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Abstract. In this paper, a hybrid algorithm based on differential evolution 
(DE), namely HDE, is proposed to minimize the total completion time criterion 
of the no-wait flow-shop scheduling problem (NFSSP) with sequence-
dependent setup times (SDSTs) and release dates (RDs), which is a typical NP-
hard combinatorial optimization problem with strong engineering background. 
Firstly, to make DE suitable for solving flow-shop scheduling problem, a larg-
est-order-value (LOV) rule is used to convert the continuous values of individuals 
in DE to job permutations. Secondly, a speed-up evaluation method is developed 
according to the property of the NFSSP with SDSTs and RDs. Thirdly, after the 
DE-based exploration, a problem-dependent local search is developed to em-
phasize exploitation. Due to the reasonable balance between DE-based global 
search and problem-dependent local search as well as the utilization of the 
speed-up evaluation, the NFSSP with SDSTs and RDs can be solved effectively 
and efficiently. Simulation results and comparisons demonstrate the superiority 
of HDE in terms of searching quality, robustness, and efficiency. 

Keywords: differential evolution, no-wait flow-shop scheduling, sequence-
dependent setup times, release dates, local search, speed-up evaluation. 

1   Introduction 

Flow-shop scheduling problems (FSSPs) have attracted much attention and wide re-
search in both computer science and operation research fields. In many FSSPs, each 
job is usually required to be processed continuously from start to end without waiting 
either on or between machines. This type of scheduling problem is known as no-wait 
flow-shop scheduling problem (NFSSP) [1]. In NFSSP, usually it assumes that the 
setup time is part of the job processing time and the release date of each job is zero. 
However, in some practical applications the setup times need to be explicitly treated 
and the release dates are nonzero. Typical situations are encountered in metal, chemi-
cal and pharmaceutical industries. The scheduling problems with sequence-dependent 
setup times (SDSTs) and release dates (RDs) have gained increasing attention in re-
cent years [2]-[4]. For the total completion time criterion, the NFSSP with SDSTs 
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and RDs can be classified as 
jjsd CrSTwaitnoFm ∑− /, ,/ , which is NP-hard 

because it is more complex than the NFSSP with SDSTs [2][5]. 
Differential evolution (DE) is a novel population-based evolutionary mechanism 

proposed for global optimization over continuous spaces [6]. DE searches for the 
global optima by utilizing differences between contemporary population members, 
which allows the search behaviour of each individual to self-tune. Due to its simple 
structure, easy implementation, quick convergence, and robustness, DE has attracted 
much attention and wide applications in a variety of fields. Nevertheless, due to its 
continuous nature, the work on DE for production scheduling problems is obviously 
sparser than that for continuous optimization problems. Recently, Tasgetiren et al. [7] 
proposed a smallest position value (SPV) rule to convert the continuous values of 
individuals in DE to job permutations and incorporated Interchange-based local 
searcher into DE to solve flow-shop scheduling problems (FSSPs) with makespan 
criterion. Onwubolu and Davendra [8] presented a DE-based method to minimize the 
objectives of makespan, mean flowtime, and total tardiness of FSSPs. Qian et al. [9] 
developed a hybrid DE approach for FSSPs with makespan criterion. They utilized 
DE to find the promising solutions over the solution space and applied a simple prob-
lem dependent local searcher to exploit the solution space from those solutions. Pan et 
al. [10] presented a novel discrete differential evolution algorithm with a problem-
specific referenced local searcher for FSSPs, which could find several new best 
known makespans for Taillard benchmark instances. Wang et al. [11] developed an 
effective discrete differential evolution algorithm for solving blocking FSSPs. To the 
best of our knowledge, there is no any published paper on DE for NFSSPs with 
SDSTs and RDs. 

This paper develops a hybrid DE (HDE) by combining DE with local search to mi-
nimize the total completion time criterion of the NFSSPs with SDSTs and RDs. In the 
proposed HDE, DE is used to find the promising solutions or regions over the solution 
space, and then a local search based on the landscape of FSSP and the speed-up eval-
uation is conceived to exploit the solution space from those regions.  

