

Lecture Notes in Computer Science 7013
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Ivan Kalaš Roland T. Mittermeir (Eds.)

Informatics
in Schools

Contributing to 21st Century Education

5th International Conference on Informatics in Schools:
Situation, Evolution and Perspectives, ISSEP 2011
Bratislava, Slovakia, October 26-29, 2011
Proceedings

13

Volume Editors

Ivan Kalaš
Department of Informatics Education
Comenius University
842 48, Bratislava, Slovakia
E-mail: kalas@fmph.uniba.sk

Roland T. Mittermeir
Institut für Informatik-Systeme
Universität Klagenfurt
9020 Klagenfurt, Austria
E-mail: roland@isys.uni-klu.ac.at

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-24721-7 e-ISBN 978-3-642-24722-4
DOI 10.1007/978-3-642-24722-4
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011938015

CR Subject Classification (1998): K.3, J.1, K.8, H.5.2, D.1, D.3

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The International conference on Informatics in Schools: Situation, Evolution and
Perspectives, hosted by the Comenius University in Bratislava, was the 5th in
the series of ISSEP conferences.

The series started in 2005 under the title “International Conference on Infor-
matics in Secondary Schools: Evolution and Perspective” in Klagenfurt, Austria
on the occasion of the 20th anniversary of compulsory formal informatics educa-
tion in Austrian secondary schools (gymnasia). A substantial aim was to bring
local teachers into contact with developments and ideas forming the basis of
informatics didactics in other countries. Consequently, the proceeding were split
into two parts. One appeared in the Lecture Notes in Computer Science series
of Springer Verlag [LNCS 3422], the other one, published by Ueberreuter, a lo-
cal publishing house, gave both, Austrian teachers and international visitors, a
forum for presenting “Innovative Concepts for Teaching Informatics”.

The concept of split proceedings as well as the idea of bringing local teachers
in contact with the international community has been preserved over the years.
The focus of topics shifted slightly. At the second ISSEP, held in 2006 in Vilnius,
Lithuania, the overall theme was “Informatics Education – The Bridge between
Using and Understanding Computers”. Thus, the spectrum addressed ranged
from programming and algorithmics via ICT-education to e-learning [LNCS
4226]. In the accompanying volume, “Information Technologies at School”, pub-
lished by TEV Pulishing House, e-learning, ICT, and Informatics competition
are widely described. Corresponding to the theme “Informatics Education – Sup-
porting Computational Thinking” [LNCS 5090] the third ISSEP, held 2008 in
Toruń, Poland, shifted the focus away from ICT and e-learning. One section
of the accompanying proceedings, published by Nicolaus Copernicus University,
Toruń, had in contrast a section linking informatics with mathematics instruc-
tion. This trend continued in both proceedings of the fourth ISSEP, January
2010 in Zürich. It focussed on “Teaching Fundamental Concepts of Informatics”
[LNCS 5941].

For the fifth ISSEP, held in fall 2010 in Bratislava, Slovakia, it was decided to
broaden the scope by including aspects of informatics or informatics-related edu-
cation also at lower grades. This led to a reinterpretation of the ISSEP acronym
to “International conference on Informatics in Schools: Situation, Evolution and
Perspectives”. There were two reasons for considering the spectrum of formal IT-
related education over all age groups, i.e., including primary school and for some
countries even aspects of IT-related motivational activities in Kindergarten [3].

Firstly, this expansion of scope is a consequence of trends to be observed in
various countries, where some aspects of informatics-related education have been
shifted from the secondary to the primary level. This shift is a consequence of
changes in educational policy as well as of the fact that informal (but incomplete)

VI Preface

peer-group instruction and factual use of modern information technology (from
cell-phones to home-computers), have penetrated the life of even very young kids.
Since this early educational confrontation of children with information technol-
ogy has consequences on secondary level curricula, extension of the scope became
a necessity. A second reason for extending the scope of the ISSEP-conferences
is the fuzziness surrounding the definition of “secondary education” in various
countries. While formal education starts in most countries at the children’s age
of 6 or 5, the duration of primary education varies. A range of 4 to 6 grades is
rather common. Due to different national stratification of the educational sys-
tem, the variance in duration and age-groups embraced by secondary education
is even broader [2]. Consequently, depending on nation and gender, the shift
from primary to secondary education falls into the critical period of beginning
adolescence. This is a good reason not to focus on organizational structures of
national school systems but consider the whole spectrum of school and ask au-
thors to be specific about the age group or grade they are referring to in their
contributions.

Out of 69 submissions from 20 countries the Program Committee selected 20
papers from authors of 12 countries for inclusion in this volume1. Each paper was
reviewed by at least three members of the Program Committee in an electronic
reviewing process. The papers in this volume have been arranged into the topical
groups briefly described below.

This volume is opened by three papers representing the Spectrum of Options
to be considered in Informatics Education. Pavel Boytchev shows the wealth
of a creative learning process during which a student (apparently highly moti-
vated) acquired programming knowledge on her own in an investigative process
with minimal guidance. Valentina Dagienė leads readers into an opposite corner
of the educational spectrum by addressing a host of informatics-related topics
relevant for contemporary learners. The breadth of topics addressed is due to
various recommendations of international bodies that are mainly concerned with
economic and political issues. Therefore, they are also concerned with guidance
for (inter-)national education policy. The ensuing paper by Juraj Hromkovič and
Björn Steffen might be seen as a counter position they share with a substantial
part of the scientific community involved with informatics education. Thus, it
defines a further corner point specific for informatics instruction: the need to
present pupils the core-concepts of informatics. This aims to present informatics
as a science contributing to our contemporary society. Obviously, these concepts
are of a more fundamental nature than short-lived application-oriented skills,
part of society is asking school to teach.

Considering these papers individually, one or the other participant of the
conference might put forward valid counter-arguments resulting from a particular
position of teaching informatics in school. However, seen in conjunction, the
arguments voiced in those papers span an area and it is important that educators

1 All of the other papers presented at ISSEP 2011 are included in the accompanying
conference proceedings [4].

Preface VII

perceive this area’s full breadth. A school-class is not an amorphous aggregate of
humans pertaining to a given age group. It is a collection of individuals. Teachers
have to bridge the gap between the prescription of the curriculum to be followed
for all pupils and the particular educational needs of each individual student,
be these due to special abilities or special deficiencies, as addressed in the paper
from the Japanese group on teaching handicapped students.

Out of this group of papers one can also sense a terminological tension be-
tween the terms “informatics” and “computer science”. Most countries use just
one of these terms when referring to informatics or IT-related instruction. In
other countries the distinction between using information technology (IT- or
ICT-related instruction) and providing insight into the conceptual and techno-
logical basis of modern information technology is made explicit in the curriculum.
Authors have been asked to clarify whether they are referring to instruction con-
cerning basic conceptual elements of the discipline or to instruction concerning
skills on using information technology in order to act as a versatile citizen in a
modern and well-developed economy.

The second section of the proceedings contains three papers grouped under
the heading National Perspectives. The first paper, with Maria Carla Calzarossa
as leading author of a team consisting of four scientists from four Italian univer-
sities, reports on the way ICT-concepts are taught in schools belonging to eight
regions spread over Italy. It is followed by a paper from Peter Micheuz describing
the results obtained by a working group aiming to align ICT-instruction with
engraining aspects of computational thinking for the pupils belonging to the
age-group from 10 to 14. Maciej Sys�lo’s paper on Outreach to Prospective infor-
matics Students establishes the link to the next section. After describing recent
developments in the curriculum of Informatics for Polish schools of various levels,
it provides an overview of the broad spectrum of Polish outreach activities.

The section Outreach Programs commences with an overview paper written
by an international team of five authors describing and comparing outreach pro-
grams they once proposed and that are now internationally well recognized. The
spectrum ranges from Computer Science Unplugged (Tim Bell) via cs4fn (Paul
Curzon) and CS Inside (Quintin Cutts) to Bebras (Valentina Dagienė), and
the Israeli approach of supporting pupils specializing in CS in a comprehensive
venture by bringing them into direct contact with well-known academics and
having them participate in an industrial software engineering project (Bruria
Haberman). The second paper in this section focusses on CS-Unplugged in a
non-traditional manner. Hiroki Manabe and his co-authors report on lessons
they conducted with handicapped pupils in Japanese schools. Due to the physi-
cal constraints of these persons, applying CS-Unplugged as originally proposed
by Bell, Witten, and Fellows [1] is unsuitable or even impossible. Hence, the
authors provide these pupils with a computer interface that allows them to over-
come senso-motoric or other physical deficiencies in a simulated environment.
Ernestine Bischof and Barbara Sabitzer, concluding this section, describe on an
exemplary level a project where, similarly to CS-Unplugged, core computer sci-
ence topics have been framed into contexts even young pupils can relate to. The

VIII Preface

paper mainly reports key results from the evaluation of the interventions done
in schools. Among those results was the observation that marked gender differ-
ences became noticeable only with older age groups. They were not noticeable
in primary schools. Attentiveness to these interventions in primary school was
highest among the age groups studied. Hence, arguments suggesting that core-
concepts of informatics have to be reserved to age groups past 12 years, or CS as
a technical subject is more attractive to boys than to girls, have to be considered
with scepticism or – considering also other papers addressing this topic – have
to be dismissed. Pointing at deficiencies in teachers’ capabilities to adopt this or
a similar approach on their own, links to the next section.

Teacher Education is apparently a key side condition for good informatics
education in any country. Since a substantial portion of active teachers got their
teaching degree before informatics had been defined as regular subject in school,
in-service teacher education plays a critical role in informatics. Noa Ragonis
and Anat Oster-Levinz focus on a practicum program of students enrolled in a
pre-service teacher education degree program. A specific focus of this paper is
on the multi-facetted evaluation program these student-teachers are subjected
to. The other paper on teacher education was contributed by Daniela Bezáková
and Michal Winczer. It explains the author’s approach to teaching informatics
teachers concepts of theoretical informatics. The approach is directed to pre-
service as well as to in-service teachers. It particularly addresses issues resulting
from the students’ limited background in mathematics. The significance of this
approach is due to the fact that especially in the generation of teachers perceiv-
ing informatics education only from an ICT-perspective, theoretical informatics
plays a secondary role. They consider the concepts it provides too abstract and
not sufficiently applicable in the pupils’ daily life. One has to question though,
whether such arguments are not mainly put forward as self-defense to cover up
didactical deficiencies. A series of counter-arguments to such a short-sighted line
of arguments are raised in the paper by Hromkovič and Steffen appearing in the
introductory section “Spectrum of Options”.

The section Informatics in Primary Schools is opened by Andrej Blaho and
L’ubomı́r Salanci’s report on the principles pursued when developing an informat-
ics curriculum for Slovakia. In Fig. 1 of their paper, the authors give a succinct
overview of the various forces and needs to be considered when establishing
an informatics curriculum for (primary) school. Before presenting the proposed
approach they discuss why compromises have to be found between purist pro-
posals. The paper closes with evaluative reflections on an initial implementa-
tion of the recommendations. Giovanni Serafini describes outreach activities of
a team from ETH Zürich in order to teach pupils of (remote) primary schools
computational thinking. The age group addressed consists of children between
8 and 13 years old. The programming language used has been Logo. But the
aim of the approach was certainly not teaching some programming language but
rather using Logo only as medium for kindling computational thinking. Interven-
tions in two schools are described in detail. Gerald Futschek and Julia Moschitz
also aim at instilling computational thinking with very young kids. Instead of a

Preface IX

computer-executable programming language they use cards for representing com-
mands needed to load or unload colored wooden blocks into a toy train. Kids are
challenged by arranging the cards in such a way that a robot can correctly load
the train. Evidently, the arrangement of cards results in a “program” controlling
the movement and work of this assumed robot. Later, the arrangement of cards
might even be simulated in an environment like Scratch.

The section Advanced Concepts of Informatics in Schools is opened by a
paper from David Ginat, Eyal Shifroni, and Eti Manashe on difficulties stu-
dents have with the transfer of previously acquired knowledge when solving new
programming tasks. The paper addresses these problems on the basis of five
particular example-problems and the solutions as well as difficulties kids had
in solving them due to specific transfer problems. Viera Krňanová Proulx fo-
cusses in her paper on “Program by Design”. A systematic approach to problem
solving following a well-structured design process is advocated. The approach is
explicated by the description of design recipes for functions and methods, data
definitions, and abstractions. The functional approach is extended for issues
arising with object-oriented programming. The paper by Lucia Keller and her
co-authors from ETH-Zürich presents a course on classical cryptology, offered by
the Informatics-Didactics group of ETH to Swiss schools. Thus, this paper could
also be seen as a further extension of the “Outreach”-section. The description
of the approach is detailed enough for other teachers to follow it. However, in
doing so, one must not ignore an aspect easily overlooked on first reading. The
innovative idea is not to teach cryptology. It is rather to briefly present pupils
some cryptosystem and have them break enciphered messages. This approach
is didactically more elaborate than mere frontal presentation. However, the mo-
tivational effect and creativity stimulation obtained is apparently substantially
higher.

The volume closes with a section on Competitions and Exams. The two pa-
pers on competitions might be seen as further extension of outreach programs,
but all three papers have the proper composition of questions posed or the orga-
nization of the competition in their focus. Hence, they have been grouped into a
common section. Monika Tomcsányiová and Peter Tomcsányi extend the widely
known Bebras contest by proposing a “Little Beaver” contest for children aged
between 8 and 9 years. After briefly describing Bebras, the authors contrast their
approach to the contest targeted at pupils of 10 years upwards. They mention
not only limits in the knowledge domain and abstraction capabilities but also
senso-motoric and other general constraints to be considered when addressing a
very young age stratum. On this basis, a pilot run was developed. The results
obtained are described. An approach of developing a contest for pupils following
the approach of the Kangaroo-contest in mathematics is reported in the paper
by Violetta Lonati and her co-authors from the Università degli Studi di Milano.
Their approach is explicitly defined as an outreach program for all pupils of a
class. It should not depend on some specific prior training. The contest consists
of two rounds asking questions of different complexity. A school-internal qual-
ifying round is followed by a nationwide final round. The test examples of the

X Preface

final round are (re-)used in in-service teacher education. The section closes with
a paper on criteria for writing examinations. Haim Averbuch, Tamar Benaya,
and Ela Zur report on an analysis of school-internal exams used to prepare stu-
dents for the final matriculation exams in computer science conducted in Israel
on the national level. Even if the paper and the study it reports upon is moti-
vated by specifics of a top-level national exam, the criteria established by the
authors are worth considering when designing any sort of comprehensive exams
in informatics/CS.

Before closing, I should mention that a conference like this is not possible
without the support of many individuals and organizations. Hence, I would like
to thank particularly the General Chairman, Prof. Ivan Kalaš, and all members
of the Program Committee as well as all additional reviewers for ensuring the
quality of the proceedings. Carrol Sperry deserves special mention for helping
some authors to improve the linguistic aspects of their respective paper. Special
thanks go also to the Organizing Committee. I also have to be grateful to Annette
Lippitsch for editorial support in copy-editing the papers contained in these
proceedings.

The conference was made possible by the support of several sponsors. Among
them I would like to single out the Slovak Society for Computer Science, Slovenská
informatická spoločnost’, for supporting student-participants and the Austrian
Ministry for Education, Art, and Culture, Bundesministerium für Unterricht,
Kunst und Kultur, for financial support of attending Austrian teachers and the
production of the conference proceedings. Finally, we are grateful to the Come-
nius University, Bratislava, for hosting the conference.

References

1. Bell, T., Whitten, I.H., Fellows, M: Computer Science Unplugged: An enrichment
and extension programme for primary aged-children, (2005),
http://csunplugged.org/.

2. Hubwieser P. et al.: Informatics in Secondary Education, Report on ITiCSE’11,
Working Group 2, to appear.

3. Kalaš, I.: Recognizing the potential of ICT in early childhood education. UNESCO
Institute of Information Technologies in Education, Moscow, 2010. 148 p. ISBN
978-5-905175-03-9. Available also on-line at iite.unesco.org/publications/3214673/

4. Kalaš, I. (ed.): Proceeding of the 5th ISSEP – The International Conference on
Informatics in Schools: Situation, Evolution and Perspectives. Bratislava, Comenius
University, 2011. ISBN 978-80-89186-90-7.

August 2011 Roland Mittermeir

Conference Organization

Conference Chair

Kalaš, Ivan Comenius University, Bratislava,
Slovak Republic

Program Committee

Kalaš, Ivan (Chair) Comenius University, Bratislava,
Slovak Republic

Dagienė, Valentina Vilnius University, Lithuania
Ginat, David Tel-Aviv University, Israel
Futschek, Gerald Technische Universität Wien, Austria
Hromkovič, Juraj ETH Zürich, Switzerland
Micheuz, Peter Alpen-Adria Universität Klagenfurt, Austria
Mittermeir, Roland (Co-chair) Alpen-Adria Universität Klagenfurt, Austria
Schubert, Sigrid Universität Siegen, Germany
Sys�lo, Maciej M. Nicolaus Copernicus University, Toruń and

University of Wroc�lav, Poland
Verhoeff, Tom Eindhoven University of Technology,

The Netherlands

Additional Reviewers

Alimisis, Dimitris School of Pedagogical and Technological
Education, Patras, Greece

Antonitsch, Peter Alpen-Adria Universität Klagenfurt, Austria
Bezáková, Daniela Comenius University, Bratislava,

Slovak Republic
Boytchev, Pavel Sofia University, Bulgaria
Forǐsek, Michal Comenius University, Bratislava,

Slovak Republic
Fuchs, Karl Universität Salzburg, Austria
Haberman, Bruria Holon Institute of Technology and Davidson

Institute of Science Education at
The Weizmann Institute of Science, Israel

Hubwieser, Peter Technische Universität München, Germany
Huizing, Kees Eindhoven University of Technology,

The Netherlands
Jevsikova, Tatjana Vilnius University, Lithuania
Kabátová, Martina Comenius University, Bratislava,

Slovak Republic

XII Conference Organization

Ko�lczyk, Ewa University of Wroc�law, Poland
Koncilia, Christian Alpen-Adria Universität Klagenfurt, Austria
Kubincová, Zuzana Comenius University, Bratislava,

Slovak Republic
Moro, Michele University of Padua, Italy
Motschnig, Renate Universität Wien, Austria
Proulx, Viera K. Northeastern University, Boston, MA, USA
Romeike, Ralf Universität Potsdam, Germany
Salanci L’ubomı́r Comenius University, Bratislava,

Slovak Republic
Semenov, Aleksej Moscow Institute of Open Education, Russia
Sendova, Jenny Bulgarian Academy of Sciences, Sofia, Bulgaria
Sperry, Carol Millersville University, USA
Tomcsányiová, Monika Comenius University, Bratislava,

Slovak Republic
Vańıček, Jiri École Polytechnique Fédérale de Lausanne,

Switzerland
Weger, Benne de Eindhoven University of Technology,

The Netherlands
Weigend, Michael Westfälische Wilhelms-Universität Münster,

Germany
Winczer, Michal Comenius University, Bratislava,

Slovak Republic
Zur, Ela The Open University of Israel, Raanana, Israel

Organizing Committee

Ivan Kalaš (chair), Daniela Bezáková, Andrea Hrušecká, Roman Hrušecký,
L’udmila Jašková, Martina Kabátová, Kataŕına Kalašová, Zuzana Kubincová,
Kataŕına Mikolajová, Renáta Odnechtová, Roman Rǐska, Monika Tomcsányiová,
Mário Varga; all Department of Informatics Education, Comenius University,
Bratislava, Slovakia.

Main Sponsors

• Slovak Society for Computer Science, Slovak Republic
• Bundesministerium für Unterricht, Kunst und Kultur, Vienna, Austria
• Datalan a.s., Solvak Republic

Table of Contents

Informatics Education – The Spectrum of Options

Wild Programming – One Unintended Experiment with Inquiry Based
Learning . 1

Pavel Boytchev

Informatics Education for New Millennium Learners 9
Valentina Dagienė

Why Teaching Informatics in Schools Is as Important as Teaching
Mathematics and Natural Sciences . 21

Juraj Hromkovič and Björn Steffen

National Perspectives

Informatics Education in Italian High Schools . 31
Maria Carla Calzarossa, Paolo Ciancarini, Luisa Mich, and
Nello Scarabottolo

A Competence-Oriented Approach to Basic Informatics Education in
Austria . 43

Peter Micheuz

Outreach to Prospective Informatics Students . 56
Maciej M. Sys�lo

Outreach Programs

Overcoming Obstacles to CS Education by Using Non-programming
Outreach Programmes . 71

Tim Bell, Paul Curzon, Quintin Cutts, Valentina Dagienė, and
Bruria Haberman

CS Unplugged Assisted by Digital Materials for Handicapped People
at Schools . 82

Hiroki Manabe, Susumu Kanemune, Mitaro Namiki, and
Yoshiaki Nakano

Computer Science in Primary Schools – Not Possible, But
Necessary?! . 94

Ernestine Bischof and Barbara Sabitzer

XIV Table of Contents

Teacher Education

Pre-service Computer Science Teacher Training within the Professional
Development School (PDS) Collaboration Framework 106

Noa Ragonis and Anat Oster-Levinz

Teaching Theoretical Informatics to Secondary School Informatics
Teachers . 117

Daniela Bezáková and Michal Winczer

Informatics in Primary Schools

Informatics in Primary School: Principles and Experience 129
Andrej Blaho and L’ubomı́r Salanci

Teaching Programming at Primary Schools: Visions, Experiences, and
Long-Term Research Prospects . 143

Giovanni Serafini

Learning Algorithmic Thinking with Tangible Objects Eases Transition
to Computer Programming . 155

Gerald Futschek and Julia Moschitz

Advanced Concepts of Informatics in Schools

Transfer, Cognitive Load, and Program Design Difficulties 165
David Ginat, Eyal Shifroni, and Eti Menashe

Introductory Computing: The Design Discipline . 177
Viera Krňanová Proulx

A Short Introduction to Classical Cryptology as a Way to Motivate
High School Students for Informatics . 189

Lucia Keller, Barbara Scheuner, Giovanni Serafini, and
Björn Steffen

Competitions and Exams

Little Beaver – A New Bebras Contest Category for Children
Aged 8–9 . 201

Monika Tomcsányiová and Peter Tomcsányi

Table of Contents XV

What’s the Fun in Informatics? Working to Capture Children and
Teachers into the Pleasure of Computing . 213

Violetta Lonati, Mattia Monga, Anna Morpurgo, and Mauro Torelli

Criteria for Writing Exams Which Reflect the K12 CS Foundations
Study Material . 225

Haim Averbuch, Tamar Benaya, and Ela Zur

Author Index . 237

I. Kalaš and R.T. Mittermeir (Eds.): ISSEP 2011, LNCS 7013, pp. 1–8, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Wild Programming – One Unintended Experiment with
Inquiry Based Learning

Pavel Boytchev

KIT, Faculty of Mathematics and Informatics,
Sofia University, blvd J. Bourchier 5, 1164 Sofia, Bulgaria

boytchev@fmi.uni-sofia.bg

Abstract. This paper describes one unplanned experiment of a 6th grade student
writing her first computer program for 3D graphics before learning any
programming language. Some intriguing aspects in her program are analyzed,
especially the emerging understanding of key concepts like enumeration,
naming conventions of variables and symmetry in 3D space. The paper also
identifies two main directions of mental processes. The first direction is actively
supported by the school. It is based on presenting and using knowledge in a
distilled error-free way. The other direction encompasses techniques needed to
identify wrong solutions and to find a way to overcome problems and reach a
correct solution. This direction in underrepresented in the educational system
and it is left uncultivated as a result. Students are expected to develop such
skills by themselves.

Keywords: Programming, cultivated education, emerging understanding.

1 About Wild and Cultivated Strawberries

Many people like strawberries, especially the ones that are big, juicy and tasty. These
are the cultivated strawberries. The wild strawberries are completely different – they
are small, plain, but extremely fragrant. Wild strawberries are perfect for making
strawberry jam. Almost three hundreds years ago the French person Amédée-François
Frézier brought the wild Chilean strawberry Fragaria chiloensis to Europe. When
hybridized with the North American Fragaria virginiana, it gave birth to the modern
garden strawberry [1].

Nowadays, some people are surprised that wild strawberries can be eaten. They
don’t expect that a wild fruit can be edible. So far they have only tasted cultivated
strawberries, properly wrapped and labeled.

It appears that the cultivation of strawberries has a common ground with the
cultivation of … people. For centuries learning and teaching are tightly bound to this
cultivation. The situation leads to the question whether we have reached the status of
believing that this cultivation is inherent to education.

When we give a toy to a child, we just show quickly how it is used. Then the child
continues to play with the toy and to explore its functions. This is a kind of “wild
learning”. The situation in the classroom is much more cultivated. Everything is being
thoroughly premeditated and explained. To some extent this attenuates the natural

2 P. Boytchev

pursuit of wild experimenting. Within the cultivated education, students see only the
correct way of solving a problem or undertaking a research. They are detached from
the wild exploration, where mistakes are the driving force of learning. People learn
from their mistakes – mistakes are as educational as non-mistakes [2]. Unfortunately,
we want to exclude all mistakes and even chances of mistakes from the learning
process.

Let us consider as an example the discipline Computer Science and focus on one of
its subdisciplines – Programming. The education in Programming, independent of the
programming language being studied, follows a canonical methodology, which leads
to a cultivated, but a sterile state. Is it possible for a student to learn something in this
way? Yes, it is, this is the “normal” way of learning things and a lot of people learned
to use a programming language in exactly this way. The question is whether wild
learning is also applicable in this context. What would happen if students are given
only a primary explanation and then they are left alone to experiment with the
programming? Would it be possible for complex and abstract concepts in
Programming and Computer Science to emerge? If we forget about the canonical
mythology and provide educational freedom, would this lead in a natural way to
blending elements from different disciplines?

2 The Experiment

The experiment happened in a casual day, while we were engaged with reviewing
more than a hundred multimedia projects written by students from 5th to 7th grades. As
expected the projects were highly varied. There were PowerPoint presentations,
frame-by-frame-hand-drawn video clips accompanied by personal poetry and even a
few animations programmed in OpenGL.

A 6th grader saw the projects and became extremely interested. After seeing several
multimedia projects, she said curtly: Why do we not study how to do this at school?
Why do we learn only Paint, Excel and Word? The reply to these rhetorical questions
was that school is not the only place where we can learn new things. Then she asked
how she could make some cute animation … not something recorded by a camera,
but animation that is entirely computer-generated.

There was a big hesitation whether to tell her about Elica – the programming
environment used to build many other educational applications including applications
within the frame of three European projects – DALEST [3,4], InnoMathEd [5] and
Fibonacci [6]. The main problem was that the girl had never done any programming.
She had never written a single command in a programming language, so diving
directly into the world of programmed 3D animations could be a disaster. On the
other hand, it was a unique moment that she explicitly expressed her strong will to
learn something that goes far beyond the school curriculum.

Thus the casual lesson started with some quick introduction to 3D coordinates. The
girl was not aware of the Cartesian 3D coordinate system, but she had studied the 2D
coordinate system at school. When she was asked Do you recall 2D coordinates she
answered Yes, wrinkling her forehead. It was like just this single question that made
her step back regretfully. However, we used the two edges of the desk as X and Y
axes, and an upright pen as Z axis in order to model a coordinate system. After a

 Wild Programming – One Unintended Experiment with Inquiry Based Learning 3

moment, while placing hands on desk surface, the girl proudly said that X and Y were
forming a flat plane.

It was time to move to the next step – introducing coordinates. The girl was shown
the approximate positions of objects with coordinates (10,0,0) and (0,0,10);
and then she was able to point in the space the positions of (0,10,0), (10,10,0)
and (10,10,10). She was even asked to point (10,-10,-10) and after few
seconds of hesitation she placed her hand below the desk in the correct position in
respect to the axes. It was surprising how fast she managed to get oriented in the 3D
space, so it was time to make the final step – writing a true computer program.

For this step we used Elica. Its acronym stands for Educational Logo Environment
for Creative Activities. Although it is based on Logo, a language largely and wrongly
assumed to be childish, Elica provides support for object-oriented, functional and
procedural programming – all at the same time. It was quite risky to ask a child that
had absolutely no programming experience to write a program. Thus, hoping to make
just a “presentation”, we showed her a simple program that draws and rotates two
cubes. A snapshot of the screen, together with the program code is shown in Fig. 1.
The make statements define the cubes and their properties, and demo is
“responsible” for the rotation.

The most surprising element in this program was when the girl was asked to give
names to the cubes. She was curious why, but she accepted without problems that all
objects in the animation must have their own unique names. In this way she could
“touch” the objects and “tell” them what to do. Most likely the problem with naming
was that in Paint the picture is not composed of individual entities, but is treated as a
single piece of painted nameless strokes.

Fig. 1. The program for creating and rotating two cubes

Anyway, the girl decided that the cubes must be called brum and brum2 (echoic
words corresponding to whirr or buzz). We did not influence this decision and we did
not discuss it with her.

4 P. Boytchev

The experiment up to this point was about 5-10 minutes long. The final explanation
that we provided was that Elica could use not only cubes, but spheres, cones, and
many other shapes. After this note the girl was left along.

3 The Result

Approximately 15 minutes later we went to her room to see what is going on and we
were shocked to see a panda on the computer screen as displayed by the snapshot in
Fig. 2. This panda was the first program ever of this 6th grader! It was so
unbelievingly well done, that we immediately studied it and asked several question:

We: How do you know how to use spheres?
Girl: You told me that I can use spheres, so I looked for “сфера” (i.e. sphere in

Bulgarian) in Google and found that in English it is “sphere”. So I just used this
word and everything worked so well.

We: Did you try other objects?
Girl: Yes, but they didn’t work out.
We: Yes, to construct them you need more numbers, because these objects are

more complex.

Fig. 2. A 3D panda – the girl’s first program. The long sequence of make statements suggests
the application of some complex programming concepts.

There were some surprising things in the program. The first objects that the girl
added to the cubes had funny meaningless names, like bibbib and doing (again
echoic words). Then she started to embed sense in the names, the panda ears were

 Wild Programming – One Unintended Experiment with Inquiry Based Learning 5

named uhodqsno (right ear) and uholqvo (left ear), the nose was called nose (in
English!).

And then suddenly she jumped to a numerical notation, which generates shorter
names and is the doorstep to enumeration – oko1 (eye 1) and oko2 (eye 2).
Enumeration is a key programming concept, which is the core of arrays, cycles and
iterations. It is unexpected to observe similar transitions at such an early stage.

Another interesting observation, realized several days later, was the use of
symmetry. If we were to make a panda, we would orient it along some of the axis, so
that the whole panda body is symmetrical in respect to a trivial vertical plane (like the
plane y=0). This would make it much easier to position symmetrical body parts like
eye, ears and legs. If one part has coordinates (x,y,z), then its symmetrical part
would be at (x,-y,z).

However, the girl’s panda was not oriented in a way to use such an idea, yet it was
completely based on symmetry – the symmetry plane was the bisecting plane x=y.
This plane makes points(x,y,z) and (y,x,z) symmetrical.

Some of the symmetrical coordinates are shown in Fig. 3. The spheres for the ears
(the statements that create variables uhodqsno and uholqvo) are placed at
(10,3,30) and (3,10,30). The centers of the eyes (oko1 and oko2) are at (15,12,28)
and (12,15,28).

The 3D objects that the girl created were appended to the definitions of the two
cubes. When the panda bear turned the cubes were poking out of her lower back – see
Fig. 4. It looked like these leftovers were the first ever programming bug of the girl,
but this conclusion was premature and … wrong. The girl explained us that these
cubes are the chair of the panda and that everything is correct!!!

Fig. 3. Close-up of some symmetrical coordinates

Later on the same day the girl made another program – a face of a child with lips,
eyes with irises, nose and hair. We showed her some simple form of animation like
inflating and deflating the face by changing one of its radii. It was quite interesting
how the girl “accepted” that a sphere had actually three radii – one along each of the
axis; and by making them non-equal we could deform the sphere – and the girl
quickly completed the sentence for us – into an egg.

