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Abstract. We consider networks with multiple classes of customers
which receive service with a Phase type distribution. The service dis-
cipline is Last In First Out. We consider negative signal and a new type
of signal: the group deletion signal. Negative signals eliminate a customer
in service (if there are any) and group deletion signal delete all consecu-
tive customers in the same class and same phase at the back-end of the
buffer. We prove that the network has product form solution.

Keywords: Queue, Network, phase type, quasi-reversible, LIFO, prod-
uct form.

1 Introduction

Traditional queueing networks model systems are used to represent contention
among customers for a set of resources. Customers moves form server to server,
waiting for service. But the customers do not interact among themselves or mod-
ify the queue or the server. G-network models overcome some of the limitations of
conventional queueing network models adding signals and interactions between
signals and customers. Despite this deep modification of the model, G-networks
still preserve the product form property of some Markovian queueing networks.
In his seminal paper [10], Gelenbe introduced negative customer, the first type of
signal. A negative customer is never queued. A negative customer deletes a pos-
itive customer at its arrival at a backlogged queue. Positive customers are usual
customers which are queued and receive service or are deleted by negative cus-
tomers. Under typical assumptions for Markovian queueing networks (Poisson
arrival for both types of customers, exponential service time for positive cus-
tomers, Markovian routing of customers, open topology, independence) Gelenbe
proved that such a network has a product form solution for its steady-state be-
havior. The results are more complex than Jackson’s networks. The G-networks
flow equations exhibit some uncommon properties: they are neither linear as
in closed queueing networks nor contracting as in Jackson queueing networks.
Therefore the existence of a solution had to be proved [11] by new techniques, a
numerical algorithm was also developed [8].
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G-networks had been extended in many directions. First many signals were
introduced and shown to lead to product form solution: triggers which redirect
other customers among the queues, catastrophes which flush all the customers
out of a queue [12,13] and resets [14]. Multiple class versions of these models
have also been derived [6,9,15].

Most of the signals studied so far have a globally negative effect on the queues.
Indeed, the balance of customers in the queues involved in a signal is negative
(triggers, deletion, catastrophes) or negative in expectation (resets). Recently
more complex interactions were introduced: change the class of the customer in
service [4], change the phase of the customer in service for Phase type service
distribution, synchronised arrivals in a set of queues [5]. For a review, one can
see these books [3,16], and many references therein.

G-networks had also motivated new important results in the theory of queues.
As negative customers lead to customer deletions, the original description of
quasi-reversibility does not hold anymore and new versions have been proposed.
At the time being, the description proposed by Chao and his co-authors in
[3] looks sufficient to study queues with customers and signals. At the same
time a completely different approach, based on Stochastic Process Algebra, was
proposed by Harrison [17,18]. The main results (CAT and RCAT theorems and
their extensions [1,17,18,19]) give some sufficient conditions for product form
stationary distributions. Thus Harrison’s technique clearly has a different range
of applications as it allows to represent component based models which are much
more general than networks of queues. An interesting open question is to mix
both results to obtain a quasi-reversibility characterisation directly from a SPA
specification using a master-slave description of the system (like in RCAT) rather
than arrivals, departure and internal transitions as proposed in [3].

Here we introduce a new type of signal which deletes several customers of the
same type (same class and same phase) at the back end of a LIFO queue. Batch
deletion were studied by Gelenbe in [12] for single class model. To the best of
our knowledge the multiclass problem was not considered until now, except the
catastrophe in a PS queue studied in [7] which is easier to model. Moreover, the
group-deletion signal is not like the previously studied batch which was studied
as we seek to delete all customers of the same type, which means that it will
depend on the type of customers, while the effect of a batch or a catastrophe
does not depend on class of customers. We also assume that the service time
distributions are Phase type.

The following of the paper is as follows. Section 2 is devoted to the definition
of quasi-reversibility as it has been generalised by Miyazawa and his co-authors
to take into account signals. In section 3, we show that the queues are quasi-
reversible. Finally in section 4, using quasi-reversibility we prove that the steady-
state has a product form solution.