The remaining contents are organized as follows. In Section 2, the NFSSP with 
SDSTs and RDs is introduced. In Section 3, a brief review of DE is provided. In Sec-
tion 4, HDE is proposed after presenting solution representation, speed-up evaluation 
method, DE-based global search, and problem-dependent local search. In Section 5, 
experimental results and comparisons are presented and analyzed. Finally, in Section 
6, we end the paper with some conclusions and future work. 

2  Formulation of NFSSP with SDSTs and RDs 

The NFSSP with SDSTs and RDs can be described as follows. There are n jobs and m 
machines. Each of n jobs will be sequentially processed on machine m,...,2,1 . The 
processing time of each job on each machine is deterministic. At any time, preemption  
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is forbidden and each machine can process at most one job. To satisfy the no-wait re-
striction, each job must be processed without interruptions between consecutive ma-
chines. Thus, all jobs are processed in the same sequence on all machines. In a flow-
shop with SDSTs, setup must be performed between the completion time of one job 
and the start time of another job on each machine, and setup time depends on both the 
current and the immediately preceding jobs at each machine. In a flow-shop with 
RDs, if a machine is ready to process a job but the job has not been released yet, it 
stays idle until the release date of the job.  

2.1  NFSSP with SDSTs 

Let π =[ njjj ,...,, 21 ] denote the schedule or permutation of jobs to be processed, 

lji
p ,  the processing time of job ij  on machine l, 

ij
sp  the total processing time of 

job ij  on all machines, lji
ML ,  the minimum delay on the machine l between the 

completion of job 1−ij  and ij , 
ii jjL ,1−

 the minimum delay on the first machine 

between the start of job 1−ij  and ij , ljj ii
s ,,1−

 the sequence-dependent setup time 

between job 1−ij  and ij  on machine l. Let 0,0
=ljp  for ml ,...,1= . Then lji

ML ,  

can be calculated as follows: 

⎪⎩
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111 . (1)

Thus, the total completion time )(πTC  ( i.e., )(πTC =
j

C∑ ) is as follows: 

∑ −+= = mj
n
iT i

MLinC ,1 )1()(π . (2)

Fig. 1 shows a small example of a NFSSP with SDSTs when n=3 and m=3. 
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Fig. 1. NFSSP with SDSTs example when n=3 and m=3 

Obviously, 
ii jjL ,1−
 can be calculated by using the following formula: 

iiiii jjmjjj spspMLL −+=
−− 11 ,, . (3)



 Hybrid Differential Evolution Optimization for No-Wait Flow-Shop Scheduling 603 

2.2  NFSSP with SDSTs and RDs 

Let 
ij

r denote the arrival time of job ij , 
ij

St  the process start time of job ij  on 

machine 1, and 
ij

C  the completion time of job ij  on machine m. Then 
ij

St  can be 

written as follows: 

⎪⎩

⎪
⎨
⎧

=−+
=−

=
−−−

niStrLSt

irspML
St

iiiii

iii

i
jjjjj

jjmj
j ,...,2  },,max{

1 },,max{

111 ,

, . (4)

Thus, 
ij

C  and )(πTC  can be calculated as follows: 

nispStC
iii jjj ,...,1, =+= . (5)

ij
n
iT CC ∑ == 1)(π . (6)

The aim of this paper is to find a schedule *π  in the set of all schedules Π  such that  

Π∈∀→= πππ min)}(arg{* TC . (7)

3  Brief Review of DE 

DE is a branch of metaheuristic proposed by Storn and Price [6] for optimization 
problems over continuous domains. The basic DE algorithm aims at finding the global 
optima by utilizing the distance and direction information according to the differentia-
tions among population. The theoretical framework of DE is very simple and DE is 
easy to be coded and implemented with computer. Thus, nowadays DE has attracted 
much attention and wide applications in various fields.  