6 P. Boytchev

4 Afterthoughts

The result of this experiment showed that programming is not hard at all if we do not
insist to tell all details and provide complete scientifically correct explanations. A
child can start programming without understanding everything about the program.
This method is very close to the exploration of an unknown toy, when the child is left
to experimentally find out what can be done.

Additionally, letting a student play with and in (!) a programming environment
does not impose any restrictions to imagination. While creating something entirely by
her, the 6th grader freely integrated art activities with programming. If an adult was
about to write his/her first program for 3D graphics, he/she would most likely start
with something more conventional, more systematic … or even more cultivated (like
reading the documentation).

Fig. 4. There is no bug here, but the chair of the panda

The experiment shows one of the advantages of the programmable educational
environments. In such environments students have at their disposal instruments for
describing not only what they do, but also the individual steps of their constructions.
Students’ programs, independent on their complexity or simplicity, are projection of
students’ thoughts. Even “the most innocent” elements like the selected naming
convention of variables, provide clues about the existence of specific skills and the
level of understanding of key concepts.

Cognitive psychology explores various types of thinking. Two of the most
distinguished types are the vertical thinking and the horizontal (lateral) thinking [7].

 Wild Programming – One Unintended Experiment with Inquiry Based Learning 7

Some of the main features of both thinking types as identified by Paton [8] based on
[9] are listed in Table 1. The cultivated approach in education fits perfectly to the
vertical thinking, while the wild approach – to the horizontal one.

Table 1. Vertical and horizontal thinking mapped to cultivated and wild education

Feature Vertical thinking Horizontal (lateral) thinking
Characteristics selective, analytical generative, provocative
Focus on correctness richness
Individual steps must be always correct some could be wrong
Negative experience blocks off certain pathways does not exist
Thinking process finite probabilistic

Doing research by writing a computer program reveals much more information if

we focus not only on the final program as a static artifact, but also on the program’s
evolution from scratch till the end, passing through many incomplete and buggy
states. This evolution shows a new class of thinking and is indicative for the path of
gaining concrete skills and understanding key threshold concepts. The horizontal
thinking is the one which happens when students stumble upon a wrong solution and
try to transform the solution to a correct solution. This thinking helps the students to
“feel” when a research is going in the wrong direction before it is too late. This is the
thinking that allows the students to attempt different solving strategies over a problem
instead of being blocked off by failures.

Educational environments that allow experimentation via programming develop
not only the vertical, but also the horizontal thinking. A programming description of a
solution is rarely written perfectly from the very beginning. Often it is required to
remove bugs or to improve some existing elements. Debugging and optimization are
some of the processes that develop horizontal thinking. Unfortunately, horizontal
thinking is not taught at school, but is expected to be acquired by the person on her or
his own This shows one visible discrepancy between what is taught and what is
expected to be learned. The vertical thinking is completely cultivated up to the level
of lack of critical thinking – here is a problem, here is an algorithm for solving it,
follow the algorithm and you will get a correct solution. At the same time the
horizontal thinking is growing in the wild, uncontrolled and undirected.

Would it be better to restore the balance between both thinking types? Could we
make the vertical thinking wilder (i.e. to make it more independent and more creative
by deframing students’ thinking and letting them experiment)? Or could we make the
horizontal thinking at least more cultivated (i.e. to help students to analyze wrong
situations and developing skills for searching new solutions)? These are questions that
need yet to be answered.

5 As an Epilogue

The experiment described in this paper was not planned, that is why it was not
possible to observe the process of the creation of the panda. Only one student was
involved, so it is too early to draw general conclusions. It is not known whether the

8 P. Boytchev

wild programming always leads to small aromatic fruits or the result was pure
fortuitous event. Maybe wild programming is not applicable to mass education?
Maybe it is more suitable for individual learning? The answers of these questions are
unknown, but the thing, which is known is that without the efforts of Amédée-
François Frézier, today, three hundreds years later, it would be impossible to enjoy
the garden strawberry. And something else is also known. Frézier not only brought
the strawberry to Europe, but he was the mathematician whose works laid the
fundaments of the 3D geometry in military construction and engineering.

As for the usage of digital technologies in education, the Logo-philosophy (a main
topic in the international conference Constructionism 2010 [10]) is not to focus only
on the informational or the technological sides, but to fully explore the potential of
students to be constructors of their knowledge, to learn through inquiry and to share
their works.

References

1. Darrow, G.: The Strawberry: History, Breeding and Physiology, Chapter 4: The
Strawberry From Chile. Holt, Rinehart and Winston, New York (1966)

2. Boytchev, P.: Pedagogical Inversion. Presented at the 4th International Conference for
Theory and Practice in Education, Budapest (2011)

3. Boytchev, P., Chehlarova, T., Sendova, E.: Enhancing Spatial Imagination of Young
Students by Activities in 3D ELICA Applications. In: 36th Spring Conference of the
Union of Bulgarian Mathematicians, Varna, pp. 109–119 (2007)

4. DALEST project,
http://www.elica.net/site/museum/Dalest/dalest.html

5. InnoMathEd project,
http://www.math.uni-augsburg.de/prof/dida/innomath

6. Fibonacci project, http://fibonacci.uni-bayreuth.de/
7. Robertson, S.: Types of thinking. Routledge, London (1999)
8. Paton, B.: Lateral Thinking,

http://www.solutioneers.net/solutioneering/lateralthinking.h
tml

9. Bono, E.: Lateral Thinking: A textbook of creativity. Penguin, Harmondsworth (1977)
10. Clayson, J., Kalas, I. (eds.): Proc. of Constructionism 2010, Paris, France. Comenius

University, Bratislava (2010)

I. Kalaš and R.T. Mittermeir (Eds.): ISSEP 2011, LNCS 7013, pp. 9–20, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Informatics Education for New Millennium Learners

Valentina Dagienė

Vilnius University, Faculty of Mathematics and Informatics,
Naugarduko str. 24, Vilnius, LT-03223, Lithuania

valentina.dagiene@mif.vu.lt

Abstract. The stage of the 21st century education technologies is specified by
the technology development level, dependence of economics on information
technologies and computer network progress. Technical and educational
training aids have a pronounced influence on the training activity. Computer
instructional aids, computer networks, virtual computer environments perform
all the main didactical functions; impart the new worksheet, help to consolidate
it, aid in solving problems, accumulates feedback, and locate the learning
difficulty. Currently educators are active in defining what 21st century
competencies are and how they can be efficiently integrated into existing
educational systems. Informatics education was begun at schools of many
countries almost 50 years ago, but with the onset of this millennium it
slackened due to the need for use of technologies in practice. Now the revival is
in process: education policy makers of different countries note that informatics
education can markedly improve the competencies of the 21st century learners.
The paper deals with these issues and tries to search for possible answers.

Keywords: 21st century competencies, informatics in school, ways to learn
informatics, information technology.

1 Introduction

We are living in a global connected world. Through the process of globalisation, our
societies have experienced a profound transformation from reliance on an industrial to
a knowledge base. More and more are we discussing about 21st century competences:
flexibility and the capacity to make creative connections, deep understanding, good
team-working, etc. We need to learn to generate, process, and sort complex
information, to think critically and systematically, to make decisions according to
various circumstances and different forms of evidence, to be adaptive and flexible to a
new kind of information, to recognize new phenomena and to deal with them in the
best way, to identify and solve real world problems, to be more and more creative.

The Organisation’s for Economic Cooperation and Development (OECD) has
defined most general 21st century competencies divided into four categories:
1) functioning in socially heterogeneous groups; 2) acting autonomously; 3) using
tools interactively; 4) thinking (a “cross-cutting” competency).

Informatics (or computer science), the science of algorithmic processing,
representation, storage and transmission of information, is an important discipline in

10 V. Dagienė

the knowledge society and should be introduced into secondary or even primary
school. Informatics is a fascinating research with a great impact on the real world, full
of spectacular ideas and great challenges [1].

2 Short Glance at Teaching and Learning Informatics at School

Informatics as a school subject (in fact, elements of informatics) was introduced in
schools in the early 1980s in many countries around the world. The development of
informatics in schools, in particular, is characterized by permanent changes in hard-
ware and software and it has some variations from country to country. The didactic
approaches and key topics of informatics played a very important role as well.

Informatics, as a separate subject in high or secondary schools, was taught in the
majority of East European countries, where fundamental and academic trends of
teaching are more prevalent until nowadays. As a compulsory or partly compulsory
subject, informatics has been delivered in Belarus, Bulgaria, Czech Republic,
Lithuania, Poland, Romania, Russia, Slovak Republic, Hungary, Germany, and other
countries [2, 3, 4]. The course is being changed permanently: in the beginning,
teaching about computers and training of the programming skills used to get more
attention, later a shift to the development of skills of practical use of information and
communication technology in teaching and learning were observed, including the
focus on technology-enhanced learning in the last decade (Fig. 1). In today’s world,
more and more educators have started talking about informatics in schools as a
language of technology [5], informatics as a bridge between using digital devices and
understanding the digital world, informatics as an everyday language for digital native
youngsters. It means that informatics education should be deeply rethought.

Fig. 1. Changes in teaching informatics as a schools subject during decades – a spiral evolution

All the countries pay a rising attention to ICT implementation in education [6, 7,
8]. Those countries which have informatics as a separate subject usually treat ICT as
part of it; however, most of the time in the teaching process ICT is assigned to the

 Informatics Education for New Millennium Learners 11

technology itself, but not to its application to the process of learning. In order
to emphasize the novelty of the course in informatics and the aspect of its
applicability, several countries, including Lithuania, have renamed it into information
technology. Nonetheless, usually information technology curricula keep some basic
elements of informatics education, e.g. understanding of algorithm or combinatorial
manipulations.

Concerning the contents of informatics or information technology in primary or
secondary school there is almost no common international agreement or accepted IT-
framework. Several researchers have been trying to initiate discussions on the issue:
What concepts of informatics and information technologies should be included in
general education? [1, 9, 10, 11, 12]

It is almost a common provision that the fundamentals of algorithms and
programming are the key concepts in school informatics education. Then, what
concepts should we include in informatics education besides algorithms and
programming? What is the ratio of programming and information technology
concepts and their application? How could we use information technology for
collaborative learning to represent these concepts for students and ensure productive
and sustainable learning? The most important point is how the skills and capabilities
that we would like to bring to our students through informatics education agree with
the needs of newly rising 21st century learner’s.

3 Opportunities for the New Millennium Learner

In 2007, the OECD Centre for Educational Research and Innovation (CERI) launched
the New Millennium Learners (NML) project (http://www.nml-conference.be/). It has
the global aim of investigating the effects of digital technologies on school-age
learners and providing recommendations on the most appropriate institutional and
policy responses from the education sector.

The concept of New Millennium Learners suggests that the technology uptake,
particularly by younger generations, has an effect on the way people build their
identities, communicate socially, and manage information and knowledge. However,
the fact that young people are increasingly attached to and knowledgeable in terms of
technology does not necessarily mean that they develop by themselves the range of
skills and competencies that the knowledge economy requires. Today’s children are
thought to be flexible with computers, immediate to communicate, creative with
technology, and highly skilled at multitasking in a world where ubiquitous
connections are taken for granted [13]. Multitasking is the very normal approach to
using digital media for everyday lives of our students. Undoubtedly, students’
recurrent activity with these technologies shaped their communication, knowledge
management, learning, and even their personal and social values.

The so-called New Millennium capabilities or competencies cover the range of
skills and competencies that young people will be required to have in order to be
efficient workers and responsible citizens in the knowledge society of the 21st century.
Many children gained technology manipulation skills intuitively, actually by trying
and doing. Our schools should help these students to develop wider and deeper
capabilities in different areas and improve their learning skills.

12 V. Dagienė

The most important capabilities of the new millennium learners are the skills,
knowledge and expertise, which students should master to succeed in work and life in
the 21st century. There are many variations on how to define the new millennium
learner’s skills. A group of business leaders, educators and lawmakers in
Massachusetts have elaborated five areas for the 21st century learner’s education [14]:

Core academic subjects: reading, world languages, arts, math, economics, science,
geography, history, government, and civics.

Interdisciplinary themes to be woven into each subject include global awareness,
economic, business and entrepreneur literacy, civic literacy, and health literacy.

Learning and innovation skills include creativity, innovation, critical thinking,
problem solving, communication, and collaboration.

Information, media and technology skills required by today's students include
information and media literacy, communications and technology literacy.

Life and Career Skills, needed to navigate in today's world, include flexibility,
adaptability, initiative and self-direction, social and cross-cultural skills, productivity,
accountability, leadership, and responsibility.

In order to summarize the debates on the key competencies, the world institutions,
such as OECD, UNESCO, and European Commission launched surveys and settled
several recommendations [7, 15, 16, 17, 18].

Discussions have been promoted around the idea that 21st century students will
learn to think both critically and creatively, be skilled at working collaboratively, and
understand how to take risks constructively. They will learn and understand their
connection to the world around them, use technology to pursue research and
communicate with others, feel comfortable working in teams and will develop the
strength and skills to assume leadership responsibilities.

Digital literacy, media, ICT and other modern technology-based skills are essential
requirements for the 21st century learner’s education. ICT competency and skills are
important for every citizen in a modern society.

The fact that these skills have never been the focus of traditional education is a
serious problem. Delivery and acquisition of these skills in teaching and learning to
students of primary and secondary education will require a shift in what we teach,
how we teach it, the tools we use and how we educate, train, nurture and retain our
teachers and school leaders. The overarching challenge for all educators today is to
rethink not only what they teach, but “how they empower students to use that
information” [19].

A holistic view of 21st century to teaching and learning combines a discrete focus
on learner’s outcomes (a blending of specific skills, content knowledge, expertise and
literacy) with innovative support systems to help students master the multi-
dimensional abilities. It is necessary to prepare students for a rapidly evolving global
and technological world, and promote innovation through critical thinking, problem
solving, collaboration, and technology integration, while building the mastery of the
core content and background knowledge.

The OECD/CERI project on new millennium learners and, in particular, the
international conference on the 21st century competencies taking place in Brussels in
September 2009 (http://www.nml-conference.be) carried out a survey in many

 Informatics Education for New Millennium Learners 13

countries [20]. A three dimensional model was elaborated to conceptualise the
competencies for 21st century learners: 1) information, 2) communication, 3) ethics
and social impact (Fig. 2).

Fig. 2. The three-dimensional model of the new millennium learners’ competencies

The information dimension covers research and problem solving skills as they both
involve, at some point, defining, searching for, evaluating, selecting, organising,
analysing, and interpreting information. This dimension includes two sub-dimensions:
firstly information as a source (searching, selecting, evaluating and organising
information), and secondly information as a product (restructuring and modelling of
information, the development of one’s ideas or knowledge).

The communication dimension involves ICT applications and reinforces the
development of skills of coordination and collaboration between peers. This
dimension also has two sub-dimensions: 1) effective communication and 2)
collaboration and virtual interaction.

The third dimension, related to ethics and social impact, is connected with
globalisation, multiculturalism, digital citizens of the 21st century. As in the previous
dimensions, there are two ethical sub-dimensions: social responsibility, and social
impact.

Generally summarising the 21st century competencies could be characterized as
the skills, knowledge, attitudes and values that all people need to know and be able to
do in order to live meaningfully in, and contribute to a well functioning society.
Various countries stressed slightly different competencies. However, there are many

14 V. Dagienė

competencies mentioned by almost all countries in their general education (formal or
informal). Many of these modern competencies are based on technology enriched
learning and have (or should have) deep relations with informatics (Table 1).

Table 1. New Millennium Learner’s competencies and their relation to informatics education

Competence Related concepts that can be delivered
through informatics education

Creativity/ innovation Hardware and software design, information
visualization, development of algorithms,
programming

Critical thinking The limits of computations (what computers
cannot do), data analyses

Problem solving Modelling, structures, notion, problem
decomposition, algorithmisation, automation

Decision making Artificial intelligence, parallelization
Communication Computer networks, mobile technology
Collaboration Networking, sharing approaches
Information literacy Handling information, objects, data bases and

information retrieval
Research and inquiry Abstraction, formalisation, modelling
Media literacy Graphics, simulation
Digital citizenship Social, ethical, legal issues, internet security,

privacy, data processing
ICT operations Computer logics, dealing with information
Flexibility and adaptability Patterns and recognitions
Initiative and self-direction New devices and new computer programs
Productivity Computer applications, networks, information

organisation, automation
Leadership and responsibility Roles in virtuality, robotics

Most countries integrate the development of 21st century skills and competencies
in a cross-curricular way, i.e., across the subject areas. ICT-related skills are often the
exception to this, i.e. they are taught in some countries as a separate subject.

4 Some Modern Ways of Learning Informatics at School

Twenty-first century standards, assessments, curricula, instruction, professional
development and learning environments must be aligned to produce a support system
that produces the 21st century outcomes for today’s learners. Although informatics is
recognized by professionals as a field with scientific and engineering orientation,
in the high school education system informatics is considered as a non-important
subject [21].

Understandably, there is an intense competition between subjects (as well as topics
within subjects) in school: traditional subjects, which have been taught for centuries,
are in a better position than the new rising ones. Nobody argues the importance of
chemistry or physics in school; however, the science of information or knowledge
technology still has not been recognised as a school subject. Concepts of informatics

 Informatics Education for New Millennium Learners 15

play a central role in all curricula and standards for informatics education at school.
However, in practice at school the training of skills in software application is very
often given much more room than the understanding of fundamental concepts of
informatics.

The "concept" can be understood as extensive information on a particular object,
existing in the human sense. In formal sciences "concept" is defined as an abstract
idea which generalizes separate objects, defines attributes and relations between
objects. The content of a concept can vary a lot as it depends on personal experience.
Concepts of informatics are tightly related with our intensions (what we would like to
teach at school) and expectations of a modern knowledge society.

Researchers identified many ideas about what informatics is and what it could be
in K-12 classrooms [1, 9, 11, 22]. In his research Hromkovic presents components
that represent the basics of informatics and should be taught at school [1]. They
include programming, computability and automata theory. The automata theory (as
well as graph theory) can be visually represented by simple schemes; it can be used to
present many examples from everyday life. The automata theory, for example, can be
considered as part of the structure and pattern concept presented above.

Starting with using computer applications (e. g., educational aids, learning objects),
learners could become not just tool users but tool builders (Fig. 3). Dealing with
information in the knowledge society, we need a set of concepts, such as abstraction,
recursion, and iteration, to process and analyze data, and to create real and virtual
artefacts. Informatics should be seen as a problem solving methodology that can be
automated, transferred and applied across subjects.

Fig. 3. The today’s learning growth – “from technology through science to engineering”

Curricula and standards for secondary school describe the learning contents and
methods of learning. Some international guidelines have been developed in the field
of informatics that define for a larger group of countries which content areas and
which way of learning can be appropriate, e.g., the UNESCO/IFIP curriculum [23],
the ACM K-12 curriculum [24].

The ACM K–12 curriculum report references the idea of information technology
fluency of the National Research Council and describes the informatics-concepts as
ten basic ideas that underlie modern computers, networks and information. A
computer-fluent student would master information technology on three orthogonal
axes: concepts, capabilities, and skills. Concepts are understood as the ten basic ideas

16 V. Dagienė

that underlie modern computers, networks, and information: 1) computer
organization, 2) information systems, 3) networks, 4) digital representation of
information, 5) information organization, 6) modelling and abstraction, 7) algorithmic
thinking and programming, 8) universality, 9) limitations of information technology,
and 10) societal impact of information technology.

The ACM Model Curriculum for K-12 [24] provides a definition of informatics
specifically for K-12 educators. Computer science (informatics), it argues, is neither
programming nor computer literacy. Rather, “it is the study of computers and
algorithms processes including their principles, their hardware and software design,
their applications, and their impact on society” (p. 1). We can start talking about
informatics concepts: 1) computer organization (hardware and software design,
computer security), 2) information systems (applications in information technology
and information systems), 3) networks (collaboration), 4) digital representation and
visualisation of information (graphics), 5) information organization (data bases and
information retrieval), 6) modelling and simulation (virtuality, artificial intelligence),
7) algorithmic thinking and programming (languages and paradigms), 8) universality
(translation between levels of abstraction), 9) limitations of information technology,
and 10) societal impact of information technology (internet security, privacy,
intellectual property, ethics, impact on society, etc.). These informatics concepts are
very significant in a knowledge society and have tight relations with the 21st century
learners’ competencies (Fig. 4).

Fig. 4. Fundamental informatics concepts and new millennium learners’ competencies

 Informatics Education for New Millennium Learners 17

The standard developed by the German Society for informatics GI [25] is quite
new and has fresh ideas for informatics education in secondary schools, grades 5 to
10. The GI standard proposed two main areas for teaching informatics: content area
and process area. Each content area can be combined with each process area together
with examples of typical tasks that are suitable for secondary school education. The
content part covers five basic concepts: a) information and data, b) algorithms, c)
languages and automata, d) informatics systems, e) informatics, man and society,
while the process area promotes actions combining with concepts, e.g. modelling and
implementation, representation and interpretation, structuring and networking,
communicating and cooperating, arguing and evaluating. More detailed initiatives in
terms of reviewing and structuring informatics education are presented in the paper by
Peter Micheuz [11].

The power of informatics is that it applies to every other type of reasoning. While
learning the informatics students would understand that problems can be solved in
multiple ways, have reasonable expectations about the prospect of producing a
working solution.

There are many ways how to bring informatics education to high school. In order
to harmonise with the educational system, we should agree on fundamentals of an
informatics curriculum (or framework) and establish a balance between teaching and
learning (Fig. 5).

Fig. 5.

Kalas and Winczer suggested two main ways to support informatics education:
provide modern university pre-service teacher development and produce attractive
and inspiring informatics textbooks, educational software and learning resources for
children, students and teachers [26].

We cannot change how our students learn, unless our teachers are equipped to
teach in new ways. Studies show that a teacher’s qualification has a significant effect
on student’s performance, more than any other variable (e. g. [27]). It is unreasonable
to expect that our students will ever gain the skills and knowledge to succeed in the
21st century, if they are taught primarily by the educators trained using a model
developed in the 19th century. It is necessary to rethink and overhaul the teacher
training and professional development programs, in order to recruit and retain high
achieving educators who have up-to-date knowledge of 21st century skills.

18 V. Dagienė

To improve teachers’ (e. g., of informatics) competencies, the methods of action
research – a powerful tool for a change and improvement at the local level – has been
suggested [28]. The main goal of the method was to help students engage in and
discover fundamental issues, concepts and problems of informatics through
exploratory learning and open informal collaborative discussions [18].

Bringing informatics in a formal track to schools by means of curricula is quite
important. However, it is necessary to support the informal ways of introducing
students to informatics. So another way to bring informatics to school can be through
developing attractive activities based on informatics concepts. Contests are among
them. Contests are exceptionally valuable for motivating and involving pupils in
computer science [29].

The International Contest on Informatics and Computer Fluency (named Bebras in
Lithuanian, or Beaver in English, www.bebras.org) can be an example of bringing
informatics concepts to students in an informal way. The Bebras contest started in a
coordinated way: running contests at schools, where solutions may be submitted to
some central authorities or some local organizers.

Any contest needs a challenging set of tasks. The Bebras tasks’ developers are
seeking to choose interesting tasks (problems) for motivating students to deal with
computer science and to think deeper about technology. Collaboration in developing
Bebras tasks during international workshops reveals six concepts significant for
general informatics education [12, 30]:

– Information: the conception of information, its representation (symbolic,
numerical, graphical), encoding, encrypting;

– Algorithms: action formalization, action description according to certain
rules;

– Computer systems and their application: interaction of computer
components, development, common principles of program functionality,
search engines;

– Structures and patterns: the components of discrete mathematics, elements
of combinatorics and actions with them;

– Social effect of technologies: cognitive, legal, ethical, cultural, integral
aspects of information and communication technologies;

– Informatics and information technology puzzles: logical games, mind
maps, used to develop technology-based skills.

It has been agreed that on some of the main concepts to be taught in general
education, e.g. algorithms and programming (as a separate or integral part of
algorithm construction) is one of the most important concepts of informatics. It could
be decomposed into important smaller concepts, e.g. data, variable, cycle, procedure,
object, class, etc. Structures and patterns are also important concepts in informatics.
The concept "information" undoubtedly belongs to the scope of informatics and
information technology.

Computer systems are more difficult to describe (even the concept title itself
"computer systems" is not unambiguous, it can be understood as an application of
information systems, but not on theoretical grounds). When the concept is not clear
enough, it becomes difficult to use and especially to teach.

The social aspect of technology is not an unambiguous concept, which cannot
clearly be considered as a separate concept of informatics. No doubt that this topic is

 Informatics Education for New Millennium Learners 19

very important in our society, but there are still not enough educational examples and
systematization for this topic in practice and research.

An important issue is how we present the main informatics and information
technology concepts to students. Puzzles and logical games could help attract students,
raise their motivation. So, they should be used to express core scientific concepts.

5 Conclusion

Nowadays many countries are seeking to establish the system and educational content
for informatics education. It is in progress. Identifying and seeking a solution for the
problems related to informatics education and attributed to its implementation under
various systems and too much emphasis on technology application education were
prompted by the questions. Can information technology education help to solve
problems in learning and daily life without education on the principles of informatics
education? What specific contents does informatics contain within the different
grades? On which fields (e.g., processing information, algorithms, programming,
databases, systems design) is mostly placed value? What about the ratio between
practice and theory? What could be done to fill the gap between school graduation
and the beginning of study (according to education level)? What informatics concepts
we need to bring to 21st century learners to make them comfortable and competitive in
the knowledge society?

The relatively short history of informatics subject makes classifying it into an
independent subject very difficult. Therefore, more research on informatics education
should be carried out to justify the need of learning informatics fundamentals and
searching new ways and approaches to promote informatics education in classrooms.

References

1. Hromkovic, J.: Contributing to General Education by Teaching Informatics. In: Mittermeir,
R.T. (ed.) ISSEP 2006. LNCS, vol. 4226, pp. 25–37. Springer, Heidelberg (2006)

2. Sendova, E., Azalov, P., Muirhead, J. (eds.): Informatics in the Secondary School – Today
and Tomorrow. Sofia (1995)

3. Hawkridge, D.G.: Educational Technology in Developing Nations. In: Plomp, T., Ely,
A.D. (eds.) International Encyclopaedia of Educational Technology, 2nd edn., pp. 107–
111. Pergamon, Great Britain (1996)

4. Dagienė, V.: The Road of Informatics. TEV, Vilnius (2006)
5. Cohen, A., Haberman, B.: Computer Science: A Language of Technology. ACM SIGCSE

Bulletin 39(4), 65–69 (2007)
6. OECD. Schooling for Tomorrow. Learning to Change: ICT in Schools. Education and

Skills. OECD publ. Paris, OECD Center for Educational Research and Innovation (2001)
7. OECD. Are the New Millennium Learners Making the Grade? Technology Use and

Educational Performance in PISA. OECD publications. Paris, OECD Center for
Educational Research and Innovation. (2010)

8. OECD. PISA 2009 Results: Executive Summary (2010)
9. Schubert, S., Taylor, H. (eds.): Secondary Informatics Education. Special Issue of

Education and Information Technologies, vol. 9(2). Kluwer Acad. Pub., Boston (2004)
10. Micheuz, P.: 20 Years of Computers and Informatics in Austria’s Secondary Academic

Schools. In: Mittermeir, R.T. (ed.) ISSEP 2005. LNCS, vol. 3422, pp. 20–31. Springer,
Heidelberg (2005)

20 V. Dagienė

11. Micheuz, P.: Harmonization of Informatics Education – Science Fiction or Prospective
Reality? In: Mittermeir, R.T., Sysło, M.M. (eds.) ISSEP 2008. LNCS, vol. 5090, pp. 317–
326. Springer, Heidelberg (2008)

12. Dagiene, V., Futschek, G.: Introducing Informatics Concepts through a Contest. In: IFIP
Working Conference: New Developments in ICT and Education. Universite de Picardie
Jules Verne, Amiens (2010),
http://publik.tuwien.ac.at/files/PubDat_186636.pdf

13. Pedro, F.: The New Millennium Learners: Challenging our Views on ICT and Learning.
OECD-CERI (2006)

14. School Reform in the New Millennium: Preparing All Children for 21st Century Success.
Recommendations from the Massachusetts Board of Elementary and Secondary
Education’s Task Force on 21st Century Skills. Massachusetts Department of Elementary
and Secondary Education’s (2008)

15. Ananiadou, K., Claro, M.: 21st century skills and competences for New Millennium
Learners in OECD countries. In: OECD Education Working Papers, vol. (41). OECD
Publishing (2009), doi:10.1787/218525261154

16. Commission of the European Communities Improving competences for the 21st Century:
An Agenda for European Cooperation on Schools. Brussels, SEC(2008) 2177 (2008),
http://ec.europa.eu/education/school21/sec2177_en.pdf

17. Key Competencies. A developing concept in general compulsory education. Eurydice.
Survey 5, Brussels (2007), http://www.eurydice.org

18. UNESCO. ICT Competency Standards for Teachers: Competency Standard Modules (2008),
http://unesdoc.unesco.org/images/0015/001562/156207e.pdf

19. Murnane, R., Levy, F.: The New Division of Labor: How Computers Are Changing the
Way We Work. Princeton University Press and Russell Sage Foundation (2004)

20. OECD. NML Country Survey. 21st Century Skills and Competencies for New Millennium
Learners in OECD Countries (2009)

21. Haberman, B.: Teaching Computing in Secondary Schools in a Dynamic World:
Challenges and Directions. In: Mittermeir, R.T. (ed.) ISSEP 2006. LNCS, vol. 4226, pp.
94–103. Springer, Heidelberg (2006)

22. Hromkovic, J.: Algorithmic Adventures: From Knowledge to Magic. Springer, Heidelberg
(2009)

23. Anderson, J., Weert, T.: Information and Communication Technology in Education. A
Curriculum for Schools and Programme of Teacher Development. Division of Higher
Education, UNESCO (2002)

24. Tucker, A., McCowan, D., Deek, F., Stephenson, C., Jones, J., Verno, A.: A model
curriculum for K-12 computer science: Report of the ACM K-12 Task Force Computer
Science Curriculum Committee Ass. on for Computing Machinery, New York, NY (2003)

25. Gesellschaft für Informatik (GI) Grundsätze und Standards für die Informatik in der
Schule, Bildungsstandards Informatik für die Sekundarstufe I. Addendum to LOG IN 28
(150/151) (2008), http://www.informatikstandards.de/

26. Kalas, I., Winczer, M.: Informatics as a Contribution to the Modern Constructivist
Education. In: Mittermeir, R.T., Sysło, M.M. (eds.) ISSEP 2008. LNCS, vol. 5090, pp.
229–240. Springer, Heidelberg (2008)

27. Barber, M., Moursched, M.: How the world’s best-performing school systems come out on
top. McKinsey & Co. (2007)

28. Kalas, I.: Discovering Informatics Fundamentals through Interactive Interfaces for Learning. In:
Mittermeir, R.T. (ed.) ISSEP 2006. LNCS, vol. 4226, pp. 13–24. Springer, Heidelberg (2006)

29. Dagiene, V.: Sustaining informatics education by contests. In: Hromkovič, J., Královič, R.,
Vahrenhold, J. (eds.) ISSEP 2010. LNCS, vol. 5941, pp. 1–12. Springer, Heidelberg (2010)

30. Dagiene, V.: The BEBRAS Contest on Informatics and Computer Literacy – Students
(Drive to Science Education). In: Joint Open and Working IFIP Conf. Kuala Lumpur, pp.
214–223 (2008)

Why Teaching Informatics in Schools Is as
Important as Teaching Mathematics and

Natural Sciences�

Juraj Hromkovič and Björn Steffen

Department of Computer Science, ETH Zurich, Switzerland
{juraj.hromkovic,bjoern.steffen}@inf.ethz.ch

Abstract. In this paper, we aim to do more than arguing that infor-
matics is a fascinating scientific discipline with interesting applications
in almost all areas of everyday life. We pose the following questions:
What are the educational requirements demanded from school subjects?
Can we answer this question as satisfactory as we can do it, for instance,
for mathematics, physics or chemistry? Does the teaching of informat-
ics enrich education in ways other subjects cannot or do not sufficiently
contribute?

