
The BMC Method for the Existential Part of RTCTLK
and Interleaved Interpreted Systems

Bożena Woźna-Szcześniak, Agnieszka Zbrzezny, and Andrzej Zbrzezny

IMCS, Jan Długosz University. Al. Armii Krajowej 13/15, 42-200 Czȩstochowa, Poland
{b.wozna,a.zbrzezny,agnieszka.zbrzezny}@ajd.czest.pl

Abstract. In the paper, we focus on the formal verification of multi-agent sys-
tems – modelled by interleaved interpreted systems – by means of the bounded
model checking (BMC) method, where specifications are expressed in the exis-
tential fragment of the Real-Time Computation Tree Logic augmented to include
standard epistemic operators (RTECTLK). In particular, we define an improved
SAT-based BMC for RTECTLK, and present performance evaluation of our newly
developed BMC method by means of the well known train controller and generic
pipeline systems.

1 Introduction

The problem of model checking [4] is to check automatically whether a structure M
defines a model for a modal (temporal, epistemic, etc.) formula p. Bounded model
checking (BMC) is a verification technique designed for finding counterexamples, and
whose main idea is to consider a model curtailed to a specific depth. BMC via SAT
was first proposed for linear-time temporal logic (LTL, LTL+Past) [1,2], and then it was
extended, among others, to the universal fragment of CTL [18,22], and to the branching
time epistemic logic, called ACTLK [13,17].

Multi-agent systems (MASs) are composed of many intelligent agents that interact
with each other. The agents can share a common goal or they can pursue their own
interests. Also, the agents may have deadlines or other timing constraints to achieve
intended targets. As it was shown in [8], knowledge is a useful concept for analyzing
the information state and the behaviour of agents in multi-agent systems. In particular,
it is useful to reason about and to verify the evolution over time of epistemic states [10].
Thus reasoning about knowledge of agents and multi-agent systems has always been
a core issue in artificial intelligence. Therefore, many logical formalisms and verifica-
tion techniques, especially the one based on model checking, have been developed and
refined over the years, among others, [8,9,11,13,14,19,20].

An existential fragment of the soft real-time CTL (RTECTL) [7] is a propositional
branching-time temporal logic with bounded operators, which was introduced to permit
specification and reasoning about time-critical correctness properties. More specifically,
existential CTL formulae allow for the verification of properties such as “there is a com-
putation such that ϕ will eventually occur”, or “there is a computation such that ϕ will
never be asserted”. However, it is not possible to directly express bounded properties
like for example “there is a computation such that ϕ will occur in less than 30 unit

L. Antunes and H.S. Pinto (Eds.): EPIA 2011, LNAI 7026, pp. 551–565, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

552 B. Woźna-Szcześniak, A. Zbrzezny, and A. Zbrzezny

time”, or “there is a computation such that ϕ will always be asserted between 10 and
30 unit time”. While it is true that properties like the above can be expressed using
nested applications of the next state operators, the resulting CTL formula can be very
complex and cumbersome to work with. RTECTL defeats this restriction by allowing
bounds on all temporal operators to be specified, and provides a much more compact
and convenient way of expressing time-bounded properties. The RTECTLK language is
an epistemic soft real-time computation tree logic that is the fusion [3] of the two under-
lying languages: RTECTL and a multi-modal logic S5n for knowledge that satisfies the
following properties: the truth axiom, the distribution axiom, the necessitation axiom,
the positive introspection axiom, and the negative introspection axiom.

A version of the BMC method for specifications expressed in RTECTLK, and MASs
modelled by interpreted systems [8], in which agents have time-limits or other explicit
timing constraints to accomplish intended goals, has been published in pre-proceedings
of CEE-SET’2009 ([21]). However, this method not only does not take into account
the development related to the BMC algorithm for ECTL [22], but also it is based on
unnecessarily complex bounded semantics. Moreover, it has not been implemented and
experimentally evaluated.

The main idea of the [21] translation is the following. Given are a RTECTLK formula
ϕ and a bound k ∈ IN. First the number of paths of length k (k-paths) that are suffi-
cient for checking the formula ϕ is computed; this is done by means of the function fk.
Next, the set of k-paths of size fk(ϕ) is created and used to translate every subformula
of the formula ϕ. This means that this translation uses all the fk(ϕ) k-paths both for
the formula ϕ and for each of its proper subformulae. In the paper we propose an im-
provement of this translation, which is based on the BMC method for ECTL [22]. Its
main idea consists in translating every subformulaψ of the formula ϕ using only fk(ψ)
paths of length k. So, our new BMC algorithm uses a reduced number of paths, what
results in significantly smaller and less complicated propositional formulae that encode
the RTECTLK properties.

Specifically, in the paper we make three contributions: first, we present the BMC
method (which is based on the improved ECTL translation [22]) for specifications ex-
pressed in RTECTLK, and multi-agent systems modelled by interleaved interpreted sys-
tems (IIS) introduced in [15] (a subclass of standard interpreted systems [8]); second,
we implement under the same semantics, i.e., interleaved interpreted systems, both
BMC translations the one presented in [21], and our new one; third, we present per-
formance evaluation of the two implemented BMC algorithms for the verification of
several properties expressed in RTECTLK.

The [21] BMC translation could be also improved by adopting the SAT-based BMC
for ECTLK [13], which according to the authors significantly improves the [22] BMC
encoding. However, for this paper we have decided not to make use of the method
presented in [13], but we plan to research this possibility in the future.

The structure of the paper is as follows. In Section 2 we shortly introduce interleaved
interpreted systems and the RTECTLK logic. In Section 3 we define an improved SAT-
based BMC for RTECTLK, and we prove its correctness. In Section 4 we present per-
formance evaluation of our newly developed SAT-based BMC algorithm for RTECTLK.
In Section 5 we conclude the paper.

The BMC Method for the Existential Part of RTCTLK 553

2 Preliminaries

In this section we first define interleaved interpreted systems (IIS), and next we intro-
duce syntax and semantics of RTECTLK. The formalism of IIS was introduced in [15] to
model multi-agent system (MASs) that are composed of multiple agents, each of which
is an independently operating entity, and to reason about the agents’ epistemic and tem-
poral properties. The interleaved interpreted system is a special subclass of standard
interpreted systems introduced in [8], which allow for modelling asynchronous MASs.
In this formalism, each agent is modelled using a set of local states, a set of actions, a
local protocol, and a local (interleaved) evolution function. In IIS only one action at a
time is performed in a global transition. Specifically, if several agents act in the global
action, then they have to perform the same action, thereby synchronising at that particu-
lar time step. Thus, the local protocols are defined in such a way that if an agent has the
action being performed in its set of actions, then it must be able to perform the action
in order to allow the global evolution of the whole system.

