∀x, y, we introduce constraints defined by the type of the correspondence we
are looking for. For example, when a bijective mapping from X to Y is required,
the appropriate constraints on C are∑

x∈X

C(x, y) = 1, ∀y ∈ Y,
∑
y∈Y

C(x, y) = 1, ∀x ∈ X (5)

The resulting optimization problem can be written as

min
C

{dislin (C) + λ · disquad (C)} s.t. (5) (6)

Note that the dissimilarity measure dis (C) is a quadratic function of the corre-
spondence C. In [12], it was shown how to formulate (6) as a quadratic program-
ming problem with binary variables C(x, y). The optimization problem described
above belongs to the class of Integer Quadratic Programming (IQP) problems,
also referred to as Quadratic Assignment Problems (QAP), when used with (5).
In general, IQP and QAP problems are NP-Hard. Therefore, in order to mini-
mize dis (C), one has to resort to either some relaxation technique or a heuristic
approach (see e.g. [27]). While matching points using local structures alone (by
setting λ = 0, for instance) is a linear problem, and thus can be solved ef-
ficiently, it can not guarantee global invariance in the presence of noise and
symmetries. A better solution can be found by considering global structures.
Unfortunately, solving the quadratic assignment problem for a large number
of variables is almost infeasible, even after relaxation. In Section 4 we apply
a hierarchical approach for calculating an approximate solution of the above
optimization problem.

3 Mathematical Background

3.1 Choice of Metric

Differential geometry: Smooth surfaces, also known as Riemannian manifolds,
are differential manifolds equipped with an inner product in the tangent space,
which provides geometric notions such as angels, lengths, areas and curvatures
without resorting to the ambient space, and are referred to as intrinsic measures.
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The simplest example of an intrinsic metric is the geodesic metric, defined by
the length of the shortest path on the surface of a shape,

dX(x, x′) = inf
γ∈Γ (x,x′)

�(γ), (7)

where Γ (x, x′) is the set of all admissible paths between the points x and x′ on
the surface X ,and �(γ) is the length of the path γ. There exist several numerical
methods to evaluate (7) [19,32,5]. We use fast marching method, that simulates
a wavefront propagation on a triangular mesh, associating the time of arrival of
the front with the distance it traveled.
Diffusion geometry: Heat diffusion on the surface X is described by the heat
equation, (

ΔX +
∂

∂t

)
u(t, x) = 0, (8)

where a scalar field u : X× [0,∞)→ R is the heat profile at location x and time
t, and ΔX is the Laplace-Beltrami operator.

For compact manifolds, the Laplace-Beltrami operator has a discrete eigen-
decomposition of the form

ΔXφi = λiφi, (9)

where λ0, λ1, ... are eigenvalues and φ0, φ1, ... are the corresponding eigenfunc-
tions, which construct the heat kernel

ht(x, z) =
∞∑

i=0

e−λitφi(x)φi(z). (10)

The diffusion distance is defined as a cross-talk between two heat kernels [9]

d2
X,t(x, y) = ‖ht(x, ·)− ht(y, ·)‖2L2(X) =

∫
X

|ht(x, z)− ht(y, z)|2dz

=
∞∑

i=0

e−2λit (φi(x)− φi(y))
2 . (11)

Since diffusion distances are derived from the Laplace Beltrami operator, they
are also intrinsic properties, and, according to [3,11,10], also fulfill the metric
axioms.

3.2 Choice of Descriptors

Distance histograms: Given two surfaces X and Y and their metrics dX and dY

respectfully, we can evaluate the distances between any two points on each one
of the shapes using either choices of metrics. For isometries, a good candidate
that matches point x ∈ X to y ∈ Y will have similar distances to all other corre-
sponding points. Assuming the surface is well sampled, the distance histograms
of corresponding points x ∈ X and y ∈ Y have to be similar. Comparison of
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histograms is a well studied operation. While straight forward bin-to-bin com-
parison may work, we refer the reader to more robust algorithms such as the
earth moving distances (EMD) [30].

Heat kernel signatures: Another local descriptor based on the heat equation, was
presented by Sun et al . [33]. It was employed by Bronstein et al . [8] for shape
retrieval, and was recently adapted to volumes by Raviv et al . [29]. Sun et al. [33]
proposed using the diagonal of the heat kernel kt(x, x) (10) at multiple scales
as a local descriptor, and referred to it as heat kernel signatures (HKS). The
HKS remains invariant under isometric deformations of X , and it is insensitive
to topological noise at small scales. It is also informative in the sense that un-
der certain assumptions one could reconstruct the surface (up to an isometry)
from it. Furthermore, the HKS descriptor can be efficiently computed from the
eigenfunctions and eigenvalues of the Laplace-Beltrami operator.

Intrinsic symmetry-aware descriptors: Another possible choice for a surface de-
scriptor is one based on the eigendecomposition of the Laplace-Beltrami opera-
tor, suggested in [12]. In [12], the focus was on matching intrinsically symmetric
non-rigid shapes, and on the fact that in this case there exist more than one
possible matching of the two shapes, that preserves their global and local sur-
face properties.The solution proposed in [12] consists of defining distinct sets of
descriptors for several possible correspondences, and minimizing the distortion
dis(C) separately for each of them, to obtain distinct matchings. Thus, when
using these descriptors within an hierarchical framework, we can also find more
than a single matching of the two shapes, while obtaining denser correspondence.

3.3 Integer Quadratic Programming

A quadratic program (QP) is an optimization problem with quadratic objective
function and affine constraint functions

min 1
2x

TEx+ qTx+ r s.t. Gx & h, Ax = b. (12)

The above problem is called convex when the matrix E is positive semi-definite.
The Integer Quadratic Programming (IQP) has similar form, with the additional
constraint on the variables x: xi ∈ {0, 1} (binary variables). While convex QP
has one global minimum and can be solved efficiently, IQP is an NP-Hard prob-
lem. Two common methods are used to solve an QAP problem [4]. The first
is a heuristic approach based on a search procedure. For example, [12] used a
branch-and-bound procedure to solve the optimization problem in Eq. (6). This
approach usually provides good results assuming the local structures are both
robust and unique, and there is no intrinsic symmetry. The second approach is
based on relaxation. It is a three step solution, consisting of relaxing the inte-
ger constraints, solving a continuous optimization problem and projecting the
solution back into integers. As expected, this procedure is highly influenced by
the initial conditions. As for complexity, the relaxed IQP problem remains NP-
Hard. We use branch-and-bound for initial alignment, and then refine it using a
continuous optimization technique.



610 D. Raviv, A. Dubrovina, and R. Kimmel

Fig. 1. In the first step (left) we construct a quadratic correspomdence matrix from all
points in X into all points in Y . In each iteration (right) we search for possible matches
between points in X from the previous iteration (blue circle) and new sampled points
in X (green Xs) and their corresponding neighborhoods (black circles) in Y .

4 Hierarchical Formulation

Solving (6) reveals the main drawback of the quadratic problem formulation. As
noted in [12], the dimensionality of the problem allows us to handle up to several
dozens of points. Let us assume that X and Y have N and M vertices, respec-
tively. The number of possible correspondences between X and Y is therefore
NM , and thus, the dimension of the matrix E in the quadratic problem (12) is
NM × NM . Even for a small number of points, e.g. 30, the problem becomes
almost infeasible.

Since the problem is not strictly combinatorial by nature, but rather derived
from a smooth geometric measure, there should be a way to reduce the com-
plexity. We suggest reducing the high dimensionality of the problem using an
iterative scheme. At the first step we follow [12] and solve (6) using a branch-and-
bound procedure [2]. Each point x ∈ X is now matched to a point c(x) ∈ Y by
the mapping c. We denote y = c(x) if C(x, y) = 1. In each iteration we search for
the best correspondence between x and c(x) neighborhood, instead of all points
y ∈ Y , in a manner similar to [36]. Between iterations we add points x ∈ X and
y ∈ Y using the 2-optimal Farthest Point Sampling (FPS) strategy [15], evaluate
the neighborhood in Y of the new points, reevaluate the neighborhood of the
old points, and continue until convergence. In Figure 1 we show a diagram of
the process.

We solve the relaxed version of (6), using quazi-Newton optimization, and
project the solution to integers between iterations. Convergence is guaranteed, but
only to a local minimum, as for all QAP problems. The solver can now handle up to
several hundred of points. Let us further analyze the complexity. We consider the
first step to be O(N+M) as we use a constant (usually around 20) points from each
mesh, and only FPS is required, which can be evaluated in linear time. Assuming
that each neighborhood in Y consists of K vertices, and a linear growth in each
iteration of the matched points fromX , then, for the j’th iteration, the quadratic
correlation matrix has jK × jK members which has a complexity of O(j2K2),
and the entire iterative framework takes O(ΣN

j=1j
2K2) = O(N3K2). Since each

iteration requires a correlation matrix of size j2K2, the number of matched points
can be significantly higher than the results shown in [12].
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5 Results

In this section we provide several matching results obtained using our hier-
archical procedure. Figure 2 shows the matching obtained with the proposed
framework, combined with different descriptors and metrics, at several hierar-
chies. The matching was performed using 10 points at the coarse scale, and 30
- 64 points at the finest scale. Figure 2(a) shows the result of matching two
cat shapes using geodesic distance histogram descriptors and geodesic distance
metric. Figure 2(b) shows the matching result obtained using diffusion distances
instead of geodesic ones, and Figure 2(c) - the result obtained using Heat Kernel
Signatures [33] and diffusion distances. Note that the last two matchings are
in fact reflected ones (follows from the intrinsically symmetric shape matching
ambiguity described in [12]). When using the proposed algorithm with Laplace-
Beltrami operator-based descriptors [12] and geodesic distances, we were able to
obtain both possible correspondences between two cat shapes - the true corre-
spondence and the reflected one. The results are shown in Figure 2(d). As can
be seen, all setups provide good results, and we can conclude that the proposed
hierarchical framework is independent of the choice of descriptors.

We compared the hierarchical method to [12]’s quadratic matching and [6]’s
GMDS framework. Both are based on global structures. Since we followed [12]
formulation as our first step, our initial matchings are the same. But, since the
complexity of [12] rises rapidly, it can not be used to match more then a few
dozen points. In addition, even for a low number of points we have a major
quality advantage over [12], since the matched points on the second mesh can
move, and are not restricted to the initial sampling. In Figure 3 we see that
the ear and the nose of the cat were matched using 10 points, and relocated
after several iterations. We also compared the hierarchical matching and the
quadratic matching calculation times. The result are shown in Figure 4, for
different number of matched points. The quadratic matching succeeded to match
only up to 22 points in a reasonable time - less than 4 minutes, while the proposed
hierarchical method was able to find 60 matches in shorter time.

Bronstein et al . [6] proposed to minimize the Gromov-Hausdorf distance be-
tween shapes, which in theory provides the best correspondence between approx-
imate isometries. Since their framework is based on non-convex optimization,
the first alignment is critical. We evaluated GMDS results using its own initial-
izer and our quadratic first step, which provided better results. We repeated the
experiments shown in 2(a) and measured the geodesic distances between the cor-
responding points versus the ground truth correspondence. We improved the L∞
error by 26% and the mean error by 6.25%. It is not surprising, since usually the
best correspondence can not be originated from a global structure alone. One
can think, for example, on a trivial experiment where only the head rotates. The
best correspondence will suffer a distortion in the neck alone, but GMDS will
suffer from a distortion in all points.
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(a) Geodesic distance histograms descriptors and geodesic distance metric

(b) Diffusion distance histograms and diffusion distance metric

(c) Heat Kernel Signatures and diffusion distance metric

(d) The Laplace-Beltrami operator-based descriptors and geodesic distance metric;
the upper row - same orientation correspondence, the lower row - the reflected one.

Fig. 2. Matching results obtained with the proposed framework combined with differ-
ent descriptors and metrics, at several hierarchies. The hierarchical framework works
well with all setups, and it performs equally well with all types of descriptors.
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Fig. 3. Using geodesic distances as a global structure, and geodesic based histograms
as a local one, the wrong ear-to-nose match gets closer to the correct one during
subsequent iterations.

Fig. 4. Graph of calculation time as a function of number of matched points, showing
results of the proposed hierarchical method, alongside the quadratic matching algo-
rithm.

6 Conclusions

We presented a hierarchical framework, based on quadratic programming, that
solves non-rigid matchings between shapes. While being NP-Hard in general, we
solve the assignment problem by taking into account the smooth structure of our
shapes using an iterative scheme. We provided numerical results, and compared
it to state of art methods.
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Abstract. In this paper, we explore the use of the diffusion geometry
framework for the fusion of geometric and photometric information in
local heat kernel signature shape descriptors. Our construction is based
on the definition of a diffusion process on the shape manifold embedded
into a high-dimensional space where the embedding coordinates represent
the photometric information. Experimental results show that such data
fusion is useful in coping with different challenges of shape analysis where
pure geometric and pure photometric methods fail.

1 Introduction

In last decade, the amount of geometric data available in the public domain,
such as Google 3D Warehouse, has grown dramatically and created the demand
for shape search and retrieval algorithms capable of finding similar shapes in
the same way a search engine responds to text queries. However, while text
search methods are sufficiently developed to be ubiquitously used, the search
and retrieval of 3D shapes remains a challenging problem. Shape retrieval based
on text metadata, like annotations and tags added by the users, is often incapable
of providing relevance level required for a reasonable user experience.

Content-based shape retrieval using the shape itself as a query and based on
the comparison of geometric and topological properties of shapes is complicated
by the fact that many 3D objects manifest rich variability, and shape retrieval
must often be invariant under different classes of transformations. A particu-
larly challenging setting is the case of non-rigid shapes, including a wide range
of transformations such as bending and articulated motion, rotation and trans-
lation, scaling, non-rigid deformation, and topological changes. The main chal-
lenge in shape retrieval algorithms is computing a shape descriptor, that would
be unique for each shape, simple to compute and store, and invariant under
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different type of transformations. Shape similarity is determined by comparing
the shape descriptors.

Broadly, shape descriptors can be divided into global and local. The former
consider global geometric or topological shape characteristics such as distance
distributions [21,24,19], geometric moments [14,30], or spectra [23], whereas the
latter describe the local behavior of the shape in a small patch. Popular examples
of local descriptors include spin images [3], shape contexts [1], integral volume
descriptors [12] and radius-normal histograms [22]. Using the bag of features
paradigm common in image analysis [25,10], a global shape descriptor counting
the occurrence of local descriptors in some vocabulary can be computed [7].

Recently, there has been an increased interest in the use of diffusion geometry
[11,16] for constructing invariant shape descriptors. Diffusion geometry is closely
related to heat propagation properties of shapes and allows obtaining global de-
scriptors, such as distance distributions [24,19,8] and Laplace-Beltrami spectral
signatures [23], as well local descriptors such as heat kernel signatures [26,9,7].
One limitation of these methods is that, so far, only geometric information has
been considered. However, the abundance of textured models in computer graph-
ics and modeling applications, as well as the advance in 3D shape acquisition
[35,36] allowing to obtain textured 3D shapes of even moving objects, bring forth
the need for descriptors also taking into consideration photometric information.
Photometric information plays an important role in a variety of shape analysis
applications, such as shape matching and correspondence [28,33]. Considering
2D views of the 3D shape [32,20], standard feature detectors and descriptors
used in image analysis such as SIFT [18] can be employed. More recently, Za-
harescu et al. [37] proposed a geometric SIFT-like descriptor for textured shapes,
defined directly on the surface.

In this paper, we extend the diffusion geometry framework to include photo-
metric information in addition to its geometric counterpart. The main idea is
to define a diffusion process that takes into consideration not only the geometry
but also the texture of the shape. This is achieved by considering the shape as
a manifold in a higher dimensional combined geometric-photometric embedding
space, similarly to methods in image processing applications [15,17]. As a result,
we are able to construct geometric and photometric local descriptors (color heat
kernel signatures or cHKS).

The rest of this paper is organized as follows. In Section 2, we review the
mathematical formalism of diffusion processes and their use in shape analysis.
In Section 3, we introduce our approach and in Section 4 its numerical imple-
mentation details. Section 5 presents experimental results. Finally, Section 6
concludes the paper.

2 Background

Throughout the paper, we assume the shape to be modeled as a two-dimensional
compact Riemannian manifold X (possibly with a boundary) equipped with a
metric tensor g. Fixing a system of local coordinates on X , the latter can be
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expressed as a 2× 2 matrix gμν , also known as the first fundamental form. The
metric tensor allows to express the length of a vector v in the tangent space
TxX at a point x as gμνv

μvν , where repeated indices μ, ν = 1, 2 are summed
over following Einstein’s convention.

Given a smooth scalar field f : X → R on the manifold, its gradient is defined
as the vector field ∇f satisfying f(x + dx) = f(x) + gx(∇f(x), dx) for every
point x and every infinitesimal tangent vector dx ∈ TxX . The metric tensor g
defines the Laplace-Beltrami operator Δg that satisfies∫

fΔgh da = −
∫
gx(∇f,∇h)da (1)

for any pair of smooth scalar fields f, h : X → R; here da denotes integration
with respect to the standard area measure on X . Such an integral definition is
usually known as the Stokes identity. The Laplace-Beltrami operator is positive
semi-definite and self-adjoint. Furthermore, it is an intrinsic property of X , i.e.,
it is expressible solely in terms of g. In the case when the metric g is Euclidean,
Δg becomes the standard Laplacian.

The Laplace-Beltrami operator gives rise to the heat equation,(
Δg +

∂

∂t

)
u = 0, (2)

which describes diffusion processes and heat propagation on the manifold (note
that we use a positive-semidefinite Laplace-Beltrami operator, hence the plus
sign in the heat equation). Here, u(x, t) denotes the distribution of heat at time
t at point x. The initial condition to the equation is some heat distribution
u(x, 0), and if the manifold has a boundary, appropriate boundary conditions
(e.g. Neumann or Dirichlet) must be specified. The solution of (2) with a point
initial heat distribution u0 (x) = δ (x, x′), where δ(x′, x′) = 1 o.w. 0, is called the
heat kernel and denoted here by Kt(x, x′). Using a signal processing analogy, Kt

can be thought of as the “impulse response” of the heat equation.
By the spectral decomposition theorem, the heat kernel can be represented

as [13]
Kt(x, x′) =

∑
i≥0

e−λitφi(x)φi(x′), (3)

where 0 = λ0 ≤ λ1 ≤ . . . are the eigenvalues and φ0, φ1, . . . the corresponding
eigenfunctions of the Laplace-Beltrami operator (i.e., solutions to Δgφi = λiφi).
We will collectively refer to quantities expressed in terms of the heat kernel as to
diffusion geometry. Since the Laplace-Beltrami operator is intrinsic, the diffusion
geometry it induces is invariant under isometric deformations of X (incongruent
embeddings of g into R3).

Sun et al. [26] proposed using the heat propagation properties as a local de-
scriptor of the manifold. The diagonal of the heat kernel, Kt(x, x′), referred
to as the heat kernel signature (HKS), captures the local properties of X at
point x and scale t. The descriptor is computed at each point as a vector of
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the values p(x) = (Kt1(x, x), . . . ,Ktn(x, x)), where t1, . . . , tn are some time val-
ues. Such a descriptor is deformation-invariant, easy to compute, and provably
informative [26].

Ovsjanikov et al. [7] employed the HKS local descriptor for large-scale shape
retrieval using the bags of features paradigm [25]. In this approach, the shape
is considered as a collection of “geometric words” from a fixed “vocabulary”
and is described by the distribution of such words, also referred to as a bag of
features or BoF. The vocabulary is constructed offline by clustering the HKS
descriptor space. Then, for each point on the shape, the HKS is replaced by
the nearest vocabulary word by means of vector quantization. Counting the
frequency of each word, a BoF is constructed. The similarity of two shapes
X and Y is then computed as the distance between the corresponding BoFs,
d(X,Y ) = ‖BoFX − BoFY ‖.

3 Photometric Heat Kernel Signatures

Let us further assume that the Riemannian manifold X is a submanifold of some
manifold E (dim(E) = m > 2) with the Riemannian metric tensor h, embedded
by means of a diffeomorphism ξ : X → ξ(X) ⊆ E . A Riemannian metric tensor on
X induced by the embedding is the pullback metric (ξ∗h)(r, s) = h(dξ(r), dξ(s))
for r, s ∈ TxX , where dξ : TxX → Tξ(x)E is the differential of ξ. In coordinate
notation, the pullback metric is expressed as (ξ∗h)μν = hij∂μξ

i∂νξ
j , where the

indices i, j = 1, . . . ,m denote the embedding coordinates.
Here, we use the structure of E to model joint geometric and photometric in-

formation. Such an approach has been successfully used in image processing [15].
When considering shapes as geometric object only, we define E = R3 and h to be
the Euclidean metric. In this case, ξ acts as a parametrization of X and the pull-
back metric becomes simply (ξ∗h)μν = ∂μξ

1∂νξ
1+. . .+∂μξ

3∂νξ
3 = 〈∂μξ, ∂νξ〉R3 .

In the case considered in this paper, the shape is endowed with photometric infor-
mation given in the form of a field α : X → C, where C denotes some colorspace
(e.g., RGB or Lab). This photometric information can be modeled by defining
E = R3 × C and an embedding ξ = (ξg, ξp). The embedding coordinates corre-
sponding to geometric information ξg = (ξ1, . . . , ξ3) are as previously and the
embedding coordinate corresponding to photometric information are given by
ξp = (ξ4, . . . , ξ6) = η(α1, . . . , α3), where η ≥ 0 is a scaling constant. Simplifying
further, we assume C to have a Euclidean structure (for example, the Lab col-
orspace has a natural Euclidean metric). The metric in this case boils down to
(ξ∗h)μν = 〈∂μξg, ∂νξg〉R3 + η2〈∂μξp, ∂νξp〉R3 , which hereinafter we shall denote
by ĝμν .1

1 The joint metric tensor ĝ has inherent ambiguities. The diffusion geometry induced
by ĝ is invariant the joint isometry group Isoĝ = Iso((ξ∗gh)μν +η2(ξ∗ph)μν). Ideally, we
would like Isoĝ = Isog = Iso((ξ∗gh)μν)× Isop = Iso((ξ∗ph)μν) to hold. In practice, Isoĝ

is bigger: while every composition of a geometric isometry with a photometric isome-
try is a joint isometry, there exist some joint isometries which cannot be obtained as
a composition of geometric and photometric isometries. Experimental results show
that no realistic geometric and photometric transformations lie in Isoĝ \(Isog ×Isop).
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Fig. 1. Textured shape (left); values of the heat kernel (x placed on the foot, t =
1024) arising from regular purely geometric (middle) and mixed photometric-geometric
(right) diffusion process.

The Laplace-Beltrami operator Δĝ associated with such a metric gives rise to
diffusion geometry that combines photometric and geometric information (Fig-
ure 1). We define the photometric or color heat kernel signature (cHKS) as the
diagonal of the heat kernel associated with the joint geometric-photometric dif-
fusion induced by Δĝ. The cHKS fuses local geometric and photometric infor-
mation of the shape.

4 Numerical Implementation

Let {x1, . . . , xN} ⊆ X denote the discrete samples of the shape, and ξ(x1), . . . ,
ξ(xN ) be the corresponding embedding coordinates (three-dimensional in the
case we consider only geometry, or six-dimensional in the case of geometry-
photometry fusion). We further assume to be given a triangulation (simplicial
complex), consisting of edges (i, j) and faces (i, j, k) where each (i, j), (j, k), and
(i, k) is an edge (here i, j, k = 1, . . . , N).

A function f on the discretized manifold is represented as an N -dimensional
vector (f(x1), . . . , f(xN )). The discrete Laplace-Beltrami operator can be writ-
ten in the generic form

(Δ̂f)(xi) =
1
ai

∑
j∈Ni

wij(f(xi)− f(xj)), (4)
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where wij are weights, ai are normalization coefficients, and Ni denotes a lo-
cal neighborhood of point i. Different discretizations of the Laplace-Beltrami
operator can be cast into this form by appropriate definition of the above con-
stants. For shapes represented as triangular meshes, a widely-used method is the
cotangent scheme, which preserves many important properties of the continuous
Laplace-Beltrami operator, such as positive semi-definiteness, symmetry, and
locality [31]. Yet, in general, the cotangent scheme does not converge to the con-
tinuous Laplace-Beltrami operator, in the sense that the solution of the discrete
eigenproblem does not converge to the continuous one (pointwise convergence
exists if the triangulation and sampling satisfy certain conditions [34]).

Belkin et al. [5] proposed a discretization which is convergent without the
restrictions on “good” triangulation required by the cotangent scheme. In this
scheme, Ni is chosen to be the entire sampling {x1, . . . , xN}, ai = 1

4πρ2 , and

wij = Sje
−‖ξ(xi)−ξ(xj)‖2/4ρ, where ρ is a parameter, Sj denotes area of all tri-

angles sharing the vertex j. In the case of a Euclidean colorspace, wij can be
written explicitly as

wij = Sj exp
{
−‖ξg(xi)− ξg(xj)‖2

4ρ
− ‖ξp(xi)− ξp(xj)‖2

4σ

}
(5)

where σ = ρ/η2, which resembles the weights used in the bilateral filter [29]. Ex-
perimental results also show that this operator produces accurate approximation
of the Laplace-Beltrami operator under various conditions, such as noisy data
input and different sampling [27,5].

In matrix notation, equation (4) can be written as Δ̂f = A−1Wf , where
A = diag(ai) and W = diag

(∑
l �=i wil

)
− (wij). The eigenvalue problem Δ̂Φ =

ΛΦ is equivalent to the generalized symmetric eigenvalue problem WΦ = ΛAΦ,
where Λ = diag(λ0, . . . , λK) is the diagonal matrix of the first K eigenvalues,
and Φ = (φ0, . . . , φK) is the matrix of the eigenvectors stacked as columns.
Since typically W is sparse, this problem can be efficiently solved numerically.
Heat kernels can be approximated by taking the first largest eigenvalues and the
corresponding eigenfunctions in (3). Since the coefficients in the expansion of ht

decay as O(e−t), typically a few eigenvalues (K in the range of 10 to 100) are
required.

5 Results

In order to evaluate the proposed method, we used the SHREC 2010 robust
large-scale shape retrieval benchmark methodology [6]. The query set consisted
of 270 real-world human shapes from 5 classes acquired by a 3D scanner with
real geometric transformations and simulated photometric transformations of
different types and strengths, totalling in 54 instances per shape (Figure 2).
Geometric transformations were divided into isometry+topology (real articula-
tions and topological changes due to acquisition imperfections), and partiality
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(occlusions and addition of clutter such as the red ball in Figure 2). Photo-
metric transformations included contrast (increase and decrease by scaling of
the L channel), brightness (brighten and darken by shift of the L channel), hue
(shift in the a channel), saturation (saturation and desaturation by scaling of
the a, b channels), and color noise (additive Gaussian noise in all channels).
Mixed transformations included isometry+topology transformations in combi-
nation with two randomly selected photometric transformations. In each class,
the transformation appeared in five different versions numbered 1–5 correspond-
ing to the transformation strength levels. One shape of each of the five classes
was added to the queried corpus in addition to other 75 shapes used as clutter
(Figure 3).

Retrieval was performed by matching 270 transformed queries to the 75 null
shapes. Each query had exactly one correct corresponding null shape in the
dataset. Performance was evaluated using the precision-recall characteristic. Pre-
cision P (r) is defined as the percentage of relevant shapes in the first r top-
ranked retrieved shapes. Mean average precision (mAP), defined as mAP =∑

r P (r) · rel(r), where rel(r) is the relevance of a given rank, was used as a
single measure of performance. Intuitively, mAP is interpreted as the area below
the precision-recall curve. Ideal retrieval performance results in first relevant
match with mAP=100%. Performance results were broken down according to
transformation class and strength.

Fig. 2. Examples of geometric and photometric shape transformations used as queries
(shown at strength 5). First row, left to right: null, isometry+topology, partiality, two
brightness transformations (brighten and darken), two contrast transformations (in-
crease and decrease contrast). Second row, left to right: two saturation transformations
(saturate and desaturate), hue, color noise, mixed.
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Fig. 3. Null shapes in the dataset (shown at arbitrary scale for visualization purposes)

In additional to the proposed approach, we compared purely geometric, purely
photometric, and joint photometric-geometric descriptors. As a purely geometric
descriptor, we used bags of features based on HKS according to [7]; purely pho-
tometric shape descriptor was a color histogram. As joint photometric-geometric
descriptors, we used bags of features computed with the MeshHOG [37] and the
proposed color HKS (cHKS).

For the computation of the bag of features descriptors, we used the Shape
Google framework with most of the settings as proposed in [7]. More specifically,
HKS were computed at six scales (t = 1024, 1351.2, 1782.9, 2352.5, and 4096).
Soft vector quantization was applied with variance taken as twice the median of
all distances between cluster centers. Approximate nearest neighbor method [2]
was used for vector quantization. The Laplace-Beltrami operator discretization
was computed using the Mesh-Laplace scheme [4] with scale parameter ρ = 2.
Heat kernels were approximated using the first 200 eigenpairs of the discrete
Laplacian. The MeshHOG descriptor was computed at prominent feature points
(typically 100-2000 per shape), detected using the MeshDOG detector [37]. The
vocabulary size in all the cases was set to 48.

In cHKS, in order to avoid the choice of an arbitrary value η, we used a
set of three different weights (η = 0, 0.05, 0.1) to compute the cHKS and the
corresponding BoFs. The distance between two shapes was computed as the
sum of the distances between the corresponding BoFs for each η, weighted by η,
and 1 in case of η = 0, d(X,Y ) = ‖BoF0

X − BoF0
Y ‖21 +

∑
η η‖BoFη

X − BoFη
Y ‖21.

Tables 1–4 summarize the results of our experiments. Geometry only descrip-
tor (HKS) [7] is invariant to photometric transformations, but is somewhat sen-
sitive to topological noise and missing parts (Table 1). On the other hand, the
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Table 1. Performance (mAP in %) of ShapeGoogle using BoFs with HKS descriptors

Strength
Transform. 1 ≤2 ≤3 ≤4 ≤5

Isom+Topo 100.00 100.00 96.67 95.00 90.00
Partial 66.67 60.42 63.89 63.28 63.63

Contrast 100.00 100.00 100.00 100.00 100.00
Brightness 100.00 100.00 100.00 100.00 100.00
Hue 100.00 100.00 100.00 100.00 100.00
Saturation 100.00 100.00 100.00 100.00 100.00
Noise 100.00 100.00 100.00 100.00 100.00

Mixed 90.00 95.00 93.33 95.00 96.00

Table 2. Performance (mAP in %) of color histograms

Strength
Transform. 1 ≤2 ≤3 ≤4 ≤5

Isom+Topo 100.00 100.00 100.00 100.00 100.00
Partial 100.00 100.00 100.00 100.00 100.00

Contrast 100.00 90.83 80.30 71.88 63.95
Brightness 88.33 80.56 65.56 53.21 44.81
Hue 11.35 8.38 6.81 6.05 5.49
Saturation 17.47 14.57 12.18 10.67 9.74
Noise 100.00 100.00 93.33 85.00 74.70

Mixed 28.07 25.99 20.31 17.62 15.38

Table 3. Performance (mAP in %) of BoFs using MeshHOG descriptors

Strength
Transform. 1 ≤2 ≤3 ≤4 ≤5

Isom+Topo 100.00 95.00 96.67 94.17 95.33
Partial 75.00 61.15 69.93 68.28 68.79

Contrast 100.00 100.00 100.00 98.33 94.17
Brightness 100.00 100.00 100.00 100.00 99.00
Hue 100.00 100.00 100.00 100.00 100.00
Saturation 100.00 100.00 100.00 98.75 99.00
Noise 100.00 100.00 88.89 83.33 78.33

Mixed 100.00 100.00 100.00 93.33 83.40

color-only descriptor works well only for geometric transformations that do not
change the shape color. Photometric transformations, however, make such a de-
scriptor almost useless (Table 2). MeshHOG is almost invariant to photometric
transformations being based on texture gradients, but is sensitive to color noise
(Table 3). The fusion of the geometric and photometric data using our approach
(Table 4) achieves nearly perfect retrieval for mixed and photometric transfor-
mations and outperforms other approaches. Figure 4 visualizes a few examples
of the retrieved shapes ordered by relevance, which is inversely proportional to
the distance from the query shape.
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Table 4. Performance (mAP in %) of ShapeGoogle using w-multi-scale BoFs with
cHKS descriptors

Strength
Transform. 1 ≤2 ≤3 ≤4 ≤5

Isom+Topo 100.00 100.00 96.67 97.50 94.00
Partial 68.75 68.13 69.03 67.40 67.13

Contrast 100.00 100.00 100.00 100.00 100.00
Brightness 100.00 100.00 100.00 100.00 100.00
Hue 100.00 100.00 100.00 100.00 100.00
Saturation 100.00 100.00 100.00 100.00 100.00
Noise 100.00 100.00 100.00 100.00 100.00

Mixed 100.00 100.00 96.67 97.50 98.00

HKS BoF [7] Color histogram cHKS multiscale BoF

Fig. 4. Retrieval results using different methods. First column: query shapes, second
column: first three matches obtained with HKS-based BoF [7], third column: first three
matches obtained using color histograms, fourth column: first three matches obtained
with the proposed method (cHKS-based multiscale BoF). Shape annotation follows the
convention shapeid.transformation.strength; numbers below show distance from query.
Only a single correct match exists in the database (marked in green), and ideally, it
should be the first one.

6 Conclusions

In this paper, we explored a way to fuse geometric and photometric information
in the construction of shape descriptors. Our approach is based on heat propa-
gation on a manifold embedded into a combined geometry-color space. Such dif-
fusion processes capture both geometric and photometric information and give
rise to local and global diffusion geometry (heat kernels and diffusion distances),
which can be used as informative shape descriptors. We showed experimentally
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that the proposed descriptors outperform other geometry-only and photometry-
only descriptors, as well as state-of-the-art joint geometric-photometric descrip-
tors. In the future, it would be important to formally characterize the isometry
group induced by the joint metric in order to understand the invariant proper-
ties of the proposed diffusion geometry, and possibly design application-specific
invariant descriptors.
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Human Activity Modeling as Brownian Motion

on Shape Manifold
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Abstract. In this paper we propose a stochastic modeling of human
activity on a shape manifold. From a video sequence, human activity is
extracted as a sequence of shape. Such a sequence is considered as one
realization of a random process on shape manifold. Then Different ac-
tivities are modeled by manifold valued random processes with different
distributions. To solve the problem of stochastic modeling on a mani-
fold, we first regress a manifold values process to a Euclidean process.
The resulted process then could be modeled by linear models such as
a stationary incremental process and a piecewise stationary incremental
process. The mapping from manifold to Euclidean space is known as a
stochastic development. The idea is to parallelly transport the tangent
along curve on manifold to a single tangent space. The advantage of
such technique is the one to one correspondence between the process in
Euclidean space and the one on manifold. The proposed algorithm is
tested on database [5] and compared with the related work in [5]. The
result demonstrate the high accuracy of our modeling in characterizing
different activities.

1 Introduction

Human activity recognition is of great interest in a wide range of applications,
spanning areas such as security surveillance, person identification and content-
based image retrieval. In addition to security applications, the explosively in-
creasing daily usage of video cameras has and continues to motivate a increasing
interest in motion analysis and understanding in video for diverse applications.
Recent progress on human activity analysis from video data has been well doc-
umented in [9] [8].

Of the various possible representations of human activity [12], we choose to
view any given activity of interest as a shape sequence [5] [11]. Different shape
representations will lead to different shape manifolds. In Kendall’s shape theory
[13], a shape is considered to be a set of land marks on the boundary of an
object. Due to the simple geoemtry, the Kendall pre-shape space is the popular
platform for different modelings, which is invariant to translation and scaling,
and geometrically is a hyper sphere. For example, an AR/ARMA model of hu-
man activities was proposed in [11] by projecting the shape sequences onto the
tangent space of Kendall’s preshape space. To overcome the problem of system-
atically picking consistent landmarks of shapes, we consider a shape as a simple

A.M. Bruckstein et al. (Eds.): SSVM 2011, LNCS 6667, pp. 628–639, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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and closed planar curve. Such a shape formulation was proposed in [1] with a
numerically efficient computation for tangent space of each point on manifold
and the geodesic path between any two shapes.

With a similar goal of classifying the shape sequences as in [11], our goal in
this paper is to build stochastic model for the process on shape manifold and
then in return use the estimated model parameter to classify different activities.
The idea is to develop a stochastic model of a process on the shape manifold
(representing a shape sequence trajectory on a manifold) on a non-linear space by
regressing the problem onto a linear space. In [11] a shape on a preshape sphere
is projected onto a tangent space at the mean shape. Adopting such a tangent
approximation is, however, valid in only a sufficiently small neighborhood. The
invertibility of such a projection on pre-shape sphere only holds when the shape
sequence does not cross the “north or south poles” of the hypersphere. Generally
on a smooth manifold, the condition of such an orthogonal projection is restricted
to a local area of the manifold. In contrast, our proposed regression is intrinsically
constructed by a curve development [3] as a 1-1 mapping of an evolution curve
on any smooth manifold to a curve in a flat space.

We exploit the afore-described approach to develop in this paper, an intrinsic
stochastic model with a goal to classify activities. Assuming a proper human
silhouette segmentation1 of each frame in a video sequence of interest, a specific
activity may be summarized by a sequence of individual closed curves/shapes
in form of an evolution curve on the underlying shape manifold. Any reasonable
modeling for a activity, for instance like “running”, is expected to describe the
different data samples of “running”. In this paper, the set of the different rep-
resentative curves of “running” are viewed as the realizations of the “running
process”, which more precisely is a random process on the shape manifold. As
a result, any activity process of interest may hence be modeled as a manifold
valued random process.

In the balance of this paper, we first provide a brief (but sufficient for this
development) introduction to manifold geometry and to stochastic analysis on
manifolds. The preprocessing on shapes is introduced in Section 2, to make the
shape manifold finite dimensional. In Section 3, we introduce the stochastic curve
development for a human activity process as a mapping from a manifold to a flat
space. In Sections 4 and 5, we construct a connection on the shape manifold, and
derive the corresponding curve development result for a given human activity.

2 Background

In this section we first provide a brief review of the required background in
differential geometry and stochastic differential equation to allow us to define a
shape manifold as a working space. We also describe the required tools of parallel
transportation and curve development on a shape manifold.

1 Note that errors in segmentation clearly imply errors down the processing stream,
and this investigation is a research topic in and of itself, and is left for future work.
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2.1 A Infinite Dimensional Shape Manifold

According to [1], a planar shape is a simple and closed curve α(s) in R2,

α(s) : I → R2, (1)

where an arc-length parameterization is adopted. A shape is represented by
a direction index function θ(t). With such a parameterization, θ(s) may be
associated to the shape by

∂α

∂s
= ejθ(s). (2)

Due to the fact that the rotation index for simple closed curve is restricted to 1
in [1], the ambient space of the manifold of θ is an affine space based on L2,

θ ∈ A(L2). (3)

Further more, according to the restriction for a planar curve to be a closed
curve, and invariant over rigid Euclidean transformations. The shape manifold
M is defined as a level set of function φ : A(L2)→ R3,

φ(θ) = (
∫ 2π

0

θds,

∫ 2π

0

cos(θ)ds,
∫ 2π

0

sin(θ)ds) (4)

Using the function φ defined above, in [1] the shape manifold M is defined as
following

M = φ−1(π, 0, 0) (5)

One of the most important properties of M is that the tangent space TM is well
defined. Such a property not only simplifies the analysis, but also makes possible
the numerical computation,

TθM = {f ∈ L2|f ⊥ span{1, cos(θ), sin(θ)}} (6)

2.2 Connection on Manifold

To study a random process on manifold, we need to overcome the difficulty
resulted from the curvature of the manifold. The Riemannian structure of the
manifold can be defined by the connection in the principle bundle.In this paper
the connection is defined in the frame bundle F(M), which is a special case of
principle bundle.

Definition 1 (Principal Fiber Bundle). A principal fiber bundle is a set
(P,G,M), where P,M are C∞ manifolds, and G is a Lie group such that
(1) G acts freely on the right of P , P ×G→ P . For g ∈ G, we shall also write
Rg for the map g : P → P
(2) M is the quotient space of P by an equivalence relation under G (any shape
subjected to a g ∈ G is equivalent to itself), and the projection π : P → M is
C∞, so for m ∈M , G is simply transitive on π−1(m)
(3) P is locally trivial. Thus for any open set U ⊂M , π−1(U) ∼ U ×G
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A point u in F(M) can be written as, u = (x, b), where m ∈ M and b =
e1, e2, ..., en is a orthogonal basis of the associated tangent space TmM . The
group G acting on a fibre is SO(n)). Referring the definition of principle bundle,
the equivalent class for each point m ∈M is all the orthogonal basis for tangent
space TmM . The rotation matrix can be utilize to transform one basis to another.

Definition 2 (Connection). A connection on the principal bundle (P,G,M)
is a n-dimensional distribution H on P , where n = dim(M), such that
(1) H ∈ C∞

(2) for every p ∈ P , Hp + Vp = TpP , where Vp is a vertical space and Hp is a
horizontal space of TpP . A vector Y ∈ TpP is vertical if π∗(Y ) = 0
(3) for every p ∈ P , g ∈ G, (Rg)∗(Hp) = Hpg.

With the definition of a connection on a manifold in hand, we can achieve a
horizontal lift from a manifold to a linear frame bundle.A more expanded and
detailed discussion of connections may be found in [3] [4].

Definition 3 (Horizontal Lift). Let γ be a piecewise C∞ curve in M , γ :
[0, 1] → M . Let p ∈ π−1(γ(0)). Then there exists a unique lift γ̃ of γ such that
γ̃∗(t) ∈ Hγ̃(t) and γ̃(0) = p. We say that γ̃ is the horizontal lift of γ that starts
at p ∈ P

3 Dynamics of Human Activity on a Shape Manifold

Hsu in [2] proposes an efficient analysis framework to construct an invertible
mapping from a manifold-valued random process to a Euclidean-valued random
process. The essence of the mapping is to compute a Euclidean process that
can drive a stochastic differential equation (SDE) to generate a manifold-valued
random process. In a Euclidean space the random process have been extensively
studied and there are many tools available for modeling. In contrast to the
orthogonal projection method onto a tangent space around a mean, Hsu’s theory
provides a one to one correspondence between a process on a manifold and one
on a Euclidean space. This improved accuracy of representation is primarily due
to the so-called “rolling without sliding” property of a parallel transport.
As in [2], any random process on the shape manifold, may then be written as a
solution to some SDE(X0, V, Z). Generally we have,

Xt = X0 +
∫ t

0

∑
i

Vi(Xs) ◦ dZi
s, (7)

where, X0 is the initial condition, Vi is a smooth vector field defined on M and
Zi

s is a Euclidean valued random process driving Equation (7). The stochastic
integration here is the Stratonovich integration. More intuitively Equation (7)
can be understood as dXt =

∑
i Vi(Xs) ◦ dZi

s. Thus the dynamic described by
Equation (7) is characterized by both a vector field V and a driving process Zt.
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However, the form of the Euclidean process Z is varies with different choices
of V . In contrast to our goal to construct a 1− 1 mapping from manifold pro-
cess to Euclidean process, there is no one one correspondence X ↔ Z without
proper knowledge about V . In [2] this problem is solved by setting V equal to
the horizontal lift of Xt, which in unique for a given connection. Provided the
uniqueness of horizontal lift, the resulting driving process Zt will have the one
one correspondence to Xt. Let the vector field Ut be the horizontal lift of Xt in
F (M), Equation (7) may be rewritten as

Xt = X0 +
∫ t

0

∑
i

U i(Xs) ◦ dW i
s . (8)

According to the definition of the orthogonal frame bundle and stochastic hori-
zontal lift in Section 2 we know the horizontal vector field U(t) can be written
as,

Ut = {e1, e2, · · · , ei, · · · , en} (9)

where ei is the basis of TXtM . In Equation 8 the differential dXt is represented
in a selected basis Ut with corresponding driving process Wt. For an orthogonal
basis one can write , Consequently, the stochastic development of Xt is,

dWt = U−1
t ◦ dXt (10)

∀i = 1, 2, 3, · · · Equation 10 can be represented in vector as

dW i
t =< ei, dXt > (11)

Such rewriting of Equation (7) provides a representation of the random process
Xt on a manifold with the Euclidean random process Wt, which generate the
original process Xt by acting on vector field Ut as in Equation (8). In the above
discussion, we provide a 1−1 mapping from Xt ∈M to Wt ∈ Rdim(M). The crit-
ical point for implementing such a mapping is the specific form of the connection
H which we discuss in Section 4.

