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Abstract. Combining multiple features is an empirically validated ap-
proach in the literature, which increases the accuracy in querying. How-
ever, it entails processing intrinsic high-dimensionality of features and
complicates realizing an efficient system. Two primary problems can be
discussed for efficient querying: representation of images and selection of
features. In this paper, a class-specific feature selection approach with a
dissimilarity based representation method is proposed. The class-specific
features are determined by using the representativeness and discrimina-
tiveness of features for each image class. The calculations are based on
the statistics on the dissimilarity values of training images.

1 Introduction

CBIR systems aim to retrieve pictures from large image repositories according
to the needs of the users [6]. In CBIR systems, images are usually modelled
with a set of low level features, such as color, texture or shape, from which
underlying similarity functions are used to perform queries [1]. The ultimate
goal of designing CBIR systems is to achieve the best possible retrieval accu-
racy. To achieve high accuracy on a retrieval task, traditional approaches prefer
creating superior low level features than the currently available ones, or opti-
mization of them [5, 14]. However, the noise in sensed data, non-universality of
any single low level feature and performance upper bounds prevent relying on a
single feature [22]. In the information fusion literature, fusing multiple features
is an empirically validated approach for increasing the retrieval performance
[8, 14, 17, 27].

Dealing with multiple features entails processing intrinsic high-dimensionality
of each feature and handling heterogeneous dimensions / scales of different fea-
tures. Modelling the CBIR system to operate in feature space (storing image
features in the database) makes the system struggle with the heterogeneity of
different features and prevents it from being fast and flexible [3]. Such a system
is not fast since similarity calculation is done at query-time. Also, it cannot be
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flexible either, considering that handling a new feature requires renewing the sys-
tem for processing the dimensionality and scale of the new feature. Therefore, an
alternative approach, that regards the fastness and the flexibility issues, is mod-
elling the system in dissimilarity space. In accordance with the ideas of [20, 21]
for representing images with dissimilarities, Bruno et al. [4] present fusing mul-
tiple features in dissimilarity space. In dissimilarity space, the images in the
database are represented with the dissimilarity values to prototype objects of
the particular image categories. Thus, both the retrieval operation is faster and
adding new features to the system is easier as long as the distance function is
available at once for processing the images in the database.

Beyond the representation problem of images, another crucial issue is to find
out the features that are more beneficial for fusion. This problem, namely the
feature selection problem, tries to determine which subset of features yield to
an optimal result. In [12], Jain et al. group widely-used techniques with a gen-
eral aspect of view: exhaustive search, branch-and-bound search, best individual
features, sequential forward/backward selection, sequential forward/backward
floating search. The methods except the exhaustive search provide computation-
ally better ways of finding an optimal set, however exhaustive search guarantees
to find the optimal solution. For each of these methods, selection criteria during
forward/backward selection operations can differ; information gain, previously-
defined quality metrics or the complexity can be considerations. With a more
specific view on the problem, some of the recent approaches in the informa-
tion fusion literature can be listed as: Finding principal/independent compo-
nents [16, 26], selecting the most coherent and less complex features according
to the heterogeneity issue [15], calculating the information gain obtained [2, 13]
and defining quality and reliability metrics on features [22, 23].

Although there are many different approaches for the selection of features,
all of them have a common preference: The selection process is independent of
the category (semantic meaning) of the images. However, considering the idea
that different features can be more effective, representative and discriminative for
different image categories, using a category dependent feature selection approach
can be more beneficial.

In this study, we propose a class-specific feature selection approach for the fu-
sion of multiple features. In order to eliminate the high-dimensionality of multiple
features and provide efficient querying over the images, we prefer a dissimilar-
ity based approach. To learn the class-specific features, we carry out a training
phase. During the training, the class-specific features are determined by using
the representativeness and discriminativeness of features for each image class.
The calculations of representativeness and discriminativeness are based on the
statistics on the dissimilarity values of training images.

