
I. Kalaš and R.T. Mittermeir (Eds.): ISSEP 2011, LNCS 7013, pp. 71–81, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Overcoming Obstacles to CS Education by Using
Non-programming Outreach Programmes

Tim Bell1, Paul Curzon2, Quintin Cutts3,
Valentina Dagienė4, and Bruria Haberman5

1 University of Canterbury, Christchurch 8041, NZ
tim.bell@canterbury.ac.nz

2 Queen Mary University of London, London, E1 4NS, UK
paul.curzon@eecs.qmul.ac.uk

3 University of Glasgow, Glasgow, G12 8RZ, Scotland
quintin.cutts@glasgow.ac.uk

4 Vilnius University, Faculty of Mathematics and Informatics,
Naugarduko str. 24, Vilnius LT-03223, Lithuania

valentina.dagiene@mif.vu.lt
5 Holon Institute of Technology, Holon,

Israel, and Davidson Institute of Science Education,
Weizmann Institute of Science, Rehovot 76100, Israel

bruria.haberman@weizmann.ac.il

Abstract. Formal Computer Science curricula in schools are currently in a state
of flux, yet there is an urgency to have school students exposed to CS concepts
so that they can make informed decisions about career paths. An effective way
to address this is through outreach programmes that can operate outside or in
conjunction with the formal education system. We compare 5 successful pro-
grammes. Each downplays programming as a pre-requisite skill for engaging
with Computer Science ideas. This makes them accessible in short bursts
without formal curriculum support. The formats used include contests, shows,
magazine articles, and resources for teachers. We compare the 5 approaches to
draw out key ideas for successfully addressing a school student audience. This
can be used as the basis for designing new outreach programs.

Keywords: CS Education, Informatics Education, K-12 outreach, Information
Technology, Computational Thinking.

1 Introduction

While formal school curricula around the world are gradually introducing Computer
Science (CS) as a subject, there is an urgency to get school-age students interested in
the topic, and consequently many outreach programmes have emerged that either
work outside the school system, or supplement what is available in schools. Here we
compare five such approaches to introducing Computer Science to high school age
students. An important common feature of these is that none assumes programming as
a preliminary or pre-requisite topic – they enable students to engage with concepts

72 T. Bell et al.

from Computer Science without having to first learn how to program. In a formal
school programme there would be time to develop programming skills and provide
good computing resources, but outreach programmes must necessarily make do with
limited time with students and whatever facilities happen to be available.

Teaching CS without programming is achieved in a variety of ways including off-
line kinesthetic activities, problem solving challenges that involve computational
thinking, engaging magazine articles that present ideas from Computer Science, and
mentoring by experts. All the approaches described here started as extracurricular
outreach initiatives independent of formal school curriculum and constraints, thus
there was a lot of freedom and space for imagination in their design. They also
provide “grass-roots” trials of approaches for introducing students to CS, and the
successful elements of these “trials” can later be absorbed into formal curricula. The
approaches discussed here have all had widespread adoption and influence (typically
tens of thousands of students) so there is potentially much to be learned from
exploring their commonalities and differences. Our aim for this comparison is to
compare and contrast existing successful approaches, drawing out common features
and themes to give guidelines for the design of future initiatives.

There are three main motivations for downplaying the role of programming when
first introducing students to CS. (1) In the context of outreach where a relatively short
time is available to interact with students (often just a single short lesson), there isn’t
time to teach programming. (2) By engaging students without requiring them to learn
to program first, a potential barrier is removed that could deter students from pursuing
Computer Science. Some students will enjoy CS concepts such as problem-solving
more than programming, and by engaging with those concepts first they will have
more motivation to learn programming, which they are likely to encounter as a
prerequisite for studying Computer Science formally. (3) A non-programming
approach is a practical way to engage students in Computational Thinking [13].
Students thus gain benefits beyond a computing career.

In all the approaches described here, the key is that programming isn’t the central
element. Eventually students will likely need to learn programming, but it can be after
students become engaged.

In the following sections we first describe each programme. In Section 7 we then
provide a classification tool to highlight their similarities and differences which can
be used to provide guidance on building a successful programme.

2 Bebras

Many competitions in computing and IT are intended for very talented students and
focus on areas such as developing algorithms and programming. The Bebras
competition instead has students solve problems from a broad range of areas without
programming [6, 8, 9]. Because many students enjoy competition, such contests at
school can be used to attract students to the domain covered by the contest.