Interleaved Interpreted Systems. We assume that a MAS consists of n agents1, and
by Ag = {1, . . . , n} we denote the non-empty set of agents. Further, we assume that
each agent c ∈ Ag is in some particular local state at a given point in time, and that a
set Lc of local states for agent c ∈ Ag is non-empty and finite (this is required by the
model checking algorithms). An agent’s local state encapsulates all the information the
agent has access to, and which are required to completely characterise its state. Further,
with each agent c ∈ Ag we associate a finite set of possible actions Actc such that a
special action εc , called “null”, belongs to Actc ; as it will be clear below the local state
of agent c remains the same if the null action is performed. We do not assume that the
sets Actc (for all c ∈ Ag) are disjoint. We define the following sets Act =

⋃
c∈Ag Actc

and Agent(a) = {c ∈ Ag | a ∈ Actc}. Next, for each agent c ∈ Ag we associate
a protocol that defines rules, according to which actions may be performed in each
local state. The protocol for agent c ∈ Ag is a function Pc : Lc → 2Actc such that
εc ∈ Pc(l) for any l ∈ Lc , i.e., we insist on the null action to be enabled at every local
state. Note that the above definition of the protocol enables more than one action to be
performed for a given local state. This means that an agent selects non-deterministically
which action to perform. Finally, for each agent c, there is defined a (partial) evolution
function tc : Lc × Actc → Lc such that for each l ∈ Lc and for each a ∈ Pc(l) there
exists l′ ∈ Lc such that tc(l, a) = l′; moreover, for each l ∈ Lc , tc(l, εc) = l. Note that
the local evolution function considered here differs from the standard one (see [8]) by
having the local action instead of the join action as the parameter.

A global state g = (l1, . . . , ln) is a tuple of n local states, one per each agent,
corresponding to an instantaneous snapshot of the MAS at a given time. By lc(g) we
denote the local component of agent c ∈ Ag in a global state g = (l1, . . . , ln), and
by G we denote a set of global states. It is assumed that, in every state, agents evolve
simultaneously. Thus the global interleaved evolution function t : G × Act1 × · · · ×
Actn → G is defined as follows: t(g, a1, . . . , an) = g′ iff there exists an action a ∈

1 Note in the present study we do not consider the environment component. This may be added
with no technical difficulty at the price of heavier notation.

554 B. Woźna-Szcześniak, A. Zbrzezny, and A. Zbrzezny

Act \ {ε1, . . . , εn} such that for all c ∈ Agent(a), ac = a and tc(lc(g), a) = lc(g′),
and for all c ∈ Ag \ Agent(a), ac = εc and tc(lc(g), ac) = lc(g). In brief we write
the above as g

a−→ g′. Now, for a given set of agents Ag and a set of propositional
variables PV, which can be either true or false, an interleaved interpreted system is
a tuple: IIS = (ι, < Lc, Actc, Pc , tc >c∈Ag,V), where ι ∈ G is an initial global
state, and V : G → 2PV is a valuation function. With such an interleaved interpreted
system IIS it is possible to associate a Kripke model M = (ι, S, T, {∼c}c∈Ag,V),
where ι is the initial global state; S ⊆ G is a set of reachable global states that is
generated from ι by using the global interleaved evolution functions t; T ⊆ S × S is
a global transition (temporal) relation on S defined by: sT s′ iff there exists an action
a ∈ Act \ {ε1, . . . , εn} such that s

a−→ s′. We assume that the relation is total, i.e.,
for any s ∈ S there exists an a ∈ Act \ {ε1, . . . , εn} such that s

a−→ s′ for some
s′ ∈ S; ∼c⊆ S × S is an indistinguishability relation for agent c defined by: s ∼c s

′

iff lc(s′) = lc(s); and V : S → 2PV is the valuation function of IIS subtracted to the
set S. V assigns to each state a set of propositional variables that are assumed to be true
at that state. For more details we refer to [8].

Syntax of RTECTLK. Let p ∈ PV, c ∈ Ag, Γ ⊆ Ag, and I be an interval in IN =
{0, 1, 2, . . .} of the form: [a, b) and [a,∞), for a, b ∈ IN 2. Hereafter by left(I) we
denote the left end of the interval I , i.e., left(I) = a, and by right(I) the right end
of the interval I , i.e., right([a, b)) = b − 1 and right([a,∞)) = ∞. The language
RTECTLK is defined by the following grammar:

ϕ:= true | false | p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | EXϕ | E(ϕUIϕ) | EGIϕ |
Kcϕ | DΓϕ | EΓϕ | CΓϕ

UI and GI are the operators, resp., for bounded “Until” and “Always”. The formula
E(αUIβ) is read as “there exists a computation such that β holds in the interval I at
least in one state and always earlier α holds”, the formula EGIα is read as “there ex-
ists a computation such that α always holds in the interval I”. The remaining bounded

temporal operators are introduced in the standard way: E(αRI β)
def
= E(βUI (α ∧

β)) ∨ EGIβ, EFIα
def
= E(trueUIα). Kc is the operator dual for the standard epis-

temic modality Kc (“agent c knows”), so Kcα is read as “agent c does not know
whether or not α holds”. Similarly, the modalities DΓ ,EΓ ,CΓ are the dual operators
for DΓ ,EΓ ,CΓ representing distributed knowledge in the group Γ , “everyone in Γ
knows”, and common knowledge among agents in Γ .