2 Preliminaries

In this section, we will introduce the network of quasi-reversible queues which is
introduced by Chao, Miyazawa and Pinedo in [3]. All the results presented in this
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section comes form [3] and have been already used in the context of G-networks
in [4] to prove that networks with Phase type services and another type of signal
also have a product form steady-state solution. We summarize the results of [3]
for the readers.

2.1 Definition of Quasi-reversibility of Chao, Miyazawa and Pinedo

Let we introduce the definition of quasi-reversibility of a queue with signals and
instantaneous movement.

Consider a queue where the queue-content evolves as a continuous time Markov
chain on state space S. For a pair of states (x, y), we decompose the tran-
sition rate function q(x, y) of queue into three types of rates: qA

u (x, y), u ∈
T ; qD

u (x, y), u ∈ T ; qI(x, y), where T is the set of the classes of arrivals and
departures, which is countable. The transition rate of the queue can be written
as:

q(x, y) =
∑

u∈T

qA
u (x, y) +

∑

u∈T

qD
u (x, y) + qI(x, y), x, y ∈ S.

The transition rate functions qA
u , qD

u and qI generate the point processes cor-
responding to class u arrivals, class u departures and the internal transitions,
respectively. “A”, “D” and “I” stand for “arrival”, “departure” and “internal”.

Suppose that q admits a stationary distribution π. Furthermore, assume that
when a class u arrives and changes the state of the queue from x to y, it instan-
taneously triggers a class v departure with probability fu,v(x, y), where:

∑

v

fu,v(x, y) ≤ 1, u ∈ T, x, y ∈ S.

With probability 1 − ∑
v fu,v(x, y) the class u arrival does not trigger any de-

parture. The function fu,v(x, y) is the triggering probability.
The quasi-reversibility of instantaneous movement is defined as follows.

Definition 2.1. If there exist two sets of non-negative numbers {αu, u ∈ T }
and {βu, u ∈ T } such that: for all x ∈ S, u ∈ T,

∑

y∈S

qA
u (x, y) = αu, (1)

∑

y∈S

π(y)
[
qD
u (y, x) +

∑

v∈T

qA
v (y, x)fv,u(y, x)

]
= βuπ(x), (2)

then the queue with signal is said to be quasi-reversible with respect to {qA
u , fu,v,

u, v ∈ T }, {qD
u , u ∈ T } and {qI} .

The non-negative numbers αu and βu are called the arrival rate and departure
rate of class u customers.
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Example 2.1. Let us give an example of a G-queue M/M/1/∞ with negative
signal to introduce the definition. Customers arrive with rate λ, service rate
is μ. Negative signals arrive with rate λ−. A negative signal will eliminate a
customer if there is any in the queue.

We use the indices c for customers and − for negative signals. The transition
rates of the queue are given by:

qA
c (n, n + 1) = λ, n ≥ 0,

qA
−(n, n − 1) = λ−, n ≥ 1,

qA
−(0, 0) = λ−,

qD
c n, n − 1 = μ, n ≥ 1.

We add the rate qA
−(0, 0) for equation (1) to hold for both c and −, where αc = λ

and α− = λ−. Note that qA−(0, 0) is a dummy transition. Therefore it is possible
to add such a transition rate.

The stationary distribution π is given by

π(n) = π(0)
( λ

μ + λ−
)n

.

Equation (2) is satisfied for c with

βc =
λμ

μ + λ− .

We now consider the negative signals. We add the triggering probability f−,−(n+
1, n) = 1 for n ≥ 0 in the queue. Hence, one obtains equation (2) for − with

β− =
λλ−

μ + λ− .

Chao et al. proved that this definition of queue without instantaneous movements
is equivalent to the quasi-reversible definition of Kelly in [20]. This implies that
the arrival processes and the departure (triggered and non-triggered) of class u
customers are Poisson.

We use the definition of Chao, Miyazawa and Pinedo as it is more convenient
for G-networks with instantaneous movements.