Answering the questions above can not only be helpful for the discus-
sion with politicians about integrating proper informatics and not only
ICT skills in the educational systems, but it can also help us as teachers
to focus on the fundamentals and on sustainable knowledge.

1 Introduction

If one deals with the problem of teaching a subject A in schools, one has to be
able to answer the following three fundamental questions:

1. Does the teaching of A contribute to the understanding of our world and if
yes, in which way and to what extent? How does A prepare the pupils for
dealing with jobs and duties in society?

2. How important is the teaching of A for the ability to succeccfully study
at a university? Do universities expect some fundamental knowledge of the
discipline A?

3. What is the contribution of teaching A to the development of the way of
thinking and the ability to solve various kinds of tasks and problems.

In the following three sections, we aim to give at least partial answers to these
questions regarding the subject of informatics.

Before we deal with the three questions posed above, let us explain why we do
not deal with imparting ICT skills in this article. Clearly, ICT skills have become
important not only for studying, but also for future employments. Therefore,
these skills need to be taught at school. However, in this article we focus on the
unique, sustainable and lasting knowledge that informatics can provide.
� Partially supported by the Hasler Foundation.

I. Kalaš and R.T. Mittermeir (Eds.): ISSEP 2011, LNCS 7013, pp. 21–30, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

22 J. Hromkovič and B. Steffen

To present scientific disciplines as collections of discoveries and research re-
sults gives a false impression. It is even more misleading to understand science
merely in terms of its applications in everyday life. What would the description
of physics look like if it was written in terms of the commercial products made
possible by applying physical laws? Almost everything created by people—from
buildings to household equipment and electronic devices—is based on the knowl-
edge of physical laws. However, nobody mistakes the manufacturer of TVs or
of computers or even users of electronic devices for physicists. We clearly dis-
tinguish between the basic research in physics and the technical applications
in electrical engineering or other technical sciences. With the exception of the
computer, the use of specific devices has never been considered a science.

Why does the public opinion equate the proficiency to use specific software
packages to computer science? Why is it that in some countries teaching com-
puter science is restricted to imparting ICT skills, i.e., learning to work with
a word processor or to search on the internet? What is the value of such ed-
ucation, when software systems essentially change every year? Is the relative
complexity of the computer in comparison with other devices the only reason
for this misunderstanding?

Surely, computers are so common that the number of computer users is com-
parable to the number of car drivers. But why then is driving a car not a subject
in secondary schools? Mobile phones are becoming small, powerful computers.
Do we consider introducing the subject of using mobile phones into school ed-
ucation? We hope that this will not be the case. We do not intend to answer
these rhetorical questions; the only aim in posing them is to expose the extent of
public misunderstanding about computer science. Let us only note that experi-
ence has shown that teaching the use of a computer does not necessarily justify
a new, special subject in school.

There are two main points in the relation between teaching core informatics
and imparting ICT skills. First of all, none of our three principal questions posed
above can be answered satisfactory if one reduces informatics to a computer
driving licence. Secondly, reducing teaching of informatics to educating the usage
of concrete software systems (word processor, spreadsheet, etc.) is the main
reason for the current very bad image of informatics. Following our experience
and some investigation in countries that replaced the teaching of informatics by
imparting ICT skills, the pupils do not consider informatics as a science, they
find it boring and not challenging enough to choose it as a subject for the study
at a university. There is no other way out than to teach computer science in
such a way that it is at least as attractive and deep as other natural sciences
and mathematics.

2 Understanding the World Around Us

Physics helps us to understand a lot about the world around us. What is mat-
ter and what is energy? What is movement, space, and time? To understand at
least some fundamental discoveries and laws of physics is of principal importance

Why Teaching Informatics Is Important 23

for understanding our world. Another example is, for instance, biology. It tries
to uncover what life is and how it evolves. Many of the principal goals of the
natural sciences are fascinating and challenging. The deep questions about the
functioning of our world and about our role in this world are for most young
people much more attractive than any colorful application on the screen. Un-
derstanding nontrivial concepts and getting deep insight into complex subjects
makes them more pleased than mastering any skill.

Can computer science provide something comparable? Our answer is yes. The
following two discoveries of computer science are of this kind.

The limits of automation and the concept of algorithms
All possible tasks (problems) can be partitioned into two classes, namely
algorithmically solvable and algorithmically unsolvable tasks. Due to the
introduction of the notion of the algorithm by A. Turing [13], we got
an instrument for classifying computing problems into those solvable
by computers and others unsolvable by computers. We discovered the
existence of a rigorously defined limit of automation.

Quantitative laws of information processing
and the concept of computational complexity
To perform a computation or to process information in order to solve
a concrete task requires some amount of work. There exist quantitative
laws of information processing. For each task of information processing,
one can investigate the amount of computer work sufficient and neces-
sary in order to solve the task. We discovered that more computational
resources help us to solve more tasks and that there are arbitrarily hard
tasks with respect to the amount of work required. Thousands of prac-
tical computing problems cannot be solved because the amount of work
necessary is beyond the physical capabilities of our universe. The core
scientific topic of informatics is to recognize how much information one
can extract from the given data by a reasonable amount of work.

Both fundamental concepts mentioned above do not only reveal us the existence
of some natural laws of information processing. Similar to physics, these con-
cepts are also crucial for many of today’s applications. For instance, the current
e-commerce, based on public-key cryptography, would not exist without the fun-
damental concepts of algorithms and computational complexity.

Examples of how to introduce these concepts in an appropriate way for sec-
ondary schools is presented in numerous books: Algorithmics: The Spirit of
Computing [7] Das Affenpuzzle [3] Abenteuer Informatik [6], Computer Science
Unplugged [1], Taschenbuch der Algorithmen [14], Algorithmic Adventures [10],
Lehrbuch Informatik [8], Berechenbarkeit [9], Einführung in die Kryptologie [5].

Another important issue about computational complexity is the fact that
many computing problems can be solved efficiently, but it is a challenge to
discover an efficient algorithm for them and this subject of informatics is very
fruitful.

24 J. Hromkovič and B. Steffen

A classical problem from cryptology that is not practically solvable using a
naive approach is for example the calculation of powers with very large exponents.
But with an ingenious trick, the so-called fast exponentiation, this is efficiently
doable. In Appendix A we present an approach we used in the textbook Ein-
führung in die Kryptologie [5] to introduce the fast modular exponentiation to
secondary-school students.

We conclude that informatics has a nontrivial scientific depth that is fasci-
nating and can challenge young people with its goals and problems. Informatics
expands science also by giving new dimensions to the fundamental categories
of science such as determinism, nondeterminism, randomness, proof, simulation,
correctness, efficiency etc. Many of its discoveries are surprising and attractive
to young people. For instance, exchanging a deterministic control by a random-
ized one, whose decisions are partially influenced by random bits, can essentially
decrease the amount of work necessary to reach the intended goals.

We only need to get more experience with teaching these topics understand-
ably in our schools. There is no doubt that, in our society based on knowledge
which is extracted daily from a huge amount of data, one cannot understand the
world around us without some fundamental knowledge of informatics. The same
is true for the control of technical devices in the technical world created by man.

3 Preparation for University Studies

For sure, ICT skills have become instruments that necessarily have to be mas-
tered to successfully participate in many human activities. But this is not the
matter of our discussion because they are mostly on the basic technical level like
using a pen for writing. Here we want to look for the usefulness of sustainable
knowledge in informatics.

First of all, most of the scientific disciplines are asked to handle a huge amount
of data. This is not only true for experimental sciences such as biology, chemistry
or physics, but also for economics, sociology, medicine etc. Because the amount
of data is growing fast, one needs a well-structured way of saving it as well
as efficient algorithms for searching, processing and communicating it. Many
scientific disciplines, not only the natural sciences, generate knowledge from the
data they collected by experiments, measurements, and assessments. To extract
knowledge from the given data often requires a huge amount of computer work.
This can only be done if one is able to develop specific efficient algorithms for
these tasks or to ask computer scientists for their support. But this cannot be
achieved without the ability to describe the problems exactly.

Of a similar importance is the application of simulations. In order to fore-
cast some development, we create models and run simulations on them. This
originally basic research instrument of physics, chemistry and engineering be-
came a fundamental tool in sciences like economics, sociology, psychology, etc.,
which avoided the use of exact mathematical methods for a long period of time.
Without simulations, many research projects would be unthinkable.

Why Teaching Informatics Is Important 25

Nobody discusses whether mathematics has to be a part of school education
or not. But informatics is the scientific discipline making mathematics to a tech-
nology. Due to this, mathematics is applied everywhere.

Programming is a part of informatics with a growing importance. All techni-
cal systems are controlled by programs and therefore all students of technical
sciences need to master programming. Slowly, but surely, this becomes true also
for several areas of the natural sciences and even for humanities. Programming
is not only the ability to implement given methods into programs. Much more
important is the ability to use abstractions to describe problems, to analyse them
and to find methods for solving them.

Definitely, we conclude that teaching informatics in school is not only a con-
tribution for the study of related topics at university. The knowledge about the
capabilities and limits of computer science and the way of working in informatics
is at least as useful for the study at a university as any other classical subject of
high school curricula.

4 A Way of Thinking and Working

One of the main arguments for teaching mathematics is the development of the
exact way of thinking that finally results in the ability to use the exact language
of mathematics for describing, analyzing and solving problems in all areas of our
life. This ability becomes more and more important. Some colleagues tend to
call informatics the “new” mathematics or at least a constructive mathematics.
Jeannette Wing, head of the computer science department at Carnegie Mellon
University, even envisions that “thinking like a computer scientist” should be
a fundamental skill such as reading, writing and arithmetics [15]. Cohen and
Haberman regard computer science as one of the five “languages” every citizen
should acquire [2].

The reason for that is the way of working in computer science. Similarly as in
mathematics, we begin with an abstract description of a problem and continue
with its analysis. But additionally, computer scientists do not only discover an
efficient way of solving it, but they also implement the discovered method and
provide a product (program) for solving problems of this kind. This work is more
constructive than the typical work of a mathematician and ties the exact way of
thinking in mathematics with the pragmatic way of working in engineering.

In this way teaching informatics in school:

– supports the development of the exact way of thinking and working in math-
ematics and natural sciences, and

– brings new elements to education by teaching elements related to the way
of thinking and working in engineering disciplines (introducing the concepts
of implementation, verification (proving correctness), testing, modular de-
sign, etc.).

– supports interdisciplinarity, because the computing task considered (the ex-
traction of information given data) have their origin in various scientific
disciplines and industrial applications.

26 J. Hromkovič and B. Steffen

No other subject in school goes this long way from a problem formulation to a
solution in the form of a product (program). This high level of constructivism is
probably the main contribution of teaching computer science. This approach also
contributes to the teaching of math as Syslo and Kwiatkowska point out [12].

It has to be said that teaching informatics in this way is very rewarding. One
can fascinate young people and give them the great feeling of achievement.

Instead of being first of all an examinator, checking the success of the class
by exams, the teacher can switch into the role of a supporter helping along the
way from the problem to the solution. Whether the result of their work is correct
can be directly verified by the pupils, no immediate judgement of the teacher is
necessary. Additionally, team work can be educated in an excellent way.

5 Conclusion

To teach the discoveries of informatics, its methods, and ways of thinking and
acting contributes to education at least in the same amount as teaching mathe-
matics or other classical subjects. Additionally, teaching informatics brings new
elements to the schools that we are missing already for a long time. Informatics
contributes to science with new fundamental concepts and terms like algorithm,
computational complexity, efficiency, verification, simulation, information secu-
rity, etc., and gives a deeper insight on some fundamental notions of science such
as determinism, nondeterminism, and randomness, to name a few.

Teaching informatics has became important to successfully study at a univer-
sity in many scientific disciplines. More and more scientific disciplines expect
and will expect fundamental knowledge of informatics and especially the ability
to apply it in their own discipline.

The way of thinking and working in informatics enriches the human way of
thinking and can essentially contribute to the success of young people in their
life, whatever they will do in the future.

References

1. Bell, T., Fellows, M., Witten, I.H.: Computer Science Unplugged - Off-line activities
and games for all ages (2006), http://www.csunplugged.org

2. Cohen, A., Haberman, B.: Chamsa: Five languages citizens of an increasingly tech-
nological world should acquire. ACM Inroads 1, 54–57 (2010)

3. Davis, H.: Das Affenpuzzle. Springer, Heidelberg (2001)
4. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Transactions of

Information Theory 22(6), 644–654 (1976)
5. Freiermuth, K., Hromkovič, J., Keller, L., Steffen, B.: Einführung in die Kryptolo-

gie. Vieweg+Teubner (2009)
6. Gallenbacher, J.: Abenteuer Informatik, 2nd edn. Elsevier, Amsterdam (2008)
7. Harel, D., Feldman, Y.: Algorithmics: The Spirit of Computing, 3rd edn. Addison

Wesley, Reading (2004)
8. Hromkovič, J.: Lehrbuch Informatik. Vieweg+Teubner (2008)
9. Hromkovič, J.: Berechenbarkeit. Vieweg+Teubner (2011)

http://www.csunplugged.org

Why Teaching Informatics Is Important 27

10. Hromkovič, J.: Algorithmic Adventures. Springer, Heidelberg (2009)
11. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures

and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)
12. Syslo, M., Kwiatkowska, A.: Contribution of informatics education to mathematics

education in schools. In: Mittermeir, R.T. (ed.) ISSEP 2006. LNCS, vol. 4226, pp.
209–219. Springer, Heidelberg (2006)

13. Turing, A.M.: On computable numbers with an application to the Entscheidungs-
problem. Proceedings of London Mathematical Society 42(2), 230–265 (1936)

14. Vöcking, B., Alt, H., Dietzfelbinger, M., Reischuk, R., Scheideler, C., Vollmer, H.,
Wagner, D. (eds.): Taschenbuch der Algorithmen. eXamen.press, Springer (2008)

15. Wing, J.: Computational thinking. Comunications of the ACM 49(3) (2006)

A Fast Modular Exponentiation

Many cryptographic protocols, e. g. the RSA cipher [11] and the Diffie-Hellman
protocol [4], rely on the calculation of modular powers with very large exponents,
i. e. numbers with hundred or more digits. This is one prime example where
the naive approach to calculate it leads to an inefficient algorithm, but with a
important observation we can determine these powers efficiently.

This section shows an excerpt from our textbook Einführung in die Kryp-
tologie [5], where we explain the method of the fast modular exponentiation to
secondary school students.

If we calculate the power ax mod n naively like

ax mod n = a · a · a · . . . · a
︸ ︷︷ ︸

x factors

mod n

with repeated multiplications, then x− 1 multiplications have to be carried out.
When x is large, 10200 for example, then more multiplications have to be

made than the age of the universe (≈ 1017 seconds) multiplied by the number
of particles in the visible universe (below 1080). This means that the calculation
of a power like a10200 is not feasible, if we carry it out so clumsy. Therefore we
want to build a more clever algorithm to efficiently calculate such powers.

First of all we observe that we do not need to work with large numbers such
as ax because we work modulo n and the students already know that they are
allowed to reduce the size of numbers in the calculation below n by computing
the reminder modulo n after each computation step1. Therefore, the size of the
representation of the numbers in our calculation is always in O(log n) and we
can measure the computational complexity (amount of computer work) by the
number of arithmetic operations executed.

Therefore, we are allowed to focus on the number of operations needed to com-
pute ax and so we simplify our exponentiation by removing modular calculations
mod n from our notation.
1 At this point the students already worked trough a module about modular compu-

tations in the textbook [5].

28 J. Hromkovič and B. Steffen

We now ask the students to compute ax with fewer than x−1 multiplications
for concrete numbers for x. They may discover it by their own or you can present
a few motivating examples such as the following ones:

The power a16 can be expressed as

a16 =
(
(

(a2)2)2
)2

and because of that one can calculate the power as follows:

a2 = a · a
a4 = a2 · a2

a8 = a4 · a4

a16 = a8 · a8

by using only 4 multiplications. Similarly the following power

a24 =
(
(

(a3)2)2
)2

can be determined with only 5 multiplications:

a2 = a · a
a3 = a2 · a
a6 = a3 · a3

a12 = a6 · a6

a24 = a12 · a12.

Then plenty of small challenges can be formulated. For instance, we can ask for
– calculating ax for a concrete x with a given number of multiplications.
– searching for the smallest number of multiplications sufficient to compute ax

for concrete values of x.
– finding several different optimal ways for calculating ax for concrete values

of x.

After playing with several small challenges of the above mentioned kind, one can
pose the following question:

“It is nice to discover the best possible ways for calculating ax for a
given x. But this does not provide the possibility to automize the calcu-
lation, because for different x and y we may use different approaches to
calculate ax and ay. Hence, we need an efficient algorithm that calculates
ax for any x in an uniform way.”

One can start to search for some systematic way of calculating ax for any x. With
some help the class may be able to discover it on their own. A good starting
point is an example of the following kind:

a21 = a16 · a4 · a =
(
(

(a2)2)2
)2
· (a2)2 · a.

Why Teaching Informatics Is Important 29

We can calculate a21 by 6 multiplications as follows:

a2 = a · a
a4 = a2 · a2

a8 = a4 · a4

a16 = a8 · a8

a20 = a16 · a4

a21 = a20 · a.

We observe that this calculation has two parts. The first one is used to com-
pute a2, a4, a8, and a16, and the second one calculates the product of some of
them. In this way one can discover that the binary representation of 21 is

10101,

where the first 1 is for 16 (24), the second 1 for 4 (22) and the last 1 stands for
1 (20). This means

a21 = a16 · a4 · a,

i. e., the binary representation estimates, which of the partial precomputed pow-
ers a, a2, . . . , a16 are used to compute the final result a21. In general it is true
that if

x = xn · 2n + xn−1 · 2n−1 + · · ·+ x1 · 21 + x0 · 20 =
n
∑

i=0
xi · 2i,

then

ax = axn·2
n · axn−1·2n−1 · . . . · ax1·2 · ax0 =

n
∏

i=0
axi·2

i

.

The analysis of the computational complexity of this algorithm can be estimated
easily. If x = xnxn−1 . . . x2x1x0 is the binary representation of x, then we need
first n multiplications to compute a2, . . . , a2n and then as many multiplications
as there are 1’s in the binary representation of x. Since �log2(x)� ≤ n,

2 · �log2(x)�

multiplications are always sufficient to calculate ax.
That does not need to be the end of our short teaching unit. One can deepen

the acquired knowledge by posing and investigating for instance the following
questions:

30 J. Hromkovič and B. Steffen

1. An algorithm for computing ax can start as follows:

a2 = a · a
a3 = a2 · a
a9 = a3 · a3 · a3

a27 = a9 · a9 · a9

a81 = a27 · a27 · a27

a3n = a3n−1 · a3n−1 · a3n−1

for 3n ≤ x < 3n−1. Can you complete the description of this algorithm in
order to compute ax and estimate its computational complexity? Can this
algorithm be better or equally efficient compared to the algorithm based on
the binary representation of x?

2. Is it profitable to execute the first part of the algorithm from question 1 as
follows?

a2 = a · a, a3 = a2 · a,
a6 = a3 · a3, a9 = a6 · a3,

a18 = a9 · a9, a27 = a18 · a9,

etc.

Or asked differently, is it helpful to additionally compute and store the pow-
ers a6, a18, etc., as well?

3. Develop a new algorithm for the computation of ax based on the 5-ary repre-
sentation of x. How well does this algorithm behave compared to the previous
ones?

4. Does the “binary representation” algorithm always (for all x) work in the
most efficient way or do there exist values for x, for which one can compute
ax faster?

Informatics Education in Italian High Schools

Maria Carla Calzarossa1, Paolo Ciancarini2,
Luisa Mich3, and Nello Scarabottolo4

1 University of Pavia, Italy
mcc@unipv.it

2 University of Bologna, Italy
ciancarini@cs.unibo.it

3 University of Trento, Italy
luisa.mich@unitn.it

4 University of Milano, Italy
nello.scarabottolo@unimi.it

Abstract. This paper presents the main results of an extensive monitor-
ing exercise aimed at assessing the role of informatics education in Italian
high schools. The investigation focused on the teaching and certification
activities performed by the schools as well as on the role and use of
information technologies for teaching and communications with the stu-
dents and their families. The study has shown a very positive attitude
of the schools towards informatics education: many offer specific courses
to their students and promote the use of the technologies for teaching a
large variety of disciplines. The certification process of ICT skills is also
popular. Despite all these positive aspects, the investigation has shown
that informatics education is often limited to the use of computers and
seldom addresses the foundations of the discipline.

Keywords: Informatics education, high schools, ICT certifications.

1 Introduction

Information and Communication Technologies (ICT) play a crucial role for our
daily personal and professional activities. The worldwide diffusion of online social
networks among young people – that is, the so-called “digital generation”– is a
proof of their familiarity with these technologies, typically used straightaway
with little or no difficulty at all [10]. Nevertheless, the knowledge of the digital
generation of the foundations and principles upon which ICT works is usually
rather superficial and often not properly included and blended in their education
(see for instance [1, 4, 12]). Education systems should then take the responsibility
to fill this gap by implementing some specific learning processes.

Another important step in these processes is represented by independent
certification exams aimed at assessing the knowledge and skills acquired. The
relevance of ICT certifications in the job market is confirmed by the large
number of organizations investing in this field. Among the most renowned organi-
zations, we can name CompTIA (http://www.comptia.org), an international or-
ganization whose mission is focused on ICT, and AQA (http://www.aqa.org.uk),

I. Kalaš and R.T. Mittermeir (Eds.): ISSEP 2011, LNCS 7013, pp. 31–42, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

32 M.C. Calzarossa et al.

that provides ICT certifications in a broader range of domains and educational
initiatives.

The impact of ICT certifications in Italian Universities is addressed in [2],
whereas very few papers specifically analyze the use of certifications in schools.
For example, in [11] the values conveyed by offering ICT certifications at the
high school level are illustrated, while in [6] the rationale for the diffusion in the
schools of a specific proprietary certification is discussed.

On the contrary, the analysis of informatics education in high schools and the
impact of ICT in the overall education system have been extensively addressed.
Comparative studies of the educational approaches adopted in various countries
are presented in [7]. In [13], authors outline that even though colleges and uni-
versities emphasize the importance of ICT for their students, the ICT skill level
for incoming freshmen is often below the standard required for academic success.
Nevertheless, students believe they have excellent technological skills, possibly
because they compare their skills to those of their parents or of high school
teachers belonging to older generations. The situation in Austrian academic sec-
ondary schools is presented in [8]. In particular, the analysis has shown that
different autonomous approaches adopted by schools in the implementation of
their informatics education have led to some undesirable digital gaps at the end
of the lower secondary level. As a consequence, a more ambitious informatics
education becomes infeasible in academic secondary schools. An analysis of the
Lithuanian situation is described in [5], where the author discusses the goals for
introducing ICT in high schools and the competencies and values to be devel-
oped for informatics education. In [9], the authors focused on the answers of
about 400 Israeli high school students who were asked about their ICT skills
and knowledge.

A recent report [14] has shown that in the USA roughly two-thirds of the
states have few computer science education standards for secondary school ed-
ucation and most states treat high school computer science courses as simply
an elective and not as part of a student’s core education. Moreover, much of
what passes for high school computer science instruction is actually about In-
formation Technology literacy rather than algorithm design, programming, or
computational thinking.

This paper presents the results of an extensive monitoring exercise performed
in the year 2010 and aimed at assessing how informatics education is perceived
and organized in Italian high schools. The investigation, that involved the schools
of eight Italian Regions, focused on various aspects related to teaching and certi-
fication activities performed by the schools as well as on the role of information
technologies for teaching other disciplines. A previous investigation, performed
in the year 2008, whose main outcomes are reported in [3], considered a much
smaller number of Regions and schools and covered some of these aspects to a
more limited extent.

The paper is organized as follows. Section 2 introduces the methodological
approach applied for the investigation and describes the main characteristics of
the schools involved in the exercise. The positions of the schools with respect

Informatics Education in Italian High Schools 33

to ICT are illustrated in Section 3, whereas the organization adopted by the
schools to teach informatics is described in Section 4. Section 5 presents the
projects of the schools in the framework of informatics certification. Finally,
some concluding remarks are outlined in Section 6.

2 Methodological Approach

2.1 The Context

Italian high schools extend over five years. Within the Italian high school system,
informatics disciplines are not considered as compulsory disciplines for every
type of school. In some schools – mainly technical schools – they are part of
their curricular programmes, in some others these disciplines are often part of
their so-called extra-curricular activities, whose organization and contents are
under the responsibility of the individual schools. Some schools do not offer any
informatics course at all. It is worth to point out that the Italian high school
system has undergone a recent reform whose outcomes will be visible in about five
years time. Table 1 presents as an example the breakdown of the teaching hours
foreseen by the reform for various disciplines for technical schools addressing the
ICT specialization.

Table 1. Breakdown over five years of the teaching hours in technical schools special-
ized in ICT based on the 2010 Italian high school reform

Scientific and technical disciplines 1 2 3 4 5
Physics 99 99
Chemistry 99 99
Graphic design 99 99
Informatics 99
Applied sciences and technologies 99
Complements of mathematics 33 33
Systems and networks 132 132 132
Design of ICT systems 99 99 132
Project and enterprise management 99
For Informatics curriculum
Informatics 198 198 198
Telecommunications 99 99
For Telecommunication curriculum
Informatics 99 99
Telecommunications 198 198 198
Yearly total 396 396 561 561 561
Yearly total (including other disciplines) 1056 1056 1056 1056 1056

34 M.C. Calzarossa et al.

2.2 The Monitoring Exercise

The monitoring exercise relies on a web-based questionnaire designed by the
authors and sent to the Directors of the high schools of eight of the 20 Italian
Regions, that is, Apulia, Lazio, Lombardy, Marche, Molise, Sicily, Umbria and
Veneto. The choice of these Regions was mainly dictated by their number and
type of schools: some of these Regions, such as, Lombardy, Apulia and Sicily, are
characterized by the largest number of schools and student population in Italy,
whereas others, such as, Molise and Umbria, have very few schools and students.
Moreover, the geographical location of these eight Regions provides a good and
representative coverage of the entire country from North to South, thus, taking
into account the different socio-economics settings.

The investigation was launched in the spring 2010 and focused on the classes
of the final three years. In total some 1,220 schools, out of 2,776 invited to
participate, responded to the questionnaire, that is, approximately, 44%. From
the regional distribution of the schools (see Fig. 1), we can notice that about
one-fourth of the schools are located in Lombardy and slightly less than 20% in
Sicily, whereas only 1.9% are located in Molise.

Lazio
14.7%

Lombardy
25.4%

Marche
7.5%

Molise
1.9%

Sicily
18.4%

Veneto
12.5%

Apulia
16.6%

Umbria
3.0%

Fig. 1. Regional distribution of the schools

The total number of students enrolled in the final years of these schools is
approximately 356,000, that is, slightly less than 300 students per school and
some 19.5 students per class. About one-third of these students, namely, 127,000,
are enrolled in technical schools.

Informatics Education in Italian High Schools 35

3 ICT in the Italian High Schools

To analyze the role of ICT in the schools, our monitoring exercise first focused
on the availability of PCs for the teaching activities. The investigation has shown
that PCs are available in about 96% of the schools, with a total of some 78,500
PCs. These PCs are used as teaching tools for a large variety of disciplines. As can
be seen from Figure 2, very many schools employ PCs for teaching mathematics
(82% of the schools) and foreign languages (76% of the schools), whereas PCs are
used only by about half of the schools for teaching drawing. Among the other

0.67

0.49

0.55

0.82

0.55

0.76

0.73

0.00 0.20 0.40 0.60 0.80 1.00

Other disciplines

Drawing

Physics

Math

Sciences

Foreign languages

Informatics

Percentage of schools

Fig. 2. Disciplines taught with the support of PCs

disciplines selected by the schools, the most popular are humanities, such as,
Italian, Latin and ancient Greek, and technical disciplines, such as, aeronautics,
agronomy, mechanical constructions, advertising technologies.

The technical support for the management of PCs and ICT infrastructures
(e.g., installation, configuration, update) is provided by staff specifically em-
ployed by the schools for this purpose. On average, each school employs 3.6
persons. However, the variability of the distribution among schools is rather
large. For example, in some technical schools this staff consists of more than 20
persons, whereas other schools do not employ any dedicated staff at all and their
duties are often performed by the teachers on a voluntary basis.

The majority of the schools, i.e., 71%, is also equipped with a large vari-
ety of technologies: servers, routers, wired and wireless networks, multimedia

36 M.C. Calzarossa et al.

0.24

0.37

0.48

0.45

0.48

0.25

0.43

0.51

0 0.1 0.2 0.3 0.4 0.5 0.6

Apulia

Lazio

Lombardy

Marche

Molise

Sicily

Umbria

Veneto

Percentage of schools

Fig. 3. Use of email within the schools of the eight Regions

interactive whiteboards, overhead projectors, camcorders, audio mixers. It is
important to outline that a good number of schools, i.e., 600 schools, adopts
specific technologies to help students with disabilities in their learning process.

Email is rather popular within schools, even though, as Figure 3 shows, there
are large differences among the schools of the various Regions.

With respect to the exploitation of Web technologies, more than 92% of the
schools have their own Web site usually maintained and updated by the teachers
of the schools. We did not notice any significant difference among the schools
of the various Regions. Schools often post on their Web sites confidential infor-
mation about their student careers, e.g., absence, grades, overall assessments.
For privacy reasons – in Italy privacy regulations are very strict – this sensitive
information is only accessible by the parents, via login and password.

Despite the popularity of Web sites, very few schools (i.e., 192) have adopted
advanced Web technologies, such as, online social networks and forums, involv-
ing teachers and students. The schools which approached these technological
solutions are located in two Regions only: Apulia and Veneto.

Similarly, the organization of entertainment activities based on technological
competence, such as videogames contests and digital art, is very limited. On
the contrary, several schools are very active in participating to various types of
international contests, such as the International Olympics in Informatics.

4 Teaching Organization

Our investigation has shown that informatics disciplines are taught in about
743 schools (out of the 1,220 that responded to our questionnaire). We remark

Informatics Education in Italian High Schools 37

that according to the current Italian high school system, schools can teach these
disciplines in mandatory courses taken by all students of a class and in optional
courses taken by their students on a voluntary basis.

In particular, we can subdivide the courses offered by the schools in four
different categories:

– mandatory courses belonging to the basic curriculum of a class;
– additional mandatory courses not belonging to the basic curriculum of a

class, whose offer is left up to individual schools;
– optional free courses;
– optional courses requiring the payment of a fee.

Figure 4 shows the distribution of the schools according to the types of courses
offered to their students. As can be seen, there is the prevalence of mandatory
courses of informatics belonging to the basic curriculum of a class (offered by
441 schools, this is, 59.4% of the schools where informatics is taught). A good
number of schools, i.e., 274, offer optional free courses of informatics. Of course
each school can organize courses in each of these categories. In particular, slightly
less than 300 of the schools that participated to our monitoring exercise offer
both mandatory and optional courses. A more detailed investigation has shown
that most of these schools are technical schools. This demonstrates their strong
attitude and interest towards informatics disciplines that are considered as a
compelling professional need for the future of their students.

To further explore the choices of the schools, we focused on the organization of
mandatory courses and in particular on the projects developed by the students

441

111

274

173

0

100

200

300

400

500

Mandatory courses Additional courses Optional free
courses

Optional courses at
a charge

N
u

m
b

er
 o

f
sc

h
o

o
ls

Fig. 4. Schools which teach informatics disciplines

38 M.C. Calzarossa et al.

as assignments. The investigation has shown that this type of assignment is
adopted by almost 60% of the schools. As can be seen from Figure 5, most
projects involved some programming activities. Very popular are also projects
dealing with the development of Web sites, whereas far less popular are those
addressing hardware devices.