Semantics of RTECTLK. LetM = (ι, S, T, {∼c}c∈Ag,V) be a model. Then, a path in
M is an infinite sequence π = (s0, s1, . . .) of states such that (sj , sj+1) ∈ T for each
j ∈ IN. For a path π = (s0, s1, . . .), we take π(j) = sj . By Π(s) we denote the set
of all the paths starting at s ∈ S. For the group epistemic modalities we also define the

following. If Γ ⊆ Ag, then ∼E
Γ

def
=

⋃
c∈Γ ∼c , ∼C

Γ

def
= (∼E

Γ)+ (the transitive closure

of ∼E
Γ), and ∼D

Γ

def
=

⋂
c∈Γ ∼c . Given the above, the formal semantics of RTECTLK is

defined recursively as follows:

2 Note that the remaining forms of intervals can be defined by means of [a, b) and [a,∞).

The BMC Method for the Existential Part of RTCTLK 555

• M, s |= true, •M, s 	|= false , •M, s |= p iff p ∈ V(s), •M, s |= ¬p iff p 	∈ V(s),
• M, s |= α ∧ β iff M, s |= α and M, s |= β,
• M, s |= α ∨ β iff M, s |= α or M, s |= β,
• M, s |= EXα iff (∃π ∈ Π(s))(M,π(1) |= α),
• M, s |=E(αUIβ) iff (∃π∈Π(s))(∃m∈I)[M,π(m) |=β and (∀j<m)M,π(j) |=α],
• M, s |= EGIα iff (∃π ∈ Π(s)) such that (∀m ∈ I)[M,π(m) |= α],
• M, s |= Kcα iff (∃s′ ∈ S)(s ∼c s

′ and M, s′ |= α),
• M, s |= Y α iff (∃s′ ∈ S)(s ∼ s′ and M, s′ |= α), where Y ∈ {DΓ ,EΓ ,CΓ }, and
∼∈ {∼D

Γ ,∼E
Γ ,∼C

Γ }.

We end the section by defining the notions of validity and the model checking problem.
Namely, a RTECTLK formula ϕ is valid in M (denoted M |= ϕ) iff M, ι |= ϕ, i.e., ϕ
is true at the initial state of the model M . The model checking problem asks whether
M |= ϕ.

3 SAT-Based BMC for RTECTLK

As it was already mentioned, the BMC method for RTECTLK presented in [21] is based
on unnecessarily complicated bounded semantics, and it does not take into account
the BMC encoding of [22]. In this section, we present a new bounded semantics for
RTECTLK, show its equivalence to the unbounded one, and define an improved SAT-
based BMC method for RTECTLK, which is based on the BMC encoding presented in
[22]. As usual, we start by defining k-paths and (k, l)-loops. Next we define a bounded
semantics, which is later used for translation to SAT.

Bounded Semantics. Let M = (ι, S, T, {∼c}c∈Ag,V) be a model and k ≥ 0. A k-
path πk inM is a finite sequence of states (s0, . . . , sk) such that (sj , sj+1) ∈ T for each
0 ≤ j < k. ByΠk(s) we denote the set of all the k-paths starting at s inM . A k-path πk

is a (k, l)-loop iff πk(l) = πk(k) for some 0 ≤ l < k; note that (k, l)-loop π generates
the infinite path of the following form: u · vω with u = (π(0), . . . , π(l − 1)) and v =
(π(l), . . . , π(k−1)). Since in the bounded semantics we consider finite prefixes of paths
only, the satisfiability of all the temporal operators depends on whether a considered k-
path is a loop. Thus, as customary, we introduce a function loop :

⋃
s∈S Πk(s) → 2IN,

which identifies these k-paths that are loops. The function is defined as: loop(πk) =
{l | 0 ≤ l < k and πk(l) = πk(k)}.

Definition 1. Given are a bound k ∈ IN, a model M , and RTECTLK formulae α, β.
M, s |=k α denotes that α is k−true at the state s of M . The relation |=k is defined
inductively as follows:
• M, s |=k true, •M, s 	|=k false,
• M, s |=k p iff p ∈ V(s), •M, s |=k ¬p iff p 	∈ V(s),
• M, s |=k α ∨ β iff M, s |=k α or M, s |=k β,
• M, s |=k α ∧ β iff M, s |=k α and M, s |=k β,
• M, s |=k EXα iff k > 0 and (∃π ∈ Πk(s))M,π(1) |=k α,
• M, s |=k E(αUIβ) iff (∃π ∈ Πk(s))(∃0 ≤ m ≤ k)(m ∈ I andM,π(m) |=k β and

(∀0 ≤ j < m)M,π(j) |=k α),

556 B. Woźna-Szcześniak, A. Zbrzezny, and A. Zbrzezny

• M, s |=k EGIα iff (∃π ∈ Πk(s))((k ≥ right(I) and (∀j ∈ I) M,π(j) |=k α) or
(k < right(I) and (∃l ∈ loop(π))(∀min(left(I), l) ≤ j < k) M,π(j) |=k α)),

• M, s |=k Kcα iff (∃π ∈ Πk(ι))(∃0 ≤ j ≤ k)(M,π(j) |=k α and s ∼c π(j)),
• M, s |=k Y α iff (∃π ∈ Πk(ι))(∃0 ≤ j ≤ k)(M,π(j) |=k α and s ∼ π(j)), where
Y ∈ {DΓ ,EΓ ,CΓ } and ∼∈ {∼D

Γ ,∼E
Γ ,∼C

Γ }.

A RTECTLK formula ϕ is valid in model M with bound k (denoted M |=k ϕ) iff
M, ι |=k ϕ, i.e., ϕ is k−true at the initial state of the model M . The bounded model
checking problem asks whether there exists k ∈ IN such that M |=k ϕ.

By straightforward induction on the length of a RTECTLK formula ϕ we can show
that the following two lemmas hold.

Lemma 1. Given are a model M , a RTECTLK formula ϕ, and a bound k ≥ 0. Then,
for each s in M , M, s |=k ϕ implies M, s |=k+1 ϕ.

Lemma 2. Given are a model M , a RTECTLK formula ϕ, and a bound k ≥ 0. Then,
for each s in M , M, s |=k ϕ implies M, s |= ϕ.

Lemma 3. Given are a model M , and a RTECTLK formula ϕ. Then, for each s in M ,
M, s |= ϕ implies that there exists k ≥ 0 such that M, s |=k ϕ.

Proof (By induction on the length of ϕ). The lemma follows directly for the proposi-
tional variables and their negations. Next, assume that the hypothesis holds for all the
proper sub-formulae of ϕ. If ϕ is equal to either α ∧ β, α ∨ β, or EXα, then it is easy
to check that the lemma holds. For the epistemic operators, i.e., ϕ = Kcα,EΓα,DΓα,
CΓα, the proof is like in [17] (see Lemma 2). So, consider ϕ to be of the following
forms:

– Let ϕ = EGIα and M, s |= ϕ. By the definition of the unbounded semantics we
have that there exists path π ∈ Π(s) such that (∀j ∈ I)(M,π(j) |= α). We have to
consider two cases for the form of the interval I .