2.2 Network of Quasi-reversible Queues with Signals and
Instantaneous Movement

Consider a network of N queues. Each queue is a quasi-reversible queue with
signals as described above. The set of arrival and departure classes is T (we
may have a set Ti for each queue i, however, for the sake of simplicity, we take
T = ∪iTi).

Let xi be the state of queue i with state space Si. The Poisson source has
index 0 and for the sake of simplification, we assume that the source has only
one state which is denoted as 0.
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For queue i, we introduce functions pA
iu, qD

iu, qI
i and fiu,v on the state space

Si:

– pA
iu(xi, yi) = the probability that a class u arrival at queue i changes the

state from xi to yi, where it is assumed that
∑

y∈Si
pA

iu(xi, yi) = 1, xi ∈ Si;
– qD

iu(xi, yi) = the rate at which class u departures change the state of queue
i from xi to yi;

– qI
i (xi, yi) = the rate at which internal transitions change the state of queue

i from xi to yi;
– fiu,v(xi, yi) = the triggering probability that when a class u arrival occurs

at queue i and the state changes from xi to yi, it simultaneously induces a
class v departure, where

∑
v∈T fiu,v(xi, yi) ≤ 1, i ≤ N, u ∈ T, xi, yi ∈ Si.

For source 0, we set pA
0u(0, 0) = 1, pA

0u(0, 0) = β0u, qI
0(0, 0) = 0 and f0u,v ≡ 0.

Here, βA
0u is the arrival rate to the network from the outside (the source).

In Chao’s model, a queue is defined by three rates qA
u , qD

u and qI . In that
case, the arrival effect function may be defined as:

pA
u (x, y) =

qA
u (x, y)∑
z qA

u (x, z)
,

and qD
u and qI are the departure and internal transition functions.

The dynamics of the network are described as follows. Customers of class u
arrive to the network from outside (the source) according to a Poisson process
with rate β0u, and are routed to queue i as a class v arrival with probability
r0u,iv. A class u departure from queue i, either trigger or non-trigger, enters
queues j as a class v arrival with probability riu,jv . It is assumed that:

N∑

j=0

∑

v

riu,jv = 1, i = 0, 1, . . .N, u ∈ T.

Furthermore, whenever there is a class u arrival at queue i, either from the
outside or from other queues, it makes the state of the queue change from xi to yi

with probability pA
iu(xi, yi), it also triggers a class u departure with probability

fiu,v(xi, yi), and it triggers no departure from queue i with probability 1 −∑
v∈T fiu,v(xi, yi), i = 0, 1, . . . , N.
The transition rate function of the network is denoted by q(x, y), x, y ∈ S =

S1 × · · · × SN (note that we accept the case where q(x, x) �= 0).
Consider for each queue i the following auxiliary process:

q
(αi)
i (xi, yi) =

∑

u∈T

(
αiupA

iu(xi, yi) + qD
iu(xi, yi)

)
+ qD

i (xi, yi),

where (αi) = (αiu, u ∈ T ) are considered as dummy parameters and their values
are determined by the traffic equations.

Suppose that q
(αi)
i has a stationary distribution π

(αi)
i . Note that this is always

true for the source 0, as for all α0, π
(α0)(0)
0 = 1. We now require that q

(αi)
i be

quasi-reversible.
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We always have
∑

yi∈Si

αiupA
iu(xi, yi) = αiu, i = 1, . . .N, u ∈ T.

Hence, the quasi-reversibility of q
(αi)
i for i = 1, . . . , N is equivalent to the exis-

tence of a set of non-negative numbers βiu, u ∈ T such that:
∑

yi

π
(αi)
i (yi)

[
qD
iu(yi, xi) +

∑

v∈T

αivpA
iv(yi, xi)fiv,u(yi, xi)

]

= βiuπ
(αi)
i (xi), (3)

for all xi ∈ Si, i = 1, . . . , N and u ∈ T .
Queue i in isolation is said to be quasi-reversible with αi if (3) is satisfied.
Since αiu and βiu are the arrival and the departure rates of class u customers

at queue i, we have the following traffic equations:

αiu =
N∑

j=0

∑

v

βjvrjv,iu , i = 0, 1, . . . , N. (4)

We need the following condition to ensure that the network process is regular:

N∑

i=1

∑

xi∈Si

π
(αi)
i

∑

yi∈Si

q
(αi)
i (xi, yi) < ∞.

