
Uncertainty That Counts

Dany Maslowski and Jef Wijsen

Université de Mons, Mons, Belgium
{dany.maslowski,jef.wijsen}@umons.ac.be

Abstract. Uncertainty is modeled by a multibase (db, μ) where db is
a database with zero or more primary key violations, and μ associates a
multiplicity (a positive integer) to each fact of db. In data integration,
the multiplicity of a fact g can indicate the number of data sources in
which g was found. In planning databases, facts with the same primary
key value are alternatives for each other, and the multiplicity of a fact g
can denote the number of people in favor of g.

A repair of db is obtained by selecting a maximal number of facts
without ever selecting two distinct facts of the same relation that agree
on their primary key. Every repair has a support count, which is the
product of the multiplicities of its facts.

For a fixed Boolean query q, we define σCERTAINTY(q) as the follow-
ing counting problem: Given a multibase (db, μ), determine the weighted
number of repairs of db that satisfy q. Here, every repair is weighted by
its support count. We illustrate the practical significance of this problem
by means of examples.

For conjunctive queries q without self-join, we provide a syntactic
characterization of the class of queries q such that σCERTAINTY(q) is in
P; for queries not in this class, σCERTAINTY(q) is �P-hard (and hence
highly intractable).

1 Motivation

Many database applications require integrating data from multiple sources. Some
data sources may store inaccurate or outdated values for the same entity [7].
Users of the database often do not know which value is the correct one. This
leads to uncertainty.

For example, Figure 1 shows a database resulting from the integration of three
distinct source databases. Primary keys are underlined: the business rules im-
pose that every department has a single budget and manager; every employee
has a single first name, last name, and address. Unfortunately, the three source
databases contained conflicting information. The multiplicity column μ indicates
the number of source databases recording a given fact: two source databases
recorded that the Toys department is managed by employee 456, while one
database recorded that Toys is managed by employee 123. Two source databases
recorded that Shoes is managed by employee 123; the remaining database did
not store this department. Also, the source databases did not agree on the ad-
dress of Ann Smith: the address 8 Corn St. was found in two databases, while

H. Christiansen et al. (Eds.): FQAS 2011, LNAI 7022, pp. 25–36, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

26 D. Maslowski and J. Wijsen

6 Main St. was found once. Luckily, the three source databases agreed on John
Kipling’s address.

A repair of a database db is a maximal subset of db that satisfies the primary
key constraints. The integrated database of Figure 1 has four repairs, because
there are two choices for the manager of Toys, and two choices for the address of
Ann Smith. Figure 2 shows the four repairs. Significantly, if we have equal trust
(or suspicion) in each source database, then these four repairs do not have the
same likelihood. The repair r1 stores the most agreed upon values for the Toys’
manager and for Ann Smith’s address, while r4 stores values for these items that
were found only once. This can be quantified by the support count of a repair,
which is obtained by multiplying the multiplicities of its facts. The repairs r1 and
r4 have support counts 24 and 6, respectively. Alternatively, these numbers could
be conveniently represented as a fraction of the total sum of support counts of
all repairs; in this example, the support counts sum up to 54 = 24 + 12 + 12 +6.

DEPT DName Budget Mgr μ

Toys 10K 456 2
Toys 10K 123 1

Shoes 12K 123 2

EMP E# FName LName Address μ

123 Ann Smith 8 Corn St. 2
123 Ann Smith 6 Main St. 1

456 John Kipling 7 River St. 3

Fig. 1. Integrated company database

Given a Boolean query q, we want to know the weighted number of repairs
in which q evaluates to true; here, every repair is weighted by its support count.
For example, the following query q1 asks whether the manager of the Toys de-
partment lives in ‘6 Main St.’ The query q1 is only true in r4 with support
count 6.

q1 = ∃x∃y∃z∃u
(
DEPT(‘Toys’, x, y) ∧ EMP(y, z, u, ‘6 Main St.’)

)

The following query q2 asks whether the Toys’ manager lives in ‘7 River St.’ The
query q2 is true in r1 and r2, whose support counts sum up to 36 = 24 + 12.

q2 = ∃x∃y∃z∃u
(
DEPT(‘Toys’, x, y) ∧ EMP(y, z, u, ‘7 River St.’)