The idea of a competition based around informatics and computer fluency for a
wide population of high-school students started in Lithuania in 2003. It was named
“Bebras” (“Beaver” in English) after the hard-working, persistent, intelligent, and
lively animal. The main goals of the project are to promote students’ interest in

 Overcoming Obstacles to CS Education 73

informatics (i.e. Computer Science) and Information and Communication Technology
(ICT) from the start of their school career, to motivate students to learn and master
computers, and to engage in computational thinking [6, 7, 13]. The contest is for all
lower and upper secondary school pupils, divided into four age groups. Students have
to solve 18 to 27 tasks on different levels within 45-60 minutes, entering answers via
computer. They do not require prior topic knowledge, but do require students to be
able to reason with common structures in the CS/informatics canon.

The tasks involve concepts such as algorithms (sequential and concurrent); data
structures (heaps, stacks and queues, trees, and graphs); modeling of states, control
flow and data flow; human-computer interaction; and graphics. Students do not study
these topics formally, instead, the topics are introduced implicitly by having the
students attempt imaginative tasks. A “narrative cover story” is used to relate the
tasks to an underlying topic.

More than 10 countries now participate in Bebras. Since the contest is now
international, one specific challenge is to find a balance between national and global
standards for the contest. Hence, discussion on common standards and tasks suitable
for all countries takes place at annual international workshops. A shared collection of
tasks is developed including mandatory tasks to be included by all countries in their
contests; additional tasks can be added to this to adapt the competition to the
educational framework of each country. Surveys and informal feedback reported by
the organizers in different countries suggest that the contest motivated students to get
to know computer science and information technology better.

3 CS Unplugged

CS Unplugged [2] provides a variety of resources that engage students in Computer
Science activities without using a computer. Instead of programming ideas from
Computer Science, students interact with them through magic tricks, games and
puzzles. Most activities have a strong kinaesthetic component and take a
constructivist approach: students are given enough clues so they can work out
principles themselves. A constructivist approach, where students are guided with
leading questions so that they can discover CS principles for themselves, is important
for outreach as it demonstrates to students that they could have invented much of the
knowledge themselves; and of course, this is a lot more engaging than simply being
told impressive facts.

The CS Unplugged resources are available for free download; as well as activities
with specific guides for the presenter, there are videos demonstrating the activities or
providing challenges to students, and links to extensive related material for follow-up.
The activities have been translated into over a dozen languages. Another format for
the material is a one-hour show [1], designed for a broad coverage of CS topics in a
short time, rather than in-depth work by the students.

CS Unplugged is used in many situations around the world, generally relating to
one-off events and visits, but increasingly as components of teaching programmes. It
started around 1992 as a collection of ideas for outreach from universities to K-12
schools. Through its inclusion in the ACM K-12 curriculum in 2003 it started to be
seen as the basis of a new approach for teaching CS in schools, either as the main

74 T. Bell et al.

material, or a supplement providing a break from being in a computer lab. It is now
used widely in a variety of situations, including outreach, clubs, summer camps, and
regular classrooms.

4 cs4fn

cs4fn [4] uses research topics to spark enthusiasm in students about Computer
Science, providing them with ways to learn more about the subject so that the initial
spark develops into a more sustained interest. It consists of four elements: a 20-page
free magazine sent twice yearly to UK schools and subscribers worldwide; a website
with up to 10 new articles per month; shows, such as the hour long cs4fn magic show
[3], and booklets that allow audiences to explore topics more deeply.

The core target audience for cs4fn resources are school students aged 14+ though
some are also presented to younger (9+) children and family audiences at science
festivals. The magazines and website are read by people of all ages and professions
including students, teachers, professionals and interested members of the general
public.

The time commitment for cs4fn participants need not be high; school talks last
only one school period, and at science festivals contact with individuals may be as
short as 10 minutes. Likewise, students may only read a few articles at a time. The
programme focuses on telling engaging stories about research, illustrating CS
concepts using examples that resonate with students’ lives. It also examines thought-
provoking topics with a philosophical dimension, such as artificial intelligence. cs4fn
talks incorporate lots of interaction. The project uses a concept of a ‘sticky web’ of
approaches, the idea being that whether individuals find it via web, magazine or a
talk, they are then drawn further in to the other strands of the project.

Across all strands cs4fn aims to show that computing is a fun, enjoyable subject
that students should take further for intrinsic motivational reasons. Feedback from
teachers and participants is overwhelmingly positive for all four elements of the
project.