We have the theorem:

Theorem 2.1. If each queue i with signals, i = 1, . . . , N , is quasi-reversible
with αi which are the solution to the traffic equations (4), then the queueing
network with signal has the product form stationary distribution

π(x) =
N∏

i=1

π
(αi)
i (xi),

where π
(αi)
i is the stationary distribution of q

(αi)
i , i = 1, . . . , N .

3 A LIFO Multi-class PH Queue with Signal Deletion
Customers of Same Sub-class

The goal is to model a generalized network of multiple classes of (positive) cus-
tomers where the service times of each class are assumed to be Phase type and
2 types of signal: negative signal and group deletion signal.

In [2], Bonald and Tran modelled the Phase type service by considering a
change of class inside the queue after service. More precisely, the phase is mod-
elled by an absorbing DTMC with k + 1 states where 0 is the only absorbing
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state. The transition probability matrix of this DTMC is denoted as H . It can
be viewed as follow: each “phase” ph demands an exponential service time. After
“phase” ph, a customer can change to some “phase” ph′ with some probability
(given by matrix H) and still stay in the queue. The arriving rate of each “phase”
will respect the ratio of the initial probability of the Phase-type.

Example 3.1. Consider a queue of 2 classes of customers:

– Class 1 which arrives with rate λ1 and asks for exponential service of rate
μ1;

– Class 2 which arrives with rate λ2 and asks a PH service with two transient
states (and an absorbing state): ph,ph′ and initial distribution ν. State ph
and ph′ demands exponential services time μ2 and μ′

2.

Hence, the matrix H is given by

H =

⎛

⎜⎜⎝

0 0 0 H[1,0]
0
0

0 H [ph, ph′]
H [ph′, ph] 0

H [ph, 0]
H [ph′, 0]

0 0 0 0

⎞

⎟⎟⎠ ,

where

– H [1, 0] = 1, which means that if a customer reach phase 1, then after service
completion, it will reach the absorbing state.

– H [ph, ph′] and H [ph′, ph] are the probabilities in which after service comple-
tion of phase ph and ph′, respectively, customer of class 2 can ask for another
“phase” ph′, ph, respectively.

– H [ph, 0] and H [ph′, 0] are the probabilities in which after of phase ph and
ph′, respectively, customer of class 2 will reach the absorbing state.

Then, inside the queue, there are changes of class after service (in this case, ph
to ph′ and ph′ to ph). The arrival rate for phase 1 is λ1, while it is λ2ν(ph) and
λ2ν(ph′) for phase 2 (ph) and 3 (ph′).

We will use this presentation to model our network. A multi-class network of
queues with phase type service times can be modelled as a multi-class network
of queues with exponential service times where the customers can change class
inside the queue after completion of an exponential service.

3.1 Description

Consider the LIFO multi-class queue with the set of customers given by C and a
special class index 0 (0 /∈ C) which denotes the “absorbing state”. There are two
types of signals: negative signals and group-deletion signals. The set of negative
signals is given by S− = {s−c }c∈C and the set of group-deletion signals is given
by S = {sc}s∈C.
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Remark 3.1. We can consider only one class of negative signal and one class
of group-deletion signal, with different probability of success for each class of
customer. However, we consider different classes to have more flexible routing
while connecting the networks.

Customers of class c arrive according to a Poisson process of rate λ(c), they re-
quire exponential service times with mean 1/μ(c), for c ∈ C. Denote by λ the sum
of all λc: λ =

∑
c∈C λ(c). A customer of class c after completion of service will

change to class k (it demands another service) with probability H [c, k] or reach
the state 0 (it quits the queue at the completion of its service) with probability
H [c, 0]. The following condition is satisfied:

H [c, 0] +
∑

k∈C

H [c, k] = 1.

