
D.-S. Huang et al. (Eds.): ICIC 2011, LNCS 6838, pp. 600–611, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Hybrid Differential Evolution Optimization for No-Wait
Flow-Shop Scheduling with Sequence-Dependent Setup

Times and Release Dates

Bin Qian, Hua-Bin Zhou, Rong Hu, and Feng-Hong Xiang

Department of Automation, Kunming University of Science and Technology,
Kunming 650051, China

bin.qian@vip.163.com

Abstract. In this paper, a hybrid algorithm based on differential evolution
(DE), namely HDE, is proposed to minimize the total completion time criterion
of the no-wait flow-shop scheduling problem (NFSSP) with sequence-
dependent setup times (SDSTs) and release dates (RDs), which is a typical NP-
hard combinatorial optimization problem with strong engineering background.
Firstly, to make DE suitable for solving flow-shop scheduling problem, a larg-
est-order-value (LOV) rule is used to convert the continuous values of individuals
in DE to job permutations. Secondly, a speed-up evaluation method is developed
according to the property of the NFSSP with SDSTs and RDs. Thirdly, after the
DE-based exploration, a problem-dependent local search is developed to em-
phasize exploitation. Due to the reasonable balance between DE-based global
search and problem-dependent local search as well as the utilization of the
speed-up evaluation, the NFSSP with SDSTs and RDs can be solved effectively
and efficiently. Simulation results and comparisons demonstrate the superiority
of HDE in terms of searching quality, robustness, and efficiency.

Keywords: differential evolution, no-wait flow-shop scheduling, sequence-
dependent setup times, release dates, local search, speed-up evaluation.

1 Introduction

Flow-shop scheduling problems (FSSPs) have attracted much attention and wide re-
search in both computer science and operation research fields. In many FSSPs, each
job is usually required to be processed continuously from start to end without waiting
either on or between machines. This type of scheduling problem is known as no-wait
flow-shop scheduling problem (NFSSP) [1]. In NFSSP, usually it assumes that the
setup time is part of the job processing time and the release date of each job is zero.
However, in some practical applications the setup times need to be explicitly treated
and the release dates are nonzero. Typical situations are encountered in metal, chemi-
cal and pharmaceutical industries. The scheduling problems with sequence-dependent
setup times (SDSTs) and release dates (RDs) have gained increasing attention in re-
cent years [2]-[4]. For the total completion time criterion, the NFSSP with SDSTs

 Hybrid Differential Evolution Optimization for No-Wait Flow-Shop Scheduling 601

and RDs can be classified as
jjsd CrSTwaitnoFm ∑− /, ,/ , which is NP-hard

because it is more complex than the NFSSP with SDSTs [2][5].
Differential evolution (DE) is a novel population-based evolutionary mechanism

proposed for global optimization over continuous spaces [6]. DE searches for the
global optima by utilizing differences between contemporary population members,
which allows the search behaviour of each individual to self-tune. Due to its simple
structure, easy implementation, quick convergence, and robustness, DE has attracted
much attention and wide applications in a variety of fields. Nevertheless, due to its
continuous nature, the work on DE for production scheduling problems is obviously
sparser than that for continuous optimization problems. Recently, Tasgetiren et al. [7]
proposed a smallest position value (SPV) rule to convert the continuous values of
individuals in DE to job permutations and incorporated Interchange-based local
searcher into DE to solve flow-shop scheduling problems (FSSPs) with makespan
criterion. Onwubolu and Davendra [8] presented a DE-based method to minimize the
objectives of makespan, mean flowtime, and total tardiness of FSSPs. Qian et al. [9]
developed a hybrid DE approach for FSSPs with makespan criterion. They utilized
DE to find the promising solutions over the solution space and applied a simple prob-
lem dependent local searcher to exploit the solution space from those solutions. Pan et
al. [10] presented a novel discrete differential evolution algorithm with a problem-
specific referenced local searcher for FSSPs, which could find several new best
known makespans for Taillard benchmark instances. Wang et al. [11] developed an
effective discrete differential evolution algorithm for solving blocking FSSPs. To the
best of our knowledge, there is no any published paper on DE for NFSSPs with
SDSTs and RDs.