4 Flat Connection on a Shape Manifold

The construction of connection H is critical to the implementation of the curve
development. Theoretically there may exist many different choices of H for a
given manifold. Once the exact form of H is determined, the geometry of a
manifold is specified accordingly. Among different kind of connections, we adopt
the flat connection H for the efficiency of calculation. Flat connection do not
always exist. However if the frame bundle F (M) of a manifold M has a global
section then the flat connections are easy to define. In the following, we provide a
constructive proof of the existence of the global section. Thus the implementation
of the flat connection proceeds by constructing a smooth global section σ : M →
F(M) of the linear frame bundle F(M). Then for each m ∈ M we define Hσ(m)
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to be the tangent space of the submanifold σ(M) at σ(m) ∈ F (M). Let u be
any point of fiber over m ∈M . Then there is a unique g ∈ GL(n) such that,

u = Rg(σ(m)) (12)

The horizontal subspace Hu is then defined as

Hu = Rg∗(Hσ(m)) (13)

In the construction of the smooth section σ, we smoothly assign to each point
θ ∈ M a basis {Ek}k=1,2,3... for the tangent space TθM . From Section 2, we
know that the tangent space of M can be written as

TθM̂ = {v ∈ S|v ⊥ span{1, cos(θ), sin(θ)}} (14)

To construct smoothly distributed basis {Ek}k=1,2,3... on manifold, we first con-
struct a Fourier-like global section σ̃ in the ambient space A(L2[0, 2π]),

σ̃ : θ → {1, cosθ, sinθ, ..., cosiθ, siniθ, . . .} (15)

Then σ̃ is properly projected to the tangent space TM as σ : θ → {Ek}k=1,2,3...

following the geometry defined by Equation (14). The details of this procedure
implementation are as as follows, Firstly, one can easily show that the following
set of continuous functions is a linearly independent set,

{1, cosθ, sinθ, ..., cosiθ, siniθ, ...} (16)

Let Bi be the result of a Gram Schmidt orthogonalization of the above basis in
ambient space.

{v1, v2, v3, Bi=1,2,3,···} =
ON{1, cosθ, sinθ, ..., cosiθ, siniθ, ...}

where {v1, v2, v3} are the first three basis vectors from the Gram Schmidt pro-
cedure which correspond to the normal space of the tangent space,

span{v1, v2, v3} = span{1, cos(θ), sin(θ)} (17)

These basis vectors are excluded because they are orthogonal to the tangent
space of M . Then Bi is the ambient representation of the basis of TθM . The
orthogonal projection from L2 onto S can be written as a Fourier approximation
of Bi and denoted by B̂i. Letting φj denote the Fourier basis functions, it follows
that

B̂i =
N∑

j=1

< Bi, φj > φ∗j (18)

where < Bi, φj > is the inner product defined in L2 In such setting, we would
smooth assign a basis for TmM̃ by a Gram Schmidt procedure applied to B̂i(k)=k.

Ek = ON{B̂1, B̂2, B̂3, · · · B̂N} (19)
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Thus the resulted global section used to define the connection H is,

σ : θ ∈M → Ek (20)

In the shape manifold M equipped with the flat connection H as defined in
Equation (21), the horizontal lift Ut of Xt with initial condition U0 is computed
as following.

Ut = Rg ◦ σ(Xt) (21)

where g ◦ σ(X0) = U0.
In the ambient space A(S), ∀t, Ut, σ(Xt) can be represented by N ×N invert-

ible matrix. For example, Ut = [e1, e2, · · · , eN ], where ei ∈ RN span the tangent
space TmM . In such setting Ut can be calculated as a matrix multiplication in
the ambient space.

(Ut)ij =
∑

k

gikσ̇(Xt)kj (22)

where g · σ(X0) = U0. Consequently the development Wt of Xt can be written
as,

Wt =
∫ t

0

(Ut)−1dXt (23)

In Figure (1), a few numerical results are demonstrated forWt for three activities:
walking, running and bending.
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Fig. 1. curve development of Xt ∈ M in RN=30: (a) the original shape sequence rep-
resented by angle functions Xt (b) the horizontal lift U1, U2, U3. (c) the development
(Ut)

−1dXt

5 Stochastic Analysis in a Euclidean Space

As discussed in the Section 3, the random process Xt on the shape manifold
is now mapped to a Euclidean random process Wt. The recognition for human
activity is thus reduced to comparing different processes in the flat space. In this
section, we show that the resulted Wt exhibits a strong non-stationarity trend.
A stationarity test is performed on Wt with the “double windows” method as



Human Activity Modeling as Brownian Motion on Shape Manifold 635

proposed in [6]. The evolutionary spectrum shows that ‖Wt‖2 is non-stationary
for most of the activity in the motion data base in [5]. The evolution spectrum
Ytis estimated by a double sliding window method.

Figure 2 shows several results of the evolutionary spectrum, T1 = 11, T2 = 51.
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Fig. 2. The evolutionary spectrum of ‖Wt‖: a1, a2, a3 are the EPSD corresponding to
the original shape sequence (a), (b), (c) in figure 1;

Given the non-stationary Euclidean process Wt, which is a stochastic devel-
opment of Xt, we first analyze it as a Brownian motion. As in Section 5.1, a
self-covariance matrix K of the increment dWt of Wt is estimated from observa-
tions. We subsequently proceed to discuss activity classification by introducing
a metric for K. Computing the increments of Wt to achieve stationarity also
carries a potential of increasing the noise, particularly when the process is non-
homogeneous.

According to the comparison in5.1, the performance of the Brownian Motion
Model is sufficient for the classification of human activities. However, from the
view of model fitting, the Brownian motion model still assume the first order
incremental dWt to be stationary, which is still not necessarily truth for all the
data. Instead of imposing the strong assumption of higher order stationarity, in
Subsection 5.2, we further introduce random process segmentation according to
the local stationarity. While additional computational cost is incurred to segment
the process Wt, we develop the piece-wise Brownian model to further relax the
assumption of global stationarity and the resulted modeling can be better fitted
to different data.

In the experiments, we test both of the two model on the activity classification
database in [5]. The experiment result is compared with [5] and [11] for each of
the database. The activity data in [5] includes 10 different activities. Each one
has 9 video sequence for 9 different actors. We perform level set segmentation
to extract the contour of shape as in [14].

5.1 Human Activity as a Brownian Motion on Manifold

In this section we model Wt as a Euclidean Brownian motion. Consequently,
the model for Xt is a Brownain motion on the shape manifold M , which can be
written as the following stochastic differential equation on M ,

Xt = X0 +
∫ t

0

∑
i

U i(Xs) ◦ dW i
s . (24)
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where Wt is a high dimensional Euclidean Brownian motion and U(X) is the
horizontal field calculated in Section 4.

Then by the distribution of dWt we can characterize different activities. Since
dWt is IID and Gaussian, the time sampling is used as the sampling for random
variable dW . We next proceed to estimate the covariance matrix K(dW i, dW j)
as the feature of choice for the underlying distribution.

K(dW i, dW j) = E((dW i − E(dW i))(dW j − E(dW j))) (25)

where dW i is the ith element of the vector dW . The distance between two dif-
ferent covariance matrices is defined by the Frobenius norm as,

D(K1,K2) = ‖K1−K2‖F . (26)

The results of D(K1,K2) for the data base in [5] is shown in Figure 3. Using
the distance matrix D, we may carry the recognition/classification task by using,
for example, the leave-one-out algorithm. The nearest neighborhood algorithm
is used for classification. If we let NB be the total number of realizations of B.
and N(B,A) the number of realizations of B classified as A activity, we have

P (A|B) =
N(B,A)
N(B)

(27)
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Fig. 3. (a1) Distance matrix for database in [5] with Brownian Motion (a2) Distance
matrix for database in [5] with Piece-wise Brownian Motion

To perform a consistent comparison of results published in [5], we need to
change our experiment to the same setting. In [5] the number of activity obser-
vations is increased by segmenting any video sequence for a given activity into
many overlapped chunks. The segments are assumed independent and the classi-
fication is carried out. The performance of our proposed method is summarized
in the following tables.
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Table 1. Table of recognition rate. the number in () is the result in [5].

P (act1|act2) bend jack jump pjump run side skip walk wave1 wave2

bend 1 0 0 0 0 0 0 0 0 0

jack 0 1 (0.98) 0 (0.02) 0 0 0 0 0 0 0

jump 0 0(0.02) 1 (0.971) 0 0 0 0 0 0 0

pjump 0.0556(0) 0 0 0.944(1) 0 0 0 0 0 0

run 0 0 0 0(0.108) 0.944(0.892) 0.0556 (0) 0 0 0 0

side 0 0 0 0 0 1 0 0 0 0

skip 0 0 0 0 0 0 1 0 0 0

walk 0 0 0 0(0.09) 0 0(0.09) 0 1(0.948) 0(0.35) 0

wave1 0 0 0 0(0.09) 0 0 0 0(0.019) 1(0.972) 0

wave2 0 0 0 0 0 0 0 0 0(0.09) 1(0.991)

From the above comparison, our manifold valued Brownian motion model
achieve better performance for almost all the activities except slightly lower for
case “pJump”.

5.2 Human Activity as a Piecewise Brownian Motion on Manifold

Alternatively to assuming dWt to be stationary, we directly address the non-
stationarity by segmenting the Wt into several local stationary segments. For
each segment we carry out the Brownian motion modeling. Such a topic has been
extensively investigated in time series analysis [6]. We apply a sliding window
computation of an evolution spectrum Yt,ω of dWt as in [6] and detect transient
points.

0 10 20 30 40 50 60 70 80 90 100

−2

0

2

(a)

Fig. 4. Nonstationary time series segmentation: (a),(b),(c) is the segmentation results
of activity bending, running, skipping

For the ith segment of dWt, we estimate Ki according to Equation 25. We
next define the distance between two sequence dW1t and dW2t is defined by

Dseg(K1,K2) =median(mini(Dcov(K1i,K2j)))+

median(minj(Dcov(K1i,K2j))).

The distance matrix is calculated for both the databases according to the above
equation. The result is illustrated as in figure 3.

In Figure 3, we show that the distance matrix Dcov calculated from the same
data set as in [5]. By then using the conditional probability of recognition, as a
performance metric as in Equation (27 ), we demonstrate the classification per-
formance in table 5.2. However here we provide no comparison with the result



638 S. Yi, H. Krim, and L.K. Norris

Table 2. Table of recognition rate for data base in [5]

P (act1|act2) bend jack jump pjump run side skip walk wave1 wave2

bend 0.7778 0 0 0.1111 0 0 0 0 0.1111 0

jack 0 0.7778 0 0 0.1111 0 0 0 0 0.1111

jump 0 0 0.5556 0.2222 0 0.1111 0 0.1111 0 0

pjump 0.2222 0 0.1111 0.3333 0 0.1111 0.1111 0 0.1111 0

run 0 0 0 0 1 0 0 0 0 0

side 0 0 0 0 0 1 0 0 0 0

skip 0 0 0 0 0 0 1 0 0 0

walk 0 0 0 0 0 0 0 1 0 0

wave1 0 0 0 0.2222 0 0 0 0 0.5556 0.2222

wave2 0 0 0 0 0 0 0 0 0.4444 0.5556

in [5]. Because as mentioned in the previous section, in [5] the data sample is
increase by segment the original sequence into small overlapping chunks. Such
setting is making our stationary segmentation trivial. If following the same way
as in [5], then each small chunk would be a signal stationary segment. There-
fore as for the modified database, the piecewise brownian model is the same as
the global brownian model. So here we only provide our result on the original
database.

6 Conclusion

In this paper, we provide a systematic framework for the stochastic modeling
of human activity on shape manifold. In theory, such framework is one one
mapping from random process on manifold to the random process in Euclidean
space. In the resulted flat space, the representative random process of activity
is modeled as both global and local Brownian Motion process.The experiment
well demonstrate the performance of the proposed modelings of activities.
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Abstract. In this paper we develop new method, based on 3D evolving
curves, for finding the optimal trajectory of the camera in the virtual
colonoscopy - the medical technology dealing with colon diagnoses by
computer. The proposed method consists of three steps: 3D segmenta-
tion of the colon from CT images, finding an initial trajectory guess
inside the segmented 3D subvolumes, and driving the initial 3D curve
to its optimal position. To that goal, the new fast and stable 3D curve
evolution algorithm is developed in which the initial curve is driven by
the velocity field in the plane normal to the evolving curve, the evolu-
tion is regularized by curvature and accompanied by the suitable choice
of tangential velocity. Thanks to the asymtotically uniform tangential
redistribution of grid points, originally introduced in this paper for 3D
evolving curves, and to the fast and stable semi-implicit scheme for solv-
ing our proposed intrinsic advection-diffusion PDE, we end up in fast and
robust way with the smooth uniformly discretized 3D curve representing
the ideal path of the camera in virtual colonoscopy.

Keywords: Virtual colonoscopy, evolving 3D curves, tangential velocity,
asymptotically uniform redistribution, distance function, segmentation.

1 Introduction

According to the official evidence from 2007, the colon cancer is the third most
spread cancer desease (after the breast and lung cancers) in the countries in-
cluded in the World Health Organization.

A classical optical colonoscopy is an examination of the colon (large intes-
tine) which can successfully detect colon polyps and colorectal tumours. The
examination takes 15-60 minutes and it is performed by a colonoscope which
is a flexible tube with a miniature camera and which may also provide a tool
for removing a tissue. The colonoscope is introduced into the colon through the
rectum, it moves along the colon and a physician can see the situation in the
colon on the screen. Because this examination is uncomfortable and painful,
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the patient receives medication absorbing the pain or it is done under the gen-
eral anesthesia. On the other hand, the virtual colonoscopy, introduced in [5], is
an examination performed by using the computed tomography (CT). The colon
is inflated (with air or CO2) and then the patient is scanned in two positions
(on the abdomen and on the back) by CT. The colon can be viewed similarly
to the classical optical colonoscopy, but the physician controls the so-called vir-
tual camera by using its computed ”ideal” trajectory. The computation of the
ideal path is the important part of the process and new method for its finding
is proposed in this paper. It is worth to note that the results achieved by the
virtual colonoscopy are comparable to the classical approach [8]. Moreover, the
images can be viewed at any time, it provides the option to view panoramas of
the colon surface, to make its unfolding etc. In addition to these benefits, the
virtual colonoscopy allows to examine colon parts impassable for colonoscope
and it avoids risk of a perforation of the colon. A disadvantage is the radiation
during CT examination and the fact that if the physician has found a polyp or
tumour, it cannot be removed by the virtual approach.

The goal of this paper is to develop new fast and robust method for the fully
automatic extraction of the ideal path of the camera in virtual colonoscopy. Here,
we understand the ideal path as the 3D curve which passes along the centerline
of the colon, which is smooth and which discrete point representation is uni-
formly distributed. Our proposed method consists of three basic steps. First, the
3D segmentation of the colon from CT images is performed. Due to the quality
of CT data, the classical approaches like the thresholding and the region grow-
ing are used, see e.g. [1]. As the result we get all simply-connected parts of the
large and small intestines filled with the gas. The next step consists in finding
an initial guess for the camera trajectory in every simply-connected segmented
subvolume of the intestine. Such initial guess is obtained by using the Dijkstra
algorithm [3] for computing approximate distance from point sources inside the
segmented subvolumes followed by the backtracking in steepest descent direction
[13]. The third step is the core of our approach. It consists in driving the initial
guess to its optimal position in smooth and stable way. To that goal we use a
vector field given by the gradient of distance function to the segmented intestine
borders which is computed by a 3D generalization of the approach from [2] based
on the numerical solution of the time relaxed eikonal equation. Then, new 3D
curve evolution algorithm is developed in which the initial curve is driven by the
velocity given by the projection of the computed vector field to the plane normal
to the evolving curve, the evolution is regularized by curvature, which makes it
smooth, and it is accompanied by the suitable choice of the tangential velocity
which makes the curve uniformly discretized during the evolution. In this pa-
per, we develop new asymptotically uniform tangential grid point redistribution
method for 3D evolving curves in parametric representation. Our new method
is based on ideas from [7], where the authors used special κ1 − κ2 − ω − L 3D
curve evolution formulation. The new method can be also understood as non-
trivial generalization of 2D approaches from [9,10,11]. Our final 3D curve evo-
lution model, in the form of an intrinsic advection-diffusion partial differential
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equation with a driving force, is solved by the fast and stable semi-implicit
scheme and we end up with the smooth uniformly discretized 3D curve repre-
senting the ideal trajectory of the camera in virtual colonoscopy. It is worth to
note that the overall CPU for all steps in our approach is about 8 seconds on
standard PC. Thus the method is highly competitive and it is being implemented
into the medical software of the TatraMed spol s r.o., Bratislava company.

2 The Colon Segmentation and the Initial Trajectory
Guess

The 3D colon image data sets obtained by CT are given by a sequence of 2D
slices (512 × 512 pixels) with a typical slice thickness about 0.75 mm. For our
further goals, it is sufficient to subsample data and work with 3D images of the
typical size 256×256×400 voxels. First, we use thresholding corresponding to the
air (about -1000 HU) in CT scans and detect all subvolumes filled by the gas. All
voxels of these subvolumes get value 1, the others were set to 0. Next, we apply
the region growing method in order to find all simply connected parts of the
large and small intestines. The first seed is put to a corner of the 3D image and
the region growing algorithm finds all voxels outside the body, their value is put
to 0, so this subvolume is ignored. Next, we go subsequently through the whole
3D image and the seed for the next region growing is the next voxel found with
the value 1. This seed and all voxels found by the region growing get number 2
which is set also as the number of this first inner body subvolume. We continue
such procedure until all seeds for the next region growings are found. During
the current region growing all detected voxel values are set to the number of the
currently segmented subvolume which is given by the increment of the previously
detected subvolume number. We also count the number of detected voxels in each
subvolume which gives us the approximate size of the segmented structures. The
last segmentation step consists in removing all spuriously detected subvolumes
inside the body. By the checking of the size, we remove small inner structures
filled by the gas (detected e.g. in lungs). Then we compute the distance function
of all inner voxels to the border of the segmented subvolume (by the method
from section 3) and if the global maximum of the distance function (maximal
thickness of the structure) is less then a prescribed threshold we ignore such
subvolume (representing e.g. the gas between the body and the CT desk). In such
way we end up with one (rarely) or several simply connected subregions of the
colon (and also of the small intestine) for which we find then the optimal virtual
camera trajectories. The visualization of our segmentation result is presented
in Figure 1 left. In order to illustrate our final results, on the right we show
the camera trajectories inside segmented subvolumes of both large and small
intestines found by our method described in the sequel.

The initial trajectory guess in any colon subvolume is constructed by comput-
ing a distance from a point source by the Dijkstra algorithm (in which the graph
edges connecting neighbouring voxels have value 1) followed by the backtracking.
First, we take any point of the subvolume and fix the distance at this point to
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Fig. 1. The segmentation of the large and small intestine (left) and the virtual camera
paths visualization for all segmented subvolumes (right)

Fig. 2. The 2D and 3D image data sets used for testing the proposed method

0. Then we compute distance in the sense of the Dijkstra algorithm to this fixed
point for all voxels inside the subvolume. Since the colon is ablong organ we take
a point with the maximal distance as the first endpoint of the segmented sub-
volume. Now, we fix the zero value at this point and use the Dijkstra algorithm
again, a point with the maximal distance will represent the second endpoint of
the subvolume. From this second endpoint we start the backtracking of com-
puted distances in the steepest descent direction, we end at the first endpoint
of the subvolume. The voxel coordinates of such path represent the parametric
3D curve, the initial guess of the trajectory inside the subvolume. It is worth to
note that, for our approach, the only important issue is that the extracted path
is a parametric 3D curve inside subvolume which connects two endpoints, its
exact localization or smoothness is not important, because it will be improved
later by the suitable 3D curve evolution. Also, the very precise localization of
the two endpoints does not play any crucial role, because the virtual camera
does not really touch the subvolume border in the first and last point. In order
to illustrate and test the particular steps of our method, we constructed 2D and
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3D artificial data shown in Figure 2, the connected circles on the left mimic the
typically alternating very thin and thick colon parts (mostly problematic for the
algorithms) and U-like volume on the right mimics an overal colon shape. As one
can see in Figures 3-4, the initial trajectory guess is nor smooth nor centered,
it touches very often the boundary of segmented volume. On the other hand, it
gives the first parametric representation of the 3D curve which can be evolved
to the optimal position by the approach discussed in the next section.

Fig. 3. The graph of the distances (left) and the initial trajectory guess (right)

Fig. 4. Initial 3D curve in the test data (left) and in the real segmented colon (right)

3 Finding the Optimal Camera Trajectory

In this section we discuss important issues leading to suitable 3D curve evolution
model which will drive the initial curve to its optimal position. Our model will
be based on carefull construction of the velocity in normal direction, on the
regularization of the motion by curvature and on the suitable tangential velocity
yielding the uniform discretization of the evolving curve. We show that all these
issues are necessary ingredients in order to get smooth and correctly centered
virtual camera trajectory in real colon data of complicated shape.
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In order to get the velocity field by which the 3D curve will be moving to its
optimal position we solve the eikonal equation with the zero fixed values at the
boundary voxels of the segmented subvolume. Its solution is a distance function
which has a ridge along the centerline of the segmented subvolume and the
gradient of such distance function points towards the ridge. The initial 3D curve
should be driven in a smooth way into that ridge position. Our method for finding
the distance function, which gives the above mentioned vector field, is based on
the numerical solution of the time relaxed eikonal equation dt + |∇d| = 1 by the
so-called Roy-Tourin scheme [12,2]. Let us denote by dn

ijk approximate solution
d in time step n in the middle of voxel with spatial coordinates (i, j, k), τD the
length of the time step and hD the size of the voxel. Let us define expressions
Mpqr

ijk , where p, q, r ∈ {−1, 0, 1}, |p|+ |q|+ |r| = 1, by

Mpqr
ijk = (min(dn

i+p,j+q,k+r − dn
ijk, 0))2. (1)

Then the scheme is given by

dn+1
ijk = dn

ijk + τD − (2)
τD

hD

√
max(M−1,0,0

ijk , M1,0,0
ijk ) + max(M0,−1,0

ijk , M0,1,0
ijk ) + max(M0,0,−1

ijk , M0,0,1
ijk ).

The values at specified points to which the distance is computed numerically are
fixed to zero. In all other points the numerical values are increasing monotoni-
cally and if they become changeless we can fix them on the fly [2]. Since the colon
is an ablong organ, the method (2) is sufficiently fast and easily implementable
and applicable to any complicated shape. After computing the distance function
we compute the vector field v = ∇d by using the central finite difference ap-
proximation of the partial derivatives. In Figures 5-6 we show visualization of
the computed 2D distance function and the associated vector field.

Fig. 5. The distance function to the boundary of 2D testing shape (left) and its detailed
graph (right)
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Fig. 6. The detail of the vector field given by the gradient of the distance function

In our parametric approach, the evolving 3D curve is represented by discrete
points rn

i = (xn
i , yn

i , zn
i ) , where i = 0, . . . , m, denotes the grid point number

and n represents the discrete time stepping. We consider that the endpoints of
the curve (i.e. the 0-th and the m-th point) are fixed. The simplest model for
the motion of the curve in the vector field v is given by ∂tr = v(r), numerical
discretization of which can be written as rn+1

i = rn
i + τv(rn

i ), where τ being
a discrete time step. The results achieved by this approach can be seen in Fig-
ure 7 where all the grid points were moved into the ridge position, but due to
the specific direction and length of the velocity field (which is nonzero also on
the ridge), they are packed together and thus it is difficult to get smooth virtual
camera path by using such final curve state. A group of points may contain curve
self-intersections (due to numerics) and their distances are irregular so there is
no guarantee that the curve would not cross the edge of the colon on the way
between the far-distant points. Such situation is not rare in the real data where
the colon has complicated structure similar to our connected circles testing ex-
ample. We note that many standard approaches to virtual colonoscopy, see e.g.
[6,14], uses a combination (e.g. a weighted sum) of two distance functions, the
one constructed in the previous section (distance to one fixed endpoint) and the
one computed here (distance to the colon borders), followed by a minimization
procedure. As we can see, it can lead to a serious troubles in trajectory represen-
tation or to a stacking in local minima, which are then solved by some heuristic
and/or semi-automatic approaches.

The main difficulty of the above simple approach is given by the fact that the
grid points just moved independently on each other by numerical discretization
of ODE in direction of the basic velocity field v. There is no mechanism by which
the neighbouring points influence each other and thus move smoothly without
degeneracy of their distances. All these problems will be solved, without any
heuristic, by our new approach described below.

We know that the motion of the curve can be decomposed into the movement
in tangential and normal directions and that the overall shape of the evolving
curve with the fixed endpoints is determined only by the normal component of
the velocity. The tangential velocity influences the redistribution of points along
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Fig. 7. The results obtained using the velocity field given by the gradient of the distance
to the boundary of segmented object in 2D (left) and 3D (right) test data

the curve, thus if it is not controlled, it can cause accumulation of grid points as
in the above mentioned examples. As the first modification of the vector field v
we shall consider its projection to the evolving curve normal plane. This makes
the model nonlinear (because the curve normal plane depends on the current
curve shape) but it greatly improves the result. Moreover, if we want that the
evolving curve points are tied together we have to move from the ordinary to a
partial differential equation. A natural intrinsic PDE arising in this case is the
one obtained by adding the curvature regularization to the motion by using the
curvature vector kN which is again in the curve normal plane. Let T be the unit
tangent vector to the curve, the projection of vector field v to the curve normal
plane is then defined by Nv = v − (T.v)T and the regularized motion of the
curve in the normal plane is given by

∂tr = μNv + εkN , (3)

where μ and ε are the model parameters. Its explicit numerical disretization is

rn+1
i − rn

i

τ
= μ (Nv)n

i + ε
2

hn
i+1 + hn

i

(
rn

i+1 − rn
i

hn
i+1

− rn
i − rn

i−1

hn
i

)
(4)

i = 1, . . . , m − 1, where the second term on the right hand side represents the
discretization of the curvature vector kN, see e.g. [4], and the first term is the
approximation of the vector Nv at the i-th curve grid point, both at the previous
time step n. The distances between the grid points are given by the expressions

hn
i =

√
(xn

i − xn
i−1)2 + (yn

i − yn
i−1)2 + (zn

i − zn
i−1)2 . (5)

Since we removed the improper tangential component of the velocity and used
the curvature regularization, the ridge in the testing data is found in much
more regular way, see Figure 8. The only problem which is still remaining is the
nonuniform distribution of the grid points at the final state and also during the
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subsequent curve evolution which may cause problems during the motion inside
complicated shapes. The uniform curve representation would guarantee that the
properties of the projected vector field are taking into account uniformly and
thus the motion of the curve is done in the most correct way. The uniform curve
discretization will be controlled by adding a suitable tangential velocity into the
mathematical model and its numerical discretization.

Fig. 8. The results obtained using the projection of the original vector field into the
normal plane to the evolving 3D curve accompanied by the curvature regularization

In order to determine suitable tangential velocity we introduce the local or-
thogonal basis smoothly varying along the 3D curve, cf. [7]. It will consist of
T and two orthogonal vectors in the normal plane defined as N1 = Nv

|Nv| and
N2 = N1 ×T (if |Nv| = 0 we redefine N1 due to the smoothness requirement,
e.g. in discrete settings by the averaged value from the neighboring grid points).
Let us define k1 = kN.N1 and k2 = kN.N2, the projections of the curvature
vector onto N1 and N2. Then the curvature vector satisfies kN = k1N1 + k2N2

and the evolution equation (3) can be written as

∂tr = UN1 + V N2 + αT, (6)

with free parameter α representing the tangential component of the velocity, and
with the normal components given by

U = εk1 + μ|Nv|, V = εk2. (7)

Let us consider the curve Γ with fixed endpoints parametrized by the position
vector r, and define its local lenght parameter g =

∣∣ ∂r
∂u

∣∣, u ∈ [0, 1]. In discrete
settings it is approximated by g ≈ |ri−ri−1|

h with h = 1
m . One can prove, cf. [7],

that the time change of the local length of the evolving 3D curve is given by

∂tg = g∂sα− g(Uk1 + V k2) (8)
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where s is the arclength parameter. This relation gives us also the time evolution
for the total length L

dL

dt
= − < Uk1 + V k2 >Γ L (9)

where < Uk1 + V k2 >Γ denotes the averaged quantity along the curve. In the
discrete settings it is computed by

< Uk1 + V k2 >n
Γ =

1
Ln

m∑
l=1

hn
l (Un

l kn
1l + V n

l kn
2l), Ln =

m∑
l=1

hn
l (10)

where Un
l , kn

1l, V
n
l , kn

2l are approximations of the corresponding quantities on
discrete curve segments, cf. (4). In order to define the tangential velocity leading
to the asymptotically uniform grid points redistribution, it is worth to study
the fraction g

L ≈ |ri−ri−1|
Lh = |ri−ri−1|

( L
m ) = hi

( L
m ) representing in discrete settings

the ratio of the actual and averaged lengths of the curve segments. The goal
is to desing a model in which this ratio tends to 1 or such that the quantity
θ = ln

(
g
L

)
converges to 0. Using (8) and (9) we get for its time evolution the

relation ∂tθ = ∂sα − (Uk1 + V k2)+ < Uk1 + V k2 >Γ . On the other hand,
if we set ∂tθ = (e−θ − 1)ωr, where ωr is a speed of redistribution process, we
get that θ → 0 as t → ∞ and we obtain equation for the tangential velocity α
guarateeing the asymptotically uniform redistribution of 3D curve grid points

∂sα = Uk1 + V k2− < Uk1 + V k2 >Γ +
(

L

g
− 1
)

ωr. (11)

Since T = ∂sr and kN = ∂ssr we get our final 3D curve evolution model in the
form of the following intrinsic advection-diffusion PDE with driving force

∂tr = μNv + ε ∂ssr + α∂sr (12)

with α given by (11) and accompanied by the Dirichlet boundary conditions
(fixed endpoints of the curve). Our final step is the numerical discretization of
(11)-(12). We proceed similarly to [9,11] and get the discrete tangential velocity

αn
i = αn

i−1 +hn
i (Un

i kn
1i +V n

i kn
2i)−hn

i < Uk1 +V k2 >n
Γ +

(
Ln

m
− hn

i

)
ωr , (13)

for i = 1, . . . , m − 1, setting αn
0 = 0 and getting αn

m = 0. The discretization of
the equation (12) is performed by using the semi-implicit scheme and we get

hn
i+1 + hn

i

2
rn+1

i − rn
i

τ
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hn
i+1 + hn
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2
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(
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i

)
+

αn
i

2
(rn+1

i+1 − rn+1
i−1 ),
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for i = 1, . . . , m− 1, with rn+1
0 and rn+1

m prescribed. The scheme (14) represents
three linear tri-diagonal systems for the x, y, z coordinates of the grid points
representing new curve position. They can be written as

An
i rn+1

i−1 + Bn
i rn+1

i + Cn
i rn+1

i+1 = Fn
i (15)

with coefficients given by

An
i = − ε

hn
i

+
αn

i

2
, Cn

i = − ε

hn
i+1

− αn
i

2
, Bn

i =
hn

i + hn
i+1

2τ
−An

i − Cn
i ,

Fn
i =

hn
i + hn

i+1

2τ
rn

i + μ (Nv)n
i

hn
i + hn

i+1

2
.

The tri-diagonal systems are solved by the Thomas algorithm which is the fast
procedure, numerically stable provided that the system matrix is strictly diago-
nally dominant. Such property can be simply fulfilled by chosing appropriately
the time step, in practice (thanks to the close to uniform discretization) it can be
proportional to the spatial discretization step and thus the numerical evolution
to the steady state is realized in the fast and stable way. The results for our test-
ing data as well as for the real virtual colonoscopy data are presented in Figures 9
and 11. In presented computations we used parameters μ = ε = τ = ωr = 1 and
the method is robust with respect to their choice. The illustrative 2D experi-
ments were performed by the method from [11]. Figure 10 shows differences in
grid point distances for our 3D test data (Figures 7-9 right), the red curve for
the basic velocity field, the blue for the projected vector field plus curvature
regularization and the violet curve for the final model (11)-(12). In the final
model the grid point distances are uniform, the final curve is smoothly centered
and can be definitely used for the virtual voyage inside the colon (which will be
presented in the form of movie at the conference).

Fig. 9. The results for the test data obtained using tangential redistribution
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Fig. 10. Comparison of the grid point distances: the basic vector field (red), the pro-
jected vector field plus curvature regularization (blue), the final model (11)-(12) (violet)

Fig. 11. The results for the real data obtained using the final model (11)-(12)
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Abstract. Early vision is dominated by image patches or features de-
rived from them; high-level vision is dominated by shape representation
and recognition. However there is almost no work between these two lev-
els, which creates a problem when trying to recognize complex categories
such as “airports” for which natural feature clusters are ineffective. We
argue that an intermediate-level representation is necessary and that it
should incorporate certain high-level notions of distance and geometric
arrangement into a form derivable from images. We propose an algorithm
based on a reaction-diffusion equation that meets these criteria; we prove
that it reveals (global) aspects of the distance map locally; and illustrate
its performance on airport and other imagery, including visual illusions.

1 Introduction

Consider the problem of finding complex man-made structures, such as airports
or medical or industrial complexes, within urban, suburban, and even rural envi-
roments in satellite imagery. Or, at a finer scale, consider the problem of finding
certain crystalline structures among others in microscopic imagery. Such prob-
lems are different from the object recognition tasks normally addressed in com-
puter vision. Even though there is significant variation among people or chairs,
this variation seems small in comparison with the variation among the complex
structures listed above. People have arms and legs and heads; airports have run-
ways and buildings and access roads. Arms and legs have bilateral symmetry;
airports do not. However humans can readily detect airports, which suggests
that there is an additional level of structure to be found at which such objects
can be described. We introduce, in this paper, one such structure: distance from
arrangement information about edge elements. It captures the notion that air-
ports consist of elongated structures that are separated from other, possibly more
dense structure. A partial differential equation is derived, several of its relevant
properties are proven, and its usefulness is demonstrated on the airport problem.
At the heart of the matter is the computation of distance-like measures, a notion
that is now entering the recognition literature in the form of shape properties.

Object recognition systems must confront the tradeoff between within-class
or category variation relative to between-class/category variation. While scale-
invariant features (e.g. [1]) and interest detectors can limit some of the within-
class variation, an important trend is revealing that edge and shape features
working together can improve performance; see e.g. [2,3]. These may involve

A.M. Bruckstein et al. (Eds.): SSVM 2011, LNCS 6667, pp. 653–664, 2012.
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not only organizing edge fragments into object boundary parts, but also their
relative arrangement as captured by the centroid [4,5]. Such techniques follow
a “bottom up” strategy, by which increasingly more context is involved in the
recognition ([6].

Centroids suggest involving higher-level shape features directly. E.g., skeleton-
based representations are derived from the distance map, or the map of shortest
distance to the boundary from every location interior to a shape. Skeleton points
are the extrema of the distance map and the centroid is related to shock-based
formulations [7]. Computing such skeletons and centroid approximations requires
a relatively closed boundary, which is plausible for shape categories such as cups
and airplanes. But man-made structures, such as airports and sports complexes
are much less structured: although runways are straight, there are huge vari-
ations in the buildings, parking facilities and supply roads that flank them.
Within-class variation among airports exceeds the between-class variation with
highways. Attempts to build templates for them failed, and researchers resorted
early to rule-based systems ([8]). But the variation among such complex features
precludes such systems: the rules for defining airports in urban areas are quite
similar to the rules for defining freeway exchanges; and the rules for defining
airports in developing countries are significantly different. Moreover, the image
measurements in support of the rules have been elusive, with the consequence
that few such models are now in existence. Similar statements can be made
about other socially-developed structures, such as medical complexes and sports
arenas, and organically developing biological compounds.

We explore the position that new, intermediate-level representations exist and
can be useful for recognizing organic, relatively freely-developing structures, such
as airports and viral complexes in scanning microscopic imagery.

Mathematically the isoperimetric inequality, (perimeter)2/area, has some-
thing of the flavor we seek, because it integrates a boundary property with a
shape property. Although this can be a useful feature, operationally defining the
perimeter and the area can be difficult. The problem is illustrated in Fig. 1: edge
maps are too local, too broken, and too rigid. High-level features, such as the
skeleton, are too global, too susceptible to boundary detail, and too sensitive to
closure and interior features. We seek something in between, that extends natu-
rally the unification of top-down shape with bottom-up features [9], and that is
reflective of the better parts of both.

2 Global Distance Information Signaled Locally

The key idea behind this paper is to represent locally certain aspects of the
distance map; that is, certain global aspects of shape, so that they can be used
in an intermediate-level manner. This provides a middle-ground between abstract
high-level representations such as skeletons and templates and the lower-levels of
layered images. The representation is derived from a partial differential equation,
and leads to a non-linear scale space for distances, estimated over increasingly
larger domains. We note that there are many applications of pde’s in scale space
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(a) (b) (c) (d)

Fig. 1. The quest for intermediate-level vision is to find useful representational struc-
tures between edges (a), reflecting local, bottom-up processing, and global shape fea-
tures such as the medial axis (b). While informative, edges are incomplete; ideally,
skeletons need perfect boundaries. We seek a representation that captures aspects of
both. For organically- and industrially-developed structures, such as airports (c, d), the
relevant structure is captured by an abstract combination of edge and distance effects,
rather than only local image properties.

analysis (e.g., [10]) but none, to our knowledge, that relate the solutions to
properties of the distance map.

As a warm-up, we note that such problems are widespread in developmental
biology, and we borrow heavily from a plant example: A young leaf in a devel-
oping plant consists of a network of veins that form cycles surrounding domains
of cells. A problem arises when these cells grow enough to exceed the nutrient
delivery capability of the existing vasculature: how do the cells in the center of
the domain signal the need to form new veins? What is the nature of the signal,
how is it generated, and what is the value that can be “read out” as a new vein
instruction.

A theoretical solution to this problem has been developed in [11], and we take
their model as a starting point for this paper; the intuition is shown in Fig. 2.
Their key idea is that cells in the developing leaf all produce a hormone called
auxin at the same rate. This hormone then diffuses from cell to cell and is cleared
away at the existing veins. The result is a differential equation (stated in the
next Section), the equilibria of which carry information about the distance from
the veins to the furthest cell. Two properties are salient: the concentration of the
hormone peaks at the furthest cells; and the magnitude of the gradient peaks
at the existing vasculature. It is this gradient peak that provides the signal for
plant development.

We interpret the hormone concentration in [11] as a kind of distance image;
that is, an image function whose value corresponds to properties of the distance
map. But in this form it is not at all clear how to apply it to vision problems.

Another clue comes from considering a second motivating example, this one
from visual psychophysics. Although in computer vision we take edge locations to
be calibrated projections of certain positions in space, the human visual system is
not so veridical. We know that arrangements of edge elements can effect apparent
global shape properties, as in the famous Muller-Lyer illustion (Fig. 3). It is
known that optical blur, as first hypothesized by Helmholtz, cannot explain all
of the illusion, and that cognitive effects, such as Gregory, are also only partial.
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Fig. 2. How do young plants determine where the next vein shoot should go? Consider
a rectangular portion of a leaf, surrounded by existing veins. If each cell (or pixel in the
rectangle) produces a hormone at a constant rate, the hormone diffuses to neighboring
cells and is cleared away by the existing vasculature (boundary condition = 0), the
equilibrium distribution shown in (A) results. Taking a cross section through it, the
peak in hormone concentration is at the center (B) and the peak in the gradient of
concentration at equilibrium is at the existing veins (boundary); this last peak informs
the developing leaf about where to start a new vein fragment and in which direction.
(C) Concentration and (D,E) gradient of concentration in a real portion of a developing
leaf. Figure after [11].)

We interpret the Muller-Lyer by observing that the “wings” at the ends of
the horizontal lines effectively define an area context, and this area context is
somehow larger when the wings point out than when they point in; it is within
this context that the lines appear to be different lengths. So we conclude that
line and edge arrangements can effect certain aspects of global shape, such as
distance, at least perceptually. Returning to the airport example, we notice an
analogy: the arrangement of boundaries, and the spaces between them, are the
common thread through the different attempts to define them. Runways are
straight and not too close to the buildings around them.

Fig. 3. (left) The Muller-Lyer Illusion: are the horizontal lines equal length? Notice
how the outward “wings” provide a context in which the line appears longer than for
the inward “wings,” even though they are equal in length. (middle) The area enclosed
by the wings, here shown in black, is enlarged by the outward “wings.” (right) The
Muller-Lyer illustion is predicted by Theorem 2; the gradient of concentation values
are as shown.
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Our goal in this paper is to combine edge representations with information
about their arrangement. We call these enhanced edge maps distance images,
and develop them formally in the next section. Second, we use dimensionality-
reduction techniques to distill the major components from these distance-related
images. Together they reveal a very curious property of airport definitions: that
the distribution in orientation, arrangement, and density of edge elements can
be key to defining classifiers. This captures our intuition directly from the In-
troduction in a manner that is completely novel.

3 Mathematical Formulation

We begin with the formalization of the model for plants, even though it is un-
realistic for images, to introduce the type of result we seek. For concreteness,
consider the example of the Muller-Lyer illusion in Fig. 3. Imagine that there
exists a substance to report distance information, and that it is produced by all
of the black pixels at the constant rate K. The set of black pixels, Ω, is a shape
and c : Ω → � denotes the concentration of the distance substance. Since it
diffuses from pixel to pixel, it obeys:

ct = D∇2c + K (1)

where ct is the derivative of concentration, D is the diffusion constant, and K is
the constant production. The Euclidean distance function on Ω, denoted EΩ, is
EΩ(P ) = infQ∈∂Ω ||P −Q||2. The boundary support of P , denoted bsupp(P ; Ω),
is bsupp(P ; Ω) = {Q ∈ ∂Ω : ||P −Q|| = EΩ(P )}.

At equilibrium we have:

Theorem 1. Let Ω be a shape and c : Ω → R the unique function satisfying
c(x, y) = 0 on (x, y) ∈ ∂Ω and ∇2c = −K

D .
Suppose P ∈ Ω is such that EΩ(P ) = L = supΩ EΩ and Q ∈ bsupp(P ; ∂Ω).

Suppose the smallest concave curvature radius is pL with p > 0. Then,

(a) c(P ) ∈ Θ(L2),
(b) K

2DL ≤ |∇c| ≤ K
D L 2p+1

p ,
(c) sup∂Ω |∇c| = supΩ−∂Ω |∇c|
That is, (a) the peak in concentration at P is proportional to the distance squared
between the closest boundary point Q and P ; (b) the gradient of the concen-
tration reports the (approximate) length between P and Q; and (c) the largest
gradient value is on the boundary.

4 Edge Producing Model

We are now ready to develop the model for computer vision applications. Instead
of having all of the ground cells (pixels) produce the substance, and having the
veins clear it away, we posit a complementary model. Conceptually, for images,
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let the network of veins be replaced by edges, and let these edge pixels each
produce a unit of the substance per unit of time; the other pixels produce no
substance. Suppose the substance diffuses anisotropically between pixels, with
the diffusion constant faster between edge pixels than between other pixels. To
ensure a finite equilibrium concentration, suppose the substance is destroyed
(metabolized) everywhere proportional to concentration. This results in a reac-
tion diffusion equation, ct = D∇2c + ρ − αc, with three terms: the change in
concentration at a pixel depends on the amount that enters by diffusion, with
the amount produced there (ρ : Ω → R is the production rate) and with the
amount destroyed there (α > 0 is the destruction constant). Formally, we then
have:

Proposition 1. Consider the dynamical system

∂c

∂t
= D∇2c + ρΩ − αc. (2)

Suppose that it acts over a domain Ω which a shape as in Theorem 1 and on
which we impose a zero-flux boundary condition (Neumann). Let ρΩ : Ω → R.
Then the following holds.

(a) If α > 0, then limt→∞ c = cα for a unique steady-state cα.
(b) Let α = 0 and R =

∫
ρΩdΩ/

∫
dΩ be the average production. Then limt→∞

ct = R and c converges to cα +cst. whenever R = 0. Further, ∇cα is unique
even when R 	= 0.

(c) If A, B ∈ R, then the transformation ρΩ 
→ AρΩ + αB induces a unique
transformation of the steady state cα 
→ Acα + B and vice versa. It follows
that the gradient of cα is only affected if A 	= 1: ∇cα 
→ A∇cα.

Remark 1. In part (c), if the destruction term is not linear, e.g. αc + βc2, then
the gradient might be affected by B as well.

Proof. Parts (a) and (b). To show existence we prove that the dynamical system
achieves ct = 0. Consider the dynamical system ctt = D∇2ct−αct. The boundary
conditions are inherited: since no flux goes through the boundary, there must be
no change of concentration in time, i.e. ∇ct · n = 0 on ∂Ω. The unique solution
of this system is ct = 0.