The remainder of this paper is organized as follows: First, the multi-feature
modelling in dissimilarity space is introduced in Section 2. Then, the class-
specific feature selection approach is given in detail, in Section 3. In Section
4, the empirical results and the evaluations are presented. Lastly, in Section 6,
some conclusions are drawn and further study is discussed.
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2 Multi-feature Modelling in Dissimilarity Space

The literature of information fusion agrees on the idea that combining multiple
features enhances the efficiency. However, how to combine such information is
still studied. One of the discussed issues is the representation of images. In feature
based representation, an image is usually represented with a multi-dimensional
feature vector and having multiple features causes dealing with multiple of such
multi-dimensional feature vectors, each having different dimensions and scales.
Handling the complexity of different dimensions and scales of different features
makes the CBIR system more dependent on the currently available features and
less flexible to new features. In [3], Bruno et al. discuss these issues in detail.
Still, a more crucial flaw for feature-based representation is the inefficiency of the
fast querying capabilities. Having features in the database requires calculating
the similarities of related images for every query task.

A more convenient way is the dissimilarity based representation [3,7,20,21]. In
dissimilarity based representation, feature values are not stored in the database;
instead the dissimilarity values of images are stored. Thus, the CBIR system does
not need to deal with the intrinsic dimensionality of features to combine them.
In addition, a query task is simpler; it does not require similarity calculations
for each query. The dissimilarity values of images are calculated once, before
including the image into the CBIR system. To calculate the dissimilarity values,
the dissimilarity functions of each feature are utilized. Hence dissimilarity-based
representation is a more flexible and fast way of representing the images in a
CBIR system employing multiple features.

In dissimilarity based representation, the dissimilarities between each image
couple is not necessary. Instead, the dissimilarities of the images in the image
database with prototype images of the system are enough. The number of pro-
totype images is quite smaller than the size of the image database. Usually, the
prototype images are grouped according to their image classes (semantic mean-
ings of images) in order to meet semantic query requirements. In a multi-feature
CBIR system, such distance values between the images in the image database
and the prototype images should be stored separately for each feature.

More formally, assuming that F = {f1, f2, ..fk} is the set of features available
for the CBIR system having k number of features, C = {c1, c2, .., cm} is the
image database having m number of images, P = {P1, P2, ..Pn} is the set of
prototype image classes containing n number of image classes, each prototype
image class is Pi = {pi

1, p
i
2, ..p

i
t} where number of prototype images is t and t is

not necessarily the same in all prototype image classes; the multi-feature CBIR
system owns following distance-based representation for each image class i and
feature f :
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where df (x, y) is the dissimilarity between the database image x and the proto-
type image y for feature f .

A semantic query (for instance “Find pictures of cars”) executed in this kind of
CBIR system is handled as follows: The distance matrices of Di

f s are evaluated,
where i is the class of ’car’ images and f ∈ F . First, for each matrix, prototype
aggregation with a predefined algorithm is performed and an aggregated distance
vector that represents the distances of all images in the image database to the
’car’ semantic image class is obtained. Then k number of distance vectors, each
representing a different feature, are combined with a feature selection algorithm.
The combination of k number of distance vectors results with a single distance
vector which shows the distances of all database images to the ’car’ class.

In this study, we propose a class-specific feature selection approach for the
feature selection problem stated above. The prototype aggregation problem is
beyond the scope of this paper. However two different basic aggregation methods
(minimum and average) are utilized during the empirical study in order to see
the effect of using different aggregation techniques.

3 Exploiting Class-Specific Features

In CBIR systems, as mentioned in Section 1, a particular feature or a common set
of features is usually used to compare the query image with the database images.
In these systems, the features are selected to represent the problem domain.
However, if the size of the database and/or the diversity of image collection is
increased, these methods fail to give satisfactory results. Specifically, using the
same features for different domains and types of objects yields unsatisfactory
results. Finding a solution to the problem is quite simple: using different features
for different object types. For example, shape features are more important than
color features for a ‘car’ object whereas a ’sea’ object can be defined with color
and texture features.

