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Abstract. In the field of natural and engineering science, computer simulations 
play an increasingly important role to explain or predict phenomena of the real 
world. Although the software landscape is crucial to support scientists in their 
every day work, we recognized during our work with scientific institutes that 
many simulation programs can be considered legacy monolithic applications. 
They are developed without adhering to known software engineering 
guidelines, lack an acceptable software ergonomics, run sequentially on single 
workstations and require tedious manual tasks. We are convinced that SOA 
concepts and the service composition technology can help to improve this 
situation. In this paper we report on the results of our work on the service- and 
service composition-based re-engineering of a legacy scientific application for 
the simulation of the ageing process in copper-alloyed. The underlying general 
concept for a distributed, service-based simulation infrastructure is also 
applicable to other scenarios. Core of the infrastructure is a resource manager 
that steers server work load and handles simulation data.  

Keywords: Service compositions, simulation workflows, distributed simulations, 
BPEL, Web services. 

1   Introduction 

The importance of computer simulations increases steadily. Nowadays many 
scientific institutes utilize computer simulations for their research. Due to 
achievements in information technology it is possible to use more and more complex 
and hence realistic simulation models. Nevertheless, there is still potential to improve 
existing solutions. In collaborations with scientific institutes in the scope of our 
research project we perceived that many simulation applications are based on legacy 
software that was developed over years and is still in development process. Many 
authors contributed to the software and may already have left the institute or 
organization. Usually, there is no time, money or knowledge to re-implement the tools 
in a modern programming language. The software is simply enhanced with new 
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features. We experienced that there are many simulation tools in use that do not 
benefit from multi-core CPUs, distributed computing, Grid computing or computer 
clusters. The programs often cannot deal with parallel invocations, e.g. because they 
do not organize the result files appropriately. The simulation applications are 
monolithic or consist of only a few applications with simple, usually command line-
based interfaces. It is even common that simulations are programmed and compiled 
into an executable (e.g. simulations based on Dune, http://www.dune-project.org). In 
this case, the simulation parameters are hard-coded and can only be changed by 
programming and re-compilation. There are a lot of manual tasks for scientists, such 
as copying result files between the participating applications, starting these 
applications, or merging results. These and other problems leave room for 
improvements of existing scientific simulation applications. 

In this paper we present a conceptual architecture for a distributed simulation 
environment based on SOA and service compositions. In the last 5 to 10 years much 
research has been done to apply workflows for scientific applications (e.g. [1, 2, 3, 4]). 
We are convinced that workflows and service compositions possess great potential to 
improve the tool support for many scientists. These are the tools scientists work with 
every day. There is a need to automate and optimize simulation processes, to exploit 
recent developments in hard- and software, and to improve user-friendliness and 
flexibility of simulation applications. This can be done if modern IT and software 
engineering technologies and techniques are used. At the same time, scientists do not 
want to re-write existing code or re-implement applications for simulation tasks. The 
proposed concept addresses these and other requirements.  

The main contributions of the paper are follows: (1) based on a scenario for the 
simulation of solid bodies and on our experience on software projects with scientists 
we have conceived a concept for a service-oriented simulation infrastructure. Major 
part of the infrastructure is a resource manager that steers work distribution between 
the scientific services and that handles simulation data. (2) we have implemented the 
concept for the simulation of solid bodies with Web services (WS) and BPEL [5]. 
Where possible we adopt existing concepts, e.g. from Grid computing. 

The paper is structured as follows. Section 2 presents the real use case for the 
simulation of solids. In Section 3 we discuss related work. In Section 4 we describe 
the service composition-based simulation infrastructure using the example of Section 
3. Section 6 closes the paper with a conclusion. 

2   Related Work 

Using service compositions to orchestrate scientific applications is not new. E.g. for 
BPEL the applicability in the scientific domain is shown in [1, 6, 7], for YAWL in 
[8]. To the best of our knowledge no service-oriented scientific workflow system 
makes use of a resource manager as middleware for load balancing and simulation 
context storage. 