(a) right(I) < ∞. By the inductive assumption we have that for each j ∈ I there
exists kj such that M,π(j) |=kj α. Let k = max{right(I),max{kj | j ∈ I}}.
It follows by Lemma 1 that for each j ∈ I ,M,π(j) |=k α. Now, consider the prefix
πk of length k of π. We have that πk ∈ Πk(s), so by Definition 1 we conclude that
M, s |=k EGIα.

(b) right(I) = ∞. Since number of states of M is finite, there exists k′ ≥ left(I)
such that for some l < k′, π(k′) = π(l). Now, let u = (π(0), . . . , π(l − 1)),
v = (π(l), . . . , π(k′ − 1)), and π′ = u · vω . It is clear that for each j ∈ I ,
M,π′(j) |= α. Therefore, taking into consideration the form of π′, we get that for
each j such that l ≤ j ≤ k′, M,π′(j) |= α. Now, by the inductive assumption
we get that for each j ∈ I there exists kj such that M,π′(j) |=kj α. Then, let
k be the least natural number such that for each j ∈ {l, . . . , k′}, k ≥ kj , and
moreover k = l + m(k′ − l), for some natural number m > 0. It follows by
Lemma 1 that for each j ∈ {l, . . . , k}, M,π(j) |=k α. Now, consider the prefix
π′

k of length k of π′. Obviously, l ∈ loop(π′
k) and M,π′

k(j) |=k α, for each j such
that min{left(I), l} ≤ j < k. We have that πk ∈ Πk(s), so by Definition 1 we
conclude that M, s |=k EGIα.

The BMC Method for the Existential Part of RTCTLK 557

– Let ϕ = E(αUIβ) and M, s |= ϕ. By the definition of the unbounded semantics
we have that there exists path π ∈ Π(s) and m ∈ I such that M,π(m) |= β and
(∀j < m)M,π(j) |= α. Thus, by the inductive assumption we have that there exists
k′ such that M,π(m) |=k′ β and for each 0 ≤ j < m there exists kj such that
M,π(j) |=kj α. It follows by Lemma 1 that M,π(m) |=k β and M,π(j) |=k α,
where k = max{k′, k0, . . . , km}. Now, consider the prefix πk of length k of π. We
have that πk ∈ Πk(s). Since m ∈ I , we conclude that M, s |=k E(αUIβ).

The following theorem states that for a given model and formula there exists a bound k
such that the model checking problem (M |= ϕ) can be reduced to the bounded model
checking problem (M |=k ϕ). Its proof follows from Lemmas 2 and 3.

Theorem 1. Let M be a model and ϕ a RTECTLK formula. Then, the following equiv-
alence holds: M |= ϕ iff there exists k ≥ 0 such that M |=k ϕ.

Now we show how to reduce BMC for RTECTLK to the propositional satisfiability prob-
lem. This reduction allows us to use efficient SAT solvers to perform model checking.
We begin by introducing a function fk that gives a bound on the number of k-paths of
M , which are sufficient to validate a given RTECTLK formula. Namely, the function
fk : RTECTLK → IN is defined as follows:
• fk(true) = fk(false) = fk(p) = fk(¬p) = 0, where p ∈ PV,
• fk(α ∧ β) = fk(α) + fk(β),
• fk(α ∨ β) = max{fk(α), fk(β)},
• fk(Y α) = fk(α) + 1, for Y ∈ {X,Kc,DΓ ,EΓ },
• fk(E(αUIβ)) = k · fk(α) + fk(β) + 1,
• fk(EGIα) = (k + 1) · fk(α) + 1,
• fk(CΓα) = fk(α) + k.

By straightforward induction on the length of a RTECTLK formula ϕ we can show that
ϕ is k−true in M if and only if ϕ is k−true in M with a number of k−paths reduced
to fk(ϕ).

The New Translation of RTECTLK to Propositional Formulae. Now we present
our translation of a RTECTLK formula into a propositional formula. Given are a model
M = (ι, S, T, {∼c}c∈Ag,V), a RTECTLK formula ϕ, and a bound k ≥ 0. It is well
known that the main idea of the BMC method consists in translating the bounded model
checking problem, i.e., M |=k ϕ, to the problem of checking the satisfiability of the
following propositional formula:

[M,ϕ]k := [Mϕ,ι]k ∧ [ϕ]M,k (1)

The formula [Mϕ,ι]k constrains the fk(ϕ) symbolic k-paths to be valid k-paths of M ,
while the formula [ϕ]M,k encodes a number of constraints that must be satisfied on
these sets of k-paths for ϕ to be satisfied. Once this translation is defined, checking
satisfiability of a RTECTLK formula can be done by means of a SAT-solver.

In order to define the formula [M,ϕ]k we proceed as follows. We assume that each
state s of M is encoded by a bit-vector whose length, say r, depends on the num-
ber of agents’ local states. Thus, each state s of M we can represent by a vector
w = (u1, . . . , ur) of propositional variables (usually called state variables), to which

558 B. Woźna-Szcześniak, A. Zbrzezny, and A. Zbrzezny

we refer to as symbolic states. A finite sequence (w0, . . . , wk) of symbolic states is
called a symbolic k-path. Since, in general, we may need to consider more than one
symbolic k-path, we introduce a notion of the j-th symbolic k-path, which is denoted
by (w0,j , . . . , wk,j), where wi,j are symbolic states for 0 ≤ j < fk(ϕ) and 0 ≤ i ≤ k.
Note that the exact number of necessary symbolic k-paths depends on the checked for-
mula ϕ, and it can be calculated by means of the function fk.

For a given infinite set SV of state variables and a valuation of state variables σ :
SV → {0, 1} (a valuation for short), its extension to vectors of states variables σ :
SV r → {0, 1}r is defined in the following way:

σ((uj1 , . . . , ujr)) = (σ(uj1), . . . , σ(ujr)).

In what follows for a symbolic state w, by SV (w) we denote the set of all the state
variables occurring in w.