To describe the approach more formally, assume an image database having
images from 2 semantic classes. It is assumed that class C1 contains n1 number of
images and C2 contains n2 number of images in the database. Also, it is assumed
that the images of class C1 can be defined better with color features and the
images of C2 can be defined better with shape features. If this database is used in
a CBIR system that compares images according to only color features or shape
features, the performance of the system is nearly 50% in terms of accuracy. If
color features are used, the performance of the system is satisfactory for C1, but
not for C2. To obtain a satisfactory performance for the whole system, different
features should be used for different classes.

By considering this idea, in [25], Uysal et al. utilized an approach identifying
the Best Representative Feature (BRF) for each object class, which maximizes
the correct match in a training set. Similarly, in [24] Swets et al. propose to use
Most Expressive Features and Most Discriminating Features. However, these
approaches lacks the advantages of fusing multiple features since they select
only one feature for each class.
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Besides, Jain et al. [10] apply the idea in biometrics domain. They propose
combining multiple traits by selecting person-specific traits for recognition. How-
ever, they do not propose a feature selection methodology. They obtain the
person-specific traits after an exhaustive search process on the training data.

In this study, we propose a class-specific feature selection mechanism by find-
ing out the representative and discriminative features for each image class. Rep-
resentative characteristics of features are calculated according to the dissimi-
larities of images within the same class, and discriminative characteristics are
calculated according to the ability of features to distinguish between different
image classes. Using these characteristics, the importance values of features for
each image class are calculated as detailed below. The importance values of fea-
tures for each category is also called the Class-Specific Features (CSF) index.
The mechanism is based on statistical calculations over the dissimilarity values
of all prototype images. Providing such prototype images can be considered as
the training phase of the CBIR system. The CSF indices are used as the weights
of the features during feature combination process.

3.1 Calculation of CSF Indices

To calculate the CSF indices, firstly the dissimilarity values of prototype images
to each other is calculated and a dissimilarity matrix is obtained as Di

f(P )
for each f , similar to the one given in Section 2. Differently, Di

f (P ) includes
dissimilarities of prototype images in image class i to all prototype images of all
image classes. Di

f (P ) contains n · t rows and t columns.
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(2)

After obtaining the dissimilarity matrices Di
f(P ) for each feature and image

class, dissimilarity values of each image category in each matrix are aggregated
both column-wise and row-wise. Thus, the mean and standard deviation vectors
are obtained as follows;

μ(Di
f (P )) =

[
μi,1

f μi,2
f · · · μi,n

f

]T

(3)

σ(Di
f (P )) =

[
σi,1

f σi,2
f · · · σi,n

f

]T

(4)

Here, μi,j
f denotes the mean of dissimilarities from all images in class i to all

images in class j for feature f . Also, σi,j
f denotes the corresponding standard

deviation.
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To obtain the CSF indices, four important parameters are extracted from the
above given vectors of μ(Di

f (P )) and σ(Di
f (P )):

– Mean of Class (μi,i
f ): μi,i

f is the average dissimilarity value of a class to itself,
for a particular feature f . Mean of Class is a representative characteristic for
features. For a selected class, the features with lower dissimilarity values rep-
resent the image class better. Thus, the CSF index is inversely proportional
to the mean of the category.

– Standard Deviation of Class (σi,i
f ): σi,i

f is an another important representa-
tive property. For any class, a feature with small standard deviation entails
close image-to-image dissimilarity values within the class. Such a feature can
be considered as a better feature. Thus, the CSF index is inversely propor-
tional to the standard deviation of an image class.

– Standard Mean Distance to Other Classes (δi
f ): Standard mean distance to

other classes is a discriminative feature which is calculated by using the
dissimilarities of a class to other classes. It is calculated as follows:

δi
f =

√∑n
j=1 (μi,i

f − μi,j
f )2

n
(5)

where n is the number of image classes. This calculation gives us the average
dissimilarity of an image class i to all other classes. Thus, having a greater
dissimilarity means better discrimination among all categories, which means
that the CSF index is directly proportional to δi

f .
– Correctness Ratio (ωi

f ): Although the three parameters given above are im-
portant and provide good representation and discrimination, the issue of
correctness of the feature is not considered. It is important for a feature to
give the lowest dissimilarity values for the images in a class which is the
same with the class of the query images. Correctness ratio of a particular
feature f can be defined as what percentage of the means in a μ(Di

f (P ))
vector are larger than the mean value of the class i (μi,i

f ). As the correctness
ratio decreases, the representation ability decreases, which means that the
CSF index is directly proportional with the correctness ratio.