5 CS Inside

The CS Inside approach [5] draws much from CS Unplugged: predominantly
kinaesthetic activities, undertaken without the need for computers, designed to be
used by presenters with varying levels of computing experience. Whereas CS
Unplugged was originally designed for students up to about the age of 12, the CS
Inside activities were written for high school students from the start, recognising the
different motivations that these two student groups will have for taking part in
kinaesthetic activities. “Inside” is used in the approach’s name because each activity
brings out some of the Computer Science to be found inside the technology that is
part of students’ everyday lives, such as mobile phones, web browsers and game
consoles. The aim is to engage students in issues of relevance to them about
computing technology, and open up those issues by exploring the computer science
inside.

 Overcoming Obstacles to CS Education 75

The areas of Computer Science covered by the activities are not explicitly chosen
to match with any particular school curriculum. The original context, however, was
Scottish schools, and links are identified from the CS Inside activities to precise parts
of the Scottish schools’ computing curriculum where they may be useful. Some
teachers use only those activities that help support the curriculum while others are
happy to use them all (and are hungry for more!), recognising that materials of this
nature are genuinely inspiring for students.

The activities are typically structured in four parts: the Grab captures the students’
attention by asking questions about technology that are relevant to students; the Intro
shifts attention from the students’ context to the technology context to be addressed in
this activity – this should be as small as possible to avoid losing the students’ interest;
the Activity is the main task; and the Sustain carries the learning from this activity out
into their everyday lives, so that everyday events concerning technology will remind
them of what is going on inside.

6 CS, Academia and Industry

This programme aims to expose students directly to state-of-the-art research,
advanced technologies, software engineering methodologies, and professional norms
by having the students interact with leading experts [14]. It is extracurricular,
designed especially for talented high-school students in Israel who major in CS. Its
main goal is to bridge the gap between school education and the “real world” of
computing, especially relating to content, learning culture, and professional norms.

There are three main motivations for the approach: students can (1) add state-of-
the-art computing research and development to the fundamentals taught at school, (2)
be encouraged to become self-learners by experiencing a “taste-based”, breadth-
oriented learning approach, and (3) participate in “real-world” software development
through a comprehensive project.

The two-year programme blends formal and informal learning and includes
enrichment meetings, field trips and software development projects under the
supervision of experts. Talented students are recommended to attend by their teachers.

The first stage is designed for 11th grade students and consists of a 7-month
enrichment workshop looking at contemporary issues in computing. In the second
phase, the 12th grade students (chosen from the first stage attendees) develop
comprehensive software projects under the apprenticeship-based supervision of
professional mentors (scientists and engineers from academia and the hi-tech industry).

An underlying principle of the first phase, which avoids using programming, is that
students should be taught to employ a breadth-oriented learning style, in which their
initial exposure to an unfamiliar topic will be accomplished by exposing them only to
its essence (i.e., the main high-level abstract ideas). In other words, a complete
understanding, including knowing the concrete details and mastering procedural
aspects, should not be considered as the immediate aim of an initial exposure to a new
topic. To achieve this, monthly enrichment meetings are conducted in which a variety
of advanced topics are introduced in plenary sessions by leading representatives of
CS/SE academia and industry. The sessions cover topics such as computer sciences
and biology, artificial intelligence, computing in space, and professional norms.

76 T. Bell et al.

In addition, the following non-programming learning activities were conducted,
challenging algorithmic problems, role-playing simulation games, creative thinking in
computer science, model-based-development, and a competition in testing software.

Feedback so far indicates that the programme contributes to developing a culture of
learning befitting the dynamic world of industrial computing, thus providing the
students with an entry point into the computing community of practice [10,14].

7 Comparison of the Programmes

Tables 1 and 2 compare the five approaches using criteria that highlight the similarities
and differences between them. These criteria have emerged as a result of the previous
discussion. By drawing out the commonalities of such large-scale successful
programmes, we can draw lessons about important ingredients for future initiatives.

Table 1 focuses on the design of each approach. Comparing the five approaches,
we see that in terms of the range of topics covered, all offer a breadth across
Computer Science, exposing students to the range of topics that they might choose
from to specialise in if they undertake the discipline. All operate on a large scale, with
thousands of participants, and dozens (if not hundreds) of resources for presenters to
draw on. All have a high level of visibility, some more locally, while others have a
large international following. All rely on a pool of contributors and have some form
of quality control. Most of the approaches engage students for around an hour at a
time, though magazines and videos may only require minutes to engage with.

Table 2 analyses how the participants (students and teachers) interact with each
programme. Finding a motivation for students to participate is key. Because the work
is largely outside the curriculum, and therefore does not count towards formal grades,
there need to be other motivations, either intrinsic or extrinsic. From the table, we can
see that intrinsic motivation in the form of satisfying curiosity and enjoying problem
solving are common to all the programmes. However, specific motivations used
depend on the approach. A magazine article needs to capture enough interest at the
start to keep the students reading for a few minutes. Humour and story-telling are
used in the shows to keep a larger and possibly reluctant audience engaged for longer.