In DE, it starts with the random initialization of a population of individuals in the 
search space and works on the cooperative behaviors of the individuals in the popula-
tion. The searching behavior of each individual is adjusted by dynamically altering 
the differentiation’s direction and step length in which this differentiation performs. 
At each generation, the mutation and crossover operators are applied on the individu-
als, and a new population arises. Then, selection takes place, and the corresponding 
individuals from both populations compete to comprise the next generation. Current-
ly, there are several variants of DE algorithm can be found in [12]. The details of DE 
can be found in subsection 4.3. 

4  HDE for NFSSP with SDSTs and RDs 

In this section, we will present HDE for NFSSP with SDSTs and RDs after explaining 
the solution representation, speed-up computing method, DE-based global search, 
problem-dependent local search. 
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Fig. 2. The procedure framework of HDE 

4.1  Solution Representation 

The important problem in applying DE to NFSSP is to find a suitable mapping be-
tween job sequence and individuals (continuous vectors) in DE. For the n-job and m-
machine problem, each vector contains n  number of dimensions corresponding to n  
operations. In this paper, we adopt a largest-order-value (LOV) rule in [9] to convert 
DE’s individual =iX [ niii xxx ,2,1, ,,, ] to the job solution/permutation vector 

=iπ { niii jjj ,2,1, ,,, }. According to LOV rule, =iX [ niii xxx ,2,1, ,,, ] are firstly 

ranked by descending order to get the sequence =iϕ [ niii ,2,1, ,,, ϕϕϕ ]. Then the 

job permutation iπ  is calculated by the following formula:  

kj
kii =

,,ϕ . (8)

To better understand the LOV rule, a simple example is provided in Table 1. In this 
instance ( 6=n ), when 1=k , then 41, =iϕ  and 14,, 1,

== ii jj
iϕ ; when 2=k , then 

12, =iϕ  and  21,, 2,
== ii jj

iϕ , and so on. This representation is unique and simple in 

terms of finding new permutations. Moreover, according to our previous tests, this 
representation is more effective then the famous random key representation [13]. 

Generate DE’s individuals with random values, and determine the cor-
responding job permutations by LOV rule 

Apply local search to best(t) by using speed-up evaluation method 

Calculate )(πTC  of initial DE’s population with speed-up evaluation 

method, update best(t) and set t = 1

No (DE-based global search) 

Yes 

Set t = t + 1 

Is t > the maximum 
number of iteration?

Output best(t) and its 
objective value 

Calculate and save 
ii jjL ,1−  and 

ijsp  ( },...,1{,1 njj ii ∈− ) 

Update DE’s individuals using DE/rand-to-best/1/exp-based scheme, 
determine permutations using LOV rule and calculate makespan of DE’s 
individuals with speed-up evaluation method and update best(t) 

(Problem-dependent local search) 
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Table 1. Solution Representation 

Dimension k 1 2 3 4 5 6 

kix ,  1.17 3.95 0.23 2.61 2.72 0.77 

ki,ϕ  4 1 6 3 2 5 

kij ,  2 5 4 1 6 3 

4.2  Speed-Up Evaluation Method 

In NFSSPs with SDSTs and RDs, 
ii jjL ,1−

 is only decided by the job 1−ij  and ij . 

According to this property, one method can be adopted to reduce the computing com-

plexity (CC) of )(πTC . That is, 
ii jjL ,1−

, 
ij

sp  and ∑ = ij
n
i sp1  can be calculated 

and saved in the initial phase of HDE and then can be used as constant values in the 
evolution phase of HDE, which can reduce the CC of )(πTC  from )(nmO  to 

)(nO . The procedure of the speed-up evaluation method is given as follows: 

// Suppose that 
ii jjL ,1−
, 

ij
sp  and  ∑ = ij

n
i sp1  have already been calculated and 

//saved. 

Step 1: Set CT=0; 
Step 2: For i = 1 to n 
                Calculate 

ij
St  by using (4);  //

ii jjL ,1−
 is a constant value in (4). 

                
ij

StCTCT += ;                    //
llj

i
ll StCT ∑ == 1  

            End For i; 

Step 3: 
ij

n
iT spCTC ∑ =+= 1)(π ;        //∑ = ij

n
i sp1  is a constant value. 

Remark. In Step 2, CT is utilized to save the current value of 
llj

i
ll St∑ =1  in each 

loop. 

