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Abstract. We adapt Nicol’s approach for the time parallel simulation
with fix-up computations. We use the concept of monotonicity of a model
related to the initial state of the simulation to derive bounds of the
sample-paths. We prove several algorithms with fix-up computations
which minimises the number of runs before we get a consistent sample-
path. We obtain proved upper or lower bounds of the sample-path of the
simulation and bounds of some estimates as well.

1 Introduction

A parallel discrete event simulation is the construction of the slices of the sample-
path on a set of processors. These slices can be obtained by a state decomposition
or a decomposition of the time interval. The most common approach is the space
decomposition, i.e. a grouping of state variables into subsets which are affected
to parallel processors. These processors exchange messages about the scheduling
of the future events to avoid temporal faults or to correct them. Unfortunately
the spatial decomposition approach has a limited parallelism and has in general
an important overhead due to this synchronisation of future events.

Time Parallel Simulation (TPS in the following) follows a different approach
considering a decomposition of the time axis and performing the simulations on
time intervals in parallel (see [11] chap. 6 and references therein). Afterwards
the simulation results are combined to build the overall sample-path. TPS has
a potential to massive parallelism [18] as the number of logical processes is
only limited by the number of times intervals which is a direct consequence of
the time granularity and the simulation length. But the final and initial states
of adjacent time intervals do not necessarily coincide at interval boundaries,
possibly resulting in incorrect state changes. The efficiency of TPS depends on
our ability to guess the state of the system at the beginning of the simulation
intervals or to efficiently correct the guessed states to finally obtain a consistent
sample-path after a small number of trials. Several properties had already been
studied: regeneration [17], efficient forecasting of some points of the sample-path
[12], parallel prefix computation [13], a guessed initial state followed up by some
fix-up computations when the first state has a weak influence on the sample-
path [18]. Another approach consists in relaxing these assumptions to obtain an
approximation of the results [3,16,21].

We have previously introduced two properties of the model both related to
monotonicity (inseq-monotonicity in [7] and hv-monotonicity in [6,8]), which can
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be used to improve the efficiency of TPS. We have developed in these publica-
tions the basic theory needed to compare the sample-paths of simulations and
to improve the speed of the TPS. In our approach, the simulation model is seen
as a deterministic black box with an initial state and one input sequence which
computes one output sequence. All the randomness of the model is in the input
sequence. We define some orderings on the sequences and the states. A model
is monotone when it preserves the ordering. If this property holds, we have pro-
posed new approaches to improve the efficiency of TPS. We obtain an upper
or a lower bound of the output sequence. Then we compute a reward on the
output sequence. The ordering on the sequences are defined in such a way that
typical rewards such as the moments or the tail of the distributions are con-
sistently ordered when the sequences are ordered. In performance evaluation or
reliability studies, we must prove in general that the systems we analyze sat-
isfy some quality of service requirements. Thus it is sufficient to prove that the
upper bound (or lower bound, depending on the measure of interest) of the out-
put sequence satisfies the constraint. We have already proved in [10] that many
queueing network models are hv-monotone.

Here we develop the ideas presented in [6,8] giving much more details, some
new algorithms for speculative computations and some numerical results. We
show how we can build a sample-path for a bound of the exact simulation using
some simulated parts and ordering relations without some of the fix-up phases
proposed in [18]. The inseq-monotonicity and hv-monotonicity concepts are both
related to the stochastic monotonicity used to compare random variables and
stochastic processes [9,20] and the event monotonicity which is the main assump-
tion for the monotone Coupling From The Past algorithm for perfect simulation
[19]. Hv-monotonicity is related to the non crossing property used in [1]. For
these various notions of monotonicity of stochastic processes, one can also refer
to [15] for a comparison.