Negative signals of class s−c arrive according to a Poisson process of rate λ−(c).
Arriving signal of type s−c will eliminate a customer c in service (customer at
the back-end of the buffer).

Group deletion signals of class sc arrive according to a Poisson process of rate
λs(c). If customer in service is of class c, then the arriving signal of class sc will
cancel all consecutive customers of class c at the back-end of the buffer (it will
eliminate all customers of class c until it finds a customer of another class).

If the queue length is n, then the state of queue is

x = (x(1), x(2), · · · , x(n)),

where x(l) is the class of customer in position l.

Remark 3.2. We consider also triggering effect in the queue to have instanta-
neous movements when considering network model. However, details of the trig-
gering effect will be given later when we study the quasi-reversibility.

3.2 Stationary Distribution

We first give the system of equation which plays an important role in calculating
the stationary distribution.

Definition 3.1. The PH Group-deletion Equations associated to the considered
LIFO queue are the equations of the variable ρ = {ρ(c)}c∈C ∈ �

C
+, defined by

λ(c) +
∑

k∈C

ρ(k)μ(k)H [k, c] =
ρ(c)λs(c)

1 − ρ(c)
+ ρ(c)μ(c) + ρ(c)λ−(c), if λs(c) > 0, (5)

λ(c) +
∑

k∈C

ρ(k)μ(k)H [k, c] = ρ(c)
(
μ(c) + λ−(c)

)
, if λs(c) = 0. (6)

Let C+ be a subset of C: C+ = {c ∈ C | λs(c) > 0}.
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Remark 3.3. If ρ is a solution of (5,6), then taking the sum over all c in C, and
using the fact that H [c, 0] +

∑
k∈C H [c, k] = 1, one has

λ =
∑

c∈C

(ρ(c)μ(c) + ρ(c)λ−(c)) +
∑

c∈C+

ρ(c)λs(c)
1 − ρ(c)

−
∑

c,k∈C

ρ(k)μ(k)H [k, c]

=
∑

c∈C

ρ(c)μ(c)H [c, 0] +
∑

c∈C

ρ(c)λ−(c)) +
∑

c∈C+

ρ(c)λs(c)
1 − ρ(c)

.

We now give lemmas which prove the existence of the solution of PH Group-
deletion Equations. We first prove this property in the extreme cases: C+ = C or
C+ = ∅. Then we treat the general case.

Lemma 3.1. If C+ = ∅ (which means that there is no deletion-group signal in
the queue), then there exists a solution (ρ(c))c∈C of the system (5,6).

Proof. The system can be rewritten as follows:

ρ = η + ρM,

where η = (η(c))c∈C is a vector and M = M [c, k]c,k∈C is a matrix the entries of
which are given by:

η(c) =
λ(c)

μ(c) + λ−(c)
, M [c, k] =

μ(k)H [k, c]
μ(c) + λ−(c)

.

One has that rank(Id − M) = |C| as at least one variable H [c, 0] > 0. Hence,
there exist a unique solution given by

ρ = η(Id − M)−1.

This completes the proof.

Lemma 3.2. If C+ = C (which means that H [c, k] = 0 for all c, k ∈ C), then
there exists a solution (ρ(c))c∈C of the system (5,6) which satisfies

0 ≤ ρ(c) < 1.

