

Lecture Notes in Computer Science 6977
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Nigel Thomas (Ed.)

Computer
Performance
Engineering

8th European Performance Engineering
Workshop, EPEW 2011
Borrowdale, UK, October 12-13, 2011
Proceedings

13

Volume Editor

Nigel Thomas
Newcastle University
School of Computing Science
Newcastle upon Tyne, NE1 7RU, UK
E-mail: nigel.thomas@ncl.ac.uk

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-24748-4 e-ISBN 978-3-642-24749-1
DOI 10.1007/978-3-642-24749-1
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011938124

CR Subject Classification (1998): D.2, C.2, H.3-4, F.3, D.4, C.2.4

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume of LNCS contains papers presented at the 8th European Perfor-
mance Engineering Workshop held at the Lodore Falls Hotel, Borrowdale in the
English Lake District on 12th and 13th October 2011.

The accepted papers reflect the diversity of modern performance engineer-
ing. There were a number of papers presented which tackled modelling issues
in stochastic process algebra, stochastic activity networks and Petri nets. Other
papers addressed theoretical advances and applications, including those in com-
munications networks, botnets, inventory systems and web services. There were
also a number of papers dedicated to new software tools, showing the continued
importance of this area within the wider performance community. As well as
the main programme, the workshop also included a selected poster session of
papers with considerable merit, but for which there was insufficient time in the
main programme. The poster presentations focussed on software tools, model
visualisation, analysis techniques and grid-based systems.

We were delighted to have keynote presentations from John Murphy from
University College Dublin and Samuel Kounev from the Karlsruhe Institute of
Technology. These talks reflected the state of performance engineering today.
Samuel Kounev’s talk discussed issues in the rigorous development of self-aware
systems; systems that can adapt to meet performance (and other) goals. John
Murphy’s presentation tackled the issue of performance prediction in cloud-based
systems, a rapidly developing area of interest.

As workshop chair I would like to thank everyone involved in making EPEW
2011 a success: Springer for their continued support of the workshop series, the
programme committee and reviewers, and of course the authors of the papers
submitted, without whom there could not be a workshop. We trust that you,
the reader, find the papers in this volume interesting, useful and inspiring, and
we hope to see you at future European Performance Engineering Workshops.

August 2011 Nigel Thomas

Organization

Programme Committee

Marco Bernardo University of Urbino, Italy
Jeremy Bradley Imperial College London, UK
Mario Bravetti University of Bologna, Italy
Lucia Cloth German University of Technology in Oman

(GUtech), Oman
Vittorio Cortellessa Università dell’Aquila, Italy
Michel Cukier University of Maryland, USA
Tadeusz Czachórski IITiS PAN, Polish Academy of Sciences, Poland
Nick Dingle University of Manchester, UK
Karim Djemame University of Leeds, UK
Paulo Fernandes PUCRS, Brazil
Jean-Michel Fourneau Université de Versailles, France
Stephen Gilmore University of Edinburgh, UK
Marco Gribaudo Politecnico di Milano, Italy
Helmut Hlavacs University of Vienna, Austria
András Horváth University of Turin, Italy
Stephen Jarvis University of Warwick, UK
Carlos Juiz University of Balearic Islands, Spain
Tomáš Kalibera Purdue University, USA
Helen Karatza Aristotle University of Thessaloniki, Greece
Leila Kloul Université de Versailles, France
Samuel Kounev Karlsruhe Institute of Technology, Germany
Geyong Min University of Bradford, UK
John Murphy University College Dublin, Ireland
Fernando Pelayo University of Castilla - La Mancha, Spain
Marco Scarpa University of Messina, Italy
Markus Siegle Universität der Bundeswehr München,

Germany
Mark Squillante IBM Research, USA
Miklós Telek Budapest University of Technology and

Economics, Hungary
Nigel Thomas Newcastle University, UK
Mirco Tribastone Ludwig-Maximilians-Universität München,

Germany
Sabine Wittevrongel Ghent University, Belgium
Katinka Wolter Freie Universität zu Berlin, Germany
Avelino Zorzo PUCRS, Brazil

VIII Organization

Additional Referees

Steffen Becker
Fabian Brosig
Ricardo Czekster
Tugrul Dayar
Tien Van Do
Michael Faber
Alexander Gouberman
Uli Harder

Rouven Krebs
Francesco Longo
Philipp Reinecke
Martin Riedl
Afonso Sales
Johann Schuster
Max Tschaikowski

Table of Contents

Invited Papers

Performance Engineering for Cloud Computing . 1
John Murphy

Engineering of Self-aware IT Systems and Services: State-of-the-Art
and Research Challenges . 10

Samuel Kounev

Regular Papers

Accommodating Short and Long Web Traffic Flows over a DiffServ
Architecture . 14

Salvador Alcaraz, Katja Gilly, Carlos Juiz, and Ramon Puigjaner

Automatic Synchronisation Detection in Petri Net Performance Models
Derived from Location Tracking Data . 29

Nikolas Anastasiou, William Knottenbelt, and Andrea Marin

Performance Evaluation of Business Processes through a Formal
Transformation to SAN . 42

Kelly Rosa Braghetto, João Eduardo Ferreira, and
Jean-Marc Vincent

Monotonicity and Efficient Computation of Bounds with Time Parallel
Simulation . 57

Jean-Michel Fourneau and Franck Quessette

Stochastic Restricted Broadcast Process Theory . 72
Fatemeh Ghassemi, Mahmoud Talebi, Ali Movaghar, and
Wan Fokkink

Higher Moment Analysis of a Spatial Stochastic Process Algebra 87
Marcel C. Guenther and Jeremy T. Bradley

Optimization for Multi-thread Data-Flow Software 102
Helmut Hlavacs and Michael Nussbaumer

Formal Mapping of WSLA Contracts on Stochastic Models 117
Rouaa Yassin Kassab and Aad van Moorsel

Comparison of the Mean-Field Approach and Simulation in a
Peer-to-Peer Botnet Case Study . 133

Anna Kolesnichenko, Anne Remke, Pieter-Tjerk de Boer, and
Boudewijn R. Haverkort

X Table of Contents

WMTools - Assessing Parallel Application Memory Utilisation at
Scale . 148

Oliver Perks, Simon D. Hammond, Simon J. Pennycook, and
Stephen A. Jarvis

On Stochastic Fault-Injection for IP-Packet Loss Emulation 163
Philipp Reinecke and Katinka Wolter

Analysis of Gossip-Based Information Propagation in Wireless Mesh
Networks . 174

Abolhassan Shamsaie, Wan Fokkink, and Jafar Habibi

Multi-class Network with Phase Type Service Time and Group Deletion
Signal . 189

Thu-Ha Dao-Thi, Jean-Michel Fourneau, and Minh-Anh Tran

Critical Level Policies in Lost Sales Inventory Systems with Different
Demand Classes . 204

Aleksander Wieczorek, Ana Bušić, and Emmanuel Hyon

Model-Based Evaluation and Improvement of PTP Syntonisation
Accuracy in Packet-Switched Backhaul Networks for Mobile
Applications . 219

Katinka Wolter, Philipp Reinecke, and Alfons Mittermaier

Light-Weight Parallel I/O Analysis at Scale . 235
Steven A. Wright, Simon D. Hammond, Simon J. Pennycook, and
Stephen A. Jarvis

Poster Presentations

Can Linear Approximation Improve Performance Prediction ? 250
Vlastimil Babka and Petr T̊uma

TwoEagles: A Model Transformation Tool from Architectural
Descriptions to Queueing Networks . 265

Marco Bernardo, Vittorio Cortellessa, and Mirko Flamminj

A Tool Suite for Modelling Spatial Interdependencies of Distributed
Systems with Markovian Agents . 280

Davide Cerotti, Enrico Barbierato, and Marco Gribaudo

A Grid Broker Pricing Mechanism for Temporal and Budget
Guarantees . 295

Richard Kavanagh and Karim Djemame

Table of Contents XI

Visualisation for Stochastic Process Algebras: The Graphic Truth 310
Michael J.A. Smith and Stephen Gilmore

Efficient Experiment Selection in Automated Software Performance
Evaluations . 325

Dennis Westermann, Rouven Krebs, and Jens Happe

Author Index . 341

N. Thomas (Ed.): EPEW 2011, LNCS 6977, pp. 1–9, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Performance Engineering for Cloud Computing

John Murphy

Lero – The Irish Software Engineering Research Centre
School of Computer Science and Informatics, University College Dublin, Ireland

J.Murphy@ucd.ie

Abstract. Cloud computing potentially solves some of the major challenges in
the engineering of large software systems. With the promise of infinite capacity
coupled with the ability to scale at the same speed as the traffic changes, it may
appear that performance engineering will become redundant. Organizations
might believe that there is no need to plan for the future, to optimize
applications, or to worry about efficient operation. This paper argues that cloud
computing is an area where performance engineering must be applied and
customized. It will not be possible to “cloud wash” performance engineering by
just applying previous methods. Rather it is essential to both understand the
differences between the cloud and previous systems, and the applicability of
proposed performance engineering methods.

Keywords: Performance Engineering, Software Engineering, Cloud Computing.

1 Evolution of Performance Engineering

Performance engineering is typically a collection of techniques that help manage how
well a system will operate or is operating. Performance engineering covers the full life
cycle of a system, from choosing a candidate list of technologies, to the high level
design, detailed design, modeling, unit testing, system testing, pre-production testing,
live monitoring, capacity planning, upgrading and migration of the system. One of the
major areas that performance engineering has been applied to is telecommunication
systems, where there has been considerable research output in the last century since
Erlang’s seminal work [1]. This mathematical treatment of the topic led to the
development of teletraffic theory and was published in journals (e.g. The Post Office
Electrical Engineers Journal1 1908-82, Bell System Technical Journal2 1922-83, and
more recently Performance Evaluation3 1981 on) and conferences (e.g. the major
conference is the International Teletraffic Congress4 1955 on). In the latter half of the
20th century, as computer networks were emerging, teletraffic theory was applied to
these systems. In particular queueing theory [2] emerged as a leading tool to attempt to
solve some of these complex computer networks performance problems. Many
different issues arose from this translation and attracted considerable attention, such as

1 Published by the Institution of Post Office Electrical Engineers
2 http://www.alcatel-lucent.com/bstj/
3 http://www.elsevier.com/wps/find/journaldescription.cws_home/
 505618/description
4 http://www.i-teletraffic.org/about-itc/

2 J. Murphy

self-similar traffic [3], effective bandwidths [4] and statistical multiplexing [5] which
could be relevant when undertaking performance evaluation of the cloud. As computer
systems became more complex, the issues surrounding performance were analyzed
with similar tools and techniques [6] [7] and more recently there has been considerable
effort to bring some of these theories to bear on component based software [8] and
enterprise systems [9].

Fig. 1.5 A major challenge in applying performance engineering is to be aware of all aspects of
the system and how it will be used and evaluated

The key to the success of transforming the tools and theories from one domain to
another is in understanding the fundamental differences and limitations of both
domains and the relevant theories involved. Cloud computing is a relatively new
technology (the term was coined most likely in 2007 [10]) but is built on top of prior
research in a number of areas. Cloud computing allows many of the aspects of
traditional software systems to be ignored (or abstracted) and allows the scaling and
growth of a system to take place automatically. There is a real danger that many of the
tried and tested - and successfully implemented - methods and practices will not be
put to use in the cloud. This could be either because cloud experts are not aware of
them, or more critically that they will not be translated correctly to the cloud as the

5 Andrew Lee of Whitney Associates http://www.1202performance.com/

 Performance Engineering for Cloud Computing 3

special characteristics of the cloud will not be taken into account. Success will
involve not merely “cloud washing” performance engineering (where everything
remains the same except the term “cloud” is added!) but rather to find which of the
prior methods should be emphasized and possibly re-evaluated, and which of those
methods might not be applicable.

2 Cloud Context

Cloud computing has been used to define applications delivered as services over the
Internet (as well as the hardware and middleware that resides in data centers that are
used to provide those services) [11]. It encompasses the concepts of Software as-a-
service (SAAS), Platform (or Middleware) as-a-service (PAAS) and Infrastructure as-
a-service (IAAS) which combine to make up the cloud. Public cloud refers to
situations where the cloud, and in particular infrastructure as-a-service, is made
available publicly to individuals and organizations and is charged using metered
billing (i.e. pay for what you use). Public cloud allows different end users to share
hardware resources and network infrastructure and examples include Amazon6 and
Rackspace7. The private cloud is targeted at large organizations, and generally
provides more flexible billing models as well as the ability for these users to define
secure zones within which only their company has access to the hardware and
network (e.g. Rackspace private cloud8, IBM9). Hybrid clouds often refer to
situations where organizations are making use of both public and private cloud for
their infrastructures. The concept of cloud computing also assumes that infinite
resources are theoretically available on demand, whereby a user of the cloud can scale
their cloud infrastructure immediately when the need arises, i.e. during a traffic surge.

The metered billing model applied by cloud service providers has significantly
changed how organizations need to plan and finance their infrastructures.
Infrastructure can be provided as-a-service and no longer requires large capital
investments up front. This allows a more flexible and agile approach for many
organizations when planning their infrastructure requirements. In particular it has
reduced the barrier for startup companies entering the market, as no major capital
investment is required to launch new services. Similarly large organizations do not
need to make long term bets on their infrastructure and they thus can be more flexible
and reactive to unplanned changes in company strategy.

Platform as-a-service is designed to support the entire application development
lifecycle (development, testing, deployment, runtime, hosting and delivery). It allows
organizations to quickly deploy and deliver live, scalable applications in a fraction of
the time this has taken in the past. For example following the Google app engine
tutorial10 will allow a developer to develop, design and deploy a live application with

6 Amazon EC2 Cloud, http://www.amazon.com/ec2
7 Rackspace Cloud, http://www.rackspace.com/
8 Rackspace Private Cloud,
 http://www.rackspace.com/managed_hosting/private_cloud/
9 IBM Cloud Computing,
 http://www.ibm.com/cloud-computing/us/en/private-cloud.html
10 Google App Engine, http://code.google.com/appengine/

4 J. Murphy

a public facing dynamic web site in a matter of minutes. Traditionally this process
may have taken a significantly longer amount of time: organizations would have
needed to plan and allocate physical hardware resources, domain name and Internet
Protocol (IP) addresses. Capacity planning and high load scalability issues (in terms
of available resources) are largely handled by the PAAS provider.

Software as-a-service allows organizations to outsource the development,
management and running of services. Increasingly organizations are making use of
SAAS solutions for services that are common across their industry and the
development of which is not their core competency. Typical examples include CRM
systems (e.g. Salesforce11), HR systems and accountancy systems (e.g. AccountsIQ12).
Development environments and test and performance tools are also becoming available
and popular as services. Examples include development environments (e.g.
CloudBees13), cloud based monitoring systems (e.g. Cloudkick14]), log management
as-a-service technologies (e.g. Logentries15) and performance monitoring tools (e.g.
New Relic16). The benefits of SAAS services is mainly in reduced management and
running costs (compared to in-house systems), as well as the added benefits of using
systems designed by specialists in the domain.

In summary, cloud computing gives the ability to design, develop and deploy large
scale applications and it does so by abstracting away many of the complex issues. One
major advantage is that is can scale with infinite demand for a particular application
and this paradoxically presents new challenges for performance engineering.

3 Motivation of Performance Challenges

Performance has always been a major concern for software development and is a
critical requirement for IT and software systems. With the immediate availability of
theoretically infinite resources on demand, it may be reasonably asked whether
performance is still a major concern as systems can "simply scale on demand when
load increases". However performance, performance planning, and design are as
important as ever and the availability of resources in the cloud has introduced new
challenges along with benefits and opportunities. The new challenges are for all
providers of as-a-service solutions, whether that is infrastructure, platform or
software. The significant challenge is in providing horizontal scaling for their systems
such that they can continue to grow and service new customers. Downtime for such
providers is generally not acceptable as was recently witnessed with the Amazon
outage in April 2011: unplanned downtime resulted in a large number of high profile
organizations’ systems also being down17 or in fact a more recent outage which was

11 SalesForce, CRM, http://www.salesforce.com
12 AccountsIQ, Online accountancy platform, http://www.accountsiq.com/
13 Cloudbees, The Cloudbees platform, http://cloudbees.com/
14 Cloudkick, Clou based monitoring, http://cloudkick.com
15 Logentries, Log management as-a-service, https://logentries.com
16 New Relic, Web app performance monitoring, http://newrelic.com
17 Pepitone, J.: CNN, Amazon EC2 outage downs Reddit, Quora (2011)
 http://money.cnn.com/2011/04/21/technology/
 amazon_server_outage/index.htm

 Performance Engineering for Cloud Computing 5

ongoing at the time of writing this paper18. As–a-service providers largely sell to other
business users where downtime or poor performance is not acceptable as it can have a
knock-on effect to their customers' business. Therefore performance and scalability is
an important requirement for as-a-service providers.

Furthermore as-a-service systems tend to be larger in size than traditional in-house
enterprise systems. This is due to the fact that they are often providing the in-house
service on a mass scale to large numbers of enterprise customers. Thus as-a-service
solutions are following new architectures and making use of new technologies to
handle the massive volumes of data and user load. Examples include technologies
associated with "Big Data" systems such as NOSQL data bases (e.g. Apache
Cassandra19, MongoDB20, Big Table [12]) or distributed file systems (such as Apache
Hadoop [13]). The scale of as-a-service systems, in particular IAAS deployments,
introduces a range of new problems for the performance community. IAAS
organizations for example can manage tens of thousands of servers21.

New technologies and architectures require new performance monitoring and
analysis techniques, algorithms and tools, to gather the required data for performance
and system test teams, such that they can effectively assess the performance of
systems during development and production. Skills are mainly lacking in these areas
due to the fact that the technologies are at the cutting edge. There is an onus on
educators and organizations to develop appropriate training schemes in the relevant
areas and technologies, to cater for these new systems.

4 Classical Performance Engineering

The bulk of the research in the telecommunications domain is mathematical in nature
and a considerable amount of it is based on queueing theory [1], [2]. However as the
evolution of the domains changed to computer communications there was increased
interest in the traffic profiles and the distributions associated with them. This included
a re-examination of one of the main theories that traffic would aggregate when
combined, and it was shown that for some traffic the opposite occurred. This effect,
known as self-similar traffic, disrupted many previous assumptions and led to
considerable scrutiny [3]. This area could be of particularly interest to cloud
computing as one of the basic economic assumptions is that by combining many
companies usage together, savings will follow.

Another breakthrough in performance engineering emerged when users were
allowed to multiplex, or combine, their traffic together in a statistical manner
(statistical multiplexing). This occurred in broadband networks and the theory of
“effective bandwidths” was put forward as a way to deal with this new type of traffic

18 Wainewright, P.: ZDNet.com, Lightning Strike Zaps EC2 Ireland. 8th August 2011,
 http://www.zdnet.com/blog/saas/
lightning-strike-zaps-ec2-ireland/1382

19 Apache Cassandra. http://incubator.apache.org/cassandra/
20 mongodb. http://www.mongodb.org/
21 Rich Miller, “Who Has the Most Web Servers?” Datacentreknowledge.com, May 2009,
 http://www.datacenterknowledge.com/archives/2009/05/14/
whos-got-the-most-web-servers/

6 J. Murphy

planning [4], [5]. This allowed some of the older theories and methods to continue
working, but changing the manner in which the resources were accounted for.
Similarly this technique could have relevance in cloud computing, as one set of users
could potentially affect other users, where they are sharing resources (in a statistical
sense).

Performance engineering typically has to monitor (to collect the data), has to build
models (to experiment with the system), and then has to be able to extract analysis
from these models (to explore what-if type questions). The monitoring for pre-cloud
enterprise systems is difficult with many layers of complexity; in cloud systems this
becomes an increasingly more complex challenge. The modeling (either mathematical
or simulation) has been extensively researched in software systems [6], [7], [8], [9]
and many techniques can be employed to undertake to build useful models. However
while there were many issues for enterprise systems, these will be exacerbated for
cloud computing systems due to the scale and additional layers involved.

5 Cloud Specific Challenges

There are a number of areas where results from performance engineering of software
systems could benefit the area of cloud computing. Examples include SAAS
performance design; autonomics; performance monitoring; resource utilization; and
data analysis.

5.1 SAAS Performance Design

Software as-a-service systems are centralized services typically designed to cater for
large numbers of end users. Consumer services include social platforms (e.g.
Facebook) or online email services (e.g. gmail). There are also increasing numbers of
business services being delivered as-a-service. The nature in which these services are
being implemented requires horizontal scalability and the ability to quickly scale up
and down during times of different workloads [14]. Performance design for scalability
and reliability is an important area for these systems. Performance design can be
challenging on large scale systems with large numbers of components. These as-a-
service systems will more than likely be even larger in scale than traditional in-house
enterprise systems and thus performance design will be a major challenge, as it was
for enterprise software [15], [16]. Furthermore, while hardware resources may be
immediately available in abundance as part of using the cloud, there is an associated
cost that is clearly measureable due to inefficient design. Software that inefficiently
makes use of cloud resources (without due regard to the associated cost) may well
result in a high financial cost. In the past the cost of running inefficient hardware was
capped by the available hardware resources in-house (which was typically paid for
through capital expenditure). In the cloud this is no longer the case and developers
and designers are now closer to the financial costs associated with running their
software. Thus responsible design of software with respect to performance is required
such that efficient usage of the cloud is attained.

 Performance Engineering for Cloud Computing 7

5.2 Autonomics

As systems grow in size, management from a performance perspective on a manual
basis becomes more difficult. Autonomic management of systems has been a growing
area of research over the past decade [17]. Automatic scaling based on alerting and
user defined thresholds is something available today from as-a-service providers so
that system will scale on demand. Automated automation and integration frameworks
(e.g. Chef22) are allowing this to happen currently for industry. Further advances in
this area will be required such that performance monitoring can integrate with these
frameworks for better autonomic performance management. In particular performance
monitoring methodologies, real time analytics and decision making research will be
required to drive the autonomic management process.

5.3 Performance Monitoring

With the abundance of new technologies and middleware (Distributed file systems,
NoSQL databases, Search platforms23) for large scale systems processing "Big Data"
there is a need for performance monitoring and analysis techniques to be developed
such that performance metrics can be obtained, analyzed and understood in the
context of these new technologies. Traditional monitoring methods for enterprise
systems may be applicable in certain cases, however new techniques will most likely
be required specifically for these new platforms and architectures. Monitoring and
management of the cloud are also starting to be delivered as-a-service14, 15, 16 which
means that tool providers will centrally store monitoring data from large numbers of
customers systems. This in itself will provide opportunities in terms of data analytics.

5.4 Resource Utilization

An emerging requirement exists in the area of measuring the utilization of large cloud
deployments in an automated manner such that utilization metrics can be efficiently
collected and properly understood. A view of how well hardware is being utilized in
the context of different workloads is currently a major challenge for cloud providers.
This understanding is required to maximize the efficiency of cloud infrastructures.
Research is required in the area utilization analysis in the context of different software
workloads. Such analysis can be applied, for example, to maximize the system
utilization, to relocate workloads, to increase energy efficiency, or indeed to reduce
costs.

5.5 Data Analysis

While techniques and approaches for gathering monitoring data have become better
appreciated through the development of performance tools for in-house enterprise
systems [18], [19] the analysis of the large volume of data collected has been a major

22 Chef, Systems integration framework, http://www.opscode.com/chef/
23 Apache Lucene, http://lucene.apache.org/java/docs/index.html

8 J. Murphy

challenge. Work has been performed in this area to allow for domain knowledge to be
applied for enterprise systems [16]. New challenges exist for the cloud however due
to the larger scale of systems and the much larger volumes of data produced by these
systems. Real time analytics is a growing area and provides challenges in the analysis
of upwards of millions of events per second with real time constraints. An example of
such systems today can be seen with the emergence of new technologies taking on
these challenges such as log management as-a-service. For example, an individual
enterprise may produce terabytes of log data per month24 which can equate to
100,000s of events per second25. A log management as-a-service technology handling
log analysis for large numbers of enterprises must be able to manage millions of
events per second, performing visualization, analysis and alerting in real time to allow
for autonomic management of the system. Other similar technologies that are
emerging include real time analytics for gaming platforms26 and real time analytics
for performance monitoring16. Further research in the area of data analytics with time
constraints in the coming years will enhance the performance management of cloud
based systems and this is probably going to be a rich area of research. Data mining,
anomaly detection and machine learning techniques are possibly going to be
applicable for as-a-service performance monitoring tools. Vendors of such
technologies will be in control of large volumes of customer data compared to
traditional performance monitoring tools (deployed in-house). As-a-service tools will
therefore be exposed to this customer data and as such will provide opportunities for
data mining techniques to be applied and patterns and trends identified that may prove
beneficial to all customers.

6 Conclusions

Performance engineering has been applied to many domains over a long time period
and with each new domain there is a translation of the most appropriate methods to
successfully manage the system’s performance. The traditional techniques can be
reapplied, or methods and techniques that are most appropriate for the new systems
may well undergo significant development. Typically there is a renewed focus on the
most appropriate tools, and for the emerging cloud computing area this will most
likely follow a similar pattern to previous transitions. Cloud washing will not work
for performance engineering, but performance engineering will play a crucial role in
the success of cloud computing.

Acknowledgments. The author appreciates the permission to use the cartoon (in Fig.
1) from Andrew Lee, and the many discussions about this paper (and the research)
with Trevor Parsons and Liam Murphy. This research is supported, in part, by Science
Foundation Ireland grant 10/CE/I1855.

24 Oltsik, J.: The invisible log data explosion” Cnet.com (2007)
25 Log Math, http://chuvakin.blogspot.com/2010/08/log-math.html
26 Swrve, Real time gaming analytics, http://swrve.com/

 Performance Engineering for Cloud Computing 9

References

1. Erland, A.K.: Solution of some problems in the theory of probabilities of significance in
automatic telephone exchanges. Elektroteknikeren 13 (1917)

2. Kleinrock, L.: Queueing Systems. Wiley, Chichester (1975)
3. Leland, W.E., Taqqu, M.S., Willinger, W., Wilson, D.V.: On the self-similar nature of

Ethernet traffic. In: Communications Architectures, Protocols and Applications, pp. 183–
193. ACM, New York (1993)

4. Kelly, F.P.: Notes on effective bandwidths. Stochastic Networks: Theory and Applications,
pp. 141–168. Oxford University Press, Oxford (1996)

5. Blondia, C., Casals, O.: Statistical multiplexing of VBR sources: A matrix-analytic
approach. Performance Evaluation 16(1-3), 5–20 (1992)

6. Jain, R.: The Art of Computer Systems Performance Analysis: Techniques for Experimental
Design, Measurement, Simulation, and Modeling. Wiley- Interscience, New York (1991)

7. Smith, C.: Performance Engineering of Software Systems. Addison-Wesley Longman
Publishing, Boston (1990)

8. Franks, G., Majumdar, S., Neilson, J., Petriu, D., Rolia, J., Woodside, M.: Performance
analysis of distributed server systems. In: 6th International Conference on Software
Quality, pp. 15–26 (1996)

9. Balsamo, S., Di Marco, A., Inverardi, P., Simeoni, M.: Model-based performance prediction
in software development: a survey. IEEE Transactions on Software Engineering 30(5), 295–
310 (2004)

10. Boss, G., Malladi, P., Quan, D., Legregni, L., Hall, H.: Cloud Computing. IBM (2007)
11. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G., Patterson,

D., Rabkin, A., Stoica, I., Zaharia, M.: A View of Cloud Computing. Communications of the
ACM 53(4), 50–58 (2010)

12. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M., Chandra,
T., Fikes, A., Gruber, R.E.: Bigtable: A Distributed Storage System for Structured Data.
In: Conference on Usenix Symposium on Operating Systems Design and Implementation,
pp. 205–218 (2006)

13. White, T.: Hadoop: The Definitive Guide. O’Reilly Media, Sebastopol (2010)
14. Borthakur, D., et al.: Apache Hadoop Goes Realtime at Facebook. In: Proceedings of the

International Conference on Management of Data (2011)
15. Tate, B., Clarke, M., Lee, B., Linskey, P.: Bitter EJB. Manning (2003)
16. Parsons, T., Murphy, J.: Detecting Performance Antipatterns in Component Based

Enterprise Systems. Journal of Object Technology 7(3), 55–90 (2008)
17. Dobson, S., Sterritt, R., Nixon, P., Hinchey, M.: Fulfilling the Vision of Autonomic

Computing. Computer 43(1), 35–41 (2010)
18. Parsons, T., Mos, A., Trofin, M., Gschwind, T., Murphy, J.: Extracting Interactions in

Component Based Systems. IEEE Transactions on Software Engineering 34(6), 783–799
(2008)

19. Kozioleka, H.: Performance evaluation of component-based software systems: A survey.
Performance Evaluation 67(8), 634–658 (2010)

Engineering of Self-aware IT Systems and

Services: State-of-the-Art and Research
Challenges

Samuel Kounev

Institute for Program Structures and Data Organization
Karlsruhe Institute of Technology (KIT)

76131 Karlsruhe, Germany
skounev@acm.org

Modern IT systems have highly distributed and dynamic architectures com-
posed of loosely-coupled services typically deployed on virtualized infrastruc-
tures. Managing system resources in such environments to ensure acceptable
end-to-end application Quality-of-Service (QoS) while at the same time op-
timizing resource utilization and energy efficiency is a challenge. The adop-
tion of Cloud Computing technologies, including Software-as-a-Service (SaaS),
Platform-as-a-Service (PaaS) and Infrastructure-as-a-Service (IaaS), comes at
the cost of increased system complexity and dynamicity. This makes it hard
to provide QoS guarantees in terms of performance and availability, as well as
resilience to attacks and operational failures [8]. Moreover, the consolidation of
workloads translates into higher utilization of physical resources which makes
the system much more vulnerable to threats resulting from unforeseen load fluc-
tuations, hardware failures and network attacks.

We present an overview of our work-in-progress and long-term research agenda
focusing on the development of novel methods, techniques and tools for the
engineering of so-called self-aware IT systems and services1 [6,4,7]. The latter
are designed with built-in online QoS prediction and self-adaptation capabilities
used to enforce QoS requirements in a cost- and energy-efficient manner. The
current focus is on performance, availability and efficiency aspects, however,
long-term we are planning to consider further QoS properties such as reliability
and fault-tolerance. Self-awareness, in this context, is defined by the combination
of three properties that IT systems and services should possess:

1. Self-reflective: i) aware of their software architecture, execution environment
and the hardware infrastructure on which they are running, ii) aware of their
operational goals in terms of QoS requirements, service-level agreements
(SLAs) and cost- and energy-efficiency targets, iii) aware of dynamic changes
in the above during operation,

2. Self-predictive: able to predict the effect of dynamic changes (e.g., changing
service workloads or QoS requirements) as well as predict the effect of pos-
sible adaptation actions (e.g., changing service deployment and/or resource
allocations),

1 http://www.descartes-research.net

N. Thomas (Ed.): EPEW 2011, LNCS 6977, pp. 10–13, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Engineering of Self-aware IT Systems and Services 11

3. Self-adaptive: proactively adapting as the environment evolves in order to
ensure that their QoS requirements and respective SLAs are continuously
satisfied while at the same time operating costs and energy-efficiency are
optimized.

Our approach to the realization of the above vision is based on the use of
online service architecture models integrated into the system components and
capturing all service aspects relevant to managing QoS and resource efficiency
during operation [2,10,7]. In contrast to black-box models, the modeling tech-
niques we are working on are designed to explicitly capture all relevant aspects
of the underlying software architecture, execution environment, hardware in-
frastructure, and service usage profiles. In parallel to this, we are working on
self-aware service platforms designed to automatically maintain models during
operation to reflect the evolving system environment. The online models will
serve as a “mind” to the running systems controlling their behavior, i.e., deploy-
ment configurations, resource allocations and scheduling decisions. To facilitate
the initial model construction and continuous maintenance during operation, we
are working on techniques for automatic model extraction based on monitoring
data collected at run-time [1,5,3].

The online service architecture models are intended to be used during opera-
tion to answer QoS-related queries such as: What would be the effect on the QoS
of running applications and on the resource consumption of the infrastructure if
a new service is deployed in the virtualized environment or an existing service is
migrated from one server to another? How much resources need to be allocated
to a newly deployed service to ensure that SLAs are satisfied while maximizing
energy efficiency? What QoS would a service exhibit after a period of time if the
workload continues to develop according to the current trends? How should the
system configuration be adapted to avoid QoS problems or inefficient resource
usage arising from changing customer workloads? What operating costs does a
service hosted on the infrastructure incur and how does the service workload and
usage profile impact the costs? We refer to such queries as online QoS queries.

The ability to answer online QoS queries during operation provides the ba-
sis for implementing novel techniques for self-aware QoS and resource manage-
ment [7,2,10]. Such techniques are triggered automatically during operation in
response to observed or forecast changes in the environment (e.g., varying ser-
vice workloads). The goal is to proactively adapt the system to such changes in
order to avoid anticipated QoS problems, inefficient resource usage and/or high
system operating costs. The adaptation is performed in an autonomic fashion
by considering a set of possible system reconfiguration scenarios (e.g, chang-
ing VM placement and/or resource allocations) and exploiting the online QoS
query mechanism to predict the effect of such reconfigurations before making a
decision [2].

Each time an online QoS query is executed, it is processed by means of
the online service architecture models which are composed dynamically after de-
termining which specific parts of the system are relevant to answering the query.
Given the wide range of possible contexts in which the online service models can

12 S. Kounev

be used, automatic model-to-model transformation techniques (e.g., [9]) are used
to generate tailored prediction models on-the-fly depending on the required ac-
curacy and the time available for the analysis. Multiple prediction model types
(e.g., queueing networks, stochastic Petri nets, stochastic process algebras and
general-purpose simulation models) and model solution techniques (e.g., ex-
act analytical techniques, numerical approximation techniques, simulation and
bounding techniques) are employed here in order to provide flexibility in trading-
off between prediction accuracy and analysis overhead.

Self-Aware Service Engineering [4,6] is a newly emerging research area at
the intersection of several computer science disciplines including Software and
Systems Engineering, Computer Systems Modeling, Autonomic Computing, Dis-
tributed Systems, Cluster and Grid Computing, and more recently, Cloud Com-
puting and Green IT (see Figure 1). The realization of the described vision calls
for an interdisciplinary approach considering not only technical but also business
and economical challenges. The resolution of these challenges promises to reduce
the costs of ICT and their environmental footprint while keeping a high growth
rate of IT services.

• Control theory
and self-
adaptation
techniques

• Dynamic
virtualized
data center
infrastructures

• Stochastic
models for QoS
prediction

• Service-
oriented
architectures &
modeling
techniques Software &

Systems
Engineering

Computer
Systems

Modeling

Distributed
Systems &
Autonomic
Computing

Cluster, Grid
and Cloud

Computing,
Green IT

SELF-AWARE SYSTEMS & SERVICES

Fig. 1. Self-Aware Service Engineering

References

1. Brosig, F., Huber, N., Kounev, S.: Automated Extraction of Architecture-
Level Performance Models of Distributed Component-Based Systems. In: 26th
IEEE/ACM International Conference On Automated Software Engineering (ASE
2011), Oread, Lawrence, Kansas, November 6-11 (2011)

2. Huber, N., Brosig, F., Kounev, S.: Model-based Self-Adaptive Resource Allocation
in Virtualized Environments. In: SEAMS 2011: 6th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems, Waikiki, Honolulu,
Hawaii, USA, May 23-24, ACM Press, New York (2011)

Engineering of Self-aware IT Systems and Services 13

3. Huber, N., von Quast, M., Hauck, M., Kounev, S.: Evaluating and Modeling Virtu-
alization Performance Overhead for Cloud Environments. In: International Confer-
ence on Cloud Computing and Service Science (CLOSER 2011), Noordwijkerhout,
The Netherlands, May 7-9 (2011)

4. Kounev, S.: Self-Aware Software and Systems Engineering: A Vision and Research
Roadmap. In GI Softwaretechnik-Trends. In: Proceedings of Software Engineer-
ing 2011 (SE 2011), Nachwuchswissenschaftler-Symposium, Karlsruhe, Germany,
February 21-25 (2011) ISSN 0720-8928

5. Kounev, S., Bender, K., Brosig, F., Huber, N., Okamoto, R.: Automated
Simulation-Based Capacity Planning for Enterprise Data Fabrics. In: 4th Inter-
national ICST Conference on Simulation Tools and Techniques, Barcelona, Spain,
March 21-25 (2011)

6. Kounev, S., Brosig, F., Huber, N.: Self-Aware QoS Management in Virtualized
Infrastructures (Poster Paper). In: 8th International Conference on Autonomic
Computing (ICAC 2011), Karlsruhe, Germany, June 14-18 (2011)

7. Kounev, S., Brosig, F., Huber, N., Reussner, R.: Towards self-aware performance
and resource management in modern service-oriented systems. In: Proceedings of
the 7th IEEE International Conference on Services Computing (SCC 2010), Miami,
Florida, USA, July 5-10. IEEE Computer Society, Los Alamitos (2010)

8. Kounev, S., Reinecke, P., Joshi, K., Bradley, J., Brosig, F., Babka, V., Gilmore, S.,
Stefanek, A.: Providing Dependability and Resilience in the Cloud: Challenges and
Opportunities. In: Avritzer, A., van Moorsel, A., Wolter, K., Vieira, M. (eds.) Re-
silience Assessment and Evaluation, Dagstuhl Seminar 10292. Springer, Heidelberg
(2011)

9. Meier, P., Kounev, S., Koziolek, H.: Automated Transformation of Palladio Com-
ponent Models to Queueing Petri Nets. In: 19th IEEE/ACM International Sympo-
sium on Modeling, Analysis and Simulation of Computer and Telecommunication
Systems (MASCOTS 2011), Singapore, July 25-27 (2011)

10. Nou, R., Kounev, S., Julia, F., Torres, J.: Autonomic QoS control in enterprise
Grid environments using online simulation. Journal of Systems and Software 82(3),
486–502 (2009)

Accommodating Short and Long Web Traffic

Flows over a DiffServ Architecture

Salvador Alcaraz1, Katja Gilly1, Carlos Juiz2, and Ramon Puigjaner2

1 Miguel Hernández University,
Departamento de F́ısica y Arquitectura de Computadores,

Avda. del Ferrocarril, 03202 Elche, Spain
{salcaraz,katya}@umh.es

2 University of Balearic Islands,
Departament de Ciències Matemàtiques i Informàtica,

Carretera de Valldemossa, km 7.5, 07071 Palma de Mallorca, Spain
{cjuiz,putxi}@uib.es

Abstract. DiffServ architecture has been widely used to achieve QoS
over the Internet. Taking into account that HTTP traffic is the most
extended protocol over the Internet community, many solutions have
been proposed to supply QoS to this protocol. Traditionally, DiffServ
architectures have considered two-colour markings in order to distinguish
between high and low priorities. We investigate the special treatment for
web traffic, whose pattern is very close to mice and elephants distribution
flows in Internet. We differentiate flows into short and long classes in
order to ensure QoS for short flows, but we try to achieve certain QoS
for some long flows. Metering, shapering and marking processes are used
to classify the incoming flows at the DiffServ using three-colour marking.
The final algorithm has been named Long Flow Promotions (LFP). The
simulation tool used is ns2 and the realistic synthetic web traffic has been
generated with PackMime-HTTP. The results are compared to RED and
DropTail queue management. LFP gets reasonably low latency values
while providing high priority level to short flows and improving some
performance parameters such as overhead and dropped packets.

Keywords: web traffic, DiffServ, token bucket, QoS, short and long
flows, packet promotion.

1 Introduction

Since the World Wide Web (www) was developed by Tim Berners-Lee [1] work-
ing at CERN, in Geneve, the Hypertext Transfer Protocol (HTTP) has been the
communications protocol most widely used in Internet [2]. Recently, new appli-
cations (kazaa, P2P, etc.) and features (web 2.0) have been added to the Internet
traffic, nevertheless the latest studies [3] show that web traffic is still the most
usual data flow in Internet. At the early stages, the web traffic was composed
of static and small pages, that used to contain a few objects. Later, database
queries, dynamic pages and some ad-hoc objects based on flash technology were

N. Thomas (Ed.): EPEW 2011, LNCS 6977, pp. 14–28, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Accommodating Short and Long Web Traffic Flows 15

added to web traffic, that meant an increase in the web pages size and, hence,
more packets per flow. Nowadays, web traffic implies that many technologies have
to act together and interconnect the web around the world. Although HTTP does
not provide any Quality of Service (QoS), different web users share the available
bandwidth and the network resources of the Internet Service Provider (ISP). In
this context, small web pages requested from web clients coexist with video
streaming and database queries. The difference of size between each kind of flow
can be considerable. If short flows are treated preferentially against long flows,
some web flows could be excessively penalised or suffer considerable delay from
server to client.

It is well documented that most of the Internet flows (around 80%) carry a
short amount of traffic (around 20%), while the rest of flows (around 20%) repre-
sent most of the traffic (around 80%). These types of flows are named mice and
elephants [4]. This fact sometimes leads to long response times for short browsing
requests when the bandwidth is mostly used by long flows. Therefore, ISPs need
to implement mechanisms to incorporate some enhanced QoS to their web sites
in order to permit clients fast browsing without an excessive penalisation to rest
of the flows. Regarding this subject, many solutions, environments and policies
have been proposed [5].

Every application protocol in Internet generates a different traffic workload,
but they might share the same First In First Out (FIFO) queue at the switching
and routing nodes. If queues are allowed to drop packets only during overflow
conditions, then bursty traffic flows will face greater dropping probabilities than
smooth traffic flows [6]. Random Early Detection (RED) [7] has been one of
the most important solutions to detect and avoid the congestion in computer
networks. With RED queue management, packets are dropped with a certain
probability before the queue reaches an overflow state. The main advantage of
RED over TailDrop queue was analysed by [8]. RED queue operates with a lower
queue size, especially during peak load and congestion conditions. This feature
allows bursts of packets to be accommodated into the available queue achieving
an overall performance improvement.

The remainder of this paper is organised as follows: section 2 describes our
proposal: the Long Flow Promotion algorithm (LFP). Section 3 presents a com-
parative of the simulation results of the LFP, RED and DropTail algorithms.
Finally, some concluding remarks are presented.

2 Long Flow Promotion (LFP)

Traditional QoS strategies are mainly based on marking and differentiating flows
over the Differentiated Services Model (DiffServ), which has two dedicated de-
vices: edge and core. Edge nodes mark the packets by adding different labels
to them. The information contained in these labels specifies the workload con-
ditions related to the Service Level Agreement (SLA) contracted by the client.
When the marked packets reach the core node, they are forwarded over dif-
ferent queues by applying the suitable Active Queue Management (AQM) or a

16 S. Alcaraz et al.

stochastic treatment in order to achieve the required QoS. This paper presents
the LFP algorithm as an approach to improve the web traffic over a DiffServ
architecture focused to permit the coexistence between short and long flows in
the same shared network.

Web
servers

Edge Core Web
clients

DiffServ

Meter

χf (tk), ψ(tk), θ(tk)

Shaper

αf (tk), βf (tk), γf (tk)

Marker

PS , P↑, PL, P↓

ω

ψ(tk)

ξ κ ± δ

Web responses

pf
1

. . .pf
τpf+1

1
. . .pf+1

τpf+1
τ+1

. . .PS + P↑ ⇒

pf
τ+1pf

τ+2pf+1
τ+2pf+1

τ+3pf+1
τ+4

. . .pf+1
χf+1PL ⇒

pf
τ+3pf

τ+4
. . .pf

τ+i
. . .pf

τ+j
. . .pf

χfP↓ ⇒

Scheduler

Qgreen

Qred

Web requests

Fig. 1. LFP architecture. The DiffServ model is composed by the edge and core devices
(in the middle). Edge device is composed by the meter, shaper and marker functions
(at the top) and core device (at the bottom) is composed by the set of queues Q =
{Qgreen, Qyellow, Qred} managed with priority queue scheduling algorithm.

Since web traffic has its own features, the LFP algorithm has been designed
to improve the QoS of this type of traffic. The algorithm has been developed
taking into account a couple of premises related to web traffic: a) End-users
expectations; b) Mice and elephants paradigm.

a) The issue of End-users expectations has been widely discussed [9], and it
is an important factor to determine the success of a website. When users are
browsing the Internet, they want to go as fast as they can. Users can tolerate a
long delay downloading heavy files such as multimedia streams, database queries
or large documents, but they might not stand long delays while surfing the
web; i.e. clicking into links or downloading small files such as images, sounds
or any other small object. For these reasons, the end-users expectation should
be strongly considered in a website development, and it is recommended to
implement a suitable mechanism to improve the end-users perception about
latencies and delays.

b) Web traffic flow size follows a well defined heavy-tailed [10] which is directly
related to the mice and elephants paradigm. As we have commented previously,
most of the traffic (around 80%) is carried out by a few flows (around 20%),
that are denominated elephants in Internet. Therefore, the rest of flows, that are

Accommodating Short and Long Web Traffic Flows 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Web flow connection rate (new conn/s)

A
m

ou
nt

 o
f e

ac
h

ty
pe

 o
f f

lo
w

 (
%

)

0
20

40
60

80
10

0

Short flows
Long flows

(a) Web traffic flows

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Web flow connection rate (new conn/s)

T
ra

ns
po

rt
ed

 K
B

 b
y

ea
ch

 ty
pe

 o
f f

lo
w

 (
%

)

0
20

40
60

80
10

0

Short flows
Long flows

(b) Web traffic data

Fig. 2. Mice and elephants flows and amount of transported data

named mice, transport around 20% of data information. This means that the
most usual flows in the Internet are short flows, although they only transport a
few bytes. Several studies of Internet traffic and packet distributions of the most
representative protocols in Internet have been undertaken striving to establish
the threshold (τ) that would differentiate between short flows (SF) and long flows
(LF) in web traffic. Chen et al. [11] proposed a table with five representative
types of web pages. The average of the web page size varies in the range of [9, 12]
Kbytes, from a minimum limit in the range of [1, 3] Kbytes, until maximum
values in the range of [80, 90] Kbytes.

Considering an average size of 12 Kbytes, and using a Protocol Data Unit (PDU)
of 1500 bytes, including an overhead of 60 bytes, and two ACK packets for the
Transport Control Protocol (TCP) three-way handshake, we consider in our pro-
posal a flow size average of 10 packets per flow as the threshold to differentiate
between short and long flows. Since τ has been established, it is now possible to
differentiate between short and long flows. SF will be those flows whose number
of packets is lower than or equal to τ and therefore, LF are the rest of the flows.
Fig. 2(a) shows a mice/elephants distribution for web response traffic. As it is
depicted in the figure, around 90 % of flows are classified as mice/SF, therefore,
the rest of the flows, around 10% are classified as elephants/LF. According to
the mice and elephants paradigm, the amount of Kbytes transported for each
type of flow is shown in Fig. 2(b). Using the same threshold, τ = 10 packets,
around 20% of the whole web traffic in Internet is transported by short flows
(mice/SF), and the remainder of Kbytes, around 80%, are transported by the
other type of flows (elephants/LF). We are going to describe now our proposal
for promoting flows in order to avoid unnecessary delays for the end-users.

2.1 Preferential Treatment for Short Flows (S1)

Following with the above premises, the overall incoming traffic that reaches the
QoS system should be measured and classified in order to assign the desired
QoS level to the most sensitive web traffic, that are the short flows. As it is
illustrated in Fig. 1, LFP is developed over a DiffServ architecture composed of
two types of devices: edge and core. LFP mechanism is defined as follows: web

18 S. Alcaraz et al.

traffic from web servers (HTTP responses) reaches the DiffServ area where it
is firstly measured and classified at the edge device. In this device, after going
through the meter and the shaper process, the incoming packets are marked
with different labels. When the packets leave the edge device and reach the core
device, they are sent over a specific queue, depending on the assigned label.
Finally, the priority queueing scheduling strategy at the core device configures
the QoS level in the system.

The overall incoming traffic that reaches the system is divided in n flows
and defined as f1, f2, ..., fn. Each flow is composed of a sequence of p packets.
Therefore, the flow f contains p packets and the packets sequence is defined as:
pf
1 , pf

2 , ..., pf
p , where pj

i defines the i-packet from the flow j, and that arrives to
the system at the instant tji , as it is depicted in Fig. 3.

Let us define P f = {pf
i , ∀i ∈ [0, tk]} as the set of packets from flow f . There-

fore, V (tk) = {P f | ∀f} is the overall traffic at the interval [0, tk]. In order to
simplify the expressions, several assumptions have been taken:

– The amount of data from each flow is quantified as packets instead of Kbytes.
– Only one packet reaches the system in the interval [tk−1, tk).
– The web traffic considered corresponds only to responses. The request sizes

are negligible compared to the response sizes.

f1

f2

f3

f4p4
1

t41

p2
1

t21

p3
1

t31

p2
2

t22

p4
2

t42

p4
3

t43

p2
3

t23

p1
1

t11

p3
2

t32

p4
4

t44

p1
2

t12

p3
3

t33

p2
4

t24

p3
4

t34

p3
5

t35

p2
5

t25

p4
5

t45

p3
6

t36

p3
7

t37

p2
6

t26

(tk)

time

Fig. 3. Example of packet sequence that reaches the QoS system. Packets are labelled
as follows: pf

i is the k-th packet from flow f , and it arrives at instant tf
i .

Let us now describe the functions in the edge device. The meter is the first
function that is computed, χf (tk), and represents the number of packets of the
flow f at time [0, tk] (i.e. from its birth until tk). It is defined as follows:

χf (tk) = Ord(P f) (1)

After the meter process, the packets go through the shaper function, that defines
the transition of a flow from short to long state, and it is defined by the threshold
τ . First of all, the differentiation condition, S1:

S1 ≡ χf (tk) ≤ τ (2)

The shaper function at the edge node is defined for each incoming flow f at
instant tk as the discrete function αf (tk) ∈ {0, 1}, defined as follows:

αf (tk) = I(S1), (3)

Accommodating Short and Long Web Traffic Flows 19

where the discrete function I(S) is:

I(S) =

{
1 if S is true
0 otherwise

(4)

2.2 Packets Promotion Close to the Threshold (S2)

Considering only the S1 constraint to differentiate between short and long flows,
the consequences for a flow f that arrives to the DiffServ system, will be the
following:

– The range of packets [1, τ] receives always the highest priority level.
– The range of packets [τ + 1, χf(tk)] receives always a low priority level.

Hence, S1 establishes a hard threshold between short and long flows. There-
fore, flows of τ + i packets, where i = 1, 2, 3... are considered as long flows,
despite their size being close to τ . Web traffic flow size distribution follows a
heavy-tailed distribution, that is, there are many flow sizes close to τ . For this
reason, the constraint that we define in this section tries to improve the QoS
parameters for those flows with sizes close to the threshold τ , by introducing
the packets promotion concept. This concept is related to those flows that are a
bit longer than the threshold (τ), and that under particular system conditions,
could be considered as short flows and, hence, receive a high priority QoS level.
The most appropriate conditions to promote packets are low congestion and idle
state of the system.

To deploy the S2 constraint, the Token Bucket Model [12] has been used
to detect the idle system state by counting the packet promotions. Although,
the packet promotion is restricted in order to prevent either the increase of the
system overhead or the promotion of the inappropriate packets.

The token bucket model is used to compute the amount of packets than can be
promoted. The token bucket operation is defined as follows: the bucket emulates
a depot of tokens, where each token indicates the possibility to send a packet
over the high priority queue. The maximum capacity of the token bucket is
defined by ζ tokens. New tokens are supplied at ω ratio in tokens/s. Tokens are
always consumed with packets forwarded over the high priority queue, therefore,
packets from short flows and promoted packets from long flows. The physical
token bucket capacity is limited by a low and high level. If the tokens level is
below the low level, it is considered that no tokens are available at the bucket.
Otherwise, if the tokens level is higher than the high level, no more tokens can fill
the bucket. The amount of available tokens in the bucket indicates the available
bandwidth to offer a high priority service to incoming flows. If V ∗(tk) defines
the amount of promoted packets, then the state of the token bucket at instant
tk is defined by ψ(tk) as follows:

ψ(tk) = ψ(tk−1) + IN(tk) − OUT (tk) (5)

20 S. Alcaraz et al.

where:

IN(tk) = min(ω ∗ (tk − tk−1, ζ − ψ(tk−1))) (6)
OUT (tk) = V ∗(tk)I{V ∗(tk) ≤ (ψ(tk−1) + min(ω ∗ (tk − tk−1), ζ − ψ(tk−1)))}

As the token bucket model is used to bound the quantity of promoted packets,
θ(tk) represents the normalised capacity of the bucket, defined as follows:

θ(tk) =
[
ψ(tk)

ζ

]100

0

(7)

However, it is desirable that the state of the token bucket, ψ(tk), remains close
to a precise level or set point defined by κ ∈ [0, 100] as it is depicted in Fig. 1. As
the web traffic presents peaks of incoming traffic, ψ(tk) must range around a set
point κ. In order to permit this working area, top and bottom limits are defined
by the parameter δ ∈ [0, 100]. Therefore, the working area, that is defined by
κ ± δ operates as follows:

– If ψ(tk) is close to κ, the packets promotion is at open state.
– If ψ(tk) reaches κ − δ level, the packets promotion will turn to close state.

At this point, no packets are promoted. Hence, tokens are only consumed
with packets from short flows. As the token bucket continues being filled
with new tokens at ω ratio, then the token bucket level θ(tk) will catch up
κ+δ level again. At this point, the token bucket state will turn to open state
again and the promotion process will be reactivated.

The token bucket operation bounds are defined by [κ − δ, κ + δ] | 0 ≤ κ − δ ≤
κ + δ ≤ 100. Considering the above bounds, the differentiation function S2 can
be defined as follows:

S2 ≡
{
θ(tk) ≥ κ + δ

}
∨
{
(κ − δ ≤ θ(tk) ≤ κ + δ) ∧ βf (tk−1)

}
(8)

Once the metering process has concluded, the shaper process computes βf (tk)
function for each incoming flow:

βf (tk) = I(S2) (9)

S2 alleviates S1 weakness by using the packets promotion, but an adverse effect
appears under particular circumstances of low congestion: when there are a few
flows crossing the system, the token bucket state could be promoting some in-
appropriate flows. These flows can be extremely long, and they do not need any
higher priority level because the end-users expect a long delay for these flows
any way.

2.3 Detecting Elephant Flows (S3)

The presence of elephant flows in the QoS system is always bad news, and it
produces an overall system performance fall. For that reason, the main goal of

Accommodating Short and Long Web Traffic Flows 21

the constraint S3 is the detection and isolation of extremely long flows. Such
flows are classified as elephant, hence, they do not need some QoS requirements,
and they can be treated with the lowest priority.

In order to detect and isolate those very long flows, the critical issue is to define
the measurement to be applied. As the web traffic nature is very variable (heavy
tail and self-similar distributions), setting a threshold as a fixed number of packets
to differentiate flows as long or very long is not suitable, because an excessive
low threshold could generate too many promoted packets and, by contrast, an
excessive high threshold could generate too few promoted packets. None of both
circumstances are desirable. For this reason, the value to determine when a flow
is long or very long must be adaptive to the traffic conditions of each situation.
Hence, we consider that it has to be calculated from the sizes of the last flows that
have crossed the QoS system. Therefore, Xtk,H is the set of the last H flow sizes
that have passed through the system, and is defined as follows:

Xtk,H = {χf(i) | i ∈ [tk−H , tk], H ∈ N, ∀f | P f ∈ V (tk)} (10)

Considering FXtk,H (x) as the distribution function of Xtk,H , the u − quantile
over (10) is defined by QXtk,H (u) as follows:

QXtk,H (u) = Inf{x | FXtk,H (x) ≥ u} (11)

QXtk,H (u) is a dynamic and variable flow size measurement of the recent history
of the flows crossing the system. As the S3 goal is the detection and isolation of
those flows whose sizes are extremely long, or longer than the last flows on the
system, then the S3 function is computed from (11) as follows:

S3 ≡ χf(tk) ≥ QXtk,H (u) (12)

With the above definitions, S3 is the differentiating condition between elephants
and just long flows. In this way, flows longer than QXtk,H (u) are considered as
elephants, therefore, they should be considered with the lowest priority level.
In the other case, they are considered as flows with medium priority level. By
applying (4) to the differentiation function, the function γf (tk) is added to the
shaper module:

γf(tk) = I(S3) (13)

2.4 Scheduling the Packets

The last process at the edge device is the marker, which uses the set of labels L =
{PS , PL, P↑, P↓} for marking the incoming packets with a label l ∈ L according
to the following rules:

l =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
PS αf (tk)
PL αf (tk) ∧ βf (tk) ∧ γf(tk)
P↑ αf (tk) ∧ βf (tk) ∧ γf(tk)
P↓ αf (tk) ∧ βf (tk) ∧ γf(tk)

(14)

22 S. Alcaraz et al.

From the above expressions, the LFP algorithm is modelled as the finite state
machine depicted in Fig. 4. LFP is composed by the set of states Q = {q0, q1, q2}
and the set of transitions T = {t1, t2, t3, t4, t5, t6}, where t1 = αf (tk), t2 =
αf (tk), t3 = γf (tk) ∧ βf (tk), t4 = γf (tk) ∧ αf (tk), t5 = γf (tk) and t6 = 1.

q0start q1 q2

t1
t2

t3

t4

t5
t6

Fig. 4. Finite State Machine of LFP algorithm

When the packets have left the edge device, they reach the next device at
the DiffServ architecture, that is the core device as it is illustrated in Fig. 1.
This device is defined with the set of queues Q = {Qgreen, Qyellow, Qred}. The
packets marked as PS or P↑ are forwarded over Qgreen; packets marked with PL

are forwarded over Qyellow and finally, packets marked with P↓ are forwarded
over the lower priority queue Qred. The dispatching algorithm based on priority
queuing where Qgreen is the highest priority queue, Qyellow is the intermediate
priority queue and finally, Qred as the lowest priority queue. Hence, the highest
QoS is assured for PS and P↑ packets. The penalisation is for P↓ packets because
they are always forwarded over Qred. And the rest of them, PL packets, receive
intermediate QoS level, as they neither are elephants, nor have received a high
priority QoS level due to incoming traffic conditions, token bucket configuration
or flow length.

The election of a suitable u−quantile over Xtk,H is important for establishing
the threshold of elephants detection. Experimental values are obtained from the
simulation results that are shown in Fig. 5. Let us considerer u = 99, then we
get a value of υ = 123 packets and only 20% of the long flows are marked as
elephants. A 90-quantile of Xtk,H gets a value of υ = 17 packets, and 35% of long
flows are marked as elephants. We have decided to select an intermediate value,
the 95-quantile, that means υ = 30 packets. In this case, 30% of long flows are
marked as elephants.

3 Simulation Results

The simulation has been driven using ns2 [13] in order to improve the end-to-
end web traffic latency and analyse the effect over other performance parameters
such as dropped packets, throughput and overhead. The network architecture
used is based on a single bottleneck dumbbell topology where the DiffServ model
has been implemented (see Fig. 1). The QoS system has been implemented as a
bottleneck link of 2 Mbps in order to appreciate the congestion level produced
by the incoming traffic. Some authors [14,15] have recommended the use of small

Accommodating Short and Long Web Traffic Flows 23

m
ea

n
of

 υ
 (

pk
ts

)

0
20

40
60

80
10

0
12

0

75 80 85 90 95

0
10

20
30

u−quantile

P
ac

ke
ts

 o
ve

r
Q

re
d

(%
)

Fig. 5. Effect of u-quantile over the elephants detection and υ value

buffers in internetwork devices, therefore, according to these recommendations,
every device buffer has been configured with a capacity of 50 packets. Parameters
related to the buffer size have been modified (minth = 10, maxth = 40). Both
edge and core devices at the DiffServ architecture have been configured as the
RED management with the original values (maxp = 0.02, wq = 0.001). Web
traffic is the only traffic that goes through the system. Web clients are modelled
as a cloud where the web requests go through the QoS system and reach the
web server cloud. Web server responses return from the web server cloud and
arrive to the clients after going through the system. For our purposes, web traffic
requests are negligible and the analysis is focused only in web traffic responses.
The incoming synthetic traffic has been generated by using HTTP PackMime
[16], where the web traffic is modelled as stochastic models obtained from the
traffic analysis of a real link. The web traffic intensity is modulated with the R
parameter, that sets up the incoming traffic as new conn/s in the system. We
run 10 simulations with the same parameter values but varying the seed, and the
results obtained are averaged in order to achieve a higher degree of confidence.
In order to analyse the effect of the congestion, three congestion levels have been
considered and summarised in the Table 1: low, medium and heavy.

After the marking process at the edge node and the scheduling packets process
at the core node, the packets distribution among Qgreen, Qyellow and Qred queues
is depicted in Fig. 6. As it has been mentioned above, the first τ packets from
every flow are marked with label PS , and therefore, are forwarded over Qgreen.
From τ + 1 packets onward every flow is considered as a long flow. Depending
on βf (tk), some packets are marked with P↑ and therefore, they are forwarded
over Qgreen as well. In the same way, after applying γf(tk), elephant flows are
detected, and therefore, their packets are marked with P↓ and forwarded over
Qred. Finally, the rest of packets are marked as PL and forwarded over Qyellow.

24 S. Alcaraz et al.

Table 1. The R parameter has been used to establish each congestion level. The
parameters related to the incoming traffic are been calculated : C, mean of simultane-
ous connections; F, mean simultaneous flows. Performance parameters related to the
shared resource are:U, utilisation (%); Throughput in Mbps, is the amount of TCP
data transmitted per time;Goodput in Mbps, is the amount of HTTP data transmitted
per time; Overhead produced to transmit the required HTTP data; P drop packet drop
probability and F drop is the probability that a flow has dropped packets.

Level
Alg U Throughput Goodput Overhead P drop F drop

R C F

Low DropTail 17.8 0.371 0.356 4.12 1.2e-03 4.08e-03
6 3.22 32.73 RED 18.1 0.383 0.361 5.66 1.56e-02 3.89e-02

LFP 17.8 0.371 0.356 4.22 1.59e-03 3.33e-03

Medium DropTail 31.4 0.657 0.628 4.50 6.12e-03 2.10e-02
10 4.81 52.84 RED 32.9 0.706 0.658 6.79 2.77e-02 7.15e-02

LFP 30.9 0.647 0.618 4.51 4.82e-03 1.05e-02

Heavy DropTail 46.8 0.986 0.936 5.15 1.60e-02 5.63e-02
14 6.91 73.68 RED 43.6 0.947 0.872 7.85 3.85e-02 9.77e-02

LFP 43.3 0.912 0.867 4.94 9.43e-03 2.24e-02

Focusing on the end-to-end latency metric of a particular traffic level fixed
by R = 10 conn/s, the evolution of the latency over the flow size, is shown in
Fig. 7. This figure shows that DropTail always gets the worst latency for every
flow size. For the shortest flows, RED shows a slightly better behaviour than
LFP, but from τ onward, the latency trend changes and its values for LFP are
normally lower than RED. This can be explained because from the minimum
flow size to τ , every flow is treated with the highest quality of service level in
LFP, that clearly improves the latency versus DropTail. Meanwhile, the latency
in this range compared to RED suffers a minimal penalisation because of the
packets promotion. Close to the τ , all the packets from long flows are treated as
short flows packets, and hence, obtain the same latency.

4 6 8 10 13 16 19 22 25 28 31 34 37 40

Web traffic flows size (packets)

T
ra

ns
m

itt
ed

 p
ac

ke
ts

 (
%

)

0
20

40
60

80
10

0

PS

P↑
PL
P↓

Fig. 6. Packet label classification

Accommodating Short and Long Web Traffic Flows 25

5 10 15 20 25 30 35 40

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

Web traffic flow size (packets)

M
ea

n
la

te
nc

y
(s

)

DropTail
RED
LFP

Fig. 7. End-to-end web traffic latency

4 5 6 7 8 9 10

0.
0

0.
1

0.
2

0.
3

0.
4

a)
Flow Size (packets)

M
ea

n
La

te
nc

y
(s

)

DropTail
RED
LFP

4 5 6 7 8 9 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

b)
Flow size (packets)

S
ta

nd
ar

d
de

vi
at

io
n

la
te

nc
y

(s
)

4 5 6 7 8 9 10

0.
0

0.
1

0.
2

0.
3

0.
4

c)
Flow Size (packets)

M
ea

n
La

te
nc

y
(s

)

DropTail
RED
LFP

4 5 6 7 8 9 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

d)
Flow size (packets)

S
ta

nd
ar

d
de

vi
at

io
n

la
te

nc
y

(s
)

4 5 6 7 8 9 10

0.
0

0.
1

0.
2

0.
3

0.
4

e)
Flow Size (packets)

M
ea

n
La

te
nc

y
(s

)

DropTail
RED
LFP

4 5 6 7 8 9 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

f)
Flow size (packets)

S
ta

nd
ar

d
de

vi
at

io
n

la
te

nc
y

(s
)

H
ea

vy

M

ed
iu

m

Lo

w

Fig. 8. Mean and standard deviation latency

26 S. Alcaraz et al.

2 4 6 8 10 12 14

0
2

4
6

Web traffic load (conn/s)

O
ve

rh
ea

d(
%

)

DropTail
RED
LFP

Fig. 9. Overhead

2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

Short flows

a)
Web traffic load (conn/s)

D
ro

pp
ed

 p
ac

ke
ts

 (
%

)

DropTail
RED
LFP

2 4 6 8 10 12 14

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Long flows

b)
Web traffic load (conn/s)

D
ro

pp
ed

 p
ac

ke
ts

 (
%

)

Fig. 10. Dropped packets

The latency of short flows has been isolated and plotted in Fig. 8. The mean
latency and standard deviation for DropTail, RED and LFP, for each congestion
level have been drawn. Regarding the latency, there are not substantial differ-
ences between them. The latency for LFP always remains between DropTail
and RED. The standard deviation for LFP is always lower than the other two
proposals.

The end-to-end final latency must be analysed with other performance param-
eters. As it has been summarised in Table 1, LFP obtains a considerably lower
overhead than RED and very similar goodput, for every congestion level. Related
to dropped packets, LFP gets the lowest P drop and F drop for each congestion
level as well. The overhead evolution for each algorithm is clearly depicted in
Fig. 9. While DropTail and LFP get almost constant overhead when increasing
the web traffic load, RED shows a growing trend. Even for heavy congestion
level, RED overhead reaches up to 8%, while DropTail and LFP remain slightly
over 4%.

Accommodating Short and Long Web Traffic Flows 27

Dropped packets effect for DropTail, RED and LFP is shown in Fig. 10. For
short flows, LFP is always the proposal with the fewest dropped packets for every
web traffic scenario. Obviously, the short flows preferential treatment produces
a growth in the long flow queue and therefore there are more dropped packets
at heavy congestion level. However, the dropped packets phenomena for long
flows using LFP is higher than DropTail, but it is lower than RED for every web
traffic scenario.

4 Conclusions

DiffServ architecture has been placed as the most suitable environment to deploy
QoS issues in the ISPs. As QoS is not implemented in HTTP protocol, we propose
an algorithm named LFP to get preferential treatment for short flows. We also
consider the promotion of some long flows under some circumstances and, finally,
the penalisation of the extremely long flows.

RED and DropTail are popular algorithms that also implement QoS in a Diff-
Serv environment. We have compared the ns2 simulation results obtained with
ns2 for LFP, RED and DropTail. We have observed that LFP clearly outper-
forms DropTail and obtains similar results than RED in terms of mean latency,
but improves its standard deviation. Considering the overhead, LFP shows an
important improvement compared to RED for all congestion levels. There are
also benefits in the packet drop probability as LFP always drops less packets
than RED. Therefore we consider that LFP algorithm described in this paper is
a suitable solution to be used in a QoS Diffserv architecture.

References

1. Berners-Lee, T., Fielding, R., Frystyk, H.: Hypertext transfer protocol – HTTP/1.0
(1996)

2. Cleveland, W.S., Sun, D.X.: Internet traffic data. Journal of the American Statisti-
cal Association 95, 979–985 (2000); reprinted in Raftery, A.E., Tanner, M.A., Wells,
M.T. (eds.) Statistics in the 21st Century, pp. 214–228. Chapman & Hall/CRC,
New York (2002)

3. Kim, H., Claffy, K., Fomenkov, M., Barman, D., Faloutsos, M., Lee, K.: Inter-
net traffic classification demystified: myths, caveats, and the best practices. In:
CONEXT 2008: Proceedings of the 2008 ACM CoNEXT Conference, pp. 1–12.
ACM, New York (2008)

4. Guo, L., Matta, I.: The war between mice and elephants. In: Ninth International
Conference on Network Protocols, pp. 180–188 (2001)

5. Firoiu, V., Le Boudec, J.Y., Towsley, D., Zhang, Z.L.: Theories and models for
Internet quality of service. Proceedings of the IEEE 90, 1565–1591 (2002)

6. Crovella, M.E., Bestavros, A.: Self-similarity in world wide web traffic: evidence
and possible causes. IEEE/ACM Trans. Netw. 5, 835–846 (1997)

7. Floyd, S., Jacobson, V.: Random early detection gateways for congestion avoidance.
IEEE/ACM Trans. Netw. 1, 397–413 (1993)

28 S. Alcaraz et al.

8. Brandauer, C., Iannaccone, G., Diot, C., Ziegler, T., Fdida, S., May, M.: Com-
parison of tail drop and active queue management performance for bulk-data and
web-like Internet traffic, p. 0122. IEEE Computer Society, Los Alamitos (2001)

9. Jun, C., Shun-Zheng, Y.: The structure analysis of user behaviors for web traffic.
In: ISECS International Colloquium on Computing, Communication, Control, and
Management, CCCM 2009, vol. 4, pp. 501–506 (2009)

10. Zhu, X., Yu, J., Doyle, J.: Heavy tails, generalized coding, and optimal web layout.
In: Proceedings of Twentieth Annual Joint Conference of the IEEE Computer
and Communications Societies, INFOCOM 2001, vol. 3, pp. 1617–1626. IEEE, Los
Alamitos (2001)

11. Chen, X., Heidemann, J.: Preferential treatment for short flows to reduce web
latency. Comput. Networks 41, 779–794 (2003)

12. Ahmed, N.U., Wang, Q., Barbosa, L.O.: Systems approach to modeling the token
bucket algorithm in computer networks. Mathematical Problems in Engineering 8
(3), 265–279 (2002)

13. The network simulator NS-2, http://www.isi.edu/nsnam/ns/
14. Kelly, F., Raina, G., Voice, T.: Stability and fairness of explicit congestion control

with small buffers. SIGCOMM Comput. Commun. Rev. 38, 51–62 (2008)
15. Shifrin, M., Keslassy, I.: Modeling TCP in small-buffer networks. In: Das, A., Pung,

H.K., Lee, F.B.S., Wong, L.W.C. (eds.) NETWORKING 2008. LNCS, vol. 4982,
pp. 667–678. Springer, Heidelberg (2008)

16. Cao, J., Cleveland, W., Gao, Y., Jeffay, K., Smith, F., Weigle, M.: Stochastic mod-
els for generating synthetic HTTP source traffic. In: INFOCOM 2004. Twenty-third
AnnualJoint Conference of the IEEE Computer and Communications Societies,
vol. 3, pp. 1546–1557 (2004)

http://www.isi.edu/nsnam/ns/

Automatic Synchronisation Detection in

Petri Net Performance Models Derived from
Location Tracking Data

Nikolas Anastasiou1, William Knottenbelt1, and Andrea Marin2

1 Department of Computing, Imperial College London
South Kensington Campus, London SW7 2AZ

{na405,wjk}@doc.ic.ac.uk
2 D.A.I.S., Università Ca’ Foscari Venezia

via Torino, 155, Venice, Italy
marin@dsi.unive.it

Abstract. The inference of performance models from low-level location
tracking traces provides a means to gain high-level insight into customer
and/or resource flow in complex systems. In this context our earlier work
presented a methodology for automatically constructing Petri Net per-
formance models from location tracking data. However, the capturing of
synchronisation between service centres – the natural expression of which
is one of the most fundamental advantages of Petri nets as a modelling
formalism – was not explicitly supported. In this paper, we introduce
mechanisms for automatically detecting and incorporating synchronisa-
tion into our existing methodology. We present a case study based on
synthetic location tracking data where the derived synchronisation de-
tection mechanism is applied.

Keywords: Location Tracking, Performance Modelling, Data Mining,
Generalised Stochastic Petri Nets.

1 Introduction

The proliferation of GPS-enabled mobile devices, RFID tags and high-precision
indoor location tracking systems has led to the widespread availability of de-
tailed low-level data describing the movements of customers and/or resources.
One way to practically exploit this data in order to gain insight into high-level
system operation is to automatically derive a performance model in the form of
a queueing network [8] or Stochastic Petri Net [1].

Such models enable us to extract useful information about customer and re-
source flow and to identify possible bottlenecks in the underlying system. Once
a realistic and accurate model has been constructed it can be also used as a
predictive tool; for example, the model can be modified to examine the system’s
performance under hypothetical scenarios, i.e. addition/removal of resources or
increased workload.

N. Thomas (Ed.): EPEW 2011, LNCS 6977, pp. 29–41, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

30 N. Anastasiou, W. Knottenbelt, and A. Marin

Our earlier work [1] has presented a methodology which is able to automati-
cally construct Generalised Stochastic Petri Net [2,9] performance models from
raw location tracking data. However, synchronisation between service centres
was not explicitly captured. This is a serious deficiency since many physical
customer processing systems such as hospitals, airports and car assembly lines
exhibit many instances of synchronisation. For example, if we consider a treat-
ment room in a hospital, the examination of a patient cannot occur without the
presence of a doctor. Thus, the purpose of the present paper is to introduce a
mechanism for automatically detecting and incorporating synchronisation into
our existing methodology.

Fig. 1. The four-stage data processing pipeline as in [1]

Our existing methodology is based on a four-stage data processing pipeline
(see Figure 1). The first stage of the pipeline performs some basic data filtering.
The second stage is responsible for inferring the locations and radii of service
areas in the system. The third stage constructs a set of places and transitions to
represent customer flow in the system. Sojourn time samples for each customer
processed within each service area are also extracted, and separated into waiting
time and service time. Likewise, travelling time samples between pairs of service
areas are extracted. Finally, a simple counting mechanism is used to calculate
the initial routing probabilities of the customers in the system. The fourth stage

Automatic Synchronisation Detection in Petri Net Performance Models 31

uses the G-FIT tool [10] to fit a Hyper-Erlang distribution (HErD) [6] to the
extracted service time and travelling time samples and refines both the structure
and parameters of the model accordingly. The inferred model is stored in the
portable PNML format [3] and can be visualised using PIPE2, an open source
platform independent Petri Net editor [4], amongst other tools.

Fig. 2. A high-level description of the third stage of the processing pipeline before (left)
and after (right) the incorporation of the synchronisation detection mechanism

Here we focus on the third stage of the data processing pipeline. As shown in
overview in Figure 2, and as described in detail in Section 2, we expand this stage
by specifying an additional task which detects synchronisation between service
areas. Section 3 presents a case study based on synthetic location tracking data
generated using an extended version of LocTrackJINQS [7]. Section 4 concludes
and considers future work.

2 Synchronisation Detection Mechanism

Our aim is to construct a conservative scheme to determine whether the pro-
cessing of customers at each service area is subject to some synchronisation
conditions (expressed as conditions on the number of customers present within
other service areas) at certain time points. To this end, we have designed three
functions (see Algorithms 1, 2 and 3) that can be applied together to perform
the synchronisation detection task.

To formalise our approach, we introduce some notation:

– N is the total number of service areas inferred from the second stage of the
processing pipeline,

– P = {P1, P2, . . . , PN} is the set of inferred service areas (subsequently rep-
resented by places in the derived Petri net model),

– Ci = {c(1)
i , c

(2)
i , . . . , c

(ni)
i } is the multiset1 of all customers processed by Pi,

with ni = |Ci|,
1 Thus supporting the possibility of multiple service periods for the same customer.

32 N. Anastasiou, W. Knottenbelt, and A. Marin

– e
(j)
i is the timestamp of the entry of c

(j)
i into Pi,

– s
(j)
i is the service initiation timestamp of c

(j)
i , and

– f
(j)
i is the service termination timestamp of c

(j)
i .

– Mi(t) is the number of customers present on service area Pi at timestamp t.
This is also referred to as the marking of Pi at time t.

– Mi(t1, t2) is the maximum number of customers observed on service area
Pi during the time interval [t1, t2). This is also referred to as the maximum
marking of Pi during the time interval [t1, t2).

Given a service area Pi, we consider the processing of each customer that receives
service there in turn. Our approach is based on finding evidence – for each
customer – that its processing may have been dependent on the presence of
customers on other service areas. This evidence has two components: one is the
maximum marking observed on each of the other service areas during the interval
during which the customer was serviced; the other is the marking observed on
each of the other service areas at the instant of termination of the customer’s
service. These two components are combined across all customers processed by
Pi – taking into account of the possibility of error and noise – to yield the likely
synchronisation conditions of service at Pi

2. Formally:

Definition 1. The jth customer c
(j)
i ∈ Ci is said to receive service at Pi with

possible synchronisation from each service area Pk, k = 1, . . . , N and k �= i, if:

Mk(s(j)
i , f

(j)
i) > 0, (1)

and
Mk(f (j)

i) > 0 (2)

Definition 2. Synchronisation between server Pi and server(s) Pk, k = 1, . . . , N
and k �= i, is inferred if the synchronisation percentage sp defined as,

sp(i, k) =
|{c(j)

i | Mk(s(j)
i , f

(j)
i) > 0, Mk(f (j)

i) > 0, j = 1, . . . , ni}|
ni

(3)

satisfies
sp ≥ sthresh (4)

where sthresh is the hypothesis acceptance threshold.

The value of the acceptance threshold (typically in the range [0.8, 1]) can be
chosen according to factors such as the precision of the location tracking system
used, tag update rate and topology of the system being modelled.

2 Here we assume a single class of customers. It is straightforward to apply the com-
bination across each customer class in a scenario with multiple customer classes.

Automatic Synchronisation Detection in Petri Net Performance Models 33

2.1 Algorithm Description

Algorithm 1 and Algorithm 2 present auxiliary functions that straightforwardly
compute Mk(t) and Mk(ts, tf) respectively.

The main function, computeSynchronisation (see Algorithm 3), is applied
in turn to every service area Pi ∈ P . There are two phases in this algorithm. In
the first phase (see lines 4 to 12) we construct the csmMatrix, which describes
the possible set of synchronisation dependencies between the service of customer
j at Pi, and the markings of the other service areas. In this phase, for each Pk,
i �= k, we also count the number of customers for which a potential synchronisa-
tion was observed, during their service at Pi. In the second phase (see lines 13
to 18) we calculate sp(i, k) and if its value exceeds the value of sthresh we com-
pute the synchronisation marking on Pk required to support service at Pi. This
is computed as a low percentile of the set of synchronisation markings; this is
preferred to simply taking the minimum because it is more robust to measure-
ment errors inherent in location tracking systems. This percentile is determined
by the function percentile(M,α) (see line 16, Algorithm 3) which computes
the αth percentile of the set M .

Algorithm 1. M(k,t) : int

1: marking � 0
2: for j = 1 to nk do
3: if c

(j)
k was present in Pk at t then

4: marking � marking + 1

5: end if
6: end for
7: return marking

Algorithm 2. M(k,ts,tf) : int

1: maxMarking � M(k,ts)

2: for j = 1 to nk do
3: if ts ≤ e

(j)
k < tf then

4: instMarking �M(k, e
(j)
k)

5: if instMarking > maxMarking then
6: maxMarking � instMarking

7: end if
8: end if
9: end for

10: return maxMarking

If we assume that ∀i, ni = n, then the worst-case time complexity of the
function computeSynchronisation and synchronisation detection for the entire
network are O(N ·n3) and O(N2 ·n3) respectively. Based on the same assumption,
space complexity is bounded above by the size of csmMatrix (see Algorithm 3)
and is O(N · n).

34 N. Anastasiou, W. Knottenbelt, and A. Marin

Algorithm 3. computeSynchronisation(i,sthresh) : int[N]

1: customersWithSynch � new int[N] = {0,0,...,0}
2: synchMarking � new int[N] = {0,0,...,0}
3: csmMatrix � new int[ni][N] = { {0,0,...,0}, {0,0,...,0}, ..., {0,0,...,0} }
4: for j = 1 to ni do

5: for k = 1 to N do

6: if k == i then continue

7: csmMatrix[j][k] � min(M(k, s
(j)
i ,f

(j)
i),M(k,f

(j)
i))

8: if csmMatrix[j][k] > 0 then

9: customersWithSynch[k] � customersWithSynch[k] + 1

10: end if

11: end for

12: end for

13: for k = 1 to N do

14: if k == i then continue

15: if customersWithSynch[k] / ni ≥ sthresh then

16: synchMarking[k] � percentile({csmMatrix[1][k],. . .,csmMatrix[ni][k]},5)
17: end if

18: end for

19: return synchMarking

Whenever synchronisation is detected involving the processing of customers
at Pi, the corresponding service time samples of those customers need to be
adjusted to take into account the proportion of time during which the synchro-
nisation condition(s) are satisfied. This is because we assume that service only
progresses when the synchronisation condition(s) are met.

2.2 Synchronisation Representation in Our Models

After synchronisation between service areas is detected, it needs to be incorpo-
rated into the GSPN performance model that is constructed during stage four
of the data processing pipeline.

Considering the place representing Pi and its outgoing service transition ti,
then for every place representing Pk such that synchMarking[k] > 0, we con-
nect Pk to ti using a double-headed arc between Pk and ti with weight equal to
synchMarking[k]. We use this representation since we are dealing with location
tracking environments where customer entities are preserved.

In [1] we described how we fit a HErD to the extracted service time samples
of each service area. We represent each HErD by substituting each transition
created in the first task of the third stage by a GSPN subnet, as shown in Fig-
ure 3. Now this representation is slightly altered to incorporate synchronisation,
when detected.

Let us consider just the transition T3 in Figure 4 to demonstrate how the
synchronisation between P2 and P1 is constructed.

Automatic Synchronisation Detection in Petri Net Performance Models 35

Fig. 3. Replacement of a transition by a GSPN subnet reflecting the fitted HErD
(general form)

Fig. 4. Modelling synchronisation between server places P1 and P2 with P2 being the
synchronising place with a synchronisation marking equal to two

In order to preserve the synchronisation condition on T3 as shown in Figure 4,
we need to connect P2 to every immediate transition on the left-hand side of the
subnet with arcs – one for each immediate transition – of weight two. Similarly, in
order to preserve the number of tokens in P2 we need to connect every immediate
transition on the right-hand side of the subnet to P2 with arcs of weight two.
Assuming that T3 was replaced by a subnet reflecting a four-state HErD with two
Erlang branches, each with two states, the resulting model is shown in Figure 5.

3 Case Study

In this section we conduct a case study to test and demonstrate the developed
synchronisation detection mechanism. For this case study we have generated
location tracking data using an extended version of LocTrackJINQS [7], which
supports synchronisation between pairs of service areas.

We present the results for the server location and service radii inference,
the synchronisation detection mechanism and the service time distribution fit-
ting (adjusted for synchronisation). Figure 6 shows the experimental setup for
the case study and the flow of customers in the system (indicated by arrows).

36 N. Anastasiou, W. Knottenbelt, and A. Marin

Fig. 5. Modelling synchronisation between places P1 and P2, using a GSPN subnet.
Service initiates at P1 only if P2 is marked with at least two tokens and P1 with one.

The simulation takes place in a virtual 25m × 25m environment and the cus-
tomers are assumed to travel within the system with speed drawn form a normal
distribution with mean 0.5 m/s and standard deviation 0.15 m/s. The location
update error, which emulates the standard error of a real-life location tracking
system, is also normally distributed with mean 0.15m and standard deviation
0.2m.

Table 1. The parameters for each service area in the system, for this case study. The
parameters of the HErD represent the phase lengths, weights and rates for each branch
respectively, separated by a semi-colon.

Server Service Service Time
Location Radius Density

S1 (8.0,5.0) 0.5 Erlang(2, 0.1)

S2 (8.0,15.0) 0.7 Exp(0.1)

S3 (16.0,5.0) 0.6 Erlang(4, 0.3)

S4 (16.0,15.0) 0.5 HErD(2, 3; 0.5, 0.5; 0.08, 0.12)

Each service area consists of a single customer processing server and has a
random customer service discipline. Service areas S2 and S3 require at least
one customer to be present in service areas S1 and S4 respectively in order
to service their customers. The service time for each server follows a different
density function. The actual location and service radius of each service area as
well as its service time density can be seen in Table 1.

Automatic Synchronisation Detection in Petri Net Performance Models 37

Fig. 6. The experimental setup in terms of abstract system structure. The arrows
represent the customer flow in the system and the branching to S1 and S2 occurs with
equal probabilities. The service areas contained in the dotted red rectangles Synch1 and
Synch2 are subject to synchronisation. The synchronisation condition is represented by
the dotted red arrow. Its source indicates the synchronising service area and its target
the service area to be synchronised. The number of customers required to be present
in the synchronising service area so that service can be supported in the synchronised
service area is denoted by the weight of the dotted red arrow.

3.1 Results

The inferred locations and service radii of the service areas as well as the error
between these and their actual values, are depicted in Table 2. From these results
we can see that the location and radii of the service areas are approximated very
well. The maximum error for the location inference is 0.214 metres and for the
service radius approximation is 0.175 metres.

For the evaluation of the sample extraction and HErD fitting process we con-
duct a Kolmogorov–Smirnov test, to examine the compatibility of the extracted
service time samples for each service area with its best-fit HErD (see Tables 3
and 4). Similarly to [1], we enumerate all possible HErDs up to a maximum
number of states. This number is set equal to ten, i.e. N = 10, for all cases
where the coefficient of variation of the extracted sample is greater than 0.4 and
twenty five, i.e. N = 25, when it is less. The best-fit HErD is chosen using the
Akaike Information Criterion (AIC) [5].

38 N. Anastasiou, W. Knottenbelt, and A. Marin

Table 2. The inferred location and service radius for each server in the system accom-
panied with the absolute error, for each case study

Server Location Service Radius

Real Inferred Error Real Inferred Absolute Error

S1 (8.0,5.0) (7.856,4.989) 0.144 0.5 0.566 0.066

S2 (8.0,15.0) (7.963,14.947) 0.199 0.7 0.839 0.139

S3 (16.0,5.0) (16.124,4.964) 0.129 0.6 0.759 0.159

S4 (16.0,15.0) (16.021,14.961) 0.214 0.5 0.675 0.175

Table 3. The parameters of the HErD fitted for each server’s service time density. The
parameters of the HErD represent the phase lengths, weights and rate for each branch
respectively, separated by a semi-colon.

Service Time Fitted HErD
Density Parameters

Phase Lengths Rate (3 d.p.) Weights (3 d.p.)

S1 Erlang(2, 0.1) 4 0.222 1.0

S2 Exp(0.1) 1 0.118 1.0

S3 Erlang(4, 0.3) 2, 4, 4 0.052,0.311,23.232 0.153,0.780,0.067

S4 HErD(2,3;0.5,0.5;0.08,0.12) 3 0.136 1.0

Figure 8 shows the constructed GSPN performance model in compact tran-
sition form. We observe that the structure of the inferred model matches the
structure of the abstract simulated system. The transitions between pairs of
server places (places that correspond to the service areas) represent the travel-
ling time for each particular pair. The weights of the immediate transitions T1

and T0 are 0.457 and 0.543 respectively, approximately matching the simulated
routing probabilities of the customer flow which are 0.5 and 0.5. In the model we
can also see the constructed synchronisation between S2 and S1 (synchronising
service area) as well as between S3 and S4 (synchronising service area).

4 Conclusion

This paper has presented a mechanism for synchronisation detection between
customer-processing service areas in a system. This mechanism has been imple-
mented as a new component of our existing methodology which automatically
constructs GSPN performance models from location tracking data. We conjecture

Automatic Synchronisation Detection in Petri Net Performance Models 39

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 20 40 60 80 100

F
(X

)

X

Cumulative histogram of extracted service time samples for S1
and its best-fit distribution compared with the theoretical distribution

Samples
Best-fit HEr distribution

Actual distribution

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 20 40 60 80 100
F

(X
)

X

Cumulative histogram of extracted service time samples for S2
and its best-fit distribution compared with the theoretical distribution

Samples
Best-fit HEr distribution

Actual distribution

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 20 40 60 80 100

F
(X

)

X

Cumulative histogram of extracted service time samples for S3
and its best-fit distribution compared with the theoretical distribution

Samples
Best-fit HEr distribution

Actual distribution

(c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 20 40 60 80 100

F
(X

)

X

Cumulative histogram of extracted service time samples for S4
and its best-fit distribution compared with the theoretical distribution

Samples
Best-fit HEr distribution

Actual distribution

(d)

Fig. 7. Case Study 2: Graphs 7(a), 7(b), 7(c) and 7(d) show the cumulative histogram
of the extracted service time samples (adjusted for synchronisation for S2 and S3) and
its best-fit hyper-Erlang distribution compared with the theoretical distribution for S1,
S2, S3 and S4 respectively

that our methodology can be applied to a large variety of systems whose un-
derlying GSPN structure includes extended free choice (EFC) nets. An example
of a real-life situation where this methodology could be successfully applied is a
Magnetic Resonance Imaging (MRI) unit of a hospital. The MRI control room is
physically separate from the MRI chamber and requires a radiologist to operate
it; the patient screening process cannot initiate if a radiologist is not present in
the control room.

40 N. Anastasiou, W. Knottenbelt, and A. Marin

Table 4. Kolmogorov-Smirnov test at significance levels 0.1 and 0.05 applied to the
extracted service time samples (adjusted for synchronisation) for each service area
in the case study. The null hypothesis is that the extracted samples belong to the
corresponding best-fit HErD.

S1 Test Statistic 0.1268
α 0.1 0.05

Critical Values 0.2076 0.2307
Compatible ? Yes Yes

S2 Test Statistic 0.1074
α 0.1 0.05

Critical Values 0.1914 0.2127
Compatible ? Yes Yes

S3 Test Statistic 0.0861
α 0.1 0.05

Critical Values 0.0.2141 0.2378
Compatible ? Yes Yes

S4 Test Statistic 0.0921
α 0.1 0.05

Critical Values 0.1938 0.2153
Compatible ? Yes Yes

Fig. 8. Visualisation of the inferred GSPN performance model for the case case study
(in compact transition form)

The case study results indicate that the developed methodology can infer
the stochastic features and the presence of synchronisation in simple systems
accurately, at least when synthetically-generated location tracking data is used.

Our current work has made several assumptions, i.e. one customer class, single-
server semantics and random service discipline. In our future work we wish to
relax them. We aim to use Coloured Generalised Stochastic Petri Nets (CGSPNs)
to enable the support of multiple customer classes as well as prioritised service

Automatic Synchronisation Detection in Petri Net Performance Models 41

disciplines. Using CGSPNs we could also improve the accuracy of our models
since we can use transitions that change the colour of the token (upon their
firing) and thus control the routing of customers as they pass through various
processing stages.

References

1. Anastasiou, N., Horng, T.-C., Knottenbelt, W.: Deriving Generalised Stochastic
Petri Net performance models from High-Precision Location Tracking Data. In:
Proc. 5th International ICST Conference on Performance Evaluation Methodolo-
gies and Tools (VALUETOOLS 2011), Paris, France (May 2011)

2. Bause, F., Kritzinger, P.: Stochastic Petri Nets. Friedrich Vieweg & Sohn Verlag
(2002)

3. Billington, J., Christensen, S., van Hee, K.M., Kindler, E., Kummer, O., Petrucci,
L., Post, R., Stehno, C., Weber, M.: The Petri Net Markup Language: Concepts,
technology, and tools. In: van der Aalst, W.M.P., Best, E. (eds.) ICATPN 2003.
LNCS, vol. 2679, pp. 483–505. Springer, Heidelberg (2003)

4. Bonet, P., Llado, C.M., Puijaner, R., Knottenbelt, W.: PIPE v2.5: A Petri Net Tool
for Performance Modelling. In: Proccedings of 23rd Latin American Conference on
Informatics (CLEI 2007), San Jose, Costa Rica (October 2007)

5. Bozdogan, H.: Model selection and Akaike’s Information Criterion (AIC): The
general theory and its analytical extensions. Psychometrika 52, 345–370 (1987)

6. Fang, Y.: Hyper-Erlang Distribution Model and its Application in Wireless Mobile
Networks. Wireless Networks 7, 211–219 (2001)

7. Horng, T.-C., Anastasiou, N., Knottenbelt, W.: LocTrackJINQS: An Extensible
Location-aware Simulation Tool for Multiclass Queueing Networks. In: Proc. 5th
International Workshop on Practical Applications of Stochastic Modelling (PASM
2011), Karlsruhe, Germany (March 2011)

8. Horng, T.-C., Dingle, N., Jackson, A., Knottenbelt, W.: Towards the Automated
Inference of Queueing Network Models from High-Precision Location Tracking
Data. In: Proc. 23rd European Conference on Modelling and Simulation (ECMS
2009), pp. 664–674 (May 2009)

9. Marsan, M., Conte, G., Balbo, G.: A Class of Generalized Stochastic Petri Nets for
Performance Evaluation of Multiprocessor Systems. ACM Transactions on Com-
puter Systems 2(2), 93–122 (1984)

10. Thümmler, A., Buchholz, P., Telek, M.: A Novel Approach for Phase-Type Fitting
with the EM Algorithm. IEEE Transactions on Dependable and Secure Comput-
ing 3, 245–258 (2005)

Performance Evaluation of Business Processes
through a Formal Transformation to SAN

Kelly Rosa Braghetto1,�,��, João Eduardo Ferreira1, and Jean-Marc Vincent2

1 Department of Computer Science, University of São Paulo
Rua do Matão, 1010, Cidade Universitária, 05508-090, São Paulo, Brasil

{kellyrb,jef}@ime.usp.br
2 LIG Laboratory – INRIA MESCAL Project, Joseph Fourier University

51, avenue Jean Kuntzmann, F-38330, Montbonnot, France
Jean-Marc.Vincent@imag.fr

Abstract. The qualitative and quantitative analysis of operational
processes recently started to receive special attention with the business
process management systems. But the Business Process Model and No-
tation (BPMN), the standard representation of business processes, is not
the most appropriate kind of model to support the analysis phase. Most
of the works proposing mappings from BPMN to formal languages aim
model verification, but few are directed to quantitative analysis. In this
work, we state that a well-defined BPMN Process diagram can originate a
Stochastic Automata Network (SAN) – a compositionally built stochas-
tic model. More than support verification, SAN provides a numerical
evaluation of processes’ performance. SAN attenuates the state-space ex-
plosion problem associated with other Markovian formalisms and is used
to model large systems. We defined an algorithm that automatically con-
verts BPMN diagrams to SAN models. With these SAN models, we make
analytical performance evaluations of business processes.

Keywords: Business Processes, BPMN, Performance Evaluation, Stochas-
tic Automata Network.

1 Introduction

Significant efforts have been made to standardize modeling and execution lan-
guages, in order to improve the interoperability of tools developed to Business
Process Management (BPM). The most important result of these efforts is the
Business Process Model and Notation (BPMN) [7], a standard notation for graph-
ical representation of business processes. Despite being able to support business
users in different phases of the business process life cycle, BPMN models are
not the most appropriate models to support the analysis phase. Since BPMN
models have no formal semantics, they are not well suited to qualitative analysis.
Furthermore, BPMN models do not provide mechanisms to quantify the effort re-
quired to perform the activities, nor the capacity of work of shared resources and
their access policies. This deficiency hinders the use of BPMN for performance
� The student was supported by the Brazilian government (CAPES and FAPESP).

�� Contact author. The order of authors is merely alphabetical.

N. Thomas (Ed.): EPEW 2011, LNCS 6977, pp. 42–56, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Performance Evaluation of BPs through a Formal Transformation to SAN 43

evaluation (quantitative analysis). In BPM domain, the objective of performance
analysis is to evaluate performance indices – service time, waiting time, queue
size, and resource utilization – that enable us to improve the business processes
by identifying inefficiencies, such as bottlenecks and idle resources.

In this work, we state that a well-defined BPMN Process diagram can origi-
nate a Stochastic Automata Network (SAN) [8]. More than support verification,
SAN models are able to provide a numerical performance analysis of business
processes. SAN is a structured Markovian formalism that enables us to build
stochastic models in a compositional approach. Created to attenuate the well-
known state-space explosion problem associated with the Markovian formalisms,
SAN can be applied in the modeling of large/complex systems. It is very effi-
cient regarding the memory consumption, in addition to provide the concept of
functional rates – a feature that improve the expressiveness of the stochastic for-
malism and facilitate the modeling of the dependencies that may exist between
the rate/probability of components and the global state of the system.

Our main contribution is an algorithm that automatically converts BPMN
Process diagrams to SAN models by means of a set of mappings and simple
operations that we defined over the models. The algorithm was implemented as
part of a software tool called BP2SAN. With the support of a SAN solver (such as
the software tool PEPS [2]), we extract from the automatically generated models
variated performance indices of the business processes.

The automatically generated SAN model represents the behavior of one in-
stance of the business process. To analyze the behavior of the system when n
process instances are being executed in parallel (sharing finite resources), we just
need to create n replicas of the initial SAN model. When we consider multiple
parallel instances we easily obtain models with more than one million of states,
considered intractable in several analysis techniques. However, with SAN we can
treat such large state spaces more frequently than with other techniques.

The paper’s remainder is organized as follows. Section 2 discusses related
works, while Section 3 briefly presents SAN and BPMN. Section 4 formalizes the
structure and the properties of the models we use in this work. Our algorithm
for the conversion of BPMN models to SAN is defined in Section 5. Section 6
provides an example to illustrate the conversion of a business process to SAN and
presents some performance results obtained from the analytical model. Finally,
concluding remarks are made in Section 7.

2 Related Works

Several works such as [4,11] proposed mappings from business process models to
formal languages aiming validation and verification. Other approaches such as
[5,3,10,1] are devoted to the conversion of business process models to stochastic
formalisms (e.g., stochastic Petri nets and stochastic process algebras) aiming
quantitative analysis. In this section, we will restrict ourselves to the latter.

The work of Canevet et al. [3] proposed an automated mapping from the
Unified Modeling Language (UML) state diagrams enhanced with performance
information to Performance Evaluation Process Algebra (PEPA). The perfor-
mance information they refer are probabilities attached to the states and rates

44 K.R. Braghetto, J.E. Ferreira, and J.-M. Vincent

attached to the transitions of the UML state model. One important advantage of
the approach proposed by the authors is that the performance results obtained
from the solution of the PEPA model can be reflected back to the UML level.
However, the approach does not support functional rates, preventing some im-
portant aspects related to performance from being contemplate in the modeling.

The proposal of Prandi et al. [10] was a mapping from BPMN to Calculus
for Orchestration of Web Services (COWS), a process calculus inspired by the
Business Process Execution Language. The authors made a brief discussion about
the use of a stochastic extension of COWS in the quantitative analysis of business
processes. Despite being based in a compositional formalism, Stochastic COWS
does not explore this feature in analysis, thus suffering of the same state-space
explosion problem that limits the use of other Markovian formalisms in practice.

Oliveira et al. [5] proposed an approach to model resource-constrained busi-
ness processes using Generalized Stochastic Petri Nets (GSPN). In their ap-
proach, the resulted nets can be unbounded and, for this reason, they need to
use simulation to obtain performance indices over the process models.

Braghetto et al. [1] compared the viability of applying three stochastic for-
malisms – GSPN, PEPA and SAN –, in the analytical modeling of business
processes. They verified that the formalisms are able to express with equivalent
facilities basic business process scenarios, but more advanced scenarios evidenced
their pros et cons. Since SAN and PEPA are intrinsically compositional, they
enable a structured analysis, in addition to the facility to extend a model with-
out impacting the previous modeled behavior. SAN and GSPN have the explicit
notion of state and the concept of functional rates, what helps to model func-
tional dependencies between the process components. The study made in [1] was
the first to consider the use of SAN to model business processes. But the trans-
lations presented from BPMN to SAN were handmade, in small examples, and
indicated that a more automatic approach should take place if we want to use
these models to analyze business processes in practice.

3 Fundamentals

Two topics are required for the understanding of this work: SAN and the main
structures of the BPMN Process diagrams. We present them in this section.

3.1 Stochastic Automata Network

The Stochastic Automata Network (SAN) is a technique used to model systems
with large state spaces, introduced by Plateau in 1985 [8, 9]. SAN has been
successfully applied to model parallel and distributed systems that can be viewed
as collections of components that operate more or less independently, requiring
only infrequent interaction such as synchronizing their actions, or operating at
different rates depending on the state of parts of the overall system.

A system is described in SAN as a set of N subsystems modeled as a set of
stochastic automata A(i), 1 ≤ i ≤ N , each one containing ni local states and
transitions among them. The global state of a SAN is defined by the combinations
of the internal state of each automaton. A change in the state of a SAN is caused

Performance Evaluation of BPs through a Formal Transformation to SAN 45

by the occurrence of an event. Local events cause a state transition in only
one automaton (local transition), while synchronizing events cause simultaneous
state transitions in more than one automaton (synchronizing transitions). A
transition is labeled with the list of events that may trigger it.

All event transitions in the model are associated with rates (the inverse of the
average execution time) in which the transitions occur. The rate is the parameter
of an exponential distribution that governs the behavior of the transition. The
rate of an event may be constant (a nonnegative real number) or may depend
upon the state in which it takes place. In this last case, the rate is a function from
the global state space to the nonnegative real numbers and is called functional
transition rate. For example, one can use functional transition rate to model how
the execution time of an activity in the system is affected by the variation of
the workload, or to model dependency existent between the probability of the
execution of an activity and the current state of the process.

The expression of the infinitesimal generator (transition rate matrix) of the
underlying Markov chain of a well defined SAN is given by the generators on
these smaller spaces and by operators from the Generalized Tensor Algebra
(GTA), an extension of the Classical Tensor Algebra (CTA). The tensor for-
mula that gives the infinitesimal generator of a SAN model is called Markovian
Descriptor.

Each automaton A(i) of a SAN model is described by ni×ni square matrices.
In the case of SAN models with synchronizing events, the descriptor is expressed
in two parts: a local part (to group the local events), and a synchronizing part
(to group the synchronizing events). The local part is defined by the tensor sum
of Q

(i)
l – the infinitesimal generator matrices of the local transitions of each A(i).