The Message Passing Interface (MPI) [9] is a specification of a programming 
model that allows parallel computing in Grids or computer clusters by exchanging 
messages, accessing remote memory or by parallel I/O. MPI provides a set of 
operations to implement the communication between applications. MPI-based 
programs mix process (or communication) logic and domain logic which is the main 
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difference to our approach with workflows/service compositions. This minimizes  
the communication overhead but increases the programming effort for scientists.  
Our service-based solution relieves scientists from the knowledge about other 
applications when implementing their modules/services, increases reusability of their 
applications, allows monitoring of the simulation process and load balancing in the 
infrastructure.  

Grid middleware (e.g. the Globus Toolkit (http://www.globus.org/toolkit/), Unicore 
[10]), especially in combination with Grid workflows, provide features similar to our 
approach, e.g. load balancing and distributed computing. The main difference is that 
we foresee a resource manager as first-class citizen in our infrastructure that handles 
and correlates simulation data. In Grids such a data storage is not a standard 
component. With OGSA [11] and the WSRF [12] Grid resources can be made 
available as services. Grid services provide operations to clients to steer their life time 
and to reserve computing time. These existing concepts had an impact on our ticket-
based approach to issue or deny computing power. Nevertheless, a middleware is 
needed to steer work distribution on Grid services based on the processor load of 
resources. This task is addressed by the resource manager proposed in this paper. In 
fact, our general concept allows using Grid services to conduct scientific simulations 
and to combine Grid and Web services for simulations.  

Pegasus [13] is a system to compile and run workflow-like graphs in Grids. 
Pegasus makes use of different catalogues that are conceptually similar to our 
resource manager. The site catalogue lists all participating servers; the transformation 
catalogue lists the software installed on these servers; and the replica catalogue 
contains the data items in the system. The difference to our resource manager is that 
Pegasus’ replica catalogue does not correlate data items to a specific simulation run. 
The user has to know or find out himself which items are associated.  

In a SOA environment, the enterprise service bus (ESB) has the task to find and 
bind services which are stored in a service registry [14]. ESBs do not account for the 
server load and for data correlation issues because business services are usually not 
resource-demanding and can serve many requests in parallel. The resource manager in 
this paper can be seen as a lightweight ESB and service registry with extensions to 
manage long-running, resource-demanding scientific services and the simulation data. 
In [15] the open source ESB Apache ServiceMix (http://servicemix.apache.org/)  
was extended with WSRF functionality so that resource properties can be used as 
service selection criteria besides the usual functional and non-functional service 
requirements. Simulation data storage features or fault handling patterns (e.g. service 
availability checks) are not implemented as foreseen in the proposed infrastructure. 

In [16] the authors propose a concept for passing arbitrary data by reference in 
BPEL (e.g. files, database tuples). This keeps huge data sets out of the BPEL engine if 
not needed for navigation through the workflow (as is usually the case in scientific 
simulations). The data storage of the resource manager in this paper does the same but 
in a more light-weight fashion: Passing references is not reflected in the workflow 
itself, data items are always passed by reference. Currently, we support only data 
because many simulation applications rely on data stored in files. In future, we should 
extend the data handling towards relational databases. 
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3   Use Case: Simulation of Solid Bodies 

The macroscopic mechanical properties of metals strongly depend on their underlying 
atomistic structures. Copper-alloyed α-iron, e. g., changes its material behavior during 
the ageing process, especially when operated at high temperatures of above 300°C. In 
that case, precipitates form within the iron matrix, yielding to precipitation 
strengthening of the material [17] followed by a decrease of the material strength as 
the precipitates grow further in time. In order to model this complex behavior, the 
growth process of precipitates, which is a diffusion based mechanism, is accounted 
for by a Kinetic Monte-Carlo (KMC) approach [18, 19].  