4.3  DE-Based Global Search 

In HDE, DE-based global search is designed based on DE/rand-to-best/1/exp scheme 
[9][12] to perform parallel exploration, in which base vector is the best individual of 
the current population. So, those individuals performing DE-based operation will 
share the information of the best individual of the population. In the mutation and 
crossover phase, each individual can transform probabilistically to any other individ-
ual in the solution space when the evolution generation ∞→t . In the selection 
phase, only the better individual can be accepted. Therefore, the DE-based search can 
reach enough promising regions over the solution space.  
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Let best(t) denote the best-so-far individual found by HDE until generation t. The 
procedure of DE-based global search is given as follows: 

Step 1: Generate DE’s individuals with random values, and determine the 
corresponding job permutations by LOV rule. 

Step 2: Calculate )(πTC  of initial DE’s population, update best(t) and set t = 1. 

Step 3: Update DE’s individuals using DE/rand-to-best/1/exp-based scheme and 
determine permutations using LOV rule. 

Step 4: Calculate makespan of DE’s individuals and update best(t). 
Step 5: Set t=t+1. If maxtt ≤  (the maximum number of iteration), then go to Step 

3. 
Step 6: Output best(t) and its objective value. 

Because of the parallel framework of DE, local search is easy to incorporate into DE 
to develop effective hybrid algorithms. Next, we will present a problem-dependent 
local search to perform exploitation. 

4.4  Problem-Dependent Local Search 

For the FSSPs, two effective neighborhoods are often used in the literature. (i) remove 
the job at the u th dimension and insert it in the v th dimension of the job solution π  
( ),,( vuinsert π ), (ii) interchange the job at the u th dimension and the job at the v th 

dimension of the job solution π  ( ),,( vueinterchang π ). Thus, we employ insert and 

interchange here as the neighborhood for local search.  
Denote )(tX i =[ niii xxx ,2,1, ,,, ] ( popsizei ,,2,1= ) the ith individual in the n-

dimensional search space at generation t. The procedure of the local search is given as 
follows: 

Step 1: Convert individual )(tX i  to a job permutation 0_iπ  according to the 

LOV rule. 
Step 2: Perturbation phase. 

Randomly select u  and v , where vu ≠ ; ),( ,0_ vueinterchang ii ππ = . 

Step 3: Exploitation phase. 
Set loop=1; 

          Do 
Randomly select u  and v , where vu ≠ ; 

            ),( ,1_ vuinsert ii ππ = ;  

            if )( 1_if π < )( if π , then 1_ii ππ = ; 

            loop++; 
            While loop<(n×(n-1)). 

Step 4: If )( if π < )( 0_if π , then ii ππ =0_ . 

Step 5: Convert 0_iπ  back to )(tX i . 
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As can be seen from the above procedure, step 2 is the perturbation phase, which is 
used to escape local optima and guide the search to a different region, and step 3 ex-
ecutes a thorough exploitation from the region obtained by step 2. Since the speed up 
computation method is adopted here, HDE has the ability to search more regions in 
the solution space under the same running time. So, instead of using the same neigh-
borhood for perturbation and exploitation, the interchange neighborhood and the in-
sert neighborhood are employed in step 2 and step 3, respectively, which can guide 
the search to a more different region and then improve the search ability of HDE to 
some extent. The effectiveness of adopting the interchange neighborhood as perturba-
tion has already been validated in [14]. 

4.5  HDE 

Based on the above solution representation, speed-up computing method, DE-based 
search, problem-dependent local search, the procedure framework of HDE is pro-
posed in Fig. 2. It can be seen from Fig.2 that not only does HDE apply DE-based 
searching mechanism to execute exploration for all individuals to find promising re-
gions or solutions within continuous region, but it also applies problem-dependent 
local search to perform exploitation for the best individual to improve the solution’s 
quality in the permutation space. Because both exploration and exploitation are well 
stressed, it is expected to achieve good results for NFSSP with SDSTs and RDs. In 
the next section, we will investigate the performances of the proposed HDE. 