In the synchronizing part, each event corresponds to two tensor products: one
for the occurrence matrices Q

(i)
s+ (expressing the positive rates) and the other

for the adjusting matrices Q
(i)
s− (expressing the negative rates). The descriptor

is the sum of the local and the synchronizing parts, expressed as:

Q =
N⊕

g
i=1

Q
(i)
l +

∑
s∈ε

⎛⎝ N⊗
g

i=1

Q
(i)
s+ +

N⊗
g

i=1

Q
(i)
s−

⎞⎠ (1)

where
{

N is the number of automata of the SAN model
ε is the set of identifiers of synchronizing events

The state-space explosion problem associated with Markov chain models is
attenuated by the fact that the state transition matrix is stored in a compact
form, since it is represented by smaller matrices. All relevant information can be
recovered from these matrices without explicitly build the global matrix.

A SAN model can be numerically solved using the PEPS tool [2]. PEPS includes
several numerical iterative methods to solve SAN models and implements strate-
gies to improve the time/space trade-off in the computation of the solutions.

3.2 Business Process Model and Notation

The Business Process Model and Notation (BPMN) is a standard for graphical
representation of business processes. According to the specification document of

46 K.R. Braghetto, J.E. Ferreira, and J.-M. Vincent

BPMN [7], “a process describes a sequence or flow of activities in an organiza-
tion with the objective of carrying out work”. A Process diagram is a graph of
elements – activities, events, gateways, and sequence flows – that define a finite
execution semantics. In this work we deal with a subclass of the models that can
be represented as a BPMN Process diagram – the well-defined ones (Section 4.1,
Definition 5) – , in order to guarantee that the conversion to a SAN model can
be made. Table 1 introduces the BPMN objects accepted as input by our conver-
sion algorithm. These objects are very important to process modeling and with
them we are able to express a rich class of business process models.

Table 1. Basic flow and connecting objects of BPMN

[Activity Name] Atomic Activity

End Event

Start Event Exclusive Gateway

Inclusive Gateway

Parallel Gateway

text

Sequence Flow

Association

Annotation

The start event indicates where a process will start, and end event indicates
where a process will end. An activity is an atomic work performed in the process.
A sequence flow shows the order in which activities will be performed. A gateway
is used to control the divergence and convergence of sequence flows. In this work,
we deals with the following gateway types:

– Exclusive Gateways. A diverging exclusive gateway (XOR-split) is used to
create alternative paths within a process flow (only one path can be taken). A
converging exclusive gateway (XOR-join) is used to merge alternative paths;

– Parallel Gateways. A diverging parallel gateway (AND-split) creates parallel
paths. The converging parallel gateway (AND-join) will wait for all incoming
flows before triggering the flow through its outgoing sequence flows;

– Inclusive Gateways. A diverging inclusive gateway (OR-split) can be used
to create alternative but also parallel paths within a process flow. Unlike
the exclusive gateway, all condition expressions are evaluated. All sequence
flow with a true evaluation will be taken. A converging inclusive gateway
(OR-join) is used to merge a combination of alternative and parallel paths.

An association is used to link information with graphical elements. Text an-
notations provide additional information for readers of the BPMN diagrams.

A process is instantiated when one of its start events occurs. Each start event
that occurs creates a token on its outgoing sequence flow, which is followed as
described by the semantics of the other process elements. For example, the par-
allel gateway is activated if there is at least one token on each incoming sequence
flow; the parallel gateway consumes exactly one token from each incoming se-
quence flow and produces exactly one token at each outgoing sequence flow. We
can consider that a process instance is completed if and only there is no token
remaining within the process instance.

Performance Evaluation of BPs through a Formal Transformation to SAN 47

4 Definitions for the BPMN to SAN Conversion

Section 4.1 introduces the properties of a BPMN graph that we consider as a
valid input for our conversion algorithm. In Section 4.2 we formally define the
structure of the SAN graph resulted from a conversion, and the operations over
SAN graphs that support the algorithm (described in Section 5).

4.1 BPMN Graph Definitions

As we briefly discussed in Section 3.2, a BPMN Process diagram is a directed
graph constituted of vertices of events, activities and gateways. In this work, we
restricted ourselves to a subclass of all process diagrams that can be formed from
BPMN objects. Definitions 1 to 5 formally describe this subclass.

Definition 1. BPMN Process Graph
A BPMN Process graph BG is a directed graph represented by the tuple BG =

(V, E, L, �, p), with V = S ∪A ∪G ∪ F , where:

– S is a set of vertices representing the start events
– A is a set of vertices representing the atomic activities
– G is a set of vertices representing the gateways
– F is a set of vertices representing the end events
– E ⊆ (V × V) is a set of directed edges
– L is a set of vertex labels
– � : V −→ L is a labeling function of vertices
– p : E′ −→ [0, 1], where E′ ⊆ E, is a partial probability function that asso-

ciates edges with probability values

A directed edge in BG is a pair (v, w) – where v, w ∈ V , indicating that v is
an input vertex of w, and w is an output vertex of v. A label is used to denote
the name of the event or activity being modeled, but in the case of a gateway
vertex, it indicates the gateway type.

Definition 2. Path in a BPMN Process Graph
Let BG = (V, E, L, �, p) be a BPMN Process graph and v1, vn ∈ V .
A path from v1 to vn (represented by v1 � vn) is a sequence of vertices

v1, v2, · · · , vn (with vi ∈ V) such that, for 0 < i < n, (vi, vi+1) ∈ E.

Definition 3. Input Vertices and Output Vertices
Let BG = (V, E, L, �, p) be a BPMN Process graph.
The functions inputs : V → 2V and outputs : V → 2V that give the input

vertices and the output vertices, respectively, of a vertex in BP are defined as
∀v ∈ V, inputs(v) = {u ∈ V | (u, v) ∈ E} and outputs(v) = {w ∈ V | (v, w) ∈ E}.

In order to minimize the semantic ambiguities that BPMN constructors can intro-
duce in the model and to guarantee some properties that a well-formed business
process model must respect, our conversion method makes some assumptions
about the BPMN model provided as input (formalized in Definition 4). These
assumptions facilitate the conversion and were already used (mainly the first 5
ones) in other related works, such as in [10].

48 K.R. Braghetto, J.E. Ferreira, and J.-M. Vincent

Definition 4. Well-Formed BPMN Process Graph
Let BG = (V, E, L, �, p) be a BPMN Process graph, with V = S ∪A ∪G ∪ F .
BG is a well-formed BPMN Process graph if and only if:

– ∀v ∈ S, (| inputs(v)| = 0) ∧ (| outputs(v)| = 1)
– ∀v ∈ F , (| inputs(v)| = 1) ∧ (| outputs(v)| = 0)
– ∀v ∈ A, (| inputs(v)| = 1) ∧ (| outputs(v)| = 1)
– ∀v ∈ G, (�(v) = “ +”) ∨ (�(v) = “©”) ∨ (�(v) = “×”)
– ∀v ∈ G, ((| inputs(v)| > 1) ∧ (| outputs(v)| = 1)) ∨

((| inputs(v)| = 1) ∧ (| outputs(v)| > 1))
– ∀v ∈ A ∪G, ∃s ∈ S such that ∃ a path s� v
– ∀v ∈ A ∪G, ∃f ∈ F such that ∃ a path v � f
– ∀v ∈ G such as (�(v) = “ ×”) ∨ (�(v) = “©”), ∀w ∈ outputs(v), p((v, w))

must be defined
– ∀v ∈ G such as �(v) = “×”,

∑
w ∈ outputs(v)

p((v, w)) = 1

Therefore, a well-formed BPMN Process graph is a graph in which:

– a start event vertex can have only one output vertex and no input vertices;
– an end event vertex can have only one input vertex and no output vertices;
– an activity vertex can have only one input vertex and only one output vertex;
– each gateway vertex has one of the following labels: “ + ”, for a parallel

gateway; “©”, for an inclusive gateway; and “×”, for an exclusive gateway;
– a gateway vertex can perform a role of divergence or a role of convergence

(but not the two roles at the same time). As a consequence, a gateway can
have only one input vertex and more output vertices (case of divergence),
or can have only one output vertex and more input vertices (case of conver-
gence);

– for all vertex v of activity or gateway: (i) there exists a path from one start
event vertex to v, and (ii) there exists a path from v to one end event vertex;

– each output edge of an exclusive/inclusive gateway vertex must have an
associated probability value;

– the sum of the probabilities of the output edges of an exclusive gateway
vertex must be 1.

It is important to mention that the association of edges with probabilities
does not exist in the specification of BPMN. We introduced this feature in our
definition because the dynamic of a business process is probabilistic by essence
and probabilities are quantifications of the business process behavior.

The assumptions above are all related to syntactical properties of the BPMN
model, i.e. structural restrictions over the BPMN graph. But there exist also
some important semantical properties that we need to assume to have a well-
defined BPMN Process model (specified by Definition 5). In a well-defined BPMN
Process model, two important properties for a business process are granted: (i)
it does not contain unreachable activities, and (ii) it can always terminate.

Definition 5. Well-Defined BPMN Process Model
A well-defined BPMN Process model is a well-formed BPMN Process graph

in which:

– an exclusive gateway does not converge (join) parallel sequence flows;

Performance Evaluation of BPs through a Formal Transformation to SAN 49

– a parallel gateway does not converge (synchronize) alternative sequence flows;
– an inclusive gateway only converges (merges) sequence flows originated by

another inclusive gateway. In addition, there is an one-to-one correspondence
between the diverging and the converging inclusive gateways.

4.2 SAN Model Definitions

Definitions from 6 to 11 formally specify the structure of a SAN model and its
operations such as they are used in our conversion algorithm.

Definition 6. SAN Model and SAN Automaton
A SAN model S is a set S = {A1,A2, . . . ,An} of n SAN automata.
A SAN automaton A is given by a tuple A = (Q, E, T, L, �,p), where:

– Q is a set of states
– E is a set of events
– T ⊆ (Q×Q× E) is a set of state transitions labeled by events
– L is a set of state labels
– � : Q −→ L is a labeling function of states
– p : T ′ −→ [0, 1], where T ′ ⊆ T , is a partial probability function that asso-

ciates a transition with a probability

Definition 7. Input Transitions and Output Transitions
Let A = (Q, E, T, L, �,p) be a SAN automaton.
The functions inputs : Q → 2T and outputs : Q → 2T that give the input

transitions and output transitions, respectively, of a state of A are defined as
∀q ∈ Q, inputs(q) = {(p, q, e) | (p, q, e) ∈ T } and

outputs(q) = {(q, r, e) | (q, r, e) ∈ T }.

Definition 8. Source State and Absorbing State
Let A = (Q, E, T, L, �, p) be a SAN automaton and q ∈ Q a state of A.
If inputs(q) = ∅, then q is a source state.
If outputs(q) = ∅, then q is an absorbing state.

In this work, we propose an algorithm to automatically convert a well-defined
BPMN Process model (Definition 4) to a SAN model in the format of Defini-
tion 6. This conversion starts with the individual mapping of the objects of the
BPMN graph into SAN objects, according with the illustrations in Table 2. In
a general way, we can say that the mapping of each vertex of the BPMN graph
originates in the SAN model at least one new automaton, with at least two
states and a transition between them (associated with a new event labeled with
the identifier of the BPMN vertex). Event, activity, and exclusive gateway ver-
tices generate only local events. Parallel gateways originates only synchronizing
events. Inclusive gateways (that must appears in pairs, delimiting closed blocks)
generate both local and synchronizing events.

Parallel sequence flows are mapped to sets of synchronized automata. A choice
is expressed by a state that has more than one output transition (remembering
that, in this case, each output transition must be weighted by a probability value).
An atomic activity a is mapped into a 3-state sequential automaton, where the

50 K.R. Braghetto, J.E. Ferreira, and J.-M. Vincent

first state indicates that the activity is waiting for the availability of its required
resources, the second state indicates that it had already obtained the access to
the resources (by event ra), and the third state indicates that the execution of
the activity is finished (with the occurrence of event a).

In order to obtain the SAN model correspondent to a well-defined BPMN
Process model, we must compound the simple automata generated from the
mappings of Table 2. This composition is made by means of a set of simplification
operations applicable over SAN models, that we define in the following.

Definition 9. State Merging Operation (�)
Let A = (Q, E, T, L, �,p) be a SAN automaton and q1, q2 ∈ Q be states of A.
The state merging of q1 and q2 in A (represented by A[q1 � q2]) results in a

SAN automaton AM = (QM , EM , TM , LM , �M , pM) such that:

– QM = Q \ {q2}
– EM = E
– TM = {(p, q, e) ∈ T | (p �= q2) ∧ (q �= q2)} ∪ {(p, q1, e) | (p, q2, e) ∈

T } ∪ {(q1, q, e) | (q2, q, e) ∈ T }
– LM = L
– ∀q ∈ QM , �M (q) = �(q)

– ∀(p, q, e) ∈ TM , pM ((p, q, e)) =

⎧⎪⎨⎪⎩
p((p, q, e)), if (p, q, e) ∈ T

p((p, q2, e)), if (q = q1) ∧ ((p, q2, e) ∈ T)
p((q2, q, e)), if (p = q1) ∧ ((q2, q, e) ∈ T)

This operation eliminates q2 from A, transforming all the input/output transi-
tions of q2 in input/output transitions of q1 (keeping the label of q1 unchanged).

Definition 10. State Suppression Operation (�)
Let A = (Q, E, T, L, �,p) be a SAN automaton and q ∈ Q be a state of A such

that | outputs(q)| = 1. Let to be the output transition of q and o be its output
state.

The state suppression of q in A (represented by A[q �]) results in a SAN
automaton AS = (QS , ES , TS, LS , �S , pS) such that:

– QS = Q \ {q}
– ES = {e ∈ E | (p, r, e) ∈ (T \ {to})}
– TS = {(p, r, e) ∈ T | (p �= q) ∧ (r �= q)} ∪ {(p, o, e) | (p, q, e) ∈ T };
– LS = {l ∈ L | ∃p ∈ Q, ((�(p) = l) ∧ (p �= q))}
– ∀q ∈ QS, �S(q) = �(q)

– ∀(p, r, e) ∈ TS, pS((p, r, e)) =

{
p((p, r, e)), if (p, r, e) ∈ T

p((p, q, e)), in the other cases

This operation eliminates q and its output transition from A, transforming all
the input transitions of q in input transitions of its only output state o.

Definition 11. Automata Concatenation Operation (�)
Let A1 = (Q1, E1, T1, L1, �1, p1) and A2 = (Q2, E2, T2, L2, �2, p2) be two SAN

automata. Let q1 ∈ Q1 be an absorbing state and q2 ∈ Q2 be a source state.
The concatenation of A1 and A2 via the states q1 and q2 (represented by

A1

q1

�
q2

A2) is the SAN automaton AC = (QC , EC , TC , LC , �C , pC), where:

Performance Evaluation of BPs through a Formal Transformation to SAN 51

Table 2. Mapping of the BPMN objects into SAN

BPMN Object1,2 SAN Mapping

Start event labeled s

A1

s

v1 v2s

v1 v2

Atomic activity labeled a

A1

ra a

v1 rv1 v2
a

v1 v2

Exclusive gateway diverging 1 se-
quence flow in n

A1

(p1)

(pn)

v11

v1n

...v1

v2

vn+1

v1

v2

(p1)

(pn) vn+1

...

Exclusive gateway converging n se-
quence flows in 1 A1

v1

v1 v2

v1

v2

...

Parallel gateway diverging 1 sequence
flow in n A1

An

v1

v1

...

v1 v2

v1 vn+1

v1

v2

vn+1

...

Parallel gateway converging n se-
quence flows in 1 A1

An

v1

v1

...

v1 v2

v1 v2

v1
v2

...

Inclusive gateway block diverging 1 se-
quence flow in n and re-converging
them in 1 again A1

An

An+1

A2n

(p1)

(1− p1)

(pn)

(1− pn)

v1

v1

v11

v1
¬1

v1n

v1
¬n

vn+2

vn+2

.

.

.

.

.

.

v1 v11

v2

vn+2

v1 v1n

vn+1

vn+2

vn+2 vn+3

vn+2 vn+3

v1

v2

(p1)

(pn)
vn+1

vn+2
vn+3

...
...

. . .

. . .

1 We are using the symbol to express any valid BPMN vertex.
2 We included two textual annotations in the vertices: a label (inside the vertex), and an

identifier vi (at the bottom of the vertex).

52 K.R. Braghetto, J.E. Ferreira, and J.-M. Vincent

– QC = (Q1 ∪ Q2) \ {q2}
– EC = E1 ∪ E2

– TC = T1 ∪ {(q1, p, e) | (q2, p, e) ∈ T2} ∪ (T2 \ {(q2, p, e) | (q2, p, e) ∈ T2})
– LC = L1 ∪ L2

– ∀q ∈ QC , �C(q) =

{
�1(q), if q ∈ Q1

�2(q), in the other cases

– ∀t = (p, q, e) ∈ TC , pC(t) =

⎧⎪⎨⎪⎩
p1(t), if t ∈ T1

p2((q2, q, e)), if (p = q1) ∧ ((q2, q, e) ∈ T2)
p2(t), in the other cases

5 The Conversion Algorithm

Algorithm 1 shows the main steps involved in the conversion of a well-defined
BPMN Process model to a SAN model. It first creates a SAN model composed
of all automata generated from the individual conversion of the vertices of the
input BPMN graph. This individual conversion, made by function “ConvertVer-
texInAutomata”, is the implementation of the mappings described in Table 2.
In the sequence, this SAN model is reduced using Procedure 1, which applies
the operations defined in Section 4.2 to create the final SAN model.

Algorithm 1. ConvertBPtoSAN(BP)
Input: BP – a well-formed BPMN graph that is also a well-defined Process model
Output: S – a SAN model
1: S ← ∅
2: V ← SBP ∪ ABP ∪ GBP ∪ FBP {All vertices of BP}
3: for all v ∈ V do
4: S ← S ∪ ConvertVertexInAutomata(BP , vertex, S)
5: end for
6: ReduceSANModel(BP , S)
7: return S

The final number of automata in a SAN model generated by our conversion
method from a well-defined BPMN model BP is given by:

|SBP |+
∑

g ∈ G′
(| outputs(g)| − 1)

where G′ = {g ∈ GBP | (| outputs(g)| > 1) ∧ (�BP (g) ∈ {“× ”, “© ”})}.
We can see each automaton as an independent sequence flow of the business

process. For that, we have at least as many automata as the number of start
events in BP (|SBP |). In addition, for each divergent parallel or inclusive gateway,
a new set of automata is required. The size of this set is given by the number of
branches (outputs) of the divergent gateway less 1 (because one of the branches
is treated as the continuation of the automaton that originates the divergence).

Performance Evaluation of BPs through a Formal Transformation to SAN 53

Procedure 1. ReduceSANModel(BP , S)
Input: BP – a well-formed BPMN graph
Input/Output: S – a SAN model
1: { Concatenate the “sequential” automata}
2: while there is an absorbing state q1 ∈ A1 and a source state q2 ∈ A2 (with

A1,A2 ∈ S) such that �A1(q1) = �A2(q2) do

3: AC ← A1

q1
�
q2

A2 {Concatenate the two automata}
4: { Merge the equivalent states correspondent to the converging exclusive gate-

ways}
5: while ∃ q1, q2 ∈ QAC such that �AC (q1) = �AC (q2) do
6: AC ← AC [q1 � q2]
7: end while
8: S ← (S \ {A1,A2}) ∪AC

9: end while
10: for all A ∈ S do
11: { Remove the states created to join alternative sequence flows }
12: while ∃ q ∈ QA and ∃v ∈ GBP such that: (�A(q) = v ∧ �BP (v) = “ × ” ∧

| outputs(v)| = 1) do
13: A ← A[q �] { Suppress state q}
14: end while
15: { Merge the source state with the absorbing states}
16: while ∃q2 ∈ QA such that q2 is an absorbing state do
17: q1 ← the only source state of A
18: A ← A[q1 � q2] { Merge the states q1 and q2}
19: end while
20: end for

One remark must be made about our conversion algorithm: the order in which
the pair of automata are selected to be concatenated (lines 2 and 3 of Proce-
dure 1) impacts the final models. Different orders may generated structurally
different SAN models that are equivalent in terms of modeled behavior.

The SAN model generated by our conversion algorithm reflects the behavior of
one instance of the business process, disregarding the resource usage. To analyze
the behavior of the system when several instances are being executed in parallel,
we need to replicate the automata of the SAN model – each replica represents an
instance of the process. SAN counts on the concept of replication and techniques
to aggregate similar components in order to reduce the state space.

The conversion method was implemented as part of a software tool – BP2SAN 1.
This tool receives as input a BPMN model (textually described) and generates
behaviorally equivalent SAN models corresponding to the given business process.
The resulted SAN models are textually expressed using the syntax accepted by
the PEPS tool. The generated SAN models can be further enriched, for example,
with information about the rates associated with the events, or with additional
automata and functional rates expressing resource constraints. With the support
of PEPS, performance indices can be extracted from the generated SAN models
by defining numerical functions over the global state space of the system and
integrating them with the stationary probability distribution of the model.

1 BP2SAN is publicly available at http://www.ime.usp.br/~kellyrb/bp2san/.

http://www.ime.usp.br/~kellyrb/bp2san/

54 K.R. Braghetto, J.E. Ferreira, and J.-M. Vincent

Take out extra
insurance

Decide if
normal post or

special
shipment

Check if extra
insurance is
necessary

Fill in a
Post label

Request
quotes from

carriers

Assign a
carrier &
prepare

paperwork

Package
Goods

Move
package to

pick area

Goods
to ship

Goods
for pick

mode of
delivery

85% - Normal Post
15% - Special Carrier

20% - Extra insurance required
100% - Post label (always required)

Average
Execution Time

H
a
r
d
w
a
r
e

R
e
t
a
i
l
e
r

L
o
g
i
s
t
i
c
s

M
a
n
a
g
e
r

C
l
e
r
k

W
a
r
e
h
o
u
s
e

W
o
r
k
e
r

v1

v2

v3

v4

v5

v6

v7

v8
v9

v10
v11

v12

v13
v14

v15

v16

A

B

C

D

E

F

G

H

S

T

A : 05 min

B : 30 min

C : 10 min

D : 30 min

E : 05 min

F : 40 min

G : 15 min

H : 20 min

Fig. 1. BPMN model of the shipment process of a hardware retailer (extracted from [6])

6 Example – Shipment Process of a Hardware Retailer

Fig. 1 shows a model in BPMN extracted from the examples indicated in the
specification document of BPMN 2.0 [6]. It represents the steps a hardware
retailer has to fulfill before the order can be shipped to the customer. The model
is divided in three lanes, each one labeled with the employee responsible for
the execution of the activities in it: Logistics Manager, Clerk and Warehouse
Worker.

The SAN model generated from the conversion of the vertices in Fig. 1 is
shown in Fig. 2. After the conversion of the vertices, the SAN model is reduced
according the steps defined in Procedure 1. Fig. 3 shows one of the possible SAN
models that can be resulted and the sequences of operations that originated it.

We solved the model of Fig. 3 in PEPS, considering from one to three parallels
process instances. For events representing activities, we used rates defined over
the average execution times indicated in Fig. 1. For the other events, we used a
constant high rate. Each employee can only perform an activity at a time. When
an instance needs an employee to perform an activity and he/she is busy, the
instance will wait for his/her availability. Functional rates were used to prevent
the execution of an activity when the resource it depends on is not available.
Table 3 shows the results obtained in the analysis. With three parallel instances,
the service time duplicated if compared to the sequential case.

Table 3. The results obtained through the solution of the SAN model in Fig. 3

Parallel State Reachable Service Utilization Utilization Utilization
Instances Space State Space Time (h) . Manager Clerk W. Worker

1 380 85 1.106 0.052 0.269 0.518

2 144,400 5,809 1.599 0.080 0.412 0.793

3 54,872,000 349,013 2.228 0.093 0.476 0.916

Performance Evaluation of BPs through a Formal Transformation to SAN 55

A1 A2 A3

A4

A5

A6

A7 A8

A9 A10

A11 A12 A13 A14

A15

A16

A17 A18

A19

v1

v2

v2

v2

v2

v2

v3

v3

v4

v4

v4

v41
v42

v5

v5

v6v6

v6

v6

v61

v61

v6
¬1

v62
v62

v6
¬2

v7

v7

v8

v8

v9v9

v9

v9

v9

v9

v9

v9

v10

v10

v11

v11

v12

v12

v12

v12v12

v13

v13

v14

v14

v14

v14

v14

v14

v15

v15v15

v16

rv3 rv5

rv7
rv8

rv10
rv11

rv13
rv15

s11

s12

s21

s22

s31

s32

s41

s42

s43

s51

s52
s53

s61

s62

s63

s71

s72

s73
s74

s81

s82

s83
s84

s91

s92

s101

s102

s111

s112

s113

s121

s122

s123

s131

s132

s133

s141

s142

s143

s151

s152

s161

s162

s163

s171

s172

s181

s182

s191

s192

s193

v1 v2 v3 v4 v5 v6/v9

v7 v8 v10 v11 v12 v13 v14 v15

A

B

C

D E F G H

rA

rB

rC

rD rE rF rG rH

S

(0.20) (1.00)

(0.85)

(0.80) (0.00)

(0.15)

Fig. 2. SAN model obtained after the conversion of the BPMN vertices

A′ = (((A1

s12

�
s21

A2

s22

�
s41

A4

s43

�
s51

A5

s52

�
s61

A6

s63

�
s71

A7

s74

�
s91

A9

s73

�
s111

A11)[s74 �

s113]
s53

�
s131

A13

s133

�
s141

A14)[s92 � s143]
s92

�
s151

A15

s152

�
s171

A17

s172

�
s191

A19)[s92 �][s11 � s193]

A′′ = (A3

s32

�
s161

A16

s163

�
s181

A18)[s31 � s182]

A′′′ = (A8

s84

�
s101

A10

s83

�
s121

A12)[s101 � s123][s81 � s102]

A
′

A
′′

A
′′′

v1 v2

v2

v2

v2

v3 v4

v41

v42

v5

v6

v6

v6

v6
v61

v61

v6
¬1

v62

v62

v6
¬2

v7

v8

v9

v9

v9

v9v10 v11

v13

v14

v14

v14

v14

v15

rv3
rv5

rv7

rv8

rv10
rv11

rv13

rv15

A

B

C

D

E

F G

H

rA

rB

rC

rD

rE

rF rGrH

S

(0.20)

(1.00)

(0.85)

(0.80)

(0.00)

(0.15)

Fig. 3. SAN model that we can obtain from the reduction of the models in Fig. 2

7 Concluding Remarks

In this work, we presented an algorithm to automatically convert a subclass
of the BPMN Process diagrams into SAN models. First, we formally specified

56 K.R. Braghetto, J.E. Ferreira, and J.-M. Vincent

the characteristics of a well-defined BPMN Process model. After, we defined
mappings of BPMN objects into elementary SAN models. Finally, operations
over SAN models were defined to transform elementary models in the SAN
model of a business process.

We exemplified the functioning of our algorithm with a typical example of
business process. The corresponding SAN model generated by our tool BP2SAN
was then solved using PEPS, for different numbers of parallel instances (what
gave us large state spaces). From the extracted performance indices, we were
able to evaluate how the service time of the process and the utilization of the
human resources were impacted by the system workload.

Our ongoing work focuses in the modeling of business processes for perfor-
mance analysis considering resource management information. Business process
activities usually depend on different resources to be executed. The expected
performance of a business process depends on how these resources are provi-
sioned and used. We are currently working in: (i) the definition of annotations
over BPMN models to specify the resources requirements of each activity and
how the resources are shared between activities executed parallelly; and (ii) an
automated method to extend the SAN model with this information.

References

1. Braghetto, K.R., Ferreira, J.a.E., Vincent, J.M.: Performance analysis modeling ap-
plied to business processes. In: 2010 Spring Simulation Multiconference, pp. 122:1–
122:8. SCS/ACM, New York (2010)

2. Brenner, L., Fernandes, P., Plateau, B., Sbeity, I.: PEPS2007 - stochastic automata
networks software tool. In: 4th International Conference on Quantitative Evalua-
tion of Systems, pp. 163–164. IEEE Computer Society, Washington (2007)

3. Canevet, C., Gilmore, S., Hillston, J., Prowse, M., Stevens, P.: Performance mod-
elling with the unified modelling language and stochastic process algebras. IEE
Proceedings Computers and Digital Techniques 150(2), 107–120 (2003)

4. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business process
models in BPMN. Information and Software Technology 50(12), 1281–1294 (2008)

5. Oliveira, C., Lima, R., Andre, T., Reijers, H.A.: Modeling and analyzing resource-
constrained business processes. In: 2009 IEEE International Conference on Systems,
Man and Cybernetics, pp. 2824–2830. IEEE Press, Los Alamitos (2009)

6. OMG: BPMN 2.0 by example, version 1.0 (non-normative) (2011)
7. OMG: Business process model and notation (BPMN), version 2.0 (2011)
8. Plateau, B.: On the stochastic structure of parallelism and synchronization mod-

els for distributed algorithms. SIGMETRICS Perform. Eval. Rev. 13(2), 147–154
(1985)

9. Plateau, B., Atif, K.: Stochastic automata network for modeling parallel systems.
IEEE Transactions on Software Engineering 17(10), 1093–1108 (1991)

10. Prandi, D., Quaglia, P., Zannone, N.: Formal analysis of BPMN via a transla-
tion into COWS. In: Wang, A.H., Tennenholtz, M. (eds.) COORDINATION 2008.
LNCS, vol. 5052, pp. 249–263. Springer, Heidelberg (2008)

11. Wong, P.Y.H., Gibbons, J.: A process semantics for BPMN. In: Liu, S., Araki, K.
(eds.) ICFEM 2008. LNCS, vol. 5256, pp. 355–374. Springer, Heidelberg (2008)

Monotonicity and Efficient Computation of
Bounds with Time Parallel Simulation

Jean-Michel Fourneau and Franck Quessette

PRiSM, Université de Versailles-Saint-Quentin, CNRS UMR 8144, France

Abstract. We adapt Nicol’s approach for the time parallel simulation
with fix-up computations. We use the concept of monotonicity of a model
related to the initial state of the simulation to derive bounds of the
sample-paths. We prove several algorithms with fix-up computations
which minimises the number of runs before we get a consistent sample-
path. We obtain proved upper or lower bounds of the sample-path of the
simulation and bounds of some estimates as well.

1 Introduction

A parallel discrete event simulation is the construction of the slices of the sample-
path on a set of processors. These slices can be obtained by a state decomposition
or a decomposition of the time interval. The most common approach is the space
decomposition, i.e. a grouping of state variables into subsets which are affected
to parallel processors. These processors exchange messages about the scheduling
of the future events to avoid temporal faults or to correct them. Unfortunately
the spatial decomposition approach has a limited parallelism and has in general
an important overhead due to this synchronisation of future events.

Time Parallel Simulation (TPS in the following) follows a different approach
considering a decomposition of the time axis and performing the simulations on
time intervals in parallel (see [11] chap. 6 and references therein). Afterwards
the simulation results are combined to build the overall sample-path. TPS has
a potential to massive parallelism [18] as the number of logical processes is
only limited by the number of times intervals which is a direct consequence of
the time granularity and the simulation length. But the final and initial states
of adjacent time intervals do not necessarily coincide at interval boundaries,
possibly resulting in incorrect state changes. The efficiency of TPS depends on
our ability to guess the state of the system at the beginning of the simulation
intervals or to efficiently correct the guessed states to finally obtain a consistent
sample-path after a small number of trials. Several properties had already been
studied: regeneration [17], efficient forecasting of some points of the sample-path
[12], parallel prefix computation [13], a guessed initial state followed up by some
fix-up computations when the first state has a weak influence on the sample-
path [18]. Another approach consists in relaxing these assumptions to obtain an
approximation of the results [3,16,21].

We have previously introduced two properties of the model both related to
monotonicity (inseq-monotonicity in [7] and hv-monotonicity in [6,8]), which can

N. Thomas (Ed.): EPEW 2011, LNCS 6977, pp. 57–71, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

58 J.-M. Fourneau and F. Quessette

be used to improve the efficiency of TPS. We have developed in these publica-
tions the basic theory needed to compare the sample-paths of simulations and
to improve the speed of the TPS. In our approach, the simulation model is seen
as a deterministic black box with an initial state and one input sequence which
computes one output sequence. All the randomness of the model is in the input
sequence. We define some orderings on the sequences and the states. A model
is monotone when it preserves the ordering. If this property holds, we have pro-
posed new approaches to improve the efficiency of TPS. We obtain an upper
or a lower bound of the output sequence. Then we compute a reward on the
output sequence. The ordering on the sequences are defined in such a way that
typical rewards such as the moments or the tail of the distributions are con-
sistently ordered when the sequences are ordered. In performance evaluation or
reliability studies, we must prove in general that the systems we analyze sat-
isfy some quality of service requirements. Thus it is sufficient to prove that the
upper bound (or lower bound, depending on the measure of interest) of the out-
put sequence satisfies the constraint. We have already proved in [10] that many
queueing network models are hv-monotone.

Here we develop the ideas presented in [6,8] giving much more details, some
new algorithms for speculative computations and some numerical results. We
show how we can build a sample-path for a bound of the exact simulation using
some simulated parts and ordering relations without some of the fix-up phases
proposed in [18]. The inseq-monotonicity and hv-monotonicity concepts are both
related to the stochastic monotonicity used to compare random variables and
stochastic processes [9,20] and the event monotonicity which is the main assump-
tion for the monotone Coupling From The Past algorithm for perfect simulation
[19]. Hv-monotonicity is related to the non crossing property used in [1]. For
these various notions of monotonicity of stochastic processes, one can also refer
to [15] for a comparison.

The rest of the paper is as follows. In section 2, we give a detailed presen-
tation of Nicol’s approach of TPS with fix-up computation phases. Then in
section 3, we define the comparison of sequences, the inseq-monotonicity and
the hv-monotonicity and their relations with stochastic ordering. The approach
is illustrated with examples to clarify the concepts. In Section 4 we first present
the initial algorithm proposed in [8] and we extend it in several directions prov-
ing the convergence of some algorithms in any number of runs smaller than the
number of processors. Section 5 is devoted to a simple model of a Web server.
We prove that the system is hv-monotone and we provide some numerical results
for the speed up and the efficiency of the approach.

2 Time Parallel Simulation with Fix-Up Phases

Let us now detail the classical fixed up approach [18] before we introduce the first
modification presented in [8] and the new extensions which are the main results of
this paper. For the sake of completeness we begin by a short introduction to the
fixed up approach proposed by Nicol. In a first step, the interval [0, T) is divided

Monotonicity and Efficient Computation of Bounds with TPS 59

into K equal intervals [ti, ti+1). K is the number of processors. Let X(t) be the
state at time t during the exact simulation obtained in a centralised manner. The
aim is to build X(t) for t in [0, T) through an iterative distributed algorithm. For
the sake of simplicity, we assume that for all i between 1 and K, logical process
LPi simulates the i-th time interval. We denote as Y i

j (t) the state of the system
at time t obtained during the j-th iteration of logical process LPi. The initial
state of the simulation is known and is used to initialise LP1. During the first
run, the other initial states (say Y i

1 (ti)) for the initial state of simulation at LPi

are chosen at random or with some heuristics. Simulations are ran in parallel.
The ending states of each simulation (i.e. Y i

1 (ti+1)) are computed at the end of
the simulation of the time intervals. They are compared to the initial state we
have previously used (i.e. Y i+1

1 (ti+1)). The equality of both states is a necessary
condition for consistency of the path. Otherwise one must run a new set of
parallel simulations for the inconsistent parts using Y i

1 (ti+1) as starting point
(i.e. Y i+1

2 (ti+1)← Y i
1 (ti+1)) of the next run on logical process LPi+1. These new

runs are performed with the same sequence of random inputs. The simulations
are ran until all the parts are consistent. The number of rounds before the whole
simulation is consistent is smaller than the number of LP . It is clear that at the
end of the first run, the simulation performed at LP1 is consistent. Similarly by
induction on i, at the end of round i, LPi is consistent. It is the worst case we
may obtain, and in that case the time to perform the simulation in parallel is
equivalent to the time in sequential.

Note that performing the simulation with the same input sequence may speed
up the simulation due to coupling. Suppose that we have stored the previous
sample-paths computed by LPi. Suppose now that for some t, we find that the
new point Y i

k (t) is equal to a formerly computed point Y i
m(t). As the input

sequence is the same for both runs, both sample-paths have now merged:

Y i
m(u) = Y i

k (u) ∀u ≥ t.

Thus it is not necessary to build the new sample-path. Such a phenomenon is
defined as the coupling of sample-paths. Note that it is not proved that the
sample-paths couple and this is not necessary for the proof of the TPS that it
happens. Clearly, coupling allows to speed up the computations performed by
some LP and also reduces the number of rounds before the whole simulation
becomes coherent. Indeed a coupling means that the state reached at the end of
a time interval is not that dependent of the initial state of the simulation.

Consider an example of TPS with one fix-up step in Figure 1. During the
first step, five parts of the simulation are ran in parallel. Part 1 and Part 2 are
consistent as the initial point of LP2 is the final point of LP1 due to a correct
guess. Other parts are not consistent and the simulations are ran again with a
correct initialisation (A instead of B for the second run of part 4 for instance)
and the same random inputs to obtain new sample-paths. The former sample-
paths are compared to the new ones and as soon that the simulations couple,
they are stopped as simulations after coupling will follow the same paths. If
the simulations do not couple, we only keep the new sample-path. After each

60 J.-M. Fourneau and F. Quessette

time

P1 P2 P3 P4 P5

A

B

Fig. 1. TPS, coupling and fixing the sample-path

step, the number of consistent sample-paths will increase. The efficiency of the
approach is related to the number of consistent parts at each step. In Fig. 1 the
new runs are represented in dotted red lines and we see that all the simulations
couple during the first fix-up step.

We assume that the logical processes LPi (i = 1..K) perform simulations and
exchange information with a Master process which must check the consistency of
the partial sample-paths. Thus the simulation effort is distributed among K + 1
processes. The whole approach is summarised in the following algorithm for LPi

(K ≥ i > 1) and the Master process. The first logical process in charge of the
simulation of the first time interval slightly differs for this general pseudo-code:
Y 1

1 (t1) is equal to X(t1) the initial state of the whole simulation.

——————————————– Algorithm LPi ————————————–

1. k ← 0. Read in shared memory input sequence I(t) for all t in [ti, ti+1[.
2. Y i

1 (ti)← Random.
3. Loop

(a) k++.
(b) Perform run k of Simulation with Coupling on the time interval [ti, ti+1[

to build Y i
k (t) using input sequence I(t).

(c) Send to the Master: the state Y i
k (ti+1).

(d) Receive from the Master: Consistent(i) and a new initial state U .
(e) If not Consistent(i) Y i

k+1(ti)← U .
4. Until Consistent(i).
5. ∀t ∈ [ti, ti+1[, X(t)← Y i

k (t) and write X(t) in shared memory.

—————————————— Algorithm Master ————————————–

1. For all i Consistent(i) ←False.
2. Consistent(0) ← True; LastConsistent ← 0 ; k ← 0.
3. Loop

(a) k++.

Monotonicity and Efficient Computation of Bounds with TPS 61

(b) For all i, if not Consistent(i) Receive from LPi the state Y i
k (ti+1).

(c) Y 0
1 (t1)← Y 1

1 (t1).
(d) i← LastConsistent.
(e) Loop

i. i++.
ii. If (Y i

k (ti) = Y i−1
k (ti)) and Consistent(i-1) then Consistent(i)← True.

(f) Until (not Consistent(i)) or (i>K).
(g) LastConsistent ← i− 1.
(h) For all i send to LPi Consistent(i) and the state Y i−1

k (ti).
4. Until LastConsistent = K.

——————————————————————————————————–

3 Monotone Systems, Comparison of States and
Comparison of Sequences

A simulation model is defined as an operator on a sequence of parameters (typ-
ically the initial state) and an input sequence (typically inter arrival times and
service times) and produces an output sequence (typically the state of the system
or a reward). Let M be a simulation model. We denote by M(a, I) the output
of model M when the parameter sequence is a and the input sequence I. As
usual an operator is monotone iff its application on two comparable sequences
provides two output sequences which are also comparable. We have used the fol-
lowing point ordering (denotes as �p in [7], but various orders are possible. This
order is interesting because it implies a comparison on the rewards computed on
the output sequence.

Definition 1. Let I1 and I2 be two sequences with length n. I(m) is the m-th
element of sequence I. I1 �p I2 if and only if I1(t) ≤ I2(t) for all index t ≤ n.

Property 1. Assume that the rewards are computed with function r applied on
state O(t) at time t. If the rewards are non negative, then:

O1 �p O2 =⇒ R(O1) =
∑

t

r(t, O1(t)) ≤ R(02) =
∑

t

r(t, O2(t)).

Many rewards such as moments and tails of distribution are non negative.

Based on this simple idea, we can define two properties which allows to compare
the outputs of a simulation model when the change the input sequence (inseq-
montone) or the initial state of the simulation (hv-monotone). In the context of
queueing networks for instance, this will describe how evolve the sample-path
of the population when we change the arrivals or the initial population in the
queue. We consider two arbitrary orderings �α and �β.

Definition 2 (inseq-monotone Model). Let M be a simulation model, M
is input sequence monotone (or inseq-monotone in the following) with respect
to orderings �α and �β if and only if for all parameter sequence a and input
sequences I and J such that I �α J , then M(a, I) �β M(a, J).

62 J.-M. Fourneau and F. Quessette

Definition 3 (hv-monotone Model). Let M be a simulation model, M is
monotone according to the input state or hidden variable (hv-monotone in the
following) with respect to orderings �α and �β if and only if for all parameter
sets a and b such that a �α b, then M(a, I) �β M(b, I) for all input sequence I.

The inseq-monotonicity and the hv-monotonicity are related to the stochastic
monotonicity used to compare Markov chains [20].

Definition 4 (Stochastic comparison). Let X and Y be random variables
taking values on a totally ordered finite space {1, 2, . . . , n} with p and q as
probability distribution vectors, then X is said to be less than Y in the strong
stochastic sense (denoted as X �st Y), if and only if

∑n
j=k pj ≤

∑n
j=k qj for

k = 1, 2, . . . , n. The stochastic ordering is also used for distribution and we note
that p �st q.

Example 1. One can easily check that: (0.1, 0.3, 0.2, 0.4) �st (0., 0.4, 0., 0.6).

The relation between inseq-monotonicity and the strong stochastic ordering is
described in [7]. We now prove that stochastic monotonicity of Discrete Time
Markov Chains (DTMC in the following) implies hv-monotonicty of the simula-
tion model when the state space is fully ordered. Let us first define stochastic
monotone Markov chains using the matrix formulation presented in [9]. It is
known for a long time [20] that monotonicity and comparability of the one step
transition probability matrices of time-homogeneous MCs yield sufficient condi-
tions for their stochastic comparison.

Definition 5 (Monotone DTMC). Let MZ be the stochastic matrix associ-
ated to Markov chain Zt on a totally ordered state space S, MZ is stochastically
monotone if and only if for all probability distributions u and v such that u �st v,
then uMZ �st vMZ .

Property 2. Let MZ be a stochastic matrix, let M(i, ∗) be the i-th row of M
and may be seen as a probability distribution, MZ is stochastically monotone iff
MZ(i, ∗) �st MZ(i + 1, ∗).

Example 2. M1=

⎡⎢⎣0.1 0.2 0.6 0.1
0.1 0.1 0.2 0.6
0.0 0.1 0.3 0.6
0.0 0.0 0.1 0.9

⎤⎥⎦ is monotone while M2=

⎡⎢⎣0.1 0.2 0.6 0.1
0.2 0.1 0.1 0.6
0.0 0.1 0.3 0.6
0.2 0.0 0.0 0.8

⎤⎥⎦is

not.

We may use an event representation of the simulation model. Events are associ-
ated with transitions. Let ev be an event in this model and let x be a state, we
denote by ev(x) the state obtained by application of event ev on state x. It is
more convenient that some events do not have any effect (for instance the end
of service event on an empty queue will be a loop). Monotonicity property has
already be defined for events and their links with stochastic monotonicity are
now understood (see [15]).

Monotonicity and Efficient Computation of Bounds with TPS 63

Definition 6 (event -monotone). An event ev is monotone if its probability
does not depend on the state and for all states x and y, x � y implies that
ev(x) � ev(y).

It is now possible to show the links between strong stochastic ordering of DTMCs
and hv-monotonicity of their simulations.

Property 3. Let MZ be a monotone stochastic matrix on a totally ordered state
space (denoted by ≤ to emphasis the total ordering) and letM() be the simulation
of this chain. a is the initial state and I is a sequence of uniform random values
in [0, 1]. Assume that the output O = M(a, I) is the state of the chain at each
time. Thus, M() is hv-monotone w.r.t. the total ordering on the states (i.e. ≤)
and the point ordering �p on the output sequence.

Proof: It is proved in [15] that a stochastically monotone DTMC on a totally
ordered state space admits a set of event (e1, ..., em) which is monotone. Suppose
that a ≥ b and consider O1 = M(a, I) and O2 = M(b, I). As we use the same
I(t), both simulations perform the same event at time t. Let ek be this event. By
construction O1(t+1) = ek(O1(t)) and O2(t+1) = ek(O2(t)) The events are all
monotone. Thus is if O1(t) ≤ O2(t), we get O1(t + 1) ≤ O2(t + 1). By induction
the model is monotone for the point ordering on the output sequence. ��
Note that hv-monotonicity or inseq-monotonicity do not imply strong stochastic
monotonicity in general. Let us now consider one basic example to illustrate the
approach.

Example 3 (DTMC). Consider again matrix M1 defined in Example 2. As-
sume that the input sequence consists in uniform random values in [0, 1] used
in an inverse transform method to find the transitions according to matrix M1.
Assume that this sequence I is equal to (0.5, 0.05, 0.15, 0.06, 0.25, 0.45). Assume
that the output of the model is the state of the Markov chain at each step and
that the hidden variable is the initial state of the chain. As M1 is stochastically
monotone, the simulation M1() of matrix M1 is hv-monotone w.r.t. natural
ordering on the states and point ordering on the output sequence. Therefore:

M1(1, I) �p M1(2, 1).

Indeed, one can easily check that the output ofM1(1, I) is the following sequence
of states (1, 3, 2, 2, 1, 2, 4) while the output of M1(2, I) is (2, 4, 3, 3, 2, 3, 4); the
verification of the point ordering is readily made. Note also that both simulations
have coupled at time 6 on state 4.

Remark 1. Note that increasing the initial state does not in general results in
an upper bounding sample-path as shown in the following example.

Example 4 (DTMC 2). Consider now matrix M2 defined in Example 2. We
make the same assumptions on the input and output sequences as in the previous
example. Let I = (0.15, 0.5, 0.15). The sample-path beginning with state 1 is
(1, 2, 4, 1) while beginning with state 2 it is (2, 1, 3, 3). Clearly the two vectors
cannot be compared with the �p ordering.

64 J.-M. Fourneau and F. Quessette

4 Fast Parallel Computation of Bounds with TPS

We assume in this section that we consider an arbitrary hv-monotone model and
we develop the approach introduced in [6,8]. We show how to modify the TPS to
converge faster on a bound of the sample-path. We have already proved in [10]
that many queueing networks model are hv-monotone. To speed up the compu-
tation we change the rules about the consistency of the simulations performed
by the logical processes. We now say that two parts are consistent if they are a
proved bound of the sample-path that we do not have computed. To illustrate
the approach let us suppose that we want to compute faster a lower bound of
the sample-path. We modify the TPS as follows: the simulation processes LPi

(i = 1..N) are not modified but the Master process performs a slightly different
computation. The first assumption is, as before, that all parts except the first
one are marked as not consistent while the first one is consistent. Suppose that
at the end of round k, the points Y i

k (ti+1) have been computed using Y i
k (ti) as

starting points. If Y i
k (ti+1) = Y i+1

k (ti+1) and part i is consistent, mark part i+1
as consistent. Furthermore if Y i

k (ti+1) > Y i+1
k (ti+1) and part i is consistent, the

concatenation of the parts provide a sample-path of a lower bounding sequence.
Thus mark part i + 1 as consistent. Two consecutive parts are consistent if the
first one is consistent and if the second one is a proved lower bound. Let us
more precisely describe the new version of the Master Process, we only report
the inner loop.

———————————- Lower Bounding sample-path —————————-

3.e Loop
i) i++;
ii) if (Y i

k (ti) = Y i−1
k (ti)) and Consistent(i-1) then Consistent(i) ← True;

iii) elsif (Y i
k (ti) < Y i−1

k (ti)) and Consistent(i-1) then Consistent(i) ← True;
3.f Until (not Consistent(i)) or (i>K);

——————————————————————————————————-
In the original method [18], instruction 3.e.iii) of our approach is not included.
This version of the method is proved to provide a lower bound of the sample-path
(see [8] for the proof of this first algorithm).

Theorem 1. Assume that the simulation model is hv-monotone, the new ver-
sion of the Master for the TPS algorithm makes the logical simulation processes
build a point-wise lower bound of the sample-path faster than the original ap-
proach. Thus the number of runs is smaller than K.

For instance, Fig. 1 shows that after step 2, we have coupled and we have obtain
an exact solution. But at the end of step 1 we have obtained a proved lower
bound if the system is hv-monotone. Thus we can immediately stop the compu-
tation and consider the sample-path after the first run. This sample-path is not
an exact one but it is a point-wise lower bound of the exact sample-path. Due to

Monotonicity and Efficient Computation of Bounds with TPS 65

Property 1 the expectations of non negative rewards on this sample-path are
lower bounds of the exact expected rewards. Note that the bound is proved
while the approximations provided by other methods [3,21] do not provide such
an information (see also Remark 1 to show that changing the initial state does
not always result in a bound of the sample-path).

Designing an algorithm for computing an upper bound is straightforward. But
instead we show how to improve the method and obtain a trade-off between the
number of runs and the accuracy. We can again improve the speed of convergence
with a clever choice of the input points sent by the Master to the simulation
processes LPi.

In the original approach when process LPi−1 is not consistent, then LPi is
not consistent either, even if the condition (Y i

k (ti) = Y i−1
k (ti)) holds. However

it is useless to compute again a new part of the simple path using (Y i
k (ti)) as a

starting point. Indeed the former run has already computed this particular part
and beginning with the same state and using the same sequence of inputs, we
will again obtain exactly the same results. Thus the processor is idle and it can
be used instead for some speculative computations: it may typically compute a
new part for the same sequence of inputs using a speculative initial point. Thus
one must assume that the Master process stores several parts of the sample-path
using the same sequence of inputs but initialised with several starting points. It
checks the consistency of the parts and it asks to create new speculative parts
when needed.

LP i+1LP i

u

V

A

C

B

Fig. 2. How to chose a new initial point for a speculative computation

It remains to describe how to chose a new starting point for the next run.
The configuration is depicted in Fig. 2. Assume that we want to compute a
lower bound and that Min is the smallest state. Consider the results of run k.
Assume that (Y i+1

k (ti+1) = Y i
k (ti+1)) = u. The next initial value is chosen at

random between Min and u (u excluded). Let v be this random value. We will
run a new simulation with the same input sequence I(t) starting form state v.
At the end of the run we have at least two speculative parts (one beginning with
u and one beginning with v, and maybe some other ones previously computed).
Assume that the state space is totally ordered. Now consider the four cases for

66 J.-M. Fourneau and F. Quessette

the simulation performed during that run on LPi. Assume that at the end of
that run, part i is found consistent. This simulation may end in:

– A > u. In that case, part i + 1 beginning with u is consistent.
– u because of coupling. Again part i + 1 beginning with u is consistent.
– B such that u > B ≥ v. In that case part i+1 beginning with v is consistent.
– C < v. None of the two speculative simulations of part i + 1 is consistent.

One needs another run.

Clearly choosing a new speculative part beginning with a state smaller than u
will help to find a lower bound of the sample-path while a simulation initialised
with a state larger than u will not.

When the state space is only partially ordered, we have one more case where
the states are not comparable and one more run is needed. Thus we use a similar
set of rules to decrease the number of runs before the whole system has converged
to a bound of the sample-path. We present in the next algorithm how such a
speculative computation can be organised by the Master process. Again we only
present the inner loop computation. The remaining part of the Master algorithm
is kept unchanged.

—————————- Speculative Runs when idle ———————————–
3.e Loop

i) i++; Let k be the last run index
ii) if Consistent(i-1) then

– Let l be the run index for which part i− 1 is consistent.
– If ∃ m such that Y i

m(ti) = Y i−1
l (ti) then Consistent(i) ← True and

the m-th run is used for consistency of part i.
– Elsif ∃ m such that Y i

m(ti) < Y i−1
l (ti) then Consistent(i) ← True

and the m-th run is used for consistency of part i.
– Else Y i

k+1(ti)← Y i−1
l (ti).

iii) Else
– If ∃ m such that Y i

m(ti) = Y i−1
k (ti) then Y i

k+1(ti) ← Random state
between Min and Y i−1

k (ti).
– Else Y i

k+1(ti)← Y i−1
k (ti).

3.f Until (i>K);
3.g LastConsistent ← i− 1.
3.h For all i send to LPi Consistent(i) and the state Y i

k+1(ti).

——————————————————————————————————
Finally we also prove an algorithm to compute a lower bound path with a con-
vergence in any fixed number of round (say R) under the same assumptions on
state Min. During the first R − 1 runs, the Master Process acts as before but
if the simulation has not converged to a consistent sample-path (i.e. a bound
of the exact one) at the end of run R − 1, the Master sends to the simulation
processes LPi state Min as a starting point for the next run.

Monotonicity and Efficient Computation of Bounds with TPS 67

——————————— Convergence in R runs ————————————–
3.e Loop

i) i++; Let k be the last run index
ii) if Consistent(i-1) then

– Let l be the run index for which part i− 1 is consistent.
– If ∃ m such that Y i

m(ti) = Y i−1
l (ti) then Consistent(i) ← True and

the m-th run is used for consistency of part i.
– Elsif ∃ m such that Y i

m(ti) < Y i−1
l (ti) then Consistent(i) ← True

and the m-th run is used for consistency of part i.
– Else Y i

k+1(ti)← Y i−1
l (ti).

iii) Else
– if k = R− 1 then Y i

k+1(ti)←Min.
– Elsif ∃ m such that Y i

m(ti) = Y i−1
k (ti) then Y i

k+1(ti) ← Random
state between Min and Y i−1

k (ti).
– Else Y i

k+1(ti)← Y i−1
k (ti).

3.f Until (i>K);
3.g LastConsistent ← i− 1.
3.h For all i send to LPi Consistent(i) and the state Y i

k+1(ti).
——————————————————————————————————-

Property 4. The Master algorithm with inner loop "Convergence in R runs"
needs less than R runs to build a consistent lower bound of the sample-path.

Proof: due to computation at the end of run R − 1, the logical processes are
initialised with the minimal state. Thus the consistency condition holds after
one more run and all the parts are consistent at the end of run R. ��
We now describe briefly more improvements that we cannot detail for the sake
of conciseness.

1. When a part is consistent, the process is idle and it can be used after reading
in shared memory a new input sequence to build other speculative paths for
a remaining part of the simulation which is not consistent at that time.

2. Remember that the initial approach provides an exact solution. Thus we can
obtain a time versus accuracy trade-off by using the traditional approach
during the first R1 runs and our approach with bounds during the next R2
runs and completing the simulation in one last run where the initial states
for non consistent parts are initialised with minimal or maximal states. We
obtain a proved convergence in R1 + R2 + 1 steps and the parts computed
and found consistent at the end of run R1 are exact.

5 Modelling a Web Server

Some numerical results have already been published for monotone queueing net-
works such as Jackson networks [10]. To illustrate the approach with a new
example, we analyse now a simple model of a web server. The system con-
sists in a scheduler and a set of stations (see Figure 3). All these components
are modelled by FIFO queues with infinite capacity. Web servers have receive

68 J.-M. Fourneau and F. Quessette

Scheduler

Stations

Fig. 3. Web Server as a queueing network

considerable attention (see for instance [14]) to optimise the impact of the sched-
uler on the performance of the system taking into account some partial informa-
tion on the load of the queues and the work requested by the customers.

We first describe the model, we prove that the system is hv-monotone and
we report some numerical results for the speed-up. Here we consider a discrete
time model where the slot time is equal to the duration of the service time at
the scheduler. The page arrivals follow a Poisson distribution with rate λ. Pages
contain an HTTP GET for a file. Thus the important features of a page is the
sum of the sizes of the objects included in the page. The sizes are estimated by
the scheduler. The service times in the scheduler are constant and all equal to 1.
Let T0, T1,..,TN be N + 1 increasing number where TN (resp. T0) is the biggest
(resp. smallest) size estimation. We assume that T0 > 0. The pages are sent to the
stations according to the estimation of their size. Station S1 serves pages whose
size estimation is in the interval [T0, T1). Similarly, station Si receives the pages
with size in the interval [Ti−1, Ti). The sizes of the page are independent and
identically distributed. They follow a simple distribution with a large variance:
� 1

u� with 0 < u ≤ 1. The services are supposed to be geometric with rate μi at
queue Si. Due to these assumptions, the state of the system is the number of
customers at each queue (i.e. a N + 1 tuple of integers). Let u be a state; u(0)
will denote the size of the scheduler queue while u(i), i = 1..N will be the size
of the queue associated with server Si. The output of the model is the state of
the system at time t. We use the following ordering on the initial states.

Definition 7. We define the �β ordering on states as the product of the natural
orderings on each component of the tuple: u �β v iff u(i) ≤ v(i) for all i.

Property 5. This model of a web server is hv-monotone with �β ordering on
the parameter sequence and �p on the output sequence.

Monotonicity and Efficient Computation of Bounds with TPS 69

Fig. 4. Number of runs before global consistency, μ = 0.56, λ = 0.8, uniform initial
state

Proof: Let u0 and v0 be two states such that u0 �β v0 and let us denote by ut and
vt the states at time t. Let us first consider u0(0) and v0(0). As u0(0) ≤ v0(0) and
as the service of the scheduler is constant and the arrivals are the same because
we use the same input sequence for both simulations, we have ut(0) ≤ vt(0) for all
t. And in the simulation beginning with u0, all the customers leave the scheduler
at the same time they leave in the simulation beginning with v0. Furthermore
the routing is the same in both simulations. Note however that we must use the
same amount of random values in the input sequence in both simulations. Thus
we assume that the input sequence is slotted and all values produced at time
t are only available for transitions at time t. If they are not used, they will be
deleted and a new set of random values will be provided for time slot t + 1.

Now consider u0(i) and v0(i) for an arbitrary i. Due to the previous remarks,
the arrivals of customers in Si in simulation beginning with u0 also happen at
the same time and at the same queue in simulation beginning with v0. The
service rates are the same in both simulations. Therefore u0(i) ≤ v0(i) implies
that ut(i) ≤ vt(i). Finally we get: ut �β vt for all t. ��
We present in the next figures some numerical results obtained for some parame-
ters for λ and μi. The number of simulation processes K is equal to 100. We give
for some typical simulations, the time necessary for simulation processes LPi

to be consistent for all i. We report the results for the usual algorithm and for
the bounding algorithms (upper and lower bounds) without the improvements
on the computation of speculative parts by idle processors. We also used two
distributions for the Random states used in the initialisation part. Clearly both
bounding algorithms are more efficient than the usual approach. They provide a
bound of the paths and the rewards while exact methods are slower and simple
approximations [3] do not give a guarantee on the performance. We only need 7
runs for obtaining 100 consistent parts of the sample path.

70 J.-M. Fourneau and F. Quessette

6 Conclusion

Many queueing systems are known to be monotone and such a property has
not been used for simulation except within some Coupling From The Past al-
gorithms. We think that monotonicity of the model has many applications in
simulation which remain to be studied, especially for TPS or the space decom-
position approaches. We will apply this technique for stochastic model checking
by simulation and for the analysis of queueing elements with sophisticated ser-
vice or access discipline. Indeed in stochastic model checking, we often have to
compute bounds of probability for long paths [22,5] and TPS looks like a very
efficient solution. Similarly, queues with complex discipline designed for service
differentiation are difficult to analyse exactly. Improved TPS may be an alterna-
tive to stochastic bound and numerical analysis or fluid methods, see for instance
[4] for a diffusion model of the Pushout mechanism and [2] for the analysis of
the delays in WFQ queues.

Fig. 5. Number of runs before each process is consistent, μ = 0.55, λ = 0.8, second
distribution for initial state

References
1. Andradottir, S., Hosseini-Nasab, M.: Parallel simulation of transfer lines by time

segmentation. European Journal of Operational Research 159(2), 449–469 (2004)
2. Ben Mamoun, M., Pekergin, N.: Stochastic delay bounds of fair queuing policies

by analyzing weighted round robin-related policies. Performance Evaluation 47(2),
181–196 (2002)

3. Bölöni, L., Turgut, D., Wang, G., Marinescu, D.C.: Challenges and benefits of
time-parallel simulation of wireless ad hoc networks. In: Valuetools 2006: 1st Inter-
national Conference on Performance Evaluation Methodologies and Tools, p. 31.
ACM, New York (2006)

4. Czachórski, T., Fourneau, J.-M., Pekergin, F.: Diffusion model of the push-out
buffer management policy. In: INFOCOM, pp. 252–261 (1992)

5. El Rabih, D., Pekergin, N.: Statistical model checking using perfect simulation. In:
Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799, pp. 120–134. Springer,
Heidelberg (2009)

Monotonicity and Efficient Computation of Bounds with TPS 71

6. Fourneau, J.-M., Kadi, I.: Time parallel simulation of monotone systems. In: Poster
Session, IFIP Performance Conference, Namur, Belgium (2010)

7. Fourneau, J.-M., Kadi, I., Pekergin, N.: Improving time parallel simulation for
monotone systems. In: Turner, S.J., Roberts, D., Cai, W., El-Saddik, A. (eds.)
DS-RT, pp. 231–234. IEEE Computer Society, Los Alamitos (2009)

8. Fourneau, J.-M., Kadi, I., Quessette, F.: Time parallel simulation and hv-
monotonicity. In: Proceedings of the 26th Internation Symposium on Computer
and Information Sciences. LNEE. Springer, Heidelberg (2011)

9. Fourneau, J.-M., Pekergin, N.: An algorithmic approach to stochastic bounds. In:
Calzarossa, M.C., Tucci, S. (eds.) Performance 2002. LNCS, vol. 2459, pp. 64–88.
Springer, Heidelberg (2002)

10. Fourneau, J.-M., Quessette, F.: Monotone queuing networks and time parallel sim-
ulation. In: Al-Begain, K., Balsamo, S., Fiems, D., Marin, A. (eds.) ASMTA 2011.
LNCS, vol. 6751, pp. 204–218. Springer, Heidelberg (2011)

11. Fujimoto, R.M.: Parallel and Distributed Simulation Systems. Wiley Series on Par-
allel and Distributed Computing (2000)

12. Fujimoto, R.M., Cooper, C.A., Nikolaidis, I.: Parallel simulation of statistical mul-
tiplexers. J. of Discrete Event Dynamic Systems 5, 115–140 (1994)

13. Greenberg, A.G., Lubachevsky, B.D., Mitrani, I.: Algorithms for unboundedly par-
allel simulations. ACM Trans. Comput. Syst. 9(3), 201–221 (1991)

14. Harchol-Balter, M., Schroeder, B., Bansal, N., Agrawal, M.: Size-based scheduling
to improve web performance. ACM Trans. Comput. Syst. 21, 207–233 (2003)

15. Kadi, I., Pekergin, N., Vincent, J.-M.: Different monotonicity definitions in stochas-
tic modelling. In: Al-Begain, K., Fiems, D., Horváth, G. (eds.) ASMTA 2009.
LNCS, vol. 5513, pp. 144–158. Springer, Heidelberg (2009)

16. Kiesling, T.: Using approximation with time-parallel simulation. Simulation 81,
255–266 (2005)

17. Lin, Y., Lazowska, E.: A time-division algorithm for parallel simulation. ACM
Transactions on Modeling and Computer Simulation 1(1), 73–83 (1991)

18. Nicol, D., Greenberg, A., Lubachevsky, B.: Massively parallel algorithms for trace-
driven cache simulations. IEEE Trans. Parallel Distrib. Syst. 5(8), 849–859 (1994)

19. Propp, J., Wilson, D.: Exact sampling with coupled Markov chains and applica-
tions to statistical mechanics. Random Structures and Algorithms 9(1&2), 223–252
(1996)

20. Stoyan, D.: Comparison Methods for Queues and Other Stochastic Models. John
Wiley and Sons, Berlin (1983)

21. Turgut, D., Wang, G., Boloni, L., Marinescu, D.C.: Speedup-precision tradeoffs
in time-parallel simulation of wireless ad hoc networks. In: DS-RT 2006: Proceed-
ings of the 10th IEEE International Symposium on Distributed Simulation and
Real-Time Applications, pp. 265–268. IEEE Computer Society Press, Los Alami-
tos (2006)

22. Younes, H.L., Simmons, R.G.: Statistical probabilistic model checking with a fo-
cus on time-bounded properties. Information and Computation 204(9), 1368–1409
(2006)

Stochastic Restricted Broadcast Process Theory

Fatemeh Ghassemi1,2, Mahmoud Talebi1, Ali Movaghar1,2, and Wan Fokkink3

1 Sharif University of Technology, Tehran, Iran
2 Institute for studies in Theoretical Physics and Mathematics, Tehran, Iran

3 VU University Amsterdam, The Netherlands

Abstract. We provide a framework for modeling and analyzing both qualitative
and quantitative aspects of mobile ad hoc network (MANET) protocols above
the data-link layer. We extend Restricted Broadcast Process Theory [11,9]: delay
functions are assigned to actions, while the semantics captures the interplay of a
MANET protocol with stochastic behavior of the data-link and physical layer, and
the dynamic topology. A continuous-time Markov chain is derived from our se-
mantic model by resolving non-determinism, using the notion of weak Markovian
network bisimilarity. The framework is applied to a leader election algorithm.

Keywords: Ad hoc protocol, Cross layer performance evaluation, Stochastic
process algebra, Markovian model.

1 Introduction

In mobile ad hoc networks (MANETs), nodes communicate with each other using wire-
less transceivers which are unreliable. Nodes move arbitrarily and the topology of the
network changes dynamically. MANET protocols should be able to tolerate faults that
may arise due to unreliable wireless communication and changes in the underlying
topology, while quality of service metrics in benchmarks should be satisfied. There-
fore a unified framework for the verification and evaluation of MANET protocols can
alleviate the complexity in the design process of such protocols.

We introduced Restricted Broadcast Process Theory (RBPT) in [11,9] to specify and
verify MANET protocols, taking into account mobility. Here we extend this frame-
work to Stochastic RBPT (SRBPT), to evaluate properties of MANET protocols above
the data-link layer. Performance evaluation of MANET protocols depends on physical
characteristics of the nodes, the underlying dynamic topology of the network, the pro-
tocol behavior itself, and its collaboration with data-link layer protocols. The physical
characteristics of nodes and their underlying topology define whether two nodes can
communicate, while data-link layer protocols define how fast nodes can communicate.

To study the cross-layer performance of protocols above the data-link layer, an ab-
stract model of the MAC protocol is used. The MAC protocol at the data-link layer
manages transmissions of a node to reduce their collisions with other possible ones oc-
curring in the vicinity. This abstract model may specify the aggregated behavior of the
MAC protocols of an arbitrary number of nodes in terms of some delay functions like
[19] or the behavior of a single MAC protocol from the point view of upper-layer pro-
tocols as a queue with a limited capacity of K and service time equal to MAC response

N. Thomas (Ed.): EPEW 2011, LNCS 6977, pp. 72–86, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Stochastic Restricted Broadcast Process Theory 73

time TMac like [24]. To provide a compositional framework for evaluating MANETs,
we choose the latter approach and then unfold the behavior of a MANET protocol de-
ployed at a node, at the semantic level in terms of its interaction with its underlying
MAC protocol [12]. To enhance the non-compositional framework of [12] with mod-
ular specification and analysis of MANETs, we provide a process algebra with more
expressive power in defining the timing behavior of protocols. This process algebra
follows the lines of RBPT [10] in syntax and the model of [12] in semantics.

The effect of physical and the dynamic underlying topology can be captured through
the probability that a node receives a message successfully (Prcv), and the probability
that a communication link exists between two nodes (PUP) with an identical mobil-
ity behavior. To remedy the effect of mobility on MAC layer performance factors like
response time, we assume networks of nodes with an identical MAC layer and mo-
bility model. Therefore, SRBPT semantic model is parameterized by mentioned four
parameters: K , TMac , Prcv and PUP . We capture the interplay of all these parameters
in the operational semantics. Due to the existence of internal immediate actions (with
zero delay), probabilistic and non-deterministic choice coexist in the semantics. Non-
deterministic choices of a model can be resolved by means of our weak Markovian
network bisimilarity, a congruence relation on labeled multi-transition systems, while
the performance measures of the model are preserved. We explain when and how a
Markov chain can be derived from the specification of a MANET.

With this unified framework, one can first verify the correctness of a MANET speci-
fied in RBPT. Then one can specify appropriate action delays and semantics parameters
to evaluate the quality of service metrics of a MANET protocol deployed on a specific
data-link layer in a dynamic network. We illustrate the applicability of our framework
by the analysis of a leader election protocol for MANETs [27].

Related works. PEPA, a stochastic process algebra, has been exploited to investigate
the performance of backoff algorithms in ad hoc protocols [25] and the performance of
WiFi protocol in configurations that the IEEE 802.11i does not guarantee the fairness
for channel access [20]. PRISM have been used in the verification of MANET proto-
cols like the Bluetooth device discovery [5], the MAC protocol of IEEE 802.11 [22],
the IEEE 1394 root contention protocol [4], and the ZeroConf dynamic configuration
protocol for IPv4 link-local addresses [21]. These protocols (except ZeroConf) mainly
belong to the data-link layer, so the effect of the data-link layer and the dynamic topol-
ogy are not considered. The wireless communication modeled in these works is either
point-to-point or unreliable, while collisions that occur during a transmission are mod-
eled and the underlying topology is considered fixed. However, modeling collisions
(which are handled by MAC protocols) or point-to-point communication is not appeal-
ing for performance evaluation of MANET protocols (above the data-link layer). On
the other hand, non-blocking and topology-dependent behaviors intrinsic in wireless
communication, called local broadcast, cannot be modeled by CSP-like parallel com-
position in PEPA and PRISM in a modular way [7]. The only framework tailored to
performance evaluation of wireless protocols (which can be used for MANETs) is [8].
That framework is more suitable for protocols beneath the data-link layer, since it only
considers the physical characteristics of nodes and their underlying topology (which is
static), and not the effect of the data-link layer.

74 F. Ghassemi et al.

2 Evaluation Factors

As explained in Sect. 1, performance evaluation of protocols (above the data-link layer)
depends on data-link and physical layer protocols and the underlying dynamic topology
of the network. These factors are taken into account in our semantic model in [12]:

– (TMac, K) specifying the abstract data-link layer model: when a protocol has data
to be transmitted, it delivers its message to its underlying data-link layer. The mes-
sage is inserted in the queue of the node’s data-link layer if the queue is not full, and
messages in this queue are transmitted with an average delay equal to the average
response time TMac of the data-link layer, i.e., the average time a message spends
in a data-link layer queue, waiting to be transmitted or being transmitted.

– PUP abstracting the dynamic underlying topology: we assume nodes move under
an identical mobility model. Therefore in the steady-state, the probability that a
link exists between two arbitrary nodes can be computed as explained in [23] for
a mobility model (see also [12]). Generally speaking, the higher PUP , the more
successful communication.

– Prcv abstracting physical layer protocols: a node located in the transmission range
of a sender will receive its messages successfully with a probability Prcv . In [8], this
probability is computed by taking distance, signal strength and interference of other
nodes into account, while [28] incorporates channel and radio parameters such as
the path loss exponent and shadowing variance of the channel, and modulation
and encoding of the radio. So this parameter provides an abstraction from physical
characteristics of nodes, physical layer protocols and noise from the environment.

It should be noted that when the data-link layer of a node like � broadcasts, it communi-
cates to �′ with probability Prcv × PUP if there is a communication link between them
(the link is UP) and �′ successfully receives. Otherwise either despite the readiness of
�′ to receive, there is no communication link between them (the link was DOWN), or
the link was UP but �′ received noisy data. Therefore � does not communicate to �′ with
probability 1− Prcv × PUP . If �′ was not ready to receive, � does not communicate to
�′ with probability 1. We encode these concerns in the semantics: to each transition a
probability is assigned (which is multiplied with the rate of the transition).

3 Stochastic RBPT

Network protocols (in particular MANET protocols) rely on data. To separate the
manipulation of data from processes, we make use of abstract data types [6]. Data is
specified by equational specifications: one can declare data types (so-called sorts) and
functions working upon these data types, and describe the meaning of these functions
by equational axioms. Following of μCRL [15], Stochastic Restricted Broadcast Pro-
cess Theory (SRBPT) is provided with equational abstract data types. The semantics of
the data part (of a specification), denoted by ID, is defined as in [15]. It should contain
Bool , the booleans, with distinct T and F constants. We assume the data sorts Bool and
Nat , the natural numbers, with the standard operations on them.

Stochastic Restricted Broadcast Process Theory 75

We mention some notations used in the definition of the formal syntax of SRBPT.
Let D denote a data sort; u, v and d range over closed and open data terms of sort D,
respectively. The functions eq : D ×D and if : Bool ×D ×D are defined for all data
sorts D. The former only returns T if its two data parameters are semantically equal.
The latter returns the first argument if the boolean parameter equals T , and otherwise
the second argument. d[d1/d2] denotes substitution of d2 by d1 in data term d; this ex-
tends to substitution in process terms. Loc denotes a finite set of addresses, ranged over
by �, which represent hardware addresses of nodes. Msg denotes a set of message types
communicated over a network and ranged over by m. Messages are parameterized with
data; w.l.o.g. we let all messages have exactly one such parameter.Ap denotes a count-
ably infinite set of protocol names which are used in recursive process specifications.

3.1 Actions: Types and Rates

Each action in SRBPT is a pair (α, r) where α is the action name and r the rate. A
process performs two types of actions: sending and receiving a message. The rate in-
dicates the speed at which the action occurs from the viewpoint of the data-link layer.
According to their rates, actions are classified as active and passive. Active actions have
as rate either a positive real number or�. A positive real number denotes the parameter
of the exponentially distributed random variable specifying the duration of the action.
Such actions are called delayable. The� rate denotes immediate actions; either they are
irrelevant from a performance point of view, or they have duration zero. Passive actions
have an undefined rate, denoted by ⊥. The duration of a passive action is fixed only by
synchronizing it with an active action. Send actions are active while receive actions are
passive. Restriction of the duration of active actions to exponential distributions enables
us to define in SRBPT the classical interleaving semantics for the parallel composition
operator, i.e. local broadcast, and to derive a Markov chain from the semantic model.

3.2 Syntax

The syntax of SRBPT is:

t ::= 0 | (α, r).t | t + t | [b]t � t |
∑

d:D t | A(d), A(v : D)
def
= t | [[t]]� | t ‖ t.

A process can be a deadlock, modeled by 0. A process (α, r).t performs action α with
rate r ∈ {�,⊥} ∪ IR>0 and then behaves as t. An action α can be a send snd(m(d))
or a receive rcv(m(d)). A process t1 + t2 behaves non-deterministically as t1 or t2. A
conditional command [b]t1 � t2 defines process behavior based on the data term b of sort
Bool ; if it evaluates to T in the data semantics the process behaves as t1, and otherwise
as t2. Summation

∑
d:D t, which binds the name d in t, defines a non-deterministic

choice among t[u/d] for all closed u ∈ D. A process is specified by A(d : D)
def
= t

where A ∈ Ap is a protocol name and d a variable name that appears free in t, meaning
that it is not within the scope of a sum operator in t. We restrict to process specifications
in which each occurrence of an A(d) in t is within the scope of an action prefix. The
simplest form of a MANET is a node, represented by the deployment operator [[t]]�; it

76 F. Ghassemi et al.

denotes process t deployed at network address �. A MANET can be composed from
MANETs using ‖; the MANETs communicate with each other by restricted broadcast.

We only consider well-defined SRBPT terms, meaning that processes deployed at
a network address, called protocols, are defined by action prefix, choice, summation,
conditional, and protocol names:

– If t ≡ rcv(m(d)).t′, then it is in the context of a
∑

d:D, which is in the context of
a deployment operator. Furthermore, t′ should be well-defined.

– If t ≡ snd(m(d)).t1 or t ≡ t1 + t2 or t ≡ [b]t1 � t2 or t ≡
∑

d:D t1, then it occurs
in the scope of a deployment operator, and t1 and t2 are well-defined.

– If t ≡ A(d), then it occurs in the the scope of a deployment operator, and A(d :

D)
def
= t′ where t′ doesn’t contain a parallel or deployment operator.

– If t ≡ t1 ‖ t2 or t ≡ [[t1]]�, then t isn’t in the scope of a deployment operator, and
t1 and t2 are well-defined.

3.3 Execution Mechanisms and Formal Semantics

Our semantics captures the interplay between network layer protocols and the under-
lying topology as explained in Sect. 2 such that compositionality is maintained. The
state of a MANET node is defined by the state of its deployed protocol [[t]]� and of its
data-link layer Qi, denoted by [[t]]� : Qi. The latter denotes the state of the queue with
capacity K , containing i messages: Qi = m1(u1) · . . . ·mi(ui) where i ≤ K . A state
of a MANET, called configuration and denoted by T , results from the aggregate states
of its nodes. In a configuration, the data-link layers of different nodes may compete on
the shared communication medium to broadcast. To provide the formal semantics for
SRBPT, we informally examine the behavior of three operators.

Prefix. The configuration [[(snd(m(u)), r).0]]� : Q0 specifies that it delivers message
m(u) after a delay, exponentially distributed with rate r, to its underlying data-link layer
to be transferred to the network. The configuration [[0]]� : m(u) is reached, in which the
data-link layer transfers m(u) to the network after an average delay of TMac , and the
configuration [[0]]� : Q0 is reached. The semantic model of [[(snd(m(u)), r).0]]� : Q0

has three states with two transitions; message delivery of a protocol to its data-link layer
is represented by a transition with the internal action (τ, r), while sending a message
from the data-link layer to the network is represented by a transition with the label
(nsnd(m(d), �), rMac) where rMac = 1/TMac.

Choice. In the configuration [[(snd(m1(u1)), r1).0 + (snd(m2(u2)), r2).0]]� : Q0,
the protocol can deliver message m1(u1) or m2(u2). Following [2,18], we adopt the
race policy mechanism for choosing the delayable action to execute: the action sam-
pling the least duration wins the competition and therefore, the choice is resolved
probabilistically. Hence the transitions in Fig. 1 are achieved for this configuration.
The two transitions labeled by (τ, ri) denote interaction of the protocol with its data-
link layer, executed with the probability ri/(r1 + r2), while the transitions labeled by
(nsnd(mi(ui), �), rMac) denote interaction of the data-link layer with its environment.

A consequence of the adoption of the race policy is that when a delayable and an
immediate action compete, the immediate action is executed, since the delayable action

Stochastic Restricted Broadcast Process Theory 77

[[(snd(m1(u1)), r1).0 + (snd(m2(u2)), r2).0]]� : Q0

[[0]]� : m1(u1)) [[0]]� : m2(u2)

[[0]]� : Q0

(τ, r1) (τ, r2)

(nsnd(m1(u1), �), rMac) (nsnd(m2(u2), �), rMac)

Fig. 1. Transitions of [[(snd(m1(u1)), r1).0 + (snd(m2(u2)), r2).0]]� : Q0

cannot sample to zero from the associated exponential distribution, FX(0) = Pr[X ≤
0] = 0. In other words, immediate actions take precedence over delayable actions. So
stochastically speaking, configurations have the maximal progress property [16]. To
achieve compositionality as explained in [16], this precedence is not reflected in the
semantic rules of Table 1. Instead, we introduce a notion of equality in Sect. 4.1 to
take care of it. We adopt non-determinism to choose between passive actions to execute
in a state. Therefore the behavior of the choice operator is probabilistic (for delayable
actions), prioritized (for immediate and delayable actions) or non-deterministic (for
immediate or passive actions) according to its operands.

Parallel. M0 ≡ [[(snd(m1(u1)), r1).0]]A : Q0 ‖ [[(snd(m2(u2)), r2).0]]B : Q0 con-
sists of two nodes with addresses A and B. The transitions are achieved using the
memoryless property of exponential distribution as shown in Fig. 2. In the initial con-
figuration, the actions (snd(m1(u1)), r1) and (snd(m2(u2)), r2) compete to execute.
If we assume that snd(m1(u1)) finishes before snd(m2(u1)), then the remaining time
of snd(m2(u1)) still has a distribution with rate r2. Therefore these two actions can
be interleaved. Likewise, after delivery of message m1(u1) by node A to its data-link
layer, this data-link layer and action snd(m2(u1)) compete to execute. Since the prob-
ability of having the same delay for actions (snd(m1(u1)), r1) and (snd(m2(u1)), r2)
is zero, there is no transition from M0 to M4.

M0

M1 M2

M3 M4 M5

M6 M7

M8

τ, r1 τ, r2

η1, rMac
τ, r2 τ, r1

η2, rMac

τ, r2
η1, rMac η2, rMac

τ, r1

η2, rMac η1, rMac

M0 [[(snd(m1(u1)), r1).0]]A : Q0 ‖
[[(snd(m2(u2)), r2).0]]B : Q0

M1 [[0]]A : m1(d1) ‖ [[(snd(m2(u2)), r2).0]]B : Q0

M2 [[(snd(m1(u1)), r1).0]]A : Q0 ‖ [[0]]B : m2(d2)
M3 [[0]]A : Q0 ‖ [[(snd(m2(u2)), r2).0]]B : Q0

M4 [[0]]A : m1(d1) ‖ [[0]]B : m2(d2)
M5 [[(snd(m1(u1)), r1).0]]A : Q0 ‖ [[0]]B : Q0

M6 [[0]]A : Q0 ‖ [[0]]B : m2(d2))
M7 [[0]]A : m1(d1) ‖ [[0]]B : Q0

M8 [[0]]A : Q0 ‖ [[0]]B : Q0

η1 = nsnd(m1(u1), A), η2 = nsnd(m2(u2), B)

Fig. 2. Transitions of [[(snd(m1(u1)), r1).0]]A : Q0 ‖ [[(snd(m2(u2)), r2).0]]B : Q0

78 F. Ghassemi et al.

Consider the closed configuration [[t1]]�1 : Q1
i1
‖ . . . ‖ [[tn]]�n : Qn

in
on data-link

layer (TMac, K), where i1, . . . in ≤ K , and PUP is defined. Following the approach
of [18], its semantics is given by a labeled multi-transition system with the multi-set

transition relation results from the multi-set union of transitions T (η,λ)−−−→ T ′ induced
by the rules in Table 1, where λ ∈ {�, r⊥} ∪ IR>0 (r⊥ is a shorthand for r × ⊥)
and η is the unobservable action τ or a network send or receive action nsnd(m(d), �)

or nrcv(m(d)). Let t �(rcv(m(d)),−)−−−−−−−−−→ denote there is no t′ such that t
(rcv(m(d)),⊥)−−−−−−−−−→ t′.

Conversely we also use t
(m(d)?,−)−−−−−−→. Let | {|t∗|t (rcv(m(d)),⊥)−−−−−−−−−→ t∗|} | denote the number

of transitions that t can make by performing (rcv(m(d)),⊥), where {| |} denotes a
multi-set. In Table 1 the symmetric counterparts of Choice, Sync2 and Par are omitted.

Table 1. Operational semantics of MANETs

(α, r).t
(α,r)−−−→ t

: Pre
t1

(α,r)−−−→ t′1

t1 + t2
(α,r)−−−→ t′1

: Choice
t[u/d]

(α,r)−−−→ t′

A(u)
(α,r)−−−→ t′

: Inv , A(d : D)
def
= t

t[u/d]
(α,r)−−−→ t′∑

d:D t
(α,r)−−−→ t′

: Sum
t1

(α,r)−−−→ t′1 ID |= b = T

[b]t1 � t2
(α,r)−−−→ t′1

: Then
t2

(α,r)−−−→ t′2 ID |= b = F

[b]t1 � t2
(α,r)−−−→ t′2

: Else

t
(snd(m(d)),r)−−−−−−−−→ t′ i < K

[[t]]� : Qi
(τ,r)−−−→ [[t′]]� : Qi ·m(d)

: Snd1
t

(snd(m(d)),r)−−−−−−−−→ t′ i = K

[[t]]� : Qi
(τ,r)−−−→ [[t′]]� : Qi

: Snd2

t
(rcv(m(d)),⊥)−−−−−−−−−→ t′

[[t]]� : Q
(nrcv(m(d)),r(t)⊥)−−−−−−−−−−−−→ [[t′]]� : Q

: Rcv1
t

(rcv(m(d)),−)−−−−−−−−−→
[[t]]�′ : Q

(nrcv(m(d)),r¬s⊥)−−−−−−−−−−−−→ [[t]]�′ : Q
: Rcv2

t �(rcv(m(d)),−)−−−−−−−−−→
[[t]]�

(nrcv(m(d)),⊥)−−−−−−−−−→ [[t]]�
: Rcv3

T1
(nrcv(m(d)),r1⊥)−−−−−−−−−−−→ T ′

1 T2
(nrcv(m(d)),r2⊥)−−−−−−−−−−−→ T ′

2

T1 ‖ T2
(nrcv(m(d)),r1×r2⊥)−−−−−−−−−−−−−−→ T ′

1 ‖ T ′
2

: Sync1

T1
(τ,λ)−−−→ T ′

1

T1 ‖ T2
(τ,λ)−−−→ T ′

1 ‖ T2
: Par

T1
(nsnd(m(d),�),λ)−−−−−−−−−−−→ T ′

1 T2
(nrcv(m(d)),r⊥)−−−−−−−−−−→ T ′

2

T1 ‖ T2
(nsnd(m(d),�),r×λ)−−−−−−−−−−−−−→ T ′

1 ‖ T ′
2

: Sync2

[[t]]� : m(d) ·Q (nsnd(m(d),�),rMac)−−−−−−−−−−−−−→ [[t]]� : Q
: Bro

Pre, Sum, Choice, Inv , Then and Else are standard rules for basic process alge-
bras. Interactions between protocol t and its data-link layer are specified by Snd1,2:
when a protocol t transmits a message, it is delivered to the data-link layer, which
inserts it at the end of its queue if there is space, else the message is dropped. This ac-
tion is considered internal from the viewpoint of the data-link layer, and consequently it
cannot be synchronized with other actions, as explained by Par . After this synchroniza-
tion the data-link layer transmits the message with average time TMac . The sojourn time

Stochastic Restricted Broadcast Process Theory 79

corresponding to a configuration that ends with a local broadcast (by a node) is an ex-
ponentially distributed random variable with rate rMac . Bro explains that the data-link
layer of a node transmits messages in its queue with rate rMac , while the network ad-
dress of the node is appended to this message. Rcv1 specifies that a process t can receive
a message successfully if it has a link to a sender (PUP) and receives the message cor-
rectly (Prcv). Therefore the probability of a successful receive action is r(t) = rs × rt,

where rs = Prcv×PUP and rt = | {|t∗|t (rcv(m(d)),⊥)−−−−−−−−−→ t∗|} | is the normalization factor
(since a protocol can non-deterministically execute multiple receive actions, the nor-
malization factor maintains the rate of the sojourn time of a configuration ending with
a local broadcast to rMac). However, if the node does not perform the receive action
which was enabled, then the node was either disconnected with probability 1−PUP , or
it could not receive successfully with probability PUP × (1 − Prcv). Therefore a node
with an enabled receive action does not receive with probability r¬s = 1−PUP ×Prcv .
This behavior is explained in Rcv2, by making the node perform the receive action
while the state of its process is unchanged. A node with no enabled receive action can
be synchronized with probability 1, while the state of its process is unchanged, as ex-
plained by Rcv3. Sync1 allows to group together nodes that are ready to receive the
same message. In this case, the probability of receive actions is a product of all re-
ceive coefficients. Sync2 explains what happens when a node broadcasts: the rate of
synchronization is the rate of broadcast multiplied by the probability of receivers.

Example. Consider MANET [[P (A)]]A ‖ [[Q(B)]]B ‖ [[R]]C with P (adr : Loc)
def
=

(snd(elec(adr)), r).0, Q(adr : Loc)
def
=

∑
lx:Loc(rcv (elec(lx)),⊥).0 +

(snd(elec(adr), r).0 and R
def
=
∑

lx:Loc(rcv(elec(x)),⊥).0, on a data-link layer with
(TMac, 1). By Snd1:

[[P (A)]]A : Q0 ‖ [[Q(B)]]B : Q0 ‖ [[R]]C : Q0
(τ,r)−−−→ [[0]]A : elec(A) ‖ [[Q(B)]]B : Q0 ‖ [[R]]C : Q0

If node A broadcasts elec(A) and only B receives, then by Rcv1, Rcv2 for nodes B, C
respectively and Sync2:

[[0]]A : elec(A) ‖ [[Q(B)]]B : Q0 ‖ [[R]]C : Q0
(nsnd(elec(A),A),r)−−−−−−−−−−−−−−−→ [[0]]A : Q0 ‖ [[0]]B : Q0 ‖ [[R]]C : Q0

where r = rMac × rs × r¬s. If B broadcasts and C does not receive, then by Rcv3,
Rcv2 for nodes A, C respectively and Sync2:

[[0]]A : elec(A) ‖ [[Q(B)]]B : Q0 ‖ [[R]]C : Q0
(τ,r)−−−→

[[0]]A : elec(A) ‖ [[0]]B : elec(B) ‖ [[R]]C : Q0
(nsnd(elec(B),B)rMac×r¬s)−−−−−−−−−−−−−−−−−−−−→

[[0]]A : elec(A) ‖ [[0]]B : Q0 ‖ [[R]]C : Q0.

4 From Configuration to CTMC

Our framework aims at the evaluation of MANET protocols by means of CTMCs de-
rived from the semantic model. Immediate actions give rise to non-determinism. To
obtain a CTMC, we need to eliminate immediate actions by means of an appropriate
congruence relation.

80 F. Ghassemi et al.

4.1 Weak Markovian Network Bisimilarity

We adapt the notion of weak Markovian bisimilarity from [17] for our framework,
which behaves as weak bisimilarity [14] on immediate actions and as Markovian bisim-
ilarity [18] on delayable and passive actions. It is called weak Markovian network bisim-
ilarity: delayable and passive actions are treated as in Markovian bisimilarity, but they
may be preceded and followed by internal immediate actions.

Let Q(TMac, K) denote the set of states of the data-link layer, a queue with capacity

K and response time TMac . We write
τ−→

∗
for the transitive closure of

(τ,�)−−−→ transitions,

and T �τ−→ to denote there is no T ′ such that T (τ,�)−−−→ T ′.
The definition of a weak Markovian network bisimulation is obtained in the same

manner as [16,17]: a passive/delayable action must be simulated by a matching step,
possibly preceded and followed by arbitrarily many immediate internal steps. Stochas-
tically speaking, the cumulated rate of moving by a passive/delayable action to an equiv-
alence class should be equal for each transition and its match. Since its match may be
preceded by internal transitions, for an equivalence class CR we let Cτ

R denote the set

{T ′ | ∃T ∈ CR · T ′ τ−→
∗
T }. An internal immediate step may be simulated, but can

also be mimicked by taking no transition at all, provided the equivalence classes match.

Definition 1. An equivalence relation R on configurations is a weak Markovian net-
work bisimulation if T1 R T2 implies for all equivalence classes CR ∈ (SRBPT ×
Q(TMac, K))/R:

– if T1 �τ−→ then γ(T1, η, CR) = γ(T ′
2 , η, Cτ

R) for some T ′
2 with T2 τ−→

∗
T ′

2 , T ′
2 �τ−→;

– if T2 �τ−→ then γ(T2, η, CR) = γ(T ′
1 , η, Cτ

R) for some T ′
1 with T1 τ−→

∗
T ′

1 , T ′
1 �τ−→;

– if T1
(τ,�)−−−→ T ′

1 then for some T ′
2 , T2 τ−→

∗
T ′

2 , T ′
1RT ′

2 ;

– if T2
(τ,�)−−−→ T ′

2 then for some T ′
1 , T1 τ−→

∗
T ′

1 , T ′
1RT ′

2 .

γ(T , η, CR) =
∑
{|λ | T (η,λ)−−−→ T ′, T ′ ∈ CR|}, i.e. the summation of all elements in

this multiset. Since r1⊥+r2⊥ = (r1+r2)⊥ and r1⊥ = r2⊥ if and only if r1 = r2, γ is
well-defined. Configurations T1 and T2 are weak Markovian network bisimilar, denoted
T1 ≈m T2, if T1RT2 with R a weak Markovian network bisimulation.

Theorem 1. Markovian network bisimilarity is an equivalence relation, and a congru-
ence for configurations.

See [13] for the proof.

Example. The following equivalences hold:

[[(α, r).t1 + (snd(m(d)),�).t2]]� : Q ≈m [[(snd(m(d)),�).t2]]� : Q, r ∈ IR>0

[[(snd(m(d)),�).t]]� : Q ≈m [[t]]� : Q · m(d)

The first explains that immediate actions have precedence over delayable actions. The
second explains how an immediate action snd(m(d)) can be removed while its impact,
insertion of m(d) at the end of the queue, is considered.

Stochastic Restricted Broadcast Process Theory 81

4.2 Markovian Semantics of MANETs

A Markov model can be derived from a MANET specification, if the non-deterministic
choices can be resolved by application of Markovian network bisimilarity: each con-
figuration equivalence class in the MANET is a state of the stochastic process, and the
transitions are defined by collapsing transitions carrying active actions between corre-
sponding configuration equivalence classes while adding up the rates; see Theorem. 2.

Definition 2. The derivative set ds(T) of a MANET model T is the smallest set of
configurations such that:

– T ∈ ds(T); and

– if Ti ∈ ds(T), and Ti
(η,λ)−−−→ Tj with λ ∈ {�}∪ IR>0 and η ∈ {τ,nsnd(m(d), �)},

then Tj ∈ ds(T).

A Markov process can be derived from a configuration T if each equivalence class
[Ti]/≈m

with Ti ∈ ds(T) cannot move to another equivalence class by an immediate
action:

∀Tj ∈ [Ti]/≈m
· Tj

τ−→ T ′
j ⇒ T ′

j ∈ [Ti]/≈m
.

So immediate actions are removed by weak Markovian network bisimilarity. Such a
configuration is called Markovian.

Theorem 2. Given a finite closed Markovian configuration T , let the stochastic pro-
cess X(t) be defined such that X(t) = [Ti]/≈m

for some Ti ∈ ds(T), indicating that
the MANET is in a configuration belonging to [Ti]/≈m

at time t. Then X(t) is a Markov
process.

The proof is straightforward (cf. [12,18]). If transition rates are independent of the time
at which a transition occurs, the derived CTMC is time-homogeneous, so that it can
be used to evaluate the performance of a MANET in terms of different data-link layer
service quality, mobility models, and protocol parameter settings.

5 A Leader Election Algorithm for MANETs

In this section we illustrate how the SRBPT framework is applicable in analyzing MANET
protocols. For this purpose we use the leader election algorithm for MANETs from [27].

5.1 Protocol Specification

Each node has a value associated with it. In the context of MANETs, the leader election
algorithms aim at finding the highest-valued node within a connected component during
a limited period of time, when the underlying topology is stable. For simplicity the value
of a node is the same as its network address. Let ? ∈ Loc denote an unknown address.
We assume a total order on network addresses, where ? is the minimum. Election is
performed in three stages. In the first stage, a spanning tree is grown which (potentially)
contains all the nodes within a connected component by broadcasting elec messages,

82 F. Ghassemi et al.

which make nodes join the election and send it in turn. To this aim, each node initially
sends a elec message after waiting 1/rheartbeat in average to receive from a leader in
its vicinity. After a node receives elec(xparent), it sets its parent to xparent and then
immediately relay the message. In the second stage, values are collected through ack
messages, which contain the maximum value of a subtree under a node and are passed
on to the parent in the spanning tree. Inner nodes of the spanning tree wait for an average
time of 1/rchild timeout to gather ack messages from their potential children and inform
their parent. On receiving ack , each node updates the maximum value it knows from its
subtree.

Node(sn : Nat , id , lid, max, parent : Loc, elec, ack : Bool)
def
=

[eq(lid, id)](snd(leader(lid)), rheartbeat).Node(sn, id, lid, max, parent , elec, ack) � 0

+[eq(sn, 0)](snd(elec(id)), rheartbeat).Node(1, id, lid, id, id, T, T) � 0

+[eq(sn, 2)](snd(elec(id)),�).Node(1, id, lid, id, parent , T, T) � 0

+[sn < 2 ∧ ¬elec]
∑

lx:Loc
(rcv(elec(lx)),⊥).Node(2, id, lid, max, lx, elec, ack) � 0

+[eq(sn, 1) ∧ ack]
∑

xmax:Loc

∑
xid

(rcv(ack(xmax, xid)),⊥)

.Node(sn, id, lid, if (xmax > max, xmax, max), parent , elec, ack) � 0

+[eq(sn, 1) ∧ ack ∧ ¬eq(parent , id)](snd(ack(max, parent)), rchild timeout)

.Node(sn, id, lid, max, parent , elec, F) � 0

+[eq(sn, 1) ∧ eq(parent , id) ∧ ack](snd(leader (max)), rchild timeout)

.Node(sn, id, max, max, parent , F, F) � 0

+[eq(sn, 3)](snd(leader (lid)),�).Node(1, id, lid, max, parent , F, F) � 0

+[sn < 2 ∧ ((elec ∧ ¬ack) ∨ ¬elec)]
∑

xlid:Loc
(rcv(leader (xlid)),⊥)

.Node(if (¬elec ∨ (¬ack ∧ xlid > max), 3, 1), id,

if ((¬elec ∧ xlid > lid) ∨ (elec ∧ ¬ack ∧ xlid > max), xlid, lid),

if ((¬elec ∧ xlid > lid) ∨ (elec ∧ ¬ack ∧ xlid > max), xlid, max), parent ,

if ((elec ∧ xlid > max), F, elec), ack) � 0

+[eq(sn, 1) ∧ ¬eq(lid, ?) ∧ ¬eq(lid, id) ∧ ¬elec]

(snd(elec(id)), rhb timeout).Node(sn, id, ?, id, id, T, T) � 0

+[eq(sn, 1)](snd(crash), rcrash freq).Node(0, id, ?, ?, ?, F, F) � 0

+
∑

xid:Loc
(rcv(probe(xid)),⊥).Node(if (eq(xid, id), 5, sn), id, lid, max, parent , elec, ack)

+[eq(sn, 5)](snd(reply(xid)),�).

Node(if (elec ∨ ¬eq(lid, ?), 1, 0), id, lid, max, parent , elec, ack) � 0

+[eq(sn, 1) ∧ ¬eq(parent , id) ∧ ¬ack ∧ elec](snd(probe(parent)), rprobe freq)

.Node(4, id, lid, max, parent , elec, ack) � 0

+[eq(sn, 4)](
∑

xparent :Loc
(rcv(reply(xparent)),⊥).

Node(if (eq(xparent , parent), 1, sn), id, lid, max, parent , elec, ack)

+(snd(leader(max)), rreply timeout).Node(1, id, max, max, id, F, F)) � 0

Fig. 3. Specification of a leader election algorithm for MANETs

In the third stage, a node declares the maximum value by broadcasting the leader
message, if it is a root (on expiration of a timer with rate rchild timeout during which
acks are gathered), or it has been disconnected from its parent (on expiration of a timer
with rate rreply timeout to detect its parent). This message is then broadcast periodically

Stochastic Restricted Broadcast Process Theory 83

with rate rheartbeat to reestablish leadership of a node, until it is challenged by a greater
value. If a node does not hear from its leader for an average time of 1/rhb timeout, it
initiates a leader election. The spanning tree can change during these stages, since nodes
can move into or out of a connected component at will. To keep the tree connected and
swiftly respond to changes, a node constantly checks the existence of its parent by
sending/receiving probe/reply messages.

The leader election algorithm is specified by the protocol name Node in Fig. 3. The
list of variables maintained by each protocol are: elec, ack of type Bool , where elec is
T when the node is involved in an election, while ack is T if the node has not sent its
ack message to its parent; lid , max , parent of type Loc, where lid denotes the address
of the leader (which is updated when the node receives a leader message), max is
the highest value the node is aware of in an election, and parent is the address of the
node’s parent in the spanning tree. The protocol is initially (or after a crash) in a state
with eq(sn, 0), eq(elec, F), eq(ack , F), eq(parent , ?) and eq(lid , ?).

5.2 Protocol Analysis

We focus on evaluating effects of some parameters like rMac and timer values
on protocol performance. We construct configurations by composing several
[[Node(0, �, ?, ?, ?, F, F)]]� : Q0, and examine message overhead and the duration from
the start of the election until all nodes have found a leader (called election time). It
should be examined that configurations are Markovian, and consequently by Theorem. 2
a CTMC can be derived.

Each node immediately sends a message when it is in the state eq(sn, 2)∨eq(sn, 3)∨
eq(sn, 5). It can be shown that the following equivalences hold (by constructing the
Markovian network bisimulation relationR = {(T1, T2)|∀Qi · i < K} ∪ {(T , T)} for
each equivalence relation T1 ≈m T2):

[[Node(2, θ, F, ack)]]� : Q ≈m [[Node(1, θ, F, ack)]]� : Q · elec(�)

[[Node(3, θ, elec, ack)]]� : Q ≈m [[Node(1, θ, F,F)]]� : Q · leader(lid)

[[Node(5, θ′, F, ack)]]� : Q ≈m [[Node(0, θ′, F, ack)]]� : Q · reply(�′)
[[Node(5, θ, elec, ack)]]� : Q ≈m [[Node(1, θ, elec, ack)]]� : Q · reply(�′), where elec ∨ ¬eq(lid , ?)

where θ abbreviates id , lid ,max , parent and θ′ abbreviates id , ?,max , parent . There-
fore, by congruence of≈m, in any configuration, nodes in the form of the left-hand side
of an equation above can be replaced by the corresponding right-hand side.