This paper develops a hybrid DE (HDE) by combining DE with local search to mi-
nimize the total completion time criterion of the NFSSPs with SDSTs and RDs. In the
proposed HDE, DE is used to find the promising solutions or regions over the solution
space, and then a local search based on the landscape of FSSP and the speed-up eval-
uation is conceived to exploit the solution space from those regions.

The remaining contents are organized as follows. In Section 2, the NFSSP with
SDSTs and RDs is introduced. In Section 3, a brief review of DE is provided. In Sec-
tion 4, HDE is proposed after presenting solution representation, speed-up evaluation
method, DE-based global search, and problem-dependent local search. In Section 5,
experimental results and comparisons are presented and analyzed. Finally, in Section
6, we end the paper with some conclusions and future work.

2 Formulation of NFSSP with SDSTs and RDs

The NFSSP with SDSTs and RDs can be described as follows. There are n jobs and m
machines. Each of n jobs will be sequentially processed on machine m,...,2,1 . The
processing time of each job on each machine is deterministic. At any time, preemption

602 B. Qian et al.

is forbidden and each machine can process at most one job. To satisfy the no-wait re-
striction, each job must be processed without interruptions between consecutive ma-
chines. Thus, all jobs are processed in the same sequence on all machines. In a flow-
shop with SDSTs, setup must be performed between the completion time of one job
and the start time of another job on each machine, and setup time depends on both the
current and the immediately preceding jobs at each machine. In a flow-shop with
RDs, if a machine is ready to process a job but the job has not been released yet, it
stays idle until the release date of the job.

2.1 NFSSP with SDSTs

Let π =[njjj ,...,, 21] denote the schedule or permutation of jobs to be processed,

lji
p , the processing time of job ij on machine l,

ij
sp the total processing time of

job ij on all machines, lji
ML , the minimum delay on the machine l between the

completion of job 1−ij and ij ,
ii jjL ,1−

 the minimum delay on the first machine

between the start of job 1−ij and ij , ljj ii
s ,,1−

 the sequence-dependent setup time

between job 1−ij and ij on machine l. Let 0,0
=ljp for ml ,...,1= . Then lji

ML ,

can be calculated as follows:

⎪⎩

⎪
⎨
⎧

=+−
=+−+

=
−−

−−−

− mlpspML

lpspps
ML

ljljjljlj

jjjjjjj
lj

iiiii

iiiiiii

i ,...,3 ,},max{

 2 ,},max{

,,,,1,

2,2,,2,1,1,,
,

11

111 . (1)

Thus, the total completion time)(πTC (i.e.,)(πTC =
j

C∑) is as follows:

∑ −+= = mj
n
iT i

MLinC ,1)1()(π . (2)

Fig. 1 shows a small example of a NFSSP with SDSTs when n=3 and m=3.

3,, 10 jjs 3,1jp 3,, 21 jjs 3,2jp 3,3j
p3,, 32 jjs

3,1j
ML 3,2j

ML 3,3j
ML

32 , jjL
21, jjL

2,, 10 jjs

1,, 10 jjs
2,1jp

1,1jp
2,, 21 jjs

1,, 21 jjs

2,2j
p

1,2jp
2,, 32 jjs

1,, 32 jjs

2,3jp

1,3j
p

Fig. 1. NFSSP with SDSTs example when n=3 and m=3

Obviously,
ii jjL ,1−
 can be calculated by using the following formula:

iiiii jjmjjj spspMLL −+=
−− 11 ,, . (3)

 Hybrid Differential Evolution Optimization for No-Wait Flow-Shop Scheduling 603

2.2 NFSSP with SDSTs and RDs

Let
ij

r denote the arrival time of job ij ,
ij

St the process start time of job ij on

machine 1, and
ij

C the completion time of job ij on machine m. Then
ij

St can be

written as follows:

⎪⎩

⎪
⎨
⎧

=−+
=−

=
−−−

niStrLSt

irspML
St

iiiii

iii

i
jjjjj

jjmj
j ,...,2 },,max{

1 },,max{

111 ,

, . (4)