The rest of the paper is as follows. In section 2, we give a detailed presen-
tation of Nicol’s approach of TPS with fix-up computation phases. Then in
section 3, we define the comparison of sequences, the inseq-monotonicity and
the hv-monotonicity and their relations with stochastic ordering. The approach
is illustrated with examples to clarify the concepts. In Section 4 we first present
the initial algorithm proposed in [8] and we extend it in several directions prov-
ing the convergence of some algorithms in any number of runs smaller than the
number of processors. Section 5 is devoted to a simple model of a Web server.
We prove that the system is hv-monotone and we provide some numerical results
for the speed up and the efficiency of the approach.

2 Time Parallel Simulation with Fix-Up Phases

Let us now detail the classical fixed up approach [18] before we introduce the first
modification presented in [8] and the new extensions which are the main results of
this paper. For the sake of completeness we begin by a short introduction to the
fixed up approach proposed by Nicol. In a first step, the interval [0, T ) is divided
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into K equal intervals [ti, ti+1). K is the number of processors. Let X(t) be the
state at time t during the exact simulation obtained in a centralised manner. The
aim is to build X(t) for t in [0, T ) through an iterative distributed algorithm. For
the sake of simplicity, we assume that for all i between 1 and K, logical process
LPi simulates the i-th time interval. We denote as Y i

j (t) the state of the system
at time t obtained during the j-th iteration of logical process LPi. The initial
state of the simulation is known and is used to initialise LP1. During the first
run, the other initial states (say Y i

1 (ti)) for the initial state of simulation at LPi

are chosen at random or with some heuristics. Simulations are ran in parallel.
The ending states of each simulation (i.e. Y i

1 (ti+1)) are computed at the end of
the simulation of the time intervals. They are compared to the initial state we
have previously used (i.e. Y i+1

1 (ti+1)). The equality of both states is a necessary
condition for consistency of the path. Otherwise one must run a new set of
parallel simulations for the inconsistent parts using Y i

1 (ti+1) as starting point
(i.e. Y i+1

2 (ti+1)← Y i
1 (ti+1)) of the next run on logical process LPi+1. These new

runs are performed with the same sequence of random inputs. The simulations
are ran until all the parts are consistent. The number of rounds before the whole
simulation is consistent is smaller than the number of LP . It is clear that at the
end of the first run, the simulation performed at LP1 is consistent. Similarly by
induction on i, at the end of round i, LPi is consistent. It is the worst case we
may obtain, and in that case the time to perform the simulation in parallel is
equivalent to the time in sequential.

Note that performing the simulation with the same input sequence may speed
up the simulation due to coupling. Suppose that we have stored the previous
sample-paths computed by LPi. Suppose now that for some t, we find that the
new point Y i

k (t) is equal to a formerly computed point Y i
m(t). As the input

sequence is the same for both runs, both sample-paths have now merged:

Y i
m(u) = Y i

k (u) ∀u ≥ t.

Thus it is not necessary to build the new sample-path. Such a phenomenon is
defined as the coupling of sample-paths. Note that it is not proved that the
sample-paths couple and this is not necessary for the proof of the TPS that it
happens. Clearly, coupling allows to speed up the computations performed by
some LP and also reduces the number of rounds before the whole simulation
becomes coherent. Indeed a coupling means that the state reached at the end of
a time interval is not that dependent of the initial state of the simulation.

Consider an example of TPS with one fix-up step in Figure 1. During the
first step, five parts of the simulation are ran in parallel. Part 1 and Part 2 are
consistent as the initial point of LP2 is the final point of LP1 due to a correct
guess. Other parts are not consistent and the simulations are ran again with a
correct initialisation (A instead of B for the second run of part 4 for instance)
and the same random inputs to obtain new sample-paths. The former sample-
paths are compared to the new ones and as soon that the simulations couple,
they are stopped as simulations after coupling will follow the same paths. If
the simulations do not couple, we only keep the new sample-path. After each
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time

P1            P2             P3               P4              P5

A

B

Fig. 1. TPS, coupling and fixing the sample-path

step, the number of consistent sample-paths will increase. The efficiency of the
approach is related to the number of consistent parts at each step. In Fig. 1 the
new runs are represented in dotted red lines and we see that all the simulations
couple during the first fix-up step.