80.2%
74.7%

37.0%

49.4%

19.1%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Programming Web sites
desing

Hardware
devices

Computer
networks

Other topics

P
er

ce
n

ta
g

e
o

f
sc

h
o

o
ls

Fig. 5. Topics addressed by the projects developed in the framework of mandatory
courses

Despite mandatory courses, whose topics are defined by national regulations,
the organization and content of optional courses are up to the schools. It is
interesting to outline that very many optional courses focused on the use of
individual productivity software suites, such as, Microsoft Office suite. Other
topics, such as, Internet and navigation tools, basic concepts of informatics, are
often part of these courses. Very few courses are dedicated to programming
languages.

In general, it is possible to observe a bias towards teaching informatics from
the end-user perspective, with a particular focus on productivity tools and Web
technicalities and very seldom concentrating on fundamental aspects, such as,
algorithmic aspects, logic, programming.

The average number of hours taught for each of the topics offered in the
framework of optional free courses of informatics is shown in Figure 6. We can
observe the large number of hours dedicated to teach programming languages.

Note that about half of the schools that responded to our questionnaire orga-
nize courses on ICT for their teachers – a rather unusual practice in a country
where competence upgrade and lifelong learning of teachers are not planned nor
regulated. These courses usually cover a large variety of topics, ranging from
teaching technologies and the use of multimedia interactive whiteboards to the
use of the Microsoft Office suite.

Informatics Education in Italian High Schools 39

20.1

38.2

20.3

50.2

16.1

0

10

20

30

40

50

60

Basic
concecpts of
informatics

Individual
productivity

software suites

Internet and
navigation tools

Programming
languages

Computer
architectures

N
u

m
b

er
 o

f
h

o
u

rs

Fig. 6. Hours for the various topics addressed within the optional free courses offered
by the schools

5 Certification of ICT Skills and Education

More than half of the schools (631 out of the 1,220 that participated to our inves-
tigation) offer certification exams to their students. This approach for establish-
ing a quality standard is especially popular in the schools of Veneto, Marche and
Apulia, slightly less in Umbria and Sicily. The diffusion of certification programs
is comparatively much less popular in the high schools of Lazio. Thus, regional
differences exist but there is no clear explanation why.

Most high schools offer the ECDL certification (European Computer Driving
Licence), with the majority of projects based on the ECDL FULL certification,
obtained by passing all the seven tests foreseen by the programme, with respect
to ECDL START certification, obtained by passing four out of the seven tests.
In detail, the total number of certifications obtained by the students during the
school year 2008-2009 was equal to 24,000. It is worth noting that 84% of these
certifications refer to the ECDL family. In particular, 16,000 students received
the ECDL FULL certification, whereas some 4,500 the START one. Moreover,
about 1,000 students received a CISCO certification, and about 800 a Microsoft
certification.

Let us remark that almost 80% of the schools that offer ICT certifications
organize the certification exams within the school itself. This is mainly the case
of the schools of Lombardy, Molise and Umbria.

Concerning the costs related to the certification process, we have noticed (see
Fig. 7) that for the majority of the schools these costs are fully or partly covered
by the families of the students. Very few schools provide their students with
some financial support based on their grades or on the income of their family.

40 M.C. Calzarossa et al.

260

158

34
10

46
68 66

18 12 12
28 38

62 62

1

176 166

269
292

124

0

50

100

150

200

250

300

350

Full payment Partial payment Financial
support based

on student
grades

Financial
support based

on family
income

Other

Always In most cases Seldom Never

N
u

m
b

er
 o

f
sc

h
o

o
ls

Fig. 7. Behavior of the schools with respect to the coverage of the costs associated
with the ECDL certification

It is interesting to outline that about 30% of the schools that offer ICT certi-
fications complement them with other types of certifications, such as, language
certifications for testing English proficiency. Moreover, about 10% of the schools
are interested to widen their offers. These data witness a genuine interest of
the schools to audit and validate the knowledge and skills developed by their
students.

6 Conclusions

The extensive monitoring exercise carried out in the Italian high schools has
shown their general interest towards informatics education: most schools offer
several courses, either mandatory or optional, that covers various aspects of the
discipline and involve a good number of students. Similarly, ICT certifications
are strongly promoted by the schools that are usually equipped for an in-house
implementation of the certification tests. It is interesting to note that these cer-
tifications very often complement English language certifications, thus, showing
a general, positive attitude of Italian high schools with respect to third-party
independent assessment of students skills.

Technologies play an important role in the schools: a very large number of
schools is equipped with a big variety of technologies that are used to teach
many different disciplines. Web sites and email are also very popular, much less
are other Web technologies.

Despite all the positive aspects outlined above, let us remark – as already
mentioned in Sect. 4 – that the approach adopted by Italian high schools for
teaching informatics is not always in line with their mission. In our digital age,
schools should provide their students with fundamental problem solving knowl-
edge and skills required for living and working in our society and problem solving

Informatics Education in Italian High Schools 41

by computers requires some specific education. However, in most of the schools
informatics courses address simply the use of the computers, and only very few
courses focus on the foundations of informatics, such as, computer architecture,
programming, computational thinking. This situation has two negative implica-
tions: there is a risk for students to perceive informatics as a discipline with
no scientific challenges but barely a matter of shallow playing with technologies.
Moreover, the best high school students very rarely enroll in informatics degrees
at the university, thus hindering the technological advancements in this field.

A different teaching framework and strategy for informatics education should
then be defined as to provide the students with the skills required by next gener-
ation technologies. As a future work, we plan to analyze in details the strategies
of the other European countries towards informatics education.

Acknowledgments. Authors gratefully thank AICA, CINI and Fondazione
CRUI for their encouragement and continuous support during all phases of this
monitoring exercise.

References
1. Brinda, T., Puhlmann, H., Schulte, C.: Bridging ICT and CS: educational

standards for Computer Science in lower secondary education. ACM SIGCSE
Bull. 41(3), 288–292 (2009)

2. Calzarossa, M., Ciancarini, P., Maresca, P., Mich, L., Scarabottolo, N.: The ECDL
Programme in Italian Universities. Computers & Education 49(2), 514–529 (2007)

3. Calzarossa, M., Ciancarini, P., Mich, L., Scarabottolo, N.: ICT teaching and certi-
fication in Italian high schools. In: Hermann, C., Lauere, T., Ottmannn, T., Welte,
M. (eds.) Informatics Education Europe IV - IEE IV, pp. 89–94. University of
Freiburg (2009)

4. Centre for Educational Research and Innovation: New Millennium Learners. Ini-
tial findings on the effects of digital technologies on school-age learners. In:
OECD/CERI International Conference on Learning in the 21st Century: Research,
Innovation and Policy (2008),
http://www.oecd.org/dataoecd/39/51/40554230.pdf

5. Dagiene, V.: Teaching information technology and elements of informatics in lower
secondary schools: Curricula, didactic provision and implementation. In: Mitter-
meir, R.T., Sysło, M.M. (eds.) ISSEP 2008. LNCS, vol. 5090, pp. 293–304. Springer,
Heidelberg (2008)

6. Dennis, A., Duffy, T., Cakir, H.: IT programs in high schools: lessons from the
Cisco Networking Academy program. Communications of the ACM 53(7), 138–141
(2010)

7. Law, N., Pelgrum, W., Plomp, T. (eds.): Pedagogy and ICT use in schools around
the world - Findings from the IEA sites 2006 study. CERC Studies in Comparative
Education, vol. 23. Springer, Heidelberg (2008)

8. Micheuz, P.: Some findings on Informatics education in Austrian academic sec-
ondary schools. Informatics in Education 7(2), 221–236 (2008)

9. Nachmias, R., Mioduser, D., Shemla, A.: Information and Communication Tech-
nologies usage by students in an Israeli high school: Equity, gender, and in-
side/outside school learning issues. Education and Information Technologies 6(1),
43–53 (2001)

http://www.oecd.org/dataoecd/39/51/40554230.pdf

42 M.C. Calzarossa et al.

10. Palfrey, J., Gasser, U.: Born digital: understanding the first generation of digital
natives. Basic Books, New York (2008)

11. Randall, M., Zirkle, C.: Information Technology Student-Based Certification in For-
mal Education Settings: Who Benefits and What is Needed. Journal of Information
Technology Education 50(4), 287–306 (2007)

12. Scheuermann, F., Pedró, F. (eds.): Assessing the Effects of ICT in Education:
Indicators, Criteria and Benchmarks for International Comparisons. European
Union/OEDC (2009)

13. Stone, J., Madigan, E.: Inconsistencies and disconnects. Communications of the
ACM 50(4), 76–79 (2007)

14. Wilson, C., Sudol, L., Stephenson, C., Stehlik, M.: Running on empty: the failure
to teach K/12 Computer Science in the digital age. Tech. rep. ACM, New York
(2010), http://www.acm.org/runningonempty/

http://www.acm.org/runningonempty/

I. Kalaš and R.T. Mittermeir (Eds.): ISSEP 2011, LNCS 7013, pp. 43–55, 2011.
© Springer-Verlag Berlin Heidelberg 2011

A Competence-Oriented Approach to
Basic Informatics Education in Austria

Peter Micheuz

Alpen-Adria-Universität Klagenfurt,
9020 Klagenfurt, Austria

peter.micheuz@uni-klu.ac.at

Abstract. Up to now, formal education in digital technologies at the lower
secondary level of Austrian schools did not keep pace sufficiently with the
requirements of our computerized society. But there are indicators to improve
the unclear situation for pupils aged between 10 and 14 years. A reference
framework for digital competence, embracing media education and basic
Informatics education as well, is currently developed. After a selected look at
various existing approaches, this paper deals with an Austrian project in that
field and its current state.

Keywords: Reference Framework, Informatics Education, Digital Competence,
Curriculum, Lower Secondary Education.

1 Introduction

Since the late 1980s, Informatics, ICT and Digital Media education at the lower
secondary levels (grades 5 to 8) in Austria have shown a very inconsistent picture.
Despite the outward appearance of a “digital patchwork”, this important segment of
the Austrian school system represents still a lively, although too fragmented scene.
Many ambitious local and regional Austrian initiatives cannot hide the fact that our
highly digitally penetrated society at the beginning of the 21st century is still not
adequately represented in each Austrian obligatory school. One of the main reasons
might be the fuzzy terminology in the field and its confusion with digital cultural
techniques and digital media technologies. Another is the lack of a national
curriculum and that of educational standards for this age-group. Finally, we can
observe an inherent slow process of innovations of educational systems in general.

This paper outlines the status quo and current efforts relating to the development of
a sustainable and coherent framework, including media education, ICT, and
Informatics for all Austrian pupils at the lower secondary level. It follows on the
author’s contribution for ISSEP 2006 [1] which discarded the dialectic process
between autonomy on the school level and the upcoming issue of national educational
standards. Besides some major initiatives, e.g. the UNESCO/IFIP curriculum [7],[8],
the ACM K-12 model curriculum [2],[9], and the framework “Principles and
Standards for Informatics”, published by the German Society for Informatics GI
[3],[10], there are many regional initiatives to legitimize and structure this major
educational concern. For historical and political reasons, Switzerland’s 26 cantons

44 P. Micheuz

and Germany’s 16 federal states put much energy in establishing ICT standards
separately. The Austrian situation at the lower secondary level is currently even more
fragmented. Due to the lack of a national ICT framework and curriculum, schools and
teachers act independently, teaching – if at the lower secondary level at all –
Informatics and ICT according to school specific curricula. As an undesired
consequence, schools and pupils proceed and perform at extremely different paces.

This paper describes a project of an Austrian ministerial task force to improve and
consolidate this unsatisfying situation.

2 The Austrian Case Study

The Austrian school system encompasses elementary (grades 1-4), lower secondary
(grades 5-8), and upper secondary level (grades 9-12/13). At the lower secondary
levels the Austrian school system is divided into two types of obligatory schools,
namely secondary general school (Hauptschule, HS) and the secondary academic
school (Gymnasium, Allgemeinbildende Höhere Schule, AHS). Since two years, there
is a large pilot project, called new middle school (Neue Mittelschule, NMS),
exploring (without "out") new pedagogical approaches. According to current political
intentions, all HS will be converted into NMS and the traditional Gymnasium will
remain as a school type in its own right also in the foreseeable future. Currently about
two thirds of the pupils attend the HS (NMS) and about one third attend the lower
level of the AHS for four years. The reference model presented in this paper refers to
all pupils aged 14 years at the end of the lower secondary level.

2.1 Anamnesis and Diagnosis

Since the late 1980ies, the elective subject Informatics has been implemented in the
7th and 8th grade of many lower secondary schools for interested pupils, dependent on
engaged teachers. Considering the circumstances and restrictions of that time, the
following development and proliferation of Informatics/ICT education can be
regarded as successful. It was the time of pioneers among teachers and pupils when
the “magic of the beginning” took effect and the upcoming curricular autonomy made
possible an increased offer of Informatics/ICT classes. Within the process of profile
building, Informatics and ICT have proliferated, and some schools still profit from
this spirit of optimism until today.
 Moreover, since 1990 an integrative use of ICT has been enacted by the Ministry
of Education especially for the subjects German, English, Mathematics and
Geometric Drawing, the so-called “Trägerfächer”. This approach of implementing
ICT at the lower secondary level for about ten years had good intentions, but it was
not really effective. Interestingly, at that time the debate of Informatics as a subject in
its own right and the integration of ICT in other subjects caused less confusion than
today.

However, at the turn of the millennium the Austrian Ministry of Education has
missed to anchor (basic) Informatics education at the lower secondary level within a
new curriculum. Within the curriculum 2000, which is still valid, the only curricular
reference for the overall use of ICT is expressed in a few sentences: "Innovative

 A Competence-Oriented Approach to Basic Informatics Education in Austria 45

information and communication technologies and mass media penetrate increasingly
areas of life. Particularly multimedia and telecommunication are determining factors
for the evolving information society. As part of teaching, these developments have to
be taken into account, […] and the educational potential of ICT has to be harnessed.”
This short but clear message (“has to be”) was to ensure that all Austrian pupils at the
lower secondary level should be provided with a minimum of ICT education in an
integrative way in many subjects. The curricula for an independent elective or
obligatory subject within curricular school autonomy remained very vague as well.

Now it is the year 2011 and – not surprisingly – due to this de facto non-existent
curricular guidelines, the secondary level presents itself as a very inhomogeneous
field with respect to Informatics/ICT. The subject Informatics/ICT is offered in
different age-groups from grade 5 to 8 with different denotations, forms and amounts
of hours per week. Additionally, this variety is expressed in different synonyms and
denotations for the same subject. Within this scope one can find Informatics as well as
information technology, introduction to Informatics, or even word processing and
keyboarding. Still about one third of the pupils leave the lower secondary level
without any formal education in this field as many schools still fail to ensure digital
literacy for all in this age-group. Due to little efforts of Austrian’s educational policy
to reduce the digital divide between schools, the integrative approach of ICT
penetration at the lower secondary level cannot be regarded as successful either. This
patchwork with inconsistencies, disparities and digital gaps among pupils, schools
and regions is well underpinned by empirical studies [1],[4],[18].

2.2 Therapy and Vision

From a “medical point of view”, the Austrian patient with some insufficiencies with
respect to a successful implementation of Informatics and ICT at the lower secondary
level apparently needs some therapy. Metaphorically speaking, the patient needs a
balanced “nutrition plan” in order to avoid being nurtured by one-sided food or even
starving. Referring to basic Informatics education at the lower secondary level, this
means a comprehensive and holistic set of content areas and concrete goals, based on
the educational vision that all pupils at the end of lower secondary education should
have acquired a certain level of digital competences which are discussed in this paper.

It seems like a good time to finally develop a long-awaited consistent national
framework for digital competence based on Informatics education in Austrian’s lower
secondary education. The reason is that in European educational systems, especially
in the German speaking countries Germany, Switzerland and Austria and not least
triggered by the PISA studies, a remarkable debate and shift paradigm in the context
of educational governance took place. In terms of curriculum development processes,
PISA has led to a growing importance of educational standards, outcome control,
competence orientation, and external assessment. Moreover it can be observed that
PISA has contributed to a rediscovery of comparative education research [25]. There
are EU-wide intentions to reinforce comparative studies with respect to Digital
Competences which are, for instance, demanded in the European Reference
Framework for Key Competences for Lifelong Learning [15].

After more than twenty years, the vision is to finally come to a national agreement
on clear and binding objectives within a sound and acceptable framework of

46 P. Micheuz

Informatics/ICT related content. The time is now ripe for such a framework; during
the last decade one could observe a boost in the digital penetration of our society
which exerts much pressure on the education system. There is no question about
clearly defining the role of general education in reacting to this challenge. What needs
to be done, in medical terms, is to find an effective form of therapy based on clear
expectations. The current Austrian approach and strategy is explained in the next
chapters.

3 Clarifying a Fuzzy Field of Terminology

In contrast to traditional subjects such as German, English, Mathematics and Natural
Sciences, all with elaborated curricula for each age-group, this is not the case at all for
the comparatively new area of Informatics, ICT, and new media. Additionally, there
is the inherent problem of a fuzzy terminology and contexts of meaning in the realm
of digital technologies and their underlying educational values.

3.1 Informatics Education, Digital Competence or Media Literacy?

Since its emergence in the early 1990ies and long before the digital revolution has
begun, the term “Informatics Education” has comprised three mutually interdependent
views on computers as

• objects of teaching and learning activities (Informatics),
• tools for processing digital information (ICT as a cultural technique), and
• media for teaching and learning (E-Learning, Digital School).

Hubwieser [20] emphasizes the importance of an integrated view of computers in
education. Basic Informatics education (“Informatische Grundbildung”), therefore,
can be seen as an integrative amalgam of learning about informatics concepts,
acquiring basic ICT-skills and using computers as networked multimedia devices
responsively and effectively as a teaching and learning aid.

Thinking of a holistic view of Informatics education – as it expands to include
more multi-disciplinary facets –, it is important to embrace an outward-looking view
in computing that sees basic Informatics education as a field actively seeking to work
with and integrate into other disciplines and areas. Such a view suggests the definition
of frameworks as a means for promoting multi-disciplinary approaches while
maintaining a clear identity of the field [11].

Based on the European Reference Framework for Key Competences for Lifelong
Learning [15], where digital competence ranks after the first and foreign language,
Mathematics, and basic competence in science and technology in fourth place, the EU
Commission published the so called Digital Agenda for Europe [16]. According to
this agenda, these key competences are indispensable to contribute to a successful life
in the knowledge society. Competence in the fundamental basic skills language,
literacy, numeracy, and in information and communication technologies (ICT) is seen
as an essential foundation for all learning activities. A number of competences are not

 A Competence-Oriented Approach to Basic Informatics Education in Austria 47

enumerated explicitly, but critical thinking, creativity, problem-solving, and risk
assessment play a role across all eight key competences.

More specifically, the Digital Agenda defines digital competence “as the
individual capability to use Information Society Technology (IST) confidently and
critically for work, leisure and communication, underpinned by basic ICT-skills
which comprise retrieving, assessing, storing, producing, presenting information and
participating in collaborative networks via the Internet.”

Consequently, the importance of IT and media literacy for students of all ages is
evident and a clear message for education systems. “It is essential to educate
European citizens to use ICT and digital media and particularly to attract youngsters
to ICT education. The supply of ICT practitioner and e-business skills, i.e. the digital
skills necessary for innovation and growth, needs to be increased and upgraded. This
calls for multi-stakeholder partnerships, training systems.” Accordingly, the Austrian
Ministry of Education recently revised its ICT strategy "Digital Literacy in Austrian
Schools" and launched the program "efit 21 - Digital Agenda for Education, Arts and
Culture” [26]. But, as it is the case with many agendas, it lacks any concrete useful
hints for a framework of digital competence at the lower secondary level.

3.2 More of the Same? – Living with Plastic Words

Currently, and this makes the allocation of ICT in the educational context so difficult,
we realize an inflation of an arbitrarily exchangeable terminology, ranging from
digital skills to informatics education wherein Informatics serves for almost every
activity with computers at schools. In order to point out the problem of an inflationary
and thus confusing terminology, Table 1 can serve as a phrase monger. The
monuments of neologisms which can be created by combining these terms are often
seemingly more important than the discussed objects themselves. At the same time,
however, this confusing verbosity in form of so called “plastic words” [5] with
unclear definitions offers the opportunity to create and form something new.

Table 1. Template for a phrase machine in a digital educational context

Prefix Levels

Digital, Media
Computer, E (Electronic)

IT, ICT, Informatics

Skills, Literacy, Fitness
Fluency, Knowledge, Qualification

Competence, Pedagogy
Education

Beside this diversity of notions, Informatics is still in a process of defining itself.

This phenomenon is not only restricted to some European and Asian countries where
the term “Informatics” is widely used, but also to “computer science”. Tucker [6]
considers severe public misperceptions about CS due to its confusion with
programming, computer literacy and information technology. When developing
frameworks and curricula, being aware of and coping with this complex and
confusing terminology is necessary.

48 P. Micheuz

3.3 Competence Models in Context

Modern education systems and new curricula are based on competences, which means
that the students’ applicability of knowledge and skills is emphasised. The acquisition
of competence and the degree of achievement is measured by completing tasks and
solving problems. According to Weinert [12], competences include skills, knowledge
and motivation to cope with new situations. Nowadays, the buzzword competence is
accompanied by a vast plethora of publications. “It is not sufficient to know, you also
have to apply it. It is not sufficient to will, you have also to do it.” It was the famous
German poet J.W. Goethe who already expressed this, about 200 years ago.

Competence models cannot be seen in isolation. They play a well-defined role on
the long way from abstract objectives to effective classroom and learning activities
resulting in verifiable learning outcomes. Normally, they are deduced from a core
curriculum and form the basis for “educational standards”. Such standards have been
developed for other (main and PISA-relevant) subjects such as Mathematics. They are
based on a particular process model respectively procedure [27].

1. Curriculum/Core Curriculum
2. Competence Model
3. Educational Standards
4. Tasks for Evaluation of Efficacy
5. Lesson Design and Teaching Methods

In addition to the problems of a fuzzy terminology, the introduction and embedding of
ICT in lower secondary education by educational standards is formally not feasible
for missing central curricula. Some regionally developed input-oriented curricula
cannot hide the lack of a common nation-wide understanding about teaching
objectives in that field.

In contrast, a competency-oriented approach aims at defining concrete learning
outcomes for the end of secondary education. These competences to be acquired by
the pupils have to be illustrated by tasks and should be principally assessed by
methods of testing. And that’s exactly what educational standards are about: clear
educational goals, competences and tasks, and evaluating and checking by tests.

Unlike the nebulous situation at lower secondary education, educational standards
are already well advanced in Austrian vocational schools (Berufsbildende Höhere
Schulen, BHS). Constituting an important part of Austrian’s upper secondary level,
they offer their students a considerable amount of ICT and applied Informatics
lessons nearly for all age-groups within elaborated and adapted curricula. Based on
these curricula all steps of the process of educational standardization of outcomes
have been taken [22]. Thus, these educational standards left already the status of
theoretical concepts. Currently, in one of these school types one can observe already
initiatives to evaluate their efficacy in school practice.

 A Competence-Oriented Approach to Basic Informatics Education in Austria 49

4 Structuring Objectives and Contents in the Field

A look beyond the national borders reveals worldwide efforts to propagate and
structure the field of computer science and Informatics education in form of
educational frameworks, curricula and standards. The complexity and diversity in this
field is impressive and can hardly be overviewed in its whole bandwidth and depth.
Long before the terms competence and educational standards dominated the
educational debate in many European countries, the US report “Being Fluent with
Information Technology” pointed already in this direction. This framework is in full
compliance with the current European shift to a competence-oriented view of
educational outcomes. Beyond mere skills training, competent students should acquire
a deeper level of conceptual understanding that allows them to apply their knowledge
of information technology to solving new problems in new domains and to learn to
use new software as it becomes available. According to the already more than ten
years old FITness program [13], competence is founded on three pillars:

• Contemporary skills, the ability to use various computer applications;
• Foundational concepts, the basic principles and concepts of computing that

form the basis of computer science; and
• Intellectual capabilities, the ability to apply information technology in

particular situations and to use this technology to solve new problems.

Contemporary skills change over time with the advances of software, while the
underlying concepts remain stable. Intellectual capabilities are not restricted to single
courses but should be developed throughout the curriculum in a cumulative way.
Another seminal US initiative to improve the situation at the K12 level, the ACM
curriculum 2003, yielded a pragmatic and readable taxonomy for the age-group K8
which complies with the lower secondary level in Austria. As we will see later on,
this classification scheme should exert some influence on the Austrian approach.

• Computers and software applications
[as knowledge of the computing environment]

Parts of a personal computer, standard software, Operating systems,
Networks, World Wide Web and E-Mail

• Problem solving with computer science
 [as a way of thinking that uses computers as a creative medium for solving
 problems of all kinds]

Representing information digitally, Problem solving and algorithms,
Computer programming

• Social context of computing
[as an appreciation for the complex and changing interactions between
computing, individuals, organizations, and culture]

Privacy and security, evaluating and using information from networked
sources, human-computer interaction, computers in society.

50 P. Micheuz

5 The Austrian Approach

5.1 Preliminary Considerations

Lower secondary education must be regarded as a window of opportunity and
important phase of formal basic informatics education. Standardized learning
objectives with clear expectations for teachers and students, based on a consistent,
coherent, and outcome-oriented reference framework, are overdue.

In contrast to the German standards model [14] as a result of an informal group of
informatics experts and teachers, an Austrian task force is supported officially by the
Ministry of Education. Therefore, provided that the result in form of a framework with
clear visions and expectations will be widely accepted by all stakeholders, especially by
teachers, a successful dissemination into daily school practice should be realistic.

It is no secret that the Digital Agenda published 2010 by the EU Commission [16]
played a substantial role to put the task force in charge, consisting of representatives
of informatics didactics and school boards, and teachers as well.

Herein, digital competence requires a “sound understanding and knowledge of the
nature, role and opportunities of ICT in everyday contexts. This includes main
computer applications such as word processing, spreadsheets, databases, information
storage and management, and an understanding of the opportunities and potential
risks of the Internet and communication via electronic media. Individuals should also
understand how ICT can support creativity and innovation, and be aware of issues
around the validity and reliability of information available and of the legal and
ethical principles involved in the interactive use of ICT.”

With the same concern with which media educators [17] object to a prevalent
technical view on digital media, computer scientists fear a dilution of their discipline.
What both sides have in common is their complaint about the under-representation of
their disciplines in formal education. Reiter elaborates in [19] extensively on the
interdependency between digital media and informatics education and, conclusively,
considers a combination of both innovative areas as a historic challenge. He envisages
even the birth of a new obligatory subject. “Basic Informatics Education” or
“Informatics and Digital Media” could be options.

The task force had to meet all demands and aimed to develop a balanced set of
contents and objectives for all target groups as policy makers, school administrators,
teachers, parents, and pupils who should be the main beneficiaries.

5.2 The Classification Scheme

After two years of occasional meetings and reviewing regional, national and
international curricula and frameworks, the Austrian task force decided to develop a
new balanced competence model and framework as a sound compromise of
informatics and media education. It can be considered to be equivalent with the
Austrian concept of „educational standards“ for traditional subjects at the lower
secondary level. Moreover, it can be seen as a supplementary and necessary part of
the „Grundbildungskonzept“ (concept of basic education) [21] in full compliance with
the EU definition of key competences. Finally, it can serve as a solid fundament and
preliminary stage for further Informatics and ICT teaching at the upper secondary
level. After many years during which an overall concept has been lacking at the lower
secondary level, it makes sense to build the house systematically from the first floor.

 A Competence-Oriented Approach to Basic Informatics Education in Austria 51

Table 2. Classification Scheme for Austria’s Lower Secondary Level (K8 – 14 years)
Competence Matrix for Basic Informatics Education

This classification scheme is a German-Swiss-Austrian co-production of a working
group, coordinated by Steffen Friedrich and the author at a seminar in Königstein
(Germany, March 2011), and can be regarded as an amalgam of multi-perspective
reflections and the incorporation of many aspects. It is integrative and consistent as
well as interdisciplinary and multidisciplinary in its orientation. The working title is
“Digital Competence” - “Basic Informatics Education”, with the latter being more
general. All empty cells are assigned with descriptors as concrete learning objectives
in form of pupils-centered “I can …” statements. The descriptors of the basic level are
currently approved by the task force.

At first sight, a structural similarity with the prominent Common European
Framework of Reference for Languages (CEFR) can be observed. A closer look
reveals also the influence of Baacke’s seminal reflections on media competency [23].
The three levels of competence (basic, extended, special) refer, but are not equal in
detail, to the Bloom’s Taxonomy of learning objectives [24]. They describe the
continuum from lower to higher order thinking skills. The tasks which have to be
developed now have to take these different levels of difficulty and complexities into
account. Finally, it is important to note that the consecutive numbers 1 to 4 of the
content areas do not necessarily correlate with their importance.

52 P. Micheuz

5.3 Discussion of the Structure and Exemplary Descriptors

Information technology, Human and Society. Highly recognized and demanded by
media educators, sometimes depreciated as “soft Informatics” by technically oriented
teachers, this content area has become increasingly important during the last decade.
Every informed citizen has to find his digital identity, to reflect on his responsibility
and to evaluate chances and risks in the information society. European initiatives such
as Klicksave in Germany and SaferInternet in Austria, aspects of vocational
education, and also historical subject matters have their place here. To give an
impression of the model’s granularity, some exemplary descriptors in form of “I can”
–statements are:

• I can enumerate areas where the computer cannot replace a human.
• I can distinguish between data protection and data security.
• I can evaluate the effects of my behavior when playing online games.

Informatics Systems. In order to be a competent user, a profound media knowledge
of networked hard- and software is indispensable. This applies not only to the
decreasing prevalence of traditional PCs, but increasingly to mobile devices and the
upcoming cloud computing. The design of the framework is future-proof as the
descriptors do not draw on specific hardware and operating systems.

Examples for the pupils-centered statements are:

• I can use common input devices as the keyboard quickly.
• I can enumerate different storage media.
• I can explain the difference between the Internet and the WWW.

The issue “fluent keyboarding” is often a matter of debate, especially among some
informatics teachers who do not attach much importance to it. Due to this framework,
pupils are expected to acquire a reasonable degree of keyboard handling in formal
education. In contrast to the explanation of the difference between Internet and WWW –
doubtlessly an intellectual challenge with a historic background –, keyboard fluency is
the result of manual training and, as a practical skill, can be very easily tested.

Software Applications. This content area, together with Informatics Systems, must
be considered as the core of the framework. It represents the new cultural techniques
which are already covered in many current ICT lessons. Fluent digital media use and
production imply e-skills which can be acquired only through regular training in
various contexts. This area is widely overlapping with the syllabus of the application-
and product oriented European Computer Driving License, a certificate which plays a
considerable role at the Austrian lower secondary level. The framework goes beyond
the low level skills of the ECDL Core, including a competency-oriented approach.
Examples for objectives in this wide area of skills and competences are:

• I can design digital documents including texts and pictures.
• I can describe the basic structure of a spreadsheet.
• I can use E-Mails and forums for exchange of information and cooperation.

 A Competence-Oriented Approach to Basic Informatics Education in Austria 53

Informatics Concepts. In this content area (real?) informatics teachers and
informatics experts feel comfortable and Informatics in its core - not to be confused
with Basic Informatics Education - as the referring discipline of information
technology is prevalent. Here, concepts like digitalization, algorithmics and even
programming on an age-appropriate level come into play. All of them aim at a deeper
understanding of the field. We have to be aware that not all pupils are able to fulfill
the demands of this cognitively challenging area. For pragmatic reasons, an abstract
approach and formalism, as observed in other countries such as Bavaria has been
avoided here.

Examples of operationalized objectives are:

• I can explain the input-processing-output principle.
• I can enumerate important data types.
• I can create simple programs in an appropriate development environment.

Additionally, regional initiatives such as “Experiencing Informatics”, the Austrian
adaptation of CS Unplugged, robot contests, and the Beaver Contest are good
examples to broaden the picture of informatics education as an intellectual challenge
beyond the consolidation of computer literacy as a cultural technique.