Thus,
ij

C and)(πTC can be calculated as follows:

nispStC
iii jjj ,...,1, =+= . (5)

ij
n
iT CC ∑ == 1)(π . (6)

The aim of this paper is to find a schedule *π in the set of all schedules Π such that

Π∈∀→= πππ min)}(arg{* TC . (7)

3 Brief Review of DE

DE is a branch of metaheuristic proposed by Storn and Price [6] for optimization
problems over continuous domains. The basic DE algorithm aims at finding the global
optima by utilizing the distance and direction information according to the differentia-
tions among population. The theoretical framework of DE is very simple and DE is
easy to be coded and implemented with computer. Thus, nowadays DE has attracted
much attention and wide applications in various fields.

In DE, it starts with the random initialization of a population of individuals in the
search space and works on the cooperative behaviors of the individuals in the popula-
tion. The searching behavior of each individual is adjusted by dynamically altering
the differentiation’s direction and step length in which this differentiation performs.
At each generation, the mutation and crossover operators are applied on the individu-
als, and a new population arises. Then, selection takes place, and the corresponding
individuals from both populations compete to comprise the next generation. Current-
ly, there are several variants of DE algorithm can be found in [12]. The details of DE
can be found in subsection 4.3.

4 HDE for NFSSP with SDSTs and RDs

In this section, we will present HDE for NFSSP with SDSTs and RDs after explaining
the solution representation, speed-up computing method, DE-based global search,
problem-dependent local search.

604 B. Qian et al.

Fig. 2. The procedure framework of HDE

4.1 Solution Representation

The important problem in applying DE to NFSSP is to find a suitable mapping be-
tween job sequence and individuals (continuous vectors) in DE. For the n-job and m-
machine problem, each vector contains n number of dimensions corresponding to n
operations. In this paper, we adopt a largest-order-value (LOV) rule in [9] to convert
DE’s individual =iX [niii xxx ,2,1, ,,,] to the job solution/permutation vector

=iπ { niii jjj ,2,1, ,,, }. According to LOV rule, =iX [niii xxx ,2,1, ,,,] are firstly

ranked by descending order to get the sequence =iϕ [niii ,2,1, ,,, ϕϕϕ]. Then the

job permutation iπ is calculated by the following formula:

kj
kii =

,,ϕ . (8)

To better understand the LOV rule, a simple example is provided in Table 1. In this
instance (6=n), when 1=k , then 41, =iϕ and 14,, 1,

== ii jj
iϕ ; when 2=k , then

12, =iϕ and 21,, 2,
== ii jj

iϕ , and so on. This representation is unique and simple in

terms of finding new permutations. Moreover, according to our previous tests, this
representation is more effective then the famous random key representation [13].

Generate DE’s individuals with random values, and determine the cor-
responding job permutations by LOV rule

Apply local search to best(t) by using speed-up evaluation method

Calculate)(πTC of initial DE’s population with speed-up evaluation

method, update best(t) and set t = 1

No (DE-based global search)

Yes

Set t = t + 1

Is t > the maximum
number of iteration?

Output best(t) and its
objective value

Calculate and save
ii jjL ,1− and

ijsp (},...,1{,1 njj ii ∈−)

Update DE’s individuals using DE/rand-to-best/1/exp-based scheme,
determine permutations using LOV rule and calculate makespan of DE’s
individuals with speed-up evaluation method and update best(t)

(Problem-dependent local search)

 Hybrid Differential Evolution Optimization for No-Wait Flow-Shop Scheduling 605

Table 1. Solution Representation

Dimension k 1 2 3 4 5 6

kix , 1.17 3.95 0.23 2.61 2.72 0.77

ki,ϕ 4 1 6 3 2 5

kij , 2 5 4 1 6 3

4.2 Speed-Up Evaluation Method

In NFSSPs with SDSTs and RDs,
ii jjL ,1−

 is only decided by the job 1−ij and ij .