A number of copper atoms is placed into a fixed body-centered cubic (bcc) iron 
lattice by exchanging an iron atom with a copper atom. This yields a solid solution 
crystal as starting configuration. 

a) b)
 

Fig. 1. Body-centered cubic crystal lattice nearest neighbors and a vacancy for one possible 
atom configuration (a). KMC simulation of precipitation (b). Iron atoms are transparent for 
better visualization. Solid solution: copper atoms are randomly distributed (A). Precipitates 
form during the thermal ageing process (B) [20]. 

The chemical interaction between atoms is described by nearest neighbor binding 
energies. A vacancy within the simulation box allows the movement of an atom by 
site exchange between the vacancy and a neighboring atom (iron, copper) (Fig. 1a). 
The jump activation energies depend on the local atom configuration around the 
vacancy. For each of the eight first neighbours of the vacancy the corresponding jump 
frequencies are calculated. By applying a rejection-free residence time algorithm, one 
of these eight possibilities is selected as the new position of the vacancy. In the long 
run, a series of vacancy jumps during the simulation yields the formation of 
precipitates with mean radii above 1 nm (Fig. 1b). 

The time scale is adjusted according to the number of Monte-Carlo steps and the 
vacancy concentration. Periodic boundary conditions are applied in all directions in 
order to approximate a bulk single crystal. A more detailed description can be found 
in [21]. At desired time steps the atom configuration is analyzed yielding particle size 
distributions, mean radii of particles and the degree of supersaturation of the 
remaining solid solution. 
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3.1   Simulation Application 

The simulation application opal (Ostwald-Ripening of Precipitates on an Atomic 
Lattice) [21] consists of five monolithic Fortran programs where the individual 
programs require manually created input data and are started manually. Two of them 
(opalbcc and opalabcd) build up the starting configuration and calculate the input 
values such as interaction energies, respectively. In addition to iron and copper, two 
more atom species can be incorporated. The precipitation process is simulated by the 
main application opalmc. After specified time intervals, opalmc generates output files 
containing the atom configuration (snapshot). The analysis of these atom 
configurations at different time steps, i.e. after specified amounts of vacancy jumps, is 
performed by the two programs opalclus and opalxyzr which identify the clusters 
within the matrix and determine size distributions and mean radii, respectively. After 
the analysis, the results are visualized applying commercially available software like 
MatLab, VMD, Rasmol, POV-Ray or Gnuplot. All in all, the overall simulation can 
be subdivided into four phases: preparation, simulation, analysis and visualization. 

4   Service-Based Distributed Simulation Environment 

Due to increasingly complex simulation models, computer simulations consume more 
and more computing power and storage capacity. Although the information 
technology improves steadily, many legacy simulation programs cannot benefit from 
these advancements (e.g. the opal simulation application).  

Usually, computer simulation makes use of multiple tools, e.g. for calculations, 
visualizations, or analysis. Simulations often require manual tasks such as creation of 
input files, copying files between different applications that participate in a 
simulation, or transformation of data (e.g. merging of files). The simulation 
applications can conduct CPU-intensive calculations and hence exclusively engross 
the CPU of a machine. Using computer clusters or (public) Grids to run simulation 
applications would help but these infrastructures are rare and highly demanded (i.e. 
computing hours are difficult to obtain). In contrast, scientific institutes usually have a 
sufficient inventory of commodity hardware (ordinary desktop PCs). The typical work 
of employees (e.g. working on documents) does not use the workstations to full 
capacity allowing for the operation of simulation tasks in the background. 