Now, let w and w′ be symbolic states such that SV (w) ∩ SV (w′) = ∅. We define
the following propositional formulae:
• Is(w) is a formula over SV (w) that is true for a valuation σ iff σ(w) = s.
• p(w) is a formula over w that is true for a valuation σ

iff p ∈ V(σ(w)) (encodes a set of states of M in which p ∈ PV holds).
• H(w,w′) is a formula over SV (w) ∪ SV (w′) that is true for a valuation σ

iff σ(w) = σ(w′) (encodes equivalence of two global states).
• Hc(w,w′) is a formula over SV (w) ∪ SV (w′) that is true for a valuation σ

iff lc(σ(w)) = lc(σ(w)) (encodes equivalence of local states of agent c).
• R(w,w′) is a formula over SV (w) ∪ SV (w′) that is true for a valuation σ

iff (σ(w),σ(w′)) ∈ T (encodes the transition relation of M).

• Let j ∈ IN, and I be an interval. Then In(j, I) :=

{
true, if j ∈ I
false, if j 	∈ I

.

The propositional formula [Mϕ,ι]k is defined over state variables in the set⋃{SV (wi,j) | 0 ≤ i ≤ k and 0 ≤ j < fk(ϕ)}, in the following way:

[Mϕ,ι]k := Iι(w0,0) ∧
fk(ϕ)−1∧

j=0

k−1∧

i=0

R(wi,j , wi+1,j) (2)

The next step of the translation is the transformation of a RTECTLK formula ϕ into a
propositional formula [ϕ]M,k := [ϕ][0,0,Fk(ϕ)]

k , where Fk(ϕ) = {j ∈ IN | 0 ≤ j <

fk(ϕ)}, and [ϕ][m,n,A]
k denotes the translation of ϕ at the symbolic state wm,n using

k-paths from the set A.
Following [22], to translate an RTECTLK formula with an operator Q (where Q ∈

{EX,EUI ,EGI ,K1, . . . ,Kn,DΓ ,EΓ }), we want exactly one path to be chosen for
translating the operator Q, and the remaining k-paths to be used to translate arguments
of Q. To accomplish this goal we need some auxiliary functions. However, before we
define them, we first recall a definition of a relation ≺ that is defined on the power set
of IN as follows: A ≺ B iff for all natural numbers x and y, if x ∈ A and y ∈ B, then
x < y. Notice that from the definition of ≺ it follows that A ≺ B iff either A = ∅ or
B = ∅ or A 	= ∅, B 	= ∅, A ∩ B = ∅ and max(A) < min(B). Now, let A ⊂ IN be
a finite nonempty set, k, p ∈ IN, and m ∈ IN such that m ≤ |A|. Then,

The BMC Method for the Existential Part of RTCTLK 559

• gl(A,m) denotes the subset B of A such that |B| = m and B ≺ A \B.
• gr(A,m) denotes the subset C of A such that |C| = m and A \ C ≺ C.
• gs(A) denotes the set A \ {min(A)}.
• If k+1 divides |A|−1, then hG(A, k) denotes the sequence (B0, . . . , Bk) of subsets

of A \ {min(A)} such that
⋃k

j=0 Bj = A \ {min(A)}, |B0| = . . . = |Bk|, and
Bi ≺ Bj for every 0 ≤ i < j ≤ k. If hG(A, k) = (B0, . . . , Bk), then hG(A, k)(j)
denotes the set Bj , for every 0 ≤ j ≤ k.

• If k divides |A| − 1 − p, then hU(A, k, p) denotes the sequence (B0, . . . , Bk) of
subsets of A \ {min(A)} such that

⋃k
j=0 Bj = A \ {min(A)}, |B0| = . . . =

|Bk−1|, |Bk| = p, and Bi ≺ Bj for every 0 ≤ i < j ≤ k. If hU(A, k, p) =
(B0, . . . , Bk), then hU(A, k, p)(j) denotes the set Bj , for every 0 ≤ j ≤ k.

In order to explain the purpose of the auxiliary functions defined above let us recall that
each RTECTLK formula ϕ will be translated by using a set of exactly fk(ϕ) symbolic
k-paths. In what follows we will say that a set A of positive natural numbers is used to
translate a formula ϕ instead of saying that the set of symbolic k-paths with indices in
A is used to translate the formula ϕ. Moreover, saying that a set A is used to translate
a formula ϕ assumes that |A| = fk(ϕ).

The function gl is used in the translation of the formulae with the main connective
being a disjunction: for a given RTECTLK formula α ∨ β, if a set A is to be used to
translate this formula, then the set gl(A, fk(α)) is used to translate the subformula α
and the set gl(A, fk(β)) is used to translate the subformula β.

The functions gl and gr are used in the translation of the formulae with the main
connective being a conjunction: for a given RTECTLK formula α ∧ β, if a set A is
to be used to translate this formula, then the set gl(A, fk(α)) is used to translate the
subformula α and the set gr(A, fk(β)) is used to translate the subformula β.

The function gs is used in the translation of the formulae with the main connective
Q ∈ {EX,K1, . . . ,Kn,DΓ ,EΓ }: for a given RTECTLK formula Qα, if a set A is to be
used to translate this formula, then the path of the number min(A) is used to translate
the operator Q and the set gs(A) is used to translate the subformula α.

The function hG is used in the translation of the formulae with the main connective
EGI : for a given RTECTLK formula EGIα, if a set A is to be used to translate this
formula, then the path of the numbermin(A) is used to translate the operator EGI and
the set hG(A, k)(j), for every 0 ≤ j ≤ k, is used to translate the formula α at the
j-th symbolic state of the symbolic k-path of the numbermin(A). Notice that if k + 1
does not divide |A|− 1, then hG(A, k) is undefined. However, for every set A such that
|A| = fk(EGIα), it follows from the definition of fk that k + 1 divides |A| − 1.

The function hU is used in the translation of the formulae with the main connective
EUI : for a given RTECTLK formula E(αUIβ) if a set A is to be used to translate this
formula, then the path of the number min(A) is used to translate the operator EUI ,
the set hU(A, k, fk(β))(j), for every 0 ≤ j ≤ k, is used to translate the formula β at
the symbolic state wj,min(A) and the set hU(A, k, fk(β))(i), for every 0 ≤ i < j, is
used to translate the formula α at the symbolic state wi,min(A). Notice that if k does not
divide |A| − 1 − p, then hU(A, k, p) is undefined. However, for every set A such that
|A| = fk(E(αUIβ)), it follows from the definition of fk that k divides |A|−1−fk(β).