)

These figures could be conveniently presented as fractions of the total sum of
support counts: the support fractions of q1 and q2 are 6

54 and 36
54 , respectively.

Multiplicities can arise in many applications. In a conference planning data-
base, for example, the multiplicities may indicate the number of steering com-
mittee members that are in favor of a given conference location. In the database
of Figure 3, eight members are favorable to organizing FQAS 2015 in Seattle.
The support counts of all repairs sum up to 100. The following query q3 asks the
support for organizing FQAS in North-America in some year:

q3 = ∃x∃y
(
CONF(‘FQAS’, x, y, ‘North-America’)

)

Uncertainty That Counts 27

DEPT DName Budget Mgr μ

Toys 10K 456 2
Shoes 12K 123 2

EMP SS# FName LName Address μ

123 Ann Smith 8 Corn St. 2
456 John Kipling 7 River St. 3

Repair r1 with support count 24 = 2 × 2 × 2 × 3

DEPT DName Budget Mgr μ

Toys 10K 456 2
Shoes 12K 123 2

EMP SS# FName LName Address μ

123 Ann Smith 6 Main St. 1
456 John Kipling 7 River St. 3

Repair r2 with support count 12 = 2 × 2 × 1 × 3

DEPT DName Budget Mgr μ

Toys 10K 123 1
Shoes 12K 123 2

EMP SS# FName LName Address μ

123 Ann Smith 8 Corn St. 2
456 John Kipling 7 River St. 3

Repair r3 with support count 12 = 1 × 2 × 2 × 3

DEPT DName Budget Mgr μ

Toys 10K 123 1
Shoes 12K 123 2

EMP SS# FName LName Address μ

123 Ann Smith 6 Main St. 1
456 John Kipling 7 River St. 3

Repair r4 with support count 6 = 1 × 2 × 1 × 3

Fig. 2. Four repairs r1, r2, r3, r4 with their support counts

For the example table, there is only one repair in which FQAS is not organized
in North-America; the support count of this repair is 18 = 2 × 9. Consequently,
the support count for organizing FQAS in North-America is 82; the support
fraction of q3 is thus 82

100 .

CONF Conf Year Town Continent μ

FQAS 2015 Seattle North-America 8
FQAS 2015 Berlin Europe 2

FQAS 2016 Paris Europe 9
FQAS 2016 Dallas North-America 1

Fig. 3. A conference planning table

Formally, for a given Boolean query q, we define σCERTAINTY(q) as the fol-
lowing problem: given a database db with primary key violations and multiplic-
ities for all facts, determine the weighted number of repairs in which q evaluates
to true. In this article, we study σCERTAINTY(q) for queries q that belong to the
class SJFCQ, which is the class of Boolean conjunctive queries that are self-join-
free (that is, in which no relation name occurs more than once). Unfortunately,
there are queries q in this class for which the data complexity of σCERTAINTY(q)
is highly intractable (in particular, �P-hard). In this article, we provide a syn-

28 D. Maslowski and J. Wijsen

tactic characterization of the SJFCQ queries q such that σCERTAINTY(q) is
tractable (that is, in P).

Recall that the class �P contains the counting variant of problems in NP.
By Toda’s theorem [12], every problem in the polynomial-time hierarchy can be
solved in polynomial time given an oracle that solves a �P-complete problem.
Thus, �P-hardness suggests a higher level of intractability than NP-hardness,
insofar decision problems and counting problems can be compared.

In summary, the contribution made by this article is twofold:

1. We propose to model uncertainty by primary key violations plus multiplic-
ities. Multiplicities may be useful in practice, because they allow to model
the support for a given database fact. They arise, for example, as the result
of a voting process.

2. We give a sound and complete syntactic characterization of the self-join-free
conjunctive queries whose data complexity is tractable.

The remainder of this article is organized as follows. Section 2 formally defines
our data model and the problem of interest. We focus on Boolean conjunctive
queries in which each relation name is used at most once. Section 3 discusses
related work. Section 4 determines a sufficient and necessary condition, called
safety1, on queries q under which σCERTAINTY(q) is tractable. Section 5 con-
cludes the article. Several proofs are available in a separate appendix.