We assume that the logical processes LPi (i = 1..K) perform simulations and
exchange information with a Master process which must check the consistency of
the partial sample-paths. Thus the simulation effort is distributed among K + 1
processes. The whole approach is summarised in the following algorithm for LPi

(K ≥ i > 1) and the Master process. The first logical process in charge of the
simulation of the first time interval slightly differs for this general pseudo-code:
Y 1

1 (t1) is equal to X(t1) the initial state of the whole simulation.

——————————————– Algorithm LPi ————————————–

1. k ← 0. Read in shared memory input sequence I(t) for all t in [ti, ti+1[.
2. Y i

1 (ti)← Random.
3. Loop

(a) k++.
(b) Perform run k of Simulation with Coupling on the time interval [ti, ti+1[

to build Y i
k (t) using input sequence I(t).

(c) Send to the Master: the state Y i
k (ti+1).

(d) Receive from the Master: Consistent(i) and a new initial state U .
(e) If not Consistent(i) Y i

k+1(ti)← U .
4. Until Consistent(i).
5. ∀t ∈ [ti, ti+1[, X(t)← Y i

k (t) and write X(t) in shared memory.

—————————————— Algorithm Master ————————————–

1. For all i Consistent(i) ←False.
2. Consistent(0) ← True; LastConsistent ← 0 ; k ← 0.
3. Loop

(a) k++.
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(b) For all i, if not Consistent(i) Receive from LPi the state Y i
k (ti+1).

(c) Y 0
1 (t1)← Y 1

1 (t1).
(d) i← LastConsistent.
(e) Loop

i. i++.
ii. If (Y i

k (ti) = Y i−1
k (ti)) and Consistent(i-1) then Consistent(i)← True.

(f) Until (not Consistent(i)) or (i>K).
(g) LastConsistent ← i− 1.
(h) For all i send to LPi Consistent(i) and the state Y i−1

k (ti).
4. Until LastConsistent = K.

——————————————————————————————————–

3 Monotone Systems, Comparison of States and
Comparison of Sequences

A simulation model is defined as an operator on a sequence of parameters (typ-
ically the initial state) and an input sequence (typically inter arrival times and
service times) and produces an output sequence (typically the state of the system
or a reward). Let M be a simulation model. We denote by M(a, I) the output
of model M when the parameter sequence is a and the input sequence I. As
usual an operator is monotone iff its application on two comparable sequences
provides two output sequences which are also comparable. We have used the fol-
lowing point ordering (denotes as �p in [7], but various orders are possible. This
order is interesting because it implies a comparison on the rewards computed on
the output sequence.

Definition 1. Let I1 and I2 be two sequences with length n. I(m) is the m-th
element of sequence I. I1 �p I2 if and only if I1(t) ≤ I2(t) for all index t ≤ n.

Property 1. Assume that the rewards are computed with function r applied on
state O(t) at time t. If the rewards are non negative, then:

O1 �p O2 =⇒ R(O1) =
∑

t

r(t, O1(t)) ≤ R(02) =
∑

t

r(t, O2(t)).

Many rewards such as moments and tails of distribution are non negative.

Based on this simple idea, we can define two properties which allows to compare
the outputs of a simulation model when the change the input sequence (inseq-
montone) or the initial state of the simulation (hv-monotone). In the context of
queueing networks for instance, this will describe how evolve the sample-path
of the population when we change the arrivals or the initial population in the
queue. We consider two arbitrary orderings �α and �β.