5.4 Further Reflections and Actions

Whilst the classification scheme in Table 2 with four main categories and four content
areas each, together with about seventy “I can …” descriptors, is approved for the
basic level as the minimum standard for all pupils aged 14 years, the formulation for
the extended and special competence levels have yet to be finalized. Prototypical
tasks and assignments to illustrate and concretize the competences have to be
developed, published, tested and calibrated as well.

Curricula can be regarded as results of cultural traditions and findings from science
and empirical research, and not least from framework conditions given by educational
policy. The competence framework presented in this paper, and published also on the
web at http://www.informatische-grundbildung.com, has been developed without
referring to a valid national curriculum. As a consequence and for the time being, it
has to be considered still informal and with no obligations for schools, teachers and
pupils. However, the orientations implied by this concept are promising.

One function of this model is to provide schools with guidance in the
implementation of binding educational objectives. These can serve as a road map for
policy makers, teachers, pupils, and parents as well. An other function is to make it
possible to assess and evaluate educational outcomes in context of basic Informatics
education and thus to determine whether the pupils have acquired the desired
objectives. The competence matrix can also provide orientation for individual
diagnosis and supplementary support measures.

Provided, that there will be a broad agreement on the reference model and its
standardized learning objectives, the autonomous schools then will be faced with the
challenge of effectively and efficiently meeting them. Integrating ICT in existing
subjects and/or implementing a new (interdisciplinary) subject will be a key question.
Another task will be the supply with enough competent teachers and the development
of competence-oriented curricula, and teaching material for the grades 5 to 8.

54 P. Micheuz

6 Conclusions

The call for improving the situation of a fragmented and confusing, although
occasionally and regionally blossoming, Austrian landscape of basic Informatics
education at the lower secondary level has been growing increasingly louder. As a
consequence, the Austrian Ministry of Education charged a task force to develop a
reference model balancing the demands in a very complex field ranging from digital
media to basic Informatics education. Being still work in progress, these efforts of
consolidation will need the acceptance of all stakeholders. Still a lot of work in form
of finalizing the extended/expert competence levels, developing tasks, evaluating and
testing has to be done. Finally, a strategy for taking effect in schools has to be found.

At the moment, this preliminary reference framework has to be seen as a starting
point for a nationwide discussion among policy makers, teachers, parents, and pupils.
Finally, when the framework is revised and ready for preliminarily dissemination, it
should serve as a guide for schools, teachers, and parents to be clear about the degree
of computer literacy, digital competence and/or informatics education (cf. chapter 3.2)
which pupils are expected to have acquired at the end of lower secondary level.

The results of the task force should not be only a valuable tool in the hands of
academics. Otherwise this work is nothing but an inert mass of words and phrases, as
one of the members of the task force put it: “I believe, it would be better to be modest
in the minimum requirements - so that the framework appeals to teachers and pupils.
This is better than to satisfy all unrealistic requirements from experts. Teachers could
then easily turn away before they really deal with the particular objectives of the
framework. The worm has to taste good to the fish, not to the fishermen. Everybody
can do more in class, but as many (teachers) as possible should do the little which
seems to us, the experts, indispensable.“

Last but not least, this reference model shall impart a vision of digital education
processes and incorporate a modern and clear philosophy of the fuzzy digital area at
the lower secondary level. It can offer prospects for the development of contemporary
and future-oriented competences and has the potential to become soon a driving force
in the digital development of our lower secondary schools.

An old proverb says: “The proof of the pudding is in the eating”. The pudding is
currently cooked and will presumably be served soon. Hopefully, it will be eaten by
all teachers and pupils concerned.

References

1. Micheuz, P.: Informatics Education at Austria’s Lower Secondary Schools between
Autonomy and Standards. In: Mittermeir, R.T. (ed.) ISSEP 2006. LNCS, vol. 4226, pp.
189–198. Springer, Heidelberg (2006)

2. Association for Computing Machinery (ACM), http://www.acm.org (March 31, 2011)
3. Gesellschaft für Informatik (GI), http://www.gi.de (March 31, 2011)
4. Micheuz, P.: The Role of ICT and Informatics in Austrian Secondary Academic Schools.

In: Mittermeir, R.T. (ed.) ISSEP 2005. LNCS, vol. 3422, pp. 166–177. Springer,
Heidelberg (2005)

5. Pörkson, U.: Plastikwörter - Die Sprache der internationalen Diktatur. Klett-Cotta,
Stuttgart (1989)

6. Tucker, A.B.: K-12 computer science: aspirations, realities and challenges. In: Hromkovič,
J., Královič, R., Vahrenhold, J. (eds.) ISSEP 2010. LNCS, vol. 5941, pp. 22–34. Springer,
Heidelberg (2010)

 A Competence-Oriented Approach to Basic Informatics Education in Austria 55

7. Anderson, J., Weert, T.: Information and Communication Technology in Education. A
Curriculum for Schools and Programme of Teacher Development. Division of Higher
Education, UNESCO (2002)

8. Unesco/IFIP Curriculum – ICT in Secondary Education (1994),
http://wwwedu.ge.ch/cptic/prospective/projets/unesco/en/welc
ome.html (March 31, 2011)

9. A Model Curriculum for K–12 Computer Science: Final Report of the ACM K–12,
http://www.acm.org/education/education/curric_vols/k12final1
022.pdf (March 31, 2011)

10. Puhlmann, H., et al.: Grundsätze und Standards für die Informatik,
http://www.informatikstandards.de (March 31, 2011)

11. Sahami, M.: Setting the Stage for Computing Curricula 2013: Computer Science Report
from the ACM/IEEE-CS Joint Task ForceSIGCSE 2011, Dallas, Texas, USA (2011)

12. Weinert, F.E.: Vergleichende Leistungsmessung in Schulen – eine umstrittene
Selbstverständlichkeit. In: Weinert, F.E. (Hrsg.) Leistungsmessungen in Schulen, pp. 17–
31. Weinheim und Basel (2001)

13. Committee on Information Technology Literacy. Being fluent with information
technology. National Academy of Sciences, Washington, DC (1999)

14. Gesellschaft für Informatik (GI) e.V.: Grundsätze und Standards für die Informatik in der
Schule, Bildungsstandards Informatik für die Sekundarstufe I. Addendum to LOG IN 28,
150/151, Berlin (2008)

15. European Reference Framework for Key Competences for Lifelong Learning European
Communities, Belgium (2007),
http://ec.europa.eu/education/index_en.html (March 31, 2011)

16. Digital Agenda, http://ec.europa.eu/information_society/digital-
agenda/documents/digital-agendacommunication-de.pdf
(March 31, 2011)

17. Medienpädagogisches Manifest, p. 2,
http://www.keine-bildung-ohne-medien.de/medienpaedagogisches-
manifest.pdf (March 31, 2011)

18. CDA Sonderhefte, http://www.box.net/sonderhefte (March 31, 2011)
19. Reiter, A.: Medienbildung auf Überholspur. In: Brandhofer, G., et al. (eds.) 25 Jahre

Schulinforma-tik in Österreich, Wien. Österreichische Computergesellschaft, Band,
vol. 271 (2010)

20. Hubwieser, P.: Didaktik der Informatik. Springer, Berlin (2003)
21. Grundbildungskonzept,

http://fbm.uni-klu.ac.at/lgmodule/ModulNAWI.pdf (March 31, 2011)
22. Bildungsstandards für Berufsbildende Schulen,

http://www.bildungsstandards.berufsbildendeschulen.at
(March 31, 2011)

23. Baacke, D.: Medienkompetenz als zentrales Operationsfeld von Projekten. In: Handbuch
Medien, Bonn, pp. 31–35 (1999)

24. Bloom, B.S. (ed.): Taxonomy of Educational Objectives, the classification of educational
goals – Handbook I: Cognitive Domain. McKay, New York (1956)

25. Ertl, H.: Educational Standards and the Changing Discourse on Education: The Reception
and Consequences of the PISA Study in Germany. Oxford Review of Education 32(5),
619–634 (2006); Special Issue: Comparative Inquiry and Educational Policy Making

26. BMUKK, eFit21-Strategie,
http://www.elearningcluster.com/pdf_s/erlass_digitale_kompet
enz.pdf (March 31, 2011)

27. Oelkers, J., et al.: Qualität entwickeln – Standards sichern – mit Differenz umgehen (2008),
http://www.bmbf.de/pub/bildungsforschung_band_siebenundzwanz
ig.pdf (March 31, 2011)

I. Kalaš and R.T. Mittermeir (Eds.): ISSEP 2011, LNCS 7013, pp. 56–70, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Outreach to Prospective Informatics Students

Maciej M. Sysło1,2,3

1 Faculty of Mathematics and Informatics, Nicolaus Copernicus University,
Chopin str. 12/18, 87-100 Toruń, Poland

syslo@mat.uni.torun.pl
2 Institute of Computer Science, University of Wrocław,

F. Joliot-Curie str. 15, 50-383 Wrocław, Poland
syslo@ii.uni.wroc.pl
http://mmsyslo.pl/

3 Warsaw School of Computer Science
Lewartowskiego 17, 00-169 Warsaw, Poland

Abstract. In this paper we first identify the main factors which influence the
students’ attitudes to study computer science related disciplines. Then various
outreach initiatives and activities implemented in Poland are described and dis-
cussed. They range from changes in the national curriculum for middle and high
schools to formal and informal lectures, courses, and workshops organized by
public and private institutions of tertiary education. Project Informatics +, ad-
dressed to 15 000 students from five regions, is presented in details and its out-
comes after the first year of running are reviewed shortly.

1 Introduction

In this paper, the term ‘informatics’ (pl. informatyka) is equivalent to ‘computer
science’ and we use ‘computer science’ when we want to emphasize scientific aspects
of the discussion. The term ‘computing’, however, which embraces ‘computer
science’, ‘software engineering’, ‘information systems’, ‘information technology’ and
some other computer-related titles, has no official counterpart in Poland. Recently, the
term ‘computational thinking’ became popular.

This paper is a continuation of our works on informatics education in Poland pre-
sented at the previous ISSEP meeting.

In the paper [17] presented in Klagenfurt (2005) we focused on the question: how
much informatics is needed to use information technology and how to prepare teach-
ers for their new role as moderators of students’ learning, to use information technol-
ogy in various situations.

In the paper [18] presented in Toruń (2008), motivated by a gradual decline in the
number of students applying to earn a computer science degree, we described a learn-
ing and teaching framework for schools which is aimed at increasing student interests
in studying computer science as a discipline, or at least in better understanding how
the computer and its tools work and can be used in solving problems which may occur
in different areas. We are convinced that the learning methodology about computer
use by students and applying computers and information technology to solving

 Outreach to Prospective Informatics Students 57

problems is a good motivation and preparation for their future decisions to study
computing and become computer specialists.

Both papers [17] and [18] refer to the situation in high schools in Poland in the mid
2010’s, when information technology was a curriculum subject (1 hour per week for
one year).

In this paper, with the same motivation as in [18], we present outreach1 activities
aimed at prospective students and also at the public about the importance of computer
science knowledge and attractiveness of the computer related professions in the
knowledge based economy and society.

In 2008 the national curriculum was modified and some of the changes were in fa-
vor of informatics education – we describe them in Section 3. It is expected that be-
ginning of 2012 informatics education of all school students will be put on a higher
level and students will be better prepared for considering computing as a discipline of
their future study and professional career.

The society needs a continuous inflow of good students in computer science,
science, and engineering to be educated and trained as professional specialists for
informatics related jobs in order to sustain the developments and achievements that
are necessary to meet the expectations of the information society and its citizens. Yet,
the number of students opting for computer science education appears to be declining
and various factors affect students’ interests in these fields.

The methodology used in our activities with students is based on the idea of com-
putational thinking (see [19], [2]). We are convinced, repeating after [18], that com-
putational thinking could be added to the traditional three Rs: (i.e. reading, writing
and arithmetic) as an additional basic skill needed especially by high school students
– they will be better prepared to choose a future career as either a computer scientist
or a computer specialist.

The paper is organized as follows. In Section 2 we shortly discuss social under-
standing of computer science with relation to its popularity as a discipline of study
and interest among schools. In Section 3 we briefly describe informatics education in
Poland. Section 4 is concerned with the main topic of this paper – we present a num-
ber of outreach initiatives and activities undertaken in Poland and describe their role
in computer science education in schools and in the society.

2 Computer Science Education in Crisis

There is a general opinion that school students are not prepared to make a decision
about their future career and professional life related to computer science. Moreover
they misunderstand what computer science really is. In [18] we have extensively
discussed main factors which have caused for the last 3-5 years a substantial decrease
in the number of computer science enrollments – for instance it was estimated that it
dropped in half in the USA. Here, following [18], we briefly repeat some of the ar-
guments which are important for our discussion about outreach activities.

1 Outreach is an effort by an organization or a group (here curriculum teams, universities) to

connect its ideas and practice to the efforts of other organization (here schools), groups, spe-
cific audiences, or the general public.

58 M.M. Sysło

Many people, among them education policy makers, teachers, academics and par-
ents, do not consider computer science as an independent science and, therefore, as a
separate school subject. Most of them confuse computer science and information
technology and limit informatics in education to provide students and teachers with
computers and Internet access.

Informatics education in school does not clear up the myths about computer
science, for instance it is still confused with computer programming. Students have
access to high-level tools for designing and producing complex applications without
any knowledge of fundamentals of computer science such as logic, discrete mathe-
matics, programming methodology, or computability.

Today almost all students have computers and access to Internet at home. There-
fore most of high school graduates are quite fluent in using computers to play, search
the web and communicate and, as a result, they have no real interest in pursuing com-
puter science as a career choice. They have tasted enough information technology
while growing up and want something different at the university level. To change this,
informatics classes should prepare students for further study instead of being satisfied
with the knowledge and skills they have already learned.

Youth’s infatuation with technology does not extend to their desire to learn the dis-
cipline of computer science – one of our goals in outreach activities is to motivate
students to go ‘beyond the screen’ and investigate how computers and software work
so they can create their own computer solutions.

One of the challenges to a curriculum in computer science is to catch up to the new
technology and to adjust it to rapidly changing markets and users’ expectations. There
is no longer a need for a large number of computer scientists working on foundations
of the discipline and developing basic products as it was in the 1960’s and 1970’s.
However there is still a demand for experts and specialists in various areas of
computer use and applications who are competent in the range of the university curri-
culum in computer science. A computing degree can help to find a job in science,
engineering, health care, finance, and so on. The availability of jobs, as well as the
impact of computing in society should motivate students to study computer science.

The White Paper by the CSTA [16] lists a number of challenges and requirements
that must be met if we want to succeed in bridging the gaps in education and improve
education in informatics as a computer science discipline:

• students should acquire a broad overview of the field of computer science;
• informatics instruction should focus on problem solving and algorithmic (computa-

tional) thinking;
• informatics should be taught independently of specific application software, pro-

gramming languages, and environments;
• informatics should be taught using real-world problem situations;
• informatics education should provide a solid background for the professional use

of computers in other disciplines.

One of our goals in this paper is to show how we partly meet these challenges in our
approach to informatics education for all students in schools in Poland, and enhance
and support schools by some outreach activities addressed to prospective computer
science students.

 Outreach to Prospective Informatics Students 59

3 Informatics Education in Poland – In the Past and Today

In the education system in Poland, informatics education consists of two types of
classes and/or activities:

• separate informatics classes;
• across-curriculum integration of computers, information and communication tech-

nology, and Internet with learning and teaching of all subjects.

Detailed information about the development of informatics education in Poland is
included in [18]. Here we refer only to the most important steps, in particular we
report on changes in the curriculum introduced by the reform at the end of 2008.

The first informatics classes in Poland were organized in the mid sixties. The main
topics of instruction were algorithms for numerical calculations and programming in
Algol 60 – algorithmics was restricted to numerical methods. The first national curri-
culum for informatics as an independent subject was proposed in 1985. In the mid
90’s, the term ‘information technology – IT’ (later ‘information and communication
technology – ICT) was accepted by the education policy makers in Poland and a new
subject information technology was introduced to the curriculum by the Education
Reform of 1997 and as a result information technology became the high school inde-
pendent subject in 2002. Informatics as separate subject for all students has returned
to high schools as a result of the reform of 2008.

It is interesting to note that informatics as a separate subject has been in the nation-
al curriculum and in the schools in Poland since its introduction in 1985. The author is
not aware of any other such country.

3.1 Education System in Poland

For a long time formal education in Poland started at the age of 7, which has recently
been lowered to 6. Since 1999 the school system at the primary and secondary levels
has consisted of three stages:

• primary school – 0-6 grades (age 6 to 13);
• middle school (in Polish: gimnazjum) – 7-9 grades (age 13 to 16);
• high school – 10-12 grades (to 13 in certain vocational schools) – (age 16 to 19).

Independent informatics subjects have been in our national curriculum since 1985 and
recently have been modified by the reform at the end of 2008.

3.2 New Curriculum of Informatics

In what follows we describe in more details the actual curriculum of separate infor-
matics subjects approved at the end of 2008 and introduced to primary schools (1-3)
and to middle schools in 2008 and as it will be introduced to primary schools (4-6)
and to high schools in 2012. The changes made to the existing curriculum are impor-
tant to any outreach activities taken by a tertiary education institution. From one side,
it may be assumed that school students are familiar with the topics listed in the cur-
riculum, and from the other side – outreach activities should enhance and extend the
curriculum topics. It is very important to connect outreach activities to what is

60 M.M. Sysło

actually taught in schools – one can easily lose attention and interest of school stu-
dents when the topics are far from what they know and from what they can follow. As
a teacher in the project Informatyka + (see Section 4.4), prior to my lectures and
workshops, I usually ask school teachers who accompany students from schools how
advanced their students are in algorithmics and programming. Similarly do other
members of our staff in this project.

3.2.1 Primary Schools
In the previous curriculum, in primary schools there was informatics in grades 4-6, at
least 2 hours per week for one year (or one hour per week for two years). In the new
curriculum the separate informatics subject, called now computer activities, has been
substantially extended and now it runs through grades 1 to 6.

In grades 1-3, computer activities do not form a separate subject and are supposed
to be fully integrated with other activities like reading, writing, calculating, drawing,
playing etc. – in fact there are no separate subjects in grades 1-3, only activities.

In grades 4-6, one hour per week for three years is assigned to computer activities.
At this stage it has been already advised to teachers and expected from students that
these activities follow the general approach to problem solving with computers de-
scribed shortly in Section 3.3.

3.2.2 Middle Schools
In middle schools, as it was before, informatics is at least 2 hours per week for one
year or one hour per week for two years.

The curriculum of informatics for middle schools contains, as before, a section on
algorithmics, algorithmic thinking and solving problems with computers. Although
programming is not included in the curriculum, an introduction to Logo or to another
programming language is a part of the instruction in some schools and students from
those schools take first steps in programming.

Within algorithmics, students are expected, as outcomes, to be able to (this part of
the curriculum has been modified):

• explain what an algorithm is,
• provide a formal description (specification) of a simple problem situation and pro-

pose an algorithm for its solution;
• use spreadsheets to solve simple algorithmic problems (e.g. the change problem);
• describe, how to find an element in an ordered or an unordered sequence of ele-

ments;
• use a simple sorting algorithm (e.g. by counting);
• perform (run) some algorithms on a computer – either writing a program in Logo

or in another language, with the help of spreadsheets or running an education soft-
ware.

As a novelty, activities of students within the framework of Web 2.0 have been intro-
duced to the curriculum such as students taking part in web discussions and publish
their information and opinions. It is assumed that these activities of students are mod-
erated by teachers.

A new textbook for informatics in middle schools [8], incorporating changes intro-
duced by the new curriculum, was published in 2009.

 Outreach to Prospective Informatics Students 61

3.2.3 High Schools
In the new curriculum for high schools information technology disappears as an
independent subject and informatics has been introduced in its place, at least 1 hour
per week for one year. In consequence, beginning of 2012, there will be also infor-
matics for all students in high schools, as it is in middle schools.

Informatics (understood as computer science) remains in high schools as an elec-
tive subject and is taught only in some schools. Students may also take an external
final examination (matura in Polish) in informatics.

Informatics for all students

Again, as in middle schools, the main emphasis is put on problem solving with com-
puters using the methodology described shortly in Section 3.3. Problems may come
from various fields, in particular from school subjects, and students may use a variety
of informatics tools for solving them.

Students are expected, as outcomes, to be able to:

• discuss and analyze various problem situations;
• develop and formulate specifications of various problem situations;
• design a solution of a problem by choosing a solution method and computer tools,

such as a programming language, application or education software;
• run a solution on a computer and test and evaluate its properties such as complexity

(efficiency) and correctness with regard to the specification;
• present a solution and discuss its applications to other problem situations.

Additionally to problem solving skills, all students in high schools are expected to
publish in the web their own educational content and use e-learning to enhance and
enrich their learning environment by including open content and courses.

A new textbook for informatics for all students in high schools [9] will appear in
2012. We propose a project based learning as a working method and computational
thinking as an approach to problem solving.

Informatics – elective subject

No significant changes have been introduced to the new curriculum of informatics as
an elective subject. A new textbook [10] will be published in 2012 in which computa-
tional thinking will be more substantially involved as a working methodology.

3.2.4 Comments on Changes in the Curriculum
The reasons behind the changes described so far and also expectations of real changes
in students and teachers behaviour are as follows:

• it is assumed that integration of computers with students activities in grades 1-3
will result in a habit of using computers as tools supporting learning of various
subjects and disciplines at next stages of education, formal, non-formal, and inci-
dental in school and at home;

• computer activities in grades 4-6 are supposed to lay down solid knowledge and
skills within the range of information and communication technology to be used at
the next stages of education, formal, non-formal, and incidental;

62 M.M. Sysło

• informatics in middle schools is supposed to introduce basic elements of informat-
ics, as computer science, important for at least two reasons: as a starting point for
informatics education of all students in high schools and as a pre-orientation for
those students who might be interested in choosing a high school which offers a
specialization in computer science topics, such as algorithmics, networks, data
base, etc.;

• introduction of informatics for all students in high schools has at least two main
missions:

o this subject gives a feeling and touch of informatics as computer science to
all students; although most of them will continue education, choose career,
and find jobs in other disciplines, more and more careers and jobs become IT
professions [5] which require a solid background in computer science and its
applications;

o it is a continuation of pre-orientation, started in middle schools, intended to
prepare school students for their choices of future study, career and jobs in
computing related disciplines and fields;

• web activities constitute another area of informatics education from which the new
curriculum benefits much due to the increasing role of the Internet in all activities:
scientific, practical, and personal – it is also expected that high school graduates
will be prepared to actively use the Internet as an e-learning environment for their
lifelong learning activities.

3.3 Computational Thinking

Our approach to informatics (computer science) education in schools, from the begin-
ning in the mid 60’s till the beginning of the new era, was to put the emphasis on
algorithms and algorithmic thinking as the main components of computer science.
We have used a methodology, called algorithmic problem solving, for the system-
atic development of a computer solution for a problem, which covers the entire
process of designing and implementing solutions, from beginning to end. This meth-
odology is aimed at generating good solutions, characterised by the three fundamental
properties: readability (the solution is understandable to anyone who is familiar with
the problem domain and computer tools used), correctness (the solution satisfies the
problem specification), and efficiency (the solution doesn’t waste computing re-
sources, time and space). The algorithmic problem solving approach consists of six
stages and is described in details in [18].

A much wider view on computing competencies has been proposed by Jeannette
Wing in her paper on computational thinking [19] – it extends algorithmic thinking
and fluency in working with information technology to competencies which are built
“on the power and limits of computing processes, whether they are executed by a
human or by a machine.”

Today in our approach to informatics education (see [18] for details) we adopt
computational thinking as the main learning and teaching methodology about com-
puter use and applying computers and information technology in solving problems.
This approach can help students to add computational thinking to the traditional three
Rs: (i.e. reading, writing and arithmetic) as an additional basic skill needed by

 Outreach to Prospective Informatics Students 63

everyone. This approach is also used in our outreach activities described in this paper
as the way to better prepare our school students for their future decisions to study
informatics related disciplines and to encourage them to consider a future career in
computing.

Recently (see [4] and [2]), the computational thinking approach has been adopted
as a methodology that can be used across all disciplines to solve problems and im-
prove understanding of the power and limitations of computing in the modern age.

4 Outreach Activities

In Section 2 we have identified some factors which influence the students’ attitudes to
study computing related disciplines. In response, various outreach initiatives and
activities are taken.

In the US, the Computer Science Teacher Association (CSTA) collected data [3]
which shows that computer science is on the decline in high school. In the recent report
[14], ACM and CSTA call for federal, state, and local actions and together with other
parties they have formed a coalition Computing in the Core (CinC) to address the need
to build a K-12 computer science program in the US schools. In November 2010, Presi-
dent Barack Obama announced the launch of several nationwide programs to help moti-
vate students to master in STEM (Science, Technology, Engineering, Mathematics)
related subjects, see also [15]. The NSF also has announced in 2010 the CS/10,000
Project [12] and proposed a new high school computing curriculum which will be taught
by 10,000 newly prepared teachers in 10,000 classrooms across the US. Most recently
CSTA has published standards [4] which provide a three-level framework for K–12
computer science education. In particular, the standards in the course Computer Science
in the Modern World reflect learning content that should be mastered by all students,
similarly to the subject informatics for all students in middle and high schools in Poland.

In the next sections we describe the most successful initiatives implemented in
Poland in the last 2-3 years. They range from changes in the national curriculum for
middle and high schools to formal and informal lectures, courses, and workshops
organized by public and private institutions of tertiary education.

4.1 New National Curriculum

Informatics education in the new national curriculum has been described in Section
3.2 where we also emphasise the importance of changes in the curriculum to better
prepare students for general education as well as for their future choice of a next step
in education and professional life. The outreach activities described in this section
quite often refer to the new curriculum by enhancing and deepening students’ curricu-
lum achievements and extending them in the case of talented and gifted students.

4.2 Workshops for Students and Teachers

It has been observed that students in middle schools and in high schools during in-
formatics classes spend less time on programming, which is usually more time con-
suming, than on designing algorithmic solutions. Moreover, they are not encouraged
to program by teachers who usually have no sufficient practice in programming.

64 M.M. Sysło

Regional Informatics Circle (pl. Regionalne Koło Informatyczne – RKI), super-
vised by a group of academic teachers from the Faculty of Mathematics and Informat-
ics, Nicolaus Copernicus University, is a novel approach to increasing programming
skills among secondary school students in the Kujawsko-Pomorskie Region. It is fully
based on distance learning and individual work of students after regular school hours.
In this project the achievements of students are monitored on-line through weekly
programming contests, which are supported by a system for automatic correctness
verification and timing of students codes. The standardized tests have been developed
to monitor students’ skills. C (CodeBlocks) and Java (NetBeans) are used as pro-
gramming languages and environments and the educational platform OLAT is a
communication medium in this project.

Almost 1000 students participated in the project in the school year 2009/2010: 776
students participated in Part I (Programming in C or in Java – basic level), 190 – in
Part II (Algorithmics – basic level), and 30 in Part III (Algorithmics and programming
– advanced level). Detailed analysis of the project´s outcomes will be published else-
where.

The Department of Informatics and Information Technology Education in the Fa-
culty of Mathematics and Informatics, Nicolaus Copernicus University offers also
regular in-service seminars and workshops for computer science teachers from sec-
ondary and high schools. Some recent topics of the seminar are: new curriculum,
computational thinking versus algorithmic thinking, recursion, text algorithms, teach-
ers’ preparation standards, educational platforms, network administration.

High schools in Poland do not offer AP computer science courses. However, some
universities encourage school students to participate in university courses counted
sometimes as tertiary courses. The Faculty of Mathematics and Informatics, Nicolaus
Copernicus University offers informatics courses which are attended by students from
GiLA in Toruń, a middle and high school ran by the University. In 2010 the GiLA
took the first place in two out of three rankings of secondary schools in Poland.

4.3 Competitions and Olympiads in Informatics

Competitions are typical outreach activities, they are usually ran by parties external to
schools. These educational events require knowledge and skills exceeding what is
taught at schools. They engage and develop skills necessary in the future professional
activities such as: constant self-development, self-discipline, hunger for knowledge,
ability to work in a team. No competition, however, is the goal for itself.

Olympiads in Informatics

The achievements of young Poles, school and university students, in international
programming competitions in the past 15 years are well known [6]. The Polish expe-
riences are universal enough to be adopted also by other countries and could help to
work with students talented in computer science.

The Olympiad conducts intensive educational activities: post-Olympiad materials
are published and contain detailed analysis of task solutions; former Olympiad

 Outreach to Prospective Informatics Students 65

contestants run a portal for beginners in the field of programming and algorithmics
[21], finalists of the Olympiad participate in summer camps combining recreation and
education. However, talented students are first discovered by their school teachers.
The Olympiad organizes also workshops for teachers, where they practice how to
work with talented students and prepare them for computer science competitions.

The Olympiad in Informatics for middle schools has been also established in Pol-
and, although students from middle schools may participate in the Olympiad for high
schools, and some of them are very successful [13].

The Bebras (Beaver) contest

The idea of Bebras contest was born in Lithuania, by Prof. Valentina Dagiene, where
the first contest was organized in 2004. In 2010, Bebras took place in 14 countries,
with about 235 000 participants. Some other countries – Israel, Cyprus, Japan, Malta,
Russia – are interested to join the contest [1].

The main aim of the Bebras contest is to promote interest in information and com-
munication technologies as well as in informatics (computing) to all school students.
Moreover the contest encourages students to use modern technologies in their learn-
ing activities more intensively and creatively.

Bebras, like Kangaroo in mathematics, is a one stage contest addressed to school
students of all grades. Tasks are on information comprehension, logical and algorith-
mic thinking, games and puzzles, graphical representations of notions and objects,
computer and software functions, etc. Tasks touch also various school subjects and
topics.

In ongoing research we want to learn whether and how Bebras results may be used
to judge about informatics education and about the development of computational
thinking skills through the consecutive stages of school education.

4.4 Project Informatics +

Informatics + is one of the largest outreach projects in Poland, see [11]. It is run by
the Warsaw School of Computer Science (WWSI) [20], a private university estab-
lished in 2000, one of the few private schools which offer a master degree in comput-
er science. The author of this article coordinates scientific and education activities in
this project. The project is financed by EU Funds. It is addressed to high school stu-
dents in five regions (states – województwo) in Central and Eastern Poland and it is
expected that more than 1000 schools, 15.000 students, and 300 teachers will partici-
pate in this project in 2008-2012.

Project goals

The main goals of the project Informatics + are as follows:

• elaborate and implement innovative methods of teaching and learning key compe-
tencies in informatics and its applications;

• improve and extend off school students’ activities in developing key competencies
in informatics and its applications;

66 M.M. Sysło

• extend students’ interests about job market expectations and better preparation for
their future choices of professional development;

• extend opportunity talented and gifted students have to improve their informatics
interests and competences, in particular those students who are interested in taking
part in numerous informatics competitions;

• improve students’ school achievements (measured by school grades) in informat-
ics and in other related subjects;

• provide schools with open education content in informatics and its applications;
• introduce school students to an academic type of instruction which differs signifi-

cantly from school lessons;
• develop teachers’ competences in working with students talented in informatics.

Project organization

In this project students may participate in:

• lectures (2 hours);
• lectures (2 hours) followed by computer workshops (3 hours);
• extensive workshops (24 hours);
• competitions, such as: the Informatics Olympiad, Beaver, “Our school in Internet”,

on 3D graphics, and web contest;
• summer computing camps in an attractive spa – a combination of vacation activi-

ties with plenary lectures and discussions, workshops, and on-line competitions.

Moreover, in-service courses are also offered for teachers to improve and develop
their competencies in working with students talented, gifted, and particularly interest-
ed in advanced informatics topics. Lectures and computer workshops are delivered in
WWSI, in one of the five Regional Centers of the Project, and in schools.

The courses are offered on two levels:

• basic – addressed to all students, supposed to extend the curriculum knowledge in
various informatics topics;

• extended – these are mainly extensive workshops (24 hours), addressed to students
interested mainly in deepening their informatics skills.