5  Test and Comparisons 

5.1  Experimental Setup 

To test the performance of the proposed HDE for NFSSPs with SDSTs and RDs, 
computational simulation is carried out with 12 random instances. That is, the mn ×  
combinations are: {30, 50, 70}× {5, 10, 20} and {100}× {10, 20, 40}. The processing 
time lji

p ,  and the setup time ljj ii
s ,,1−

 are generated from a uniform distribution [1, 

100] and a uniform distribution [0, 100], respectively. The job arrival time 
ij

r  is an 

integer that is uniformly generated in ]150 ,0[ αn , where the parameter α  is used to 

control the jobs’ arrival speeds. The values of α  are set to 0, 0.2, 0.4, 0.6, 0.8, 1 and 
1.5, respectively. Each instance at each α  is independently run 30 times for every 
algorithm for comparison. Thus, we have a total of 84 different instances. 

To evaluate the effectiveness of HDE, we carry out simulations to compare our 
HDE with several other scheduling algorithms, which are a modified simulated an-
nealing algorithm with first move strategy (SAFM) [15], a hybrid DE for FSSP 
(HDE_FSSP) [9], HDE_FSSP with the speed-up evaluation method 
(HDE_FSSP_SP), and an iterated greedy heuristic (IG) [16]. According to [15], 
SAFM is superior to a famous simulated annealing algorithm proposed by Osman 
[17]. Based on our tests, SAFM is also more effective than a hybrid genetic algorithm 
[18]. Moreover, HDE_FSSP is an effective algorithm to address FSSPs [9] and IG is 
one of the state-of-the-art algorithms for solving FSSPs with SDSTs [16]. In our tests, 
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HDE, HDE_FSSP, and HDE_FSSP_SP use the same parameters as follows: the popu-
lation size 30=popsize , the scaling factor F =0.7, and the crossover parameter 

CR =0.1. Thus, the difference between HDE and HDE_FSSP_SP only lies in the 
neighborhood used in step 2 (i.e., the perturbation phase) of local search. That is, the 
interchange neighborhood and the insert neighborhood are employed in the perturba-
tion phase of HDE’s and HDE_FSSP_SP’s local search, respectively. We re-
implement SAFM and IG according to [15] and [16], respectively. All algorithms 
used in the comparisons are re-implemented by ourselves and are coded in Delphi 7.0. 
Experiments are executed on an Intel Q8200 2.33GHz PC with 3 GB RAM. 

5.2  Test Results and Comparisons 

To investigate the performance of HDE, we set SAFM’s maximum generation to 
n×40  and let all other compared algorithms run at the same time as SAFM. Denote 

)(αiniπ  the permutation in which jobs are ranked by descending value of job’s re-

lease date at α , ))(( απTC  the total completion time of permutation )(απ  at α , 

))((_ απTCavg  the average value of ))(( απTC , ))((_ απTCbest  the best value of 

))(( απTC , ( ) %100))(())((_))(()( ×−= αααα iniTTiniT CCavgCARI πππ  the 

average percentage improvement over ))(( αiniTC π , =)(αBEI  

( ) %100))(())((_))(( ×− ααα iniTTiniT CCbestC πππ  the best percentage improve-

ment over ))(( αiniTC π , )(αET  the solution evaluation times at α  (i.e., the times 

of calculating ))(( απTC ), )(αSD  the standard deviation of ))(( απTC  at α , αS  

the set of all values of α , and αS  the number of different values in αS . Then, we 

define four measures to evaluate the performances of the compared algorithms, i.e., 

ARI = ∑
∈ ααα

α
S

ARI
S

)(
1

, ∑
∈

=
ααα

α
S

BEI
S

BEI )(
1

, =ET ∑
∈ ααα

α
S

ET
S

)(
1

, and 

=SD ∑
∈ ααα

α
S

SD
S

)(
1

. The statistical results of ARI, SD, BEI, and ET produced by 

the compared algorithms are reported in Table 2 and Table 3, respectively. Further-
more, in order to show the details of the compared algorithms for solving the instance 
with different α , we give the test results of the instance 2070 ×  in Table4. The test 
results of other instances with different α  are similar to those in Table 4. 