Proof. ρ(c) is a root of a polynomial of degree 2:

P c(ρ(c)) = ρ(c)2
(
μ(c) + λ−(c) − μ(c)H [c, c]

) − ρ(c)
(
λs(c) + μ(c) + λ−(c)

+
∑

k �=c

ρ(k)μ(k)H [k, c] − μ(c)H [c, c]
)

+
(
λ[c] +

∑

k �=c

ρ(k)μ(k)H [k, c]
)

Polynomial P c(X) = 0 has a solution in [0,1) as P c(0) ≥ 0 and P c(1) < 0. As the
multiplication of the two solutions of P c(X) is positive (λ(c)/

(
μ(c) + λ−(c)

)
),

we have that P c(X) = 0 has 2 positive roots. It implies that P c(X) has a unique
solution in [0,1) (which is depending on ρ(k)k �=c).
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Consider the function Φ(ρ) : [0, 1]C
+ → [0, 1]C

+
where Φ(ρ)(c) is the unique

solution in [0,1) of P c(X). As [0, 1]C
+

is a non-empty compact, then applying
Brower’s fixed point theorem, one has that there exists a fixed point solution in
[0, 1]C

+
of the equation: Φ(ρ) = ρ, or Φ(ρ)(c) = ρ(c). Clearly the solution will be

in the set [0, 1)C+
.

This completes the proof.

We now have the result in the general case.

Lemma 3.3. There exists a solution (ρ(c))c∈C of the system (5,6) which satis-
fies

0 ≤ ρ(c) < 1, for all c ∈ C+.

Proof. Consider c ∈ C \ C+. Similarly to Lemma 3.1, one has that there exists a
solution ρ1 = (ρ(c))c∈C\C+ which depends on ρ2 = ρ(c)c∈C+ determined by:

ρ1 = η1(Id − M1)−1,

where

η1(c) =
λ(c) +

∑
k∈C+ μ(k)H [k, c]

μ(c) + λ−(c)
, M1[c, c′] =

μ(c′)H [c′, c]
μ(c) + λ−(c)

, for c, c′ /∈ C+.

This implies that for c /∈ C, ρ(c) is a linear combination of (ρ(c)c∈C+), which is
denoted by Φ1(c).

For c ∈ C+, consider the polynomial

P c(X) = X2
(
μ(c) + λ−(c)

) − X
(
λs(c) + μ(c) + λ−(c) +

∑

k∈C+

ρ(k)μ(k)H [k, c]

+
∑

k/∈C+

Φ1(k)μ(k)H [k, c]
)

+
(
λ(c) +

∑

k∈C+

ρ(k)μ(k)H [k, c]

+
∑

k/∈C+

Φ1(k)μ(k)H [k, c]
)
.

Similarly to Lemma 3.2, one has that there is a unique solution in [0, 1) of P c(X).
Consider the function Φ2(ρ2) : [0, 1]C

+ → [0, 1]C
+

where Φ(ρ)(c) is the unique
solution in [0,1) of P c(X). Similarly to Lemma 3.2, we have a solution to the
fixed point equation: Φ2(ρ2)(c) = ρ2(c) which satisfies ρ2(c) ∈ [0, 1).

This completes the proof.

Lemma 3.4. Let ρ be a solution to the system of equations (5,6). The considered
LIFO queue has an invariant measure p defined by

p(x(1), x(2), · · · , x(n)) =
∏

l≤n

ρ(x(l)). (7)
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Proof. To prove that p is an invariant measure, one has to check that for all
x = x(1), x(2), · · · , x(n), one has

∑

y

p(x)Q(x, y) =
∑

y

p(y)Q(y, x),

where Q is the infinitesimal generator of the queue.
The left-hand side is given by

L = λ, if n = 0,

or
L = p((x))(λ + μ(x(n)) + λ−(x(n)) + λs(x(n))), if n > 0.

Using the equation
∑

k>0 ρ(c)k = ρ(c)/(1 − ρ(c)) when ρ(c) < 1, the right-hand
side is given by

R =
∑

c∈C

ρ(c)μ(c)H [c, 0] +
∑

c∈C

ρ(c)λ−(c) +
∑

c∈C+

ρ(c)λs(c)
1 − ρ(c)

, if n = 0

or

R =
p(x)

ρ(x(n))

{
λ(x(n)) + ρ(x(n))

∑

k∈C

ρ(k)λ−(k) + ρ(x(n))
∑

k∈C

ρ(k)μ(k)H [k, 0]

+
∑

k∈C+,k �=x(n)

ρ(k)λs(k)
1 − ρ(k)

ρ(x(n)) +
∑

k∈C

ρ(k)μ(k)H [k, x(n)]
}

, if n > 0.