According to this property, one method can be adopted to reduce the computing com-

plexity (CC) of)(πTC . That is,
ii jjL ,1−

,
ij

sp and ∑ = ij
n
i sp1 can be calculated

and saved in the initial phase of HDE and then can be used as constant values in the
evolution phase of HDE, which can reduce the CC of)(πTC from)(nmO to

)(nO . The procedure of the speed-up evaluation method is given as follows:

// Suppose that
ii jjL ,1−
,

ij
sp and ∑ = ij

n
i sp1 have already been calculated and

//saved.

Step 1: Set CT=0;
Step 2: For i = 1 to n
 Calculate

ij
St by using (4); //

ii jjL ,1−
 is a constant value in (4).

ij

StCTCT += ; //
llj

i
ll StCT ∑ == 1

 End For i;

Step 3:
ij

n
iT spCTC ∑ =+= 1)(π ; //∑ = ij

n
i sp1 is a constant value.

Remark. In Step 2, CT is utilized to save the current value of
llj

i
ll St∑ =1 in each

loop.

4.3 DE-Based Global Search

In HDE, DE-based global search is designed based on DE/rand-to-best/1/exp scheme
[9][12] to perform parallel exploration, in which base vector is the best individual of
the current population. So, those individuals performing DE-based operation will
share the information of the best individual of the population. In the mutation and
crossover phase, each individual can transform probabilistically to any other individ-
ual in the solution space when the evolution generation ∞→t . In the selection
phase, only the better individual can be accepted. Therefore, the DE-based search can
reach enough promising regions over the solution space.

606 B. Qian et al.

Let best(t) denote the best-so-far individual found by HDE until generation t. The
procedure of DE-based global search is given as follows:

Step 1: Generate DE’s individuals with random values, and determine the
corresponding job permutations by LOV rule.

Step 2: Calculate)(πTC of initial DE’s population, update best(t) and set t = 1.

Step 3: Update DE’s individuals using DE/rand-to-best/1/exp-based scheme and
determine permutations using LOV rule.

Step 4: Calculate makespan of DE’s individuals and update best(t).
Step 5: Set t=t+1. If maxtt ≤ (the maximum number of iteration), then go to Step

3.
Step 6: Output best(t) and its objective value.

Because of the parallel framework of DE, local search is easy to incorporate into DE
to develop effective hybrid algorithms. Next, we will present a problem-dependent
local search to perform exploitation.

4.4 Problem-Dependent Local Search

For the FSSPs, two effective neighborhoods are often used in the literature. (i) remove
the job at the u th dimension and insert it in the v th dimension of the job solution π
(),,(vuinsert π), (ii) interchange the job at the u th dimension and the job at the v th

dimension of the job solution π (),,(vueinterchang π). Thus, we employ insert and

interchange here as the neighborhood for local search.
Denote)(tX i =[niii xxx ,2,1, ,,,] (popsizei ,,2,1=) the ith individual in the n-

dimensional search space at generation t. The procedure of the local search is given as
follows:

Step 1: Convert individual)(tX i to a job permutation 0_iπ according to the

LOV rule.
Step 2: Perturbation phase.

Randomly select u and v , where vu ≠ ;),(,0_ vueinterchang ii ππ = .

Step 3: Exploitation phase.
Set loop=1;

 Do
Randomly select u and v , where vu ≠ ;

),(,1_ vuinsert ii ππ = ;

 if)(1_if π <)(if π , then 1_ii ππ = ;

 loop++;
 While loop<(n×(n-1)).

Step 4: If)(if π <)(0_if π , then ii ππ =0_ .

Step 5: Convert 0_iπ back to)(tX i .

 Hybrid Differential Evolution Optimization for No-Wait Flow-Shop Scheduling 607

As can be seen from the above procedure, step 2 is the perturbation phase, which is
used to escape local optima and guide the search to a different region, and step 3 ex-
ecutes a thorough exploitation from the region obtained by step 2. Since the speed up
computation method is adopted here, HDE has the ability to search more regions in
the solution space under the same running time. So, instead of using the same neigh-
borhood for perturbation and exploitation, the interchange neighborhood and the in-
sert neighborhood are employed in step 2 and step 3, respectively, which can guide
the search to a more different region and then improve the search ability of HDE to
some extent. The effectiveness of adopting the interchange neighborhood as perturba-
tion has already been validated in [14].