Considering the effects of the above parameters, the CSF index of a particular
feature f on a particular image class i is calculated using the formula below:

CSF i
f =

(1 − μi,i
f ) · δi

f · ωi
f

σi,i
f

(6)

3.2 Normalization on Dissimilarities

As mentioned before, CBIR system having dissimilarity-based representation
does not need to deal with the intrinsic dimensionality of features to combine
them. However, different scales of different features are still a problem to be
solved. Different scales of the values contained in the features causes dissimilarity
values to be in different scales.
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In the literature, there are several normalization methods to handle the differ-
ent scales of multiple features [11]: Min-max, decimal scaling, z-score, median,
double sigmoid, tanh estimators, biweight estimators. In [11], Jain et al. empiri-
cally show that min-max, z-score and tanh estimators methods are superior. Also
they note that the simplest method (min-max) would suffice when the minimum
and maximum values are known. Min-max normalization transforms values from
a known (or estimated) range [min, max] into [0, 1] range with the following ba-
sic formulation: x′ = (x − min)/(max − min). Considering that we have the
prototype images and dissimilarity values of prototype images to themselves, it
is easy to find the minimum and maximum dissimilarity values for each feature.
Thus the min-max normalization approach is preferred in this study.

4 Evaluation

To demonstrate the validity of the proposed approach, a number of experiments
are carried out. For the experiments, the CalTech 101 image dataset [9] is used.
It contains pictures of objects belonging to 101 categories. During the tests,
all of the 101 classes in the dataset are used. Randomly selected 10 images
for each class, hence a total of 1010 images, are treated as the prototype im-
ages. For the query purposes, randomly selected 20 images for each class and
a total of 2020 images are employed the image database. In addition, as the
features to be combined, 8 visual features of MPEG-7 [18] in three types are
utilized: Color descriptors of Color Layout(CL), Color Structure(CS), Domi-
nant Color(DC), Scalable Color(SC); Shape descriptors of Contour Shape(CSh),
Region Shape(RS); Texture descriptors of Edge Histogram(EH), Homogeneous
Texture(HT). The dissimilarities of the images for these features are calculated
by using the MPEG-7 reference software (eXperimentation Model, XM) [19].

The tests are mainly performed on semantic retrieval of images; the semantic
classes are queried over the image database. The images are fetched and sorted
according to the dissimilarity values. To measure the retrieval accuracy, Preci-
sion, Recall, Average Precision(AP) and Mean Average Precision(MAP) metrics
are used. Precision is the fraction of retrieved images that are relevant to the
search, whereas Recall is the ratio of the number of relevant images retrieved
to the total number of relevant images in the collection. The AP is the sum of
the precision at each relevant hit in the retrieved list, divided by the minimum
between the number of relevant documents in the collection and the length of
the list. Considering that image collection in our test contains 2020 images, AP
is measured at 2020. MAP is the AP averaged over several image classes.

As the primary test, the accuracy of the proposed method on semantic re-
trieval is measured. In order to perform a detailed comparison, this test is
executed in four steps. As the first step, the retrieval accuracies of each sin-
gle feature is calculated. For the second step, following simple combination ap-
proaches are tested: Minimum Distance(MD), Average Distance(AD), Euclidian
Distance(ED). The combined dissimilarity is obtained by selecting the minimum
dissimilarity (distance) in MD, averaging all available dissimilarities in AD and
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Fig. 1. Precision-Recall Graph for Semantic Retrieval