We exploit PRISM to derive the overall CTMC resulting from a MANET config-
uration. To this aim, we cast the resulting CTMC of each node to PRISM such that
its parallel composition with other nodes in the MANET results in the overall CTMC.
See the [13] for how the encoding is managed. We note that the cast CTMC of a node
in PRISM is dependent on all locations in the MANET (no modularity), and it is not
straightforward to write the code in PRISM from the scratch. We implemented the Loc
data sort using the integer type of PRISM (where ?, A, B, . . . are denoted by 0, 1, 2, . . .),
and so the cast of the configuration [[Node(0, �, ?, ?, ?, F, F)]]� : Q0 is well-defined.1

1 See http://mehr.sharif.edu/˜fghassemi/pcodes.zip.

http://mehr.sharif.edu/~fghassemi/pcodes.zip

84 F. Ghassemi et al.

Then we can define desired properties in a well-known stochastic temporal logic,
Continuous Stochastic Logic [1], which has been extended in PRISM with rewards and
queries. By assigning a reward to each send action, we can compute the number of
messages sent during an election:

R|messages|=?[F lidA �=? ∧ lidB �= 0 ∧ lidC �= 0 ∧ lidD �= 0 ∧ lidE �= 0)]

where the condition F lidA �=? ∧ lidB �= 0 ∧ lidC �= 0 ∧ lidD �= 0 ∧ lidE �= 0 specifies
that all nodes will finally have a leader. We can thus examine the message overhead for
different implementation policies. We have also examined another implementation of
the protocol; the node tries to participate in the election of a node having the highest
value. Thus each node listens to the next election messages, and whenever it receives
one with a greater value than its own parent , it immediately changes its parent. We
use “single” and “multiple” election for the first and second implementation. In Fig. 4,
the trend of the message overhead growth is illustrated with respect to the number of
nodes for each implementation, which shows the nearly linear relationship between the
increase in the number of nodes and the increase in the message overhead. We used
the values for rhearbeat = 0.05 and rhb timeout = 6 × rhearbeat given in [27] and
rchild timeout = 0.02, rcrash freq = 0.000028, rprob freq = 0.1, and rreply timeout =
0.1. PUP is 0.7, and rMac is 10.

Fig. 4. Message overhead in MANETs of different size

We can compute the distribution function for the duration of an election (for a spe-
cific node) in which the highest-valued node is elected as the leader by

P=?[lidA = 0 UT lidA = max{idA, idB , idC , idD, idE}.
where the until operator UT computes the time between when the node has no leader and
when its leader has the maximum value. In Fig. 5a, the probability that this election time
is less than 40 seconds (for a MANET of five nodes with a data-link layer with capacity
2) is measured in terms of different values of Prcv and tchild timeout = 1/rchild timeout .
Fig. 5a shows that the optimal choice for child timeout in a network with varying Prcv

is 1.0s for the single election implementation. We can again examine the effect of pa-
rameters like PUP .

This probability is compared for each implementation when tchild timeout = 1
in Fig. 5b: the election time for the multiple election implementation is reduced.

Stochastic Restricted Broadcast Process Theory 85

(a) (b)

Fig. 5. Effect of Prcv and tchild timeout on election time (left). Probability that the election time is
less than 40 sec. for a single and multiple elections (right).

Depending on the quality of service metrics, election time or message overhead, either
one of the protocol implementations can be chosen.

6 Conclusion and Future Work

We have extended RBPT, an algebraic framework for the specification and verification
of MANETs, with stochastic concepts. This is useful for the analysis of protocols in
terms of environment (like data-link layer quality of service, mobility of nodes) and
protocol parameters.

We plan to extend SRBPT following the approach of [9], to arrive at a sound and com-
plete axiomatization. Then we can define a stochastic variant of linear process equations
(SLPE) for configurations, which can be exploited in the analysis of MANETs with an
arbitrary number of nodes. To this aim, we can also extract the embedded DTMC of an
SLPE and then use symbolic confluence reduction [3] or the SCOOP tool [26] to reduce
the SLPE. With an increase in the number of nodes, the effect of TMac on a MANET
can be sensed more.

References

1. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.: On the logical characterisation of per-
formability properties. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS,
vol. 1853, pp. 780–792. Springer, Heidelberg (2000)

2. Bernardo, M., Gorrieri, R.: A tutorial on EMPA: A theory of concurrent processes with non-
determinism, priorities, probabilities and time. Theoretical Computer Science 202(1-2), 1–54
(1998)

3. Blom, S., van de Pol, J.: State space reduction by proving confluence. In: Brinksma, E.,
Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 596–609. Springer, Heidelberg (2002)

4. Daws, C., Kwiatkowska, M., Norman, G.: Automatic verification of the IEEE 1394 root con-
tention protocol with KRONOS and PRISM. Software Tools for Technology Transfer 5(2),
221–236 (2004)

5. Duflot, M., Kwiatkowska, M., Norman, G., Parker, D.: A formal analysis of Bluetooth device
discovery. In: Proc. ISOLA 2004, pp. 268–275 (2004)

6. Ehrich, H., Loeckx, J., Wolf, M.: Specification of Abstract Data Types. John Wiley, Chich-
ester (1996)

86 F. Ghassemi et al.

7. Ene, C., Muntean, T.: Expressiveness of point-to-point versus broadcast communications. In:
Ciobanu, G., Păun, G. (eds.) FCT 1999. LNCS, vol. 1684, pp. 258–268. Springer, Heidelberg
(1999)

8. Fehnker, A., Fruth, M., McIver, A.K.: Graphical modelling for simulation and formal analy-
sis of wireless network protocols. In: Butler, M., Jones, C., Romanovsky, A., Troubitsyna, E.
(eds.) Methods, Models and Tools for Fault Tolerance. LNCS, vol. 5454, pp. 1–24. Springer,
Heidelberg (2009)

9. Ghassemi, F., Fokkink, W., Movaghar, A.: Equational reasoning on mobile ad hoc networks.
Fundamenta Informaticae 103, 1–41 (2010)

10. Ghassemi, F., Fokkink, W., Movaghar, A.: Verification of mobile ad hoc networks: An alge-
braic approach. Theoretical Computer Science 412(28), 3262–3282 (2011)

11. Ghassemi, F., Fokkink, W.J., Movaghar, A.: Restricted broadcast process theory. In: Proc.
SEFM 2008, pp. 345–354. IEEE, Los Alamitos (2008)

12. Ghassemi, F., Fokkink, W.J., Movaghar, A.: Towards performance evaluation of mobile ad
hoc network protocols. In: Proc. ACSD 2010, pp. 98–105. IEEE, Los Alamitos (2010)

13. Ghassemi, F., Talebi, M.: Fokkink, W., Movaghar, A.: Stochastic restricted broadcast process
theory. Tech. rep., Sharif University of Technology (2011),
http://mehr.sharif.edu/fghassemi/srbpt-web.pdf

14. van Glabbeek, R., Weijland, W.: Branching time and abstraction in bisimulation semantics.
Journal of the ACM 43(3), 555–600 (1996)

15. Groote, J.F., Ponse, A.: Syntax and semantics of μ-CRL. In: Proc. ACP 1994. Workshops in
Computing, pp. 26–62. Springer, Heidelberg (1995)

16. Hermanns, H., Herzog, U., Katoen, J.P.: Process algebra for performance evaluation. Theo-
retical Computer Science 274(1-2), 43–87 (2002)

17. Hermanns, H., Rettelbach, M., Weiss, T.: Formal characterisation of immediate actions in
spa with nondeterministic branching. The Computer Journal 38(7), 530–541 (1995)

18. Hillston, J.: A Compositional Approach to Performance Modelling. Ph.D. thesis, Cambridge
University (1996)

19. Khabbazian, M., Kuhn, F., Kowalski, D.R., Lynch, N.A.: Decomposing broadcast algorithms
using abstract mac layers. In: Proc. DIALM-PODC, pp. 13–22. ACM, New York (2010)

20. Kloul, L., Valois, F.: Investigating unfairness scenarios in manet using 802.11b. In: Proc.
PE-WASUN, pp. 1–8. ACM, New York (2005)

21. Kwiatkowska, M., Norman, G., Parker, D., Sproston, J.: Performance analysis of probabilis-
tic timed automata using digital clocks. Formal Methods in System Design 29, 33–78 (2006)

22. Kwiatkowska, M., Norman, G., Sproston, J.: Probabilistic model checking of the IEEE
802.11 wireless local area network protocol. In: Hermanns, H., Segala, R. (eds.) PROBMIV
2002, PAPM-PROBMIV 2002, and PAPM 2002. LNCS, vol. 2399, pp. 169–187. Springer,
Heidelberg (2002)

23. Lin, T.: Mobile Ad-hoc Network Routing Protocols: Methodologies and Applications. Ph.D.
thesis, Virginia Polytechnic Institute and State University (2004)

24. Oliveira, R., Bernardo, L., Pinto, P.: Modelling delay on IEEE 802.11 MAC protocol for
unicast and broadcast nonsaturated traffic. In: Proc. WCNC 2007, pp. 463–467. IEEE, Los
Alamitos (2007)

25. Razafindralambo, T., Valois, F.: Performance evaluation of backoff algorithms in 802.11 ad-
hoc networks. In: Proc. PE-WASUN 2006, pp. 82–89. ACM, New York (2006)

26. Timmer, M.: Scoop: A tool for symbolic optimisations of probabilistic processes. In: QEST
2011 (to appear, 2011)

27. Vasudevan, S., Kurose, J., Towsley, D.: Design and analysis of a leader election algorithm
for mobile ad hoc networks. In: Proc. ICNP 2004, pp. 350–360. IEEE, Los Alamitos (2004)

28. Zuniga, M., Krishnamachari, B.: Analyzing the transitional region in low power wireless
links. In: Proc. SECON 2004, pp. 517–526. IEEE, Los Alamitos (2004)

http://mehr.sharif.edu/fghassemi/srbpt-web.pdf

Higher Moment Analysis of a Spatial Stochastic

Process Algebra

Marcel C. Guenther and Jeremy T. Bradley

Imperial College London, 180 Queen’s Gate,
London SW7 2AZ, United Kingdom

{mcg05,jb}@doc.ic.ac.uk

Abstract. We introduce a spatial stochastic process algebra called MA-
SSPA, which provides a formal behavioural description of Markovian
Agent Models, a spatial stochastic modelling framework. We provide a
translation to a master equation which governs the underlying transition
behaviour. This provides a means of simulation and thus comparison
of numerical results with simulation that was previously not available.
On the theoretical side, we develop a higher moment analysis to allow
quantities such as variance to be produced for spatial stochastic models
in performance analysis for the first time. We compare the simulation
results against resulting ODEs for both mean and standard deviations
of model component counts and finish by analysing a distributed wireless
sensor network model.

Keywords: Higher Moment Analysis, Spatial Stochastic Process Alge-
bra, Spatial Modelling, MAM, MASSPA.

1 Introduction

Spatial modelling paradigms take into account localised behaviour of individuals
or processes in the evaluation of a system. While some domains such as crowd
dynamics modelling [1,2] are inherently linked to their environment, other ar-
eas which were traditionally analysed without the notion of space gained new
insights from spatial dynamics, e.g. the spatial Lotka–Volterra model [3]. As
further examples, spatial topology has a modelling impact in wide variety of
application domains such as epidemiology [4], wireless sensor networks [5], fire
propagation [6] and traffic modelling [7].

Capturing spatial information in the analysis of models comes at a higher
computational cost. In discrete spatial modelling paradigms [4,1,5,8], which al-
low modellers to create lumped CTMCs with a finite number of locations, the
state space explosion is even more severe than in non-spatial CTMCs as we
need to keep track of the population size for each state in every location. In
the past, spatial models could therefore only be analysed using stochastic sim-
ulation [9]. Today fluid approximation [10,11] can handle spatial models even if
the population and the number of locations become large. Recent work on dis-
crete space, continuous time models, has focused on the approximation of mean

N. Thomas (Ed.): EPEW 2011, LNCS 6977, pp. 87–101, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

88 M.C. Guenther and J.T. Bradley

component counts, i.e. the mean population sizes of different states in different
locations [4,1,5]. While approximations of the mean population sizes are impor-
tant metrics, the evaluation of higher order moments is crucial to get a better
understanding of the underlying stochastic process. Furthermore it has been
shown that higher order moments can be used to get more accurate boundaries
for passage time distributions [12]. In this paper we investigate the computation
of higher (joint) moments for discrete spatial models. In particular we formalise
the Markovian Agent Model (MAM) paradigm [5] by expressing it in a spatial
stochastic process algebra and apply higher moment ODE analysis to MAMs
for the first time. Moreover, we use stochastic simulation to verify our ODE
approximation for mean and standard deviation of component counts in two
examples.

The paper is organised as follows. In Sect. 2 we briefly introduce the MAM
paradigm. Subsequently in Sect. 3 we summarise Engblom’s approach [13] for
the generation of ODEs for higher order stochastic moments of molecule counts
in systems expressed by the chemical Master Equation [14]. This serves as the
basis for the derivation of higher moment ODEs in MAMs (Sect. 4). In Sect. 5
we define a simple but expressive spatial stochastic process algebra for MAMs
and show how to translate it to a set of mass action type reactions. In Sect. 6
we describe a wireless sensor network MAM and estimate its mean and standard
deviation using ODEs.

2 Markovian Agent Models

In this section we briefly describe the key concepts of Markovian Agent Models
(MAM)s. In [5] Gribaudo et al. describe a novel agent-based spatio-temporal
model called Markovian Agent Model (MAM). The underlying CTMC of the
lumped process is approximated using techniques explained in [15]. Space is as-
sumed to be continuous, but for evaluation purposes it is discretised, for instance
into a regular 2-dimensional grid. Agents are assumed to be distributed in space
according to a spatial Poisson process. A Markovian Agent (MA) in a MAM
is a simple sequential component that can have local transitions which occur
at a specified exponential rate and possibly emit messages. Additionally each
MA can have message induced transitions. When emitting a message, all neigh-
bours of the emitting agent, i.e. agents that are able to receive the message, may
execute an induced transition. The function which defines the notion of neigh-
bourhood is the perception function u(·). In MAMs each agent is assumed to act
autonomously, i.e. each agent can decide whether to process or ignore incom-
ing messages. Therefore each induced transition in a MA has a probability of
accepting an incoming message. Note that in contrast to other process algebras
such as PEPA [16], MAMs have no strict form of synchronisation.

We assume that the density of agents of type c ∈ C in state i ∈ Sc at time t
at location v ∈ V is given by ρc

i (t, v). Vector ρc(t, v) contains all ρc
i (t, v), ∀i ∈ Sc

Higher Moment Analysis of a Spatial Stochastic Process Algebra 89

and matrix ρ(t, v) contains all ρc(t, v), ∀c ∈ C. If the constant total number of
agents of type c in location v is N c(v) then there are

N c
i (t, v) = ρc

i (t, v)N c(v) (1)

agents of type c in state i at location v at time t. Hence, we need to have∑
ρc

i (t, v) = 1. Moreover, each agent of type c in state j produces messages at a
Poisson rate of

βc
j = λc

jg
c
jj +

∑
k∈Sc,k 	=j

qc
jkgc

jk (2)

where gc
jk is the number of messages that the agent produces when making a

transition from state j to k. λc
j denotes the rate at which the agent produces

messages while sojourning in state j and qjk is the rate at which the agent moves
from state j to k. Now let u(j, cj , vj , i, ci, vi) denote the perception function
that scales the intensity with which an agent of type ci in state i at location
vi receives messages from another agent of type cj in state j at location vj .
Generally u(·) ≥ 0. Two agents can communicate iff u(·) > 0 for those agents.
The rate at which an agent of type c receives messages in state i computed as
follows

γc
ii(t, v) =

∑
c′∈C

∑
j∈Sc′

∑
vj∈V

u(j, c′, vj , i, c, v)βc′
j ρc′

j (t, vj)N c′(vj) (3)

Note that γc
ii is a rate of a convoluted Poisson process Xc′

1 + Xc′
2 + . . . where

each Xc′
· represents a rate βc′

j modulated by u(·) and scaled by the population
size of the sending agent. This convolution is only accurate if we have a spatially
independent population distribution. Finally let

Kc(t, v) = Qc + Γ c(t, v)[Ac − I] (4)

be the infinitesimal matrix for the CTMC of agents of type c at time t in location
v where Qc is the time invariant infinitesimal matrix describing the rates of
internal state transitions for agents of type c, I the identity matrix and Ac the
acceptance matrix where each element ac

ij describes the probability of accepting
the message and move from state i to j. We say ac

ii = 1 −
∑

j 	=i ac
ij is the

probability of ignoring the message and assume
∑

j 	=i ac
ij ≤ 1. Hence each row

in Ac sums to 1. Γ c is the diagonal matrix with entries γii and since all rows
in Ac − I sum to 0 so do the rows in Γ c(t, v)[Ac − I]. Thus Kc(t, v) is a valid
infinitesimal matrix for the CTMC describing the evolution of ρc(t, v) at time
t. Vector ρc(t, v), which represents the mean values of the underlying stochastic
agent densities for states of agent class c at location v, can be approximated
using the following equations⎧⎨⎩ρc(0, v) t = 0

δρc(t,v)
δt = ρc(t, v)Kc(t, v) t > 0

(5)

90 M.C. Guenther and J.T. Bradley

Note thatEq. 5uses themeanfield assumptionE[XY] = E[X]E[Y] (see [15,17,18]).
Further generalisations for MAMs which allow multiple types of messages and lo-
cation dependent transition rates and dynamic MAMs exist but are omitted here.
For more details see [19,7].

3 Higher Moment ODEs for the Master Equation

In [13] Engblom derives a general expression for the derivation of ODEs for higher
(joint) moments for models that can be expressed by the Master Equation [14].
Similar derivations can be found in [20,21]. In this section we summarise Eng-
blom’s work briefly. Later in Sect. 4 we use his technique to obtain ODEs for
any higher (joint) moments in MAMs.

In a model of chemical reactions there are D different species and |R| different
reactions. p(x, t) describes the probability distribution of the molecule count
vector x ∈ Z

D+ = {0, 1, 2, . . .}D at time t. Note that X(t) is a stochastic process.
The propensity rate of a reaction r ∈ R is described by wr : Z

D+ −→ R. The

change in x for reaction r ∈ R is defined by xr = x + nr
wr(xr)−−−−→ x where nr are

the negated stoichiometric coefficients. The resulting Master Equation is

δp(x, t)
δt

=
R∑

r=1
x+n−

r ≥0

wr(x + nr)p(x + nr, t)︸ ︷︷ ︸
incoming rate

−
R∑

r=1
x−n+

r ≥0

wr(x)p(x, t)︸ ︷︷ ︸
outgoing rate

(6)

where nr = n+
r + n−

r reflect the decrease and increase in the molecule count
for reaction r ∈ R respectively. In contrast to systems biology literature where
reaction r usually changes x to x + n+

r and x + n−
r , Engblom assumes that

reaction r changes x to x − n+
r and x − n−

r , i.e. ni
r = −1 implies that the

number of molecule i increases by 1 as a result of reaction r. Also note that
integrating the Master Equation will yield the Chapman–Kolmogorov equation
for the underlying CTMC. Engblom further shows that

∑
x≥0

T (x)
δp(x, t)

δt
=

R∑
r=1

E[(T (X − nr)− T (X))wr(X)] (7)

where T : ZD+ −→ R is a suitable test-function in form of a polynomial and
wr(x) = 0 ∀x �≥ n+

r . Taking T (x) = xi for example yields the differential equa-
tion for the mean of molecule count xi

Ė[Xi] =
δE[Xi]

δt
=

δμi

δt
= −

R∑
r=1

ni
rE[wr(X)] (8)

Extending Eq. 7 to higher (joint) moments is straightforward.

Higher Moment Analysis of a Spatial Stochastic Process Algebra 91

4 Higher (joint) Moments in MAMs

To date there is no derivation of ODEs for the computation of higher (joint)
moments for component counts in MAMs. In [15,19] the authors only approxi-
mate the evolution of the mean of the component densities assuming E[XY] ≈
E[X]E[Y]. In this section we derive an expression for the second moment for
MAM component counts using Engblom’s technique outlined in Sect. 3.

To map MAMs to the Master Equation we need to define an equivalent set
of reactions along with the propensities and the negated stoichiometric coeffi-
cients. For simplicity we assume that a MAM has a single location and one type
of agent. In [22] we show that this assumption can be generalised to derive ODEs
for more complex MAM extensions. Since MAs are autonomous there is no syn-
chronisation between any two agents. In the language of chemical reactions that
implies that any reaction expressing an agent transition from state i ∈ S to state
j ∈ S has the following form

N(t) + nr
Ni(t)Kij(N(t))−−−−−−−−−−→N(t) (9)

with negated stoichiometric coefficient ni
r = 1, nj

r = −1 and nk
r = 0 ∀k ∈

S\{i, j} and propensity rate wr = wij(N(t)) = Ni(t)Kij(N(t)). Note that Kij

is indeed the ijth element of the K matrix. In contrast to the definition of
K in Eq. 4 the parameters of the matrix have changed from (t, v) to N(t).
Formally the parameters are equivalent, since all factors in Eq. 3 apart from
the agent distributions are constant with respect to time and location when
considering a single location MAM. We can now create such a reaction for every
pair of states (i, j) ∈ S × S, i �= j with negated stoichiometric coefficients
ni = 1 and nj = −1. Note that all reactions of type (i, j) encapsulate both
internal agent transitions and transitions induced by incoming messages as the
K matrix combines both internal and induced transition rates. If no transition
is possible then Kij(N (t)) = 0. Having translated our simplified MAM into a
set of reactions we can use Eq. 7 to derive the ODEs for the mean value, the
first joint moment and the second order moment of the component counts. We
start with the mean. Using Eq. 8 we get

Ė[Ni(t)] = −
R∑
r

ni
rE[wr(N (t))]

=
∑

j∈S,j 	=i

E[Nj(t)Kji(N (t))]−
∑

j∈S,j 	=i

E[Ni(t)Kij(N (t))] (10)

since ∑
j∈S,j 	=i

Kij(N(t)) = −Kii(N (t)) (11)

Eq. 10 becomes

Ė[Ni(t)] =
∑
j∈S

E[Nj(t)Kji(N (t))] (12)

92 M.C. Guenther and J.T. Bradley

applying the mean field approximation to Eq. 12 yields the component count
equivalent to Eq. 5 for a MAM with only one location and one agent class

Ė[Ni(t)] ≈
∑
j∈S

E[Nj(t)]Kji(E[N (t)]) (13)

Similarly using Eq. 7 with T (N(t)) = Ni(t)Nj(t) we get the following ODE for
the first joint moment

Ė[Ni(t)Nj(t)] =
R∑
r

E[((Ni(t)− ni
r)(Nj(t)− nj

r)−Ni(t)Nj(t))wr(N (t))]

= −
R∑
r

ni
rE[Nj(t)wr(N (t))]−

R∑
r

nj
rE[Ni(t)wr(N (t))]

+
R∑
r

ni
rn

j
rE[wr(N (t))] (14)

which becomes

Ė[Ni(t)Nj(t)] = E[Ni(t)
∑
k∈S

Nk(t)Kkj(N (t))] + E[Nj(t)
∑
k∈S

Nk(t)Kki(N (t))]

+
R∑
r

ni
rn

j
rE[wr(N(t))] (15)

where
∑R

r ni
rn

j
rE[wr(N(t))]

=

⎧⎨⎩−E[Ni(t)Kij(N(t))] − E[Nj(t)Kji(N (t))] i �= j

−E[Ni(t)Kii(N (t))] + E[
∑

j∈S,j 	=i Nj(t)Kji(N(t))] i = j
(16)

The expansion for i �= j follows from the observation that the only reactions
which have non-zero negated stoichiometric coefficient products ni

rn
j
r are those

resulting from transitions from i to j and from j to i. For i = j, however, we
can consider all reactions involving i, since all of these will yield (ni

r)
2 = 1.

Substituting Eq. 16 into Eq. 15 gives the required definition of the first joint
moment and the second order moment in MAMs with one location and one
agent class. In [22] we show the corresponding ODEs for MAMs with multiple
agents, messages and locations.

5 Markovian Agent Spatial Stochastic Process Algebra

In this section we formally introduce a new spatial stochastic process algebra for
Markovian Agent Models (MAM)s which we term MASSPA. First we describe a

Higher Moment Analysis of a Spatial Stochastic Process Algebra 93

process algebra that allows us to define Markovian Agents. This process algebra
is a blend between π-calculus [23] and a purely sequential version of PEPA [16],
with passive actions and action names removed. To describe the spatial dynamics
of MAMs we subsequently define the space, the distribution of agents in space
and the perception function u(·). The notation for the spatial aspects of the
model is similar to the one presented in [8,24]. Having defined MASSPA we give
a simple example (Sect. 5.1) and show how MASSPA can be translated into
chemical reactions (Sect. 5.2). The grammar of MASSPA is as follows:

S ::= α.S | S + S | ?(m, p).S | α!(m, g).S | CS | ∅
P ::= P ��

u(·) P

where S denotes a sequential MA, CS a sequential constant and ∅ the nil process.
The basic MASSPA operators can be interpreted as follows:

Prefix: α.S′ describes the possibility of a transition from the current process
to process S′. This transition happens at rate α.
Choice: At a given time a process defined as S + T can either behave as S
or as T .
Constant: Assign names to patterns of behaviour associated with compo-
nents, e.g. N

def= S. In this case N behaves the exact same way as S.
Message Sending: α!(m, g).S′ describes a transition from the current pro-
cess S to process S′ where on average g ∈ R

>0 messages of type m are sent
as part of this transition. In fact g represents the parameter of a Poisson dis-
tribution, which defines the random number of messages generated as part
of the transition.
Message Reception: ?(m, p).S′ describes the possibility of a transition
from the current process to process S′ that can be induced by an incoming
messages of type m. p is the probability of accepting such a message. For
each type of message m ∈ M that a process S listens to, we have to have
0 ≤

∑
(m,p)∈S p ≤ 1, i.e. each process can consume at most one type of

message at a time.
Parallel: P ��

u(·) Q means that agent populations (see definition below) P and
Q, possibly located in different locations, operate in parallel. The perception
function u(·) governs the message exchange between P and Q. This operator
is only used to specify our operational semantics. In general we assume all
agents in all locations act in parallel under u(·).

We now look at the definition of space, the agent populations and the perception
function u(·). We begin with the space. Generally the space can take any discre-
tised form as long as it is finite. Two basic examples are finite 2/3-dimensional
regular rectangular and radial grids where each cell/location in the grid has a
unique label l ∈ L, e.g. L = {A, B, C} or L = {(0, 0), (0, 1), . . . , (x, z)}. Within
a certain cell we assume a spatial Poisson distribution of agents. In practice we

94 M.C. Guenther and J.T. Bradley

may simply fix the number of agents in a certain state in a given location l
and argue that we can find a corresponding rate for a spatial Poisson process
that would on average generate that many agents in l. Assume that we have
defined the sequential agents in MASSPA and that C is the set of distinct agent
types, i.e. agents that do not share derivative states. Let Si be the set of all
derivative states for a sequential MASSPA agent of type i ∈ C (cf. Sect. 2),
such that Si ∩ Sj = ∅, ∀i, j ∈ C, i �= j. Furthermore let S =

⋃
i∈C Si be the

set of all agent states. We define the set of agent populations for agents of type
i ∈ C as Pi = {s@l : s ∈ Si, l ∈ L} and also P =

⋃
i∈C Pi. The initial agent

population distribution is defined by a mapping d : P −→ N
≥0. Finally we define

u : Ch −→ R
≥0 where Ch ⊆ P × P ×M is the set of channels and M the set of

all message labels. We say that population c1@l1 can send messages of type m
to c2@l2 iff u(·) is defined for (c1@l1, c2@l2, m) ∈ Ch.

The corresponding structured operational semantics are described in Fig. 1.
It provides a translation to a labelled transition system which consists of tran-
sitions a ∈ Lα ∪ LM where Lα is the set of exponentially delayed transi-
tions and LM , consisting of (α, m, gm)-sending events and (α, m, pm)-reception
events, is the set of message transitions. Assume l1, l2 ∈ L, possibly such that

l1 = l2. F
(α,m,gm)−−−−−−→ F means F sends gm messages of type m at rate α and

E@l1 ��
u(·) F@l2

(x∗α∗gm,m,pm)−−−−−−−−−−→ E′@l1 ��
u(·) F@l2 states that E@l1 goes to E′@l1

at rate x ∗ α ∗ gm with probability pm as the result of receiving message(s) of
type m.

Prefix

E
α−→E′ (E

def
= α.E′)

F
α−→F ′ (F

def
= α!(m, gm).F ′)

F
(α,m,gm)−−−−−−→F

(F
def
= α!(m, gm).F ′)

Competitive Choice
E

a−→E′

E+F
a−→E′

F
a−→F ′

E+F
a−→F ′

Parallel

E
a−→E′

E@l1 ��
u(·) F@l2

a−→E′@l1 ��
u(·) F@l2

F
a−→F ′

E@l1 ��
u(·) F@l2

a−→E@l1 ��
u(·) F ′@l2

Message Exchange

F
(α,m,gm)−−−−−−→F

E@l1 ��
u(·) F@l2

(x∗α∗gm,m,pm)−−−−−−−−−−→E′@l1 ��
u(·) F@l2

(E
def
= ?(m, pm).E′ + . . . , u(F@l2, E@l1, m) = x)

Constant
E

α−→E′

A
α−→E′ (A

def
= E)

Fig. 1. Operational semantics of MASSPA

Higher Moment Analysis of a Spatial Stochastic Process Algebra 95

5.1 A Simple MASSPA Example

In the following we give a simple MASSPA example. In Sect. 6 we look at more
complex model. The simple MAM (see Fig. 2) has locations L = {A, B, C}
containing populations of identical agents so that set of all states S = {on, off }.
The agent populations are P = {on@A, off @A, on@B, off @B, on@C, off @C}.

off
def
= ?(m, 1).on

on
def
= μ!(m, 1).off

u(on@A,off @B, m) = 1 u(on@B, off @A, m) = 1
u(on@B,off @C,m) = 1 u(on@C, off @B, m) = 1

off on

(m
, 1)

μ

(m
, 1

)

Fig. 2. A simple MAM with 3 locations

5.2 Translating MASSPA into Mass Action Type Reactions

In this section we discuss how any MASSPA model can be translated into a
system of chemical reactions (cf. Sect. 3). It is easy to see that the number
of different agent populations |P | is equivalent to the number of “molecule”
species D. Hence, P is the set of available species. In the simple example above
there is only one agent type, i.e. |C| = 1. As agents do not synchronise, each
reaction has the following form r : a@l

wr−−→ b@l, a@l, b@l ∈ Pi, i ∈ C.
This is a different way of stating the assumption that all reactions for MAMs
describe the evolution for a specific type of agent in one location (cf. [22]).
Clearly the negated stoichiometric coefficients are 1,−1 for a@l, b@l respec-
tively. To derive the reactions we need to define the wr terms. By Eq. 9 we
have wr = wa@l b@l = Na@l(t)Ki

a@l b@l(N(t)) = Na(t, l)Ki
ab(t, l), a, b ∈ Si, i ∈

C, l ∈ L. Na@l(t) is the number of agents of type i in state a at location l.
To derive Ki

a@l b@l(N (t)) we need to sum the local transition rate from a@l
to b@l and the corresponding transition rate induced by incoming messages.
The local rate of transitions from a@l to b@l can be obtained directly from
the MASSPA agent definition, as this rate is location independent. Let states
a, b be derived from process definitions A, B where A

def= · · · + α.B + · · · +
β!(m, gm).B. To obtain the local transition rate we sum up all α and β rates
for all prefix operations α.B and sending operations β!(·, ·).B in the definition
of process A. The resulting rate is the abth element of matrix Qi (cf. Eq. 4).
Now we describe the rate of message induced transitions from a@l to b@l. For
any term ?(m, pm).B in the definition of A we first need to find all channels
(x@l1, a@l, m) ∈ Ch for which u(·) is defined. Note that x ∈ Sj and poten-
tially a, b �∈ Sj . Let Ma be the set of all messages that can trigger process A to

96 M.C. Guenther and J.T. Bradley

become process B and Cha the channels of type (x@l1, a@l, m) for which u(·) is
defined. The total rate of message induced transitions from population a@l to
b@l is∑

m∈Ma

pm(a, b)
∑

(x@l1,a@l,m)∈Cha

u(x@l1, a@l, m) ∗ β(x, m) ∗Nx@l1(t) (17)

where pm(a, b) is probability of an agent in state a to accept a message of type m
and transit to state b and β(x, m) is the total sending rate of messages m of an
agent in state x. The former is the sum of all probabilities pm for message m ∈M
that are used in the ?(m, pm).B terms in A. The latter is the sum of all rates
β ∗ gm from the β!(m, gm).X ′ terms in the definition of process X that state
x refers to. Hence Eq. 17 is the same as the abth element of Γ i(t, l) in Eq. 4.
Therefore MASSPA models do indeed capture the dynamics of static MAMs
described in Sect. 2. To give a practical example we now show the reactions for
the simple MAM described in Sect. 5.1. First we derive the matrices K(t, v) for
each of the three locations.

K(t, A) = K(t, C) =
(

−μ μ
Non@B(t)μ −Non@B(t)μ

)
(18)

K(t, B) =
(

−μ μ
(Non@A(t) + Non@C(t))μ −(Non@A(t) + Non@C(t))μ

)
(19)

The top left element in the rate matrix K(t, X) is Kon@X on@X , the top right
element Kon@X off @X , the bottom left element Koff @X on@X and the bottom
right element Koff @X off @X . The reactions for the model are

on@A
Non@A(t)μ−−−−−−−→ off @A

off @A
Noff @A(t)Non@B(t)μ−−−−−−−−−−−−−→ on@A

on@B
Non@B(t)μ−−−−−−−→ off @B

off @B
Noff @B(t)(Non@A(t)+Non@C(t))μ−−−−−−−−−−−−−−−−−−−−−→ on@B

on@C
Non@C(t)μ−−−−−−−→ off @C

off @C
Noff @C(t)Non@B(t)μ−−−−−−−−−−−−−→ on@C

(20)

It is important to note that sending agent populations (e.g. on@B in the second
reaction) act as catalysts but do not change state as they send a message as
there is no synchronisation in MAMs. Hence messages are only ever sent while
the sender sojourns in its current state.

Figure 3 shows numerical results for the simple MAM. We found that for small
populations the mean approximation deteriorates as time goes on. In this model
this is partially due to the fact that simulations for small agent populations
tend to a state where no more communication is possible, i.e. on@A = on@B =
on@C = 0. It is easy to show that this another fixed point for the ODEs, too.

Higher Moment Analysis of a Spatial Stochastic Process Algebra 97

0 10 20 30 40 50 60
0

50

100

150

200

250

300

Results Simulation mean component count vs ODE approximation

Time

M
e

a
n

 c
o

m
p

o
n

e
n

t
c
o

u
n

t
Simu

on@A

Simu
on@B

Simu
on@C

ODE
on@A

ODE
on@B

ODE
on@C

0 10 20 30 40 50 60
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−3 Normalised ODE mean approximation error

Time

N
o

rm
a

lis
e

d
 e

rr
o

r
in

 m
e

a
n

 c
o

m
p

o
n

e
n

t
c
o

u
n

t

Error
on@A

Error
on@B

Error
on@C

0 10 20 30 40 50 60
0

2

4

6

8

10

12

Results Simulation component count std deviation vs ODE approximation

Time

S
td

 d
e

v
ia

ti
o

n
 i
n

 c
o

m
p

o
n

e
n

t
c
o

u
n

t

Simu
on@A

Simu
on@B

Simu
on@C

ODE
on@A

ODE
on@B

ODE
on@C

0 10 20 30 40 50 60
0

1

2

3

4

5

6

7

8

9

Results std deviation ode45 vs ode15s

Time

S
td

 d
e

v
ia

ti
o

n
 i
n

 c
o

m
p

o
n

e
n

t
c
o

u
n

t

ode45
on@A

ode45
on@B

ode45
on@C

ode15s
on@A

ode15s
on@B

ode15s
on@C

Fig. 3. Numerical results on@A,on@B, on@C for the simple MAM with initial values
300, 0, 0, 300, 0, 450 for on@A, off @A,on@B,off @B,on@C, off @C and μ = 0.1. Rates
of reactions derived from message induced transitions were divided by the population
size of the receiving agent type (see [22]). The error was computed by subtracting
the ODE approximation from 10,000 averaged simulation traces and dividing by the
population size of the corresponding agent. The first three graphs contain the ODE
approximation solved using ode15s.

However, the normalised error in the mean became smaller as we increased the
population size, which agrees with theoretical mean field results [15,17]. The
standard deviation approximation for the simple MAM is quantitatively inaccu-
rate, but qualitatively good as it preserves the relative difference between the
standard deviation of on@A, on@B and on@C around t = 60. More interest-
ingly the comparison between the explicit ode45 solver and the implicit ode15s
solver in Matlab shows that the ODEs which determine the second order mo-
ments also have multiple fixed points. In this example ode45 gives quantitatively
and qualitatively worse results than ode15s.

6 Worked Example: A Simplified Spatial WSN

Our worked example is a simplified version of the Wireless Sensor Network pre-
sented in [5]. In this MAM there are wireless sensor nodes (WSN)s which sample

98 M.C. Guenther and J.T. Bradley

some quantity of their environment, e.g. temperature or humidity, and forward
the samples to a sink location via a number of intermediate WSNs. The wireless
sensor node is defined in Figs. 4. Each agent samples its environment at rate λ
and propagates the measurement to the next agent that is closer to the sink. If it
receives a sample from a WSN that is further away from the sink, it first buffers
it and then sends it on to the next link at rate μ. Furthermore nodes may go to
sleep when they have no buffered messages in order to save energy. WSNs may
also fail without chance of recovery.

WSN (0)
def
= λ!(m, 1).WSN (0) + ?(m, 1).WSN (1)+

φ0.WSN (fail) + σ0.WSN (sleep)

WSN (i)
def
= λ!(m, 1).WSN (i) + ?(m, 1).WSN (i+1)+

μ!(m, 1).WSN (i−1) + φi.WSN (fail)

WSN (b)
def
= λ!(m, 1).WSN (b) + μ!(m, 1).WSN (b−1)+

φb.WSN (fail)

WSN (sleep)
def
= σs.WSN (0) + φs.WSN (fail)

WSN (fail)
def
= ∅

A

B C

D E F

Fig. 4. A simple WSN in MASSPA. b denotes the buffer size. Arrows in the spatial
layout on the right define u(·) = 1 for locations L={A,B,C,D,E,F}. The set of states
is S={0,1,. . . ,b,sleep,fail}.

We now compare the ODE approximations for the mean and standard de-
viation for the WSN MAM with the exact solution. The ODEs were solved in
Matlab using ode45 and ode15s. We experimented with various moment closures
for the third order terms in the second order moment ODEs (see [22]). For the
ODE traces below we used the E[XY Z] ≈ E[XY]E[Z]. For stochastic simulation
we used Matlab’s simbiology tool.

As can be seen in Fig. 5 the mean is approximated well by the ODEs. This
holds for all quantities not only for the mean of the component counts in location
B shown in Fig. 5. Furthermore we did not observe multiple fixed points for the
first order ODEs, which could be due to the fact that the communication will
never stop completely as WSNs always sample at rate λ. The more interesting
observation made in this model is the behaviour of the ODEs for the second order
moments. While the ODEs for WSN components counts in locations A, C, D, E
and F were remarkably accurate irrespective of the choice of ODE solver, we
found that in location B there was a significant difference in the solution when
applying ode15s as opposed to ode45 in Matlab. In Fig. 5d ode45 is more sta-
ble than ode15s. The two traces eventually converge around time t = 2000 so
there is no indication that there are multiple fixed points in the second order
ODEs.

Higher Moment Analysis of a Spatial Stochastic Process Algebra 99

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

90

100

Results Simulation mean component count vs ODE approximation

Time

M
e
a
n
 c

o
m

p
o
n
e
n
t
c
o
u
n
t

Simu
0@B

Simu
1@B

Simu
2@B

Simu
3@B

ODE
0@B

ODE
1@B

ODE
2@B

ODE
3@B

0 20 40 60 80 100 120 140 160 180 200
−1

−0.5

0

0.5

1

1.5
x 10

−3 Normalised ODE mean approximation error

Time

N
o
rm

a
lis

e
d
 e

rr
o
r

in
 m

e
a
n
 c

o
m

p
o
n
e
n
t
c
o
u
n
t

Error
0@B

Error
1@B

Error
2@B

Error
3@B

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Results Simulation component count std deviation vs ODE approximation

Time

S
td

 d
e
v
ia

ti
o
n
 i
n
 c

o
m

p
o
n
e
n
t
c
o
u
n
t

Simu
0@B

Simu
1@B

Simu
2@B

Simu
3@B

ODE
0@B

ODE
1@B

ODE
2@B

ODE
3@B

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Results std deviation ode45 vs ode15s

S
td

 d
e

v
ia

ti
o

n
 i
n

 c
o

m
p

o
n

e
n

t
c
o

u
n

t
ode45

0@B

ode45
1@B

ode45
2@B

ode45
3@B

ode15s
0@B

ode15s
1@B

ode15s
2@B

ode15s
3@B

Fig. 5. Numerical results 0@B, 1@B, 2@B, 3@B for the WSN MAM with initial val-
ues 20, 100, 50, 20, 10, 90 for 0@A, 0@B, 0@C, 0@D, 0@E, 0@F and b = 3, μ = 0.1, λ =
0.03, os = 0.0001, o0 = 0.001 and zero probability of node failure. Message induced re-
actions rates were divided by the population size of the receiving agent type (see [22]).
The error was computed by subtracting the ODE approximation from 3,500 averaged
simulation traces and dividing by the population size of the corresponding agent. The
first three graphs contain the ODE approximations solved using ode45.

7 Conclusion

In this paper we have derived a simple mapping from MAMs to the language
of chemical reactions. This mapping is then used to derive second order ODEs
for MAMs for the first time. To formalise the description of MAMs further we
defined MASSPA, a process algebra for MAMs and showed how MASSPA can be
translated into mass action type reactions. Moreover, we have given numerical
examples for two models that we defined in MASSPA and shown that their first
order ODE approximations are generally good for large populations. As for the
second order ODE approximation we got very good results in the WSN model
and less accurate results in the simple MAM. We also observed that comparing
stochastic simulation traces to the ODE traces for small population sizes gives
a good indication as to whether the second order ODEs become more accurate
as we increase the overall population size. The E[XY Z] ≈ E[XY]E[Z] moment
closure assumption proved to be a simple but effective choice. The only closure
which gave slightly better results for the simple MAM model was E[XY Z] ≈

100 M.C. Guenther and J.T. Bradley

E[X]E[Y Z], but for the WSN model this closure gave rather inaccurate second
order approximations. Although the closure behaviour could be entirely model
dependent it is not unlikely that E[XY Z] ≈ E[XY]E[Z] works well for MAMs as
the Z term always represents contributions from the K matrix. Further research
is needed to investigate moment closures for MAMs and to find indicators for well
behaved spatially motivated moment closures similar to those discussed in [18].
Should good moment closures for MAMs be hard to determine, we might need
to look for further evaluation techniques such as those discussed in [25]. Having
computed higher moments for ODEs it would be interesting to look at resulting
passage time bounds that can be deduced using techniques described in [12].

Acknowledgements. We would like to thank Davide Cerotti and Marco Grib-
audo for giving us valuable insights into the MAM paradigm. Moreover, we would
like to thank Anton Stefanek and Richard Hayden for their input on moment
closures techniques. Finally we would also like to thank the referees for their
time and efforts in reviewing the original submission and their helpful comments
which have certainly improved the paper.

References

1. Massink, M., Latella, D., Bracciali, A., Hillston, J.: Modelling Crowd Dynamics
in Bio-PEPA. In: Proceedings of the 9th Workshop PASTA/Bio-PASTA, pp. 1–11
(2010)

2. Bracciali, A., Hillston, J., Latella, D., Massink, M.: Reconciling Population and
Agent Models for Crowd Dynamics. In: 3rd International Workshop on Logics,
Agents, and Mobility, LAM 2010 (2010)

3. Dieckmann, U., Law, R.: Relaxation projections and the method of moments. Cam-
bridge studies in adaptive dynamics, ch. 21, pp. 412–455. Cambridge University
Press, Cambridge (2000)

4. Stefanek, A., Vigliotti, M., Bradley, J.T.: Spatial extension of stochastic pi calculus.
In: 8th Workshop on Process Algebra and Stochastically Timed Activities, pp. 109–
117 (2009)

5. Gribaudo, M., Cerotti, D., Bobbio, A.: Analysis of on-off policies in sensor net-
works using interacting markovian agents. In: 6th IEEE International Conference
on Pervasive Computing and Communications (PerCom), pp. 300–305 (2008)

6. Cerotti, D., Gribaudo, M., Bobbio, A., Calafate, C.T., Manzoni, P.: A markovian
agent model for fire propagation in outdoor environments. In: Aldini, A., Bernardo,
M., Bononi, L., Cortellessa, V. (eds.) EPEW 2010. LNCS, vol. 6342, pp. 131–146.
Springer, Heidelberg (2010)

7. Cerotti, D., Gribaudo, M., Bobbio, A.: Presenting Dynamic Markovian Agents
with a road tunnel application. In: IEEE International Symposium on Modeling
Analysis Simulation of Computer and Telecommunication Systems MASCOTS,
pp. 1–4. IEEE, Los Alamitos (2009)

8. Galpin, V.: Towards a spatial stochastic process algebra. In: Proceedings of the
7th Workshop on Process Algebra and Stochastically Timed Activities (PASTA),
Edinburgh (2008)

9. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. Journal
of Physical Chemistry 81(25), 2340–2361 (1977)

Higher Moment Analysis of a Spatial Stochastic Process Algebra 101

10. Hillston, J.: Fluid flow approximation of PEPA models. In: Second International
Conference on the Quantitative Evaluation of Systems QEST 2005, pp. 33–42
(2005)

11. Hayden, R.A., Bradley, J.T.: A fluid analysis framework for a Markovian process
algebra. Theoretical Computer Science 411(22-24), 2260–2297 (2010)

12. Hayden, R.A., Stefanek, A., Bradley, J.T.: Fluid computation of passage time
distributions in large Markov models. Theoretical Computer Science (submitted,
2010)

13. Engblom, S.: Computing the moments of high dimensional solutions of the master
equation. Applied Mathematics and Computation 180(2), 498–515 (2006)

14. Van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. North-Holland
personal library, vol. 11. North-Holland, Amsterdam (1992)

15. Bobbio, A., Gribaudo, M., Telek, M.: Mean Field Methods in Performance Analysis.
In: Fifth International Conference on Quantitative Evaluation of Systems, QEST,
2008, pp. 215–224 (2008)

16. Hillston, J.: A Compositional Approach to Performance Modelling, p. 158. Cam-
bridge University Press, Cambridge (1996)

17. Le Boudec, J.-Y., McDonald, D., Mundinger, J.: A Generic Mean Field Conver-
gence Result for Systems of Interacting Objects. In: Fourth International Confer-
ence on the Quantitative Evaluation of Systems QEST 2007, pp. 3–18 (2007)

18. Murrell, D.J., Dieckmann, U., Law, R.: On moment closures for population dy-
namics in continuous space. Journal of Theoretical Biology 229(3), 421–432 (2004)

19. Cerotti, D.: Interacting Markovian Agents. PhD thesis, University of Torino (2010)
20. Bortolussi, L.: On the Approximation of Stochastic Concurrent Constraint

Programming by Master Equation. Electronic Notes in Theoretical Computer Sci-
ence 220(3), 163–180 (2008)

21. Gillespie, C.S.: Moment-closure approximations for mass-action models. IET Sys-
tems Biology 3(1), 52–58 (2009)

22. Guenther, M.C., Bradley, J.T.: Higher moment analysis of a spatial stochastic
process algebra. Tech. rep., Imperial College London (July 2011),
http://pubs.doc.ic.ac.uk/masspa-higher-moments/

23. Milner, R.: Communicating and Mobile Systems: the Pi-Calculus. Cambridge Uni-
versity Press, Cambridge (1999)

24. Galpin, V.: Modelling network performance with a spatial stochastic process al-
gebra. In: Proceedings of the 23rd IEEE International Conference on Advanced
Information Networking and Applications (AINA 2009), Bradford, pp. 41–49 (May
2009)

25. Ovaskainen, O., Cornell, S.J.: Space and stochasticity in population dynamics.
Proceedings of the National Academy of Sciences of the United States of Amer-
ica 103(34), 12781–12786 (2006)

http://pubs.doc.ic.ac.uk/masspa-higher-moments/

Optimization for Multi-thread Data-Flow

Software

Helmut Hlavacs and Michael Nussbaumer

University of Vienna, Research Group Entertainment Computing,
Lenaugasse 2/8, 1080 Vienna, Austria

{helmut.hlavacs,m.nussbaumer}@univie.ac.at

Abstract. This work presents an optimization tool that finds the op-
timal number of threads for multi-thread data-flow software. Threads
are assumed to encapsulate parallel executable key functionalities, are
connected through finite capacity queues, and require certain hardware
resources. We show how a combination of measurement and calculation,
based on queueing theory, leads to an algorithm that recursively deter-
mines the best combination of threads, i.e. the best configuration of the
multi-thread data-flow software on a given host. The algorithm proceeds
on the directed graph of a queueing network that models this software.
Experiments on different machines verify our optimization approach.

Keywords: Software Optimization, Performance Optimization, Multi-
thread Software.

1 Introduction

The trend to many cores inside CPUs enables software engineering towards con-
currency. Software is split up in atomic actions that can run in parallel. This
may considerably speed up computation, but also causes extra overhead through
thread coordination for both, the operation system and also the software engi-
neer. Developing software made of several threads is much more complicated
than creating an old-fashioned single thread software. One fundamental prob-
lem of the developer might be to find the right strategy for determining the
optimal number of threads.

In this work we use the term host for a server hardware platform with a fixed
number of cores. Nodes are specified as tasks of the queueing network software
and build the data-flow graph. A thread executes node tasks. Each node can
have multiple threads that are executing the nodes tasks in parallel. The overall
situation is that we want to find the optimal number of threads per node, with
the side constraint, that there can only be as many threads as cores available on
the host, because each thread runs on a dedicated core.

This paper discusses an approach to use a combination of analytical modeling
techniques and measurements to find an optimal configuration of threads on a
given host by iteratively increasing the number of threads. The application area

N. Thomas (Ed.): EPEW 2011, LNCS 6977, pp. 102–116, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Optimization for Multi-thread Data-Flow Software 103

is software following the data-flow paradigm, in our case a commercial tool that
computes and persists call data from a telecom network.

Section 2 of this paper presents related work. In Section 3 an example multi-
thread data-flow software is introduced, an analytical model is introduced, and
theoretical optimization is explained. Section 4 presents our optimization ap-
proaches to find the optimal configuration for multi-thread data-flow software.
Finally, Section 5 presents experiments conducted on two SUN machines with
a real queueing network software, and compares them to a solely analytical
approach.

2 Related Work

In the past there have been several approaches for adapting software to various
multi-computers, in order to optimize the performance.

FFTW [1] is a free software library that computes the Discrete Fourier Trans-
form (DFT) and its various special cases. It uses a planner to adapt its algorithms
to the hardware in order to maximize performance. The FFTW planner works
by measuring the actual run time of many different plans and by selecting the
fastest one.

The project SPIRAL [2] aims at automatically generating high performance
code for linear Digital Signal Processing (DSP) transforms, tuned to a given plat-
form. SPIRAL implements a feedback-driven optimizer that intelligently gener-
ates and explores algorithmic and implementation choices to find the best match
to the computer’s micro architecture.

The Automatically Tuned Linear Algebra Software (ATLAS) [3] aims at au-
tomatically generating code that provides the best performance for matrix mul-
tiplication on a given platform by finding the cache-optimal variant.

In [4] an algorithm is developed for finding the nearly best configuration for a
Web system. Up to 500 emulated clients generate traffic for various trading op-
erations like buy or sell. Optimal configurations are found iteratively, depending
on the number of threads and the cache size.

The technology Grand Central Dispatch1 (GCD) by Apple enables to use
multicore processors more easily. Firstly released in the Mac OS X 10.6, GCD is
implemented by the library libdispatch2 . GCD is a scheduler for tasks organized
in a queuing system and acts like a thread manager that queues and schedules
tasks for parallel execution on processor cores.

In [5] a queueing network model with finite/single capacity queues and block-
ing after service discipline is used to model software architectures; more exactly
the synchronization constraints and synchronous communication between soft-
ware components. The information flow (trace) between components is analyzed
to identify the kind of communication (fork, join) and reveal the interaction
pairs among components that enables to model a queueing network. This way a
performance model for a specific software architecture can be derived.
1 http://www.apple.com/macosx/technology/#grandcentral
2 http://libdispatch.macosforge.org

http://www.apple.com/macosx/technology/#grandcentral
http://libdispatch.macosforge.org

104 H. Hlavacs and M. Nussbaumer

3 Analytical Model

The system under investigation is a commercial product called Data Flow Engine
(DFE) for processing and persisting call data stemming from standard telecom
networks. In an industrial cooperation, our task was to find automatic ways for
analyzing the performance of the software, and adapt the software to different
hardware platforms and workload situations. The software in some sense should
utilize the hardware in some optimized way, for example for maximizing the
throughput, but also utilize only as much hardware as needed, for example for
optimizing the energy consumption if this is supported by the platform.

Data describing call state changes like calling, canceling etc. is represented by
tickets or packets being sent from the telecom infrastructure to the software that
subsequently receives, extracts, converts, and stores the incoming packets. The
software itself follows a data-flow approach, organizing its tasks into a network
of processing nodes (Fig. 1). Queues buffer the output for succeeding nodes and
incoming tickets pass the graph and visit each node once. Since these nodes tech-
nically are lightweight processes (threads), they can be replicated for splitting
the load. Nodes model atomic actions, but several instances of a node can exist
as threads.

Currently defined nodes are:

– The Decoder node takes packets from its queue, extracts the data, and for-
wards it to the next node’s queue. Hence, the extraction can be done in
parallel by several nodes. A Decoder can be replicated, each Decoder for-
wards the extracted data to the same queue.

– The Converter node takes extracted data from its queue, converts it into a
format appropriate for storing and forwards it to a Serializer and a Feeder
node. Thus, the extracted and formated data is persisted always twice. Also
conversion can be done in parallel by several threads of the Converter.

– The Serializer node takes data from its queue and stores it to disk. Serializers
may write in parallel, even to different disks.

– The Feeder node takes data from its queue and sends it to a database. Since
the database is assumed to be capable to provide a connection pool, Feeders
may send in parallel.

All nodes require certain CPU time, memory, disk space and disk bandwidth,
and network bandwidth. Thus, the benefit of replicating nodes is limited by the
available hardware. Starting with an initial configuration with one thread per
node, the goal is to find the optimal configuration of threads for a certain host.

The main idea is to sequentially add new threads for over-utilized nodes un-
til an optimization goal is reached. For that reason, a queueing network, as
base for an analytical model [6–9] for describing the multi-thread software, is
shown in Fig. 1 as an open queueing network consisting of 4 queues. Open in the
sense that jobs come from an external source, are serviced by an arbitrary num-
ber of servers inside the network and eventually leave the network. Further, the

Optimization for Multi-thread Data-Flow Software 105

Fig. 1. Multi-thread software modeled as queueing network

suggested queueing network is aperiodic, because no job visits a server twice,
the flow goes to one direction. The queueing discipline is always First-Come,
First-Served (FCFS).

An external source sends events with rate λS to the M/M/k/B Decoder queue
whereas the arrival process (M/././.) is Markovian and follows a Poisson process
[10] with independent identically distributed (iid) and exponentially interarrival
times 1/λ, which postulates that the next arrival at t+1 is completely indepen-
dent from the arrival at t. The use of Poisson arrival is motivated by the fact
that the workload source consists of possibly millions of independent sources
(callers) who create call data independently from each other.

The service time 1/μ of each server k is independent from the arrival pro-
cess and iid and exponentially distributed (memoryless) with parameter μ and
therefore the departure process (./M/./.) is also Markovian. The queue capacity
(buffers) is defined by parameter B. An arrival reaching a full queue is blocked.
This can be avoided by increasing the queue size B, decreasing the arrival rate
λ, or increasing the number of servers k and so increasing the joint service rate
μ. This holds also for the Converter, Feeder, and Serializer queues.

After the data is extracted by the Decoder, it is forwarded with rate λD to the
Converter queue. The Converter then converts the data to the file and database
formats and forwards it to the corresponding queues with rate λC . The Feeder
sends the data to the database with rate μF whereas the Serializer writes data
to disk with rate μS .

For each node in the graph, there is a race between λ and μ in the sense that
under the assumption λ ≤ μ for the utilization ρ and given number of servers
(i.e., in our case threads) k in that node, the following must hold:

ρ =
λ

kμ
≤ 1 , (1)

that leads to a stable node: all jobs in the node’s queue can eventually be worked
out. Due to different nodes, the bottleneck is the node where λ > μ. For find-
ing the best configuration of the queueing network (see Fig. 1), the following
performance measures [6–9] are considered for the nodes Decoder, Converter,
Serializer and Feeder.

106 H. Hlavacs and M. Nussbaumer

The utilization ρ from Equ. (1) of a particular node is the base for most other
measures. The probability Pn of n jobs in the node is given by

Pn =
(kρ)n

n!
P0 for 0 ≤ n < k (2)

Pn =
kkρn

k!
P 0

for k ≤ n ≤ B and B ≥ k (3)

where k is the number of servers, B the number of buffers (slots in the queue
that can be set to a sufficient large number), and P0 the probability of no jobs
in the node, which for k = 1 is

P0 =
1− ρ

1− ρB+1
for ρ �= 1 (4)

P0 =
1

B + 1
for ρ = 1 (5)

and for k > 1

P0 =

(
1 +

(1− ρ)B−k+1(kρ)k

k!(1− ρ)
+

k−1∑
n=1

(kρ)n

n!

)−1

. (6)

The expected number of jobs Es in a node, for k = 1 is

Es =
ρ

1− ρ
− (B + 1)ρB+1

1− ρB+1
(7)

and for k > 1

Es =
B∑

n=1

npn (8)

where the expected number of jobs in a queue Eq for k = 1 is

Eq =
ρ

1− ρ
− ρ

1 + BρB

1− ρB+1
(9)

and for k > 1

Eq =
B∑

n=k+1

(n− k)pn (10)

Since we have queues with finite buffers B, some traffic is blocked. The initial
traffic that reaches the queueing network is not equal to the traffic that passes
through the queueing network. Reduced to a single node this means that λ
depends on a certain blocking probability Pb. This leads to the effective arrival
rate λ′

λ′ = λ(1− Pb)

Optimization for Multi-thread Data-Flow Software 107

where the blocking probability Pb = PB , i.e. the probability of B jobs in a node.
The loss rate ε is

ε = λPB (11)

and the effective utilization ρ′ is

ρ′ =
λ′

kμ

again with k servers. Next, the mean response time R of a node is

R =
Es

λ′ (12)

and the mean waiting time W of a job in the queue is

W =
Eq

λ′ (13)

Finally, the probability that the buffers of a node are all occupied is denoted by

Pk =

(kρ)k

k!
k∑

j=0

(kρ)j

j!

(14)

Configurations of the queueing network can be evaluated according to these
measures. An optimization algorithm, presented in Section 4.1, determines the
best configuration.

4 Optimization Approaches

The focus of our work is to find the optimal configuration of a multi-thread
data-flow software for a specific host. A configuration is specified as a vector of
n tuples with

(k1 − . . .− ki − . . .− kn) (15)

where ki denotes the number of threads of node i. With the constraint of

n∑
i=1

ki ≤ c (16)

where c is the number of available (virtual) cores on a specific host. E.g.: The
initial configuration of Decoder, Converter, Serializer and Feeder nodes (1-1-
1-1) contains one thread per node. Optimization is done recursively by adding
threads to over-utilized nodes with two optimization goals:

108 H. Hlavacs and M. Nussbaumer

– Consolidation. With optimization towards consolidation a desired arrival
rate is given and the tool determines the minimum number of threads re-
quired to ensure that all nodes are below a predefined utilization threshold.
With a constant external arrival rate only the number of threads of an over-
utilized node with utilization ≥ limU (0 < limU < 1) will be incremented
for splitting load among available cores as evenly as possible.

– Throughput. With optimization towards throughput we start with the lowest
arrival rate of one job per second and the tool increases the arrival rate step-
wise until one node exceeds the predefined utilization threshold. Then the
number of the corresponding threads is increased as long as the utilization is
below the threshold. Again, the arrival rate will be increased and optimiza-
tion goes on as long as no hardware limit is reached. With 0 < extARInc < 1
the external arrival rate is increased for each new configuration by extARInc
as long as the maximum utilized node does not reach limU . For the maximum
possible number of threads the highest possible throughput is determined.

For calculating the best configuration of nodes, based on a host’s resources (for
example given by Table 1) the number of CPU cores is the upper bound for
the number of nodes that can run in parallel. It is assumed that each node is
executed as single thread on a dedicated core and since core sharing is ignored for
now, as many nodes as free cores available are possible. Memory, disk space and
speed, and network bandwidth are shared by all nodes and are the constraints
for optimization. When a configuration exceeds given resources, the algorithm
terminates.

Table 1. Resources of a hypothetical host

Resource Type Quantitiy

CPU cores (#) 32

Memory (MB) 32000

Disk space (MB) 100000

Disk speed (MB/s) 30

Network (Mbit/s) 100

4.1 Optimization Algorithm

Our first approach in finding the optimal configuration of threads for the pro-
posed queueing network software was to implement the aforementioned perfor-
mance metrics. We therefore created a Java3 test tool that calculates all the
necessary metrics and recursively adds threads to over-utilized nodes.

The optimization process of the calculation module can be described as
follows:

3 http://java.sun.com

http://java.sun.com

Optimization for Multi-thread Data-Flow Software 109

1. The calculation module uses parameters like the external arrival rate, the
service rates for each node, the queue sizes for each node and the host’s
hardware details.

2. The calculation module starts with an initial configuration of one thread per
node.

3. The calculation module calculates all the performance metrics mentioned in
the previous section.

4. The process is terminated if a utilization goal is reached or hardware restric-
tions are met.

5. Otherwise the calculation module increases the most over-utilized node (the
first node that is utilized more than e.g.: 80%).

6. Goto step 3.

4.2 Real Measurements

Our second approach uses a combination of the previously mentioned calculation
module and a measurement approach. Basically, the analytical approach can use
hypothetical input data (e.g.: host resources and node service rates) to derive
an optimal configuration for the given setup. The goal of our work is to find an
optimal solution for a given server software on a specific host. Therefore, another
Java module, the measurement module, was developed.

The optimization process of both the calculation and measurement module
can be described as follows:

1. The measurement module creates artificial tasks (e.g.: writing data to a file,
writing data into a database, data modifications and so forth).

2. These artificial tasks, which should be as close to the tasks of the real queue-
ing network software (e.g.: the DFE) as possible, are assigned to artificial
nodes.

3. The measurement module continuously executes the given tasks on a real
host and measures the service rate for each node.

4. The measurement module also automatically finds out important hardware
specifications of the tested host.

5. The measured service rates, along with the hardware specifications of the
tested host are used by the calculation module to recursively find the optimal
configuration of the queueing network software for a specific host.

By measuring the service rate on the tested machine, the optimization process
now finds the optimal configuration on a given host. In a previously published
paper, experiments conducted with the calculation and measurement module
are described in more detail in [11]. The focus of this paper, however, is the
comparison of the results of our approach with the true optimum configuration
for two server machines. These true optimum configurations are derived from
experiments conducted with the actual DFE software installed on two server
machines (see Section 5).

110 H. Hlavacs and M. Nussbaumer

5 Experiments

To validate our optimization approach a testing environment was set up and
experiments were conducted. Therefore, the queueing network software was in-
stalled on two hosts (Goedel and Zerberus).

The first host Goedel is a SUN Fire v40z with four dual-core AMD Opteron
processors Model 875, each core at 2.2 GHz, has 24 GB of main memory, five 300
GB Ultra320 SCSI HDs, 10/100/1000 Mb/s Ethernet, and runs Linux 2.6.16.60-
0.42.7.

The second host Zerberus is a Sun SPARC Enterprise T5220, model SED-
PCFF1Z with a SPARC V9 architecture (Niagara 2) and a Sun UltraSPARC
T2 eight-core processor, each core at 1.2 Ghz and with Chip Multithreading
Technology (CMT) for up to 64 simultaneous threads, 32 GB of main memory,
two 146 GB Serial Attached SCSI disks, 10/100/1000 Mb/s Ethernet, and runs
SunOS 5.10 Generic 127111-11.

Furthermore, an Oracle Database was installed on host Zerberus. A ticket
generator imitating VoIP devices and sending Diameter tickets to the queueing
network software was installed on several test clients.

The procedure of the experiments can be summarized as follows:

– The queueing network software was started with the initial configuration.
– The ticket generator repeatedly sends Diameter tickets to the queueing net-

work software with a given external arrival rate.
– After an experiment cycle, software-internal performance metrics are used

to determine the most over-utilized node, which will be increased by one.
– The queueing network software is reconfigurated and restarted and a new

experiment cycle is started.
– The experiments continue until the optimal configuration is found.

Zerberus. The first experiments were conducted with the actual queueing net-
work software software installed on host Zerberus. As mentioned before, host
Zerberus has an Oracle database installed locally and has the possibility to start
up to 64 parallel threads.

Again, an over-utilization occurs if the node is utilized more than 80%. There-
fore, nodes that show a utilization of over 80% will be increased by one thread.

Table 2 shows the service rate and the utilization of all four nodes with an
external arrival rate of 1000 tickets per second. This first experiment makes it
obvious that the Feeder node is the bottleneck of the system, only managing an
average number of 66 tickets per second. Therefore the adaption tool suggests
that the Feeder node has to be increased by one, creating two Feeder threads at
the next experiment.

In the next few steps it became obvious that even though the Feeder node was
recursively extended, the service rate did not increase in the same way. Table
3 shows that the mean service rate of one Feeder thread decreases with every
newly added Feeder thread. Of course, the total service rate of all Feeder nodes
does not decrease, but adding new Feeder threads does not improve the total

Optimization for Multi-thread Data-Flow Software 111

Table 2. Initial config. (1-1-1-1) on host Zerberus (ext. arrival rate: 1000 tickets/s).

Service Rate [tickets/s] Utilization [%]

Decoder 10658 9.38

Converter 12147 8.23

Serializer 2061 48.52

Feeder 66 100.00

service rate of all Feeder nodes enough. Even with the maximum number of 61
threads, the Feeder node stays the systems bottleneck.

Table 3. Service rates of the Feeder node with different configurations on host Zerberus

Mean Service Rate

Configuration Individual Total

(1-1-1-1) 66 66

(1-1-1-2) 44 88

(1-1-1-4) 34 136

(1-1-1-10) 7 70

(1-1-1-20) 5 100

(1-1-1-61) 2 122

Table 4 shows that with the final configuration (one Decoder, one Converter,
one Serializer and 61 Feeder nodes) all other nodes are of course still under-
utilized. This leads to the conclusion that the Feeder node should indeed be
fixed to one thread per node. The solution to this problem, as mentioned before,
could be to allocate a large queue to the Feeder node. By doing that, the node
can eventually handle queued tickets when the external arrival rate decreases.

Table 4. Final config. (1-1-1-61) on host Zerberus (ext. arrival rate: 1000 tickets/s).

Utilization [%]

Decoder 9.25

Converter 9.67

Serializer 48.95

Feeder 100.00

The final experiment therefore used a Feeder node fixed to one thread per
node. Table 5 shows that an initial configuration of one thread per each node
cannot handle an external arrival rate of 2000 tickets per second without over-
stepping an utilization of 80%, because the Serializer node is already at a

112 H. Hlavacs and M. Nussbaumer

utilization level of 97.04%. Increasing the number of threads per node (without
taken the Feeder node into account) the final and optimal configuration can
handle an external arrival rate of 66900 tickets per second.

Table 5. Initial and final configuration on host Zerberus, with a fixed Feeder node

Initial Config. Optimal Config.

2000 tickets/s 66900 tickets/s

Node Util. [%] Threads Util. [%] Threads

Decoder 18.77 1 79.11 9

Converter 16.46 1 70.44 9

Serializer 97.04 1 79.93 45

Feeder (fixed) 100.00 1 100.00 1

Table 5 shows that at an external arrival rate of 66900 tickets per second, all
nodes are under a utilization level of 80%. Of course it should be noted, that
the Feeder node is still highly over-utilized and can only handle about 70 tickets
per second. Given the fact that the Feeder node and therefore the database is
the natural bottleneck, it is necessary to assign a very large queue to the Feeder
node, to minimize the loss rate.

Goedel. To compare the results and maybe find a different optimal configura-
tion the same experiments were conducted with the queueing network software
installed on host Goedel. With four dual-core processors, a maximum amount of
8 threads can be started. As mentioned before, host Goedel has no local database
installed and uses the Oracle database installed on host Zerberus.

Table 6 shows the results of the first experiment. At an external arrival rate
of 1000 tickets per second, the Feeder node is again the systems bottleneck.
Table 6 also shows that compared to host Zerberus, the Decoder, Converter and
Serializer node show a higher service rate during the initial experiment.

Table 6. Initial config. (1-1-1-1) on host Goedel (ext. arrival rate: 1000 tickets/s).

Service Rate [tickets/s] Utilization [%]

Decoder 32617 3.07

Converter 26058 3.84

Serializer 5202 19.22

Feeder 105 100.00

To start the optimization process, the Feeder node again has to be increased.
Table 7 shows that on host Goedel the individual service rate of one Feeder thread

Optimization for Multi-thread Data-Flow Software 113

does, to some extent, stay the same, which leads to the fact that the total service
rate of all Feeder threads is indeed slowly increasing. Table 7 shows that one
Feeder thread can handle 105 tickets per second, while the final configuration of
5 Feeder threads can handle 350 tickets per second.

Table 7. Service rates of the Feeder node with different configurations on host Goedel

Mean Service Rate

Configuration Individual Total

(1-1-1-1) 105 105

(1-1-1-2) 79 158

(1-1-1-3) 81 243

(1-1-1-4) 70 280

(1-1-1-5) 70 350

Given the fact that the total service rate of all Feeder threads is increasing,
it would make sence to stick to this optimization approach. Table 8 therefore
shows an initial and optimal configuration on host Goedel. With an external
arrival rate of 280 tickets per second the Feeder node of the initial configuration
is over-utilized, but with the optimal configuration of 5 threads, the Feeder node
is able to stay under the utilization threshold of 80%.

Table 8. Initial and final configuration on host Goedel

Initial Config. Optimal Config.

280 tickets/s 280 tickets/s

Node Util. [%] Threads Util. [%] Threads

Decoder 0.86 1 0.97 1

Converter 1.07 1 1.41 1

Serializer 5.38 1 4.04 1

Feeder 100.00 1 80.00 5

Table 9 shows the results of the experiments, if the software developer decides
to fix the Feeder node to one thread per node. At an initial configuration of one
thread per node and an external arrival rate of 5200 tickets per second, the Seri-
alizer node would exceed the utilization threshold of 80%. After the optimization
process, the system is able to handle up to 15600 tickets per second with the
optimal queueing network software configuration (one Decoder node, two Con-
verter nodes, four Serializer nodes and one Feeder node), without exceeding the
utilization threshold.

114 H. Hlavacs and M. Nussbaumer

Table 9. Initial and final configuration on host Goedel, with a fixed Feeder node

Initial Config. Optimal Config.

5200 tickets/s 15600 tickets/s

Node Util. [%] Threads Util. [%] Threads

Decoder 15.94 1 52.10 1

Converter 19.96 1 75.02 2

Serializer 99.96 1 79.89 4

Feeder (fixed) 100.00 1 100.00 1

5.1 Verification of the Analytical Approach

To verify the analytical approach we used the average service rates for each node
derived from the experiments done on host Zerberus and host Goedel (see Table
10) and started the calculation module one more time.

Table 10. Mean service rates of both tested hosts for each node type

Mean Service Rates

Node Zerberus Goedel

Decoder 9766 30055

Converter 10430 18672

Serializer 1987 6146

Feeder 28 94

Table 11 shows that starting the calculation module with optimization to-
wards throughput, and using the average service rates derived out of the exper-
iments, both, experiments and the calculation module deliver the same optimal
configuration. On host Zerberus and host Goedel a normal optimization would
only increase the number of Feeder nodes. Due to different hosts and therefore
different node service rates, an optimal configuration with a fixed Feeder node
would lead to an optimal configuration of 9 Decoder nodes, 9 Converter nodes,
45 Serializer nodes and 1 Feeder node on host Zerberus, and 1 Decoder node, 2
Converter nodes, 4 Serializer nodes and 1 Feeder node on host Goedel.

These four verifications show the importance of the service rates and if there is
no possibility to derive real service rates from an actual software, it is necessary
to analyze the used nodes in every detail. As mentioned before, the measurement
module is using simulated nodes to derive artificial service rates. Therefore, the
simulated tasks have to be as close as they can get to the actual performed tasks
of the tested queueing network software.

Optimization for Multi-thread Data-Flow Software 115

Table 11. Optimal configuration of threads for both hosts

Zerberus Goedel

Optimal Configuration Normal Fixed Feeder Normal Fixed Feeder

Experiments (1-1-1-61) (9-9-45-1) (1-1-1-5) (1-2-4-1)

Analytical Model (1-1-1-61) (9-9-45-1) (1-1-1-5) (1-2-4-1)

5.2 Removing the Bottleneck

In the above examples we see that the connection to our database is a seri-
ous bottleneck that hinders further improvements. Further optimization would
therefore try to improve the database connection throughout, e.g., by increasing
the network bandwidth, installing new drivers, or installing replicated databases.
Consider a hypothetical case where on Zerberus the service rate of the Feeder
would be improved by a factor of 5, 10, or even 15.

Table 12. Service rates, number of threads, and utilization in a hypothetical scenario
with Feeder being faster by a factor of 5x, 10x, or 15x. The system throughput is
increased to 13400, 23000, and 29500 resp.

5x, EAR: 13400 10x, EAR: 23000 15x, EAR: 29500

SR T Util. [%] SR T Util. [%] SR T Util. [%]

Decoder 10658 2 62.86 10658 3 71.93 10658 4 69.2

Converter 12147 2 55.16 12147 3 63.12 12147 4 60.71

Serializer 2061 9 72.24 2061 14 79.71 2061 18 79.52

Feeder 330 51 79.62 660 44 79.2 990 38 78.42

Table 12 shows that improving the bottleneck indeed results in a significant
improvement of the overall throughput, while keeping all nodes at moderate
utilization. Still most threads are invested into the Feeder, which is still the
main bottleneck.

6 Conclusion

This work showed how queueing theory can help finding the best configuration
of a multi-thread software. By modeling such a software as queueing network
consisting of nodes with certain functionalities, optimization towards throughput
is possible. As a result the optimal number of threads per node is determined to
efficiently use available CPU cores, memory, disk space and speed, and network
bandwidth. Experiments evaluated our methodology.

The basic idea behind our three approaches is an online optimization tool
that can be placed in front of the queueing network software. After measuring

116 H. Hlavacs and M. Nussbaumer

the respective service times of the nodes, we use an analytical queueing network
to find the optimal number of threads for each node.

After that, the data-flow software can go online. The optimization tool should
then be able to detect changes in the external arrival rate and – if necessary –
recalculate the optimal configuration.

We also conducted several other experiments using a different setup of the
queueing network, to see if the proposed approaches can be used for other multi-
thread data-flow software. The structure of the queueing network, as well as the
used nodes can easily be changed or enhanced, without knowledge of the Java
code. Therefore, the mentioned approaches can be used for other multi-thread
data-flow software as well.

References

1. Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proceedings
of the IEEE 93, 216–231 (2005),
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.136.7045

2. Püschel, M., Moura, J.M.F., Johnson, J., Padua, D., Veloso, M., Singer, B., Xiong,
J., Franchetti, F., Gacic, A., Voronenko, Y., Chen, K., Johnson, R.W., Rizzolo, N.:
SPIRAL: Code Generation for DSP Transforms. Proceedings of the IEEE, Special
Issue on Program Generation, Optimization, and Adaptation 93(2), 232–275 (2005)

3. Whaley, R.C., Dongarra, J.J.: Automatically tuned linear algebra software. In:
Supercomputing 1998: Proceedings of the 1998 ACM/IEEE Conference on Super-
computing (CDROM), pp. 1–27. IEEE Computer Society, Washington, DC (1998)

4. Osogami, T., Kato, S.: Optimizing system configurations quickly by guessing at
the performance. SIGMETRICS Perform. Eval. Rev. 35(1), 145–156 (2007)

5. Balsamo, S., Person, V.D.N., Inverardi, P.: A review on queueing network mod-
els with finite capacity queues for software architectures performance prediction.
Performance Evaluation 51(2-4), 269–288 (2003)

6. Jain, R.K.: The Art of Computer Systems Performance Analysis: Techniques for
Experimental Design, Measurement, Simulation, and Modeling. Wiley, Chichester
(1991), http://www.cse.wustl.edu/~jain/books/perfbook.htm

7. Zukerman, M.: Introduction to Queueing Theory and Stochastic Teletraffic Models.
Zukerman (2009), http://www.ee.cityu.edu.hk/~zukerman/classnotes.pdf

8. Bolch, G., Greiner, S., de Meer, H., Trivedi, K.S.: Queueing Networks and Markov
Chains: Modeling and Performance Evaluation with Computer Science Applica-
tions, 2nd edn. Wiley Blackwell (May 2006),
http://www4.informatik.uni-erlangen.de/QNMC

9. Kobayashi, H., Mark, B.L.: System Modeling And Analysis - Foundations of Sys-
tem Performance Evaluation, 1st edn., vol. 1. Prentice-Hall, Englewood Cliffs
(2008), http://www.princeton.edu/kobayashi/Book/book.html

10. Agresti, A.: Categorical Data Analysis, 2nd edn. Wiley-Interscience, Hoboken
(2002)

11. Weidlich, R., Nussbaumer, M., Hlavacs, H.: “Optimization towards consolidation
or throughput for multi-thread software. In: International Symposium on Parallel
Architectures, Algorithms and Programming, pp. 161–168 (2010)

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.136.7045
http://www.cse.wustl.edu/~jain/books/perfbook.htm
http://www.ee.cityu.edu.hk/~zukerman/classnotes.pdf
http://www4.informatik.uni-erlangen.de/QNMC
http://www.princeton.edu/kobayashi/Book/book.html

Formal Mapping of WSLA Contracts on Stochastic
Models

Rouaa Yassin Kassab and Aad van Moorsel

School of Computing Science, Newcastle University, UK
{rouaa.yassin-kassab,aad.vanmoorsel}@ncl.ac.uk

Abstract. Service level agreement (SLA) specification languages are designed
to express monitorable contracts between service providers and consumers. It is
of interest to determine if predictive models can be derived for SLAs expressed
in such languages, if possible in automated fashion. For this purpose, we study
in this paper the mapping of the Web Service Level Agreement (WSLA) into
reward metrics defined in the Stochastic Discrete Event Systems (SDES) formal-
ism. We associate a formal semantics with WSLA elements and map these on
SDES through a five step mapping process, which includes expressions for the
metrics and functions on these metrics, the time at which to predict, and the ul-
timate service level compliance probability. We illustrate our approach through a
stock quote web service example.

1 Introduction

Service Level Agreements (SLA) clarify the relationship between the service provider
and their customers regarding the overall quality of the offered service [1,2]. SLA con-
tracts can be written using different languages such as WSLA [3], WS-Agreement [4],
and SLAng [5]. Each of these languages has its own syntax and semantics but they have
in common declarations of several pieces of information such as, the contractual parties,
performance or dependability levels, and the penalties in case of contract breaching [6].
An SLA is typically defined in such a way that it is monitorable. This for instance pro-
vides the ability to automate the deployment and configuration of monitoring software
based on SLA specification, as pursued in [2].

In this paper we pursue another use of SLAs, namely that as the specification of
metrics for a predictive discrete-event stochastic model. Service providers want to be
able to predict the level of SLA compliance before agreeing to an SLA with a customer.
Thus, the automated conversion from an SLA to a metric in a discrete event stochastic
model is of interest. The use of an SLA for predictive modeling is not necessarily easy
since SLAs are not written for the purpose of model-based prediction. As an example,
SLAs do not define steady-state metrics, but instead functions over periodically moni-
tored variables. Modeling and solving for such metrics is typically more involved than
solving for steady-state metrics. In this work, we demonstrate how an existing SLA
language can be mapped on (metrics of) a discrete-event stochastic model, in part in
automated fashion.

More specifically, we map the Web Service Level Agreement language (WSLA) [3]
on SDES, the Stochastic Discrete Event System formalism developed in [7]. We choose

N. Thomas (Ed.): EPEW 2011, LNCS 6977, pp. 117–132, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

118 R. Yassin Kassab and A. van Moorsel

to use WSLA because it is published and publicly available and it is powerful enough
to define SLA documents in several domains (like web services). Similarly, SDES is a
general purpose stochastic process formalism that includes a variety of reward modeling
formalisms, and the mapping to SDES therefore directly translates to that in formalisms
that have extensive tool support. We propose a five-step process to map WSLA to SDES.
In the first two steps, we determine the semantics of all WSLA elements in terms of
SDES. We then give a precise interpretation of the time instances and intervals used
in WSLA, and provide a formal interpretation of the functions used in WSLA (such
as ‘max’ or ‘span’). The final step in our mapping process then describes the final
assessment whether the SLA is met or not. It will turn out that we cannot automate
all aspects of the mapping process, since the WSLA document does not provide much
information about the system dynamics itself. This implies that certain aspects of the
SDES model must be introduced by the modeler, which we will indicate for each aspect
of the mapping. Through an example of a stock quote service, we will illustrate the
working of our mapping approach.

To the best of our knowledge model-based prediction based on mapping SLAs on a
stochastic process has not yet been considered in literature, certainly not in the fashion
pursued in this paper. Therefore, there is no literature available that directly relates to
what we do in this paper. However, it is important to note the fundamental difference
between our approach and using model-based metric definitions as SLAs, such as in
[8]. The approaches are opposite: the latter requires engineers or modelers to write and
understand sophisticated metrics associated with a stochastic process, while our work
starts from an SLA specified by an engineer and provides this engineer with the stochas-
tic metrics that closest fit with the intended meaning of the SLA. We first introduced
this idea in our previous work [9], where we illustrated the feasibility of the approach
through an ad hoc mapping from WSLA to Möbius rewards [10]. The work in this pa-
per reflects a generic solution independent of the specifics of a tool, providing a formal
mapping from WSLA to a general-purpose stochastic process definition.

The rest of the paper is organized as follows. In Sec. 2 we present the relevant back-
ground information. In Sec. 3 we outline our approach, while Sec. 4 to 8 provide a
detailed mapping from WSLA to SDES. A case study is presented in Sec. 9 before we
conclude in Sec. 10.

2 Background

In this paper we map WSLA elements to metrics in the SDES formalism [7], which
describes the system dynamics as well as the metrics defined in WSLA. In this section,
we review the target formalism SDES and the origin formalism WSLA respectively.

2.1 Stochastic Discrete Event System (SDES)

Stochastic Discrete Event System is a general formalism, in which well-known for-
malisms such as Stochastic Petri Nets and Queuing Networks can be expressed.

Definition 1. A stochastic discrete event system is a tuple, SDES=(SV, A, S ,RV) [7],
where, SV is a set of state variables, A is a set of actions, S is a Sort function S : SV→

Formal Mapping of WSLA Contracts on Stochastic Models 119

S, that gives all possible values of a state variable sv ∈ SV (where S is the set of all
possible sorts), and RV is a set of reward variables.

An SDES is characterized by its state σ ∈ Σ, Σ = ∏sv∈S V S (sv), where Σ is the set of
all theoretically possible SDES states which not all of them are necessarily reachable.
SDES moves between its reachable states through the execution of its actions.

For our purposes, we need to define the reward variable rv further as follows.

Definition 2. An SDES reward variable rv ∈ RV is a tuple, rv = (rvrate, rvimp, rvint, rvavg),
where,

– rvrate : Σ → R: is a rate reward function that specifies the reward obtained while
the system is in a specific state.

– rvimp : A → R: is an impulse reward function that specifies the reward obtained
when a specific action fires.

– rvint = [lo, hi]: is an observation interval under consideration specified by the
boundaries lo, hi ∈ R0+ ∪ {∞} and lo ≤ hi. Hence lo = hi implies an instant of
time measure and lo < hi an interval of time measure [11].

– rvavg ∈ B is a boolean value specifying if the measures should be computed as an
average over time (rvavg = TRUE) or accumulated (rvavg = FALS E).

An SDES model is represented as a stochastic process SProc = {σ(t), A(t), t ∈ R0+},
where σ(t) ∈ Σ denotes the state at time t, and A(t) ⊂ A is a set of actions executed at
time t. Hence, we can define the reward variable value at time instant t as following:
R(t) = rvrate(σ(t)) +

∑
a∈A(t) rvimp(a). In [7], this is written as:

rv =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

lim
t→lo

R(t), if lo = hi and ¬rvavg

lim
x→lo,y→hi

∫ y

x
R(t) dt, if lo < hi and ¬rvavg

2.2 Web Service Level Agreement (WSLA)

WSLA is an SLA specification language in XML tailored to web services. Here we
review only WSLA elements important to our work. For full details, we refer to [3].
We use courier font to distinguish XML fragments. WSLA consists of three main sec-
tions: Parties, ServiceDefinition and Obligations. Parties contains informa-
tion about the contractual parties, ServiceDefinition contains the quality attributes
defined by a set of metrics and the time interval over which these metrics are collected.
Finally, the Obligations section contains the Service Level Objectives (SLO) defined
through thresholds for the described attributes over a validity period.

Fig. 1 depicts the dependencies between WSLA elements that concern our work.
Part (a) shows that an SLO (ServiceLevelObjective) is defined by a logical Expres-
sion that has to be valid during a Validity period. This expression has a Predicate
which compares a quality attribute (SLAParameter) to a threshold (Value). A logical
operator (like And, Or) can be used to express SLO with nested expressions. WSLA al-
lows the modeler to define how the desired SLAParameter is measured and computed

120 R. Yassin Kassab and A. van Moorsel

Value

Predicate Ob
lig

ati
on

ExpressionLogical
Operator

ServiceLevelObjective

Validity

SLAParameter

(a) Service Level Objective and its elements

SLAParameter

Se
rvi

ce
 D

efi
nit

ion

Co
mp

ute
d

Me
tri

c
Me

as
ur

ed
Me

tri
cMeasurement

Directive

ScheduleFunction

IntervalPeriod

(b) SLAParameter and its elements

Fig. 1. Main WSLA elements and their dependencies

using Metrics(s) that contain MeasurementDirective, Schedule or Function ele-
ments as shown in Fig. 1(b). For example, a measured Metric, using a MeasurementD-
irective, provides a raw data obtained by intercepting or probing a particular
component. If this data is not enough to express an SLAParameter, further manipu-
lations are performed by a computed Metric, using a Function. A Function may
create a time series of a metric using a Schedule that defines a Period to specify the
time during which the metric is collected (day, month, etc.), and an Interval to spec-
ify the instances when a new value is added (minute, hour, etc.). In our paper, we omit
Metric usage since it only holds the value of a measurement or a function.

Fig. 2 provides an illustrative WSLA example of a stock quote service adopted from
[3] with a change in the validity period as we will discuss in Sec. 9.3. Part (a) of the fig-
ure defines an SLO called ContinuousDownTime that specifies the CurrentDownTime
to be less than 10 minutes during the last week of the year. Part (b), then, speci-
fies how CurrentDownTime is computed. Here, the StatusRequest measurement
in the MeasuredStatus metric checks if the system is up or down (1 or 0). This is
used as input to StatusTimeSeries metric that uses a TSConstructor function to

<SLA>
 <Parties>...</Parties>
 <ServiceDefinition name="DemoService">
 (c)<Schedule name="availabilityschedule">
 <Period>
 <Start>2001-12-25T14:00:00.000-05:00</Start>
 <End>2001-12-31T14:00:00.000-05:00</End>
 </Period>
 <Interval> <Minutes>1</Minutes> </Interval>
 </Schedule>
 <Operation name="GetQuote"
 xsi:type="WSDLSOAPOperationDescriptionType">
 (b)<SLAParameter name="CurrentDownTime"
 type="long" unit="minutes">
 <Metric>CurrDownTime</Metric>
 </SLAParameter>
 <Metric name="CurrDownTime" type="long" unit="minutes">
 <Function type="Span" resultType="double">
 <Metric>StatusTimeSeries</Metric>
 <Value> <LongScalar>0</LongScalar> </Value>
 </Function>
 </Metric>
 <Metric name="StatusTimeSeries" type="TS" unit="">
 <Function type="TSConstructor" resultType="TS">
 <Schedule>availabilityschedule</Schedule>

 <Metric>MeasuredStatus</Metric>
 </Function>
 </Metric>
 <Metric name="MeasuredStatus" type="integer" unit="">
 <MeasurementDirective type="StatusRequest"
 resultType="integer">
 <RequestURI>http://y.com/StatusRequest/GetQuote</RequestURI>
 </MeasurementDirective>
 </Metric>
 </Operation>
</ServiceDefinition>
<Obligations>
 (a)<ServiceLevelObjective name="ContinuousDowntime">
 <Validity>

 <Start>2001-12-25T14:00:00.000-05:00</Start>
 <End>2001-12-31T14:00:00.000-05:00</End>

 </Validity>
 <Expression>
 <Predicate type="Less">
 <SLAParameter>CurrentDownTime</SLAParameter>
 <Value>10</Value>
 </Predicate>
 </Expression>
 </ServiceLevelObjective>
</Obligations> </SLA>

Fig. 2. WSLA document for a Stock Quote Service (a) Service Level Objective (b) SLAParameter
(c) Schedule

Formal Mapping of WSLA Contracts on Stochastic Models 121

define a series of these values. In turn, CurrDownTimemetric applies a Span function
on that series that gives for a specific position in that time series, the maximum length
of an uninterrupted sequence of a value (0 in our example) ending at that position. Fi-
nally, this metric value is used as the SLAParameter value. Finally, Part (c) shows the
definition of availabilityschedule used by StatusTimeSeriesmetric to collect
MeasuredStatus metric values at each minute for one week. All the previous define
the SLO such as that the system will never be down for 10 minutes or more in a row
throughout the last week of December.

3 Outline of the Mapping Process

Our approach is given in Fig. 3. It consists of five steps that map WSLA elements on
SDES reward variables (solid lines) or on functions of these reward variables (dashed
lines). We outline the steps in what follows and then describe them in detail afterwards.

Step 1: Defining basic WSLA semantics. In order to be precise, we need to associate
WSLA elements (the dotted boxes in the left of Fig. 3) with mathematical terms.

Step 2: MeasurementDirective(s) Mapping. Completing the interpretation of
WSLA’s behavioral semantics, it provides a systematic translation of all measured met-
rics in a WSLA document into SDES reward variables.

Step 3: ScheduleMapping. It provides a systematic translation to obtain the set of
observation intervals of the reward variable. This can be a set of either instant or interval
of time observation intervals.

Step 4: Function(s) Mapping. Each WSLA Function (such as max and span) is
associated a mathematical meaning to further specifying the reward variable in SDES.

Step 5: SLO Result. The outcome of this mapping allows the evaluation of SLO
satisfaction probability, i.e., the determination if the service level agreed to is met.

This mapping must be aided in its second step by the modeler (modeler symbol
in Fig. 3) because a WSLA document does not provide information about the system
dynamics. We will point out when this interference is required later in Sec. 5.

4

WSLA DOC

Formal Mapping

Function on Reward
Variable

<SLA>
.
..
.
<Operation name="GetQuote"
<SLAParameter name=
"OverloadPercentage"
type="float" unit="Percentage">
<Metric>
OverloadPercentageMetric
</Metric>
</SLAParameter>
…

<Obligation>
..
<\Obligation>
</SLA>

Modeller

Supply
State

variables
or actions

Defining WSLA
Semantics1

Fun
cti

on,
 SL

APa
ram

ete
r,

an
d

Ser
vic

eLe
vel

Obj
ect

ive
Mea

sur
eme

nt
Dir

ect
ive

2

5

Sch
edu

le

SLO
Result

4

Function of Reward Variable

3

Reward Variables

Observation Intervals

SDES Reward Variable

Fig. 3. The Mapping Process from WSLA to SDES

122 R. Yassin Kassab and A. van Moorsel

Table 1. Formal elements and associated WSLA location (using XPath 2.0 expressions)

Formal Elements WSLA Location
slo /SLA/Obligations/ServiceLevelObjective/@name

slap //ServiceLevelObjective[@name=’slo’]/Expression/Predicate/SLAParameter/text()
//ServiceLevelObjective[@name=’slo’]/Expression/Predicate/SLAParameter[text()

c =′slap′]/../@type
slo //ServiceLevelObjective[@name=’slo’]//Expression/Predicate

v /SLAParameter[text()= ′ slap′]/../Value/text()
ve //ServiceLevelObjective[@name=’slo’]/Validity/End/text()
vs //ServiceLevelObjective[@name=’slo’]/Validity/Start/text()

slap
m ∈ M /SLA/ServiceDefinition/Operation/Metric/MeasurementDirective/@type
fm ∈ Fm //Metric[Function/Metric/text()=//Metric/MeasurementDirective[@type=’m’]

/../@name | //Metric/Function[@type=’ fm’]/../@name]/Function/@type
sch //Operation/Metric[Function/Metric[text()=//Metric/MeasurementDirective[@type

=’m’]/../@name]]/Function[@type=’TSConstructor’]/Schedule/text()

sch
s /SLA/ServiceDefinition/Schedule[@name=′sch′]/Period/Start/text()
e /SLA/ServiceDefinition/Schedule[@name=′sch′]/Period/End/text()
i /SLA/ServiceDefinition/Schedule/Interval/node()/text()

o //Function[@type=’Span’]/Value/LongScalar/text()

4 Step 1: Formal Definition of Basic WSLA Semantics

In this section, we formalize the structure and the semantics of WSLA’s core elements
(see Fig. 1). To be able to provide a precise mapping, Table 1 gives the exact locations
in the WSLA contract for all elements, using the XPath 2.0 query language[12].12

We start by formally representing ServiceLevelObjective, since Fig. 1(a) shows
it is the key WSLA element, defining its ultimate goal. An SLO in WSLA compares
an SLAParameterwith some threshold Value, for a specific Validity period. Hence,
we obtain the following definition:

Definition 3. A WSLA ServiceLevelObjective can be denoted by a tuple slo =
(slap, c, v, vs, ve),3 where:

– slap ∈ S LAP: the desired SLAParameter from the set of all SLAParameter(s)
(S LAP) defined in a WSLA document. It is defined in detail in Definition 4.

– c ∈ C: where C = {=, <, >,≤,≥}.
– v ∈ R: the value that the SLAParameter is compared to.
– vs, ve ∈ R+, vs ≤ ve: the start and end of the validity period.

1 XPath is used to identify elements in an XML document using location path expressions to
reach a specific node or set of nodes. A node, in our work, is an element, an attribute or a text
node, reached using the nodename, @nodename and text() construct, respectively. A path
expression consists of a set of steps separated by a slash /, to represent a parent-child relation,
or double slash // to represent an ancestor-descendant relation (that is, it selects nodes from
the node that match the selection regardless where these nodes are). Predicates (inserted into
square brackets []) are used to search for a node that matches a particular value. Also two dots
.. is used to select the parent of the current node.

2 The XPath expressions have been validated using Altova XMLSpy software [13].
3 We do not need to represent WSLA’s Expression since it does not matter to the mathematical

semantics; Also, for simplicity, we are not considering nested expressions. Therefore, we do
not include logical operators in the slo definition.

Formal Mapping of WSLA Contracts on Stochastic Models 123

The next step is to define the SLAParameter, slap formally. As depicted in Fig. 1(b),
WSLA collects measurements at regular intervals and then applies a set of functions
over them to derive the exact slap. This allows us to define slap as:

Definition 4. A WSLA SLAParameter is a tuple slap = (M, S ch, F), where:

– M: Is a non-empty set of |M| elements. Each m ∈ M specifies a MeasurementDire-
ctive. To be defined in detail in Sec. 5.

– sch ∈ S ch: Is a schedule used by a WSLA function to collect measurements peri-
odically. sch is defined as a set of time points:

sch = {t1, . . . , tk}; t1 = s, t j+1 = t j + i, j = 1 . . . k − 2, tk = e,

where s, e are the start and end points, i is the increment in time, and k = � e−s
i � is

the number of elements in sch.
– F: For each m ∈ M, a set of functions Fm = {Fm,1, . . . , Fm,|Fm |} is defined, each

refers to a WSLA Function. This set can be empty if slap represents the value of a
single m ∈ M. To be defined further in Sec. 7.

5 Step 2: MeasurementDirective(s) Mapping

In this section, we first present MeasurementDirective types in WSLA, then we pro-
vide a mapping for each of them. TheMeasurementDirective(s)are the actual metrics
constituting the slo. These can be one of seven types, namely Status, StatusRequest,
Counter, Gauge, ResponseTime, DownTime, and InvocationCount.

Fig. 4 provides the generic structure of a MeasurementDirective. The values in
italics depend on the measurement type, all other tags remain the same. The measure-
ment type is specified in the type attribute, which affects the type of the result specified
in the resultType attribute. The structure also contains an element that refers to the
URI, from where this measurement value can be retrieved. In a model, a URI may indi-
cate the modeler to include a set of actions or state variables that convey a meaning this
URI provides. We discuss this when we present each measurement mapping.

<MeasurementDirective xsi:type="wsla:Measure type" resultType="result type">
..additional tags specifying URI name

</MeasurementDirective>

Fig. 4. General structure Measurement directives element in WSLA

We provide, in what follows, an unambiguous mapping from each MeasurementDi-
rective to a reward variable rv in SDES. We will point out the information needs to
be input by the modeler to complete this mapping.

5.1 StatusRequest and Status

StatusRequest gives 1 if the system is up and 0 otherwise, while Status gives a
true/false value[3]. This difference is not important when modeling, hence, we treat

124 R. Yassin Kassab and A. van Moorsel

them identically. These measurements follow the syntax in Fig. 4 with resultType of
”integer” for StatusRequest. The URI is referred to using <RequestURI> tag.

We map this measurement as a rate reward variable that returns 1 while the system
is in an up state and 0 otherwise. If Σ∗ ∈ Σ is the set of system state under which this
SDES system is considered up, then the reward variable is:

rv =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

rvimp(a) = 0 ∀a ∈ A

rvrate(σ) =

{
1 if σ ∈ Σ∗
0 otherwise

URI usage: We propose that it refers to the status of WSDL operation.
Input modeler: The system states Σ∗ that correspond to an available system.
Evaluation Interval: WSLA retrieves this measurement at specific time instances.

Hence, it is represented as instant of time reward variable, i.e., rvint = [lo, hi],with lo =
hi & rvavg = False.

5.2 InvocationCount

WSLA defines InvocationCount as “the number of usages of an operation” [3]. That
means, it corresponds to the throughput of a service operation. Its WSLA syntax follows
Fig. 4 with resultType=”integer” and a <CounterURI> tag for specifying the URI.

The natural manner to describe this measurement in SDES is to associate an impulse
reward of value 1 each time an action a∗ ∈ A that represent the WSDL operation is
fired:

rv =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

rvrate(σ) = 0 ∀σ ∈ Σ
rvimp(a) =

{
1 if a = a∗

0 otherwise

URI Usage: Refers to include an action that represents the WSDL operation.
Input modeler: Action a∗.
Evaluation Interval: We interpret WSLA’s use of this measurement as the incre-

ment in the number of the service invocations from one reading to the next. The reward
variable should therefore be evaluated as interval of time reward variable to keep track
of the increment in invocation count, i.e., rvint = [lo, hi],with lo < hi, & rvavg = False.

5.3 Gauge

Gauge is defined in WSLA as “a non-negative integer that may increase or decrease,
and is used to measure the current value of some entity” [3]. It has a resultType of
”double” and the URI is referred to using <MeasurementURI> tag.

In essence, Gauge corresponds to the current value of a state variable, and in SDES
terms we can allow rate as well as impulse rewards to add to it. The reward definition
is then unrestricted, and the modeler can assign any rewards to the gauge. We therefore
also provide a special gauge, corresponding to a single state variable representing the
gauge value (which is the common case). Depending on the model at hand, this simpli-
fies the job of the modeler. Assume the state variable that is intended to hold the number
of particular tasks in the system is sv ∈ SV, with sv(σ) being the value of sv in a system
state σ, then the reward variable is defined as:

Formal Mapping of WSLA Contracts on Stochastic Models 125

rv =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

rvimp(a) = 0 ∀a ∈ A

rvrate(σ) =

{
sv(σ) ∀σ ∈ Σ
0 otherwise

URI usage: Hints to the addition of a state variable that performs a special function.
In the example below, noReqInQueue indicates the modeler to include a state variable
that stores the arriving requests in the model.

<MeasurementDirective xsi:type="wsla:Gauge" resultType="double">

<MeasurementURI>http://support1.com/noReqInQueue</MeasurementURI>

<MeasurementDirective>

Input modeler: Chooses or introduces a state variable svi.
Evaluation Interval: The reward variable is an instant of time variable to give the

current value of a system component, i.e., rvint = [lo, hi],with lo = hi & rvavg = False.

5.4 Counter

Counter according to WSLA “describes the relevant information to retrieve a counter
from the instrumentation of a service or managed resource” [3] and it is used to count
specific events of a service. It has a resultType of ”integer” and the URI is referred
to using <MeasurementURI> tag. We map Counter as an impulse reward variable of
an action ai ∈ A in the model:

rv =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

rvrate(σ) = 0 ∀σ ∈ Σ
rvimp(a) =

{
1 if a = ai

0 otherwise

URI usage: Hints to specify an action that performs a special function. In the exam-
ple below, ipPacketsIn hints to add an action that indicates an IP packet arrival.

<MeasurementDirective xsi:type="wsla:Counter" resultType="double">

<MeasurementURI>http://support1.com/ipPacketsIn</MeasurementURI>

<MeasurementDirective>

Input modeler: Action ai.
Evaluation Interval: The reward variable is interval of time reward variable, i.e.,

rvint = [lo, hi],with lo < hi & rvavg = False.

5.5 ResponseTime

It denotes the time between sending a request and receiving its response. The syntax
has a resultType= ”double” and the URI specified inside a <MeasurementURI> tag.