The Educational platform Fronter [7] is used in the project as a communication me-
dium, as an element of cloud computing (the platform is hosted in Oslo). It contains
all course materials (lecture notes, presentations, education software, programming
codes, etc) prepared by teachers and students use the platform to save their works
done during workshops. Then students may use all these materials anytime and any-
where when they return home or to school and want to continue their work in class.
The platform is also used to build and run tests and to collect students’ opinions
about the course they attend.

Informatyka + contributes also to the Polish Open Computer Science Platform
(Polska Wszechnica Informatyczna) which is a collection of more than 60 lectures
delivered by well known specialists in various areas of informatics and its applica-
tions (WWSI got a prize for this project) http://www.pwi.edu.pl/.

 Outreach to Prospective Informatics Students 67

Project topics

The project Informatyka + consists of five thematic modules (we list also titles of
some courses within modules):

1. Algorithmics and Programming: Searching and sorting – the power of order,
Simple computer calculations – can all be computed, Algorithmic techniques,
Shortest paths and trees, Data structures and their use (advanced), Advanced algo-
rithms, Matura (final examination) in informatics.

2. Data Base: Data base – fundamentals, SQL language (basic and advanced level),
XML documents in data base, Technology ADO.Net, Data mining, T-SQL lan-
guage.

3. Graphics, Multimedia, Internet techniques: Graphics editor – GIMP, Working
with multimedia, Searching for multimedia in the Internet, Creating dynamic Inter-
net services, Making movies.

4. Computer Networks: Computer networks – basic principles of construction and
operating, Networks as communication media, Network security, Wireless net-
works, LAN and WAN.

5. New Tendencies in Informatics and its Applications: Algorithms of the Internet,
Can computers make business, Concurrency in informatics and in our life, Data
exploration, JavaScript, Is P = NP or how to win million dollars in Sudoku, Enig-
ma and contemporary cryptography, Past and the future of informatics – elements
of history of informatics, Logic and computers, Introduction to neural networks,
Medical informatics.

The courses are prepared and run by teachers from WWSI and from other universities
in Warsaw and in Poland. There are more than 60 courses offered. For each course its
authors prepare handouts (from 15 pages for a lecture to 50 pages for a 24 hour work-
shop), Power Point presentation (used during a lecture part of the course), tests and
some other materials for students.

Two books will be published: “How to work with students talented in informatics –
a guide for teachers” and “Homo informaticus – introduction to contemporary
informatics” – it will consists of elementary introductions to various branches of
informatics.

First year of the Project

The first year of the project in the school year 2009/2010 appeared to be our great
success – 5500 school students participated in the courses: 2214 students – in 88 lec-
tures and workshops (in WWSI), 412 – in 20 afternoon lectures (in WWSI), 2329 – in
47 lectures in schools, 450 – in 37 workshops (24 hours).

In Table 1 we present the results of questionnaires filled in by all participants of
the courses, whereas Table 2 contains the results of questionnaires filled in by the
students who graduated from vocational schools in June 2010.

The organizers of the project are very satisfied with the students´ opinions about
the project, especially with the impact of the project on students’ learning and on their
positive attitude toward our proposals of courses and other activities.

68 M.M. Sysło

Table 1. Students‘ opinion toward usefulness of the courses

Question
Yes

definitely
Yes No

No
definitely

No
answer

1. Are you interested in studying in-
formatics in the future?

33% 33% 24% 10% 0%

2. Do you think that participation in
the project will influence your
future decision about your career?

22% 42% 26% 9% 1%

3. Has the course improved your know-
ledge and skills in informatics?

41% 47% 9% 3% 0%

4. Has the course encouraged you to
develop your knowledge and skills
in informatics by yourself?

26% 49% 22% 3% 0%

5. Have the materials been useful in
the course?

55% 36% 7% 2% 0%

Table 2. Students’ opinion toward influence of the courses

Question Yes No NA

1. After taking part in the project, have you im-
proved your grades in informatics?

46% 33% 21%

2. After taking part in the project, have you im-
proved your grades in information technology?

46% 31% 23%

3. Has your choice of informatics related study
been influence by the project?

62% 38% –

Extensive workshops have been organized for contestants of the Olympiad in In-

formatics 2010. Twenty of them successfully reached the third final stage and two of
them will represent Poland in the International Olympiad in Informatics in 2011.

Almost 1000 students participated in the Beaver contest. 5 students won the II
Prize and 8 students won the III Prize.

Reflections

As the coordinator of the project I must admit that I am very satisfied with running
the project, the enthusiasm of school students and teachers about our offer of courses
and activities and the project’s impact on schools – they are really interested in im-
proving instruction in schools and giving students new opportunity to learn and de-
velop their skills in the area of informatics curriculum topics and applications.

Personally, let me share one of my experiences. I run some of the algorithmic
courses. Once, a group of young girls attended a course on introductory algorithmics.
When before the workshop I learnt from their teacher that they have no experience in
programming, I thought I would be in trouble but finally those girls were able to

 Outreach to Prospective Informatics Students 69

understand three simple algorithmic situations (e.g. for given three numbers inter-
preted as the lengths of triangle sides, find the area of the triangle if it exists) and
write in Pascal and run successfully three programs. As one of my colleagues put it:
everybody can be taught programming – now I strongly believe him. In fact, com-
puter programming (in any sense) is a tool of computational thinking and as such
should be a competence of everyone.

Conclusions

In conclusion, Informatyka + is a valuable project supporting the learning process in
informatics and in information and communication technology in schools and helping
students to choose their future career.

In the near future we intend to:

• apply to the Ministry of National Education to extend the project to all regions of
Poland;

• make the project activities permanent and continues in schools;
• extend the scope of the project by constantly adding new topics, courses, activities.

5 Conclusions

We presented a number of activities in Poland which are outreach projects run na-
tionwide and/or locally. We expect and have gathered some evidence that these activi-
ties increase motivation and preparation of school students for their future decisions
to study computer science or related fields and become computer specialists.

The approach which we use can be viewed as implementation of computational
thinking to teaching and learning informatics (computer science) topics and applica-
tions of computing in various areas of students’ interests.

References

1. Bebras: International, http://bebras.org/en/welcome; (in Poland),
http://www.bobr.edu.pl/

2. Computational thinking, http://www.iste.org/standards/computational-
thinking.aspx

3. CSTA: National Secondary Computer Science Survey (2009),
http://csta.acm.org/Research/sub/CSTAResearch.html

4. CSTA K-12 Computer Science Standards (2011),
http://csta.acm.org/Research/sub/CSTAResearch.html

5. Denning, P.J.: Who Are We? Comm. ACM 44, 15–19 (2001)
6. Diks, K., Madey, J.: From Top Coders to Top IT Professionals. In: Mittermeir, R.T., Sysło,

M.M. (eds.) ISSEP 2008. LNCS, vol. 5090, pp. 31–40. Springer, Heidelberg (2008)
7. Fronter, http://webfronter.com/iplus/milacollegejunior/
8. Gurbiel, E., Hardt-Olejniczak, G., Kołczyk, E., Krupicka, H., Sysło, M.M.: Informatics.

Textbook for middle school, WSiP, Warszawa (2009) (in Polish)
9. Gurbiel, E., Hardt-Olejniczak, G., Kołczyk, E., Krupicka, H., Sysło, M.M.: Informatics for All

Students. Textbook for high school, WSiP, Warszawa (2012) (in Polish) (in preparation)

70 M.M. Sysło

10. Gurbiel, E., Hard-Olejniczak, G., Kołczyk, E., Krupicka, H., Sysło, M.M.: Informatics,
WSiP, Warszawa. Textbook for high school, vol. 1, 2 (2012) (in Polish) (in preparation)

11. Informatyka +, http://www.informatykaplus.edu.pl/infp.php/
12. NSF, CS/10,000 Project, http://www.computingportal.org/cs10k
13. Olympiad in Informatics (in Poland), http://www.oi.edu.pl/,

International,http://www.ioinformatics.org/
14. Running On Empty: The Failure to Teach K-12 Computer Science in The Digital Age,

ACM, CSTA (2010), http://csta.acm.org/Runninonempty/
15. STEM: STEM Education Coalition, http://www.stemedcoalition.org/
16. Stephenson, C., Gal-Ezer, J., Haberman, B., Verno, A.: The New Education Imperative:

Improving High School Computer Science Education, Final Report of the CSTA Curricu-
lum Improvement Task Force, CSTA, ACM (February 2005),
http://csta.acm.org/Publications/White_Paper07_06.pdf

17. Sysło, M.M., Kwiatkowska, A.B.: Informatics versus information technology – how much
informatics is needed to use information technology – a school perspective. In: Mittermeir,
R.T. (ed.) ISSEP 2005. LNCS, vol. 3422, pp. 178–188. Springer, Heidelberg (2005)

18. Sysło, M.M., Kwiatkowska, A.B.: The Challenging face of informatics education in Pol-
and. In: Mittermeir, R.T., Sysło, M.M. (eds.) ISSEP 2008. LNCS, vol. 5090, pp. 1–18.
Springer, Heidelberg (2008) (in Poland)

19. Wing, J.M.: Computational thinking. Comm. ACM 49, 33–35 (2006)
20. WWSI, http://www.wwsi.edu.pl, http://wscs.eu
21. Youth Academy of Informatics, http://www.main.edu.pl

I. Kalaš and R.T. Mittermeir (Eds.): ISSEP 2011, LNCS 7013, pp. 71–81, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Overcoming Obstacles to CS Education by Using
Non-programming Outreach Programmes

Tim Bell1, Paul Curzon2, Quintin Cutts3,
Valentina Dagienė4, and Bruria Haberman5

1 University of Canterbury, Christchurch 8041, NZ
tim.bell@canterbury.ac.nz

2 Queen Mary University of London, London, E1 4NS, UK
paul.curzon@eecs.qmul.ac.uk

3 University of Glasgow, Glasgow, G12 8RZ, Scotland
quintin.cutts@glasgow.ac.uk

4 Vilnius University, Faculty of Mathematics and Informatics,
Naugarduko str. 24, Vilnius LT-03223, Lithuania

valentina.dagiene@mif.vu.lt
5 Holon Institute of Technology, Holon,

Israel, and Davidson Institute of Science Education,
Weizmann Institute of Science, Rehovot 76100, Israel

bruria.haberman@weizmann.ac.il

Abstract. Formal Computer Science curricula in schools are currently in a state
of flux, yet there is an urgency to have school students exposed to CS concepts
so that they can make informed decisions about career paths. An effective way
to address this is through outreach programmes that can operate outside or in
conjunction with the formal education system. We compare 5 successful pro-
grammes. Each downplays programming as a pre-requisite skill for engaging
with Computer Science ideas. This makes them accessible in short bursts
without formal curriculum support. The formats used include contests, shows,
magazine articles, and resources for teachers. We compare the 5 approaches to
draw out key ideas for successfully addressing a school student audience. This
can be used as the basis for designing new outreach programs.

Keywords: CS Education, Informatics Education, K-12 outreach, Information
Technology, Computational Thinking.

1 Introduction

While formal school curricula around the world are gradually introducing Computer
Science (CS) as a subject, there is an urgency to get school-age students interested in
the topic, and consequently many outreach programmes have emerged that either
work outside the school system, or supplement what is available in schools. Here we
compare five such approaches to introducing Computer Science to high school age
students. An important common feature of these is that none assumes programming as
a preliminary or pre-requisite topic – they enable students to engage with concepts

72 T. Bell et al.

from Computer Science without having to first learn how to program. In a formal
school programme there would be time to develop programming skills and provide
good computing resources, but outreach programmes must necessarily make do with
limited time with students and whatever facilities happen to be available.

Teaching CS without programming is achieved in a variety of ways including off-
line kinesthetic activities, problem solving challenges that involve computational
thinking, engaging magazine articles that present ideas from Computer Science, and
mentoring by experts. All the approaches described here started as extracurricular
outreach initiatives independent of formal school curriculum and constraints, thus
there was a lot of freedom and space for imagination in their design. They also
provide “grass-roots” trials of approaches for introducing students to CS, and the
successful elements of these “trials” can later be absorbed into formal curricula. The
approaches discussed here have all had widespread adoption and influence (typically
tens of thousands of students) so there is potentially much to be learned from
exploring their commonalities and differences. Our aim for this comparison is to
compare and contrast existing successful approaches, drawing out common features
and themes to give guidelines for the design of future initiatives.

There are three main motivations for downplaying the role of programming when
first introducing students to CS. (1) In the context of outreach where a relatively short
time is available to interact with students (often just a single short lesson), there isn’t
time to teach programming. (2) By engaging students without requiring them to learn
to program first, a potential barrier is removed that could deter students from pursuing
Computer Science. Some students will enjoy CS concepts such as problem-solving
more than programming, and by engaging with those concepts first they will have
more motivation to learn programming, which they are likely to encounter as a
prerequisite for studying Computer Science formally. (3) A non-programming
approach is a practical way to engage students in Computational Thinking [13].
Students thus gain benefits beyond a computing career.

In all the approaches described here, the key is that programming isn’t the central
element. Eventually students will likely need to learn programming, but it can be after
students become engaged.

In the following sections we first describe each programme. In Section 7 we then
provide a classification tool to highlight their similarities and differences which can
be used to provide guidance on building a successful programme.

2 Bebras

Many competitions in computing and IT are intended for very talented students and
focus on areas such as developing algorithms and programming. The Bebras
competition instead has students solve problems from a broad range of areas without
programming [6, 8, 9]. Because many students enjoy competition, such contests at
school can be used to attract students to the domain covered by the contest.

The idea of a competition based around informatics and computer fluency for a
wide population of high-school students started in Lithuania in 2003. It was named
“Bebras” (“Beaver” in English) after the hard-working, persistent, intelligent, and
lively animal. The main goals of the project are to promote students’ interest in

 Overcoming Obstacles to CS Education 73

informatics (i.e. Computer Science) and Information and Communication Technology
(ICT) from the start of their school career, to motivate students to learn and master
computers, and to engage in computational thinking [6, 7, 13]. The contest is for all
lower and upper secondary school pupils, divided into four age groups. Students have
to solve 18 to 27 tasks on different levels within 45-60 minutes, entering answers via
computer. They do not require prior topic knowledge, but do require students to be
able to reason with common structures in the CS/informatics canon.

The tasks involve concepts such as algorithms (sequential and concurrent); data
structures (heaps, stacks and queues, trees, and graphs); modeling of states, control
flow and data flow; human-computer interaction; and graphics. Students do not study
these topics formally, instead, the topics are introduced implicitly by having the
students attempt imaginative tasks. A “narrative cover story” is used to relate the
tasks to an underlying topic.

More than 10 countries now participate in Bebras. Since the contest is now
international, one specific challenge is to find a balance between national and global
standards for the contest. Hence, discussion on common standards and tasks suitable
for all countries takes place at annual international workshops. A shared collection of
tasks is developed including mandatory tasks to be included by all countries in their
contests; additional tasks can be added to this to adapt the competition to the
educational framework of each country. Surveys and informal feedback reported by
the organizers in different countries suggest that the contest motivated students to get
to know computer science and information technology better.

3 CS Unplugged

CS Unplugged [2] provides a variety of resources that engage students in Computer
Science activities without using a computer. Instead of programming ideas from
Computer Science, students interact with them through magic tricks, games and
puzzles. Most activities have a strong kinaesthetic component and take a
constructivist approach: students are given enough clues so they can work out
principles themselves. A constructivist approach, where students are guided with
leading questions so that they can discover CS principles for themselves, is important
for outreach as it demonstrates to students that they could have invented much of the
knowledge themselves; and of course, this is a lot more engaging than simply being
told impressive facts.

The CS Unplugged resources are available for free download; as well as activities
with specific guides for the presenter, there are videos demonstrating the activities or
providing challenges to students, and links to extensive related material for follow-up.
The activities have been translated into over a dozen languages. Another format for
the material is a one-hour show [1], designed for a broad coverage of CS topics in a
short time, rather than in-depth work by the students.

CS Unplugged is used in many situations around the world, generally relating to
one-off events and visits, but increasingly as components of teaching programmes. It
started around 1992 as a collection of ideas for outreach from universities to K-12
schools. Through its inclusion in the ACM K-12 curriculum in 2003 it started to be
seen as the basis of a new approach for teaching CS in schools, either as the main

74 T. Bell et al.

material, or a supplement providing a break from being in a computer lab. It is now
used widely in a variety of situations, including outreach, clubs, summer camps, and
regular classrooms.

4 cs4fn

cs4fn [4] uses research topics to spark enthusiasm in students about Computer
Science, providing them with ways to learn more about the subject so that the initial
spark develops into a more sustained interest. It consists of four elements: a 20-page
free magazine sent twice yearly to UK schools and subscribers worldwide; a website
with up to 10 new articles per month; shows, such as the hour long cs4fn magic show
[3], and booklets that allow audiences to explore topics more deeply.

The core target audience for cs4fn resources are school students aged 14+ though
some are also presented to younger (9+) children and family audiences at science
festivals. The magazines and website are read by people of all ages and professions
including students, teachers, professionals and interested members of the general
public.

The time commitment for cs4fn participants need not be high; school talks last
only one school period, and at science festivals contact with individuals may be as
short as 10 minutes. Likewise, students may only read a few articles at a time. The
programme focuses on telling engaging stories about research, illustrating CS
concepts using examples that resonate with students’ lives. It also examines thought-
provoking topics with a philosophical dimension, such as artificial intelligence. cs4fn
talks incorporate lots of interaction. The project uses a concept of a ‘sticky web’ of
approaches, the idea being that whether individuals find it via web, magazine or a
talk, they are then drawn further in to the other strands of the project.

Across all strands cs4fn aims to show that computing is a fun, enjoyable subject
that students should take further for intrinsic motivational reasons. Feedback from
teachers and participants is overwhelmingly positive for all four elements of the
project.

5 CS Inside

The CS Inside approach [5] draws much from CS Unplugged: predominantly
kinaesthetic activities, undertaken without the need for computers, designed to be
used by presenters with varying levels of computing experience. Whereas CS
Unplugged was originally designed for students up to about the age of 12, the CS
Inside activities were written for high school students from the start, recognising the
different motivations that these two student groups will have for taking part in
kinaesthetic activities. “Inside” is used in the approach’s name because each activity
brings out some of the Computer Science to be found inside the technology that is
part of students’ everyday lives, such as mobile phones, web browsers and game
consoles. The aim is to engage students in issues of relevance to them about
computing technology, and open up those issues by exploring the computer science
inside.

 Overcoming Obstacles to CS Education 75

The areas of Computer Science covered by the activities are not explicitly chosen
to match with any particular school curriculum. The original context, however, was
Scottish schools, and links are identified from the CS Inside activities to precise parts
of the Scottish schools’ computing curriculum where they may be useful. Some
teachers use only those activities that help support the curriculum while others are
happy to use them all (and are hungry for more!), recognising that materials of this
nature are genuinely inspiring for students.

The activities are typically structured in four parts: the Grab captures the students’
attention by asking questions about technology that are relevant to students; the Intro
shifts attention from the students’ context to the technology context to be addressed in
this activity – this should be as small as possible to avoid losing the students’ interest;
the Activity is the main task; and the Sustain carries the learning from this activity out
into their everyday lives, so that everyday events concerning technology will remind
them of what is going on inside.

6 CS, Academia and Industry

This programme aims to expose students directly to state-of-the-art research,
advanced technologies, software engineering methodologies, and professional norms
by having the students interact with leading experts [14]. It is extracurricular,
designed especially for talented high-school students in Israel who major in CS. Its
main goal is to bridge the gap between school education and the “real world” of
computing, especially relating to content, learning culture, and professional norms.

There are three main motivations for the approach: students can (1) add state-of-
the-art computing research and development to the fundamentals taught at school, (2)
be encouraged to become self-learners by experiencing a “taste-based”, breadth-
oriented learning approach, and (3) participate in “real-world” software development
through a comprehensive project.

The two-year programme blends formal and informal learning and includes
enrichment meetings, field trips and software development projects under the
supervision of experts. Talented students are recommended to attend by their teachers.

The first stage is designed for 11th grade students and consists of a 7-month
enrichment workshop looking at contemporary issues in computing. In the second
phase, the 12th grade students (chosen from the first stage attendees) develop
comprehensive software projects under the apprenticeship-based supervision of
professional mentors (scientists and engineers from academia and the hi-tech industry).

An underlying principle of the first phase, which avoids using programming, is that
students should be taught to employ a breadth-oriented learning style, in which their
initial exposure to an unfamiliar topic will be accomplished by exposing them only to
its essence (i.e., the main high-level abstract ideas). In other words, a complete
understanding, including knowing the concrete details and mastering procedural
aspects, should not be considered as the immediate aim of an initial exposure to a new
topic. To achieve this, monthly enrichment meetings are conducted in which a variety
of advanced topics are introduced in plenary sessions by leading representatives of
CS/SE academia and industry. The sessions cover topics such as computer sciences
and biology, artificial intelligence, computing in space, and professional norms.

76 T. Bell et al.

In addition, the following non-programming learning activities were conducted,
challenging algorithmic problems, role-playing simulation games, creative thinking in
computer science, model-based-development, and a competition in testing software.

Feedback so far indicates that the programme contributes to developing a culture of
learning befitting the dynamic world of industrial computing, thus providing the
students with an entry point into the computing community of practice [10,14].

7 Comparison of the Programmes

Tables 1 and 2 compare the five approaches using criteria that highlight the similarities
and differences between them. These criteria have emerged as a result of the previous
discussion. By drawing out the commonalities of such large-scale successful
programmes, we can draw lessons about important ingredients for future initiatives.

Table 1 focuses on the design of each approach. Comparing the five approaches,
we see that in terms of the range of topics covered, all offer a breadth across
Computer Science, exposing students to the range of topics that they might choose
from to specialise in if they undertake the discipline. All operate on a large scale, with
thousands of participants, and dozens (if not hundreds) of resources for presenters to
draw on. All have a high level of visibility, some more locally, while others have a
large international following. All rely on a pool of contributors and have some form
of quality control. Most of the approaches engage students for around an hour at a
time, though magazines and videos may only require minutes to engage with.

Table 2 analyses how the participants (students and teachers) interact with each
programme. Finding a motivation for students to participate is key. Because the work
is largely outside the curriculum, and therefore does not count towards formal grades,
there need to be other motivations, either intrinsic or extrinsic. From the table, we can
see that intrinsic motivation in the form of satisfying curiosity and enjoying problem
solving are common to all the programmes. However, specific motivations used
depend on the approach. A magazine article needs to capture enough interest at the
start to keep the students reading for a few minutes. Humour and story-telling are
used in the shows to keep a larger and possibly reluctant audience engaged for longer.

Programmes that require more commitment from students use prizes or certificates,
and experts can serve as role-models to keep students engaged. A programme over
several years needs either to use a deep intrinsic motivation of enjoyment in the
subject or help students achieve their long term goals using, e.g., long-term career
prospects as motivation.

All of the approaches considered avoid having programming as a primary focus, at
least initially. The high level of uptake of all 5 indicates that this doesn’t prevent
students from being interested. These contrast with other popular approaches to
outreach that are largely based around programming, such as robotics competitions, or
introductory languages such as Scratch, Alice and Greenfoot [12]. The two-stage “CS,
Academia & Industry” programme combines both approaches; it doesn’t require
programming in the preliminary stage, but the advanced stage is based around it.

We note that programming can be integrated in a variety of ways with these
predominantly non-programming approaches, either as a follow-up where students
implement ideas they have been exploring, or conversely where the non-programming

 Overcoming Obstacles to CS Education 77

T
ab

le
 1

. A
 c

om
pa

ri
so

n
of

 th
e

fi
ve

 o
ut

re
ac

h
ap

pr
oa

ch
es

: d
es

ig
n

78 T. Bell et al.

T
ab

le
 2

. A
 c

om
pa

ri
so

n
of

 th
e

fi
ve

 o
ut

re
ac

h
ap

pr
oa

ch
es

: a
na

ly
si

s

 Overcoming Obstacles to CS Education 79

activities provide a physical break from programming at a computer. In fact, there is
evidence that including programming as a follow-up is useful, to help students see
more deeply how the material relates to computers [11].

The material discussed in this paper is not generally taught as part of a formal
curriculum, typically being used in outreach and interest programmes such as one-off
visits, out-of-school clubs, science centres, and special events. This is particularly
useful if CS isn’t compulsory in schools, as is the case in many countries and states,
as it helps to expose students to a subject that they may have little idea about. It also
helps teachers and careers advisers to understand the topic, supporting them to help
their students make appropriate career decisions.

Looking at the impact on teachers, we note that the programmes support teachers
by providing resources for them rather than expecting them to do the preparation and
planning. In fact, an unexpected focus of the CS Inside project was the development
and support of teacher communities. Simply providing materials to teachers isn’t
sufficient; high school CS teachers are often a forgotten community, and making
personal contact and building trust has been a key component of CS Inside’s success.
The other approaches also report spin-offs from an improvement in relationships with
teachers, partly by providing a reason for contact between schools and universities,
and also in helping teachers gain a significantly better understanding of CS concepts.

Each of these approaches either already shares ideas with the others, or can benefit
from sharing them. For example, some of the CS Inside and cs4fn lessons are based
on CS Unplugged activities; conversely, the CS Unplugged website provides links to
the relevant CS Inside and cs4fn activities as extension or follow-up ideas. New
puzzles in the Bebras project can be constructed by looking at the challenges in the
other projects and creating a story/context to make them accessible to contestants, and
phase 1 of the CS, academia and industry program can use activities and lesson plans
from the other approaches to provide a means to engage with students. The non-
programming approaches here also work well as supplements to more traditional
programming-based approaches, providing an active break from sedentary work at the
computer.

All the approaches are flexible – the resources themselves generally provide
creative ideas for teaching that can be adapted to the audience and by the audience
(teachers or students) for their own needs. The programmes are presented in a way
that is accessible for teachers and other organisers; resources are provided at no direct
cost through well-resourced websites, and the details that can be time-consuming for
teachers (such as preparing slides and handouts) are taken care of. Notably, all the
programmes include significant commitment and resources over a long period of time
from their organisers.

8 Conclusions

There are a variety of ways that students can be exposed to Computer Science without
the barrier of requiring programming as a pre-requisite. The large number of students
who have participated in the approaches described here indicates that the avoidance of
programming can indeed generate ongoing interest and so can be considered
successful. This contrasts with approaches where programming is taught in-depth

80 T. Bell et al.

first; in schools where time is limited the programming-first approach can lead to the
misconception that CS is only about programming, and thus only students whose main
interest in computing is programming are motivated to continue in CS.

Our analysis here shows that despite the five approaches having quite different
formats, there are considerable commonalities between them that can guide the
development of new initiatives. One valuable motivation for students to engage with
these activities is a deeper understanding of the computing devices all around us.
However, because the focus in all of these approaches is Computer Science, not
computers, alternative motivators for students can be important: contest prizes, the
challenge of solving a problem, curiosity, humour, and ideally, appealing to the
intrinsic interest of the student in this kind of thinking and reasoning. This means that
the material needs to be carefully crafted to attract and retain student interest (e.g.
direct relevance to their life, engaging story telling, well planned magic tricks,
questions to stimulate their curiosity), or it needs to create a culture that attracts
students (e.g. past participants recommend it, high status or rewards for competition
winners, a good reputation for the event).

The non-curriculum approach provides the opportunity for grass-roots influence on
formal curricula when a top-down state-led approach often struggles to efficiently
deliver CS education in schools. The success of several of the approaches here has led
to them being recommended for curricula, so the authors then have an influence on
formal CS education. An important issue that will need to be addressed then is how
materials largely designed for outreach can be adapted for settings where a certain
level of assessment will inevitably be required.

We have presented several creative approaches with the common goal of attracting
students to study Computer Science. As a result of the comparison between them we
developed the criteria presented in this paper. These criteria will enable those
designing outreach and teaching programmes to evaluate approaches, to choose the
most suitable approach for their students, and to adapt the approaches to the target
population and context.

Acknowledgments. We are grateful to Cecile Yehezkel, Peter McOwan and Jonathan
Black for their work with some of these programmes, and EPSRC, Google and our
own institutions who have supported them.

References

1. Bell, T.: A low-cost high-impact computer science show for family audiences. In:
Australasian Computer Science Conference, Canberra, Australia, pp. 10–16 (2000)

2. Bell, T., Alexander, J., Freeman, I., Grimley, M.: Computer Science Unplugged: School
Students Doing Real Computing Without Computers. The New Zealand Journal of
Applied Computing and Information Technology 13(1), 20–29 (2009)

3. Curzon, P., McOwan, P.W.: Engaging with Computer Science through Magic Shows.
ACM SIGCSE Bulletin 40(3), 179–183 (2008)

4. Curzon, P., Black, J., Meagher, L.R., McOwan, P.W.: cs4fn.org: Enthusing Students about
Computer Science. In: Proceedings of Informatics Education Europe IV, Freiburg,
Germany, November 5-6, pp. 73–80 (2009)

 Overcoming Obstacles to CS Education 81

5. Cutts, Q., Brown, M., Kemp, L., Matheson, C.: Enthusing and informing potential
computer science students and their teachers. ACM SIGCSE Bulletin 39(3), 196–200
(2007)

6. Dagienė, V.: Information technology contests – introduction to computer science in an
attractive way. Informatics in Education 5(1), 37–46 (2006)

7. Dagienė, V., Futschek, G.: Bebras International Contest on Informatics and Computer
Literacy: Criteria for Good Tasks. In: Mittermeir, R.T., Sysło, M.M. (eds.) ISSEP 2008.
LNCS, vol. 5090, pp. 19–30. Springer, Heidelberg (2008)

8. Dagiene, V.: Supporting computer science education through competitions. In: Proc. 9th
WCCE 2009, Bento Goncalves, Paper-Nr. 76, 10 pages (2009)

9. Dagiene, V., Futschek, G.: Bebras International Contest on Informatics and Computer
Literacy: A contest for all secondary school students to be more interested in Informatics
and ICT concepts. In: Proc. 9th WCCE 2009, Bento Goncalves, Paper-Nr. 161, 2 pages
(2009)

10. Haberman, B., Yehezkel, C.: A computer science educational program for establishing an
entry point to the computing community of practice. J. of Information Technology
Education (JIRE) 7, 81–100 (2008)

11. Taub, R., Ben-Ari, M., Armoni, M.: The effect of CS unplugged on middle-school
students’ views of CS. SIGCSE Bull. 41(3), 99–103 (2009)

12. Utting, I., Cooper, S., Kölling, M., Maloney, J., Resnick, M.: Alice, Greenfoot, and
Scratch - A Discussion. Trans. Comput. Educ. 10(4), Article 17, 11 (2010)

13. Wing, J.M.: Computational thinking. Communications of the ACM 49(3), 33–35 (2006)
14. Yehezkel, C., Haberman, B.: Bridging the gap between school computing and the “real

world”. In: Mittermeir, R.T. (ed.) ISSEP 2006. LNCS, vol. 4226, pp. 38–47. Springer,
Heidelberg (2006)

I. Kalaš and R.T. Mittermeir (Eds.): ISSEP 2011, LNCS 7013, pp. 82–93, 2011.
© Springer-Verlag Berlin Heidelberg 2011

CS Unplugged Assisted by Digital Materials for
Handicapped People at Schools

Hiroki Manabe1,2, Susumu Kanemune1, Mitaro Namiki3, and Yoshiaki Nakano1

1 Osaka Electro-Communication University, Japan
2 Hadano-Sogo High School, Japan

3 Tokyo University of Agriculture and Technology, Japan
manaty2005@mh.scn-net.ne.jp,

kanemune@acm.org,
namiki@cc.tuat.ac.jp, info@nakano.ac

Abstract. We report practice lessons in 'Computer Science Unplugged’ (CS
Unplugged) with assisted digital materials. CS Unplugged involves physical or
group activities that lead students to computer science, and it is an excellent
method of informatics education for beginners. However, such activities are not
always easy for all students. Therefore, we designed various digital materials to
assist handicapped students with such activities. We also adopted these to the
lessons of CS Unplugged at a vocational training school for the disabled. As a
result, we observed that the materials effectively assisted students with their
lessons.