It can be seen from Table 2-4 that the ARI and BEI values obtained by HDE and 
HDE_FSSP_SP are obviously better than those obtained by SAFM, IG, and 
HDE_FSSP for almost all instances, which not only shows the superiority of HDE but 
also validates the effectiveness of utilizing speed-up evaluation method in DE. 
Meanwhile, the ARI and BEI values obtained by HDE are better than or very close to 
those obtained by HDE_FSSP_SP for all instances, which demonstrates the necessity 
of adopting the interchange neighborhood in the perturbation phase of local search. 
Moreover, the SD values of HDE are comparatively small, from which it is concluded 
that HDE is a robust algorithm. Besides, from Table 3, it is shown that the ET values 
of HDE and HDE_FSSP_SP increase quickly with the scale of problem, which is 
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helpful to search more regions/solutions and achieve better performance under the 
same amount of computer time. However, the local search of HDE is expensive with 
bigger problems, which means more effective local search method with low compu-
ting complexity needs further study. 

Table 2. Comparison of ARI and SD of SAFM, IG, HDE_FSSP, HDE_FSSP_SP, HDE 

Instance 
n, m 

SAFM IG HDE_FSSP HDE_FSSP_SP HDE 
ARI SD ARI SD ARI SD ARI SD ARI SD 

30, 5 17.084 1.351  20.207  0.601 20.994 0.732 20.877 0.723 20.775  0.796  
30, 10 17.020 1.110  20.369  0.341 20.925 0.505 20.858 0.504 20.928  0.431  
30, 20 12.903 0.804  14.851  0.433 15.412 0.412 15.452 0.396 15.534  0.378  
50, 5 26.780 0.983  28.638  0.517 28.961 0.692 29.042 0.791 28.991  0.699  
50, 10 22.042 0.825  23.846  0.592 24.395 0.612 24.506 0.697 24.583  0.565  
50, 20 20.054 0.642  21.493  0.382 22.033 0.469 22.270 0.474 22.295  0.410  
70, 5 27.512 0.741  28.036  0.509 28.920 0.646 29.412 0.605 29.492  0.564  
70, 10 27.129 0.536  27.453  0.421 28.119 0.520 28.611 0.473 28.621  0.449  
70, 20 22.229 0.548  22.960  0.346 23.471 0.486 24.024 0.403 24.106  0.367  
100, 10 29.863 0.441  29.989  0.327 30.417 0.428 30.842 0.423 30.854  0.436  
100, 20 27.196 0.423  27.328  0.350 27.828 0.451 28.147 0.371 28.225  0.326  
100, 40 29.617 0.371  30.022  0.256 30.572 0.440 31.028 0.361 31.058  0.331  
average 23.286 0.731  24.599  0.423 25.171 0.533 25.422 0.518 25.455  0.479  

Table 3. Comparison of BEI and ET of SAFM, IG, HDE_FSSP, HDE_FSSP_SP, HDE 

Instance 
n, m 

SAFM IG HDE_FSSP HDE_FSSP_SP HDE 
BEI ET BEI ET BEI ET BEI ET BEI ET 

30, 5 19.556 27743 21.225  24586  22.129 20210  22.095 19376  22.188  19316  
30, 10 19.131 27624 21.316  24613  21.710 20541  21.767 21129  21.651  21146  
30, 20 14.525 27444 15.753  24949  16.178 21542  16.142 25644  16.190  25708  
50, 5 28.581 76496 29.608  70245  30.189 64977  30.420 69527  30.506  69693  
50, 10 23.493 76239 25.045  70951  25.572 66892  25.772 80495  25.757  80424  
50, 20 21.215 75975 22.126  72399  22.887 68605  23.057 106556  23.126  106615  
70, 5 28.850 149504 29.071  150088 30.195 150082 30.432 312079  30.695  312148  
70, 10 28.299 148997 28.386  149898 29.109 149873 29.529 371025  29.530  371279  
70, 20 23.397 147924 23.599  148741 24.330 149364 24.708 499844  24.778  499659  
100, 10 30.523 302329 30.577  310620 31.068 307923 31.458 763282  31.528  763471 
100, 20 27.863 301525 27.810  311657 28.559 307781 28.731 1041850 28.741  1042891  
100, 40 30.216 299744 30.442  305562 31.214 307356 31.589 1576192 31.567  1576145  
average 24.637 138462 25.413  138692 26.095 136262 26.308 407250  26.355  407375 