To prove uniqueness, suppose u1 and u2 both satisfy the equation given the
boundary conditions and ct = 0. Thus D∇2u1 + ρΩ −αu1 = D∇2u2 + ρΩ −αu2

which gives rise to D∇2v−αv = 0 where v = u1− u2 and ∇v ·n = 0 where n is
the normal to the boundary. Since v is elliptic and α > 0, v vanishes everywhere
and uniqueness follows (see [12, p. 329 and 321]). The same reference shows that
if α = 0, then this uniqueness is up to an additive constant u = u1 + cst; that
is, only ∇u is unique.

Now to show the convergence in (b) whenever R = 0, note that ctt = D∇2ct

assuming α = 0. This has a steady-state s.t. ct = cst. everywhere. Also,
∫

ct =∫
ρΩdΩ which shows that ct = R.
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Part (c). Let cα satisfy equation 2 for ct = 0 and a production function ρ
(α)
Ω .

Then, D∇2cα − αcα = −ρ
(α)
Ω . Suppose c = Acα + B satisfies the equation for

some ρΩ. Since this c is unique, the following verification proves the claim.

D∇2c− αc = −ρΩ

∴ D∇2(Acα + B)− α(Acα + B) = −ρΩ

∴ AD∇2cα −Aαcα − αB = −ρΩ

∴ A(D∇2cα − αcα) = −ρΩ + αB

∴ A(−ρ
(α)
Ω ) = −ρΩ + αB

∴ ρΩ = A(ρ(α)
Ω ) + αB

The other direction is derived similarly and the result follows.

Proposition 2. Let Ω be a shape with two components Ω = Ω0 ∪Ω1 such that
Ω0 ∩ Ω1 = ∂Ω0. Let D0 and D1 be the diffusion coefficients inside Ω0 and Ω1

respectively. If
∫

Ω0
ρΩdv +

∫
Ω1

ρΩdv = 0 and ρΩ(Ω0) = K
∫

Ω0
dv > 0, then

lim
D0/D1→0

cα = cK

where cK satisfies Theorem 1 for the shape Ω0 by setting cK(∂Ω0) = 0.

Proof. The convergence of the system derives from Prop. 1(b). As D0/D1 → 0
the relative speed of diffusion in Ω1 increases to infinity. Thus, the concentration
over Ω1 will tend to a constant and, consequently, so will c(∂Ω0) = c(Ω0 ∩Ω1).
The conditions of Theorem 1 are therefore satisfied and the claim follows.

Theorem 2. Suppose that Ω is a region in an image and that ρΩ takes a value
of 1 at edge pixels and 0 everywhere else. Let the perimeter P be the number of
edge pixels and the area A be the total number of pixels in Ω, i.e.

∫
Ω dΩ = A.

Denote by c∞ = limα→0 cα and assume that the diffusion coefficient between
non-edge pixels D = 1 and that the difusion coefficient between edge pixels is
much larger than D. Then, for each pixel Q that is not an edge pixel

|∇c∞(Q)| = P

A
L and |∇2c∞(Q)| = P

A

Proof. The derivatives of c∞ are well defined and unique as Prop. 1 shows. They
are approximated by cα to any precision provided that a sufficiently small α is
chosen. Thus, given an arbitrary but fixed precision, suppose that α satisfies
that requirement. According to Prop. 1(c), we may transform the production
function by writing: ρnew = −ρΩ + αB where αB = P

A . Thus,
∫

Ω ρnewdΩ =
− ∫Ω ρΩ dΩ +

∫
Ω

P
A dΩ = −P + P = 0. Hence, according to Prop. 2, this

transormed setup is equivalent to cK where K = P
A and the claims are true for

cK due to Theorem 1. The result for c∞ follows from Prop. 1(c) by observing
that ∇c∞ = −∇cK .

The gradient of concentration that emerges in this last result, and that scales
with L, is precisely what was shown in Fig. 3.
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4.1 Density Scale Space

By varying the destruction constant, α, a scale space for edge density is created.
Several examples are shown in Fig. 4. Although this bears some resemblence
to image scale spaces [13], there are fundamental differences. In particular, the
interpretation of the gradient and the Laplacian of concentration in isoperimetric
terms is completely novel.

(original) (α = 1) (α = .01) (α = .00333)

Fig. 4. (top)A concentration scale space for edge density, computed according to Eq.
3. Note how decreasing α permits the “substance” to live longer and hence allow
integration of information over a larger area. When α is large, in the limit the result
is formally the edge map convolved against a small Gaussian. (bottom) The gradient
of concentration. Notice how this concentrates “signals” about edge density very close
to the edge locations.

To demonstrate that the Laplacian of concentration across scale can be useful
for classification, we build a vector of four values of α as input to a standard
linear classifier. The result for this toy experiment is in Fig. 5.

While many more experiments remain to be done on recognition of standard
object databases, our goal here is not to focus on classical recognition, but rather
to demonstrate that distance images are relevant for airport and other complex
features.
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Fig. 5. Classification of the truck image with pose, orientation, and scale differences
using the P/A measure, which is related to the Laplacian of concentration

5 Diffusion Map Embedding

We now turn to the use of the distance images just computed. A standard ap-
proach in machine learning is to use Laplacian eigenmaps [14] to reveal structure
in datasets; here we use datasets of distance images from airports and show how
they can be useful in recognition. (To keep the paper focussed on distance im-
ages, we ignore other sources of information, such as edge geometry.)

Laplacian eigenmaps are applied as follows. Let a data point be a vectorized
patch of regular or distance images at different scales (values of α. ) (For this
paper we use three scales and (17 x 17) patches.) Let X = {x1, x2, ..., xN} be
the set of data points (typically N=10,000), with each xi ∈ Rn=867. We seek to
find a projection of these data into much lower dimension, under the assumption
that they are not randomly distributed thoughout Rn but rather that they lie
on (or near) a lower-dimensional manifold embedded in Rn.

The structure of the data are revealed via a symmetric, positivity-preserving,
and positive semi-definite kernel k(x, y), which provides a measure of similarity
between data points. (We use a Gaussian kernel.) The result is a graph, with
edges between nearby (according to the similarity kernel) data points. (The
similarity value can be truncated to 0 for all but very similiar points.) This
codifies the intuition that the natural structure among these “distance images”
can be revealed by examining their low-dimensional embedding in significant
eigenfunction coordinates. Then nearby (in the Euclidean metric) points can be
clustered to reveal airport structure.

The diffusion map is obtained by the following algorithm: Given a set of n

input image vectors xi ∈ Rd, Step 1: K0(i, j) ← e−
‖xi−xj‖2

σ2 ; Step 2: p(i) ←∑n
j=1 K0(i, j) approximates the density at xi; Step 3: K̃(i, j) ← K0(i,j)

p(i)p(j) ; Step

4: d(i) ← ∑n
j=1 K̃(i, j); Step 5: K(i, j) ← K̃(i,j)√

d(i)
√

d(j)
; Step 6: USUT = K

(by SVD of K); Steps 2 and 3 normalize for the density of sampling from the
manifold, whereas steps 4 and 5 perform the graph laplacian normalization;
see [15].
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The result of applying this algorithm to the distance map images is illustrated
in Fig. 6. Notice how a boomerang-shaped “manifold” is revealed, the basic
coordinates of which are edge density (going along it) and edge orientation (going
around it). These two dimensions codify our intuition that airports are defined
by a certain collected of oriented edges (runways, etc.) arranged in a particular
fashion relative to surrounding context.

1 5 10 50

Diff. mean 0.60 ± .48 0.62 ± .39 0.60 ± .34 0.55 ± .31
Diff. median 1.00 0.80 0.70 0.59
Image mean 0.30 ± .48 0.32 ± .47 0.34 ± .46 0.48 ± .42
Image median 0.00 0.00 0.01 0.16

Fig. 6. (top) Illustration of the data patches projected into diffusion coordinates (the
first three significant eigenfunctions). (left) Eigenvalue spectrum shows that the first
few eigenfuctions capture most of the structure. (right) The dominant dimension cap-
tures density; the orthogonal dimensions information about edge distribution. Red
points correspond to patches from airport training images; notice how they cluster
around the sparse end of the “manifold.” This coloring of points can be interpreted as
a function on the embedded patch data that defines “airport.” (bottom) Table show-
ing performance of distance vs image information for detecting airports. Columns are
the number of patches tested and entries show the fraction from airports that were
classified as airport by the Nystrom extension.

To test the usefulness of the distance-images, we collected a set of 20 airport
images from Google images by randomly spinning the globe, half of which were
for training and half for testing. Our goal is to compare distance images against
standard image patches for airport detection. Since normal image blur also col-
lects information from a neighborhood around a point, our data points for the
embedding consisted of three components: a standard image patch plus either
the distance image at two scales or the standard image blurred at two scales.

For training, we roughly outlined airports in the 10 training images and tagged
those patches in the embeddings; these are the red points in Fig. 6 for the distance
images. (The traditional blurred images are not shown.) To use this training
information operationally, we built a characteristic function in embedded patch
coordinates that defined “airport.”

To test the quality of these patches for finding airports in test images, we
used 10 new images. The airport characteristic function was then Nystrom ex-
tended onto the embedding of the new patch and scored according to whether or
not it was in the airport lobe. The results over all patches (5,000 patches/image;
training set = 10,000 patches) are shown in the table (Fig. 6(bottom)).
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Counting the mean and the median number of patches that were correctly scored
as airport shows that the distance images significantly outperformed the intensity
information on this task.

The results on distance images and regular blurred images are shown in Fig. 7.
To test the relevance of the distance information for this task, we purposely used
square patches and no direct application of edge geometry.

Results: Diffusion Image Patches

Results: Blurred Intensity Patches

Fig. 7. Results shown as patch boxes superimposed on the original images, with the
first few patches on the left and the next few on the right for each pair. (top) Distance
image results. (bottom) Blurred intensity image results. Note how the distance image
boxes fall on/near the airports, but the intensity image boxes do not.

5.1 Summary and a Psychophysical View

We developed a structural coupling between local edge information and more
global arrangement information by postulating a pde whose equilibria provided
local signals about global properties of the distance map. An application of these
ideas to locating airports demonstrated that these properties are useful. Much
more remains to be done with the recognition of such complex structures, and
we hope that the distance measures proposed here will find application in more
traditional recognition systems. E.g., the experiments did not explicitly incorpo-
rate the geometry of boundaries in airports, which could increase performance
further.

Finally, while the contribution of this paper was largely theoretical, and the
applications were largely from computer vision, we close by returning to a bi-
ological perspective. The Muller-Lyer illusion (Fig. 3) was used informally as
motivation but it remains unexplained in neurobiological terms. It is curious
that the algorithm developed in this paper predicts it and other angular illu-
sions. Since such illusions are represented by activity in the early visual cortex
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[16], also the locus of biological edge responses, it is tempting to predict that
computations such as these may have a neurobiological equivalent.
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Abstract. Analysis of intrinsic symmetries of non-rigid and articulated
shapes is an important problem in pattern recognition with numerous
applications ranging from medicine to computational aesthetics. Consid-
ering articulated planar shapes as closed curves, we show how to repre-
sent their extrinsic and intrinsic symmetries as self-similarities of local
descriptor sequences, which in turn have simple interpretation in the fre-
quency domain. The problem of symmetry detection and analysis thus
boils down to analysis of descriptor sequence patterns. For that purpose,
we show two efficient computational methods: one based on Fourier anal-
ysis, and another on dynamic programming.

1 Introduction

Symmetry and self-similarity are frequently encountered in natural and man-
made objects at all scales from macro to nano [31]. Because of the relation of
symmetry to redundancy of geometric data, the knowledge of the symmetries a
shape possesses can be instrumental for its compression, completion, and super-
resolution [17]. Many objects that are normally symmetric manifest symmetry
breaking as a testimony of some anomaly or abnormal behavior. Therefore, detec-
tion of symmetry and asymmetry arises in many practical problems, including
applications in medicine, aesthetics, and crystallography. Knowledge of shape
symmetries as a prior has been also exploited in shape reconstruction [26], seg-
mentation [25], face detection, recognition, and feature extraction [20].

In pattern recognition and computer vision literature, the problem of sym-
metry detection was studied mainly in images [16], two-dimensional [32,2,1] and
three-dimensional shapes [28,11,18]. A wide spectrum of methods employed for
this purpose includes approaches based on dual spaces [8], genetic algorithms
[10], moments [6], pair matching [14,7], and local shape descriptors [34]. For an
up-to-date overview, the reader is referred to the survey article of Liu et al.
[13]. Traditionally, symmetries are considered as extrinsic geometric properties
of shapes that are related to the way the shape is represented in the Euclidean
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space. From such a perspective, symmetry is synonymous to invariance to a cer-
tain set of global isometric (distance-preserving) transformation of the Euclidean
space (a composition of rotation, reflection, and translation). Though adequate
for rigid shapes, such a point of view is inappropriate for non-rigid or deformable
ones. Due to the deformations such shapes can undergo, the extrinsic symmetries
may be lost, while intrinsically the shape still remains symmetric. In [23], Raviv
et al. introduced the notion of intrinsic symmetry, defined as a self-isometry of
the shape with respect to some intrinsic (e.g., geodesic or diffusion) metric. Such
a definition does not make any use of the embedding Euclidean space in which
the shape resides and is reduced to the standard notion of an extrinsic symme-
try if the Euclidean metric is used. Computationally, such distance-preserving
automorphisms can be found using the Gromov-Hausdorff framework, in which
an initial set of candidate symmetries is detected using a branch-and-bound
algorithm [23,24].

Ovsjanikov et al. [21] observed that simple eigenfunctions of the Laplace-
Beltrami operator of a shape are invariant, up to a sign change, to intrinsic reflec-
tion symmetries with respect to a certain class of diffusion metrics. Consequently,
reflection symmetries can be represented as sign sequences under which the corre-
sponding eigenfunctions remain invariant, which provides for a simple algorithm
for reflection symmetry detection. Another parametrization of intrinsic symme-
tries was proposed in [27], who noted that the self-isometry group of shapes
with simple (disk- or sphere-like) topology is contained in the low-dimensional
Möbius group. Detection of local self-similarity was considered in [19]; the re-
lated problem of partial symmetry detection was addressed in [18,33,24]. Finally,
detection of symmetries can be considered as a particular case of the more gen-
eral self-similar structure detection. Recent works focused on detecting repeating
grid-like structures [22] or Euclidean structural redundancy in 3D data [3], as
well as intrinsic self-similarity [17].

Following [5], we represent 2D shape symmetries as one-dimensional struc-
tures by using invariant local descriptors. This way, the symmetry of the shape
(both extrinsic and intrinsic) is manifested in specific self-similarity of the as-
sociated descriptor sequence. In the case of articulated shapes, deformations
of non-rigid joints are manifested as insertions/deletions in the descriptor se-
quence. Such self-similarity is preserved under non-rigid deformations and can
be efficiently detected using Fourier analysis or dynamic programming gapped
sequence alignment algorithms used in the field of bioinformatics [30]. Our ap-
proach allows detection and classification of both extrinsic and intrinsic symme-
tries of connected 2D shapes, and is inspired by shape matching by means of
dynamic programming [9] and the papers of Bruckstein and Shaked [5,4].

2 Model

Let us be given a simply connected shape modeled as a closed simple planar curve
S. The curve is parametrized as S : [0, L]→ IR2. The length of the curve is given
by �(S) =

∫ L

0
‖ d

dtS(t)‖dt. In the following, we assume arclength parametrization,
such that ‖ d

dtS(t)‖ = 1 and thus L = �(S).
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Articulations. The shape is called articulated [12] if it can be represented as
a collection of rigid parts S1, . . . , Sp connected by non-rigid joints J1, . . . , Jq,
such that S =

⋃p
i=1 Si ∪

⋃q
k=1 Jk. We further assume that the rigid parts

Si are parametrized over TR,i ⊂ [0, L] (i.e., Si = S(TR,i)) and the joints Jk

are parametrized over TJ,k ⊂ [0, L] (i.e., Jk = S(TJ,k)). Let us denote TR =⋃
i TR,i ⊆ [0, L] and TJ =

⋃
k TJ,k ⊆ [0, L]. An articulation S′ = AS is obtained

by applying planar rigid transformations Ri (rotations and translations) to the
rigid parts, and non-rigid transformations Tk to the joints, AS =

⋃p
i=1 RiSi ∪⋃q

k=1 TkJk. Thus, the articulation can be represented as A = {Ri,Tk}. Ob-
viously, rigid transformations do not change the length of the parts, hence,
�(RiSi) = �(Si) for i = 1, . . . , p.

Extrinsic Symmetry. Planar transformations preserving Euclidean distances
are called isometries and include rotations, translations, reflections, and their
compositions. The set Iso(IR2) of Euclidean isometries together with function
composition operator forms the isometry group of IR2. The subgroup Sym(S)
⊂ Iso(IR2) Euclidean isometries to which the shape S is invariant (i.e. RS = S
for all R ∈ Sym(S)) is called the extrinsic symmetry group of S. Elements of
the group from which the entire group can be produced are called the group
generators.

The structure of the symmetry group tells us “in which way” the object is
symmetric. The trivial case is the C1 = {id} group, containing only the identity
transformation (such shapes are usually called asymmetric). Rotation symmetry
is described by a cyclic group Cn, generated by the rotations transformation
around a fixed center by the angle 2π/n. Bilateral symmetry is described by
the dihedral group D1, consisting of an identity and a single reflection around
a symmetry axis. More general dihedral symmetry of order n (described by the
semidirect product group Dn = Cn × C2) is generated by a rotation around a
fixed center by the angle 2π/n and a reflection around an axis passing through
the center.

Intrinsic Symmetry. An articulation may break the extrinsic symmetry, such
that the resulting shape is no more symmetric in the above sense. Yet, consid-
ering the intrinsic geometry of the shape and the group of isometries preserving
this geometry, one can define a broader notion of intrinsic symmetry, which will
hold in this case [23]. In our formulation, the shape S is said to be intrinsically
symmetric if there exists an articulation A such that AS is extrinsically sym-
metric (i.e., has a non-trivial extrinsic symmetry group). In other words, S can
be “symmetrized” by means of an articulation A = {Ri,Tk}, from which it
follows that R

⋃p
i=1 RiSi =

⋃p
i=1 RiSi, where R ∈ Iso(IR2).

3 Symmetry Analysis

An important problem in shape analysis is, given a shape S, to automatically
determine its symmetry group. This problem is often referred to as symmetry
analysis, classification, or detection. In this section, we present a method for
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symmetry classification based on the analysis of corresponding shape descriptors.
We first show a representation of extrinsic symmetry groups in the descriptor
sequence and its Fourier transform domain. Next, we extend our analysis to the
intrinsic case using the articulation model.

At each point on the shape contour S(t), we define a scalar or vector descrip-
tor aS(t), which is local and invariant to shape isometries. A simple example of
such a descriptor is the curvature κ(t) Since the curvature involves second-order
derivatives, it is sensitive to noise (more generally, all differential invariants tend
to be sensitive to noise). Alternatively, we can use as aS the integral invariant
proposed in [15], defined as I(t) =

∫
S
‖S(t)−S(t′)‖q(t, t′)dt′, where ‖ · ‖ denotes

the Euclidean distance, and q is a local kernel decreasing with the distance
used to localize the descriptor. Such a descriptor is also invariant to Euclidean
isometries. Using any local descriptor representation aS(t), the curve can be
considered as a continuous sequence over IR mod �(S). Assuming that the de-
scriptor is invariant under rigid transformations, the descriptor sequences at the
corresponding points of an articulated shape coincide.

Shaked and Bruckstein [5] identified the planar shape transformations with
transformations of the descriptor sequences. In other words, given a symmetric
shape satisfying RS = S, the shape invariance under the symmetry transforma-
tion R can be related to descriptor sequence invariance, aS(t) = (aS◦τ)(t), under
a re-parametrization transformation τ . We extend this approach to articulated
symmetries.

3.1 Extrinsic Symmetry Characterization

Rotation Symmetry. The action of an element of the group Cn (rotation by
2πk/n) is manifested as aS(t) = aS(kL/n + t mod L). Thus, the descriptor se-
quence of a Cn-symmetric shape is L/n-periodic. Looking at the Fourier trans-
form âS(ω) =

∫ L

0
aS(t)e−2πjωtdt of the descriptor sequence, the periodicity of

aS(t) is manifested in âS(ω) being discrete with step 2πn/L.

Dihedral Symmetry. In the simplest case of bilateral (D1) symmetry, the action of
a reflection transformation is manifested as aS(t0+t mod L) = aS(t0−t mod L),
where S(t0) is a point on the symmetry axis that is mapped to itself. We shall
refer to this point as center of reflection symmetry (note that the point t0 +L/2
is also a center; we shall call such pairs conjugate centers). Thus, the descriptor
sequence of a bilaterally-symmetric shape is an even function about the point t0.
Consequently, aS(t0 + t mod L) is an even function about origin, which means
that its Fourier transform is real and even. By translation property of Fourier
transform, we get âS(ω) = F{aS(t0 + t mod L)}e−2πιt0ω, which is the polar
representation of âS . The phase encodes the position of the reflection point t0;
it varies linearly with ω and t0 is the slope of the line.

More generally, a dihedral group Dn consists of rotation and reflection trans-
formations, and is thus manifested in the descriptor domain as a combination
of rotation and reflection symmetries, aS(ti + t) = aS(ti + kL/n ± t mod L)
where i = 0, . . . , n − 1 and ti’s represent the n centers of reflection symmetry
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(note that we do not consider conjugate centers). It can be easily shown that
ti = t0+ L

2n i. Thus, given one of the centers of reflection symmetry and the order
of the symmetry group, we can directly find all other centers.

Table 1. Representation of shape symmetries

Descriptor domain aS(t) Fourier domain âS(ω)

Cn L/n periodic discrete with step 2πn/L
D1 even linear phase
Dn L/n periodic + period even discrete with step 2πn/L + linear phase

3.2 Intrinsic Symmetry Characterization

Since we assume the descriptors to be local and invariant to rigid transfor-
mations, the descriptor sequences of two articulated shapes coincide on the
rigid parts. We call this property articulation invariance. Formally, this can
be expressed as follows: given an articulation A = {Ri,Tk} and the intervals
T ′

R,i ⊂ [0, L′] parametrizing the rigid parts RiS ⊂ AS (here L′ = �(AS)),
we have aS(TR,i) = aAS(T ′

R,i). Explicitly, T ′
R,i are related to TR,i by T ′

R,i =
TR,i + ti mod L′ for t ∈ TR,i, where t1, . . . , tp ∈ [0, L′] are some offsets.

Combining the articulation invariance relation with extrinsic symmetry char-
acterization, we can characterize intrinsic symmetries. Reversing our notation,
assume that AS is intrinsically symmetric: it is related by an articulation trans-
formation to a shape S, which is extrinsically symmetric. Because of articulation
invariance, we can consider S instead of AS.

Thus, the intrinsic symmetry case is similar to the extrinsic one, up to in-
sertions into the descriptor sequence at points in which the non-rigid joints are
extended and deletions from the descriptor sequence at points in which the non-
rigid joints are contracted. If such insertions/deletions are insignificant (i.e., the
joints are small compared to the parts sizes), the Fourier domain properties
would approximately hold. If the joints are large, we need to explicitly account
for insertions/deletions, as described in Sect.4.

4 Numerical Implementation

Our analysis so far assumed a continuous curve, but in practice, the shape is
sampled at a finite number of points. We assume that our curve S is sampled at
N equidistant points (arclength sampling) S(t0), . . . , S(tN−1). The correspond-
ing descriptor is also a discrete sequence aS(t0), . . . , aS(tN−1), denoted here by
(a0, a1, . . . , aN−1). To simplify the notation, we assume all indices hereinafter
modulo N .

The detection and classification of shape symmetry is done by analyzing the
discrete descriptor sequence (a0, . . . , aN−1). First, we find the symmetry group
generators by attempting to detect rotation and reflection symmetry. Next, we
classify the symmetry group according to the detected generators. Rotation and
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reflection symmetry detection is done using one of the following two methods.
Fourier analysis, applicable to the extrinsic case and the case of small joints,
remains similar to the continuous case. In the case of large joints, we can make
use of dynamic programming algorithms employed in text sequence alignment to
find the self-similar parts.

4.1 Fourier Analysis

In the discrete case, the continuous Fourier transform is replaced by the discrete
Fourier transform (DFT), denoted here by Ak =

∑N−1
m=0 ame−2πιkm/N , for k =

0, . . . , N − 1.

Rotation Symmetry. If the shape is Cn-symmetric, then the discrete descriptor
sequence is periodic with period N/n, i.e., am = am−N/n for m = 0, . . . , N − 1,
and the corresponding DFTs are equal. Since by the shift property the DFT
of am−N/n is Ake−2πιk/n, we have Ake−2πιk/n = Ak. This leads to the result
that k = mn for some integer m for all k where Ak 	= 0. In other words, the
DFT is discrete with step n. This gives an easy way to find the symmetry group
of the shape by finding the step size of the DFT of its descriptor sequence. To
account for the noise, we only look at a neighborhood of the Ak with maximum
the absolute value.

Reflection Symmetry. In the discrete case, the relation between the center of
reflectional symmetry and the phase of the kth element of the DFT becomes
θk = −2πk

N ti + 2πmk ∈ [−π, π], for k = 0, . . . , N − 1. Here, the term 2πmk is
used to adjust for the phase wrapping and ensures that θk lies between −π and
π. Using the fact that ti ≤ N

2n (1+ i), we get mk ≥ − 1
2 + (1+i)k

2n . In particular, for
k = 1, no wrapping is required (i.e., m1 = 0) and we can evaluate the reflection
point as t0 = ti mod N

2n .

Dihedral Symmetry. For the general case of Dn, the DFT will be discrete as
dihedral symmetry also implies Cn rotational symmetry. In that case we check
only non-zero values for the phase.

4.2 Dynamic Programming

Finding symmetries in the Fourier domain is possible in the extrinsic case, or
in the intrinsic case when the size of the joints is small. For the case of large
joints, we need to account for the joints deformations explicitly. The problem of
finding common subsequences in two discrete sequences is very common in text
analysis and bioinformatics, where dynamic programming algorithms such as the
Smith-Waterman (SWAT) algorithm [30] are used for local sequence alignment.
Our case is a particular setting of this problem when we compare a sequence to
itself.

For each pair of points ai, aj in the sequence, we define a similarity f(ai, aj). A
gap penalty g(ai) or g(aj) is defined if one of the points is not matched anywhere
and a gap is introduced. We construct an (N + 1)× (N + 1) matrix H

Hij = max {Hi−1,j−1 + f(ai, aj), Hi−1,j + g(ai), Hi,j−1 + g(aj), 0}



Shape Palindromes 671

Fig. 1. Rotation symmetry detection using dynamic programming. Left: A C3 intrin-
sically symmetric shape which is extrinsically asymmetric. The size of the joint at the
knee is substantial. Right: the corresponding descriptor sequence. Similar parts (blue)
correspond to rigid parts; gaps (red) correspond to non-rigid joints.

and Hi0 = H0j = 0. Interpreting Hi,j as the cost of aligning ai with aj , the pair
of segments with best similarity is found by going to the maximum element of
H . The Smith-Waterman algorithm tries to find an alignment with the best cost
recursively.

We define the cost function as f(ai, aj) = c−F (N(ai, r), N(aj , r)) where c is
a constant, N(ai, r) is an r neighborhood of the the point and F is the fraction
of points where the two sequences differ by more than a given threshold. Given
the length l of the current gap, the gap penalty g is defined as

gl(a) =

⎧⎨⎩
2m if l = 0
m if l ≤ L
M if l > L

where M � m are constants and L is the maximum anticipated gap length.

Rotation symmetry. To check for rotational symmetry, we match a part of the
shape of length N/n with the rest of the shape, for values of n in 2, 3, . . .N/2.
If we get a match for some n, we validate it by dividing the shape into n parts,
S1, S2, . . . , Sn of length L/n each, and matching consecutive parts. If validated,
we find the principal period of the sequence by looking for periodicity in these
parts. It can be easily shown that the alignment corresponding to the principal
period serves as a generator of the Cn symmetry group of the shape.

Dihedral symmetry. The mappings for rotational symmetry can be evaluated as
above. For reflectional symmetry, instead of finding all the mappings, we find
one mapping and compute the others by composition. For computing the one
required mapping, we align the sequence with its reflection. One thing to note
here is that the descriptor sequence is defined modulo N , which requires to
perform circular matching. Following [29], we duplicate one of the sequences for
matching.
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4.3 Computational Complexity

We analyze the complexity of our methods in terms of the number of points N
sampled on the shape and the order n of the symmetry group.

Fourier Analysis. Descriptor sequence FFT takes O(N log(N)) time. After that,
for reflectional symmetry; taking the arguments(angles) and its unwrapping can
be done in linear time. Also, reading the step size can also be done in linear
time. So the overall time complexity is O(N log(N)). The time can be further
reduced by observing that the complete spectrum is not need for either type of
symmetry. The slope of the phase vs frequency curve as well as the step size can
be inferred from some of the Fourier coefficients. If we take some constant times
n coefficients, the complexity can be reduced to O(nN).

Dynamic Programming. The time complexity of SWAT alignment algorithm is
O(NM) for sequences of length N and M respectively. For rotational symmetry,
we compare subsequences of length N/K with the complete sequence for values of
K in 2, 3, . . . , n where n is the order of the group. This gives the time complexity
as O(log(n)N2).

5 Results

We tested our approach on a set of hand-drawn articulated binary shapes. The
shape boundaries were discretized at 300 points. For the local descriptor at
point S(t), we used the integral invariant I(t) =

∫
S
‖S(t)− S(t′)‖q(t, t′)dt′ with

q(t, t′) = 1 if |t − t′| ≤ 5 and zero otherwise i.e. we take 10 closest points to
the point S(t). Dynamic programming algorithm described in Sect. 4 with pa-
rameters c = 0.3, m = 0.5, M = 1.5 and L = 7 was used to find symmetries.
Figures 2–4 show the obtained results. We visualize symmetries by colorings of
the shape contour; each coloring denotes the corresponding parts. Thin yellow
line denotes the gaps. The figures are best viewed in color print. One can ob-
serve that intrinsic symmetry is correctly detected even in the presence of very
strong articulations and realistic view artifacts. For comparison, in Fig. 5 we
show an example of symmetry detection using the voting method of Loy and
Ecklundh [14]. One can observe that strong articulation tamper with this al-
gorithm, bringing in some cases to a failure to detect all the symmetries or an
incorrect result.

The proposed approach compares favorably to other methods and has multiple
advantages. First, unlike Loy-Eklundh [14] and similar approaches, our method
can handle intrinsic symmetries. Second, it allows detecting both reflection and
rotation symmetries (unlike Ovsjanikov et al. [21], limited to reflections only).
Third, our approach guarantees the explicit recovery of all group generators
(unlike [23,21] which detect approximate self-isometries that can also be compo-
sitions of the generators). Fourth, our dynamic programming (SWAT) approach
is capable of handling partial symmetries (as opposed, e.g., to [21]). Fifth, our
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Fig. 2. Detection of bilateral D1 symmetry in human figure silhouettes. Each coloring
denotes the corresponding patrs. Thin lines mark the gaps.

Fig. 3. Detection of C3 rotation symmetry in synthetic articulated shapes.

approach has guaranteed low computational complexity (N for Fourier analysis
or N2 for SWAT, where N is the number of samples), compared to the theoreti-
cally worst-case N ! of [23] (though in practice much lower). Finally, our approach
is straightforwardly generalizable to other classes of invariance (e.g. affine) by
appropriate choice of the descriptor. The comparison is summarized in Table 2.
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Fig. 4. Detection of D5 dihedral symmetry in synthetic articulated shapes (first row:
extrinsic, second through fourth rows: intrinsic).

Fig. 5. Performance of the Loy-Eklundh [14] symmetry detection algorithm on our
shapes. Left to right: correctly detected rotational C3 symmetry and bilateral D1 sym-
metry, partial C3 symmetry detection (only one rotation), and incorrect bilateral sym-
metry detection.

6 Conclusions

We presented an approach for detection of symmetries in articulated 2D shapes,
based on representing the shape contours using invariant local descriptors and
characterizing shape symmetries as patterns in the associated descriptor se-
quences. Such patterns are preserved under non-rigid deformations and can be
efficiently detected using Fourier analysis or dynamic programming sequence
alignment algorithms. The main limitation of our approach is the assumption
of simple closed curves, which implies that the underlying shape has no discon-
nected components and has simple topology.
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Table 2. Comparison of methods for symmetry detection. Note: aExtended to 3D
shapes case in [22]. bExtension to 2D is straightforward. cExtended to intrinsic symme-
tries in plane-like 3D shapes in [17]. dPartial symmetries addressed in [24]. eTheoretical
worst case that guarantees global optimality. fUsing fast approximate nearest neighbor
search; there is additional factor d3 depending on the number of eigenfunctions used, d.
gComputing only the first few frequencies as explained in Sect. 4. hInvariance depends
on the descriptor. iInvariance depends on the metric.

[14] [23] [21] FA SWAT

2D/3D Both(a) Both(b) Both(b) 2D 2D

Extrinsic/Intrinsic Ext(c) Both Both Both Both
Reflection/Rotation Both Both Ref Both Both
Topological noise + + + - -

Partial symmetry + +(d) - - +

Complexity N2 N !(e) N logN (f) N (g) N2

General invariance +(h) +(i) - +(h) +(h)
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27. Sorkine, O., Lévy, B., Kim, V.G., Lipman, Y., Chen, X., Funkhouser, T.: Möbius
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Abstract. In the LDDMM framework, optimal warps for image regis-
tration are found as end-points of critical paths for an energy functional,
and the EPDiff equations describe the evolution along such paths. The
Large Deformation Diffeomorphic Kernel Bundle Mapping (LDDKBM)
extension of LDDMM allows scale space information to be automati-
cally incorporated in registrations and promises to improve the standard
framework in several aspects. We present the mathematical foundations
of LDDKBM and derive the KB-EPDiff evolution equations, which pro-
vide optimal warps in this new framework. To illustrate the resulting dif-
feomorphism paths, we give examples showing the decoupled evolution
across scales and how the method automatically incorporates deforma-
tion at appropriate scales.

Keywords: LDDKBM, LDDMM, diffeomorphic registration, scale space,
computational anatomy, kernels, momentum.

1 Introduction

The Large Deformation Diffeomorphic Metric Mapping (LDDMM) framework
plays an increasingly important role in image registration for medical image
analysis as it provides good registration results along with a solid mathematical
foundation allowing meaningful statistics to be computed on the registration re-
sults. It has its foundations in the seminal work of Grenander [3] and Christensen
et al. [1] together with the theoretical contributions of Dupuis et al. and Trouvé
[2,7]. The theory in its present state is well described in the paper of Younes et al.
[9] and the monograph of Younes [8]. The purpose of this paper is to discuss the
mathematical foundation behind a multi scale extension of LDDMM, the Large
Deformation Diffeomorphic Kernel Bundle Mapping (LDDKBM), and develop
the resulting evolution equations for the registration diffeomorphisms.

The LDDMM construction is based on the concept of kernels which encode the
scale of the registration. Coarse to fine approaches, such as used in [4] for non-
parametric image registration, can be used as tools to guide the search for the
optimal registration but a scale mechanism for LDDMM which is truly consistent
with the framework must be linked to the kernels. The role of the kernel and
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deformation at different scales in LDDMM have been addressed by Risser et
al. in [5] where the authors propose a multi-kernel approach which constructs
new kernel shapes by adding Gaussian kernels. The method effectively changes
only the shape of the kernel and does not allow decoupled momentum across
scales. To improve the ability of the registration to adapt to scale information,
we developed in [6] the LDDKBM extension of LDDMM which allows decoupling
of the energy and momentum at each scale, and it therefore enables the algorithm
to select the appropriate deformation at each scale individually. An example of
an LDDKBM registration is given in Figure 1.

1.1 Content and Outline

In the next section, we will summarize the LDDMM framework before provid-
ing a detailed account of the mathematical foundation behind the LDDKBM
extension. We then progress to developing the KB-EPDiff equations describing
the evolution of critical paths in the framework and extending the fundamental
EPDiff equations in LDDMM. We will present experiments in Section 5 and
conclude in Section 6. The paper thus contributes by

(1) providing a detailed account of the theoretical foundation of the LDDKBM
framework for multi scale diffeomorphic registration,

(2) deriving the KB-EPDiff equations which are fundamental for the theoretical
understanding of LDDKBM and necessary for practical implementations,

(3) and through examples showing the evolution of diffeomorphism paths gov-
erned by the KB-EPDiff equations and how the evolution is decoupled across
scales.

2 The LDDMM Framework

In the sequel, Ω will denote a hold-all domain of Rd (d = 2, 3 in applications)
and V will denote a Hilbert space of vector fields v : Ω → Rd such that V with
associated norm ‖ · ‖V is included in L2(Ω, Rd) and admissible as defined in [8,
Chap. 9]. Given a time-dependent vector field t 
→ vt with∫ 1

0

‖vt‖2V dt <∞ (1)

the associated differential equation ∂tϕt = vt ◦ ϕt has with initial condition
ϕs = ϕ a diffeomorphism ϕv

st as unique solution. The set GV of diffeomorphisms
built from V by such differential equations is a Lie group, and V is its tangent
space at each point. The inner product on V associated to the norm ‖ ·‖V makes
GV a Riemannian manifold with right-invariant metric. Setting ϕv

00 = IdΩ, the
map t 
→ ϕv

0t is a path from IdΩ to ϕ with energy given by (1). A critical path
for the energy is a geodesic on GV .

In the LDDMM framework, registration is performed through the action of
diffeomorphisms in GV on geometric objects. This approach is very general and
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(a) Moving hand and landmarks (red) (b) Fixed hand and landmarks (black)

(c) t=0.25 (d) t=0.50 (e) t=0.75 (f) t=1.00
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Fig. 1. Matching landmarks of hand (a) to landmarks of hand (b) with LLDKBM
multiscale registration with Gaussian kernels of four scales. The critical path of diffeo-
morphisms determined by the KB-EPDiff equations derived in this paper is shown for
four time steps (c)-(f) along with the outline of hand (a) (red line) and deformation
of an initially square grid. Black curve shows the transported outline, and the grids
are colored with the trace of Cauchy-Green strain tensor (log-scale). As we will see in
Section 5, multiple scales are necessary to properly match the hands and movement
occur decoupled across scales for the critical path shown.

allows the framework to be applied to both landmarks, curves, surfaces, images,
and tensors. In the case of landmarks, the action of a diffeomorphism ϕ takes
the form ϕ.x = ϕ(x), and given landmarks x1, . . . , xN and y1, . . . , yN , the reg-
istration amounts to a search for ϕ such that ϕ.xi ∼ yi for all i = 1, . . . , N .
In exact matching, we wish ϕ.xi be exactly equal to yi but, more frequently,
we allow some amount of inexactness to account for noise and give smoother
diffeomorphisms. This is done by defining a quality of match measure U and a
regularization measure E1 to give a combined energy

E(ϕ) = E1(ϕ) + λU(ϕ) .

Here λ is a positive real representing the trade-off between regularity and good-
ness of fit and U is often the L2-error which in the landmark case takes the form
U(ϕ) =

∑N
i=1 ‖ϕ(xi)− yi‖2. The regularization term E1 is defined as

E1(ϕ) = min
vt∈V,ϕv

01=ϕ

∫ 1

0

‖vs‖2V ds . (2)
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It penalizes highly varying paths and, therefore, a low value of E1(ϕ) implies
that ϕ is regular.

The regularity is ultimately controlled by the norm on V and this norm is
associated to a reproducing kernel K : Ω × Ω → Rd×d. The kernel is often
chosen to ensure rotational and translational invariance [8] and the Gaussian
kernel K(x, y) = exp(‖x−y‖2

σ2 )Idd is a convenient and often used choice. The
scaling factor σ is not limited to Gaussian kernels and allows for many kernels
to vary the amount of regularization. Larger scales lead in general to higher
regularization and smoother diffeomorphisms, whereas smaller kernels penalize
higher frequencies less and often gives better matches. This phenomenon is in
particular apparent for objects with sparse information and images with e.g.
areas of constant intensity.

3 Kernel, Momentum and LDDKBM

The Large Deformation Diffeomorphic Kernel Bundle Mapping (LDDKBM)
framework extends LDDMM by equipping diffeomorphism manifolds GV in LD-
DMM with vector bundles allowing deformation to be described at different
scales. We start this section by discussing the relation between kernels and mo-
mentum in LDDMM before giving details on the mathematical foundation of
LDDKBM.

3.1 Kernel and Momentum

The admissibility of V implies that for any x ∈ Ω, the evaluation δx : v 
→
v(x) ∈ Rd is well-defined and continuous. Thus, for any a ∈ Rd the map a⊗ δx :
v 
→ aT v(x) belongs to the topological dual V ∗ of V implying the existence of
the kernel K : Ω×Ω → Rd×d so that, for any constant vector a ∈ Rd, the vector
field K(·, x)a ∈ V represents a ⊗ δx and 〈K(·, x)a, K(·, y)b〉V = aT K(x, y)b for
all points x, y ∈ Ω and all vectors a, b ∈ Rd. This latter property is denoted
the reproducing property and gives V the structure of a reproducing kernel
Hilbert space (RKHS). Tightly connected to the norm and kernels is the notion
of momentum given by the linear momentum operator L : V → L2(Ω, Rd) which
satisfies

〈Lv, w〉L2(Ω,Rd) =
∫

Ω

(
Lv(x)

)T
w(x)dx =: 〈v, w〉V

for all v, w ∈ V . The momentum operator connects the inner product on V with
the inner product in L2(Ω, Rd), and the image Lv of an element v ∈ V is denoted
the momentum of v. The reader can consult [8] for a thorough introduction to
reproducing kernels, especially with a view towards the LDDMM framework.

3.2 The Kernel Bundle and LDDKBM

The LDDMM framework is limited to the choice of only one kernel shape and
scale but deformation on different scales are often needed for good registration.
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To address this problem, we constructed in [6] a multi scale extension of LDDMM
resulting in the LDDKBM framework.

In order to use more kernels, we consider a parameter set IW and subspaces
Vr, r ∈ IW of the tangent space V where each Vr is equipped with a norm ‖ · ‖r,
corresponding kernel Kr, and momentum operator Lr. Typically, IW will be a
discrete set or a closed and bounded interval of R+ representing different scales.
We then let W be the space of functions w : IW → V , wr ∈ Vr such that∫

IW

‖wr‖2r dr < ∞ and
∫

IW

‖wr‖r dr < ∞ .

The vector space structures on Vr induce a vector space structure on W , and it
can be shown that under reasonable assumptions, the inner product

〈v, w〉W =
∫

IW

〈vr, wr〉r dr, v, w ∈ W

turns W into a Hilbert space. Moreover the integral Ψ(w) =
∫

I wr dr is well
defined for w ∈W and allows us to pass from W to V . With this construction, we
obtain a vector bundle GV ×W , the kernel bundle, allowing kernels of different
sizes and shapes, and a map GV × W → TGV = GV × V that provides an
extension of TGV to multiple scales.

Using Ψ we can connect time varying paths wt = {wt,r}r in W and paths on
the manifold GV by

wt 
→ ϕ
Ψ(w)
0t . (3)

The path energy is in LDDKBM measured using the norm on W , i.e. we define
the energy

EW
1 (wt) =

∫ 1

0

‖ws‖2W ds .

which induces a regularization measure on diffeomorphisms

EW
1 (ϕ) = min

wt∈W,ϕ
Ψ(w)
01 =ϕ

∫ 1

0

‖ws‖2W ds . (4)

Together with a quality of match measure U(ϕ), this allows a reformulation of
the registration problem as the search for a diffeomorphism minimizing

EW (ϕ) = EW
1 (ϕ) + λU(ϕ) . (5)

The above formulation should be compared with the standard LDDMM formu-
lation using the regularization (2), and it is immediately clear that the standard
LDDMM method is the special case with only one scale and hence W = V .

It is interesting to note that W possesses a structure very similar to a RKHS.
On V we have for each x ∈ Ω and a ∈ Rd the evaluation functional a⊗ δx(v) =
aT v(x). Using the integral map Ψ defined above, we define the linear maps on
W

a⊗ δΨ
x (w) :=

∫
IW

a⊗ δx(wr)dr =
∫

IW

aT wr(x)dr = a⊗ δx(Ψ(w)) .
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As seen from the equation, the maps evaluate wr at each scale and integrate the
results using Ψ . These maps are continuous and hence in the dual W ∗. For the
elements K(·, x)a = {K(·, x)ra}r ∈ W , we have

〈K(·, x)a, K(·, y)b〉W =
∫

IW

〈K(·, x)ra, K(·, y)rb〉r dr =
∫

IW

aT Kr(x, y)b dr

= aT

∫
IW

Kr(x, y)b dr = a⊗ δΨ
x (K(·, y)b) = aT Ψ (K(x, y)b)

which is similar to the reproducing property for LDDMM except for the integra-
tion performed by Ψ on the right-hand side of the equation. Also, close to the
RKHS situation, we see that

〈K(·, x)a, w〉W =
∫

IW

〈K(·, x)ra, wr〉r dr =
∫

IW

aT wr(x) dr = a⊗δΨ
x (w) , w ∈ V

again with the integration of w occuring in a⊗ δΨ
x (w).