2 Preliminaries

2.1 Basic Notions

Data Model We define N = {0, 1, 2, . . .}. Each relation name R of arity n,
n ≥ 1, has a unique primary key which is a set {1, 2, . . . , k} where 1 ≤ k ≤ n.
We say that R has signature [n, k] if R has arity n and primary key {1, 2, . . . , k}.
Elements of the primary key are called primary-key positions, while k+1, k +2,
. . . , n are non-primary-key positions . For all positive integers n, k such that
1 ≤ k ≤ n, we assume denumerably many relation names with signature [n, k].

We assume a denumerable set dom of constants , disjoint from a denumerable
set vars of variables . If R is a relation name of signature [n, k], and s1, . . . , sn are
variables or constants, then R(s1, . . . , sk, sk+1, . . . , sn) is an R-goal (or simply
goal if R is understood). Notice that primary key positions are underlined. An
R-fact (or simply fact) is a goal in which no variable occurs. Two R-facts g and
h are key-equal if they agree on all primary-key positions. Every fact is key-equal
to itself.

A database db is a finite set of facts. Such database may violate primary keys,
and so capture uncertainty. Given a database db, we write adom(db) for the
set of constants that occur in db.
1 This notion is unrelated to the notion of safety that guarantees domain independence

in relational calculus [1, page 75].

Uncertainty That Counts 29

A database db is called consistent if it contains no two distinct, key-equal
facts. A repair r of a database db is a maximal subset of db that is consistent.
If g is a fact of db, then block(g,db) is the subset of db containing each fact
that is key-equal to g. The sets block(g,db) are also called blocks . Intuitively,
repairs are obtained by choosing exactly one fact from each block.

A multibase is a pair (db, μ) where db is a database and μ is a total function
μ : db → N\{0}. The support count of a repair r, denoted σ(r,db, μ), is defined
by:

σ(r,db, μ) =
∏

{μ(g) | g ∈ r} .

For every g ∈ db, we define the support count of its block as follows:

σblock(g,db, μ) =
∑

{μ(h) | h ∈ block(g,db)} .

Notice the use of
∏

in the case of repairs, and
∑

in the case of blocks: the facts
in a repair are mutually independent, while the facts in a block are mutually
exclusive.

Queries. A Boolean conjunctive query q is a finite set of goals. A Boolean
conjunctive query q = {g1, g2, . . . , gn} represents the first-order logic sentence
∃x1 . . .∃xm(g1 ∧ g2 . . . ∧ gn), where x1, . . . , xm are all variables occurring in q.
Such query is self-join-free if it contains no two distinct goals with the same
relation name. Thus, every relation name occurs at most once in a self-join-
free query. The class of self-join-free Boolean conjunctive queries is denoted by
SJFCQ.

Let V be a finite set of variables. A valuation over V is a mapping θ : vars ∪
dom → vars ∪ dom such that for every x ∈ V , θ(x) ∈ dom, and for every
s 	∈ V , θ(s) = s. Valuations extend to goals and queries in the straightforward
way.

If s is a sequence of variables and constants, then Vars(s) denotes the set of
variables that occur in s. If g is a goal, then Vars(g) denotes the set of variables
that occur in g, and KVars(g) denotes the subset of Vars(g) containing each
variable that occurs at a primary-key position. If q is a query, then Vars(q)
denotes the set of variables that occur in q.

If q is a conjunctive query, x ∈ Vars(q), and a ∈ dom, then qx �→a is the query
obtained from q by replacing all occurrences of x with a.

A database db is said to satisfy Boolean conjunctive query q, denoted db |= q,
if there exists a valuation θ over Vars(q) such that θ(q) ⊆ db.

Counting Repairs. For some fixed q ∈ SJFCQ, σCERTAINTY(q) is the fol-
lowing problem: Given a multibase (db, μ), determine the total sum of support
counts of repairs of db that satisfy q.

Let (db, μ) be a multibase and q a Boolean query. We write rset(db) for the
set of repairs of db, and rset(db, q) for the subset of rset(db) containing each
repair that satisfies q. Furthermore, we define:

σrset(db, μ) =
∑

{σ(r,db, μ) | r ∈ rset(db)}

30 D. Maslowski and J. Wijsen

CONF Conf Year Town Continent P

FQAS 2015 Seattle North-America 0.8
FQAS 2015 Berlin Europe 0.2

FQAS 2016 Paris Europe 0.9
FQAS 2016 Dallas North-America 0.1

Fig. 4. The conference planning table as a probabilistic table

σrset(db, μ, q) =
∑

{σ(r,db, μ) | r ∈ rset(db, q)}

σfrac(db, μ, q) =
σrset(db, μ, q)
σrset(db, μ)

Thus, for a fixed query q ∈ SJFCQ, σCERTAINTY(q) is the problem that takes
as input a multibase (db, μ) and asks to determine σrset(db, μ, q).