4.5 HDE

Based on the above solution representation, speed-up computing method, DE-based
search, problem-dependent local search, the procedure framework of HDE is pro-
posed in Fig. 2. It can be seen from Fig.2 that not only does HDE apply DE-based
searching mechanism to execute exploration for all individuals to find promising re-
gions or solutions within continuous region, but it also applies problem-dependent
local search to perform exploitation for the best individual to improve the solution’s
quality in the permutation space. Because both exploration and exploitation are well
stressed, it is expected to achieve good results for NFSSP with SDSTs and RDs. In
the next section, we will investigate the performances of the proposed HDE.

5 Test and Comparisons

5.1 Experimental Setup

To test the performance of the proposed HDE for NFSSPs with SDSTs and RDs,
computational simulation is carried out with 12 random instances. That is, the mn ×
combinations are: {30, 50, 70}× {5, 10, 20} and {100}× {10, 20, 40}. The processing
time lji

p , and the setup time ljj ii
s ,,1−

 are generated from a uniform distribution [1,

100] and a uniform distribution [0, 100], respectively. The job arrival time
ij

r is an

integer that is uniformly generated in]150 ,0[αn , where the parameter α is used to

control the jobs’ arrival speeds. The values of α are set to 0, 0.2, 0.4, 0.6, 0.8, 1 and
1.5, respectively. Each instance at each α is independently run 30 times for every
algorithm for comparison. Thus, we have a total of 84 different instances.

To evaluate the effectiveness of HDE, we carry out simulations to compare our
HDE with several other scheduling algorithms, which are a modified simulated an-
nealing algorithm with first move strategy (SAFM) [15], a hybrid DE for FSSP
(HDE_FSSP) [9], HDE_FSSP with the speed-up evaluation method
(HDE_FSSP_SP), and an iterated greedy heuristic (IG) [16]. According to [15],
SAFM is superior to a famous simulated annealing algorithm proposed by Osman
[17]. Based on our tests, SAFM is also more effective than a hybrid genetic algorithm
[18]. Moreover, HDE_FSSP is an effective algorithm to address FSSPs [9] and IG is
one of the state-of-the-art algorithms for solving FSSPs with SDSTs [16]. In our tests,

608 B. Qian et al.

HDE, HDE_FSSP, and HDE_FSSP_SP use the same parameters as follows: the popu-
lation size 30=popsize , the scaling factor F =0.7, and the crossover parameter

CR =0.1. Thus, the difference between HDE and HDE_FSSP_SP only lies in the
neighborhood used in step 2 (i.e., the perturbation phase) of local search. That is, the
interchange neighborhood and the insert neighborhood are employed in the perturba-
tion phase of HDE’s and HDE_FSSP_SP’s local search, respectively. We re-
implement SAFM and IG according to [15] and [16], respectively. All algorithms
used in the comparisons are re-implemented by ourselves and are coded in Delphi 7.0.
Experiments are executed on an Intel Q8200 2.33GHz PC with 3 GB RAM.

5.2 Test Results and Comparisons

To investigate the performance of HDE, we set SAFM’s maximum generation to
n×40 and let all other compared algorithms run at the same time as SAFM. Denote

)(αiniπ the permutation in which jobs are ranked by descending value of job’s re-

lease date at α ,))((απTC the total completion time of permutation)(απ at α ,

))((_ απTCavg the average value of))((απTC ,))((_ απTCbest the best value of

))((απTC , () %100))(())((_))(()(×−= αααα iniTTiniT CCavgCARI πππ the

average percentage improvement over))((αiniTC π , =)(αBEI

() %100))(())((_))((×− ααα iniTTiniT CCbestC πππ the best percentage improve-

ment over))((αiniTC π ,)(αET the solution evaluation times at α (i.e., the times

of calculating))((απTC),)(αSD the standard deviation of))((απTC at α , αS

the set of all values of α , and αS the number of different values in αS . Then, we

define four measures to evaluate the performances of the compared algorithms, i.e.,

ARI = ∑
∈ ααα

α
S

ARI
S

)(
1

, ∑
∈

=
ααα

α
S

BEI
S

BEI)(
1

, =ET ∑
∈ ααα

α
S

ET
S

)(
1

, and

=SD ∑
∈ ααα

α
S

SD
S

)(
1

. The statistical results of ARI, SD, BEI, and ET produced by

the compared algorithms are reported in Table 2 and Table 3, respectively. Further-
more, in order to show the details of the compared algorithms for solving the instance
with different α , we give the test results of the instance 2070 × in Table4. The test
results of other instances with different α are similar to those in Table 4.