Let us comment about the expression of R. In the sum, the first term corre-
sponds to an arrival; the second term corresponds to an elimination caused by a
negative signal; the third term corresponds to a completion of service of phase
k to reach absorbing state 0 and leave the queue; the fourth term corresponds
to an elimination caused by a group deletion signal of class sk, for k �= x(n);
and the last term corresponds to a service completion of phase k which provokes
another service of phase x(n).

When n = 0, we have L = R as in remark 3.3. Using this equation, for n > 0,
one has

R
ρ(x(n))
p(x)

= λ(x(n)) +
∑

k∈C

ρ(k)μ(k)H [k, x(n)]

+ρ(x(n))
(
λ − �xn∈C+

ρ(x(n)λs(x(n)))
1 − ρ(x(n))

)

The equations (5,6) imply that

R
ρ(x(n))
p(x)

= ρ(x(n))
(
μ(x(n)) + λ−(x(n)) + λ

)
+ �x(n)∈C+ρ(x(n)λs(x(n))),

which yields that L = R when n > 0.
This completes the proof.
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We now have the main result for one queue.

Theorem 3.1. Consider the LIFO multi-class PH queue with negative signal
and group-deletion signal where the variables are (λ(c), μ(c), λ−(c), λs(c)). Let ρ
be a solution of the PH Group-deletion Equations (6,5) which satisfies ρ(c) < 1
for c ∈ C+.

If we have ∑

c∈C

ρ(c) < 1

then the queue is stable and the stationary distribution is given by: for x =
{x(1), · · · , x(n)}

π(x) = K

n∏

1

ρ(x(l)), (8)

where K is the normalization constant given by K = 1 − ∑
c∈C ρ(c).

Proof. If
∑

c∈C ρ(c) < 1, then one has that
∑

x π(x) = 1. Using Lemma 3.4, one
has that π is the stationary distribution. This completes the proof.

3.3 Quasi-reversibility

In this section, we will study the quasi-reversibility as defined by Chao et. al.
Consider the departure process of customer of class c, one has

∑
y qD

c (y, x)π(y)
π(x)

= ρ(c)μ(c)H [c, 0].

Consider the negative signal of class s−c , one has
∑

y qA
s−

c
(y, x)π(y)

π(x)
= ρ(c)λ−(c).

The problem is more complicated while considering the group-deletion signal of
class sc, one has

∑
y qA

sc
(y, x)π(y)
π(x)

=

⎧
⎨

⎩

∑
k≥1 ρ(c)kλs(c) =

λs(c)ρ(c)
1 − ρ(c)

, if x(n) �= c;

0, if x(n) = c.

Hence, we have the quasi-reversibility for customers which reach the absorbing
state after finishing service. We can add triggering probability for negative signal
when there are a successful elimination

fs−
c ,s−

c
(x(1) · · · x(n)c, x(1) · · ·x(n)) = 1,

then we also have the quasi-reversibility for negative signal.
To have the quasi-reversibility for group-deleting signal, one needs to modify

the network as follows:
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– Triggering probability for group-deleting signal when there are a successful
group-deletion: fsc,sc(x(1) · · ·x(n)ck, x(1) · · ·x(n)) = 1,

– When the state of the queue is x(1) · · ·x(n), then there is a process of
group-deletion signal of class sx(n) is active to departure with rate
λs(c)ρ(c)/(1 − ρ(c)).

We now have all ingredients to study the network.

4 Network of LIFO Multi-class PH Queues with Negative
Signal and Group-Deletion Signal

4.1 Description

Consider the network of N LIFO multi-class Ph queues with negative signal and
group-deletion signal.