4 EPDiff and KB-EPDiff

The EPDiff equations in LDDMM describes the evolution of optimal paths for
the registration problem. They are most often formulated in the following form:
let at = Lvt denote the momentum at time t and assume that ϕt is a path
minimizing E1(ϕ) with ϕ1 = ϕ minimizing E(ϕ) and vt is the derivative of ϕt.
Then vt satisfies the system

vt =
∫

Ω

K(·, x)at(x)dx ,
d

dt
at = −Datvt − at∇ · vt − (Dvt)T at .

The first equation connects the momentum at with the velocity vt, and the
second describes the evolution of the momentum. The EPDiff equations can
be interpreted as geodesic equations on the manifold GV and are important
for implementations since we can limit the search for optimal paths to paths
satisfying the system.

As we will show in this section, there exists similar equations for LDDKBM:
if Ψ(wt) is the derivative of the path of diffeomorphisms ϕt minimizing (4) with
ϕ = ϕ1 minimizing (5) then

wr,t =
∫

Ω

Kr(·, x)ar,t(x)dx ,

d

dt
ar,t =

∫
IW

−Dar,tws,t − ar,t∇ · ws,t − (Dws,t)T ar,t ds .

(6)

with ar,t being the momentum for the part wr,t of wt. In essence, the standard
EPDiff equations are integrated over the parameter space IW to obtain the
evolution of the momentum at each scale, and, in particular, the result will imply
that the momentum conservation property of LDDMM also holds in LDDKBM.
We will derive the KB-EPDiff equations in a more general form which implies
the above formulation, and, for doing this, we will follow the strategy in [8] for
the LDDMM case.
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4.1 Euler-Lagrange Equations

For any time varying path wt in W , we denote by ϕ
Ψ(w)
t1t2 the diffeomorphism

obtained by integrating Ψ(wt) from time t1 to time t2. The end of the inte-
grated path ϕ

Ψ(w)
01 is the diffeomorphism used for the registration. For the energy

EW (wt) = EW (ϕΨ(w)
01 ), we consider a variation ht ∈ W and calculate

d

dε
E(wt + εht) = 2

∫ 1

0

〈wt, ht〉W dt +
d

dε
U(ϕΨ(w)+εΨ(h)

01 ) . (7)

Following [8], we define Adϕv(x) = (Dϕv)◦ϕ−1(x) for v ∈ V and get a functional
Ad∗

ϕ on the dual V ∗ of V by (Ad∗
ϕρ|v) = (ρ|Adϕ(v)). It is shown in [8] that a

variation h̃t in V of the match functional satisfies

d

dε
U(ϕv+εh̃

01 ) =
∫ 1

0

(
Ad∗

ϕv
t1

∂̄U(ϕv
01)
∣∣h̃t

)
dt

with ∂̄U denoting the Eulerian differential of U (see [8, Chap. 10]). Inserting
into (7) gives

d

dε
E(wt + εht) = 2

∫ 1

0

〈wt, ht〉W dt +
∫ 1

0

(
Ad∗

ϕ
Ψ(w)
t1

∂̄U(ϕΨ(w)
01 )

∣∣Ψ(ht)
)

dt . (8)

For each r, we define the operator AdT,r
ϕ v = Kr(Ad∗

ϕ(Lrv)) which then satisfies〈
AdT,r

ϕ v, w
〉

r
= (Ad∗

ϕ(Lrv)|w), and we can now derive the fundamental results

[8, Prop. 11.6/Cor. 11.7] in the LDDKBM case:

Proposition 1. If wt is an optimal path for EW then for almost every r ∈ IW ,

wt,r = AdT,r

ϕ
Ψ(w)
t1

w1,r

with w1,r = − 1
2∇VrU(ϕΨ(w)

01 ).

Proof. Assume instead that there exists a time varying ht in W and t ∈ [0, 1]
such that

0 <

∫
IW

〈
wt,r − AdT,r

ϕ
Ψ(w)
t1

w1,r, ht,r

〉
r

dr =

∫
IW

〈wt,r, ht,r〉r dr −
∫

IW

〈
AdT,r

ϕ
Ψ(w)
t1

w1,r, ht,r

〉
r

dr

= 〈wt, ht〉 +
1

2

∫
IW

(Ad∗
ϕ

Ψ(w)
t1

∂̄U(ϕ
Ψ(w)
01 )

∣∣ht,r)dr

= 〈wt, ht〉 +
1

2
(Ad∗

ϕ
Ψ(w)
t1

∂̄U(ϕ
Ψ(w)
01 )

∣∣Ψ(ht)) .

But the right hand side vanishes for all t and all ht by (8) and the fact that wt

is optimal for EW , a contradiction.

Corollary 1. Under the same conditions, for almost every r ∈ IW ,

wt,r = AdT,r

ϕ
Ψ(w)
t0

w0,r . (9)

The proof of the corollary is identical to the proof of [8, Cor. 11.7].
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4.2 Scale Conservation and KB-EPDiff

In LDDKBM, the momentum of a path in general differ across scales. For a path
wt in W , we let at be the bundle momentum defined by at,r = Lr(wt,r) recalling
that Lr is the momentum operator at scale r. For each t, we can consider at to
be in the dual W ∗ by (at|w̃) =

∫
IW

(at,r|w̃r)dr which is continuous since∣∣(at|w̃
)∣∣ ≤ ∣∣∣∣∫

IW

(
at,r|w̃r

)
dr

∣∣∣∣ = ∣∣∣∣∫
IW

〈wt,r, w̃r〉r dr

∣∣∣∣ ≤ ‖wt‖‖w̃‖ .

Suppose now wt satisfies the transport equation (9) for almost every r ∈ IW .
Then for all w̃ ∈W ,(

at|w̃
)

=
∫

IW

〈wt,r, w̃r〉r dr =
∫

IW

〈
AdT,r

ϕ
Ψ(w)
t0

w0, w̃r

〉
r

dr

=
∫

IW

〈
w0,r, Ad

ϕ
Ψ(w)
t0

w̃r

〉
r
dr =

(
a0|Ad

ϕ
Ψ(w)
t0

w̃
) (10)

where Ad
ϕ

Ψ(w)
t0

w̃ is the element of W obtained by applying Ad
ϕ

Ψ(w)
t0

to each w̃r .
The above equation shows that the momentum at time t is completely specified
by the momentum at time 0 and thus reproduces the momentum conservation
property for LDDMM. Note that since w̃ can be chosen arbitraly in (10), the
momentum is conserved for each scale separately. By differentiating Ad

ϕ
Ψ(w)
t0

w̃,
the momentum conservation property directly implies the equation

∂t

(
at|w̃

)
= −(at|DΨ(wt) w̃ −Dw̃ Ψ(wt)

)
(11)

or, equivalently,
∂tat + ad∗

Ψ(wt)at = 0

with
(
ad∗

Ψ(wt)at|w̃
)

=
(
at|DΨ(wt) w̃ − Dw̃ Ψ(wt)

)
. Both equations imply the

system (6) and extend the EPDiff equations for LDDMM. We denote them KB-
EPDiff.

4.3 KB-EPDiff for Landmarks: An Example

To give a concrete application of the KB-EPDiff equations, we redo the cal-
culation for LDDMM landmark matching with scalars kernels to arrive at the
corresponding system for LDDKBM. The initial momentum a0,r will in this case
be supported at the N landmarks xi, i = 1 . . . , N , i.e. a0,r =

∑N
i=1 a0,r,i ⊗ δxi

with vectors a0,r,i ∈ Rd. We let xt,i denote the trajectory of the ith landmark
so that xt,i = ϕ

Ψ(w)
0t (x0,i).

Letting at,r,i = (Dϕ
Ψ(w)
t0 )T a0,r,i, we get from (10)

(
at,r|w̃

)
=

(
Ad∗

ϕ
Ψ(w)
t0

(
N∑

i=1

a0,r,i ⊗ δx0,i

)∣∣∣w̃) =

(
N∑

i=1

a0,r,i ⊗ δx0,i

∣∣∣Ad
ϕ

Ψ(w)
t0

(w̃)

)

=
N∑

i=1

aT
0,r,i(Dϕ

Ψ(w)
t0 w̃) ◦ ϕ

Ψ(w)
0t (x0,i) =

(
N∑

i=1

at,r,i ⊗ δxt,i

∣∣∣w̃) .



Kernel Bundle EPDiff 685

Since d
dt(Dxt,iϕ

Ψ(w)
t0 )T = −Dxt,iΨ(wt)T (Dx0,iϕ

Ψ(w)
t0 )T , the derivative of the mo-

mentum satisfies

d

dt
at,r,i =

d

dt

(
(Dϕ

Ψ(w)
t0 )T a0,r,i

)
= −Dxt,iΨ(wt)T at,r,i .

We therefore have the trajectory of the landmarks and momentum evolution
completely described by the system

Ψ(wt) =
∫

IW

∑N
l=1 Kr(·, xt,l)at,r,ldr

d
dtat,r,i = −

(∫
IW

∑N
l=1 D1

(
Ks(xt,i, xt,l)at,s,l

)T
ds

)
at,r,i

xt,i = ϕ
Ψ(w)
0t (x0,i) .

(12)

Note that the system is finite if IW is finite.

5 Experiments

We perform two experiments showing the progressing deformation as we move
along the critical path of the LDDKBM energy functional specified by the KB-
EPDiff equations and showing the different deformation across scale. The first
experiment is performed on landmarks from images of hands and the second on
a simpler and artificial example to better visualize the scale differences.

5.1 Hand Outlines

We first consider the hand outlines shown in Figure 1 and Figure 2. Using the
landmarks (red dots) on the moving hand image, we wish to compute the LDD-
KBM match against the landmarks on the fixed image (black dots). The match
is computed with three scales of 8, 4, and 2 units of the grid overlayed the figures.
After optimizing for the optimal registration, we show in Figure 1 the progres-
sion of the deformation as we move along the critical path. The final deformation
occurs rightmost for t = 1. The initially square grid is seen to progressively de-
form as time increases and the outline is moved to match the outline of the fixed
image.

Figure 2 shows the results of computing the same match with standard LD-
DMM with each of the three scales as well as the final match from LDDKBM
repeated for comparison. For LDDMM with the largest scale, the match is poor
and the sharp bend of the thumb is especially badly modelled. The situation im-
proves for the middle scale though the bend of the thumb is still not sufficiently
sharp and the match is bad for the middle fingers. For the smallest scales, the
thumb is correctly matched but now the smaller scale is not able to model the
even movement of the index finger. The LDDKBM method is by including all
scales able to correctly register all the critical areas, and, at the same time, it
gives the best match of the landmarks.
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(a) LDDMM σ = 8 (b) LDDMM σ = 4 (c) LDDMM σ = 2

(d) Moving hand (top), fixed (e) LDDKBM

sharp bend lost poor match skewed index finger

good
matches

m
ea
n
st
re
tc
h

Fig. 2. Matching the hands of Figure 1 and shown in (d) for three scales of LDDMM
and LDDKBM. The red landmarks of the moving hand are matched against the black
landmarks of the fixed hand with the green crossed points showing the result of the
match. The outline of the moving hand (red line) is transported to the black outline and
should be compared with the outline of the fixed image (black dashed). The LDDKBM
method is able to correctly match all the critical areas on which LDDMM fails, see
text.

5.2 KB-EPDiff across Scales

To show how LDDKBM decouples deformation across scale, we extend the exper-
iment presented in [6] where four points (red) are matched to four points (black)
with results (green crossed) using LDDKBM with three scales. In Figure 3, the
result of the registration is visible in the top right subfigure and the evolution of
the critical path generated by the KB-EPDiff equations is shown with time in-
creasing across columns. For the lower rows, the deformation at each scale is here
shown independently. We see how most of the transport occurs at the largest
scale with the middle scale participating to some degree and starting the accel-
eration of the two points having to move the farthest. The lowest scale perform
almost no horizontal movement but takes care of the fine adjustment allowing
the LDDKBM method to achieve an arguably superior registration compared to
the corresponding LDDMM registrations which can be found in [6].
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σ
=

0
.8

t = 0.25 t = 0.50 t = 0.75 t = 1.00

fine scale adjustment

furthest moving points bulk of transport

mean stretch

Fig. 3. LDDKBM match of four landmarks (red) to four landmarks (black) with results
(green, crossed) for Gaussian kernels of three scales. Top row: critical path determined
by KB-EPDiff equations, row 2-4: individual contribution of each of the three scales
(scale σ in grid units). The columns shows four time points of the critical path with
the rightmost being the final deformation. Initially square grids are shown deformed by
the diffeomorphism, and the grids are colored with the trace of Cauchy-Green strain
tensor indicative of the mean stretch (log-scale for each row individually). The largest
scales contribute to most of the transport movement with smooth deformations while
the smallest scale performs fine adjustment of the trajectories to obtain a good match.

6 Conclusion

We have detailed the mathematical foundation behind the LDDKBM frame-
work for registration which extends LDDMM to include deformation at multiple
scales. This includes deriving the KB-EPDiff equations describing the evolution
of critical paths in the framework, and the resulting differential systems give
insight into the geometry behind the framework in addition to being essential
for algorithms for computing the improved registrations. We have provided ex-
amples showing the evolution governed by the KB-EPDiff equations and how
the deformation differ across scales as well as showing the superior registration
quality of the LDDKBM method on real images.

A further understanding of the structures behind LDDKBM may allow im-
proved discretization and computational schemes to be developed. Therefore,
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we expect to look more into the geometry behind the vector bundle construc-
tion of LDDKBM and relate the energy to geometric notions generalizing e.g.
Riemannian metrics to vector bundles on manifolds.
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Abstract. In classical signal processing, it is common to analyze and
process signals in the frequency domain, by representing the signal in
the Fourier basis, and filtering it by applying a transfer function on
the Fourier coefficients. In some applications, it is possible to design an
optimal filter. A classical example is the Wiener filter that achieves a
minimum mean squared error estimate for signal denoising. Here, we
adopt similar concepts to construct optimal diffusion geometric shape
descriptors. The analogy of Fourier basis are the eigenfunctions of the
Laplace-Beltrami operator, in which many geometric constructions such
as diffusion metrics, can be represented. By designing a filter of the
Laplace-Beltrami eigenvalues, it is theoretically possible to achieve in-
variance to different shape transformations, like scaling. Given a set of
shape classes with different transformations, we learn the optimal filter
by minimizing the ratio between knowingly similar and knowingly dis-
similar diffusion distances it induces. The output of the proposed frame-
work is a filter that is optimally tuned to handle transformations that
characterize the training set.

1 Introduction

Recent efforts have shown the importance of diffusion geometry in the field of
pattern recognition and shape analysis. Such methods based on geometric analy-
sis of diffusion or random walk processes that were first introduced in theoretical
geometry [1] have matured into practical applications in the fields of manifold
learning [7] and where more recently introduced to shape analysis [9]. In the
shape analysis community, diffusion geometry methods were used to define low-
dimensional representations for manifolds [7,16], build intrinsic distance metrics
and construct shape distribution descriptors [16,10,5], define spectral signatures
[15] (shape-DNA), local descriptors [18,6], and bags of features [4]. Diffusion em-
beddings were used for finding correspondence between shapes [11] and detecting
intrinsic symmetries [13].
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� Springer-Verlag Berlin Heidelberg 2012



690 Y. Aflalo et al.

In many settings, the construction of diffusion geometry boils down to the
definition of a diffusion kernel, whose choice is problem dependent. Ideally, such
an operator should possess certain invariance properties desired in a specific
application. For example, the commute time kernel is invariant to scaling trans-
formations of the shape.

In this paper, we propose a framework for supervised learning of an optimal
diffusion kernel on a training set containing multiple shape classes and multi-
ple transformations of each shape. Considering diffusion kernels related to heat
diffusion properties and diagonalized in the eigenbasis of the Laplace-Beltrami
operator, we can pose the problem as finding an optimal filter on the Laplace-
Beltrami eigenvalues. Optimization criterion is the discriminativity between dif-
ferent shape classes and the invariance to within-class transformations.

The rest of the paper is organized as follows. In Section 2, we review the
theoretical foundations of diffusion geometry. Section 3 formulates the problem
of optimal kernel learning and its discretization. Section 4 presents experimental
results. Finally, Section 5 concludes the paper.

2 Background

2.1 Diffusion Geometry

We model a shape as a Riemannian manifold X embedded into R3. Equipping
the manifold with a measure μ (e.g., the standard area measure), we also define

an inner product on real functions on X by 〈f, g〉 =
∫
fgdμ. A function k :

X ×X → R is called a diffusion kernel if it satisfies the following conditions

1. Non-negativity: k(x, x) � 0.
2. Symmetry: k(x, y) = k(y, x).
3. Positive semidefiniteness: for every bounded f ,∫∫

k(x, y)f(x)f(y)d(μ × μ) � 0.

4. Square integrability:
∫∫

k2(x, y)d(μ × μ) <∞.

5. Conservation:
∫
k(·, y)dμ =

∫
k(x, ·)dμ = 1.

A kernel function can also be considered as a linear operator on all the functions

defined on X , (Kf)(y) =
∫
k(x, y)f(x)dμ. We notice that the operator K is self-

adjoint admitting a discrete eigendecomposition Kφi = λiφi, with 0 � λi � 1
by virtue of the properties of the kernel. Spectral theorem allows us to write

k(x, y) =
∞∑

i=0

λiφi(x)φi(y).
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2.2 Heat Diffusion

There exists a large variety of possibilities to define a diffusion kernel and the
related diffusion operator. Here, we restrict our attention to operators describing
heat diffusion. Heat diffusion on surfaces is governed by the heat equation,(

ΔX +
∂

∂t

)
u(x, t) = 0; u(x, 0) = u0(x), (1)

where u(x, t) is the distribution of heat on the surface at point x in time t,
u0 is the initial heat distribution, and ΔX is the positive-semidefinite Laplace-
Beltrami operator, a generalization of the second-order Laplacian differential
operator Δ to non-Euclidean domains.

On Euclidean domains (X = Rm), the classical approach to the solution of the
heat equation is by representing the solution as a product of temporal and spatial
components. The spatial component is expressed in the Fourier domain, based
on the observation that the Fourier basis is the eigenbasis of the Laplacian Δ,
and the corresponding eigenvalues are the frequencies of the Fourier harmonics.
A particular solution for a point initial heat distribution u0(x) = δ(x − y) is
called the heat kernel ht(x − y) = 1

(4πt)m/2 e
−‖x−y‖2/4t, which is shift-invariant

in the Euclidean case. A general solution for any initial condition u0 is given
by convolution Htu0 =

∫
Rm ht(x − y)u0(y)dy, where Ht is referred to as heat

operator.
In the non-Euclidean case, the eigenfunctions of the Laplace-Beltrami opera-

torΔXφi = λiφi can be regarded as a “Fourier basis”, and the eigenvalues can be
interpreted as the “spectrum”. The heat kernel is not shift-invariant but can be
expressed as an explicit short time kernel [17] ht(x, y) =

∑∞
i=0 e

−tλiφi(x)φi(y).
It can be shown that the heat operator is related to the Laplace-Beltrami

operator as Ht = e−tΔ, and as a result, it has the same eigenfunctions φi and
corresponding eigenvalues e−tλi . It can be thus seen as a particular instance of
a more general family of diffusion operators K diagonalized by the eigenbasis
of the Laplace-Beltrami operator, namely K’s as defined in the previous section
but restricted to have the eigenfunctions φi of ΔX . The corresponding diffusion
kernels can be expressed as

k(x, y) =
∞∑

i=0

K(λi)φi(x)φi(y), (2)

where K(λ) is some function (in the case of Ht, K(λ) = e−tλ) that can be
thought of as the transfer function of a low-pass filter. Using this signal process-
ing analogy, the kernel k(x, y) can be interpreted as the point spread function
at a point y, and the action of the diffusion operator Kf on a function f on X
can be thought of as the application of the point spread function by means of a
shift-variant version of convolution. In what follows, we will freely interchange
between k(x, y) and K(λ) referring to both as kernels.
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2.3 Diffusion Distances

Since a diffusion kernel k(x, y) measures the degree of proximity between x and
y, it can be used to define a metric

d2(x, y) = ‖k(x, ·)− k(y, ·)‖2L2(X), (3)

on X , dubbed as the diffusion distance by Coifman and Lafon [7]. Another way
to interpret the latter distance is by considering the embedding Ψ : x 
→ L2(X)
by which each point x on X is mapped to the function Ψ(x) = k(x, ·). The
embedding Ψ is an isometry between X equipped with diffusion distance and
L2(X) equipped with the standardL2 metric, since d(x, y) = ‖Ψ(x)−Ψ(y)‖L2(X).
As a consequence of Parseval’s theorem, the diffusion distance can also be written
as

d2(x, y) =
∞∑

i=0

K2(λi)(φi(x)− φi(y))2. (4)

Here as well we can define an isometric embedding Φ : x 
→ 	2 with Φ(x) =
{K(λi)φi(x)}∞i=0, termed as the diffusion map by Lafon. The diffusion distance
can be casted as d(x, y) = ‖Φ(x)− Φ(y)‖�2 .

2.4 Invariance

The choice of a diffusion operator, or equivalently, the transfer function K(λ),
is related to the invariance of the corresponding diffusion distance.

For example, consider the case of scaling transformation, in which a shape
X is uniformly scaled by a factor of α. Abusing the notations we denote by
αX the new shape, whose Laplace-Beltrami operator now satisfies ΔαXf =
α−2ΔXf . Since the eigenbasis is orthonormal (‖φi‖ = 1), it follows that if φi is an
eigenfunction ofΔX associated to the eigenvalue λi, then 1

αφi is an eigenfunction
of ΔαX associated with the eigenvalue λiα

−2.
In order to obtain diffusion distance d2 invariant to scaling transformations,

we have to ensure that K2(λiα
−2)α−2 = K2(λi), which is achieved for K(λ) =

λ−1/2. This kernel is known as the commute-time kernel, and the associated
diffusion distance

d2(x, y) =
∞∑

i=0

1
λi

(φi(x)− φi(y))2. (5)

as the commute-time distance.

2.5 Distance Distributions

Though diffusion metrics contain significant amount of information about the
geometry of the underlying shape, direct comparison of metrics is problematic
since it requires computation of correspondence between shapes. A common
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way to circumvent the need of correspondence is by representing a metric by
its distribution, and measuring the similarity of two shapes by comparing the
distributions of the respective metrics.

A metric d on X naturally pushes forward the product measure μ × μ on
X×X (i.e., the measure defined by d(μ×μ)(x, y) = dμ(x)dμ(y)) to the measure
F = d∗(μ×μ) on [0,∞) defined as F (I) = (μ×μ)({(x, y) : d(x, y) ∈ I}) for every
measurable set I ⊂ [0,∞). F can be fully described by means of a cumulative
distribution function, denoted by

F (δ) =
∫ δ

0

dP =
∫
χd(x,y)≤δdμ(x)dμ(y) (6)

with some abuse of notation (here χ is the indicator function). F (δ) defined this
way is the measure of pairs of points the distance between which in no larger
than δ; F (∞) = μ2(X) is the squared area of the surface X . The density func-
tion (empirically approximated as a histogram) can be defined as the derivative
f(δ) = d

dδF (δ). Sometimes, it is convenient to work with normalized distribu-
tions, F̂ = F/F (∞) and the corresponding density functions, f̂ , which can be
interpreted as probabilities.

Using this idea, comparison of two metric measure spaces reduces to the com-
parison of measures on [0,∞), or equivalently, comparison of un-normalized or
normalized distributions, which is carried out using one of the standard dis-
tribution dissimilarity criteria used in statistics, such as Lp or normalized Lp,
Kullback-Leibler divergence, Bhattcharyya dissimilarity, χ2 dissimilarity, or earth
mover’s distance (EMD).

3 Optimal Diffusion Kernels

The main idea of this paper lies in designing an optimal task-specific transfer
function K(λ) such that the resulting diffusion distance distribution will lead to
best discrimination between shapes of a certain class while being insensitive as
much as possible to a certain class of transformations.

Let us be given a shape X and some deformation τ such that Y = τ(X) is also
a valid shape. Equipping each of the shapes with its Laplace-Beltrami operator,
we define ΔXφi = λiφi on X and ΔX′φ′i = λ′iφ

′
i on Y . A transfer function

K(λ) defines the diffusion kernel k(x, x′) =
∑

i≥0K
2(λi)φi(x)φi(x′) on X , and

k′(y, y′) =
∑

i≥0K
2(λ′i)φ

′
i(y)φ

′
i(y

′) on Y . We aim at selecting K in such a way
that for corresponding pairs of points (x, x′) and (y, y′) = (τ(x), τ(x′)) the two
kernels coincide as much as possible, while differing as much as possible for non-
corresponding points. Denoting by P = {((x, x′), (τ(x), τ(x′)) : x, x′ ∈ X} the
set of all corresponding pairs (positives), and by N = {((x, x′), (y, y′)) : x, x′ ∈
X, (y, y′) 	= (τ(x), τ(x′))} the set of all non-corresponding pairs (negatives), we
minimize
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min
K(λ)

∑
((x,x′),(y,y′))∈P

(k(x, x′)− k′(y, y′))2

∑
((x,x′),(y,y′))∈N

(k(x, x′)− k′(y, y′))2
. (7)

We remark that while there is a multitude of reasonable alternative objective
functions, in what follows we choose to minimize the above ratio because as it
will be shown it lends itself to a simple algebraic problem.

The choice of an appropriate function K can lead to invariance of the kernel
under some transformations. For example, the commute time kernel K(λ) = 1√

λ
is invariant under global scaling. On the other hand, optimal K should be dis-
criminative enough to distinguish between shapes not being one a transforma-
tion of the other. This spirit is similar to linear discriminant analysis (LDA)
and Wiener filtering and, to the best of our knowledge, has never been proposed
before to construct optimal diffusion metrics.

3.1 Discretization

We represent the surfaceX as triangular mesh with n faces constructed upon the
samples {x1, . . . ,xn} The computation of discrete diffuison kernels k(x1,x2) re-
quires computing discrete eigenvalues and eigenfunctions of the discrete Laplace-
Beltrami operator. The latter can be computed directly using the finite elements
method (FEM) [15], of by discretization of the Laplace operator on the mesh
followed by its eigendecomposition. Here, we adopt the second approach accord-
ing to which the discrete Laplace-Beltrami operator is expressed in the following
generic form,

(Δf)i =
1
ai

∑
j

wij(fi − fj), (8)

where fi = f(xi) is a scalar function defined on the mesh, wij are weights,
and ai are normalization coefficients. In matrix notation, (8) can be written as
Δf = A−1Wf , where f is an m× 1 vector and W = diag

{∑
l �=i wil

}
− wij .

The discrete eigenfunctions and eigenvalues are found by solving the gener-
alized eigendecomposition [9] WΦ = AΦΛ, where Λ = diag{λ} is a diagonal
matrix of eigenvalues λ = (λ1, . . . , λn)T, and Φ = (φl(xi)) is the matrix of
the corresponding eigenvectors. Similarly, we triangulate the shape Y and get
A′Φ′ = diag{λ′}W′Φ′.

Different choices of W have been studied, depending on which continuous
properties of the Laplace-Beltrami operator one wishes to preserve [8,19]. For
triangular meshes, a popular choice adopted in this paper is the cotangent weight
scheme [14,12], in which

wij =
{

(cotβij + cotγij)/2 : xj ∈ N (xj);
0 : else, (9)

where βij and γij are the two angles opposite to the edge between vertices xi

and xj in the two triangles sharing the edge.
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We denote by P = {((im, jm), (i′m, j
′
m))} the collection of corresponding pairs

of vertex indices onX and Y (that is, im ↔ i′m and jm ↔ j′m), and by N the col-
lection of non-corresponding pairs. Denoting by C+ and C′

+ two matrices whose
ml-th elements are the products φl(xim)φl(xjm) and φ′l(yim)φ′l(yj′m), respectively,
for ((im, jm), (i′m, j

′
m)) ∈ P , we have k+ = C+K

2(λ) and k′
+ = C′

+K
2(λ′),

where the m-th elements of k+ and k′
+ are k(xim , xjm) and k(xi′m , xj′m), re-

spectively, and K2(λ) = (K2(λ1), . . . ,K2(λn))T. Exactly in the same way, the
vectors k− and k′

− corresponding to the negative pairs in N are obtained.
In order to make possible the optimization over all functions K, we fix a grid

γ = (γ1, . . . , γr) or r points on which k = (K2(γ1), . . . ,K2(γr))T is evaluated.
In this notation, our optimization problem becomes with respect to the elements
of k. Since the grids γ, λ and λ′ are incompatible, we define the interpolation
operators I and I′ transfering a function from the grid γ to the grids λ and
λ′: K2(λi) = Ik, and K2(λ′i) = I′k. This yields k± = C±Ik and k′

± = C′
±I′k.

Substituing the latter result into (7) gives the following minimization problem:

k∗ = arg min
k≥0

‖k+ − k′
+‖2

‖k− − k′
−‖2

= arg min
k≥0

‖(C+I−C′
+I′)k‖2

‖(C−I−C′
−I′)k‖2

= arg min
k≥0

kTPk
kTNk

= N− 1
2 arg min

k≥0

‖k‖=1

k
T
N−T

2 PN− 1
2 k, (10)

where P = (C+I−C′
+I′)T(C+I−C′

+I′) and N = (C−I−C′
−I′)T(C−I−C′

−I′).
Note that the matrices P and N are of fixed size r×r and can be constructed with-
out directly constructing the potentially huge matrices C± and C′

±. This makes
the above problem computationally efficient even on very large training sets.

3.2 Interpolation Operators

Among a plethora of methods for designing the interpolation operations I and I′

on one-dimensional intervals, we found that regularized spline fitting produced
best results. For that purpose, let {si(λ)} be a set of q functions defined on the
interval [λmin, λmax]. We represent the kernel transfer function as the sum

K2(λ) =
q∑

i=1

aisi(λ) (11)

and look for the vector of coefficients a = (a1, . . . , aq)T. Denoting S = (s1(λ), . . . ,
sq(λ)) with si(λ) = (si(λ1), . . . , si(λn))T, we have k = Sa. Similarly, for S′ =
(s1(λ′), . . . , sq(λ′)), we have k′ = S′a.

To impose the smoothness of the kernel K(λ), we add the regularization term

R(K) =
∫ λmax

λmin

‖δK2(λ)‖2dλ =
∫ λmax

λmin

(
q∑

i=1

ai∇si(λ)
)2

dλ = aTRa, (12)

where the ij-th elements of R are given by (R)ij =
∫ λmax

λmin

∇si(λ)sj(λ)dλ.
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Fig. 1. Optimal kernel designed using straightforward nearest neighbor interpolation
(red), splines without smoothness (green), and splines with the smoothness term (blue)

In these terms, the optimization problem (10) becomes

a∗ = arg min
a

aT(C+S−C′
+S′)T(C+S−C′

+S′)a
aT(C−S−C′

−S′)T(C−S−C′
−S′)a

+ ηaTRa

= N− 1
2 arg min

‖a‖=1
aTN−T

2 (P + ηR)N− 1
2 a, (13)

where now P = (C+S−C′
+S′)T(C+S −C′

+S′), N = (C−S −C′
−S′)T(C−S −

C′
−S′), and η is a parameter controlling the smoothness of the obtained kernel.

The effect of the smoothness term is illustrated in Figure 1.

4 Results

In our experiments, to build the training set, we used the SHREC’10
correspondence benchmark [2]. The dataset contained high-resolution shapes
(10, 000 − 30, 000 vertices) organized in seven shape classes with 55 simulated
transformations of varying strength in each class (Figure 2) Testing was per-
formed on the SHREC’10 shape retrieval benchmark [3], containing a total of
1184 shapes. Retrieval performance was evaluated using precision/recall char-
acteristic. Precision P (r) is defined as the percentage of relevant shapes in the
first r top-ranked retrieved shapes (in the used benchmark, transformed shapes
were used as queries, while a single relevant null shape existed in the database
for each query). Mean average precision (mAP), defined as
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Fig. 2. Transformations of the human shape used as queries (shown in strength 5, left
to right): null, isometry, topology, sampling, local scale, scale, holes, micro holes, noise,
shot noise, partial, all

mAP =
∑

r

P (r) · rel(r),

where rel(r) is the relevance of a given rank, was used as a single measure of
performance. Ideal performance retrieval performance results in first relevant
match with mAP=100%. Discretization of the Laplace-Beltrami was based on
the cotangent weight formula (9).

In the first experiment, we used our approach to learn a scale-invariant dif-
fusion kernel. We used a training set containing only scaling transformations of
the shapes. As can be seen from Figure 3, the learned diffusion kernel is very
close to the theoretically-optimal commute-time kernel K(λ) = λ−1/2.

In the second experiment, we extended the training set to include all the shape
transformations, resulting in a kernel shown in Figure 4 (red). The learned kernel
was used to compute diffusion distance distributions, which were compared to
compute the shape similarity, following the spectral distance framework [5]. The
performance results with this kernel are summarized in Table 1 (fifth column).
For comparison, performance using the commute time kernel is shown (Table 1,
sixth column).

In the third experiment, instead of designing a kernel with a discretization of
K(λ), we used a parametric kernel of the form K(λ) = exp(−tλ) and optimized
our criterion for the time scale t. The optimal scale was found to be t∗ = 1011; the
performance results with this kernel are summarized in Table 1 (fourth column).
For comparison, we show the performance of the same kernel with two other
values of the parameter, t = 700, and 1700 (Table 1, second and third columns).

In the fourth experiment, we used the diagonal our optimal non-parametric
diffusion kernel k(x, x) as a local scalar shape descriptor at each point, similar
to the heat kernel signature [18]. A global descriptor was constructed as the
histogram of the values of k(x, x) on the entire shapes. We notice that both the
local descriptors (Figure 5, top) and the global descriptors (Figure 5, bottom)
resulting from our learned diffusion kernel signature computed on two different
transformations of a shape are very close one to the other.
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Fig. 3. Theoretical scale invariant (commute time) kernel (blue) and the learned kernel
on examples of scaling transformations (red)

Fig. 4. The lerned kernel using all transformations (red). For comparison, the commute
time kernel is shown (blue).
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Table 1. Shape retrieval performance (mAP in %) using the spectral distance with
different diffusion kernels

Heat Heat Optimal param. Optimal Commute
Transformation (t = 700) (t = 1700) (t∗ = 1011) non-param. time

Isometry 100 99.23 100 98.21 97.95
Topology 91.28 80.36 86.79 77.33 79.16
Holes 82.3 90.33 87.81 72.48 73.94
Micro holes 100 100 100 100 100
Scale 30.97 32.66 32.44 100 100
Local scale 65.64 70.79 70.73 67.92 68.22
Sampling 100 99.23 100 98.21 98.21
Noise 99.23 100 98.46 100 100
Shot noise 99.23 100 99.23 99.23 98.65
Partial 5.54 7.37 6.01 8.06 31.03
All 64.15 64.36 69.56 64.66 64.51

Fig. 5. Top: diagonal of the diffusion kernel k(x, x) used as a local descriptor. Bottom:
histogram of the local descriptors.

5 Conclusions

We provided a design framework for kernels that optimize for the ratio between
the within class and between classes required for shape recognition under typi-
cal type of deformations. So far, our experiments show that the commute time
distance is dominating as an optimal filter for the mix of distortions we used.
In our future experiments we will investigate the deviation from that type of a
filter and try to come up with design framework for specific types of distortions.
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Abstract. In this paper, we present a stochastic interpretation of the
motion estimation problem. The usual optical flow constraint equation
(assuming that the points keep their brightness along time), embed for
instance within a Lucas-Kanade estimator, can indeed be seen as the min-
imization of a stochastic process under some strong constraints. These
constraints can be relaxed by imposing a weaker temporal assumption
on the luminance function and also in introducing anisotropic intensity-
based uncertainty assumptions. The amplitude of these uncertainties are
jointly computed with the unknown velocity at each point of the image
grid. We propose different versions depending on the various hypoth-
esis assumed for the luminance function. The substitution of our new
observation terms on a simple Lucas-Kanade estimator improves signifi-
cantly the quality of the results. It also enables to extract an uncertainty
connected to quality of the motion field.

Keywords: Optical flow, stochastic formulation, brightness consistency
assumption.

1 Introduction

Many computer vision problems are formulated on the basis of the spatial and
temporal variations of the image luminance:

df

dt
=
∂f

∂t
+ v ·∇f = 0, (1)

where ∇ is the gradient operator in the x and y directions. When the function f
denotes the luminance function this equation is referred in Computer Vision as
the Optical Flow Constraint Equation (ofce) or as the brightness consistency
assumption and constitutes the only available information for motion estimation
issues. Optical flow estimation has been studied intensively since the seminal
work of Horn and Schunck [12] and a huge number of methods based on diverse
variations of this constraint have been proposed in the literature [5, 9, 20, 22, 23].
Usually a data model constructed from this constraint is associated with some
spatial regularizers that promote motion fields with some spatial (and sometimes
temporal) coherency. Many authors have proposed on this basis very efficient
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techniques. Readers can refer to [4–6, 13, 15–17, 19, 24–26] for a non exhaustive
panel or [11] for a recent review. Comparative performance evaluations of some
of these techniques can be found in [1, 2, 10]. Among the developed approaches,
the techniques focused first on the design of new regularization terms (able for
instance to deal with occlusions, discontinuities or relying on physical grounds
[8, 11]) and second on the application of advanced minimization strategies. Sur-
prisingly, apart for some specific applications devoted to some specific types of
imagery (fluid, biology, infrared imagery, tomography, IRM, ..., see [21] for a
summary), only very few authors have worked on generic alternative data terms
to the classical brightness consistency assumption, despite the fact it plays a
crucial role in the motion estimation process.

The conventional optical flow constraint relation (1) is in fact defined as the
differential of a function known only on spatial and temporal discrete point posi-
tions (related to the image sequence spatio-temporal lattice). This is somewhat
a strong constraint since in practice, the grid points on which is defined the
luminance is transported by a flow itself known only up to the same discrete po-
sitions. It results from this discretization process an inherent uncertainty on the
points location that can reveal to be of important magnitude when are involved
strong motions, large inter frames lapse rate or crude spatial discretization as-
sociated for instance to large spatial scales measurements. The idea is therefore
to encode such a location uncertainty as a random variable and to incorporate
the uncertainty transportation into the brightness consistency assumption. This
is done using stochastic rules.

The paper is organized as follows: in section 2 we define a stochastic version of
the luminance function, by incorporating isotropic and anisotropic uncertainties.
From this formulation, two conservation constraints of the image luminance are
derived. If the velocity field is available or if we estimate it simultaneously, we
propose in section 3 a way to compute the associated uncertainty. Finally, section
4 presents a local multiscale Lucas and Kanade motion estimator based on the
brightness consistency stochastic models.

2 Stochastic Luminance Function and Conservation
Constraints

2.1 Notations – Conventions

In this paper we use the following conventions/notations:

– the image luminance is f ;
– we represent as a vector X = (X1, . . . ,Xm)T a grid of 2D points, Xs ∈ R2;
– the “pixel” grid of the images Xt−1 is represented by the position of a grid

X at the initial time, set to t− 1
– at time t−1, this grid is driven by a velocity field v(Xt−1, t−1) : R2m×R+ →

R2m defined on the initial grid Xt−1 to generate the new point positions Xt

at time t.
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2.2 Stochastic Luminance Function

We first write the image luminance as the function of a stochastic process related
to the position of image points. If one assumes that the velocity v to estimate
transports the grid from Xt−1 to Xt up to a Brownian motion, we can write:

dXt = v(Xt−1, t − 1)dt + Σ(t, X t)dBt, (2)

where Bt = (B1
t , ...,B

m
t )T is a multidimensional standard Brownian motion of

R2m, Σ a (2m × 2m) covariance matrix and dXt = Xt −Xt−1 represents the
difference between the grid positions. The luminance function f usually defined
on spatial points x = (x, y) at time t is here defined on the grid as a map
from R+ × R2m into Rm and is assumed to be C1,2(R+,R2m). Its differential is
obtained following the differentiation rules of stochastic calculus (the so called Îto
formulae) that gives the expression of the differential of any continuous function
of an Îto diffusion of the form in (2) (see [18] for an introduction to stochastic
calculus):

df(X t, t) =
∂f

∂t
dt +

∑
i=(1,2)

∂f(X t, t)

∂xi
dXi

t +
1

2

∑
(i,j)=(1,2)×(1,2)

∂2f(X t, t)

∂xi∂xj
d <Xi

t ,X
j
t > .

(3)

The term <X i
t ,X

j
t > denotes the joint quadratic variations of X i and Xj and

can be computed according to the following rules: < Bi,Bj >= δijt and <
h(t), h(t) >=< h(t), dBi >=< Bj , h(t) >= 0 where δij = 1 if i = j, δij = 0
otherwise, and h(t) is a deterministic function. Compared to classical differential
calculus, new terms related to the Brownian random terms have been introduced
in this stochastic formulation. A possible way to represent the stochastic part of
(2) is to use an isotropic uncertainty variance map σ(Xt, t) : R+ × R2m → Rm

Σ(X t, t)dBt = diag(σ(X t, t)) ⊗ I2dBt, (4)

where I2 is the (2 × 2) identity matrix, and ⊗ denotes the Kronecker prod-
uct. Alternatively, one can use anisotropic intensity-based uncertainties along
the normal (with a variance ση) and the tangent (with a variance στ ) of the
photometric contour following:

Σ(X t, t)dBt = diag(ση(X t, t)) ⊗ ηdBη
t + diag(στ (X t, t)) ⊗ τ dBτ

t , (5)

where the vectors

η=
1

|∇f |
(
fx
fy

)
, τ =

1
|∇f |

(−fy
fx

)
,

represent respectively the normal and tangent of the photometric isolines, Bη

and Bτ are two scalar independant multidimensional Brownian noises of Rm and
f• = ∂f(Xt, t)/∂• for • = (x, y). Let us now express the luminance variations
df(Xt, t) under such isotropic or anisotropic uncertainties.

Isotropic Uncertainties. Applying Îto formula (3) to the isotropic uncertainty
model yields a luminance variation defined as:

df(Xt, t) =
(
∂f

∂t
+ ∇f · v +

1
2
σ2Δf

)
dt+ σ∇f · dBt. (6)
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Anisotropic Uncertainties. Considering the anisotropic uncertainty model
(5) and the mentioned properties regarding the quadratic variations, the term
df reads now:

df =

(
∂f

∂t
+∇f · v+

∇fT ∇2f∇f

2|∇f |2 (σ2
η − σ2

τ ) +
σ2

τΔf

2

)
dt + ση‖∇f‖dBη

t + στ∇fT τdBτ
t︸ ︷︷ ︸

=0

.

(7)

In this brightness variation model the stochastic term related to the uncer-
tainty along the tangent vanishes (since the projection of the gradient along
the level lines is null). It is straightforward to remark that the standard bright-
ness consistency assumption is obtained from (6) or (7) using zero uncertainties
(σ = ση = στ = 0). The proposed stochastic formulation enables thus to use a
softer constraint. From this formulation, let us now derive some generic models
for the evolution of the image luminance transported by a velocity field with
local uncertainties.

2.3 Uncertainty Models for Luminance Conservation

Starting from a known grid Xt−1 and its corresponding velocity, the conserva-
tion of the image luminance can be quite naturally defined as the conditional
expectation E (df(Xt, t)|Xt−1) between t− 1 and t. To compute this term, we
exploit the fact (as shown in appendix A) that the expectation of any function
Ψ(Xt, t) of a stochastic process dXt (as in (2)) knowing the grid Xt−1 reads:

E(Ψ(Xt, t)|Xt−1) = Ψ(X t−1 + v, t) ∗ N (0, Σ), (8)

where N (0,Σ) is a multidimensional centered Gaussian. This latter relation
indicates that the expectation of a function Ψ(Xt, t) knowing the location Xt−1

under a Brownian uncertainty of variance Σ is obtained by a convolution of
Ψ(Xt−1 + v, t) with a centered Gaussian kernel of variance Σ.

Assuming Σ known, our new conservation model H(f,v) for the luminance
evolution is hence defined as (with gΣ a gaussian of variance Σ):

H(f,v) = gΣ ∗ (df(Xt−1 + v, t)) = gΣ ∗
(
∇f · v +

∂f

∂t
+ F(f)

)
,with (9)

F(f) =
1

2
σ2Δf for isotropic uncertainties or F(f) =

∇fT ∇2f∇f

2|∇f |2 (σ2
η−σ2

τ )+
σ2

τΔf

2
else.

(10)

If the brightness conservation constraint strictly holds, one obtains σ = ση =
στ = 0; the Gaussian kernels turn to Dirac distributions and relations (9), (10)
correspond to (1). The proposed model provides thus a natural extension of the
usual brightness consistency data model. In the next section we propose a way
to estimate the uncertainties ση and στ .
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3 Uncertainty Estimation

Assuming an observed motion field vobs that transports the luminance is avail-
able (we will describe in section 5 a local technique for this), it is possible to
estimate the uncertainties ση(x, t) and στ (x, t) for each location x at time t.