Keywords: Computer Science, computer science unplugged, informatics
education.

1 Introduction

Computer Science Unplugged (CS Unplugged) [1][2] is an excellent method of
learning the basics of computer science. There are many junior/senior high schools
and universities in Japan in which CS Unplugged has been used [3]. CS Unplugged
has three outstanding features [4].

1. It consists of active games (e.g., drawing/painting, magic tricks, and group
learning).

2. Each activity leads to students learning some concepts of computer science.
3. None of the activities require computers.

The authors adopted CS Unplugged in the curriculum for a course at a vocational
training school for people with disabilities in 2008 and tested and confirmed its
learning effects. However, we noticed that kinesthetic activities might not be able to
be exercised in class because of physical or communication problems.

This paper discusses a solution that is assisted by computers to CS Unplugged
activities. The authors developed various digital materials to solve these problems.
We report practice lessons and the effect of these materials.

 CS Unplugged Assisted

2 Adoption of CS Un
Handicapped Peop

2.1 CS Unplugged Conte

One of the authors translat
using computers' published
summarizes its contents.

Tab

Activity Title
1 Count the Dots

2 Color by Numbers
3 You Can Say That
4 Card Flip Magic
5 Twenty Guesses
6 Battleships
7 Lightest and Heavi
8 Beat the Clock
9 The Muddy City

10 The Orange Game
11 Treasure Hunt
12 Marching Orders

For example, Activity 4

bits. This lesson begins with
First, a student places m

squares. The teacher (magi
saying 'this is just to make
face the cards, and the stud
card, which the student flip
opposite direction. After th
he/she could hit the card, w
These questions lead to the
concept by themselves, the
taught by the teacher.

Thus, CS Unplugged is
attracts them to the world o

2.2 Adopting CS Unplug

In 2008, we tried to adop
Course' of Kanagawa Voca
school was established wi
independence through vo
important skill they had to a

by Digital Materials for Handicapped People at Schools

nplugged in Vocational Training School for
ple

ent

ted CS Unplugged into Japanese and had 'Informatics
d in 2007 [5][6]. The book detailed 12 activities. Tabl

ble 1. Informatics not using computers

Activity’s Content Digital Materi
Binary Numbers
Image Representation

Again! Text Compression
Error Detection & Correction
Information Theory
Searching Algorithms

iest Sorting Algorithms
Sorting Networks
Minimal Spanning Trees
Routing and Deadlock in Networks
FiniteState Automata
Programming Language

4 (Card Flip Magic) treats error correction by using pa
h a demonstration of a card magic trick by the teacher.

many two-sided cards on a blackboard as a matrix of 5
ician) places more cards in a row and in a column wh
e it a bit harder'. Next, the teacher turns around, does
ent flips over one of the cards. Last, the teacher can hit

pped over, even though the teacher had been looking in
he magic trick, the teacher lets students think about w
where additional cards should be placed, and other deta
e concept of parity bits. If students notice or discover
ey gain greater educational benefits rather than just be

s a learning method that raises students' motivation
of computer science.

ged to Vocational Training of Disabled Students

pt CS Unplugged in the curriculum for the 'OA Syst
ational Training School for students with disabilities. T
ith the aim of supporting disabled people gaining so
cational capabilities. Computer literacy was the m
acquire.

83

not
le 1

ials

arity

5x5
hile
not
the
the

why
ails.
this

eing

and

tem
This
cial

most

84 H. Manabe et al.

The OA System Course, which is for physical disabilities, is a special course that
grooms students to become computer programmers or systems engineers. Therefore,
the students have to study computer science and computer technology. The main
content of vocational training, which is related to computer technology, is generally to
teach how computer programs are made. Therefore, traditional learning content and
learning methods were adopted for this course.

However, many of the students are enrolled at this school with the aim that they
could be rehabilitated into society after having overcome difficulties they suffered
past accidents or sickness. They wanted to make information processing their
occupation, but they had no interest in programming and disliked thinking logically.
Additionally, there was one student who was not able to sufficiently learn through the
process of compulsory education due to long-term hospitalization and there was
another who was not able to take notes due to physical reasons. Therefore, even a
book for beginners was sufficiently obscure to decrease their motivation to learn. The
conventional learning approach was not suitable for basic study of their future
occupations.

Therefore, we decided to try to adopt CS Unplugged into the curriculum because it
does not require assumed knowledge and it leads to the basics of computer science.
Therefore, all students could learn about computer science without difficulties. We
also expected that CS Unplugged might develop their logical thinking abilities.

There had been no instances where CS Unplugged had been adopted in any
vocational training curricula. First, students seemed to be confused due to such a
strange method of learning. However, they found CS Unplugged was an excellent
learning method as they progressed through the curriculum. However, we confirmed
that some features such as kinesthetic activities, physical movements, and commun-
ication skills in CS Unplugged became a serious issue for students with disabilities.

3 Issues and Achievements with CS Unplugged Practice for
Students with Disabilities

3.1 Issues with CS Unplugged Practice for Disabled Students

We examined what kind of issues existed when 'normal' activities were carried out[7].
For example, students who had upper limb disorders could not understand activities
such as 'coloring in with a pencil' or 'grabbing with their hands'[8][9]. These difficult
activities affected the movements of moving materials in Activity 1 (Count the Dots),
Activity 10 (The Orange Game), and the work time for 'coloring in with a pencil' in
Activity 2 (Color by Numbers).

Physical movements in Activity 8 (Beat the Clock) or in Activity 11 (Treasure
Hunt) were dangerous for students who had lower limb disorders. Consequently, such
students could not participate in these activities. One student who had communication
problems found it difficult to practice cooperative activities such as those in Activity
6 (Battleship) or Activity 10 (The Orange Game).

 CS Unplugged Assisted by Digital Materials for Handicapped People at Schools 85

3.2 Development of Material Assisting Handicapped Students

One of the authors developed six online materials, which were based on CS
Unplugged (checked in the fourth row of Table 1) to assist students with the activities.

The materials were uploaded to a Web site [10]. These materials were developed
for personal use. There were three support patterns.

1. Replacing some actions (e.g., drawing/writing) by clicking with a pointing
device.

2. Replacing group work with personal work.
3. Simulating group work.

The materials could be used repeatedly in the lesson or after it. Fig. 1 shows screen
shots of the materials.

Fig. 1. Interfaces for CS Unplugged digital materials

The virtual world could also be an assisted environment. One of the authors had
previously participated in research on CS Unplugged for disabled people [11], which
was executed in the 3D virtual world of Second Life. Students in the virtual world
could move around freely and communicate with one another by transforming
themselves to avatars. Therefore, it was possible to practice CS Unplugged activities
in this virtual world.

4 Trials on Digital Material to Provide Learning Support

4.1 Activity 2 (Color by Numbers)

This section introduces the lesson content for Activity 2 (Color by Numbers). This
activity dealt with how images were digitalized to represent images on computers.

86 H. Manabe et al.

A run length algorithm was used to digitize the images for this activity. Students
could learn the basics of digitalization and data representation of images throughout
the work of coloring in dots in pencil, translating dots to numbers, and simulating
communications. Our lesson plan involves seven steps.

Lesson plan:

1. The teacher urges students to notice the rules for the run length algorithm through a
quiz game.

2. The students draw/paint an image on a card by coloring in small dots in pencil.
3. They translate/digitize the image to digital data with the run length algorithm.
4. Students exchange cards, which are written in digital data.
5. They color/encode the digital data that they received to dots. (Fig. 2)
6. They compare two images of the source and destination.
7. The teacher asks students how a computer stores data and what the important

elements about network communication are.

Fig. 2. Activity 2 (Color by Numbers)

Most of the students in the class lesson were surprised at the principles underlying
digitization or the communication of digital data. It was important for students to
understand such principles in this lesson by coloring in the dots. Coloring work was
done twice. This work was important to establish the relationship between colors and
numbers. However, coloring in dots using a pencil is difficult for students who have
upper limb disorders and erasing dots is actually more difficult than coloring them in.
This caused such students to work inefficiently or lose concentration while learning.

We adopted digital materials based on Activity 2 in the lesson to solve these
problems. These materials assisted students with manual coloring by enabling them to
click with a mouse or use a track ball. These were used in lesson plans 2 and 5. The
functions of these digital materials are explained below.

The canvas consisted of many small square tiles. The default number for the tiles
was 256 (16x16). The students could change the tiles by clicking with the mouse.
Each tile had two states, one side was white and the other was black. If a white tile
was clicked with a pointing device, it converted to black and if a black tile was
clicked, it converted to white.

 CS Unplugged Assisted by Digital Materials for Handicapped People at Schools 87

Fig. 3 is a photograph of a student who had a severe impairment to his upper
extremities. His grip was so weak that he could not use a pencil or eraser. He usually
used a ballpoint pen for writing that was fixed to his hand with special equipment. He
operated the track ball as a pointing device to use the computer and had two special
pieces of equipment fixed to each hand to attach the ballpoint pen to and to type on
the keyboard with the pens.

Fig. 3. Student with impairment using upper clicked trackball with special equipment for
drawing/painting

The student spent too much time when he drew in pencils by hand and a trace
protruded outside the frame. However, when he drew with the materials, he could
reduce his working time. He was freed from having to worry about whether the trace
had protruded outside the frame.

The student's four main comments were:

1. I felt good as I did not want to color in the dots in free hand drawing.
2. I wondered why the numbers became a painting.
3. I enjoyed this lesson even though my drawing was poor.
4. I understood the basics of digitization by using this learning material.

We found that the materials decreased the difference in working time between the
student with upper limb disorders and other students. The student could also
concentrate on his original studies without having to worry about whether the trace of
the pen was outside the frame by using these materials.

4.2 Activity 10 (The Orange Game)

This section introduces the lesson for Activity 10 (The Orange Game). This activity
dealt with the routing algorithm for a computer network. Students could learn about
these concepts by delivering oranges (we used some plastic fruit) as packets.

This activity was usually practiced in groups and students could note the
importance of processing efficiency through working collaboratively. Therefore, all
communication skills by the participants were important factors for problem solving.

88 H. Manabe et al.

Our lesson plan involved five steps:

1. A group of six students sits in a circle.
2. The teacher distributes fruits to students randomly and each student has two pieces

of fruit. (One student holds one piece of fruit with his/her other hand empty).
3. The teacher explains the rules of the game where students can only pass the fruit to

both sides.
4. All students cooperate throughout the activity.
5. The teacher explains routing in a computer network after the game.

Fig. 4. Activity 10 (The Orange Game)

Group members in this activity had to pass the fruit to aim for the goal where all
members were holding their own fruit. If any member thought that "I got my own
fruit and I’ve finished", then the entire situation might not lead to a solution. It was
important for each member to recognize the group status and share their method of
delivering fruit to avoid such situations.

The conditions in classrooms at the vocational training school were as follows. The
class for the lesson was divided into three groups. We observed the activities of all
three groups. The first group evolved throughout the game by taking note of the time
and counting the number of deliveries. The second group discussed how to obtain a
better solution. However, the third group that was composed of three deaf students
and three students with normal hearing did not communicate sufficiently and could
not reach the goal even once. It was obvious that there was a lack of communication
between the deaf students and those with normal hearing. We observed their efforts to
communicate when they used gestures or writing. However, these were not sufficient
to enable them to communicate effectively. This reduced their motivation and the
activity was terminated without being completed. This meant they could not fully
realize the importance of processing efficiency through collaborative work.

We predicted that if all members of the group attained a high level of ability in
attaining a solution, then the whole group would reach the goal. We adopted digital
materials based on Activity 10 in the lesson to develop personal abilities to solving

 CS Unplugged Assisted by Digital Materials for Handicapped People at Schools 89

this routing problem. The students played the orange game alone (Fig. 5) by using
these materials. All the fruit had to be moved through individual thinking. Therefore,
we expected individual abilities would increase. The fruit could only be placed on a
neighboring player's hand in the same way as in the real game. The number of times
fruit was received was counted. They could focus on learning objectives to simplify
non-essential tasks, such as painting with colors.

Fig. 5. Student in wheel chair (left) and material interface (right)

We taught an experimental lesson in another course at the vocational training
school. First, the lesson began with the 'normal' orange game. Next, we made students
use the materials. Last, the students played the 'normal' orange game again. Then, all
groups were able to reach the goal.

Repeating the same games made some students get the knack of obtaining a
solution. Moreover, we could see how students considered solving the problem by
observing their computer displays. This enabled us to give appropriate advice to
individual students.

The four main comments students made are below.

1. I felt it was hard because I had to move the oranges only by thinking.
2. I could do it well by myself but my group could not.
3. I felt the difference between the flat screen of the personal computer and the actual

three-dimensional sensation was odd.
4. I understood I had been repeating useless movements by using these digital

materials.

Three more tendencies were discovered.

1. Two opposite opinions coexisted. "My group could not do it well but I could " and
"It was hard to think only by myself on the materials".

2. There were some opinions about the differences between the computer screen and
the actual appearance of the fruit.

3. There were many opinions that required the best solution to be indicated in the
materials.

90 H. Manabe et al.

We could infer the relationship between personal ideas and group work, which was
not evidenced in the group activity by observing the students using the materials.
Moreover, we confirmed that students adopting personal learning with the materials
led all of them to think more deeply about the performed algorithm.

4.3 Activity 8 (Beat the Clock) in Second Life

This section introduces the experimental lesson for Activity 8 (Beat the Clock), which
was practiced in a 3D virtual world. The students in this experiment had already
practiced the 'normal' Activity 8 (Fig. 6).

Fig. 6. Activity 8 (Beat the Clock)

This activity dealt with parallel computing where students could learn about this
concept by walking on a parallel sorting network marked on the floor. The network
was constructed with various lines and nodes. This activity was usually practiced by
six students who walked along the lines of the network comparing the numbers on
cards that they held at each node. When the students reached the goal, they could see
that six numbers were perfectly sorted in order. This surprised the students and
aroused their intellectual curiosity.

This activity was dangerous for students who had lower limb disorders. Some
students did not participate in the 'normal' activity to avoid accidents.

However, even disabled students could move around freely in the virtual world by
walking, running, jumping, and flying. A large network had been constructed in
Second Life (Fig. 7) in this research.

First, the students tried to carry out ‘Beat the Clock’ in Second Life. They were
able to execute this without any feelings of danger. Six large cubes and one button
had been prepared in this sorting network area. Each cube had a number written on its

 CS Unplugged Assisted by Digital Materials for Handicapped People at Schools 91

surface. When an avatar pushed the button, the cubes began to move along the
network lines to compare the numbers. The avatars and their users (students) could
watch the movements of the cubes. Some avatars flew into the sky and experienced a
bird's-eye view of all the movements.

They could not look over all the movements in the 'normal' activity. However, they
could recognize what they had done from all viewpoints in the 'virtual' activity. This
meant that virtual activities had other effects that real activities did not.

Most students enjoyed the experience and said they would like to use it more. The
students who could not practice in the real world appreciated this implementation. We
confirmed that the digital environment could remove factors that prevented learning
with CS Unplugged in this research.

Fig. 7. Activity 8 (Beat the Clock) in Second Life

5 Using Digital Materials in High School Lessons

We recognized the effectiveness of the materials in alleviating physical problems
when CS Unplugged was adopted for the practice lessons at the vocational training
school. We also observed that the materials had effects other than assuaging their
physical problems. Consequently, we used them in a high school lesson on a
compulsory subject called 'Information'. We taught the lessons at Hadano-Sogo High
School and observed the students.

5.1 Activity 2 (Color by Numbers)

We began to do 'normal' unplugged activities as we handed out paper and pens to the
students. We found some students who concentrated on painting in dots or who spent
too much time on painting in dots rather than coding data in the primary learning
materials. Therefore, we taught other classes to use the digital materials where
drawing/painting were alternated with clicking. As a result, these problems decreased
and students focused on coding.

92 H. Manabe et al.

5.2 Activity 10 (Orange Game)

The lesson began with the 'normal' unplugged orange game, where the group was
divided into two types of students, in which the first were directors and the second
was directed. The directed students did not seem to think for themselves. Therefore,
we made the students use the materials, where all students cooperated in all
movements by group members. As a result, we found that all students began to think
about the 'effective delivery of packets'.

5.3 Activity 8 (Beat the Clock)

We developed other digital materials (not Second Life) for Activity 8 (sorting
network). We discovered that there were two problems with this activity. The first
was that there were some students who could not understand what this activity meant.
The second was that students could not watch all movements and they did not
understand what was happening.

We implemented a bird's-eye view to solve these problems, where students could
look down on the whole network. We also implemented 'changing the number of
members, where they could increase/decrease the number (data). Students were able
to think about the meaning of this activity and understand all movements by using the
materials after the original activity.

Fig. 8. Photo of Activity 8 (Beat the Clock) with high school student and screen shot

6 Conclusion

We tried to adopt CS Unplugged in the vocational training of disabled students and
tried to support them by using digital teaching materials.

The students’ learning attitudes were very positive in all activities and CS
Unplugged was an appropriate learning method for vocational training for disabled
students.

There were some activities in which disabled students could not participate
thoroughly enough. However, handicapped people also have rights to experience

 CS Unplugged Assisted by Digital Materials for Handicapped People at Schools 93

excellent learning methods such as CS Unplugged. The digital materials supported
them by giving them chances to gain a positive learning experience.

The students in general high school education who used the digital materials
developed by one of the authors, demonstrated three different effects to the students
with disabilities.

1. They could focus on learning objectives to simplify non-essential tasks, such as
painting with colors.

2. They could think about steps in the algorithm by trial and error alone.
3. They could understand the activities by using the bird's-eye view of the entire

activity.

We would like to develop digital teaching materials in the future that are more useful
by listening to the opinions of numerous students and teachers.

References

1. Bell, T., Witten, I.H., Fellows, M.: Computer Science Unplugged: An enrichment and
extension programme for primary-aged children, Lulu (2002)

2. Bell, T., Alexander, J., Freeman, I., Grimley, M.: Computer Science Unplugged: School
students doing real computing without computers. The NZ Journal of Applied Computing
and Information Technology 13(1), 20s (2009)

3. Nishida, T., Idosaka, Y., Hofuku, Y., Kanemune, S., Kuno, Y.: New Methodology of
Information Education with Computer Science Unplugged. In: Mittermeir, R.T., Sysło,
M.M. (eds.) ISSEP 2008. LNCS, vol. 5090, pp. 241–252. Springer, Heidelberg (2008)

4. Nishida, T., Kanemune, S., Namiki, M., Idosaka, Y., Bell, T., Kuno, Y.: A CS Unplugged
Design Pattern. In: SIGCSE 2009 (2009)

5. Kanemune, S., Kuno, Y.: Informatics not using computer. Etext Laboratory (2007) (in
Japanese)

6. Bell, T., Wada, T.B., Kanemune, S., Xia, X., Lee, W., Choi, S., Aspvall, B.: Making
Computer Science activities accessible for the languages and cultures of Japan, Korea,
China and Sweden. In: SIGCSE 2009, p. 566 (2008)

7. Lazzaro, J.J.: Adaptive Technologies for Learning & Work Environments. American
Library Association (2001)

8. Turcsanyi-Szabo, M.: Designing Logo pedagogy for elementary education. In: EuroLogo
1997 (1997), http://eurologo.web.elte.hu/lectures/papthij.htm

9. Norte, S., Castilho, N., Condado, P.A., Lobo, F.G.: GoGoBoard and Logo programming
for helping people with disabilities. In: EuroLogo 2005 (2005)

10. Manabe, H.: Information Classroom Near The Sea, http://www.info-study.net/
(in Japanese)

11. Bell, T., Grimley, M., Bianco, G., Marghitu, D., Manabe, H.: Kinesthetic Computer
Science activities in a virtual world. In: SIGCSE 2009 (2009) (poster)

I. Kalaš and R.T. Mittermeir (Eds.): ISSEP 2011, LNCS 7013, pp. 94–105, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Computer Science in Primary Schools –
Not Possible, But Necessary?!

Ernestine Bischof and Barbara Sabitzer

Alpen-Adria Universiät Klagenfurt,
Institut für Informatiksysteme,

Universitätsstraße 65-67, 9020 Klagenfurt am Wörthersee, Austria
{ernestine,barbara}@isys.uni-klu.ac.at

Abstract. This paper reports on the main results obtained by an Austrian initiat-
ive attempting to broaden the pupils’ view on Computer Science / Informatics
and to create interest in the subject. Pupils from primary school up to upper
secondary school obtained lectures by university teachers spread over a period
of one and a half year. This paper presents one of the lectures and reports the
results obtained in primary schools compared with results from other grades.

Keywords: CS unplugged, primary school, evaluation, view on CS.

1 Introduction

The project Informatik erLeben (experiencing informatics) aims at attracting students
for Informatics as a constructive, technical discipline. However, as the concept of
“Informatics in School” covers in many countries concepts ranging from introducing
pupils into using information and communication technology (ICT) while the project
reported upon is strictly concerned with constructive aspects and basic fundamental
ideas Informatics contributes we rather use the term Computer Science (CS). This is
to help avoiding confusion, since on the tertiary level, the terms Informatics and
Computer Science are used interchangeably anyway. The lessons developed show
pupils of all grades selected core-concepts of Informatics/CS in a playful way and at
an age-specific level. The prepared lessons cover the topics shown in table 1 and
partially presented already in [2].

In table 1, grey fields in table 1 show topics adequate for primary school pupils.
All other topics can be taught to pupils at secondary schools. The table shows that the
core-concepts (first column) are divided into several modules that can be composed
individually. E.g., the network modules (6th row) can be combined with error dete-
ction (2nd row). The topics listed were developed in the course of more than a year
and are continuously enhanced. In general modules are mutually independent. Some
of them contain ideas from CS Unplugged [1]. Topics are selected in cooperation with
the class teachers and presented in interventions1 lasting about 90 minutes.

1 We use the expressions lesson and intervention as synonym. They can contain one or more

modules.

 Computer Science in Primary Schools – Not Possible, But Necessary?! 95

Table 1. Overview of the presented topics

Image
Processing,
Graphics

Colour
Perception

Additive/
Subtractive Colour

Graphic Formats Printing Colour
Depth

Coding Morse Game Creating a Code
with Colours

Code Trees Binary Numbers Error
Detection

Huffman-
Code

Encryption Caesar Cipher Symmetric-key
Cryptography

Public-Key
Cryptography

Hardware Disassembling computers, Animations adequate for different ages
Operating
Systems

OS as a Shop Deadlock
Prevention

Scheduling

Computer
Networks

Chinese
Whispers

Communication
Rules

Postman-Game Addressing and
Protocols

Routing

Algorithms Instructions
how to get
somewhere

Structured
Instructions

Sorting Selection Sort Binary Search-tree Merge Sort
Searching Blind Search Searching in a

linear Structure

Automata
Theory

Finite State
Automata

Pushdown
Automata

In all lessons, the pupils cooperate in groups. Depending on the topic they act

either as part of the computer, serving as data or as object being manipulated by
algorithms, or assuming some role of a program.

Out of principle, computers were specifically not used during the lessons. The
pupils learned, based on activities, simulations, and animations. Important didactical
principals behind the concept are discovery learning and teamwork. The main goals of
the project are:

• To increase/create pupils’ interest in CS
• To especially motivate girls
• To broaden the pupils’ attitude towards CS
• To show teachers that teaching proper CS topics is not as difficult as many of

them assume.

The main focus of this paper is to show differences of the project’s success in primary
school and secondary school. Before describing the evaluation methods and results
one module out of the topics in table 1 is presented as an example in the following
chapter. All teaching units are available in German on the project web-page
http://informatik-erleben.uni-klu.ac.at. In section 3 we describe the evaluation instru-
ments and the obtained results.

2 Automata Theory in Primary Schools

Since not all topics taught in the classrooms can be shown in this paper, an example
presenting some aspects of automata theory is introduced. The unit was taught in
several classes.

96 E. Bischof and B. Sabitzer

In our daily life we find automata everywhere and in numerous variants such as
coffee or chewing gum vending machines. The states and actions of these automata
are comprehensible for children as well. Consequently, they are a good introduction
into the field of theoretical informatics. In a 4th grade of a primary school automata
theory was introduced by pupils “playing” or animating a chewing gum vending
machine.

The unit (90 minutes) began with some questions like “Do you know some
automata/machines? What can you do with these machines? What happens in a
chewing gum vending machine? Which steps are necessary in order to get the
product? What kinds of states are there (e.g. ready or finished)? What does the
vending machine do? How does it know what to do? What happens when we don’t
insert enough money?”

Based on the questions and answers the main concept and vocabulary of finite-state
machines were explained: There is always a start and a final or accept state, an input
alphabet and one or more transition actions depending on the input and/or the actual
state. All states and actions can be described by a transition diagram or a transition
table which will both be shown and animated in this unit [3].

After these explanations the state diagram (figure 1) of a vending machine was
presented by a poster that the children should learn to read.

Fig. 1. State diagram of a chewing gum machine

The “route” from entering some money to receiving the chewing gum that costs 30
cent, was slowly shown on the diagram accompanied by questions and instructions
like the following:

“The chewing gum vending machine is ready to start; it is in the initial state ’z0’
(indicated by the circle at the top of the diagram. If we don’t insert anything ’0‘2 (0
Cent) or press the key ’F‘ (finished), the machine remains in the same state (indicated
by the transition arrow labeled with ’0, F‘). What happens when we insert a 10 cent
piece? – The machine passes to the state ’z10‘ (indicated by an arrow labeled with
’10‘) and waits for more money. Which state will follow when we insert 20 cent more
(”z30”)? What happens, when we insert already 20 cent at the beginning? How much
do we have to insert now?”

2 Representing “insert nothing” by “0” has been used as didactical vehicle to transit from the

operators, i.e., the pupils, view to the machine view. Thus, these superfluous zeros are ex-
plained away during the process.

States
z0 initial state, start, and final state
z10 10 cents already inserted
z20 20 cents already inserted
z30 30 cents already inserted
Input
0/10/20 insert 0 (nothing) /10/20 cent
F press “Finished”-key

 Computer Science in Primary Schools – Not Possible, But Necessary?! 97

Besides the diagram, the transition table for the same machine has been shown and
read step by step as well. The children were then asked which type of presentation
they preferred – the table or the diagram. Which one was easier to read and to
understand? The answer was interesting: only four boys preferred the transition table.
The other 15 pupils (5 boys and 10 girls) said that the diagram was easier to follow.

Then the pupils were asked to animate this vending machine. At first, the children
representing the states (z0, z10, z20, z30) got a label and were placed at the front of
the classroom according to the diagram on the poster. Those who didn’t want to act
should observe the animation and try to give instructions. The child representing the
final state z30 got also a box with chewing gums. One child, who wanted to “buy” a
chewing gum, got coins of 10 and 20 cent. He had to go to the child representing the
start state z0 and give him a 10-cent-coin. The “start state” had to pass the coin to the
“state” z10 who requested the buyer to give him additional 20 cents. The whole 30
cents were given to the child representing the final state z30. Then the buyer had to
press the key “F” (for “Finished”) and finally got a chewing gum. At last, the chewing
gum machine is ready again, so the final state in this example corresponds to the
initial state z0. In a second turn, another child could buy a chewing gum with another
variation of coins.

After this animation the children should design their own machine. They were
divided into four groups and each group chose another machine. Three groups
designed automata corresponding to the presented vending machine for a pizza, a
candy and a cup of coffee. One group of four boys tried to design a mobile telephone.
This group was very engaged and interested. Certainly, the diagram wasn’t perfect,
but in view of the time available for this lesson the result was surprisingly good.

As in the described unit all other modules try to activate the pupils by playing
animations.

After this demonstrative example, the paper presents the evaluation methods used
and results of project.

3 Instruments and Results

Lessons on topics mentioned in table 1 were conducted in several classes and were
evaluated by a spectrum of methods, including the teachers’ opinions as well as the
pupils‘ feedback. The following fields were investigated:

• Pupils’ interest in informatics.
• Pupils’ perception of informatics.
• Pupils’ attitude towards the interventions.
• Teachers’ willingness to teach the concept on their own.
• Differences between girls and boys, regarding the interest in informatics.

3.1 Population and Instruments

The subjects were pupils from primary school, lower secondary school and upper
secondary school. Altogether 18 groups/classes participated in the first session of
Informatik erLeben with a total number of more than 300 students. For the evaluation

98 E. Bischof and B. Sabitzer

we tried different approaches. Each class participated in three lessons of Informatik
erLeben, which took about two hours each. Table 2 shows the distribution of the
participating classes with the grades and age of the pupils.

Table 2. Population and grades

Grade Age of the pupils
Number of

classes/groups
Primary School 6-10 7
Lower Secondary School 10-15 8
Upper Secondary School 15-19 3

To get an overall impression of the effects on pupils and teachers, five evaluation

instruments were used. In upper secondary schools we used only a few evaluation
instruments due to the low number of groups. The following chapters describe the
methods of evaluation and the resulting outcomes.

3.2 Comparing Terms Concerning or Non-concerning CS

It was not easy to find an instrument to evaluate the views and attitudes of the
students. We tried an approach with questions that were given to the pupils before and
after our interventions.

Each pupil should answer two questions out of the following pool:

• What can you do with informatics?
• What do you consider to be the most interesting aspect of informatics?
• Where are you successful with informatics?
• Informatics is for me.

After the given interventions, the answers were compared and analyzed to determine
if the answers were more related to concepts of informatics than before the
interventions. Table 3 shows examples of statements mentioned by pupils.

Table 3. Categorization of terms for the evaluation (examples)

CS related Not CS related
Learn a lot about technology Computer games

Technology Chatting
Bus Writing

Calculating Printing
Structure of a computer To search information

Graphics file format Listening to music
Processor Watching videos

Main memory Internet shopping

 Computer Science in Primary Schools – Not Possible, But Necessary?! 99

The comparison of the answers has shown obvious differences before and after the
interventions.

Table 4. Percentage of pupils mentioning CS-related concepts

 Before the
interventions

After the
interventions

Primary school 16,9%
(n=166)

49,4%
(n=162)

Lower secondary
school 18,8% (n=48) 50% (n=18)

As shown in table 4 about half of the pupils could be influenced in their view on

computer science by the three interventions at school. Compared with the evaluation
results described in [5] this is a relatively high percentage and shows that the
evaluation instrument was adequate for this task. Still, pupils from lower secondary
school had a more concrete idea of the subject than before our interventions.

3.3 Observation of Pupils’ Attention

The observation of the pupils’ attention involved the teachers observing their
students. Based on the assumption that pupils are attentive only if they appreciate the
situation, the results show whether a pupil likes the lesson or not. To assess the
pupils’ attention, teachers were asked to note each pupil’s attention in a form
containing the following scale (adapted from [4]):

• On-task passive: pupil follows the lesson passively.
• On-task active: pupil follows the lesson actively on his/her own.
• On-task reactive: pupil follows the lesson actively by reacting to a question.
• Off-task passive: pupil doesn’t follow the lesson, but doesn’t disturb.
• Off-task disturbing: pupil doesn’t participate to the lesson and disturbs.

The form was divided into four categories according to the different teaching methods
used during the lessons. With multiple entries, the teachers could express the pupils’
attention. The units presented in the classes varied and, therefore, the total number of
pupils observed in a particular category varies.

Intermediate results of the pupils’ attention were already published in [2]. With the
final evaluation of the first project-round all observation results are now available.

The observation of the pupils’ attention has shown that the younger pupils were
more attentive than the pupils from secondary school. The tables show a shift from
the status of on-task active to the status of on-task passive with increasing age of the
students.

Table 5 shows that most of the primary school kids were active during the lessons
in all methodical categories. This attention shows that they liked the lessons and that
they were interested in the topics.