To express the response time in term of rewards, we use an additional state variable
sv ∈ SV that signals the receipt of the response. sv is initially set to 0 and can jump to 1
once only, indicating the response has been received. Then, RT (t), the probability that
the response time is less than t, is equal to the probability that the state variable is 1
at time t. Hence, the response time of an operation is determined by checking at each

126 R. Yassin Kassab and A. van Moorsel

time instance if the state variable equals 1. That is: RT (t) = P(response time ≤ t) =
P(sv(σ) = 1 at time t). This is represented using a rate based reward function as:

rv =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

rvimp(a) = 0 ∀a ∈ A

rvrate(σ) =

{
1 if σ ∈ Σ∗
0 otherwise

Where Σ∗ represents all system states σ where sv(σ) = 1. If the model is closed, we
can use the state variable connected to the sending action as an indicator to whether a
response is returned back.

URI Usage: We propose it refers to the WSDL operation.
Input modeler: Introduces a state variable sv in the model to be set to 1 when the

response is received, and determine an appropriate initial state for the model.
Evaluation Interval: The reward variable is an instant of time reward variable to

check system response at this instant, i.e., rvint = [lo, hi],with lo = hi & rvavg = False.

5.6 DownTime

Downtime gives a direct reading of the total time for which the system is in a down
status [3]. Hence, the mapping is identical to Status, but measured as an interval of
time rather than an instant of time. This measurements has a resultType of ”double”.

URI Usage: Downtime does not specify any URI.
Evaluation Interval: The reward variable is interval of time reward variable to check

system down period. This means: rvint = [lo, hi],with lo < hi and rvavg = False.

6 Step 3: Schedule Mapping

After mapping each measurement m ∈ M to a specific reward variable rv ∈ RV and
determining if it is an instant or interval of time variable, we should find out what these
instants/intervals are. For that, it is of particular interest to map WSLA monitoring times
defined in the Schedule element to time in SDES. We defined WSLA schedule sch in
Sec. 4 as a set of time points:

sch = {t1, . . . , tk}; t1 = s, t j+1 = t j + i, j = 1, . . . , k − 2, tk = e

We want to map these time points on time in SDES. Since SDES has a construct rvint

that defines a single observation interval for a reward variable rv ∈ RV , we need to
define a set {rvint} that contains multiple observation intervals for each reward variable:

{rvint} = {rvint j = [lo j, hi j]}, lo j, hi j ∈ R+, j = 1, . . . , k

Because the reward variable rv ∈ RV could be either instant or interval, the boundaries
lo j, hi j of each rvint j will vary accordingly.

In case m ∈ M is mapped as an instant of time reward variable, then lo j = hi j in each
observation interval rvint j . Hence, t j ∈ sch, j = 1, . . . , k is mapped as a set of instant of
time observation intervals. We write this as a set: {rvint} = {[t j, t j]}, j = 1, . . . , k.

Formal Mapping of WSLA Contracts on Stochastic Models 127

However, if m ∈ M is mapped as interval of time reward variable, then lo j < hi j in
each observation interval rvint j . In this case, t j ∈ sch, j = 1, . . . , k, is mapped as a set
of interval of time observation intervals, each interval is between two sequential time
points in sch. We write this as the set: {rvint} = {[t j, t j+1]}, j = 1, . . . , k − 1.

7 Step 4: Function(s) Mapping

In WSLA, a MeasurementDirective is used as the basis for performing other WSLA
computations to produce the top most metric that represents the requiredSLAParameter.
These computations are done through Function(s). WSLA defines a set of 17Function
types in its standard specification. Each one corresponds to either series constructors
(like TSConstructor), series manipulation functions (like Span), arithmetic functions
(like Plus), or statistical functions (like Mean). These Function(s) can be applied on a
MeasurementDirectiveor on other Function(s) to obtain the exact SLAParameter.

WSLA rarely depends on a single measurement m ∈ M to represent an SLAParamet-
er, slap. Rather, it applies a set of functions Fm = {Fm,1, . . . , Fm,|Fm |} on m, where the
function Fm,i, i = 1, . . . , |Fm| is the i-th function to be applied on m. The functions in
Fm set could be any of the aforementioned function types. However, from our observa-
tion of existing WSLA contracts [3,14,15], we have obtained a common order in which
function types are applied described in the following steps:

1. Firstly, WSLA applies a time series function (TSConstructor)4 to create a time
series that collects measures of m by the use of a schedule sch. Hence, Fm,1 is the
TSConstructor function and its output is a series of measurements:

{m(t1), . . . ,m(tk)}, {t1, . . . , tk} ∈ sch,

where m(t j) is the measurement m at time t j, j = 1, . . . , k.
2. Then, a function Fm,2 is applied on this series so that a single output is produced5.
3. Finally, additional functions can be applied so that the exact slap is obtained.

We need to map WSLA functions on SDES. The mapping is provided for each of the
steps described earlier as follows:

1. Since the measurement is mapped as an rv and the schedule is mapped as {rvint},
then the time series constructor function in SDES evaluates the reward variable
rv ∈ RV for each evaluation interval in {rvint}. This can be expressed as a set:
{rv(t1), . . . , rv(tk)}, where rv(t j) is the reward variable with the evaluation interval
rvint j = [t j, t j] in case of instant of time reward variable, and rvint j = [t j, t j+1] in
case of interval of time reward variable. In SDES, each rv(t j) can be thought of as
a random variable Xtj : Σ → R. Accordingly, we can write the previous set as a set
of random variables as follows:

{Xt1 , . . . , Xtk }
4 We refer to the formal semantic of WSLA functions , measurements, and schedules by empha-

sizing them to differentiate them from the XML tag.
5 Except for series constructors functions that return a series instead of a single value.

128 R. Yassin Kassab and A. van Moorsel

2. The function Fm,2 is applied on the above set of random variables. Due to space
limitations, we are not providing an exact mapping of each WSLA function, rather,
we generally describe how these functions are applied on the set. Any function over
a set of random variables results in a new random variable whose probability dis-
tribution is determined by the probability distribution of each random variable[16].

XFm,2 = Fm,2(Xt1 , . . . , Xtk)

3. The rest of functions Fm,3, . . . , Fm,|Fm | in the set Fm will be applied in sequence.
This also results in a new random variable each time a new function is applied.

XFm,i = Fm,i(XFm,i−1), i = 3, . . . , |Fm|

The random variable XFm,|Fm | that results from applying the last function Fm,|Fm | ∈ Fm,
represents the value of slap.

It should be noted that some WSLA functions applied on a set of measurements
specify an additional operand called Value. For example, the Value element in the
Span function specifies the value the function counts the occurrence of inside the set.
Hence, we can write these WSLA functions as: Fm,2(m(t1), . . . ,m(tk), o), o ∈ R, where
o is the value the function is looking for. The WSLA location for o value (for Span
in particular) is specified in Table 1. Accordingly, we can write these functions after
mapping to SDES as: Fm,2(Xt1 , . . . , Xtk , o), o ∈ R.

8 Step 5: SLO Result

In the previous section, we describe how the mapping of all functions Fm results in a
single random variable XFm,|Fm | that represents SLAParameter, slap. Hence, the random
variable Xslap can be defined as:

Xslap � XFm ,|Fm |

Depending on this random variable, an slo is evaluated. This is done by performing a
comparison of type c of Xslap against a value v (as defined in Sec. 4). For example if
c =′≤′ then we can write the probability that an slo is met as: P(slo) = P(Xslap ≤ v)

Note that vs and ve of the validity period specified for an slo have often the same
value as s and e for the schedule sch defined within the slap. Thus, vs and ve are implicit
in the definition of sch and hence all values of slap are already between vs and ve.

9 Case Study

In this section, we present an example of a system modeled using a specific SDES
model, namely Stochastic Activity Networks (SAN) [17]. We first describe the system,
then give the mapping of the associated WSLA contract, and provide some discussion.

Formal Mapping of WSLA Contracts on Stochastic Models 129

9.1 System Description

The example described here is a stock quote service that fits with the WSLA contract
in Fig. 2. When a user requests a quote, the system puts the request in a queue and then
checks its value. Next, it creates a response that waits in another queue before being
sent back to the user. Checking the stock value may fail, in which case the requests wait
in the queue until the system is up again. As described by the WSLA contract of Fig. 2,
the provider offers the service in the last week of the year with high availability: down
time should be less than ten minutes.

The service provider wants to predict the probability with which the system meets its
SLO. For that, we are mapping WSLA on an SDES model (SAN in our example) of the
described service. As we described earlier, the modeler is responsible for creating parts
of the model but since web services are described using WSDL, hints from WSDL and
WSLA files could be useful for the modeler. For example, in our WSLA contract, the
SLAParameter is defined for the GetQuoteWSDL operation and a StatusRequest is
used as a MeasurementDirective. This implies, according to Sec. 5.1, that the model
should have an action (SAN activity) that represents this operation, and the modeler
should specify how the system goes down (how the getQuote operation fails). An
automated mapping from WSDL to a Petri Net model is possible according to [18], but
we did not exploit this yet in our approach.

The SAN model of the system is illustrated in Fig. 5(a). The system up/down states
are described using a single token in S ysAlive and S ysDead places respectively. The
modeler can choose alternatives or more detailed failure behaviours, such as system
resources (CPUs) that run out. Our model alternates between the up/down states through
activities Repair and Fail. All activities in the model have an exponential distribution,
their rates (except for failure rate) are shown in the figure along with the proposed
system’s initial state (which is also chosen by the modeler).

#Users=5

#QuoteChecked =0#QuoteRequested =0

Rate=1

Rate=1

SysDeadSysAlive
Fail

Repair

GetQuote

SendQuoteUsers RequestQuote

QuoteRequested QuoteChecked

#SysAlive=1 #SysDead=0

Rate=1 Rate=1

(a) SAN model of the Quote service

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Sa
tis

fac
tio

n P
ro

ba
bil

ity
 [%

]

Failure Rate [1/min]

SLO satisfaction
probability

(b) SLO satisfaction probability

Fig. 5. Stock Quote service

9.2 Mapping WSLA to SDES

We now illustrate the application of the five steps mapping process defined in Sec. 3.
Step 1: Defining WSLA Semantics (refer to Sec. 4) slo elements along with their

correspondences in the WSLA contract (Using Table 1), are given in Definition 3:

ContinuousDownTime = (slap, c, v, vs, ve) = (CurrentDownTime, <, 10, 0, 10080),

130 R. Yassin Kassab and A. van Moorsel

Also, from Definition 4 we see that CurrentDownTime is represented by (M, S ch, F).
From the contract we obtain one measurement m ∈ M and a set of two functions Fm

applied on it, and a schedule sch ∈ S ch as follows:

– m = StatusRequest
– Fm = {FS tatusRequest}={TSConstructor, Span}
– sch = availabilityS chedule = {0 . . .10080}

We note that the WSLA start and end time point are specified in DateTime, while the
increment is specified using elements like Hour, minutes and seconds. This allows
us to use the increment unit as the unified unit of time in our model. We also set the
start time to zero, and the end time as the subtraction of the start and end dates. In our
example, the increment time unit is minutes, hence the start time point is 0 and the end
time 10080 is obtained by expressing 7 days in minutes. The parameters vs and ve in
Definition 3 can be obtained in similar manners, resulting in vs = 0 and ve = 10080.

Step 2: MeasurementDirective Mapping (refer to Sec. 5.1) StatusRequest is mapp-
ed as instant of time rate reward variable, where the modeler needs to define Σ∗, the
system up states. In our model, this equates to the place SysAlive containing 1 token:
Σ∗ = {σ : S ysAlive(σ) = 1}.

Step 3: Schedule Mapping (refer to Sec. 6.) Since StatusRequest is an instant of
time reward variable, the model needs to provide instant of time results at the following
points in time: {rvint} = {[0, 0], [1, 1], . . . , [10080, 10080]}. (obeying SDES notational
conventions)

Step 4: Function(s) Mapping (refer to Sec. 7) We identified the two functions
present in the WSLA contract in Step 1 above. The time series function FS tatusRequest,1 =

TSConstructor is mapped to a set of random variables {Xt1 , . . . , Xtk }, that represents the
reward variable at each time instant. In our example, the random variables’ state space
is {0, 1}, since the system can be either up (1) or down (0). Thus, for j = 1, . . . , k:

Xtj =

{
1 if system is up at time t j

0 if system is down at time t j

The Span function FS tatusRequest,2 = Span, counts the number of consecutive random
variables with an identical value, which is 0 in our example (refer to the last paragraph
in Sec. 7). For j = 1, . . . , k, the j-th element of the Span function then is:

[Span(Xt1 . . . Xtk , 0)] j =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

u if Xtj = 0 ∧ . . . ∧ Xtj−u+1 = 0 ∧ Xtj−u = 1, with 0 < u < j
0 if Xtj = 1
j otherwise (that is, Xt1 = 0, . . . , Xtj = 0)

The SLO is satisfied if all Span values for j = 1, . . . , k are smaller than the agreed
value v=10 (see Step 1). So, XS pan can be defined as the maximum over all elements
[Span(Xt1 . . . Xtk , 0)] j.

Step 5: SLO result (refer to Sec. 8.) The service level agreement is evaluated using
the random variable XS pan, that is: P(slo) = P(Xslap < 10) = P(XS pan < 10).

We ran experiments using the terminating discrete event simulation in the Möbius
modeling tool [10]. We set the repair rate to 1 and varied the failure rate from 0 to

Formal Mapping of WSLA Contracts on Stochastic Models 131

1 to discover how this will affect SLO satisfaction. We run the simulation for at least
100 replicas and count how many of the replicas have a span function value less than
10 (following the definition of XS pan in Step 4 above). We found out, as depicted in
Fig. 5(b), that for failure rates more than 0.1, a significant drop in SLO satisfaction is
predicted.

9.3 Discussion

The above case study demonstrates that an effective mapping from WSLA to SDES is
possible and software tools such as Möbius [10] can be used to obtain the desired reward
metrics using discrete-event simulation. However, these tools are not designed to com-
pute functions over random variables, such as the WSLA span function. To determine
the probability an SLO will be met, we therefore needed to save results for each replica
(corresponding to one realization of the time series Xtj for j = 1, . . . , k), and compute
the span function afterwards. Note also that although our mapping solution aimed at
allowing numerical solutions, numerical solution of the WSLA metrics (instead of de-
riving them using discrete-event simulation) can be expected to be prohibitively difficult
in many cases. This is especially the case if the joint distribution of {Xt1 , . . . , XtK } needs
to be derived (where the random variables Xtj are not independent), such as is the case
for the WSLA span function. In any case, in the next phase of our research, we plan to
develop a tool support to augment existing modeling tools with support for all WSLA
functions. It should be noted also that in our approach, the reward variable has to be
solved for every instant when an observation is made which makes the model expensive
to solve. In our example, the Möbius tool took one hour to complete a simulation run
of 100 replicas using a single 2.19 GHz processor. This run solve the reward variable
for 10080 instants specified in a week validity period. Running time will be longer if
we solve for each minute in a one month period as specified in the original example [3].
This raises the problem of scalability that will be investigated more in the future.

10 Conclusion

In this paper, we investigated if WSLA can be used for model-based prediction of SLA
compliance, or, to be more precise, if WSLA can serve as a specification of reward
metrics in a stochastic model. The process of translating from WSLA to reward vari-
ables in Stochastic Discrete Event Systems developed in this paper includes defining
the semantics of WSLA elements in terms of stochastic processes, a mapping on SDES
reward variables of the WSLA measurements, their evaluation intervals, and associated
functions. The outcome of this mapping is a prediction of the probability of comply-
ing to the service level objective. The presented translation process establishes a basis
to implement a mapping from WSLA to SEDS reward metrics that is as automated as
much as possible. The paper shows that there is potential in deriving predictive models
from WSLA specifications, and we are therefore pursuing further efforts to complete
our tool support for predictive modeling based on WSLA, thus further simplifying the
definition of predictive models for web service engineers.

132 R. Yassin Kassab and A. van Moorsel

References

1. Molina-Jiménez, C., Pruyne, J., van Moorsel, A.: The role of agreements in IT management
software. In: de Lemos, R., Gacek, C., Romanovsky, A. (eds.) Architecting Dependable Sys-
tems III. LNCS, vol. 3549, pp. 36–58. Springer, Heidelberg (2005)

2. Sahai, A., Machiraju, V., Sayal, M., van Moorsel, A., Casati, F.: Automated SLA monitor-
ing for web services. In: Feridun, M., Kropf, P.G., Babin, G. (eds.) DSOM 2002. LNCS,
vol. 2506, pp. 28–41. Springer, Heidelberg (2002)

3. Ludwig, H., Keller, A., Dan, A., King, R., Franck, R.: Web Service Level Agreement
(WSLA) Language Specification. IBM (January 2003)

4. Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Nakata, T., Pruyne, J.,
Rofrano, J., Tuecke, S., Xu, M.: Web Services Agreement Specification (WS-Agreement).
Open Grid Forum, version 2005/09 edition

5. Davide Lamanna, D., Skene, J., Emmerich, W.: SLAng: A language for defining service
level agreements. In: The Ninth IEEE Workshop on Future Trends of Distributed Computing
Systems, pp. 100–106 (2003)

6. Paschke, A., Schnappinger-Gerull, E.: A categorization scheme for SLA metrics. In: Service
Oriented Electronic Commerce, pp. 25–40 (2006)

7. Zimmermann, A.: Stochastic Discrete Event Systems: Modeling, Evaluation, Applications.
Springer-Verlag New York, Inc., Secaucus (2007)

8. Dingle, N.J., Knottenbelt, W.J., Wang, L.: Service level agreement specification, compliance
prediction and monitoring with performance trees. In: 22nd Annual European Simulation
and Modelling Conference (ESM 2008), pp. 137–14 (September 2008)

9. Kassab, R.Y., van Moorsel, A.: Mapping WSLA on reward constructs in Möbius. In: 24th
UK Performance Engineering Workshop, pp. 137–147 (2008)

10. Sanders, W.H.: Möbius User Manual, Version 2.3.1. University of Illinois, US (May 2010)
11. Sanders, W.H., Meyer, J.F.: A unified approach for specifying measures of performance,

dependability, and performability. Dependable Computing and Fault-Tolerant Systems: De-
pendable Computing for Critical Applications 4, 215–237 (1991)

12. Berglund, A., Boag, S., Chamberlin, D., Fernández, M.F., Kay, M., Robie, J., Simon, J.:
XML path language (XPath) 2.0. Technical report, World Wide Web Consortium (January
2007)

13. Altova XMLSpy v2011r3 enterprise edition (2011), http://www.altova.com
14. Keller, A., Ludwig, H.: The WSLA framework: Specifying and monitoring service level

agreements for web services. J. Netw. Syst. Manage. 11(1), 57–81 (2003)
15. Ludwig, H., Keller, A., Dan, A., King, R., Franck, R.: A service level agreement language

for dynamic electronic services 3, 43–59 (January 2003)
16. Grinstead, C.M., Snell, J.L.: Introduction to probability. American Mathematical Society,

Providence (1997)
17. Sanders, W.H., Meyer, J.F.: Stochastic activity networks: Formal definitions and concepts.

In: European Educational Forum, pp. 315–343 (2000)
18. Thomas, J.P., Thomas, M., Ghinea, G.: Modeling of web services flow. In: CEC, pp. 391–398

(2003)

http://www.altova.com

Comparison of the Mean-Field Approach and

Simulation in a Peer-to-Peer Botnet Case Study

Anna Kolesnichenko1, Anne Remke1,
Pieter-Tjerk de Boer1, and Boudewijn R. Haverkort1,2

1 Centre for Telematics & Information Technology, University of Twente,
Enschede, The Netherlands

2 Embedded Systems Institute, Eindhoven, The Netherlands
{a.v.kolesnichenko,a.k.i.remke,p.t.deboer,b.r.h.m.haverkort}@utwente.nl

Abstract. Peer-to-peer botnets, as exemplified by the Storm Worm,
and the spreading phase of Stuxnet, are a relatively new threat to secu-
rity on the internet: infected computers automatically search for other
computers to be infected, thus spreading the infection rapidly. In a recent
paper, such botnets have been modeled using Stochastic Activity Net-
works, allowing the use of discrete-event simulation to judge strategies for
combating their spread. In the present paper, we develop a mean-field
model for analyzing botnet behavior and compare it with simulations
obtained from the Moebius tool. We show that the mean-field approach
provides accurate and orders-of-magnitude faster computation, thus pro-
viding very useful insight in spread characteristics and the effectiveness
of countermeasures.

Keywords: mean-field approximation, simulation, differential equations,
peer-to-peer botnet spread.

1 Introduction

A peer-to-peer botnet can be seen as a very large population (possibly all com-
puters in the Internet) of interacting components (peers), where infected nodes
infect more and more other computers. Due to the large numbers of (potentially)
active components, the analysis of the spreading speed of such large-scale sys-
tems is time consuming and computationally expensive. Recently, a stochastic
model for the growth of peer-to-peer botnets was introduced in [16]. The model
is a Stochastic Activity Network (SAN) [17] with an unbounded number of to-
kens per place, hence, no solutions can be obtained analytically. The authors
of [16] simulate the model with the Moebius toolset [7] to gain insight into the
effectiveness of defense strategies. Although such simulation is possible, it is very
time-consuming and does result in statistical uncertainties.

Recently, much work has been done on the analysis of large populations of
interacting objects. Markovian Agents have been used to predict the propa-
gation of earth quake waves [5] or the behavior of sensor networks [11]. The
dissemination of gossip information [1] and disease spread between islands [2]

N. Thomas (Ed.): EPEW 2011, LNCS 6977, pp. 133–147, 2011.
� Springer-Verlag Berlin Heidelberg 2011

134 A. Kolesnichenko et al.

was analyzed using mean-field approximation. Hybrid approaches, combining
mean-field and simulation, have been proposed for general systems of interact-
ing objects [14], but also to predict predator and prey behavior [13]. Ordinary
differential equations (ODEs) have been used to analyze the behavior of intracel-
lular signaling pathways [4] and together with PEPA for epidemiological models
[6]. Note that the relationship between the different techniques is currently not
well investigated; what all have in common is that they provide an approach to
deal efficiently with very large numbers of similar interacting objects.

Out of the many available approaches, in this paper we limit ourselves to
mean-field analysis and the direct derivation of ODEs from the SAN. The Marko-
vian agent approach was deemed less suitable here, because it explicitly takes
into account locality (i.e., the amount of interaction between entities depends on
their location), which is not present in the botnet model studied in [16]. We also
have not explicitly tried the approach of deriving ODEs from PEPA, as done
in [3]; however, due to similarities among the methods, we expect the resulting
ODEs to be the same as the ones we obtained.

While in this paper we are not directly interested in obtaining new insights on
botnet behavior, our goal is to show how a quicker analysis method can be used
to obtain different measures of interest that cannot be obtained using simulation.
We use a model based on the one developed in [16] in order to compare simula-
tion and mean-field approximation. The comparison shows that the mean-field
method is much faster than simulation, therefore it allows to address more com-
plicated and resource consuming questions, such as the dependency of botnet
spread on several parameters. We explore the speed-up, and show that it can be
used it to obtain more insight into the botnet behavior, by taking into account
costs for running antimalware software and costs that occur due to computers
being infected. Furthermore, we discuss the differences between the mean-Field
method and simulation and the resulting suitability in different settings.

For completeness, we point out that the spreading phase of the botnet is quite
similar to worm propagation, of which several studies using differential equations
have been published. For example, [8] briefly introduces a simple model of worm
behavior and compares results with the real measured data, while the main focus
of the paper is on the discussion of the different types of worms. The authors of
[9] use Interactive Markov Chains to calculate simple bounds of the infected pop-
ulation size and compare results with simulation. A density-dependent Markov
jump process model and hybrid deterministic/stochastic model for Random Con-
stant Scanning worm are presented in [15]. A continuous-time approximation of
process-algebra models is used in [3] for analysis of the worms spread.

The paper is further organized as follows. In Section 2 we develop a model
describing the behavior of an individual computer in a botnet. In Section 3
the mean-field approximation method is applied to the botnet spread model.
The mean-field results and the simulation results obtained from Moebius are
compared in Section 4. In Section 5 the full potential of the mean-field method
in consequence of the attained speedup is explored. In Section 6 the applicability

Comparison of the Mean-Field Approach and Simulation 135

of other large-scale analysis methods to the botnet spread model is discussed.
The conclusions and future work are discussed in Section 7.

2 Model of the Botnet Behavior

A Stochastic Activity Network (SAN) model was introduced for Peer-To-Peer
botnets in [16]. It models how the infection spreads through an infinite popula-
tion of computers. The model closely reflects the states a computer goes through
after the initial infection has taken place. The original SAN model consists of: (i)
one place for each phase of infection a system can be in, that can each hold an un-
bounded number of tokens, representing the number of computers per phase, and
(ii) transitions, which move tokens from place to place, as the infection spreads.
The SAN model represents the entire population of infected computers, hence,
the number of computers in each state (phase) can be directly derived from the
model. However, as the population of computers can be very large or even infi-
nite, it is only possible to derive measures of interest from the SAN model using
simulation. This is very time consuming and computationally expensive. Using
mean-field analysis, it is possible to compute performance measures of a large
population of identical components in a very efficient way. For this, a model is
needed which reflects the individual behavior of a single computer. We develop a
continuous time Markov chain (CTMC) model for the behavior of an individual
computer based on the SAN model from [16], as follows.

Fig. 1. CTMC for an individual computer

Each place in the SAN model is also represented in the CTMC model as
an individual state, however, an additional state is added, that represents a
computer which is not infected yet. The CTMC model is depicted in Figure 1
and the corresponding transition rates can be found in Table 1.

136 A. Kolesnichenko et al.

Table 1. Transition rates for the CTMC of a single computer

k1 RateOfAttack·ProbInstallInitialInfection

k∗
1 Rate depends on k1 and the environment

k2 RateConnectBotToPeers·ProbConnectToPeers

k3 RateConnectBotToPeers·(1-ProbConnectToPeers)

k4 RateSecondaryInjection·ProbSecondaryInjectionSuccess·(1-ProbPropagationBot)

k5 RateSecondaryInjection·ProbSecondaryInjectionSuccess·ProbPropagationBot

k6 RateSecondaryInjection·(1-ProbSecondaryInjectionSuccess)

k7 RateWorkingBotWakens

k8 RateWorkingBotSleeps

k9 RatePropagationBotWakens

k10 RatePropagationBotSleeps

k11 RateInactiveWorkingBotRemoved

k12 RateActiveWorkingBotRemoved

k13 RateInactivePropagationBotRemoved

k14 RateActivePropagationBotRemoved

A computer which is not infected yet enters the InitialInfection state with
rate k∗

1 and it becomes initially infected. Then, it connects to the other bots
in the botnet, downloads the next part of the malware and possibly moves to
state ConnectedBot with rate k2. If the computer for any reason is not able to
download the malware it returns to the state NotInfected with rate k3.

After downloading the malware, the computer joins the botnet as either Inac-
tiveWorkingBot or as InactivePropagationBot with rates k4 and k5, respectively.
If downloading the malware is not possible, for example, because the connection
has failed, the computer moves back to the NotInfected state with rate k6. Once
the bot becomes either an InactiveWorkingBot or an InactivePropagationBot it
never switches between Working or Propagation bot. In order not to be detected,
the bot is inactive most of the time and only becomes active for a very short
period of time. Transitions from InactivePropagationBot to ActivePropagation-
Bot and back occur with rates k7 and k8, respectively. The transition rates for
moving from InactiveWorkingBot to ActiveWorkingBot and back are denoted
k9 and k10, respectively.

The computer can recover from its infection, e.g., if an antimalware software
discovers the virus, or if the computer is physically disconnected from the net-
work. It then leaves the InactivePropagationBot or the ActivePropagationBot
state and moves to the NotInfected state with rates k11, k12, respectively. The
same holds for the working bots ; the transition rates from InactiveWorkingBot
and ActiveWorkingBot are k13, k14, respectively.

The transition rates in the SAN model are marking dependent, e.g., the rate
of moving from state s1 to state s2 linearly depends on the number of computers
in state s1. The transition rates for the CTMC model of the single computer,
as proposed here, are constant, with the only exception of k∗

1 , which depends
on the number of active propagation bots in the environment; seen from this
perspective this CTMC is a non-homogeneous CTMC.

Comparison of the Mean-Field Approach and Simulation 137

The CTMC model consists of seven states (S1, .., S7), where each state from
the state space S = {NotInfected, ...,ActiveWorkingBot}, |S| = 7, represents a
certain phase of the infection of a single computer. The rate matrix R of the
CTMC is written as:

R =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 k∗
1 0 0 0 0 0

k3 0 k2 0 0 0 0
k6 0 0 k4 0 k5 0
k11 0 0 0 k7 0 0
k12 0 0 k8 0 0 0
k13 0 0 0 0 0 k9

k14 0 0 0 0 k10 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(1)

The |S| × |S| generator matrix Q is given as follows: Qs1s2 is equal to the
transition rate Rs1s2 to move from the state s1 to the state s2 and Qss is equal
to the negative sum of all the rates in row s. The only exception is the rate k∗

1

to move from the NotInfected state (S1) to the InitialInfection state (S2). As
discussed above, this rate depends on k1 and on the number of computers in
the ActivePropagationBot state, but it should not depend on the total number
of computers in the environment. We provide an expression for k∗

1 in the next
section.

In the following, we use the mean-field method to model and study the popu-
lation of computers in a network that can possibly be infected, assuming that all
computers behave individually according to the CTMC model described above.
We leave the discussion of actual parameter values to Section 4.

3 Mean-Field Approximation

The mean-field method allows to compute the exact limiting behavior of an
infinite population of identical components, and suggests an approximation when
the number of components is sufficiently large. The global idea of the method is
to describe the behavior of the infinitely large population (overall behavior) via
the average behavior of the individual components, which are indistinguishable.
Both the overall behavior of the population and the individual behavior of a
single component are modeled as a Markov chain, where the transition rates in
the overall Markov model depend on the number of components in each state,
but not on the total number of components in the system.

Previously we discussed the CTMC (see Fig. 1) and the corresponding state
space S which describes the behavior of a single computer in the botnet. The
overall behavior of the population of N computers is then given by a CTMC
with a state space of size |S|N . This can be lumped due to the identicality of the
computers’ behavior, and then described by the number of computers in each
state s ∈ S at time t, i.e., by M(t) = (M1(t), M2(t)...M|S|(t)), where Ms(t) is
the number of computers in state s.

Recall that the generator matrix Q, as discussed in the previous section, has
one transition rate that depends on the environment: k∗

1 . We can now express

138 A. Kolesnichenko et al.

this k∗
1 in terms of M(t) from the overall CTMC, as follows. The total rate

of infections produced by all bots that are in the active propagation state is
k1 ·M7(t). These infections are spread out randomly over all not-yet infected
computers, of which there are M1(t)1. Hence, the infection rate k∗

1 perceived by
each individual computer is given by the ratio:

k∗
1(M(t)) =

k1 ·M7(t)
M1(t)

. (2)

The above equation completes the definition of Q and, hence, allows to build a
complete mean-field model. Given a population of N computers, we denote the
fraction of objects in an arbitrary state s at time t as ms(t) = Ms(t)/N , where 0 ≤
m(t) ≤ 1 is the normalized occupancy vector m(t) = (m1(t), m2(t)..., m|S|(t)),
which does not depend on N . The generator matrix Q(m(t)) for the normalized
vector m(t) is the same as Q(M(t)) for the unnormalized vector, since its compo-
nents depend only the ratios of the vector elements.

We apply the mean-field method for the overall system using Theorem 1
from [10], which states that the normalized occupancy vector m(t) of the overall
behavior tends to be deterministic in distribution and satisfies the following
differential equations when N tends to infinity:

dm(t)
dt

= m(t)Q(m(t)). (3)

The system of equations describing the population behavior in the botnet then
equals: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṁ1(t) = k3m2(t) + k6m3(t) + k11m4(t)
+k12m5(t) + k13m6(t) + (k14 − k1)m7(t),

ṁ2(t) = −(k2 + k3)m2(t) + k1m7(t),
ṁ3(t) = k2m2(t)− (k4 + k5 + k6)m3(t),
ṁ4(t) = k4m3(t)− (k7 + k11)m4(t) + k8m5(t),
ṁ5(t) = k7m4(t)− (k8 + k12)m5(t),
ṁ6(t) = k5m3(t)− (k9 + k13)m6(t) + k10m7(t),
ṁ7(t) = k9m6(t)− (k10 + k14)m7(t).

(4)

Note that in the above, k∗
1 is used as in (2), where the entries of the unnormalized

vector M(t) have been replaced with the corresponding entries of the normalized
occupancy vector m(t). These equations can be solved analytically, however the
closed forms are impractically large. We use the Wolfram Mathematica tool to
obtain the analytical solution. The system of ODEs (4) is applicable when N
tends to infinity. To obtain the approximation for the case when N is finite but
sufficiently large, we use the Corollary 2 from [10], which states, that:

When N is sufficiently large, the normalized state vector of the lumped pro-
cess, m(t), is a random vector whose mean can be approximated by the following
differential equation

1 Note that the above modeling decision was made to match the existing SAN model
and may not completely reflect realistic botnet spreading.

Comparison of the Mean-Field Approach and Simulation 139

Table 2. The setups for the different experiments. Bold font indicates difference w.r.t.
baseline experiment.

Experiments
Parameter Baseline 1 2 3 4 5 6

ProbInstallInitialInfection 0.1 0.06 0.04 0.1 0.1 0.1 0.1

ProbConnectToPeers 1 1 1 1 1 1 1

ProbSecondaryInjectionSuccess 1 1 1 1 1 1 1

ProbPropagationBot 0.1 0.1 0.1 0.1 0.1 0.1 0.1

RateOfAttack 10.0 10.0 10.0 10.0 10.0 10.0 10.0

RateConnectBotToPeers 12.0 12.0 12.0 12.0 12.0 12.0 12.0

RateSecondaryInjection 14.0 14.0 14.0 14.0 14.0 14.0 14.0

RateWorkingBotWakens 0.001 0.001 0.001 0.001 0.001 0.001 0.001

RateWorkingBotSleeps 0.1 0.1 0.1 0.1 0.1 0.1 0.1

RatePropagationBotWakens 0.001 0.001 0.001 0.001 0.001 0.001 0.001

RatePropagationBotSleeps 0.1 0.1 0.1 0.1 0.1 0.1 0.1

RateInactiveWorkingBotRemoved 0.0001 0.0001 0.0001 0.001 0.001 0.001 0.001

RateActiveWorkingBotRemoved 0.01 0.01 0.01 0.01 0.01 0.01 0.01

RateInactivePropagationBotRemoved 0.0001 0.0001 0.0001 0.001 0.001 0.001 0.001

RateActivePropagationBotRemoved 0.01 0.01 0.01 0.07 0.04 0.02 0.015

dE(mi(t))
dt

≈
∑
j∈S

E(mj(t))Qji(m(t)), i ∈ S. (5)

Considering this, the expected occupancy vector E(M(t)) is given as follows:
E(M(t)) ≈ N ·m(t), where m(t) is the solution of (4). In our experiments we
set N = 107.

4 Results

In this section we discuss the mean-field results in detail and compare them to
the simulation results we obtained from the model given in [16]. We carried out
a similar series of experiments as in [16]; the chosen parameters for all these
experiments are given in Table 2.

The simulation of the model was done using the Moebius tool [7]. Each ex-
periment covered one week of simulated time. Each experiment was replicated
1000 times; the mean values and 95% confidence intervals of the measures of
interest are shown. The initial conditions for each experiment are as follows: 200
computers are located in the place ActivePropagationBots in the SAN, and all
the other places are empty. Note that the simulation results shown here differ
from those in [16]. Together with the authors of [16] we found a small mistake in
the simulator settings they used: because the rates in the SAN model are mark-
ing dependent, a flag has to be set in the Moebius tool to ensure that the rates
are updated frequently. Not setting this flag can result in inaccurate numbers of
propagation bots, as illustrated below in Figure 2.

We use Mathematica [18] to obtain solutions for the set of differential equa-
tions (4) coupled with the transition rates from Table 2. To obtain the same

140 A. Kolesnichenko et al.

initial conditions for the mean-field model as for the SAN model we need to take
the additional state in the CTMC into account. Given an overall population
of N = 107, the fraction of computers in the state NotInfected is initialized as
m1(0) = (N−200)/N , the fraction of computers in the state ActivePropagation-
Bot is initialized as m7(0) = 200/N , and the fractions of computers in all other
states are initialized as zero.

Fig. 2. Number of propagation bots over time in the Baseline experiment obtained
from Moebius simulations with and without the rates-updating flag set, as well as
obtained from mean-field approximations

Figure 2 shows the number of the propagation bots in a botnet. The number
of propagation bots (both active and inactive, states S6 and S7) has been taken
as measure of interest since they actively infect ”healthy” computers. The lower
solid line depicts the mean-field results of the Baseline experiment together with
the 95% confidence intervals of the corrected Moebius simulation. As can be
seen, the mean-field results are very accurate in this case, since they lie mostly
within the confidence intervals, even though the confidence intervals are very
narrow. The upper solid line represents the mean value of the original Moebius
simulation from [16]. Comparing the original Moebius results with the new re-
sults from the correct simulator setting, reveals that the number of propagation
bots (both active and inactive) differs from the results stated in [16]; during the
first fifty hours the unflagged simulation provides slightly lower results (about
20%), however on this scale the difference is hardly noticeable. Starting from
fifty hours, the unflagged simulation over-estimates; after a week the difference
is about 42% (754755 vs. 440073). Note that the simulation takes longer than 5
days of runtime, versus 1 second for the mean-field method. We come back to
this at the end of the section.

The goal of this paper is not to study the growth of botnets under differ-
ent conditions, but to compare the results obtained from mean-field approxi-
mation with those obtained from simulations. Hence, we compare results for a
representative selection of experiments in order to discuss the advantages and
disadvantages of both approaches.

Comparison of the Mean-Field Approach and Simulation 141

To investigate how a reduced infection spread would influence the growth of
botnets, Experiments 1 and 2 were done in [16]. The ”user factor” (ProbInstal-
Infection) is reduced to 60% and 40%, respectively, as compared to the Baseline
experiment to represent a lower probability of, e.g., opening infected files. The
results are, together with those from the Baseline experiment, presented in Fig-
ure 3. A logarithmic scale has been chosen for the number of propagation bots,
in order to better visualize the exponential growth. For both experiments, the
results obtained with the mean-field model are very accurate and lie well within
the confidence intervals most of the time.

Baseline experiment

Experiment 1

Experiment 2

0 50 100 150

1000

104

105

Time �hours�

�
Pr

op
ag

at
io

n
B

ot
s

Fig. 3. Number of propagation bots over time in the Baseline experiment and in Ex-
periment 1 and 2 obtained from Moebius simulation and from mean-field analysis

To investigate how efficient anti-malware software can control or even stop
the botnet spread, experiments with increased removal rates were done in [16].
To make a comparison of the approaches, we conducted a series of experiments,
where the removal rate of active propagation bots varies between 0.01 and 0.1.
The mean-field approximation provides an explicit result, which in most of the
cases lies well within the 95% confidence intervals (see Figure 4).

At first sight the high accuracy of the analytical results might be surprising,
since the underlying assumption of mean-field approximation is that the num-
ber of interacting components is large. However, apparently in Experiment 3
(cf. Figure 4) the initial set of active propagation bots hardly gets a chance to
infect more computers before being disinfected themselves. In terms of the local
CTMC, it means that the transition from the state NotInfected to the state Ini-
tialInfection is taken by (almost) none of the computers. This transition happens
to be the only one whose rate depends on the environment; if we remove it from
the local CTMC, we are left with a CTMC with constant rates. With all rates
in the CTMC constant, the ODEs (4) are easily seen to be the Kolmogorov dif-
ferential equations, whose solution is the probability distribution over the states
of the CTMC as a function of time. Also, removing this transition in the SAN
simulation model reduces it to a set of many independent CTMCs. Taking the
number of markings per state as a function of time, and dividing by the total,

142 A. Kolesnichenko et al.

obviously results in an unbiased estimate of the probability distribution of the
CTMC in the course of time. Thus, clearly the two approaches should match, as
they in fact do and this explains why the mean-field results are still accurate,
even though in this case the overall number of components is small.

Experiment 3

Experiment 4

Experiment 5

Experiment 6

0 50 100 150

0.1

0.5
1.

5.
10.

50.
100.

Time �hours�

�
Pr

op
ag

at
io

n
B

ot
s

Fig. 4. Number of propagation bots over time in Experiments 5, 6, 7, and 8, obtained
from Moebius simulation and from mean-field analysis

It is interesting that the confidence intervals in Experiment 6 are much nar-
rower than the ones in Experiment 3. As the average number of propagation bots
decreases over time, the confidence intervals seem to get wider on the logarithmic
scale (see Figure 4). In fact, however, the absolute width of the intervals gets
smaller, but less quickly than the estimate itself. The reason for this is that the
actual number of propagation bots always is a non-negative integer; therefore,
when the estimated average decreases much below 1, it must be the average of
many 0’s and a few 1’s (or even fewer higher integers). Such an estimate in-
herently has a large coefficient of variation; in fact, this is the main problem of
rare-event simulation, cf. [12].

Another thing to remark about these experiments, is that when the number
of propagation bots reaches 0, and there are also no bots in the states InitialIn-
fection and ConnectedBot anymore, no new infections can occur. The number of
propagation bots will then remain 0. Thus, when the graph indicates that after
a week the average number of propagation bots is about 0.01, this means that
in most (about 99%) of the simulation runs the botnet is extinct and will stay
so, while only a few runs still have some botnet activity.

In Table 3, the computer run times for the simulation and for the mean-field
computation are compared. The results were obtained on a Core-i7 processor
with 3 GB RAM and 4 cores and hyper threading. One sees that the simula-
tion can take a very long time, namely up to several days, while the mean-field
approximation is always done within one second. The difference between the
simulation time for the different experiments is due to the marking dependency
of the rates. For example, in the Baseline experiment the number of ActiveProp-
agationBots is large, hence, the rate of infection becomes very large and more

Comparison of the Mean-Field Approach and Simulation 143

Table 3. Time spent on simulation and mean-field approximation

Experiment Simulation mean-field

Baseline 5 d 3 h 25 min 1 sec

Exp. 1 9 h 51 min 1 sec

Exp. 2 5 h 37 min 1 sec

Exp. 3 31 min 1 sec

Exp. 4 40 min 1 sec

Exp. 5 45 min 1 sec

Exp. 6 36 min 1 sec

time is needed to simulate the resulting large number of events. The time spent
on the simulation of the experiments with lower numbers of computers involved
is reasonably smaller; however the mean-field approximation is still much faster
in all cases. In any case, the simulation times should only be taken as indications,
since the simulations were not run completely independently, but with 2, 3 or 4
of them simultaneously on a 4-core computer, so the jobs may have interfered
with each other.

5 Exploiting the Speed-Up

In the previous section we have shown how fast and efficient the mean-field
method is (cf. Table 3), and that it gives correct results. This allows us to
use the mean field method in this section to address problems which are not
feasible using simulation: (i) we study the dependence of the botnet spread on
two parameters, while the results in the previous section are only functions of
time for a given set of parameter values, (ii) and we study the behavior of the
botnet in the presence of cost constraints. The purpose of this section is to show
the difference between the simulation and the mean-field capabilities, and, at
the same time, to show the advantages of the fast analysis.

The authors of [16] used time-consuming simulation to show in a couple of
examples that there is no considerable difference in increasing the detection of
active or inactive bots (namely increasing the removal rates k11, k13 or k12, k14).
The mean-field method allows to make the analysis faster and to obtain more
information. We calculate the number of propagation bots as a function of k13

and k14 (see Figure 5). As one can see, there is no considerable difference in
a relative increase of one or the other parameter. It is known that inactive
computers are much harder to detect (increasing k13 is more difficult), therefore
the above results might be helpful for the antivirus software developers to find
the better strategy for botnet removal.

Next, we introduce a cost concept to analyze the economical side of an infec-
tion. In the following, two types of costs are considered: (i) the cost of a computer
being infected, that occurs for example due to the loss of information or produc-
tivity, and (ii) the cost of more frequent checking with antivirus software. On
one hand the number of infected computers, and hence their cost grows if com-
puters are not frequently checked. On the other hand, if computers are checked

144 A. Kolesnichenko et al.

too often the botnet is not growing, but running the antivirus software becomes
very expensive. We analyze this trade-off in more detail in the following. We
calculate the cumulative cost as follows:

C(t0, t1, RR, D1, D2) =
∫ t1

t0
(D1 · InfBots(t, RR)+
D2 · RR · AllComp) dt

(6)

where RR is the change in removal rates k11, ..., k14 with respect to the rates in
the Baseline experiment, i.e. k11 = RR ·k11,baseline and similarly for k12, k13, k14;
D1 is the cost of infection; InfBots(t, RR) is the number of infected computers
for a given RR, at time t, including active and inactive working and propagation
bots; D2 is the cost of one computer being checked, which probably is much
lower than the cost of infection (D1); AllComp is the number of the computers
in the system. We calculate the cumulative cost of the system performance for
three days. For RR from the interval [0.001; 5] we calculate the cost as a function
of time for given D1 and D2. Results are depicted in Figure 6 and, one can see,
that the cost grows exponentially with time and quite linearly with decreasing
RR if the computers are not checked frequently (for the RR between 0 and 1).
However, if antimalware software is used too often (RR above 2), the cost grows
linearly with RR.

Fig. 5. Number of propagation bots
for (k13, k14) ∈ [8 · 10−5; 10−3] × [8 ·
10−3; 10−1] at time T = 3days, all
other parameters are the same as for
Baseline experiment (see Table 2)

Fig. 6. Cost of the system performance
for D1 = 0.01, D2 = 4 · 10−5

We see that the mean-field method can be easily used for finding the removal
rates which minimize the cost at a given moment of time. It can help network
managers with careful decision-making, based on the situation at hand. Even
though not all parameters might be known in reality, such analysis can help to
obtain a better understanding of the characteristics of botnet spread.

In this section we studied different aspects of botnet spread and gained a
deeper understanding of the trade-off which occurs when costs are induced. The
set of problems discussed in this section demonstrates the efficient application
of the mean-field method. One can think of other questions to address, however
our aim was to show the potential of the method by addressing problems which
can not be solved using simulation.

Comparison of the Mean-Field Approach and Simulation 145

6 Variations of the Method

As an alternative to the method described in Section 3, we also applied a discrete-
time approximation to the model. The uniformisation of the CTMC was done
and the corresponding DTMC for the single node behavior was obtained. We
used the mean-field convergence theorem from [1] to obtain the approximation.
As was expected, the results for discrete time approximation are identical to the
results for the continuous time approximation, and therefore omitted here.

In [4], a method is proposed to systematically derive a set of ordinary dif-
ferential equations governing the concentrations of reactants in (bio)chemical
systems. This approach can also be applied to the botnet model, by interpreting
each of the 7 states as a chemical ”reactant”, and each transition between the
states as a ”chemical reaction”. The concentrations then represent the fraction
of all computers that are in that particular state; the method allows sufficient
freedom in the dependence of the reaction rates on the concentrations to fit the
botnet model. Applying the systematic method from [4] to this model results in
a set of ODEs that is identical to the equations (4) which we derived using the
mean-field approximation.

It turns out that there is a good explanation for the match between this
ODE method and the mean-field approximation. The main premise in mean-
field analysis is that there is a large number N of identical entities (computers
in the botnet case), of which some number are in each state. The quantity of
interest then is the fraction of the entities that is in each state (the vector m(t)).
Now, a concentration in the (bio)chemical context of [4] is also a fraction, namely
the fraction of all molecules that are of a certain type (assuming that the number
of solvent molecules far exceeds the others, so that the total number of molecules
is practically constant). With this interpretation, the two methods are identical.
The main difference between the two methods is that in mean-field analysis, the
total number of entities is called N and is explicitly taken in the limit to infinity.
In contrast, this limit is not made explicit in the (bio)chemistry ODE method;
this may be justified by the typically extremely large number of molecules in
chemical systems (cf. Avogadro’s number).

A similar argument holds for ODEs derived from a PEPA model, as done
in [3]. The PEPA model describes a large CTMC, which in fact models many
identical computers, each of which can be in one of a small number of states. For
deriving ODEs, only the total number per state is taken into account. These total
numbers are then treated as continuous rather than discrete variables, which is
equivalent to setting the total number to infinity. Although we did not explicitly
do so, it is clear that this PEPA-based approach to our botnet model would
again result in the same set of ODEs.

7 Conclusion

In this paper, we have compared different approaches for evaluating a Markov
model for peer-to-peer botnet spreading.

146 A. Kolesnichenko et al.

We have shown that the mean-field approach is much faster than simulation,
taking about 1 second instead of minutes to days of computation time. The
results from the mean-field analysis match those from the simulation very well,
being mostly inside the 95% confidence interval.

Due to the speed-up of the mean-field method we have been able to address
various questions which cannot practically be answered with simulation, such
as questions involving cost trade-offs; this is useful in typical engineering appli-
cations. We also considered several other approaches that can be used for the
analysis of large-scale systems, such as automatically deriving ODEs and deriv-
ing ODEs from process algebra models, and found them to be equivalent to the
mean-field approach.

In general, the mean-field method is only a first-order approximation to the
real Markov chain model, which becomes better as the number of entities in-
volved increases. However, in the present model we did not observe any signif-
icant difference between the mean-field results and the simulation results. In
contrast to the mean-field approximation, the precision of the simulation results
suffers when the mean number of bots being estimated, becomes close to zero.
This is because the standard deviation does not go to zero as fast as the mean
value. Note that this is, in fact, the problem that rare-event simulation addresses.

The present research shows the usefulness of the mean-field approach, as it
is able to provide very accurate results very quickly. However, even in cases
where mean-field results are less accurate for small population numbers, it can
be useful as a quick check of the simulation. In fact, the simulator setting problem
discussed in Section 4 was found due to the mismatch with the mean-field results.

Future work will involve further exploration of the conditions under which
mean-field results are correct. As noted above, even when the number of entities
involved was small, our mean-field results remained correct, and we could explain
why this was the case. Presumably, more general conditions for such correctness
can be found.

Acknowledgments. This work is supported by the Netherlands Organization
for Scientific Research (NWO), the Centre for Telematics and Information Tech-
nology (CTIT), and the Centre for Dependable ICT Systems (CeDICT). Fur-
thermore, we thank the authors of [16] for providing the source code of their
model and discussions on the settings of the simulator.

References

1. Bakhshi, R., Cloth, L., Fokkink, W., Haverkort, B.: Mean-Field Analysis for the
Evaluation of Gossip Protocols. In: 6th Int. Conference on Quantitative Evaluation
of Systems (QEST 2009), pp. 247–256. IEEE CS Press, Los Alamitos (2009)

2. Bakhshi, R., Endrullis, J., Endrullis, S., Fokkink, W., Haverkort, B.: Automating
the mean-field method for large dynamic gossip networks. In: 7th Int. Conference
on Quantitative Evaluation of Systems (QEST 2010). IEEE CS Press, Los Alamitos
(2010)

Comparison of the Mean-Field Approach and Simulation 147

3. Bradley, J., Gilmore, S., Hillston, J.: Analysing distributed internet worm attacks
using continuous state-space approximation of process algebra models. Journal of
Computer and System Sciences 74(6), 1013–1032 (2008)

4. Calder, M., Gilmore, S., Hillston, J.: Automatically deriving ODEs from process
algebra models of signalling pathways. In: Proceedings of Computational Methods
in Systems Biology (CMSB 2005), pp. 204–215 (2005)

5. Cerotti, D., Gribaudo, M., Bobbio, A.: Disaster propagation in heterogeneous me-
dia via markovian agents. In: Setola, R., Geretshuber, S. (eds.) CRITIS 2008.
LNCS, vol. 5508, pp. 328–335. Springer, Heidelberg (2009)

6. Ciocchetta, F., Hillston, J.: Bio-PEPA for epidemiological models. Electronic Notes
in Theoretical Computer Science 261, 43–69 (2010)

7. Deavours, D., Clark, G., Courtney, T., Daly, D., Derisavi, S., Doyle, J., Sanders, W.,
Webster, P.: The Mobius framework and its implementation. IEEE Transactions
on Software Engineering 28(10), 956–969 (2002)

8. Feamster, N., Gao, L., Rexford, J.: How to lease the internet in your spare time.
SIGCOMM Comput. Commun. Rev. 37, 61–64 (2007),
http://doi.acm.org/10.1145/1198255.1198265

9. Garetto, M., Gong, W., Towsley, D.: Modeling malware spreading dynamics. In:
Twenty-Second Annual Joint Conference of the IEEE Computer and Communica-
tions, INFOCOM 2003, IEEE Societies, March-3 April 2003, vol. 3, pp. 1869–1879
(2003)

10. Gribaudo, M.: Analysis of large populations of interacting objects with mean field
and markovian agents. In: Bradley, J.T. (ed.) EPEW 2009. LNCS, vol. 5652, pp.
218–219. Springer, Heidelberg (2009)

11. Gribaudo, M., Cerotti, D., Bobbio, A.: Analysis of on-off policies in sensor networks
using interacting markovian agents. In: Sixth Annual IEEE International Confer-
ence on Pervasive Computing and Communications, PerCom 2008, pp. 300–305.
IEEE, Los Alamitos (2008)

12. Heidelberger, P.: Fast simulation of rare events in queueing and reliability models.
ACM Transactions on Modeling and Computer Simulation 5, 43–85 (1995)

13. Henzinger, T.A., Mateescu, M., Mikeev, L., Wolf, V.: Hybrid Numerical Solution
of the Chemical Master Equation. In: Proceedings of Computational Methods in
Systems Biology, CMSB 2010 (2010); preprint arXiv:1005.0747

14. Le Boudec, J.-Y., McDonald, D., Mundinger, J.: A generic mean field convergence
result for systems of interacting objects. In: 4th Int. Conference on Quantitative
Evaluation of SysTems (QEST 2007), pp. 3–18. IEEE CS Press, Los Alamitos
(2007)

15. Rohloff, K., Basar, T.: Stochastic behavior of random constant scanning worms.
In: Proceedings. 14th International Conference on Computer Communications and
Networks, ICCCN 2005, pp. 339–344 (October 2005)

16. van Ruitenbeek, E., Sanders, W.H.: Modeling peer-to-peer botnets. In: 5th Int.
Conference on Quantitative Evaluation of SysTems (QEST 2008), pp. 307–316.
IEEE CS Press, Los Alamitos (2008)

17. Sanders, W., Meyer, J.: Stochastic Activity Networks: Formal Definitions and Con-
cepts? Lectures on Formal Methods and Performance Analysis, 315–343 (2001)

18. Wolfram Research, Inc.: Mathematica tutorial (2010),
http://reference.wolfram.com/mathematica/tutorial/

IntroductionToManipulate.html

http://doi.acm.org/10.1145/1198255.1198265
http://reference.wolfram.com/mathematica/tutorial/IntroductionToManipulate.html
http://reference.wolfram.com/mathematica/tutorial/IntroductionToManipulate.html

WMTools - Assessing Parallel Application

Memory Utilisation at Scale

Oliver Perks, Simon D. Hammond, Simon J. Pennycook, and Stephen A. Jarvis

Performance Computing and Visualisation
Department of Computer Science

University of Warwick, UK
{ofjp,sdh,sjp,saj}@dcs.warwick.ac.uk

Abstract. The divergence between processor and memory performance
has been a well discussed aspect of computer architecture literature for
some years. The recent use of multi-core processor designs has, however,
brought new problems to the design of memory architectures - as more
cores are added to each successive generation of processor, equivalent im-
provement in memory capacity and memory sub-systems must be made
if the compute components of the processor are to remain sufficiently
supplied with data. These issues combined with the traditional problem
of designing cache-efficient code help to ensure that memory remains an
on-going challenge for application and machine designers.

In this paper we present a comprehensive discussion of WMTools - a
trace-based toolkit designed to support the analysis of memory allocation
for parallel applications. This paper features an extended discussion of
the WMTrace tracing tool presented in previous work including a revised
discussion on trace-compression and several refinements to the tracing
methodology to reduce overheads and improve tool scalability.

The second half of this paper features a case study in which we apply
WMTools to five parallel scientific applications and benchmarks, demon-
strating its effectiveness at recording high-water mark memory consump-
tion as well as memory use per-function over time. An in-depth analysis
is provided for an unstructured mesh benchmark which reveals signifi-
cant memory allocation imbalance across its participating processes. This
study demonstrates the use of WMTools in elucidating memory alloca-
tion issues in high-performance scientific codes.

Keywords: Memory, Multi-core, Tracing, Analysis.

1 Introduction

In the forty-five years since Gordon Moore predicted the rate at which proces-
sor transistor counts would increase, the performance of individual processors
found in large supercomputing machines has grown by over four orders of mag-
nitude. The designers of supercomputers have used this property, coupled with
increased machine scale, to deliver exceptional improvements in compute per-
formance with each successive generation of machine. The performance offered

N. Thomas (Ed.): EPEW 2011, LNCS 6977, pp. 148–162, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

WMTools - Assessing Parallel Application Memory Utilisation at Scale 149

by such machines, augmented with developments in parallel algorithms, has cre-
ated significant opportunities in a variety of scientific domains. In many cases, a
limiting factor in the rate of improvement has been the availability of sufficient
Random Access Memory (RAM) to house the required application datasets.

Historically, the divergence between processor compute performance and mem-
ory access time, the so called “memory wall” [13], has been regarded as one of
the greatest concerns in computer architecture. However, the use of multi-core
processors is presenting several additional memory-related challenges. The most
immediate of these to be felt by users of large parallel scientific codes has been the
decrease in available memory per-core - a result of the rapid growth in processor
core density without matched improvement in memory capacity. More subtle,
but nonetheless as important, has been increasing memory latency, a product
of increased contention for memory access which results from having additional
cores access memory through a single memory sub-system. As the High Perfor-
mance Computing (HPC) industry looks to the future, these problems look set
to become more problematic - additional cores in the form of graphics processing
units (GPUs) will introduce memory placement to the list of the concerns as well
as placing a severe limits on memory capacity per processing element.

Traditionally, strong scaling - the practice of using additional processors to
solve a fixed problem size - has been a technique to address any lack of available
memory. In general, this is typically successful if the problem is implemented to
decompose of the available processing cores. However, where data is static or de-
composes poorly this approach can yield disappointing or even negative results.
The authors of [7,8] illustrate how rank-to-rank communication buffers within
middleware, specifically the Message Passing Interface (MPI), can consume in-
creasing volumes of memory at scale. Although solution to these problems have
been engineered [6], the solution has yet to be generally adopted.

Memory, therefore, continues to pose a challenge in the design and optimisa-
tion of parallel algorithms which must scale. Understanding how an application
requests, utilises and frees memory during execution and how these requests re-
late to the design of the underlying algorithm, remains a key activity associated
with application design. If memory requirements across an application work-
flow can be sufficiently understood, opportunities may be created to reduce the
memory configuration of a machine during procurement, reducing initial capital
expenditure or permitting execution over fewer processor cores.

In this paper we introduce WMTools, a toolkit designed to support the anal-
ysis of memory utilisation for parallel applications. This framework consists of
the WMTrace memory tracer, a dynamic shared library which requires no source
code modification, and a parallel analysis tool for interpreting trace data post-
execution. The tools are intended to provide sufficient information to developers
to enable the diagnosis of memory allocation over time and by application func-
tion. By comparing traces from multiple scales of application run developers
are aided in diagnosing which memory allocations scale in size and which are
likely to prevent scaling. Such analysis is a vital precursor to the optimisation
of application memory utilisation - a key area of focus for the design of parallel
applications.

150 O. Perks et al.

The specific contributions of this work are:

– Presentation of WMTools, a new lightweight toolkit based on application
tracing. The distinguishing features of this tool are the ability to record
memory allocation traces combined with temporal and stack information
without the introduction of significant overhead. This data is sufficient to
identify peak memory usage and analyse memory usage over time, on a per
function basis, for a set of parallel tasks;

– Profiling and tracing of five established scientific applications and bench-
mark codes using WMTools. The five codes are selected to cover a variety
of programming languages and scientific domains reflecting the generality of
our approach and its ability to scale to applications of varying size. In par-
ticular we are able to utilise WMTools in assessing memory allocations for
these codes with increasing problem size and core count demonstrating how
application developers may choose to use our toolkit in identifying potential
scaling bottlenecks;

– Detailed application analysis for the unstructured-mesh engineering bench-
mark, phdMesh. We demonstrate the identification of maximum and min-
imum high-water marks for the benchmark, indicating a load imbalance;
memory use over time, showing high memory use during initialisation but
crucially not during the main body of execution; and finally a breakdown of
memory use by function at minimal and maximal high-water marks as the
number of processor cores is scaled.

The remainder of this paper is structured as follows: in Section 2 we catalogue
a short list of previously reported memory analysis tools and summarise tech-
niques which are relevant to this work; Section 3 contains the presentation of our
tracing tool, WMTrace; a case study applying our tool to analysing the memory
allocation behaviour of several industry standard applications and benchmarks
is described in Section 4; in Section 5 we present a more in-depth investigation
into a single code, via information obtained with WMTrace; finally, we conclude
the paper with a summary of our findings in Section 6 and identify areas for
further work.

2 Related Work

Memory has the potential to be a significant bottleneck for HPC centres - in
many cases a lack of memory capacity can act to place a limit on scientific deliv-
ery and in-sufficient attention to memory use can be a contributor to poor code
performance. Due to this, a collection of tools already exist to assist developers
in analysing application memory usage and management within their code.

The main distinction between memory tracing tools is the level of analysis
performed and the granularity of the data collected. Broadly, memory analysis
tools form two classes - lightweight and heavyweight, depending on their over-
heads and analysis depth.

The tools which provide the most detailed level of data collection have an
inherent overhead in either additional memory consumption or runtime – and

WMTools - Assessing Parallel Application Memory Utilisation at Scale 151

often both. The large volumes of data generated may also require extensive
post-processing to derive any meaningful interpretation from the results. This
class of tools often collects data at the hardware counter level, and may require
code instrumentation. The alternative category of tools attempt to avoid this
overhead and are thus limited in the data they can collect. As lightweight tools,
they are often loaded dynamically at run time and therefore do not require code
instrumentation.

The closest tool to WMTools is the memP library from Lawrence Livermore
National Laboratory (LLNL) [1]. memP is a lightweight library designed for col-
lecting basic memory consumption information. The primary aim is to collect
high-water mark usage data from all of the processes in a parallel job, which it
achieves by re-implementing the memory management functions to allow trac-
ing. All of the data is collected and stored within in-memory data structures,
eliminating the need for a post-processing stage. Maintaining these in-memory
data structures introduces some performance overhead and additional memory
consumption. The resulting data set is minimal, providing maximal heap and
stack usage across the processes together with aggregated statistics over this
data (e.g. standard deviation and coefficient of variation).

Where WMTools differs from memP is that it does not store the complete
data-set in memory, but instead streams it to file, thus minimising overheads and
having as little influence on the execution of the program as possible. As statis-
tics are not generated upon job completion, WMTools utilises a post-processing
phase to extract memory usage statistics and has the facility to provide fur-
ther in-depth analysis which is difficult to compute efficiently during application
execution.

Another tool, mprof, provides a lightweight framework for memory analysis
with greater granularity than memP. mprof was written when memory con-
straints prevented the tool from consuming much system resource, with the
authors claiming to require only 50KB of additional memory and incurring a
maximum 10x slowdown [14]. This tool also favours in-memory data structures
as, at the time of writing, streaming trace information to disk was too expen-
sive. One of the main limitations of mprof is it provides a stack traversal to
a fixed depth (currently five). In codes which make use of external libraries, a
stack depth of five is often insufficient to reach user code. WMTools removes any
arbitrary limit on stack depth, allowing for greater accuracy in analysis.

The volume of data generated by stack tracing tools has been a topic of de-
tailed research, with a number of methods to reduce or compress stack data be-
ing proposed [3,4]. Many of the techniques developed employ a-priori knowledge
about the data structures and repetition of the data within the trace. The data
management approach uses in WMTools is two-stage, firstly, a custom stack-
dictionary is maintained to eliminate repetitive writing of stack information and
secondly, trace information is streamed to file using the popular Z-lib library. In
our experimentation this approach balances reducing trace size without signifi-
cant impact on runtime.

152 O. Perks et al.

Post Execution

Environment
Variables

Application + Libraries

WMTrace

stdlib.h / libc

Linux Kernel

C
om

pr
es

so
r

Trace Files P
os

t P
ro

ce
ss

or

Temporal/Functional
Analysis etc

Stack
Dictionaries

Initial Post Processing

Memory Usage / HWM

Fig. 1. WMTrace and Analysis Workflow

Many modern heavyweight analysis tools are built upon dynamic binary in-
strumentation (DBI) frameworks, such as Valgrind [11] and Pin [9]. These DBI
frameworks facilitate the use of shadow memory, where either meta data re-
garding access frequency or even value representation is stored for every byte of
application allocated memory. This is exploited by many different shadow mem-
ory tools to detect accesses to un-addressable memory, perform type checking
and identify data races amongst others. The overheads of such tools are widely
acknowledged to be large; the authors of Memcheck document a mean slowdown
of 22.2x [10]. Tools like Memcheck introduce overheads by monitoring memory
allocations and accesses, and while this is partially the case with WMTools we
face the additional overheads of data generation and storage. Differences in the
functionality of the two tools mean that WMTools does not incur the same
mid-execution processing costs as Memcheck, reducing the overall runtime over-
heads.

3 The WMTrace Library and Analysis Framework

Memory allocation analysis using WMTools is conducted via a two-stage pro-
cess (shown in Figure 1). In the first stage, a parallel application is executed
with the WMTrace tracing library, linked at runtime by the operating system
linker. Immediately prior to execution, calls to the standard POSIX memory
handling functions (malloc, calloc, realloc and free) are dynamically linked
to those exported by WMTrace. Each function is implemented within WMTrace
by recording the memory allocation/free event in the tool’s internal buffer and
passing the call through to the operating system libraries. The interposition of
functions using this approach results in the tracing tool being application and
implementation language agnostic and therefore applicable to any application
using conventional POSIX memory management. Recorded events are periodi-
cally written to a compressed per-process trace file for the second stage of the
framework – post-execution analysis.

WMTools - Assessing Parallel Application Memory Utilisation at Scale 153

In this post-execution stage (described in Section 3.2), events in the trace file
are read serially and each allocation event attributed to the top level function
from the call stack. The returned pointer address from the allocation is stored
with each event (at runtime) so that subsequent deallocations can be correctly
mapped, allowing the correct calculation of freed memory.

Each aspect of WMTrace’s behaviour is configurable at runtime through the
specification of environmental variables. This permits flexible levels of runtime
tracing, including the ability to disable stack recording or alter trace compression
behaviour.

3.1 Stage 1: Memory Event Tracing

As illustrated in Figure 1, memory events are traced in WMTrace through the use
of dynamic function interposition, in which POSIX memory handling functions
are intercepted and recorded prior to being passed to the operating system for
execution. WMTrace utilises an internal, compile-time configurable buffer to
temporarily store event traces in memory during execution. Each MPI process
maintains a unique buffer and operates on a dedicated trace file ensuring that
the overhead associated with recording trace information is as low as possible.

Memory events recorded by WMTrace are stored as a series of ‘frames’ which
permit rapid movement through the trace file during post-execution analysis.
Currently four types of events are stored, which map to the four main POSIX
memory handling functions: malloc, which allocates a single memory block;
calloc, which allocates a contiguous block of memory for a set of items; realloc,
which frees a previously defined block of memory and allocates a second block;
and free, which frees previously defined memory blocks and returns the memory
to the unallocated system pool. Each event is stored in a fixed length frame
containing the event specific data along with a time stamp, for temporal analysis.
For events where memory is allocated the call site stack is recorded to facilitate
a functional breakdown during the analysis phase.

The potential volume of data generated by stack tracing tools maybe very
large if the application being traced makes frequent calls to memory handling
functions, has a deep call hierarchy or runs for a considerable amount of time.
The WMTrace library reduces stack trace output through a two-stage compres-
sion process designed to balance trace file size with runtime overhead. In the first
stage, a custom stack dictionary is used to relate a specific stack to an identifier.
Each new stack is added to the dictionary and assigned an identifier so that, if
it is encountered at a later point of execution, the identifier can be used. Since
scientific codes typically iterate, the probability of encountering stacks later in
execution is high, enabling considerable compression to occur through custom
stack handling. Data is then written to an internal tracing buffer, when full a
second compression stage takes place using Z-lib [5]. Our empirical tests indicate
that these two stages balance the size of the trace file with increase in runtime
overhead and enable us to provide lossless compression for improved accuracy
during the analysis stage.

154 O. Perks et al.

3.2 Stage 2: Post-Execution Trace Analysis

Following the tracing of a parallel application, the second stage of our framework,
WMAnalysis, conducts analysis over the compressed trace files – one for each
MPI process. In this stage, the events of each trace file are read serially and
a map of allocations to size of requested memory is created on a per-function
basis.

Post-processing takes place in two phases; the first is an initial analysis to
establish the application high-water mark memory usage and identify threads
of interest and the second is a targeted in-depth analysis which generates data
over time or by application function.

The initial post-processing is performed in parallel at the end of job execu-
tion, and provides aggregated statistics on the memory usage of the applica-
tion, including high-water mark for each process, maximal, minimal and mean
high-water mark, and standard deviation between high-water mark values. No
temporal or functional analysis is performed during this phase to decrease the
time to generate initial results.

During the second post-processing phase temporal and functional analysis is
performed using the stack data associated with each event. A record of the al-
location, and the address attributed to it, is then added to the function’s list.
When a free event is encountered, the address associated with the event can
then be searched for in memory and the appropriate block of memory removed
from the function’s list. Therefore, at any point during the analysis we have a
complete record of the memory requested by each function in the application.
We are also able to utilise memory requests performed by each function to es-
timate the memory requirements of each library utilised by the application – a
factor often overlooked by application developers who treat libraries as black-box
entities. The time-stamp associated with every event enables further temporal
analysis.

This in-depth post-processing can have significant runtime requirements de-
pending on the granularity of the analysis, motivating execution as a later post-
processing stage. The structure of the trace files allows this in-depth analysis to
be performed at a later date or at an alternative location as no dependencies to
the machine or code are maintained.

The motivation for separating the analysis from the job execution is to limit
the runtime impact of the tracing tool. It also allows the analysis to be performed
multiple times, at different granularity levels, on the same trace output, allowing
the user to gradually refine their investigation. This separation also reduces the
volume of data stored in memory during job execution, thus limiting disruption
to cache and helping to reduce context switching.

4 Case Study

In the following section we illustrate the usage of WMTools with five different
scientific applications and benchmarks, identified in Table 1. Either indepen-
dently or as part of a larger workflow/application, the routines represented by

WMTools - Assessing Parallel Application Memory Utilisation at Scale 155

Table 1. Applications and Benchmarks used for Tracing

Language Description
miniFE C++ Unstructured finite element solver

phdMesh C++ Unstructured mesh contact search
DLPoly Fortran 90 Molecular dynamics simulator
Lare3D Fortran 90 Non-linear molecular hydrodynamics
AMG C Parallel algebraic multigrid solver

0
200
400
600
800

1000
1200
1400
1600
1800

miniFE

phdM
esh

Lare3D

AM
G

0 0M
em

or
y

C
on

su
m

pt
io

n
(M

B
)

0
2
4
6
8

10

DLPoly

16 Cores
32 Cores
64 Cores

128 Cores

Fig. 2. Peak Memory Consumption on Minerva

these codes use significant proportions of the compute time at supercomputing
sites ranging from universities to national laboratories such as Daresbury and
EPCC in the UK or Lawrence Livermore and Sandia National Laboratories in
the United States. These codes are also interesting from a technical perspective
because they represent the three principle implementation languages – C, C++
and Fortran 90 – which are used to write modern parallel scientific applications.
The ability to successfully trace each of these languages is critical if our tool is
to be generally applicable to HPC codes. For each of these codes an appropri-
ately sized problem has been created and executed with the WMTrace library
to record memory behaviour over a variety of core configurations. To illustrate
how the memory consumed alters as scale is increased, the problem has been
strong scaled over 16, 32, 64 and 128-core executions.

The following experiments were performed on the recently installed Minerva
supercomputer, located at the Centre for Scientific Computing (CSC) at the
University of Warwick. This machine comprises of 258 dual-socket, hex-core
Intel Westmere-EP X5650, nodes connected via Infiniband. Each node provides
24GB of system memory (2GB per core). The runs presented utilised the GNU
4.3.4 compiler toolkit with OpenMPI 1.4.3, using the -O3 optimisation flag and
debugging symbols.

This case study illustrates the ability of WMTools to calculate memory high-
water marks and analyse memory consumption over time. We demonstrate how
this is achieved with minimal overheads, whilst still producing an accurate result,
when compared with the alternative tool memP.

4.1 High Water Mark

Figure 2 presents the peak high-water mark, the maximum high-water mark of
all processes within a job, of the selected codes. Note that the scaling of memory

156 O. Perks et al.

0
50

100
150
200
250
300
350
400

0 20 40 60 80 100

M
em

or
y

C
on

su
m

pt
io

n
(M

B
)

Runtime (%)

16 Cores
32 Cores

(a) 1803 Problem

0

200

400

600

800

1000

0 20 40 60 80 100

M
em

or
y

C
on

su
m

pt
io

n
(M

B
)

Runtime (%)

16 Cores
32 Cores

(b) 2503 Problem

Fig. 3. Temporal memory trace for miniFE at different problem sizes and scale

allocations is not consistent for all codes. Whilst the memory utilised by miniFE
scales well with increasing core count, the memory usage of phdMesh actually
increases when moving from 64 to 128 cores. The usage of memory in DLPoly
remains fairly static (around 8.5MB) despite an increase in the number of cores.

4.2 Memory Usage over Time

In Figures 3a and 3b we present the memory utilisation of the miniFE benchmark
over the course of runs on 16 and 32 cores for a 1803 and 2503 problem size
respectively. The application runtime has been made relative to permit direct
comparison of the shape of memory utilisation between the runs (hence the x-
axis represents percentage of runtime). miniFE’s behaviour is characterised by a
startup phase in which the application creates and fills a mesh before assembling
the Finite Element data (prior to solving). On our graphs this is represented by
the initial spike - in which matrices are created. This is followed by a period of
population in which no additional memory is allocated, and then an increase in
memory as the data is copied into matrices for solving using the CG-method.

4.3 Tool Overhead and Comparison

To measure the overheads of WMTrace we time the execution of the code both
with and without the profiler loaded. We also time code execution with the
memP profiler loaded, to give a comparison of tool performance.

WMTools - Assessing Parallel Application Memory Utilisation at Scale 157

Table 2. Runtime slowdown comparison: WMTrace and memP

WMTrace memP
Post- Trace

Cores Runtime Slowdown Processing Size Slowdown
(Secs) (x) (Sec) (MB) (x)

miniFE

16 22.67 1.01 1.21 32 1.13
32 17.56 1.09 1.67 53 1.00
64 6.00 1.34 1.03 134 2.90
128 5.07 1.40 1.40 257 3.00

phdMesh

16 35.06 9.17 19.26 3072 80.43
32 29.85 8.90 19.64 3994 30.79
64 18.23 10.36 14.09 5018 20.24
128 13.17 11.50 6.83 6042 11.25

DLPoly
16 57.76 1.81 1.97 331 1.06
32 79.10 1.43 2.72 421 1.00
64 107.57 1.26 2.76 894 1.07

Lare3D
16 2069.37 1.00 3.66 51 1.00
32 1066.85 1.00 2.07 97 1.01
64 579.14 1.00 1.61 168 1.05

AMG
16 442.37 1.08 4.59 482 -
32 164.79 1.11 4.85 494 13.09
64 76.58 1.06 4.99 525 8.28

Table 2 illustrates the overheads introduced by WMTrace. It is clear to see
that the tool performs much better on some codes than others; the mean slow-
down ranges from 1.0x for Lare3D to 11.5x for phdMesh. We also shows our
runtime overheads are in line with those of memP, if not slightly lower. Our ini-
tial post-processing overheads are also presented to illustrate the minimal run-
time impact of parallel post-processing at the end of job execution. The overly
high runtime overheads introduced into phdMesh are attributed to the number
of memory functions intercepted. This is in part due to the nature of the code,
as it performs multiple allocations, specifically C++ object initiations, in each
iteration, and then destroys them at the end of that iteration. A trend to note
in these results is that as the number of processors is scaled the slowdown fac-
tor worsens. This is due to the compression and I/O times for the trace files. In
Section 4.4 we discuss output size in more detail but it is clear that the total vol-
ume of data generated scales with the core count, whilst the application runtime
generally decreases. The results presented represent a significant improvement
over our previous published results [12], both in terms of runtime and tool slow-
down factor. We attribute these results in part to the transition from Woodcrest
(X5160) to Westmere (X5650) and to engineering improvements to our tool set.

For validation purposes we evaluated the high-water mark results of WMTools
against those of memP, and found a consistent over prediction by around 7MB,
we attribute this to our capture of allocations ignored by memP. We believe
that our pessimistic result is preferable to the optimistic memP result, as it
guarantees execution when close to a memory limit.

As an initial comparison to a heavyweight tool we compare WMTools to two
memory tools from the Valgrind suite: Massif, a heap profiler, and Memcheck, a
memory error detector. Massif is designed to provide a similar level of analysis
to both WMTrace and memP but incurs the overhead of the Valgrind framework
whilst Memcheck provides different functionality, focusing on leak detection and

158 O. Perks et al.

invalid accesses, but illustrates the cost of the shadow memory method of mem-
ory tracking. We compare the overheads of the three tools for the execution
miniFE during a serial execution. We experienced a 5x slowdown with Massif
and a 20x slowdown with Memcheck, for WMTrace we did not experience any
observable slowdown. The performance overheads of the Valgrind tools are in-
line with those discussed on the Valgrind website [2], between 5x and 100x, and
Nethercote’s study of Memcheck [10], 22.2x.

The memory consumption of the WMTrace library is marginal with the pri-
mary consumer of memory being the output buffer. The size of this buffer can
be varied to trade off memory consumption and volume of I/O operations. For
our experiments a buffer of 5MB was used as a suitable trade-off. The custom
stack dictionary is stored in memory, to allow for fast comparison, the memory
required for this structure varies with the number of unique call stacks, but was
benchmarked between 453KB and 1.2MB per process during the experiments
presented.

4.4 Compression

An important feature of WMTrace is the ability to compress trace data on the
fly. Through the use of Z-Lib, WMTrace is able to obtain around 24x compres-
sion on each output trace file. As the number of cores is scaled these trace files do
not tend to shrink in size for all codes, but as there are more processes generating
trace files the total volume of data scales roughly with the core count. With a
mean compressed trace file of 20.5MB, and a maximum of 213MB, per core com-
pression this represents on average a 2.5x improvement over out previous work,
but data storage remains an important factor. Compression achieved through
the custom stack dictionary is vital due to the depth of the call stacks. During
these experiments we witnessed an mean stack depth of 10.3 with a maximum
depth of 35 occurring in a 128 core run of phdMesh.

5 Analysis

In Section 4 we identified a problem with the memory scaling of phdMesh. Using
information collected via WMTrace we conduct an in-depth analysis into why
the memory requirements increase as the core count is scaled. Figure 2 illustrates
that phdMesh requires more memory to run on 128 cores than it does for 32 or 64
cores. Firstly we study the variance between the high-water marks of all processes
within a job, to identify if this memory increase is endemic to all processes or if
there is variation. An increase in high-water mark for all process may indicate
the storage of per process information (e.g. communication buffers), whereas an
increase within a minority of processes may be indicative of a memory imbalance
as a result of data set decomposition.

Table 3 shows how the high-water mark values vary for each process in a run of
phdMesh as we scale the number of cores. Increasing the core count reduces both
the minimum and mean high-water marks, whilst the maximal high-water mark

WMTools - Assessing Parallel Application Memory Utilisation at Scale 159

Table 3. Per process memory HWM comparison for phdMesh

Cores Min (MB) Max (MB) Mean (MB) Std. Dev. (MB)
16 239.50 255.26 251.54 4.33
32 149.34 164.96 161.75 3.56
64 122.40 158.46 154.87 5.14
128 92.18 170.21 139.49 18.14

increases for 128 cores. The standard deviation between the high-water mark
values identifies large discrepancies between memory consumption on different
processes, particularly in the case of 128 cores. This is indicative of problems in
the data decomposition.

By studying the temporal high-water mark analysis of phdMesh on 128 cores
(see Figure 4) we can analyse the differences in memory consumption between the
maximal and minimal high-water mark processes. Figure 4a shows the maximal
high-water mark thread, with the memory consumption of 170MB; Figure 4b the
minimal high water mark process, at 92MB. It is clear that both processes have
a very similar temporal memory trace, despite the difference in peak memory
consumption.

We see a start up phase with significantly increased memory consumption,
until around 15% of their execution, than the sustained consumption after this
point. Despite the large variation in high-water mark values (an 85% increase
from minimal) the sustained memory consumption is very similar, at around
20MB. At the end of the start up phase in phdMesh a re-balance is performed – to
ensure a consistent decomposition – which coincides with the decrease in memory
from our temporal analysis. This is suggestive of the application preloading data
which can then be discarded for the actual computation phase. It is highly
likely that this operation could be arranged in a more efficient configuration
which would massively reduce the application’s high-water mark, and the initial
variation between processes.

To aid in the start of redesign, we analyse the functional breakdown of the
high-water mark for both the maximal and minimal processes for each run of
phdMesh (see Figure 5). From this breakdown, we see that – despite the varia-
tions in memory consumption – the proportions of each function remain similar
between the maximal and minimal high-water mark threads and between runs of
different size. This indicates that the memory consumption is distributed across
all of the primary functions, rather than just being limited to a single function
involved in the start up. Although this suggests it would be difficult to uncouple
the data causing the high-water mark from the algorithm, it does suggest that
the initial problem set distribution is the root cause of the high-water mark.

6 Conclusions

The diverging gap between compute-processor and memory-chip performance
has been a well documented feature of computer architecture literature for some
time. As processor designers have utilised multi-core chip design to improve
compute performance still further, a series of additional concerns in architecture

160 O. Perks et al.

0
20
40
60
80

100
120
140
160
180

0 20 40 60 80 100

M
em

or
y

C
on

su
m

pt
io

n
(M

B
)

Runtime (%)

(a) phdMesh maximal HWM on 128 cores

0
10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100

M
em

or
y

C
on

su
m

pt
io

n
(M

B
)

Runtime (%)

(b) phdMesh minimal HWM on 128 cores

Fig. 4. Temporal memory trace for phdMesh illustrating memory variation

design have arisen. First, that the slow rate of improvement in memory capac-
ity has resulted in a reduction in the memory available per-core, and, second,
that the increase in core density has resulted in higher levels of contention for
memory channels. When combined with the increasing scale of contemporary su-
percomputers, which is placing pressure on the implementation of middleware,
the efficient utilisation of memory at runtime is rapidly becoming a concern for
the design of applications which must scale.

In this paper we present WMTools, a parallel application memory utilisation
analysis framework, comprised of a memory allocation tracing tool, WMTrace,
and analysis tool – WMAnalysis. This tool enables users to trace calls to POSIX
memory handling functions in distributed MPI codes without modification to
application source or recompilation being necessary. The second half of this
paper describes a case study in which we apply WMTools to tracing the memory
allocation behaviour of five applications and scientific benchmarks. The results
of this study demonstrates the use of WMTools in:

– Analysing the allocation and freeing of memory during application execution.
The ability to track memory use over time represents a clear advantage over
existing tools which report only aggregated statistics such as high-water
mark and, more importantly in the context of diminishing memory per-
core, the opportunity to investigate isolated points during execution where
memory usage spikes. In our study we utilised this technique to show the
memory usage of the miniFE benchmark as the problem size and core count
is varied;

WMTools - Assessing Parallel Application Memory Utilisation at Scale 161

0

100

200

300

400

16 M
ax

16 M
in

32 M
ax

32 M
in

64 M
ax

64 M
in

128 M
ax

128 M
in

M
em

or
y

C
on

su
m

pt
io

n
(M

B
)

Main
Comm mesh discover sharing

CommBuffer::allocate
M insert aux

MeshBulkData::declare entity
Other

Fig. 5. Functional breakdown of phdMesh for minimal and maximal HWM

– Comparing the high-water mark memory usage between codes and processor
core-counts. The direct comparison between different applications which are
present in a workflow is vital during procurement when memory capacities
per-core must be specified. Machine designers may choose to trade memory
capacity and runtime for reduced cost - high-water marks are vital if this is
to be achieved accurately;

– Conducting in-depth analysis of memory consumption per-function. By
recording the call stack leading to each allocation request, WMTrace offers
the ability to relate memory requests to each function and to do so over time.
This is a pre-requisite activity associated with the optimisation of memory
use as the functions which contribute most to the high-water mark can be
addressed in turn. In our study we demonstrated how such an activity may
be performed on phdMesh - an unstructured mesh Engineering benchmark.
This code makes large requests at the initialisation stage before an efficient
decomposition can be found. Further investigations of the memory utilisa-
tion of each function across the parallel execution were able to demonstrate
potential load imbalance leading to an increased high water mark on some
nodes.

As we continue to develop WMTools and apply it to larger and more sophisti-
cated production applications we expect to extend the framework described to
conduct further types of analysis - in particular, the matching of allocations and
memory-free requests will enable memory leaks to be diagnosed. We are also
actively investigating the potential use of WMTrace and memory shadowing to
investigate the relationship between memory allocation requests and use by ei-
ther the function or its child-calls since memory optimisation opportunities may
exist at later points in execution.

WMTools is a memory tracing framework which supports the tracing of
POSIX memory allocation requests. The tool is able to dynamically attach to
existing application binaries and perform tracing with low levels of overhead -
in many cases overheads are comparable or lower than equivalent tools. The use

162 O. Perks et al.

of a post-execution analysis step which utilises traces recorded during execution
allows for considerably deeper levels of analysis to be conducted. In this paper
we have demonstrated how memory allocation over time and by-function can
be generated to support the study and, potentially, optimisation of memory use
- an activity we expect to become commonplace in the future development of
parallel applications at scale.

References

1. memP (2011), http://sourceforge.net/projects/memp/
2. Valgrind (2011), http://valgrind.org/info/
3. Budanur, S., Mueller, F., Gamblin, T.: Memory Trace Compression and Replay for

SPMD Systems using Extended PRSDs. SIGMETRICS Perform. Eval. Rev. 38,
30–36 (2011)

4. Burtscher, M.: VPC3: A Fast and Effective Trace-Compression Algorithm.
SIGMETRICS Perform. Eval. Rev. 32, 167–176 (2004)

5. Deutsch, P., Gailly, J.-L.: ZLIB Compressed Data Format Specification (version
3.3). Request for Comments RFC:1950, Internet Engineering Task Force (IETF)
(May 1996)

6. Koop, M., Jones, T., Panda, D.: Reducing Connection Memory Requirements of
MPI for InfiniBand Clusters: A Message Coalescing Approach. In: Proceedings
of the 7th IEEE International Symposium on Cluster Computing and the Grid
(CCGRID 2007), pp. 495–504 (May 2007)

7. Koop, M.J., Sur, S., Gao, Q., Panda, D.K.: High Performance MPI Design using
Unreliable Datagram for Ultra-scale InfiniBand Clusters. In: Proceedings of the
21st IEEE/ACM International Conference on Supercomputing, ICS 2007, pp. 180–
189. ACM, New York (2007)

8. Liu, J., et al.: Performance Comparison of MPI Implementations over InfiniBand,
Myrinet and Quadrics. In: Proceedings of the 2003 ACM/IEEE International Con-
ference on Supercomputing, SC 2003, p. 58. ACM, New York (2003)

9. Luk, C.-K., et al.: Pin: Building Customized Program Analysis Tools with Dynamic
Instrumentation. In: Programming Language Design and Implementation, pp. 190–
200. ACM Press, New York (2005)

10. Nethercote, N., Seward, J.: How to Shadow Every Byte of Memory used by a
Program. In: Proceedings of the 3rd International Conference on Virtual Execution
Environments, VEE 2007, pp. 65–74. ACM, New York (2007)

11. Nethercote, N., Seward, J.: Valgrind: a Framework for Heavyweight Dynamic Bi-
nary Instrumentation. In: Proceedings of the 2007 ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2007, pp. 89–100.
ACM, New York (2007)

12. Perks, O., Hammond, S.D., Pennycook, S.J., Jarvis, S.A.: WMTrace - A
Lightweight Memory Allocation Tracker and Analysis Framework. In: Proceedings
of the UK Performance Engineering Workshop (UKPEW 2011) (2011)

13. Wulf, W.A., McKee, S.A.: Hitting the Memory Wall: Implications of the Obvious.
SIGARCH Comput. Archit. News 23, 20–24 (1995)

14. Zorn, B., Hilfinger, P.: A Memory Allocation Profiler for C and Lisp Programs. In:
Proceedings of the Summer 1988 USENIX Conference, pp. 223–237 (1988)

http://sourceforge.net/projects/memp/
http://valgrind.org/info/

On Stochastic Fault-Injection for IP-Packet Loss

Emulation

Philipp Reinecke and Katinka Wolter

Freie Universität Berlin
Institut für Informatik

Takustraße 9
14195 Berlin, Germany

{philipp.reinecke,katinka.wolter}@fu-berlin.de

Abstract. Injection of IP packet loss is a versatile method for emu-
lating real-world network conditions in performance studies. In order
to reproduce realistic packet-loss patterns, stochastic fault-models are
used. While fault-models can be derived from measurements, inappro-
priate implementation may introduce artifacts in the experiment process
that might invalidate results. In this paper we study the effects of differ-
ent fault-models in different experiment setups. We illustrate that care
should be taken to select an appropriate fault-injection method for the
scenario under study.

Keywords: Stochastic Fault-Injection, Gilbert-Elliot model, Packet Loss,
Testbeds.

1 Introduction

Testbed-driven performance and dependability evaluation of distributed systems
requires the emulation of a realistic networking environment. Common distur-
bances such as packet loss may have an adverse effect on both dependability
and performance of the network. As illustrated in e.g. [1, 2], packet loss may
affect dependability of higher networking and system layers even with the reli-
able TCP protocol, which guarantees reliable data transmission. Consequently,
methods for reproducing disturbances are required.

Injection of IP packet loss is an indispensible tool when evaluating fault-
tolerant network protocols. However, fault injection at the IP level also provides
a convenient way for assessing performance and reliability of distributed systems
in which the network stack is considered just an off-the-shelf component. As
the injected faults force the network stack to apply the same fault-handling
procedures that are executed under real-world operating conditions (such as e.g.
packet retransmissions in TCP), the same operational patterns of the network
stack that are present in a real network can be expected to emerge in the testbed.

IP packet loss patterns have been the focus of intense study in the past
decades (e.g. [3–5]). While in the simplest case packet loss may be described
by a Bernoulli model, packet loss is often comprised of bursts of elevated loss

N. Thomas (Ed.): EPEW 2011, LNCS 6977, pp. 163–173, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

164 P. Reinecke and K. Wolter

probability, which can be modelled more closely with Gilbert-Elliot (GE) mod-
els [3–5]. A Gilbert-Elliot model describes the loss process as a Markov Chain
with different loss probabilities for each state.

Our focus in this paper is on the application of observed fault-models in fault-
injection driven performance and dependability studies of distributed systems.
Considering three examples of typical scenarios differing in their communication
patterns, we investigate the impact of the choice of fault-model on the obtained
results. The remainder of the paper is structured as follows: In Section 2 we
describe common methods to measure and inject packet loss and introduce the
three fault-injectors we compare. In Section 3 we evaluate the impact of faults
injected with each of the three FI methods on different types of arrival streams.

2 Measurement, Modelling, and Injection of IP Packet
Loss

In order to inject realistic loss patterns, an understanding of loss patterns in
real-world networks is required, which can be obtained by measurements. There
are a number of methods for obtaining packet-loss traces. Measurements may
be performed using monitoring approaches [6–8], router measurements [9], and
probes [3, 4]. Since monitoring and router measurements require a dedicated
infrastructure, probes are often the preferred approach to gather large, repre-
sentative data sets. Probe-based approaches typically consist of one host send-
ing numbered probe messages to another host. The receiver either records their
arrival or replies with an acknowledgment to the sender. Insight into the charac-
teristics of the loss process is then obtained by an analysis of the recorded traces
of sent and received packets. While implementation details may vary (e.g. one
could use the Ping utility or the Zing utility [3] for different arrival processes),
measurement studies using this methodology share the common property that
the arrival process is independent of the loss process. That is, the frequency of
probe packets is not influenced by packet loss.

2.1 Packet-Loss Models

The result of a measurement study is typically a trace of the observed loss
process. While such traces may be used for fault-injection by simply replaying
them [10], this method suffers from a number of shortcomings [11]. In particular,
sharing of traces is difficult due to their size and privacy issues, and traces can be
neither generalised nor parameterised. Consequently, one typically derives mod-
els that describe important characteristics of the traces and uses these models in
further evaluation steps. In the literature there exist two common models for the
IP packet loss process [12]: Bernoulli loss models and Markovian loss models.

Bernoulli Loss Models. Bernoulli loss models describe the packet loss pro-
cess as a sequence of Bernoulli trials with identical loss probability l. For each
packet, a Bernoulli trial is performed, and the packet is dropped according to
the outcome of the trial.

On Stochastic Fault-Injection for IP-Packet Loss Emulation 165

Machine A Machine C

Module
FI

Machine B

Fig. 1. General approach to packet-level fault-injection

Markovian Loss Models. Since traces often show burstiness in the loss pro-
cess, that is, interchanging periods of different loss rates [3, 4], Markovian models
have been proposed as an alternative to the simple Bernoulli model. With Marko-
vian models, the loss process is described by a Markov chain of length n whose
states s1, . . . , sn correspond to Bernoulli trials with different loss probabilities
l1, . . . , ln. Packet traces are modelled by parameterising the model such that if
reflects the distribution of the length of times for which loss levels have been
stationary. In the simplest case, one can model lossy and loss-free periods [3]
individually by a two-state Markov chain, i.e. assume loss probabilities l1 = 0
and l2 = 1 for the two states. However, larger models may capture the loss pro-
cess better [4]. By convention, Markovian loss models are often called (extended)
Gilbert or Gilbert-Elliot models. A good overview of such models is given in [5].

2.2 Stochastic Fault-Injection

The most straightforward way of injecting packet loss according to a loss process
described by a loss model is depicted in Figure 1: One computer is set up to
act as a router between two or more hosts or networks. On this machine, the
TCP/IP stack is augmented by a fault-injection (FI) module. For each arriving
outside packet the FI module determines whether to forward the packet to its
destination or to discard it. With a Bernoulli model, for each packet one trial is
performed and the packet is dropped according to the outcome of this trial. With
a Markovian model, the dropping probability for the Bernoulli trial is selected
according to the current state of the model when the packet arrives.

2.3 The Problem with Markovian Models in Fault-Injection

Note that in the above we have omitted describing when state-changes occur
in the fault-injector’s Gilbert-Elliot model. In fact, so far we have intentionally
refrained from mentioning the time domain for Markovian models at all.

In the literature (e.g. [5]), Gilbert models are defined as embedded Discrete-
Time Markov Chains (DTMCs). The left part of Figure 2 shows an example of a
two-state discrete-time Markovian loss model with loss probabilities l1 and l2 and
state transition probabilities p12 and p21. In a DTMC loss model, state changes

166 P. Reinecke and K. Wolter

λ12

p21

1− p21

p12

1− p12

(s1, l1) (s2, l2) (s1, l1) (s2, l2)

λ21

Fig. 2. Gilbert model as a DTMC (left) and CTMC (right)

occur at discrete time intervals. Certainly, this view is appropriate for modelling
the loss process as described by a packet trace: Each packet constitutes a time
instant at which a state-change may occur. Implementation of fault-injection
using a discrete-time model is straightforward as well: With each arriving packet
the next state is selected randomly from the possible successor states (including
the same state) of the current state.

An alternative definition of the Gilbert-Elliot model considers the model a
Continuous-Time Markov Chain (CTMC). In this view, state sojourn times
are described by exponentially distributed random variables. The right-hand
side of Figure 2 illustrates a two-state continuous-time Markovian loss model,
again with loss rates l1, l2. Transition rates are λ12 and λ21. Packet-loss injec-
tion according to a continuous-time Gilbert model is implemented by playing the
CTMC, as follows: Upon entering a state, the state sojourn time is drawn from
an exponential distribution with rate equal to the sum of outgoing rates. When
this time has passed, the next state is chosen based on the embedded Markov
chain.

Let us now consider the relation of these different formulations of the loss
model. With respect to describing packet-loss traces, the CTMC model is obvi-
ously equivalent to the embedded DTMC model, since both can capture inter-
changing periods of different loss levels. With respect to generating packet loss,
however, we note a difference: In the embedded DTMC model, state-changes in
the model may only occur upon arrival of packets, i.e., the packet-loss process
is dependent on the arrival process. This is in contrast to the CTMC model,
where state-changes occur independently, and requires a closer look at the ar-
rival process. As described above, packet-loss measurements are typically ob-
tained using an arrival process whose packet interarrival times are independent
of packet transmissions. While there exist network protocols where this is the
case, most protocols adapt their sending rate based on the success of previous
packet transmissions. In particular, the Transmission Control Protocol (TCP)
employs various mechanisms to reduce the sending rate if packet loss occurs.
These reductions can be quite drastic, especially during the connection-setup
phase, where the retransmission interval, starting at 3 s, is doubled for each
timeout (i.e. packet loss) [13]. If such a reactive protocol is studied using fault-
injection with a DTMC Gilbert model, the protocol’s sending rate is affected by
the loss process, while at the same time the loss process depends on the send-
ing rate. This observation raises the question whether the obtained results are
sound.

On Stochastic Fault-Injection for IP-Packet Loss Emulation 167

2.4 Scenarios for Fault Injection

In the following sections we study the impact of the loss model in three sce-
narios where fault-injection is used to assess the performance of a distributed
system where two hosts communicate over a lossy link. Our scenarios differ in
the characteristics of the arrival process of the network traffic.

Independent Arrival Stream. First, we consider a scenario where one host
sends messages at a constant rate, thereby generating an arrival stream that is
independent of the loss process. Examples for this type of traffic pattern may
be heartbeats, periodic log messages, or clock frequency synchronisation as used
in PTP [14]. Note that, while such a protocol might employ acknowledgments
and retransmissions of lost packets to ensure data transmission, retransmissions
are assumed to take place at the time a normal packet transmission would have
happened. That is, in this scenario retransmissions due to packet loss do not
affect the arrival process observed by the network.

Long TCP Arrival Stream. Second, we study the performance of a large data
upload over a single long-lived TCP connection. Since TCP adapts its sending
rate dynamically based on the available bandwidth, using, among others, packet
loss events as indicators of network overload [13], in this scenario the arrival
process is not independent of the loss process.

Short TCP Arrival Stream. In our third scenario we consider the perfor-
mance of HTTP when using TCP connections over a lossy link. This scenario
differs from the previous one with respect to the length of the connections and
the amount of data to be transmitted. Here, we assume short connections, such
as may be observed when downloading small web pages or in client-server com-
munication in Web Services scenarios.

2.5 Modules for Fault Injection

In order to inject packet loss according to the three models described in Sec-
tion 2.1, an appropriate fault-injector implementation must be selected.

NetEm (Bernoulli Packet Loss). The Linux operating system supplies the
kernel module NetEm for injecting various disturbances at the IP level. In partic-
ular, this module supports the Bernoulli loss model, which can be parameterised
by providing the desired loss rate.

NetEm CLG (Discrete-Time Markovian). The NetEm-CLG (Correlated
Loss Generator) module [15] extends the default NetEm implementation by a
discrete-time extended Gilbert-Elliot model. The module supports up to four
states with fixed transition structure. In the following we use it to implement a
two-state Gilbert model.

168 P. Reinecke and K. Wolter

Netem CG (Continuous-Time Markovian). In our group we recently de-
veloped the NetEm-CG (Continuous Gilbert) module [16] as an extension to
the default NetEm module. The module support continuous-time Gilbert mod-
els with an arbitrary number of states and an arbitrary structure. As with the
NetEm-CLG module, we configure NetEm-CG such that it provides a two-state
Gilbert model.

3 Experiments

In our experiments we want to study the impact of different fault models when
used to investigate the three example scenarios. We use three Linux machines
to set up the experiment environment shown in Figure 1. Machines A and C
run Linux kernel 2.6.26, while machine B runs 2.6.37. We routed packets from
A to C over B, while packets from C to A were transmitted directly, in order to
ensure that the chosen packet-loss rate is achieved.

3.1 Scenarios

We generate the arrival streams required by our scenarios as follows: For the
independent arrival stream, we use the Ping utility to send packets with a con-
stant interarrival time of 200ms. Since Ping does not retransmit lost packets,
this reflects the scenario where the packet arrival process is independent of the
loss process. Ping sends a stream of ICMP packets. For each packet, the recipient
replies with another ICMP packet. Upon receipt, the original sender prints out
the sequence number of each received packet. We run the Ping test for 30min
and record the sequence numbers.

We emulate a long TCP connection using the TCP STREAM test of Netperf
2.4.5 [17]. In our experiments, Netperf generates a unidirectional TCP stream
from machine A to machine C and measures overall throughput as well as aver-
ages taken over time-windows of approximatel 10 s length. The test duration was
originally set to 5min. Due to our observation that for higher loss rates the test
failed to transmit a sufficient amount of data within 5min to get a measurement
of the throughput, we also ran experiments where we set the test duration by
specifying a limit on the amount of data to be transmitted instead (100MB).

Performance of short HTTP connections was studied using the Apache JMeter
tool [18] and the DHTTPD/1.02a web server [19]. We set up the web server on
machine C and configured JMeter to repeatedly download the server’s default
homepage without any embedded content. The default homepage is a single static
HTML file of 5258 bytes length; consequently, we expect the processing overhead
of the web server to be negligible. We configured JMeter such that the KeepAlive
feature of HTTP was not used. Combined with the small file size this results in
very short TCP connections, consisting almost entirely of connection setup and
connection teardown. We originally ran the test for 10min, but increased the
time to 30min for higher loss rates with the discrete-time loss model, in order
to obtain at least 500 samples for each loss rate.

On Stochastic Fault-Injection for IP-Packet Loss Emulation 169

 0

 5

 10

 15

 20

 25

 30

 35

 1 5 10 20 30

M
ea

su
re

d
lo

ss
 r

at
e

(in
 p

er
ce

nt
)

Loss rate (in percent)

NetEm (Bernoulli)

NetEm CLG (DTMC)

NetEm CG (CTMC)

Fig. 3. Packet loss rates in the Ping test (independent arrival stream)

The loss-injector modules are loaded in machine B. We parameterise the mod-
els such that they produce packet-loss rates of l = 0.01, 0.05, 0.1, 0.2, and 0.3.)
For the Bernoulli model, parameterisation consists in setting the loss rate to the
desired value. For the NetEm-CLG module we specify the desired loss rate l of
the model. The model is then parameterised such that p12 = l, p21 = 1 − p12,
l1 = 0 and l2 = 1. With the NetEm-CG module we use the same loss rates l1, l2,
set λ12 = 1, and choose λ21 such that the loss rate l is achieved. Sojourn times
were scaled to give a mean sojourn time for the loss-free state of 100ms.