It can be seen from Table 2-4 that the ARI and BEI values obtained by HDE and
HDE_FSSP_SP are obviously better than those obtained by SAFM, IG, and
HDE_FSSP for almost all instances, which not only shows the superiority of HDE but
also validates the effectiveness of utilizing speed-up evaluation method in DE.
Meanwhile, the ARI and BEI values obtained by HDE are better than or very close to
those obtained by HDE_FSSP_SP for all instances, which demonstrates the necessity
of adopting the interchange neighborhood in the perturbation phase of local search.
Moreover, the SD values of HDE are comparatively small, from which it is concluded
that HDE is a robust algorithm. Besides, from Table 3, it is shown that the ET values
of HDE and HDE_FSSP_SP increase quickly with the scale of problem, which is

 Hybrid Differential Evolution Optimization for No-Wait Flow-Shop Scheduling 609

helpful to search more regions/solutions and achieve better performance under the
same amount of computer time. However, the local search of HDE is expensive with
bigger problems, which means more effective local search method with low compu-
ting complexity needs further study.

Table 2. Comparison of ARI and SD of SAFM, IG, HDE_FSSP, HDE_FSSP_SP, HDE

Instance
n, m

SAFM IG HDE_FSSP HDE_FSSP_SP HDE
ARI SD ARI SD ARI SD ARI SD ARI SD

30, 5 17.084 1.351 20.207 0.601 20.994 0.732 20.877 0.723 20.775 0.796
30, 10 17.020 1.110 20.369 0.341 20.925 0.505 20.858 0.504 20.928 0.431
30, 20 12.903 0.804 14.851 0.433 15.412 0.412 15.452 0.396 15.534 0.378
50, 5 26.780 0.983 28.638 0.517 28.961 0.692 29.042 0.791 28.991 0.699
50, 10 22.042 0.825 23.846 0.592 24.395 0.612 24.506 0.697 24.583 0.565
50, 20 20.054 0.642 21.493 0.382 22.033 0.469 22.270 0.474 22.295 0.410
70, 5 27.512 0.741 28.036 0.509 28.920 0.646 29.412 0.605 29.492 0.564
70, 10 27.129 0.536 27.453 0.421 28.119 0.520 28.611 0.473 28.621 0.449
70, 20 22.229 0.548 22.960 0.346 23.471 0.486 24.024 0.403 24.106 0.367
100, 10 29.863 0.441 29.989 0.327 30.417 0.428 30.842 0.423 30.854 0.436
100, 20 27.196 0.423 27.328 0.350 27.828 0.451 28.147 0.371 28.225 0.326
100, 40 29.617 0.371 30.022 0.256 30.572 0.440 31.028 0.361 31.058 0.331
average 23.286 0.731 24.599 0.423 25.171 0.533 25.422 0.518 25.455 0.479