3.1 Estimation of ση

Computing the quadratic variation of the luminance function df between t − 1
and t yields, for the isotropic or anisotropic version:

d〈f(X t, t), f(X t, t)〉 = σ2
η(X t, t)‖∇f(X t, t))‖2, (11)

where σ = ση in the isotropic formulation. This quadratic variation can also be
approximated from the luminance f by
d〈f(Xt, t),f(Xt, t)〉 ≈ (f(Xt, t)− f(Xt−1, t− 1))2. Considering now that the
conditional expectation of both previous terms should be identical, one can es-
timate the variance by:

ση(X t) =

√
E (f(X t, t) − f(X t−1, t − 1))2

E (‖∇f(X t, t))‖2)
. (12)

The expectation in the numerator and denominator are then computed at the dis-
placed point Xt−1 +vobs(Xt−1) through the convolution of variance Σ(X t−1, t−
1). A recursive estimation process is thus emerging from equation (12). For the
anisotropic model the uncertainty along the tangent is also needed.

3.2 Estimation of στ

It is not possible to estimate uncertainty along the tangent of the photometric
contours in a similar way since, as shown in (7), this quantity does not appear
in the noise associated to the luminance variation and therefore is not involved
in the corresponding quadratic variations. Writing the Ito diffusion associated
to the velocity projected along the tangent yields

vobs
T τ = v(X t−1, t − 1)T τdt + στ (t,X t)dBτ

t . (13)

This scalar product constitutes a scalar Gaussian random field of mean μ =
v(Xt−1, t − 1)T τ (assuming v(x, t) is a deterministic function) and covariance
(diag(στ )). We assume that the scalar product vT τ and the tangent uncertainty
στ (t,x) are sufficiently smooth in space and can be respectively well approxi-
mated by the local empirical mean and variance over a local spatial neighborhood
N(x) of point x:

μ =
1

|N(x)|
∑

xi∈N(x)

(vobs(xi, t−1)T τ ), σ2
τ =

1

|N(x)| − 1

∑
xi∈N(x)

(vobs(xi, t−1)T τ−μ)2.

(14)

The relations in (9-10) provide new models for the variation of the image lu-
minance under isotropic or anisotropic uncertainties. In this section we have
presented a technique to estimate such uncertainties from an available veloc-
ity field. The next section focuses on application of those extended brightness
consistency models for motion estimation.
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4 Application of the Proposed Luminance Models

This section aims at defining a simple local motion estimator that embeds the
proposed evolution models as an observation term. As the classical Optical Flow
Constraint Equation –OFCE– based on (1), an observation model based on a
stochastic evolution of the luminance in (9) is subject to the aperture problem.
Similarly to the well-known Lucas-Kanade estimator, we cope this difficulty by
assuming constant flow within a Gaussian windowing function of variance σ�.
Therefore, the minimum variance estimate v gives:(

gσ�∗gΣ∗
[

f2
x fxfy

fxfy f2
y

])
v=−gσ� ∗ gΣ ∗(F(f)+ft)

[
fx

fy

]
. (15)

Let us note that in our model the Gaussian windowing function can be inter-
preted as the distribution of a new isotropic constant uncertainty term related to
the grid resolution and independent of the motion uncertainties that do depend
on the image data.

A main advantage of such a formulation of the multiresolution setup is to
naturally get rid of the use of a pyramidal image representation. With all these
elements, we can define the incremental local motion estimation technique:

Incremental Algorithm

1. Initializations :
– Fix an initial resolution level 
 = L
– Define f̃(Xt−1, t) := f(Xt−1, t) ; v = 0;

2. Estimation for the level 

(a) Initializations :

– n = 1; v0 = 0;
– Fix a normal uncertainty σ0

η

– Fix a tangent uncertainty σ0
τ (if anisotropic formulation)

(b) Estimate σn
η by relation (12)

(c) Estimate σn
τ by measuring the tangential uncertainty of v (relation (14))

(d) Find vn by local inversions of the system (15)
(e) Update motion field : v := v + vn

(f) Warp the image f(Xt, t) : f̃(Xt−1) = f(Xt−1 + v, t)
(g) n := n + 1
(h) Loop to step (b) until convergence (|vn| < ε);

3. Decrease the multiresolution level : σ� = λσ�

4. Loop to step 2 until convergence (σ� < σ�
min).

The previous framework is a natural and simple implementation of a local mo-
tion estimation technique using the proposed models for the evolution of the
luminance. A quantitative and qualitative evaluation of such an estimator, with
comparisons to the classic OFCE will be presented in the next section.

5 Experimental Results

We present in this section some experimental results of the local motion esti-
mator described in section 4. We show examples on synthetic fluid images and
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on the Middleburry database1. It is important to outline that the estimator de-
fined in section 4 constitutes only a local technique whose aim is only to valid,
compare and qualify the observation model based on stochastic uncertainties vs
the usual ofce in (1). Hence, its performances have to be compared to other lo-
cal approaches. As a first benchmark we analyze the results obtained on images
depicting the evolution of a 2D turbulent fluid flow.

Fluid Images: We used a pair of synthetic images obtained by DNS (Direct
Numerical Simulation of Navier-Stokes equations) and representing a 2D tur-
bulent flow. Numerical values of average angular error (AAE) [3] and of the
Root Mean Square Error (RMSE) are used as criteria to compare our estima-
tors (isotropic and anisotropic) with some of the state-of-the-art approaches
are depicted in table 1. The comparison is done with the following techniques:
Horn & Schunck (HS) [12], a commercial software based on correlation (COM,
DaVis 7.2 from LaVision GmbH), a pyramidal incremental implementation of
the Lucas-Kanade estimator (LK) [14], the proposed framework in section 4 with
the OFCE as an observation model (OFCE) (i.e with a zero uncertainty), two
fluid-dedicated dense motion estimators based on a Div-Curl smoothing with
different minimization strategies (DC1–DC2, [8, 27]), a fluid-dedicated dense
motion estimator based on a turbulence subgrid model in the data-term (TUR,
[7]).

In figure 1, we present an image of the sequence, the estimated flow with the
proposed method (anisotropic version) and the error flow field. We have also
plotted the velocity spectra of the different techniques and compared them with
the ground truth. These spectra are represented in a log-log coordinate and
a standard-log coordinate system in order to highlight small and large scales
respectively.

On table 1, one can immediately observe that compared to the other local
approaches, our method provides very good results since the global accuracy
is highly superior than the Lucas-Kanade (LK) and the commercial software
(COM). Compared to dense techniques (HS, DC1 and DC2), our numerical
results are in the same order of magnitude which is a very relevant point. They
are competitive with some dense estimation techniques dedicated to fluid flows
analysis with advanced smoothing terms (DC1–DC2, [8, 27]). The comparison
between the results OFCE, ISO and ANI is very interesting since it highlights
the benefit of the stochastic formulation of the image luminance.

If now one observes the spectra of the velocity we see that the small scales
(right part of the graph in fig. 1(g)) are much better recovered by the proposed
estimators than by the dense estimators. These latter are generally difficult to
estimate and often smoothed out with the spatial regularizers introduced in the
dense techniques. Even if the Lucas-Kanade technique seems to exhibit better
results on small scales, when observing the figure 1(h), it is obvious to note that
large scales are badly estimated with this approach and this yields a very poor
overall accuracy (see table 1). As for the large scales the results are comparable

1 http://vision.middlebury.edu/flow/

http://vision.middlebury.edu/flow/
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with the best dense dedicated techniques. We believe hence that our estimator
constitutes an appealing alternative to usual local PIV methods. Let us now
describe the accuracy of the observation term on some images of the middleburry
database.

Table 1. Quantitative comparisons on the DNS sequence

LK COM HS DC 1 DC 2 TUR OFCE ISO ANISO

AAE 6.07o 4.58o 4.27o 4.35o 3.04o 4.49o 4.53o 3.59o 3.12o

RMSE 0.1699 0.1520 0.1385 0.1340 0.09602 0.1490 0.1243 0.1072 0.0961

(a) (b) (c) (d) (e)
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Fig. 1. Results on the DNS sequence : Top (a): an image of the sequence; (b): the
estimated flow ; (c): the real flow; (d): the difference flow represented with the coding
color in (e); Bottom (f): visualisation of the estimated flow; (g-h): Spectra of the
velocity compared with ground truth and to several method: (g): log-log representation
(highlights small scales on the right part) and (h): non log-log representation (highlights
large scales on the left part). Color are : Red : ground truth; Green : our approach
(anisotropic version); Blue : Lucas-Kanade [14]; Purple : Horn and Schunck [12]; Cyan:
Div-Curl smoothing [8] and Black: Div-Curl in mimetic discretization [27]

Middleburry Database: We have tested our approaches on the “Dimetrodon”,
“Yosemite” and “Venus” sequences. For these sequences ground truths com-
parisons with others state-of-the-art approaches are available. The dimetrodon
sequence is illustrated in figure 2.

The quantitative results are presented in the table 2. When comparing the
three first columns that use exactly the same technique but based on the usual
OFCE (relation (1)), our luminance model with isotropic (ISO) and anisotropic
(ANISO) uncertainties (relation (10)), it immediately points out that the pro-
posed models enable to enhance significantly the quality of the results. This fair
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comparison of the three observation models onto the same estimator promotes
the use of a stochastic formulation under anisotropic uncertainties. In fact this
latter version is a softer constraint than the OFCE which, as shown previously,
assumes implicitly a perfect measurement without any incertitudes. The esti-
mated motion fields under the anisotropic luminance formulation is represented
on figure fig.2 (c) and can be compared with the ground truth in fig.2(d).

Let us in addition remind that the motion estimation technique that has
been developed for comparing the models of luminance is quite simple (based
on Lucas and Kanade). Therefore, as expected, the errors are mainly localized
on discontinuities. However it is very informative to observe that despite the
simplicity of this technique, our results in table 2 are very competitive and
sometimes outperform advanced dense techniques with a specific process for
discontinuities. Apart from regions exhibiting motion discontinuities and where
the error can be important, the difference fields of fig.2(d) reveals very good
results (white areas) in the other locations. This suggests that the luminance
models introduced in this paper is usefull in allowing a global improvement of
accuracy. More than the estimated motion fields, such a technique is able to
extract the associated uncertainty areas. The norm of the global uncertainty√
σ2

η + σ2
τ map obtained at the end of the process with the best estimator (the

anisotropic one) is plotted in fig.2(e). As expected, homogeneous areas where
the aperture problem holds correspond to high values whereas small values are
linked to photometric contours. Such output of our method is very promising
since it it highlights the main structures of the images and gives an indicator
of the quality of the estimation. To justify this last point, we have depicted in
fig.2(f) the reconstructed errors when we take into account for the evaluation
only the points where the incertitude is bellow a given value (blue lines) and the
corresponding percentage of points used for the computation (red lines).

We then strongly believe that the stochastic models presented can be exploited
in the future to design dense estimators relying on the proposed brightness con-
sistency model.

Table 2. Quantitative results and comparisons on the Dimetrodon, Yosemite and
Venus sequence

Results on the Dimetrodon sequence

Met. OFCE ISO ANISO Bruhn et al. Black, Ana. Pyr. LK Med. Pla.TM Zitnick et al

Ang. err. 7.95o 3.95o 2.85o 10.99o 9.26o 10.27o 15.82o 30.10o

Results on the Yosemite sequence

Met. OFCE ISO ANISO Bruhn et al. Black, Ana. Pyr. LK Med. Pla.TM Zitnick et al

Ang. error 4.47o 3.12o 2.89o 1.69o 2.65o 5.22o 11.09o 18.50o

Results on the Venus sequence

Met. OFCE ISO ANISO Bruhn et al. Black, Ana. Pyr. LK Med. Pla.TM Zitnick et al

Ang. error 12.02o 10.23o 8.42o 8.73o 7.64o 14.61o 15.48o 11.42o
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Fig. 2. Dimetrodon sequence (a): an image of the sequence; (b): the ground truth;
(c): The estimated motion field with our approach in anisotropic version; (d): difference
velocity field and (e): the extracted uncertainty map ση and (f): evolution of the error
and percentage of correct motion fields when one takes into account only velocity fields
with smaller values of

√
σ2

η + σ2
τ

6 Conclusion

In this paper an observation model for optical flow estimation has been intro-
duced. The new operator is based on a stochastic modeling of the brightness
consistency uncertainty. This data model constitutes a natural extension of the
usual brightness consistency assumption. Isotropic and anisotropic uncertainty
models have been presented. From this new data term, we have designed a sim-
ple local motion estimator where the multiresolution is also interpreted in term
of a spatial uncertainty.

The performances of this local estimator have been validated on synthetic
fluid flows issued from Direct Numerical Simulations and on the middleburry
synthetic database. In the first case, the results have exhibited significant per-
formances, especially in the recovery of small scales that are generally smoothed
out by spatial regularizers of dense approaches. As for the middleburry database,
the simple local implementation of the presented data-term outperforms local
approaches. We therefore believe that this stochastic modeling is a very promis-
ing alternative to the usual deterministic OFCE for all optical-flow methods.

A Expectation of a Function of a Stochastic Process

The conditional expectation given Xt−1 of any function Ψ(Xt, t) of a stochastic
process defined through Îto diffusion (3) and discretized through an Euler scheme
Xt = Xt−1 + v(Xt−1)dt+ Σ1/2(Bt+1 −Bt) may be written as:
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E(Ψ(X t, t)|X t−1) =

∫
R

Ψ(X t, t)p(X t|X t−1)dX t. (16)

As the process Xt is known up to the Brownian motion ΣdBt, the probability
p(Xt|Xt−1) is a multidimensional Gaussian of variance Σ

√
dt (dt = 1 here) and

we get:

E(Ψ(X t)|X t−1) =
1√

2πdet(Σ)
1
2

∫
R

Ψ(X t, t) exp
(−(X t−1+v−X t)Σ

−1(X t−1+v−X t)
)
dX t.

(17)
By a change of variable Yt = Xt−1 + v −Xt, this expectation can be written
as:

E(Ψ(X t, t)|X t−1) =
1√

2πdet(Σ)1/2

∫
R

Ψ(X t−1+v−Yt, t)exp
(−YtΣ

−1Yt

)
dYt

= Ψ(X t−1 + v, t) ∗ N (0, Σ).

(18)
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Abstract. While image scale spaces are well understood, it is undeniable that the
regularisation parameter in variational optic flow methods serves a similar role
as the scale parameter in scale space evolutions. However, no thorough analysis
of this optic flow scale-space exists to date. Our paper closes this gap by inter-
preting variational optic flow methods as Whittaker-Tikhonov regularisations of
the normal flow, evaluated in a constraint-specific norm. The transition from this
regularisation framework to an optic flow evolution creates novel vector-valued
scale-spaces that are not in divergence form and act in a highly anisotropic way.
From a practical viewpoint, the deep structure in optic flow scale space allows the
automatic selection of the most accurate scale by means of an optimal prediction
principle. Moreover, we show that our general class of optic flow scale-spaces
incorporates novel methods that outperform classical variational approaches.

1 Introduction

Starting with Iijima’s pioneering work on Gaussian scale-space and its use in optical
character recognition many decades ago [12,13], scale-spaces have become versatile
tools for analysing and understanding the multiscale structure of images; see e.g. the
monographs [8,15,21,23] and the references therein. While partial differential equations
(PDEs) of evolution type provide a natural framework for most scale-space concepts
[2], it has also been shown that variational regularisation methods create scale-spaces
where the regularisation parameter acts as scale [18]. Such variational methods, how-
ever, offer much broader application fields than classical data smoothing. In computer
vision, for example, they are widely used for solving correspondence problems. For
specific applications such as optic flow computation in image sequences, variational
methods have become highly sophisticated and constitute the most accurate methods
to date [3]. In contrast to classical image regularisation methods, however, these optic
flow methods do not regularise image data, but constraint equations. For instance, in
the classical method of Horn and Schunck, a grey value constancy assumption replaces
the role of a data fidelity term [11]. Therefore, it is unclear in which sense one may
interpret variational optic flow methods as scale-spaces. However, in view of the fact
that the unreliable normal flow is essentially the only information that can be extracted

A.M. Bruckstein et al. (Eds.): SSVM 2011, LNCS 6667, pp. 713–724, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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directly from the data in an image sequence, it is astonishing that modern variational
optic flow methods are capable of achieving results of such a high quality. Thus, there
is a clear need to understand their scale-space behaviour.

The goal of our paper is to address this problem. Our contributions are fourfold:

1. We interpret the classical variational methods of Horn and Schunck [11] and of
Nagel and Enkelmann [17] as Whittaker-Tikhonov regularisations of the normal
flow. We show that this requires to replace the Euclidean norm by a space-variant
matrix-induced norm that respects the data constraints.

2. We generalise this framework to a broader class of methods that also allows to
come up with new models that have not been considered before. We show that they
can offer better performance than the classical variational methods.

3. Going from the regularisation framework to a scale-space representation, we come
up with the novel concept of optic flow scale-spaces. They are parabolic evolutions
of vector-valued data with the regularisation parameter as scale and the normal
flow as initial state. However, in contrast to many image scale-spaces they are not
of divergence type and hence do not preserve the average value of the initial data.
Moreover, they turn out to be highly anisotropic. Both properties are essential for
the remarkable performance of optic flow methods.

4. Having a scale-space evolution, it is natural to explore its deep structure. To this
end, we show that the optic flow scale-space provides an efficient framework for
automatically selecting the best scale that gives the most accurate optic flow field.
As a parameter-free scale selection principle we employ the Optimal Prediction
Principle, which is specifically tailored to the needs of optic flow estimation [25].

This paper is not intended to present a new high accuracy optic flow method. Rather, we
want to investigate the scale space behaviour of variational optic flow methods. Thus,
we intentionally do not consider algorithmic sophistications such as robust penalisation
strategies, constancy assumptions without linearisation, multiscale warping strategies,
and nonlocal search methods. Since the focus of our work lies on the fundamental
concepts behind optic flow scale space, the discussion of additional side effects would
obliterate the core message of the paper.

Related Work. The transformation we apply is related to a proposal by Schnörr [19],
who did not pursue this concept further. With respect to the interpretation of varia-
tional methods in terms of specific norms, vector spaces, and higher order manifolds,
there is a huge amount of literature available; see e.g. Sochen et al. [20] and the refer-
ences therein. Particularly interesting in this context is the work of Ben-Ari and Sochen
[5] who derive a class of smoothness terms based on spatially varying norms induced
by suitable embeddings of the flow field into higher dimensional vector spaces. Scale
selection is a classical issue in Gaussian scale-space theory [15]. More specifically,
choosing optimal smoothness parameters is an enduring problem for almost all classes
of scale-space and variational methods. In our context, the works by Krajsek et al. [14],
Mrázek and Navarra [16] and the recent ideas by Zimmer et al. [25] are most relevant.
While there has been some research on scale spaces for image sequences [7,10], to our
knowledge the concept of optic flow scale space has not been considered before.
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Organisation of our Paper. In Section 2, we describe the transformation of classical
optic flow energies into a regularisation framework for the normal flow in a suitable
constraint-induced norm that is further generalised in Section 3. The fourth section
introduces our scale space framework for optic flow. An efficient numerical scheme
is described in Section 5, while the automatic scale selection is discussed in Section
6. Section 7 presents computational results, and we conclude with a summary and an
outlook in Section 8.

2 Variational Optic Flow as Whittaker-Tikhonov Regularisation

As starting point of our derivations of an optic flow scale space we consider the classic
method of Horn and Schunck [11]. This variational method estimates the optic flow field
w := (u, v)� = (u(x, y, z), v(x, y, z))� as the minimiser of the energy functional

E(w) =
∫

Ω

(
(fxu+ fyv + fz)

2 + α
(‖∇u‖2 + ‖∇v‖2) ) dxdy , (1)

where Ω ⊂ R2 represents the spatial image domain, f : Ω × [0,∞) → R the image
sequence, ‖ · ‖ stands for the Euclidean norm, subscripts denote partial derivatives, and
∇ = (∂x, ∂y)� is the spatial gradient operator.

The first term of this functional is called data term and models the linearised as-
sumption that corresponding pixels in subsequent frames have similar grey value. Since
it depends on two unknown functions u and v that describe the horizontal and vertical
displacement field, respectively, its solution is under-determined. Evidently, in order to
find a unique solution, additional assumptions on u and v are needed. This is realised by
the second term – the so-called smoothness term. It penalises variations of the solution
and is weighted by the positive regularisation parameter α.

2.1 Towards Regularisation in a Spatially Varying Norm

In the following, we consider a slightly modified version of the energy (1) with the
additional terms ε2(u2 + v2) + c, where ε is a small positive constant and c(x, y, z) =
−εf2

z /(|∇f |2 + ε2) is a function which does not depend on the unknown and thus
does not play a role in the actual minimisation. Later on, these terms will be useful for
theoretical reasons. The modified energy then reads as

E(w)=
∫

Ω

(
(fxu+ fyv + fz)

2+ ε2(u2 + v2) + c+ α
(‖∇u‖2 + ‖∇v‖2)) dxdy .

(2)
In order to obtain a different much more intuitive understanding of the underlying varia-
tional model, we seek to reformulate the latter energy in an image regularisation frame-
work. Since a smoothness term is already present, the main task is now to derive a
suitable similarity term. To this end, we make use of the following result (see also [1]):
Let wn be the regularised normal flow, given by

wn =
−fz∇f
|∇f |2 + ε2

, (3)



716 O. Demetz et al.

and let A : Ω → R2×2 be a symmetric positive definite matrix in every point of the
image domain defined as

A2 = ∇f∇f� + ε2I , (4)

where I denotes the unit matrix. Then the following equivalence holds:

(fxu+ fyv + fz)
2 + ε2(u2 + v2) + c = (w −wn)�A2 (w −wn) . (5)

This can easily be verified by straightforward calculations. Furthermore, we use the
latter quadratic form and the concept of matrix-weighted norms to rewrite the modified
functional (2) into an image regularisation-like energy [6]

E(w) =
∫

Ω

(
‖w −wn‖2A2 + α

(‖∇u‖2 + ‖∇v‖2) ) dxdy . (6)

In this context, for a symmetric positive definite matrix M the corresponding matrix-
weighted norm is given by ‖x‖2M := 〈x,x〉M = x�Mx. Note that due to the addi-
tional term in (2), the matrix A fulfils these requirements by construction.

Having performed the previous rewritings, the following insight becomes explicit:
Essentially, the seminal variational optic flow method of Horn and Schunck can be in-
terpreted as Whittaker-Tikhonov regularisation of the normal flow in a matrix-weighted
spatially varying norm.

2.2 Analysing the Matrix-Weighted Norm

By analysing the obvious eigenstructure of the constraint matrix A2, we can gain a
deeper understanding of the introduced matrix-weighted norm and thus of the data term.
Using the eigendecomposition of A2 given by

A2 =
(|∇f |2 + ε2

) ∇f
|∇f |

∇f�
|∇f | + ε2

∇f⊥
|∇f |

∇f⊥
|∇f |

�
, (7)

we can express the data term as

‖w−wn‖2A2 =
(|∇f |2 + ε2

)〈
w −wn,

∇f
|∇f |

〉2

+ ε2
〈

w −wn,
∇f
|∇f |

⊥〉2

. (8)

This shows that the central quantity being under consideration is the normal flow wn,
or rather the difference between the actual solution and the normal flow w −wn. This
difference vector is then projected into the local eigensystem of A2. There, its com-
ponent perpendicular to the image gradient is basically negligible (since ε2 is small),
while its component along the image gradient is the part that actually contributes.

This also confirms the classic explanation of the linearised grey value constancy
assumption as a constraint line: The expression fxu + fyv + ft = 0 defines a line per-
pendicular to the image gradient with distance ft/|∇f | from the origin [11]. Also the
findings in [25] are in accordance with this interpretation: There, the authors rewrite the
assumption into a projection of the difference vector w −wn onto the image gradient,
which exactly comes down to our locally adapted norm for ε=0.
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3 Generalisation of the Matrix-Weighted Norm

Up to now, we have mainly reformulated the method of Horn and Schunck and iden-
tified the matrix-induced norm ‖ · ‖A2 to play a central role. Consequently, we now
propose to generalise this idea to a class of norms with varying anisotropy. To this end,
we modify the exponent of the constraint matrix inducing the norm. This yields a data
term of the general form

‖w −wn‖2A2−β (9)

with 0 ≤ β ≤ 2. Larger choices for β do not make sense, since they would invert the
anisotropy, i.e. swap the penalisation directions. The parametrisation of the norm has
been chosen in such a way that for β = 0 the original model of Horn and Schunck,
and for β = 2 a pure decoupled vector-valued regularisation of the normal flow in the
Euclidean norm is obtained (since the constraint matrix collapses to the identity matrix).

To establish a consistently extended model, we also equip the smoothness term with
the same spatially varying norm. This leads to the regulariser

‖∇u‖2A−γ + ‖∇v‖2A−γ (10)

where γ ≥ 0. This generally anisotropic image-driven regulariser allows variations of
the flow field across image edges but not along them. In the special case of γ = β = 0
the model corresponds to Whittaker-Tikhonov regularisation [24,22] as used by Horn
and Schunck [11]. Another special case of our generalised model is obtained for γ = 2
and β = 0: Then, our method resembles the method of Nagel and Enkelmann [17].
Recall that the proposed spatially varying norm naturally arises from the linearised
constancy assumption in the data term. In this way our approach differs significantly
from the work in [5], which derives such a norm by embedding the flow in a higher
dimensional vector space and thus disregards the data term throughout the derivation.
Incorporating both generalisations, we finally consider the energy functional

E(w) =
∫

Ω

(
‖w −wn ‖2A2−β + α

( ‖∇u‖2A−γ + ‖∇v‖2A−γ

) )
dxdy , (11)

with α, β and γ as defined before. This energy functional forms the basis for our optic
flow scale space introduced in the next section.

4 Optic Flow Scale Space

From the calculus of variations it follows that any minimiser of the functional (11) has
to fulfil the associated Euler-Lagrange equation, which reads

w −wn

α
= Aβ−2

(
div (A−γ ∇u)
div (A−γ ∇v)

)
, (12)

with reflecting Neumann boundary conditions n�A−γ∇u = 0 and n�A−γ∇v = 0.
The reader should keep in mind that the argument of the energy (11) as well as the latter
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PDE is vector-valued, since w = (u, v)�. Equation (12) can be seen as a fully implicit
time discretisation of the filter

∂tw = Aβ−2

(
div(A−γ ∇u)
div(A−γ ∇v)

)
, w( · , 0) = wn . (13)

with a single time step of size α, and the normal flow wn as initial state at time t = 0.
Obviously this temporal evolution constitutes a scale space, whose evolution time

t coincides with the regularisation parameter α of the associated energy. Interestingly,
the initial state of our optic flow scale space is the regularised normal flow, which is the
only component of the flow field that can be directly extracted from the image data.

Note that we have transformed the regularisation-like energy functional (11) into a
diffusion-like coupled system of parabolic PDEs (13). In the context of image filtering,
relations between such methods have been investigated by Scherzer and Weickert [18].

5 Numerical Realisation

For solving the parabolic problem in (13) we use an explicit scheme. To this end we
discretise the two flow components u and v by sampling them on a regular grid and
stacking all rows in single vectors u,v ∈ RN , where N denotes the number of pixels.
Using this single-index notation, we discretise the matrix Aβ−2 in pixel i by

Aβ−2
i =

(
ai bi
bi ci

)
, i = 1, . . . , N . (14)

Accordingly, we discretise the diffusive terms using finite differences and obtain a nona-
diagonal diffusion matrix D ∈ RN×N (similar to [23]). This leads to the following
explicit scheme:

(
u
v

)k+1

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
I + τ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 b1
. . .

. . .
aN bN

b1 c1
. . .

. . .
bN cN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
D 0

0 D

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(

u
v

)k

,

(15)
where every iteration advances the evolution by the time step size τ > 0. Thus, after
k iterations (uk,vk)� contains the flow field at scale α = k · τ . As a consequence,
this explicit scheme inherently samples the whole scale space up to the stopping time
α in intervals of size τ . Thereby, the whole iteration matrix remains constant for all
iterations, since all terms are exclusively image-driven.

In order to accelerate this explicit scheme, we made use of the recently introduced
fast explicit diffusion (FED) strategy [9], which performs cycles of explicit iterations
with varying time step sizes. In particular, up to 50% of the step sizes can exceed the
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stability limit significantly, while the overall process remains provably stable. By that,
the order of the smoothing time reached in n steps can be increased from O(n) to
O(n2). In our case, this is very beneficial, since the maximal stable time step size of the
explicit scheme can decrease drastically with increasing anisotropy or small choices of
the parameter β.

6 Scale Selection

In the previous sections, we have set up a novel class of optic flow scale spaces which
all evolve in the regularisation parameter α. Evidently, in our optic flow setting there
exists one scale within each scale space that provides the flow with the highest accuracy.
Since the optic flow on all scales is available by construction, we have access to the deep
structure of this scale space and can exploit this information to perform an automatic
scale selection. To this end, we adapt the Optimal Prediction Principle (OPP) recently
developed by Zimmer et al. [25]. In short, this principle suggests to rate the quality
of an optic flow field between the first and second frame according to its extrapolation
quality from the first to the third frame. The underlying assumption is that the velocity
of objects (or the camera) remains constant over time. It is shown in [25] that this simple
assumption works very well for the automatic estimation of the smoothness weight α.

In our case, for a given flow field w=(u, v)� between the frames at time z and z+1,
we assess the extrapolation quality by evaluating the Average Data Constancy Error
(ADCE), which is based on the grey value constancy assumption without linearisation:

ADCE1,3(w) =
1
|Ω|

∫
Ω

(
f(x+ 2u, y + 2v, z + 2)− f(x, y, z) )2dxdy . (16)

It is obvious that if the model assumptions hold, a good flow field will lead to small val-
ues of this error measure. Note that in contrast to the optimisation strategy in [25], we
can exploit the following advantageous property of our numerical scheme: It explicitly
evolves in the parameter α, hence after each iteration the flow field at cumulated time α
is available, and the ADCE can be evaluated. This on-the-fly computation of the qual-
ity estimate is not possible for most other optic flow methods, because they typically
require to solve a new system of equations for each value of α.

Besides the OPP, we also tried other schemes for automatic scale estimation. In par-
ticular, we investigated the performance of the decorrelation method by Mrázek and
Navarra [16]. However, experiments indicated that the underlying assumptions do not
hold for our optic flow scale space.

7 Experiments

In order to investigate the behaviour of our optic flow scale space we perform experi-
ments on several image sequences that are publicly available and for which the ground
truth flow field is known. In particular, we use the Yosemite sequence with and without
clouds [4], the New Marble1 sequence as well as the Rubberwhale sequence [3].

1 available from http://i21www.ira.uka.de/image_sequences

http://i21www.ira.uka.de/image_sequences
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Fig. 1. Scale space at different stopping times for varying β and γ
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In our first experiment we compute samples of the scale space for the New Mar-
ble sequence at different evolution times and for several choices of β and γ. Figure 1
shows the corresponding flow fields, where colour encodes the direction and bright-
ness indicates the magnitude of the displacements. Here, one can clearly see the scale
space behaviour of the proposed diffusion-like optic flow process: Independently of β
and γ, the initial state of all these scale spaces (α = 0) is given by the noisy normal
flow, while for larger values of α the flow fields become successively smoother. In this
context, we make two observations: On the one hand, for γ > 0 discontinuities are
preserved for a longer time, since the regulariser is then of image-driven anisotropic
nature. On the other hand, results for β > 0 are slightly less noisy, since the larger
eigenvalue of A2−β – the one that depends on the magnitude of the image gradient – is
now subject to a smaller exponent, cf. Equation (8). This becomes particularly visible
in the magnifications shown in Figure 2.

β = 0 β = 0.5

γ
=

0
γ

=
0
.5

Fig. 2. Zoom into the optic flow fields at scale α = 1000 from Figure 1

In a second experiment, we compare the accuracy of the proposed scheme against
the two special cases in our framework: Horn and Schunck (β = γ = 0) and Nagel
and Enkelmann (β = 0, γ = 2). This is done for the aforementioned image sequences
by means of the Average Angular Error (AAE) [4]. Please note that we keep the pres-
moothing scale fixed at σ=1 throughout all experiments, since its impact is not in the
focus of our contribution. Table 1 demonstrates that our method consistently leads to
improved results. In particular, it shows that the additional degrees of freedom β and γ
provided by our general class of scale spaces can be beneficial.
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Table 1. Quantitative error measurements in terms of the AAE on different image sequences. For
our method, β and γ have been optimised. The actual choices are given in brackets.

Image sequence Horn / Schunck Nagel / Enkelmann Our method

New Marble 2.65 2.77 2.53 (β=1.0, γ =0.4)
Rubberwhale 10.58 9.27 9.04 (β=0.5, γ =1.0)

Yosemite 7.51 6.86 6.41 (β=0.4, γ =0.9)
Yosemite no clouds 2.82 3.63 2.76 (β=0.2, γ =0.1)
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Fig. 3. Automatic scale selection using the Optimal Prediction Principle. (a) Left: Graphs of
the ADCE and AAE side-by side. Crosses denote the minimal value of the graph. (b) Right:
Estimation results of the selected scale α for different image sequences. Triangles indicate the
estimated value and squares denote the optimal choice.

In our third experiment, we investigate the automatic selection of the scale parameter
α of our model using the OPP. To this end, we first juxtapose the graph of the estimated
quality in terms of the ADCE with the graph of the measured accuracy given by the AAE
in Figure 3 (a). This is done for the Yosemite sequence with clouds with β = γ = 0.5.
One can see that both graphs have a similar and well aligned shape. In particular, the
minima of both curves are attained at almost the same position. Secondly, we compare
the estimated values for the regularisation parameter α against those that are optimal
with respect to the AAE. This is done for all four image sequences with β = γ = 0.5
fixed. As one can see from Figure 3 (b), the OPP works very well in practice: In all
cases, the AAE at the estimated scale is close to the one of the optimal scale.

In our final experiment we analyse how the two generalisation parameters β and γ
influence the accuracy of the estimation. To this end, we have computed the AAE for
β, γ ∈ [0, 2] using the Yosemite sequence with clouds. As in the previous experiments,
the selection of the stopping time α within each scale space has been performed auto-
matically using the OPP. The resulting graphs in Figure 4 (a) and (b) show that for both
parameters values larger than zero consistently improve the accuracy.
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Fig. 4. Influence of the parameters β and γ on the accuracy. (a) Left: Behaviour under variations
of β for fixed γ. (b) Right: Ditto for varying γ and fixed β. In both cases, crosses indicate the
minimum of the graphs.

8 Conclusion

It is surprising that in spite of many years of scale space research the scale space charac-
ter of variational optic flow methods has not been analysed so far. We have shown that
such an analysis can be a very worthwhile endeavour: It provides interesting insights
in the regularisation behaviour of variational optic flow methods by interpreting them
as classical regularisation in a problem-specific norm. Linking this to novel parabolic
scale space evolutions that are highly anisotropic and not of diffusion type shows that
modern scale space research has only discovered a glimpse of the entire fascinating
world of scale space concepts in image processing and computer vision. It would be
nice, if our paper serves as a starting point for further research in this direction.

Acknowledgements. Our work has partially been funded by the Cluster of Excellence
Multimodal Computing and Interaction within the Excellence Initiative of the German
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Abstract. Understanding of articulated shape motion plays an important role in
many applications in the mechanical engineering, movie industry, graphics, and
vision communities. In this paper, we study motion-based segmentation of artic-
ulated 3D shapes into rigid parts. We pose the problem as finding a group-valued
map between the shapes describing the motion, forcing it to favor piecewise rigid
motions. Our computation follows the spirit of the Ambrosio-Tortorelli scheme
for Mumford-Shah segmentation, with a diffusion component suited for the group
nature of the motion model. Experimental results demonstrate the effectiveness
of the proposed method in non-rigid motion segmentation.

Keywords: Motion Segmentation, Lie-groups, Surface Diffusion, Ambrosio-
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1 Introduction

The analysis of articulated motion in three-dimensional space is a key problem in
biomechanics [1], mechanical engineering, computer vision [28,31,20,37], and com-
puter graphics [24,29,41,27,44,6,43]. Specific problems of deformation analysis [4] and
motion segmentation [5,13] try to infer the articulated motion of an object, given several

� This research was supported in part by The Israel Science Foundation (ISF) grant number
623/08, and by the Goldstein UAV and Satellite Center.

A.M. Bruckstein et al. (Eds.): SSVM 2011, LNCS 6667, pp. 725–736, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



726 G. Rosman et al.

instances of the analyzed object in different poses. The desired outcome is the segmen-
tation of the object into rigid parts and motion estimation between the corresponding
parts.

Most motion analysis techniques either assume a known prior on the articulated
structure of the inspected object (e.g., in the form of a skeleton), or decide on the struc-
ture in an ad hoc manner, not based on the kinematic model commonly assumed for
near-rigid objects [1,4]. Since in many cases such a priori assumptions about the data
are only approximate, they can lead to errors in the segmentation and motion estimation.

Another common assumption, especially in graphics applications, is that of known
correspondence. In computer graphics, the problem is usually referred to as dynamic
mesh segmentation.

The above assumptions are often too limiting in real-world applications. Instead, we
would like to apply the intuition often used when studying real-life near-rigid objects,
about the existence of an average rotational motion existing for each body part, but do
so without attempting to detect the articulated parts in advance, and without assuming
the existence of a clear partition of the surface. In other words, we would like to ob-
tain a “soft” segmentation of the surface, without knowing the number or location of
regions in advance, without analyzing the surface features, or having additional priors
on the various object parts. In addition, we expect a complete formulation of motion
segmentation to incorporate an implicit handling of the correspondence problem, given
a reasonable initialization.

Main contribution. In this paper we try to remedy the shortcoming of existing ap-
proaches to articulated motion estimation by combining the two tasks of motion esti-
mation and segmentation into a single functional. Unlike existing methods, we propose
a principled variational approach, attempting to find a rigid transformation at each sur-
face point, between the instance surfaces, such that the overall transformation is de-
scribed by a relatively sparse set of such transformations, each matching a rigid part
of the object. The functional we propose regularizes the motion between the surfaces,
and is guided by the fact that the parameters of the motion transformations (i) should
describe the motion at each point with sufficient accuracy; (ii) should vary smoothly
within (unknown) rigid parts; (iii) can vary abruptly between rigid parts.

We see the main contribution of this paper in the following three aspects: First, we
propose an axiomatic variational framework for articulated motion segmentation. While
focusing on the segmentation problem in this paper, our framework is more general
and the proposed functionals can be easily incorporated into other applications such as
motion estimation, tracking, and surface denoising. Second, we demonstrate that the
articulated motion segmentation problem can be solved within the proposed framework
by adapting standard tools from variational segmentation to the geometry of the case,
and obtain results competitive with domain-specific state-of-the-art tools. Third, we
suggest a spatially-coherent algorithm for spatial visualization of group valued data on
manifolds, which draws from the same variational principles.

Relation to prior work. The scheme we propose involves diffusing the transformations
along the surface, in the spirit of the Ambrosio-Tortorelli scheme [2] for Mumford-Shah
segmentation [33]. The diffusion component of our scheme is a diffusion process of Lie



Group-Valued Regularization Framework for Motion Segmentation 727

group elements, which has recently attracted significant attention in other applications
[16,39,18]. In diffusing transformations on the surface, our work is similar to that of
Litke et al. [30]. We do not, however, make any assumption on the surface topology;
to that end, the proposed method diffuses transformations along the surface, rather than
representing the surface in an evenly sampled 2D parametrization plane. When dealing
with real-life deformable objects that seldom admit regular global parametrization, such
an assumption could be too restrictive.

The idea of combining soft segmentation and motion estimation has been attempted
before in the case of optical flow computation (see, e.g., [3]). In optical flows, how-
ever, the motion field is merely expected to be piecewise smooth. For truly articulated
objects one would expect piecewise-constant flow fields, when expressed in the correct
parametrization.

Finally, our work is related, and complementary, to the topic of geometry-based
mesh segmentation. While several works from this field can be combined with motion
based segmentation techniques, this is not the focus of this work. We point the reader
to [7,38,12,26], and references therein, for additional examples of mesh segmentation
algorithms.

2 Problem Formulation

Articulation model. Let us be given a three-dimensional shape, which we model as
a two-dimensional manifold X . In the following, we will denote by x : X → R3 the
embedding of X into R3, and use synonymously the notation x and x referring to a
point on the manifold and its Euclidean embedding coordinates, respectively.

We further assume that the shapeX is articulated, i.e., can be decomposed into rigid
parts S1, . . . , Sp and nonrigid joints J1, . . . , Jq, such thatX =

⋃p
i=1 Si∪

⋃q
k=1 Jk. An

articulation Y = AX is obtained by applying rigid motions Ti ∈ Iso(R3) (rotations
and translations) to the rigid parts, and non-rigid deformations Qk to the joints, such
that AX =

⋃p
i=1 TiSi ∪

⋃q
k=1 QkJk.

Motion segmentation. The problem of motion-based segmentation, in its simplest set-
ting can be described as follows: given two articulations of the shape,X and Y , extract
its rigid parts. Extension to the case of multiple shape poses is straightforward. We
therefore consider in the following only a pair of shapes for the sake of simplicity and
without loss of generality.

Assuming that the correspondence between the points on two shapes X and Y is
known, given two corresponding points x ∈ X and y(x) ∈ Y , we can find a motion g ∈
G such that gx = y, where G is some representation of coordinate transformations in
R3, and with some abuse of notation, gx ∈ R3 denotes the action of g on the coordinates
of the point x. We can represent the transformation at each point as a field g : X → G.

Since the articulated parts of the shape move rigidly, if we choose an appropriate
motion representation (as detailed below), two points x, x′ ∈ Si will undergo the same
transformation, from which it follows that g(x)|x∈Si

= const. One possibility is to
adopt a constrained minimization approach, forcing g(X) = Y , where g(X) is a short
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notation for the set g(x)x(x) for all x ∈ X . A more convenient possibility is to take an
unconstrained formulation,

min
g:X→G

λEDATA(g) + ρ(g), (1)

where ρ denotes some regularization term which is small if g is piecewise constant.
EDATA(g) is our fitting term which penalizes the discrepancy between the transformed
template surface g(X) and Y ,

EDATA(g) =
∫

X

‖g(x)x− y(x)‖2da, (2)

where y(x) denotes the coordinate of the point on Y corresponding to x, g(x) is the
transformation at x, and da is a measure onX .

Such a formulation allows us to recover the articulated parts by clustering g into
regions of equal value. This formulation (presented in Section 4.4) bears much resem-
blance to total variation regularization common in signal and image processing [35].

One tacit assumption in this problem is that the correspondence betweenX and Y is
known, which is usually not true. We will mention this issue in Section 4.1. Second, it
is crucial to observe that the effectiveness of (1) relies on some correct representation
G of the motion. The simplest representation is the linear motion, assuming G = R3

such that gx = x + t = y for some t ∈ R3. However, such a simplistic model fails
to capture the piecewise constancy of the motion field. It is thus clear that we need a
representation of motion that is redundant (i.e., an over-parametrization using more
than three degrees of freedom to describe a transformation) and in which motions of
points that move rigidly are described by the same element of G.

One parametrization often used in computer vision and robotics [42,32,27,18] is the
representation of rigid motions by the Lie group SE(3) and the corresponding Lie
algebra se(3), respectively. Lie groups are topological groups with a smooth manifold
structure such that the group action G ×G 
→ G and the group inverse are differentiable
maps. Each Lie group has a Lie algebra associated with it, which can be mapped via the
exponential map onto the tangent space at the identity operator. The Lie algebra se(3)
allows us to represent rotations and rigid motions locally in a consistent linear space
using the logarithm and exponential maps at each point. We refer the reader to standard
literature on the subject (e.g., [19]) for more information.

The Lie algebra of SE(3) is the group of 4× 4 matrices of the form

se(3) =
(
A t
0 1

)
,A ∈ so(3), t ∈ R3, (3)

where so(3) is the set of 3× 3 skew-symmetric matrices.
Under the assumption of G = SE(3), we have our desired property that the transfor-

mation of points undergoing a rigid motion are described by the same group element.
Solving problem (1) thus requires a regularization term ρ that favors piecewise con-
stancy of group elements on the shape. We discuss such a regularization in Section 3.
We also note that due to the non-Euclidean structure of the group, special care should
be taken when parameterizing such a representation [32,18,39,27], as discussed in Sec-
tion 4.2.
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3 Diffusion-Based Regularization

Thinking of the Lie group G as a Riemannian manifold, we look for a functional defined
on maps between manifolds of the form g : X → G. Such maps can be regularized by
the well-known Dirichlet energy [25],

ρDIR(g) =
1
2

∫
X

〈∇g,∇g〉g(x)da, (4)

where ∇g denotes the intrinsic gradient of g on X , 〈·, ·〉g(x) is the Riemannian metric
on G at a point g(x), and da is the area element of X . The minimizer of the Dirich-
let energy is called a harmonic map, and it is the solution of a diffusion equation. In
the case where both X and G are Euclidean, ρDIR reduces to the standard Tikhonov
regularization.