calculating an Euclidian distance on the available dissimilarities in ED. For the
third step, feature selection by an exhaustive search approach is applied and the
combined dissimilarity is calculated by averaging the dissimilarities of resultant
features from the feature selection. An exhaustive search for feature selection
requires calculating all combinations of available features, 28 cases in total for
our test. Considering that performing an exhaustive search during each query
is not applicable due to the time cost, the selection process is executed once
on the prototype images. Then, 10 best selections (ES[1-10]) are found and se-
mantic retrieval test is performed for each of these 10 feature selections. As the
last step, the approach proposed in this study is performed for feature selec-
tion. Calculated CSF indices are used to combine the dissimilarity values with a
weighted-sum approach. Not only the CSF index, but also the four parameters
of the CSF are tested separately in order to see which one is more influential.
In Figure 1, the Precision-Recall graphs of these methods are given. In addition,
the AP of some sample categories, MAP of Best 10, 20, 50 and all 101 categories
are presented in Table 1. Also, how many times each method has the best score
and mean ranks of each method are included in the table.

Considering the test results, it is observed that obtaining an increase in the
accuracy requires a good selection on the features. Simple methods like MD,
AD and ED are not enough for selection. MD lacks the advantages of combin-
ing multiple features whereas AD and ED always combine all of the features
and are affected by the unfavorable features. Besides, the exhaustive search
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Table 1. Semantic Query Results
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CS 0.028 0.135 0.037 0.388 0.021 0.361 0.241 0.119 0.066 0 23.0
CSh 0.865 0.766 0.725 0.253 0.361 0.841 0.743 0.542 0.339 3 13.9
DC 0.020 0.033 0.055 0.427 0.019 0.258 0.171 0.088 0.050 0 23.6
EH 0.895 0.874 0.633 0.827 0.928 0.924 0.855 0.667 0.424 6 10.1
HT 0.006 0.063 0.159 0.235 0.029 0.304 0.210 0.112 0.063 0 23.0
RS 0.097 0.120 0.153 0.624 0.114 0.354 0.233 0.121 0.070 0 22.4
SC 0.016 0.065 0.057 0.654 0.064 0.352 0.229 0.116 0.066 1 22.8

S
im

p
le MD 0.401 0.253 0.190 0.253 0.733 0.703 0.550 0.318 0.176 0 19.1

AD 0.029 0.614 0.734 0.863 0.615 0.813 0.716 0.493 0.310 1 14.2
ED 0.014 0.563 0.704 0.792 0.542 0.766 0.677 0.457 0.284 0 15.9
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ES1 0.958 0.964 0.870 0.856 0.970 0.963 0.927 0.806 0.563 36 5.0
ES2 0.841 0.919 0.763 0.917 0.830 0.895 0.820 0.630 0.418 3 9.6
ES3 0.565 0.951 0.831 0.985 0.898 0.923 0.828 0.616 0.400 1 11.1
ES4 0.928 0.960 0.806 0.880 0.797 0.923 0.862 0.693 0.459 5 8.0
ES5 0.934 0.916 0.844 0.910 0.973 0.927 0.872 0.704 0.484 7 6.9
ES6 0.815 0.885 0.720 0.811 0.794 0.867 0.780 0.609 0.405 4 10.5
ES7 0.641 0.968 0.911 0.981 0.959 0.932 0.855 0.663 0.441 6 8.7
ES8 0.587 0.916 0.785 0.935 0.854 0.896 0.797 0.594 0.387 2 11.3
ES9 0.578 0.972 0.844 0.979 0.852 0.927 0.845 0.634 0.409 3 10.6
ES10 0.746 0.942 0.886 0.981 0.841 0.926 0.864 0.714 0.482 8 7.1

P
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p
o
se

d
– μ 0.583 0.700 0.762 0.893 0.653 0.834 0.747 0.556 0.359 2 12.3

σ 0.174 0.878 0.786 0.959 0.803 0.876 0.787 0.567 0.362 1 11.5
δ 0.867 0.887 0.835 0.961 0.959 0.942 0.866 0.683 0.458 4 7.4
ω 0.315 0.617 0.734 0.862 0.640 0.817 0.722 0.518 0.333 1 13.1
CSF 0.955 0.981 0.889 0.987 0.957 0.970 0.928 0.769 0.521 24 5.5

guarantees to find the optimal feature selection by evaluating all possible com-
binations. Therefore ES1 outperforms the other methods. However the ES[1-10]
ranking obtained at the training phase is not the same during the querying. For
instance, ES5 performs better than ES2, ES3 and ES4. Such situation is caused
by difference between training and query images. Although it is not observed
in this test conditions, it could be possible that the best combination obtained
during the training phase do not give best results during querying. It is possi-
ble to handle such incompliance by executing the exhaustive search during each
query, but it causes a time inefficiency.