Table 4. Comparison of SAFM, IG, HDE_FSSP, HDE_FSSP_SP, HDE on instance 2070 ×  

α  
SAFM IG HDE_FSSP HDE_FSSP_SP HDE 

ARI 
(α ) 

SD 
(α ) 

ARI 
( α ) 

SD 
( α ) 

ARI 
( α ) 

SD 
( α ) 

ARI 
( α ) 

SD 
( α ) 

ARI 
( α ) 

SD 
( α ) 

0 25.759 0.566 26.957 0.275 26.876 0.413 27.476 0.419 27.618 0.395 
0.2 24.024 0.393 24.403 0.242 25.247 0.434 25.716 0.277 25.856 0.309 
0.4 23.522 0.527 24.440 0.146 24.499 0.465 25.333 0.456 25.389 0.306 
0.6 22.702 0.611 23.671 0.329 23.702 0.693 24.205 0.431 24.258 0.400 
0.8 20.416 0.628 20.209 0.563 21.845 0.476 22.368 0.445 22.468 0.351 
1.0 20.622 0.560 21.684 0.231 22.105 0.514 22.619 0.462 22.669 0.475 
1.5 18.560 0.549 19.358 0.637 20.020 0.405 20.449 0.334 20.481 0.335 

average 22.229 0.548 22.960 0.346 23.471 0.486 24.024 0.403 24.106 0.367 
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In conclusion, the above comparisons show that HDE is an effective approach with 
excellent quality and robustness for NFSSPs with SDSTs and RDs. 

6  Conclusions and Future Research  

This paper presented a hybrid differential evolution (HDE) for the no-wait flow-shop 
scheduling problem (NFSSP) with sequence-dependent setup times (SDSTs) and 
release dates (RDs). To the best of the current authors’ knowledge, this is the first 
report on the application of differential evolution (DE) approach to solve the problem 
considered. The developed algorithm not only applied wide scatter search guided by 
the evolutionary mechanism of DE, but it also applied thorough local search guided 
by interchange-based perturbation and insert-based  exploitation. Moreover, a speed-
up evaluation method was designed to reduce the computing complexity of evaluation 
solutions. Thus, both the effectiveness of searching solutions and the efficiency of 
evaluating solutions were considered. Simulation results and comparisons with some 
prevail algorithms demonstrated the effectiveness and robustness of our proposed 
algorithm. For future research, we intend to study DE for other kinds of scheduling 
problems, such as dynamic job shop scheduling problem. 

Acknowledgements. This research is partially supported by National Science 
Foundation of China (Grant No. 60904081), Applied Basic Research Foundation of 
Yunnan Province (Grant No. 2009ZC015X), Talent Introduction Foundation of 
Kunming University of Science and Technology (Grant No. KKZ3200903021), and 
863 High Tech Development Plan (Grant No. 2007AA04Z193). 

References 

1. Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Optimization and Ap-
proximation in Deterministic Sequencing and Scheduling: a Survey. Annals of Discrete 
Mathematics 5, 287–326 (1979) 

2. Allahverdi, A., Ng, C.T., Cheng, T.C.E., Kovalyov, M.Y.: A Survey of Scheduling Prob-
lems with Setup Times or Costs. European Journal of Operational Research 187(3),  
985–1032 (2008) 

3. Oguz, C., Salman, F.S., Yalçin, Z.B.: Order Acceptance and Scheduling Decisions in 
Make-to-order Systems. International Journal of Production Economics 125(1), 200–211 
(2010) 

4. Urlings, T., Ruiz, R., Stützle, T.: Shifting Representation Search for Hybrid Flexible 
Flow-line Problems. European Journal of Operational Research 207(2), 1086–1095 (2010) 