560 B. Woźna-Szcześniak, A. Zbrzezny, and A. Zbrzezny

Definition 2 (Translation of RTECTLK formulae). Let ϕ be a RTECTLK formula, and
k ≥ 0 a bound. We define inductively the translation of ϕ over path number n ∈ Fk(ϕ)
starting at symbolic state wm,n as shown below.

• [true][m,n,A]
k := true, • [false][m,n,A]

k := false,

• [p][m,n,A]
k := p(wm,n), • [¬p][m,n,A]

k := ¬p(wm,n),
• [α ∧ β][m,n,A]

k := [α][m,n,gl(A,fk(α))]
k ∧ [β][m,n,gr(A,fk(β))]

k ,

• [α ∨ β][m,n,A]
k := [α][m,n,gl(A,fk(α))]

k ∨ [β][m,n,gl(A,fk(β))]
k ,

• [EXα][m,n,A]
k :=

(1) H(wm,n, w0,min(A)) ∧ [α][1,min(A),gs(A)]
k , if k > 0

(2) false, otherwise

• [E(αUIβ)][m,n, A]
k := H(wm,n, w0,min(A)) ∧

∨k
i=0([β][i,min(A),hU(A,k,fk(β))(k)]

k

∧ In(i, I) ∧ ∧i−1
j=0[α][j, min(A),hU(A,k,fk(β))(j)]

k),

• [EGIα][m,n,A]
k := H(wm,n, w0,min(A))∧

(1)
∧right(I)

j=left(I)[α][j,min(A),hG(A,k)(j)]
k , if right(I) ≤ k

(2)
∨k−1

l=0 (H(wk,min(A), wl,min(A)) ∧
∧k−1

j=min(left(I),l)[α][j,min(A),hG(A,k)(j)]
k),

otherwise.

• [Kcα]
[m,n,A]

k := Iι(w0,min(A))∧
∨k

j=0([α][j,min(A),gs(A)]
k ∧Hc(wm,n, wj,min(A))),

• [DΓα]
[m,n,A]

k := Iι(w0,min(A)) ∧
∨k

j=0([α][j,min(A),gs(A)]
k

∧ ∧
c∈Γ Hc(wm,n, wj,min(A))),

• [EΓα]
[m,n,A]

k := Iι(w0,min(A)) ∧
∨k

j=0([α][j,min(A),gs(A)]
k

∧ ∨
c∈Γ Hc(wm,n, wj,min(A))),

• [CΓα]
[m,n,A]

k := [
∨k

j=1(EΓ)jα][m,n,A]
k .

The following two lemmas state the correctness and the completeness of the new trans-
lation respectively. Lemma 4 claims that if some valuation V satisfies the translation of
a RTECTLK formula for some k, then this formula is k-true at the state corresponding
to the valuation V . On the other hand, Lemma 5 claims that if a RTECTLK formula
is, for some k, k-true at some state of the model, then its translation is a satisfiable
propositional formula.

Let [M]Fk(ϕ)
k =

∧fk(ϕ)−1
j=0

∧k−1
i=0 R(wi,j , wi+1,j). From now on, for every RTECTLK

formula ϕ and every subformula α of ϕ, we denote by [α][ϕ,m,n,A]
k the propositional

formula [M]Fk(ϕ)
k ∧ [α][m,n,A]

k . We shall write σ � ξ if the valuation σ satisfies the
propositional formula ξ. Moreover, we shall write s |=k α instead of M, s |=k α and
σi,j instead of σ(wi,j).

Lemma 4 (Correctness of the translation). Let M be a model, ϕ be a RTECTLK

formula and k ∈ IN. Then for every subformula α of the formula ϕ, every A ⊆ Fk(ϕ)
such that |A| = fk(α), every (m,n) ∈ {(0, 0)}∪{0, . . . , k} × IN+ and every valuation

σ such that σm,n is a state ofM the following condition holds: if σ � [α][ϕ,m,n,A]
k , then

M,σm,n |=k α.

The BMC Method for the Existential Part of RTCTLK 561

Proof. The proof is analogous to the proof of Lemma 3.1 from [22] and use induction
on the complexity of α.

Lemma 5 (Completeness of the translation). Let M be a model, ϕ be a RTECTLK

formula and k ∈ IN. Then for every subformula α of the formula ϕ, every A ⊆ Fk(ϕ)
such that |A| = fk(α), every (m,n) ∈ {(0, 0)} ∪ {0, . . . , k} × (IN+ \ A) and every
state s of M the following condition holds: if M, s |=k α, then there exists a valuation

σ such that σm,n = s and σ � [α][ϕ,m,n,A]
k .

Proof. The proof is analogous to the proof of Lemma 3.2 from [22] and use induction
on the complexity of α.

The next theorem easily follows from Lemmas 4 and 5.

Theorem 2. Let M be a model, and ϕ a RTECTLK formula. Then for every k ∈ IN,
M |=k ϕ if, and only if, the propositional formula [M,ϕ]k is satisfiable.

Proof. Recall that [M,ϕ]k = I(w0,0) ∧ [M]Fk(ϕ)
k ∧ [ϕ][0,0,Fk(ϕ)]

k = I(w0,0)∧
[ϕ][ϕ,0,0,Fk(ϕ)]

k . If M |=k ϕ, then M, ι |=k ϕ. By Lemma 5, there exists a valuation

σ such that σ0,0 = ι and σ � [ϕ][ϕ,0,0,Fk(ϕ)]
k . Hence, the propositional formula [M,ϕ]k

is satisfiable.
If the propositional formula [M,ϕ]k is satisfiable, then there exists a valuation σ such

that σ � I(w0,0) ∧ [ϕ][ϕ,0,0,Fk(ϕ)]
k . Thus, σ0,0 = ι, and by Lemma 4 it follows that

M,σ0,0 |=k ϕ. Hence, M |=k ϕ.

Now, from Theorems 1 and 2 we get the following

Corollary 1. LetM be a model, and ϕ a RTECTLK formula. Then,M |= ϕ if, and only
if, there exists k ∈ IN such that the propositional formula [M,ϕ]k is satisfiable.

4 Experimental Results

In this section we consider two scalable multi-agent systems, and present performance
evaluation of both SAT-based BMC algorithms for RTECTLK, the new and the old
one. Unfortunately, we cannot compare our experimental results to others, simply be-
cause, to the best of our knowledge, there is no tool implementing the BMC method for
RTECTLK. In order to appraise the behaviour of our new algorithm, we have tested it on
several RTECTLK properties. An evaluation of both BMC algorithms, which have been
implemented in C++ under the same semantics (i.e., interleaved interpreted systems),
is given by means of the running time, the memory used, the number of generated vari-
ables and clauses. All the benchmarks together with an instruction how to reproduce
our results can be found at the webpage http://ajd.czest.pl/∼modelchecking/.