Table 3. Comparison of BEI and ET of SAFM, IG, HDE_FSSP, HDE_FSSP_SP, HDE

Instance
n, m

SAFM IG HDE_FSSP HDE_FSSP_SP HDE
BEI ET BEI ET BEI ET BEI ET BEI ET

30, 5 19.556 27743 21.225 24586 22.129 20210 22.095 19376 22.188 19316
30, 10 19.131 27624 21.316 24613 21.710 20541 21.767 21129 21.651 21146
30, 20 14.525 27444 15.753 24949 16.178 21542 16.142 25644 16.190 25708
50, 5 28.581 76496 29.608 70245 30.189 64977 30.420 69527 30.506 69693
50, 10 23.493 76239 25.045 70951 25.572 66892 25.772 80495 25.757 80424
50, 20 21.215 75975 22.126 72399 22.887 68605 23.057 106556 23.126 106615
70, 5 28.850 149504 29.071 150088 30.195 150082 30.432 312079 30.695 312148
70, 10 28.299 148997 28.386 149898 29.109 149873 29.529 371025 29.530 371279
70, 20 23.397 147924 23.599 148741 24.330 149364 24.708 499844 24.778 499659
100, 10 30.523 302329 30.577 310620 31.068 307923 31.458 763282 31.528 763471
100, 20 27.863 301525 27.810 311657 28.559 307781 28.731 1041850 28.741 1042891
100, 40 30.216 299744 30.442 305562 31.214 307356 31.589 1576192 31.567 1576145
average 24.637 138462 25.413 138692 26.095 136262 26.308 407250 26.355 407375

Table 4. Comparison of SAFM, IG, HDE_FSSP, HDE_FSSP_SP, HDE on instance 2070 ×

α
SAFM IG HDE_FSSP HDE_FSSP_SP HDE

ARI
(α)

SD
(α)

ARI
(α)

SD
(α)

ARI
(α)

SD
(α)

ARI
(α)

SD
(α)

ARI
(α)

SD
(α)

0 25.759 0.566 26.957 0.275 26.876 0.413 27.476 0.419 27.618 0.395
0.2 24.024 0.393 24.403 0.242 25.247 0.434 25.716 0.277 25.856 0.309
0.4 23.522 0.527 24.440 0.146 24.499 0.465 25.333 0.456 25.389 0.306
0.6 22.702 0.611 23.671 0.329 23.702 0.693 24.205 0.431 24.258 0.400
0.8 20.416 0.628 20.209 0.563 21.845 0.476 22.368 0.445 22.468 0.351
1.0 20.622 0.560 21.684 0.231 22.105 0.514 22.619 0.462 22.669 0.475
1.5 18.560 0.549 19.358 0.637 20.020 0.405 20.449 0.334 20.481 0.335

average 22.229 0.548 22.960 0.346 23.471 0.486 24.024 0.403 24.106 0.367

610 B. Qian et al.

In conclusion, the above comparisons show that HDE is an effective approach with
excellent quality and robustness for NFSSPs with SDSTs and RDs.

6 Conclusions and Future Research

This paper presented a hybrid differential evolution (HDE) for the no-wait flow-shop
scheduling problem (NFSSP) with sequence-dependent setup times (SDSTs) and
release dates (RDs). To the best of the current authors’ knowledge, this is the first
report on the application of differential evolution (DE) approach to solve the problem
considered. The developed algorithm not only applied wide scatter search guided by
the evolutionary mechanism of DE, but it also applied thorough local search guided
by interchange-based perturbation and insert-based exploitation. Moreover, a speed-
up evaluation method was designed to reduce the computing complexity of evaluation
solutions. Thus, both the effectiveness of searching solutions and the efficiency of
evaluating solutions were considered. Simulation results and comparisons with some
prevail algorithms demonstrated the effectiveness and robustness of our proposed
algorithm. For future research, we intend to study DE for other kinds of scheduling
problems, such as dynamic job shop scheduling problem.

Acknowledgements. This research is partially supported by National Science
Foundation of China (Grant No. 60904081), Applied Basic Research Foundation of
Yunnan Province (Grant No. 2009ZC015X), Talent Introduction Foundation of
Kunming University of Science and Technology (Grant No. KKZ3200903021), and
863 High Tech Development Plan (Grant No. 2007AA04Z193).

References

1. Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Optimization and Ap-
proximation in Deterministic Sequencing and Scheduling: a Survey. Annals of Discrete
Mathematics 5, 287–326 (1979)

2. Allahverdi, A., Ng, C.T., Cheng, T.C.E., Kovalyov, M.Y.: A Survey of Scheduling Prob-
lems with Setup Times or Costs. European Journal of Operational Research 187(3),
985–1032 (2008)

3. Oguz, C., Salman, F.S., Yalçin, Z.B.: Order Acceptance and Scheduling Decisions in
Make-to-order Systems. International Journal of Production Economics 125(1), 200–211
(2010)