Definition 2 (inseq-monotone Model). Let M be a simulation model, M
is input sequence monotone (or inseq-monotone in the following) with respect
to orderings �α and �β if and only if for all parameter sequence a and input
sequences I and J such that I �α J , then M(a, I) �β M(a, J).
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Definition 3 (hv-monotone Model). Let M be a simulation model, M is
monotone according to the input state or hidden variable (hv-monotone in the
following) with respect to orderings �α and �β if and only if for all parameter
sets a and b such that a �α b, thenM(a, I) �β M(b, I) for all input sequence I.

The inseq-monotonicity and the hv-monotonicity are related to the stochastic
monotonicity used to compare Markov chains [20].

Definition 4 (Stochastic comparison). Let X and Y be random variables
taking values on a totally ordered finite space {1, 2, . . . , n} with p and q as
probability distribution vectors, then X is said to be less than Y in the strong
stochastic sense (denoted as X �st Y ), if and only if

∑n
j=k pj ≤

∑n
j=k qj for

k = 1, 2, . . . , n. The stochastic ordering is also used for distribution and we note
that p �st q.

Example 1. One can easily check that: (0.1, 0.3, 0.2, 0.4) �st (0., 0.4, 0., 0.6).

The relation between inseq-monotonicity and the strong stochastic ordering is
described in [7]. We now prove that stochastic monotonicity of Discrete Time
Markov Chains (DTMC in the following) implies hv-monotonicty of the simula-
tion model when the state space is fully ordered. Let us first define stochastic
monotone Markov chains using the matrix formulation presented in [9]. It is
known for a long time [20] that monotonicity and comparability of the one step
transition probability matrices of time-homogeneous MCs yield sufficient condi-
tions for their stochastic comparison.

Definition 5 (Monotone DTMC). Let MZ be the stochastic matrix associ-
ated to Markov chain Zt on a totally ordered state space S, MZ is stochastically
monotone if and only if for all probability distributions u and v such that u �st v,
then uMZ �st vMZ .

Property 2. Let MZ be a stochastic matrix, let M(i, ∗) be the i-th row of M
and may be seen as a probability distribution, MZ is stochastically monotone iff
MZ(i, ∗) �st MZ(i + 1, ∗).

Example 2. M1=

⎡

⎢⎣

0.1 0.2 0.6 0.1
0.1 0.1 0.2 0.6
0.0 0.1 0.3 0.6
0.0 0.0 0.1 0.9

⎤

⎥⎦ is monotone while M2=

⎡

⎢⎣

0.1 0.2 0.6 0.1
0.2 0.1 0.1 0.6
0.0 0.1 0.3 0.6
0.2 0.0 0.0 0.8

⎤

⎥⎦is

not.

We may use an event representation of the simulation model. Events are associ-
ated with transitions. Let ev be an event in this model and let x be a state, we
denote by ev(x) the state obtained by application of event ev on state x. It is
more convenient that some events do not have any effect (for instance the end
of service event on an empty queue will be a loop). Monotonicity property has
already be defined for events and their links with stochastic monotonicity are
now understood (see [15]).
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Definition 6 (event -monotone). An event ev is monotone if its probability
does not depend on the state and for all states x and y, x � y implies that
ev(x) � ev(y).

It is now possible to show the links between strong stochastic ordering of DTMCs
and hv-monotonicity of their simulations.

Property 3. Let MZ be a monotone stochastic matrix on a totally ordered state
space (denoted by ≤ to emphasis the total ordering) and letM() be the simulation
of this chain. a is the initial state and I is a sequence of uniform random values
in [0, 1]. Assume that the output O =M(a, I) is the state of the chain at each
time. Thus, M() is hv-monotone w.r.t. the total ordering on the states (i.e. ≤)
and the point ordering �p on the output sequence.

Proof: It is proved in [15] that a stochastically monotone DTMC on a totally
ordered state space admits a set of event (e1, ..., em) which is monotone. Suppose
that a ≥ b and consider O1 =M(a, I) and O2 =M(b, I). As we use the same
I(t), both simulations perform the same event at time t. Let ek be this event. By
construction O1(t+1) = ek(O1(t)) and O2(t+1) = ek(O2(t)) The events are all
monotone. Thus is if O1(t) ≤ O2(t), we get O1(t + 1) ≤ O2(t + 1). By induction
the model is monotone for the point ordering on the output sequence. 
�
Note that hv-monotonicity or inseq-monotonicity do not imply strong stochastic
monotonicity in general. Let us now consider one basic example to illustrate the
approach.