4 Results

Figures 3 through 5 show the average loss rate, average throughput, and mean
HTTP download times obtained using Ping, Netperf and JMeter, respectively.
Considering first the loss rate (Figure 3), we observe that all fault injectors
generated the desired loss rates. This demonstrates that, with respect to the
loss rate, the fault model implementations are equivalent when an independent
arrival process is used. Turning towards throughput measurements (Figure 4),
however, we note that with the Bernoulli model and with the DTMC model
performance drops much faster than with the CTMC model. Finally, consider
the mean HTTP download times shown in Figure 5. Here, a similar tendency
can be observed: Packet loss generated using the CTMC model has a much lower
impact on download times than Bernoulli and DTMC Gilbert-model loss.

The last scenario is especially useful for explaining the difference in the re-
sults, as the short duration of individual HTTP transmissions implies that each
connection consists almost entirely of the TCP three-way handshake in the con-
nection setup phase. In this phase, TCP detects packet loss by the RTO timeout,

170 P. Reinecke and K. Wolter

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 1 5 10 20 30

T
hr

ou
gh

pu
t (

M
bi

t/s
)

Loss rate (in percent)

NetEm (Bernoulli)

NetEm CLG (DTMC)

NetEm CG (CTMC)

Fig. 4. Average throughput in a long-lived TCP connection

 10

 100

 1000

 10000

 1 5 10 20 30

M
ea

n
co

m
pl

et
io

n
tim

e
(m

s)

Loss rate (in percent)

NetEm (Bernoulli)

NetEm CLG (DTMC)

NetEm CG (CTMC)

Fig. 5. Mean HTTP download times (short TCP connections, log scale) with 95%
confidence intervals

which starts at 3 s. That is, if the initial SYN packet is lost, the first retrans-
mission happens after 3 s. For each timeout event, the RTO is doubled, i.e. the
next retransmission occurs at 6 s, and so on [13]. Since the delay in our net-
work is negligible, it is reasonable to assume that samples larger than or equal
to 6 s have been affected by at least two packet losses in the connection-setup
phase. From Figure 6 we see that the probability of such samples grows with

On Stochastic Fault-Injection for IP-Packet Loss Emulation 171

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1 5 10 20 30

P
{t

>
=

6s
}

Loss rate (in percent)

NetEm (Bernoulli)

NetEm CLG (DTMC)

NetEm CG (CTMC)

Fig. 6. Probability of HTTP connection times larger than 6 s

the loss rate for all models. More important, however, is that the discrete-time
Gilbert model results in a much higher probability of two-packet losses during
TCP connection setup than the continuous-time model. This can be attributed
directly to the discrete-time loss process: The model can only leave the loss state
upon packet arrivals. That is, if the model is in the loss state after dropping one
packet, it will still be in the loss state when the next packet arrives, irrespective
of the interarrival time between both packets. In contrast, the continuous-time
model changes its state independently of packet arrivals and may thus be in
another state when the next packet (or retransmission) arrives.

5 Concluding Discussion

In this paper we have investigated the impact of the interaction between the
arrival stream and the fault model used in fault-injection studies. We observed
that with dependent arrival streams as generated by TCP the results obtained
using discrete-time and continuous-time Markovian loss models differ signifi-
cantly, with discrete-time models resulting in much lower performance. When
used in a performance study, the two models may lead to different conclusions.
With a discrete-time model, where changes occur only at packet arrivals, very
short retransmission timeouts may improve performance significantly, as they
increase the rate of state transitions, and thus allow the model to reach the loss-
free state earlier. With a continuous-time model, shorter timeouts might still
improve performance marginally (due to the fact that the loss-free period is de-
tected earlier), but will not have as big an impact, since the loss model changes
state independently of packet arrivals. On the other hand, the increase in packet
transmissions will increase the load and the effective packet loss rate.

172 P. Reinecke and K. Wolter

We cannot conclude this paper with a clear recommendation which model
one should use to reflect reality in a fault-injection experiment. Such a recom-
mendation needs to be based on knowledge of whether the packet-loss process
is independent of the arrival process. Currently available measurement studies
of packet loss only provide traces which can be described equally well by both
models, and give no indication as to dependence or independence of the loss
process. Investigating this question is still part of future work. However, as it
appears rather unlikely that the loss process is governed by the arrival process,
we do provide a tentative recommendation to use CTMC models.

References

1. Reinecke, P., van Moorsel, A.P.A., Wolter, K.: The Fast and the Fair: A Fault-
Injection-Driven Comparison of Restart Oracles for Reliable Web Services. In:
QEST 2006: Proceedings of the 3rd International Conference on the Quantitative
Evaluation of Systems, pp. 375–384. IEEE Computer Society, Washington, DC
(2006)

2. Reinecke, P., Wolter, K.: Phase-Type Approximations for Message Transmission
Times in Web Services Reliable Messaging. In: Kounev, S., Gorton, I., Sachs, K.
(eds.) SIPEW 2008. LNCS, vol. 5119, pp. 191–207. Springer, Heidelberg (2008)

3. Zhang, Y., Paxson, V., Shenker, S.: The Stationarity of Internet Path Properties:
Routing, Loss, and Throughput. ACIRI Technical Report (2000)

4. Zhang, Y., Duffield, N., Paxson, V., Shenker, S.: On the Constancy of Internet Path
Properties. In: IMW 2001: Proceedings of the 1st ACM SIGCOMM Workshop on
Internet Measurement, pp. 197–211. ACM, New York (2001)

5. Hohlfeld, O., Geib, R., Haß linger, G.: Packet Loss in Real-Time Services: Marko-
vian Models Generating QoE Impairments. In: Proc. of the 16th International
Workshop on Quality of Service (IWQoS), pp. 239–248 (June 2008)

6. Chung, S.H., Won, Y.J., Agrawal, D., Hong, S.C., Ju, H.T., Park, K.: Detection and
Analysis of Packet Loss on Underutilized Enterprise Network Links. In: E2EMON
2005: Proceedings of the Workshop on End-to-End Monitoring Techniques and
Services 2005, pp. 164–176. IEEE Computer Society, Washington, DC (2005)

7. Hacker, T., Smith, P.: Building a Network Simulation Model of the TeraGrid Net-
work. In: TeraGrid 2008 Conference, Las Vegas, NV, June 9-13 (2008)

8. Hacker, T., Noble, B., Athey, B.: The Effects of Systemic Packet Loss on Aggregate
TCP Flows. In: Proceedings of the ACM/IEEE 2002 Conference on Supercomput-
ing, pp. 1–15 (2002)

9. Barford, P., Sommers, J.: A Comparison of Probe-based and Router-based Meth-
ods for Measuring Packet Loss. Technical report, University of Wisconsin-Madison
(September 2003)

10. Keller, A., Baumann, R., Fiedler, U.: TCN Trace Control for Netem (2009),
http://tcn.hypert.net/ (last seen June 6, 2011)

11. Reinecke, P., Wolter, K.: Towards a multi-level fault-injection test-bed for service-
oriented architectures: Requirements for parameterisation. In: SRDS Workshop on
Sharing Field Data and Experiment Measurements on Resilience of Distributed
Computing Systems, Naples, Italy, AMBER (2008)

12. Reinecke, P., Wolter, K., Malek, M.: A Survey on Fault-Models for QoS Studies
of Service-Oriented Systems. Technical Report B-2010-02, Freie Universität Berlin
(February 2010)

http://tcn.hypert.net/

On Stochastic Fault-Injection for IP-Packet Loss Emulation 173

13. Krishnamurthy, B., Rexford, J.: Web Protocols and Practice. Addison Wesley,
Reading (2001)

14. IEEE: Std 1588-2008, IEEE Standard for a Precision Clock Synchronization Pro-
tocol for Networked Measurement and Control Systems,
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4579760

15. Salsano, S., Ludovici, F., Ordine, A.: Definition of a general and intuitive loss
model for packet networks and its implementation in the Netem module in the
Linux kernel. Technical report, University of Rome ”Tor Vergata”

16. Dräger, M.: Entwurf und Implementierung eines Moduls zur stochastischen Fehler-
injektion für IP-Netzwerke gemäß eines erweiterten Gilbert-Modells. Bachelor the-
sis, Freie Universität Berlin (2011) (in German)

17. Jones, R.: Netperf 2.4.5 (June 2009), http://www.netperf.org/netperf/ (last
seen June 6, 2011)

18. The Apache Software Foundation: Apache JMeter,
http://jakarta.apache.org/jmeter (last seen June 6, 2011)

19. Klouwen, W.: Dhttpd/1.02a, http://sourceforge.net/projects/dhttpd/ (last
seen June 6, 2011)

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4579760
http://www.netperf.org/netperf/
http://jakarta.apache.org/jmeter
http://sourceforge.net/projects/dhttpd/

Analysis of Gossip-Based Information

Propagation in Wireless Mesh Networks

Abolhassan Shamsaie1, Wan Fokkink2, and Jafar Habibi1

1 Department of Computer Engineering, Sharif University of Technology, Iran
2 Department of Computer Science, Vrije Universiteit Amsterdam, The Netherlands

shamsaie@mehr.sharif.edu, w.j.fokkink@vu.nl, jhabibi@sharif.edu

Abstract. Analytical models exist for evaluating gossip-based informa-
tion propagation. Up to now these models were developed only for fully
connected networks. We provide analytical models for information propa-
gation of a push-pull gossiping protocol in a wireless mesh network. The
underlying topology is abstracted away by assuming that the wireless
nodes are uniformly deployed. We compare our models with simulation
results for different topologies.

Keywords: Gossiping protocols, Analytical model, Information propa-
gation, wireless mesh network.

1 Introduction

In traditional distributed computing, one or more nodes in a network, called
servers, organize all other nodes in the network, centrally. The emergence of
new distributed networks like peer to peer, ad hoc and sensor networks has
introduced new challenges in organizing networks to efficiently route or dissem-
inate information in a distributed manner. The topology of these networks is
mostly partially connected and can change over time. Nodes can join and leave
the network without informing other nodes. Each node has just a partial view
of other nodes, which may continuously change. Mostly, partial views contain
some information about neighbors or a history of information from a fraction
of other nodes. In peer to peer networks, a node’s neighbors are a random sub-
set of other nodes, while in wireless ad hoc or sensor networks they are located
in the radio range of that node. This makes it very hard to obtain some sort
of global view in such networks. In contrast, information propagation in such
networks has been demonstrated to be feasible. To this aim, nodes continuously
exchange information with their neighbors, to acquire some recent information
about e.g. their proximity or the network state. Nowadays, a lot of research
concerns this challenge, considering scalability, fault tolerance and robustness,
graceful degradation, and adaptability.

Epidemic-style or gossip-based protocols [5] are a fundamental solution for
information propagation in dynamic networks. These protocols are simple, prob-
abilistic in nature, and based on local operations. They are in general periodic

N. Thomas (Ed.): EPEW 2011, LNCS 6977, pp. 174–188, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Analysis of Gossip-Based Information Propagation 175

and execute in a fully distributed manner. They have been exploited primar-
ily to provide the required underlying infrastructure. Their performance has
been evaluated by empirical evaluation, simulation and analytical models, see
e.g. [10,2,7]. Empirical evaluation is helpful to study protocols or their imple-
mentation in a real deployment. However, it is costly and mostly performed in
a small-scale experiment, which may not reflect the large-scale behavior of a
protocol. In contrast, simulation and analytical models may help to extract the
large-scale, long-time behavior of a protocol, as well as its correctness and perfor-
mance. However, these approaches do not consider all aspects of real deployment
scenarios.

Related works. Analytical models tend to abstract away from the behavior of
a protocol with regard to some performance measures, and can provide a good
view to tune parameters of a protocol to improve performance. Models for the
aggregation of information by gossip-based protocols (e.g. [3,4,9,8]) draw their
inspiration from the mathematical theory of epidemics, or use Markov chains
or random walks. In [1] mean-field analysis is used for modeling gossip-based
protocols in networks with a very large number of identical nodes. These models
all assume a fully connected network, which is a reasonable assumption for peer
to peer networks. It is sometimes hidden behind a peer sampling service which
allows nodes to select a node uniformly at random. In [2] a model has been devel-
oped for information propagation by a simple push-pull gossip-based protocol,
called the shuffle protocol [6]. The local behavior of protocol, i.e. the pairwise
node interaction which is considered as an atomic operation, is modeled by a
probabilistic state transition system. Through differential equation, two proper-
ties of the shuffle protocol are expressed as functions of protocol parameters:

replication ratio The fraction of nodes having a copy of a given item at a
certain moment in time

coverage ratio the fraction of nodes that have seen a copy of a given item
before a certain moment in time

The model from [2] is also only valid for fully connected networks.
In a wireless network, a node can only communicate directly to nodes in its

radio range. A path between two nodes may pass through other nodes, so for
propagating a piece of information, cooperation and coordination among nodes
are needed. Different topologies for wireless networks have been introduced in
the literature, such as grid, partial or fully connected mesh, star and tree to
name a few. Among these, we consider a partial mesh network in which nodes
are deployed uniformly in a disk-like area and connected to each other according
to their proximity. There is assumed to be a path between all pairs of nodes.
Disk-like grid and fully connected mesh networks are also covered by our model,
as they are cases of uniformly deployed wireless mesh networks (WMNs). In this
paper, we adapt the model from [2] to model the propagation of information
for the shuffle protocol on uniformly deployed WMNs. We use a probabilistic
state transition system and convergence or steady state characteristics of the
shuffle protocol to model propagation of an item in a WMN. Next to a symbolic

176 A. Shamsaie, W. Fokkink, and J. Habibi

analysis, we compare our model against simulations with an implementation
of the shuffle protocol, for different topologies and parameter settings. These
simulation results demonstrate that our model provides a good prediction of the
behavior of the shuffle protocol. To the best of our knowledge, this is the first
attempt to model information propagation of a gossip-based protocol in WMNs.

The paper is organized as follows. Sect. 2 gives a brief description of the shuffle
protocol from [6], and of the analytical model of its local behavior from [2]. In
Sect. 3, analytical models are developed for WMNs, which are evaluated in Sect.
4. Finally Sect. 5 contains conclusions and future work.

2 Shuffle Protocol

Gossip-based protocols are pairwise and probabilistic in nature. In a network
of size N , these protocols consist of N local, pairwise and periodical gossiping
operations between neighboring nodes which lead to some global characteristic
for the network, like robustness or convergence. The locality of operations in
these protocols makes them robust to network churn, while their probabilistic
nature can provide convergence. Gossip-based protocols can be push-based, pull-
based or a combination of them.

Our paper is based on a gossip-based protocol named the shuffle protocol,
introduced in [6]. It is a push-pull protocol in which each node has a cache of
items of size c and periodically exchanges a random subset of size s from these
items with a random neighbor.

2.1 Description

Nodes periodically initiate a shuffle. Although nodes are not synchronized, they
all have an inner timer which periodically times out with approximately the
same frequency and changes the state of a node from passive to active. We call
such a period a round hereafter, and assume that it takes one time unit. When
a node switches to the active state, it initiates a shuffle and then switches back
to the passive state. In the passive state, a node is waiting for shuffles which
are initiated by others. Below a brief description of a shuffle in this protocol is
given. For more details we refer the reader to [6].

1. Node A selects one of its neighbors B uniformly at random, and sends a
copy of a random subset of size s from items in its local cache to B.

2. Node B receives s items from node A, in response sends a copy of a random
subset of size s from items in its local cache to A, and updates its cache
(step 4).

3. Node A receives s items from node B, and updates its local cache (step 4).
4. Received items for which a copy is already present in the local cache, are

redundant. To update the cache, each node replaces non-redundant sent
items with non-redundant received items.

This protocol ensures that no item will disappear completely from the network.

Analysis of Gossip-Based Information Propagation 177

When a new item is introduced into the network at one of the nodes, the
number of nodes which hold (or have seen) a copy of this item will increase over
time. If the number of distinct items in the network does not exceed the capacity
of local caches (c ≥ n), all nodes will eventually hold a copy of this item, and
the replication ratio and coverage ratio will both converge to 1. But if c < n,
the replication ratio does not converge to 1.

2.2 Probabilistic State Transition System

To model the propagation of a given item in the network, in [2] a shuffle between
two nodes is modeled by a probabilistic state transition system, depicted in
Fig. 1. A node is in state 1 if it has the given item, and in state 0 otherwise.
All probabilities are of the form P (a2b2|a1b1) with a1, a2, b1, b2 ∈ {0, 1}. Given
an information exchange between two nodes in state a1 and b1 respectively, it
indicates the probability that after the exchange these nodes are in state a2 and
b2 respectively. [2] determined the transition probabilities for one shuffle, i.e., for
one information exchange between two nodes. They are presented below; in the
formulae, n refers to the number of items, and c and s to the cache and exchange
buffer size respectively:

P (01|01) = P (10|10) = c−s
c P (01|11) = P (10|11) = s

c ·
c−s

c ·
n−c
n−s

P (10|01) = P (01|10) = s
c ·

n−c
n−s P (00|00) = 1

P (11|01) = P (11|10) = s
c ·

c−s
n−s P (11|11) = 1− 2·sc ·

c−s
c ·

n−c
n−s

These probabilities model local behavior of the shuffle protocol. In [2] these
probabilities were used to model the global behavior (replication and coverage
ratio) in fully connected mesh networks using differential equations. In this paper
we carry over this work to WMNs.

01 00

10 11

P(01|01) P(00|00)

P
(1

0
|0

1
)

P
(0

1
|1

0
)

P
(11|01)

P
(01|11)

P(10|11)

P(11|10)

P(10|10) P(11|11)

0 1

P(0|1)

P(1|0)

P(0|0) P(1|1)

Fig. 1. State transition systems of a shuffle and of a node

Based on the state transition system of a shuffle, shown at the left-hand side
of Fig. 1, a state transition system for each node can be derived, as shown at the
right-hand side of Fig. 1. For instance the transition probability P (0|1) or P (1|0)
denotes the probability that a node loses or gains the given item in a shuffle,
respectively. Thus P (0|1) = P (01|10)·P0+P (01|11)·P1 and P (1|0) = (P (10|01)+
P (11|01)) · P1. In the shuffle protocol, after convergence of the replication ratio

178 A. Shamsaie, W. Fokkink, and J. Habibi

for the given item, the average number of nodes which go from state 0 to state 1
is equal to the average number of nodes which go from state 1 to state 0 during a
round. This property expresses a steady state for all nodes, giving the following
equation:

P1 · P (0|1) = P0 · P (1|0)

In the above equations, P1 (P0) is the probability that a node has (does not
have) the given item. Replacing P (0|1) and P (1|0) by the formulas above (and
P0 by 1 − P1) yields P1 = c

n . That is, the replication ratio should converge to
c
n , which is in line with a uniformly random distribution of all items over the
network.

3 WMN Model of the Shuffle Protocol

We want to model propagation of information by the shuffle protocol in a uni-
formly deployed WMN. At time 0, a fresh item is introduced at the central
node of the network. The shuffle protocol propagates this item in the network.
Our model aims to estimate the average behavior of all possible propagation
scenarios.

When the item is inserted into the network, its replication ratio and cover-
age ratio are both 1

N , where N is the number of nodes. We assume c < n. As
mentioned in Sect. 2.2, the replication and coverage ratio should converge to c

n
and 1 respectively. The nodes which have a copy of the given item are called
source nodes. We assume a disk-like area with radius R; the initial source node
is located at the center of this disk and the other nodes are uniformly deployed
throughout this area. Thus the node density (d) is N

π·R2 . Nodes can communi-
cate to nodes which are located in their radio range; we assume all nodes have
radio range r ≤ 2 · R. The neighbors of a node are uniformly distributed in the
intersection of the disk-like area and the radio range of the node. So the average
number of neighbors (H) for each node is less than π ·r2 ·d−1. Substituting N

π·R2

for d in this formula yields H ≤ (r
R)2 ·N − 1. When r � R, H is approximately

(r
R)2 ·N − 1. The average length of a hop (L) is approximately the radius of a

circle around the node which contains half of the π · r2 · d− 1 nodes. The node
itself is inside too, so there are π·r2·d−1

2 + 1 possible nodes inside this circle,

which gives the equation π ·L2 · d = π·r2·d−1
2 + 1. Substituting N

π·R2 for d in this
formula yields:

L =

√
r2

2
+

R2

2 ·N (1)

At the left side of Fig. 2, a sample of a disk-like uniformly deployed WMN with
parameters r = 2, R = 10

√
10 and N = 3150 is shown. The distribution of

neighbors, the number of nodes having a certain number of neighbors, is given
at the right. The vertical dotted line in this figure shows the average number of
neighbors, which is 11.6102. The aforementioned formula for the average number

Analysis of Gossip-Based Information Propagation 179

of neighbors yields H = 11.6000, which is close to the real scenario depicted in
Fig. 2. The average length of hops in this scenario is 1.4679, which is close to
L = 1.4693 calculated from the related formula.

−30 −20 −10 0 10 20 30

−30

−20

−10

0

10

20

30

Fig. 2. A sample uniformly deployed WMN (left) and its distribution of neighbors
(right)

We aim to model the propagation of the given item by the shuffle protocol
according to the replication and coverage ratios. We exploit the convergence
characteristic of the shuffle protocol to mathematically analyze how the repli-
cation ratio α(t + 1) (given α(t)) and coverage ratio β(t + 1) (given α(t) and
β(t)) change over time. Our problem has six parameters: network parameters
r, R and N , and protocol parameters c, s and n. In a snapshot of an execu-
tion of the shuffle protocol at some time t before convergence, we can observe a
circular area around the central node in which the relative replication ratio has
converged to c

n , while in the remaining area it is less than c
n . We implemented

the shuffle protocol, and ran it on a uniformly deployed WMN with parameters
r = 2, R = 10

√
10, N = 3150, c = 100, s = 50 and n = 500. Fig. 3 shows some

snapshots of an execution of this implementation. In each snapshot, the circle
indicates the convergence circle: the largest circular area in which the relative
replication ratio has converged to c

n . We denote the replication and coverage
ratio inside a convergence circle by α′ and β′ respectively. We also denote the
number of interior nodes and source nodes in such a circle by N ′ and S′ respec-
tively; so α′ = S′

N ′ . Let rc(t) and α(t) denote the convergence circle radius and
the replication ratio in a snapshot at time t. By definition the number of source
nodes at time t is N · α(t). We have N ′ = π · rc(t)2 · d. Substituting N

π·R2 for

d yields rc(t) = R ·
√

N ′
N . According to the definition of a convergence circle,

α′(t) has converged to c
n , so N ′ = n

c · S′, which implies N ′ ≤ n
c ·N ·α(t). Hence

rc(t) ≤ R ·
√

n
c · α(t). We define rcmax(t) as the maximum possible rc(t) in a

snapshot at time t, so rcmax(t) = R ·
√

n
c · α(t). Thus:

rc(t) ≤ rcmax(t) (2)

180 A. Shamsaie, W. Fokkink, and J. Habibi

−30 −20 −10 0 10 20 30

−30

−20

−10

0

10

20

30

−30 −20 −10 0 10 20 30

−30

−20

−10

0

10

20

30

−30 −20 −10 0 10 20 30

−30

−20

−10

0

10

20

30

−30 −20 −10 0 10 20 30

−30

−20

−10

0

10

20

30

Fig. 3. Snapshots of the shuffle protocol, depicting the source nodes and the conver-
gence circle at times t = 100, 150, 170 and 190 respectively

Given a snapshot at time t, the propagation circle is the smallest circle cen-
tered by the central node which contains all source nodes and has a relative
replication ratio of at most c

n (or the entire disk of radius R if α(t) ≥ c
n). Let

rp(t) denote the radius of the propagation circle at time t. Clearly,

rcmax(t) ≤ rp(t) (3)

To illustrate the applicability of rp(t), consider a snapshot of an execution of
the shuffle protocol in a WMN at time t. Only nodes inside or just outside the
propagation circle of this snapshot had a chance to perform a shuffle with source
nodes during the previous round. Possibly some nodes further than rp(t) had
the given item during round t but dropped it in the same round.

3.1 Lower Bound on rp(t + 1)

In this section, we obtain a lower bound on the average of all possible values
of rp(t + 1), denoted by rp(t + 1), for a given snapshot at time t, in which the
replication ratio is α(t). This provides a lower bound on the average number of
nodes which will have a chance to perform a shuffle with source nodes during
the next round. This lower bound will in turn help us to find a lower bound of
the average of all possible replication and coverage ratios in the next round.

To this aim, we assume a situation in which rp(t) takes the lowest possible
value for the given replication ratio α(t). Thus, according to inequality 3, we

Analysis of Gossip-Based Information Propagation 181

assume rp(t) = rcmax(t), which implies rc(t) = rcmax(t). We calculate the average
of all possible values of rp(t + 1), which provides a lower bound for rp(t + 1).

Fig. 4. A scenario in which the given item travels multiple hops away from the central
node in one round

Fig. 4 illustrates the mentioned scenario at the start of round t+1. The arc is
a portion of the maximum possible convergence circle area with radius rcmax(t).
In this scenario, at the start of the next round, all source nodes (empty bullets)
are inside or on the circle. Some of them (like s) may exchange the given item
to nodes outside this circle during the next round. In Fig. 4, D and A,B,C are
groups of neighbors of s which are nearer to and further from the central node
than s, respectively. In the next round, s may shuffle and send the given item
to a node in group A, then that node may send it to a node in group B, and so
on. Clearly, in such a scenario, rp(t + 1) is greater than rcmax(t). On the other
hand, in round t + 1, s may shuffle and send the given item to a node in group
D and drop it. In this case, rp(t + 1) might decrease, but only if all other source
nodes that are located near the the convergence circle in round t act in this same
fashion in round t+1. Consequently, the probability that rp(t+1) decreases has
a probability close to 0. Thus, to find a lower bound on the average of all possible
values of rp(t + 1), for each i ≥ 0 we calculate the probability that the given
item travels i hops further than rcmax(t) in round t + 1, and we ignore the case
i < 0.

The neighbors of an arbitrary node s are divided into two groups: D contains
the neighbors closer to the central node than s, and A contains the neighbors
further away. (On average, the number of neighbors of s with exactly the same
distance to the central node is almost zero, so these can be ignored.) The fraction
of neighbors of s which are closer to or further from the central node can be
approximated by the areas of D and A. The area of D can be calculated as
follows, where � is the distance of s to the central node.1

area(D) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
π.�2 0 < � ≤ r

2

r2 · cos−1(r
2·d) + �2 · cos−1(2·�2−r2

2·�2)

− r
2
· √4 · �2 − r2 r

2
≤ � ≤ R

1 http://mathworld.wolfram.com/Circle-CircleIntersection.html

http://mathworld.wolfram.com/Circle-CircleIntersection.html

182 A. Shamsaie, W. Fokkink, and J. Habibi

On average approximately half of the neighbors of a node s are in D. Clearly,
on average each node shuffles twice in each round, once as an initiator and on
average once as a selected node. Therefore we assume that in a round each node
shuffles once with a nearer node in D and once with a further node in A.

We assume rc(t) = rcmax(t), so the relative replication ratio inside the arc is
close to c

n , and outside it is close to 0. For each i ≥ 0, we calculate the probability
P (h = i) that the given item in a source node like s travels i hops away from
the central node in the next round. To find the transition probabilities, we use
Ps and Pd (introduced in [2]), which denote the probability that a node selects
respectively drops the given item in a shuffle. We define one more probability
Pn, which expresses the chance of the given item to go one hop nearer to the
central node and be removed from a source node s, when s shuffles with a nearer
node u. The given item will be removed from s and go to u if (1) s selects the
given item and sends it to u with probability Ps, (2) u does not send the item
to s because either it does not have the item with probability n−c

n , or it has the
item with probability c

n but does not select it with probability (1−Ps), and (3)
s drops the item with probability Pd. So:

Pn = Ps ·
(

c

n
· (1− Ps) +

n− c

n

)
· Pd

Replacing Ps and Pd by s
c and n−c

n−s , as computed in [2], we get:

Pn =
s

c
· n− c

n

We write P¬n and P¬s for (1−Pn) and (1−Ps) respectively. By assumption, in
a round, each node on average shuffles once with a nearer node and once with
a further node. The probability that s remains as a source node and does not
send the given item further is:

P (h = 0) =
1
2
· P¬n · P¬s +

1
2
· P¬s · P¬n

In the above equations, 1
2 in each term denotes the probability of each of two

possible scenarios: the shuffle with a nearer node or with a further node executes
first. The other two parts of each term denote that the given item stays at s and
does not move further. Replacing Ps and Pn by s

c and n−c
n−s yields:

P (h = 0) =
c− s

c
· (c− s

c
+

s

n
)

When the given item passes through a path of i hops from s to a node e in one
round, the following three steps should take place:

1. In s, one of the following two scenarios should happen. Either the first shuffle
is with a nearer node and the given item is not removed from s, and then in
the second shuffle it moves to a further node. Or the first shuffle is with a
further node and the given item moves to it.

Analysis of Gossip-Based Information Propagation 183

2. For nodes in the middle of the path from s to e, the shuffle with a nearer
node should be executed first to take the given item, and then the shuffle
with a further node should be executed to send it further.

3. When the given item reaches e, one of the following two scenarios should
happen. Either the given item reaches e in the second shuffle. Or the given
item reaches e in the first shuffle with a nearer node, and does not move
further in the second shuffle.

According to the above steps, P (h = i) for i ≥ 1 is:

P (h = i) = (
1
2
· P¬n · Ps +

1
2
· Ps) · (

1
2
· Ps)i−1 · (1

2
+

1
2
· P¬s)

Replacing Ps and Pn in this equation yields:

P (h = i) =
2 · c− s

2 · c · (2 · c− s

c
+

s

n
) · (1

2
· s
c
)i

Let � denote a random variable that expresses the distance of an arbitrary node
to the central node. According to uniform deployment, for any value �′ between
0 and R, the cumulative density function2 F (�′), which expresses the probability

that � ≤ �′, equals π·�′2
π·R2 = �′

2

R2 . The expected value � of � is
∫ R

0 �′ · d F (�′)
d �′ d�′ =∫ R

0 �′ · 2·�′
R2 d�′ = 2·R

3 . On average the given item goes at most distance R − �

beyond a source node s. On average this distance is covered by �R−�
L
� = � R

3·L�
hops. (Recall that L denotes the average length of each hop, see equation 1.)
Thus, we approximate the average of h as follows:

 h =

∑
0≤i≤� R

3·L �
i · P (h = i)∑

0≤i≤� R
3·L �

P (h = i)

Concluding we arrive at the following lower bound for rp(t + 1):

min(rcmax(t) + h · L, R) ≤ rp(t + 1) (4)

This lower bound will help us to find an estimation of the replication and cov-
erage ratio in the next round.

3.2 Modeling Replication and Coverage Ratio with Differential
Equations

We now construct two differential equations that approximate the replication and
coverage ratio of the given item from a round-based perspective. They express
the long-term behavior of the system as a function of the six parameters. We
need to know the probabilities of a node in a given state (0 or 1) to interact

2 http://mathworld.wolfram.com/DistributionFunction.html

http://mathworld.wolfram.com/DistributionFunction.html

184 A. Shamsaie, W. Fokkink, and J. Habibi

with another node in a given state. In WMNs, before convergence, the density
of source nodes decreases from the central node to the edge of the disk, so the
distribution of source nodes over the disk is not uniform.

Given a snapshot at time t with replication ratio α(t), we found a lower bound
of rp(t + 1). We model the protocol behavior considering a greedy scenario in
which rp(t+1) is equal to this lower bound. With this greedy scenario we use the
fact that when the propagation radius does not increase much, the distribution
of source nodes inside becomes uniform relatively fast. We call the circle with a
radius one hop (of average length) more than the propagation radius the shuffle
circle, and denote its radius by rsh(t + 1). All nodes in the shuffle circle have
approximately the same chance to shuffle with a source node in round t + 1.
According to inequality 4 and the definition of the shuffle circle:

rsh(t + 1) = min(rcmax(t) + (h + 1) · L, R) (5)

At time t there are π · rsh(t + 1)2 · d nodes in the shuffle circle. Approximately
N · α(t) of them are source nodes, so the relative replication ratio of the shuffle
circle is α′ = N

π·rsh(t+1)2·d · α(t). The shuffles that can influence the number of
source nodes in the next round are restricted to the shuffle circle. So the variation
of α per round, dα

dt , can be derived from α′ and the probability that the given
item replicates or disappears in each shuffle in the shuffle circle:

dα
dt = [(P (11|10) + P (11|01)) · (1 − α′) · α′

− (P (10|11) + P (01|11)) · α′ · α′] · π·rsh(t+1)2·d
N

The first part, between brackets, indicates the probability that the given item
replicates or disappears during a shuffle within the shuffle circle during the next
round. The first term expresses the probability that a source node shuffles with
a non-source node in the shuffle circle and replication increases by one, while
the second term expresses the probability that two source nodes shuffle in the
shuffle circle and replication decreases by one. The second part normalizes the
result as a differential equation for all networks. Simplifying the right-hand side
of the equation yields

dα

dt
= 2 · s

c
· c− s

n− s
· α(t) ·

(
1− n

c
· σ(t) · α(t)

)
where σ(t) denotes 1

min

(√
n
c ·α(t)+(�h+1)·

√
r2

2·R2 + 1
2·N , 1

)2 , called the stepwise coef-

ficient hereafter. By imposing dα
dt = 0, we find the stationary solution c

n , meaning
that eventually the replication ratio of the given item stabilizes as c

n . Compared
to [2] for fully connected networks, we have the extra stepwise coefficient σ(t),
which reflects the impact of uniformly deployed WMN topologies on the speed
of information propagation. In our model, if the network is fully connected then
r = 2 ·R, and so σ(t) = 1. Hence our model coincides with [2] for fully connected
networks.

To model the coverage ratio β(t) over time, the same approach is followed.
At time t there are about β(t) · N covered nodes in the shuffle circle, and

Analysis of Gossip-Based Information Propagation 185

β′ = N
π·rsh(t+1)2·d · β(t) is the fraction of nodes in the shuffle circle that are

covered nodes. A non-covered node will be covered in the next round if it re-
ceives the given item from a source node and does not lose it in the remaining
time of the next round. Namely, each node only checks its cache for new items at
the end of each round, so new items which come and leave during a round are not
covered. Thus the variation of β per time slot (round) dβ

dt can be derived from α′

and β′ and the probability that the given item replicates to a non-covered node
and does not disappear until the end of this round:

dβ
dt = [12 · P (1|0) · P (1|1) · (1− β′) + 1

2 · P (1|0) · (1− β′)] · π·rsh(t+1)2·d
N

The first part, between brackets, indicates the probability of increase in the
number of covered nodes during the next round inside the shuffle circle, and the
second part normalizes the result as a differential equation for all networks. There
are two terms between brackets, showing two scenarios: the first and second term
refer to the scenarios in which a node is covered in its first or second shuffle,
respectively. The factor 1

2 needs to be included because when a node is covered
this happens with 50% chance in its first shuffle and with 50% chance in its
second shuffle in a round. In the first term, the P (1|1) ensures that the node
that receives the given item in its first shuffle, will not lose it in its next shuffle
in the same round. We have

P (1|1) = (P (10|10) + P (11|10)) · (1− α′) + (P (10|11) + P (11|11)) · α′

P (1|0) = (P (10|01) + P (11|01)) · α′

Substituting P (1|0) and P (1|1) in the differential equation of the coverage
ratio and simplifying the right-hand side of the equation yields:

dβ
dt = 1

2 ·
s
c · (1 − σ(t) · β(t)) · α(t)

·
[
1 + c−s

n−s ·
n
c + (1 − c−s

n−s · (
s
c ·

n−c
c + n

c)) · σ(t) · α(t)
]

To evaluate our model, we will perform a stepwise calculation of α and β for
a given parameter setting, taking into account that α(0) = β(0) = 1

N .

4 Evaluation of the Model

The model from Sect. 3.2 gives the replication and coverage ratio of the shuffle
protocol in a uniformly deployed WMN, for a parameter setting c, s, n, r, R, N .
As mentioned before, we also implemented the shuffle protocol. To evaluate our
model, we compare its outcomes with simulations of our implementation of the
shuffle protocol, for a disk-like area with radius R = 10

√
10 and N = 3150.

In the first experiment, we considered a radio range of r = 1 for all nodes, and
deployed them in a grid structure. We simulated the shuffle protocol for different
settings of n, c, s, and compared the results of these simulations to our model.
Figs 5 and 6 compare how the replication and coverage ratios of the simulations
and of our model grow over time, for n = 2100, c = 300, and different values
for s. In each of these figures, the curves in the graph at the left represent the

186 A. Shamsaie, W. Fokkink, and J. Habibi

0 200 400 600 800 1000 1200
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Time (rounds)

R
e

p
lic

a
tio

n
 r

a
tio

s=50

s=100

s=150

s=200

0 200 400 600 800 1000 1200
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Time (rounds)

R
e

p
lic

a
tio

n
 r

a
tio

s=50

s=100

s=150

s=200

Fig. 5. Replication ratio in simulations and model for r = 1, n = 2100, c = 300 and
different values of s

0 200 400 600 800 1000 1200
0

0.2

0.4

0.6

0.8

1

Time (rounds)

C
o

ve
ra

g
e

 r
a

tio

s=50

s=100

s=150

s=200

0 200 400 600 800 1000 1200
0

0.2

0.4

0.6

0.8

1

Time (rounds)

C
o

ve
ra

g
e

 r
a

tio

s=50

s=100

s=150

s=200

Fig. 6. Coverage ratio in simulations and model for r = 1, n = 2100, c = 300 and
different values of s

average and standard deviation over 100 simulation runs, and the curves in the
graph at the right are calculated with our model. We separated the results of the
model and the simulations to avoid having a tangled view of the curves. These
figures demonstrate that our model gives a good estimation of the growth of
the replication and coverage ratios over time. Experiments with other values of
n, c, s gave similar good results.

In the second experiment, we compared simulation results for two types of
topology and the model. We considered a radio range of r = 2 for all nodes, and
deployed them in a grid as well as in a uniform at random network. Simulation
results in both deployments, for different settings of n, c, s, were compared to our
model. Figs 7 and 8 present the outcomes for n = 2100, c = 300 and n = 500,
c = 100 respectively and different values for s. For clarity of presentation we leave
out the standard deviations in these figures. The curves in each figure contain
the average over 100 simulation runs and the outcomes of our model in both
deployments. In these figures, the graph at the left represents the comparisons
of the replication ratios and the graph at the right represents the comparison
of the coverage ratios. The figures demonstrates that our model gives a good
estimation of the behavior of the shuffle protocol. Experiments with other values
of n, c, s gave similar good results.

Analysis of Gossip-Based Information Propagation 187

In all figures, we expect that our model gives an underestimate of the behavior
of the shuffle protocol, but some rounds before the convergence we face to a more
speed in our model. This is the result of using the h in our model instead of
 h for simplification which overestimate it when the given item reaches near the
border of area. Thus some rounds before convergence rsh(t + 1) increases faster
until it reaches to R and consequently the model estimates (not underestimate)
the behavior of the shuffle protocol some rounds before the convergence.

0 200 400 600 800 1000 1200
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Time (rounds)

R
e

p
lic

a
tio

n
 r

a
tio

grid,s=10

random,s=10

model,s=10

grid,s=50

random,s=50

model,s=50

0 200 400 600 800 1000 1200
0

0.2

0.4

0.6

0.8

1

Time (rounds)

C
o
ve

ra
g
e
 r

a
tio

grid,s=10

random,s=10

model,s=10

grid,s=50

random,s=50

model,s=50

Fig. 7. Replication (left) and coverage (right) ratio in simulations and model for r =
2, n = 500, c = 100 and different values of s in two uniformly deployed WMNs (grid,
random)

0 200 400 600 800 1000 1200
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Time (rounds)

R
e
p
lic

a
tio

n
 r

a
tio

grid,s=50

random,s=50

model,s=50

grid,s=200

random,s=200

model,s=200

0 200 400 600 800 1000 1200
0

0.2

0.4

0.6

0.8

1

Time (rounds)

C
o
ve

ra
g
e
 r

a
tio

grid,s=50

random,s=50

model,s=50

grid,s=200

random,s=200

model,s=200

Fig. 8. Replication (left) and coverage (right) ratio in simulations and model for r =
2, n = 2100, c = 300 and different values of s in two uniformly deployed WMNs (grid,
random)

5 Conclusion and Future Work

The analytical models for information propagation of a push-pull gossiping pro-
tocol are the main contribution of our paper. We have demonstrated that in-
formation propagation of a push-pull gossip-based protocol can be analytically
modeled in WMNs. To this aim, we considered a disk-like and uniform deployed
area in which all nodes have the same radio power. We assumed that links and

188 A. Shamsaie, W. Fokkink, and J. Habibi

nodes do not crash and the network topology is connected. Our models support
different uniformly deployed topologies like grids and fully or partially connected
meshes.

We have developed differential equations for computing how the replication
and coverage ratio of a given item in the network develops over time, for the push-
pull gossip-based shuffle protocol; the given item is introduced at the central node
at time 0. Simulations with an implementation of the shuffle protocol showed
that our analytical models provide an accurate prediction. Our models can help
to find optimal parameter settings for the shuffle protocol.

For the future we would like to extend our models for different deployments
and areas with different shapes or density. We also intend to extend our models
to take into account that nodes may crash or links may be down. We are also
curious to explore the usefulness of our approach in modeling other gossip-based
protocols in wireless networks.

Acknowledgments. The first author would like to thank Rena Bakhshi for
useful discussions.

References

1. Bakhshi, R., Cloth, L., Fokkink, W., Haverkort, B.R.: Mean-field analysis for the
evaluation of gossip protocols. In: QEST, pp. 247–256. IEEE Computer Society,
Los Alamitos (2009)

2. Bakhshi, R., Gavidia, D., Fokkink, W., van Steen, M.: An analytical model of
information dissemination for a gossip-based protocol. Computer Networks 53(13),
2288–2303 (2009)

3. Boyd, S.P., Ghosh, A., Prabhakar, B., Shah, D.: Randomized gossip algorithms.
IEEE Transactions on Information Theory 52(6), 2508–2530 (2006)

4. Dimakis, A.G., Sarwate, A.D., Wainwright, M.J.: Geographic gossip: efficient ag-
gregation for sensor networks. In: IPSN, pp. 69–76. ACM, New York (2006)

5. Eugster, P.T., Guerraoui, R., Kermarrec, A.M., Massoulié, L.: Epidemic informa-
tion dissemination in distributed systems. IEEE Computer 37(5), 60–67 (2004)

6. Gavidia, D., Voulgaris, S., van Steen, M.: Gossip-based distributed news service
for wireless mesh networks. In: WONS, pp. 59–67. IEEE, Los Alamitos (2006)

7. Kermarrec, A.M., Massoulié, L., Ganesh, A.J.: Probabilistic reliable dissemination
in large-scale systems. IEEE Trans. Parallel Distrib. Syst. 14(3), 248–258 (2003)

8. Khelil, A., Becker, C., Tian, J., Rothermel, K.: An epidemic model for information
diffusion in manets. In: MSWiM, pp. 54–60. ACM, New York (2002)

9. Luk, V.W.H., Wong, A.K.S., Ouyang, W.R., Lea, C.T.A.: Gossip-based delay-
sensitive n-to-n information dissemination protocol. In: GLOBECOM, pp. 2499–
2503. IEEE, Los Alamitos (2008)

10. Vogels, W., van Renesse, R., Birman, K.P.: The power of epidemics: robust com-
munication for large-scale distributed systems. Computer Communication Re-
view 33(1), 131–135 (2003)

Multi-class Network with Phase Type Service

Time and Group Deletion Signal

Thu-Ha Dao-Thi1, Jean-Michel Fourneau1, and Minh-Anh Tran2

1 PRiSM, Université de Versailles St-Quentin, CNRS,
UniverSud Paris, Versailles, France

2 Université de Paris Est Créteil, France
{thu-ha.dao-thi,jmf}@prism.uvsq.fr, minh-anh.tran@univ-paris12.fr

Abstract. We consider networks with multiple classes of customers
which receive service with a Phase type distribution. The service dis-
cipline is Last In First Out. We consider negative signal and a new type
of signal: the group deletion signal. Negative signals eliminate a customer
in service (if there are any) and group deletion signal delete all consecu-
tive customers in the same class and same phase at the back-end of the
buffer. We prove that the network has product form solution.

Keywords: Queue, Network, phase type, quasi-reversible, LIFO, prod-
uct form.

1 Introduction

Traditional queueing networks model systems are used to represent contention
among customers for a set of resources. Customers moves form server to server,
waiting for service. But the customers do not interact among themselves or mod-
ify the queue or the server. G-network models overcome some of the limitations of
conventional queueing network models adding signals and interactions between
signals and customers. Despite this deep modification of the model, G-networks
still preserve the product form property of some Markovian queueing networks.
In his seminal paper [10], Gelenbe introduced negative customer, the first type of
signal. A negative customer is never queued. A negative customer deletes a pos-
itive customer at its arrival at a backlogged queue. Positive customers are usual
customers which are queued and receive service or are deleted by negative cus-
tomers. Under typical assumptions for Markovian queueing networks (Poisson
arrival for both types of customers, exponential service time for positive cus-
tomers, Markovian routing of customers, open topology, independence) Gelenbe
proved that such a network has a product form solution for its steady-state be-
havior. The results are more complex than Jackson’s networks. The G-networks
flow equations exhibit some uncommon properties: they are neither linear as
in closed queueing networks nor contracting as in Jackson queueing networks.
Therefore the existence of a solution had to be proved [11] by new techniques, a
numerical algorithm was also developed [8].

N. Thomas (Ed.): EPEW 2011, LNCS 6977, pp. 189–203, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

190 T.-H. Dao-Thi, J.-M. Fourneau, and M.-A. Tran

G-networks had been extended in many directions. First many signals were
introduced and shown to lead to product form solution: triggers which redirect
other customers among the queues, catastrophes which flush all the customers
out of a queue [12,13] and resets [14]. Multiple class versions of these models
have also been derived [6,9,15].

Most of the signals studied so far have a globally negative effect on the queues.
Indeed, the balance of customers in the queues involved in a signal is negative
(triggers, deletion, catastrophes) or negative in expectation (resets). Recently
more complex interactions were introduced: change the class of the customer in
service [4], change the phase of the customer in service for Phase type service
distribution, synchronised arrivals in a set of queues [5]. For a review, one can
see these books [3,16], and many references therein.

G-networks had also motivated new important results in the theory of queues.
As negative customers lead to customer deletions, the original description of
quasi-reversibility does not hold anymore and new versions have been proposed.
At the time being, the description proposed by Chao and his co-authors in
[3] looks sufficient to study queues with customers and signals. At the same
time a completely different approach, based on Stochastic Process Algebra, was
proposed by Harrison [17,18]. The main results (CAT and RCAT theorems and
their extensions [1,17,18,19]) give some sufficient conditions for product form
stationary distributions. Thus Harrison’s technique clearly has a different range
of applications as it allows to represent component based models which are much
more general than networks of queues. An interesting open question is to mix
both results to obtain a quasi-reversibility characterisation directly from a SPA
specification using a master-slave description of the system (like in RCAT) rather
than arrivals, departure and internal transitions as proposed in [3].

Here we introduce a new type of signal which deletes several customers of the
same type (same class and same phase) at the back end of a LIFO queue. Batch
deletion were studied by Gelenbe in [12] for single class model. To the best of
our knowledge the multiclass problem was not considered until now, except the
catastrophe in a PS queue studied in [7] which is easier to model. Moreover, the
group-deletion signal is not like the previously studied batch which was studied
as we seek to delete all customers of the same type, which means that it will
depend on the type of customers, while the effect of a batch or a catastrophe
does not depend on class of customers. We also assume that the service time
distributions are Phase type.

The following of the paper is as follows. Section 2 is devoted to the definition
of quasi-reversibility as it has been generalised by Miyazawa and his co-authors
to take into account signals. In section 3, we show that the queues are quasi-
reversible. Finally in section 4, using quasi-reversibility we prove that the steady-
state has a product form solution.

2 Preliminaries

In this section, we will introduce the network of quasi-reversible queues which is
introduced by Chao, Miyazawa and Pinedo in [3]. All the results presented in this

Multi-class Network with Phase Type Service Time 191

section comes form [3] and have been already used in the context of G-networks
in [4] to prove that networks with Phase type services and another type of signal
also have a product form steady-state solution. We summarize the results of [3]
for the readers.

2.1 Definition of Quasi-reversibility of Chao, Miyazawa and Pinedo

Let we introduce the definition of quasi-reversibility of a queue with signals and
instantaneous movement.

Consider a queue where the queue-content evolves as a continuous time Markov
chain on state space S. For a pair of states (x, y), we decompose the tran-
sition rate function q(x, y) of queue into three types of rates: qA

u (x, y), u ∈
T ; qD

u (x, y), u ∈ T ; qI(x, y), where T is the set of the classes of arrivals and
departures, which is countable. The transition rate of the queue can be written
as:

q(x, y) =
∑
u∈T

qA
u (x, y) +

∑
u∈T

qD
u (x, y) + qI(x, y), x, y ∈ S.

The transition rate functions qA
u , qD

u and qI generate the point processes cor-
responding to class u arrivals, class u departures and the internal transitions,
respectively. “A”, “D” and “I” stand for “arrival”, “departure” and “internal”.

Suppose that q admits a stationary distribution π. Furthermore, assume that
when a class u arrives and changes the state of the queue from x to y, it instan-
taneously triggers a class v departure with probability fu,v(x, y), where:∑

v

fu,v(x, y) ≤ 1, u ∈ T, x, y ∈ S.

With probability 1 −
∑

v fu,v(x, y) the class u arrival does not trigger any de-
parture. The function fu,v(x, y) is the triggering probability.

The quasi-reversibility of instantaneous movement is defined as follows.

Definition 2.1. If there exist two sets of non-negative numbers {αu, u ∈ T }
and {βu, u ∈ T } such that: for all x ∈ S, u ∈ T,∑

y∈S

qA
u (x, y) = αu, (1)

∑
y∈S

π(y)
[
qD
u (y, x) +

∑
v∈T

qA
v (y, x)fv,u(y, x)

]
= βuπ(x), (2)

then the queue with signal is said to be quasi-reversible with respect to {qA
u , fu,v,

u, v ∈ T }, {qD
u , u ∈ T } and {qI} .

The non-negative numbers αu and βu are called the arrival rate and departure
rate of class u customers.

192 T.-H. Dao-Thi, J.-M. Fourneau, and M.-A. Tran

Example 2.1. Let us give an example of a G-queue M/M/1/∞ with negative
signal to introduce the definition. Customers arrive with rate λ, service rate
is μ. Negative signals arrive with rate λ−. A negative signal will eliminate a
customer if there is any in the queue.

We use the indices c for customers and − for negative signals. The transition
rates of the queue are given by:

qA
c (n, n + 1) = λ, n ≥ 0,

qA
−(n, n− 1) = λ−, n ≥ 1,

qA
−(0, 0) = λ−,

qD
c n, n− 1 = μ, n ≥ 1.

We add the rate qA
−(0, 0) for equation (1) to hold for both c and −, where αc = λ

and α− = λ−. Note that qA−(0, 0) is a dummy transition. Therefore it is possible
to add such a transition rate.

The stationary distribution π is given by

π(n) = π(0)
(λ

μ + λ−
)n

.

Equation (2) is satisfied for c with

βc =
λμ

μ + λ− .

We now consider the negative signals. We add the triggering probability f−,−(n+
1, n) = 1 for n ≥ 0 in the queue. Hence, one obtains equation (2) for − with

β− =
λλ−

μ + λ− .

Chao et al. proved that this definition of queue without instantaneous movements
is equivalent to the quasi-reversible definition of Kelly in [20]. This implies that
the arrival processes and the departure (triggered and non-triggered) of class u
customers are Poisson.

We use the definition of Chao, Miyazawa and Pinedo as it is more convenient
for G-networks with instantaneous movements.

2.2 Network of Quasi-reversible Queues with Signals and
Instantaneous Movement

Consider a network of N queues. Each queue is a quasi-reversible queue with
signals as described above. The set of arrival and departure classes is T (we
may have a set Ti for each queue i, however, for the sake of simplicity, we take
T = ∪iTi).

Let xi be the state of queue i with state space Si. The Poisson source has
index 0 and for the sake of simplification, we assume that the source has only
one state which is denoted as 0.

Multi-class Network with Phase Type Service Time 193

For queue i, we introduce functions pA
iu, qD

iu, qI
i and fiu,v on the state space

Si:

– pA
iu(xi, yi) = the probability that a class u arrival at queue i changes the

state from xi to yi, where it is assumed that
∑

y∈Si
pA

iu(xi, yi) = 1, xi ∈ Si;
– qD

iu(xi, yi) = the rate at which class u departures change the state of queue
i from xi to yi;

– qI
i (xi, yi) = the rate at which internal transitions change the state of queue

i from xi to yi;
– fiu,v(xi, yi) = the triggering probability that when a class u arrival occurs

at queue i and the state changes from xi to yi, it simultaneously induces a
class v departure, where

∑
v∈T fiu,v(xi, yi) ≤ 1, i ≤ N, u ∈ T, xi, yi ∈ Si.

For source 0, we set pA
0u(0, 0) = 1, pA

0u(0, 0) = β0u, qI
0(0, 0) = 0 and f0u,v ≡ 0.

Here, βA
0u is the arrival rate to the network from the outside (the source).

In Chao’s model, a queue is defined by three rates qA
u , qD

u and qI . In that
case, the arrival effect function may be defined as:

pA
u (x, y) =

qA
u (x, y)∑
z qA

u (x, z)
,

and qD
u and qI are the departure and internal transition functions.

The dynamics of the network are described as follows. Customers of class u
arrive to the network from outside (the source) according to a Poisson process
with rate β0u, and are routed to queue i as a class v arrival with probability
r0u,iv. A class u departure from queue i, either trigger or non-trigger, enters
queues j as a class v arrival with probability riu,jv . It is assumed that:

N∑
j=0

∑
v

riu,jv = 1, i = 0, 1, . . .N, u ∈ T.

Furthermore, whenever there is a class u arrival at queue i, either from the
outside or from other queues, it makes the state of the queue change from xi to yi

with probability pA
iu(xi, yi), it also triggers a class u departure with probability

fiu,v(xi, yi), and it triggers no departure from queue i with probability 1 −∑
v∈T fiu,v(xi, yi), i = 0, 1, . . . , N.
The transition rate function of the network is denoted by q(x, y), x, y ∈ S =

S1 × · · · × SN (note that we accept the case where q(x, x) �= 0).
Consider for each queue i the following auxiliary process:

q
(αi)
i (xi, yi) =

∑
u∈T

(
αiupA

iu(xi, yi) + qD
iu(xi, yi)

)
+ qD

i (xi, yi),

where (αi) = (αiu, u ∈ T) are considered as dummy parameters and their values
are determined by the traffic equations.

Suppose that q
(αi)
i has a stationary distribution π

(αi)
i . Note that this is always

true for the source 0, as for all α0, π
(α0)(0)
0 = 1. We now require that q

(αi)
i be

quasi-reversible.

194 T.-H. Dao-Thi, J.-M. Fourneau, and M.-A. Tran

We always have∑
yi∈Si

αiupA
iu(xi, yi) = αiu, i = 1, . . .N, u ∈ T.

Hence, the quasi-reversibility of q
(αi)
i for i = 1, . . . , N is equivalent to the exis-

tence of a set of non-negative numbers βiu, u ∈ T such that:∑
yi

π
(αi)
i (yi)

[
qD
iu(yi, xi) +

∑
v∈T

αivpA
iv(yi, xi)fiv,u(yi, xi)

]
= βiuπ

(αi)
i (xi), (3)

for all xi ∈ Si, i = 1, . . . , N and u ∈ T .
Queue i in isolation is said to be quasi-reversible with αi if (3) is satisfied.
Since αiu and βiu are the arrival and the departure rates of class u customers

at queue i, we have the following traffic equations:

αiu =
N∑

j=0

∑
v

βjvrjv,iu , i = 0, 1, . . . , N. (4)

We need the following condition to ensure that the network process is regular:

N∑
i=1

∑
xi∈Si

π
(αi)
i

∑
yi∈Si

q
(αi)
i (xi, yi) <∞.

We have the theorem:

Theorem 2.1. If each queue i with signals, i = 1, . . . , N , is quasi-reversible
with αi which are the solution to the traffic equations (4), then the queueing
network with signal has the product form stationary distribution

π(x) =
N∏

i=1

π
(αi)
i (xi),

where π
(αi)
i is the stationary distribution of q

(αi)
i , i = 1, . . . , N .

3 A LIFO Multi-class PH Queue with Signal Deletion
Customers of Same Sub-class

The goal is to model a generalized network of multiple classes of (positive) cus-
tomers where the service times of each class are assumed to be Phase type and
2 types of signal: negative signal and group deletion signal.

In [2], Bonald and Tran modelled the Phase type service by considering a
change of class inside the queue after service. More precisely, the phase is mod-
elled by an absorbing DTMC with k + 1 states where 0 is the only absorbing

Multi-class Network with Phase Type Service Time 195

state. The transition probability matrix of this DTMC is denoted as H . It can
be viewed as follow: each “phase” ph demands an exponential service time. After
“phase” ph, a customer can change to some “phase” ph′ with some probability
(given by matrix H) and still stay in the queue. The arriving rate of each “phase”
will respect the ratio of the initial probability of the Phase-type.

Example 3.1. Consider a queue of 2 classes of customers:

– Class 1 which arrives with rate λ1 and asks for exponential service of rate
μ1;

– Class 2 which arrives with rate λ2 and asks a PH service with two transient
states (and an absorbing state): ph,ph′ and initial distribution ν. State ph
and ph′ demands exponential services time μ2 and μ′

2.

Hence, the matrix H is given by

H =

⎛⎜⎜⎝
0 0 0 H[1,0]
0
0

0 H [ph, ph′]
H [ph′, ph] 0

H [ph, 0]
H [ph′, 0]

0 0 0 0

⎞⎟⎟⎠ ,

where

– H [1, 0] = 1, which means that if a customer reach phase 1, then after service
completion, it will reach the absorbing state.

– H [ph, ph′] and H [ph′, ph] are the probabilities in which after service comple-
tion of phase ph and ph′, respectively, customer of class 2 can ask for another
“phase” ph′, ph, respectively.

– H [ph, 0] and H [ph′, 0] are the probabilities in which after of phase ph and
ph′, respectively, customer of class 2 will reach the absorbing state.

Then, inside the queue, there are changes of class after service (in this case, ph
to ph′ and ph′ to ph). The arrival rate for phase 1 is λ1, while it is λ2ν(ph) and
λ2ν(ph′) for phase 2 (ph) and 3 (ph′).

We will use this presentation to model our network. A multi-class network of
queues with phase type service times can be modelled as a multi-class network
of queues with exponential service times where the customers can change class
inside the queue after completion of an exponential service.

3.1 Description

Consider the LIFO multi-class queue with the set of customers given by C and a
special class index 0 (0 /∈ C) which denotes the “absorbing state”. There are two
types of signals: negative signals and group-deletion signals. The set of negative
signals is given by S− = {s−c }c∈C and the set of group-deletion signals is given
by S = {sc}s∈C.

196 T.-H. Dao-Thi, J.-M. Fourneau, and M.-A. Tran

Remark 3.1. We can consider only one class of negative signal and one class
of group-deletion signal, with different probability of success for each class of
customer. However, we consider different classes to have more flexible routing
while connecting the networks.

Customers of class c arrive according to a Poisson process of rate λ(c), they re-
quire exponential service times with mean 1/μ(c), for c ∈ C. Denote by λ the sum
of all λc: λ =

∑
c∈C λ(c). A customer of class c after completion of service will

change to class k (it demands another service) with probability H [c, k] or reach
the state 0 (it quits the queue at the completion of its service) with probability
H [c, 0]. The following condition is satisfied:

H [c, 0] +
∑
k∈C

H [c, k] = 1.

Negative signals of class s−c arrive according to a Poisson process of rate λ−(c).
Arriving signal of type s−c will eliminate a customer c in service (customer at
the back-end of the buffer).

Group deletion signals of class sc arrive according to a Poisson process of rate
λs(c). If customer in service is of class c, then the arriving signal of class sc will
cancel all consecutive customers of class c at the back-end of the buffer (it will
eliminate all customers of class c until it finds a customer of another class).

If the queue length is n, then the state of queue is

x = (x(1), x(2), · · · , x(n)),

where x(l) is the class of customer in position l.

Remark 3.2. We consider also triggering effect in the queue to have instanta-
neous movements when considering network model. However, details of the trig-
gering effect will be given later when we study the quasi-reversibility.

3.2 Stationary Distribution

We first give the system of equation which plays an important role in calculating
the stationary distribution.

Definition 3.1. The PH Group-deletion Equations associated to the considered
LIFO queue are the equations of the variable ρ = {ρ(c)}c∈C ∈ �C

+, defined by

λ(c) +
∑
k∈C

ρ(k)μ(k)H [k, c] =
ρ(c)λs(c)

1 − ρ(c)
+ ρ(c)μ(c) + ρ(c)λ−(c), if λs(c) > 0, (5)

λ(c) +
∑
k∈C

ρ(k)μ(k)H [k, c] = ρ(c)
(
μ(c) + λ−(c)

)
, if λs(c) = 0. (6)

Let C+ be a subset of C: C+ = {c ∈ C | λs(c) > 0}.

Multi-class Network with Phase Type Service Time 197

Remark 3.3. If ρ is a solution of (5,6), then taking the sum over all c in C, and
using the fact that H [c, 0] +

∑
k∈C H [c, k] = 1, one has

λ =
∑
c∈C

(ρ(c)μ(c) + ρ(c)λ−(c)) +
∑

c∈C+

ρ(c)λs(c)
1− ρ(c)

−
∑

c,k∈C

ρ(k)μ(k)H [k, c]

=
∑
c∈C

ρ(c)μ(c)H [c, 0] +
∑
c∈C

ρ(c)λ−(c)) +
∑

c∈C+

ρ(c)λs(c)
1− ρ(c)

.

We now give lemmas which prove the existence of the solution of PH Group-
deletion Equations. We first prove this property in the extreme cases: C+ = C or
C+ = ∅. Then we treat the general case.

Lemma 3.1. If C+ = ∅ (which means that there is no deletion-group signal in
the queue), then there exists a solution (ρ(c))c∈C of the system (5,6).

Proof. The system can be rewritten as follows:

ρ = η + ρM,

where η = (η(c))c∈C is a vector and M = M [c, k]c,k∈C is a matrix the entries of
which are given by:

η(c) =
λ(c)

μ(c) + λ−(c)
, M [c, k] =

μ(k)H [k, c]
μ(c) + λ−(c)

.

One has that rank(Id −M) = |C| as at least one variable H [c, 0] > 0. Hence,
there exist a unique solution given by

ρ = η(Id−M)−1.

This completes the proof.

Lemma 3.2. If C+ = C (which means that H [c, k] = 0 for all c, k ∈ C), then
there exists a solution (ρ(c))c∈C of the system (5,6) which satisfies

0 ≤ ρ(c) < 1.

Proof. ρ(c) is a root of a polynomial of degree 2:

P c(ρ(c)) = ρ(c)2
(
μ(c) + λ−(c)− μ(c)H [c, c]

)
− ρ(c)

(
λs(c) + μ(c) + λ−(c)

+
∑
k 	=c

ρ(k)μ(k)H [k, c]− μ(c)H [c, c]
)

+
(
λ[c] +

∑
k 	=c

ρ(k)μ(k)H [k, c]
)

Polynomial P c(X) = 0 has a solution in [0,1) as P c(0) ≥ 0 and P c(1) < 0. As the
multiplication of the two solutions of P c(X) is positive (λ(c)/

(
μ(c) + λ−(c)

)
),

we have that P c(X) = 0 has 2 positive roots. It implies that P c(X) has a unique
solution in [0,1) (which is depending on ρ(k)k 	=c).

198 T.-H. Dao-Thi, J.-M. Fourneau, and M.-A. Tran

Consider the function Φ(ρ) : [0, 1]C
+ → [0, 1]C

+

where Φ(ρ)(c) is the unique
solution in [0,1) of P c(X). As [0, 1]C

+

is a non-empty compact, then applying
Brower’s fixed point theorem, one has that there exists a fixed point solution in
[0, 1]C

+

of the equation: Φ(ρ) = ρ, or Φ(ρ)(c) = ρ(c). Clearly the solution will be
in the set [0, 1)C+

.
This completes the proof.

We now have the result in the general case.

Lemma 3.3. There exists a solution (ρ(c))c∈C of the system (5,6) which satis-
fies

0 ≤ ρ(c) < 1, for all c ∈ C+.

Proof. Consider c ∈ C \ C+. Similarly to Lemma 3.1, one has that there exists a
solution ρ1 = (ρ(c))c∈C\C+ which depends on ρ2 = ρ(c)c∈C+ determined by:

ρ1 = η1(Id−M1)−1,

where

η1(c) =
λ(c) +

∑
k∈C+ μ(k)H [k, c]

μ(c) + λ−(c)
, M1[c, c′] =

μ(c′)H [c′, c]
μ(c) + λ−(c)

, for c, c′ /∈ C+.

This implies that for c /∈ C, ρ(c) is a linear combination of (ρ(c)c∈C+), which is
denoted by Φ1(c).

For c ∈ C+, consider the polynomial

P c(X) = X2
(
μ(c) + λ−(c)

)
−X

(
λs(c) + μ(c) + λ−(c) +

∑
k∈C+

ρ(k)μ(k)H [k, c]

+
∑

k/∈C+

Φ1(k)μ(k)H [k, c]
)

+
(
λ(c) +

∑
k∈C+

ρ(k)μ(k)H [k, c]

+
∑

k/∈C+

Φ1(k)μ(k)H [k, c]
)
.

Similarly to Lemma 3.2, one has that there is a unique solution in [0, 1) of P c(X).
Consider the function Φ2(ρ2) : [0, 1]C

+ → [0, 1]C
+

where Φ(ρ)(c) is the unique
solution in [0,1) of P c(X). Similarly to Lemma 3.2, we have a solution to the
fixed point equation: Φ2(ρ2)(c) = ρ2(c) which satisfies ρ2(c) ∈ [0, 1).

This completes the proof.

Lemma 3.4. Let ρ be a solution to the system of equations (5,6). The considered
LIFO queue has an invariant measure p defined by

p(x(1), x(2), · · · , x(n)) =
∏
l≤n

ρ(x(l)). (7)

Multi-class Network with Phase Type Service Time 199

Proof. To prove that p is an invariant measure, one has to check that for all
x = x(1), x(2), · · · , x(n), one has∑

y

p(x)Q(x, y) =
∑

y

p(y)Q(y, x),

where Q is the infinitesimal generator of the queue.
The left-hand side is given by

L = λ, if n = 0,

or
L = p((x))(λ + μ(x(n)) + λ−(x(n)) + λs(x(n))), if n > 0.

Using the equation
∑

k>0 ρ(c)k = ρ(c)/(1− ρ(c)) when ρ(c) < 1, the right-hand
side is given by

R =
∑
c∈C

ρ(c)μ(c)H [c, 0] +
∑
c∈C

ρ(c)λ−(c) +
∑

c∈C+

ρ(c)λs(c)
1− ρ(c)

, if n = 0

or

R =
p(x)

ρ(x(n))

{
λ(x(n)) + ρ(x(n))

∑
k∈C

ρ(k)λ−(k) + ρ(x(n))
∑
k∈C

ρ(k)μ(k)H [k, 0]

+
∑

k∈C+,k 	=x(n)

ρ(k)λs(k)
1− ρ(k)

ρ(x(n)) +
∑
k∈C

ρ(k)μ(k)H [k, x(n)]
}

, if n > 0.

Let us comment about the expression of R. In the sum, the first term corre-
sponds to an arrival; the second term corresponds to an elimination caused by a
negative signal; the third term corresponds to a completion of service of phase
k to reach absorbing state 0 and leave the queue; the fourth term corresponds
to an elimination caused by a group deletion signal of class sk, for k �= x(n);
and the last term corresponds to a service completion of phase k which provokes
another service of phase x(n).

When n = 0, we have L = R as in remark 3.3. Using this equation, for n > 0,
one has

R
ρ(x(n))
p(x)

= λ(x(n)) +
∑
k∈C

ρ(k)μ(k)H [k, x(n)]

+ρ(x(n))
(
λ− �xn∈C+

ρ(x(n)λs(x(n)))
1− ρ(x(n))

)
The equations (5,6) imply that

R
ρ(x(n))
p(x)

= ρ(x(n))
(
μ(x(n)) + λ−(x(n)) + λ

)
+ �x(n)∈C+ρ(x(n)λs(x(n))),

which yields that L = R when n > 0.
This completes the proof.

200 T.-H. Dao-Thi, J.-M. Fourneau, and M.-A. Tran

We now have the main result for one queue.

Theorem 3.1. Consider the LIFO multi-class PH queue with negative signal
and group-deletion signal where the variables are (λ(c), μ(c), λ−(c), λs(c)). Let ρ
be a solution of the PH Group-deletion Equations (6,5) which satisfies ρ(c) < 1
for c ∈ C+.

If we have ∑
c∈C

ρ(c) < 1

then the queue is stable and the stationary distribution is given by: for x =
{x(1), · · · , x(n)}

π(x) = K

n∏
1

ρ(x(l)), (8)

where K is the normalization constant given by K = 1−
∑

c∈C ρ(c).

Proof. If
∑

c∈C ρ(c) < 1, then one has that
∑

x π(x) = 1. Using Lemma 3.4, one
has that π is the stationary distribution. This completes the proof.

3.3 Quasi-reversibility

In this section, we will study the quasi-reversibility as defined by Chao et. al.
Consider the departure process of customer of class c, one has∑

y qD
c (y, x)π(y)
π(x)

= ρ(c)μ(c)H [c, 0].

Consider the negative signal of class s−c , one has∑
y qA

s−
c
(y, x)π(y)

π(x)
= ρ(c)λ−(c).

The problem is more complicated while considering the group-deletion signal of
class sc, one has∑

y qA
sc

(y, x)π(y)
π(x)

=

⎧⎨⎩
∑

k≥1 ρ(c)kλs(c) =
λs(c)ρ(c)
1− ρ(c)

, if x(n) �= c;

0, if x(n) = c.

Hence, we have the quasi-reversibility for customers which reach the absorbing
state after finishing service. We can add triggering probability for negative signal
when there are a successful elimination

fs−
c ,s−

c
(x(1) · · · x(n)c, x(1) · · ·x(n)) = 1,

then we also have the quasi-reversibility for negative signal.
To have the quasi-reversibility for group-deleting signal, one needs to modify

the network as follows:

Multi-class Network with Phase Type Service Time 201

– Triggering probability for group-deleting signal when there are a successful
group-deletion: fsc,sc(x(1) · · ·x(n)ck, x(1) · · ·x(n)) = 1,

– When the state of the queue is x(1) · · ·x(n), then there is a process of
group-deletion signal of class sx(n) is active to departure with rate
λs(c)ρ(c)/(1− ρ(c)).

We now have all ingredients to study the network.

4 Network of LIFO Multi-class PH Queues with Negative
Signal and Group-Deletion Signal

4.1 Description

Consider the network of N LIFO multi-class Ph queues with negative signal and
group-deletion signal.

At queue i, the set of classes of customers is given by Ci. The arrival rate
and service rate of customer of type c are λi(c) and μi(c), respectively. The
matrix which determines the service rate is given by Hi[c, k] and Hi[c, 0] for
c, k ∈ Ci. The arrival rate of negative signal of type s−c is λi,−(c). The arrival
rate of group-deletion signal of type sc is λi,s(c).

At queue i, after service completion at phase c, a customer asks another service
of phase k with probability Hi[c, k]; or reaches absorbing state 0 at queue i with
probability Hi[c, 0], and then

– leaves to queue j as a customer of class c′ with probability P i,j(c, c′), as a
negative signal of class s−c′ with probability P i,j(c, s−c′), as a group-deletion
signal of class sc′ with probability P i,j(c, sc′),

– or quits the network with probability di(c).

The following condition is satisfied:∑
j

∑
c′∈Cj

(P i,j(c, c′)P i,j(c, s−c′)P
i,j(c, sc′)) + di(c) = 1.

A negative signal of class s−c arrives to queue i finding customer of class c in
service will eliminate this customer, and then

– moves to queue j as a customer of class c′ with probability P i,j(s−c , c′), as a
negative signal of class s−c′ with probability P i,j(s−c , s−c′), as a group-deletion
signal of class sc′ with probability P i,j(s−c , sc′),

– or quits the network with probability di(s−c).

The following condition is satisfied:∑
j

∑
c′∈Cj

(P i,j(s−c , c′)P i,j(s−c , s−c′)P
i,j(s−c , sc′)) + di(s−c) = 1.

A group-deletion signal of class sc arrive to queue i finding customer of class c
in service will cancel all customers of class c at the back-end of the buffer.

202 T.-H. Dao-Thi, J.-M. Fourneau, and M.-A. Tran

Remark 4.1. We know that we can generalize this mechanism of the group-
deletion signal with probability of successful deletion in the network as we will
have the quasi-reversibility. However, for the sake of simplicity, we will not in-
troduce the generalized version of group-deletion signal.

4.2 Stationary Distribution

Definition 4.1. The Traffic Equations of the network are given by

Λi(c) = λi(c) +
∑
k∈Ci

ρi(k)μi(k)Hi[k, c]

+
∑

j,k∈Cj

ρj(k)
{
μj(k)H [k, 0]P j,i(k, c) + Λj,−(k)P j,i(s−k , c)

}
, (9)

Λi,−(c) = λi,−(c) +
∑

j,k∈Cj

ρj(k)
{
μj(k)H [k, 0]P j,i(k, s−c) + Λj,−(k)P j,i(s−k , s−c)

}
, (10)

Λi,s(c) = λi,s(c) +
∑

j,k∈Cj

ρj(k)
{
μj(k)H [k, 0]P j,i(k, sc) + Λj,−(k)P j,i(s−k , sc)

}
, (11)

where ρi is the solution to the PH group-deletion Equations associated to the
variables (Λi(c), Λi,−(c), Λi,s(c), μi(c)).

Remark 4.2. As mentioned in section 3.3, we can consider a modified network to
have the quasi-reversible property for group deletion signal. However, we do not
give the detail in this paper. We only consider the “simple” network as presented.

We now have the main result to the paper.

Theorem 4.1. Consider the network of N LIFO multi-class PH queues with
negative signals and group-deletion signals. If there exists a solution to the traffic
equations (9,10,11) which satisfies: for all i∑

c∈Ci

ρi(c) < 1,

then the network is stable and the stationary distribution has a product form
given by

π(x1, · · · , xN) =
N∏

i=1

πi(xi) = K

N∏
i=1

ρi(xi(1) · · ·xi(ni)),

where xi = (xi(1) · · ·xi(ni)) and K is the normalisation constant.

The theorem can be deduced by using the result in Theorem 2.1.

5 Concluding Remarks

We hope that this new result will improve the applicability of G-network to
model systems with complex destruction mechanism of customers. Extension to
other queueing discipline is not that trivial because of the combinatorial problem
for description of set of customers to be deleted when the queueing discipline is
a general symmetric discipline as defined by Kelly.

Multi-class Network with Phase Type Service Time 203

References

1. Balsamo, S., Harrison, P.G., Marin, A.: A unifying approach to product-forms in
networks with finite capacity constraints. In: Misra, V., Barford, P., Squillante,
M.S. (eds.) SIGMETRICS, pp. 25–36. ACM, New York (2010)

2. Bonald, T., Tran, M.A.: On Kelly networks with shuffling. Queueing Syst. Theory
Appl. 59(1), 53–61 (2008)

3. Chao, X., Miyazawa, M., Pinedo, M.: Queueing networks: Customers, signals, and
product form solutions. Wiley, Chichester (1999)

4. Dao-Thi, T.-H., Fourneau, J.-M., Tran, M.-A.: Multiple class symmetric g-networks
with phase type service times. Comput. J. 54(2), 274–284 (2011)

5. Dao-Thi, T.-H., Fourneau, J.-M., Tran, M.-A.: G-networks with synchronised ar-
rivals. Perform. Eval. 68(4), 309–319 (2011)

6. Fourneau, J.-M., Gelenbe, E., Suros, R.: G-networks with multiple classes of neg-
ative and positive customers. Theoret. Comput. Sci. 155(1), 141–156 (1996)

7. Fourneau, J.-M., Kloul, L., Quessette, F.: Multiple class G-Networks with jumps
back to zero. In: MASCOTS 1995: Proceedings of the 3rd International Work-
shop on Modeling, Analysis, and Simulation of Computer and Telecommunication
Systems, pp. 28–32. IEEE Computer Society, Washington, DC (1995)

8. Fourneau, J.-M.: Computing the steady-state distribution of networks with positive
and negative customers. In: 13th IMACS World Congress on Computation and
Applied Mathematics, Dublin (1991)

9. Fourneau, J.-M.: Closed G-networks with resets: product form solution. In: Fourth
International Conference on the Quantitative Evaluation of Systems (QEST 2007),
Edinburgh, UK, pp. 287–296. IEEE Computer Society, Los Alamitos (2007)

10. Gelenbe, E.: Product-form queueing networks with negative and positive cus-
tomers. J. Appl. Probab. 28(3), 656–663 (1991)

11. Gelenbe, E.: Stability of G-Networks. Probability in the Engineering and Informa-
tional Sciences 6, 271–276 (1992)

12. Gelenbe, E.: G-Networks with signals and batch removal. Probability in the Engi-
neering and Informational Sciences 7, 335–342 (1993)

13. Gelenbe, E.: G-networks with instantaneous customer movement. Journal of Ap-
plied Probability 30(3), 742–748 (1993)

14. Gelenbe, E., Fourneau, J.-M.: G-networks with resets. Perform. Eval. 49(1-4), 179–
191 (2002)

15. Gelenbe, E., Labed, A.: G-networks with multiple classes of signals and positive
customers. European Journal of Operational Research 108(2), 293–305 (1998)

16. Gelenbe, E., Mitrani, I.: Analysis and Synthesis of Computer Systems. Imperial
College Press (World Scientific), London (2010)

17. Harrison, P.G.: G-networks with propagating resets via RCAT. SIGMETRICS Per-
formance Evaluation Review 31(2), 3–5 (2003)

18. Harrison, P.G.: Compositional reversed Markov processes, with applications to G-
networks. Perform. Eval. 57(3), 379–408 (2004)

19. Harrison, P.G.: Product-forms and functional rates. Performance Evalua-
tion 66(11), 660–663 (2009)

20. Kelly, F.: Reversibility and stochastic networks. Wiley Series in Probability and
Mathematical Statistics. John Wiley & Sons Ltd., Chichester (1979)

Critical Level Policies in Lost Sales Inventory

Systems with Different Demand Classes

Aleksander Wieczorek1,4, Ana Bušić1, and Emmanuel Hyon2,3

1 INRIA and ENS, Paris, France
2 Université Paris Ouest Nanterre, Nanterre, France

3 LIP6, UPMC, Paris, France
4 Institute of Computing Science, Poznan University of Technology, Poznan, Poland

aleksanderwieczorek@gmail.com, ana.busic@inria.fr,
emmanuel.hyon@u-paris10.fr

Abstract. We consider a single-item lost sales inventory model with dif-
ferent classes of customers. Each customer class may have different lost
sale penalty costs. We assume that the demands follow a Poisson process
and we consider a single replenishment hypoexponential server. We give
a Markov decision process associated with this optimal control problem
and prove some structural properties of its dynamic programming op-
erator. This allows us to show that the optimal policy is a critical level
policy. We then discuss some possible extensions to other replenishment
distributions and give some numerical results for the hyperexponential
server case.

Keywords: Markov decision process, critical level policies, inventory
systems.

1 Introduction

We consider an inventory system with single item type and a finite stock capacity.
Upon a demand, we can decide to either deliver an item or reject the demand.
We assume different demand classes with different rejection penalty costs. The
objective is to find a sequence of optimal decisions that minimizes the costs.
This problem can be easily modeled as a Markov Decision Process (MDP). We
refer the reader to Puterman [12] for general theory on MDPs and to Porteus
[11] for inventory systems and MDPs.

Finding a sequence of optimal decisions (an optimal policy) is in general a
very difficult problem. When the state space and the set of possible decisions
(actions) are finite, one can solve the problem numerically. However, this can be
done effectively only for very small instances. The aim is therefore to prove some
structural properties of an optimal policy, which then simplifies the computation
by reducing significantly the search space of all admissible policies.

We are interested here in the class of critical level policies. A critical level
policy can be seen as a set of thresholds (a threshold by class) which determine
the optimal action to perform (either rejection or acceptance of a demand). Such

N. Thomas (Ed.): EPEW 2011, LNCS 6977, pp. 204–218, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Critical Level Policies in Lost Sales Inventory Systems 205

policies and their applications have been largely studied in the literature We will
focus here only on the results closely related to our problem; for a survey with
applications to communication networks see Altman [1] or Koole [7], and for
applications to web services see Mazzucco et al. [10].

In the case of an exponential replenishment server, Ha [4] has shown the opti-
mality of a critical level policy. This result was further extended by de Véricourt,
Karaesmen and Dallery [14], by authorizing the backordering of unsatisfied de-
mands, where critical level policy are also shown to be optimal. Both previous
results assume exponential service times. Dekker et al. [2], and Kranenburg and
van Houtum [8] consider general service times and they exhibit exact and heuris-
tic methods to compute the real value of the optimal levels, under the assumption
of a critical level policy. Nevertheless, there is no warranty that the critical level
policies are optimal under the general service distributions.

In the case of Erlang distributed service times, the optimality of a critical
level policy was proven by Ha [5]. However, his model relies on the assumption
that the service operator has a constant rate in any state of the model.

We consider here the case of hypoexponential service (see Svoronos [13] for
examples of complex services in inventory problems). We prove the optimality of
critical level policies. Note that this represents the simplest case of a phase-type
service where the service rate depends on the service phase. Also, we consider a
two-dimensional state space that is more suitable to possible extensions to other
distributions. This new state-space representation allows us to prove that the
switching curve is monotone in k (service phase). We expect that our results
represent a first step towards general phase-type service. Our numerical exper-
iments suggest that the result may still be preserved in the hyperexponential
case.

This paper is organized as follows. In Section 2 we give the formal descrip-
tion of the MDP problem considered in the paper. Section 3 is devoted to the
hypoexponential service case. We prove first in Section 3.3 that the dynamic
programming operator preserves convexity, which then has two different appli-
cations: i) that the optimal policy is of threshold type and ii) that the thresholds
are ordered for different classes. The preservation of submodularity, proved in
Section 3.5, implies the monotonicity of the switching curve for a fixed demand
class. In Section 4 we discuss the possible extensions of the model. Section 5
contains conclusions and some future directions. Details of proofs can be found
in the extended version of this article [15].

2 Problem Formulation

2.1 Model Description

We consider a single-item inventory model. We denote by S the maximum stock
level. This single-item is demanded by J different types of customers (or demand
classes). Demands arrive according to a Poisson process of parameter λ and the
probability that an arriving demand is of class j is equal to pj. Let λj be the
arrival rate of class j. Then λj = pjλ and

∑J
j=1 λj = λ.

206 A. Wieczorek, A. Bušić, and E. Hyon

When an item is not delivered, the item is lost and a penalty cost is incurred.
We denote by cj the penalty cost of demand class j and we assume without loss
of generality that the costs are ordered such that c1 ≤ c2 ≤ . . . ≤ cJ . When a
demand arrives, one has to decide whether to satisfy or to refuse it. Since the
stock level is finite, rejecting a demand causes a penalty cost but it also saves
an item that can be used for future demands (of possibly higher class).

We assume a single replenishment server and the replenishment times can
follow different distributions. In this paper we will consider hypoexponential
and hyperexponential replenishments.

We detail now how this inventory problem can be expressed as an admission
control problem in a queuing system with different classes of customers. We
represent the items in replenishment for the inventory system by a queue of
capacity S. An arriving demand of class j is an arriving customer of class j.
Delivering an item is the equivalent to admitting the customer into the queue.
The penalty cost due to a lost demand is equivalent to the cost of rejection.
From now on, we will use this queuing model formalism.

2.2 Optimal Control Problem

The problem of finding the best decision (rejection or acceptance), to perform
when customers arrive is an optimal control problem that can be modeled as a
(time-homogeneous) MDP. We detail now the elements of this MDP.

The system behaves in continuous time, but we can restrict our attention
to the transition epochs. This can be done without loss of generality since we
only consider costs that depend on the state of the system. At these transition
instants an event occurs and induces a change in the system. When the event
is an arrival, then we have to choose the best action to trigger. Although the
system behaves continuously, we consider here a discrete time MDP. Indeed,
the use of the uniformization standard method makes the problem discrete (see
Lippman [9] or Puterman [12]).

The state space of our MDP is X = {1, . . . , S} × {1, . . . , N} ∪ {(0, 1)}. For
any (x, k) ∈ X , the parameter x denotes the number of customers in the system,
while k describes the phase of the customer being served (hypoexponential and
hyperexponential have different phases). Actually, in state (0, 1) no customer is
served and the indication of the phase is useless but we keep it for readability.
Note that the state space does not depend on the classes of customers.

We denote by A = {0, 1} the action set where action 1 is an acceptance and
action 0 is a rejection. A policy π is a sequence of decision rules that maps the
information history (past states and actions) to the action set A. Since in our
case the action set and the state space are finite, and since the costs are thus triv-
ially bounded, we restrict our attention to Markov deterministic policies. Indeed,
standard results (see Puterman [12]) insure that an optimal policy belongs to
the set of Markov deterministic policies. A Markov deterministic policy is of the
form (a(·), a(·), . . .) where a(·) is a single deterministic decision rule that maps

Critical Level Policies in Lost Sales Inventory Systems 207

the current state to a decision (hence, in our case a(·) is a function from X to A).
Under a policy π the evolution of the system generates a random sequence of
states and actions yn and an.

We denote by C(y, a) with y ∈ X and a ∈ A the instantaneous cost in state
y when action a is triggered. Here C(y, 0) = cj according to the class of the
customer we reject, and C(y, 1) = 0 in case of acceptance.

Since we are interested in the average cost criteria, we define the objective,
known as the minimal long-run average costs, by

v̄∗ = min
π

lim
n→∞

1
n

E
π
y

(
n−1∑
�=0

C(y�, a�)

)
,

where the initial state y0 = y. Our aim is to characterize the optimal policy π∗

that reaches v̄∗. This means to determine the optimal decision rule denoted by
a∗, with π∗ = (a∗, a∗, . . .).

Total cost criteria. We adopt the framework of Koole [7] and we will work
with the total cost criteria to characterize the optimal average policy. We define
the minimal (expected) n-stage total cost by

Vn(y) = min
π(n)

E
π(n)
y

(
n−1∑
�=0

C(y�, a�)

)
, ∀y ∈ X , (1)

where π(n) is a policy over n steps. We assume that the initial state y0 = y and
that, by convention, V0(y) = 0, ∀y ∈ X . We call Vn the n-stage total cost value
function.

From Koole [7] and Puterman [12, Chapter 8], the minimal n-stage total
cost value function Vn does not converge when n tends to infinity. Instead, the
difference Vn+1(y) − Vn(y) converges to the minimal long run average cost. On
the other hand, still from Koole [7], the n-stage policy which minimizes Vn tends
to the optimal average policy π∗ when n tends to infinity.

Finally, since the instantaneous costs are positive, from standard results on
MDPs (see Puterman [12]), Vn is well defined for all n and satisfies the dynamic
programming equation (Bellman equation):

Vn+1 = TVn ,

where T is the dynamic programming operator. More precisely, T operates on
the total cost value functions and is defined by:

(Tf)(y) = min
a

(T̂ f)(y, a) = min
a

⎛⎝C(y, a) +
∑

y′∈X
P (y′|(y, a)) f(y′)

⎞⎠ , (2)

with P (y′|(y, a)) the probability to move to y′ from state y ∈ X with action
a ∈ A, and f a function that belongs to the total cost value function set. The
optimal decision rule can then be deduced from Eq. (2):

a(y) = min
(
argmin(T̂ f)(y, a)

)
. (3)

208 A. Wieczorek, A. Bušić, and E. Hyon

2.3 Critical Level Policies

In this work, we do not want to numerically compute the optimal policy but
rather to characterize some “good” properties that the optimal policy should
verify. Indeed, very often the optimal policy admits a simple form. The aim of
our work is to prove that the optimal policy for our model is a critical level
policy.

Definition 1 (Critical level policy). A policy is called a critical level policy
if for any fixed k and any customer class j it exists a level in x: tk,j , such that
in state (x, k):
- for all 0 ≤ x < tk,j it is optimal to accept any customer of class j,
- for all x ≥ tk,j it is optimal to reject any customer of class j.

Structured policy framework. In order to show that the optimal policy
exhibits some special properties we use a standard framework presented in the
monograph of Koole [7]. Most of the results presented now follow from this
monograph in which detailed proofs can be found. This framework is that of
property preservation by the Dynamic Programming operator. It consists of
three steps: First, identify two related sets. The one of the value functions that
exhibit a special form (say V) and the one one of the decision rules D that exhibit
a special form. The relation between these two sets being such that when the
value function belongs to V , then the optimal decision belongs to D. Next, show
that the properties of v ∈ V are conserved by the operator T . Finally, check that
these properties are kept when passing to the limit.

We present now some special forms for value functions. Let f be a function
from X "→ R+.

Definition 2 (Monotonicity). We say that a function f is increasing in x
(denoted by Incr(x)) if, for all y = (x, k), we have f(x+1, k) ≥ f(x, k). Similarly,
we say that a function f is decreasing in k (denoted by Decr(k)) if, for all
y = (x, k), we have f(x, k + 1) ≤ f(x, k).

Definition 3 (Convexity). We say that a function f is convex in x (denoted
by Convex(x)) if, for all y = (x, k), we have:

2f(x + 1, k) ≤ f(x, k) + f(x + 2, k) . (4)

Definition 4 (Submodularity). We say that a function f is submodular in x
and k (denoted by Sub(x, k) if, for all y = (x, k), we have:

f(x + 1, k + 1) + f(x) ≤ f(x + 1, k) + f(x, k + 1) . (5)

We give now the relationship between the properties of the value functions and
the optimal decisions.

Proposition 1 (Th 8.1 [7]). Let a(y), with y = (x, k), be the optimal decision
rule defined by Eq. (3).

Critical Level Policies in Lost Sales Inventory Systems 209

i) If f ∈ Convex(x), then a(y) is decreasing in x.
ii) If f ∈ Sub(x, k), then a(y) is increasing in k.

Assume a critical level policy and consider a decision for a fixed demand class j.

Definition 5 (Switching curve). For every k, we define a level t(k) such that
when we are in state (x, k) decision 1 is taken if and only if x ≤ t(k) and 0
otherwise. The mapping k "→ t(k) is called a switching curve.

Let us notice that a switching curve separates the state space X in two regions
X0, in which decision 0 is taken, and X1, in which decision 1 is taken.

Definition 6 (Monotone switching curve). We say that a decision rule is
of the monotone switching curve type if the mapping k "→ t(k) is monotone.

3 Hypoexponential Service

In order to show that the optimal level policy is of critical level type we will
prove increasingness (Section 3.2) and convexity (Section 3.3) properties, while
submodularity (proved in Section 3.5) implies monotonicity of the switching
curve. Furthermore, although the problem was given under its most general
formulation in Section 2.2, for the sake of readability and in order to simplify
the proofs, in the rest of the paper we will decompose the dynamic programming
operator according to the event-based approach presented in Glasserman and
Yao [3], and Koole [7]. This means a decomposition of the dynamic programming
operator into operators related to a dedicated event and an observation of the
system after decision epoch.

3.1 Model Description

Let us detail the event-based decomposition. The dynamic programming equa-
tion becomes:

Vn(x, k) = Tunif

(J∑
i=1

piTCA(i)(Vn−1), TD(Vn−1)
)

, (6)

where V0(x, k) ≡ 0, and Tunif , TCA(i) and TD are different event operators.
If the service (replenishment) time is hypoexponential, then the random value

R that describes the service time is defined by R =
∑N

k=1 Ek, where Ek is an
exponential random value of parameter μk, 1 ≤ k ≤ N . Let α = maxk μk. We
will use the uniformization rate equal to λ + α. The uniformization operator,
Tunif , is defined by:

Tunif (f(x, k), g(x, k)) =
λ

λ + α
f(x, k) +

α

λ + α
g(x, k).

210 A. Wieczorek, A. Bušić, and E. Hyon

Let μ′
k = μk/α, the departure operator, TDf , is defined by:

TDf(x, k) = μ′
k

{
f(x, k + 1) if (k < N) and (x > 0),
f((x− 1)+, 1) if (k = N) or (x = 0 and k = 0)

+ (1− μ′
k)f(x, k).

The controlled arrival operator of a customer of class i, TCA(i), is defined by:

TCA(i)f(x, k) =

{
min{f(x + 1, k), f(x, k) + ci} if x < S,

f(x, k) + ci if x = S.

3.2 Increasing Property

We first notice that the state space admits a linear order (denoted �) which is a
lexicographic order defined to be increasing with respect to the first dimension
and decreasing with respect to the second dimension:

Definition 7 (Linear order �). For every (x, i) and (y, j) in X ,

(x, i) � (y, j) ⇔ (x < y) or (x = y, i ≥ j) .

Let us define the increasing property of functions with respect to �.

Definition 8 (Increasing property). For any function f : X "→ R we say
that f ∈ Incr(�) if (x, i) � (y, j)⇒ f(x, i) ≤ f(y, j).

We now show that operators TCA(i) and TD preserve this increasing property.

Lemma 1. Let f : X "→ R such that f ∈ Incr(�), then TCA(i)f ∈ Incr(�).

Proof. Assume that f ∈ Incr(�). In order to prove that TCA(i)f ∈ Incr(�), it
sufficient to prove that:

TCA(i)f(x, k) ≤ TCA(i)f(x, k − 1), ∀x > 0, ∀k > 1, (7)
TCA(i)f(x, 1) ≤ TCA(i)f(x + 1, N), ∀x, ∀k. (8)

Let us consider first (7). For 0 < x < S and k > 1 we get:

TCA(i)f(x, k) = min{f(x, k) + ci, f(x + 1, k)}
≤ min{f(x, k − 1) + ci, f(x + 1, k − 1)} = TCA(i)f(x, k − 1),

For x = S and k > 1 we have TCA(i)f(S, k) = f(S, k) + ci ≤ f(S, k − 1) + ci =
TCA(i)f(S, k − 1).

We now prove (8). For x < S − 1 we get:

TCA(i)f(x, 1) = min{f(x, 1) + ci, f(x + 1, 1)}
≤ min{f(x + 1, k) + ci, f(x + 2, k)} = TCA(i)f(x + 1, k) .

For x = S−1, TCA(i)f(S−1, 1) = min{f(S−1, 1)+ ci, f(S, 1)} ≤ f(S, k)+ ci =
TCA(i)f(S, k) . ��

Critical Level Policies in Lost Sales Inventory Systems 211

Lemma 2. Let f : X "→ R such that f ∈ Incr(�), then TDf ∈ Incr(�).

Proof. Assume that f is Incr(�). In order to prove that TDf ∈ Incr(�), it
sufficient to prove that:

TDf(x, k) ≤ TDf(x, k − 1), ∀x > 0, ∀k > 1, (9)
TDf(x, 1) ≤ TDf(x + 1, N), ∀x, ∀k. (10)

Let us consider first (9). For x > 0 and k = N ,

TDf(x, N) = μ′
Nf(x− 1, 1) + (1− μ′

N)f(x, N)
≤ μ′

N−1f(x, N) + (1 − μ′
N−1)f(x, N − 1) = TDf(x, N − 1) .

Indeed, using Definitions 8, one has that both f(x−1, 1) and f(x, N) are smaller
or equal than f(x, N) and f(x, N−1) and the same holds for any of their convex
combinations. Similarly, for x > 0 and 1 < k < N we have:

TDf(x, k) = μ′
if(x, k + 1) + (1− μ′

i)f(x, k)
≤ μ′

k−1f(x, k) + (1 − μ′
k−1)f(x, k − 1) = TDf(x, k − 1) .

Let us now consider (10). For x > 0:

TDf(x, 1) = μ′
1f(x, 2) + (1− μ′

1)f(x, 1)
≤ μ′

Nf(x, 1) + (1− μ′
N)f(x + 1, N) = TDf(x + 1, N)

For x = 0: TDf(0, 1) = f(0, 1) = TDf(1, N). ��

Remark 1. From Definition 7, it follows that Incr(�) implies Incr(x) and Decr(k).

3.3 Convexity

In this part we prove that the convexity with respect to the first dimension is
preserved by operators TCA(i) and TD. However, due to the state space form,
this requires to introduce an additional property (called augmented convexity)
at state (0, 1).

Definition 9 (Augmented convexity). We say that a function f : X "→ R

is augmented convex in x (denoted by AConvex(x)) if for all k ∈ {1, .., N} we
have f(0, 1) + f(2, k) ≥ 2f(1, k).

Lemma 3. Let f be a function such that f ∈ Incr(�)∩Convex(x)∩AConvex(x),
then TCA(i)f ∈ Incr(�) ∩Convex(x) ∩ AConvex(x).

Proof. Assume that f is Incr(�) ∩ Convex(x) ∩ AConvex(x).
(i) Preservation of Convex(x) shall be proved for x > 0. For x = S − 2,

TCA(i)f(x,k)+TCA(i)f(S, k)=min
{

f(x+ 1, k)+ f(S, k) + ci

f(x, k)+ ci+f(S, k)+ ci≥2f(x+1, k)+2ci

≥2 min{f(S, k), f(x+1, k)+ci}=2TCA(i)f(x+1, k).

212 A. Wieczorek, A. Bušić, and E. Hyon

For 0 < x < S − 2, the sum TCA(i)f(x, k) + TCA(i)f(x + 2, k) is equal to

min

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

f(x + 1, k) + f(x + 3, k) ≥ 2f(x + 2, k)
f(x + 1, k) + f(x + 2, k) + ci

f(x, k) + ci + f(x + 3, k) + f(x + 2, k)− f(x + 2, k)
≥ 2f(x + 1, k) + f(x + 3, k)− f(x + 2, k) + ci

≥ f(x + 1, k) + f(x + 2, k) + ci

f(x, k) + ci + f(x + 2, k) + ci ≥ 2f(x + 1, k) + 2 ci

≥ 2 min{f(x + 2, k), f(x + 1, k) + ci} = 2TCA(i)f(x + 1, k).

Since for every expression on the left hand side of the inequality there exists a
smaller or equal expression on the right hand side thereof, the minimum on the
right hand side is smaller than the one on the left hand side.

(ii) For x = 0 augmented convexity is preserved:

TCA(i)f(0, 1)+TCA(i)f(2, k)=min

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

f(1, 1)+f(3, k)≥f(1, k)+f(3, k)≥2f(2, k)
f(1, 1) + f(2, k) + ci

f(0, 1) + ci + f(3, k) + f(2, k)− f(2, k)
≥ 2f(1, k) + f(3, k)− f(2, k) + ci

≥ f(1, k) + f(2, k) + ci

f(0, 1) + ci + f(2, k) + ci ≥ 2f(1, k) + 2 ci

≥ 2 min{f(2, k), f(1, k) + ci} = 2TCA(i)f(1, k),

Preservation of Incr(�) follows from Lemma 1. ��

Lemma 4. Let f be a function such that f ∈ Incr(�)∩Convex(x)∩AConvex(x),
then TDf ∈ Incr(�) ∩ Convex(x) ∩ AConvex(x).

Proof. Assume that f is in Incr(�)∩ Convex(x) ∩ AConvex(x).
(i) Preservation of Convex(x) shall be proved for x > 0. For x > 0 and k < N :

TDf(x, k) + TDf(x + 2, k)
= μ′

kf(x, k + 1) + (1− μ′
k)f(x, k) + μ′

kf(x + 2, k + 1) + (1− μ′
k)f(x + 2, k)

≥ 2μ′
kf(x + 1, k + 1) + 2(1− μ′

k)f(x + 1, k) = 2TDf(x + 1, k)

For x > 0 and k = N :

TDf(x, N) + TDf(x + 2, N)
= μ′

Nf(x− 1, 1) + (1− μ′
N)f(x, N) + μ′

Nf(x + 1, 1) + (1− μ′
N)f(x + 2, N)

≥ 2μ′
Nf(x, 1) + 2(1− μ′

N)f(x + 1, N) = 2TDf(x + 1, N)

(ii) For x = 0 augmented convexity is preserved. For x = 0 and k < N :

TDf(0, 1)+TDf(2, k)=μ′
1f(0, 1)+(1−μ′

1)f(0, 1)+μ′
kf(2, k+1) + (1−μ′

k)f(2, k)
=μ′

kf(0, 1)+(1−μ′
k)f(0, 1)+μ′

kf(2, k+1)+(1−μ′
k)f(2, k)

≥ 2μ′
kf(1, k + 1) + 2(1− μ′

k)f(1, k) = 2TDf(1, k)

Critical Level Policies in Lost Sales Inventory Systems 213

For x = 0 and k = N :

TDf(0, 1)+TDf(2, N)=μ′
1f(0, 1)+(1−μ′

1)f(0, 1)+μ′
Nf(1, 1)+(1−μ′

N)f(2, N)
=μ′

Nf(0, 1)+μ′
Nf(1, 1)+(1−μ′

N)f(0, 1)+(1−μ′
N)f(2, N)

≥2μ′
Nf(0, 1) + 2(1− μ′

N)f(1, N) = 2TDf(1, N)

Preservation of Incr(�) follows from Lemma 2. ��

Since the operator Tunif is a convex sum of operators TCA(i) and TD, the follow-
ing proposition follows by induction from Lemmas 3 and 4 (see details in [15]).

Proposition 2. Let Vn be a n-steps total cost value function that satisfy Equa-
tion 6. Then, for all n ≥ 0, Vn is in Incr(�) ∩AConvex(x) ∩ Convex(x).

3.4 Critical Level Policy

The next step is to show that the optimal policy, as defined in Section 2.2, is a
critical level policy (see Definition 1).

Theorem 1. The optimal policy is a critical level policy.