Ambrosio-Tortorelli scheme. Unfortunately, the Dirichlet energy does not favor
piecewise-constancy of g, as is desired. We therefore adopt the Ambrosio-Tortorelli
scheme [2] for Mumford-Shah regularization [33], in which the Dirichlet energy term
is modulated by a diffusivity function v : X → [0, 1],

ρAT(g) =
∫

X

(
1
2
v2〈∇g,∇g〉g + ε〈∇v,∇v〉+

(1− v)2
4ε

)
da, (5)

where ε is a small positive constant. This allows us to extend our outlook in several
ways. The Mumford-Shah functional replaces the notion of a set of regions with closed
simple boundary curves with general discontinuity sets. It furthermore generalizes our
notion of constant value regions with that of favored smoothness inside the areas defined
by these discontinuity curves. This is in order to handle objects which deviate from
articulated motion, for example in flexible regions or joints.

Furthermore, the generalized Ambrosio-Tortorelli scheme allows us to explicitly rea-
son about the places in the flow where the nonlinear nature of the data manifold man-
ifests itself. Suppose we have a solution (g∗, v∗) satisfying our piecewise-constancy
assumptions of g, and a diffusivity function with 0 at region boundaries and 1 else-
where. At such a solution, we expect two neighboring points which belong to different
regions to have a very small diffusivity value v connecting them, effectively nullifying
the interaction between far-away group elements which is dependent on the mapping
used for the logarithm map at each point, and hence can be inaccurate [22,32]. While
such a solution (g∗, v∗) may not be a minimizer of the functional, it serves well to
explain the intuition motivating the choice of the functional.

Diffusion of Lie group elements. In order to efficiently compute the Euler-Lagrange
equation corresponding to the generalized Ambrosio-Tortorelli functional (5), we trans-
form the neighborhood of each point into the corresponding Lie algebra elements before
applying the diffusion operator. Using Lie algebra representation of differential oper-
ators for rigid motion has been used before in computer vision [39], numerical PDE
computations [22], path planning and optimal control theory [32,27].



730 G. Rosman et al.

The Euler-Lagrange equation for the generalized Dirichlet energy measuring the map
between two manifolds is given as [25]

ΔXg
α + Γα

βγ

〈∇gβ,∇gγ
〉

g(x)
= 0, (6)

where α, β, γ enumerate the local coordinates of our group manifold, se(3), and we
use Einstein’s notation according to which corresponding indices are summed over.
Γα

βγ are the Christoffel symbols of SE(3), which express the Riemannian metric’s local
derivatives. We refer the reader to [15] for an introduction to Riemannian geometry.
Finally,ΔX denotes the Laplace-Beltrami operator on the surfaceX .

In order to avoid the computation of the Christoffel symbols, we transform the point
and its neighbors using the logarithm map at that point in SE(3). The diffusion opera-
tion is now affected only by the structure of the surfaceX . After applying the diffusion
operator, we use the exponential map in order to return to the usual representation of
the transformation.

4 Numerical Considerations

We now describe the algorithm for articulated motion estimation based on the mini-
mization of the functional

E(g, v) = λEDATA(g) + ρAT (g, v), (7)

where EDATA(g) is the matching term defined by Equation 2, and ρAT (g, v) is defined
in Equation 5. The main steps of the algorithm are outlined as Algorithm 1. Throughout
the algorithm we parameterize g(x) based on the first surface, given as a triangulated
mesh, with vertices {xi}N

i=1, and an element from SE(3) defined at each vertex. The
triangulation is used merely to obtain a more consistent numerical diffusion operator,
and is not required otherwise. Special care is made in the choice of coordinates during
the optimization as explained in Section 4.2.

4.1 Initial Correspondence Estimation

As in other motion segmentation algorithms, some initialization of the matching be-
tween the surfaces must be used. One approach [6] is to use nonrigid surface matching
for initialization. Another possibility, in the case of high framerate sequences [44], is
to exploit temporal consistency. While we focus on the functional itself, we present a
possible initialization scheme which assumes a known sparse correspondence between
the surfaces (simulating motion capture markers). We then interpolate this sparse set in
order to initialize an iterative closest point (ICP) search [8], matching the patch around
each point to the target mesh. In Figure 3, we use 30 matched points for initialization.
This number of points is within the scope of current motion capture marker systems, or
of algorithms for global nonrigid surface matching such as spectral methods [23,34,36],
or the generalized multidimensional scaling (GMDS) algorithm [9].

We expect better initial registration, possibly using a smoothness assumption, to al-
low fewer markers to be used.
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4.2 Diffusion of Lie Group Elements

Rewriting the optimization over the functional in Equation 7 in a fractional step ap-
proach [45], we update each function in a suitable representation.

Using the transformation described in Section 3, the update step with respect to the
regularization now becomes [18]

gk+1/2 = exp
(
−dtδρAT

δg̃

)
gk, vk+1 = vk − dtδρAT

δv
(8)

where exp(A) = I + A + A2/2! + A3/3! + . . . denotes the matrix exponential, g̃
denotes the logarithm transform of g, and dt denotes the time step. δρAT

δg̃ denotes the
variation of the regularization term ρAT (g) w.r.t. the Lie-algebra local representation of
the solution, describing the Euler-Lagrange descent direction. g(x) and the neighboring
transformations are parameterized by a basis for matrices in se(3), after applying the
logarithm map at g(x). The descent directions are given by

δρAT

δg̃i
= v2ΔX(g̃i) + v 〈∇v,∇g̃i〉 (9)

δρAT

δv
= 〈∇g,∇g〉g(x)v + 2εΔX(v) +

(v − 1)
2ε

,

where g̃i denote the components of the logarithmic representation of g. The discretiza-
tion we use for ΔX is a cotangent one suggested by [14], which has been shown to be
convergent for relatively smooth and well-parameterized surfaces. It is expressed as

ΔX (u) ≈ 3
Ai

∑
j∈N1(i)

cotαij + cotβij

2
[uj − ui] , (10)

for a given function u on the surface X , where N1(i) denotes the mesh neighbors of
point i, and αij , βij are the angles opposing the edge ij in its neighboring faces. Ai

denotes the area of the 1-ring around i in the mesh. After a gradient descent step w.r.t.
the diffusion term, we take a step w.r.t. the data term.

gk+1 = PSE(3)

(
gk+1/2 − dtδEDATA

δg

)
, (11)

where PSE(3)(·) denotes a projection onto the group SE(3) obtained by correcting
the singular values of the rotation matrix. We compute the gradient w.r.t. a basis for
small rotation and translation matrices comprised of the regular basis for translation
and the skew-matrix approximation of small rotations. We then reproject the update
onto the manifold. This keeps the inaccuracies associated with the projecting manifold-
constrained data [32,18] at a reasonable level.

Finally, we note that we may not know in advance the points y(x) which match X
in Y . The correspondence can be updated based on the current transformations in an
efficient manner similarly to the ICP algorithm [8], using aKD-tree.
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4.3 A Patch-Based Data Term

The data term we use works to fit the 3 output functions of the transformations defined
on the surface. As in the case of the aperture problem in optical flow computation, it
is the regularization term that helps us obtain a complete view of the transformations
field. However, as in optical flow computation [11], extending the surface matching to a
small patch around each point gave us a more robust estimation of the transformations.
The revised data term reads

EDATA(g) =
∫

X

∫
N (x)

‖g(x)x− y(x)‖2da× da, (12)

whereN (x) denotes a small neighborhood around the point x.

Algorithm 1. Articulated Surface Segmentation and Matching
1: Given an initial correspondence.
2: for k = 1, 2, . . . , until convergence do
3: Update gk+1/2, vk+1 w.r.t. the diffusion term, according to Equation 8.
4: Obtain gk+1 according to the data term, using Equation 11.
5: Update yk+1(x), the current estimated correspondence of the deformed surface.
6: end for

4.4 Visualizing Lie Group Clustering on Surfaces

Finally, we need to mention the approach taken to visualize the transformations as the
latter belong to a six-dimensional non-Euclidean manifold. Motivated by the widespread
use of vector quantization in such visualizations, we use a clustering algorithm with spa-
tial regularization. Instead of minimizing the Max-Lloyd cost function, we minimize the
function

EV IS(gi, Ri) =
∑

i

∫
Ri

‖g − gi‖2da+
∫

∂Ri

v2(s)ds, (13)

where ∂Ri denotes the set of boundaries between partition regions {Ri}N
i=1, gi are the

group representatives for each region, and v2(s) denotes the diffusivity term along the
region boundary. Several (about 50) initializations are performed, as is often customary
in clustering, with the lowest cost hypothesis kept.

While this visualization algorithm coupled with a good initialization at each point
can be considered as a segmentation algorithm in its own right, it is less general as it as-
sumes a strict separation between the parts. We further note, however, that the diffusion
process lowered the score obtained in Equation 13 in the experiments we conducted,
indicating a consistency between the two algorithms in objects with well-defined rigid
parts.
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5 Results

We now demonstrate the results obtained by our method, in terms of the obtained trans-
formation field and the diffusivity function. In Figure 1 we demonstrate matching be-
tween two human body poses taken from the TOSCA dataset [10]. As can be seen,
the diffusivity function hints at the location of boundaries between parts. In addition,
we visualize the transformations obtained using the clustering algorithm described in
subsection 4.4.

Figure 1 also demonstrates the results of comparing four poses of the same surface,
this time with the patch-based data term described by (12). In our experiments the patch-
based term gave a cleaner estimation of the motion as is observed in the diffusivity
function.

We also demonstrate our algorithm on a horse taken from [40] as a set of 6 poses in
Figure 2. In this figure we compare our results to those of [43], obtained on a similar set

Fig. 1. Segmenting a human figure. Top row: the set of poses used. Bottom row, left-to-right: the
transformations obtained from the two left most poses, the transformations obtained from all four
poses using Equation 12 as a data term, and the Ambrosio-Tortorelli diffusivity function based
on four poses.

Fig. 2. Segmenting a horse dynamic surface motion based on six different poses. Top row: the
poses used. Bottom row, left to right: a visualization of the transformations of the surface obtained
by our method, and the segmentation results obtained by [43], and the diffusivity function v.
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Fig. 3. Segmenting a horse dynamic surface motion with a given sparse initial correspondences.
Top row: the eight random poses used. Bottom row, left to right: the set of points used for ini-
tializing the convergence, and a visualization of the transformations obtained, and the diffusivity
function v.

of poses with 10 frames. In Figure 3 we demonstrate our algorithm while initializing
it from a set of 30 points where displacement is known. The relatively monotonous
motion range available in the dynamic mesh sequence leads to a less complete, but
still quite meaningful, segmentation of the horse, using an initialization which can be
obtained by a feasible setup. We also note the relatively low number of poses required
for segmentation – in both Figure 2 and Figure 3 we obtain good results despite the fact
we use only a few poses, six and eight respectively. This contrasts with 10 poses used
in [43], the results of which are shown in Figure 2 for comparison.

Finally, in Figure 3 we demonstrate convergence based on a sparse initialization,
with 30 known correspondence points, arbitrarily placed using farthest point sampling
[17,21]. This demonstrates a possibility of initializing the algorithm using motion cap-
ture markers, coupled with a 3D reconstruction pipeline, for object part analysis. While
the examples shown in this paper are synthetic, this experiment demonstrates the algo-
rithm can be incorporated into a real-world system.

6 Conclusion

In this paper we have presented a method for simultaneous segmentation and motion es-
timation in articulated objects, based on a variational formulation. Several results shown
demonstrate the method’s effectiveness, and merit its application to specific problems
where it can be contrasted and combined with domain-specific algorithms for articu-
lated object analysis. In future work we intend to adapt the proposed algorithm to real
data from range scanners, and explore initialization methods as well as use the proposed
framework in other applications such as articulated surfaces tracking and denoising.
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40. Sumner, R.W., Popović, J.: Deformation transfer for triangle meshes. In: Proc. SIGGRAPH,
pp. 399–405. ACM, New York (2004)

41. Tierny, J., Vandeborre, J.-P., Daoudi, M.: Fast and precise kinematic skeleton extraction of
3D dynamic meshes. In: Proc. Int. Conf. Pattern Recognition, pp. 1–4 (2008)

42. Tuzel, O., Porikli, F., Meer, P.: Learning on lie groups for invariant detection and tracking.
In: Proc. CVPR, pp. 1–8 (2008)

43. Wuhrer, S., Brunton, A.: Segmenting animated objects into near-rigid components. The Vi-
sual Computer 26, 147–155 (2010)

44. Yamasaki, T., Aizawa, K.: Motion segmentation for time-varying mesh sequences based on
spherical registration. EURASIP Journal on Applied Signal Processing (2009)

45. Yanenko, N.N.: The method of fractional steps: solution of problems of mathematical physics
in several variables. Springer, Heidelberg (1971) (translated from Russian)



Wavelet-Based Fluid Motion Estimation

Pierre Dérian, Patrick Héas, Cédric Herzet, and Étienne Mémin

INRIA Rennes-Bretagne Atlantique,
Campus universitaire de Beaulieu, 35042 Rennes Cedex, France

{Pierre.Derian,Patrick.Heas,Cedric.Herzet,Etienne.Memin}@inria.fr
http://irisa.fr/fluminance

Abstract. Based on a wavelet expansion of the velocity field, we present
a novel optical flow algorithm dedicated to the estimation of continuous
motion fields such as fluid flows. This scale-space representation, asso-
ciated to a simple gradient-based optimization algorithm, naturally sets
up a well-defined multi-resolution analysis framework for the optical flow
estimation problem, thus avoiding the common drawbacks of standard
multi-resolution schemes. Moreover, wavelet properties enable the design
of simple yet efficient high-order regularizers or polynomial approxima-
tions associated to a low computational complexity. Accuracy of pro-
posed methods is assessed on challenging sequences of turbulent fluids
flows.

Keywords: Optical flow, continuous fluid motion, wavelet multi-
resolution analysis, high-order regularization, polynomial approximation.

1 Introduction

Recent years have seen significant progress in signal processing techniques for fluid
motion estimation. The wider availability of image-like data, whether coming from
experimental facilities (e.g. particle image velocimetry) or from larger-scale geo-
physical study systems such as lidars or meteorological and oceanographical satel-
lites, strongly motivates the development of computer-vision methods dedicated
to their analysis. Correlation-based and variational methods have proven to be ef-
ficient in this context. However, the specific nature of fluid motion highly compli-
cates the process. Indeed, one has to deal with continuous fields showing complex
structures evolving at high velocities. This is particularly problematic with opti-
cal flow methods, where the problem non-linearity requires to resort to an ad-hoc
multi-resolution strategy. Although leading to good empirical results, this tech-
nique is known to have a number of drawbacks. Moreover, the underdetermined
nature of the optical flow estimation problem imposes to add some prior infor-
mation about the sought motion field. In many contributions dealing with rigid-
motion estimation, first-order regularization is considered with success. However,
when tackling more challenging problems such as motion estimation of turbulent
fluids, this simple prior turns out to be inadequate. Second-order regularizers al-
lowing to enforce physically-soundproperties of the flow are considered [2,4,10,11],
but their implementation raises up several issues.
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In this paper, we propose an optical-flow estimation procedure based on
a wavelet expansion of the velocity field. This approach turns out to offer a
nice mathematical framework for multi-resolution estimation algorithms, which
avoids some of the drawbacks of the usual approach. Note that algorithms based
on wavelet expansion of the data [1] or the velocity field [9] have been previously
proposed. However, unlike the algorithm presented hereafter, the computational
complexity of the later seriously limits its application to small images and/or
the estimation of the coarsest motion scales. Moreover, we consider the effective
implementation of high-order regularization schemes, based upon very simple
constraints on the wavelet coefficients at small scales. We finally assess the rel-
evance of proposed methods on challenging image sequences of turbulent fluid
motions. Simulation results prove that the proposed approach outperforms the
most effective state-of-the-art algorithms.

2 Optical Flow Background

Optical flow estimation is an ill-posed inverse problem. It consists in estimating
the apparent motion of a 3D scene through image brightness I(x, t) variations in
space x = (x1, x2)T ∈ Ω ⊂ R2 and time t ∈ R. Optical flow, identified by a 2D
velocity field v(x, t) : Ω × R+ 
→ R2 is the projection on the image plane of the
3D scene velocity. Its estimation involves two main aspects: a data model that
links image data to the velocity field and a regularization scheme to overcome
the ill-posedness.

2.1 Non-linear Data Model

Data models are commonly built upon assumptions about the temporal varia-
tions of the image brightness. The integration of a conservation assumption leads
to the well-known Displaced Frame Difference (DFD) equation, which is studied
in the following. However, the approach remains valid for any other integrated
data model. Let us denote by I0(x) and I1(x) two consecutive image samples
of the continuous sequence I(x, t) which has been discretized in time with a
unit interval. Under rigid motion and stable lighting conditions, v = (v1, v2)T

satisfies the standard DFD equation, which reads:

∀x ∈ Ω, fDFD(I,v) = I1(x + v(x))− I0(x) = 0 . (1)

The estimated motion field v̂ is obtained by minimizing a cost function, which
we chose quadratic in the following to clarify the presentation:

v̂ = argmin
v

JDFD(I,v) , with JDFD(I,v) =
1
2

∫
Ω

|fDFD(I,v)|2dx . (2)

The data model being non-linear w.r.t. the velocity field v, estimation of optical
flow therefore requires a specific optimization approach.
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2.2 Classical Multi-resolution Strategy

Indeed, the equations for the inversion are only valid if the solution remains
in the linearity region of the image intensity function. A standard approach for
tackling non-linearity is to rely on an incremental multi-resolution strategy. This
approach consists in choosing some sufficiently coarse low-pass-filtered version
of the images at which the linearity assumption is valid, and to estimate a first
displacement field assumed to correspond to a coarse representation of the mo-
tion. Then, a so-called Gauss-Newton strategy is used by applying successive
linearizations around the current estimate and warping accordingly a represen-
tation of the images of increasing resolution. More explicitly, let us introduce
the following incremental decomposition of the displacement field at resolution1

2j:
vj = ṽj + v′

j (3)

where v′
j represents the unknown incremental displacement field at resolution

2j and ṽj 	
∑

i<j Pj(v′
i) is a coarse motion estimate computed at the previous

scales; Pj(v′
i) denotes a projection operator which projects v′

i onto the grid
considered at resolution 2j . In order to respect the Shannon sampling theorem,
the coarse scale data term is derived by a low-pass filtering of the original images
with a kernel2 Gj , followed by a subsampling at period 2j. Using (3), at coarse
scale, image Ij(x) and the motion-compensated image Ĩj(x) are then defined as:{

Ij(x) =↓2j ◦ (Gj � I0(x))
Ĩj(x) =↓2j ◦ (Gj � I1(x + ṽj(x))) ,

(4)

where ↓2j denotes a 2j-periodic subsampling operator. It yields a functional Jj
OBS

defined as a linearized version of (1) around ṽj(x):

Jj
OBS(Ij ,v′

j) =
1
2

∫
Ωj

[
Ĩj(x)−Ij(x) +v′

j(x) · ∇Ĩj(x)
]2
dx . (5)

Finally, the sought motion estimate v̂ is given by solving a system of coupled
equations associated to resolutions increasing from 2C to 2F :⎧⎪⎪⎪⎨⎪⎪⎪⎩

v̂ = v′
F + ṽF = v′

F +
F−1∑
i=C

PF (v′
i) ,

v′
j = argmin

v′
Jj

OBS(Ij ,v′) , ∀j ∈ {C, · · · , F} .
(6)

where the finest scale s = 2−F corresponds to the pixel whereas the coarsest scale
is noted s = 2−C . In practice, equations in (6) are usually solved independently,
starting from the coarsest to the finest scale. This coarse-to-fine approach has the
1 In this paper, we shall use the following convention: indices j ≥ 0 represent the

resolution 2j —contrary to [7]. Corresponding scale is 2−j .
2 A Gaussian kernel of variance proportional to 2j is commonly used.
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drawback of freezing (i.e. leaving unchanged), at a given scale, all the previous
coarser estimates. Moreover, the major weakness of this strategy is the arbi-
trary approximation of the original functional in (2) by a set of coarse scale data
terms (5), which are defined at different resolutions by a modification of original
input images with (4) and by a linearization of model (1) around the previous
motion estimate. In the next section, we will see that this multi-resolution strat-
egy has a mathematically-sound formulation within the framework of wavelet
representations.

2.3 The Aperture Problem and Usual Regularization Schemes

Previously introduced data models remain under-constrained, as they provide for
each time t a single equation for two unknowns (v1, v2) at each spatial location
x = (x1, x2)T . To deal with this under-constrained estimation problem, the most
common setting consists in enforcing some spatial coherence to the solution.

Implicit Regularization. The motion field is constrained to be of the form
v = Φ(Θ), where Φ is a function parametrized by Θ (piece-wise polynomial
functions are often used). Implicit regularization schemes penalize discrepancies
from model (1) by minimizing JDFD with respect to Θ, i.e.

v̂ = Φ
(

argmin
Θ
JDFD(I, Φ(Θ))

)
. (7)

Associated to a low-order parametric representation, this simple approach
reduces drastically the dimension of the problem, hence addressing its under-
constrained nature. However, when spatiotemporal gradients of the images van-
ish, it is impossible to guarantee the existence of an unique solution: this is the
aperture problem.

Explicit Regularization. Global regularization schemes in their simplest form
define the estimation problem through the minimization of a functional com-
posed of two terms balanced by a regularization coefficient μ > 0:

J(I,v, μ) = JDFD(I,v) + μJreg(v) . (8)

Thus, motion estimate v̂ satisfies v̂ = argminv J(v, I, μ). The data term JDFD is
still defined by (2) . The second term, Jreg (the “regularization term”), encourages
the solution to follow some prior smoothness model formalized with function freg:

Jreg(v) =
1
2

∫
Ω

freg(v,x)dx . (9)

An n-order regularization writes in its simplest form:

freg(v,x) =
∑

i=1,2

∑
j=1,2

∣∣∣∣∣∂nvi
∂xn

j

(x)

∣∣∣∣∣
2

. (10)
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A first-order regularizer (i.e. n = 1) enforcing weak spatial gradients of the two
components v1 and v2 of the velocity field v is very often used [6]. Second-order
regularizers (i.e. n > 1) have been proposed in the literature in the case of
fluid flows [2,10,11]. However, since motion variables are considered on the pixel
grid, an approximation of continuous spatial derivatives by discrete operators is
required. For regular pixel grids, it is usually done using finite difference schemes.
Nevertheless, it is well known that ensuring stability of the discretization schemes
of high-order regularizer may constitute a difficult problem.

3 Wavelet Formulation

As shown in Sect. 2, the common optical flow estimation approach suffers from
two main drawbacks: the necessary “empirical” multi-resolution approach and
the implementation of efficient regularizations terms. The use of wavelet bases is
a simple answer to both problems. Moreover, it has been shown that a wavelet
expansion is appropriate for representing turbulent flows [3].

3.1 Wavelet Decomposition

In order to avoid the limitations of the classical multi-resolution strategy, we
consider the projection of each scalar component v1, v2 of the velocity field v onto
multi-resolution approximation spaces exhibited by the wavelet formalism. Let
us introduce briefly this context for real 1D scalar signals. We consider a multi-
resolution approximation of L2(R) as a sequence {Vj}j∈Z of closed subspaces,
so-called approximation spaces, notably verifying3

Vj ⊂ Vj+1 ; lim
j→−∞

Vj =
+∞⋂

j=−∞
Vj = {0} ; lim

j→+∞
Vj = Closure

⎛⎝ +∞⋃
j=−∞

Vj

⎞⎠ = L2(R) .

Since approximation spaces are sequentially included within each other, they can
be decomposed: Vj+1 = Vj ⊕Wj . Those Wj are the orthogonal complements of
approximation spaces, they are called detail spaces.

Practically, scalar 1D signals being finite, they belong to a given approxima-
tion space according to their resolution, i.e. number of samples. Let w be a 1D
signal of 2F+1 samples, then w ∈ VF+1 = VC⊕WC⊕WC+1⊕· · ·⊕WF ⊂ L2([0, 1]),
where 0 ≤ C ≤ F . The projection of w on this multiscale basis writes:

w(x) =
2C−1∑
k=0

〈w, φC,k〉L2 φC,k(x) +
F∑

j=C

2j−1∑
k=0

〈w,ψj,k〉L2 ψj,k(k) . (11)

Here, {φC,k}k and {ψj,k}k are orthonormal bases of VC and Wj , respectively.
They are defined by dilatations and translations4 of the so-called scale function

3 See [7] for a complete presentation of wavelet bases.
4 Written in a general form fj,k(x) = 2j/2f(2jx − k).
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φ and its associated wavelet function ψ . Functions φ and ψ verify the following
two-scale relations:

φ(x) =
√

2
∑
k∈Z

h[k]φ(2x− k) ; ψ(x) =
√

2
∑
k∈Z

g[k]φ(2x− k) , (12)

where sequences h[k] = 〈φ(x),
√

2φ(2x− k)〉 and g[k] = 〈ψ(x),
√

2φ(2x− k)〉 are
called conjugate mirror filters. Those filters play an important role in the fast
implementation with filter banks of forward and inverse wavelet transform, i.e.
projection on the wavelet basis and reconstruction, from (11) [7]. Finally, the rep-
resentation of a signal projected onto the multiscale wavelet basis is given by the
set of coefficients appearing in (11): aC,k 	 〈w, φC,k〉L2 and dj,k 	 〈w,ψj,k〉L2 are
approximation and detail coefficients, respectively. Those results are extended
to the case of 2D signals, in order to obtain separable multiscale orthonormal
bases of L2([0, 1]2).

3.2 Wavelet Data Term

In this work, the representation of the velocity field v is obtained by the wavelet
decomposition (11) of each component. We denote by Θ1 and Θ2 the sets of
coefficients respectively associated to v1 and v2; Θ = (Θ1, Θ2)

T is the set of all
coefficients. Denoting the linear reconstruction operator by Φ for convenience,
we may write

∀x ∈ Ω, v(x) = Φ(x)Θ . (13)

Here the constant coefficients vector Θ is the unknown of our optical flow es-
timation problem. Replacing v(x) by (13) in DFD data term (1), we obtain

JDFD(Θ) =
1
2

∫
Ω

[I1(x + Φ(x)Θ) − I0(x)]2 dx (14)

and the estimation problem becomes

v̂ = ΦΘ̂ ∈ VF+1 , where Θ̂ = argmin
Θ

JDFD(Θ) . (15)

3.3 Multiscale Estimation

Unknown coefficients are estimated sequentially from coarsest scale C to a cho-
sen finest one L (with C ≤ L ≤ F ) using a gradient-descent algorithm. At each
scale j, all coefficients from scales C to j are estimated. Coefficients previously
estimated at coarser approximation spaces are used to initialize the gradient
descent; this strategy enables the update of the latter coarser coefficients while
estimating “new” details at current scale j. In other words, solution v̂ is sequen-
tially sought within higher resolution spaces: VC ⊂ VC+1 ⊂ · · · ⊂ VL. This way,
the projection of the current solution v̂ ∈ Vj onto every coarser space Vp with
C ≤ p < j is constantly updated, contrary to the standard incremental approach
(Sect. 2.2). The use of wavelet bases thus leads to a “natural” and well-defined
multi-resolution framework. At each refinement level, minimization of functional
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JDFD is efficiently achieved with a gradient-based quasi-Newton algorithm (L-
BFGS) [8], to seek the optimum Θ̂. For any coefficient θi,p ∈ Θi ⊂ Θ,

∂JDFD

∂θi,p
(Θ) =

〈
∂I1
∂xi

(·+ Φ(·)Θ) [I1(·+ Φ(·)Θ) − I0(·)] , Φp

〉
L2([0,1]2)

(16)

where Φp is the wavelet basis atom related to θi,p. As a consequence, components
of the spatial gradient of the data-term functional (14) are simply given by the
coefficients of the wavelet decomposition of the two terms

∂I1
∂xi

(x + Φ(x)Θ) [I1(x + Φ(x)Θ) − I0(x)] , i = 1, 2 ,

on the considered wavelet basis. It is easy to see that the proposed coarse-to-fine
estimation strategy enables to capture large displacements: at large scales, the
decomposition of (3.3) is obtained by convolutions with the atoms of the wavelet
basis having the largest support. Note that conversely to the algorithm proposed
in [9], the low-complexity of gradient computation via fast wavelet transform does
not restrict motion estimation to large scales and/or images of small size.

4 Regularizations

4.1 Wavelet Properties

Wavelet-based regularizers which are described in the following are based upon
wavelet properties such as polynomial reproduction, differentiation and interpo-
lation. Those aspects are linked to the notion of vanishing moments (VM). A
wavelet ψ(x) ∈ L2(R) has n VM if :∫

R

x�ψ(x)dx = 0, for 0 ≤ 	 < n . (17)

Wavelets as polynomial approximations. From (17), a wavelet with n VM
is hence orthogonal to any polynomial of degree n−1. Consequently, piece-wise5

polynomials of degree n − 1 belonging to VF+1 are exactly described in VF ,
since the atoms of the basis that belong to its orthogonal complement WF have
vanishing coefficients.

Wavelets as Differential Operators. Given a signal w ∈ Cn, the behavior of
its small scales coefficients resulting from an n-VM wavelet decomposition can
be related to its nth derivative [7]:

lim
j→∞

〈w(x), ψj,k(x)〉
2−j(n+ 1

2 )
∝ ∂

nw(x)
∂xn

. (18)

This result can be extended to the case of 2D signals.
5 On the support of {ψF,k}.
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Wavelet-Based Interpolation. A multiscale interpolation is the orthogonal
projection of a signal w estimated at a given resolution 2j onto the next finer
approximation space Vj+1:

PVj+1w

(
2(p+

1
2
)
)

=
+∞∑

k=−∞
w(2k)ϕj+1(p− k + 1/2) . (19)

The interpolation function ϕ is defined as the autocorrelation of the scaling func-
tion: ϕ = φ � φ̌, where � and ·̌ denote respectively convolution and time-reverse6

operators. It can be shown that ϕ interpolates exactly polynomials of order n if
and only if the wavelet associated to scaling function φ has n+1 VM [7]. This lin-
ear interpolation operator PVj+1 is also implemented with filter banks using filter
hi, where hi[n] =

(
h � ȟ

)
[2n+ 1] and h is defined in (12).

4.2 Polynomial Approximation on a Truncated Basis

As seen in Sect. 2.3, a first way to overcome the under-constrainednature of the op-
tical flow estimation problem consists in reducing the number of unknowns through
a parametric formulation of the velocity field. Using the proposed wavelet formula-
tion (15), this can be easily achieved by estimating the velocity field on a truncated
wavelet basis. This means that the solution v̂ belongs to a lower-resolution space
VL ⊂ VF+1 and therefore is a piece-wise polynomial of order n−1 in VL+1. Details
coefficients associated to non-estimated small details scales (Wj with L ≤ j ≤ F )
are thus not estimated, but set to zero.

v̂ = ΦΘ̂ ∈ VL , L < F + 1 , where Θ̂ = argmin
Θ

JDFD(Θ) . (20)

Since the basis truncation reduces the number of unknowns, it is theoretically
possible to estimate detail coefficients up to penultimate scale F −1, i.e. v̂ ∈ VF .
Practically, it is impossible due to the aperture problem.

4.3 High-Order Regularization

It has been previously mentioned that smallest scale coefficients might be
interpreted as the signal’s nth derivative (Sect. 4.1), with n number of VM of the
considered wavelet. The penalization of small scale coefficients’ amplitude thus
enables to control the amplitude of the derivative of the estimated signal. How-
ever, due to the dyadic structure of the discrete wavelet decomposition, only a
“piecewise” control is possible. In order to control the derivative at junctions of
those dyadic blocks, interpolated signal ṽ of the velocity field v on a shifted 2D
grid is considered. Small scale coefficients {Θ̃F } and {ΘF } of both ṽ and v are
penalized. “Interpolated coefficients” Θ̃ are expressed as a linear combination of
Θ through wavelet inverse and forward transformations (Φ, Φ−1 = ΦT , resp.) and
interpolation: Θ̃ =

(
ΦT ◦ PVF+1 ◦ Φ

)
Θ. We finally get the regularization term

6 More explicitly, f̌ : t 	→ f̌(t) = f(−t).
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Jreg(Θ) =
1
2
‖ΘF ‖2+

1
2
‖Θ̃F ‖2 and ∇Jreg(Θ) = ΘF +

(
ΦT ◦ PT

VF+1
◦ Φ
)
Θ̃F (21)

The gradient in (21) is a linear form which can be efficiently computed using the
recursive filter banks presented in Sect. 3.1 and 4.1. The addition of the regu-
larization term (21) therefore does not increase significantly the computational
burden. Supplementing (15), the estimation problem becomes:

v̂ = ΦΘ̂ ∈ VF+1 , where Θ̂ = argmin
Θ

JDFD(Θ) + μJreg(Θ) . (22)

5 Results

Daubechies wavelets have been chosen since they have a minimum support size
for a given number of VM [7]. Daubechies wavelet with n VM will be referred
to as Dn hereafter. Wavelet transform is implemented with periodic boundary
conditions.

5.1 Synthetic PIV Sequence

The first data set used for evaluation is a synthetic sequence of Particle Imagery
Velocimetry (PIV) images of size 256 × 256 pixels, representing small particles
(of radius below 4 pixels) advected by a 2D periodic forced turbulent flow. The
dynamic of the fluid flow is given by numerical simulation of 2D Navier-Stokes

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 1. Sample synthetic PIV image (1a) with below the vorticity of the underlying
reference velocity field (1f). End-point error maps on velocity field estimations for a
polynomial approximation (upper row) and high-order regularization (lower row) with
Dn wavelets are presented, i.e. polynomial (resp. derivative) order of n − 1 (resp. n),
for D1 (1b, 1g), D2 (1c, 1h), D3 (1d, 1i) and D10 (1e, 1j).
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equations at Re = 3000, using the vorticity conservation equation and the La-
grangian equation for non-heavy particles transported by the flow (simulation
details can be found in [5]). This simulated flow has a null-divergence by con-
struction. An image of the PIV sequence is displayed in Fig. 1a together with its
associated ground truth motion vorticity (1f). Estimated velocity field evaluation
is based on the Root Mean Square end-point Error (RMSE)7.

When the true velocity field is decomposed on a Daubechies wavelet with
a number of VM higher than 3, the velocity field reconstructed with the p = 6
coarser scales (out of 8) carries out more than 99,95% of the total kinetic energy.
Those 6 scales are represented with only 12.5% of atoms from the full wavelet
basis. Moreover, when n is chosen high enough (> 7), the reconstruction error
stabilizes around 0, 013.

Motion Estimation. From the previous analysis of the true velocity fields, it
seems that 6 detail scales out of 8 should give an accurate representation of the
motion in terms of kinetic energy, as long as the chosen number of VM is high
enough. Figure 2a (black curve) shows RMS errors computed on an estimated
velocity field with truncated Daubechies wavelet bases (Sect. 4.2) having differ-
ent VM n, i.e. with a polynomial approximation of order n − 1. As expected,
RMSE converges rapidly towards a median value of 0.0613 when n increases.
Figure 1 (upper row) shows corresponding end-point error maps for motion esti-
mated with wavelets basesD1, D2,D3 andD10. Although errors effectively lower
when higher VM wavelets are employed, artifacts due to high-amplitude errors
on 6th scale coefficients (small white “dots”) and on coarse coefficients (white
straight “lines”) remain clearly visible. With the proposed high-order regulariza-
tion scheme (Sect. 4.3), all scales are estimated, which should highly improve
results with n ≤ 3 VM, i.e. for penalization of derivatives of order lower than 3.
This is confirmed on Fig. 2a (red dashed curve), with a reduction of 35% and
30% of the RMS obtained with D1 and D2 wavelets bases, respectively, whereas
the diminution observed using D10 wavelet basis is of 10% at best. At the same
time, derivative penalization eliminates most of the artifacts observed on esti-
mates with truncated bases, which is displayed on the lower row of Fig. 1. Note
also that there are less differences between estimations with different VM, in
comparison to the previous case.

Comparison with State-of-the-Art Estimators. Figure 2 is a comparison
of RMS errors obtained on the synthetic PIV sequence with the proposed high-
order regularizer and various state-of-the-art estimators, after a null-divergence
projection. Our wavelet-based estimator clearly outperforms other methods.

5.2 Real PIV Sequence

This data set consists in 128 PIV pictures of a transversal view of a planar con-
comitant jet flow, of size 1024 × 1024 pixels. The flow has a “top-hat” velocity
7 Ground-truth velocity fields being given on a shifted grid (by 1/2 pixel) by the

numerical simulation, they have been interpolated in order to compute accurate
RMSE on the pixel grid.
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Fig. 2. Left : Comparison of RMS errors on velocity fields estimated from a pair of the
synthetic PIV sequence, with the proposed methods and Daubechies wavelets with 1
to 10 VM, i.e. for polynomial approximation (resp. derivative regularization) of order
0 to 9 (resp. 1 to 10). RMSE obtained with the polynomial approximation (6 scales
out of 8, dashed line) and with derivatives regularization (best case, solid line). Right :
Comparison of RMS errors on a sequence of velocity fields estimated with proposed
regularization (thick solid) and with state-of-the-art methods: correlation (thin solid),
first order regularization [6] (long-dashed), div-curl regularization [10] (dashed), self-
similar regularization [4] (dotted).

profile and is poorly turbulent, but shows two high-shear regions featuring de-
velopment of Kelvin-Helmholtz instabilities. Motion is estimated with proposed
wavelet-based estimator (22), using the following settings: 2 VM and derivatives
penalization with factor μ = 107. Figure 3 presents a PIV image of the sequence
and streamlines of an estimated velocity field along with two consecutive vorticity
maps. A qualitative evaluation of the presented motion field shows a remarkably
good agreement with the physics of concomitant jets. A very good temporal
coherence is also observed, although no prior dynamic model is considered (i.e.
successive pairs of images are processed independently).

(a) (b) (c) (d)

Fig. 3. Sample estimated motion fields from 2D planar jet PIV dataset: detail of input
PIV image (3a), streamlines (3b) and vorticity (3c). Figure 3d is the vorticity field
corresponding to motion estimated at the next time step. Three different areas are
visible: at the output of the jet (top of the field), shear regions begin to oscillate
slowly. The middle region clearly shows the development of vortices characteristic of
the Kelvin-Helmholtz instability. Finally, in the lower part of the field, structure of
vortices collapse due to their tri-dimensionalization.
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6 Conclusion

An optical flow estimation algorithm dedicated to continuous motion has been
introduced. The choice of the wavelet formalism sets-up a well-defined multi-
resolution framework that avoids most drawbacks of such usual approaches. Be-
ing associated to a gradient-based quasi-Newton optimization method, its low
complexity makes possible the estimation of the full range of scales composing
the motion. Moreover, high numbers of vanishing moments enable to truncate
the wavelet basis without increasing the error of the polynomial reconstruction,
thus significantly reducing the number of unknowns and the problem complexity.
A high-order regularization scheme, involving small scale coefficients penaliza-
tion, highly enhances estimation results and generally helps reducing errors by
removing noise of the solution, as emphasized by experiments on a synthetic
PIV sequence. Application to a real PIV sequence shows the capability of the
estimation method to reconstruct accurately vortices of large amplitude.

Acknowledgments. The authors acknowledge the support of the French Agence
Nationale de la Recherche (ANR), under grant MSDAG (ANR-08-SYSC-014)
"Multiscale Data Assimilation for Geophysics".
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Abstract. This paper proposes a novel multi-scale fluid flow data as-
similation approach, which integrates and complements the advantages
of a Bayesian sequential assimilation technique, the Weighted Ensem-
ble Kalman filter (WEnKF) [12], and an improved multiscale stochastic
formulation of the Lucas-Kanade (LK) estimator. The proposed scheme
enables to enforce a physically plausible dynamical consistency of the
estimated motion fields along the image sequence.

1 Introduction

The analysis of geophysical fluid flows is of the utmost importance in domains
such as oceanography, hydrology or meteorology for applications of forecasting,
studies on climate changes, or for monitoring hazards or events. In all these do-
mains orbital or geostationary satellites provide a huge amount of image data
with a still increasing spatial and temporal resolution. Compared to in situ mea-
surements supplied by dedicated probes or Lagrangian drifters, satellite images
provide a much more denser observation field. They however offer only an indi-
rect access to the physical quantities of interest, and give rise consequently to
difficult inverse problems to estimate characteristic features of the flow such as
velocity fields or vorticity maps.

Fluid motion estimation techniques differ mainly on the smoothness prior
they are handling: first order penalization[13], second order div-curl regulariza-
tion [2,14], or power law auto-similarity principles [6]. These methods provide
accurate instantaneous displacements, however they may exhibit difficulties for
mid to small scales measurements due to the smoothing prior used and pho-
tometric uniform regions. All these difficulties may thus generate inconsistent
measurements along time. For interested readers, a complete overview of fluid
motion estimation techniques can be found in [7].

Dynamical consistency of the velocity measurements can be enforced by em-
bedding the estimation problem within an image based assimilation process.
Variational assimilations of image information have been recently considered
for the estimation of fluid motion fields [1,11]. Those methods, though efficient,
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constitutes batch methods, which requires forward and backward integrations of
the dynamical system and the associated tangent linear dynamics respectively.
The latter relies implicitly on a linearization of the dynamics and is adapted in
practice for short time horizon.

On the other hand, stochastic filters are also well known techniques for data
assimilation. Recently, a data assimilation procedure embedding an Ensemble
Kalman filter (EnKF) [5] into the particle filter (PF) framework, referred to
as Weighted Ensemble Kalman filter (WEnKF), has been proposed [12]. This
filter has shown to be efficient on toy examples with synthetic measurements.
The objective of this work consists to specify such a procedure from local noisy
velocity measurements and their uncertainties.

2 Stochastic Lucas-Kanade Estimator

This section first presents a stochastic formulation of the well known Lucas-
Kanade (LK) optical flow approach [9] that will be used to provide local motion
measurements in the assimilation method we propose. This technique departs
somewhat from the traditional Lucas and Kanade motion estimator. It leads
naturally to a continuous multiresolution formulation and enables not only to
extract the motion fields at different resolutions but supplies uncertainties of
those estimates as well.

In what follows, we represent the image luminance with f , and a grid of 2D
points X = (X1, ..., Xn)T ∈ R2n, represents the grid point locations. The image
over a regular grid at time t − 1, I = f(Xt−1, t − 1), is driven by the velocity
field v(Xt−1, t− 1) to generate new point positions Xt at time t.

2.1 Luminance Variation with Uncertainties

In a stochastic formulation, if we assume that the 2D grid from Xt−1 to Xt is
transported by a velocity field, v, up to a Brownian motion Bt = (B1

t , ..., B
n
t ) ∈

R2n, we can write: dXt = v(Xt−1, t− 1)dt+Σ(Xt, t)dBt, here Σ is the covari-
ance matrix and dXt = Xt −Xt−1. Assuming uncorrelated uncertainties with
local isotropic standard deviation σ(Xt, t), the noise term reads Σ(Xt, t)dBt =
diag σ(Xt, t) ⊗ I2dBt, I2 being the 2 × 2 identity matrix, and ⊗ denoting the
Kronecker product.

The differential of luminance function f defined for each spatial point at time
t is obtained through stochastic calculus differentiation using the celebrated Ito
formulae [10] as :

df(Xt, t) =
∂f(Xt, t)
∂t

dt+
∑

i=(1,2)

∂f(Xt, t)
∂xi

dXi +
1
2

∑
(i,j)

∂2f(Xt, t)
∂xi∂xj

d〈Xi
t,X

j
t 〉.

The quadratic variation terms d〈Xi
t,X

j
t 〉 are computed based on the properties:

d〈Bi, Bj〉 = dt; 〈h(t), h(t)〉 = 〈h(t), Bi〉 = 〈Bj , h(t)〉 = 0.
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With the considered uncertainties this yields a luminance variation:

df(Xt, t) =
(∂f
∂t

+ ∇fTv +
1
2
σ2Δf

)
dt+ σ∇fTdBt. (1)

The operators ∇ and Δ represents the 2D gradient and Laplacian of the lumi-
nance function, respectively. This model obviously comes back to the standard
brightness consistency assumption for zero uncertainties (σ = 0). Interest readers
may refer to [3] for a more complete presentation of this estimator.