Programmes that require more commitment from students use prizes or certificates,
and experts can serve as role-models to keep students engaged. A programme over
several years needs either to use a deep intrinsic motivation of enjoyment in the
subject or help students achieve their long term goals using, e.g., long-term career
prospects as motivation.

All of the approaches considered avoid having programming as a primary focus, at
least initially. The high level of uptake of all 5 indicates that this doesn’t prevent
students from being interested. These contrast with other popular approaches to
outreach that are largely based around programming, such as robotics competitions, or
introductory languages such as Scratch, Alice and Greenfoot [12]. The two-stage “CS,
Academia & Industry” programme combines both approaches; it doesn’t require
programming in the preliminary stage, but the advanced stage is based around it.

We note that programming can be integrated in a variety of ways with these
predominantly non-programming approaches, either as a follow-up where students
implement ideas they have been exploring, or conversely where the non-programming

 Overcoming Obstacles to CS Education 77

T
ab

le
 1

. A
 c

om
pa

ri
so

n
of

 th
e

fi
ve

 o
ut

re
ac

h
ap

pr
oa

ch
es

: d
es

ig
n

78 T. Bell et al.

T
ab

le
 2

. A
 c

om
pa

ri
so

n
of

 th
e

fi
ve

 o
ut

re
ac

h
ap

pr
oa

ch
es

: a
na

ly
si

s

 Overcoming Obstacles to CS Education 79

activities provide a physical break from programming at a computer. In fact, there is
evidence that including programming as a follow-up is useful, to help students see
more deeply how the material relates to computers [11].

The material discussed in this paper is not generally taught as part of a formal
curriculum, typically being used in outreach and interest programmes such as one-off
visits, out-of-school clubs, science centres, and special events. This is particularly
useful if CS isn’t compulsory in schools, as is the case in many countries and states,
as it helps to expose students to a subject that they may have little idea about. It also
helps teachers and careers advisers to understand the topic, supporting them to help
their students make appropriate career decisions.

Looking at the impact on teachers, we note that the programmes support teachers
by providing resources for them rather than expecting them to do the preparation and
planning. In fact, an unexpected focus of the CS Inside project was the development
and support of teacher communities. Simply providing materials to teachers isn’t
sufficient; high school CS teachers are often a forgotten community, and making
personal contact and building trust has been a key component of CS Inside’s success.
The other approaches also report spin-offs from an improvement in relationships with
teachers, partly by providing a reason for contact between schools and universities,
and also in helping teachers gain a significantly better understanding of CS concepts.

Each of these approaches either already shares ideas with the others, or can benefit
from sharing them. For example, some of the CS Inside and cs4fn lessons are based
on CS Unplugged activities; conversely, the CS Unplugged website provides links to
the relevant CS Inside and cs4fn activities as extension or follow-up ideas. New
puzzles in the Bebras project can be constructed by looking at the challenges in the
other projects and creating a story/context to make them accessible to contestants, and
phase 1 of the CS, academia and industry program can use activities and lesson plans
from the other approaches to provide a means to engage with students. The non-
programming approaches here also work well as supplements to more traditional
programming-based approaches, providing an active break from sedentary work at the
computer.

All the approaches are flexible – the resources themselves generally provide
creative ideas for teaching that can be adapted to the audience and by the audience
(teachers or students) for their own needs. The programmes are presented in a way
that is accessible for teachers and other organisers; resources are provided at no direct
cost through well-resourced websites, and the details that can be time-consuming for
teachers (such as preparing slides and handouts) are taken care of. Notably, all the
programmes include significant commitment and resources over a long period of time
from their organisers.

8 Conclusions

There are a variety of ways that students can be exposed to Computer Science without
the barrier of requiring programming as a pre-requisite. The large number of students
who have participated in the approaches described here indicates that the avoidance of
programming can indeed generate ongoing interest and so can be considered
successful. This contrasts with approaches where programming is taught in-depth

80 T. Bell et al.

first; in schools where time is limited the programming-first approach can lead to the
misconception that CS is only about programming, and thus only students whose main
interest in computing is programming are motivated to continue in CS.