Proof. First, any value function Vn satisfying Eq. (6) belongs to Convex(x) this
follows from Proposition 2. From Proposition 1 it follows that, for any n, the
action minimizing Vn when Vn ∈ Convex(x) defines a critical level policy. Finally,
from the discussion in 2.2 it follows that the policy minimizing Vn converges
(with a simple convergence) to the optimal policy when n tends to infinity.
Since convexity is kept with simple convergence, then the optimal policy is of
critical level policy type. ��

Example 1. Consider a model with the following parameters as an example:
J = 3 (number of customer classes), N = 5 (number of phases), S = 10 (stock
size), λ = 3, μ = [2, 6, 9, 4, 7] (service rates in different phases), p = [0.3, 0.4, 0.3]
(probabilities of J customer classes), c = [30, 40, 50] (rejection costs).

Numerical computation of the optimal policy using value iteration method
results in a critical level policy as presented in Figure 1. It can be seen that for
every customer class j and for every phase k there exists a unique threshold in
x: tk,j . These thresholds are represented on the figure as the transition between
acceptance for different classes (blue circle – all classes are accepted, green tri-
angle – classes 2 and 3 are accepted, pink square – only class 3 is accepted, red
asterisk – rejection of any class). This example and Figure 1 also serve as an
illustration for Theorems 2 and 3.

Now we show that when the rejection costs are ordered for consecutive customer
classes, one can deduce order on the levels in x.

Theorem 2. For any critical level policy (see Definition 1), if the rejection costs
are nondecreasing (c1 ≤ · · · ≤ cJ), then the levels tk,j are nondecreasing with
respect to customer class j, i.e. tk,j ≤ tk,j+1.

214 A. Wieczorek, A. Bušić, and E. Hyon

1 2 3 4 5
0

1

2

3

4

5

6

7

8

9

10

x
 −

 n
o

.
o

f
c
u

s
to

m
e

rs
 i
n

 q
u

e
u

e

k − phase

Fig. 1. Acceptance points for different customer classes. Blue circle – all classes are
accepted, green triangle – classes 2 and 3 are accepted, pink square — only class 3 is
accepted, red asterisk – rejection of any class.

Proof. First recall that the operator TCA(j) is defined as: TCA(j)f(x, k) = min
{f(x+1, k), f(x, k)+cj} for x < S (for x = S the only allowed action is rejection).

Observe now that by definition tk,j is a number such that: in state (x, k) for
all 0 ≤ x < tk,j it is optimal to accept any customer of class j and to reject it
for all x ≥ tk,j . This, by definition of TCA(j), means that:

Vn(x + 1, k)− Vn(x, k) < cj ∀x < tk,j (11)
Vn(x + 1, k)− Vn(x, k) > cj ∀x ≥ tk,j

Owing to the assumption cj ≤ cj+1, it yields Vn(x+ 1, k)−Vn(x, k) < cj ≤ cj+1

which, by definition of tk,j+1 holds for all x < tk,j+1. But, by Eq. (11), this also
holds for all x < tk,j . This means that the set of x such that x < tk,j is a subset
of the set of x such that x < tk,j+1, which, by definition of tk,j implies that
tk,j ≤ tk,j+1. ��

3.5 Submodularity

In this part we prove the preservation by operators TCA(i) and TD of submod-
ularity with respect to the first and second dimension (Sub(x, k)). Similarly to
convexity, we need an additional property (boundary-submodularity) and sub-
sequently its preservation along with submodularity shall be proved too.

Definition 10 (Boundary-submodularity). We say that a function f is in
BSub(x, k) if ∀0 < x < S we have f(x, 1) + f(x, N) ≤ f(x− 1, 1) + f(x + 1, N).

Lemma 5. Let f be a function such that f ∈ Sub(x, k) ∩ BSub(x, k). Then
TCA(i)f ∈ Sub(x, k) ∩ BSub(x, k).

Critical Level Policies in Lost Sales Inventory Systems 215

The proof is given in [15].

Lemma 6. Let f be a function such that f ∈ Sub(x, k) ∩ BSub(x, k). Then
TDf ∈ Sub(x, k) ∩ BSub(x, k).

The proof is given in [15].
The combination of Lemmas 5 and 6 implies that the n-step value total cost

value function is submodular (the proof follows easily from (6) and the definition
of Tunif).

Proposition 3. Let Vn be a n-step total cost value function which satisfies Eq.
(6). Then for all (n ≥ 0) Vn is in Sub(x, k) ∩ BSub(x, k).

3.6 Monotone Switching Curve

Henceforth we can now refine the optimal policy using Definition 5.

Theorem 3. The optimal policy defines a monotone switching curve.

Proof. For all n ≥ 0, a value function Vn that checks Eq. (6) belongs to Sub(x, k)
(this follows from Proposition 3). Thus, by Theorem 1, we know that action is
decreasing in x and that there exists a critical level policy. Since the action set
consists of two elements and since the switching curve is the boundary between
inverse images of these two elements with respect to the Markov deterministic
policy, then Theorem 1 yields that for a fixed customer class the boundary
(switching curve) is a function k "→ tk,j . Furthermore, from Prop. 1 it follows that
the action minimizing Vn for Vn ∈ Sub(x, k) is increasing in k. This, combined
with the previous observation, implies that the switching curve is increasing.

Observe now, that (from the discussion in 2.2) the policy minimizing Vn con-
verges to the optimal policy when n tends to infinity. Since submodularity is
kept by simple convergence, thus the optimal policy is a monotone switching
curve.

At last, it has to be noted that submodularity is not well defined for the
state (0, 1) (indeed when x = 0 only one phase is possible). Therefore the same
reasoning based on Proposition 1 cannot be applied to the zero state. However,
Theorem 1 ensures that an unique level t1,j for k = 1 exists and submodularity,
by application of Proposition 1, implies the fact that the switching curve is in-
creasing for x > 0. Finally, the only event not covered by the previous discussion
(i.e. the existence of the switching curve at (0, 1)) does not impair the mono-
tonicity of the switching curve, since it is the smallest possible state. ��

4 Model Extensions

We discuss the possible extensions of the model in two different directions: hy-
perexponential service times and including different instantaneous costs.

216 A. Wieczorek, A. Bušić, and E. Hyon

4.1 Hyperexponential Service

We now assume that the service times follow a hyperexponential distribution
(an exponential distribution of rate μk with a probability γk). Let Vn be the
n-step value function, the dynamic programming equation is similar: Vn(x, k) =
Tunif

(∑J
i=1 piTCA(i)(Vn−1), TD(Vn−1)

)
, with V0(x, k) ≡ 0. However, since the

dynamics of the system changes compared to the hypoexponential case, the
definitions of controlled arrivals TCA(i) and departure operators TD differ.

Let us recall that α is the maximum over all μk and that μ′
k = μk

α . We assume,
without loss of generality, that μ1 ≤ μ2 ≤ . . . ≤ μN . The departure operator TD

is now defined by:

TDf(x, k) = μ′
k

{∑N
i=1 aif(x− 1, i) if x > 1

f(0, 1) if x ≤ 1

+ (1− μ′
k)f(x, k) ,

and the controlled arrivals TCA(i) by:

TCA(i)f(x, k) =

⎧⎪⎨⎪⎩
f(x, k) + ci if x = S,

min{f(x + 1, k), f(x, k) + ci} if 0 < x < S,

min{f(0, 1) + ci,
∑N

j=1 ajf(1, j)} if x = 0.

Example 2. Consider a model with the following parameters: J = 3 (number
of customer classes), N = 5 (number of phases), S = 10 (stock size), λ = 3,
μ = [2, 4, 6, 7, 9] (service rates for different phases), p = [0.3, 0.4, 0.3] (probabili-
ties of J customer classes), c = [0.5, 1, 3] (rejection costs). The optimal policy is
given in Figure 2. For this example, and many others that we have tested, the
optimal policy is still of critical level type. This suggests that even in the hyper-
exponential service case, the optimal policies are critical level policies. However,
since the arrival operator is now more complex at the zero state, the proof tech-
nique used for hypoexponential case cannot be used directly, and were not able
to prove any results yet about critical level optimality.

4.2 Adding Holding Costs

We now discuss the possibility of adding the holding costs to Eq. (6). As men-
tionned in De Véricourt et al. [14], this breaks the queueing model and the
inventory system similarities.

First note that the admission control in a queueing system model with holding
costs has a wide range of applications (see Kleywegt et al. [6]). In the context of
inventory systems, it models the make-to-stock problem (see Ha [4]).

We obtain the similar results as before when we add linear and increasing
holding costs in admission control model.

Critical Level Policies in Lost Sales Inventory Systems 217

1 2 3 4 5
0

1

2

3

4

5

6

7

8

9

10

x
 −

 n
o

.
o

f
c
u

s
to

m
e

rs
 i
n

 q
u

e
u

e

k − phase

Fig. 2. Acceptance points for different customer classes. Blue circle – all classes are
accepted, green triangle – classes 2 and 3 are accepted, pink square – only class 3 is
accepted, red asterisk – rejection of any class.

Corollary 1 (Critical level policy with holding costs). Let Tcost be the
operator defined by

Tcostf(x, k) =
chx

λ + α
+ f(x, k) ,

with ch the per capita holding cost. The value function is given by Vn(x, k) =
Tcost(Tp(Vn−1)) where Tp is the operator given by Eq. (6).

The optimal policy is of critical level policy type. The levels are increasing
with respect to the customer class and the optimal policy defines a monotone
switching curve.

Proof. We only give a sketch of proof by noticing that the increasing, convexity,
and submodularity properties are kept by the operator. Then the results follow
using similar arguments as in the proofs of Theorems 1, 2, and 3. ��

5 Conclusions

The main contribution of this paper is the proof that in the case of a hypoex-
ponential service case we still have an optimal policy of critical level type. This
extends the previous results from the literature to the simplest case of a phase-
type service where the service rate depends on the service phase. We expect that
our result is a first step towards more general results for phase-type service. Our
numerical experiments suggest that the result is still preserved for hyperexpo-
nential case. However, the particularity of the zero state (i.e. when the queue
is empty) becomes more challenging because of the possibility of choice in the
arrival operator when the queue is empty. Technically, on the boundary around
zero state convexity and submodularity must be replaced with some more elabo-
rate properties. Defining the boundary properties for general phase type service

218 A. Wieczorek, A. Bušić, and E. Hyon

and finding the conditions under which they are preserved by the dynamical
programming operator represents our first direction for future extensions of this
work. The second direction concerns the extensions of the result for different
types of immediate costs. Finally, it would be interesting to consider other types
of arrival processes or adding the possibility of decision for service.

Acknowledgements. This work was supported by INRIA ARC OCOQS grant.

References

1. Altman, E.: Applications of Markov Decision Processes in communication net-
works. In: Feinberg, E.A., Shwartz, A. (eds.) Handbook of Markov Decision Pro-
cesses, ch.16. Kluwer, Dordrecht (2002)

2. Dekker, R., Hill, R., Kleijn, M., Teunter, R.: On the (S-1,S) lost sales inventory
model with priority demand classes. Naval Research Logistics 49, 593–610 (2002)

3. Glasserman, P., Yao, D.: Monotone Structure in Discrete-Event Systems. Wiley,
Chichester (1994)

4. Ha, A.: Inventory rationing in a make-to-stock production system with several
demand classes and lost sales. Management Science 43(8), 1093–1103 (1997)

5. Ha, A.: Stock rationing in an M/Ek/1 make-to-stock queue. Management Sci-
ence 46(1), 77–87 (2000)

6. Kleywegt, A.J., Papastavrou, J.D.: The dynamic and stochastic knapsack problem.
Operations Research 46, 17–35 (1998)

7. Koole, G.: Monotonicity in Markov reward and decision chains: Theory and appli-
cations. Foundation and Trends in Stochastic Systems 1(1) (2006)

8. Kranenburg, A., van Houtum, G.: Cost optimization in the (S-1, S) lost sales
inventory model with multiple demand classes. Oper. Res. Lett. 35(4), 493–502
(2007)

9. Lippman, S.: Applying a new device in the optimization of exponential queueing
systems. Operations Research 23, 687–710 (1975)

10. Mazzucco, M., Mitrani, I., Palmer, J., Fisher, M., McKee, P.: Web service host-
ing and revenue maximization. In: Fifth European Conference on Web Services,
ECOWS 2007, pp. 45–54 (2007)

11. Porteus, E.L.: Foundations of Stochastic Inventory Theory. Stanford University
Press, Stanford (2002)

12. Puterman, M.: Markov Decision Processes Discrete Stochastic Dynamic Program-
ming. Wiley, Chichester (2005)

13. Svoronos, A., Zipkin, P.: Evaluation of one-for-one replenishment policies for mul-
tiechelon inventory systems. Management Science 37(1) (1991)

14. de Véricourt, F., Karaesmen, F., Dallery, Y.: Optimal stock allocation for a capac-
itated supply system. Management Science 48, 1486–1501 (2002)

15. Wieczorek, A., Bušić, A., Hyon, E.: Critical level policies in lost sales inventory
systems with different demand classes. Tech. rep., INRIA (2011)

Model-Based Evaluation and Improvement of

PTP Syntonisation Accuracy in Packet-Switched
Backhaul Networks for Mobile Applications

Katinka Wolter1, Philipp Reinecke1, and Alfons Mittermaier2

1 Freie Universität Berlin
Institut für Informatik

Takustraße 9
14195 Berlin, Germany

{philipp.reinecke,katinka.wolter}@fu-berlin.de
2 highstreet technologies GmbH

Berlin, Germany
alfons.mittermaier@highstreet-technologies.com

Abstract. Base stations in mobile networks have very strict frequency
synchronisation (also referred to as syntonisation) requirements. As back-
haul networks are migrated to asynchronous packet-switching technol-
ogy, timing over packet using the IEEE 1588 Precision Time Protocol
(PTP) replaces current synchronisation methods that rely on the syn-
chronous bit clock of the network. With PTP, base-station clocks derive
their frequency from the inter-packet delays of Sync messages sent by a
high-quality time source at regular time intervals. Packet-delay variation
(PDV) thus has a major impact on the achievable synchronisation qual-
ity, and the amount of PDV of a backhaul network determines whether
the network can support frequency synchronisation of base stations. We
present a simulation and an analytical approach to assessing the suit-
ability of backhaul networks for clock synchronisation using PTP and
derive two methods for reducing PDV.

Keywords: Precision Time Protocol, Frequency Synchronisation, Mo-
bile Backhaul Networks.

1 Introduction

In order to enable handover between neighbouring base stations in mobile back-
haul networks for GSM, WCDMA and LTE, the frequency on the air interface
of the base stations must not deviate by more than 50 ppb1 from the nominal
frequency [1]. In practice, this requires that the frequency of the local oscillator
of base stations is accurate to about 15 ppb. As local oscillators cannot guarantee
this accuracy in free-running operation, frequency synchronisation (also referred

1 Parts per billion, defined as 10−9.

N. Thomas (Ed.): EPEW 2011, LNCS 6977, pp. 219–234, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

220 K. Wolter, P. Reinecke, and A. Mittermaier

Fig. 1. Network using synchronisation of base stations with ToP using PTP. The mas-
ter clock (in the upper right corner) sends PTP Sync messages to the slaves. Note that
in this application domain, network traffic is usually shown as flowing from right to
left.

to as syntonisation) of base-station clocks (called slave clocks) to a high-quality
primary reference clock (master clock) is mandatory.2

Whereas current synchronous TDM-based networks can convey the frequency
of the master clock to the slaves via the bit clock of the network itself, this
becomes impossible with the migration of backhaul networks to asynchronous
packet-switching networks (e.g. Carrier Ethernet, CE). In such networks, timing-
over-packet (ToP) using the precision time protocol (PTP) according to IEEE
standard 1588-2008 [2] is the preferred syntonisation method.

The accuracy attainable by PTP is limited by variation in packet transmission
delays, which in turn depends on a variety of factors, including the networking
components, network topology and background traffic. Whether a network de-
sign will be able to sustain syntonisation using PTP is an important question
in engineering backhaul networks. Still, the dominant approach in evaluating
backhaul networks with respect to PTP consists in black-box measurements on
real hardware (e.g. [3,4,5,6,7,8]). While guidelines in ITU-T G.8261 (04/2008)
[9] provide a structure to these measurements, time and cost constraints severely
limit the coverage of such an approach. Simulation and analytical methods may
help to overcome this restriction. However, as of yet such approaches have not
been widely applied to the problem.

In this paper we propose both simulation and analysis as approaches to evalu-
ating PTP syntonisation accuracy in packet-switched networks, illustrating their
usefulness by deriving methods for improving accuracy.
2 In contrast, time and phase synchronisation are less important.

Model-Based Evaluation and Improvement of PTP Syntonisation Accuracy 221

The remainder of the paper is structured as follows: In the next section we pro-
vide a detailed discussion of PTP and introduce Packet Delay Variation (PDV)
as a metric for the suitability of a network for PTP. In Section 3 we describe
our approach to develop highly-detailed and efficient simulation models for PTP
evaluation. Based on these models, we identify a major cause for high PDV and
propose a countermeasure. Section 4 presents our analytical approach for typi-
cal backhaul network topologies. Our method allows us to derive a closed-form
solution for reducing PDV. We conclude the paper with an outlook on further
work in Section 6.

2 Technical Background

The operation of PTP can be illustrated using the scenario shown in Figure 1:
A PTP master clock syntonises PTP slave clocks in a single-ended way. The
network has one PTP master clock on the right-hand side and several PTP slave
clocks. At constant time intervals, the PTP master clock sends Sync messages
to the slaves. The slaves use the interarrival time of consecutive Sync messages
to synchronise their local clock frequency to that of the master clock. Network
connections in this scenario can be either optical fiber Gigabit Ethernet (GE)
links connecting carrier-ethernet (CE) switches, or microwave radio (MWR) links
with radio antennas on either end. The last link to the mobile base station (BS)
usually is a fast ethernet (FE) connection. Some PTP slaves are only a few links
away from the master clock, but others can be at a distance of up to 20 links.

The Packet Transfer Delay (PTD) of the ith Sync message is defined as the
difference between the time the message was received and the time the message
was sent:

PTDi = treceived
i − tsent

i .

In the following, let PTD denote the packet transfer delay distribution, defined
on IR+ ∪ {0}. Ignoring packet loss, the PTD of a network is bounded to an
interval [PTDmin, PTDmax] of the best and worst case transmission delay. In
practice, PTDmin is the time required by a Sync message when there is no
background traffic. PTDmin thus depends solely on the networking hardware,
and PTDmin > 0. If there is background traffic, Sync messages may be delayed
by processing of background packets. Then, PTDmax > PTDmin.

Syntonisation accuracy depends only on the variation in PTD samples, but
not on the constant offset PTDmin. The variation is described by the Packet
Delay Variation (PDV), defined as the shifted PTD distribution (section 6.2.4.1
in [10])3:

PDV := PTD − PTDmin.

In the following we consider two ways of characterising PDV . A simple mea-
sure is given by the peak-to-peak PDV (p2pPDV),
3 Note that there exist different terminologies and definitions for the variation in

transmission delays (sometimes also referred to as jitter), e.g. the instantaneous
PDV, as defined by [11].

222 K. Wolter, P. Reinecke, and A. Mittermaier

p2pPDV := PTDmax − PTDmin = PDVmax.

In practice, slave clocks typically filter out samples from slow PTP packets, as slow
packets are likely to increase PDV. Slow packets are easily identified by computing
the difference between timestamps set by the sender and receiver. The slave clock
then uses only the fastest packets, with typical thresholds set at the 1% quantile of
the PDV distribution or below. The quantiles of the PDV distribution thus pro-
vide a practical measure for PDV. Note that this measure is equal to the p2pPDV
of the PDV distribution truncated at the respective quantile.

The upper PDV bound tolerable by a PTP slave clock depends on the PTP
implementation and the accuracy of the local oscillators. These properties vary
between vendors and are often considered proprietary information. However,
a 1% quantile PDV between master and slave of 216μs can be considered a
reasonable target. Although we cannot embark on a detailed discussion of the
implementation of a slave clock, we note that slave clocks average PTD values
over a certain time period and that the upper bound of 216μs corresponds to a
maximum deviation of 15 ppb with integration window size 4 hours.

3 Accurate and Efficient Simulation of Backhaul
Networks

The need for simulation models is dictated by the limited coverage of measure-
ment studies on practical networking equipment. Even though there exist guide-
lines for conducting measurement studies [9], cost and time constraints render
exhaustive tests infeasible. Due to this restriction, network operators cannot eval-
uate and compare different backhaul network design choices with respect to their
suitability for PTP. Discrete-event simulation allows evaluation in a much more
efficient way than black-box testing. However, the high accuracy requirements
of PTP demand very precise models, because the delay variation experienced
by the fastest packets when passing through a node must be quantifiable with
microsecond precision under a wide range of load and other conditions. As these
requirements are far beyond those of typical applications, and product docu-
mentation does not provide the necessary detail, sufficiently accurate models for
networking equipment are not available in state-of-the-art network simulators.
In particular, current models do not include many of the internal structures that
have an effect on the PDV.

In this section we present our simulation approach to PDV evaluation. We
start with an overview of the characteristics of packet delay variation, as known
from measurement studies.

3.1 PDV Characteristics

The characteristics of the packet delay variation encountered in a network de-
pend on the networking hardware, the path length, and the background traffic
load. As evidenced by measurement studies [8,3,4,5,12,6,7,13], these parameters

Model-Based Evaluation and Improvement of PTP Syntonisation Accuracy 223

may result in a wide variety of phenomena. In order to be useful, our simulation
models must be able to reproduce these effects. In the following we focus on the
PDV of a single switch, as this will give us the basic building block of models
for networks with longer paths between master and slave clock. Furthermore, we
assume that the switch is configured such that PTP packets have highest pri-
ority, because this configuration is common practice when engineering backhaul
networks for syntonisation using PTP.

With these prerequisites we find two patterns in PDV measurements. Ab-
stracting from device-specific constant offsets or scaling factors, these patterns
can be identified in most measurement studies. We base our discussion on the
data shown in Figure 22 of [8]. The upper part of the figure shows PTD samples
obtained with a step-wise change in background load every two hours, with the
following load levels: 10%, 40%, 70%, 100%, 70%, 40%, 10%, 100%, 10%, 70%,
0%, corresponding to an average load of about 47% (Figure 19 in [8]).

The data of [8] clearly demonstrates that a background load above 0% results
in increased p2pPDV, even though PTP packets have highest priority. This effect
is caused by the non-preemptive operation mode of switches: If a PTP packet
arrives while the switch is transmitting a background packet, processing of the
PTP packet is delayed until the background packet has been sent. The delay
experienced by the PTP packet is bounded from above by the maximum time
required for transmitting a background packet.4 With a constant data rate, this
time depends only on the size of the largest possible background packet. The
PDV is then a mixture of the point mass at zero (no background packet was
being processed) and the distribution of background packet transmission times.
In practice, these interactions result in a characteristic, load-dependent shape for
the density of the PDV distribution. The effect of load is visible in Figure 12 of
[3], and in Figure 8 of [13] where the density of the PTD distribution is shown:
For low load levels, the density of the PDV distribution is close to the point
mass at zero (recall that the PDV distribution is the shifted PTD distribution,
i.e. any constant offset in the PTD distribution can be ignored). The higher the
load, the more likely it becomes that PTP packets must wait for a background
packet, and therefore the distribution of background packet transmission times
becomes more dominant. Note that the shape of the PDV density at 50% in [3]
is very similar to those in Figure 5 of [5] (50% load) and Figure 22 of [8] (about
47% load). There is a peak at low values, and a drawn-out block reminiscient
of the density of the uniform distribution. The first requirement on simulation
models is thus to be able to reproduce this characteristic, load-dependent shape
of the PDV density.

Considering again the PTD data shown in Figure 22 of [8], we observe that
at a background load of 100% both PTDmin and PTDmax increase drastically,
giving the plot the appearence of being ‘shifted up’. The same ‘delay step’ at
100% load can be observed in Figures 5 and 7 of [12], Figures 11, 14, and 15
of [6], and in [7]. This delay step is due to the internal layout of typical switches.
As discussed in the next section, packets leaving the switch must pass a transmit

4 Cf. [14], where this is referred to as the ‘jumbo packet phenomenon’.

224 K. Wolter, P. Reinecke, and A. Mittermaier

Fig. 2. Functional model of a single-stage Carrier Ethernet switch

FIFO buffer before being transmitted. This buffer, however, does not support
priorities. If the transmit FIFO buffer runs into overload, it throttles the egress
scheduler in order to reduce the load. The additional delay affects all packets,
including the high-priority PTP packets. Our second requirement on simulation
models is thus that they are able to represent the delay step at overload.

Note that the increased delay in overload situations does not constitute a
problem in itself, since a constant delay offset can be ignored by the slave clocks.
However, overload situations occur only intermittently. Then, the resulting delay
steps increase overall PDV, and thus affect PTP syntonisation accuracy.

3.2 Simulation Models for PDV Evaluation

A structural analysis is a prerequisite for building an accurate simulation models
of a switch. As we will illustrate in the validation step, this requires detailed
insight into the internal structure of the switch. The level of detail required is
usually not reflected in manufacturer’s data sheets.

Consider the functional structure of a typical single-stage Carrier Ethernet
switch with a MAC bridging device as its central component, as shown in Fig-
ure 2. Virtually all MAC bridging devices implement a transmit FIFO buffer be-
tween the egress scheduler and the transmit interface. Since this transmit FIFO
buffer is behind the priority queueing and scheduling block (which applies strict
priority queueing), it completely ignores any packet priority. It can be modelled
as a rate-matching buffer with the low and the high thresholds being vendor-
discretionary and sometimes configurable. The PDV attributable to equipment-
internal packet processing and forwarding including packet storage and physical
interfaces can be modelled by an arbitrary delay element. MAC bridging de-
vice manufacturers usually guarantee the PDV caused by device-internal packet

Model-Based Evaluation and Improvement of PTP Syntonisation Accuracy 225

800 1000 1200 1400

1e
−

06
1e

−
05

1e
−

04
1e

−
03

1e
−

02

PTD in microseconds

D
en

si
ty

10% background load
50% background load
100% background load

Fig. 3. Delay model of a CE switch (left) and PTD densities for increasing background
load (simulation of one switch, right).

processing and forwarding to be less than 1μs. With the p2pPDV of a Gigabit
Ethernet interface being less than 0.2μs [15], and leaving some margin, the PDV
of the arbitrary delay element may be assumed to be less than 2μs. Based on
this analysis, we model the switch as shown in Figure 3.

Note that neither the transmit FIFO buffer nor the arbitrary delay element
are documented in typical manufacturer data sheets. A simulation model of the
switch that only took into account the documented features of the switch would
fail to represent their effects, as we will illustrate in the next section.

In order to evaluate the PDV of a backhaul network, we connect several copies
of the detailed switch model to form a chain between the master and slave clocks.
We then generate background traffic on the intermediate switches and transmit
PTP packets through this chain, measuring the delay. We use the state-of-the art
discrete-event simulator ns-2 [16] for the simulation. Due to the high data rates
in state-of-the-art backhaul networks, discrete-event simulation of high loads and
long network paths entails very large numbers of events, which in turn increase
simulation times. This makes it difficult to evaluate backhaul networks where
the PTP packets must traverse long paths.

If background packets can enter and leave the path at any intermediate switch,
the problem of long simulation times can be addressed by a hybrid approach to
simulation. First, we measure PDV on a highly-detailed model of a single switch.
We then approximate the PDV distribution by fitting a phase-type (PH) dis-
tribution (cf. eg. [17,18]) to the data. Approximation with PH distributions has
the advantage that PH distributions provide both good fitting quality and effi-
cient methods for random-variate generation [19,20]. By replacing the detailed
switch model with a simple delay element that delays packets according to sam-
ples drawn from the approximating PH distribution we can greatly decrease
the number of events, as we do not have to simulate individual background
packets.

226 K. Wolter, P. Reinecke, and A. Mittermaier

0 2000 4000 6000 8000 10000 12000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

PTD (ns)

F
n(

x)

Detailed Simulation
Approximating PH distribution

50000 100000 150000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

PTD (ns)

F
n(

x)

Detailed Simulation
PH Approximation

Fig. 4. Cumulative Density Function (CDF) of PTD at 80% background load with
detailed simulation and PH approximation. Results for 1 switch are shown on the left,
results for 20 switches are shown on the right.

3.3 Validation

As discussed in Section 3.1, the PDV characteristics of networking equipment
vary depending on a number of factors. Therefore, validation of simulation mod-
els against a specific set of measurements would only show that the models are
capable of reproducing this exact set of data. On the other hand, validating the
models against the two patterns we identified in Section 3.1 will serve to show
that these models can be used to simulate the typical behaviour of networking
equipment, without being restricted to specific hardware.

The first step in the validation is thus to show that our models are capable
of reproducing the load-dependent shape of the PDV probability density func-
tion, which is a mixture of the point mass at zero and the background packet
transmission time distribution. We simulated one switch with increasing levels
of background load (packet size 64 bytes) and a 1GB connection and measured
the packet transfer delay of PTP packets. Figure 3 shows the resulting PTD den-
sities5 for this scenario. Observe that, as background load increases, the spread
of the distribution increases as well, thus closely mirroring the measurements
reported in [3,13]. Furthermore, note that the density for 50% background load
shows the same shape as those in Figure 5 of [5] and Figure 22 of [8].

The second characteristic we identified in Section 3.1 is the delay step occuring
in overload situations. In Figure 6 we show the 1% quantile of the PDV for
growing background load obtained with a standard model, as constructed from
the data sheet, and our detailed model. The standard model does not include the
transmit FIFO buffer. Note that the 1% quantile of the PDV stays close to zero
for all load levels, i.e. the standard model fails to reproduce the delay step at
100% observed in e.g. [8]. In contrast, our detailed model shows this behaviour
very clearly: As the load reaches 100%, the 1% quantile of the PDV increases by
about 10000μs.

5 Recall that the PDV distribution is defined as the shifted PTD distribution.

Model-Based Evaluation and Improvement of PTP Syntonisation Accuracy 227

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 5 10 15 20

tim
e

(n
an

o-
se

co
nd

s)

Number of network links

PDV using simulation
PDV using PH approximation

absolute PDV error
relative PDV error

 1

 10

 100

 1000

 10000

 100000

 0 5 10 15 20

tim
e

(s
ec

on
ds

)

Number of network links

runtime full simulation
simulation runtime with PH approximation

Fig. 5. Error in the 1% quantile of the PTD distribution using PH approximation
(left). Simulation times with detailed simulation and PH approximation (right).

We thus conclude that our detailed simulation models capture the behaviour
of typical networking hardware well. In order to illustrate the validity of the
PH approximations we simulated scenarios with 1 link and with 20 links, using
both the PH approximation and the detailed models. The Cumulative Density
Functions (CDFs) of the resulting PDV distributions are shown in Figures 4
and 4. Note that PDV CDFs from the simulations using the approximations fit
the lower quantiles of the PDV CDFs from the detailed simulations well, but tend
to diverge on the higher quantiles. This is due to the fact that PH distributions
have infinite support, in contrast to the limited support of the PDV distribution.
However, as PTP slave clocks only use data from the lower quantiles of the PDV
distribution, this inaccuracy is negligible in PTP simulations. We investigate the
error of the 1% quantile of the PDV in more detail in Figure 5. Note that both
the relative and the absolute error stay well below 1 μs, even for a large number
of links.

The advantage of using PH approximations is illustrated in Figure 5, where
we show the simulation times for increasing numbers of links. Observe that the
time required for the detailed simulation rises quickly, while the time for the
approximated simulations stays in the order of minutes.

3.4 Delay-Step Elimination

Our simulation model provides sufficient insight to allow us to propose a solution
to the problem of excessive PDV caused by the delay step in overload situations.
Recall that the delay step is caused by the transmit FIFO buffer throttling the
scheduler upon overload. By implementing a leaky-bucket egress shaper [21] be-
fore the transmit FIFO buffer, we can reduce the input data rate of the buffer
such that no overload occurs in the FIFO, and no throttling becomes necessary.
The third graph in Figure 6 confirms the effectiveness of this approach, as the
delay step vanishes when the egress shaper is active. Note that typical switches
already contain a leaky-bucket egress shaper, however, this function is usually
turned off, as the egress shaper reduces the available data rate. In backhaul net-
works, however, the resulting improvement in syntonisation accuracy outweighs
the small reduction in the data rate.

228 K. Wolter, P. Reinecke, and A. Mittermaier

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 80 85 90 95 100 105 110

tim
e

(m
ic

ro
-s

ec
on

ds
)

background load

Model without transmit FIFO buffer

Model with transmit FIFO buffer

Model with transmit FIFO buffer and
 leaky-bucket egress shaper

Fig. 6. PDV 1% over a GE-Link between two Single-stage CE Switches

4 Analytical Evaluation of PDV in Tree-Structured
Networks

In this section we propose a closed-form solution for the p2pPDV in a tree-
structured network where PTP packets have highest priority. Figure 7 shows the
packet flows in a tree-structured backhaul network (Figure 1): All downlink traf-
fic is generated at the PTP master and radio controller. The background traffic
may leave the route of the PTP packet at any one of the switches on the way to
the PTP slave, but no background traffic enters the network at an intermediate
switch. This implies that no new background packets will appear just in front of
an arbitrary PTP packet. While this scenario might seem limited, it corresponds
to the typical case of dedicated backhaul networks, which usually do not carry
traffic other than that between the radio controller and the base stations.

In this scenario, the PTP Sync messages and the background traffic flow are
aligned on the first link, and, consequently, the arrival times of background and
PTP Sync packets are no longer statistically independent on the following links,
where the packets arrive one after the other. If a PTP Sync message has to wait in
the first node until the background packet is completely transmitted over the first
link (remainder-of-packet delay), it will certainly have to wait in the second node
again unless the data rate of the second link is much higher than that of the first
link. The reason for this is that virtually all packet switching equipment operates
in the store-and-forward mode, i.e. a packet has to be completely received on the
ingress interface before its transmission on the egress interface may start. And
since the PTP Sync message is comparatively small with a correspondingly low
transmission delay, it typically catches up the larger background packet in the
next node. This effect has also been observed in [22].

The probability that an arbitrary PTP packet encounters remainder-of-packet
delay on the first link depends on the background traffic data rates Rbt

n , n =
0, . . . , N and is equal to the background traffic load on the first link:

Model-Based Evaluation and Improvement of PTP Syntonisation Accuracy 229

Pr =
∑N

n=1 Rbt
n

Rl1
,

where Rl1 is the data rate of the first link.

Flow N Flow 1 Flow 0

Background traffic flows

Foreground packet flow
(PTP Sync messages)

Fig. 7. Traffic flows in a tree-structured backhaul network

4.1 Closed-Form Expression for p2pPDV

We now derive a closed-form expression for the peak-to-peak PDV (p2pPDV)
in a tree-structured network. Recall that p2pPDV is defined as the difference
between the packet transmission delay of the slowest packet, PTDmax, and the
packet transmission delay of the fastest packet, PTDmin (Section 2). We thus
need to compute PTDmax and PTDmin. Since we are interested in worst-case
behaviour, we assume a background traffic stream where all packets have the
maximum packet size supported on the links.

If a PTP packet has to wait on the first link, the remainder-of-packet delay tr1

is uniformly distributed between zero and the transmission time of a complete
background packet with size Sbp,

0 ≤ tr1 ≤
Sbp

Rl1
,

where Rl1 is the data rate of the first link.
In case the PTP packet was delayed by a background packet on the first link,

it has to wait for the same packet to be transmitted on the second link. As
the PTP packet only enters the second switch after being processed in the first
switch, the second switch will already have started processing the background
packet. The remainder-of-packet delay tr2 on the second link is then:

tr2 = (
Sbp

Rl2
)− (

SPTP Sync

Rl1
) (1)

with SPTP Sync being the size of the PTP Sync message. This kind of remainder-
of-packet delay further accumulates over all links down to the PTP slave clock
in the BS.

If we assume that all links have equal data rate we can simplify the notation
In order to simplify the notation we now assume that all links have equal data
rate. Note that the derivation can be performed without this restriction, but

230 K. Wolter, P. Reinecke, and A. Mittermaier

requires heavier notation and is omitted here for brevity. Let u := Sbp/Rl denote
the transmission time of the background packet and p := SPTP Sync/Rl be the
transmission time of the PTP packet. In the worst case, the PTP Sync packet has
to wait for transmission of a full background packet at the first link, then adding
its own transmission time. At all subsequent links the PTP Sync message needs
to wait for the remaining transmission time of the (usually larger) background
packet. Finally, the transmission time of the PTP Sync message across all links
needs to be added. In the best case, the PTP Sync message never needs to
wait for remaining transmission delay of a background packet. Consequently,
the maximum packet transfer delay PTDmax and the minimum packet transfer
delay PTDmin of a PTP Sync message across N links are

PTDmax = u + p + (N − 1)max(0, (u− p)) +
(N − 1)p = p + Nu

PTDmin = Np (2)

We can distinguish two cases. Either the background packet is larger than or of
equal size as the PTP Sync message (case 1)) or vice versa (case 2)):

1) u >= p,

2) u < p.

Only the first case is of practical interest and therefore we can omit the max-
imum in the definition of PTDmax in what follows. Peak-to-peak packet delay
variation p2pPDV is defined as the difference between PTDmax and PTDmin.
For convenience and without limiting generality let us assume that the size of
the background packet is an integer multiple of the size of the PTP Sync message
u = ip, where i ≥ 1 in order to respect case 1) and i can be any real-valued
number. We thus obtain the following closed-form expression for the p2pPDV of
a PTP packet over N links:

p2pPDV = PTDmax − PTDmin = p(1 + (i− 1)N). (3)

4.2 Reducing PDV in Tree-Structured Networks

Packet delay variation is reduced if the PTP Sync messages can be prevented
from catching up the background packets, i.e. tr2 has to be zero. Using (1) for
the calculation of tr2 one obtains (for the case of two links):

tr2 =
Sbp

Rl2
− SPTP Sync

Rl1
= 0 (4)

SPTP Sync

Rl1
=

Sbp

Rl2
(5)

SPTP Sync = Sbp
Rl1

Rl2
. (6)

Model-Based Evaluation and Improvement of PTP Syntonisation Accuracy 231

Fig. 8. Impact of Timing Packet Size on the 1% quantile of the packet-delay distribu-
tion. The plots for larger packet sizes overlap close to zero.

This means that the optimal size of the PTP Sync messages depends on the size
of the background packets and the data rate of the ingoing and outgoing link to a
switch. In most cases, the PTP Sync messages have to be enlarged. The optimal
size depends on the PDV the ToP implementation can accept, the background
traffic load and packet size distribution, and the number of links and their data
rates.

Using Equation 3 we can generalise this result to N links when all links have
the same data rate: The value of i that minimises the delay variation and obeys
all restrictions is i = 1. For the optimal value of i the PTP Sync packet has the
same size as the (largest) background packet and then the peak-to-peak packet
delay variation reduces to

p2pPDVopt = p.

For the second case (u < p) the delay variation is always p. The reasoning for
links with different data rate is analogous.

4.3 Evaluation

We evaluate our approach using the simulation models proposed in Section 3
We simulate a chain of 5 links at different link speeds and observe PDV at
different background load levels and different PTP packet sizes. We use the
ITU-2 model [9], which describes a mix of packets of different sizes. This model
represents realistic traffic conditions in a network. We increase the traffic load
from 0% to 110%. Increasing the size of PTP packets from 94 bytes to 6088
bytes, we observe the 1% quantile of the PDV distribution for each combination
of the parameters.

The results are presented in Figure 8. It is immediately obvious that larger
PTP Sync messages reduce the 1% PDV quantile considerably. Using large PTP

232 K. Wolter, P. Reinecke, and A. Mittermaier

Sync packets, the packet delay variation across 5 links stays below 200μs and
hence the PDV requirements for ToP are fulfilled. The same cannot be said for
the default packet size of 94 bytes, where the 1% quantile of PDV is much larger.

5 Discussion

Several authors have recognised challenges with PTP syntonisation over packet-
switched networks and proposed solutions. [23,24] showed that IEEE 1588 can
be expected to work well in small networks under low load. These assumptions
are very restrictive and often unrealistic. The importance of queueing effects
has been recognised in several works, e.g. [25]. The authors of [25] propose to
predict the queueing delay by sending probe messages and evaluating their tim-
ing behaviour. The performance of this method significantly decreases with the
network load. Other authors suggest to block the background traffic regularly in
order to guarantee undelayed delivery of timing packets [22]. Both approaches
do not seem to be likely candidates for deployment. The authors in [14] state
that increasing the transmission rate of timing packets reduces the PDV. They
propose the doubtful management rule of increasing the transmission rate of tim-
ing packets under high background load, while reducing the number of timing
packets with low background traffic load.

In contrast, the methods we suggest are both simple and non-intrusive and
can work for large networks comprising paths of up to 20 links. In particular,
increasing PTP packets by padding performs especially well as the load increases,
which is the interesting and critical case.

6 Conclusion

In this paper we proposed two approaches to evaluating the suitability of
backhaul networks for precise syntonisation of base-station clocks using IEEE
1588 PTP. We showed that it is possible to capture PDV characteristics of
networking equipment in simulation models. This enables the efficient evalua-
tion of the suitability of arbitrary backhaul networks with respect to PTP using
state-of-the-art discrete-event simulation, thus alleviating the need for expensive
measurement studies. On the other hand, we also found that highly-detailed sim-
ulation models are required in order to correctly reflect the behaviour of common
hardware. The level of detail required is typically beyond that provided in man-
ufacturers’ data sheets. We addressed the problem of excessive simulation times
by a hybrid approach employing phase-type distributions for approximating
packet-delay distributions, and demonstrated that the hybrid models achieved
tremendous efficiency improvements, while still providing sufficient accuracy.
Our second approach provides a closed-form expression for the peak-to-peak
PDV in tree-structured networks, where PTP packets may be subjected to suc-
cessive remainder-of-packet delays.

Employing the simulation and analytical approaches we derived and evaluated
two solutions for reducing PDV in backhaul networks. While the leaky-bucket

Model-Based Evaluation and Improvement of PTP Syntonisation Accuracy 233

egress shaper can be applied in networks of any topology, increasing the size of
PTP packets is only suitable in tree-structured networks. On the other hand,
implementation of the egress shaper requires changes to the switches themselves
and reduces available data rate, while increasing the size of PTP packets implies
only minimal changes to the master and slave clocks.

In future work we will address simulation of network technologies like packet
over TDM and technologies like DSL. Furthermore, we are studying the effec-
tiveness of enlarging PTP packets when the backhaul network carries a limited
amount of partial cross traffic.

References

1. 3GPP, TS 25.104, V9.5.0 (2010-09) Base station (BS) radio transmission and re-
ception (FDD), http://www.3gpp.org/ftp/specs/html-info/25104.htm

2. IEEE, Std 1588-2008, IEEE Standard for a Precision Clock Synchronization Pro-
tocol for Networked Measurement and Control Systems,
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4579760

3. Cosart, L.: Studying network timing with precision packet delay measurements.
In: Proc. 40th Annual Precise and Time Interval (PTTI) Meeting (2008)

4. Cosart, L.: Packet network timing measurement and analysis using an ieee 1588
probe and new metrics. In: International Symposium on Precision Clock Synchro-
nization for Measurement, Control and Communication, ISPCS 2009, pp. 1–6 (Oc-
tober 2009)

5. Holmeide, O., Skeie, T.: Time Synchronization in Switched Ethernet. OnTime
Networks, Tech. Rep., Unknown publication date,
http://www.westermo.com/dman/Document.phx/Manuals/Manuals+for+UK+only/

Ontime/Articles/Time Sync.pdf?folderId=%2FManuals%2FManuals+for+UK+only

%2FOntime%2FArticles&cmd=download (last seen February 14, 2011)
6. Jacobs, A., Wernicke, J., Gordon, B., George, A.: Characterization of quality of

service in commercial ethernet switches for statistically bounded latency in aircraft
networks. High Performance Computing and Simulation (HCS) Research Lab, De-
partment of Electrical and Computer Engineering, University of Florida, Tech. Rep.
(2004), http://www.hcs.ufl.edu/~jacobs/rockwell_qos.doc (last seen February
14, 2011)

7. Zarick, R., Hagen, M., Bartos, R.: The impact of network latency on the synchro-
nization of real-world ieee 1588-2008 devices. In: 2010 International IEEE Sympo-
sium on Precision Clock Synchronization for Measurement Control and Commu-
nication, ISPCS 2010, pp. 135–140 (October 2010)

8. Jobert, S.: About the control of pdv using qos mechanisms and the applicability
of proposed pdv metrics (mafe and mintdev), France Telecom, Tech. Rep. (2009)

9. ITU, G.8261/Y.1361 (04/2008) Timing and synchronization aspects in packet net-
works (April 2008), http://www.itu.int/rec/T-REC-G.8261-200804-I

10. ITU, Recommendation Y.1540 – IP packet transfer and availability performance
parameters (November 2002),
http://www.itu.int/itudoc/itu-t/aap/sg13aap/history/y1540/y1540.html

11. Demichelis, C., Chimento, P.: IP Packet Delay Variation Metric for IP Performance
Metrics (IPPM). RFC 3393 (Proposed Standard), Internet Engineering Task Force
(November 2002), http://www.ietf.org/rfc/rfc3393.txt

http://www.3gpp.org/ftp/specs/html-info/25104.htm
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4579760
http://www.westermo.com/dman/Document.phx/Manuals/Manuals+for+UK+only/Ontime/Articles/Time_Sync.pdf?folderId=%2FManuals%2FManuals+for+UK+only%2FOntime%2FArticles&cmd=download
http://www.westermo.com/dman/Document.phx/Manuals/Manuals+for+UK+only/Ontime/Articles/Time_Sync.pdf?folderId=%2FManuals%2FManuals+for+UK+only%2FOntime%2FArticles&cmd=download
http://www.westermo.com/dman/Document.phx/Manuals/Manuals+for+UK+only/Ontime/Articles/Time_Sync.pdf?folderId=%2FManuals%2FManuals+for+UK+only%2FOntime%2FArticles&cmd=download
http://www.hcs.ufl.edu/~jacobs/rockwell_qos.doc
http://www.itu.int/rec/T-REC-G.8261-200804-I
http://www.itu.int/itudoc/itu-t/aap/sg13aap/history/y1540/y1540.html
http://www.ietf.org/rfc/rfc3393.txt

234 K. Wolter, P. Reinecke, and A. Mittermaier

12. Dobinson, R.W., Haas, S., Korcyl, K., Levine, M.J., Lokier, J., Martin, B., Meirosu,
C., Saka, F., Vella, K.: Testing and modeling ethernet switches and networks for
use in atlas high-level triggers. IEEE Trans. Nucl. Sci. 48, 607–612 (2001)

13. Burch, J., Green, K., Nakulski, J., Vook, D.: Verifying the performance of trans-
parent clocks in ptp systems. In: International Symposium on Precision Clock
Synchronization for Measurement, Control and Communication, ISPCS 2009, pp.
1–6 (October 2009)

14. Bui, D.T., Dupas, A., Le Pallec, M.: Packet delay variation management for a
better ieee1588v2 performance. In: International IEEE Symposium on Precision
Clock Synchronization for Measurement, Control and Communication, Brescia,
pp. 1–6 (October 2009)

15. IEEE, IEEE 802.3: LAN/MAN CSMA/CDE (Ethernet) Access Method,
http://standards.ieee.org/getieee802/802.3.html

16. Various authors, The Network Simulator ns-2, http://www.isi.edu/nsnam/ns/

(last seen May 11, 2010)
17. Neuts, M.F.: Matrix-Geometric Solutions in Stochastic Models. An Algorithmic

Approach. Dover Publications, Inc., New York (1981)
18. Horváth, A., Telek, M.: PhFit: A General Phase-Type Fitting Tool. In: Field, T.,

Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002. LNCS, vol. 2324, pp.
82–91. Springer, Heidelberg (2002)

19. Reinecke, P., Wolter, K., Bodrog, L., Telek, M.: On the Cost of Generating
PH-distributed Random Numbers. In: Horváth, G., Joshi, K., Heindl, A. (eds.)
Proceedings of the Ninth International Workshop on Performability Modeling of
Computer and Communication Systems (PMCCS 2009), Eger, Hungary, Septem-
ber 17–18, pp. 16–20 (2009)

20. Reinecke, P., Telek, M., Wolter, K.: Reducing the cost of generating APH-
distributed random numbers. In: Müller-Clostermann, B., Echtle, K., Rathgeb,
E.P. (eds.) MMB&DFT 2010. LNCS, vol. 5987, pp. 274–286. Springer, Heidelberg
(2010)

21. Tanenbaum, A.S.: Computer Networks, 3rd edn. Prentice Hall, Englewood Cliffs
(1996)

22. Mochizuki, B., Hadžić, I.: Improving ieee 1588v2 clock performance through con-
trolled packet departures. Comm. Letters 14(5), 459–461 (2010)

23. Vallat, A., Schneuwly, D.: Clock synchronization in telecommunications via ptp
(ieee 1588). In: IEEE International Frequency Control Symposium, 2007 Joint
with the 21st European Frequency and Time, Forum, pp. 334–341 (June 2007)

24. Tu, K.-Y., Liao, C.-S., Lin, S.-Y.: Remote frequency control via ieee 1588. IEEE
Transactions on Instrumentation and Measurement 58(4), 1263–1267 (2009)

25. Murakami, T., Horiuchi, Y.: Improvement of synchronization accuracy in ieee
1588 using a queuing estimation method. In: International Symposium on Preci-
sion Clock Synchronization for Measurement, Control and Communication, ISPCS
2009, pp. 1–5 (October 2009)

http://standards.ieee.org/getieee802/802.3.html
http://www.isi.edu/nsnam/ns/

Light-Weight Parallel I/O Analysis at Scale

Steven A. Wright, Simon D. Hammond,
Simon J. Pennycook, and Stephen A. Jarvis

Performance Computing and Visualisation
Department of Computer Science

University of Warwick, UK
{saw,sdh,sjp,saj}@dcs.warwick.ac.uk

Abstract. Input/output (I/O) operations can represent a significant pro-
portion of the run-time when large scientific applications are run in paral-
lel. Although there have been advances in the form of file-format libraries,
file system design and I/O hardware, a growing divergence exists between
the performance of parallel file systems and compute processing rates.

In this paper we utilise RIOT, an input/output tracing toolkit be-
ing developed at the University of Warwick, to assess the performance
of three standard industry I/O benchmarks and mini-applications. We
present a case study demonstrating the tracing and analysis capabilities
of RIOT at scale, using MPI-IO, Parallel HDF-5 and MPI-IO augmented
with the Parallel Log-structured File System (PLFS) middle-ware being
developed by the Los Alamos National Laboratory.

Keywords: Input/Output, Message Passing Interface, Parallel I/O,
Parallel Log-structured File System, Profiling.

1 Introduction

The substantial growth in supercomputer machine size – over two orders of mag-
nitude in terms of processing element count since 1993 – has created machines
of extreme computational power and scale. As a result, users of these machines
have been able to create increasingly sophisticated and complex computational
simulations, advancing scientific understanding across multiple domains. Histori-
cally, industry and academia have focused on the development of scalable parallel
algorithms – the cornerstone of large parallel applications. ‘Performance’ has be-
come a measure of the number of calculation operations that can be performed
each second.

One of the consequences of this focus has been that some of the vital contrib-
utors to application run-time have been developed at a much slower rate. One
such area has been that of input/output (I/O) – typically seen as somewhat of
a black-box which creates a need to read data at the start of a run and write
state information on completion.

As well as reading and writing state information at the beginning and end of
computation, the use of checkpointing is becoming common-place – where the
system state is periodically written to persistent storage so that, in the case of

N. Thomas (Ed.): EPEW 2011, LNCS 6977, pp. 235–249, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

236 S.A. Wright et al.

an application fault, the computation can be reloaded and resumed. The cost
of checkpointing is therefore a slowdown at specific points in the application
in order to achieve some level of resilience. As we look to the future, the size
of multi-petaflop clusters looks set to bring reliability challenges from just the
sheer number of components – checkpointing will become a vital initial tool in
addressing these problems. Understanding the cost of checkpointing and what
opportunities might exist for optimising this behaviour presents a genuine op-
portunity to improve the performance of parallel applications at significant scale.

The Message Passing Interface (MPI) has become the de facto standard for
managing the distribution of data and process synchronisation in parallel ap-
plications. The MPI-2 [13] standard introduced MPI-IO, a library of functions
designed to standardise the output of data to the file system in parallel. The
most widely adopted MPI-IO implementation is ROMIO [21] which is used by
both OpenMPI [9] and MPICH2 [10], as well as a number of vendor-based MPI
solutions [1,5].

In addition to the standardisation of parallel I/O through MPI, many file
format libraries exist to further abstract low-level I/O operations such as data
formatting from the application. Through the use of libraries such as HDF-5 [11],
NetCDF [17] and Parallel NetCDF [12], information can be shared between mul-
tiple applications using the standardised formatting they create. Optimisations
can also be made to a single library, creating improvements in the data through-
put of many dependant applications. Unfortunately this has, in part at least,
created a lack of responsibility on the part of the code designers to investigate
the data storage operations used in their applications. The result has been poor
I/O performance that does not utilise the full potential of expensive parallel disk
systems.

In this paper we utilise the RIOT input/output toolkit (referred to through-
out the remainder of this paper by the recursive acronym RIOT) introduced
in [26] to demonstrate the I/O behaviours of three standard benchmarks at
scale. RIOT is a collection of tools specifically designed to enable the tracing
and subsequent analysis of application input/output activity. This tool is able
to trace parallel file operations performed by the ROMIO layer and relate these
to their underlying POSIX file operations. We note that this style of low-level
parameter recording permits analysis of I/O middleware, file format libraries
and application behaviour, all of which are assessed in a case study in Section 4.

The specific contributions of this work are the following:

– We extend previous work in [26] to demonstrate RIOT working at scale
on a 261.3 TFLOP/s Intel Westmere-based machine located at the Open
Computing Facility (OCF) at the Lawrence Livermore National Laboratory
(LLNL);

– We apply our tracing tool to assessing the I/O behaviour’s of three stan-
dard industry benchmarks – the block-tridiagonal (BT) solver application
from NASA’s Parallel Benchmark Suite, the FLASH-IO benchmark from
the University of Chicago and the Argonne National Laboratory and IOR,
a high-performance computing (HPC) file system benchmark which is used

Light-Weight Parallel I/O Analysis at Scale 237

during procurement and file system assessment [19,20]. The variety of con-
figurations (including the use of MPI-IO, parallel HDF-5 [11] and MPI-IO
utilising collective buffering hints) available makes the results obtained from
our analysis of interest to a wider audience;

– We utilise RIOT to produce a detailed analysis of HDF-5 write behaviour for
the FLASH-IO benchmark, demonstrating the significant overhead incurred
by data read-back during parallel writes;

– Finally, through I/O trace analysis, we provide insight into the performance
gains reported by the Parallel Log-structured File System (PLFS) [4,16] –
a novel I/O middleware being developed by the Los Alamos National Lab-
oratory (LANL) to improve file write times. This paper builds upon [26] to
show how file partitioning reduces the time POSIX write calls spend waiting
for access to the file system.

The remainder of this paper is structured as follows: Section 2 outlines previ-
ous work in the fields of I/O profiling and parallel I/O optimisation; Section 3
describes how parallel I/O is performed with MPI and HDF-5, and how RIOT
captures the low-level POSIX operations; Section 4 contains a case study de-
scribing the use of RIOT in assessing the parallel input/output behaviours of
three industry I/O benchmarking codes; finally, Section 5 concludes the paper
and outlines opportunities for future work.

2 Related Work

The assessment of file system performance, either at procurement or during
installation and upgrade, has seen the creation of a number of benchmarking
utilities which attempt to characterise common read/write behaviour. Notable
tools in this area include the BONNIE++ benchmark, developed for bench-
marking Linux file systems, as well as the IOBench [25] and IOR [19] parallel
benchmarking applications. Whilst these tools provide a good indication of po-
tential maximum performance, they are rarely indicative of the true behaviour
of production codes due to the subtle nuances that production grade software
contains. For this reason, a number of mini-application benchmarks have been
created which extract file read/write behaviour from larger codes to ensure a
more accurate representation of performance. Examples include the Block Tridi-
agonal solver application from NASA’s Parallel Benchmark Suite [2] and the
FLASH-IO [18] benchmark from the University of Chicago – both of which are
used in this paper.

Whilst benchmarks may provide a measure of file system performance, their
use in diagnosing problem areas or identifying optimisation opportunities within
large codes is limited. For this activity profiling tools are often required which
can record read/write behaviour in parallel. One approach, which aims to ascer-
tain the performance characteristics of production-grade scientific codes, is to
intercept communications between the application and the underlying file sys-
tem. This is the approach taken by RIOT, Darshan [6], developed at the Argonne

238 S.A. Wright et al.

National Laboratory, and the Integrated Performance Monitoring (IPM) suite
of tools [8], from the Lawrence Berkeley National Laboratory (LBNL).

Darshan has been designed to record file accesses over a prolonged period of
time, ensuring each interaction with the file system is captured during the course
of a mixed workload. [6] culminates in the intention to monitor I/O activity for
a substantial amount of time on a production BlueGene/P machine in order to
generate analysis which may help guide developers and administrators in tuning
the I/O back-planes used by large machines.

Similarly, IPM [22] uses an interposition layer to catch all calls between the
application and the file system. This trace data is then analysed in order to
highlight any performance deficiencies that exist in the application or middle-
ware. Based on this analysis, the authors were able to optimise two I/O intensive
applications, achieving a four-fold improvement in run-time. In contrast to both
Darshan and IPM, RIOT focuses only on the POSIX function calls that are a
direct result of using MPI-IO functions. As a result of this restriction, the per-
formance data generated relates only to the parallel I/O operations performed,
allowing users to obtain a greater understanding of the behaviour of various I/O
intensive codes, as well as assessing the inefficiencies that may exist in any given
middleware or MPI implementation.

As a result of previous investigations, a variety of methods have been intro-
duced to improve the performance of existing codes or file systems. The devel-
opment of middleware layers such as the Parallel Log-structured File System
(PLFS) [4] and Zest [14] has, to an extent, bridged the gap between proces-
sor and I/O performance. In these systems multiple parallel writes are written
sequentially to the file system with a log tracking the current data. Writing se-
quentially to the file system in this manner offers potentially large gains in write
performance, at the possible expense of later read performance [15].

In the case of Zest, data is written sequentially using the fastest path to the
file system available. There is, however, no read support in Zest; instead, it serves
to be a transition layer caching data that is later copied to a fully featured file
system at a later non-critical time. The result of this is high write throughput
but no ability to restart the application until the data has been transferred and
rebuilt on a read capable system.

In a similar vein to [23] and [24], in which I/O throughput is vastly improved
by transparently partitioning a data file (creating multiple, independent, I/O
streams), PLFS uses file partitioning as well as a log-structured file system to
further improve the potential I/O bandwidth. An in-depth analysis of PLFS is
presented in Section 4.5.

3 Warwick RIOT

The enclosed area in Figure 1 represents the standard flow of parallel appli-
cations. When conducting a parallel I/O operation using MPI, the application
will make a call to the MPI-IO library, which will then provide inter-process
communication and issue POSIX file operations as needed. When using an I/O

Light-Weight Parallel I/O Analysis at Scale 239

Storage /
File System

Application

libriot

MPI

libc / POSIX Layer

Operating System

MPI-IO POSIX

I/O Event
Trace

P
os

t-
P

ro
ce

ss
or I/O

Timing

Stage 1 - I/O Tracing Stage 2 - Post-Processing

Locking/
POSIX

Operation
Timing

POSIX
Calls

HDF-5

PLFS

HDF-5

gnuplot

Graphical
Representation

Fig. 1. RIOT tracing and analysis workflow

middleware such as HDF-5, the application first calls the HDF-5 library func-
tions, which will in turn call a collection of MPI functions. PLFS can be config-
ured to be used as a ROMIO file system driver, which will sit between the MPI
library and the POSIX library in the application stack.

Tracing of I/O behaviour in RIOT is conducted using a two stage process. In
the first stage (shown on the left in Figure 1), the tracing library is dynamically
loaded and linked immediately prior to execution by the operating systems linker.
libriot then overloads and intercepts calls to MPI-IO and POSIX file functions.
The captured events are then performed by the library, where each function is
timed and logged for later processing. The library makes use of function inter-
position to trace activity instead of requiring code modification or application
recompilation. RIOT is therefore able to operate on existing application binaries
and remain compiler or implementation language agnostic.

When the application being traced has completed, RIOT uses an operating
system-level termination hook to write traced I/O information to disk – the
delay of logging (by storing events in memory as opposed to flushing to disk)
helps to prevent any distortion of application I/O behaviour which may result
through the output of information whilst the application is being observed.

In the second stage, a post-execution analysis of the I/O trace is conducted
(shown on the right in Figure 1). At this point I/O events are processed with ag-
gregated statistics such as file operation count, total bytes written/read, number
of locks etc. being generated.

240 S.A. Wright et al.

Throughout this paper we make a distinction between effective MPI-IO and
POSIX bandwidths – in these studies, “MPI-IO bandwidths” refer to the data
throughput of the MPI functions on a per MPI-rank basis, “POSIX bandwidths”
relate to the data throughput of the POSIX read/write operations as if performed
serially, called directly by the MPI middleware.

4 Case Study

We previously reported on the use of RIOT using a maximum of 256 processing
elements on the Minerva cluster located at the Centre for Scientific Computing at
the University of Warwick [26]. In this paper we utilise the Sierra supercomputer
located at LLNL. Sierra is a 261.3 TFLOP/sec machine consisting of 1,849 nodes
each comprising of dual hex-core Intel X5660 “Westmere-EP” processors running
at 2.8 GHz. The machine offers 22,188 processor-cores each with a minimum
of 2 GB of system memory per-core. Three storage paths are provided, each
utilising the Lustre parallel file system with between 755 TB and 1.3 PB of
storage available. Bandwidth to each of the file systems ranges from 10 GB/sec
up to a maximum of 30 GB/sec. All applications and code compiled for this case
study were built using the GNU 4.3.4 compiler and OpenMPI 1.4.3. Both IOR
and FLASH-IO utilise the parallel HDF-5 version 1.6.9 library.

4.1 Input/Output Benchmarks

We provide analysis for three I/O benchmarks utilising a range of configurations
using the Sierra supercomputer. First we demonstrate the bandwidth tracing
ability of RIOT, providing commentary on the divergence between MPI-IO and
POSIX effective bandwidths. This difference in bandwidth represents the signifi-
cant overhead incurred when using blocking collective write operations from the
MPI library. We then analyse one simple solution to poor write performance pro-
vided by the ROMIO file system layer. Collective buffering creates an aggregator
on each node, reducing on-node contention for the file system by sending all data
through one process. We then monitor two middleware layers to show how they
affect the write bandwidth available to the application. The benchmarks used in
this study (described below) have been selected since they all have input/output
behaviour which is either extracted directly from a larger parallel application (as
is the case with FLASH-IO and BT) or have been configured to be representative
of the read/write behaviour used by several scientific applications.
The applications used in this study are:

– IOR [19,20]: A parameterised benchmark that performs I/O operations
through both the HDF-5 and MPI-IO interfaces. In this study it has been
configured to write 256 MB per process to a single file in 8 MB blocks. Runs
have been performed on a range of configurations, utilising between 1 and
128 compute nodes. Its write performance through both MPI-IO and HDF-5
are assessed.

Light-Weight Parallel I/O Analysis at Scale 241

– FLASH-IO: This benchmark replicates the checkpointing routines found
in FLASH [7,18], a thermonuclear star modelling code. In this study we
use a 24 × 24 × 24 block size per process, causing each process to write
approximately 205 MB to disk through the HDF-5 library.

– BT [2,3]: An application from the NAS Parallel Benchmark (NPB) suite
has also been used in this study, namely the Block-Tridiagonal (BT) solver
application. There are a variety of possible problem sizes but for this study
we have used the C and D problem classes, writing a data-set of 6 GB and
143 GB respectively. This application requires the use of a square number of
processes (i.e., 4, 9, 16), therefore we have executed this benchmark on 1, 4,
16, 64, 256, 1,024 and 4,096 processors. Performance statistics were collected
for BT using MPI-IO with and without collective buffering enabled, and also
using the PLFS ROMIO layer.

Five runs of each configuration were performed, and the data contained through-
out this paper is the mean from each of these runs, in an effort to reduce the
influence of other users jobs.

4.2 MPI-IO and POSIX Bandwidth Tracing

First we demonstrate the MPI-IO and POSIX bandwidth traces for the three
selected benchmarks. Figure 2 shows the significant gap between MPI bandwidth
and POSIX bandwidth for each of the three benchmarks when using MPI-IO
and parallel HDF-5. It is important to note that effective bandwidth refers to the
total amount of data written divided by the total time spent writing as if done
serially. Since the MPI-IO functions used are collective blocking operations, we
can assume they are executed in parallel, therefore the perceived bandwidth is the
effective bandwidth multiplied by the number of processor cores. As the POSIX
write operations are performed in a non-deterministic manner, we cannot make
any assumption about the perceived bandwidth; it suffices to say it is bounded
by effective bandwidth multiplied by the processor count and the MPI perceived
bandwidth.

Figure 2 also demonstrates a large performance gap between the BT mini-
application and the other two benchmarks. This is largely due to the use of
collective buffering ROMIO hints utilised by BT. The performance of HDF-5 in
both IOR and FLASH-IO is also of interest. The POSIX write performance is
much close to the MPI-IO performance in both IOR with HDF-5 and FLASH-
IO. Despite this, the overall MPI-IO performance is lower when using HDF-5.
The performance gap between HDF-5 and MPI-IO is analysed in Section 4.4.
For the remainder of this study we concentrate on both BT and FLASH-IO as
these better emulate the write behaviour found in other scientific applications.

4.3 Collective Buffering in ROMIO

As stated previously, BT makes use of the collective buffering ROMIO hint.
This causes MPI to assign a set of “aggregator” processes that perform the I/O
required. This is shown in Figure 3, where each process writes to the file system

242 S.A. Wright et al.

0.01

0.1

1

10

100

12 24 48 96 192 384 768 1536

E
ffe

ct
iv

e
B

an
dw

id
th

(M
B

/s
ec

)

Processors

MPI-IO – POSIX
MPI-IO – MPI

HDF-5 – POSIX
HDF-5 – MPI

(a)

0.01

0.1

1

10

100

12 24 48 96 192 384 768 1536

E
ffe

ct
iv

e
B

an
dw

id
th

(M
B

/s
ec

)

Processors

POSIX
MPI-IO

(b)

0.01

0.1

1

10

100

1000

1 4 16 64 256 1024

E
ffe

ct
iv

e
B

an
dw

id
th

(M
B

/s
ec

)

Processors

POSIX
MPI-IO

(c)

0.01

0.1

1

10

100

1000

16 64 256 1024 4096

E
ffe

ct
iv

e
B

an
dw

id
th

(M
B

/s
ec

)

Processors

POSIX
MPI-IO

(d)

Fig. 2. Effective MPI and POSIX Bandwidths for (a) IOR (with both MPI-IO and
HDF5), (b) FLASH-IO, (c) BT class C, and (d) BT class D

in (a) and each process communicates the data to an aggregator in (b). Using
an aggregator on each node reduces the on-node contention for the file system
and allows the file server to perform node-level file locking, instead of requiring
on-node POSIX file locking, as is the case without collective buffering.

Table 1 demonstrates the bandwidth achieved by BT with and without col-
lective buffering enabled. It is interesting to note the POSIX performance on
4 processor cores with and without collective buffering is very similar. As soon
as the run is increased to 16 processes, the POSIX bandwidth is significantly
reduced as there is now more on-node competition for the file system. Further-
more, the operating system cannot buffer the writes effectively as the behaviour
of the second compute node is unknown.

4.4 Analysis of HDF-5

In [26] we demonstrated the performance of FLASH-IO on the Minerva cluster
located at the Centre for Scientific Computing at the University of Warwick.
Minerva utilises two GPFS servers, backed by an array of 2 TB hard drives,
connected through QLogic 4X QDR Infiniband. Table 2 demonstrates a similar

Light-Weight Parallel I/O Analysis at Scale 243

Table 1. MPI-IO and POSIX write performance (MB/sec) for BT on class C, with
and without collective buffering

Processor Cores
4 16 64 256

MPI-IO

With collective buffering 70.86 23.63 4.45 1.24
Without collective buffering 9.90 3.46 1.34 0.54

POSIX

With collective buffering 490.08 293.30 109.71 21.94
Without collective buffering 329.69 6.63 4.85 3.49

Node

Node

File System

(a)

Node

Node

File System

(b)

Fig. 3. (a) Each process writes to the file system and (b) each process communicates
with a single aggregator process on each node

analysis for FLASH-IO at increased scale on the Sierra supercomputer. Whilst we
previously reported a significant locking overhead, this becomes negligible when
using the Lustre file system. However, there remains a large read-back overhead
when using HDF-5 through MPI-IO. In the worst case, POSIX reads account
for nearly half the total MPI write time. As the problem is scaled, POSIX reads
still make up 20% of the overall MPI write time.

Whilst HDF-5 allows easy application integration, due to the standardised for-
matting, it creates a significant overhead for parallel writes. When data is being
written periodically for checkpointing or visualisation purposes, this overhead
creates a significant slow-down in application performance. This analysis moti-
vates opportunities for HDF-5 optimisations, including reducing or eliminating
the read-back behaviour and enabling some form of node-level write aggregation
to reduce locking overheads.

4.5 Analysis of PLFS Middleware

Whilst HDF-5 has been shown to decrease parallel write performance, the Par-
allel Log-structured File System from LANL has been demonstrated to improve
performance in a wide variety of circumstances, including for production appli-
cations from LANL and the United Kingdom’s Atomic Weapons Establishment
(AWE) [4]. PLFS is an I/O interposition layer designed primarily for checkpoint-
ing and logging operations.

244 S.A. Wright et al.

Table 2. Detailed breakdown of MPI-IO and POSIX timings for FLASH-IO writes

Processor Cores
12 24 48 96 192 384 768 1536

MB written 2812.48 5485.68 11037.27 23180.15 43191.78 86729.59 179202.26 365608.30
MPI write calls 636 1235 2436 4836 9634 19233 38432 76832
POSIX write calls 6050 11731 23584 49764 91707 184342 382608 783068
POSIX read calls 5824 11360 22856 48000 89328 179437 370904 757060
Locks requested 12000 24000 48000 96000 192000 384000 768000 1536000

MPI write time (sec) 331.14 1471.30 4832.43 20215.00 70232.87 288633.74 1145889.19 4942746.26
POSIX write time (sec) 166.54 696.58 2737.14 14298.17 44869.00 190337.91 845969.92 3909161.40
POSIX read time (sec) 139.40 503.34 1462.00 5850.12 16782.82 66895.21 235866.21 908076.69
Lock time (sec) 5.95 14.02 28.80 57.80 172.80 385.65 1176.30 4328.96

PLFS works by intercepting MPI-IO calls through a ROMIO file system
driver, and translates the operations from n-processes writing to 1 file, to n-
processes writing to n-files. The middleware creates a view over the n-files, so
that the calling application can view and operate on these files as if they were all
concatenated into a single file. The use of multiple files by the PLFS layer helps
to significantly improve file write times as multiple, smaller files can be written
simultaneously. Furthermore, improved read times have also been demonstrated
when using the same number of processes to read back the file as were used in
its creation [16].

Figures 4(a) and 4(b) present the average total MPI-IO and POSIX write time
per process for the BT benchmark when running with and without the PLFS
ROMIO file system driver. Note that as previously, POSIX bandwidth in this ta-
ble refers to the bandwidth of POSIX operations called from MPI-IO and hence
are higher due to the additional processing required by MPI. It is interesting to
note that the write time when using PLFS is generally larger or comparable with
the same run not utilising PLFS when using a single node (as is the case with 1
and 4 processes) due to the on-node contention for multiple files.

The effective MPI-IO and POSIX bandwidths are shown in Table 3. Whilst pre-
viously we have seen POSIX write bandwidth decrease at scale, PLFS partially
reverses this trend as writes can be flushed to the cache as they are not waiting on
surrounding writes. The log structured nature of PLFS also increases the band-
width as data can be written in a non-deterministic sequential manner, with a log
file keeping track of the data ordering. For a BT class C execution on 256 proces-
sors, PLFS increases the bandwidth from 115.2 MB/sec perceived bandwidth up
to 3,118.08 MB/sec, representing a 27-fold increase in write performance.

Figure 5 demonstrates that during the execution of BT on 256 processors,
concurrent POSIX write calls wait much less time for access to the file system.
As each process is writing to its own unique file, each process has access to
its own unique file stream, reducing file system contention. This results in each
POSIX write call completing much more quickly as the data can be flushed to
the cache. For non-PLFS writes we see a stepping effect where all POSIX writes
are queued and complete in a non-deterministic order. Conversely, PLFS writes
do not exhibit this stepping behaviour as the writes are not waiting on other
processes to complete.

Light-Weight Parallel I/O Analysis at Scale 245

Table 3. Effective MPI-IO and POSIX bandwidth (MB/sec) for BT class C using
MPI-IO and PLFS

Processor Cores
1 4 16 64 256

MPI-IO

Standard 220.64 52.58 13.89 1.97 0.45
PLFS 164.21 29.81 21.07 23.72 12.18

POSIX

Standard 235.51 294.80 169.56 40.78 7.98
PLFS 177.34 142.51 235.44 538.13 437.88

0

10

20

30

40

50

60

1 4 16 64 256

A
ve

ra
ge

w
rit

e
tim

e
pe

rp
ro

ce
ss

or

Processors

Without PLFS
With PLFS

(a)

0

10

20

30

40

50

60

1 4 16 64 256

A
ve

ra
ge

w
rit

e
tim

e
pe

rp
ro

ce
ss

or

Processors

Without PLFS
With PLFS

(b)

Fig. 4. (a) MPI-IO write time per processor and (b) POSIX write time per processor

The average time per POSIX write call is shown in Table 4. As the number of
processes writing increases, data written in each write decreases. However when
using standard MPI-IO, the time to write the data increases due to contention.
When using the PLFS ROMIO file system driver, the write time decreases due
to the transparent partitioning of the data files.

5 Conclusions

Parallel I/O operations continue to represent a significant bottleneck in large-
scale parallel scientific applications. This is, in part, because of the slower rate
of development that parallel storage has witnessed when compared to that of
micro-processors. However, other causes relate to limited optimisation at code
level as well as the use of complex file formatting libraries. The situation is that
contemporary applications can often exhibit poor I/O performance because code
developers lack an understanding of how their code utilises I/O resources and
how best to optimise for this.

In this paper we utilise the RIOT toolkit to intercept, record and analyse
information relating to file reads, writes and locking operations within three
standard industry I/O benchmarks and mini-applications. We presented a case
study demonstrating RIOT’s ability to:

246 S.A. Wright et al.

Table 4. Total time in POSIX writes and average time per POSIX write for BT
class C

Processor Cores
1 4 16 64 256

Number of POSIX writes 13040 440 480 480 880

Standard MPI-IO

Total time in POSIX write (s) 27.617 22.264 38.459 159.348 816.373
Time per write (s) 0.002 0.051 0.080 0.332 0.928

MPI-IO with PLFS

Total time in POSIX write (s) 35.669 44.383 27.554 12.055 14.815
Time per write (s) 0.003 0.101 0.057 0.025 0.017

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14 16 18 20

C
on

cu
rr

en
tP

O
S

IX
W

rit
es

Execution Time (Seconds)

MPI I/O
PLFS

Fig. 5. Concurrent POSIX write calls for BT through MPI-IO and PLFS

– Calculate effective MPI-IO write bandwidths as well as produce bandwidths
for POSIX file system calls originating from MPI-IO at increased scale. The
comparison of these two figures demonstrates the slow-down in per-process
write speed which results from the use of MPI. Typically these overheads
arise because of file system contention, collective negotiation between MPI
ranks for lock ownership and the calculation of offsets at which reads or
writes take place;

– Provide detailed write behaviour analysis through the interception of read,
write and locking operations included aggregated read/write time
and the time spent obtaining or releasing per-file locks. Our results demon-
strate the significant overhead incurred when performing HDF-5-based writes
in the FLASH-IO benchmark. The nature of this analysis allows light-weight,
non-intrusive detection of potential bottlenecks in I/O activity providing a
first point at which application designers can begin optimisation;

– Compare low-level file system behaviour. In the last section of our case study
we were able to investigate the low-level improvement which results in the
use of PLFS middleware when executing the BT benchmark. PLFS is de-

Light-Weight Parallel I/O Analysis at Scale 247

signed specifically to reduce file system and parallel overheads through the
interposition of MPI file operations to re-target n-to-1 operations to n-to-n
operations. Through the tracing of these runs, RIOT was able to demon-
strate an improvement in MPI-IO bandwidth due to the improvement in
parallel POSIX bandwidth.

5.1 Future Work

This work builds upon preliminary work in [26] to show RIOT operating at scale
on the 261.3 TFLOP/s Sierra supercomputer. Future studies are planned, ap-
plying this method of I/O tracing to larger, full-science applications. We expect
these to exhibit increased complexity in their read/write behaviour resulting in
increased contention and stress on the parallel file system. Further work with
our industrial sponsors is also expected to use RIOT in the on-going assessment
of parallel file system software and I/O-related middleware including the use of
Lustre, GPFS, PLFS and alternatives.

Furthermore, future work is expected to include in-depth analysis of various
I/O configurations, such as that utilised by BlueGene systems. It is expected that
the performance characteristics seen on these systems will introduce additional
complexities in measuring and visualising the I/O behaviour.

Acknowledgements. This work is supported in part by The Royal Society
through their Industry Fellowship Scheme (IF090020/AM). Access to the LLNL
Open Computing Facility is made possible through collaboration with the UK
Atomic Weapons Establishment under grants CDK0660 (The Production of Pre-
dictive Models for Future Computing Requirements) and CDK0724 (AWE Tech-
nical Outreach Programme). We are grateful to Scott Futral, Todd Gamblin, Jan
Nunes and the Livermore Computing Team for access to, and help in using, the
Sierra machine located at LLNL. We are also indebted to John Bent and Meghan
Wingate at the Los Alamos National Laboratory for their expert PLFS advice and
support.

References

1. Almási, G.S., Archer, C., Castaños, J.G., Erway, C.C., Heidelberger, P., Martorell,
X., Moreira, J.E., Pinnow, K., Ratterman, J., Smeds, N., Steinmacher-burow, B.,
Gropp, W.D., Toonen, B.: Implementing MPI on the BlueGene/L Supercomputer.
In: Danelutto, M., Vanneschi, M., Laforenza, D. (eds.) Euro-Par 2004. LNCS,
vol. 3149, pp. 833–845. Springer, Heidelberg (2004)

2. Bailey, D.H., Barszcz, E., Barton, J.T., Browning, D.S., Carter, R.L., Dagum, L.,
Fatoohi, R.A., Frederickson, P.O., Lasinski, T.A., Schreiber, R.S., Simon, H.D.,
Venkatakrishnan, V., Weeratunga, S.K.: The NAS Parallel Benchmarks. Interna-
tional Journal of High Performance Computing Applications 5(3), 63–73 (1991)

3. Bailey, D.H., Barszcz, E., Barton, J.T., Browning, D.S., Carter, R.L., Dagum, L.,
Fatoohi, R.A., Fineberg, S., Frederickson, P.O., Lasinski, T.A., Schreiber, R.S.,
Simon, H.D., Venkatakrishnan, V., Weeratunga, S.K.: The NAS Parallel Bench-
marks. Tech. Rep. RNR-94-007, NASA Ames Research Center (March 1994)

248 S.A. Wright et al.

4. Bent, J., Gibson, G., Grider, G., McClelland, B., Nowoczynski, P., Nunez, J., Polte,
M., Wingate, M.: PLFS: A Checkpoint Filesystem for Parallel Applications. In:
Proceedings of the Conference on High Performance Computing Networking, Stor-
age and Analysis (SC 2009) (2009)

5. Bull: BullX Cluster Suite Application Developer’s Guide (April 2010)
6. Carns, P., Latham, R., Ross, R., Iskra, K., Land, S., Riley, K.: 24/7 Character-

ization of Petascale I/O Workloads. In: Proceedings of the IEEE International
Conference on Cluster Computing and Workshops (CLUSTER 2009), pp. 1–10
(September 2009)

7. Fryxell, B., Olson, K., Ricker, P., Timmes, F.X., Zingale, M., Lamb, D.Q.,
MacNeice, P., Rosner, R., Truran, J.W., Tufo, H.: FLASH: An Adaptive Mesh
Hydrodynamics Code for Modeling Astrophysical Thermonuclear Flashes. The As-
trophysical Journal Supplement Series 131(1), 273 (2000)

8. Fuerlinger, K., Wright, N.J., Skinner, D.: Effective Performance Measurement at
Petascale Using IPM. In: Proceedings of the IEEE 16th International Conference
on Parallel and Distributed Systems (ICPADS 2010), pp. 373–380 (December 2010)

9. Gabriel, E., Fagg, G.E., Bosilca, G., Angskun, T., Dongarra, J., Squyres, J.M.,
Sahay, V., Kambadur, P., Barrett, B.W., Lumsdaine, A., Castain, R.H., Daniel,
D.J., Graham, R.L., Woodall, T.S.: Open MPI: Goals, concept, and design of a
next generation MPI implementation. In: Kranzlmüller, D., Kacsuk, P., Dongarra,
J. (eds.) EuroPVM/MPI 2004. LNCS, vol. 3241, pp. 97–104. Springer, Heidelberg
(2004)

10. Gropp, W.D.: MPICH2: A New Start for MPI Implementations. In: Kranzlmüller,
D., Kacsuk, P., Dongarra, J., Volkert, J. (eds.) PVM/MPI 2002. LNCS, vol. 2474,
pp. 7–42. Springer, Heidelberg (2002)

11. Koziol, Q., Matzke, R.: HDF5 – A New Generation of HDF: Reference Manual
and User Guide. Tech. rep., National Center for Supercomputing Applications,
Champaign, Illinois, USA (1998)

12. Li, J., Liao, W., Choudhary, A., Ross, R., Thakur, R., Gropp, W., Latham, R.,
Siegel, A., Gallagher, B., Zingale, M.: Parallel netCDF: A High-Performance Sci-
entific I/O Interface. In: Proceedings of the ACM/IEEE International Conference
on Supercomputing, SC 2003 (November 2003)

13. Message Passing Interface Forum: MPI2: A Message Passing Interface Standard.
High Performance Computing Applications 12(1-2), 1–299 (1998)

14. Nowoczynski, P., Stone, N., Yanovich, J., Sommerfield, J.: Zest Checkpoint Storage
System for Large Supercomputers. In: Proceedings of the 3rd Annual Workshop
on Petascale Data Storage (PDSW 2008), pp. 1–5 (November 2008)

15. Polte, M., Simsa, J., Tantisiriroj, W., Gibson, G., Dayal, S., Chainani, M., Uppu-
gandla, D.K.: Fast Log-based Concurrent Writing of Checkpoints. In: Proceedings
of the 3rd Annual Workshop on Petascale Data Storage (PDSW 2008), pp. 1–4
(November 2008)

16. Polte, M., Lofstead, J., Bent, J., Gibson, G., Klasky, S.A., Liu, Q., Parashar,
M., Podhorszki, N., Schwan, K., Wingate, M., Wolf, M.: And Eat It Too: High
Read Performance in Write-Optimized HPC I/O Middleware File Formats. In:
Proceedings of the 4th Annual Workshop on Petascale Data Storage (PDSW 2009),
pp. 21–25 (November 2009)

17. Rew, R.K., Davis, G.P.: NetCDF: An Interface for Scientific Data Access. IEEE
Computer Graphics and Applications 10(4), 76–82 (1990)

Light-Weight Parallel I/O Analysis at Scale 249

18. Rosner, R., Calder, A., Dursi, J., Fryxell, B., Lamb, D.Q., Niemeyer, J.C., Olson,
K., Ricker, P., Timmes, F.X., Truran, J.W., Tueo, H., Young, Y., Zingale, M.,
Lusk, E., Stevens, R.: Flash Code: Studying Astrophysical Thermonuclear Flashes.
Computing in Science & Engineering 2(2), 33–41 (2000)

19. Shan, H., Antypas, K., Shalf, J.: Characterizing and Predicting the I/O Perfor-
mance of HPC Applications using a Parameterized Synthetic Benchmark. In: Pro-
ceedings of the ACM/IEEE International Conference on Supercomputing, SC 2008
(November 2008)

20. Shan, H., Shalf, J.: Using IOR to Analyze the I/O Performance for HPC Platforms.
In: Cray User Group Conference (CUG 2007), Seattle, WA, USA (May 2007)

21. Thakur, R., Lusk, E., Gropp, W.: ROMIO: A High-Performance, Portable
MPI-IO Implementation. Tech. Rep. ANL/MCS-TM-234, Mathematics and Com-
puter Science Division, Argonne National Laboratory (1997)

22. Uselton, A., Howison, M., Wright, N.J., Skinner, D., Keen, N., Shalf, J., Kara-
vanic, K.L., Oliker, L.: Parallel I/O Performance: From Events to Ensembles. In:
Proceedings of the IEEE International Symposium on Parallel Distributed Pro-
cessing (IPDPS 2010), pp. 1–11 (April 2010)

23. Wang, Y., Kaeli, D.: Source Level Transformations to Improve I/O Data Parti-
tioning. In: Proceedings of the 1st International Workshop on Storage Network
Architecture and Parallel I/Os (SNAPI 2003) (September-October 2003)

24. Wang, Y., Kaeli, D.: Profile-guided I/O Partitioning. In: Proceedings of the 17th
Annual International Conference on Supercomputing (ICS 2003), pp. 252–260
(June 2003)

25. Wolman, B., Olson, T.: IOBENCH: A System Independent IO Benchmark. ACM
SIGARCH Computer Architecture News 17(5), 55–70 (1989)

26. Wright, S.A., Pennycook, S.J., Hammond, S.D., Jarvis, S.A.: RIOT – A Parallel
Input/Output Tracer. In: Proceedings of the 27th Annual UK Performance Engi-
neering Workshop (UKPEW 2011), pp. 25–39 (July 2011)

Can Linear Approximation Improve

Performance Prediction ?

Vlastimil Babka and Petr Tůma

Department of Distributed and Dependable Systems
Charles University in Prague, Faculty of Mathematics and Physics

Malostranské náměst́ı 25, Prague 1, 118 00, Czech Republic
{vlastimil.babka,petr.tuma}@d3s.mff.cuni.cz

Abstract. Software performance evaluation relies on the ability of sim-
ple models to predict the performance of complex systems. Often, how-
ever, the models are not capturing potentially relevant effects in system
behavior, such as sharing of memory caches or sharing of cores by hard-
ware threads. The goal of this paper is to investigate whether and to
what degree a simple linear adjustment of service demands in software
performance models captures these effects and thus improves accuracy.
Outlined experiments explore the limits of the approach on two hard-
ware platforms that include shared caches and hardware threads, with
results indicating that the approach can improve throughput prediction
accuracy significantly, but can also lead to loss of accuracy when the
performance models are otherwise defective.

Keywords: Performance modeling, resource sharing, linear models.

1 Introduction

Software performance modeling has long relied on the ability of relatively simple
models to predict the performance of relatively complex systems with often sur-
prising accuracy. To pick an early example, [17] recalls over 40 years old result,
where a simple analytical model was used to predict the performance of a time
sharing operating system. In spite of many simplifying assumptions, such as ex-
ponential distribution of execution times and first come first served scheduling,
the mean response time prediction error was typically below 10% and always
below 25%.

Interestingly, simple models of complex systems achieve surprising accuracy
even today. In [15], a QPN model1 with 14 places and 19 transitions describes a
distributed computing application with a load balancer, four application server
nodes running the WebLogic container, and a multiprocessor database node
running the Oracle Database engine. Even though the size of the model is tiny
compared to the size of the system, and even though the model still assumes

1 Queueing Petri Nets combine Queueing Networks with Petri Nets, making it possible
to integrate a service queue into each network place.

N. Thomas (Ed.): EPEW 2011, LNCS 6977, pp. 250–264, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Can Linear Approximation Improve Performance Prediction ? 251

exponential service demands and first come first served scheduling, it is shown
to predict mean response times with error typically below 10%.

With systems getting ever more sophisticated, the complexity gap between the
model and the implementation is growing. This puts the research community
into an increasingly uncomfortable situation – on one hand, reports illustrate
surprisingly accurate performance predictions for very complex systems, but on
the other hand, our understanding of the systems suggests that the models are
not really capturing potentially relevant aspects of system behavior.

A prominent example of this situation are the effects of memory caches in
contemporary multiprocessor systems. Although these effects have been well
documented by measurement [6,1,14,21], they are typically ignored in software
performance modeling. And although functional models of memory caches do
exist [10,20,25], their complex inputs and other features make application in
software performance modeling difficult [5,4]. Yet another example are the effects
of garbage collection in managed environments, where the performance impact
is pronounced [9,19], but where reasonably precise models still do not exist [18].

Completing the picture are increasingly frequent observations that, in many
research studies, the true complexity of the system performance is not really
understood or appreciated, leading to potentially misleading results [11].

In this context, we investigate the possibility of approximating the effects of
sharing selected resources in contemporary multiprocessor systems by a linear
function of the overall system utilization. Specifically, we focus on the proces-
sor execution units, memory caches, buses and other architectural elements that
are shared by processor-intensive workloads and not represented explicitly in
software performance models. We call these resources for short, but emphasize
that our use of the term excludes elements already captured in software perfor-
mance models, such as whole idealized processors, storage devices, connections
or mutexes.

Our extension to the software performance models targets situations where a
full model of the performance effects is too complex or requires unknown inputs,
or where the spectrum of performance effects to be modeled is not even known.
Main features of the extension are three. (1) We adjust service demands based
on system utilization, our work is therefore applicable to a wide class of models
that accept service demands among their inputs and provide system utilization
among their outputs. (2) Rather than trying to find a complex function that fits
particular empirical observations, we are trying to see how well a simple function
works in general. This makes our results less precise but more applicable. (3)
Instead of selecting and modeling a single resource, we check whether and to
what degree we can approximate effects due to simultaneous sharing of multiple
resources.

Our work shares rationale with other software performance modeling methods
that approximate empirical observations when modeling the system structure is
not feasible. In this, we can liken our approach to that of [13], which uses statis-
tical regression to express service demands as functions of workload parameters.
Going beyond [13], we assume that identifying and modeling the functions and

252 V. Babka and P. Tůma

the parameters is also not necessarily feasible or efficient, and instead examine an
approximation that uses a linear function of the overall system utilization, mo-
tivated by some past observations that have often revealed linear patterns [4,1].

We emphasize that we do not see our main contribution in the extension to the
software performance models, which is deliberately simple, but in the evaluation
of the potential that this extension has. Notably, this evaluation uses our tool
for generating synthetic software applications [7].

The paper proceeds by introducing the synthetic software applications and the
software performance models that we utilize in our observations, in Section 2.
Next, we describe experiments that assess the maximum potential accuracy of
the models, in Section 3, and experiments that assess the accuracy with realistic
inputs, in Section 4. We conclude with analyzing the limitations of the method
in Section 5.

2 Performance Models and Synthetic Applications

We consider software performance models derived from the architecture and
behavior descriptions of a system – the former tells what software components
the system consists of, the latter tells how the software components invoke each
other when processing a particular workflow. These models are often derived
from other software design artefacts using model driven transformations [23],
and are used for example in KLAPER [12] or Palladio [8].

An essential input to the models are the durations of operations that the
software components perform, typically represented as service demands in the
model. We assume predictive performance modeling in late stages of develop-
ment, where service demands of individual software components can be measured
rather than estimated, as is done for example in some experiments in [15].

2.1 Random Software Applications

To test the accuracy of the models using empirical observations, we need sys-
tems to model and observe. Unfortunately, both modeling and observation of
a software system generally requires significant amount of manual work, such
as creating and calibrating the models or instrumenting and measuring the sys-
tems. This would make the testing too expensive and lead to using only a few
systems, which would in turn make our results difficult to generalize – since our
models do not capture system behavior in detail, we can only generalize if we
test on a wide enough set of systems.

To overcome this obstacle, we use our tool for generating synthetic soft-
ware applications [7]. The tool assembles modules taken from industry standard
benchmarks [22] and other sources [6] into applications whose architecture is
random and whose workload exhibits the effects of resource sharing. The object
and activity diagrams of one such application are on Figure 1.

Using a wide range of synthetic software applications makes our results more
general in that our observations are not collected on only a few systems, where
inadvertent bias, experiment tuning or even plain luck can distort the conclusions

Can Linear Approximation Improve Performance Prediction ? 253

Fig. 1. Example object and activity diagrams of a generated application

significantly. For a more involved discussion of the representativeness of the
applications, we refer the reader to [7] – here, we limit ourselves to asserting
that our conclusions should be reasonably valid for concurrent systems running
industry-standard processor-intensive workloads.

Another aspect of result generalization concerns the hardware platforms used
in our observations. In this paper, we use two servers with modern Intel Xeon
processors as representatives of common hardware platforms.2 Measurements
on more hardware platforms would represent a straightforward extension of the
work presented here and, given the amount of experiments involved, are deemed
out of scope for this paper.

2.2 Queueing Petri Net Models

The synthetic software applications are generated together with their architec-
tural and behavioral model, which can be converted into multiple modeling for-
malisms. For this paper, we use the Queueing Petri Nets as implemented by
the SimQPN tool [16]. The details of the mapping from the architectural and
behavioral model into the performance model are given in [7,3]. Briefly, the
mapping uses queueing places to represent processors and clients. Token colors
encode computation state, transitions model control flow by removing tokens of
a color corresponding to one particular program state and depositing tokens of a
color corresponding to the subsequent program state. Helper places are used to
represent thread pools, thread synchronization, branching and looping. Service

2 For experiments without hardware multithreading, we use a Dell PowerEdge 1955
system with two Quad-Core Intel Xeon processors (Type E5345, Family 6, Model
15, Stepping 11, Clock 2.33 GHz), 8 GB DDR2-667 memory, Intel 5000P memory
controller, Fedora Linux 8, gcc-4.1.2-33.x86 64, glibc-2.7-2.x86 64. For experiments
with hardware multithreading, we use a Dell PowerEdge M610 system with two
Quad-Core (Eight-Thread) Intel Xeon processors (Type E5540, Family 6, Model 26,
Stepping 5, Clock 2.53 GHz (2.8 GHz TurboBoost)), 48 GB DDR3-1066 memory,
ArchLinux 2.6.38.6, gcc-4.2.4-8, glibc-2.13-5.

254 V. Babka and P. Tůma

demands use normal distribution, which we found to be more appropriate than
the more common exponential distribution [7], loop counts are approximated
with geometric distribution.

The service demands, which represent the operation durations of the individ-
ual software components, are measured. In a real system, the operation durations
depend on the amount of resource sharing that occurs during the operation execu-
tion. We therefore focus on the way in which the service demands can be measured:

– Measurement in isolation. This option assumes that the measured component
is executing alone, driven by an artificial workload generator harness. Since
no other components execute, resource sharing is minimized.

– Measurement under resource sharing. This option assumes that the measured
component is executing as a part of the modeled application. Here, resource
sharing not only occurs, but occurs to the degree and with the effects that
are characteristic for this particular application.

Obviously, software performance models that do not themselves capture the re-
source sharing effects will achieve better accuracy with service demands
measured under resource sharing [7]. This, however, is not always realistic –
as described, measurement under resource sharing requires having the modeled
application, which is not the case in predictive performance modeling. Still, the
approach serves well for comparison purposes – when we investigate a method
that adjusts the service demands to reflect resource sharing, then measuring the
service demands under resource sharing corresponds to a perfect adjustment.
Hence, we start by comparing the accuracy of models that use service demands
measured in isolation with models that use measurement under resource sharing.

As the next step, we approximate the effects of resource sharing by expressing
the service demands as linear functions of the overall system utilization. With
tisolated being a particular service demand measured in isolation, u represent-
ing the system utilization3 and δ approximating the sensitivity of this service
demand to resource sharing, the adjusted service demand tadjusted is simply:

tadjusted = tisolated × (1 + max(0, u− 1)× δ) (1)

The adjustment to the service demands is made in two steps. First, the model
is solved with each service demand set to the appropriate tisolated, yielding the
estimate of utilization u and the adjusted service demands tadjusted. These are
then used to solve the model again. Multiple ways of determining the values of
δ are described later.

The motivation for using the linear approximation stems from some past ob-
servations that have often revealed a roughly linear dependency between some
parameters of the workload, such as the cache miss rate or the range of traversed
addresses, and the operation durations [4,1]. The choice of system utilization as
the argument of the linear function is based on the assumption that higher uti-
lization means more system activity, which in turn means more opportunities for
generating cache misses, traversing addresses, or other forms of resource sharing.
The reader will note that none of these assumptions is, of course, valid in the
3 We use 0 for idle system and 1 for system with single processor fully utilized.

Can Linear Approximation Improve Performance Prediction ? 255

general sense – we are not looking for a perfect approximation of the operation
durations, we are checking how far a simple approximation can go.

3 Determining Maximum Accuracy

To evaluate the accuracy, a number of synthetic software applications has been
generated and compiled, and for each application, workloads of four to six dif-
ferent intensities have been measured and modeled. The accuracy of each com-
bination of application and workload used is expressed as the prediction error
e = (xpredicted−xmeasured)/xmeasured, with xpredicted being the value of response
time or throughput predicted by the model and xmeasured being the measured
value, respectively.

The graphs that illustrate the accuracy contain a single data point reporting
the accuracy of the model for each combination of application and workload
used. The results of the adjusted models, where the service demands were set
depending on the particular experiment, are plotted against the results of the
baseline models, where the service demands were measured in isolation.

Special care has to be taken when interpreting the results of experiments
that use the synthetic software applications. Since we are developing a simpli-
fied model for situations where a complete model of the performance effects is
not known, we have to assume that the performance effects can depend on po-
tentially unknown properties of the measured systems.4 When these properties
are not known, we also cannot tell whether they would be represented among
synthetic and real applications with the same frequencies. Hence, the fact that
the performance models reach certain degree of accuracy in certain percentage
of synthetic applications does not necessarily imply that the same degree of
accuracy would be reached in the same percentage of real applications.

In this context, the number of synthetic applications where the baseline model
exhibits particular prediction error is not relevant, but the difference in accuracy
between the baseline model and the adjusted model is. This interpretation is
explained in a verbose form with the first graph described below and applies
analogously to the other graphs.

We use over 750 applications for the experiments without hardware multi-
threading and over 500 applications for the experiments with hardware multi-
threading, these numbers being picked somewhat arbitrarily – there would be
no technical problem in using more applications, however, the results do not
seem to indicate such need. The size of the individual applications ranges from 5
to 20 workload components glued together with additional control components,
the typical execution time for each application is in the order of seconds. Com-
mon precautions against initialization effects were taken by discarding warmup
measurements, leaving 220 measurements per application and configuration on
average.
4 It is not that we could not provide many examples of properties that impact per-

formance under resource sharing [1], we just cannot assume knowledge of the role of
particular properties in particular workloads.

256 V. Babka and P. Tůma

−60 −40 −20 0 20 40

−
20

0
20

40
60

Resp. time prediction error of baseline model [%]

R
es

p.
 ti

m
e

pr
ed

. e
rr

or
 o

f a
dj

. m
od

el
 [%

]

−40 −20 0 20 40 60 80

−
40

0
20

40
60

Throughput prediction error of baseline model [%]

T
pu

t p
re

d.
 e

rr
or

 o
f a

dj
us

te
d

m
od

el
 [%

]

Fig. 2. Prediction error for response time (left) and throughput (right) of models ad-
justed with measurements under resource sharing. Platform without hyperthreading.

3.1 Perfect Service Demand Adjustment

To assess the best possible accuracy that any modeling method based on adjust-
ing the service demands can achieve, we compare the accuracy of the baseline
models with adjusted models that use measurement under resource sharing.
Since thus measured service demands reflect the effects of resource sharing ex-
actly as it happens in the executing application, they represent the perfect ad-
justment – which, however, is often not available in practice when constructing
performance models.

By talking about the perfect adjustment, we do not mean that the model will
produce results that are as close to measured overall performance as possible.
It is possible that other service demands would lead to a result that is closer to
measurement – however, rather than representing the true behavior of the appli-
cation, such service demands would artificially compensate for other deficiencies
in the model.

Figure 2 plots the accuracy of the adjusted models against the accuracy of
the baseline models for response time and throughput predictions. The fact that
all the response time observations are above the diagonal and all the throughput
observations below the diagonal corresponds to the fact that service demands
measured under sharing are higher than service demands measured in isolation,
which leads to higher response time and lower throughput estimates. The ob-
servations near the origin point are not very useful, since they denote situations
where both the baseline model and the adjusted model achieve reasonable accu-
racy. Other observations can be classified based on their location in the graph:

– Observations on the diagonal but not near the origin point. These obser-
vations suggest some causes of prediction error are not related to service
demands, even the perfect adjustment therefore does not impact accuracy
in those cases.

– Observations towards the nine o’clock direction for response time and the
three o’clock direction for throughput. These observations concern situations
where the baseline model predicts with a significant error that the adjusted
model rectifies.

Can Linear Approximation Improve Performance Prediction ? 257

– Observations towards the twelve o’clock direction for response time and
six o’clock direction for throughput. These observations concern situations
where the baseline model predicts with a reasonable accuracy that the ad-
justed model lacks.

The gains in accuracy are more pronounced with throughput than with response
time. We attribute this to the fact that various approximations in the model, es-
pecially the approximations of loop counts with geometric distributions, impact
response time more than throughput. The observations indicate that the perfect
adjustment can improve accuracy in situations where the baseline is 60% opti-
mistic on response time and 90% optimistic on throughput into almost precise
prediction on both response time and throughput.

The losses in accuracy are more pronounced with response time than with
throughput, pointing out that the baseline models sometimes work only because
the service demands measured in isolation compensate for other deficiencies in
the model.

As explained, the number of observations for synthetic applications in each
graph location does not necessarily indicate the number of real applications
whose observations would fall in the same location. We can, however, refer to our
earlier measurements in [2], which show that out of 29 SPEC CPU2006 bench-
marks, 15 exhibit at least 50% slowdown and all exhibit at least 10% slowdown
under some modes of resource sharing. Since the baseline models do not cap-
ture this slowdown and are therefore necessarily optimistic, these measurements
would fall to the nine o’clock direction for response time and three o’clock direc-
tion for throughput in our graphs, that is, locations where the adjusted models
improve accuracy. To the degree that the SPEC CPU2006 benchmarks represent
real applications, we can therefore claim that over half of real applications can
exhibit significant slowdown under resource sharing that the adjusted models
predict better than the baseline models.