2.2 Counts Versus Fractions

We show that the choice to work with counts or fractions throughout this article
is not fundamental. In [3], it is illustrated that a database with 2n facts can
have 2n repairs. That is, the number of repairs can be exponential in the size of
the database. Nevertheless, the following lemma implies that the total sum of
support counts of all repairs can be computed in polynomial time.

Lemma 1. Let (db, μ) be a multibase. Let r be a repair of db. Then,

σrset(db, μ) =
∏

g∈r

σblock(g,db, μ) ,

where, as usual, the empty product is defined to be equal to 1.

It follows that σrset(db, μ) can be determined in time O(n log n) where n
is the cardinality of db: sort each relation of db on its primary key values;
for each block, determine the support count of that block, and multiply these
numbers. Since σrset(db, μ, q) = σfrac(db, μ, q) × σrset(db, μ), if we can deter-
mine σfrac(db, μ, q) in time O(f(n)), then we can determine σrset(db, μ, q) in
time O(f(n) + n log n). In particular, σCERTAINTY(q) is in P if for each multi-
base (db, μ), σfrac(db, μ, q) can be determined in polynomial time in the size of
(db, μ). For that reason, we can focus on determining fractions σfrac(db, μ, q)
instead of counts σrset(db, μ, q).

3 Related Work

The current article generalizes [10] by allowing multiplicities. The data model
in [10] has no multiplicities, which is tantamount to setting μ(g) = 1 for every
database fact g. We believe that multiplicities are useful in many applications,
as illustrated in Section 1.

Uncertainty That Counts 31

Block-independent-disjoint probabilistic databases [4,5] use probabilities in-
stead of multiplicities, as illustrated by Figure 4. If one requires that the proba-
bilities within each block sum up to 1, then the difference between multiplicities
and probabilities turns out to be irrelevant. It should be noted, however, that the
authors of [4,5] do not require that the probabilities in a block sum up to 1, in
which case a nonempty database can have an empty repair. This is different from
our data model, in which a repair cannot be empty unless the original database
is empty. This difference is significant. For example, Dalvi et al. [6,5] obtain an
intractability result for the query q = {R(x, y), S(y)}, whereas σCERTAINTY(q)
is tractable in our setting.

Our work can also be viewed as a variant of consistent query answering [2],
which deals with the problem of computing answers to queries on databases that
violate integrity constraints. In our data model, the only constraints are primary
keys. Fuxman and Miller [8] were the first ones to focus on consistent conjunctive
query answering under primary key violations. Their results have been extended
and improved in recent works [13,14,15,11]. These works on primary key viola-
tions have focused on the question whether a query is true in every repair; in
the current article, we ask to determine the weighted number of repairs in which
the query is true.

Counting the fraction of repairs that satisfy a query is also studied by Greco
et al. in [9]. The constraints in that work are functional dependencies, and the
repairs are obtained by updates. Greco et al. present an approach for computing
approximate probabilistic answers in polynomial time. We, on the other hand,
characterize queries for which exact fractions can be obtained in polynomial
time.

4 The Boundary of Tractability

We define a syntactically restricted class of SJFCQ queries, called safe queries,
and show that for every safe SJFCQ query q, the problem σCERTAINTY(q) is in
P. Moreover, we show that for every unsafe SJFCQ query q, it is the case that
σCERTAINTY(q) is �P-hard. The outline is as follows: Lemmas 2–6 first provide
arithmetic expressions for σfrac(db, μ, q) under particular syntactic conditions
on q; these lemmas are then combined in an algorithm that defines the safe
queries.

The following lemma implies that we can compute in polynomial time the
total sum of support counts of repairs that contain a given fact.