For the tests we have used a computer equipped with AMD phenom(tm) 9550 Quad-
Core 2200 MHz processor and 4 GB of RAM, running Ubuntu Linux with kernel ver-
sion 2.6.35-28-generic-pae, and we have set the timeout to 15000 seconds, and memory
limit to 3072 MB. We have used the state of the art SAT-solver MiniSat 2 [6,5].

562 B. Woźna-Szcześniak, A. Zbrzezny, and A. Zbrzezny

Generic Pipeline Paradigm. The first benchmark we consider is a generic pipeline
paradigm (GPP) [16], which consists of three parts: Producer producing data, Con-
sumer receiving data, and a chain of n intermediate Nodes that transmit data produced
by Producer to Consumer. The local states for each agent (Producer, Consumer, and
intermediate Nodes), and their protocols are shown on Fig. 1. The evaluation of both
BMC algorithms for RTECTLK with respect to the GPP system has been done by means
of the following RTECTLK specifications:

ϕ1 = EF[0,∞] (ProdSend ∧ EG[a,∞]KCKP (Received)), where a = 2n+ 1, n ≥ 1;
ϕ2 = EF[0,∞]KP (ProdSend ∧ EF[0,3](Received));
ϕ3 = EF[0,∞]KP (ProdSend ∧ EF[n,n+3](Received)), where n � 1.

ProdReady

ProdSend

Producer Consumer

ConsReady

Node1Ready

Processing Processing

data data

Node1Send NodenSend
Received

producing

processing1 processingn

send1

send1

send2

sendn

sendn+1

sendn+1consuming

Node1 Noden

NodenReady

by node 1 by node n

Fig. 1. The GPP system

The formula ϕ1 states that it is not true that if Producer generates a product, then ul-
timately at time later or equal a Consumer knows that Producer does not know that
Consumer has the product. The formula ϕ2 expresses that it is not true that Producer
knows that if he produces a product, then always within the first three time units later
Consumer does not have the product. The formula ϕ3 represents that it is not true that
Producer knows that if he generates a product, then always within interval [n, n + 3]
Consumer does not have the product. The above formulae are true in the model for GPP.

A train controller system (TC). The second benchmark we consider is a standard train
controller (TC) system [12], which consists of n trains (for n ≥ 2) and a controller. In
the system it is assumed that each train uses its own circular track for travelling in one
direction. At one point, all trains have to pass through a tunnel, but because there is only
one track in the tunnel, trains arriving from each direction cannot use it simultaneously.
There are traffic lights on both sides of the tunnel, which can be either red or green. All
trains notify the controller when they request entry to the tunnel or when they leave the
tunnel. The controller controls the colour of the traffic lights.

The local states for each agent (trains and the controller), and their protocols are
shown on Fig. 2. The evaluation of both BMC algorithms for RTECTLK with respect to
the TC system has been done by means of the following RTECTLK specifications:

ϕ1 = EF[0,∞](KTrain1(InTunnel1 ∧ EG[1,∞](¬InTunnel1))),
ϕ2 = EF[0,∞](InTunnel1 ∧ KTrain1(EG[1,n+1](

∧n
i=1(¬InTunneli)))),

where n is the number of considered trains.

The BMC Method for the Existential Part of RTCTLK 563

Controller

Green

Away 1

Red

Wait 1

Train1

Tunnel 1

approach1

in1

out1

in1

inn

out1

outn

Away n

Wait n

Trainn

Tunnel n

approachn

inn

outn

Fig. 2. Agents for train controller system

The formula ϕ1 states that it is not true that it is always the case that agent Train
1 knows that whenever he is in the tunnel, it will be in the tunnel once again within a
bounded period of time, i.e., within n time units for n ≥ 1. The formula ϕ2 represents
that it is not true that it is always the case that if Train 1 is in the tunnel, then he knows
that either he or other train will be in the tunnel during the next n + 1 time units. All
above formulae are true in the model for TC.

 0

 100

 200

 300

 400

 500

 600

 700

 0 5 10 15 20 25 30 35

M
em

or
y

in
 M

B

Number of Nodes

Memory usage for GPP

New BMC, formula 1
New BMC formula 2
Old BMC formula 2

New BMC formula 3
Old BMC formula 3

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 5 10 15 20 25 30 35

T
im

e
in

 s
ec

.

Number of Nodes

Total time usage for GPP

New BMC, formula 1
New BMC formula 2
Old BMC formula 2

New BMC formula 3
Old BMC formula 3

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 200 400 600 800 1000 1200

M
em

or
y

in
 M

B

Number of Trains

Memory usage for TC

New BMC, formula 1
Old BMC, formula 1

New BMC, formula 2
Old BMC, formula 2

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 200 400 600 800 1000 1200

T
im

e
in

 s
ec

.

Number of Trains

Total times for TC

New BMC, formula 1
Old BMC, formula 1

New BMC, formula 2
Old BMC, formula 2

Performance Evaluation. The experimental results show that the improved BMC me-
thod for RTECTLK outperforms the old BMC method for RTECTLK in both the mem-
ory consumption and the execution time (as shown below in the line plots). This is so,
because the new method produces a significantly smaller set of clauses (as shown in
Table 1), and the SAT solver is given this smaller set. The reason for this is that the
new translation does not use all the fk(ϕ) k-paths both for the formula ϕ and for each
of its proper subformulea. Moreover, the produced set of clauses is not only smaller,

564 B. Woźna-Szcześniak, A. Zbrzezny, and A. Zbrzezny

but also easier for a SAT solver, which further boosts the performance of the improved
BMC method. Therefore using the old translation only smaller systems can be model-
checked. Notice, that for the GPP system it was even impossible to generate the trans-
lation of the formula ϕ1 by using the old method.

As is well known, the SAT-based BMC method is divided into two steps: in the first
step the set of clauses is generated that describes both the checked model and the for-
mula under consideration, and in the second step the SAT solver checks the satisfiability
of the generated set of clauses. Both methods, the new and the old, consumed compa-
rable memory in the first step, but the old method took significantly more time in the
second step. Also, the memory consumed by the SAT solver was significantly larger for
the set of clauses generated by the old method, which suggests that the propositional
formula obtained by the old method is bigger and more complicated in comparison with
the one generated by the new method.