On the other hand, our proposed method of CSF gives successful accuracy
results that are very close to the best selection in total and even better for one
fourth of the image classes. Regarding that the results of the best selection in
ES can be considered as the upper-bound for the retrieval task, the CSF method
can be qualified as a robust and successful approach. In addition, our claim of
exploting class-specific features can be supported by the results of ES method.
Different feature combinations in ES selections perform better in different image
classes, which results different classes requires the use of different features.

Another observation on the results is the superiority of δ parameter of CSF ap-
proach among other parameters. Therefore, it can be stated that the discrimina-
tiveness characteristics of features are more effective than the representativeness.
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Fig. 2. Comparison of Average and Minimum Aggregation Methods

An important discussion for combining multiple features is the independency
of features. Using complementary features with the methods requiring indepen-
dent inputs can cause a decrease in the accuracies. Therefore, many studies exist
in the information fusion literature that performs an independence analysis [16].
In this empirical study, the features utilized are not fully independent. It is
previously stated that simple methods like MD, AD and ED are not success-
ful enough for the selection task. One important reason in their inefficiency is
the fact that they can not eliminate complementary information and the vio-
lation of independence assumption decreases their performance. However, the
ES and CSF approaches enables selecting different combinations and eliminates
complementary features.

As mentioned in Section 2, a prototype aggregation is necessary to combine
the dissimilarities of multiple prototypes. Although prototype aggregation is be-
yond our scope, a secondary test is performed to show the effect of prototype
aggregation. During the first test, averaging is used for aggregation. In this test,
the previous test is repeated with a minimum aggregation method. The com-
parison of two methods are given in Figure 2. It is clearly shown that averaging
is superior than minimum. However, these two are very simplistic methods and
there are better ways of exploiting the information included in the prototypes.

As the last test, the time complexities of our proposed method and exhaustive
search are compared. The query execution times of these two approaches are
quite the same since querying includes only a weighted/unweighted summation
of several features. However, the execution times for the training phases, which
are carried out in order to find out the optimal set of features, differ much. Time
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complexity of exhaustive search is O(m2 · 2n) where m is the total number of
prototype images and n is the number of features. Whereas, time complexity
of our proposed method is O(m2 · n). Time-measurements obtained in this test
validated these theoretical definitions. Results are given in Table 2. The results
show us that CSF approach is 50 times better than the ES approach, in our case.
If the number of features increases, execution time for ES could be worse.

Table 2. Execution Times for Training Phases

Total Execution Time
Exhaustive Search 1,049,652 msec
CSF Calculation 19,802 msec

5 Conclusion

In this paper, a class-specific feature selection approach for the fusion of multiple
features is presented. In order to eliminate the high-dimensionality of multiple
features and provide efficient querying over the images, a dissimilarity based
approach is utilized. The class-specific features are determined by using the rep-
resentativeness and discriminativeness of features for each image class. The cal-
culations of representativeness and discriminativeness are based on the statistics
on the dissimilarity values of training images. The approach is tested on Cal-
Tech 101 dataset by using 8 MPEG-7 features and compared with the single
features, simple combination approaches and exhaustive search approach. Test
results showed that proposed class-specific feature selection approach is a timely-
efficient, accurate and robust way of feature selection.

Some further research direction can be as follows: Employing prototype selec-
tion and aggregation methods within the proposed approach, utilizing proposed
approach with a dissimilarity based classification mechanism and performing
multi-modal feature selection obtained from video data.
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