Example 3 (DTMC). Consider again matrix M1 defined in Example 2. As-
sume that the input sequence consists in uniform random values in [0, 1] used
in an inverse transform method to find the transitions according to matrix M1.
Assume that this sequence I is equal to (0.5, 0.05, 0.15, 0.06, 0.25, 0.45). Assume
that the output of the model is the state of the Markov chain at each step and
that the hidden variable is the initial state of the chain. As M1 is stochastically
monotone, the simulation M1() of matrix M1 is hv-monotone w.r.t. natural
ordering on the states and point ordering on the output sequence. Therefore:

M1(1, I) �p M1(2, 1).

Indeed, one can easily check that the output ofM1(1, I) is the following sequence
of states (1, 3, 2, 2, 1, 2, 4) while the output of M1(2, I) is (2, 4, 3, 3, 2, 3, 4); the
verification of the point ordering is readily made. Note also that both simulations
have coupled at time 6 on state 4.

Remark 1. Note that increasing the initial state does not in general results in
an upper bounding sample-path as shown in the following example.

Example 4 (DTMC 2). Consider now matrix M2 defined in Example 2. We
make the same assumptions on the input and output sequences as in the previous
example. Let I = (0.15, 0.5, 0.15). The sample-path beginning with state 1 is
(1, 2, 4, 1) while beginning with state 2 it is (2, 1, 3, 3). Clearly the two vectors
cannot be compared with the �p ordering.
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4 Fast Parallel Computation of Bounds with TPS

We assume in this section that we consider an arbitrary hv-monotone model and
we develop the approach introduced in [6,8]. We show how to modify the TPS to
converge faster on a bound of the sample-path. We have already proved in [10]
that many queueing networks model are hv-monotone. To speed up the compu-
tation we change the rules about the consistency of the simulations performed
by the logical processes. We now say that two parts are consistent if they are a
proved bound of the sample-path that we do not have computed. To illustrate
the approach let us suppose that we want to compute faster a lower bound of
the sample-path. We modify the TPS as follows: the simulation processes LPi

(i = 1..N) are not modified but the Master process performs a slightly different
computation. The first assumption is, as before, that all parts except the first
one are marked as not consistent while the first one is consistent. Suppose that
at the end of round k, the points Y i

k (ti+1) have been computed using Y i
k (ti) as

starting points. If Y i
k (ti+1) = Y i+1

k (ti+1) and part i is consistent, mark part i+1
as consistent. Furthermore if Y i

k (ti+1) > Y i+1
k (ti+1) and part i is consistent, the

concatenation of the parts provide a sample-path of a lower bounding sequence.
Thus mark part i + 1 as consistent. Two consecutive parts are consistent if the
first one is consistent and if the second one is a proved lower bound. Let us
more precisely describe the new version of the Master Process, we only report
the inner loop.

———————————- Lower Bounding sample-path —————————-

3.e Loop
i) i++;
ii) if (Y i

k (ti) = Y i−1
k (ti)) and Consistent(i-1) then Consistent(i) ← True;

iii) elsif (Y i
k (ti) < Y i−1

k (ti)) and Consistent(i-1) then Consistent(i) ← True;
3.f Until (not Consistent(i)) or (i>K);

——————————————————————————————————-
In the original method [18], instruction 3.e.iii) of our approach is not included.
This version of the method is proved to provide a lower bound of the sample-path
(see [8] for the proof of this first algorithm).

Theorem 1. Assume that the simulation model is hv-monotone, the new ver-
sion of the Master for the TPS algorithm makes the logical simulation processes
build a point-wise lower bound of the sample-path faster than the original ap-
proach. Thus the number of runs is smaller than K.