At queue i, the set of classes of customers is given by Ci. The arrival rate
and service rate of customer of type c are λi(c) and μi(c), respectively. The
matrix which determines the service rate is given by Hi[c, k] and Hi[c, 0] for
c, k ∈ Ci. The arrival rate of negative signal of type s−c is λi,−(c). The arrival
rate of group-deletion signal of type sc is λi,s(c).

At queue i, after service completion at phase c, a customer asks another service
of phase k with probability Hi[c, k]; or reaches absorbing state 0 at queue i with
probability Hi[c, 0], and then

– leaves to queue j as a customer of class c′ with probability P i,j(c, c′), as a
negative signal of class s−c′ with probability P i,j(c, s−c′), as a group-deletion
signal of class sc′ with probability P i,j(c, sc′),

– or quits the network with probability di(c).

The following condition is satisfied:
∑

j

∑

c′∈Cj

(P i,j(c, c′)P i,j(c, s−c′)P
i,j(c, sc′)) + di(c) = 1.

A negative signal of class s−c arrives to queue i finding customer of class c in
service will eliminate this customer, and then

– moves to queue j as a customer of class c′ with probability P i,j(s−c , c′), as a
negative signal of class s−c′ with probability P i,j(s−c , s−c′), as a group-deletion
signal of class sc′ with probability P i,j(s−c , sc′),

– or quits the network with probability di(s−c ).

The following condition is satisfied:
∑

j

∑

c′∈Cj

(P i,j(s−c , c′)P i,j(s−c , s−c′)P
i,j(s−c , sc′)) + di(s−c ) = 1.

A group-deletion signal of class sc arrive to queue i finding customer of class c
in service will cancel all customers of class c at the back-end of the buffer.
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Remark 4.1. We know that we can generalize this mechanism of the group-
deletion signal with probability of successful deletion in the network as we will
have the quasi-reversibility. However, for the sake of simplicity, we will not in-
troduce the generalized version of group-deletion signal.

4.2 Stationary Distribution

Definition 4.1. The Traffic Equations of the network are given by

Λi(c) = λi(c) +
∑

k∈Ci

ρi(k)μi(k)Hi[k, c]

+
∑

j,k∈Cj

ρj(k)
{
μj(k)H [k, 0]P j,i(k, c) + Λj,−(k)P j,i(s−k , c)

}
, (9)

Λi,−(c) = λi,−(c) +
∑

j,k∈Cj

ρj(k)
{
μj(k)H [k, 0]P j,i(k, s−c ) + Λj,−(k)P j,i(s−k , s−c )

}
, (10)

Λi,s(c) = λi,s(c) +
∑

j,k∈Cj

ρj(k)
{
μj(k)H [k, 0]P j,i(k, sc) + Λj,−(k)P j,i(s−k , sc)

}
, (11)

where ρi is the solution to the PH group-deletion Equations associated to the
variables (Λi(c), Λi,−(c), Λi,s(c), μi(c)).

Remark 4.2. As mentioned in section 3.3, we can consider a modified network to
have the quasi-reversible property for group deletion signal. However, we do not
give the detail in this paper. We only consider the “simple” network as presented.

We now have the main result to the paper.

Theorem 4.1. Consider the network of N LIFO multi-class PH queues with
negative signals and group-deletion signals. If there exists a solution to the traffic
equations (9,10,11) which satisfies: for all i

∑

c∈Ci

ρi(c) < 1,

then the network is stable and the stationary distribution has a product form
given by

π(x1, · · · , xN ) =
N∏

i=1

πi(xi) = K

N∏

i=1

ρi(xi(1) · · ·xi(ni)),

where xi = (xi(1) · · ·xi(ni)) and K is the normalisation constant.

The theorem can be deduced by using the result in Theorem 2.1.

5 Concluding Remarks

We hope that this new result will improve the applicability of G-network to
model systems with complex destruction mechanism of customers. Extension to
other queueing discipline is not that trivial because of the combinatorial problem
for description of set of customers to be deleted when the queueing discipline is
a general symmetric discipline as defined by Kelly.
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