Lemma 2 (SE0a). Let g be a fact. Let q = {g}, an SJFCQ query. Then, for
every multibase (db, μ),

σfrac(db, μ, q) =

{
0 if g 	∈ db

μ(g)
σblock(g,db,μ) if g ∈ db

Lemma 3 deals with queries that are either satisfied or falsified by all repairs.
An example of such query is q0 = {R(x, x, y, z)}. Trivially, a database db satisfies

32 D. Maslowski and J. Wijsen

Algorithm IsSafe(q)
Input: SJFCQ query q
Output: Boolean in {true, false}
1. (∗ SE0a ∗)
2. if q = {g} with Vars(g) = ∅ then return true
3.
4. (∗ SE0b ∗)
5. if [[q]] = ∅ then return true
6.
7. (∗ SE1 ∗)
8. if q = q1 � q2 and q1 �= ∅ �= q2 and Vars(q1) ∩ Vars(q2) = ∅
9. then return (IsSafe(q1) ∧ IsSafe(q2))
10.
11. (∗ SE2 ∗)
12. if [[q]] �= ∅ and ∃x∀g ∈ [[q]](x ∈ KVars(g)) then return IsSafe(qx �→a)
13. (∗ a is any fixed constant ∗)
14.
15. (∗ SE3 ∗)
16. if ∃x∃g ∈ q(KVars(g) = ∅, x ∈ Vars(g)) then return IsSafe(qx �→a)
17.
18. (∗ Otherwise ∗)
19. if none of the above then return false

Fig. 5. Algorithm IsSafe

q0 if and only if db contains an R-fact of the form R(a, a, b, c), for some constants
a, b, c. Moreover, if db contains an atom of this form, then every repair of db
will contain an atom of this form, and thus satisfy q0. Inversely, if db contains
no atom of this form, then no repair of db will satisfy q0.

Definition 1. Let q be an SJFCQ query. A variable x ∈ Vars(q) is called a
liaison variable if x has at least two occurrences in q.2 A variable y ∈ Vars(q) is
called an orphan variable if y occurs only once in q and the only occurrence of
y is at a non-primary-key position.

The complex part of an SJFCQ query q, denoted [[q]], contains every goal g ∈ q
such that some non-primary-key position in g contains a liaison variable or a
constant.

Example 1. Let q = {R(x, y), S(y, z), T (y, u, a)}. Then, y is a liaison variable
because y occurs more than once in q. The variables u and z are orphan, because
they occur only once in q at a non-primary-key position. The variable x is neither
liaison nor orphan. The complex part of q is [[q]] = {R(x, y), T (y, u, a)}.

The complex part of a query q can be empty, as is the case for q = {R(x, y),
S(x, u), T (y, w)}, in which each position of R is a primary-key position. Lemma 3
implies that if the complex part of an SJFCQ query q is empty, then the problem
σCERTAINTY(q) is tractable.
2 Liaison variables are sometimes called join variables in the literature.

Uncertainty That Counts 33

Algorithm Eval(db, μ, q)
Input: multibase (db, μ), safe SJFCQ query q
Output: σfrac(db, μ, q)
1. (∗ Evaluation SE0a ∗)
2. if q = {g} with Vars(g) = ∅
3. then if g ∈ db
4. then return μ(g)/σblock(g,db, μ)
5. else return 0
6.
7. (∗ Evaluation SE0b ∗)
8. if [[q]] = ∅
9. then if db |= q
10. then return 1
11. else return 0
12.
13. (∗ Evaluation SE1 ∗)
14. if q = q1 � q2 and q1 �= ∅ �= q2 and Vars(q1) ∩ Vars(q2) = ∅
15. then return Eval(db, μ, q1) × Eval(db, μ, q2)
16.
17. (∗ Evaluation SE2 ∗)
18. if [[q]] �= ∅ and ∃x∀g ∈ [[q]](x ∈ KVars(g))

19. then return 1 −
(∏

a∈adom(db)

(
1 − Eval(db, μ, qx �→a)

))

20.
21. (∗ Evaluation SE3 ∗)
22. if ∃x∃g ∈ q(KVars(g) = ∅, x ∈ Vars(g))
23. then return

∑
a∈adom(db) Eval(db, μ, qx �→a)

Fig. 6. Algorithm Eval

Lemma 3 (SE0b). Let q be an SJFCQ query. If [[q]] = ∅, then for every multi-
base (db, μ),

σfrac(db, μ, q) =
{

0 if db 	|= q
1 if db |= q

Proof. Straightforward.