For instance, Fig. 1 shows that after step 2, we have coupled and we have obtain
an exact solution. But at the end of step 1 we have obtained a proved lower
bound if the system is hv-monotone. Thus we can immediately stop the compu-
tation and consider the sample-path after the first run. This sample-path is not
an exact one but it is a point-wise lower bound of the exact sample-path. Due to



Monotonicity and Efficient Computation of Bounds with TPS 65

Property 1 the expectations of non negative rewards on this sample-path are
lower bounds of the exact expected rewards. Note that the bound is proved
while the approximations provided by other methods [3,21] do not provide such
an information (see also Remark 1 to show that changing the initial state does
not always result in a bound of the sample-path).

Designing an algorithm for computing an upper bound is straightforward. But
instead we show how to improve the method and obtain a trade-off between the
number of runs and the accuracy. We can again improve the speed of convergence
with a clever choice of the input points sent by the Master to the simulation
processes LPi.

In the original approach when process LPi−1 is not consistent, then LPi is
not consistent either, even if the condition (Y i

k (ti) = Y i−1
k (ti)) holds. However

it is useless to compute again a new part of the simple path using (Y i
k (ti)) as a

starting point. Indeed the former run has already computed this particular part
and beginning with the same state and using the same sequence of inputs, we
will again obtain exactly the same results. Thus the processor is idle and it can
be used instead for some speculative computations: it may typically compute a
new part for the same sequence of inputs using a speculative initial point. Thus
one must assume that the Master process stores several parts of the sample-path
using the same sequence of inputs but initialised with several starting points. It
checks the consistency of the parts and it asks to create new speculative parts
when needed.

LP i+1LP i

u

V

A

C

B

Fig. 2. How to chose a new initial point for a speculative computation

It remains to describe how to chose a new starting point for the next run.
The configuration is depicted in Fig. 2. Assume that we want to compute a
lower bound and that Min is the smallest state. Consider the results of run k.
Assume that (Y i+1

k (ti+1) = Y i
k (ti+1)) = u. The next initial value is chosen at

random between Min and u (u excluded). Let v be this random value. We will
run a new simulation with the same input sequence I(t) starting form state v.
At the end of the run we have at least two speculative parts (one beginning with
u and one beginning with v, and maybe some other ones previously computed).
Assume that the state space is totally ordered. Now consider the four cases for
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the simulation performed during that run on LPi. Assume that at the end of
that run, part i is found consistent. This simulation may end in:

– A > u. In that case, part i + 1 beginning with u is consistent.
– u because of coupling. Again part i + 1 beginning with u is consistent.
– B such that u > B ≥ v. In that case part i+1 beginning with v is consistent.
– C < v. None of the two speculative simulations of part i + 1 is consistent.

One needs another run.

Clearly choosing a new speculative part beginning with a state smaller than u
will help to find a lower bound of the sample-path while a simulation initialised
with a state larger than u will not.

When the state space is only partially ordered, we have one more case where
the states are not comparable and one more run is needed. Thus we use a similar
set of rules to decrease the number of runs before the whole system has converged
to a bound of the sample-path. We present in the next algorithm how such a
speculative computation can be organised by the Master process. Again we only
present the inner loop computation. The remaining part of the Master algorithm
is kept unchanged.

—————————- Speculative Runs when idle ———————————–
3.e Loop

i) i++; Let k be the last run index
ii) if Consistent(i-1) then

– Let l be the run index for which part i− 1 is consistent.
– If ∃ m such that Y i

m(ti) = Y i−1
l (ti) then Consistent(i) ← True and

the m-th run is used for consistency of part i.
– Elsif ∃ m such that Y i

m(ti) < Y i−1
l (ti) then Consistent(i) ← True

and the m-th run is used for consistency of part i.
– Else Y i

k+1(ti)← Y i−1
l (ti).

iii) Else
– If ∃ m such that Y i

m(ti) = Y i−1
k (ti) then Y i

k+1(ti) ← Random state
between Min and Y i−1

k (ti).
– Else Y i

k+1(ti)← Y i−1
k (ti).