4.1   Using Services and Service Compositions to Improve This Situation 

The application of SOA concepts and service compositions in these scenarios is 
beneficial to scientists. When scientific programs are provided as services, they can 
be invoked over a network using appropriate middleware. Thus, it is easy to 
implement distributed applications by orchestrating scientific services that are located 
on different resources. These resources do not have to be high-end servers—
connected commodity hardware is sufficient. Furthermore, different application types 
can be integrated, e.g. the invocation of a visualization tool after a simulation run is 
finished. This contributes to the automation of manual steps, too. Thus the overall 
execution of an application can be sped up and can be made more efficient. Common 
service composition languages provide fault handling features. These can increase the 
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robustness of simulation applications, especially if the simulation functions are 
implemented with a programming language that offers only restricted fault handling 
mechanisms. Service compositions have an additional benefit because they can also 
be used as (graphical) documentation of the simulation logic and help new employees 
and programmers to understand the overall simulation process. This is necessary due 
to the relatively high fluctuation of employees in scientific institutes. 

4.2   Simulation Infrastructure 

These above-mentioned advantages of a service-based re-engineering of legacy 
applications are well-known to the SOA community in theory and practice. But 
legacy simulation applications provided as services differ from services that 
implement business functions. The reason is that simulation applications can be long-
running and processing power-demanding. Running simulation programs can easily 
allocate a complete computer processor. Thus, natively invoking scientific services 
results in the problem that busy services can get crammed with requests they cannot 
serve (Fig. 2a). In business environments an ESB is employed to prevent from these 
cases. The ESB would recognize that server A is busy because it does not respond. If 
the communication is asynchronous, it might be impossible for the ESB to perceive 
that the service is used to capacity. In both cases, the ESB reacts to the unavailability 
of a service, which means loss of time. It would be better to have a mechanism that 
conducts load balancing based on the processor load of servers. A resource manager 
that acquires services on behalf of a client can perform this task (Fig. 2b).  

Message
Message

Server A Server B

Simulation A Simulation B

Message

Server A Server B

Simulation B

Resource Manager

1. Acquire service
3. Send EPR

2. Reserve

Message

IDLEBUSYIDLEBUSY

a) b)

4.

 

Fig. 2. Invocation of a scientific service natively (a) and with a resource manager (b) 

Existing work on service compositions for scientific applications does not report 
on how to deal with long-running, resource-demanding services. We claim that a 
service-based infrastructure for scientific simulations needs a resource manager that 
knows the participating servers and services as well as their current load and that 
works as mediator between the clients and the services (Fig. 3). Note that the 
components can be arbitrarily distributed on participating servers and workstations. 
Nevertheless, having the simulation client and simulation manager installed on 
different engines has the advantage that the scientists can shut down their 
workstations without affecting the started, possibly long-running simulations. Please 
consider [22] for a demonstration of the prototype that implements this architecture. 
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Fig. 3. Architecture of the service-based simulation infrastructure 

4.3   Simulation Applications 

Providing the simulation applications as services does not imply that existing code 
has to be re-implemented. However, there are cases where modifications of the 
simulation code are needed. This strongly depends on the granularity and the interface 
of the application. As a first step, it should be examined if the application consists of 
logical units that may be separated. This step is tedious but improves the resulting 
simulation application enormously [23]. The probability increases that the logical 
units can be reused and the simulation workflow is finer-grained. The latter enables a 
more detailed monitoring and more options to adjust the workflow in order to create 
new or adapted simulations without the need for programming and code re-
compilation. Additionally, the simulation logic can be optimized with workflow 
analysis techniques [24]. Besides modularization of the application optimization of its 
interface may also be needed. It should at least be possible to invoke the application 
with parameters instead of hard-coding these parameters or configurations [25]. 

The second step is to make the application units remotely accessible as services. 
When using the WS technology [26], a thin WS wrapper is needed. The WS wrapper 
can be tailored to the application or a reusable, generic wrapper can be used that is 
able to invoke the application [25]. Note that the former is only possible if the 
simulation application is implemented in a language that allows native invocations. A 
WS wrapper has to be deployed on the server that offers the simulation applications. 
Now the simulation application can be registered with the resource manager.  