Figure 3 again plots the accuracy of the adjusted models against the accuracy
of the baseline models, but the platform with hardware multithreading was used
for the measurements. In general, the observations are in line with the expecta-
tion that hardware multithreading will contribute to performance effects due to
resource sharing.

The plots again indicate that some causes of prediction error are not related
to service demands. The plots also show an even more pronounced set of observa-
tions in the nine o’clock direction for response time and three o’clock direction
for throughput, indicating that the perfect adjustment can improve accuracy
in situations where the baseline is up to 90% optimistic on response time and
1000% optimistic on throughput into about 30% pessimism on response time
and about 20% optimism on throughput.5

5 Note that this can include the effects of clock boosting as a mechanism not captured
by the performance model, but the maximum performance change should not exceed
10%.

258 V. Babka and P. Tůma

−80 −60 −40 −20 0 20 40

−
20

0
20

40

Resp. time prediction error of baseline model [%]

R
es

p.
 ti

m
e

pr
ed

. e
rr

or
 o

f a
dj

. m
od

el
 [%

]

0 200 400 600 800 1000

−
20

0
20

40

Throughput prediction error of baseline model [%]

T
pu

t p
re

d.
 e

rr
or

 o
f a

dj
us

te
d

m
od

el
 [%

]

Fig. 3. Prediction error for response time (left) and throughput (right) of models ad-
justed with measurements under resource sharing. Platform with hyperthreading.

3.2 Linear Service Demand Adjustment

The models that use service demands measurement under resource sharing pro-
vide us with an estimate of the best possible accuracy that adjusting the service
demands can achieve. Unfortunately, such measurements are not always available
in practice – for example, the modeled application might still be in a design stage,
an installation specifically for measurement purposes might be too expensive, or
collecting enough observations of a rarely executed operation might just take too
long. Which is why, as the next step, we approximate the service demands with
simple linear functions of the overall system utilization using equation 1.

In this section, we take the service demands measured in isolation and under
sharing as observations of tisolated and tadjusted, respectively, together with the
system utilizations u predicted using the isolated times, and derive the slowdown
factors δ that yield the least square error for the response variable tadjusted using
linear regression, for each type of operation. 6 Again, this requires measurement
under resource sharing and is therefore not practical, however, the experiment
serves to indicate the accuracy achievable with the linear approximation. In the
next section, we will assess the accuracy under realistic conditions.

To avoid the systematic error of deriving the slowdown factors from the sys-
tems whose prediction accuracy is evaluated, we use a variant of cross-validation
based on random sub-sampling [24]. We repeatedly use random choice to split
the set of all synthetic software applications into two subsets. The first of the
subsets contains 90% of the applications and is used to derive the slowdown
factors for all operations, the second of the subsets is then used to assess the
prediction accuracy.

Compared to Figure 2, Figure 4 indicates that the linear approximation leads to
lower prediction accuracy. Still, where the baseline models are 60% optimistic on
response time and 90% optimistic on throughput, the adjusted models are about
20% optimistic on response time and about 20% optimistic on throughput.

6 Only systems with utilization higher than 1 are used in the regression.

Can Linear Approximation Improve Performance Prediction ? 259

−60 −40 −20 0 20 40

−
20

0
20

40
60

Resp. time prediction error of baseline model [%]

R
es

p.
 ti

m
e

pr
ed

. e
rr

or
 o

f a
dj

. m
od

el
 [%

]

−40 −20 0 20 40 60 80

−
40

−
20

0
20

40

Throughput prediction error of baseline model [%]

T
pu

t p
re

d.
 e

rr
or

 o
f a

dj
us

te
d

m
od

el
 [%

]

Fig. 4. Prediction error for response time (left) and throughput (right) of models ad-
justed with estimated service demands. Platform without hyperthreading.

−80 −60 −40 −20 0 20 40

−
60

−
20

20
60

Resp. time prediction error of baseline model [%]

R
es

p.
 ti

m
e

pr
ed

. e
rr

or
 o

f a
dj

. m
od

el
 [%

]

0 200 400 600 800 1000

0
50

10
0

20
0

Throughput prediction error of baseline model [%]

T
pu

t p
re

d.
 e

rr
or

 o
f a

dj
us

te
d

m
od

el
 [%

]

Fig. 5. Prediction error for response time (left) and throughput (right) of models ad-
justed with estimated service demands. Platform with hyperthreading.

For the platform with hardware multithreading, Figure 5 should be compared
to Figure 3. Where the baseline models are 90% optimistic on response time and
1000% optimistic on throughput, the adjusted models are about 60% optimistic
on response time and about 200% optimistic on throughput.

The observations where the accuracy of the adjusted models was already worse
than the accuracy of the baseline models on Figures 2 and 3 are plotted with dots
rather than circles. These are the cases where even using precise service demands
does not improve accuracy, suggesting that these models are otherwise deficient
and that adjusting service demands is not a way to improve their accuracy.

More interesting are the cases where using precise service demands does im-
prove accuracy, but using linear adjustment does not – these correspond to the
circles in the twelve o’clock direction for response time and six o’clock direction
for throughput. This is an unavoidable occurrence given the linear approxima-
tion. Importantly, the observed gains in accuracy for the cases where the ad-
justment does help are larger than the observed losses for the cases where the
baseline models are better.

260 V. Babka and P. Tůma

−60 −40 −20 0 20 40

0
50

10
0

Resp. time prediction error of baseline model [%]

R
es

p.
 ti

m
e

pr
ed

. e
rr

or
 o

f a
dj

. m
od

el
 [%

]

−40 −20 0 20 40 60 80

−
40

−
20

0
20

40

Throughput prediction error of baseline model [%]

T
pu

t p
re

d.
 e

rr
or

 o
f a

dj
us

te
d

m
od

el
 [%

]

Fig. 6. Prediction error for response time (left) and throughput (right) of models ad-
justed with service demands estimated from measurements under sharing with SPEC
CPU2006 benchmarks. Platform without hyperthreading.

4 Assessing Realistic Accuracy

To use the linear adjustment under realistic conditions, we have to estimate the
slowdown factors δ without measuring the service demands in the modeled appli-
cation. We do that by running each software component whose service demands
are to be measured in parallel with the SPEC CPU2006 benchmarks, and calcu-
lating the average slowdown factor for each operation from these measurements.
The SPEC CPU2006 benchmarks thus substitute the modeled application in cre-
ating conditions for resource sharing, even if not necessarily quite to the degree
or with quite the same effects that are characteristic for the modeled application.

Our hardware platforms allow multiple ways of deploying the measured soft-
ware components and the benchmarks on the available processors, depending on
whether the processor package and the memory cache is shared. On the platform
without hardware multithreading, we have decided to run the two workloads so
that they share the package but not the cache on the platform without hardware
multithreading. This was chosen as a middle option among the other choices after
quick experiments.

Compared to Figures 2 and Figure 4, Figure 6 indicates that the realistic
adjustment works about as well as the adjustment based on linear regression from
the previous section. Where the baseline models are 60% optimistic on response
time and 90% optimistic on throughput, the adjusted models are almost precise
on response time and throughput.

On the down side, the adjusted models have worse precision than the baseline
models for some cases where adjusting the service demands could have helped. In
the worst case, the adjusted models are 120% pessimistic on response time and
40% pessimistic on throughput where the baseline models are 40% optimistic
on response time and 40% pessimistic on throughput. This confirms our earlier
observation that some approximations used in the model impact response time
more than throughput.

Can Linear Approximation Improve Performance Prediction ? 261

On the platform with hardware multithreading, there are even more ways
of deploying the measured software components and the benchmarks on the
available processors. One extreme would be deploying on threads that share the
same core, another extreme would be deploying on threads that do not share
the same package. Unfortunately, our measurements indicate that such simple
deployment options would yield poor slowdown factor estimates – and while
including a more complex evaluation of the deployment options is possible, we
believe that a better way of obtaining the slowdown factor estimates is by using
application specific workloads, discussed in the next section.

5 Limitations

The measurements in Sections 3 and 4 indicate that adjusting service demands
using a linear function of system utilization increases prediction accuracy in
cases where the baseline models are too optimistic. Many of the cases where the
adjustment decreases accuracy were shown to suffer from deficiencies not related
to the service demands, however, one limitation of the adjustment is that it can,
in general, also decrease accuracy.

Whether the potential decrease of accuracy is important in practice depends
on many considerations – especially for throughput prediction, but to a degree
also for response time prediction, the observed accuracy gains tended to be
larger than losses. Unfortunately, our validation approach based on synthetic
software applications does not permit us to state that the gains would occur
more frequently than the losses in real applications.

Also evident is the fact that the method is never more optimistic than the
baseline. This can be important for studies that concern system dimensioning
– using the adjustment, such studies are less likely to lead to systems with
insufficient performance.

Some improvement can be achieved by deriving the slowdown factor δ from
measurements that use application specific workloads, rather than the SPEC
CPU2006 benchmarks as we did. For example, when modeling an audio pro-
cessing application, the slowdown factors would be measured against an audio
processing workload, other workloads would be used for other applications. Our
results for perfect adjustment from Section 3 show what accuracy can be ex-
pected in this case – also, we show that this adjustment does not always lead
to accuracy gain. Nonetheless, this seems to be the most practical option for
further improvement.

Besides the slowdown factor δ, the accuracy of the adjustment is also related
to the system utilization, which is used in calculating the service demands. We
obtain the system utilization estimate from the baseline model and use it to
construct the adjusted model, as described in Section 2 – however, if the adjusted
model is generally more accurate than the baseline model, it would also give us
a better system utilization estimate.

It might seem that we could obtain the system utilization estimate through
iteration, creating a new adjusted model in each iteration step using the adjusted

262 V. Babka and P. Tůma

model from the previous iteration step. With potential for positive feedback and
unclear stopping conditions, however, we have decided against using iteration.

Taking a broader view, the proposed adjustment assumes that performance
effects of resource sharing can be modeled as increase in service demands. This
holds reasonably well for many resources, such as execution units or memory
caches, but does not hold in general. One notable exception is the sharing of
managed heap, which typically leads to more frequent and potentially longer
garbage collection pauses, rather than gradual increase in service demands.

Finally, our results are necessarily limited to the hardware platforms that we
have used in the experiments.

6 Conclusion

The goal of this paper was to investigate whether and to what degree a sim-
ple linear adjustment of service demands in software performance models can
improve accuracy.

The motivation for the goal stems from the fact that for many contemporary
systems, it is difficult to just identify all the performance interactions, let alone
model them accurately. When that is the case, current software performance
models simply ignore the interactions, which is not satisfactory. Compared to
that, the linear adjustment is not much better in terms of sophistication, how-
ever, it gives the models a chance of capturing at least some of the interactions
and thus improving accuracy.

The linearity of the adjustment is based on the assumption that many perfor-
mance interactions are due to sharing of resources such as execution units or mem-
ory caches, which generally slows execution down. More complex adjustments
might approximate the performance interactions more precisely, however, they
would also be more difficult to calibrate using limited amount of measurements.

Our results indicate that the proposed adjustment of service demands does
improve prediction accuracy, however, we also reveal situations where perfor-
mance models achieve reasonable accuracy only when populated with imprecise
service demands. For those models, even correct service demands tend to worsen
accuracy.

The presented experiments were carried out on two multiprocessor platforms
and included potential for performance interactions through clock boosting and
sharing of execution units, memory caches and memory buses. The results of
the experiments indicate that the adjustment can improve especially throughput
predictions, with the best examples including a correction of a 90% throughput
overestimation into an almost precise throughput prediction. On the downside,
the adjustment can also decrease accuracy, with the extreme example being a
miscorrection of a 40% response time underestimation into a 120% response
time overestimation.

The experiments required a large number of software applications to measure
and model. Given that state of the art performance modeling tools still do not
allow completely automated construction of performance models from legacy
software, we have used a specialized tool that synthesizes software applications

Can Linear Approximation Improve Performance Prediction ? 263

together with models. Since the tool does not allow us to make claims on the
relative frequency with which particular synthetic applications resemble partic-
ular real applications, we cannot say whether the (in)frequent observations in
the experiments would also be (in)frequent in practice. We can, however, ob-
serve that over half of the workloads from the SPEC CPU2006 suite exhibits
at least 50% slowdown under resource sharing that is not captured by current
software performance models – and for cases where baseline models were pre-
dicting response time with at least 50% optimism, adjusted models decreased
the prediction error to about 10%.

To conclude, we have shown that linear adjustment of service demands based
on system utilization is a valid approach to improving prediction accuracy, espe-
cially when the baseline models have a tendency towards optimism. This result
can be used to parametrize models with load dependent service times.

Acknowledgments. Complete measurements and software required to repro-
duce the results is available at http://d3s.mff.cuni.cz/software/rpg. This
work was partially supported by the Czech Science Foundation projects GACR
P202/10/J042 and GACR 201/09/H057.

References

1. Babka, V., Bulej, L., Decky, M., Kraft, J., Libic, P., Marek, L., Seceleanu, C.,
Tuma, P.: Resource Usage Modeling, Q-ImPrESS Project Deliverable D3.3 (2008),
http://www.q-impress.eu/

2. Babka, V.: Cache Sharing Sensitivity of SPEC CPU 2006 Benchmarks, Tech. Rep.
No. 2009/3, Dep. of SW Engineering, Charles University in Prague (June 2009),
http://d3s.mff.cuni.cz/

3. Babka, V., Bulej, L., Ciancone, A., Filieri, A., Hauck, M., Libic, P., Marek, L.,
Stammel, J., Tuma, P.: Prediction Validation, Q-ImPrESS Project Deliverable D4.2
(2010), http://www.q-impress.eu/

4. Babka, V., Libič, P., Tůma, P.: Timing Penalties Associated with Cache Sharing.
In: Proceedings of MASCOTS 2009. IEEE, Los Alamitos (2009)

5. Babka, V., Marek, L., Tůma, P.: When Misses Differ: Investigating Impact of Cache
Misses on Observed Performance. In: Proceedings of ICPADS 2009, pp. 112–119.
IEEE, Los Alamitos (2009)

6. Babka, V., Tůma, P.: Investigating Cache Parameters of x86 Family Processors.
In: Kaeli, D., Sachs, K. (eds.) SPEC Benchmark Workshop 2009. LNCS, vol. 5419,
pp. 77–96. Springer, Heidelberg (2009)

7. Babka, V., Tůma, P., Bulej, L.: Validating Model-Driven Performance Predictions
on Random Software Systems. In: Heineman, G.T., Kofron, J., Plasil, F. (eds.)
QoSA 2010. LNCS, vol. 6093, pp. 3–19. Springer, Heidelberg (2010)

8. Becker, S., Koziolek, H., Reussner, R.: The Palladio Component Model for Model-
driven Performance Prediction. J. Syst. Softw. 82(1) (2009)

9. Blackburn, S.M., Cheng, P., McKinley, K.S.: Myths and Realities: The Performance
Impact of Garbage Collection. SIGMETRICS Perform. Eval. Rev. 32(1) (2004)

10. Chandra, D., Guo, F., Kim, S., Solihin, Y.: Predicting Inter-Thread Cache Con-
tention on a Chip Multi-Processor Architecture. In: Proceedings of HPCA 2005.
IEEE CS, Los Alamitos (2005)

http://d3s.mff.cuni.cz/software/rpg
http://www.q-impress.eu/
http://d3s.mff.cuni.cz/
http://www.q-impress.eu/

264 V. Babka and P. Tůma

11. Click, C.: Evaluate 2010 Keynote (October 2010),
http://evaluate2010.inf.usi.ch/

12. Grassi, V., Mirandola, R., Randazzo, E., Sabetta, A.: KLAPER: An Intermediate
Language for Model-Driven Predictive Analysis of Performance and Reliability. In:
Rausch, A., Reussner, R., Mirandola, R., Plášil, F. (eds.) The Common Component
Modeling Example. LNCS, vol. 5153, pp. 327–356. Springer, Heidelberg (2008)

13. Happe, J., Westermann, D., Sachs, K., Kapová, L.: Statistical Inference of Software
Performance Models for Parametric Performance Completions. In: Heineman, G.T.,
Kofron, J., Plasil, F. (eds.) QoSA 2010. LNCS, vol. 6093, pp. 20–35. Springer,
Heidelberg (2010)

14. Kalibera, T., Bulej, L., Tůma, P.: Benchmark Precision and Random Initial State.
In: Proceedings of SPECTS 2005, pp. 853–862. SCS (June 2005)

15. Kounev, S.: Performance Modeling and Evaluation of Distributed Component-
Based Systems Using Queueing Petri Nets. IEEE Trans. Software Eng. 32(7) (2006)

16. Kounev, S., Buchmann, A.: SimQPN: A Tool and Methodology for Analyzing
Queueing Petri Net Models by Means of Simulation. Perform. Eval. 63(4) (2006)

17. Lavenberg, S.S., Squillante, M.S.: Performance Evaluation in Industry: A Personal
Perspective. In: Reiser, M., Haring, G., Lindemann, C. (eds.) Dagstuhl Seminar
1997. LNCS, vol. 1769, pp. 3–13. Springer, Heidelberg (2000)

18. Libič, P., Tůma, P.: Towards Garbage Collection Modeling, Tech. Rep. No.
20011/1, Dep. of Distributed and Dependable Systems, Charles University in
Prague (January 2011), http://d3s.mff.cuni.cz/

19. Libič, P., Tůma, P., Bulej, L.: Issues in Performance Modeling of Applications with
Garbage Collection. In: Proceedings of QUASOSS 2009, pp. 3–10. ACM, New York
(2009)

20. Liu, F., Guo, F., Solihin, Y., Kim, S., Eker, A.: Characterizing and Modeling the
Behavior of Context Switch Misses. In: Proceedings of PACT 2008. ACM, New
York (2008)

21. Mytkowicz, T., Diwan, A., Hauswirth, M., Sweeney, P.F.: Producing Wrong Data
Without Doing Anything Obviously Wrong! In: Proceedings of ASPLOS 2009, pp.
265–276. ACM, New York (2009)

22. Standard Performance Evaluation Corporation: SPEC CPU 2006 Benchmark,
http://www.spec.org/cpu2006/

23. The Q-ImPrESS Project Consortium: Quality Impact Prediction for Evolving
Service-oriented Software, http://www.q-impress.eu/

24. Wasserman, L.: All of Statistics: A Concise Course in Statistical Inference.
Springer, Heidelberg (2004)

25. Xu, C., Chen, X., Dick, R.P., Mao, Z.M.: Cache Contention and Application Perfor-
mance Prediction for Multi-core Systems. In: Proceedings of ISPASS 2010. IEEE,
Los Alamitos (2010)

http://evaluate2010.inf.usi.ch/
http://d3s.mff.cuni.cz/
http://www.spec.org/cpu2006/
http://www.q-impress.eu/

TWOEAGLES: A Model Transformation Tool
from Architectural Descriptions to Queueing Networks

Marco Bernardo1, Vittorio Cortellessa2, and Mirko Flamminj2

1 Dipartimento di Scienze di Base e Fondamenti, Università di Urbino, Italy
2 Dipartimento di Informatica, Università dell’Aquila, Italy

Abstract. We present the implementation of a methodology for the modeling,
analysis, and comparison of software architectures based on their performance
characteristics. The implementation is part of a software tool that is called
TWOEAGLES, which extends the architecture-centric tool TwoTowers – based on
the stochastic process algebraic description language ÆMILIA – and integrates it
into Eclipse. The extension consists of a Java-coded plugin that we have called
AEmilia to QN. This plugin transforms ÆMILIA descriptions into queueing net-
work models expressed in the XML schema PMIF, which can then be rendered
via the QN Editor tool or analyzed by multiple queueing network solvers that can
be invoked through the Weasel web service.

1 Introduction

The importance of an integrated view of functional and nonfunctional characteristics in
the early stages of software development is by now widely recognized. This is a conse-
quence of the awareness of the risks arising either from considering those two classes
of characteristics on two different classes of system models that are not necessarily
consistent with each other, or from examining nonfunctional features at later stages of
the development cycle. This has resulted in the extension of numerous semi-formal and
formal notations with nonfunctional attributes yielding quantitative variants of logics,
automata, Petri nets, process calculi, and specification languages as well as suitable
UML profiles, many of which are surveyed, e.g., in [3].

The assessment of nonfunctional characteristics is not only instrumental to enhanc-
ing the quality of software systems. As an example, a number of alternative architectural
designs may be developed for a given system, each of which is functionally correct. In
that case, we need to establish some criteria for deciding which architectural design
is more appropriate and hence is the one to implement. As it turns out, performance
requirements and constraints are certainly among the most influential factors that drive
architecture-level design choices.

In order to address the various issues mentioned above, in [2] a methodology has
been proposed for predicting, improving, and comparing the performance of software
architectures. This methodology, called PERFSEL in [1], consists of a number of phases
at the end of which typical performance indices are assessed in different scenarios for
the various architectural designs both at the system level and at the component level.
On the basis of those indices, it can be decided to discard some designs, improve others,
or select the one to be implemented.

N. Thomas (Ed.): EPEW 2011, LNCS 6977, pp. 265–279, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

266 M. Bernardo, V. Cortellessa, and M. Flamminj

Although the PERFSEL methodology is independent to a large extent from the nota-
tion in which architectural designs are expressed, as in [2,1] here we focus on ÆMILIA.
This is an architectural description language based on stochastic process algebra that
enables functional verification via model checking or equivalence checking, as well
as performance evaluation through the numerical solution of continuous-time Markov
chains or discrete-event simulation.

On the analysis side, PERFSEL instead employs queueing networks [10]. A main
motivation of this choice is that, in contrast to continuous-time Markov chains – which
are flat performance models – queueing networks are structured performance models
providing support for establishing a correspondence between their constituent elements
and the components of architectural descriptions. Moreover, some families of queueing
networks, like product-form queueing networks [4], are equipped with efficient solution
algorithms that do not require the construction of the underlying state space when calcu-
lating typical average performance indices at system level or component level, such as
response time, throughput, utilization, and queue length. Therefore, the transformation
of ÆMILIA models into queueing networks enables a wider set of performance analysis
techniques on the same architectural model.

Starting from a number of alternative architectural designs – which we assume to
be functionally correct – of a software system to be implemented, PERFSEL requires
the designer to formalize each such design as an ÆMILIA description, which is sub-
sequently transformed into a queueing network model. Whenever one of these models
is not in product form, the model itself is replaced by an approximating product-form
queueing network model. The possibly approximate product-form queueing network
model associated with each architectural design is then evaluated in order to derive
the typical average performance indices both at the system level and at the component
level. The evaluation is done in several different scenarios of interest and the obtained
performance figures are interpreted on the various ÆMILIA descriptions.

On the basis of those figures, for each alternative a decision has to be made as to
whether the design is satisfactory, should be discarded, or may be improved. When
the predict-improve cycle is terminated for all the survived architectural designs, a
comparison among them takes place in the various scenarios according to the average
performance indices. The selected architecture is finally checked against the specific
performance requirements of the system under construction.

This final check is necessary for two reasons. Firstly, the selection is made by rely-
ing on general performance indices, which are not necessarily connected in any way to
the specific performance requirements. Secondly, the product-form queueing network
model associated with the selected architecture may have been subject to approxima-
tions. Although the perturbation of the average performance indices introduced by the
approximations cannot be easily quantified, we recall from [11] that queueing network
models are in general robust, in the sense that even their approximate analysis is in any
case helpful to get useful insights into the performance of the systems they represent.

The key point of PERFSEL is the combined use of the two above mentioned
formalisms: ÆMILIA for component-oriented modeling purposes and queueing net-
works for component-oriented performance analysis purposes. As observed in [2,1],
the two formalisms are quite different from each other. On the one hand, ÆMILIA is

A Model Transformation Tool from Architectural Descriptions to Queueing Networks 267

a completely formal, general-purpose architectural description language handling both
functional and performance aspects, whose basic ingredients are actions and behavioral
operators. On the other hand, queueing networks are instances of a queue-based graph-
ical notation for performance aspects only, in which some details like the queueing
disciplines are usually expressed in natural language. Another important feature to take
into account is the different level of granularity of the models expressed in the two for-
malisms. In particular, it turns out that the components of an ÆMILIA description cannot
be precisely mapped to the customer populations and the service centers of a queueing
network model, but on finer parts called queueing network basic elements that represent
arrival processes, buffers, service processes, fork processes, join processes, and routing
processes. Therefore, not all ÆMILIA descriptions can be transformed into queueing
network models, but only those satisfying certain constraints specified in [2,1].

This paper presents an implementation of PERFSEL and is organized as follows. In
Sect. 2, we define the model transformation carried out by the plugin ÆMILIA to QN
within TWOEAGLES. In Sect. 3, we introduce the plugin ÆMILIA to QN itself. In
Sect. 4, we describe the architecture of TWOEAGLES and we show how it interoperates
with other tools via ÆMILIA to QN. In Sect. 5, we illustrate by means of an automated
teller machine example the adequacy of the model transformation and the higher de-
gree of scalability achieved by TWOEAGLES in the performance evaluation of software
architectures. Finally, in Sect. 6 we report some concluding remarks.

2 The Transformation from ÆMILIA to Queueing Networks

In this section, we present the transformation from ÆMILIA descriptions to queueing
network models that we have implemented. More precisely, after recalling the transfor-
mation source (Sect. 2.1) and the transformation target (Sect. 2.2), we give an idea of
how the transformation works in accordance with the queueing network basic elements
identified in [2,1] (Sect. 2.3). Finally, we detail the transformation through a hierarchy
that we have specifically developed for our implementation of PERFSEL, which is com-
posed of an action classification, a behavioral pattern classification, pattern combination
rules, and connectivity rules for the queueing network basic elements (Sect. 2.4).

2.1 The Transformation Source: ÆMILIA

ÆMILIA [1] is an architectural description language based on stochastic process al-
gebra. An ÆMILIA description represents an architectural type, which is a family of
software systems sharing certain constraints on the observable behavior of their com-
ponents as well as on their topology. As shown in Table 1, the textual description of
an architectural type in ÆMILIA starts with its name and its formal parameters (ini-
tialized with default values), then comprises an architectural behavior section and an
architectural topology section.

The first section defines the overall behavior of the system family by means of types
of software components and connectors, which are collectively called architectural ele-
ment types. The definition of an AET, which starts with its name and its formal param-
eters, consists of the specification of its behavior and its interactions.

268 M. Bernardo, V. Cortellessa, and M. Flamminj

Table 1. Structure of an ÆMILIA textual description

ARCHI TYPE 	name and initialized formal parameters

ARCHI BEHAVIOR
...

...
ARCHI ELEM TYPE 	AET name and formal parameters

BEHAVIOR 	sequence of stochastic process algebraic equations
built from stop, action prefix, choice, and recursion

INPUT INTERACTIONS 	input synchronous/semi-synchronous/asynchronous
uni/and/or-interactions

OUTPUT INTERACTIONS 	output synchronous/semi-synchronous/asynchronous
uni/and/or-interactions

...
...

ARCHI TOPOLOGY

ARCHI ELEM INSTANCES 	AEI names and actual parameters

ARCHI INTERACTIONS 	architecture-level AEI interactions

ARCHI ATTACHMENTS 	attachments between AEI local interactions

END

The behavior of an AET has to be provided in the form of a sequence of behavioral
equations written in a verbose variant of stochastic process algebra allowing only for
the inactive process (rendered as stop), the action prefix operator supporting possible
boolean guards and value passing, the alternative composition operator (rendered as
choice), and recursion. Every action represents an activity and is described as a pair
composed of the activity name and the activity duration. On the basis of their duration,
actions are divided into exponentially timed (duration exp(r)), immediate (duration
inf(l, w)), and passive (duration (l, w)).

The interactions of an AET are actions occurring in the stochastic process algebraic
specification of the behavior of the AET that act as interfaces for the AET itself, while
all the other actions are assumed to represent internal activities. Each interaction has
to be equipped with three qualifiers, with the first qualifier establishing whether the
interaction is an input or output interaction.

The second qualifier represents the synchronicity of the communications in which
the interaction can be involved. We distinguish among synchronous interactions which
are blocking (default qualifier SYNC), semi-synchronous interactions which cause no
blocking as they raise an exception if prevented (qualifier SSYNC), and asynchronous
interactions which are completely decoupled from the other parties involved in the
communication (qualifier ASYNC). Every semi-synchronous interaction is implicitly
equipped with a boolean variable usable in the architectural description, which is auto-
matically set to true if the interaction can be executed, false if an exception is raised.

The third qualifier describes the multiplicity of the communications in which the
interaction can be involved. We distinguish among uni-interactions which are mainly
involved in one-to-one communications (qualifier UNI), and-interactions guiding inclu-
sive one-to-many communications like multicasts (qualifier AND), and or-interactions

A Model Transformation Tool from Architectural Descriptions to Queueing Networks 269

guiding selective one-to-many communications like in a server-clients setting (quali-
fier OR). It can also be established that an output or-interaction depends on an input
or-interaction, in order to guarantee that a selective one-to-many output is sent to the
same element from which a selective many-to-one input was received (keyword DEP).

The second section of an ÆMILIA description defines the topology of the system
family. This is accomplished in three steps. Firstly, we have the declaration of the in-
stances of the AETs – called AEIs – which represent the actual system components and
connectors, together with their actual parameters. Secondly, we have the declaration
of the architectural (as opposed to local) interactions, which are some of the interac-
tions of the AEIs that act as interfaces for the whole systems of the family. Thirdly, we
have the declaration of the architectural attachments among the local interactions of the
AEIs, which make the AEIs communicate with each other. An attachment is admissible
only if it goes from an output interaction of an AEI to an input interaction of another
AEI. Moreover, a uni-interaction can be attached only to one interaction, whereas an
and/or-interaction can be attached only to uni-interactions. Within a set of attached in-
teractions, at most one of them can be exponentially timed or immediate.

The semantics for ÆMILIA is given by translation into stochastic process algebra.
Basically, the semantics of every AEI is the sequence of stochastic process algebraic
equations defining the behavior of the corresponding AET. Then, the semantics of
an entire architectural description is the parallel composition of the semantics of the
constituent AEIs, with synchronization sets determined by the attachments. From the
state-transition graph underlying the resulting stochastic process term, a continuous-
time Markov chain can be derived for performance evaluation purposes, provided that
there are no transitions labeled with passive actions (performance closure) and all the
transitions labeled with immediate actions are suitably removed.

2.2 The Transformation Target: Queueing Networks

A queueing network (see, e.g., [10,11]) is a collection of interacting service centers that
represent resources shared by classes of customers, where customer competition for
resources corresponds to queueing into the service centers. In contrast to continuous-
time Markov chains, queueing networks are structured performance models because
they elucidate system components and their connectivity.

This brings a number of advantages in the architectural design phase. Firstly, typical
average performance indices like throughput, utilization, mean queue length, and mean
response time can be computed both at the level of an entire queueing network and at
the level of its constituent service centers. Such global and local indicators can then
be interpreted back at the level of an entire architectural description and at the level
of its constituent components, respectively, in order to obtain diagnostic information.
Secondly, there exist families of queueing networks that are equipped with fast solution
algorithms that do not require the construction of the underlying state space. Among
those families, we mention product-form queueing networks [4], which can be ana-
lyzed compositionally by solving each service center in isolation and then combining
their solutions via multiplications. This provides support for a performance analysis that
scales with respect to the number of components in architectural descriptions. Thirdly,

270 M. Bernardo, V. Cortellessa, and M. Flamminj

the solution of a queueing network can be expressed symbolically in the case of certain
topologies. This feature is useful in the early stages of the software development cycle,
since the actual values of system performance parameters may be unknown at that time.

2.3 The Transformation at a Glance

As mentioned in Sect. 1, the transformation source and target are quite different from
each other. In particular, the respective models have different levels of granularity. As
a consequence, the AEIs of an ÆMILIA description cannot be precisely mapped to
the customer populations and the service centers of a queueing network model. For
this reason, in [2,1] a number of finer parts called queueing network basic elements
(QNBE for short) have been identified together with suitable syntactical restrictions
that establish when an AEI can be transformed into one of those elements and when the
AEIs from which those elements have been derived are connected in a way that yields
a well-formed queueing network. The various QNBEs are shown in Fig. 1, where f
(resp. r) denotes the number of alternative destinations (resp. sources), h denotes the
number of customer classes, and interarrival and service times are expressed through
phase-type distributions, i.e., suitable combinations of exponential distributions.

An arrival process is a generator of arrivals of customers of a certain class. While
a single arrival process is enough in the case of an unbounded population, an instance
of the arrival process is necessary for each customer in the case of a finite population,
with the return of the customer being explicitly modeled. A buffer is a repository of
customers of different classes that are waiting to be served according to some queueing
discipline that we assume to be first-come-first-served. In the case of a bounded buffer,
incoming customers of class i can be accommodated only if the buffer capacity ci for
that class is not exceeded. A service process is a server for customers of various classes,
whose service times can be different for each class. When a service center is composed
of multiple servers, it is necessary to represent each of them through an instance of
the service process. A fork process splits requests coming from customers of a certain
class into subrequests directed to different service centers, which are then recombined
together by a join process. Finally, a routing process simply forwards customers of a
certain class towards different destinations.

2.4 A Hierarchical Approach to the Transformation

We now describe the hierarchical approach that we have developed for implementing
the transformation. As sketched in Sect. 2.3, we need to build a mapping between
ÆMILIA elements and the QNBEs depicted in Fig. 1. Due to the notational gap be-
tween these two modeling languages, in the mapping implementation we have followed
a bottom-up approach that starts from small-grained ÆMILIA elements and ends up to
assemblies of QNBEs. In particular, this section presents: the ÆMILIA action classifi-
cation, the ÆMILIA behavioral pattern classification, the ÆMILIA pattern combination
rules to make QNBEs, and the connectivity rules for QNBEs.

For the sake of readability, in the remainder of this section actions are italicized,
behavioral patterns are typewritten, and QNBEs are bolded.

A Model Transformation Tool from Architectural Descriptions to Queueing Networks 271

...

...

...

...

...

...

...

...

...

...

. . .

...

. . .

...

...

. . .

...

. . .

...

...

...

...

hc ,...,c1

...

...

...

arrival process for unbounded population:

arrival process for single customer of finite population:

unbounded buffer:

fork process preceded by external buffer:

join process preceded by external buffers:

routing process preceded by external buffer:

select,inf
forward inf(l rp)

forward inf(l rp)f, f f,

,1 1,1

service process preceded by external buffer:

service process without external buffer:

routing process without external buffer:

arrive,_
forward inf(l rp)

forward inf(l rp)f, f f,

,1 1,1

join process without external buffers:

join,inf

join,inf

1

f

,

,leave inf(l rp)

1leave inf(l rp),1

f f,

1

f

,

,leave inf(l rp)

1leave inf(l rp),1

f f,

join,_

join,_

fork process without external buffer:

1

f

fork inf,

fork inf,

select,inf
1

f

fork inf

fork inf

,

,

arrive,_

serv_time

serv_time1

h

leave ,inf(l ,rp)

leave ,inf(l ,rp)

leave ,inf(l ,rp)

leave ,inf(l ,rp)

1,1 1,1 1,1

11,f 11,f 11,f

h,1 h,1 h,1

h,f h,f h,fh h h

1arrive ,_

harrive ,_

1select inf,

hselect inf,
serv_time

serv_time1

h

leave ,inf(l ,rp)

leave ,inf(l ,rp)

leave ,inf(l ,rp)

leave ,inf(l ,rp)

1,1 1,1 1,1

11,f 11,f 11,f

h,1 h,1 h,1

h,f h,f h,fh h h

finite capacity buffer:

1

h

put ,_

put ,_

get

get

1

h

,_

,_

put

put

,_

,_

1

h

get

get

1

h

,_

,_

inter_arr_time

return ,_

return1,_ depart inf(l rp)1,

depart inf(l rp)f, f,

1,

f

1

r

inter_arr_time

depart inf(l rp)1,

depart inf(l rp)f, f,

1,

f

1

Fig. 1. Queueing network basic elements

Action Classification. In Table 2, the classification of ÆMILIA actions is illustrated.
Actions are placed on the table rows. The first column is used to partition the rows into
three groups of actions, which are: input interactions, output interactions, and internal
actions. The other columns represent respectively: the name given to the action, the
action duration (i.e., exponential, immediate, passive), the connection multiplicity of
the action in the case that it is an interaction (i.e., uni, and, or), and the QNBEs that
need such an action within their behavioral description (see Fig. 1).

For example, the first row of Table 2 specifies that a passive input uni-interaction
might represent a return action in a Single Client Arrival Process of a queueing net-
work. Similarly, an immediate internal action named pre-exit can belong to many dif-
ferent QNBEs such as Arrival and Service Processes.

272 M. Bernardo, V. Cortellessa, and M. Flamminj

Table 2. ÆMILIA action classification

Action Name Action Duration Action Multiplicity QNBEs

return passive uni Single Client Arrival Process
get passive uni, or (Finite or Infinte Capacity) Buffer

select immediate uni Buffered Service Process,
Input Buffered Fork Process,
Interactions Buffered Routing Process

arrive passive uni, or Unbuffered Service Process,
Unbuffered Fork Process,
Unbuffered Routing Process

join immediate and (Buffered or Unbuffered) Join Process
exit passive, immediate uni, or (Single Client or Infinite) Arrival Process,

(Buffered or Unbuffered) Service Process,
Output (Buffered or Unbuffered) Join Process,
Interactions (Buffered or Unbuffered) Routing Process

put passive uni, or (Finite or Infinte Capacity) Buffer
fork immediate and (Buffered and Unbuffered) Fork Process

pre-exit immediate N/A (Single Client or Infinite) Arrival Process,
(Buffered or Unbuffered) Service Process,
(Buffered or Unbuffered) Join Process,

Internal (Buffered or Unbuffered) Routing Process
Actions exp-phase exponential N/A (Single Client or Infinite) Arrival Process,

(Buffered or Unbuffered) Service Process
pre-phase immediate N/A (Single Client or Infinite) Arrival Process,

(Buffered or Unbuffered) Service Process

This classification helps to restrict the focus on the 11 actions that have been listed
in Table 2. Behavioral patterns of interest for the transformation are built only using
these actions. Therefore, such actions represent the alphabet to build words, which are
the behavioral patterns introduced in next paragraph to model QNBE behaviors.

Behavioral Pattern Classification. Following our bottom-up approach, we build up
on the actions classified in Table 2 to obtain patterns that typically describe (partial)
behaviors of QNBEs. The result is illustrated in Table 3, where we have identified 8 be-
havioral patterns. The table has an organization similar to the one of Table 2. Behavioral
patterns are on the table rows and they are grouped into input, output, and internal be-
haviors. A name is assigned to each pattern, then the pattern is described in the third
column of the table, and the QNBEs where such pattern occurs are listed in the fourth
column. Parameters are associated with names of patterns that depend on their values
(e.g., uncond-get(i,n)).

For example, the sixth row of Table 3 (i.e., the first output behavior) specifies that
an exit behavior describes a job exiting a QNBE and routing somewhere else. Such
a behavior can manifest itself in two ways: either as a set of unconditioned alternative
behaviors, where each behavior has an exit action, or as a single exit action.

These behavioral patterns represent the words that can be used to build sentences
representing QNBEs, as it will be illustrated in the next paragraph.

Combination Rules for Behavioral Patterns. The last step to obtain the mapping
illustrated in Fig. 1 between ÆMILIA constructs and QNBEs is accomplished by in-
troducing rules to combine the previously identified behavioral patterns into QNBEs 1.
When parsing an ÆMILIA description, the ÆMILIA to QN component of Fig. 1 looks

1 All behaviors occurring in ÆMILIA descriptions are assumed to be tail recursive.

A Model Transformation Tool from Architectural Descriptions to Queueing Networks 273

Table 3. ÆMILIA behavioral pattern classification

Pattern Name Pattern Description QNBEs

return The return of a job can be described in two dif-
ferent ways: (i) two or more alternative processes,
each made of an unconditioned return action; (ii) a
process represented by a return action

Single Client Arrival Process

uncond-get(i,n) An unconditioned get process for the i-th class
of clients is made of an unconditioned get ac-
tion, and a behavioral call with actual parameters
pa1, pa2, ..., pan that satisfy the following con-
straints: paj = pj + 1 for j = i and paj = pj

for j 	= i, where pj is the current number of
clients of j-th class

Infinite Capacity Buffer

Input
Behaviors

cond-get(i,n,Ni) A conditioned get process for the i-th class of
clients is made of: the condition pi < Ni (where
Ni is the buffer capacity for the i-th class of
clients), a get action, and a behavioral call with ac-
tual parameters pa1, pa2, ..., pan that satisfy the
following constraints: paj = pj + 1 for j = i
and paj = pj for j 	= i, where pj is the current
number of clients of j-th class

Finite Capacity Buffer

select A selection behavior is made of one or more alter-
native processes, where each process starts with an
unconditioned select action

Buffered Service Process,
Buffered Fork Process,
Buffered Routing Process

arrive An arrival behavior is made of one or more alter-
native processes, where each process starts with an
unconditioned arrive action

Unbuffered Service Process,
Unbuffered Fork Process,
Unbuffered Routing Process

exit A job exit (and routing) can be described in two dif-
ferent ways: (i) two or more alternative processes,
each made of an unconditioned pre-exit action fol-
lowed by an exit action; (ii) a process represented
by an exit action

(Buffered or Unbuffered)
Service Process, (Buffered
or Unbuffered) Join Process,
(Buffered or Unbuffered)
Routing Process, (Single
Client or Infinite) Arrival
Process

Output
Behaviors

put(i,n) A put process for the i-th class of clients is
made of: the condition pi > 0, a put ac-
tion, and a behavioral call with actual parameters
pa1, pa2, ..., pan that satisfy the following con-
straints: paj = pj − 1 for j = i and paj = pj

for j 	= i, where pj is the current number of
clients of j-th class

(Finite or Infinite Capacity)
Buffer

Internal
Behaviors

phase The behavior of a phase-type distribution is an arbi-
trary combination of exp-phase and pre-phase ac-
tions that determine a set of alternatives, where
each alternative terminates with a non-phase be-
havior

(Single Client or Infinite) Ar-
rival Process, (Buffered or
Unbuffered) Service Process

for such combinations of behavioral patterns in order to identify QNBEs within an
ÆMILIA description and to generate them.

These rules are defined in Table 4. The order of QNBEs in the table is the same as
the one in Fig. 1. Each row in Table 4 represents a QNBE, where the second column
provides the combination rules for behavioral patterns that define the QNBE behav-
ior, whereas the third column represents additional assumptions that have to be verified
before generating the QNBE itself. Note that where behavioral patterns have been num-
bered (e.g., Infinite Arrival Process), it means that a simple sequencing rule has to be
applied to those patterns. In some cases, such as Buffered Fork Process, rules have to
be applied to simple actions beside behavioral patterns.

For example, a Single Client Arrival Process is defined as a sequence of three
behavioral patterns (i.e., phase, exit, and return), with the additional conditions

274 M. Bernardo, V. Cortellessa, and M. Flamminj

Table 4. Combining behavioral patterns into QNBEs

QNBE Combination rules of behavioral patterns Additional assumptions

Infinite 1. phase a. output interactions must only be exit
Arrival 2. exit b. no input interactions
Process
Single Client 1. phase a. output interactions must only be exit
Arrival 2. exit b. input interactions must only be return
Process 3. return
Infinite · Parameters p1, p2, ..., pn have to be declared a. output interactions must only be put
Capacity · Parameters have to be initialized to non-negative numbers (with different names)
Buffer · 2n alternative processes have to be defined: b. input interactions must only be get

n uncond-get(i,n) patterns and (with different names)
n put(i,n) patterns

Finite · Parameters p1, p2, ..., pn have to be declared a. output interactions must only be put
Capacity · Parameters have to be initialized to non-negative numbers (with different names)
Buffer and have to be all declared as intervals of integers b. input interactions must only be get

· Each parameter pi has to fall within the [0, Ni] interval (with different names)
· 2n alternative processes have to be defined:
n cond-get(i,n) patterns and
n put(i,n) patterns

Buffered 1. select a. output interactions must only be exit
Service 2. phase b. input interactions must only be select
Process 3. exit
Unbuffered 1. arrive a. output interactions must only be exit
Service 2. phase b. input interactions must only be arrive
Process 3. exit
Buffered 1. select a. the only output interaction is the fork
Fork action
Process 2. fork b. the only input interaction is the select

action
Unbuffered 1. arrive a. the only output interaction is the fork
Fork action
Process 2. fork b. the only input interaction is the arrive

action
Buffered 1. join a. output interactions must only be exit
or Unbuffered 2. exit b. the only input interaction is the join action
Join Process
Buffered 1. select a. output interactions must only be exit
Routing 2. exit b. the only input interaction is the select
Process action
Unbuffered 1. arrive a. output interactions must only be exit
Routing 2. exit b. the only input interaction is the arrive
Process action

that the process must only have exit output interactions and return input interactions.
As another example, a Join Process is defined as a sequence of a join action and an
exit behavioral pattern, with the additional conditions that the only input interaction
is the join action and the process must only have exit output interactions.

Connectivity Rules for Queueing Network Basic Elements. Finally, we introduce
several connectivity rules that allow QNBEs to be assembled in semantically valid
queueing network models:

– An arrival process can be followed only by a service or fork process, possibly pre-
ceded by a buffer.

– A buffer can be followed only by a service, fork, join, or routing process.
– A service process can be followed by any QNBE.
– A fork process can be followed only by a service process or another fork process,

possibly preceded by a buffer.

A Model Transformation Tool from Architectural Descriptions to Queueing Networks 275

– A join process can be followed by any QNBE.
– A routing process can be followed by any QNBE.

3 The Eclipse Plugin ÆMILIA to QN

In order to enable the application of PERFSEL, we have developed ÆMILIA to QN,
a Java-coded Eclipse plugin for transforming ÆMILIA descriptions into queueing net-
works. As shown in Sect. 2, the model transformations realized by ÆMILIA to QN rely
on two queue-driven classifications – one for actions and one for behavioral patterns
built from actions and process algebraic operators that can occur in ÆMILIA descrip-
tions, respectively – which hierarchically formalize most of the syntactical restrictions
of [2,1]. These two classifications are then complemented by a number of rules es-
tablishing which combinations of behavioral patterns result in QNBEs (combination
rules) and, in turn, how QNBEs should be connected to each other in order to yield
well-formed queueing networks (connectivity rules).

Given an ÆMILIA description, ÆMILIA to QN parses the behavioral part of the
ÆMILIA representation of each AEI to search for occurrences of the previously identi-
fied action classes and queue-like behavioral patterns. Whenever this search is success-
ful on all AEIs and the combination rules are respected, then ÆMILIA to QN trans-
forms each AEI into the corresponding QNBE. Afterwards, ÆMILIA to QN checks the
topological part of the ÆMILIA description for compliance with the previously estab-
lished connectivity rules of QNBEs. If this check succeeds too, ÆMILIA to QN trans-
forms the entire ÆMILIA description into a queueing network model.

The queueing network models produced by ÆMILIA to QN are stored in PMIF for-
mat [13]. The reason is that this is an XML schema that acts as an interchange format
and hence makes it possible to pass those models as input to queueing network tools.

4 The Architecture of TWOEAGLES

ÆMILIA to QN can be launched from within TWOEAGLES. This is a new version of
TwoTowers [5] – a software tool for the functional verification, performance evalua-
tion, and security analysis of software architectures described with ÆMILIA – which is
entirely integrated in the Eclipse framework.

The software architecture of TWOEAGLES is depicted in Fig. 2, where the pro-
vided interfaces of components are represented by lollipops whereas required interfaces
by dashed arrows. In the box labeled with TWOEAGLES, only the components that
strictly belong to the tool have been included, which are: ÆMILIA to QN, TT GUI,
and TwoTowers. The remaining components of Fig. 2 are either external tools (i.e.,
NuSMV and Eclipse) or in-house built components that support the TWOEAGLES task
but do not belong to the tool (i.e., QN Editor and QN Solver).

In order to embed TwoTowers in Eclipse, TWOEAGLES relies on a new graphical
user interface for TwoTowers – the TT GUI component in Fig. 2 – which has been de-
veloped as an Eclipse plugin. TT GUI tailors the Eclipse environment to offer all the
original TwoTowers functionalities to users, along with the model transformation intro-
duced in this paper. This wrapping of TwoTowers has allowed its implementation to be

276 M. Bernardo, V. Cortellessa, and M. Flamminj

Fig. 2. Composition and environment of TWOEAGLES

kept basically unchanged – including the use of the external model checker NuSMV [6]
– whereas its interfaces can be invoked, as they are, through the TT GUI component.

In addition to TT GUI, there are other three Eclipse plugins in Fig. 2. The first one,
ÆMILIA to QN, has already been described in the previous section. Since it relies on
PMIF, it acts as a bridge between TwoTowers on one side and the next two plugins on
the other side. The second one, QN Editor, allows PMIF-based queueing networks to
be imported and edited in Eclipse and supports their graphical visualization. The third
one, QN Solver, is the client side of a web service called Weasel [15], which can be
exploited to invoke several existing queueing network solvers.

A typical scenario for the architecture in Fig. 2 is the following. TWOEAGLES starts
and TT GUI, within Eclipse, is ready to accept user commands. For example, the user
opens the ÆMILIA editor, which is part of TwoTowers, and enters an ÆMILIA de-
scription. The user may then run any (functional, security, or performance) analysis
technique provided by the original TwoTowers release, including the NuSMV model
checker. In addition, due to the extension presented in this paper, the user may decide
to invoke a model transformation that generates a queueing network from the ÆMILIA

description (i.e., the ÆMILIA to QN component in Fig. 2). The output queueing net-
work, which can also be modified with the QN Editor, is represented in PMIF and can
be rendered (i) in a textual XML format through the standard Eclipse XML editor or
(ii) in a graphical format through the QN Editor component shown in Fig. 2. The lat-
ter is able to import and export queueing networks in PMIF format and to graphically
represent them within Eclipse. Finally, the user can invoke the queueing network solver
(i.e., QN Solver in Fig. 2), which is a web service able to invoke different existing
solvers. The solution results are represented in the standard Eclipse text editor.

5 TWOEAGLES at Work: An Automated Teller Machine

In this section, we illustrate TWOEAGLES at work on an automated teller machine
(ATM), a system made of a certain number of distributed client terminals from where it
is possible to require services to a central server. Common types of service requests are:
withdrawal, deposit, and balance. Terminals only enable clients to perform I/O opera-
tions, whereas large part of computation is performed on the central server. The experi-
ments that we illustrate on this example are aimed at: (i) showing the tool usability, (ii)
validating the transformation from ÆMILIA descriptions to queueing network models

A Model Transformation Tool from Architectural Descriptions to Queueing Networks 277

Fig. 3. Eclipse user interface for TWOEAGLES

on the basis of numerical results, and (iii) showing the larger scalability of queueing
network solvers with respect to TwoTowers traditional performance evaluator.

The application of ÆMILIA to QN (see Fig. 3) to the ÆMILIA description of the
ATM system (which is not shown here due to lack of space) results in a queueing net-
work formed by four QNBEs (corresponding to as many AEIs): ThinkDevice, which is
the workload generator for the whole network, together with CPU, DISKS, and VIDEO,
whose service times are 0.5 ms, 0.5 ms, and 1 ms, respectively (these values are only
approximations of real scenarios, as we are more interested in the validation of the
transformation and the analysis of pros and cons of our approach, rather than in the
numbers themselves). Jobs originated from ThinkDevice are delivered to CPU. On the
basis of interaction rates, CPU decides whether sending jobs to DISKS and/or VIDEO.
Thereafter, jobs are sent back to ThinkDevice. Being a closed queueing network, the
parameters that drive our performance analysis are: the number N of client terminals
and the thinking time Z of each client.

In Fig. 4, we have reported the throughput (on the left) and the utilization (on the
right) that we have obtained for the main ATM devices, which are CPU and DISKS,
while varying the number of clients N in the system, with a fixed thinking time of
Z = 1 s. Four curves are shown because for each device we have represented both the
values obtained with the TwoTowers performance solver and the ones obtained with
the external queueing network solver after the ÆMILIA description has been trans-
formed into a queueing network. As can be seen, the two solvers obtain exactly the same

278 M. Bernardo, V. Cortellessa, and M. Flamminj

numerical results for both considered devices, and this supports the correctness of the
transformation of the ÆMILIA description into the queueing network model. However,
the TwoTowers solver, whose results are labeled as TwoTowers in the figure, is un-
able to solve models with more than 7 clients. This is due to the state space explosion
phenomenon encountered when the solver handles the continuous-time Markov chain
model. In contrast, the queueing network solver, whose results are labeled as PMVA
in the figure, is able to solve larger models in few seconds. This is due to the prod-
uct form [10] of the resulting queueing network model, which allows polynomial-time
solution algorithms such as Mean Value Analysis (MVA) to be applied.

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 1 2 3 4 5 6 7 8 9 10

T
hr

ou
gh

pu
t

number of clients

DISKS - TwoTowers
DISKS - PMVA

CPU - TwoTowers
CPU - PMVA

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1 2 3 4 5 6 7 8 9 10

U
til

iz
at

io
n

number of clients

DISKS - TwoTowers
DISKS - PMVA

CPU - TwoTowers
CPU - PMVA

Fig. 4. ATM throughput (left) and utilization (right)

6 Conclusions and Future Work

In this paper, we have presented a tool integrated into Eclipse that allows ÆMILIA-
based architectural descriptions to be transformed into queueing network models and
hence supports the PERFSEL methodology of [2,1]. As shown by the ATM example, the
tool TWOEAGLES improves on TwoTowers because the possibility of exploiting queue-
ing network solvers makes the performance evaluation process faster and applicable to
larger software architectures with respect to continuous-time Markov chain solvers.

Many approaches have been introduced in the last decade to transform architectural
models into performance models [3], but very few of them have been implemented
in working tools and rely on structured models like queueing networks. Moreover,
most implementations are based on UML, whereas in TWOEAGLES we consider a fully
fledged, formally defined architectural description language as source notation.

With regard to future work, we intend to strengthen the transformation implemented
in TWOEAGLES by moving from a general-purpose programming language like Java
to model transformation languages like ATL [9] and QVT [12]. Moreover, we would
like to investigate whether results relating stochastic process algebras and queueing
networks [8,7,14] can be exploited in our architectural framework.

Acknowledgment. Work funded by MIUR-PRIN project PaCo – Performability-Aware
Computing: Logics, Models, and Languages.

A Model Transformation Tool from Architectural Descriptions to Queueing Networks 279

References

1. Aldini, A., Bernardo, M., Corradini, F.: A Process Algebraic Approach to Software Archi-
tecture Design. Springer, Heidelberg (2010)

2. Balsamo, S., Bernardo, M., Simeoni, M.: Performance Evaluation at the Software Architec-
ture Level. In: Bernardo, M., Inverardi, P. (eds.) SFM 2003. LNCS, vol. 2804, pp. 207–258.
Springer, Heidelberg (2003)

3. Balsamo, S., Di Marco, A., Inverardi, P., Simeoni, M.: Model-Based Performance Prediction
in Software Development: A Survey. IEEE Trans. on Software Engineering 30, 295–310
(2004)

4. Baskett, F., Chandy, K.M., Muntz, R.R., Palacios, G.: Open, Closed, and Mixed Networks of
Queues with Different Classes of Customers. JACM 22, 248–260 (1975)

5. Bernardo, M.: TwoTowers 5.1 User Manual (2006),
http://www.sti.uniurb.it/bernardo/twotowers/

6. Cavada, R., Cimatti, A., Olivetti, E., Pistore, M., Roveri, M.: NuSMV 2.1 User Manual
(2002)

7. Harrison, P.G.: Compositional Reversed Markov Processes, with Applications to G-
Networks. Performance Evaluation 57, 379–408 (2004)

8. Hillston, J., Thomas, N.: Product Form Solution for a Class of PEPA Models. Performance
Evaluation 35, 171–192 (1999)

9. Jouault, F., Allilaire, F., Bezivin, J., Kurtev, I.: ATL: A Model Transformation Tool. Science
of Computer Programming 72, 31–39 (2008)

10. Kleinrock, L.: Queueing Systems. John Wiley & Sons, Chichester (1975)
11. Lazowska, E.D., Zahorjan, J., Scott Graham, G., Sevcik, K.C.: Quantitative System Perfor-

mance: Computer System Analysis Using Queueing Network Models. Prentice Hall, Engle-
wood Cliffs (1984)

12. OMG, Query/View/Transformation, formal/08-04-03
13. Smith, C.U., Llado, C.M.: Performance Model Interchange Format (PMIF 2.0): XML Defi-

nition. In: Proc. of QEST 2004, pp. 38–47. IEEE-CS Press, Los Alamitos (2004)
14. Thomas, N., Zhao, Y.: Mean Value Analysis for a Class of PEPA Models. In: Bradley, J.T.

(ed.) EPEW 2009. LNCS, vol. 5652, pp. 59–72. Springer, Heidelberg (2009)
15. Zallocco, S.: Web service for Analyzing queueing networks with multiple solvers (2006),

http://sealabtools.di.univaq.it/Weasel/

http://www.sti.uniurb.it/bernardo/twotowers/
http://sealabtools.di.univaq.it/Weasel/

A Tool Suite for Modelling Spatial

Interdependencies of Distributed Systems with
Markovian Agents

Davide Cerotti1, Enrico Barbierato2, and Marco Gribaudo3

1 Dipartimento di Informatica, Università di Torino, Torino, Italy
cerotti@di.unito.it

2 Dip. Informatica, Università Piemonte Orientale, Alessandria, Italy
enrico.barbierato@mfn.unipmn.it

3 Dip. Elettronica ed Informazione, Politecnico di Milano, Italy
gribaudo@elet.polimi.it

Abstract. Distributed systems are characterized by a large number of
similar interconnected objects that cooperate by exchanging messages.
Practical application of such systems can be found in computer systems,
sensor networks, and in particular in critical infrastructures. Though
formalisms like Markovian Agents provide a formal support to describe
these systems and evaluate related performance indices, very few tools
are currently available to define models in such languages, moreover they
do not provide generally specific functionalities to ease the definition
of the locations of the interacting components. This paper presents a
prototype tool suite capable of supporting the study of the number of
hops and the transmission delay in a critical infrastructure.

1 Introduction

The 2006 European Programme for Critical Infrastructure Protection (EPCIP)
stated that “The security and economy of the European Union as well as the
well-being of its citizens depends on certain infrastructure and the services they
provide. The destruction or disruption of infrastructure providing key services
could entail the loss of lives, the loss of property, a collapse of public confidence
and moral in the EU” [12].

Among the eight critical infrastructures identified were telecommunications,
electrical power, gas and oil storage, transportation and water supply. These in-
frastructures share some common aspects: i) their components are controlled by
communication networks and ii) their physical infrastructure can be represented
by graphs. For instance in a power grid, telecontrol buildings, like the SCADA
control centers, or the electrical stations can be represented as node of a graph.
Instead the links can model the communication channel or the high-voltage lines
over which the current travels.

The representation of networks as a graphs pervades the study of critical in-
frastructures and more generally of distributed systems, in [24] the authors pro-
pose a graph-based model to represent and to analyze interdependencies among

N. Thomas (Ed.): EPEW 2011, LNCS 6977, pp. 280–294, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Tool Suite for Modelling Spatial Interdependencies of Distributed Systems 281

critical infrastructures; in [20] structural analysis of graphs is performed to sup-
port disaster vulnerability assessment, moreover in [3,5,6] the reliability of a
power grid controlled by a SCADA communication network was computed.

The number of hops and transmission delays are well-known concepts in data-
communication networks. These parameters have proved to be useful as approx-
imated performance metrics in different application contexts. The occurrence
of a critical event (e.g. fault in an electrical line) in a power grid, its location
or its distance from the station, as well as the total delay from the instant of
the occurrence need to be signaled to a central station. When a critical event
is detected, the alarm signal is propagated along a path of intermediate nodes.
Assuming that the distances between the nodes are known or estimated, the
number of hops provides a measure of the distance between the critical event
and the central station.

Though formalisms like Markovian Agents (MAs) [16] provide a support to
describe these systems and evaluate related performance indices, very few tools
are currently available to define models in such languages, moreover they do not
provide generally specific functionalities to ease the definition of the locations of
the interacting components. In Section 4 a new tool for the definition of graph-
based interconnection network is presented.

Section 5 shows a formal stochastic model, based on MAs, to compute the
number of hops between a source and a destination in addition to the transmis-
sion time in a multi-hop routing. More precisely, the model represents a system
of interconnected nodes where each node is represented by a MA that can trans-
mit messages directly or through intermediate nodes to a specific destination.
Transmitted messages carry the number of hops, incrementing this value at each
step so that the mean hop count and the mean time needed by a message to
reach its destination are computed.

2 Related Works

Beside the work on MAs, that will be considered in depth in Section 3, several
other spatial models have been introduced in the literature. One of the more
mature is Cellular automata (CAs) [21]. They are simple models of a spatially
extended decentralized systems composed by a set of individual entities (cells).
The communication between cells is limited to local interaction, and each in-
dividual can be in a state which changes over time depending on the states of
its local neighbors and on simple rules. In the area of performance evaluation,
applications of CA can be found in biomedical [23], ecology [15,13] and geology
[19]. All the models of this sort are usually studied by running several simula-
tions of the CA, starting from different initial states and computing the desired
performance indexes.

More recent works considering spatial models are for example Spatial Process
Algebra (SPA) [14] where Locations are added to take into account spatial de-
pendencies. In particular spatial concepts are added to the stochastic process
algebra PEPA by allowing named locations to appear in process terms and on
the labels of the transitions between them.

282 D. Cerotti, E. Barbierato, and M. Gribaudo

The need of automatic tools to include spatial aspects in performance mod-
els is considered in [1]. The authors derive a Generalised Stochastic Petri Net
(GSPN) model from high-precision location tracking data traces, using cluster-
ing techniques. In particular, GSPNs places are used to model locations where
an object spends a large amount of time, and timed transitions are used to model
the movement among the locations.

3 Markovian Agents

MA models consist of a set of agents positioned into a space. The behavior of each
agent is described by a continuous-time Markov chain (CTMC) with two types
of transitions: local transitions that model the internal features of the MA, and
induced transitions that account for interaction with other MAs. During local
transitions, an MA can send messages to other MAs. The perception function u(·)
regulates the propagation of messages, taking into account the agent position in
the space, the message routing policy, and the transmittance properties of the
medium.

MAs are scattered over a space V , which can correspond either to a discrete
number of locations, or to continuous n-dimensional space. Agents can be grouped
in classes, and messages divided into different types. Formally a Multiple Agent
Class, Multiple Message Type Markovian Agents Model (MAM) is a tuple:

MAM = {C,M,V ,U ,R}, (1)

where C = {1 . . .C} is the set of agent classes; M = {1 . . .M} is the set of
message types; V is the space (discrete or continuous) where Markovian Agents
are spread; U = {u1(·) . . . uM (·)} is a set of M perception functions (one for each
message type); R = {ξ1(·) . . . ξC(·)} defines the density of agents, where each
component ξc(v) accounts either for the number or the density of class c agents
in position v ∈ V .

Each agent MAc of class c is defined by the tuple:

MAc = {Qc(v),Λc(v), πc
0(v),Gc(m,v),Ac(m,v)}. (2)

Qc(v) = [qc
ij(v)] is the infinitesimal generator matrix of the CTMC that models

the local behavior of an agent of class c. An element qc
ij(v) represents the tran-

sition rate from state i to state j (with qc
ii(v) = −

∑
j 	=i qc

ij(v)), and Λc(v) =
[λc

i (v)], is a vector containing the rates of self-jumps (i.e. the rate at which the
Markov chain re-enters the same state). Using self-jumps, an agent can contin-
uously send messages while remaining in the same state. Gc(m,v) = [gc

ij(m,v)]
and Ac(m,v) = [ac

ij(m,v)] represent respectively the probability that an agent
of class c generates a message of type m during a jump from state i to state j,
and the probability that an agent of class c accepts a message of type m in state
i, performing an immediate jump to state j. πc

0(v) represents the initial state
distribution. All the previous quantities depends on the location v: this allows
the agents to modify the rate at which they perform their activities as a function
of the position in which they are located.

A Tool Suite for Modelling Spatial Interdependencies of Distributed Systems 283

The perception function is defined as um : V ×C× IN×V×C× IN→ IR+, and
um(v, c, i,v′, c′, i′) represents the probability that an agent of class c, in position
v, and in state i, perceives a message m generated by an agent of class c′ in
position v′ in state i′.

MAs models can be analyzed solving a set of differential equations that com-
pute the density ρc

i(t,v) of agents in class c, in state i in position v at time
t. In [8], a prototype tool, called MASolver from now on, was developed to
analyse MAs models using conventional discretization techniques for both time
and space. Since MAs models have no strict form of synchronisation, the whole
state-space of the model is not built, avoiding the well-known state explosion
problem. To consider the interaction among agents, we resort to an approxi-
mate techinique based on mean-field theory [22]. The behavior of each agent
depends on both its local behavior, represented by the infinitesimal generator
matrix Qc(v), and the behavior induced by the interactions with other MAs,
computed as a mean-field. The whole behavior is represented by an infinitesimal
generator matrix Kc(t,v) which changes in time and depends on the class and
the position of the agent.

The evolution of the entire model can be studied by solving ∀v, c the following
differential equations:

ρc(0,v) = ξc(v)πc
0(v) (3)

dρc(t,v)
dt

= ρc(t,v)Kc(t,v). (4)

where ρc(t,v) = [ρc
i (t,v)].

The computation of the matrix Kc(t,v) represents the most expensive step in
the solution algorithm, because it considers all the possible interactions among
agents and messages, in every possible location. However, in most practical ap-
plications, the definition of the perception function confines the interaction of
each MA to a limited number of neighboring MAs, significantly reducing the
complexity of this step. Please refer to [8,7] for a more detailed description of
Markovian Agents and the related analysis techniques.

3.1 Algorithmic Generation of Spatial Dependencies

The MA have been enhanced in order to model the geographical location of
agents over the space. The modelling of complex spatial behaviors is based on a
set of matrices that define the local agent behavior and the perception function
depending on the location v.

This approach requires however a larger set of parameters that needs to be
specified: without appropriate tools or techniques, it is not possible to exploit
such features. Another aspect to consider concerns the kind of topology. In case
of very simple or special topologies, the spatial dependencies can be determined
by using simple algorithms.

For example, in [11] a sensor network with a circular topology and the sink
in the center were considered. The perception function was computed to take

284 D. Cerotti, E. Barbierato, and M. Gribaudo

into account a specific minimal number of hops routing policy. In [7] instead, a
protocol based on ant colony optimization was studied. In that case the matrices
were constants, and the only spatial dependency was on the location of the sinks.
Sinks however were very limited in number, and their position were specified by
manually indicating their coordinates. In [4] the motion of agents in a tunnel
was considered. In that case, the parameters could be computed starting from
broad characteristics like the curvature of the track.

In more complex cases, specific tools are required to automatically infer the
model parameters from measured data, or to allow the modeler to design freely
the interactions among agents.

3.2 The Image-Based Tools

In previous works about MAs, parameters were obtained using Image-based tools.
These tools create the spatial dependencies starting from a bit-mapped image
that color-codes the value of the different parameters. They are suitable for
studying models defined over a geographical areas where parameters can be
extrapolated from already available maps.

For example in [9], the propagation of a disaster such as an earthquake was
studied starting from maps of the considered region such as the one presented in
Figure 1. In that particular case, an application capable of performing discretiza-
tion over a circular or elliptic grid was used. Figure 2 shows some screen-shots
of GUI of such application. The application is capable of specifying both the
center of the discretization that corresponds to the epicenter of the propagation,
a semi-axis and a direction in case of elliptical propagation. The output of the
tool consists in a list of cells, each characterized by its own parameters derived
from the associated map.

Fig. 1. Color coded maps of the model parameters: a) the source data; b) the discretized
version

In [10], the propagation of fire over a region was considered. In that case a
simple application that extracts the agent densities and the fire-extinction rate
from the RGB channels of a satellite image, and that allows the user to specify
the wind direction sampled by the meteorological stations was developed. Some

A Tool Suite for Modelling Spatial Interdependencies of Distributed Systems 285

Fig. 2. The circular/elliptic discretization Tool screen-shot: a) importing the terrain
data; b) defining the center and the form of the discretization; c) the tool output

screen-shots of the tool interface are shown in Figure 3. The tool divides the
region into square cells of equal dimensions such that the burning properties
and the wind direction inside each cell can be considered constant. Also in this
case the tool produces a list of cells, each characterized by the property of the
corresponding area under the map.

Fig. 3. Tool screen-shot: a) importing the terrain data; b) defining the wind intensity;
c) exporting the output values

Both applications are written in Adobe Flash, and join with the MASolver
can be considered as a part of a tool suite developed to allow the specification
and analysis of spatial dependencies in MA models.

4 The Graph-Based Tool

In this work a new tool for the Graph-based specification of the interconnection
among agents is introduced. This tool allows the user to define visually the
interaction among the objects using a graphical user interface, and it is preferable
over image-based tools when the number of objects is limited and the interactions
among the components can be defined manually.

286 D. Cerotti, E. Barbierato, and M. Gribaudo

The Graph-based tool uses the DrawNet[17,18] framework as its Graphical
User Interface. DrawNet is a framework supporting the design and solution of
models represented in any graph-based formalism. It is based on an open archi-
tecture and uses an XML-based language to create new (multi)formalisms and
model-based (multi)formalisms.

A new DrawNET formalism1 called Markovian Agents Routing Graph has
been implemented to define the interconnection graph of stochastic models based
on multi-hop networks. The formalism allows the user to edit the following
objects: i) Location Nodes, ii) the Message Service Rates and iii) a set of
Parameters used to define the solution. Locations are used to define the posi-
tions of the agents in the model, and message service rates are used to specify
the interconnections among the agents.

Fig. 4. A Markovian Agents Routing Graph model in DrawNet

An example of a model-based Markovian Agents Routing Graph is shown in
Fig.4. The built model can be exported to a plain ASCII file and made available
for further processing by other tools including the MASolver. The exported data
includes the Topology Incident Matrix, the Message Service Rates, the so-
lution Parameters and a Distance Matrix. The Topology Incident Matrix
is a matrix M where, for each pair of indexes (i, j), M [i][j] is set to 1 if there is

1 DrawNET addresses sets of graphical primitives that can be used to design a model
as formalisms

A Tool Suite for Modelling Spatial Interdependencies of Distributed Systems 287

Fig. 5. Output produced by DrawNet

a directed arc from Locationi to Locationj (0 otherwise).The Message Service
Rates and the solution Parameters are floating point numbers; finally, the
Distance Matrix is a matrix D where, for each pair of indexes (i, j), D[i][j]
is calculated as the geometric distance between Locationi and Locationj. Fig.5
shows an example of output file for the previous model.

5 Computing the Number of Hops in Critical
Infrastructures with MA

In this section we provide an application of the Graph-based tool join with the
MASolver to define and analyse a case study of a simplified fault detection
distributed system monitoring an electrical power grid.

In a power grid, the nodes monitor the status of the electrical lines and signal
the presence of faults to the central station by sending messages each time they
detect a faulty line. These messages are transferred to the central station by
means of intermediate nodes according to a multi-hop routing. Moreover, each
message includes the number of hops traversed in its path to the sink. In this
way the central station can infer the distance from its position to the detected
faulty line in terms of number of hops. Each time a node receives messages with
different values of number of hops, it forwards only the message carrying the
minimum value incremented by one. This is done in order to signal to the central
station the minimum number of hops to reach the faulty line. This scenario is

288 D. Cerotti, E. Barbierato, and M. Gribaudo

I 0

1

2

3

m0

m1

m2

m1
m0

m1
m0

m0

m2

m3

λ

μ

μ

μ

μ

(a) Agent Node

hp:0

hp:1

hp:1

hp
:0

A

B

C

S

(b) Multi hop routing

Fig. 6. Agent Node (a), choice of the minimum between different values of hop number
(b)

illustrated in Figure 6(b): node A receives messages from both nodes B and C
with a value of hops equal to one and zero respectively, and sends to the central
station S a message where the number of hops is set to one.

Node Agent. Agents belonging to the node class represent the distance of a
detected or signalled fault in their state space. It is assumed that the grid is
deployed to signal the presence of fault at most at M hops from the central
station, in such case each node maintains information of the presence of a fault
at most at M hops. The node agent is therefore characterized by M + 2 states,
and its state space is defined as Sn = {I, 0, 1, . . . , M}. Nodes are represented by
a single agent MAn shown in Figure 6(a) for M = 3. The meaning of the states
is the following:

I - is the idle state: the node does not detect fault and it has not received
messages signaling the presence of it;

i - are the detection states: state 0 means that the node has detected a local
fault, state i, with 0 < i ≤ M , means that the node was informed by the
other ones of the presence of a fault at i hops from its position.

The local transition at a rate λ from the idle state to the state 0 indicate the
detection of a local fault.

The MAn can emit and receive M + 1 types of messages (m0, m1, ..., mM)
corresponding to the number of hops. The behavior of the MAn agent at the
reception of the messages is the following:

mi - the signal message; a message mi is sent with probability 1 at the rate μ
when the MAn sojourns in state i (shown as a self-loop in Figure 6(a)); when

A Tool Suite for Modelling Spatial Interdependencies of Distributed Systems 289

the MAn is in states j and a message of type mi is perceived, it induces a
transition to state i + 1 with probability 1 only if j = I or i + 1 < j, it is
ignored otherwise. In such a way a node agent a, which is informed of a faulty
line at i hops from its position, transfers one hop further this information at
his neighbor node b which jumps to state i + 1. Such information is ignored
if node b is already informed of a closer fault.

The nodes of the grid are connected to each other by communication links
along which the messages are exchanged. This results in a communication net-
work with a topology that can be represented by a graph G = (V, E), where
the elements in the set V are the vertices and the elements in set E are the
edges of the graph. The perception function umi(v, n, i,v′, n, i′) is built to route
messages of type mi along the edges of such graph. To this end, the perception
function is defined for all the node of class n and all the message of types mi as:

umi(v, n, i,v′, n, j) =

⎧⎨⎩
1 if (v′,v) ∈ E

0 otherwise
(5)

Therefore, a node v perceives messages incoming from a node v′, if and only if
node v′ is directly connected with v.

5.1 Performance Evaluation

For each node of the network, the main measure of interest is the evolution of
the mean value of the hop-number carried by the received incoming messages.
This value is computed as:

φ(t,v) =
M∑
i=0

i · ρn
i (t,v) (6)

For a given node v of the network at time t, such index measures on average
how far (in hop units) are the sources of the incoming messages received by the
node.

A practical performance index is defined as the mean time needed by a mes-
sage - originated at a distance equal to a number of i hops from a node v - to
be received. This index is denoted as T (v, i). Another measure of interest can
be derived by calculating how quickly the central station was informed of the
detection of a fault in the electrical lines of the power grid and how quickly it
could recover the fault. The value of T (v, i) depends on both:

– the number of hop i needed by a message originated in the faulty section of
the grid to reach the central station;

– the mean time needed to the message to perform a single hop in its path to
the central station. Due to the exponential distribution of the time needed
by a transition to be performed by an MA , this value is equal to 1/α.

290 D. Cerotti, E. Barbierato, and M. Gribaudo

The index can be computed as:

T (v, i) =
∫ +∞

0

(1− ρn
i (t,v))dt (7)

the derivation of Eq (7) can be found in [25].

5.2 Numerical Results

The indices defined in Eq (6) and (7) have been computed by means of the
MASolver under different topologies of the communication network monitoring
the power grid. The first set of experiments include two simple topologies shown
in Figure 7. They are called direct ring (a) and direct ring with shortcut (b).
In both cases it is assumed that the fault is originated in the section of the
grid monitored by node n7. In the direct ring topology such node starts to send
messages to its only neighbor node n0, n0 forwards to n1 and so on, instead
in the direct ring with shortcut n7 forwards its messages to both n0 and n3,
then n0 forwards to n1 and n3 forwards to n4 and so on. In all the experiments,
λ = α = 10s−1 while the initial state of n7 is set to 0, i.e. this node has detected
a fault. The initial state of all other nodes is set to the idle state I.

Figure 8(a) plots the evolution in time of φ(t,v), the mean value of the hop-
number carried by the messages received by the nodes n3, n4 and n5. It can be
observed that these values are equal to zero at t = 0 and then converge to the
exact number of hops that separate them to the node n7. Set t to the time of
convergence, Figure 8(b) shows the node identifier ni on the x-axis and the value
of φ(t, ni) on the y-axis. For all the nodes, this value is equal to the distance
in number of hops to the node n7, which confirms that the defined behavior of
the MAs allows to compute correctly in a distributed way the number of hops
between node n7 and all the other nodes of the network. Finally, Figure 8(c)
plots for each node of the network the value of T (ni, j) with j equal to the exact
distance in number of hops between the node itself and the node n7. This value is
the time interval needed by a message originated from node n7 to reach the other
nodes ni. The expected trend obtained in the figure is due to the topology of
the network. This time interval is proportional to m∗K, where m is the number
of hops performed and K is a constant equal to the time needed to perform a
single hop.

The second topology was designed to test whether the defined behavior of the
MAs allows not only to compute the number of hops, but also the minimum value
of them. To this end, it has been added a shortcut to the ring topology allowing
the message originated from node n7 to reach some nodes with less hops. Figure
9 plots for the ring with shortcut case the same set of results previously shown
for the ring topology. The minimum value is computed correctly in this case as
well. For example, node n3 can be reached by node n7 in two ways: along the
path n7 → n0 → n1 → n2 → n3 with four hops or directly through the shortcut
with one hop. As shown in Figure 9(b), the last path with the minimum number
of hop was correctly chosen.

A Tool Suite for Modelling Spatial Interdependencies of Distributed Systems 291

n
0

n
1

n
2

n
7

n
3

n
6

n
5

n
4

(a) Ring

n
0

n
1

n
2

n
7

n
3

n
6

n
5

n
4

(b) Ring Short

Fig. 7. Topologies: Direct Ring (a), Direct Ring with shortcut

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 1 2 3 4 5

E
[#

H
O

P]

t

ID Node 5
ID Node 4
ID Node 3

(a) Distr Num Hop

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 1 2 3 4 5 6 7

E
[#

H
O

P]

IDN

(b) Mean Num Hop

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 1 2 3 4 5 6 7

E
[T

]

t

Mean time

(c) TMean

Fig. 8. Topology: ring. Time evolution of the mean hop number to reach each node
(a), mean hop number to reach each node in steady state (b), mean time T (v, i) (c).

A final case was used to test a complex topology. This included a random net-
work - generated by using the functionality of the tool Pajek - and the computed
value of φ(t, ni). Pajek [2] is a tool developed by the University of Ljubljana for
the generation and analysis of large networks. Given a set of parameters (e.g.
number of nodes, connectivity degree distribution, ecc...) this tool is able to gen-
erate automatically a random network with specific characteristics, moreover it
can export the network in standard formats such as adjacency matrix, adjacency
list or others. The network produced by Pajek is shown in Figure 10(a), whereas
Figure 10(b) plots for each node ni the value of φ(t, ni). Also, in complex random
networks including bidirectional links, the results are computed correctly.

 0

 1

 2

 3

 4

 5

 1 2 3 4 5

E
[#

H
O

P]

t

ID Node 2
ID Node 3
ID Node 4

(a) Distr Num Hop

 0

 1

 2

 3

 4

 5

 6

 1 2 3 4 5 6 7

E
[#

H
O

P]

IDN

(b) Mean Num Hop

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 1 2 3 4 5 6 7

E
[T

]

IDN

Mean time

(c) TMean

Fig. 9. Topology: ring with shortcut. Time evolution of the mean hop number to reach
each node (a), mean hop number to reach each node in steady state (b), mean time
T (v, i) (c).

292 D. Cerotti, E. Barbierato, and M. Gribaudo

n
1

n
3

n
2

n
0

n
5

n
4

n
9

n
7

n
6

n
8

(a) Random Topology

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 1 2 3 4 5 6 7 8 9 10

E
[#

H
O

P]

IDN

(b) Mean Num Hop

Fig. 10. Random topology (a), mean hop number to reach each node in steady state (b)

6 Conclusions

In this work the problem of considering spatial aspects and performance models
in MAs has been considered. A review of some of the available tools has been
provided, and a new tool for the definition of graph-based interactions has been
introduced. To demonstrate how the tool works, an application including a power
grid critical infrastructure has been presented.

The graph-based and the image-based tools considered in this work, although
intended for MAs, can be applied also to other spatial formalisms (such as CAs
or SPAs). Currently, the presented tools are still in an experimental phase; future
works aim at integrating them into a multi-formalism environment to allow full
analysis of MA and SPA models.

Acknowledgments. This work has been partially supported by Regione
Piemonte within the framework of the “M.A.S.P.” project POR FESR 2007/
2013 -Misura I.1.3 “Poli di Innovazione - Polo Information & Communication
Technology”.

References

1. Anastasiou, N., Horng, T.-C., Knottenbelt, W.: Deriving generalised stochastic
petri net performance models from high-precision location tracking data. In: Pro-
ceedings of the ValueTools 2011, ValueTools 2011. IEEE, Los Alamitos (2011)

2. Batagelj, V., Mrvar, A.: Pajek - analysis and visualization of large networks. In:
Graph Drawing Software, pp. 77–103. Springer, Heidelberg (2003)

3. Bobbio, A., Bonanni, G., Ciancamerla, E., Clemente, R., Iacomini, A., Minichino,
M., Scarlatti, A., Terruggia, R., Zendri, E.: Unavailability of critical SCADA com-
munication links interconnecting a power grid and a telco network. Reliability
Engineering and System Safety 95, 1345–1357 (2010)

A Tool Suite for Modelling Spatial Interdependencies of Distributed Systems 293

4. Bobbio, A., Cerotti, D., Gribaudo, M.: Presenting dynamic markovian agents with
a road tunnel application. In: MASCOTS 2009. IEEE-CS, Los Alamitos (2009)

5. Bobbio, A., Terruggia, R., Boellis, A., Ciancamerla, E., Minichino, M.: A tool for
network reliability analysis. In: Saglietti, F., Oster, N. (eds.) SAFECOMP 2007.
LNCS, vol. 4680, pp. 417–422. Springer, Heidelberg (2007)

6. Bonanni, G., Ciancamerla, E., Minichino, M., Clemente, R., Iacomini, A., Scar-
latti, A., Zendri, E., Terruggia, R.: Exploiting stochastic indicators of interdepen-
dent infrastructures: the service availability of interconnected networks. In: Safety,
Reliability and Risk Analysis: Theory, Methods and Applications, vol. 3. Taylor &
Francis, Abington (2009)

7. Bruneo, D., Scarpa, M., Bobbio, A., Cerotti, D., Gribaudo, M.: Markovian agent
modeling swarm intelligence algorithms in wireless sensor networks. Performance
Evaluation (in press, corrected proof: 2011)

8. Cerotti, D.: Interacting Markovian Agents. PhD thesis, Universita degli Studi di
Torino (2010)

9. Cerotti, D., Gribaudo, M., Bobbio, A.: Disaster propagation in heterogeneous me-
dia via markovian agents. In: Setola, R., Geretshuber, S. (eds.) CRITIS 2008.
LNCS, vol. 5508, pp. 328–335. Springer, Heidelberg (2009)

10. Cerotti, D., Gribaudo, M., Bobbio, A., Calafate, C.T., Manzoni, P.: A markovian
agent model for fire propagation in outdoor environments. In: Aldini, A., Bernardo,
M., Bononi, L., Cortellessa, V. (eds.) EPEW 2010. LNCS, vol. 6342, pp. 131–146.
Springer, Heidelberg (2010)

11. Chiasserini, C.F., Gaeta, R., Garetto, M., Gribaudo, M., Manini, D., Sereno, M.:
Fluid models for large-scale wireless sensor networks. Performance Evaluation 64(7-
8), 715–736 (2007)

12. European commission (2006),
http://europa.eu/rapid/pressReleasesAction.do?reference=MEMO/06/477

13. Dunn, A.: A model of wildfire propagation using the interacting spatial automata
formalism. PhD thesis, University of Western Australia (2007)

14. Galpin, V.: Modelling network performance with a spatial stochastic process alge-
bra. In: International Conference on Advanced Information Networking and Ap-
plications, pp. 41–49 (2009)

15. Di Gregorio, S., Rongo, R., Serra, R., Spataro, W., Spezzano, G., Talia, D., Villani,
M.: Parallel simulation of soil contamination by cellular automata. In: Parcella, pp.
295–297 (1996)

16. Gribaudo, M., Cerotti, D., Bobbio, A.: Analysis of on-off policies in sensor networks
using interacting markovian agents. In: PerCom, pp. 300–305 (2008)

17. Gribaudo, M., Raiteri, D.C., Franceschinis, G.: Drawnet, a customizable multi-
formalism, multi-solution tool for the quantitative evaluation of systems. In: QEST,
pp. 257–258 (2005)

18. DrawNet Project (2011), http://www.drawnet.com
19. Jimnez, A., Posadas, A.M.: A moore’s cellular automaton model to get probabilistic

seismic hazard maps for different magnitude releases: A case study for greece.
Tectonophysics 423(1-4), 35–42 (2006)

20. Matisziw, T.C., Murray, A.T.: Modeling s-t path availability to support disaster
vulnerability assessment of network infrastructure. Comput. Oper. Res. 36, 16–26
(2009)

21. Neumann, J.V.: Theory of Self-Reproducing Automata. University of Illinois Press,
Champaign (1966)

22. Opper, M., Saad, D.: Advanced Mean Field Methods: Theory and Practice. MIT
University Press, Cambridge (2001)

http://europa.eu/rapid/pressReleasesAction.do?reference=MEMO/06/477
http://www.drawnet.com

294 D. Cerotti, E. Barbierato, and M. Gribaudo

23. Siregar, P., Sinteff, J.P., Chahine, M., Lebeux, P.: A cellular automata model of
the heart and its coupling with a qualitative model. Comput. Biomed. Res. 29(3),
222–246 (1996)

24. Svendsen, N.K., Wolthusen, S.D.: Graph Models of Critical Infrastructure Inter-
dependencies. In: Bandara, A.K., Burgess, M. (eds.) AIMS 2007. LNCS, vol. 4543,
pp. 208–211. Springer, Heidelberg (2007)

25. Trivedi, K.S.: Probability and statistics with reliability, queuing and computer
science applications, 2nd edn., pp. 215–217. John Wiley and Sons Ltd., Chichester
(2002)

A Grid Broker Pricing Mechanism for Temporal

and Budget Guarantees

Richard Kavanagh and Karim Djemame

School of Computing, University of Leeds,
Leeds, LS2 9JT, UK

{screk,karim.djemame}@leeds.ac.uk

http://www.comp.leeds.ac.uk

Abstract. We introduce a pricing mechanism for Grid computing, with
the aim of showing how a broker can accept the most appropriate jobs
to be computed on time and on budget. We analyse the mechanism’s
performance via discrete event simulation, and illustrate its viability, the
benefits of a new admission policy and to how slack relates to machine
heterogeneity.

Keywords: Grid, Economic Model, Time-Cost Constrained Brokering,
Job Admission Control.

1 Introduction

Grids [8,7] enable the execution of large and complex programs in a distributed
fashion. It is however, common that resources are provisioned in a best effort
approach only, with no guarantees placed upon service quality. It has also been
known for some time that guaranteed provision of reliable, transparent and qual-
ity of service (QoS) oriented resources is an important step for successful com-
mercial use of Grid systems [2,24,15,20].

The idea of introducing QoS to aid the uptake of Grids is not new and there
is a significant trend towards the provision of QoS. This is because of a widely
held belief that QoS is the major issue that keeps Grids from substantial uptake
outside academia [15,16,22,9,21].

In real world commercial and time-critical scientific settings guarantee that
computation is going to be completed on time are required. Best-effort service
limits the economic importance of Grids because users will be reluctant to pay or
contribute resources if the service they receive is not going to return computed
results at the time they are required [16].

We present two motivational scenarios that illustrate this need for time guar-
antees. The first is a commercial scenario where computation is required to
generate results which are relied upon as part of the business process, such as
animation, where it is useful to have all frames computed overnight before the
animation team arrive, where partial completion of the work delays or stops the
team starting the next days work [1]. The second scenario is in an academic

N. Thomas (Ed.): EPEW 2011, LNCS 6977, pp. 295–309, 2011.
� Springer-Verlag Berlin Heidelberg 2011

http://www.comp.leeds.ac.uk

296 R. Kavanagh and K. Djemame

environment where it is common before conferences for Grids to become over-
loaded [10]. It therefore makes sense to prioritise particular compute jobs based
upon when the results are required. In order that prioritisation is provided cor-
rectly an economic approach is used to ensure users truthfully indicate their
priorities [4,17].

To provide QoS the nature of the work that is being performed upon Grids
has to be understood. A substantial part of Grid workloads are formed from Bag
of Task/Parameter sweep based applications [13,10]. These are formed by sets
of tasks that execute independently of one another without communication and
are typically considered to be “embarrassingly parallel” [19]. Parameter sweeps
are formed by the same application been executed, while having either different
parameters or datasets to process.

In [15] it is made clear that uncharacterised, unguaranteed resources have no
value and that if poor QoS is provided that can be precisely characterized then
the value of the service may be defined. We therefore introduce an economic
model for brokering that ensures jobs/a bag of tasks only hold value to the
broker if they are completed in a timely fashion. Discrete event simulation is
performed to ensure we can characterise how the pricing model behaves, thus
ensuring that time and budget guarantees made by the broker can be achieved.

This paper’s main contributions are:

– A viable pricing mechanism that binds time and economic requirements of
a job together.

– Recommendations upon how to use slack, in relation to the reference proces-
sors speed to mitigate machine heterogeneity within the proposed economic
model.

– a new job admission control mechanism, that deals with due date and dead-
line based job requirements.

The remaining structure of the paper is as follows: The next section discusses
the pricing mechanism that has been formulated. The third section covers exper-
imental setup. The fourth discusses the simulation results. The fifth discusses the
related work and finally the last section discusses future work and conclusions.

2 The Pricing Mechanism

In this section we introduce the pricing mechanism that is intended to be used
in a broker aiming for temporal and budgetary guarantees. We first describe the
sequence of events that occur in this brokering service (see Figure 1).

1. Job requirements are sent to the broker. This includes the job’s resource
requirements, a budget that the user has assigned for the completion of a
job, a notion of priority that the broker will use to define its markup for the
service and finally its temporal requirements. These will be shown as a due
date by which the job should be completed by and a deadline by when it
must be completed.

A Grid Broker Pricing Mechanism for Temporal and Budget Guarantees 297

Broker

Resource Providers

Resource Quotes
<time, cost>

Job Requirements

Offer 1

Offer 2

Offer 3

Offer to complete work

Guaranteed Time Service

Resource Market

Fig. 1. The pricing mechanism

2. The broker then contacts the various resource providers that are available
to the user. It requests a cost and time estimate for completing the work.

3. The resource providers perform initial scheduling of the tasks within a job
so they can derive an estimate for completion time and price. This is based
upon their local resource markets.

4. The resource providers then present offers to complete the work to the broker.
5. The broker from the offers that have been returned, ranks them and filters

out poor offers i.e. sort by earliest and filter out unprofitable offers.
6. The broker then asks the user if it acceptable to proceed with the job at a

given price.
7. If the offer made to the user is acceptable the broker then submits the bag

of tasks that make up the job to the winning provider.

It is eventually expected that negotiations will occur between the end user
and the broker, given the current market conditions and properties of the job to
be submitted.

The resource providers generate offers to complete jobs from resource mar-
kets. These offers are evaluated by the broker which generates a service market,
this market structure was previously seen in SORMA [21]. In this paper we
focus upon the broker’s service market and the evaluation of offers made by
the resource providers. After the broker has received the offers, it is required to
evaluate them, which is illustrated in Figure 2.

From the resource providers a cost for running the job upon their resources
is provided. This is illustrated as a single line that is used as a reference point
in the service market. The broker needs to establish a markup which ensures
the broker has incentive for participating in the market (individual rationality)
while also lending itself towards budget balance.

Individual rationality requires the utility caused by participation in the Grid
market has to increase and budget balance means that participants have to
ensure that the income and expenditure balance as long term deficits must be
subsidised making them unfeasible [25,26].

298 R. Kavanagh and K. Djemame

����

��������

���	

�	�
�����������

����������

�
�������
�	����

��������������	

��	�������	��

��������

�����	�
����

��	�
����	���
�

����	�����

�
����������

�������������������

 ����	
������������	�������������

!���"������	

����������

��
������

	�����

(a) (b)

Fig. 2. The fiscal and temporal nature of an offer

The broker has a service charge that it will get paid by a user, which is denoted
by the z-shaped line. This intersects the resource cost which ensures the broker
will aim to complete the work on time.

In the initial stage before the due date the broker will make a profit. This
will be equal to the markup �resource cost. The next point of interest is that
of the deadline, at this point a cap upon the penalty fee is set. This lends itself
to budget balance as it limits the maximum possible loss. The rate at which the
service charge is reduced is defined to be a linear decent from the due date and
the maximum/original value to the deadline and the cap upon the penalty fee.

The penalty fee will be set to zero as this generates further useful properties.
If it is set to zero, the point where the broker breaks even is independent of
the resource cost and is a fixed percent of the due date to deadline period. The
breakeven point is located at: markup

100+markup �100 percentage through the due date
to deadline period i.e. if the markup was 50% then 50

100+50 �100 = 33%. If this is
not the case then the profit at this same position, where any given resource cost
will have the same profit is further defined as markup

100+markup �cap-on-penalty-fee.
The markup in this pricing mechanism will also be used to differentiate be-

tween jobs in terms of priority. The higher the priority/markup the faster the
budget is consumed upon a given resource, but the more likely the broker is to
accept the job due to higher profits. Higher markups also lead to a greater time
before the breakeven point when the due date and deadline are not equal i.e.
when not using a hard deadline.

In Figure 2a the final two concepts indicated are the budget resilience and the
potential loss for accepting work given no rescheduling. These are both numeric
figures relating to risk. The budget resilience indicates the gap between the
budget and the resource cost. If this is small the broker is more likely to make
a loss or use money it would have reserved for profit. The potential loss for
accepting the work is the economic risk the broker accepts when scheduling
work and asserting guarantees to the end user about its completion.

A Grid Broker Pricing Mechanism for Temporal and Budget Guarantees 299

In Figure 2b there are two important temporal factors marked. The first is
the difference between the estimated completion time and the breakeven point.
This takes into account the markup assigned to a job. This is because the higher
the markup the larger this gap becomes, which leads to the broker having a
greater preference for accepting higher markup jobs. Hence this value relates to
both temporal and budgetary risk factors i.e. if this gap is small there is little
spare time before a loss is made. The second factor is the slack, which is the
difference between the due date and the estimate of completion time. This is a
purely temporal interpretation of the spare time available to complete the job.

Pricing mechanisms also need admission policies to ensure they are not
swamped. We propose the following admission policy:

FOR EACH (Offer) {
Sort the offers based upon the ranking mechanism chosen

IF Completion Time <= Due Date AND

Service Price <= Budget {
Accept Offer;

BREAK;

} ELSE {
Take the last n accepted offers and find the average rate

at which profit accumulates and establish the going rate.

IF Current offer profit rate >=

(going rate − acceptable deviation below going rate) {
Accept Offer;

BREAK;

}
}

If the due date or budget does not effect the service price then the first most
profitable offer is accepted as it must be close to the best possible to accept. If
the service price has been affected by the due date or the jobs budget then the
broker must determine how much this has affected the job. The offer is therefore
only accepted if it is within a lower bound/threshold of the going rate. This
ensures that if a job was completed just after the due date that it still may be
acceptable if enough profit is gained. This ensures each job that has its service
price affected by the constraints is evaluated with respect to the competition
for resources within the job’s given lifespan i.e. had the job been competitive
it would be completed before the due date with money to spare. If it is not
competitive then there may still be room to accept the job so long as it does not
affect the next job’s chance of returning full profit to the broker.

3 Experimental Setup

The simulation was performed in a bespoke simulator that was written in Java
and tested using static code analysis1 and JUnit testing. The simulator works
in the following fashion. At the start of the simulation a bucket of jobs is
1 http://findbugs.sourceforge.net/

http://findbugs.sourceforge.net/

300 R. Kavanagh and K. Djemame

constructed. These are then released at a set rate determined by the simula-
tor’s core. The broker submits jobs to the local schedulers/providers, which in
turn calculate the machine to task allocations that they will make in their offer.
The broker then receives offers from the providers. These offers are then ranked
and filtered. If a winning offer exists it is accepted and the work is scheduled.
Once the initial bucket is empty the simulation is then allowed to finish the
remaining scheduled work after which the simulation ends.

The simulator used is highly configurable, the parameters that remain fixed
throughout the experiment are hence going to be discussed in the remainder of
this section. The duration of the experimentation was not capped but 1,000 jobs
were to be processed.

A simple local scheduler was used for the experimentation, it was setup to
assign work based upon the machines workload, it took the least loaded first
and assigned tasks in order of workload (largest task first).

8 providers were used, each with 144 machines. A range of both machine speed
and cost values was chosen. The machine cost was set such that the faster the
machine the more it costs, though there will be no set distribution shape for this
and values will be set by hand.

The task workload will be placed into three categories: small, medium and
large. The categories will denote the average task length. They will be set at
the equivalent of 2hrs, 4hrs and 8hrs worth of work on the average machine of a
provider. The average speed of the machines is 16,333 units of work per second.
Thus the amount of work for a medium sized task is 240,000,000 operations.
Similarly this has been done for the small (120,000,000) and large (480,000,000)
categories. The workload for a task will have a normal distribution with a mean of
2.73 and a standard deviation of 6.1 following the average task runtime indicated
in [13]. The durations were chosen because [11] gives the average time to run
a task in a group submission/job as 14,181s and [12,10] indicates that most
runtimes are shown to between a fraction of a minute and 1,000 min (1,000min
= 16.6hrs). The runtime variability between tasks belonging to the same BoT
[13] is indicated to follow a Weibull distribution with a shape of 2.05 and a scale
parameter of 12.25 hence this variability will also be accounted for.

The task per job will be separated into three categories: small, medium and
large. A Weibull distribution will be chosen with a shape parameter set to 1.76
as per [13], the scale parameter will be adjusted in a fashion that creates the
appropriate range desired. Iosup et al. [13] give an average BoT size in their
traces as been between 5 and 50, while the maximum BoT size can be on the
order of thousands. The authors in [10] indicate that the average number of
tasks in a bag in various different Grid traces investigated ranges between 2 and
70 and that most averages for the traces examined fall between 5 and 20. The
ranges for the amount of tasks in a bag are therefore indicated in table 1.

The inter-arrival time (i.e. the time between arrivals of jobs) will follow the
Weibull distribution and will have a shape parameter of 4.25 as per [13]. The
inter-arrival time for job submissions is indicated to be between 1 and 1,000s in
[10,12], with most been below 100s.

A Grid Broker Pricing Mechanism for Temporal and Budget Guarantees 301

Table 1. The minimum and maximum tasks per job

Bag Size Min and Max Values Mean

Small 2-10 4.99

Medium 11-39 21.49

Large 40-70 51.23

A selection of inter-arrival times have therefore chosen to reflect this prior
work. Though a wide spread of inter-arrival times has been tested a more select
range which provides high levels of competition for resources will be discussed
in this paper. Inter-arrival rates will be below 334.14s with an inter-arrival time
of 210.14s where it is not otherwise indicated.

Each simulation will be run 10 times and where shown a confidence interval
of 95.4% will be indicated.

4 Evaluation

In this section we discuss the results of our experimentation. We initially focus
upon the effects of a range of parameters upon jobs accepted and its relationship
to slack. We then focus upon results highlighting the behaviour of the admission
policy introduced in section 2. In examining the profit made over the life of the
simulation we can then assess the long term viability of the broker while ensuring
as many users as possible have their requirements satisfied.

In Figure 3 the due date and deadline are set to be the same time. The
inter-arrival time is set at 210.14s where is not subject to change as part of
the experiment. This arrival rate has been determined to give a high level of
competition between tasks. The markup is fixed at 10% and a medium workload
per task and medium count of tasks per job were chosen. The broker’s selection
policy sorts the offers by earliest first then accepts the topmost offer.

In Figure 3a two markups are shown, it can be seen that there is little dis-
tinguishing difference between them. The profit made which is not shown here
differs in that the higher markup when compared with the lower markup makes
more profit. The lack of difference between markups is placed down to the per-
missive admission policy, used by this first experiment.

A clear transition between 250% and 300% is observed. This is considered to
be an aspect of competition. Firstly this experiment is conducted with due date
and deadline been equal. It can therefore be said that at 100% (i.e. just in time
without any slack provided) there would have to be no start delay present, i.e.
no effective competition is present. Given higher levels of slack we can consider
that some delay can be tolerated and that this delay will be directly related to
other jobs in the system and hence the competition between them.

The arrival rate influences the amount of jobs accepted, but as shown in Figure
3b this only occurs after the transition point. It is noted that the 86.14 inter-arrival
time trace is levelling out and is tending towards a maximum permissible amount
of acceptable jobs, while 210.14 and 243.7 observe a much more linear relationship

302 R. Kavanagh and K. Djemame

after this transition period. Finally the 334.14 trace has reached the maximum
amount of jobs submitted after this transition. The effects shown here are because
jobs have a fixed time window in which they must be completed, so high arrival
rates ensure these windows overlap more and once the slack is increased more
freedom of job placement permitted and fewer jobs have to be rejected.

We now show that the position of the transition point is not related to the
task count (Figure 3c) or task size (Figure 3d).

In Figure 3c it is observed that before 2.5x slack the amount of tasks in a job
distinguishes the traces, which is not seen in the other figures. The differences in
gradients seen after the 3.0x point is also of interest as jobs with a lower amount
of tasks per job are accepted much more readily, though this also relates to their
simply been less work. Argument can still be made that if the slack is small then
it helps if the job contains fewer tasks, especially before the transition point. This
distinction occurs as there is a finite amount of machines over the average speed
of the provider. The average speed was chosen as the mechanism for estimating
completion time. Hence when more tasks are present more competition exists
between the tasks, as there is a finite set of machines that are fast enough to
complete the work in time, especially with low levels of slack.

Figure 3d like Figure 3c changes the amount of workload per job; it must
therefore be asked why Figure 3d before the transition does not distinguish
between the low, medium and high traces. The reason for this is placed down to
the fact the duration a job relates to the amount of work needing completing.
In Figure 3d this therefore makes no difference as the size of the slack is related
to the estimate of completion time and hence task size.