4. Urlings, T., Ruiz, R., Stützle, T.: Shifting Representation Search for Hybrid Flexible
Flow-line Problems. European Journal of Operational Research 207(2), 1086–1095 (2010)

5. Ruiz, R., Allahverdi, A.: Some Effective Heuristics for no-wait Flowshops with Setup
Times to Minimize Total Completion Time. Annals of Operations Research 156(1),
143–171 (2007)

6. Storn, R., Price, K.: Differential Evolution–a Simple and Efficient Heuristic for Global Opti-
mization over Continuous Spaces. Journal of Global Optimization 11(4), 341–359 (1997)

7. Tasgetiren, M.F., Liang, Y.C., Sevkli, M., Gencyilmaz, G.: Differential Evolution Algo-
rithm for Permutation Flowshop Sequencing Problem with Makespan Criterion. In: Pro-
ceedings of 4th International Symposium on Intelligent Manufacturing Systems, Sakarya,
Turkey, pp. 442–452 (2004)

8. Onwubolu, G., Davendra, D.: Scheduling Flow Shops using Differential Evolution Algo-
rithm. European Journal of Operational Research 171(2), 674–692 (2006)

 Hybrid Differential Evolution Optimization for No-Wait Flow-Shop Scheduling 611

9. Qian, B., Wang, L., Hu, R., Wang, W.L., Huang, D.X., Wang, X.: A Hybrid Differential
Evolution for Permutation Flow-shop Scheduling. International Journal of Advanced
Manufacturing Technology 38(7-8), 757–777 (2008)

10. Pan, Q.K., Tasgetiren, M.F., Liang, Y.C.: A Discrete Differential Evolution Algorithm for
the Permutation Flowshop Scheduling Problem. Computers & Industrial Engineer-
ing 55(4), 795–816 (2008)

11. Wang, L., Pan, Q.K., Suganthan, P.N., Wang, W.H., Wang, Y.M.: A Novel Hybrid Dis-
crete Differential Evolution Algorithm for Blocking Flow Shop Scheduling Problems.
Computers & Operations Research 37(3), 509–520 (2010)

12. Price, K., Storn, R.: Differential Evolution (DE) for Continuous Function Optimization
(2011), http://www.icsi.berkeley.edu/%7Estorn/code.html

13. Bean, J.C.: Genetic Algorithm and Random Keys for Sequencing and Optimization.
ORSA Journal on Computing 6(2), 154–160 (1994)

14. Qian, B., Wang, L., Hu, R., Huang, D.X., Wang, X.: A DE-based Approach to no-wait
Flow-shop Scheduling. Computers & Industrial Engineering 57(3), 787–805 (2009)

15. Ishibuchi, H., Misaki, S., Tanaka, H.: Modified Simulated Annealing Algorithms for the
Flow Shop Sequencing Problem. European Journal of Operational Research 81(2),
388–398 (1995)

16. Ruiz, R., Stützle, T.: An Iterated Greedy Heuristic for the Sequence Dependent Setup
Times Flowshop Problem with Makespan and Weighted Tardiness Objectives. European
Journal of Operational Research 187(3), 1143–1159 (2008)

17. Osman, I.H., Potts, C.N.: Simulated Annealing for Permutation Flow-shop Scheduling.
Omega-Int. J. Manage. S. 17(6), 551–557 (1989)

18. Wang, L., Zheng, D.Z.: An effective hybrid heuristic for flow shop scheduling. Interna-
tional Journal of Advanced Manufacturing Technology 21(1), 38–44 (2003)

	Hybrid Differential Evolution Optimization for No-Wait Flow-Shop Scheduling with Sequence-Dependent Setup Times and Release Dates
	Introduction
	Formulation of NFSSP with SDSTs and RDs
	NFSSP with SDSTs
	NFSSP with SDSTs and RDs

	Brief Review of DE
	HDE for NFSSP with SDSTs and RDs
	Solution Representation
	Speed-Up Evaluation Method
	DE-Based Global Search
	Problem-Dependent Local Search
	HDE

	Test and Comparisons
	Experimental Setup
	Test Results and Comparisons

	Conclusions and Future Research
	References