Our analysis here shows that despite the five approaches having quite different
formats, there are considerable commonalities between them that can guide the
development of new initiatives. One valuable motivation for students to engage with
these activities is a deeper understanding of the computing devices all around us.
However, because the focus in all of these approaches is Computer Science, not
computers, alternative motivators for students can be important: contest prizes, the
challenge of solving a problem, curiosity, humour, and ideally, appealing to the
intrinsic interest of the student in this kind of thinking and reasoning. This means that
the material needs to be carefully crafted to attract and retain student interest (e.g.
direct relevance to their life, engaging story telling, well planned magic tricks,
questions to stimulate their curiosity), or it needs to create a culture that attracts
students (e.g. past participants recommend it, high status or rewards for competition
winners, a good reputation for the event).

The non-curriculum approach provides the opportunity for grass-roots influence on
formal curricula when a top-down state-led approach often struggles to efficiently
deliver CS education in schools. The success of several of the approaches here has led
to them being recommended for curricula, so the authors then have an influence on
formal CS education. An important issue that will need to be addressed then is how
materials largely designed for outreach can be adapted for settings where a certain
level of assessment will inevitably be required.

We have presented several creative approaches with the common goal of attracting
students to study Computer Science. As a result of the comparison between them we
developed the criteria presented in this paper. These criteria will enable those
designing outreach and teaching programmes to evaluate approaches, to choose the
most suitable approach for their students, and to adapt the approaches to the target
population and context.

Acknowledgments. We are grateful to Cecile Yehezkel, Peter McOwan and Jonathan
Black for their work with some of these programmes, and EPSRC, Google and our
own institutions who have supported them.

References

1. Bell, T.: A low-cost high-impact computer science show for family audiences. In:
Australasian Computer Science Conference, Canberra, Australia, pp. 10–16 (2000)

2. Bell, T., Alexander, J., Freeman, I., Grimley, M.: Computer Science Unplugged: School
Students Doing Real Computing Without Computers. The New Zealand Journal of
Applied Computing and Information Technology 13(1), 20–29 (2009)

3. Curzon, P., McOwan, P.W.: Engaging with Computer Science through Magic Shows.
ACM SIGCSE Bulletin 40(3), 179–183 (2008)

4. Curzon, P., Black, J., Meagher, L.R., McOwan, P.W.: cs4fn.org: Enthusing Students about
Computer Science. In: Proceedings of Informatics Education Europe IV, Freiburg,
Germany, November 5-6, pp. 73–80 (2009)

 Overcoming Obstacles to CS Education 81

5. Cutts, Q., Brown, M., Kemp, L., Matheson, C.: Enthusing and informing potential
computer science students and their teachers. ACM SIGCSE Bulletin 39(3), 196–200
(2007)

6. Dagienė, V.: Information technology contests – introduction to computer science in an
attractive way. Informatics in Education 5(1), 37–46 (2006)

7. Dagienė, V., Futschek, G.: Bebras International Contest on Informatics and Computer
Literacy: Criteria for Good Tasks. In: Mittermeir, R.T., Sysło, M.M. (eds.) ISSEP 2008.
LNCS, vol. 5090, pp. 19–30. Springer, Heidelberg (2008)

8. Dagiene, V.: Supporting computer science education through competitions. In: Proc. 9th
WCCE 2009, Bento Goncalves, Paper-Nr. 76, 10 pages (2009)

9. Dagiene, V., Futschek, G.: Bebras International Contest on Informatics and Computer
Literacy: A contest for all secondary school students to be more interested in Informatics
and ICT concepts. In: Proc. 9th WCCE 2009, Bento Goncalves, Paper-Nr. 161, 2 pages
(2009)

10. Haberman, B., Yehezkel, C.: A computer science educational program for establishing an
entry point to the computing community of practice. J. of Information Technology
Education (JIRE) 7, 81–100 (2008)

11. Taub, R., Ben-Ari, M., Armoni, M.: The effect of CS unplugged on middle-school
students’ views of CS. SIGCSE Bull. 41(3), 99–103 (2009)

12. Utting, I., Cooper, S., Kölling, M., Maloney, J., Resnick, M.: Alice, Greenfoot, and
Scratch - A Discussion. Trans. Comput. Educ. 10(4), Article 17, 11 (2010)

13. Wing, J.M.: Computational thinking. Communications of the ACM 49(3), 33–35 (2006)
14. Yehezkel, C., Haberman, B.: Bridging the gap between school computing and the “real

world”. In: Mittermeir, R.T. (ed.) ISSEP 2006. LNCS, vol. 4226, pp. 38–47. Springer,
Heidelberg (2006)

	Overcoming Obstacles to CS Education by Using
Non-programming Outreach Programmes
	Introduction
	Bebras
	CS Unplugged
	cs4fn
	CS Inside
	CS, Academia and Industry
	Comparison of the Programmes
	Conclusions
	References