3.f Until (i>K);
3.g LastConsistent ← i− 1.
3.h For all i send to LPi Consistent(i) and the state Y i

k+1(ti).

——————————————————————————————————
Finally we also prove an algorithm to compute a lower bound path with a con-
vergence in any fixed number of round (say R) under the same assumptions on
state Min. During the first R − 1 runs, the Master Process acts as before but
if the simulation has not converged to a consistent sample-path (i.e. a bound
of the exact one) at the end of run R − 1, the Master sends to the simulation
processes LPi state Min as a starting point for the next run.
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——————————— Convergence in R runs ————————————–
3.e Loop

i) i++; Let k be the last run index
ii) if Consistent(i-1) then

– Let l be the run index for which part i− 1 is consistent.
– If ∃ m such that Y i

m(ti) = Y i−1
l (ti) then Consistent(i) ← True and

the m-th run is used for consistency of part i.
– Elsif ∃ m such that Y i

m(ti) < Y i−1
l (ti) then Consistent(i) ← True

and the m-th run is used for consistency of part i.
– Else Y i

k+1(ti)← Y i−1
l (ti).

iii) Else
– if k = R− 1 then Y i

k+1(ti)←Min.
– Elsif ∃ m such that Y i

m(ti) = Y i−1
k (ti) then Y i

k+1(ti) ← Random
state between Min and Y i−1

k (ti).
– Else Y i

k+1(ti)← Y i−1
k (ti).

3.f Until (i>K);
3.g LastConsistent ← i− 1.
3.h For all i send to LPi Consistent(i) and the state Y i

k+1(ti).
——————————————————————————————————-

Property 4. The Master algorithm with inner loop "Convergence in R runs"
needs less than R runs to build a consistent lower bound of the sample-path.

Proof: due to computation at the end of run R − 1, the logical processes are
initialised with the minimal state. Thus the consistency condition holds after
one more run and all the parts are consistent at the end of run R. 
�
We now describe briefly more improvements that we cannot detail for the sake
of conciseness.

1. When a part is consistent, the process is idle and it can be used after reading
in shared memory a new input sequence to build other speculative paths for
a remaining part of the simulation which is not consistent at that time.

2. Remember that the initial approach provides an exact solution. Thus we can
obtain a time versus accuracy trade-off by using the traditional approach
during the first R1 runs and our approach with bounds during the next R2
runs and completing the simulation in one last run where the initial states
for non consistent parts are initialised with minimal or maximal states. We
obtain a proved convergence in R1 + R2 + 1 steps and the parts computed
and found consistent at the end of run R1 are exact.

5 Modelling a Web Server

Some numerical results have already been published for monotone queueing net-
works such as Jackson networks [10]. To illustrate the approach with a new
example, we analyse now a simple model of a web server. The system con-
sists in a scheduler and a set of stations (see Figure 3). All these components
are modelled by FIFO queues with infinite capacity. Web servers have receive
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Scheduler

Stations

Fig. 3. Web Server as a queueing network

considerable attention (see for instance [14]) to optimise the impact of the sched-
uler on the performance of the system taking into account some partial informa-
tion on the load of the queues and the work requested by the customers.