2.2 Data Model with Uncertainties and Local Estimation

In a minimum least square sense, we define the motion to be estimated v(Xt−1, t−
1), as the minimum conditional variance of the luminance variation. Start-
ing from known grid Xt−1, it can estimated by minimizing the expectation
E(df2(Xt, t)/Xt−1). This conditional expectation given Xt−1 of a function of
a stochastic processes Xt driven by an Ito diffusion (1) discretized through an
Euler-Maruyama scheme, Xt = Xt−1 +v(Xt−1, t− 1)dt+Σ1/2(Bt+1−Bt), can
be expressed as the following convolution: E(df2(Xt, t)/Xt−1) = df2(Xt−1 +
v, t) � gΣ , where gΣ = N(0, Σ) is a multidimensional zero mean Gaussian. From
the illumination variation equation (1), the cost function to be minimized reads
hence: H(f,v) = gΣ �

(δf
δt

+ ∇f · v +
1
2
σ2Δf

)2

. (2)

To alleviate the ill-posed nature of (2)1 we assume a locally constant flow within
a Gaussian window of variance λ� centered at location (x, y) as in the standard
Lucas-Kanade estimator. At point (x, y), the estimate v should hence minimize:

argmin
v
gλ� �H(f,v). (3)

Differentiating (3) with respect to v and equating to zero, at any position (x, y)
(with fx, fy, ft representing the spatial (x, y) and temporal derivatives of f)
yields: (

gλ� � gΣ �
[ f2

x fxfy
fxfy f2

y

])
v = −gλ� � gΣ �

(1
2
σ2Δf + ft

)[fx
fy

]
. (4)

2.3 Multiresolution Analysis and Uncertainty Estimation

A multi-resolution analysis (formulated within an incremental framework) of this
stochastic formulation can be accomplished by a coarse-to-fine decrease of the
variance parameter associated to the local smoothing Gaussian window, λ�, in
(4). Furthermore, the quadratic variation of luminance function between t − 1
and t can be written as

d〈f(Xt, t), f(Xt, t)〉 = σ2 ‖ ∇f(Xt−1 + v(Xt−1, t), t) ‖2 . (5)

1 Single equation, with two unknown components.
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In a probabilistic sense the variance parameters, in (5) can be estimated as:

σ =

√
E(f(Xt−1 + v(Xt−1, t), t)− f(Xt−1, t))2

E(‖ ∇f(Xt−1 + v(Xt−1, t), t) ‖2) a.s. (6)

This provides us a spatial distribution of the motion estimate uncertainties.

3 Monte Carlo Implementation of Stochastic Filtering
with the Weighted-Ensemble Kalman Filter

In this section we briefly review the main principles driving the construction of
the Weighted Ensemble Kalman filter, proposed in [12], and discuss its advan-
tages and limitations in the context of fluid flow analysis. This technique is a
particle implementation of a nonlinear stochastic filtering problem build upon
an ensemble Kalman update stage. In the following section we recall briefly the
basic elements constituting such filter.

3.1 Stochastic Filtering, Filtering Distribution

Stochastic filters aim at estimating the posterior probability distribution
p(x0:k|y1:k) of a state variable trajectory x0:k starting from an initial state x0

up to the state at the current time xk ∈ Rn given a complete measurements tra-
jectory y1:k. The state variable trajectory is obtained through the integration of
a dynamical system:

xt = M(xt−δt) + ηt, (7)

where M denotes a deterministic linear/nonlinear dynamical operator, corre-
sponding to a discrete representation (through numerical integration with time
step δt) of a physical conservation law describing the state evolution. And ηt

is usually a white Gaussian noise of covariance Qδt, that accounts for the un-
certainties in the deterministic state model. However, as the true initial state is
unknown, observation yk ∈ Rm of the state occurring at discrete instants are
assumed to be available. These observations and the state variable are linked
through:

yk = H(xk) + γk, (8)

a measurement equation where γk, the observation noise, is a white Gaussian
noise with covariance matrix R, and H stands for the linear/nonlinear map-
ping from the state variable space to the observation space. We note that the
(integration) time step used for the state variable dynamics δt is usually much
smaller (about 10-100 times), than the latency δk between two subsequent mea-
surements. A sequence of measurements or observations from time 1 to k will be
denoted by a set of vectors of dimension m as: y1:k = {yi, i = 1, . . . , k} where
the latency between two successive measurements is arbitrarily set to δk = 1.

A recursive expression of the filtering distribution p(x0:k|z1:k), describing the
distribution of the hidden Markov process we want to estimate conditioned upon
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the whole set of past observations z1:k, can be obtained from Bayes’ law and the
assumption that the measurements depends only on the current state:

p(x0:k|y1:k) = p(x0:k−1|y1:k−1)
p(yk|xk)p(xk|xk−1)
p(yk|y1:k−1)

. (9)

3.2 Linear Gaussian Models and the Kalman Filter

For a Gaussian initial distribution, linear dynamics and linear measurement
operator, denoted by M and H respectively, the distribution p(xk|y1:k) remains
a Gaussian distribution whose first and second moment, xa

k = E(xk/y1:k) and
Pa

k = E((x−xa
k)(x−xa

k)T /y1:k), can be explicitly computed from the well known
recursive Kalman equations [8]:

xf
k = Mxa

k−1, Pf
k = MPa

k−1M
T + Qk, (10)

and

Kk = Pf
kH

T (HPf
kH

T + R)−1,xa
k = xf

k + Kk(yk −Hxf
k),Pa

k = (I−KkH)Pf
k ,

(11)

here superscripts f and a on state variable and covariance denote the respec-
tive quantities before and after analysis (update) at time k, respectively. The
prediction or forecast step (10) brings forward the first two moments of the
state vector, from its previous time step k − 1, through the dynamical model
parameters, while the analysis or the correction step (11) provides the first two
moments of the state characterizing the Gaussian filtering distribution at time
k. The matrix Kk is referred to as the Kalman gain matrix.

3.3 Particle Implementation of the Nonlinear Filtering

For nonlinear dynamics or nonlinear measurement equation a direct sampling
from the filtering distribution is impossible since it would require the complete
knowledge of the filtering distribution – which is in the general case a non Gaus-
sian multimodal distribution – at a previous time.

Particle filtering techniques introduce a discrete approximation of the sought
density as a sum of N weighted Diracs:

p(x0:k|y1:k) ≈
N∑

i=1

w
(i)
k δx0:k (x0:k) , (12)

centered on hypothesized locations of the state space sampled from a proposal
distribution π(x0:k|z1:k) (also called the importance distribution) approximating
the true filtering distribution. Each sample is then weighted by a weight, w(i)

k ,
accounting for the ratio between the two distributions. Any importance function
can be chosen (with the only restriction that its support contains the filtering
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distribution one). Under weak hypotheses the importance ratio can be recursively
defined as:

w
(i)
k ∝ w(i)

k−1

p(yk|x(i)
k )p(x(i)

k |x(i)
k−1)

π(x(i)
k |x(i)

0:k−1,y1:k)
. (13)

By propagating the particles from time k − 1 through the proposal density
π(x(i)

k |x(i)
0:k−1,y1:k), and by weighting the sampled states with w(i)

k , a sampling of
the filtering law is obtained. When the proposal distribution is set to the prior,
the weights updating rule (13) simplifies to the data likelihood p(yk|x(i)

k ). This
particular instance of the particle filter is called the Bootstrap filter and consti-
tutes the most common filtering method based on particle filter. Nevertheless,
such an importance function does not take into account the current observation
and depends only weakly on the past data through the filtering distribution esti-
mated at the previous instant. High dimensional probability distribution spaces
being excruciatingly difficult to sample, it is very important to devise an impor-
tance function that enables focusing on the most meaningful areas of the state
space. To that end it is essential to consider proposal distributions that take into
account more significantly the past and current measurements. Along this idea,
the weighted ensemble Kalman filter defines the proposal distribution from the
sampling mechanisms of ensemble Kalman filtering techniques.

3.4 Ensemble Kalman Filtering

The Ensemble Kalman filter [4] can be interpreted as a Monte Carlo implementa-
tion of the Kalman filter recursion for the propagation of the two first moments.
The Ensemble filter relies hence intrinsically on a Gaussian approximation of
the filtering distribution.

More precisely, let us assume that we have sampled N members from ini-
tial filtering distribution p(x0/y0), denoted by x(i)

0 , i = 1, ..., N . Propagating
these samples, iteratively, through the Kalman prediction and correction steps,
provides us the Gaussian approximations of the prediction and filtering distri-
butions.

The prediction step consists in propagating the ensemble members xa,(i)
k−1 and

their associated uncertainties (noise) through the state dynamics in order to
obtain a predicted particles or forecast ensemble as:

xf,(i)
k =

k−δt∑
t=k−1

(
M(xf,(i)

t ) + η
(i)
t+δt

)
, xf,(i)

k−1 = xa,(i)
k−1 . (14)

From this, the empirical mean, xf
k , of the forecast ensemble and the correspond-

ing empirical forecast covariance matrix Pfe

k are computed. Using this ensemble
based forecast covariance, an ensemble based Kalman gain matrix Ke

k can be
computed. With this Kalman gain and the observation model the forecast en-
semble members are then corrected towards the current observation.
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This correction consists to update the forecast ensemble members xf,(i)
k ,

through the Kalman update equations, with a set of perturbed observation
yk + γ

(i)
k obtained from samples of the observation noise {γ(i)

k , i = 1, ..., N}.
This provides an analysis ensemble members {xa,(i)

k , i = 1, ..., N} defined as:

xa,(i)
k = xf,(i)

k + Ke
k

(
yk + γ

(i)
k −Hxf,(i)

k

)
. (15)

Here, we note that, in the Kalman gain or in the update stage, computation of
the high dimensional covariance matrix or inverse of the n× n covariance term,
(HPfe

k HT + R)−1, are never explicitly computed nor stored. Rather, Kalman
gain and update are efficiently implemented by defining and employing matrices
with ensemble of perturbations. In most of the geophysical applications, the
state vector related usually to temperature, pressure or velocity fields is of much
higher dimension than the number of samples used in EnKF N . i.e., n >> N ,
thus, handling the perturbation matrices (instead of the actual corresponding
covariance matrices) approximately brings down the number of operations from
O(n2) to O(nN). The inverse needed in the Kalman gain can be efficiently
computed through the singular value decomposition of a n×N matrix [5].

3.5 Weighted EnKF

Starting from the descriptions of the previous section, a hybrid filtering pro-
cedure that takes advantage of both the particle filter and the EnKF can be
devised. We briefly describe the approach proposed in [12].

The importance sampling principle indicates that a wide range of proposal
distributions can be considered. We will experimentally show that a proposal
distribution defined by the EnKF procedure constitutes an efficient proposal
mechanism for particle filter techniques in high dimensional spaces.

Relying on the usual assumption of the EnKF (i.e. considering the dynamics
as a discrete Gaussian system), the conditional distribution p(xk|x(i)

k ,y
o
k) can be

approached by a Gaussian distribution of respective mean and covariance [12]:

μ
(i)
k = (I−Ke

kH)
k−Δt∑
t=k−1

M(xf,(i)
t ) + Ke

ky
o
k, Σe

k = (I−Ke
kH)Pfe

k . (16)

This distribution provides us a natural expression for the proposal distribution.
In order to make the estimation of the filtering distribution exact (up to the
sampling), each member of the ensemble must be weighted at each instant, k,
with appropriate weights, w(i)

k , defined from (13). With a systematic resampling
scheme and for high dimensional systems represented on the basis of a very small
number of particles the weights simplify as [12]:

w
(i)
k ∝ p(yo

k|x(i)
k ), and

N∑
i=1

w
(i)
k = 1. (17)

The Weighted ensemble Kalman filter (WEnKF) procedure can be simply sum-
marized by the algorithm 1.
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Algorithm 1. The WEnKF algorithm, one iteration.

Require: Ensemble at instant k − 1: {x(i)
k−1, i = 1, . . . , N}

observations yo
k

Ensure: Ensemble at time k: {x(i)
k , i = 1, . . . , N}

EnKF step: Get x
(i)
k from the assimilation of yo

k with an EnKF procedure;

Compute the weights w
(i)
k according to (17);

Resample: For j = 1 . . . N , sample with replacement index a(j) from discrete

probability {w(i)
k , i = 1, . . . , N} over {1, . . . , N} and set x

(j)
k = x

a(j)
k ;

4 WEnKF Assimilation of SLK Observations

In this Section, we present our WEnKF formulation based on the SLK optical
flow estimates. In what follows, we detail the dynamical model, the observation
model, and the strategy we adopt to incorporate the uncertainties supplied by
the SLK estimator.

Dynamical model: As in this work we considered only 2D incompressible fluid
flows, we will rely for the dynamics on the vorticity-velocity formulation of the
Navier-Stokes equation with a stochastic forcing function:

dξ = −∇ξ · vdt+ νΔξdt + ηdB, (18)
where the state vector x = ξ = vx − uy, represents the vorticity of the velocity
field v = [u, v]T , ν is the kinematic viscosity and ηdB is a random forcing term
(see following section). The velocity field can be recovered from its vorticity
using the Biot-Savart kernel. The numerical simulation of this dynamical model
is detailed in [12].

Observation model: The measurements on which we will rely on are set di-
rectly as the curl map (i.e. vorticity) of the SLK velocity estimates (4). Assuming
the observation is a corrupted version of the true vorticity map (state), we define
the observation model as:

yk = xk + γk, (19)

where γk is a Gaussian random field whose variance is fixed to the spatially
varying uncertainties associated to the measurements. These uncertainties are
provided by our motion estimator from equation (6) where the expectations
have been approached with ensemble empirical mean over the displaced image
corresponding to each ensemble members.To mitigate the effect of outliers a
Gaussian smoothed version of these variances is considered.

Random fields sampling: To simulate the random forcing term dB in the
dynamics (18) and the random field of the observation model (19), homogeneous
Gaussian fields, correlated in space, but uncorrelated in time are used. Their
covariance have a general form given by:

Qiso(r, τ) = E[dB(x, t)dBT (x + r, t+ τ)] = gλ(r)dtδ(τ), (20)
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where gλ(r) describes the spatial correlation structure with cutoff parameter λ.
These random fields are in practice sampled in the Fourier domain.

WEnKF implementation: With this dynamics and observation models the
WEnKF can be directly implemented as follow. At k = 0, the ensemble of states
{xa,(i)

0 , i = 1, ..., N} is initialized with noisy versions of the SLK vorticity map
obtained from the two first images of the sequence. At the current time, the
ensemble obtained at the previous measurement instant is propagated through
the stochastic state dynamics (18) to generate the forecast ensemble members
xf,(i)

k . The EnKF update is then performed with the new observation in order
to sample the proposal distribution. The importance sampling weighting based
on the likelihood and a resampling process of the particles with respect to those
weights are performed. The empirical mean of the analysis ensemble provides the
vorticity estimate at time k. The corresponding velocity field is finally obtained
from the Biot-Savart law.

Although this direct WEnKF filtering of the SLK vorticity maps does provide
good results as we shall see it, the estimation may fail for long range velocities. To
overcome this limitation and to further improve the performance of the WEnKF
we propose in the next section a multiscale extension of WEnKF.

5 Multiscale SLK-WEnKF Filtering

The idea of multiscale WEnKF consists to provide an improved proposal distri-
bution from velocity measurements at different scales. The update step operates
iteratively in an incremental coarse-to-fine way by introducing motion measure-
ments obtained at different scales through the Gaussian smoothing parameter
λ� in (4). More precisely, at scale 	 ∈ [0, 	f ] the proposal ensemble is build from
successive analysis steps as follow:

xa,(i),�
k = xf,(i),�

k + Ke,�
k

(
y�

k + γ(i),�
k −Hxf,(i),�

k

)
, (21)

xf,(i),�
k = xf,(i),�−1

k − xa,�−1
k , (22)

where the measurements y�
k are supplied by the stochastic Lucas and Kanade

motion estimates between the backwarped image Ĩ�
k = f(Xk−1 +

∑�−1
l=0 xa,l

k , k)
and image Ik−1 = f(Xk−1, k− 1) within the range of scale [λ�−1, λ�]. The quan-
tity xa,�

k denotes the empirical mean of the analysis ensemble. The initial analysis
ensemble is fixed to a null value (xa,�c−1

k = 0) and the initial forecast is set to the
forecast ensemble computed from the dynamics (xf,(i),0

k = xf,(i)
k ). At each scale,

the Gaussian random fields attached to the measurements are drawn with the
uncertainties provided by the stochastic Lucas and Kanade formulation com-
puted from the couple of images (Ĩ�, Ik−1) and the current analysis ensemble
(6). Let us note that compared to the previous single scale filtering where the
proposal was based on a single ensemble Kalman update, here several updates
associated to different Kalman gains are considered. In the experimental section
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three successive scales will be considered in such a filtering. The final proposal
corresponds to the sum of the analysis ensemble obtained at the different scales:
xa,(i)

k =
∑l

L xa,(i),�
k . In the same way as for the previous filter, these ensem-

ble members are then resampled according to the importance weights computed
from the likelihood associated to the original couple of images (Ik−1, Ik).

6 Experimental Results and Comparisons

In this section, we present the results obtained by the application of the single
scale and the multiscale WEnKF denoted as 1L-WEnKF and 3L-WEnKF respec-
tively as the latter has been applied on a set of 3 three successive scale ranges.
Those filters have been compared with state-of-the-art fluid motion estimators
[6,11,14] on a sequence of 100 simulated PIV images with a known ground truth
corresponding to the numerical simulation (DNS) of a forced 2D turbulence at
Reynolds 3000 available at http://www.fluid.irisa.fr. Quantitative compar-
isons with the ground truth in terms of the Root-Mean-Square-Error (RMSE)
of vorticity and velocity are both presented in figure 1.
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Fig. 1. Comparison with State of the Art: RMSE in (a) Vorticity (b) Motion field

As we notice from the fig. 1(a), the RMSE in vorticity of the SLK approach
is close to the state of art approaches [14,6] (0.04), though the RMSE values in
velocity are higher (fig. 1(b)). The RMSE in vorticity by assimilating the SLK
observation through 1L-WEnKF is much lower (0.03), while the error in terms
of velocity estimates is close to the approach of Yuan et al. [14]. However, the
3L-WEnKF assimilation shows better results both in terms of vorticity or veloc-
ity. These errors are lower than all the fluid motion estimators that have been
tested and are at the same level as the errors provided by the batch variationnal
assimilation techniques2 [11] (which corresponds thus to a smoothing filter as
opposed to a recursive filter as in our case).
2 The results were unfortunately available only for 50 images.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. (a) Particle image 50 (b) True vorticity and the estimates of (c) SLK (d) Yuan
et al. [14] (e) Heas et. al. [6] (f) Papadakis et al. [11] (g) WEnKF assimilation and (h)
3L-WEnKF assimilation

 

 

 

 

 

 

(a) (b) (c) (d)

Fig. 3. Real image sequence of a 2D turbulent flow of a soap film (a) an image with
the 3L WEnKF velocity field superimposed; Vorticity maps with their corresponding
velocity fields (b) SLK (c) 1L- WEnKF and (d) 3L-WEnKF.

For a visual comparison we show in fig. 2, the vorticity maps obtained by the
different methods for the 50th images of the sequence. The vorticity estimated
by the 3L-WEnKF assimilation ( fig. 2 (h)) corresponds to the lowest error.

Our next set of results corresponds to a real world image sequence of a 2D
turbulence generated from the wake of a soap film behind a comb. The flow is
visualized through a Schlieren technique at a rate of 2500 frames per second.
A typical image of the sequence is shown in figure 3(a) in false color. The es-
timated vorticity maps and velocity fields corresponding to SLK, 1L WEnKF
and 3L WEnKF are shown in figs. 3(b), (c) and (d), respectively. We note that
though the 1L-WEnKF assimilation of SLK brings out some details at a smaller
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scale than the SLK measurements, the 3L-WEnKF assimilation recovers even
finer details. It is however important to remarks that all those results remains
consistent and are close when interpreted at a larger scale.

7 Conclusion

In this paper, we have proposed an efficient multiscale extension of the Weighted
Ensemble Kalman filter for fluid flow motion estimation problem. This filter is a
particle filter relying on a proposal distribution built from the ensemble Kalman
filtering mechanism. The particular instance we considered here incorporatesmea-
surements issued from a stochastic extension of the Lucas and Kanade estimator.

Acknowledgements. The authors acknowledge the support of the French
Agence Nationale de la Recherche (ANR), under grant PREVASSEMBLE (ANR-
08-COSI-012).
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Over-Parameterized Optical Flow Using
a Stereoscopic Constraint

Guy Rosman, Shachar Shem-Tov, David Bitton, Tal Nir,
Gilad Adiv, Ron Kimmel, Arie Feuer, and Alfred M. Bruckstein�

Abstract. The success of variational methods for optical flow computation lies
in their ability to regularize the problem at a differential (pixel) level and com-
bine piecewise smoothness of the flow field with the brightness constancy as-
sumptions. However, the piecewise smoothness assumption is often motivated by
heuristic or algorithmic considerations. Lately, new priors were proposed to ex-
ploit the structural properties of the flow. Yet, most of them still utilize a generic
regularization term.

In this paper we consider optical flow estimation in static scenes. We show
that introducing a suitable motion model for the optical flow allows us to pose
the regularization term as a geometrically meaningful one. The proposed method
assumes that the visible surface can be approximated by a piecewise smooth pla-
nar manifold. Accordingly, the optical flow between two consecutive frames can
be locally regarded as a homography consistent with the epipolar geometry and
defined by only three parameters at each pixel. These parameters are directly
related to the equation of the scene local tangent plane, so that their spatial vari-
ations should be relatively small, except for creases and depth discontinuities.
This leads to a regularization term that measures the total variation of the model
parameters and can be extended to a Mumford-Shah segmentation of the visible
surface. This new technique yields significant improvements over state of the art
optical flow computation methods for static scenes.

Keywords: Optical Flow, Epipolar Geometry, Ambrosio-Tortorelli.

1 Introduction

Optical flow is defined as the motion field between consecutive frames in a video se-
quence. Its computation often relies on the brightness constancy assumption, which
states that pixel brightness corresponding to a given scene point is constant throughout
the sequence. Optical flow computation is a notoriously ill-posed problem. Hence, ad-
ditional assumptions on the motion are made in order to regularize the problem. Early
methods assumed spatial smoothness of the optical flow [1,2]. Parametric motion mod-
els [3,4], and more recently machine learning [5] were introduced in order to take into
account the specificity of naturally occurring video sequences. In parallel, the regular-
ization process was made much more robust [6,7,8,9].

In this paper, we focus on optical flow computation in stereoscopic image pairs,
given a reliable estimation of the fundamental matrix. This problem has already been
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addressed in [10,11,12,13]. The papers [10,11] expressed the optical flow as a one-
dimensional problem. This was done either by working on a rectified image pair [10],
or by solving for the displacement along the epipolar lines [11]. A different approach
[12,13] merely penalized deviation from the epipolar constraint. In addition, [12] pro-
posed a joint estimation of the stereoscopic optical flow and the fundamental matrix.
Finally, in order to treat the problem of occluded areas and object boundaries, Ben-Ari
and Sochen [14] suggest to explicitly account for regions of discontinuities.

Yet a third body of works turned to a complete modeling of the scene flow [15,16,17].
While this approach is the most general, we focus in this paper on static scenes, for
which a more specific parameterization can be found.

While the reported experimental results in the aforementioned papers are very con-
vincing, their regularization methods still rely on the traditional assumption that optical
flow should be piecewise smooth. Here, motivated by the over-parameterization ap-
proach presented in [18], the optical flow is obtained by estimation of the space-time
dependent parameters of a motion model, the regularization being applied to the model
parameters. In [19], we used homogeneous coordinates to express a homography model,
which allows to select a geometrically meaningful coordinate systems for this problem.
Here we elaborate upon this model by adding an Ambrosio-Tortorelli scheme, which
gives a physically meaningful interpretation for the minima obtained in the optimization
process.

In the case of a static scene, the optical flow can be factored into a model determined
by the camera motion and an over-parameterized representation of the scene. The scene
motion is described locally as a homography satisfying the epipolar constraint and pa-
rameterized by the equation of a local planar approximation of the scene. Assuming that
the scene can be approximated by a piecewise smooth manifold, enforcing piecewise
spatial smoothness on the homography parameters becomes an axiomatically justified
regularization criterion which favors piecewise smooth planar regions.

2 Background

2.1 The Variational Framework

In the variational framework for optical flow, brightness constancy and smoothness as-
sumptions are integrated in an energy functional. Let (u(x, y, t), v(x, y, t)) denote the
optical flow at pixel coordinates (x, y) and time t. Brightness constancy determines the
data term of the energy functional

ED(u, v) =
∫
Ψ
(
I2z
)
, (1)

where
Iz = I(x+ u, y + v, t+ 1)− I(x, y, t) (2)

and Ψ(s2) =
√
s2 + ε2 is a convex approximation of the L1 norm for a small ε.

M(a, x, y, t) denotes a generic model of the optical flow at pixel (x, y) and time t,
where a = (ai(x, y, t))i∈{1,...,n} is a family of functions parameterizing the model, i.e.,(

u(x, y, t)
v(x, y, t)

)
=M(a, x, y, t). (3)
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We begin with the smoothness term proposed by Nir et al. in [18],

ES(a) =
∫
Ψ

(
n∑

i=1

||∇ai||2
)
. (4)

In order to refine the discontinuities and obtain a physically meaningful regularization,
we extend the smoothness prior using the Ambrosio-Tortorelli scheme [20,21].

ES,AT (a) =
∫
v2ATΨ

(
n∑

i=1

||∇ai||2
)

+ ε1(1− vAT )2 + ε2‖∇vAT ‖2, (5)

where vAT is a diffusivity function, ideally serving as an indicator of the discontinuities
set in the flow field. Choosing ε1 = 1

ε2
and gradually decreasing ε2 towards 0 can be

used to approximate the Mumford-Shah [22] model via Γ -convergence process, but we
do not pursue this direction in this paper.

While the Ambrosio-Tortorelli scheme has been used in the context of optical flow
[23,24,25], in our case this seemingly arbitrary choice of regularization and segmen-
tation has a physical meaning. The regularization of the flow becomes a segmentation
process of the visible surface in the scene into planar patches, each with his own set of
plane parameters. In addition, it helps us obtain accurate edges in the resulting flow.

Furthermore, the generalized Ambrosio-Tortorelli scheme allows us to explicitly rea-
son about the places in the flow where the nonlinear nature of the data manifold man-
ifests itself. Suppose we have a piecewise-planar, static, scene, and an ideal solution
(a∗, v∗AT ) where a∗ is piecewise constant, and the diffusivity function v∗AT is 0 at pla-
nar region boundaries and 1 elsewhere. At such a solution, we expect two neighboring
points which belong to different regions to have a very small diffusivity value vAT

connecting them, effectively nullifying the interaction between different planes’ pa-
rameters. Furthermore the cost associated with this solution is directly attributed to the
discontinuity set measure in the image. The proposed ideal solution therefore becomes
a global minimizer of the functional, as determined by the measure of discontinuities in
the 2 1

2 -D sketch [26]. This is directly related to the question raised by Trobin et al. [27]
regarding the over-parameterized affine flow model and its global minimizers.

The complete functional now becomes:

E(a) = ED(M(a, x, y, t)) + αES,AT (a). (6)

In the remainder of this paper, we will propose a motion model enforcing the epipolar
constraint and show how to minimize the proposed functional.

2.2 Epipolar Geometry

Let us introduce some background on epipolar geometry, so as to motivate the choice
of the motion model. A complete overview can be found in [28,29].

Given two views of a static scene, the optical flow is restricted by the epipolar con-
straint. Figure 1 shows that a pixel m in the left image is restricted to a line l′ called an
epipolar line in the right image. All the epipolar lines in the left (resp. right) image go
through e (resp. e′), which is called the left (resp. right) epipole.
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In projective geometry, image points and lines are often represented by 3D homoge-
neous coordinates

m =

⎧⎨⎩λ
⎛⎝xy

1

⎞⎠ |λ ∈ ��

⎫⎬⎭ . (7)

Image points and their corresponding epipolar lines are related by the fundamental ma-
trix F

l′ = Fm. (8)

Consider a plane π, visible from both cameras, and the planar homography Hπ which
corresponds to the composition of the back-projection from the left view to a plane (π)
and the projection from (π) to the right view (see Figure 1). The homography Hπ gives
rise to a useful decomposition of the fundamental matrix

F = [e′]×Hπ, (9)

where [e′]× is a matrix representation of the cross product with e′.

C1
C2

m1 m2

P1

P2

pi

e1 e2

l2

piH

M

Fig. 1. Epipolar geometry

3 Estimation of the Fundamental Matrix

One of the main challenges in estimating optical flow using the epipolar geometry is to
retrieve an accurate and robust estimation of the fundamental matrix. Mainberger et. al.
[30] showed that robustness of the fundamental matrix estimation could be achieved by
using dense optical flow instead of applying RANSAC or LMedS methods to a sparse
set of matches. Hence, we use as initialization the Horn-Schunck with Charbonnier
penalty function optical flow implementation provided by Sun et al. [31], modified to
use color images. This represents a baseline nonlinear optical flow method, as in [31].
In addition to allowing the computation of the fundamental matrix, this initialization
also serves as a starting point for our optical flow computation algorithm.



Over-Parameterized Optical Flow Using a Stereoscopic Constraint 765

Many methods aimed at estimating the fundamental matrix can handle large numbers
of correspondences. Among those, we choose a robust M-estimation method based on
the symmetric epipolar distance, the implementation of which is made very efficient by
the use of the Levenberg-Marquardt algorithm, as explained in [32].

4 A Flow Model Based on Local Homographies

We now proceed to develop the model and motivation for the flow equations. Suppose
the camera is calibrated, with projection matrices

P(t) = P0 =
(
I |0) , P(t+ 1) = P1 =

(
R |t) . (10)

where R is a rotation matrix and t is a translation vector expressing camera motion
between the two consecutive frames at t and t+ 1. We assume that locally, the scene is
well approximated by the plane

vTx + d = 0 (11)

where (xT, d)T = (x, y, 1, d)T denotes the 3D scene point visible at pixel x in homo-
geneous coordinates. The corresponding point of x at time t+ 1 is

x′ = P1

(
x
d

)
= Rx + td = (R− tvT)x (12)

in homogeneous coordinates. v designates the normal of the local planar approximation
of the scene, and−(vTx)−1 is the depth of the scene at time t. The planar homography
expressed in (12) gives a geometrically meaningful motion model parameterized by v.
From now on, consider v as a function of the pixel coordinates. Under the assump-
tion that the scene can be approximated by a piecewise smooth manifold, v must be
piecewise smooth.

We now derive the motion parameterization. In general, the camera parameters are
not known, but we can re-parameterize the planar homography using e′ and F . In the
following derivation we assume a calibrated view for simplicity’s sake. Let H(x, y, t)
denote the planar homography motion model. We have

H ∝ R− tvT. (13)

For any compatible planar homography H0 (cf. [29], 13.1.1.1, we will provide a specific
choice later on),

∃(v0, μ) : H0 = μ(R− tv0
T) (14)

H = H0 − μt(v − v0)T. (15)

As t and e′ are parallel, we can also write

H = H0 + e′
−μe′Tt
||e′||2 (v − v0)T. (16)
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Hence, H(x, y, t) can be parameterized by the function

a(x, y, t) =
−μe′Tt
||e′||2 (v(x, y, t) − v0), (17)

so that
H(x, y, t) = H0 + e′a(x, y, t)T. (18)

The parameterization a is the unknown field we want to compute in order to model and
estimate the optical flow. The piecewise smoothness of a is a direct consequence of the
piecewise smoothness of v, as testified by (17). More precisely, minimization of the
Ambrosio-Tortorelli regularization term favors segmentation of the visible surface into
planar patches where the data evidence permits it.

When the cameras are not calibrated, the relationship between the parameterizationa
and v is still linear. In fact, the calibration matrices mainly affect the relative weighting
of the model parameters smoothness. Our experiments show that even without control-
ling the relative smoothness of the model parameters, the optical flow can be estimated
accurately.

Note that the parameterization a can also be derived directly from the fundamental
matrix decomposition (9).

For H0, we can choose the special matrix

H0 = S = [e′]×F . (19)

Each column of S with the corresponding column of F and e′ form an orthogonal basis
of�3 so that (9) is satisfied. S is a degenerate homography which projects points in the
left image to points of the line represented by e′ in the right image. Next, we use the
notations

x =

⎛⎝x1

x2

x3

⎞⎠ , e′ =

⎛⎝xe′

ye′

ze′

⎞⎠ , H0 =

⎛⎝h1
T

h2
T

h3
T

⎞⎠ , (20)

to signify the 3D point coordinates, the epipole’s 2D homogeneous coordinates, and the
homography matrix rows, respectively. The parameterization of H is introduced into the
expression of the optical flow

M(a, x, y, t) =
(
u
v

)
= λ

(
h1

Tx + xe′aTx
h2

Tx + ye′aTx

)
−
(
x
y

)
, λ =

1
h3

Tx + ze′aTx
. (21)

where

(
x
y

)
are the corresponding pixels in the left image.

4.1 Euler-Lagrange Equations

By interchangeably fixing ai, i = 1...n and vAT , we obtain the Euler-Lagrange equa-
tions which minimize the functional.
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Minimization with respect to ai. Fixing vAT , we obtain

∀i, ∇ai(ED + αv2ATES) = 0. (22)

the variation of the data term with respect to the model parameter function ai is given
by

∇aiED(u, v) = 2Ψ ′ (I2z ) Iz∇aiIz , (23)

where

∇aiIz = λ2xi(xe′h3
Tx − ze′h1

Tx)I+x + λ2xi(ye′h3
Tx − ze′h2

Tx)I+y , (24)

and

I+x = Ix(x+ u, y + v, t+ 1) (25)

I+y = Iy(x+ u, y + v, t+ 1). (26)

For the smoothness term, the Euler-Lagrange equations are

∇aiEs = 2vATΨ

(
n∑

i=1

||∇ai||2
)

+ 2v2ATdiv

⎛⎝Ψ ′

⎛⎝∑
j

||∇aj ||2
⎞⎠∇ai

⎞⎠ (27)

thus, the energy is minimized by solving the nonlinear system of equations

Ψ ′ (I2z ) Iz∇aiIz − α∇
(
v2ATΨ

′
(

n∑
i=1

||∇ai||2
))T

∇ai −

αv2AT div

⎛⎝Ψ ′

⎛⎝∑
j

||∇aj ||2
⎞⎠∇ai

⎞⎠ = 0. (28)

Minimization with respect to vAT . Fixing ai, we obtain

2αvATΨ

(
n∑

i=1

||∇ai||2
)

+ 2ε1(vAT − 1)− ε2ΔvAT = 0 (29)

4.2 Implementation

Minimization with respect to vAT is straightforward, as the equations are linear with
respect to vAT , therefore we will only elaborate on the minimization with respect to ai

The nonlinear Euler-Lagrange equation minimizing ai, are linearized by adopting
three embedded loops, similarly to [18]. First, the warped image gradient (I+x , I

+
y ) is

frozen, and so is λ. At each iteration k, we have

(∇aiIz)
k = xid

k (30)
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where

dk = (λk)2(xe′h3
Tx− ze′h1

Tx)(I+x )k

+(λk)2(ye′h3
Tx− ze′h2

Tx)(I+y )k,

and the following approximation is made using first order Taylor expansions

Ik+1
z ≈ Ik

z + dk
3∑

i=1

xidai
k (31)

where
dak = ak+1 − ak. (32)

The system of equations (28) becomes

Ψ ′
(
(Ik+1

z )2
)(

Ik
z + dk

3∑
j=1

xjdaj
k

)
xid

k − α div

(
Ψ ′
(∑

j

||∇aj
k+1||2

)
∇ai

k+1

)
= 0.

A second loop with superscript l is added to cope with the nonlinearity of Ψ ′.

(Ψ ′)k,l
Data

⎛⎝Ik
z + dk

3∑
j=1

xjdaj
k,l+1

⎞⎠ xid
k − α div

(
(Ψ ′)k,l

Smooth∇ai
k,l+1

)
= 0

where

(Ψ ′)k,l
Data = Ψ ′

⎛⎝(Ik
z + dk

3∑
i=1

xidai
k,l

)2
⎞⎠ , (Ψ ′)k,l

Smooth = Ψ ′

⎛⎝∑
j

||∇aj
k,l||2

⎞⎠ .
At this point, the system of equations is linear and sparse in the spatial domain. The
solution a, as well as the diffusivity term vAT are obtained through Gauss-Seidel iter-
ations. In the case of the Ambrosio-Tortorelli regularization term, the diffusion term of
the equation is modulated by vAT .

5 Experimental Results

We now demonstrate motion estimation results using our algorithm, both visually and in
terms of the average angular error (AAE). No post-processing was applied to the optical
flow field obtained after energy minimization. The algorithm was tested on image pairs
from the Middlebury optical flow test set [33], as well as all images with a static scene
and publicly available ground truth optical flow from the training set. Results from the
training set are presented in Table 1.

The flow, parameters, and diffusivity field resulting from our method are presented
in Figure 3. The optical flow is shown with color encoding and a disparity map.

Results from the test set are shown in Figure 2. A smoothness parameter α of 400
was used in all experiments, and the Ambrosio-Tortorelli coefficients were set to ε1 =
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20, ε2 = 5× 10−5. The proposed method produced the best results to date on the static
Yosemite and Urban scenes. The algorithm is not designed, however, for non-static
scenes, where the computed epipolar lines have no meaning. One possible solution to
this shortcoming is to resort to a 2D search [13]. Such a combined approach is left for
future work.

In the Teddy and Grove test images, the initialization of our algorithm introduced
errors in significant parts of the image, which our method could not overcome. This
behavior is related to the problem of finding a global minimum for the optical flow,
which is known to have several local minima. Improving the global convergence using
discrete graph-based techniques, has been the focus of several papers (see [34,35,36],
for example), and is beyond the scope of this work. We expect better initialization to
improve the accuracy to that of the Yosemite and Urban image pairs.

Our optical flow estimation for the Yosemite and Urban sequences gives the best
results to date, achieving an AAE of 1.25 for the Yosemite sequence test pair and 2.38
for the Urban sequence, as shown in Figure 2. When the fundamental matrix estimate
was improved (by estimating from the ground truth optical flow), we reduced the AAE
to 0.66 for Yosemite!

Table 1. AAE comparison for static scenes of the Middlebury training set and for the Yosemite
sequence

AAE STD
Grove2 2.41 7.16
Grove3 5.53 15.76
Urban2 2.15 9.22
Urban3 3.84 16.88
Venus 4.29 12.01
Yosemite 0.85 1.24

(a) Middlebury training set

Method AAE Method AAE
Brox et al. [7] 1.59 Roth/Black [5] 1.43
Mémin/Pérez [4] 1.58 Valgaerts et al. [12] 1.17
Bruhn et al. [8] 1.46 Nir et al. [18] 1.15
Amiaz et al. [37] 1.44 Our method 0.85

(b) Yosemite sequence

Fig. 2. Average angular error values of our algorithm, compared on the middlebury test set. The
smoothness coefficient was set to α = 400 in all experiments. Red marks the row of the suggested
algorithm.
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(a) Grove2 (b) Optical flow esti-
mation

(c) Parameter field

(d) Disparity estima-
tion

(e) Diffusivity func-
tion

(f) Urban2 (g) Optical flow esti-
mation

(h) Parameter field

(i) Disparity estima-
tion

(j) Diffusivity func-
tion

Fig. 3. Grove2 and Urban2 sequence results

It is interesting to look at the results obtained for scenes with planar regions, such
as the Urban2 (Figure 3) image pair. In Urban2, the scene is composed of many planar
patches, modeled by constant patches in the model parameters. In both these scenes, as
well as others, the resulting diffusivity field clearly marks the contours of planar regions
in the image such as the buildings in Urban2 and the tree and soil ridges in Grove2.

6 Conclusions

A new method for optical flow computation was presented, which hinges on a guiding
principle that optic flow regularization should have a strong theoretical foundation. The
method is applicable to static scenes and retrieves meaningful local motion parameters
related to the scene geometry. At each pixel, the parameters provide an estimation of
the plane tangent to the scene manifold, up to a fixed shift and scale. To that extent, they
can be seen as a higher level output than optical flow in the computer vision hierarchy.

An interesting aspect of our energy functional, which was already mentioned in [18],
is that given a carefully selected over-complete parameter field, the different parame-
ters support each other to find a smooth piecewise constant parameter patches, while
the incorporated Ambrosio-Tortorelli scheme prevents diffusion across discontinuities.
Furthermore, the Ambrosio-Tortorelli scheme allows us to combine regularization and
segmentation, resulting in a physically meaningful regularization process, while mini-
mizing the dependency on the relative scaling of the coefficients.
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Finally, although the performance demonstrated already goes beyond the latest pub-
lished results, there is still much gain to be expected from better fundamental matrix
estimation and algorithm initialization. In addition, when more than two frames are
available and the camera pose is known, augmenting the model with time-smoothness
is expected to systematically improve the results.
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Abstract. Selecting optimal models and hyper-parameters is crucial
for accurate optic-flow estimation. This paper solves the problem in a
generic variational Bayesian framework. The method is based on a con-
ditional model linking the image intensity function, the velocity field
and the hyper-parameters characterizing the motion model. Inference is
performed at three levels by considering maximum a posteriori prob-
lem of marginalized probabilities. We assessed the performance of the
proposed method on image sequences of fluid flows and of the “Middle-
bury” database. Experiments prove that applying the proposed inference
strategy on very simple models yields better results than manually tun-
ing smoothing parameters or discontinuity preserving cost functions of
classical state-of-the-art methods.

Keywords: Motion modeling, marginalized posterior, Bayesian infer-
ence, regularization coefficients, robust hyper-parameters, cost-functions.

1 Introduction

Choosing appropriate models and fixing hyper-parameters is a tricky and often
hidden process in optic-flow estimation. Most of the motion estimators proposed
so far have generally to rely on successive trials and a empirical strategy for
fixing the hyper-parameters values and choosing the adequate model. Besides of
its computational inefficiency, this strategy may produce catastrophic estimate
without any relevant feedback for the end-user, especially when motions are dif-
ficult to apprehend as for instance for complex deformations or non-conventional
imagery. Imposing hard values to these parameters may also yield poor results
when the lighting conditions or the underlying motions differ from those the sys-
tem has been calibrated with. At the extreme, the estimate may be either too
smooth or at the opposite exhibits nonexistant strong motion discontinuities.

However, Bayesian analysis has been intensively studied in the past for hyper-
parameter estimation and for model selection [1][2]. In particular, in the context of
interpolation of noisy data, a powerful hierarchical Bayesian model has been pro-
posed in the seminal work of [3]. In optic-flow estimation, state-of-the-art infer-
ence techniques [4,5] remain limited since they select the weight of different model
candidates rather than really selecting one and/or do not consider model devia-
tions from Gaussianity. Such non-Gaussian models are nevertheless very common
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in computer vision where we have to cope with with motion discontinuities and ob-
servation outliers due to noise or varying lighting conditions. Non-gaussian robust
statistics are commonly used to manage such problems. Another problem raised
by the use of the robust norms is the choice of their hyper-parameters, since in
general they are parametrical models. This choice is crucial and different tuning
of these parameters can lead to motion estimates which are drastically different.
Finally, although it is crucial for accurate motion measurement, very little em-
phasis has been devoted in the computer vision literature to the problem of model
selection for optic-flow estimation. In particular, except in a particular case [6], no
proper Bayesian formulation has been proposed in the literature for the selection
of optimal optic-flow data and regularization models.

In the perspective of solving this crucial problem, this work presents a generic
Bayesian modeling framework for robust optic-flow estimation. It yields the
design of non-parametrical estimation methods, able to reliably decide among
several data and regularization models with optimal tuning of regularization co-
efficients and robust model hyper-parameters. The effectiveness of our approach
is illustrated on challenging image sequences of turbulent diffusive flows and
computer vision scenes. In particular the proposed method achieves with very
simple models better performances than classical state of the art algorithms.

The notational conventions adopted in this paper are as follows. Italic low-
ercase indicates a scalar quantity, as in a; boldface lowercase indicates a vector
quantity, as in a; the kth element of vector a is denoted a(k); capital boldface
letters indicate matrices, as in A; the element corresponding to the ith row and
jth column of A is denoted as A(i, j); we will use the notation Λa to define a di-
agonal matrix whose elements are those of vector a; calligraphic letters, e.g., A,
represent the set of values that a variable or vector can take on; capital normal
letters, as A, denote random variables.