Lemma 4 deals with queries q that can be partitioned into two subqueries,
say q1 and q2, such that q1 and q2 have no variables in common. The lemma
implies that if σCERTAINTY(q1) and σCERTAINTY(q2) are both tractable, then
so is σCERTAINTY(q).

Lemma 4 (SE1). Let q, q1, q2 be SJFCQ queries such that q = q1∪q2, q1∩q2 =
∅, and Vars(q1) ∩ Vars(q2) = ∅. Then, for every multibase (db, μ),

σfrac(db, μ, q) = σfrac(db, μ, q1) × σfrac(db, μ, q2).

Lemma 5 treats queries q for which there exists a variable x such that x
occurs at a primary-key position in every goal of the complex part of q. An ex-
ample is the query {R(x, y), S(x, y, z), T (z, u)}, whose complex part is {R(x, y),

34 D. Maslowski and J. Wijsen

�

�
�

�

�
�

�

P (u, w), Q(w, w), R(x, y), S(x, y), T (y, z)

�P (u, w), Q(w, w)

�

false

SE1
�R(x, y), S(x, y), T (y, z)

�R(a, y), S(a, y), T (y, z)

�

�
�

�

�
�

�

R(a, a), S(a, a), T (a, z)

�S(a, a)

�

�R(a, a)

�

�

�
�

�

�
�

�

S(a, a), T (a, z)

�T (a, z)

�

true

true true

SE2

SE3

SE1

SE1SE0a

SE0a SE0b

Fig. 7. Tree representation of an execution of IsSafe. Vertices are labeled by queries.
Each edge label indicates the rule that, applied on the parent, results in the children.
Since some leaf vertex is false, the query at the root node is unsafe. Notice that the
subquery R(x, y), S(x, y), T (y, z) is safe, because all its descendant leaf vertices are
true.

S(x, y, z)}; the variable x occurs at a primary-key position in each goal of the
complex part.

Lemma 5 (SE2). Let q be an SJFCQ query such that [[q]] 	= ∅ and for some
variable x, x ∈ ⋂

g∈[[q]] KVars(g). Then, for every multibase (db, μ),

σfrac(db, μ, q) = 1 −
(∏

a∈adom(db)

(
1 − σfrac(db, μ, qx �→a)

))
.

Lemma 6 treats queries with a goal g such that all primary-key positions in g
are occupied by constants, and at least one non-primary-key position is occupied
by a variable.

Lemma 6 (SE3). Let q be an SJFCQ query such that for some goal g ∈ q,
for some variable x, KVars(g) = ∅ and x ∈ Vars(g). Then, for every multibase
(db, μ),

σfrac(db, μ, q) =
∑

a∈adom(db)

σfrac(db, μ, qx �→a).

Lemmas 2–6 are now bundled in a recursive algorithm, called IsSafe, which
takes as input an SJFCQ query q and returns true if for every multibase (db, μ),

Uncertainty That Counts 35

σfrac(db, μ, q) can be obtained by recursive application of Lemmas 2–6; other-
wise IsSafe returns false. Algorithm IsSafe is shown in Figure 5. To simplify the
notation, we write A
B for the disjoint union of sets A and B, where A and B
are understood to be disjoint. An execution of IsSafe is illustrated in Figure 7.
Algorithm IsSafe always terminates since every recursive call has an argument
query that contains either less goals or less variables.

Definition 2. An SJFCQ query q is called safe if the algorithm IsSafe returns
true on input q; if IsSafe returns false, then q is called unsafe.

Figure 6 shows algorithm Eval , which takes as input a multibase (db, μ) and a
safe SJFCQ query q, and returns σfrac(db, μ, q) in polynomial time in the size
of db.

Theorem 1. If q is a safe SJFCQ query, then

1. for each multibase (db, μ), algorithm Eval correctly computes σfrac(db, μ, q);
2. σCERTAINTY(q) is in P.

Finally, we show that σCERTAINTY(q) is �P-hard (and hence highly in-
tractable) for queries q that violate safety.

Theorem 2. For every unsafe SJFCQ query q, the problem σCERTAINTY(q) is
�P-hard under polynomial-time Turing reductions.

Proof. From [10], it follows that σCERTAINTY(q) is already �P-hard if all mul-
tiplicities are 1.