With five Fortran programs and Gnuplot the simulation application opal already 
has an acceptable granularity (Fig. 3); there was no need to subdivide the programs 
into smaller units. But we extended the Fortran applications with interfaces that allow 
their invocation with parameters. That eliminates the need to re-compile them if the 
simulation configuration changes. Since there is no WS toolkit for Fortran programs, 
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we implemented a JAVA-based WS wrapper. The approach with Java Native Access 
(https://jna.dev.java.net/) failed because Fortran had difficulties to process parallel 
write operations on files spread over several threads in a single Java process. 
(Curiously, this happened even for writes on different files.). The way to invoke the 
Fortran programs over file system commands solved these problems as each 
invocation creates a new Java process for execution. The re-engineering of this use 
case took approximately one person month for a student developer unfamiliar with 
Fortran 77.  

4.4   Resource Manager 

Besides its registry and load balancing functionality the resource manager (RM) also 
works as storage for simulation data. It provides functions to register and manage 
servers and scientific applications prior to or during the execution of simulations. 
Clients that want to use a simulation application have to ask the RM for permission. If 
the RM cannot find a requested service in its registry, it sends an appropriate fault 
message to the client. If the RM could allocate a requested service (i.e. an 
implementation of the service is registered and the corresponding server has 
computing capacities), it creates a service ticket and responds to the client with the ID 
of that ticket, the endpoint reference (EPR) to the service implementation, and the 
ticket validity in seconds. A service ticket warrants exclusive usage right to the client. 
The RM can recall this permission by invalidating the ticket (e.g. to enable other 
clients the usage of the application). This usage permission mechanism is comparable 
to advanced reservation techniques in Grid Computing [27]. The goal of the RM is to 
ensure that a server is not overloaded with requests (i.e. load balancing). If a server 
provides two logical processors, then it can deal in parallel with two requests for 
simulation applications where each allocates one processor. If the ticket validity runs 
out, the service is released automatically by the RM. Service clients can reset the 
validity time to its maximum by calling an appropriate operation of the RM. Note that 
the validity countdown is stopped during usage of a service. This prevents the loss of 
a service ticket during long-running operations. Furthermore, the RM checks the 
infrastructure on network partitions. A network partition between RM and a service is 
recognized when the service cannot acknowledge the start of an operation to the RM. 
The service ticket then times out; the RM removes the corresponding server and its 
services from the registry; and the client gets informed about ticket expiry so that it 
can react accordingly (e.g. by requesting the service again). A network partition might 
separate a service from the RM after the start of an operation was acknowledged. The 
RM would perceive this because we implemented a periodical availability check that 
would fail in this case. Again the service client is informed about the failure. The 
simulation applications have to implement and provide a set of operations in order to 
facilitate allocation, de-allocation and observation by the RM.  

Additionally, the RM can be used as storage for simulation data (e.g. simulation 
parameters, configuration, results). The data may be distributed among the servers, 
but the RM provides a logically centralized view on them. Each simulation run gets 
its own simulation context where data can be saved, organized and deleted. The 
context correlates data items that belong to the same simulation run. This improves 
reproduction of simulations because the configurations and input data as well as result 
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data are assembled and can be observed by scientists at a glance. The data items do 
not have to be searched for and correlated later on, which may not be possible at all 
since simulation applications may not have a sophisticated storage mechanism (e.g. 
legacy simulation applications might overwrite simulation data of former runs). 
Furthermore, collaboration between scientists is fostered because simulation 
configurations and results can easily be exchanged. Another advantage of the data 
storage within the simulation infrastructure is that data can be accessed and thus 
transmitted by reference. Only those components that are interested in a data item can 
load its value from the storage.  

4.5   Workflow Engine, Simulation Manager and Simulation Client 

The workflow engine executes the scientific service compositions. Due to the data 
RM’s storage the engine is relieved of holding huge simulation data. Usually, this 
data is not needed for workflow navigation and it is thus sufficient to keep only the 
references to this data in the engine. Each simulation workflow has to be tailored to 
the specific simulation applications. We use Apache ODE (http://ode.apache.org/) as 
workflow engine and have implemented the opal workflow with BPEL. The 
workflow automates formerly manual tasks (e.g. starting post-processing, invocation 
of Gnuplot) and parallelizes the post-processing of the lattice snapshots. We have 
created reusable BPEL snippets for scientific service acquisition, service usage and 
release. This simplifies modeling workflows for other use cases or even for other 
BPEL-based workflow system, e.g. Sedna [6]. 