We first describe the model, we prove that the system is hv-monotone and
we report some numerical results for the speed-up. Here we consider a discrete
time model where the slot time is equal to the duration of the service time at
the scheduler. The page arrivals follow a Poisson distribution with rate λ. Pages
contain an HTTP GET for a file. Thus the important features of a page is the
sum of the sizes of the objects included in the page. The sizes are estimated by
the scheduler. The service times in the scheduler are constant and all equal to 1.
Let T0, T1,..,TN be N + 1 increasing number where TN (resp. T0) is the biggest
(resp. smallest) size estimation. We assume that T0 > 0. The pages are sent to the
stations according to the estimation of their size. Station S1 serves pages whose
size estimation is in the interval [T0, T1). Similarly, station Si receives the pages
with size in the interval [Ti−1, Ti). The sizes of the page are independent and
identically distributed. They follow a simple distribution with a large variance:
 1

u� with 0 < u ≤ 1. The services are supposed to be geometric with rate μi at
queue Si. Due to these assumptions, the state of the system is the number of
customers at each queue (i.e. a N + 1 tuple of integers). Let u be a state; u(0)
will denote the size of the scheduler queue while u(i), i = 1..N will be the size
of the queue associated with server Si. The output of the model is the state of
the system at time t. We use the following ordering on the initial states.

Definition 7. We define the �β ordering on states as the product of the natural
orderings on each component of the tuple: u �β v iff u(i) ≤ v(i) for all i.

Property 5. This model of a web server is hv-monotone with �β ordering on
the parameter sequence and �p on the output sequence.
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Fig. 4. Number of runs before global consistency, μ = 0.56, λ = 0.8, uniform initial
state

Proof: Let u0 and v0 be two states such that u0 �β v0 and let us denote by ut and
vt the states at time t. Let us first consider u0(0) and v0(0). As u0(0) ≤ v0(0) and
as the service of the scheduler is constant and the arrivals are the same because
we use the same input sequence for both simulations, we have ut(0) ≤ vt(0) for all
t. And in the simulation beginning with u0, all the customers leave the scheduler
at the same time they leave in the simulation beginning with v0. Furthermore
the routing is the same in both simulations. Note however that we must use the
same amount of random values in the input sequence in both simulations. Thus
we assume that the input sequence is slotted and all values produced at time
t are only available for transitions at time t. If they are not used, they will be
deleted and a new set of random values will be provided for time slot t + 1.

Now consider u0(i) and v0(i) for an arbitrary i. Due to the previous remarks,
the arrivals of customers in Si in simulation beginning with u0 also happen at
the same time and at the same queue in simulation beginning with v0. The
service rates are the same in both simulations. Therefore u0(i) ≤ v0(i) implies
that ut(i) ≤ vt(i). Finally we get: ut �β vt for all t. 
�
We present in the next figures some numerical results obtained for some parame-
ters for λ and μi. The number of simulation processes K is equal to 100. We give
for some typical simulations, the time necessary for simulation processes LPi

to be consistent for all i. We report the results for the usual algorithm and for
the bounding algorithms (upper and lower bounds) without the improvements
on the computation of speculative parts by idle processors. We also used two
distributions for the Random states used in the initialisation part. Clearly both
bounding algorithms are more efficient than the usual approach. They provide a
bound of the paths and the rewards while exact methods are slower and simple
approximations [3] do not give a guarantee on the performance. We only need 7
runs for obtaining 100 consistent parts of the sample path.
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6 Conclusion

Many queueing systems are known to be monotone and such a property has
not been used for simulation except within some Coupling From The Past al-
gorithms. We think that monotonicity of the model has many applications in
simulation which remain to be studied, especially for TPS or the space decom-
position approaches. We will apply this technique for stochastic model checking
by simulation and for the analysis of queueing elements with sophisticated ser-
vice or access discipline. Indeed in stochastic model checking, we often have to
compute bounds of probability for long paths [22,5] and TPS looks like a very
efficient solution. Similarly, queues with complex discipline designed for service
differentiation are difficult to analyse exactly. Improved TPS may be an alterna-
tive to stochastic bound and numerical analysis or fluid methods, see for instance
[4] for a diffusion model of the Pushout mechanism and [2] for the analysis of
the delays in WFQ queues.

Fig. 5. Number of runs before each process is consistent, μ = 0.55, λ = 0.8, second
distribution for initial state
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