Consequently, given an SJFCQ query q, we can test by means of algorithm
IsSafe whether q is safe. If q is not safe, then computing σfrac(db, μ, q) for a
given database (db, μ) has highly intractable data complexity, unless P = NP.
On the other hand, if q is safe, then algorithm Eval computes σfrac(db, μ, q) in
polynomial time in the size of (db, μ).

5 Conclusion

Uncertainty is modeled in our data model by means of primary key violations.
Each database fact g has a multiplicity, indicating how often g occurs in the
database. We have argued that multiplicities may be useful in practice.

For a Boolean query q, the problem σCERTAINTY(q) asks the weighted num-
ber of repairs (or possible worlds) in which q evaluates to true. Intuitively, a
query q is more certain if it is true in more repairs. We have given a sound and
complete syntactic characterization of the self-join-free conjunctive queries q for
which σCERTAINTY(q) can be solved in polynomial time (data complexity).

An open problem is to determine tractability boundaries for richer query
languages, like unions of conjunctive queries or conjunctive queries with self-
joins.

36 D. Maslowski and J. Wijsen

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Reading (1995)

2. Arenas, M., Bertossi, L.E., Chomicki, J.: Consistent query answers in inconsistent
databases. In: PODS, pp. 68–79. ACM Press, New York (1999)

3. Arenas, M., Bertossi, L.E., Chomicki, J., He, X., Raghavan, V., Spinrad, J.: Scalar
aggregation in inconsistent databases. Theor. Comput. Sci. 296(3), 405–434 (2003)

4. Dalvi, N.N., Ré, C., Suciu, D.: Probabilistic databases: diamonds in the dirt. Com-
mun. ACM 52(7), 86–94 (2009)

5. Dalvi, N.N., Re, C., Suciu, D.: Queries and materialized views on probabilistic
databases. J. Comput. Syst. Sci. 77(3), 473–490 (2011)

6. Dalvi, N.N., Suciu, D.: Management of probabilistic data: foundations and chal-
lenges. In: Libkin, L. (ed.) PODS, pp. 1–12. ACM, New York (2007)

7. Fan, W., Geerts, F., Wijsen, J.: Determining the currency of data. In: Lenzerini,
M., Schwentick, T. (eds.) PODS, pp. 71–82. ACM, New York (2011)

8. Fuxman, A., Miller, R.J.: First-order query rewriting for inconsistent databases. J.
Comput. Syst. Sci. 73(4), 610–635 (2007)

9. Greco, S., Molinaro, C.: Approximate probabilistic query answering over inconsis-
tent databases. In: Li, Q., Spaccapietra, S., Yu, E.S.K., Olivé, A. (eds.) ER 2008.
LNCS, vol. 5231, pp. 311–325. Springer, Heidelberg (2008)

10. Maslowski, D., Wijsen, J.: On counting database repairs. In: Proceedings of the
4th International Workshop on Logic in Databases, LID 2011, pp. 15–22. ACM,
New York (2011), http://doi.acm.org/10.1145/1966357.1966361

11. Pema, E., Kolaitis, P.G., Tan, W.C.: On the tractability and intractability
of consistent conjunctive query answering. In: Proceedings of the 2011 Joint
EDBT/ICDT Ph.D. Workshop, PhD 2011, pp. 38–44. ACM, New York (2011),
http://doi.acm.org/10.1145/1966874.1966881

12. Toda, S.: PP is as hard as the polynomial-time hierarchy. SIAM J. Comput. 20(5),
865–877 (1991)

13. Wijsen, J.: On the consistent rewriting of conjunctive queries under primary key
constraints. Inf. Syst. 34(7), 578–601 (2009)

14. Wijsen, J.: On the first-order expressibility of computing certain answers to con-
junctive queries over uncertain databases. In: Paredaens, J., Gucht, D.V. (eds.)
PODS, pp. 179–190. ACM, New York (2010)

15. Wijsen, J.: A remark on the complexity of consistent conjunctive query answering
under primary key violations. Inf. Process. Lett. 110(21), 950–955 (2010)

http://doi.acm.org/10.1145/1966357.1966361
http://doi.acm.org/10.1145/1966874.1966881

	Uncertainty That Counts
	Motivation
	Preliminaries
	Basic Notions
	Counts Versus Fractions

	Related Work
	The Boundary of Tractability
	Conclusion
	References