The simulation managers offer functions specific to the corresponding simulation 
application and workflow. With the opal manager, e.g., the client can create and 
manage global simulation data such as initial lattice configurations. This data is stored 
in the RM and can be used for several simulation runs. The opal manager can start 
new simulations by sending an appropriate message to the workflow engine and 
creates a new simulation context in the RM. All related data is stored in this context. 
For an asynchronous communication with the workflow engine the opal manager 
provides a callback were acknowledgements and other information can be sent to (e.g. 
the information that an error occurred in the simulation workflow). For the deletion of 
a simulation, the opal manager deletes the context and related data in the RM and 
terminates the simulation workflow instance to clean up the simulation environment.  

The simulation client is a GUI for scientists to interact with the simulation 
environment. We have experienced that simulation tools are often command line-
based and lack an acceptable UI. Some even have to be re-compiled if parameters 
change (e.g. opal, Dune). The client improves the usability of such simulation tools. 
The domain-specific part of the simulation client makes use of the opal manager or 
other simulation managers to create new simulations, provide them with input data, 
run and monitor the simulations, steer the simulation runs (e.g. termination, deletion), 
and observe intermediate and final results. The opal client allows storing input data in 
the RM as profile for other simulation runs (Fig. 4a). We have implemented a file 
explorer that shows all files related to a selected simulation run in a tree view. 
Additionally, we have realized a two-colored rotating 3D visualization of the lattice 
snapshots with the help of Java 3D (Fig. 4b). That makes it possible for scientists to 
observe the convergence of the simulation results during run time. 
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a) b)  

Fig. 4. The simulation client with the dialog to start a new opal simulation (a) and the 3D 
preview of the simulation snapshots (b) 

Further, the RM functions of the client enable scientists to administrate the 
simulation infrastructure, e.g. registering servers and installed simulation applications. 
For each server it can be specified how many CPU cores are enabled for simulations. 
For each simulation service the scientist can set how many CPU cores are allocated 
by the service during execution. For monitoring purposes we have implemented a 
view that shows all service ticket requests sent to the RM and a view that lists all 
issued service tickets. This enables scientists to observe the status of the simulation 
environment and existing problems (e.g. a long list of open service requests may 
indicate too few available instances of a simulation service in the system). 

5   Conclusions 

In this paper we applied services and service compositions to re-engineer a legacy 
scientific application for the simulation of solid bodies. The resulting solution 
improves the existing application and speeds up the overall simulation by automating 
manual tasks and parallelizing formerly sequential work. A new GUI increases the 
ease-of-use for the scientists, especially with the visualization of intermediary results. 
The general concepts behind this use case and the extension points allow an 
application to other legacy simulation tools. Due to the difference between business 
and scientific services we had to introduce a component that steers the work 
distribution in the infrastructure, the resource manager. Its functionality is in parts 
orthogonal to that of ordinary ESBs since it accounts for the server occupation during 
service selection and works as storage for correlated simulation data. To the best of 
our knowledge none of the existing scientific workflow systems that enable the 
orchestration of scientific services make use of such a resource manager. 
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The simulation client hides the actual service compositions from the scientists. On 
the one hand the non-IT scientists do not get overwhelmed with technical details of 
the implementation. On the other hand they have to use other tools to see the 
workflow progress or change the workflow. In future we therefore want to integrate 
the simulation client in a workflow modeling and monitoring tool. Extending the 
resource manager so that it can install the services on demand on an idle server (with 
the help of provisioning techniques [27, 28]) is another open issue. Finally, a 
comparison of the service and workflow overhead with the automation and 
parallelization speedup needs to be done. 
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