2 Short Overview of Optic-Flow Estimation

2.1 Data and Prior Models

Let I : (s, t) ∈ S ×T → I(s, t) ∈ R be an image intensity function where S ⊆ R2

(resp. T ⊆ R) is the image spatial (resp. temporal) domain. Moreover, let the
optic flow be defined by a function v : (s, t) ∈ S × T → v(s, t) ∈ R2 which
associates a two-dimensional motion vector to every spatio-temporal position.
Using this formalism, the optic-flow problem can then be restated as the problem
of identifying v(s, t) from the (partial) knowledge of I(s, t). Note that, in practice,
complexity and storage constraints often limit the estimation of the motion field
over a finite subset Sr×Tr of S×T . We will consider this scenario hereafter and
use the notation v to denote the vector made up of the concatenation of v(s, t)’s
∀ s ∈ Sr, ∀ t ∈ Tr. The estimation of the optic flow requires a mathematical
characterization of the link between the image intensity and the motion field. One
standard way to relate v(s, t) to I(s, t) is the (so-called) ”Optic Flow Constraint”
(OFC),
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∂I

∂t
(s, t) +∇T

s I(s, t) v(s, t) = 0, ∀s ∈ Sr, ∀ t ∈ Tr, (1)

which is valid under rigid motion and stable lighting hypotheses. For other con-
figurations, many other models have been proposed in the literature to relate the
image intensity function to the sought motion fields [7]. All these models obey
the same general formulation:

ΦI,v(s, t) = 0 ∀s ∈ Sr, ∀ t ∈ Tr, (2)

where ΦI,v is an operator on I and v. In the sequel, we will refer to ΦI,v as
the data model and use the notation Φ to denote the vector made up of the
concatenation of the ΦI,v(s, t)’s ∀ s ∈ Sr, ∀ t ∈ Tr. Note that an important family
of data models is defined by linear operators, i.e.,

Φ = AΦv + bΦ, (3)

where AΦ and bΦ are respectively a matrix and a vector characterizing the
operator. The system of equations defined in (2) is commonly underdetermined
i.e., it does not univocally specify a solution for v. A proper conditioning of the
problem requires therefore to include some additional constraints specifying the
nature of the sought solution, e.g.,

Πv(w) = 0, w ∈ W , (4)

where Πv denotes an operator on v which is parameterized by a (possibly multi-
dimensional) index w. In the sequel, we will refer to Πv as the prior model and
use the notation Π to denote the vector formed by the concatenation of the
Πv(w)’s ∀w ∈ W . The choice of the prior model is commonly made (but does
not have to) so that some form of regularity is ensured. For example, a possible
choice for Πv is as follows [8]

Πv(s, t) 	 ∇sv(s, t), ∀s ∈ Sr, ∀ t ∈ Tr (5)

where ∇sv denotes the Jacobian of v and we made the identification w 	 (s, t),
W 	 Sr × Tr. In other application, Πv can enforce the solution to satisfy some
physical constraints on motion regularity (see e.g., [6]). Among the possible prior
operators, we will have a particular emphasis on the family of linear operators,
i.e.,

Π = AΠv + bΠ , (6)

where AΠ and bΠ are respectively a matrix and a vector characterizing the
operator.

In practice, the data and the prior models may not perfectly describe the
sought motion field. Looking for v satisfying both (2) and (4) may then lead to
aberrant or unstable solutions. Hence, a common approach to avoid such issues
consists in minimizing an energy functional composed of two terms balanced by
a regularization coefficient γ:
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L(I,v, γ) = fd(ΦI,v) + γfr(Πv), (7)

where γ is a positive parameter. The “data term” fd(ΦI,v) (resp. “regularization
term” fr(Πv)) penalizes discrepancies from the considered data model (2) (resp.
prior model (4)) whereas γ tunes the tradeoff between the two terms. The choice
of the cost functions fd and fr is of great importance since it implicitly defines
the type of solution we are looking for. One possible choice for fd is, for example,

fd(ΦI,v) = ‖Φ‖22 	
∑

(s,t)∈Sr×Tr

(ΦI,v(s, t))2, (8)

which measures the Euclidean distance of Φ to zero. In the context of strong
model deviations, e.g., when dealing with observation outliers, the use of the 	2
norm may be inefficient. In such scenarios, “robust cost functions” are commonly
considered to penalize model discrepancies:

fd(ΦI,v) = ρd(Φ, τd), (9)

where ρd : R|Sr||Tr|+1 → R is an even continuously differentiable concave func-
tion with some suitable properties and τd is a parameter. Robust cost functions
are also commonly referred to as “M-estimators”. Well-known instances of M-
estimators include Leclerc’s cost function and an approximation of the 	1 norm
(see e.g., [9][10]) . Similarly, fr(Πv) can be defined by either a quadratic norm
or, in the context of strong motion spatial discontinuities, a robust cost function
ρr(Π, τr), where τr is a parameter.

2.2 Standard Optic-Flow Estimation

Practical estimation of the optic flow requires to find tractable and accurate
implementations of the following problem:

v̂ = argmin
v
L(I,v, γ). (10)

Different cases can be distinguished according to whether the data/prior oper-
ators are linear or not, the cost functions fd and fr implement quadratic norm
or robust cost functions. When the operators are linear and the cost functions
quadratic, the problem is convex. There is therefore one unique minimum which
can be efficiently accessed by numerical procedure such as Conjugate Gradient
Squared (CGS) algorithm [11] or multi-grid algorithms [12].

When fd and fr are robust cost functions, the direct application of standard
optimization algorithms may lead to cumbersome procedures. Instead, one com-
mon technique consists in expressing (10) as a sequence of quadratic problems.
This approach is based on the concavity of M-estimators and Fenchel-Legendre
duality. In particular, it can be shown [9][13] that

min
v
L(I,v, γ) = min

v,z
B(I,v, z, γ), (11)

where B(I,v, z, γ) 	 ΦTΛzd
Φ + ψΦ(zd) + γ(ΠTΛzrΠ + ψΠ(zr)), z 	 [zT

d zT
r ]T

and ψΦ(zd) (resp. ψΠ(zr)) is the Fenchel-Legendre dual function of fd (resp.
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fr). Minimizing B instead of L often eases the resolution of the optimization
problem. Indeed, considering iterative conditional minimization of B, we have

v(n) = argmin
v
B(I,v, z(n), γ), (12)

z(n+1) = argmin
z
B(I,v(n), z, γ). (13)

Now, since B is a quadratic function with respect to Φ and Π, (12) can be solved
efficiently by applying standard optimization procedures. Moreover, (13) usually
possesses an easy analytical solution. In the case of linear model, we have:

z(n+1)
d =

1
2τd
Λ−2

AΦv(n)+bΦ
∇Φρd(AΦv(n) + bΦ, τd), (14)

z(n+1)
r =

1
2τr
Λ−2

AΠv(n)+bΠ
∇Πρd(AΠv(n) + bΠ , τr). (15)

Hence, the minimization of B via (12)-(13) reduces to solving a sequence of
tractable quadratic problems.

3 A Bayesian Framework for Model and Hyper-parameter
Selection

In the previous section we emphasized that the optic-flow estimation problem
requires to make assumptions about: i) the observation and data models, ΦI,v

and Πv; ii) the costs functions, fd and fr; iii) the hyper-parameters, γ, τd and
τr. The choice of these quantities often dramatically influences the performance
achieved by the estimation algorithms. Quite surprisingly this problem has been
mainly overlooked in the current literature.

In this section, we propose a Bayesian inference method to make proper deci-
sions about the models, the cost functions and the value of the hyper-parameters.
In a first part, we give a Bayesian reformulation of the standard optic-flow prob-
lem (10) which motivates our subsequent derivations. We then devise a Bayesian
method for the estimation of the models, cost functions and hyper-parameters
based on the so-called “Bayesian evidence framework” [3].

3.1 Bayesian Formulation of the Optic-Flow Estimation Problem

In this section, we emphasize that the general optic-flow estimation problem

(v�, z�) = argmin
v,z
B(I,v, z, α, β), (16)

can also be expressed as a maximum a posteriori (MAP) problem. For the sake
of conciseness, we focus exclusively on the case of linear operators (3), (6) but
keep in mind that non-linear operators can be made (locally) linear by a first-
order Taylor expansion. We consider the following probabilistic model relating
I, v and z:
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p(bΦ|zd,v, β, ΦI,v) 	 Z−1
bΦ

exp
{
− (bΦ + AΦv)TβΛzd

(bΦ + AΦv)
2

}
, (17)

p(zd|β, ΦI,v) 	 Z−1
zd

exp
{
−β ψΦ(zd)

2

}√
det(βΛzd

)−1, (18)

p(v|zr , α,Πv) 	 Z−1
v exp

{
− (v −mΠ)T Γ−1

Π (v −mΠ)
2

}
, (19)

p(zr |α,Πv) 	 Z−1
zr

exp
{
−αψΠ(zr)

2

}√
det(AT

ΠαΛzrAΠ)−1, (20)

where ZbΦ , Zzd
, Zv and Zzr are normalization constants, α, β are two positive

parameters and

Γ Π 	 (αAT
ΠΛzrAΠ)−1, mΠ = Γ ΠAΠΛzrbΠ . (21)

Equation (17) defines a family of Gaussian distributions on bΦ parameterized by
zd; the probability of each Gaussian of this family is given in (18) and depends
on ψΦ, the M-estimator dual function. It is interesting to note that bΦ is a
function of the observed image I; p(bΦ|zd,v, β, ΦI,v) can therefore be seen as a
probabilistic “observation model” relating I to v.

Similarly, (19) defines a family of Gaussians parameterized by zr; (20) is a
prior on the probability of occurrence of each instance of this family. p(v|zr , α,Πv)
can therefore be regarded as a probabilistic “prior model” on v.

Based on these definitions, we can now define the following MAP estimation
problem:

(v�, z�) = arg max
(v,z)

{log p(bΦ,v, z, |α, β, ΦI,v , Πv)} (22)

where
p(bΦ,v, z|α, β, ΦI,v , Πv) =p(bΦ|v, zd, β, ΦI,v) p(zd|β, ΦI,v)

p(v|zr , α,Πv) p(zr|α,Πv). (23)

It is quite easy to see (by direct substitution) that (22) is equivalent to (16) if
we set γ 	 α

β . This connection gives a physical interpretation to the assumptions
which are implicitly made when considering standard problem (16). For example,
the optimization of B with respect to zd (resp. zr) is equivalent to selecting the
best probabilistic data (resp. prior) model among a family of Gaussians with
different covariance matrices.

3.2 Bayesian Inference for Robust Optic-Flow Estimation

Since standard optic-flow estimation algorithms based on (16) implicitly consider
probabilistic model (17)-(20), it is legitimate to wonder whether this model can
also be exploited to infer the data/prior models, the cost functions and the
hyper-parameters? In this section, we will assume so and propose a Bayesian
methodology to estimate these quantities based on model (17)-(20). Note that
this Bayesian approach differs from the learning strategies proposed in [14], since
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it neither requires training data nor ground truth. We will use the notation ωd

to refer to the couple (ΦI,v, fd) specifying the data model and cost function.
Similarly, ωr will refer to (Πv, fr). Finally, we will use the following short-hand
notations: θ 	 [α, β, τd, τr]T and ω 	 [ωd, ωr]T . We will infer v, z,θ and ω from
the following set of problems:

(v�, z�) = arg max
(v,z)

{
log pBΦ,V,Z|Θ,Ω(bΦ,v, z|θ�, ω�)

}
, (24)

θ� = arg max
θ

{
log pBΦ|Z,Θ,Ω(bΦ|ẑ(θ,v�),θ, ω�)

}
, (25)

ω� = arg max
ω

{
log pBΦ|Z,Ω(bΦ|ẑ(θ�,v�), ω)

}
, (26)

with ẑ(θ) = [ẑT
d (θ,v) ẑT

r (θ,v)]T ,

ẑd(θ,v) =
1

2τd
Λ−2

AΦv+bΦ
∇Φρd(AΦv + bΦ, τd), (27)

ẑr(θ,v) =
1

2τr
Λ−2

AΠv+bΠ
∇Πρr(AΠv + bΠ , τr). (28)

The system (24)-(26) is inspired from the Bayesian evidence framework proposed
in [3]. It defines three levels of inference. In the first level (24), v and z are
estimated by relying on hyper-parameter and model estimates (θ�, ω�). In the
second level (25), the dependence on v is marginalized out and θ is inferred by
assuming ω = ω�. Finally, in the last level (26), ω� is computed by maximizing a
likelihood function in which both the dependence on v and θ has been removed.

Note that the set of problems defined in (24)-(26) is slightly different from
the one presented in [3] since the dependence on z is not removed in (25)-(26).
Instead, we constraint z to have a particular structure, namely (27)-(28). As will
see in the remainder of this section, this digression from the original Bayesian
evidence framework allows a tractable implementation of the inference algorithm.
On the other hand, it also forces an interconnection between all level of inference:
θ� depends on v� through ẑ(θ,v�) whereas v� is the maximum of a function
depending on θ�, etc. We consider the following iterative procedure to find an
estimate satisfying all the equations of the system (24)-(26):

ω̂ = argmax
ω

{
log pBΦ|Z,Ω(bΦ|ẑ(θ(∞)

ω ,v(∞)
ω ), ω)

}
, (29)

where the sequence {θ(n)
ω ,v(n)

ω }∞n=0 is defined as follows

(v(n)
ω , z(n)

ω ) = argmax
(v,z)

{
log p(bΦ,v, z|θ(n−1)

ω , ω)
}
, (30)

θ(n)
ω = θ(n−1)

ω + μP∇θ log p(bΦ|ẑ(θ(n−1)
ω ,v(n)

ω ),θ(n−1)
ω , ω), (31)

and μ is positive step factor, and P a positive definite matrix. In practice, con-
vergence is obtained after about 10 iterations in average. Matrix P is chosen to
be a finite difference approximation of the Hessian so that (31) constitutes an
iteration of a Quasi-Newton ascent method (see [11]). Step μ is fixed according
to the strong Wolf conditions [11]. Clearly, any fixed point of recursions (29)-(31)
satisfies (24)-(26). We detail hereafter the strategy we considered to implement
each step of the proposed algorithm:
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Step (30): The problem to solve is equivalent to the standard optic-flow estima-
tion problem (16) (see Section 3.1) and can be solved by iterative conditional
maximizations (12)-(13).
Step (31): The update requires the gradient of log p(bΦ|ẑ(θ,v(n)

ω ),θ, ω) which
can be efficiently computed by noticing that [15]:

∇θ log p(bΦ|z,θ, ω) =
∫
p(v|z,θ, ω)∇θ log p(bΦ,v|z,θ, ω)dv. (32)

This leads to
∂

∂α
log p(bΦ|z,θ, ω) = −1

2
〈
α−1 + (v −mΠ)TAT

ΠΛzrAΠ(v −mΠ)
〉
,

∂

∂β
log p(bΦ|z,θ, ω) = −1

2
〈
β−1 + (bΦ −AΦv)TΛzd

(bΦ −AΦv)
〉
,

∂

∂τd
log p(bΦ|z,θ, ω) = −1

2

〈
tr
(
Λ−1

zd
Λ ∂zd

∂τd

)
+ (bΦ −AΦv)T βΛ ∂zd

∂τd

(bΦ −AΦv)
〉
,

∂

∂τr
log p(bΦ|z,θ, ω) = −1

2

〈
tr
(
Λ−1

zr
Λ ∂zr

∂τr

)
+ (v −mΠ)TαAT

ΠΛ ∂zr
∂τr

AΠ(v −mΠ)
〉
,

where we use the notation 〈·〉 to denote the expectation with respect to p(v|z,θ, ω).
Note that v only appears in linear and quadratic forms in the expressions of the
partial derivatives defined above. As a consequence, the latter derivatives are
only a function of the mean and covariance of p(v|z,θ, ω). Now, it is easy to see
that p(v|z,θ, ω) is a Gaussian distribution with mean and covariance defined as

mv|z,θ,ω 	 〈v〉 = Γ v|z,θ,ω (AT
ΦΛzd

bΦ + AT
ΠΛzrbΠ), (33)

Γ v|z,θ,ω 	 〈(v −mv|z,θ,ω)(v −mv|z,θ,ω)T 〉 =
(
αAT

ΦΛzd
AΦ + βAT

ΠΛzrAΠ

)−1
.

(34)

Therefore, the computation of the gradient of p(v|z,θ, ω) only requires tractable
linear operations.

Step (29): The decision on the model and the cost function ω is made by max-
imizing log p(bΦ|ẑ(θ(∞)

ω ,v(∞)
ω ), ω).We assume that ω takes on its values in a fi-

nite set so that solving (29) only requires to evaluate log p(bΦ|ẑ(θ(∞)
ω ,v(∞)

ω ), ω)
for these values. We use the Laplace’s method to derive an approximation of
p(bΦ|z, ω). This method approximates the integral of a function by fitting a
Gaussian at its maximum and computing the volume under the Gaussian. For
a k dimensional variable x and a function f(x), the Laplaces’ approximation
reads: ∫

f(x)dx  f(x̂)(2π)k/2[− det{∇2
x log f(x̂)}]−1/2, (35)

where ∇2
x represents the Hessian operator and x̂ = arg maxx f(x). Hence, if p(θ)

is a flat non-informative prior we get the following approximation:

pBΦ|Z,Ω(bΦ|ẑ(θ(∞)
ω ,v(∞)

ω ), ω) =
∫
p(bΦ|ẑ(θ(∞)

ω ,v(∞)
ω ),θ, ω) p(θ) dθ, (36)

∝ p(bΦ|ẑ(θ(∞)
ω ,v(∞)

ω ),θ(∞)
ω , ω)(− detHθ), (37)
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where Hθ = ∇2
θ log p(bΦ|ẑ(θ(∞)

ω ,v(∞)
ω ),θ(∞)

ω , ω). Finally, we obtain:

log pBΦ|Z,Ω(bΦ|ẑ(θ(∞)
ω ,v(∞)

ω ), ω)  log(− detHθ) +
1
2

log detΓ v|z,θ,ω

−1
2
mT

v|z,θ,ωΓ−1
v|z,θ,ωmv|z,θ,ω +

1
2
bT

ΦΛzd
bΦ +

1
2
mT

ΠAT
ΠΛzrAΠmT

Π . (38)

where mv|z,θ,ω and Γ v|z,θ,ω are the a posteriori mean and covariance of v defined
in (34)-(33) and evaluated at θ = θ(∞)

ω and z = ẑ(θ(∞)
ω ,v(∞)

ω ).

4 Experiments

In the following, basic experiments have been designed in order to provide a
proof of concept on the capabilities of the Bayesian inference technique. In our
experiments, hyper-parameters and motion have been estimated at the different
level of a standard multi-resolution algorithm. The inference of the models has
been performed only on the finest resolution level.

Fig. 1. Generated images I(t), ground truth, our estimate and the one of [16] in color
representation. Color and intensity code vector orientations and magnitudes [17].

4.1 Fluid Motion Image Sequence

We first consider a synthetic sequence of scalar images of 256× 256 pixels rep-
resenting the evolution of two-dimensional turbulent flow [18]. The dynami-
cal process was obtained by direct numerical simulation of the Navier-Stokes
equations coupled with the advection-diffusion of a passive scalar equation:
∂I(s,t)

∂t +∇T I(s, t)v(s, t) = νΔI(s, t), where ν represents a unknown diffusion co-
efficient.Fig. 1 presents a scalar image of the sequence together with the ground
truth motion. In our simulation we defined the set of possible value for ω as
follows. Advection-diffusion equation with different values of ν constitutes the
set of possible data models. A 1-st order regularizer (5) is used to implement the
prior model. Both the 	2 and Leclerc’s cost functions are possible choices for the
data and prior cost functions. We considered the estimation of hyper-parameters
α, β, τd and τr.

Fig. 1 and Fig 2 displays the posterior motion estimate v̂, the Mean End Point
(MEP) error and the Mean Barron Angular (MBA) [17] error obtained applying
the proposed Bayesian inference framework. Comparing with results of [16] dis-
played in the same figures, one can notice that the use of Bayesian inference with
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MEP error: 0.27 MBA error: 9.09◦ MEP error: 0.28 MBA error: 9.86◦
Bayesian inference results in [16] (no Bayesian inference)

(robust diffusion model & robust 1-st order reg.) (robust OFC & Quadratic Curl 2-nd order reg.)

Fig. 2. Motion field, MEP and MBA errors [17] corresponding to estimation with
(left) or without (right) Bayesian inference
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Fig. 3. Left: the energy of model probability w.r.t. coefficient ν (green) is minimum for
ν̂ minimizing the MEP error (red). Right: the energy of the regularization coefficient
probability (green) reaches its minimum close to the MEP error curve minimum (red).

a simple robust 1-st order regularization outperforms the most accurate state of
the art fluid motion estimators [18]. Therefore, fitting an inappropriate regulariz-
ers while selecting data models by Bayesian inference yields better results than
fine regularizers adjusted by manually tuning hyper-parameters. Fig. 3 shows
that the inferred diffusion and regularization coefficients also minimize the MEP
error.

4.2 Computer Vision Scenes
In this section, we assess the performance of the proposed Bayesian inference
method with image sequences from the Middleburry database [17]. We show the
power of the proposed method by emphasizing its effectiveness for very simple
observation and prior models: the basic model for the data (monochromatic
model, OFC equation (1) without any image gradient preservation) and a basic
1-st order regularizer (5). Obviously, using more sophisticated models would
likely improve our results.

“Venus” sequence: We considered 	2, 	1 or Leclerc’s function for fr while we
chose for fd the Leclerc’s cost function. Our scheme selects 	1 norm as the best
prior cost function estimate. The estimated motion field v̂ obtained with ω̂ and
θ̂ is shown in Fig. 4 together with the maps of data outliers and motion spatial
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Ground truth motion estimate v̂ Likelihood robust Prior robust weights ẑr Prior robust weights ẑr
weights ẑd (horizontal cliques) (vertical cliques)

Ground truth motion estimate v̂ Likelihood robust Prior robust weights ẑr Prior robust weights ẑr
weights ẑd (horizontal cliques) (vertical cliques)

Fig. 4. Ground truth, estimate v̂, robust weights ẑd and ẑr. Top (resp. bottom) line
represents result for the frames 10-11 of the “Venus” (resp. “Dimetrodon”) sequence.

discontinuities related to estimate τ̂d and τ̂r. As shown in the table of Fig. 5,
errors obtained with Bayesian inference for these very simple observation and
prior models are comparable to error of manually tuned hyper-parameters of
affine regularization model or specialized data term dedicated to such scenes
composed of rigid objects [9,12].

“Dimetrodon” sequence: We considered 	2, 	1 norms or Leclerc’s cost function
for fd and fr. Our scheme selects the 	1 norm for both fd and fr and adjusts
hyper-parameters in less than an hour. The left table in Fig. 5 shows that this
combination performs the best in terms of MEP and MBA errors. The estimated
motion field v̂ and error maps obtained with ω̂ and θ̂ are displayed in Fig. 4
together with maps of data outliers and motion spatial discontinuities related
to estimate τ̂d and τ̂r. The right table in Fig. 5 shows that Bayesian inference
enables to obtain a higher accuracy, or at least, results comparable to more
refined method with manually tuned parameters.

fd fr α̂/β̂ τ̂d τ̂r − log End-point Barron
p(bΦ|ẑ, ω̂) error error

�2 �2 12.48 0 0 443013 0.201 3.656
Leclerc �2 14.97 0.32 0 418662 0.199 3.542

�1 �2 1.85 20.0 0 337990 0.191 3.309
�2 Leclerc 9.58 0 2.00 437326 0.206 3.760

Leclerc Leclerc 15.01 0.32 1.34 418602 0.199 3.542
�1 Leclerc 1.83 20.0 0.39 338097 0.191 3.308
�2 �1 3.24 0 10.0 434656 0.258 4.883

Leclerc �1 12.28 0.34 10.0 417340 0.204 3.657
�1 �1 1.70 20.0 10.0 335564 0.190 3.303

Venus Dimetrodon

Bayesian inference 8.348 3.303

Bruhn&al [12] 8.732 10.993

Black&Anandan [9] 7.641 9.261

Lucas-Kanade [19] 14.614 10.272

Media PlayerTM 15.485 15.824

Zitnick & al [20] 11.423 30.105

Fig. 5. Left: selection of the most likely cost functions for the data and the regulariza-
tion terms. Right: comparison with state of the art based on the MBA error criterion
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5 Conclusion

A generic and efficient Bayesian inference scheme has been proposed for select-
ing models and hyper-parameters in robust optic-flow estimation. Motion fields,
models together with their hyper-parameters are treated as interdependent ran-
dom variables. Optic-flow, regularization coefficients, M-estimator parameters,
prior and likelihood motion models are simultaneously inferred in this context
by maximizing the posterior marginalized distributions. Experiments prove that
the proposed Bayesian inference scheme succeeded to select appropriate model
and hyper-parameters. In particular, using very simple models, we achieve an
accuracy comparable to state of the art results. An intensive evaluation adapting
models to the Middleburry optic-flow database could provide a fair judgement
of the proposed framework performances.
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Abstract. Multiplicative calculus provides a natural framework in
problems involving positive images and positivity preserving operators.
In increasingly important, complex imaging frameworks, such as diffu-
sion tensor imaging, it complements standard calculus in a nontrivial
way. The purpose of this article is to illustrate the basics of multiplica-
tive calculus and its application to the regularization of positive definite
matrix fields.

1 Introduction

Images are typically positive-valued, as they capture some kind of signal energy
or attenuation. However, positivity is rarely adopted as an a priori axiom in
image analysis, probably due to the popularity of positivity violating operators
from standard differential calculus. However, already in 1887 Volterra introduced
the so-called multiplicative calculus [1], which appears to be the natural frame-
work in the context of positive functions, and admits a positivity preserving
differential calculus. It has not received much attention in the image literature,
although it has been advocated in other application contexts, such as in survival
analysis and Markov processes, cf. Gill and Johansen [2].

In the context of non-commutative matrix algebras, a comprehensive account
does not seem to be available to the best of our knowledge. Yet precisely this
case is becoming increasingly relevant in image analysis. Positive matrix valued
functions and positivity preserving operators are for instance encountered in the
context of diffusion tensors [3,4,5,6], and deformation tensors [7].

We start by considering scalar functions [8,9,10,11,12] and subsequently turn
to matrix valued functions [13,14,15]. The latter are considerably more compli-
cated as a result of the non-commutative nature of the matrix product. We will
give a concrete example in the context of a multiplicative multi-scale represen-
tation, or regularization, of a positive definite matrix-valued image.

2 Theory

Loosely speaking, the key to understand multiplicative calculus is a formal sub-
stitution, whereby one replaces addition and subtraction by multiplication and

A.M. Bruckstein et al. (Eds.): SSVM 2011, LNCS 6667, pp. 786–796, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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division, respectively. As a corollary one is then led to replace multiplication
in standard calculus by exponentiation in the multiplicative case, and (thus)
division by exponentiation with the reciprocal exponent.

Until stated otherwise, we will assume commutative multiplication, so that no
ambiguity arises with respect to the ordering of product factors or the meaning
of division signs. We will consider appropriately chosen, positive functions of
a single variable (n = 1), furnished with the usual rules (f g)(x) = f(x) g(x),
(fλ)(x) = (f(x))λ for f, g ∈ V , λ ∈ R, x ∈ Rn, et cetera. We subsequently
address the non-commutative case of positive definite matrix fields.

2.1 Multiplicative Differentiation

Quotes (′) and asterisks (∗) will be used to denote standard and multiplicative
differentiation, respectively. The multiplicative derivative is defined as follows:

f∗(x) = lim
h→0

(
f(x+ h)
f(x)

)1/h

. (1)

Clearly f∗ : R → R+ is positive definite iff f : R → R+ is positive definite, and

ln f∗(x) = (ln f)′(x) , (2)

whence, more generally, using self-explanatory notation for k-fold differentiation,

ln f∗ (k)(x) = (ln f)(k)(x) , (3)

cf. Fig. 1. Eq. (3) tells us that if a (positive) function is differentiable to some
order in standard sense, it is also so in multiplicative sense, vice versa.

f∗ exp←−−−−− (ln f)′

∗
P⏐⏐ P⏐⏐′

f
ln−−−−−→ ln f

∗∫ f(x)dx exp←−−−−− ∫
ln f(x) dx

∗∫ P⏐⏐ P⏐⏐∫
f(x)

ln−−−−−→ ln f(x)

Fig. 1. Left: Commuting diagram for multiplicative and standard differentiation:
f∗(x) = exp ((ln f)′(x)). Right: Commuting diagram for multiplicative and standard
antiderivation: ∗∫ f(x)dx = exp

(∫
ln f(x) dx

)
.

It is clear that multiplicative calculus—in the commutative case—is merely a
disguise of standard calculus via the commuting diagram, Fig. 1. Still, it may
simplify analysis in some cases, which is an advantage by itself. More impor-
tantly, however—and this is our main motivation here—its generalization to the
non-commutative case has no obvious standard counterpart.
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2.2 Multiplicative Integration

Antiderivatives are introduced in multiplicative calculus as follows:

∗
∫
f(x)dt = c F (x) for some constant c ∈ R+ iff F ∗ = f . (4)

Note that we denote the measure dt as a formal (“infinitesimal”) exponent.
Multiplicative definite integrals can be introduced via a limiting procedure

akin to the Riemann sum approximation of their standard counterparts:

∗
∫ b

a

f(x)dx = lim
�xi→0

N∏
i=1

f(ξi)�xi with ξi ∈ [xi−1, xi] and x0 = a, xN = b, (5)

in which!xi = xi−xi−1. The relationship between Eqs. (4) and (5) is formalized
by the following fundamental theorem of multiplicative calculus:

∗
∫ b

a

F ∗(x)dx =
F (b)
F (a)

. (6)

Again, by virtue of commutativity of multiplication there exists a one-to-one
mapping between standard and multiplicative antiderivatives, cf. Fig. 1. In the
non-commutative case this is no longer self-evident, as we will see in Section 2.7.

2.3 Linear Functions and Linear Mappings

Linear functions can be defined as those functions that have a constant multi-
plicative derivative (i.e. allowing a constant offset):

f∗(x) = a or, equivalently, f(x) = b ax with a, b ∈ R+. (7)

Thus exponential functions are the linear functions of multiplicative calculus. In
general, ∗-linear mappings A : V → W are defined without offset (b parameter
in Eq. (7)), as follows. If u, v ∈ V , λ, μ ∈ R, then

A(uλvμ) = A(u)λA(v)μ . (8)

Multiplicative derivation and antiderivation are important examples. We have

(fλgμ)∗ = (f∗)λ (g∗)μ respectively ∗
∫

(fλgμ)dx = (∗
∫
fdx)λ (∗

∫
gdx)μ . (9)

2.4 Taylor Expansions

Analogous to the standard Taylor expansion of an analytic function we have

f(x) =

(
M∏

k=0

(
f (∗ k)(a)

) 1
k! (x−a)k

) (
f (∗ (M+1))(ξ)

) 1
(M+1)! (x−a)M+1

, (10)
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for some ξ in-between x and a. The rightmost factor is the multiplicative La-
grange remainder. In particular this leads to the linear approximation

f(x) ≈ f(a) f∗(a)x−a . (11)

Multiplicative approximations have the advantage of preserving positivity. They
are valid up to a multiplicative factor close to unity. As an illustration, consider
the sigmoidal function:

f(x) =
1

1 + e−x
. (12)

Its standard (“s”) and multiplicative (“m”) 1st order Taylor approximations are

f(x) ≈ fs(x) =
1
2

+
1
4
x resp. f(x) ≈ fm(x) =

1
2

exp
(

1
2
x

)
. (13)

The former is seen to violate positivity as soon as x ≤ −2.
As a second example, consider the standard Gaussian function,

f(x) =
1√
2π

exp
(
−1

2
x2

)
. (14)

Its 2nd order Taylor approximations are given by

f(x) ≈ fs(x) =
1√
2π
− 1

2
√

2π
x2 resp. f(x) ≈ fm(x) =

1√
2π

exp
(
−1

2
x2

)
.

(15)
The latter is in fact exact. In addition to preserving positivity, multiplicative ex-
pansions typically provide better approximations for compactly supported pos-
itive filters, cf. Fig. 2.

�10 �5 5 10
x

�1

1

2

3

y

f �x�� 1

1 � exp ��x�

fs�x��
1

2
�

1

4
x

fm�x��
1

2
exp�x

2
�

�5 �2.5 2.5 5
x

�0.25

0.25

0.5
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f �x�� 1
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exp �

x2

2

fs�x��
1

2 Π
�

1

2 2 Π
x2

Fig. 2. Left: Sigmoidal function and its 1st order standard and multiplicative Taylor
expansions, recall Eq. (13). Right: Gaussian function and its 2nd order standard Taylor
expansion, recall Eq. (15). The second order multiplicative Taylor expansion is exact
and thus coincides with the original Gaussian function.
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2.5 Critical Points

The following claims are easily verified. If f∗(x) > 1 then f is strictly increasing
at x ∈ R. If f∗(x) < 1 then f is strictly decreasing at x ∈ R. If f∗(x) = 1
then f has a critical point at x ∈ R, viz. a local minimum if f∗∗(x) > 1, a
local maximum if f∗∗(x) < 1, and an indifferent or degenerate critical point if
f∗∗(x) = 1. These observations may provide the foundations for a multiplicative
variational calculus for multiplicative energy functionals for image optimization
problems, and are easily generalized to the multivariate setting.

2.6 Differential Equations

An important class of image processing techniques employs differential equations
(ODEs or PDEs). As an illustration consider the following multiplicative initial
value problem for x ∈ R:

u∗∗ = A with initial conditions u∗(0) = B and u(0) = C, (16)

with A,B,C > 0 given constants. A straightforward computation, using Eq. (3),
yields the following unique solution (the multiplicative counterpart of a parabola):

u(x) = exp
(

1
2
ax2 + bx+ c

)
, (17)

in which a = lnA, b = lnB, c = lnC. Qualitative behaviour is governed by the
convexity parameterA, with 0 < A < 1 producing bounded (Gaussian) solutions,
A = 1 unilaterally unbounded exponential solutions, and A > 1 bilaterally
unbounded solutions. In particular this explains the coincidence of a Gaussian
function and it 2nd order multiplicative Taylor expansion.

As another example, consider the multiplicative heat equation for
(x, t)∈Rn×R+:

u∗t = Δ∗u with initial condition u(x, 0) = f(x) , (18)

in which we use multiplicative derivation with respect to both the evolution
parameter t ∈ R+, i.e. u∗t = ∂∗t u, as well as with respect to the (Cartesian)
coordinates x ∈ Rn. The multiplicative (∗-linear) Laplacian is defined here as

Δ∗ = exp ◦Δ ◦ ln , (19)

cf. Eq. (3). Only in the commutative case this implies (v.i.)

Δ∗u = ∂∗x1x1u . . . ∂∗xnxnu . (20)

The solution is straightforward, since in the logarithmic domain the problem
reduces to the standard heat equation for lnu with ln f as initial condition:

u(x, t) = exp ((φt ∗ ln f)(x)) , (21)
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in which

φt(x) =
1√

4πt
n exp

(
−‖x‖

2

4t

)
. (22)

Any ∗-linear combination of multiplicative derivatives of u solves Eq. (18).
Eq. (18) is a special case of a pseudo-linear scale space [16,17]. Also, the so-

called log-Euclidean scale space for diffusion tensor images [3,4,5,6] is governed
by a multiplicative system similar to Eq. (18), in which case u and f are positive
definite matrix fields, and exp and ln the extensions applicable to such matrices
[5,14]. However, in this non-commutative case equivalence of Eqs. (19) and (20)
does not hold, a consequence of the Campbell-Baker-Hausdorff formula:

ln(expX expY ) = X + Y + commutator terms involving [X,Y ]. (23)

2.7 The Non-commutative Case

As anticipated by Eq. (23), extension to non-commutative multiplication is non-
trivial, yet highly relevant in modern image analysis practice. For instance, we
must account for non-commutative multiplication when handling (positive defi-
nite) matrix valued functions, such as diffusion tensor images or strain tensor im-
ages. This case has received remarkably little attention. A few results have been
provided by Gantmacher [13] and Slav́ık [15]. Gantmacher’s definition differs
from ours (Slav́ık discusses further alternatives). Consistency with our notation
for the scalar case suggests the following definition:

X∗(x) = exp
(
X ′(x)X−1(x)

)
. (24)

One must remain cautious, for X ′ X−1 = ln′ X = X−1 X ′ generally holds only
in the commutative case, such as the scalar case (m = 1), or the special case
whereby X(x) ∝ x is linear in standard sense, recall Eq. (23). In other words,
Eq. (2), or Fig. 1, neither holds for Eq. (24) nor for its mirror form (with X ′(x)
and X−1(x) interchanged). Given Eq. (24), Eq. (5) remains applicable, provided
we arrange factors on the right hand side as follows:

∗
∫ b

a

X(x)dx = lim
�xi→0

X(ξN )�xN . . .X(ξ1)�x1 with ξi ∈ [xi−1, xi], (25)

in which x0 = a, xN = b. Eq. (24) entails a definite choice with respect to
the ordering of the factors X ′ and X−1 in the multiplicative derivative, which
affects the corresponding form of the antiderivative, Eq. (25). Thus we have
at least three distinct ways to introduce multiplicative differential and integral
calculus in the context of matrix functions, viz. (i) Eq. (24) in combination
with Eq. (25), (ii) the analogous scheme with reverse ordering of X ′ and X−1,
respectively of the ∗-infinitesimal factors as they occur in the defining limiting
procedure of the multiplicative integral, and (iii) the matrix equivalent of the
ln/exp-formalism of Eq. (2).
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As an illustration of the first option (i), Eqs. (24–25), consider the follow-
ing matrix-valued 1st order ODE, in which L is a non-stationary matrix, cf.
Gantmacher [13]:

Ḟ = L F , (26)

subject to an initial condition at t = t0, say. The multiplicative nature of the
evolution of F (t, t0) is apparent from Eq. (26). The simplicity of Eq. (26) is
deceptive. The complication arises due to the fact that L is non-stationary, as a
result of which [L(s),L(t)] 	= 0 for s 	= t, causing complications due to Eq. (23).
In multiplicative form Eq. (26) simplifies to

F ∗ = exp (L) with F (t= t0, t0) = I , (27)

immediately yielding the solution via antiderivation, Eq. (25), with X = exp (L),
a = t0 and b = t. Only in the stationary case (L(t) = L0) this solution reduces
to F (t, t0) = exp ((t− t0)L0). The reader is referred to the literature for a proof
based on standard calculus [13], and for an application in cardiac strain tensor
analysis [7].

The multiplicative integral suggests a straightforward numerical approxima-
tion, viz. by using the discrete form of Eq. (25) without limiting procedure.

2.8 Multiscale Representation of Positive Definite Matrix Fields

The log-Euclidean paradigm provides an example of a representation that takes
positivity into account a priori [3,4,6]. Here we consider the paradigm in the
context of multiscale representation, or regularization [5].

We denote a positive definite tensor image by X : Rn → S+
n , where S+

n ⊂
Sn ⊂ Mn denotes the set of R-valued symmetric positive definite n × n ma-
trices, Sn the set of R-valued symmetric n × n matrices, and Mn the set of
all R-valued n × n matrices. Its pointwise inverse is X inv : Rn → S+

n , so that
(X invX)(x) = (XX inv)(x) = I, at each point x ∈ Rn. Cω(Rn,Mn) denotes the
class of analytical functions X : Rn → Mn. Self-explanatory definitions hold for
Cω(Rn, S+

n ) ⊂ Cω(Rn, Sn) ⊂ Cω(Rn,Mn).
The scale space representation of X ∈ Cω(Rn, S+

n ) is generated by the regu-
larization operator (detailed below)

F : Cω(Rn, S+
n )× R+ → Cω(Rn, S+

n ) : (X , t) 
→ F (X , t) , (28)

with F (X , 0) = X for all X ∈ Cω(Rn, S+
n ). We use the shorthand notation

Xt ≡ F (X , t). The isotropic Gaussian scale space kernel in n dimensions is
given by Eq. (22). Elsewhere it has been argued that the requirement that reg-
ularization and inversion should commute,

F (X , t)inv = F (X inv, t) , (29)

naturally produces the log-Euclidean paradigm [5].
Recall that the matrix exponential map maps a general matrix to a nonsingu-

lar matrix [13,18,19]. For our purpose it suffices to consider elements of Sn ⊂ Mn,
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which are diagonalizable with real eigenvalues, in which case the range of the
exponential map equals exp(Sn) = S+

n :

exp : Sn → S+
n : A 
→ exp A . (30)

The logarithmic map, restricted to S+
n , has prototype

ln : S+
n → Sn : B 
→ ln B . (31)

It is the unique inverse of the exponential map on Sn, with ln(S+
n ) = Sn.

X t = exp (φt ∗ ln X)
inv←−−−−− Y t = exp (φt ∗ lnY )

exp

P⏐⏐ P⏐⏐exp

φt ∗ ln X φt ∗ lnY

∗φt

P⏐⏐ P⏐⏐∗φt

ln X lnY

ln

P⏐⏐ P⏐⏐ln

X
inv−−−−−→ Y

Fig. 3. Commuting diagram for blurring and inversion

Fig. 3 shows the multiscale representation consistent with Eq. (29). Indeed, if
X ∈ Cω(Rn, S+

n ), then Xt = F (X , t) constructed according to

F (X , t) = exp (φt ∗ ln X) , (32)

satisfies the desired commutativity property, Eq. (29). This follows immediately
by inspection of Fig. 3 and Eq. (32), using the identities

exp(−A) = (exp A)inv and lnBinv = − lnB , (33)

for A ∈ Sn, B ∈ S+
n . For an application to DTI, cf. Florack and Astola [5].

Formulae for standard derivatives of Eq. (32) are highly nontrivial, cf. the
explicit computations to 1st and 2nd order by Florack and Astola [5]. The log-
Euclidean paradigm, however, suggests the following way to introduce multiplica-
tive derivation for the non-commutative case, recall the three options discussed
in Section 2.7:

X∗ def= exp
(
ln′ X

)
, (34)

for the one-dimensional case. This is similar to Eq. (2) for the scalar case, but
recall that in Eq. (34) exp and ln are the matrix exponential and logarithm,
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Fig. 4. Two-dimensional synthetic images illustrating a positive symmetric tensor field
in terms of ellipsoidal glyphs (principal axes and radii reflect eigendirections and cor-
responding eigenvalues). Overlayed are some fixed end-point geodesics obtained by
applying Dijkstra’s shortest path algorithm, in which the tensor field itself is inter-
preted as the dual Riemannian metric. This complies with the Riemannian rationale
for geodesic tractography in diffusion tensor imaging [20,21]. The left image shows the
result for the originally synthesized, smooth image. The middle image shows the result
of the same algorithm after the image has been perturbed by pixel-uncorrelated noise.
The lack of robustness of geodesic tractography is a consequence of the ill-posedness of
differentiation. The right image demonstrates the regularizing effect of log-Euclidean
regularization, Eq. (32), and its effect on the performance of the algorithm.

respectively. For the multivariate case this leads to the following operational-
ization of a multiplicative kth order partial derivative of Xt = F (X , t), recall
Eq. (32):

∂∗i1...ik
Xt

def= exp (∂i1...ik
φt ∗ ln X) . (35)

This is consistent with the scale space paradigm given by Eqs. (18–19) and
Eqs. (21–22), in which diffusion and Gaussian convolution are now applied
component-wise to matrix entries via the ln/exp detour. This definition of mul-
tiplicative derivation thus seems to fit most naturally with the log-Euclidean
paradigm [3,4,5,6]. Adhering to this definition, log-Euclidean blurring can thus
be seen as the multiplicative counterpart of a standard diffusion process, i.e.
the counterpart of Eqs. (18–19) for positive symmetric matrix-valued functions.
See Fig. 4 for an example of multiplicative diffusion for regularizing geodesic
tractography.

3 Conclusion and Discussion

Multiplicative calculus and its applications to image analysis raises many im-
portant questions not addressed in this short paper. One question pertains to
the extension of standard variational techniques for image optimization prob-
lems to the multiplicative case. How to set up such a framework rigorously? In
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image analysis such a framework would have the intrinsic advantage that pos-
itivity of solutions would be guaranteed a priori. Additional questions arise in
the context of (non-commutative) matrix fields. Which of the three proposed
options for multiplicative differential calculus (if any) is the most natural one in
a given application context, what are their mutual relations, how do they relate
to standard differential calculus, and, in the log-Euclidean case, what does the
corresponding antiderivative look like?

Despite major open questions it has been argued that multiplicative calculus
provides a natural framework for biomedical image analysis, particularly in prob-
lems in which positive images or positive definite matrix fields and positivity pre-
serving operators are of interest. We therefore believe that this subject is of broad
interest. However, it seems that many fundamental problems have not been ad-
dressed in the mathematical literature sofar, especially regarding the non-
commutative case. This is an impediment for progress in biomedical image
analysis.

Examples have been given in the context of regularization of positive defi-
nite matrix fields to illustrate the relevance of multiplicative calculus in image
analysis, and to support the recommendation for further investigation into both
practical as well as fundamental issues.

Acknowledgments. Shufang Liu has conducted a useful literature survey. Laura
Astola has generated the synthetical data and tractography results of Fig. 4.
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