5. Ruiz, R., Allahverdi, A.: Some Effective Heuristics for no-wait Flowshops with Setup 
Times to Minimize Total Completion Time. Annals of Operations Research 156(1),  
143–171 (2007) 

6. Storn, R., Price, K.: Differential Evolution–a Simple and Efficient Heuristic for Global Opti-
mization over Continuous Spaces. Journal of Global Optimization 11(4), 341–359 (1997) 

7. Tasgetiren, M.F., Liang, Y.C., Sevkli, M., Gencyilmaz, G.: Differential Evolution Algo-
rithm for Permutation Flowshop Sequencing Problem with Makespan Criterion. In: Pro-
ceedings of 4th International Symposium on Intelligent Manufacturing Systems, Sakarya, 
Turkey, pp. 442–452 (2004) 

8. Onwubolu, G., Davendra, D.: Scheduling Flow Shops using Differential Evolution Algo-
rithm. European Journal of Operational Research 171(2), 674–692 (2006) 



 Hybrid Differential Evolution Optimization for No-Wait Flow-Shop Scheduling 611 

9. Qian, B., Wang, L., Hu, R., Wang, W.L., Huang, D.X., Wang, X.: A Hybrid Differential 
Evolution for Permutation Flow-shop Scheduling. International Journal of Advanced 
Manufacturing Technology 38(7-8), 757–777 (2008) 

10. Pan, Q.K., Tasgetiren, M.F., Liang, Y.C.: A Discrete Differential Evolution Algorithm for 
the Permutation Flowshop Scheduling Problem. Computers & Industrial Engineer-
ing 55(4), 795–816 (2008) 

11. Wang, L., Pan, Q.K., Suganthan, P.N., Wang, W.H., Wang, Y.M.: A Novel Hybrid Dis-
crete Differential Evolution Algorithm for Blocking Flow Shop Scheduling Problems. 
Computers & Operations Research 37(3), 509–520 (2010) 

12. Price, K., Storn, R.: Differential Evolution (DE) for Continuous Function Optimization 
(2011), http://www.icsi.berkeley.edu/%7Estorn/code.html  

13. Bean, J.C.: Genetic Algorithm and Random Keys for Sequencing and Optimization. 
ORSA Journal on Computing 6(2), 154–160 (1994) 

14. Qian, B., Wang, L., Hu, R., Huang, D.X., Wang, X.: A DE-based Approach to no-wait 
Flow-shop Scheduling. Computers & Industrial Engineering 57(3), 787–805 (2009) 

15. Ishibuchi, H., Misaki, S., Tanaka, H.: Modified Simulated Annealing Algorithms for the 
Flow Shop Sequencing Problem. European Journal of Operational Research 81(2),  
388–398 (1995) 

16. Ruiz, R., Stützle, T.: An Iterated Greedy Heuristic for the Sequence Dependent Setup 
Times Flowshop Problem with Makespan and Weighted Tardiness Objectives. European 
Journal of Operational Research 187(3), 1143–1159 (2008) 

17. Osman, I.H., Potts, C.N.: Simulated Annealing for Permutation Flow-shop Scheduling. 
Omega-Int. J. Manage. S. 17(6), 551–557 (1989) 

18. Wang, L., Zheng, D.Z.: An effective hybrid heuristic for flow shop scheduling. Interna-
tional Journal of Advanced Manufacturing Technology 21(1), 38–44 (2003) 


	Hybrid Differential Evolution Optimization for No-Wait 
Flow-Shop Scheduling with Sequence-Dependent Setup Times and Release Dates
	Introduction
	Formulation of NFSSP with SDSTs and RDs
	NFSSP with SDSTs
	NFSSP with SDSTs and RDs

	Brief Review of DE
	HDE for NFSSP with SDSTs and RDs
	Solution Representation
	Speed-Up Evaluation Method
	DE-Based Global Search
	Problem-Dependent Local Search
	HDE

	Test and Comparisons
	Experimental Setup
	Test Results and Comparisons

	Conclusions and Future Research
	References