Table 1. Results for selected witnesses generated by the new and old BMC translations

Checked Which (Max) number Length of Number Number Number
formula translation of components the witnesses of paths of variables of clauses

gpp− ϕ1 new 1 5 14 3210 9153
gpp− ϕ1 new 5 13 30 61926 178381

gpp− ϕ2 old 30 63 3 443621 1359604
gpp− ϕ2 new 30 63 3 301286 887929
gpp− ϕ2 new 35 73 3 444741 1312844

gpp− ϕ3 old 21 24 3 95015 290305
gpp− ϕ3 new 21 24 3 65957 192865
gpp− ϕ3 new 22 25 3 73532 215155

tc − ϕ1 old 500 4 3 1716818 5159566
tc − ϕ1 new 500 4 3 1647670 4918036
tc − ϕ1 new 1100 4 3 7584670 22699036

tc − ϕ2 old 13 14 3 29123 89905
tc − ϕ2 new 13 14 3 17140 49765
tc − ϕ2 new 40 41 3 217372 638392

5 Conclusions

In the paper we have presented a compact and elegant bounded semantics for RTECTLK,
an improved SAT-based BMC algorithm for RTECTLK properties of interleaved inter-
preted systems, and we have shown the correctness of both, the new bounded seman-
tics for RTECTLK and the new BMC encoding. Further, we have implemented, tested,
and compared with each other on two standard benchmarks both BMC translations for
RTECTLK, the new and the old one. Our experiments have shown that the new transla-
tion is clearly superior; it is much faster, and consumes less memory.

Our future work will involve an implementation of the method also for other models
of multi-agent systems, for example for standard interpreted systems. Moreover, we are
going to define a BDD-based BMC algorithm for RTECTLK, and compare it with the
method presented in this paper.

The BMC Method for the Existential Part of RTCTLK 565

References

1. Biere, A., Cimatti, A., Clarke, E., Fujita, M., Zhu, Y.: Symbolic model checking using SAT
procedures instead of BDDs. In: Proc. of DAC 1999, pp. 317–320 (1999)

2. Biere, A., Heljanko, K., Junttila, T., Latvala, T., Schuppan, V.: Linear Encodings of Bounded
LTL Model Checking. Logical Methods in Computer Science 2(5:5), 1–64 (2006)

3. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cmbridge Tracts in Theoretical Com-
puter Science, vol. 53. Cambridge University Press (2001)

4. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cambridge
(1999)

5. Eén, N., Sörensson, N.: MiniSat, http://minisat.se/MiniSat.html
6. Eén, N., Sörensson, N.: MiniSat - A SAT Solver with Conflict-Clause Minimization. In:

Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569. Springer, Heidelberg (2005)
7. Emerson, E.A., Sistla, A.P., Mok, A.K., Srinivasan, J.: Quantitative temporal reasoning. Real-

Time Systems 4(4), 331–352 (1992)
8. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge. MIT Press,

Cambridge (1995)
9. Fagin, R., Halpern, J.Y., Vardi, M.Y.: What can machines know? On the properties of knowl-

edge in distributed systems. Journal of the ACM 39(2), 328–376 (1992)
10. Halpern, J.Y., Vardi, M.Y.: The complexity of reasoning about knowledge and time 1: lower

bounds. Journal of Computer and System Sciences 38(1), 195–237 (1989)
11. van der Hoek, W., Wooldridge, M.J.: Model checking knowledge and time. In: Bošnački, D.,

Leue, S. (eds.) SPIN 2002. LNCS, vol. 2318, pp. 95–111. Springer, Heidelberg (2002)
12. van der Hoek, W., Wooldridge, M.: Cooperation, knowledge, and time: Alternating-time tem-

poral epistemic logic and its applications. Studia Logica 75(1), 125–157 (2003)
13. Huang, X., Luo, C., van der Meyden, R.: Improved Bounded Model Checking for a Fair

Branching-Time Temporal Epistemic Logic. In: van der Meyden, R., Smaus, J.-G. (eds.)
MoChArt 2010. LNCS (LNAI), vol. 6572, pp. 95–111. Springer, Heidelberg (2011)

14. Kacprzak, M., Lomuscio, A., Niewiadomski, A., Penczek, W., Raimondi, F., Szreter, M.:
Comparing BDD and SAT based techniques for model checking Chaum’s dining cryptogra-
phers protocol. Fundamenta Informaticae 63(2,3), 221–240 (2006)

15. Lomuscio, A., Penczek, W., Qu, H.: Partial order reduction for model checking interleaved
multi-agent systems. In: AAMAS, pp. 659–666. IFAAMAS Press (2010)

16. Peled, D.: All from one, one for all: On model checking using representatives. In: Courcou-
betis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 409–423. Springer, Heidelberg (1993)

17. Penczek, W., Lomuscio, A.: Verifying epistemic properties of multi-agent systems via
bounded model checking. Fundamenta Informaticae 55(2), 167–185 (2003)

18. Penczek, W., Woźna, B., Zbrzezny, A.: Bounded model checking for the universal fragment
of CTL. Fundamenta Informaticae 51(1-2), 135–156 (2002)

19. Raimondi, F., Lomuscio, A.: Automatic verification of multi-agent systems by model check-
ing via OBDDs. Journal of Applied Logic 5(2), 235–251 (2005); Special issue on Logic-
based agent verification

20. van der Meyden, R., Su, K.: Symbolic model checking the knowledge of the dining cryp-
tographers. In: Proc. of CSFW 2004, pp. 280–291. IEEE Computer Society, Los Alamitos
(2004)

21. Woźna-Szcześniak, B.: Bounded model checking for the existential part of Real-Time CTL
and knowledge. In: Pre-Proc. of CEE-SET 2009, pp. 178–191. AGH Krakow, Poland (2009)

22. Zbrzezny, A.: Improving the translation from ECTL to SAT. Fundamenta Informaticae 85(1-
4), 513–531 (2008)

http://minisat.se/MiniSat.html

	The BMC Method for the Existential Part of RTCTLK and Interleaved Interpreted Systems
	Introduction
	Preliminaries
	SAT-Based BMC for Rtectlk
	Experimental Results
	Conclusions
	References