The start delay relative to the task length during the experimentation has
been very limited. The initial slack therefore often limits the issues that compe-
tition and start delay causes. In Figure 3e we see an alternative use for slack and
the reason for the sudden transition. Figure 3e shows that the reference proces-
sor for estimating the duration is responsible. Three separate reference speeds
were chosen, namely the fastest possible machine 25,000, the average 16,333 and
a slow machine 14,000. The choice of reference machine ensures tasks cannot
be placed on machines slower than the reference until the slack is sufficient to
compensate for the extra time taken. If the slack is always chosen to compensate
for the heterogeneity in machines then job acceptance rates will be high given
the temporal constraints. If the end user requests a small amount of slack then
it can be assumed that they will require machines that are at least as fast as the
reference machine.

The fastest/average/slowest machines per provider where 25,000/16,333 and
6,000 ops/sec respectively. In table 2 the reference machine’s speed is compared
to the slowest machine and in doing so indicates the location on the x axis of
the transition point.

In the experimentation shown by Figure 4 the inter-arrival time is set at
210.14s. The aim of this experimentation it to show the effects of increasing the
gap between the due date and deadline. The offers from providers are ordered
by earliest completion first. In Figure 4a and 4b the results are shown for several

A Grid Broker Pricing Mechanism for Temporal and Budget Guarantees 303

Table 2. The relative speed difference between the reference machine and the slowest
machine

Calculation Value

Average/Slowest 2.72

Fastest/Slowest 4.17

Slow/Slowest 2.33

markups. The filter/admission policy being used takes the first offer where a
profit is made, which is similar to related work such as [23], given that faster
processors in our experimentation cost more. In Figure 4c and 4d the proposed
admission policy is used instead. The results shown are for 50% markup which
highlights the benefits of our admission policy the most. The last 50 accepted
jobs are used to establish the going rate.

In Figure 4a the tendency is to follow a straight line equation, 10% and 50%
have been marked on 4a to highlight this. Confidence intervals on 10, 40 and
50% markup runs have been added though for 20% and 30%’s error bars have
been omitted but are broadly similar.

It can be seen in Figure 4a when the deadline is set to be 5x (500%) that
of the due date, that all jobs with 50% markup are accepted. This illustrates
how higher markup encourages job acceptance and exacerbates the effect of the
increased gap between due date and deadline. This occurs because the breakeven
point is later in the 50% markup than it is with the 10% markup and in general
the 50% markup run is more likely to make a profit on a given job.

The detrimental effects of accepting any profitable offers is shown in Figure
4b. The profit drops as the gap between due date and deadline increases. This is
due to more jobs being accepted (Figure 4a) which makes it more likely that the
next job to arrive will overshoot the due date. The increase in gap size effectively
gives more time for job to complete, which generates an increase in competition
for the finite resources available as more jobs can plausibly complete before the
deadline. It can also be noted that when the gap between due date and deadline
is small the rate at which the service price drops quickly, hence providing the
steepness of the curve.

This downward trend in profit is eventually reversed as the gap increases. This
is due to the broker having more time to complete the work before the breakeven
point as the drop in the service price is slower and is aided by the acceptance of
more jobs.

In the Figure 4c we can see fewer jobs were accepted when the threshold below
the going rate was less than zero i.e. when all jobs after the due date must have
a higher going rate than the average for the last 50 jobs.

The broker’s profit can be seen to increase in Figure 4d as the difference in
rates is set so that jobs after the completion time have to have a higher rate of
return. There remains some loss relative to not allowing any gap, but this has
largely been mitigated. The due date to deadline period may also be used solely
as a recovery mechanism/a way to deal with completion time uncertainty, at the
expense of never accepting work that is expected to complete between the due
date and deadline.

304 R. Kavanagh and K. Djemame

(a) (b)

(c) (d)

(e)

Fig. 3. The effects of slack on job acceptance

A Grid Broker Pricing Mechanism for Temporal and Budget Guarantees 305

(a) (b)

(c) (d)

Fig. 4. The effects of intelligent filtering

5 Related Work

A good introduction to pricing may be found in [30,21]. The SORMA project
introduced two pricing schemes namely k-pricing [26,3] and the GREEDEX [28]
clearing mechanism, though the most similar pricing mechanisms can be found
in [6,23,14,5,1] where a service charge that diminishes once a job has passed a
specified time is also used.

In [6,23,14,5] the focus is upon the minimum time for completion/slowdown
and not upon the user preference for a completion time. It seems more suitable
when considering user satisfaction to aim for a due date and hence when the user
wants/needs the results rather than the minimum possible runtime for a given
job. The concept of slowdown is also made unclear by various machine speeds
across the Grid, as it removes the clear reference point by which slowdown may
be judged. This therefore reflects the real world better as it simply stops the
need for reference to a dedicated compute resource and focuses on when the
results are needed.

306 R. Kavanagh and K. Djemame

In [6,23,14,5,1] a completion time and rate of loss of a jobs economic value
is used. Our approach uses a due date and deadline which is seen as more user
friendly than asking for a rate by which a job loses its economic worth.

In [6] currency is provided to users at periodic intervals into accounts with
a finite limit. This acts as a control mechanism to ensure arbitrarily large bids
cannot be made. [17] describes why hording money introduces predictability and
resource starvation issues, which is reasonable justification for using a control
mechanism that has upper limits on the account size.

Like our approach Aggregate Utility [23] FirstProfit and FirstOpportunity
[23] takes a bound approach to penalty fees. In First Reward and Risk Reward
[14] it is chosen to be only potentially bound and in LibraSLA [5] there is no
bound at all. This unlimited penalty has issues as pricing mechanisms should
have properties such as budget balance and individual rationality which unbound
penalties preclude [25,26].

The difference between the due date and the runtime of a job gives a notion
of slack, derived from the user’s preference or willingness to accept delays in a
jobs completion time. This concept of slack is first seen in [1], but a rate of decay
is still considered, rather than seeing the decay rate as a product of a due date
and deadline.

In LibraSLA [5] a deadline based approach is taken, in which deadlines are
classified as either hard or soft. Soft deadlines cause the price of jobs to diminish
at a given rate. Our approach differs in that it lacks the distinction between
deadline types as hard deadlines merely have the due date and deadline been
equal.

In [1] an aggregate utility function is used so the user may specify their sen-
sitivity to not having all the tasks in a job been completed. This is seen by the
authors to be beneficial in preventing the service provider from cherry picking
only the most profitable jobs.

In [14] the concept of net present value is used so future work is discounted
with the intent of ensuring that long jobs are penalised. They are seen as being
potentially more risky as profit can only be achieved after they complete. The
long duration also ensures that they may potentially block a more profitable job
in the meantime. This therefore allows the scheduler to be configured to accept
only smaller jobs as the returns are likely to be made earlier and the job is
less likely to block further more profitable jobs. This feature is worthy of note
and may be considered in our own model in the future. It is however not clear
how to continually adjust the discount rate to ensure jobs that will not have an
detrimental effect upon the next job are accepted, especially in low competition
based circumstances.

The admission control was shown during both our own and others experi-
mentation to be key [14,23] to a good brokering system. In early work such as
First Price [6] no mention is made. In First Reward and Risk Reward [14] the
time before the perceived utility drops below zero is used. This utility derives
from using a discount rate that depreciates the perceived value of a job the
based on the time it takes to complete. The assumption is that short jobs are

A Grid Broker Pricing Mechanism for Temporal and Budget Guarantees 307

less likely to block future more profitable jobs. Our mechanism avoids this and
only penalises jobs that do not reach full profit and are likely to delay the next
job. In [23] profit is used as admission criteria for FirstProfit, FirstOpportunity,
LJF (longest job first) and SJF (shortest job first). For FirstOpportunityRate
The ProfitRate (profit divided by schedule duration) is used. In [1] profit rate
is again used though it is complicated by the aggregate utility function which
allows unprofitable tasks should it ensure the contract mechanism in place for
the amount of tasks to complete provides an appreciable gain. Finally LibraSLA
[5] uses a “return value” which is derived from the job’s value/runtime/deadline.
This return value is then summed across all nodes and tasks. The new candidate
schedule is then compared with the previous schedule.

6 Conclusion and Future Work

We have illustrated a pricing model that is aimed at ensuring the broker that is
been developed as part of our work will perform work on time and on budget[29].
It ensures the broker aims towards a due date and deadline provided by the end
user, given their cost constraints/priority for their job. We have made recom-
mendations upon how slack can be used in relationship to machine heterogeneity
and a reference machine which is used for estimating job completion times. We
have also shown a admission policy that removes the significant losses made by
accepting too many jobs. This focused upon the due date to deadline period and
ensured the pricing mechanism’s viability by making sure the broker in accept-
ing additional work still maintains its reason for participating in the Grid i.e
incentive compatibility.

In the future we plan to consider dynamic pricing at the resource provider
level. This ensures resource providers are not going to either undervalue or over-
value resources, which in turn can lead to unrealised profit or utility [17,21].
The models in [23,14,5,1] all make little attempt to cope with data transfer re-
quirements, which has been shown by [27,18] to be a substantial problem for
the scalability of algorithms. We intend to add pricing based on data transfer
to our model and to account for transfer times and costs. We also intend to
investigate the effects of underestimates of task lengths and the effect of events
and slowdowns that require rescheduling.

References

1. AuYoung, A., Grit, L., Wiener, J., Wilkes, J.: Service contracts and aggregate
utility functions. In: 15th IEEE International Symposium on High Performance
Distributed Computing (HPDC-15). IEEE, New York (2005)

2. Battre, D., Hovestadt, M., Kao, O., Keller, A., Voss, K.: Planning-based scheduling
for sla-awareness and grid integration. In: Bartk, R. (ed.) PlanSIG 2007 The 26th
Workshop of the UK Planning and Scheduling Special Interest Group, vol. 1, p. 8.
Prague, Czech Republic (2007)

308 R. Kavanagh and K. Djemame

3. Becker, M., Borrisov, N., Deora, V., Rana, O.F., Neumann, D.: Using k-pricing
for penalty calculation in grid market. In: Proceedings of the 41st Annual Hawaii
International Conference on System Sciences, p. 97 (2008)

4. Buyya, R., Abramson, D., Venugopal, S.: The grid economy. Proceedings of the
IEEE 93(3), 698–714 (2005)

5. Chee Shin, Y., Buyya, R.: Service level agreement based allocation of cluster re-
sources: Handling penalty to enhance utility. In: IEEE International Cluster Com-
puting, pp. 1–10 (2005)

6. Chun, B.N., Culler, D.E.: User-centric performance analysis of market-based clus-
ter batch schedulers. In: 2nd IEEE/ACM International Symposium on Cluster
Computing and the Grid 2002, p. 30 (2002)

7. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the grid: Enabling scalable
virtual organizations. In: Tennessee, U.C.B.L. (ed.) Workshop on Clusters and
Computational Grids for Scientific Computing, vol. 15, pp. 200–222. Sage Publi-
cations Inc., Chateau Faverges (2000)

8. Foster, I.: What is the grid? a three point checklist. Grid Today 1(6), 22–25 (2002)

9. Hovestadt, M.: Fault tolerance mechanisms for sla-aware resource management. In:
Proceedings of 11th International Conference on Parallel and Distributed Systems
2005, vol. 2, pp. 458–462 (2005)

10. Iosup, A., Epema, D.: Grid computing workloads. IEEE Internet Computing 15(2),
19–26 (2011)

11. Iosup, A., Jan, M., Sonmez, O.O., Epema, D.H.J.: The characteristics and perfor-
mance of groups of jobs in grids. In: Kermarrec, A.-M., Bougé, L., Priol, T. (eds.)
Euro-Par 2007. LNCS, vol. 4641, pp. 382–393. Springer, Heidelberg (2007)

12. Iosup, A., Li, H., Jan, M., Anoep, S., Dumitrescu, C., Wolters, L., Epema, D.H.J.:
The grid workloads archive. Future Generation Computer Systems 24(7), 672–686
(2008)

13. Iosup, A., Sonmez, O., Anoep, S., Epema, D.: The performance of bags-of-tasks in
large-scale distributed systems. In: Proceedings of the 17th International Sympo-
sium on High Performance Distributed Computing. ACM, Boston (2008)

14. Irwin, D.E., Grit, L.E., Chase, J.S.: Balancing risk and reward in a market-based
task service. In: Proceedings of 13th IEEE International Symposium on High Per-
formance Distributed Computing 2004, pp. 160–169 (2004)

15. Kenyon, C., Cheliotis, G.: Architecture requirements for commercializing grid re-
sources. In: Proceedings of 11th IEEE International Symposium on High Perfor-
mance Distributed Computing, HPDC-11 2002, pp. 215–224 (2002)

16. Kokkinos, P., Varvarigos, E.A.: A framework for providing hard delay guarantees
and user fairness in grid computing. Future Generation Computer Systems 25(6),
674–686 (2009)

17. Lai, K.: Markets are dead, long live markets. SIGecom Exch. 5(4), 1–10 (2005)

18. Lee, Y.C., Zomaya, A.Y.: Data sharing pattern aware scheduling on grids. In:
International Conference on Parallel Processing, ICPP 2006, pp. 365–372 (2006)

19. Lee, Y.C., Zomaya, A.Y.: Practical scheduling of bag-of-tasks applications on grids
with dynamic resilience. IEEE Transactions on Computers 56(6), 815–825 (2007)

20. Liu, C., Baskiyar, S.: A general distributed scalable grid scheduler for independent
tasks. Journal of Parallel and Distributed Computing 69(3), 307–314 (2009)

21. Neumann, D., Stober, J., Weinhardt, C., Nimis, J.: A framework for commercial
grids - economic and technical challenges. Journal of Grid Computing 6(3), 325–347
(2008)

A Grid Broker Pricing Mechanism for Temporal and Budget Guarantees 309

22. Nou, R., Kounev, S., Julia, F., Torres, J.: Autonomic qos control in enterprise
grid environments using online simulation. Journal of Systems and Software 82(3),
486–502 (2009)

23. Popovici, F.I., Wilkes, J.: Profitable services in an uncertain world. In: Proceedings
of the ACM/IEEE Conference on Supercomputing, SC 2005, pp. 36–36 (2005)

24. Priol, T., Snelling, D.: Next generation grids: European grid research 2005–2010
(2003)

25. Schnizler, B., Neumann, D., Veit, D., Weinhardt, C.: A multiattribute combina-
torial exchange for trading grid resources. In: Proceedings of the 12th Research
Symposium on Emerging Electronic Markets, RSEEM (2005)

26. Schnizler, B., Neumann, D., Veit, D., Weinhardt, C.: Trading grid services -
a multi-attribute combinatorial approach. European Journal of Operational Re-
search 187(3), 943–961 (2008)

27. da Silva, F.A.B., Senger, H.: Improving scalability of bag-of-tasks applications
running on master-slave platforms. Parallel Computing 35(2), 57–71 (2009)

28. Ster, J., Neumann, D.: GreedEx a scalable clearing mechanism for utility comput-
ing. Electronic Commerce Research 8(4), 235–253 (2008)

29. The University of Leeds: ISQoS Project Homepage (2010),
http://www.comp.leeds.ac.uk/CollabSysAndPerf/html/ISQOS.php

30. Wilkes, J.: Utility functions, prices, and negotiation. In: Buyya, R., Bubendorfer,
K. (eds.) Market Oriented Grid and Utility Computing. Wiley Series on Parallel
and Distributed Computing, pp. 67–88. John Wiley & Sons, Inc., Chichester (2008)

http://www.comp.leeds.ac.uk/CollabSysAndPerf/html/ISQOS.php

Visualisation for Stochastic Process Algebras:
The Graphic Truth

Michael J.A. Smith1 and Stephen Gilmore2

1 Department of Informatics and Mathematical Modelling
Danmarks Tekniske Universitet, Lyngby, Denmark

mjas@imm.dtu.dk
2 Laboratory for Foundations of Computer Science

University of Edinburgh, Edinburgh, United Kingdom
Stephen.Gilmore@ed.ac.uk

Abstract. There have historically been two approaches to performance mod-
elling. On the one hand, textual language-based formalisms such as stochastic
process algebras allow compositional modelling that is portable and easy to man-
age. In contrast, graphical formalisms such as stochastic Petri nets and stochastic
activity networks provide an automaton-based view of the model, which may be
easier to visualise, at the expense of portability. In this paper, we argue that we
can achieve the benefits of both approaches by generating a graphical view of a
stochastic process algebra model, which is synchronised with the textual repre-
sentation, giving the user has two ways in which they can interact with the model.

We present a tool, as part of the PEPA Eclipse Plug-in, that allows the com-
ponents of models in the Performance Evaluation Process Algebra (PEPA) to be
visualised in a graphical way. This also provides a natural interface for labelling
states in the model, which integrates with our interface for specifying and model
checking properties in the Continuous Stochastic Logic (CSL). We describe re-
cent improvements to the tool in terms of usability and exploiting the visualisation
framework, and discuss some of the general features of the implementation that
could be used by other tools. We illustrate the tool using an example based on a
model of a financial web-service application.

1 Introduction

It is often said that seeing is believing. Even though we know from biology that the
eye can be tricked in all manner of ways, most people will agree that being able to
see — or visualise — something with their own eyes adds great weight to their belief
in it. This is true in performance modelling, just as much as in the real world. Unlike
a computer program, which implements a specification and therefore can be tested for
correctness, a performance model is often a specification in and of itself. This leads to a
big problem — how do we convince ourselves that the model we have written is really
the same as the model we intended to write?

There are many approaches to performance modelling, but the use of language-based
formalisms such as stochastic process algebras [16,19] have been particularly success-
ful. In addition to being natural for computer scientists, who are used to programming

N. Thomas (Ed.): EPEW 2011, LNCS 6977, pp. 310–324, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Visualisation for Stochastic Process Algebras: The Graphic Truth 311

in linear, text-based languages, they have the advantage of portability — we do not re-
quire a special tool to view or edit the model. A disadvantage, however, is that it can
be difficult to visualise the behaviour of the model — for example, a small typo in the
model can lead to strange and unintended behaviour, but can easily go unnoticed.

An alternative approach is to use graphical formalisms for performance modelling,
such as stochastic Petri nets [3] and stochastic activity networks [20]. Since these are
automata-based formalisms, it is easy to visualise the structure and behaviour of com-
ponents in the model. Whilst several highly successful tools make use of such for-
malisms — for example PIPE [4] and Möbius [11] — they suffer from some limitations.
Most notably, portability of the model between tools, and flexibility of the tool, since
the interface may be too restrictive or cumbersome for advanced users, compared to the
freedom of a text editor.

The contribution of this paper is to bring these two approaches together, in a tool
that supports two different views of the same model. We present an extension to the
PEPA Eclipse Plug-in [30] that allows performance models in the Performance Evalu-
ation Process Algebra (PEPA) [16] to be presented graphically. This is useful not only
for visualising the model, but also as an intuitive interface for abstracting it, and for
specifying performance properties we would like to verify.

Since we have already presented a summary of the analysis features of our tool
in [24], implementing the compositional abstractions developed in [25, 26], it is im-
portant to clarify the purpose of this paper. Our focus here is not on the back-end of the
tool, but on the novel user interfaces that we have developed. We present some signifi-
cant improvements in features and usability compared with [24], and moreover describe
the implementation details of our front-end, to allow the principles to be applied to other
tools based on stochastic process algebras. Figure 1 shows a screenshot of the plug-in.

We begin in Section 2 by introducing the PEPA language, along with a running ex-
ample based on a financial web service case study. We then motivate the need for visual-
isation of PEPA models in Section 3, before introducing the visualisation features of the
PEPA Eclipse Plug-in. In Section 4, we describe how PEPA models can be visualised in
a graphical way, along with how this interface can be used for specifying abstractions
of the model, and for labelling states. In Section 5, we then present the interface for
constructing performance properties (in the Continuous Stochastic Logic (CSL) [2]),
which ensures that the user can only enter syntactically valid properties. We discuss
implementation details in Section 6, before considering related work in Section 7 and
concluding in Section 8.

2 Modelling in PEPA

The Performance Evaluation Process Algebra (PEPA) [16] is a widely used language
for performance modelling and analysis, which allows models to be built composition-
ally. PEPA models are built out of components, which run in parallel and can perform
activities. An activity (a, r) is a pair consisting of an action type a ∈ A, and a rate
r ∈ R≥0 ∪ {�}. The rate parameterises an exponential distribution that describes the
duration of the activity. The special rate � denotes a passive rate, meaning that another
component must determine the rate of the activity. The syntax of PEPA is as follows:

312 M.J.A. Smith and S. Gilmore

Fig. 1. The PEPA Eclipse Plug-in, showing the editor and the abstraction view

CS := (a, r).CS | CS + CS | A
CM := CS | CM ��

L
CM | CM/L

Here, we call CS sequential components, and CM model components. A PEPA model
is constructed by defining a collection of sequential components, along with a model
component called the system equation, which describes the initial configuration of the
model. The PEPA combinators are as follows:

Prefix (a, r).C The component can carry out an activity (a, r) to become C.

Choice C1 + C2 The component may behave as either C1 or C2, according to
the first that completes an activity (the race condition).

Cooperation C1 ��
L

C2 C1 and C2 synchronise over the actions in L (the cooperation
set). For activities whose type is not in L, the two compo-
nents proceed independently. Otherwise, they must perform
the activity together, at the rate of the slowest component.

Hiding C/L The component behaves as C, except that activities with an
action type in L are hidden, and cannot be synchronised over.

Constant A
def= C The name A refers to component C.

PEPA has an operational semantics, which maps a model onto a labelled multi-transition
system, from which a continuous-time Markov chain (CTMC) is derived [16]. If we
want to operate on the underlying CTMC of a model in a compositional way, however,
it is more useful to use an alternative semantics based on a Kronecker representation.
This was first introduced in [17], and developed further in [25,26]. It was proven in [25]
that the reachable state space of the CTMC given by the Kronecker semantics is iso-
morphic to that given by the original semantics of PEPA in [16].

Visualisation for Stochastic Process Algebras: The Graphic Truth 313

To specify the CTMC of a PEPA model in a compositional way, we first need to
define the notion of a CTMC component:

Definition 1. A CTMC component is a tuple (S, r, P , L), where S is a finite non-empty
set of states, r : S → R≥0∪{�} assigns a rate (or�) to each state, P : S×S → [0, 1]
assigns a probability distribution over S to each state s ∈ S, and L : S → AP is a
labelling function (AP is a finite set of atomic properties). We require for all s ∈ S that∑

s′∈S P (s, s′) = 1.

Note that if all the rates are active, a CTMC component is just a standard CTMC.
We construct a PEPA model by composing CTMC components. To do this, we use

two composition operators, � and $, which correspond to synchronised and indepen-
dent parallel composition respectively. For CTMC components M1 = (S1, r1, P1, L1)
and M2 = (S2, r2, P2, L2), these are defined as:

M1 � M2 = (S1 × S2, min{ r1, r2 }, P1 ⊗ P2, L1 × L2)

M1 $M2 = (S1, r1, P1, L1) � (S2, r
′
�, I, L2) + (S1, r

′
�, I, L1) � (S2, r2, P2, L2)

where we define min{ r1, r2 }(s1, s2) = min{ r1(s1), r2(s2) }, (L1 × L2)(s1, s2) =
L1(s1) ∩ L2(s2). r�(s) = � for all s, and I is the identity matrix (I(s1, s2) = 1 if
s1 = s2 and 0 otherwise).⊗ is the standard Kronecker product of two matrices [21].

For two CTMC components M1 = (S, r1, P1, L) and M2 = (S, r2, P2, L) with the
same state space S and labelling function L, the addition operator used in the previous
equation is defined as follows:

M1 + M2 =
(

S, r1 + r2,
r1

r1 + r2
P1 +

r2

r1 + r2
P2, L

)
where we define (r1 + r2)(s) = r1(s) + r2(s), ri

r1+r2
(s) = ri(s)

r1(s)+r2(s)
, i ∈ { 1, 2 },

and (rP)(s1, s2) = r(s1)P (s1, s2).
The Kronecker semantics of PEPA is as follows. For a PEPA sequential component

C, we use the operational semantics in [16] to derive a CTMC component: �C�
PEPA =

(S, r, P , L). Technically, the labelling function L is not given as part of the model, but
we will show how to define it using the PEPA Eclipse Plug-in, in Section 4. We can
similarly define �C�

PEPA
a = (S, ra, Pa, L) to be the CTMC component over the same

state space S, where only the contribution of activities of action type a is considered (if
a state s cannot perform an activity of type a, ra(s) = 0).

Definition 2. The CTMC induced by a PEPA model C is:

�C� =
∑

a∈Act(C)

�C�a

where Act(C) is the set of all action types that occur in C (both synchronised and
independent), and �C�a is as follows:

�C�a = �C�
PEPA
a if C is a sequential component

�C1 ��L C2�a =
{

�C1�a � �C2�a

�C1�a $ �C2�a

if a ∈ L
if a �∈ L

314 M.J.A. Smith and S. Gilmore

Customer Idle = (request , rrequest).Customer Entering
Customer Entering = (enterData , renter data).Customer Upload
Customer Upload = (uploadData , rupload).Customer Waiting
Customer Waiting = (approve , rinform).Customer Idle

+ (decline, rinform).Customer Deciding
Customer Deciding = (reapply , rreapply × t0).Customer Entering

+ (reapply , rreapply × t1).Customer Idle

Service Idle = (uploadData , rupload).Service Validating
Service Validating = (validateData , rvalidate).Service Sending
Service Sending = (sendBank , rsendBank).Service Idle

Bank Idle = (sendBank , rsendBank).Bank PreDecide
Bank PreDecide = (predecide , rpredecide × p0).Bank Approve

+ (predecide , rpredecide × p1).Bank Decline
+ (predecide , rpredecide × p2).Bank Employee

Bank Employee = (decide, rdecide × q0).Bank Confirm
+ (decide, rdecide × q1).Bank Decline

Bank Confirm = (decide, rdecide × s0).Bank Approve
+ (decide, rdecide × s1).Bank Decline

Bank Approve = (approve , rinform).Bank Idle
Bank Decline = (decline, rinform).Bank Idle

Customer Idle ��
{ uploadData,approve,decline }

(
Service Idle ��

{ sendBank } Bank Idle
)

Fig. 2. A PEPA model of a financial web service application

Example: As a running example for the remainder of this paper, consider the PEPA
model in Figure 2. This is a model of a financial services case study from the SEN-
SORIA project — a five-year EU-funded project on software engineering for service-
oriented computing [23]. The project brought together a large number of European
universities and research centres together with four industrial partners, one of whom
was a European bank engaged in business-to-business operation. The bank explained
the process by which loans are awarded to businesses: the workflow must be reliable, to
guard against fraud, and also meet legal constraints on fiscal and monetary transactions.

The PEPA model presented here describes this workflow in terms of a customer using
a service portal. Through this, the customer interacts with the bank, where employees
approve or decline loans subject to managerial approval. Structurally, the model is a
typical idiomatic PEPA model, with a small number of sequential components, which
may be replicated to make larger instances of the problem. These sequential compo-
nents are brought together in a parallel composition, requiring them to co-operate on
shared activities (such as uploadData) and to proceed independently on other activities
(such as the decide activity, which approves the loan request).

Some components have a relatively complex workflow with multi-way branching
and loops to different entry points in the workflow. Each component is cyclic so that
the model has a meaningful steady state solution, and describes an unending process
with infinite behaviour. The visualisation capabilities of the PEPA Eclipse Plug-in were

Visualisation for Stochastic Process Algebras: The Graphic Truth 315

very helpful in enabling us to communicate the meaning of the model to partners in the
project who were not familiar with process calculi and stochastic processes.

A more complete description of the SENSORIA Finance Case Study appears in [9].

3 The Argument for Visualisation

The approach adopted in this paper for visualising PEPA models differs from the ap-
proach taken in graphical modelling formalisms such as Petri nets and Stochastic Activ-
ity Networks (SANs), where the visual representation and layout of the model is central.
In these formalisms, the modeller most often creates a manual layout of the model —
this is the case for the PIPE Petri net editor [4] and the SAN editor of Möbius [11].
Other, mostly textual, representations of the model, such as XML or program source
code, are generated from the graphical representation. Some tools for stochastic pro-
cess algebras — most notably CASPA [22] and Aemilia [6] — have also used this
approach to provide a graphical formalism as an alternative to the textual language.

In contrast to this, we wanted the textual representation of the PEPA model to be
considered as the model source — having primary importance — and for graphical rep-
resentations to be automatically derived from this and have secondary importance. The
idea is to use automatic layout algorithms to generate a first attempt at a layout, which
can then be manually improved by the user according to their aesthetic sensibilities and
tastes. The manually improved version is automatically saved so that it does not need to
be redone after every edit. We believe that this is a good pragmatic compromise between
a fully manual and a fully automatic approach to visualisation.

It is important to us that the graphical representation of the PEPA model should be
based on the components that PEPA uses to structure large models. The visualisation
of the model is only helpful if the user can meaningfully interpret the visualisation.
From earlier work [8], we have seen that each component of the model is a coherent
unit of behaviour, and we believe that using this to structure the visualisation is more
comprehensible than looking at the underlying CTMC. In other words, if we show the
synchronisation between components by expanding out the model, then the graphical
representation becomes too large, and difficult to understand. Finding a good solution
to this problem is an important aspect of future work.

Given this component-level perspective, it is important that we visualise both the
structural and stochastic information in each component. This means that rates must
play an essential part in the visual representation, so that we can detect errors in rate
definitions, such as placing the decimal place in an unintended position. Similarly, we
should have some way of noticing if we incorrectly declare an activity to be passive
rather than active. Our solution is to use different colours to distinguish active and
passive activities, and different shades of colour to distinguish fast and slow activities.

4 Visualisation of PEPA Models

The PEPA Eclipse Plug-in allows us to edit and analyse PEPA models using the popular
Eclipse framework [12]. This separates the user interface into two main parts. The editor
window is where the PEPA model is displayed, and can be edited. This is basically a

316 M.J.A. Smith and S. Gilmore

Fig. 3. The abstraction view

text editor, with additional features such as syntax highlighting and identification of
parse errors. Alongside the editor are a number of views, which are used to display
information about the model, and as an interface for invoking analyses of the model.
This can be seen in Figure 1, where the editor is positioned centrally, with the views
below it and to the right. In this section, we will look at the abstraction view (shown
at the bottom of the screen), which has a graphical interface for viewing PEPA models,
built on top of the Eclipse Graphical Editing Framework (GEF) and the Zest toolkit.

The idea of visualising PEPA models is not a new one, and was first proposed in [29].
Since PEPA is a compositional language, we can view each component in the model
independently, as an automaton whose transitions are labelled by activities. In [29] it
was suggested that we can do this by displaying the derivation graph of a component.
We use a slightly different approach based on the Kronecker representation described
in the Section 2 — this is entirely equivalent in terms of what the user sees, but the
underlying data structure is more versatile, as we shall discuss in Section 6.

Figure 3 shows the abstraction view, displaying the Bank component from Figure 2.
There are four essential features of this view:

1. Visualising: In the main panel of the view is a series of tabs, which display an
automaton for each sequential component in the PEPA model. This allows a fast
visualisation of the component as described, so that certain errors in the model can
be seen immediately — for example, if the component is supposed to cycle between
a number of states, we expect to see a cyclic automaton.

Since an individual PEPA component typically has a small number of states,
its automaton will usually be small enough to display clearly. However, for larger
or more complicated components, we have a feature to display only certain states.
Either we can manually select the states we are interested in, right-click, and select
‘Only show selection’, or we can right-click on a blank area and select ‘Choose
states to select...’, which offers a dialog box where we can select states by name.

Active and passive transitions have different colours (red and green respectively)
so that they can be more easily distinguished. Moreover, we display active transi-
tions in varying shades of red, ranging from bright red (for the fastest transitions)
to black (for the slowest transitions). From a drop-down box, we can select whether
to label the transitions with their activities — either for all transitions or for only
certain transitions (such as the passive ones, or the fastest active ones).

Visualisation for Stochastic Process Algebras: The Graphic Truth 317

2. Labelling: On the right-side of the view is a list of atomic properties, which can
be referred to in performance properties. These can be thought of as labels, which
identify a set of states in the model using a more human-readable name.

To define a new label, we first select the states that we want to label, and then
right-click in the atomic properties list, and select ‘New property’. We can change
which properties a state is labelled with by right-clicking on it, which gives a list of
properties that can be selected, or deselected. Clicking on a state will display (in the
atomic properties list) which properties are true or false, and clicking on a property
selects all the states with that label. We specify atomic properties compositionally.

3. Abstracting: In order to analyse the model, we may want to reduce its size by first
aggregating certain states. In the back-end of the tool, compositional abstraction
techniques based on abstract Markov chains [25] and stochastic bounds [26] are
used to construct an abstract model that is passed to the model checker for analysis.
The front-end interface for this is very simple — the user simply has to select the
states they want to aggregate, and click the ‘Aggregate’ button. These states can
subsequently only be selected as a unit, and moved (or labelled) together.

4. Exporting: We allow the model to be exported to the input format of the MRMC
model checker [18]. If the model has not been abstracted, the output is a CTMC
(consisting of a .lab and .tra file), otherwise the output is a CTMDP (a .lab
and a .ctmdpi file). This means that MRMC can be used as an alternative to the
in-built model checker in the plug-in. Note, however, that MRMC currently only
supports time-bounded reachability properties for CTMDPs, whereas the in-built
model checker supports all the CSL operators1.

When we create a new PEPA model, or load a new model that we have not worked
with before, the abstraction view uses an automated layout algorithm from the Zest
toolkit. The idea is to provide a rough initial layout that can be changed by the user to
one of their liking. Activity labels are automatically placed so that multiple transitions
between two states do not overlap with one another. The layout information and defined
properties are automatically saved (to an XML format) by the tool, so that if we return
to a model in the future, the abstraction view looks precisely as we left it.

An important feature of the abstraction view is that it is robust with regard to minor
changes to the model. For example, if we add a new component in the system equation,
the layout information for the existing components is preserved. If we add a new state
to a sequential component, the node appears in the default location (the top-left corner
of the view), but the other nodes remain in their correct position. If the tool detects a
new state for which it has no information, it displays a warning, and sets all atomic
propositions to be true for that state, by default.

5 Constructing Performance Properties

There are a number of ways to describe and analyse performance properties of a PEPA
model. Sometimes, we want to directly analyse a simple property, such as the steady
state probability of a set of states, or the throughput of a given action. In this case, the

1 Except the time-bounded next operator, since this is not preserved after uniformisation.

318 M.J.A. Smith and S. Gilmore

plug-in provides a simple interface for obtaining such information. We often want to
ask more sophisticated questions, however, and so we need a more powerful language
to describe it. The PEPA Eclipse Plug-in supports two ways of doing this: stochastic
probes [10], which use a regular-expression syntax to query the passage time distribu-
tion between events, and Continuous Stochastic Logic (CSL) [2], described here.

There are two types of CSL properties: state properties Φ, which concern a state in
the model, and path properties ϕ, which concern a sequence of states (a path) in the
model. Together, these allow the logic to specify many useful performance properties,
which can be analysed using a model checker. The plug-in has a built-in CSL model
checker but, as described in the previous section, it is also possible to export to MRMC.

The syntax of CSL supported by the PEPA Eclipse Plug-in is as follows (where we
include derived operators):

Φ ::= tt | ff | a | Φ ∧ Φ | Φ ∨ Φ | Φ⇒ Φ | ¬Φ | S�p(Φ) | P�p(ϕ)
ϕ ::= X Φ | Φ U I Φ | F I Φ | GI Φ

where � ∈ {≤,≥}, a ∈ AP , p ∈ [0, 1], and I = [a, b] is a non-empty interval over
the reals, such that a, b ∈ R≥0 ∪ {∞}, and a ≤ b.

Rather than give the formal semantics of CSL in this paper, we will consider the five
types of state property that we most commonly construct:

Steady State S≥p(Φ) In the long-run behaviour of the model, does
Φ hold with probability at least p?

Next P≥p(X Φ) In the next state, does Φ hold with probability
at least p?

Until P≥p(Φ1 U≤t Φ2) Will Φ2 become true no later than time t, and
Φ1 hold at all times until this point, with prob-
ability at least p?

Eventually P≥p(F≤t Φ) Will Φ become true no later than time t with
probability at least p?

Globally P≥p(G≤t Φ) Will Φ always be true until time t with proba-
bility at least p?

At the top level, we also support quantitative CSL properties, of the form S=?(Φ) and
P=?(ϕ), which return the actual probability of the given steady state or path property,
rather than comparing it to a fixed value. These are very useful in practice.

In general, since we support model checking of abstracted models (i.e. CTMDPs in
addition to CTMCs), we use a three-valued variant of CSL. That is to say, a property
can be true, false, or maybe. Similarly, a quantitative property returns an interval of
probabilities — so, if we get [0.1, 0.3], we know that the probability in the original
model is between 0.1 and 0.3. If a qualitative property returns ‘maybe’, or a probability
interval is too wide, we should experiment with different abstractions to achieve better
results. The theory underlying the tool [25, 26] guarantees the accuracy of the model
checker, but the precision depends on the choice of abstraction.

Visualisation for Stochastic Process Algebras: The Graphic Truth 319

Fig. 4. The CSL property editor

To specify CSL properties and perform model checking, the plug-in provides a
model checking view. This is basically a table of CSL properties, which can be verified
using the internal model checker. We allow saving and loading of properties, in an XML
format, so that the same properties can be shared between different models. The most
interesting feature, however, is our novel interface for constructing CSL properties.

There are a number of approaches when it comes to helping a user specify a per-
formance property. One approach is to provide a graphical, user-friendly language for
specifying properties, such as performance trees [28]. Another is to have a simple dialog
box where the user types in the property in a logic like CSL, such as in PRISM [19].
Our approach lies somewhere in between, in that we do expect the user to be expert
enough to understand CSL, but we do not expect them to know the specific syntax of
the tool — the interface supports the user by providing them with the correct syntax.

Figure 4 shows the CSL editor, where the propertyP=?(F≤50 “Approving”) is being
entered for the example in Figure 2 — querying the probability that a loan is approved
within 50 time units. We cannot type the property by hand, but instead are guided by the
enabled buttons, corresponding to CSL terms that can be used in the current position
(there are keyboard shortcuts for experienced users). When we click on part of the
property, the editor determines which term we clicked on, and highlights the entire
term. We then have the option to substitute it with another term — if no term has yet
been entered, or we delete a term, the placeholder ‘<*>’ is seen. Numerical parts of the
property can be edited directly, but will only be accepted if syntactically correct.

The most useful feature of the editor is that it is linked to the abstraction view. When
we click on the ‘Atomic Property’ button, we see a list of all the labels that have been
defined for the model. This avoids us having to switch back and forth between the two
views. Because the underlying data structures are shared between the two views, if we
change the name of an atomic property in the abstraction view, it is immediately updated
in the model checking view. The plug-in prevents us from deleting an atomic property
if it is in use, and displays an error message if we try to do so.

Since we can load CSL properties, the plug-in also has a built-in parser for CSL.
Only syntactically correct properties will be loaded, and if any atomic properties are
used that were not defined, a warning is given and they are replaced with ‘true’.

320 M.J.A. Smith and S. Gilmore

Fig. 5. A UML class diagram of the main classes involved in visualisation in the plug-in

6 Implementation Details

The key idea behind the implementation of the visualisation, abstraction, and model
checking functionality of the plug-in is the Kronecker representation described in Sec-
tion 2. We partially derive the state space of the PEPA model when it is parsed, con-
structing the CTMC component for each sequential component and action type. We
only derive the state space of the model when we perform model checking on it —
it should be noted that we do this by exploring the reachable state space, and not by
explicitly performing the matrix operations described in Section 2!

Figure 5 gives an overview of the important classes used by the visualisation part
of the plug-in. The most important point is that there are two data structures describ-
ing the PEPA model. KModel is the back-end data structure, used by the abstraction
and model checking engines, and stores the Kronecker representation of the model. A
KModel contains a number of KComponents, which in turn contain a number of
RateMatrix objects — one for each action type in the model. A RateMatrix con-
sists of a vector of rates and a matrix of probabilities. Essentially, it corresponds to a
CTMC component, although we have to be a little careful about the mapping between
states in the component and indices in the matrix (omitted from the UML diagram).

Visualisation for Stochastic Process Algebras: The Graphic Truth 321

KDisplayModel is the front-end data structure, used by the abstraction and model
checking views in Eclipse. A KDisplayModel object contains a number of com-
ponents (KDisplayComponent objects), which contain themselves a collection of
states (KDisplayState) and transitions (KDisplayTransition) — an implicitly-
linked graph data structure, as opposed to a matrix. This makes it easier to map onto a
Zest Graph object in order to actually draw the graph in the abstraction view.

To understand this separation, it is necessary to explain the structure of the tool. The
PEPA Eclipse Plug-in is quite a complicated piece of software, but the most important
functionality is separated into two modules (called OSGi bundles) — pepa, which
contains all the back-end functionality such as parsing, model checking, and CTMC
solvers, and pepa.eclipse.ui, which contains the front-end Eclipse functionality,
including the PEPA editor and the various views. Only certain classes in the pepa
bundle are made externally visible, to minimise the coupling between different bundles.
This means that pepa.eclipse.ui only has access to the classes it actually needs,
and is unaware of the internal data structures for the Kronecker representation.

This separation of concerns differs from the standard model-view-controller design
pattern, in that the two representations of the model are static. Whenever we mod-
ify the PEPA model, we need to parse it again, and this creates a new KModel and
KDisplayModel. This is necessary, because a small change in the source file can
result in a radically different model. It does not, however, mean that all the information
from the previous version of the model is lost — information such as labels and the
layout of the graphical view are stored by the plug-in in an XML file, which is then
re-loaded so that the data can be re-attached to the model as closely as possible.

Atomic properties are managed through a KDisplayPropertyMap object, which
is associated with a KDisplayComponent. A new atomic property is created by a
request to the PropertyBank. This creates a new AtomicProperty object, which
records which states (in each component) are labelled with the property2. This is hidden
from the abstraction view, and must be accessed through a KDisplayPropertyMap.

Because CSL properties are managed at the level of the entire model (rather than for
each component), they are created and modified through KDisplayModel. Again,
the PropertyBank is responsible for storing the properties (which are instances
of a subclass of CSLAbstractStateProperty), and keeps a link between the
abstract syntax of the CSL property, and the actual atomic properties. The abstrac-
tion and model checking views in Eclipse register with the PropertyBank (through
KDisplayModel) as a listener (implementing IPropertyChangedListener).
This ensures that they are notified of any changes, so that the abstraction and model
checking views remain synchronised with one another.

7 Related Work

Our visualisation has taken the textual representation of a PEPA model as the primary
source in order to be compatible with other modelling and analysis tools that process
PEPA models, such as IPC [5] and GPA [27]. The PEPA language has enjoyed a wide

2 Atomic properties are compositional, which means that a state in the model satisfies an atomic
property if and only if each sequential component is in a state that is labelled with the property.

322 M.J.A. Smith and S. Gilmore

range of tool support from the PEPA Workbench [15] to PRISM [19] and the PEPA
Eclipse Plug-in, which influences decisions about matters such as visualisation.

The PEPA Workbench contained a single-step navigator, which provided a visual-
isation of the PEPA model for behavioural debugging (i.e. finding deadlocks or dead
code where actions of the model can never fire). This did not show any quantitative
information, however, and so did not help modellers to work out why a probabilistic
model-checking formula fails to hold, when they think it should.

Other attempts to add a graphical dimension to PEPA have included the DrawNET
editor, which allowed the user to create a PEPA model by editing it graphically [14].
DrawNET provides graphical editors for both the parallel composition language of
PEPA and the sequential component sub-language. It has also been used to build a
graphical interface for the process algebra Aemilia [6].

Other stochastic process algebras also have graphical editors. CASPA [22] uses the
Eclipse Graphical Modelling Framework (GMF) [13], which is built on top of GEF, to
provide an interface for constructing and editing models. This allows the textual repre-
sentation of the model to be exported from, and imported into the graphical represen-
tation, but the two representations are stored separately. This is in contrast to the PEPA
Eclipse Plug-in, where we only store the textual representation of the model — gener-
ating the graphical representation whenever the model is loaded — which removes the
problem of keeping the two representations synchronised. It should be noted that our
interface is built on top of GEF directly, and not GMF — this is so that we can make
the interface cleaner and simpler, since we do not currently support editing.

A more general modelling tool with a graphical front-end is TAPAs [7]: a didac-
tic tool for the analysis of process algebra. The idea was to develop a framework in
which new process algebras can be easily added. At present TAPAs implements CCSP
(a process algebra with features of both Milner’s CCS and Hoare’s CSP) and PEPA.

8 Conclusions

Both textual and graphical performance modelling formalisms have their advantages
and disadvantages, but the use of one does not necessarily have to preclude the other.
PEPA is a highly successful language-based approach to performance modelling, and
yet there are great benefits from being able to visualise a model in a more graphical
way. To this end, we have created a novel interface for visualising PEPA models, as
part of the PEPA Eclipse Plug-in. The latest version is available for download from
http://www.dcs.ed.ac.uk/pepa/tools/plugin.

In future work, there are many additional ways in which we can increase the func-
tionality of the plug-in. One idea would be to allow the model to be edited via the
graphical interface, rather than just being viewed passively — for example, by making
use of the editing functionality of GMF. This would require us to continually maintain
the synchronisation between the editor and the abstraction view, but would lead us in
the direction of a truly combined textual/graphical approach to modelling. Furthermore,
there is a great deal of scope for advanced visualisation, such as illustrating how com-
ponents interact with one another, and animating the dynamic behaviour of the model.

To summarise, visualisation is a powerful tool in performance modelling, even for
experienced modellers, as it allows a better understanding of the model — particularly

Visualisation for Stochastic Process Algebras: The Graphic Truth 323

in the face of sophisticated transformations such as state-space aggregation and other
abstraction techniques. To the best of our knowledge, this is a unique feature of our
modelling tool, and we hope that it will be a benefit to the performance modelling
community, and provide inspiration for similar features in other modelling tools. Seeing
may not always be believing, but it certainly helps in understanding!

Acknowledgements. A prototype implementation of some improvements to the visu-
alisation of PEPA models in was completed by Nan Ai in his Master’s thesis [1]. This
was very helpful for allowing us to generate and assess different ideas related to vi-
sualisation. The implementation of the visualisation, abstraction, and model checking
features of the plug-in was supported initially by a Microsoft Research European PhD
Scholarship, and subsequently by the Danish Research Council (FTP grant 09-073796).
The PEPA case study example included in this paper was created by Allan Clark while
working on the EU FET-IST Global Computing 2 project SENSORIA (“Software En-
gineering for Service-Oriented Overlay Computers” (IST-3-016004-IP-09)).

References

1. Ai, N.: An Enhanced Abstraction View for the PEPA Eclipse Plug-in. Master’s thesis, School
of Informatics, The University of Edinburgh (2010)

2. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Verifying continuous time Markov chains.
In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 269–276. Springer,
Heidelberg (1996)

3. Balbo, G.: Introduction to stochastic petri nets. In: Brinksma, E., Hermanns, H., Katoen, J.-P.
(eds.) EEF School 2000 and FMPA 2000. LNCS, vol. 2090, pp. 84–155. Springer, Heidelberg
(2001)

4. Bonet, P., Llado, C.M., Puijaner, R., Knottenbelt, W.J.: PIPE v2.5: A Petri Net Tool for
Performance Modelling. In: 23rd Latin American Conference on Informatics (2007)

5. Bradley, J.T., Dingle, N.J., Gilmore, S.T., Knottenbelt, W.J.: Derivation of passage-time den-
sities in PEPA models using IPC: The Imperial PEPA Compiler. In: Proceedings of the 11th
IEEE/ACM International Symposium on Modeling, Analysis and Simulation of Computer
and Telecommunications Systems, pp. 344–351. IEEE Press, Los Alamitos (2003)

6. Calvarese, F., Di Marco, A., Malavolta, I.: Building graphical support for Aemilia ADL.
Technical Report TRCS 008/2007, University of L’Aquila (2007)

7. Calzolai, F., De Nicola, R., Loreti, M., Tiezzi, F.: TAPAs: A tool for the analysis of process
algebras. In: Jensen, K., van der Aalst, W.M.P., Billington, J. (eds.) Transactions on Petri
Nets and Other Models of Concurrency I. LNCS, vol. 5100, pp. 54–70. Springer, Heidelberg
(2008)

8. Canevet, C., Gilmore, S., Hillston, J., Prowse, M., Stevens, P.: Performance modelling
with UML and stochastic process algebras. IEE Proceedings: Computers and Digital Tech-
niques 150(2), 107–120 (2003)

9. Cappello, I., Clark, A., Gilmore, S., Latella, D., Loreti, M., Quaglia, P., Schivo, S.: Quantita-
tive analysis of services. In: Rigorous Software Engineering for Service-Oriented Systems.
Springer, Heidelberg (2011)

10. Clark, A., Gilmore, S.: State-aware performance analysis with eXtended stochastic probes.
In: Thomas, N., Juiz, C. (eds.) EPEW 2008. LNCS, vol. 5261, pp. 125–140. Springer, Hei-
delberg (2008)

11. Daly, D., Deavours, D.D., Doyle, J.M., Stillman, A.J., Webster, P.G., Sanders, W.H.: Möbius:
An extensible framework for performance and dependability modeling. In: Multi-Workshop
on Formal Methods in Performance Evaluation and Applications (1999)

324 M.J.A. Smith and S. Gilmore

12. The Eclipse platform, http://www.eclipse.org
13. The Eclipse Graphical Modeling Framework (GMF),

http://www.eclipse.org/modeling/gmf/
14. Gilmore, S., Gribaudo, M.: Graphical modelling of process algebras with DrawNET. In:

Proceedings of the Tools Appendix to the International Multiconference on Measurement,
Modelling and Evaluation of Computer-Communication Systems (2003)

15. Gilmore, S., Hillston, J.: The PEPA Workbench: A Tool to Support a Process Algebra-based
Approach to Performance Modelling. In: Haring, G., Kotsis, G. (eds.) TOOLS 1994. LNCS,
vol. 794, pp. 353–368. Springer, Heidelberg (1994)

16. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge University
Press, Cambridge (1996)

17. Hillston, J., Kloul, L.: An efficient kronecker representation for PEPA models. In: de Luca,
L., Gilmore, S. (eds.) PROBMIV 2001, PAPM-PROBMIV 2001, and PAPM 2001. LNCS,
vol. 2165, pp. 120–135. Springer, Heidelberg (2001)

18. Katoen, J.-P., Khattri, M., Zapreevt, I.S.: A Markov reward model checker. In: Proceedings
of the Second International Conference on the Quantitative Evaluation of Systems (QEST),
pp. 243–244. IEEE Press, Los Alamitos (2005)

19. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic real-
time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
585–591. Springer, Heidelberg (2011)

20. Movaghar, A., Meyer, J.F.: Performability modelling with stochastic activity networks. In:
Proceedings of 1984 Real-Time Symposium, pp. 8–40 (1984)

21. Plateau, B.: On the stochastic structure of parallelism and synchronization models for dis-
tributed algorithms. SIGMETRICS Performance Evaluation Review 13(2), 147–154 (1985)

22. Riedl, M., Schuster, J., Siegle, M.: Recent extensions to the stochastic process algebra tool
CASPA. In: Proceedings of the 5th International Conference on the Quantitative Evaluation
of Systems (QEST), pp. 113–114. IEEE Press, Los Alamitos (2008)

23. SENSORIA Web site. SENSORIA: Software engineering for service-oriented overlay com-
puters (2011), http://www.sensoria-ist.edu

24. Smith, M.J.A.: Abstraction and model checking in the PEPA plug-in for Eclipse. In: Proceed-
ings of the 7th International Conference on the Quantitative Evaluation of Systems (QEST),
pp. 155–156. IEEE Press, Los Alamitos (2010)

25. Smith, M.J.A.: Compositional abstraction of PEPA models for transient analysis. In: Aldini,
A., Bernardo, M., Bononi, L., Cortellessa, V. (eds.) EPEW 2010. LNCS, vol. 6342, pp. 252–
267. Springer, Heidelberg (2010)

26. Smith, M.J.A.: Compositional abstractions for long-run properties of stochastic systems. In:
Proceedings of the 8th International Conference on the Quantitative Evaluation of Systems
(QEST). IEEE Press, Los Alamitos (2011)

27. Stefanek, A., Hayden, R.A., Bradley, J.T.: GPA — Tool for rapid analysis of very large
scale PEPA models. In: Proceedings of the 26th UK Performance Engineering Workshop
(UKPEW), pp. 91–101 (2010)

28. Suto, T., Bradley, J.T., Knottenbelt, W.J.: Performance trees: A new approach to quantitative
performance specification. In: MASCOTS 2006, 14th International Symposium on Mod-
elling, Analysis, and Simulation of Computer and Telecommunication Systems, pp. 303–313.
IEEE Press, Los Alamitos (2006)

29. Thomas, N., Munro, M., King, P., Pooley, R.: Visual representation of stochastic process
algebra models. In: Proceedings of the 2nd International Workshop on Software and Perfor-
mance (WOSP), pp. 18–19. ACM, New York (2000)

30. Tribastone, M., Duguid, A., Gilmore, S.: The PEPA Eclipse plugin. SIGMETRICS Perfor-
mance Evaluation Review 36(4), 28–33 (2009)

http://www.eclipse.org
http://www.eclipse.org/modeling/gmf/
http://www.sensoria-ist.edu

Efficient Experiment Selection
in Automated Software Performance Evaluations

Dennis Westermann, Rouven Krebs, and Jens Happe

SAP Research, Karlsruhe, Germany
{dennis.westermann,rouven.krebs,jens.happe}@sap.com

Abstract. The performance of today’s enterprise applications is influenced by a
variety of parameters across different layers. Thus, evaluating the performance
of such systems is a time and resource consuming process. The amount of pos-
sible parameter combinations and configurations requires many experiments in
order to derive meaningful conclusions. Although many tools for automated per-
formance testing are available, controlling experiments and analyzing results still
requires large manual effort. In this paper, we apply statistical model inference
techniques, namely Kriging and MARS, in order to adaptively select experiments.
Our approach automatically selects and conducts experiments based on the ac-
curacy observed for the models inferred from the currently available data. We
validated the approach using an industrial ERP scenario. The results demonstrate
that we can automatically infer a prediction model with a mean relative error of
1.6% using only 18% of the measurement points in the configuration space.

1 Introduction

Performance engineering is a crucial discipline throughout development and hosting
of enterprise applications. However, the sheer size and complexity of software sys-
tems and development processes hinders the application of performance engineering in
many cases. Especially in large enterprise applications, the performance of a system is
affected by a variety of parameters. Understanding their influences (and capturing them
in a performance model) requires a huge number of experiments and "what-if" analyses
in order to draw meaningful conclusions.

State-of-the-art performance engineering research approaches [14] use architectural
information and detailed performance behavior descriptions in order to build predic-
tion models. In most cases, the performance models are a combination of simulation
models built using domain-specific languages and measurements to calibrate, validate
or extend the models [3,9,12,20]. In industrial practice, performance measurements are,
for example, used to benchmark systems, customize configuration settings, or test the
quality of a new release before shipment [26,28]. In both cases, the amount of possible
parameter combinations and configurations makes the measurement process time and
resource consuming. While many tools provide automation for generating load and get-
ting monitoring information there is still a lot of manual effort remaining to analyze the
measured data and to decide how many and which measurements to conduct in order to
reach a certain goal (e.g., finding a performance-optimized configuration).

In this paper, we present a fully automated approach that (i) selects and conducts ex-
periments, (ii) uses statistical inference techniques to derive a prediction model based

N. Thomas (Ed.): EPEW 2011, LNCS 6977, pp. 325–339, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

326 D. Westermann, R. Krebs, and J. Happe

on the measured data, (iii) validates the prediction model, and (iv) iteratively determines
new experiments that maximise the information gain and thus increase the accuracy of
the model. The statistical inference techniques that we use in our experiments are Multi-
variate Adaptive Regression Splines (MARS) [7] and Kriging [29]. MARS has already
been succesfully applied for software performance analyses [3,6,10]. Kriging is a geo-
statistical interpolation technique that has been applied to various research areas dealing
with spatial data. However, to the best of our knowledge Sacks et al. [25] are the only
ones that applied Kriging to analyze data measured in computer system experiments.
The strength of both methods is that they provide robust predictions and do not require
any prior knowledge about the underlying dependencies in the data (e.g., in contrast to
simple linear regression).

The contributions of this paper are (a) the description and comparison of three au-
tomated experiment selection methodologies for the efficient derivation of statistical
performance prediction models and (b) the application of the Kriging interpolation tech-
nique for software performance analyses.

We validate our approach in two case studies. The results demonstrate that adaptive
experiment selection can yield accurate prediction models with a significantly reduced
amount of measurements. Moreover, we show that the geostatistical interpolation tech-
nique Kriging can be applied for the analysis of performance measurements. In fact,
Kriging outperforms MARS for some problem classes.

The remainder of this paper is organized as follows. Section 2 gives an overview
of our ongoing research and brings this paper into line with our overall motivation.
In Section 3, we discuss related research approaches. Section 4 provides basics of
statistical model inference using MARS and Kriging. In Section 5, we describe the
three experiment selection algorithms that we apply in our approach. A real-world case
study as well as detailed validation results are illustrated in Section 6. Finally, Section 7
concludes the paper.

2 Motivation and Overview

In this section, we give an overview of our overall approach for performance predic-
tions of enterprise applications. Applying Software Performance Engineering (SPE) in
practice is still a challenging task. In most cases, software vendors built their applica-
tions on a large basis of existing components such as middleware, legacy applications,
or third-party services. Software architects are facing questions like "How does mid-
dleware A affect the performance of my application?", or "Will the application under
development meet the performance requirements?". A software as a service provider
wants to know, for example, "What happens to the performance of my system if I dou-
ble the amount of underlying virtual machines?" or "What happens to performance if
the number of users increases?". Existing model-driven performance engineering ap-
proaches mainly realise a pure top down prediction approach. Software architects have
to provide a complete model of their system in order to conduct performance analyses.
Measurement-based performance evaluations, by contrast, depend on the availability of
the application and can only be applied in late development cycles. Our approach aims
at integrating model-driven and measurement-based performance predictions in order
to build practical performance models of enterprise applications.

Efficient Experiment Selection in Automated Software Performance Evaluations 327

2.1 Software Performance Curves

The main idea of our approach is to apply goal-oriented, systematic measurements to
already existing parts of a system. The result of the systematic measurements is a quan-
tification of the dependencies between the system’s usage (workload and parameters)
and performance (timing behavior, throughput, and resource utilization). We refer to
the statistical models describing these dependencies as software performance curves.
Formally, a performance curve describes the performance P (response time, through-
put, and resource utilisation) of a system in dependence on a set of input parameters
A1, . . . , An with n ∈ N. It is a function f : A1×A2× . . .×An → R, where each input
parameter Ai is a number (⊂ R), an enumeration, or a boolean value. The function’s
result represents the performance metric of interest. The benefit of these statistically
inferred models is that they do not require specific knowledge on the internal structure
of the system under study (e.g., in contrast to other approaches that use statistical in-
ference to estimate parameters of queuing networks [15,17,22]). Thus, the software
performance curves are a black-box description of the performance behaviour of the
system under test. The derivation of the performance curves requires the execution of
many measurements in different settings. Therefore, we developed a framework called
Software Performance Cockpit [33,32] that encapsulates best practices and allows for
separation of concerns regarding the different aspects of a performance evaluation. Us-
ing this framework we can automatically control measurements, trigger analyses and
export results [34].

2.2 Integrating Software Performance Curves and Model-Driven Performance
Analyses

In order to use the software performance curves to decide on design alternatives, plan
capacities, or identify performance critical system configurations we propose to inte-
grate the curves with model-driven performance engineering approaches (such as sur-
veyed in [1] and [14]). Figure 1 illustrates the approach.

For those parts of a system that are under development we apply an existing ap-
proach for model-driven performance engineering [2]. Software architects specify the
system’s components, behaviour, deployment, and usage (System Modelling). This ac-
tivity results in a System Model that describes the newly developed parts as well as its
usage. In order to consider the effect of existing parts in a performance analysis, we
need to include them in the prediction model. The Measurements described above re-
sult in Performance Data of the system. Such data can be used for Model Inference. The
resulting software performance curves consider the effect of system external parts on
performance, these models have to be integrated with or made available in model-driven
prediction approaches (Integration). This step merges both model types and creates a
common basis for further performance analysis (Prediction). Based on the Performance
Predictions, software architects and performance analysts can decide about design al-
ternatives, plan capacities, or identify critical components.

In this paper we focus on the Measurement and Model Inference parts. In our future
work, we will describe how performance curves can be integrated with the Palladio
Component Model (PCM) [2].

328 D. Westermann, R. Krebs, and J. Happe

System Modelling

Integration

Prediction

Model Inference

MeasurementRequirements
Software Components

System
Model

Complete
Performance

Model

Performance
Data

Statistical
Model

Performance
Predictions

Legend
Workflow

Flow of Artefact

Change of Activity

External Services
3rd Party Artefacts

Fig. 1. Overview of integrating model-driven and measurement-based performance analysis

3 Related Work

In this section, we present related work in the area of measurement-based perfor-
mance analysis. Various approaches explore the influence of different parameters on
the performance of software applications. The authors focus on the instrumentation it-
self [5,13,19] or use the results to build performance models (or tests) [35,24,30,12] or
detect errors [19,20].

Reussner et al. [24] introduce an approach to benchmark and compare different
OpenMPI implementations. Their approach combines performance metrics with lin-
ear interpolation techniques to assess the implementation’s overall performance be-
haviour. To maximise the information gain of subsequent experiments, they identify
those points with the (potentially) largest error in the current prediction model. While
this approach presents one of the starting points of our work, it is limited to the evalua-
tion of a single parameter and simple linear interpolation techniques that are not suited
for multi-dimensional scattered data. Another starting point for our work is the approach
of Woodside et al. [35] and Courtois et al. [3]. They introduce a workbench for auto-
mated measurements of resource demands in dependence of configuration and input
parameters. The results are fitted by different statistical methods resulting in so-called
resource functions that capture performance metrics with respect to the given parame-
ters. However, the authors did not compare different experiment selection methodolo-
gies or different analysis methods.

Denaro et al. [5] propose an approach for early performance testing of distributed
applications. Their core assumption (similar to Gorton et al. [8]) is that the middle-
ware is the determining factor of an application’s performance. However, the usage of
middleware features (like transaction or persistence) is determined by the application.
Therefore, Denaro et al. use architecture designs to derive performance test cases that
can be executed and used to estimate the applications performance in the target envi-
ronment. Gorton et al. also conduct measurements in the target environment but use the

Efficient Experiment Selection in Automated Software Performance Evaluations 329

results to calibrate a prediction model which is then used to predict the application’s
performance. Both approaches do not explicitly evaluate the influence of parameters
of configurations. The measurements are focused on specific scenarios. While this is
sufficient for the author’s purposes, it is not enough to capture the influence of different
configurations and input parameters on performance.

In [12], Jin et al. introduce an approach called BMM that combines Benchmarking,
production system Monitoring, and performance Modelling. Their goal is to quantify
the performance characteristics of real-world legacy systems under various load condi-
tions. However, the measurements are driven by the upfront selection of a performance
model (e.g layered queuing network) which is later on built based on the measurement
results.

Miller et al. [19] propose Paradyn, a tool for the automatic diagnoses of performance
problems. They apply dynamic instrumentation to control the instrumentation in search
of performance problems. Paradyn starts looking for high-level problems for a whole
application and, once the general problem is found, inserts further instrumentations to
find more specific causes. Miller et al. focus on the detection of performance problems
and do not measure parameter spaces systematically.

4 Statistical Model Inference

Statistical model inference is the process of learning from data [11]. A variety of
methodologies have been developed in statistical science [11,18,21] in order to extract
patterns and trends from data or to fit curves to the data. In this paper, we focus on so
called supervised learning problems [11] where the goal is to predict the value of an ob-
served metric based on a number of input parameters. The different statistical methods
have their own characteristics that mainly differ in their degree of model assumptions.
For example, linear regression makes rather strong assumptions on the model under-
lying the observations (they are linear) while the nearest neighbor estimator makes no
assumptions at all. Most other statistical estimators lie between both extremes. Methods
with stronger assumptions, in general, need less data to provide reliable estimates, if the
assumptions are correct. Methods with less assumptions are more flexible, but require
more data. In the course of this paper, we apply and compare two different methodolo-
gies, namely MARS and Kriging. Both methods are able to deal with the assumption
that we have less or no knowledge about the structure of the data. MARS has already
been successfully applied in software performance prediction [3,6,10]. Geostatistical
interpolation methods, such as Kriging, are designed to analyse irregularly spaced set
of data points in a three dimensional space [29]. Characteristics of geostatistical data
are (i) high costs to get the value of interest for these points and (ii) that near mea-
surements are more interrelated to each other then distant ones [31]. We assume that
these characteristics are also true for measured performance data. Measuring a single
configuration of an enterprise application often requires extensive effort. Moreover, in
most cases a minor change in a configuration has less effect on the performance metric
of interest than larger changes. Furthermore, the adaptive experiment selection method
presented in Section 5.3 creates an irregularly spaced set of data points. For this reasons,
we decided to investigate the use of Kriging to derive software performance curves. In
the following, we briefly introduce the two methods.

330 D. Westermann, R. Krebs, and J. Happe

4.1 Kriging

Kriging is a generic name for a family of spatial interpolation techniques using gen-
eralised least-squares regression algorithms [18]. It is named after Daniel Krige who
applied the method to a mineral ore body [16]. Examples of Kriging algorithms are
Simple, Ordinary, Block, Indicator, or Universal Kriging. In [18], the authors provide a
comprehensive review of multiple Kriging algorithms as well as other spatial interpola-
tion techniques. Generally, the goal of spatial interpolations is to infer a spatial field at
unobserved sites using observations at few selected sites. According to [18], nearly all
spatial interpolation methods share the same general estimation formula:

Ẑ(x0) =
n∑

i=1

λiZ(xi)

where the estimated value of an attribute at the point of interest x0 is represented by
Ẑ, the observed value at the sampled point xi is Z , the weight assigned to the sampled
point is λi, and the number of sampled points used for the estimation is represented
by n. Furthermore, the semivariance (γ) of Z between two data points is an important
concept in geostatistics. It is defined as:

γ(xi, x0) = γ(h) =
1
2
var[Z(xi)− Z(x0)]

where h is the distance between point xi and x0 and γ(h) is the semivariogram (com-
monly referred to as variogram)[18].

Figure 2 shows an example variogram with an exponential variogram model. The
nugget (or nugget effect) is a contribution to variability without spatial continuity [29].
The range is the distance where the model first flattens out and the sill is the value at
which the variogram model reaches the range.

The Kriging implementation [23] that we applied in our experiments uses the Ordi-
nary Kriging algorithm to estimate unknown points. As described above the estimated
values are computed as simple linear weighted average of neighbouring measured data
points. The weights are determined from the fitted variogram with the condition that
they must add up to 1 which is equivalent to the process of reestimating the mean value
at each new location [4].

4.2 MARS

Multivariate Adaptive Regression Splines (MARS) [7] is a non-parametric regression
technique which requires no prior assumption as to the form of the data. The method fits
functions creating rectangular patches where each patch is a product of linear functions
(one in each dimension). MARS builds models of the form f(x) =

∑k
i=1 ciBi(x),

the model is a weighted sum of basis functions Bi(x), where each ci is a constant
coefficient [7]. MARS uses expansions in piecewise linear basis functions of the form
[x− t]+ and [t− x]+. The + means positive part, so that

[x− t]+ =
{

x− t , if x > t
0 , otherwise

and [t− x]+ =
{

t− x , if x < t
0 , otherwise

Efficient Experiment Selection in Automated Software Performance Evaluations 331

Fig. 2. Sample Variogram

The model-building strategy is similar to stepwise linear regression, except that the
basis functions are used instead of the original inputs. An independent variable trans-
lates into a series of linear segments joint together at points called knots [3]. Each seg-
ment uses a piecewise linear basis function which is constructed around a knot at the
value t. The strength of MARS is that it selects the knot locations dynamically in or-
der to optimize the goodness of fit. The coefficients ci are estimated by minimizing the
residual sum-of-squares using standard linear regression. The residual sum of squares
is given by RSS =

∑N
i=1(ŷi − y)2, where y = 1

N

∑
ŷi, where N is the number of

cases in the data set and ŷi is the predicted value.

5 Experiment Selection

In order to automatically derive a software performance curve with the least possible
number of measurements, we need an iterative algorithm that (i) selects new experi-
ments for each iteration, (ii) infers a statistical model based on the available data after
each iteration, and (iii) is aware of the quality of the inferred model. In the context
of this paper, an experiment (or configuration point) is defined as one configuration of
all parameters (i.e., it corresponds to one point in the configuration space). The con-
figuration space is spanned by the configuration parameters and their corresponding
domains. In this section, we present three experiment selection methodologies that ful-
fill the requirements mentioned above by applying different strategies (see Figure 3).
The random experiment selection strategy randomly selects a fixed number of new ex-
periments. The equidistant experiment selection strategy splits the parameter space in
equidistant areas. The adaptive experiment selection strategy selects new experiments
in those areas of the parameter space that show the worst predictions. Each of the three
methodologies can be combined with various model inference techniques.

332 D. Westermann, R. Krebs, and J. Happe

Iteration 1 Iteration n

(a) Random Experiment Selection

Iteration 1 Iteration n

(b) Equidistant Experiment Selection

Iteration 1 Iteration n

(c) Adaptive Experiment Selection

Fig. 3. Experiment Selection Methodologies

5.1 Random Experiment Selection Based on Global Prediction Error

The first algorithm randomly selects new experiments in order to minimize the global
prediction error. In each iteration a fixed number of n randomly selected configuration
points are measured (see Figure 3 (a)). Based on a set of validation points (measured
before the first iteration starts), we calculate the mean relative error (MRE) of the pre-
diction model. The algorithm terminates when the error is below a predefined threshold,
a predefined number of measurements has been reached, or a predefined measurement
time has expired.

5.2 Equidistant Experiment Selection Based on Global Prediction Error

The second algorithm determines the measurement points for the next iteration by
stepwise equidistant splitting of the configuration space (see Figure 3 (b)). We define
P = {x|x ∈ R

i ∧ ∀xi ∈ [0..1]} as a set of all possible positions in the configuration
space with normalized values. An element p ∈ P describes one experiment or config-
uration point. Let the elements p1, p2 ∈ P be two opposing positions that describe the
multidimensional configuration space. Function fcenter : P × P → P returns the cen-
ter of the two given points which is calculated by the element-wise arithmetic middle
of the two vectors. Furthermore, function fedges : P × P → P ∗ returns the set of all
edges of the embraced space defined by two configuration points. The function com-
putes all possible element-wise combinations of the two given configuration points. We
use Hi,n,z as a set which helps to find the experiments for each iteration. H contains a
set of tuples describing areas of the space to be measured, therefore every element in H
consists two opposing positions. The process itself does continuously divide the space
into equidistant areas based on previously computed areas. Thereby, the measurement
iteration is expressed by the index i. The index n is used to iterate over the tuples stored
in H . The third index z ∈ [1, 2] defines which of the two positions stored in every ele-
ment of H is referenced. Formally, the set of experiments to be executed is computed
as follows:

H0 = fedges(p1, p2)× fcenter(p1, p2)

Hi =
|Hi−1|⋃
n=1

fedges(Hi−1,n,1, Hi−1,n,2)× fcenter(Hi−1,n,1, Hi−1,n,2)

Experimentsi = (
|Hi|⋃
n=1

Hi,n,1 ∪Hi,n,2) \ Experimentsi−1

Efficient Experiment Selection in Automated Software Performance Evaluations 333

The experiments that will be demanded in the next iteration include all the points
within the tuples of H that have not yet been measured.

The termination criteria as well as the validation procedure are the same as those
defined for the random selection methodology (see 5.1).

5.3 Adaptive Experiment Selection Based on Local Prediction Error

In contrast to the algorithms described in the previous sections, this algorithm takes
the locality and the size of single prediction errors into account when determining
experiments for the next iteration (see Figure 3 (c)). We assume that a new experi-
ment at the area with the highest prediction error raises the accuracy of the overall
model at most. Another difference to the previous experiment selection methodologies
is that it does not include all determined points for an iteration in the training data,
but uses a subset of these points for validation. Thus, this methodology does not re-
quire the creation of a validation set before the actual iteration starts. In the following,
we describe the algorithm in detail. First, we introduce some basic data types, vari-
ables and functions followed by a listing of the algorithm. As in Section 5.2, we define
P = {x|x ∈ R

i ∧ ∀xi ∈ [0..1]} as a set of all possible positions in the configura-
tion space with normalized values. Elements of P are declared as p. The elements p1

and p2 are opposing positions necessary to describe a multidimensional space. Func-
tion fcenter : P × P → P returns the center of the two given points which is calcu-
lated by the element-wise arithmetic middle of the two vectors. Furthermore, function
fedges : P × P → P ∗ returns a set of all edges of the embraced space given by p1

and p2.
In addition, let e ∈ R

+ describe the error of the performance curve at a defined area
or position and S = {p1 × p2 × e|p1 ∈ P ∧ p2 ∈ P ∧ e ∈ R

+}. Three subsets of S
control the measurement progress. A priority-controlled queue Q ⊂ S contains tuples
describing areas in the configuration space, where the error of the curve ran out of the
acceptable threshold. The order of priority is based on e. The collection V ⊂ S is the
validation set which contains all the tuples describing areas where a good prediction
has already been observed. M ⊂ S is the training set which contains the measurement
results used to create a performance curve. All subsets of S are mutually disjoint and
it holds that S = Q ∪ V ∪M . The function predictM : P → R creates a prediction
results based on the given measurements M for a specific configuration point. The
functionality of the method is based on the assumption, that the prediction error of the
curve on fcenter(p1, p2) is representative for the error in the spatial field embraced by
p1 and p2. The parameter threshold ∈ R

+ is predefined by the performance analyst
and gives an option to control the accuracy and thus the runtime of the method.

1: p1 = (1, 1, . . . , 1)
2: p2 = (0, 0, . . . , 0)
3: e =∞
4: Q← {< p1, p2, e >}
5: while sizeof(Q)!=0 do
6: T ← ∅
7: ttmp ← dequeue(Q)
8: T ← T ∪ ttmp

334 D. Westermann, R. Krebs, and J. Happe

9: while Q.first.e = ttmp.e do
10: ttmp ← dequeue(Q)
11: T ← T ∪ ttmp

12: end while
13: for all t in T do
14: measure all points fedges(t.p1, t.p2), add results to M
15: measure value rm at point fcenter(t.p1, t.p2)
16: rp ← predictM (fcenter(t.p1, t.p2))
17: e← rm

|rm−rp|
18: if e > threshold then
19: for all ptmp in fedges(t.p1, t.p2) do
20: p1 ← fcenter(t.p1, t.p2)
21: ttmp ←< p1, ptmp, e >
22: enqueue(Q, ttmp)
23: M ←M∪ < rm, fcenter(t.p1, t.p2) >
24: end for
25: else
26: V ← V ∪ t
27: end if
28: end for
29: for t in V do
30: measure value rm at point fcenter(t.p1, t.p2).
31: rp ← predictM (fcenter(t.p1, t.p2))
32: e← rm

|rm−rp| .
33: if e > threshold then
34: t.e← e
35: V ← V \ t
36: Q← Q ∪ t
37: end if
38: end for
39: end while
40: for all t in V do
41: measure value rm at point fcenter(t.p1, t.p2)
42: M ←M∪ < rm, fcenter(t.p1, t.p2) >
43: end for

Line 1-4 ensure the preconditions for the actual experiment selection which starts in
line 5. The primary control structure is the loop over Q starting in 5. Lines 6-12 deal
with the selection of all elements with highest error. Starting at line 13 the loop body
executes measurements (line 14) in the area of each selected tuple. Furthermore, it cal-
culates the error for these areas in line 15-17 and defines new subareas to be measured
in further iterations (line 18-25) if the error is greater than the defined threshold. If the
error is less than the threshold the current tuple is stored in V at line 26. To provide
faster convergence against the underlying performance functions it brings significant
advantages to execute this breadth-first approach over all elements with the same e.
This ensures to step down in the area with the highest prediction faults. Since nearly

Efficient Experiment Selection in Automated Software Performance Evaluations 335

all interpolation or regression techniques cannot absolutely avoid the influence of new
elements in M onto preliminary well predicted areas, the validation repository V is
checked in line 30-32 for negative effects in areas that have been well predicted before
the last modifications. If for any element in V the curve is still not accurate enough it
is returned to Q at line 33-37 and thus measured in more detail in later iterations. We
expect that the heuristic converges more efficient if a new measurement has only local
effects onto the interpolation function. Finally, line 40-43 copies all elements from V
to M as the positions where measured before and thus the data is available but not yet
added to the training data of the model.

6 Case Study and Validation

In this section, we demonstrate the efficiency of the approach and the accuracy of the
inferred prediction models. Moreover, we apply the software performance curves in a
"real-world" scenario using a large enterprise application. For the evaluation we formu-
late the following research questions:

– RQ1: To which extent are the experiment selection methodologies presented in
Section 5 more efficient (in terms of necessary measurements to create an accurate
prediction model) (i) compared to measuring the full configuration space and (ii)
compared to other approaches?

– RQ2: Are geostatistical interpolation techniques applicable in software perfor-
mance analysis scenarios? Are they more efficient compared to multivariate re-
gression?

– RQ3: Is the approach applicable to automatically create measurement-based per-
formance models of large enterprise applications in a reasonable amount of time?

In the remainder of this section we present two case studies and a discussion of the
results. Figure 4 summarizes the results of the two case studies. The table contrasts
the different combinations of experiment selection method and analysis method. To
determine the quality of the derived prediction model we compared the prediction for
each measurement point in the configuration space with its actual value and calculated
the mean relative error (MRE).

6.1 Communication Server Case Study

In this case study we applied our approach to a scenario described by Courtois and
Woodside [3]. The authors applied a similar adaptive experiment selection approach
combined with MARS to derive resource functions for a unicast-based multicast com-
munications server. The basic components of the server are (i) a Supplier Handler that
reads, packages, and enqueues incoming messages from the Supplier processes and (ii)
a Consumer Router which dequeues a message and sends it to each of its Consumer
processes (see [3] for details). The authors derived the following resource function for
the Consumer Router component:

336 D. Westermann, R. Krebs, and J. Happe

Consumer-Router-CPU = 1436.73 + 0.1314 ∗ h(msgsize− 1)
−0.0159 ∗ h(−(consumers− 9)) ∗ h(msgsize− 1)
+808.082 ∗ h(consumers− 9)− 149.399 ∗ h(−(consumers− 9))
−0.03 ∗ h(consumers− 9) ∗ h(−(msgsize− 21091))
−0.0092 ∗ h(consumers− 1) ∗ h(−(msgsize− 10808))
+0.0989 ∗ h(msgsize− 4223)− 0.01 ∗ h(−(consumers− 9)) ∗ h(msgsize− 5424)

The domain of message sizes was set between 1 and 64K bytes and the number of
consumers varied from 1 to 10. Thus, the full configuration space consists of 640 mea-
surement points. For our case study, we tried to fit this function using the same domains
for the two parameters. The results (see Figure 4) show that for this case study the com-
binations RandomSelection/MARS with 89 measurement points (#M) and an average
prediction error of 4.1% and AdaptiveSelection/Kriging with 92 measurement points
and an error of 2.3% performed best. Thus, the approaches required only 14% of the
full configuration space to create a very good prediction model. Compared to the ap-
proach presented in [3] which required 157 measurements to build the prediction model
(with an error of 8.58%) we saved 65 measurements (i.e., 41%). However, when com-
paring the two approaches one has to note that we fitted the simulated function and
had not to deal with the real measurement data which might cause additional prediction
error.

6.2 Enterprise Application Case Study

The goal of this case study is to demonstrate that the approach is applicable on real
data measured on a large enterprise application. We address the problem of customiz-
ing an SAP ERP application to an expected customer workload. The workload of an
enterprise application can be coarsely divided into batch workload (background jobs
like monthly business reports) and dialog workload (user interactions like displaying
customer orders). This workload is dispatched by the application server to separate
operating system processes, called work processes, which serve the requests [28]. At
deployment time of an SAP system the IT administrator has to allocate the available
number of work processes (depending on the size of the machine) to batch and dialog
jobs, respectively. With the performance curve derived in this case study, we enable IT
administrators to find the optimal amount of work processes required to handle the dia-
log workload with the constraint that the average response time of dialog steps should be
less than one second. The system under test consists of the enterprise resource planning
application SAP ERP2005 SR1, an SAP Netweaver application server and a MaxDB
database (version 7.6.04-07). The underlying operating system is Linux 2.6.24-27-xen.
The system is deployed on a single-core virtual machine (2,6 GHz, 1024KB cache).
To generate load on the system we used the SAP Sales and Distribution (SD) Bench-
mark. This standard benchmark covers a sell-from-stock scenario, which includes the
creation of a customer order with five line items and the corresponding delivery with
subsequent goods movement and invoicing. Each benchmark user has his or her own
master data, such as material, vendor, or customer master data to avoid data-locking
situations [27]. The dependent variable is the average response time of dialog steps
(AvgResponseT ime). The independent variables in this setup are (i) the number of

Efficient Experiment Selection in Automated Software Performance Evaluations 337

active users (NumUser) where the domain ranges from 60 to 150 and (ii) the num-
ber of work processes for dialog workload (NumWP) varied from 3 to 6. Thus, we
are looking for the function f(NumUser, NumWP) = AvgResponseT ime. The
full configuration space consists of 360 measurement points. In order to get statistically
stable results we repeated each measurement multiple times. All in all, the determina-
tion of a single measurement point takes approximately one hour which means that in
the worst case the IT administrator has to measure 15 days in order to determine the
optimal configuration. The results (see Figure 4) show that our adaptive experiment
selection methodologies provides very good results with both analysis methods. The
combination AdaptiveSelection/Kriging required only 64 measurement points (≈18%
of the full configuration space) to derive a prediction model with a mean relative error
of 1.6%. This reduces the time necessary to derive an optimal configuration from 15 to
≈2.5 days.

#M/Full MRE #M/Full MRE #M/Full MRE #M/Full MRE #M/Full MRE #M/Full MRE
Communication Server 162/640 10,80% 89/640 4,10% 249/640 10,00% 147/640 1,20% 92/640 2,30% 105/640 3,40%
Enterprise Application 104/360 24,50% 90/360 14,20% 123/360 7,60% 122/360 8,10% 64/360 1,60% 67/360 8,30%

Random Equidistant Adaptive
Kriging Mars Kriging Mars Kriging Mars

Fig. 4. Case Study Results

6.3 Discussion

The results of the two case studies (see Figure 4) show that the approach presented in
this paper can significantly reduce the effort necessary to derive measurement-based
performance models with high prediction accuracy. In both cases, our approach was
able to derive a very good prediction model using only ≈15% of the full configuration
space (RQ1 (i)). Even the comparison with a similar approach proofed the efficiency of
our methodology (RQ1 (ii)). The equidistant experiment selection strategy generated
the worst results independent of the analysis strategy. The random strategy achieved
good results especially in combination with MARS. However, the best results have
been achieved by the adaptive experiment selection strategy independent of the analy-
sis strategy. But, the Kriging predictions outperformed MARS in both scenarios which
proofs the applicability of geostatistical interpolation techniques for software perfor-
mance analyses (RQ2). The combination AdaptiveSelection/Kriging reduced the time
necessary to find the optimal configuration of an enterprise application server from 15
days to ≈2.5 days which is an import reduction due to the fact that the time for the
configuration of a system in the staging phase is often very limited (RQ3).

7 Summary

In this paper, we presented an approach for the automated and efficient selection of
experiments in order to derive performance prediction models. We introduced three
experiment selection methodologies and combined them with the statistical model in-
ference techniques MARS and Kriging. Moreover, we applied the approach in two case

338 D. Westermann, R. Krebs, and J. Happe

studies and compared the different combinations of experiment selection and analysis
methods. In these case studies, the combination of adaptive experiment selection and
Kriging achieved the best results. The proposed techniques support software architects
and performance analysts to capture the effect of existing software systems on soft-
ware performance and include these effects into further performance evaluations. In
our future work, we will investigate further experiment selection strategies and analysis
methods. We will address the curse of dimensionality [11] by applying the approach
in case studies with more than two independent parameters. Furthermore, we are going
to integrate the measurement-based performance models with model-driven approaches
as described in Section 2.

References

1. Balsamo, S., Di Marco, A., Inverardi, P., Simeoni, M.: Model-Based Performance Prediction
in Software Development: A Survey. IEEE Transactions on Software Engineering 30(5),
295–310 (2004)

2. Becker, S., Koziolek, H., Reussner, R.: The Palladio component model for model-driven
performance prediction. Journal of Systems and Software 82, 3–22 (2009)

3. Courtois, M., Woodside, M.: Using regression splines for software performance analysis
and software characterization. In: Proceedings of the 2nd International Workshop on Soft-
ware and Performance, WOSP 2000, September 17–20, pp. 105–114. ACM Press, New York
(2000)

4. De Smith, M.J., Goodchild, M.F., Longley, P.A.: Geospatial Analysis: A Comprehensive
Guide to Principles, Techniques and Software Tools. Troubador Publishing

5. Denaro, G., Polini, A., Emmerich, W.: Early performance testing of distributed software
applications. SIGSOFT Software Engineering Notes 29(1), 94–103 (2004)

6. Fioukov, A.V., Hammer, D.K., Obbink, H., Eskenazi, E.M.: Performance prediction for soft-
ware architectures. In: Proceedings of PROGRESS 2002 Workshop (2002)

7. Friedman, J.H.: Multivariate adaptive regression splines. Annals of Statistics 19(1), 1–141
(1991)

8. Gorton, I., Liu, A.: Performance Evaluation of Alternative Component Architectures for En-
terprise JavaBean Applications. IEEE Internet Computing 7(3), 18–23 (2003)

9. Groenda, H.: Certification of software component performance specifications. In: Proceed-
ings of Workshop on Component-Oriented Programming (WCOP) 2009, pp. 13–21 (2009)

10. Happe, J., Westermann, D., Sachs, K., Kapová, L.: Statistical inference of software per-
formance models for parametric performance completions. In: Heineman, G.T., Kofron, J.,
Plasil, F. (eds.) QoSA 2010. LNCS, vol. 6093, pp. 20–35. Springer, Heidelberg (2010)

11. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data mining,
Inference,and Prediction, 2nd edn. Springer Series in Statistics. Springer, Heidelberg (2009)

12. Jin, Y., Tang, A., Han, J., Liu, Y.: Performance evaluation and prediction for legacy informa-
tion systems. In: Proceedings of ICSE 2007, pp. 540–549. IEEE CS, Washington (2007)

13. Jung, G., Pu, C., Swint, G.: Mulini: An Automated Staging Framework for QoS of Dis-
tributed Multi-Tier Applications. In: ASE Workshop on Automating Service Quality (2007)

14. Koziolek, H.: Performance evaluation of component-based software systems: A survey. Per-
formance Evaluation (in press, corrected proof, 2009)

15. Kraft, S., Pacheco-Sanchez, S., Casale, G., Dawson, S.: Estimating service resource con-
sumption from response time measurements. In: Proc. of VALUETOOLS 2009. ACM, NY
(2009)

Efficient Experiment Selection in Automated Software Performance Evaluations 339

16. Krige, D.G.: A Statistical Approach to Some Basic Mine Valuation Problems on the Witwa-
tersrand. Journal of the Chemical, Metallurgical and Mining Society of South Africa 52(6),
119–139 (1951)

17. Kumar, D., Zhang, L., Tantawi, A.: Enhanced inferencing: Estimation of a workload depen-
dent performance model. In: Proceedings of VALUETOOLS 2009 (2009)

18. Li, J., Heap, A.D.: A review of spatial interpolation methods for environmental scientists.
Geoscience Australia, Canberra (2008)

19. Miller, B.P., Callaghan, M.D., Cargille, J.M., Hollingsworth, J.K., Irvin, R.B., Karavanic,
K.L., Kunchithapadam, K., Newhall, T.: The paradyn parallel performance measurement
tool. Computer 28, 37–46 (1995)

20. Mos, A., Murphy, J.: A framework for performance monitoring, modelling and prediction
of component oriented distributed systems. In: WOSP 2002: Proc. of the 3rd International
Workshop on Software and Performance, pp. 235–236. ACM, New York (2002)

21. Motulsky, H.J., Ransnas, L.A.: Fitting curves to data using nonlinear regression: a practical
and non-mathematical review (1987)

22. Pacifici, G., Segmuller, W., Spreitzer, M., Tantawi, A.: Dynamic estimation of cpu demand
of web traffic. In: Proc. of VALUETOOLS 2006, page 26. ACM, New York (2006)

23. Pebesma, E.J.: Multivariable geostatistics in s: the gstat package. Computers and Geo-
sciences 30, 683–691 (2004)

24. Reussner, R., Sanders, P., Prechelt, L., Müller, M.S.: SKaMPI: A detailed, accurate MPI
benchmark. In: Alexandrov, V.N., Dongarra, J. (eds.) PVM/MPI 1998. LNCS, vol. 1497, pp.
52–59. Springer, Heidelberg (1998)

25. Sacks, J., Welch, W.J., Mitchell, T.J., Wynn, H.P.: Design and analysis of computer experi-
ments. Statistical Science 4, 409–423 (1989)

26. Sankarasetty, J., Mobley, K., Foster, L., Hammer, T., Calderone, T.: Software performance
in the real world: personal lessons from the performance trauma team. In: Cortellessa, V.,
Uchitel, S., Yankelevich, D. (eds.) WOSP, pp. 201–208. ACM, New York (2007)

27. SAP. SAP Standard Application Benchmarks (March 2011),
http://www.sap.com/solutions/benchmark

28. Schneider, T.: SAP Performance Optimization Guide: Analyzing and Tuning SAP Systems.
Galileo Pr. Inc., Bonn (2006)

29. Switzer, P.: Kriging. John Wiley and Sons Ltd., Chichester (2006)
30. Thakkar, D., Hassan, A.E., Hamann, G., Flora, P.: A framework for measurement based

performance modeling. In: WOSP 2008: Proceedings of the 7th International Workshop on
Software and Performance, pp. 55–66. ACM, New York (2008)

31. Tobler, W.: A computer movie simulating urban growth in the detroit region. Economic Ge-
ography 46(2), 234–240 (1970)

32. Westermann, D., Happe, J.: Performance Cockpit: Systematic Measurements and Analyses.
In: ICPE 2011: Proceedings of the 2nd ACM/SPEC International Conference on Perfor-
mance Engineering. ACM, New York (2011)

33. Westermann, D., Happe, J.: Software Performance Cockpit (March 2011),
http://www.softwareperformancecockpit.org/

34. Westermann, D., Happe, J., Hauck, M., Heupel, C.: The performance cockpit ap-
proach: A framework for systematic performance evaluations. In: Proceedings of the 36th
EUROMICRO SEAA 2010. IEEE CS, Los Alamitos (2010)

35. Woodside, C.M., Vetland, V., Courtois, M., Bayarov, S.: Resource function capture for per-
formance aspects of software components and sub-systems. In: Dumke, R.R., Rautenstrauch,
C., Schmietendorf, A., Scholz, A. (eds.) WOSP 2000 and GWPESD 2000. LNCS, vol. 2047,
pp. 239–256. Springer, Heidelberg (2001)

http://www.sap.com/solutions/benchmark
http://www.softwareperformancecockpit.org/

Author Index

Alcaraz, Salvador 14
Anastasiou, Nikolas 29

Babka, Vlastimil 250
Barbierato, Enrico 280
Bernardo, Marco 265
Bradley, Jeremy T. 87
Braghetto, Kelly Rosa 42
Bušić, Ana 204

Cerotti, Davide 280
Cortellessa, Vittorio 265

Dao-Thi, Thu-Ha 189
de Boer, Pieter-Tjerk 133
Djemame, Karim 295

Ferreira, João Eduardo 42
Flamminj, Mirko 265
Fokkink, Wan 72, 174
Fourneau, Jean-Michel 57, 189

Ghassemi, Fatemeh 72
Gilly, Katja 14
Gilmore, Stephen 310
Gribaudo, Marco 280
Guenther, Marcel C. 87

Habibi, Jafar 174
Hammond, Simon D. 148, 235
Happe, Jens 325
Haverkort, Boudewijn R. 133
Hlavacs, Helmut 102
Hyon, Emmanuel 204

Jarvis, Stephen A. 148, 235
Juiz, Carlos 14

Kavanagh, Richard 295
Knottenbelt, William 29
Kolesnichenko, Anna 133
Kounev, Samuel 10
Krebs, Rouven 325

Marin, Andrea 29
Mittermaier, Alfons 219
Movaghar, Ali 72
Murphy, John 1

Nussbaumer, Michael 102

Pennycook, Simon J. 148, 235
Perks, Oliver 148
Puigjaner, Ramon 14

Quessette, Franck 57

Reinecke, Philipp 163, 219
Remke, Anne 133

Shamsaie, Abolhassan 174
Smith, Michael J.A. 310

Talebi, Mahmoud 72
Tran, Minh-Anh 189
Tůma, Petr 250

van Moorsel, Aad 117
Vincent, Jean-Marc 42

Westermann, Dennis 325
Wieczorek, Aleksander 204
Wolter, Katinka 163, 219
Wright, Steven A. 235

Yassin Kassab, Rouaa 117

	Title
	Preface
	Organization
	Table of Contents
	Invited Papers
	Performance Engineering for Cloud Computing
	Evolution of Performance Engineering
	Cloud Context
	Motivation of Performance Challenges
	Classical Performance Engineering
	Cloud Specific Challenges
	SAAS Performance Design
	Autonomics
	Performance Monitoring
	Resource Utilization
	Data Analysis

	Conclusions
	References

	Engineering of Self-aware IT Systems and Services: State-of-the-Art and ResearchChallenges
	References

	Regular Papers
	Accommodating Short and Long Web TrafficFlows over a DiffServ Architecture
	Introduction
	Long Flow Promotion (LFP)
	Preferential Treatment for Short Flows (S1)
	Packets Promotion Close to the Threshold (S2)
	Detecting Elephant Flows (S3)
	Scheduling the Packets

	Simulation Results
	Conclusions
	References

	Automatic Synchronisation Detection inPetri Net Performance Models Derived from Location Tracking Data
	Introduction
	Synchronisation Detection Mechanism
	Algorithm Description
	Synchronisation Representation in Our Models

	Case Study
	Results

	Conclusion
	References

	Performance Evaluation of Business Processesthrough a Formal Transformation to SAN
	Introduction
	Related Works
	Fundamentals
	Stochastic Automata Network
	Business Process Model and Notation

	Definitions for the BPMN to SAN Conversion
	BPMN Graph Definitions
	SAN Model Definitions

	The Conversion Algorithm
	Example – Shipment Process of a Hardware Retailer
	Concluding Remarks
	References

	Monotonicity and Efficient Computation ofBounds with Time Parallel Simulation
	Introduction
	Time Parallel Simulation with Fix-Up Phases
	Monotone Systems, Comparison of States and Comparison of Sequences
	Fast Parallel Computation of Bounds with TPS
	Modelling a Web Server
	Conclusion
	References

	Stochastic Restricted Broadcast Process Theory
	Introduction
	Evaluation Factors
	Stochastic RBPT
	Actions: Types and Rates
	Syntax
	Execution Mechanisms and Formal Semantics

	From Configuration to CTMC
	Weak Markovian Network Bisimilarity
	Markovian Semantics of MANETs

	A Leader Election Algorithm for MANETs
	Protocol Specification
	Protocol Analysis

	Conclusion and Future Work
	References

	Higher Moment Analysis of a Spatial StochasticProcess Algebra
	Introduction
	Markovian Agent Models
	Higher Moment ODEs for the Master Equation
	Higher (joint) Moments in MAMs
	Markovian Agent Spatial Stochastic Process Algebra
	A Simple MASSPA Example
	Translating MASSPA into Mass Action Type Reactions

	Worked Example: A Simplified Spatial WSN
	Conclusion
	References

	Optimization for Multi-thread Data-FlowSoftware
	Introduction
	Related Work
	Analytical Model
	Optimization Approaches
	Optimization Algorithm
	Real Measurements

	Experiments
	Verification of the Analytical Approach
	Removing the Bottleneck

	Conclusion
	References

	Formal Mapping of WSLA Contracts on StochasticModels
	Introduction
	Background
	Stochastic Discrete Event System (SDES)
	Web Service Level Agreement (WSLA)

	Outline of the Mapping Process
	 Step 1: Formal Definition of Basic WSLA Semantics
	Step 2: MeasurementDirective(s) Mapping
	StatusRequest and Status
	InvocationCount
	Gauge
	Counter
	ResponseTime
	DownTime

	Step 3: Schedule Mapping
	Step 4: Function(s) Mapping
	Step 5: SLO Result
	Case Study
	System Description
	Mapping WSLA to SDES
	Discussion

	Conclusion
	References

	Comparison of the Mean-Field Approach andSimulation in a Peer-to-Peer Botnet Case Study
	Introduction
	Model of the Botnet Behavior
	Mean-Field Approximation
	Results
	Exploiting the Speed-Up
	Variations of the Method
	Conclusion
	References

	WMTools - Assessing Parallel ApplicationMemory Utilisation at Scale
	Introduction
	Related Work
	The WMTrace Library and Analysis Framework
	Stage 1: Memory Event Tracing
	Stage 2: Post-Execution Trace Analysis

	Case Study
	High Water Mark
	Memory Usage over Time
	Tool Overhead and Comparison
	Compression

	Analysis
	Conclusions
	References

	On Stochastic Fault-Injection for IP-Packet LossEmulation
	Introduction
	Measurement, Modelling, and Injection of IP Packet Loss
	Packet-Loss Models
	Stochastic Fault-Injection
	The Problem with Markovian Models in Fault-Injection
	Scenarios for Fault Injection
	Modules for Fault Injection

	Experiments
	Scenarios

	Results
	Concluding Discussion
	References

	Analysis of Gossip-Based InformationPropagation in Wireless Mesh Networks
	Introduction
	Shuffle Protocol
	Description
	Probabilistic State Transition System

	WMN Model of the Shuffle Protocol
	Lower Bound on rp(t+1)
	Modeling Replication and Coverage Ratio with Differential Equations

	Evaluation of the Model
	Conclusion and Future Work
	References

	Multi-class Network with Phase Type ServiceTime and Group Deletion Signal
	Introduction
	Preliminaries
	Definition of Quasi-reversibility of Chao, Miyazawa and Pinedo
	Network of Quasi-reversible Queues with Signals and Instantaneous Movement

	A LIFO Multi-class PH Queue with Signal Deletion Customers of Same Sub-class
	Description
	Stationary Distribution
	Quasi-reversibility

	Network of LIFO Multi-class PH Queues with Negative Signal and Group-Deletion Signal
	Description
	Stationary Distribution

	Concluding Remarks
	References

	Critical Level Policies in Lost Sales InventorySystems with Different Demand Classes
	Introduction
	Problem Formulation
	Model Description
	Optimal Control Problem
	Critical Level Policies

	Hypoexponential Service
	Model Description
	Increasing Property
	Convexity
	Critical Level Policy
	Submodularity
	Monotone Switching Curve

	Model Extensions
	Hyperexponential Service
	Adding Holding Costs

	Conclusions
	References

	Model-Based Evaluation and Improvement ofPTP Syntonisation Accuracy in Packet-SwitchedBackhaul Networks for Mobile Applicatio
	Introduction
	Technical Background
	Accurate and Efficient Simulation of BackhaulNetworks
	PDV Characteristics
	Simulation Models for PDV Evaluation
	Validation
	Delay-Step Elimination

	Analytical Evaluation of PDV in Tree-StructuredNetworks
	Closed-Form Expression for p2pPDV
	Reducing PDV in Tree-Structured Networks
	Evaluation

	Discussion
	Conclusion
	References

	Light-Weight Parallel I/O Analysis at Scale
	Introduction
	Related Work
	Warwick RIOT
	Case Study
	Input/Output Benchmarks
	MPI-IO and POSIX Bandwidth Tracing
	Collective Buffering in ROMIO
	Analysis of HDF-5
	Analysis of PLFS Middleware

	Conclusions
	Future Work

	References

	Poster Presentations
	Can Linear Approximation ImprovePerformance Prediction ?
	Introduction
	Performance Models and Synthetic Applications
	Random Software Applications
	Queueing Petri Net Models

	Determining Maximum Accuracy
	Perfect Service Demand Adjustment
	Linear Service Demand Adjustment

	Assessing Realistic Accuracy
	Limitations
	Conclusion
	References

	TWOEAGLES: A Model Transformation Toolfrom Architectural Descriptions to Queueing Networks
	Introduction
	The Transformation from Æmilia to Queueing Networks
	The Transformation Source: Æmilia
	The Transformation Target: Queueing Networks
	The Transformation at a Glance
	A Hierarchical Approach to the Transformation

	The Eclipse Plugin Æmilia_to_QN
	The Architecture of TwoEagles
	TwoEagles at Work: An Automated Teller Machine
	Conclusions and Future Work
	References

	A Tool Suite for Modelling SpatialInterdependencies of Distributed Systems with Markovian Agents
	Introduction
	Related Works
	Markovian Agents
	Algorithmic Generation of Spatial Dependencies
	The Image-Based Tools

	The Graph-Based Tool
	Computing the Number of Hops in Critical Infrastructures with MA
	Performance Evaluation
	Numerical Results

	Conclusions
	References

	A Grid Broker Pricing Mechanism for Temporaland Budget Guarantees
	Introduction
	The Pricing Mechanism
	Experimental Setup
	Evaluation
	Related Work
	Conclusion and Future Work
	References

	Visualisation for Stochastic Process Algebras:The Graphic Truth
	Introduction
	Modelling in PEPA
	The Argument for Visualisation
	Visualisation of PEPA Models
	Constructing Performance Properties
	Implementation Details
	Related Work
	Conclusions
	References

	Efficient Experiment Selectionin Automated Software Performance Evaluations
	Introduction
	Motivation and Overview
	Software Performance Curves
	Integrating Software Performance Curves and Model-Driven Performance Analyses

	Related Work
	Statistical Model Inference
	Kriging
	MARS

	Experiment Selection
	Random Experiment Selection Based on Global Prediction Error
	Equidistant Experiment Selection Based on Global Prediction Error
	Adaptive Experiment Selection Based on Local Prediction Error

	Case Study and Validation
	Communication Server Case Study
	Enterprise Application Case Study
	Discussion

	Summary
	References

	Author Index