100 E. Bischof and B. Sabitzer

Table 5. Attention of the primary school kids

Lecture

part
(n=147)

Observation
and

animation
(n=164)

Individual
work

(n=78)

Pair/group
work

(n=147)

On-task
passive

15 12 6 14

On-task
active

105 155 69 106

On-task
reactive

40 45 29 27

Off-task
passive

3 3 1 0

Off-task
disturbing

2 0 0 1

Table 6. Attention of the lower secondary school pupils

Table 7. Attention of the upper secondary school students

Lecture
part
(n=26)

Observation
and
animation
(n=15)

Individual
work
(n=6)

Pair/group
work
(n=18)

On-task
passive

11 8 2 5

On-task
active

6 5 6 13

On-task
reactive

3 2 0 0

Off-task
passive

4 0 0 0

Off-task
disturbing

2 0 0 0

 Computer Science in Primary Schools – Not Possible, But Necessary?! 101

The pupils from lower secondary schools followed the lessons as well but some of
them were especially passive during the lecture part. Whereas most of them worked
actively during the student centered parts. A continuation of this trend can be
observed concerning attention of students from upper secondary schools.

Generally one can say that primary school pupils were more enthusiastic and active
during the lessons compared to older pupils. However, the older pupils were also
active, especially during the learner centered parts of the lessons. This indicates that
also in other subjects learner centered methods should be preferred by the teachers.

3.4 Student Questionnaire

After finishing the project, a questionnaire was given to some classes. The aim of the
questionnaire was to investigate the interests of the pupils and to determine, if they
liked the lessons as well as to detect gender differences. The most important results
are presented below. Table 8 shows the population that was given questionnaires.

Table 8. Population for the questionnaire

Grade Number of pupils
Primary school 27
Secondary school (10-12 years old) 97
Secondary school (13-15 years old) 13

Describing the entire results and questions of the questionnaire used would exceed

the scope of this paper. Only the most interesting results are described below. The
entire results are described in [6].

Evaluation of the questionnaire has revealed that primary school kids are still much
more interested in informatics than kids from lower secondary school. Fig. 2 shows
the decline of interest with increasing age of the pupils.

Fig. 2. Interest in informatics (n=27, 97, and 13)

0,00
10,00
20,00
30,00
40,00
50,00
60,00
70,00

yes rather
yes

rather
no

no

Are you interested in informatics?

primary school

secondary school
10-12

secondary school
13-15

102 E. Bischof and B. Sabitzer

In primary schools more girls (93%) are interested in informatics than boys (75%). In
lower secondary schools this changes and in both age categories (10-12 and 13-14)
more boys are interested. 100% of the primary school pupils think that after the
interventions, the term informatics is clearer for them and that they understand it better.

In another question, the children were asked if our interventions at school changed
their interest. Fig. 3 shows the interesting result, that the younger the pupils are, the
more easily they can be influenced in their interest. Considering gender, especially
girls from primary school could be influenced. All girls were interested in informatics
after the interventions.

Fig. 3. Change of interest due to the interventions (n=27, 97, 13)

Reflecting on these results yields that it is very important to start at an early age to
broaden the pupils’ image of CS and to create interest. Especially in primary schools
the interventions were very successful. While some boys were already interested in
informatics before, all participating girls could be influenced. These findings are
important for future work in encouraging girls for technical fields. It would not be
enough to just create the interest in the primary school. Pupils must have the
possibility to attend exciting CS lessons during all grades. Because primary school
kids are very open and enthusiastic towards new topics and concepts, it is necessary to
bring more technical topics in all primary schools.

Another question has revealed that gender-stereotypes are growing with the pupils’
age. As shown in Fig. 4 most children from primary school think that girls are as
talented for computer science as boys.

About 50% of the pupils from secondary school between 13 and 14 still think that
boys and girls are equally suitable for computer science. Most of those who don’t
agree, think that boys are more suitable for computer science. Looking at the gender
specific result, it can be said that especially boys think that they are more suitable for
computer science than girls.

This gender specific shift underlines the fact that technical interest should be
increased already at an early age.

0,00
20,00
40,00
60,00
80,00

100,00

yes no, already
interested

before

no, the
interest
didn't

change

Did the interventions change your interest in
informatics?

primary school

secondary school
10-12

secondary school
13-15

 Computer Science in Primary Schools – Not Possible, But Necessary?! 103

Fig. 4. Suitability for informatics (n=27, 97, 13)

3.5 Feedback Letters from Pupils

Some of the teachers asked their pupils to write feedback letters to the university
teachers. These letters usually don’t have a special format and gave feedback either in
the whole project or on special lessons.

The voluntary feedback letters from the pupils support the findings from the
interviews described so far.

Except for one class from a secondary school, the feedback of the pupils was
totally positive. They appreciated the topics and the teaching methods. Especially
girls, particularly those from secondary school, mentioned the alternative teaching
methods that were learner centered. This feedback correlates with the findings
regarding the attention described in 3.3.

3.6 Teachers’ Interview

Teachers from all grades were interviewed. The table shows the number of inter-
viewees for each grade.

Table 9. Number of teachers interviewed

Grade Number of interviews
Primary school 6

Lower secondary school 4
Upper Secondary School 2

The goal of the interviews was, on the one hand, to find out the attitude of the

teachers towards the concept of the interventions, and on the other hand, to see their
opinion about the pupils’ interest. To motivate the teachers to partake in the

0,00
20,00
40,00
60,00
80,00

100,00

no, girls
are

better

yes no, boys
are

better

Do you think that girls and boys are
equally talented in informatics?

primary school

secondary school
10-12

secondary school
13-15

104 E. Bischof and B. Sabitzer

interviews we decided that the interviews should not be longer than about 10 or 15
minutes. This had the negative effect that the questions were rather superficial.

From the 18 groups taking part in the project 12 teachers were willing to do an
interview. The twelve teachers interviewed confirmed the results about the pupils’
interest. Only a few teachers considered the interest of their pupils lower than the
pupils themselves.

The more important goal was to find out the attitude of the teachers towards
teaching core-concepts of Informatics in the presented way, i.e., without computer
and in a playful manner. All teachers appreciated the attempt to interest their pupils
for computer science. In Austria there is no subject “Informatics” in primary school.
All primary school teachers mentioned that there is a lack of technical topics in the
curriculum of primary schools. They liked the interventions and are willing to teach
the topics on their own. Some teachers from secondary school have doubts, though,
that they are able to teach these topics.

It should be mentioned, that in Austria, most teachers who teach Informatics have
not studied computer science. They originally studied other subjects and got their
informatics education via in-service courses. Because of this, they all appreciated the
didactical hints and the teaching material provided on the project page
(http://informatik-erleben.uni-klu.ac.at).

4 Conclusion

The evaluation has shown that teaching Computer Science in primary school by the
approach of Informatik erLeben was very successful. In fact the evaluation has
revealed that especially pupils from primary school could be enthused with our
lessons. The success declines with the age of the pupils/students. This underlines the
importance of such initiatives already at an early age. With the declining number of
CS students, also at the international level, as reported in [7], such initiatives are
becoming important in many countries. As the example in this paper shows, core-
topics of Informatics can easily be taught in primary school at an adequate level.

We hope that our positive experiences with young children will motivate others to
teach more technical topics at primary school.

References

1. Bell, T., Witten, I.H., Fellows, M.: Computer Science Unplugged. An enrichment and
extension programme for primary-aged children, http://csunplugged.org/ (April
5, 2011)

2. Mittermeir, R.T., Bischof, E., Hodnigg, K.: Showing Core-Concepts of Informatics to Kids
and Their Teachers. In: Hromkovič, J., Královič, R., Vahrenhold, J. (eds.) ISSEP 2010.
LNCS, vol. 5941, pp. 143–154. Springer, Heidelberg (2010)

3. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, USA (1979)

4. Helmke, A., Renkl, A.: Das Münchner Aufmerksamkeitsinventar (MAI): Ein Instrument zur
systematischen Beobachtung der Schüleraufmerksamkeit im Unterricht. Diagnostica 38(2),
130–141 (1992)

 Computer Science in Primary Schools – Not Possible, But Necessary?! 105

5. Taub, R., Ben-Ari, M., Armoni, M.: The Effect of CS Unplugged on Middle-School
Students’ Views of CS. SIGCSE Bulletin 41(3), 99–103 (2009); Proc. 14th SIGCSE on
Innovation and Technology in CS Education (ITiCSE 2009)

6. Bischof, E.: Interventionen im (Informatik-) Unterricht. Ein Versuch bei SchülerInnen das
Bild der Informatik zu erweitern. Dissertation. Alpen-Adria Universität Klagenfurt (2011)

7. Curzon, P., Cutts, Q.I., Bell, T.: Enthusing & Inspiring with Reusable Kinaestetic
Activities. SIGCSE Bulletin 41(3), 94–98 (2009); Proc. 14th SIGCSE on Innovation and
Technology in CS Education (ITiCSE 2009)

I. Kalaš and R.T. Mittermeir (Eds.): ISSEP 2011, LNCS 7013, pp. 106–116, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Pre-service Computer Science Teacher Training within
the Professional Development School (PDS)

Collaboration Framework

Noa Ragonis and Anat Oster-Levinz

School of Education,
Beit Berl College,

Doar Beit Berl, 44905, Israel
{noarag,anato}@beitberl.ac.il

Abstract. The professional development school (PDS) represents a
collaborative framework between high schools and teacher training institutions.
The main objective of the PDS is to deepen the student teachers' involvement in
the school, to expose them to the variety of teacher work tasks, and to provide
them with a wide range of experiences. This paper focuses on the development
and implementation of a computer science (CS) student teacher practicum
program that takes place within the PDS framework. We present the significant
advantages that can be gained using PDS principles and demonstrate different
activities performed in order to gain them within the training of CS student
teachers. The paper reflects the accumulative knowledge acquired over the past
five year at the Beit Berl College, Israel. We believe that this paper will
contribute to the community of CS teacher preparation educators.

Keywords: CS student teachers, CS practicum, CS teachers’ preparation
program, CS PDS practicum, PDS.

1 Introduction

A great deal of attention has been devoted in recent years to the importance of
computer science (CS) teacher preparation programs. Such training programs are
recognized as one of the key components in the establishment of successful high
school CS curricula [10]. This increased attention is reflected in the number of
publications devoted to CS teachers training [1, 2, 9, 15, 16, 18] and in several
publications of the Computer Science Teachers Association (CSTA), the leading CS
teachers organization in the US, which focus on CS teachers training [4, 5, 21].

The two main teachers training tracks offered are: (1) Teaching certificate studies
offered to graduate students who already have a bachelor's degree in CS; (2) Bachelor
of Education (B.Ed.) studies that include disciplinary studies alongside extensive
educational studies and also provide a teaching certificate. Both tracks include three
main tiers: disciplinary studies, general education and pedagogical studies (e.g.,
educational psychology), and pedagogical-disciplinary studies, which focus on

 Pre-service Computer Science Teacher Training 107

principles and tools used to teach concepts included in the CS knowledge domain.
The pedagogical-disciplinary studies relate to the pedagogical content knowledge
(PCK), which refers to what a teacher is required to know in order to teach a certain
subject matter, how to make it understandable, learners’ preconceptions and
misconceptions, and strategies for coping with learners’ misconceptions [19], [20].
PCK is usually acquired in a Methods of Teaching CS course and during a practicum
in school classes.

This paper focuses on the practicum of CS student teachers in school classes and
presents an example of a practicum structure that implements the professional
development school (PDS) framework for training CS student teachers. As
background information we will present the common kind of practicum that exists in
teacher preparation programs, followed by a presentation of the main principles of the
PDS framework and how those principles are reflected in the extensive practicum.
Finally, we will present the setting and the method of implementing the PDS
practicum among CS student teachers at the Beit Berl College. The potential
contribution and benefits that can be gained from integrating the PDS practicum
model will be demonstrated using specific examples.

2 Practicum Background

Most teacher preparation programs include a practicum in school classes. The main
objectives of the practicum are to enable the student teachers to experience their
future field of work and to comprehend the scope and uniqueness of real teaching
before becoming CS teachers. Here we address the more common kind of practicum
and discuss the rationale and implementation of the comprehensive practicum in the
spirit of the PDS.

2.1 The Practicum in Teacher Preparation Programs

The in-school practicum is usually based on two activities performed by the student
teachers, namely observing lessons and teaching lessons. The extent of the practicum
activities varies among institutions. Some programs require that the practicum be
performed for a specific, relatively short period; others require a full year of
participation in school activities [8]. One example of limited practicum requirements
is to observe five lessons and to teach three lessons. Hazzan and Lapidot [11] address
the attention given to the central rule of the student teachers' practicum, by
recommending ways in which it can help bridge gaps between theoretical knowledge
and actual performance. Another framework for bridging this gap is a tutoring
program, which is integrated into teacher preparation programs, in which student
teachers guide learners in problem-solving processes, as presented in [17].

2.2 The PDS Practicum Framework

The difficulties experienced by new teachers entering their field of work are widely
recognized as a major cause of the high dropout rate of new teachers from the school

108 N. Ragonis and A. Oster-Levinz

system. The PDS collaboration framework aims to assist teachers in taking their first
steps in their professional career.

The rationale of the professional development schools is to form innovative
foundations through partnerships between schools and professional education
programs within academic institutions [3]. A PDS is a collaborative effort to improve
the initial preparation of teachers and to enhance the professional development of
classroom teacher. A PDS is a learning-centered community and its partners are
guided by a common vision of teaching and learning that is grounded in research and
practitioner knowledge. According to the PDS approach, the collaboration enhances
change and mutual development in both systems (academic institute and school) and
minimized the gap between them [6, 13, 14]. This empowers the prospective teachers
and gives them a broader base for their future work as teachers. Through the PDS
framework, student teachers can gain a unique benefit from a real teaching experience
and form strong connections between theory and practice.

The implementation of the PDS is strongly based on collaboration whose
objectives within a specific school are determined jointly by all partners: school
administrations, subject-matter teachers, and the teacher preparation institute. The
integrated objectives are designed to advance the mutual interests of all partners. The
building of a learning community is based on the sharing of disciplinary and pe-
dagogical knowledge, reflective processes, research on the teaching of the discipline,
bridging between theory and practice, construction of teaching-learning activities,
planning of long-term projects, and encouraging initiatives [22].

CS student teachers at Beit Berl College experience this extent and collaborative
type of practicum, as presented and illustrated in this paper.

3 The PDS CS Practicum Setting

3.1 The Student Teachers

Student teachers who participate in the practicum at Beit Berl College are studying
towards a high school CS teaching certificate, which is mandatory in order to become a
teacher in Israel. The student teachers come from two main populations: (1) student
teachers studying for a B.Ed. degree, which includes CS disciplinary studies; (2) student
teachers who already have a BSc degree in CS and wish to obtain a teaching certificate
as well. Approximately 8-15 student teachers participate in the practicum each year.

3.2 The High School CS Curriculum

CS is an elective subject-matter in the Israeli high school curriculum. The Israeli high
school CS curriculum comprises five units (90 school-hours each), as presented
in Table 1, which are covered by the student teachers' practicum in the high
school [7].

 Pre-service Computer Science Teacher Training 109

Table 1. The Israeli high school curriculum

Unit Content
Units 1-2 Fundamentals of computer science (in Java or C#)
Unit 3 Choice of an alternative programming paradigm: logic

programming, functional programming, or internet
programming.

Unit 4 Software design, modularization, and ADT: stacks,
lists, and trees

Unit 5 Choice of a theoretical topic unit: automata theory,
object-oriented programming, or operations research.

3.3 Main Objectives of the Practicum

The objectives of the student teachers' practicum within the PDS in a specific school
are defined on three levels [12]:

(1) Social-institutional collaboration – exposing the student teachers to the school
as an active institution and involving the students in the school activities.
Examples of such activities are: facilitating a volunteer project, coping with
challenges of special-needs pupils, and collaborating with CS teachers in
routine tasks during recesses throughout the school day.

(2) Collaboration in the teaching field – actively involving the students in various
teaching activities, such as establishing and running online learning days
programs at the school, guiding research and projects, providing weaker
students with individual assistance, integrating student teachers into teaching
and into writing, assessing, and marking of examinations.

(3) Professional advancement – developing a professional learning community in
the school that comprises student teachers, pedagogical supervisors, and
mentor teachers. We consider this level to be the most important one.

4 Training CS Student Teachers within the PDS

In this section, we present the training process of CS student teachers at Beit Berl
College within the PDS collaboration framework. The implementation of the PDS is
unique to the CS practicum and was established by the second author of this paper. In
what follows, we address the schedule of a typical day of practicum, the method of
implementing the practice of teaching, the rationale and implementation of a full
week of practicum, some additional practice activities, and the evaluation of CS
student teachers within the PDS collaboration framework. In our discussion we use
the following definitions: a student teacher is a student who is enrolled in the
academic practicum course, a mentor teacher is a subject-matter high school teacher
involved in the practicum of the student teachers, a pedagogical supervisor is a
lecturer at an academic institute who teaches the practicum course and is present
during all of the student teacher's practicum days at school, and a pupil is a high
school student.

110 N. Ragonis and A. Oster-Levinz

4.1 The Schedule of a Typical Day of Practicum

Each student teacher practices at school for one day a week throughout the entire
academic year. At the beginning of the academic year, a meeting is held between the
student teacher, the mentor teacher, and the pedagogical supervisor with the objective
of constructing a schedule for the student teacher's practicum day at school. Each
student teacher has a daily schedule that is both individual and flexible and can be
changed during the school year to include various experiences.

A typical practicum day at school consists of a combination of the following
activities:

(a) Observing lessons - The student teachers observe lessons in the mentor
teacher's classes, including lab lessons.

(b) Teaching lessons - The student teachers teach lessons, gradually expanding
their extent. At the beginning of the year, they teach only a part of a lesson; for
example, they may explain part of a program to the class. Later on, they may
teach a full problem-solving process progressing to teaching an entire lesson,
for example, on nested If statements. By the end of the year they teach an
entire teaching unit, for example, arrays.

(c) Active participation - The students teachers are active participants in CS staff
meetings (the learning community), in which various teaching issues are
addressed, for example, the issue of integrating visualizations.

(d) Developing and grading tests - The student teachers develop tests (for
example, a final test on loops) together with the mentor teacher and the
pedagogical supervisor, and help the mentor teacher grade the pupils' tests.

(e) Supporting pupils with special needs - The student teachers help pupils with
special needs during tests, for example by reading and dictating tests.

(f) Fulfilling teacher obligations - Student teachers are also involved in other daily
obligations of teachers, for example, monitoring pupils in the school yard
during recess, a duty all teachers must fulfill.

(g) Personal meetings - Student teachers hold personal meetings with the mentor
teacher and pedagogical supervisor.

(h) Group discussions - The student teachers, as a group, have discussions with
other student teachers from the same discipline or from other disciplines on
various class learning abilities, successful events, and difficulties that arose
while teaching.

(i) Tutoring pupils - Student teachers tutor pupils in their problem-solving
processes, guide them and help them overcome their obstacles.

Since it is clear that all of the above activities cannot be achieved during each and
every day of the practicum, the student teachers' schedules are flexible so that they
have the opportunity to practice the various activities throughout the entire year.
Table 2 presents an example of a student teacher's practicum schedule at the
beginning of the year.

 Pre-service Computer Science Teacher Training 111

Table 2. Example of a student teacher's day of practicum

Lesson Program
1 Observing a Grade 12 computer lab lesson given by the mentor teacher.
2 Observing a Grade 12 lesson on binary trees given by the mentor teacher.
3 Meeting with the mentor teacher and pedagogical supervisor concerning

issues that arose during the binary trees lesson.
4 Computer science staff meeting. Main issue: composing a Grade 10 test

on If statements.
5 Meeting with the pedagogical supervisor in preparation for teaching a

lesson on two-dimensional arrays in Grade 11 that will take place the
following week.

6 Meeting with the pedagogical supervisor and all CS student teachers in
preparation for the tutoring activity.

7 Tutoring Grade 10 pupil. Main topic: If statements.

In addition to the various activities discussed above, the student teachers are also

responsible for leading special initiatives in the school. Such initiatives are usually not
directly related to CS, but school officials consider the CS students teachers and their
pedagogical supervisor as part of the professional information and communication
technologies (ICT) community. For example, student teachers may lead an Online
Day in which all students stay at home and participate in online activities in various
disciplines. The CS student teachers help the school teachers develop the online
activities and help them activate the activities throughout the Online Day. Another
example of an ICT school activity is running a simulation program for computerized
elections, which student teachers can develop during a national election year and
which the school can use on Election Day to simulate an election process.

4.2 Practice Teaching

Preparing a lesson to be taught by a student teacher requires a cooperative learning
process in which the student teacher consults and collaborates with the pedagogical
supervisor and mentor teacher.

The CS student teacher must:

(a) coordinate the lesson time and topic with the mentor teacher;
(b) establish aims and operative goals for the lesson;
(c) plan the lesson sequence in consultation with the mentor teacher and/or

pedagogical supervisor (at the beginning of the year the student teacher
receives detailed guidance for lesson planning and by the end of the year he
or she is expected to act independently);

(d) plan tasks and activities related to the aims and operative goals that are
compatible with the learners' knowledge, abilities, and diversity. The lesson
can incorporate various kinds of classroom activities (e.g. whole-class,

112 N. Ragonis and A. Oster-Levinz

pair/group work activity, lab activity) and student teachers should use a
variety of teaching tools (e.g. media, games, role playing, and simulations);

(e) develop all required tasks and activities in detail, including solutions, and
allocate the time required for each task or activity (i.e. make a lesson
timetable). The student teacher should be aware of the logical progression of
the sequence of activities;

(f) discuss the lesson plan with the pedagogical supervisor and mentor teacher
(online or in person). Such conversations may deal with the best solution to
be presented to pupils in class or they may focus on the order of the tasks or
on how to explain the task or the solution.

Ultimately, the student teacher is responsible for all of the above.
In the sequel, we present an example of a discussion between a student teacher

(ST) and his pedagogical supervisor (PS). The two had previously decided that the
student would teach in a 12-grade class a lesson on how to insert a new element into a
sorted list.

Part of the online conversation between the student teacher and the pedagogic
supervisor regarding the sequence of the lesson was as follows:

ST: I'm wondering how to start the lesson.
PS: There are several ways to start a lesson; we spoke about them last week…
ST: I'm thinking about demonstrating a chain on the board….
PS: What about a role play with the students?
ST: I don't think that will work with 12-graders.
PS: You'd be surprised to see the pupils' enthusiasm about participating in a role

play!

Ultimately, the student teacher initiated a role play in the class: the pupils' role was to
be elements in a sorted list and one pupil was the new element that was to be inserted
into the proper position into the sorted list. The demonstration focused on several
different cases: (1) The element must be inserted as the first element in the list; (2) the
element must be inserted at the end of the list; and (3) the element must be inserted
into the middle of the list.

When a student teacher teaches a lesson, all other CS student teachers in the course
are invited to observe it. A feedback discussion is conducted at the end of each
student teacher's lesson, led by the pedagogical supervisor. The mentor teacher and
the other CS student teachers, who observed the lesson, participate in this discussion.
The feedback session starts with the student teacher who addresses his or her feelings
during the lesson, reflects on the lesson plan compared with its implementation, and
on what in his or her opinion was done properly and what needs to be improved. The
student teacher directs the discussion to the issues he or she deems important.

CS student teachers usually experience more teaching than do student teachers in
other disciplines. This is because the practicum must cover both regular classroom
lessons and computers lab lessons, which provide the CS student teachers with many
opportunities to teach small groups of pupils. The pupils in 10th and 11th grades are

 Pre-service Computer Science Teacher Training 113

highly heterogenic and diverse, so mentor teachers use the opportunity to divide the
class into smaller and more homogenous groups, thus providing a more suitable
learning process for the pupils and a good practice opportunity for the student
teachers.

4.3 A Full Week of Practicum

In addition to the individual practicum days, the annual practicum plan includes two
full weeks of practice at school, one in each of the two semesters, during which there
are no lectures at the college and the student teachers spend the entire week at school.
This is a unique opportunity to experience the continuity of the teacher's work.

The goals of the week-long practicum (as opposed to single days) are: (a) to
expand the student teachers' opportunities for acquaintance with the school system,
including all of its strata and activity settings, which student teachers are unable to
experience during their one-day-a-week practicum; (b) to enable the student teachers
to teach a sequence of lessons; (c) to give student teachers an opportunity to
authentically experience the teacher's work during an entire week, which helps them
understand the complexity of the teacher's work at school; (d) to enable a meaningful
dialogue with mentor teachers, school staff, other student teachers, and the
pedagogical supervisor in order to fully understand the underlying aspects of various
educational processes; and (e) to enhance informal relationships among student
teachers, mentor teachers, and high school pupils, mostly as practice for developing
relationship with their future teaching partners.

It is our experience that a full week of practicum enriches all PDS partners. During
this week, the CS student teachers teach in different classes, something they never
experience during a single day of practicum, enabling them to become acquainted
with various learning methods. They also have the opportunity to sit in on homeroom
classes and participate in other school activities.

During the two weeks of practicum, the student teachers also join their pedagogical
supervisors on visits to various high-tech companies and other high schools that
implement different alternatives of the CS curricula or have special, state-of-the-art
computer labs. The objective of these activities is to expand as much as possible the
student teachers' school experience, as well as their CS knowledge.

4.4 Evaluation of the Student Teachers

The evaluation of student teachers within the PDS collaboration framework refers to
the entire process that they undergo. The student teachers' teaching skills are
evaluated as is their performance in all other activities that take place within the PDS
collaboration partnership. The main objective of the evaluation is to monitor the
student teacher's improvement throughout the process, from the beginning of the
school year to its end. Table 3 presents the main components of student teacher
evaluation within the PDS collaboration framework.

114 N. Ragonis and A. Oster-Levinz

Table 3. Student teacher evaluation components within the PDS collaboration framework

Content Knowledge

Demonstrates ability for self-education.

Demonstrates knowledge of the relevant contents of instruction required for
teaching CS in school.

Provides multiple and varied explanations, examples, and details to support the
topic.

The content of instruction suits the students' level.

Pedagogical Knowledge

Structure of the lesson: Detailed lesson plan; opening of lesson; logical
progression/sequence of activities; smooth transitions from stage to stage; timing,
pacing of the lesson; closure.

Teaching Performance: Demonstrates knowledge of the school's CS curriculum;
demonstrates effective use of questioning skills; exhibits strong presence in class;
provides effective feedback; gives clear instructions; uses the board and/or other
instruction media effectively; uses program visualizations in class; monitors
students' work; uses effective management techniques (discipline); incorporates
various types of activities; uses materials and tasks that are compatible with the
students' heterogeneity; provides opportunities for students to engage and pursue
interests.

Classroom Environment

Creates a supportive learning environment (allows students to err and take risks,
provides opportunities for every student).

Provides opportunities for peer/group interaction (mostly in the lab).

Professional and Collaborative Responsibilities

Is punctual; assumes responsibility; is polite; maintains school formalities; exhibits
good rapport with students/peers/teachers; shows interest in the school system.

Is open to suggestions and comments.

Works well with peers and colleagues.

Shows initiative and is active in teaching as well as in other school activities (such
as tutoring or Online Day).

Test lesson
The student teacher is graded on his/her teaching of a lesson.

 Pre-service Computer Science Teacher Training 115

5 Summary

The purpose of the traditional practicum is to develop the pre-service teacher's
understanding of complex classroom situations associated with the teaching of the
subject matter. The PDS collaboration framework promotes this understanding in a
broader and deeper manner, and offers a comprehensive training program in which
student teachers experience a variety of teacher tasks that relate both to the entire
school structure and to the specific discipline taught. In this paper, we discussed the
objectives and principles of the PDS, describing the unique training process for CS
student teachers and highlighting the advantages of various activities that CS student
teachers experience within this framework.

We will close with a quote from the practicum syllabi:

"Life at school is rich in events. The school and college staff invests
great efforts in organizing a plentiful learning environment for you. All
you must do is cooperate, take responsibility for your learning, and
exhibit high motivation. Both staffs are more than willing to assist you."

References

1. Bell, T., Lambert, L.: Teaching Computer Science Majors about Teaching Computer
Science. In: 42th SIGCSE Technical Symposium on Computer Science Education, pp.
541–546. ACM, New York (2011)

2. Blum, L., Cortina, T.J.: CS4HS: an Outreach Program for High School CS Teachers. ACM
SIGCSE Bulletin 39(1), 19–23 (2007)

3. Clark, R.W.: Effective Professional Development Schools: Agenda for Education in a
Democracy, pp. 3–4. Jossey-Bass, San Francisco (1999)

4. CSTA: Computer Science State Certification Requirements - CSTA Certification
Committee Report (2007),
http://www.csta.acm.org/ComputerScienceTeacherCertification/
sub/TeachCertRept07New.pdf (April 2011)

5. CSTA: Ensuring Exemplary Teaching in an Essential Discipline: Addressing the Crisis in
Computer Science Teacher Certification, Final Report of the CSTA Teacher Certification
Task Force (2008),
http://www.csta.acm.org/Communications/sub/DocsPresentationF
iles/CertificationFinal.pdf (April 2011)

6. Darling-Hammond, L.: When Conceptions Collide: Constructing a Community of Inquiry
for Teacher Education in British Columbia. Journal of Education for Teaching 27(1), 7–21
(2001)

7. Gal-Ezer, J., Harel, D.: Curriculum and Course Syllabi for a High-School CS Program.
Computer Science Education 9(2), 114–147 (1999)

8. Gal-Ezer, J., Hazzan, O., Ragonis, N.: Preparation of High School Computer Science
Teachers: The Israeli Perspective. In: 40th SIGCSE Technical Symposium on Computer
Science Education, pp. 269–270. ACM, New York (2009)

9. Grugurina, N.: Computer Science Teacher Training at the University of Groningen. In:
Mittermeir, R.T., Sysło, M.M. (eds.) ISSEP 2008. LNCS, vol. 5090, pp. 272–281.
Springer, Heidelberg (2008)

116 N. Ragonis and A. Oster-Levinz

10. Hazzan, O., Gal-Ezer, J., Blum, L.: A Model for High School Computer Science
Education: The Four Key Elements that Make it! In: 39th SIGCSE Technical Symposium
on Computer Science Education, pp. 281–285. ACM, New York (2008)

11. Hazzan, O., Lapidot, T.: The Practicum in Computer Science Education: Bridging Gaps
Between Theoretical Knowledge and Actual Performance. In: 35th SIGCSE Technical
Symposium on Computer Science Education, pp. 29–34. ACM, New York (2004)

12. Klieger, A., Oster-Levinz, A.: In Search of the Essence of a Good School: School
Characteristics Leading to Successful PDS Collaboration. Australian Journal of Teacher
Education 33(4), 40–54 (2008)

13. Korthagen, F.A., Kessels, J.P.M.: Linking Theory and Practice: Changing the Pedagogy of
Teacher Education. Educational Researcher 28(4), 4–17 (1999)

14. Levine, M.: Foreword. In: Teitel, L. (ed.) The Professional Development Schools
Handbook: Starting, Sustaining and Assessing Partnerships that improve Student Learning,
pp. XIII–XVII. Corwin Press, Inc., Thousand Oaks (2003)

15. Ragonis, N., Hazzan, O., Gal-Ezer, J.: A Study on Attitudes and Emphases in Computer
Science Teacher Preparation. In: 42th SIGCSE Technical Symposium on Computer
Science Education, pp. 559–564. ACM, New York (2011)

16. Ragonis, N., Hazzan, O., Gal-Ezer, J.: A Survey of Computer Science Teacher Preparation
Programs in Israel Tells Us: Computer Science Deserves a Designated High School
Teacher Preparation! In: 41th SIGCSE Technical Symposium on Computer Science
Education, pp. 401–405. ACM, New York (2010)

17. Ragonis, N., Hazzan, O.: Integrating a Tutoring Model into the Training of Prospective
Computer Science Teachers. Journal of Computers in Mathematics and Science
Teaching 28(3), 309–339 (2009)

18. Ragonis, N., Hazzan, O.: Disciplinary-Pedagogical Teacher Preparation for Pre-Service
Computer Science Teachers: Rational and Implementation, Informatics in Secondary
Schools - Evolution and Perspective. In: Mittermeir, R.T., Sysło, M.M. (eds.) ISSEP 2008.
LNCS, vol. 5090, pp. 253–264. Springer, Heidelberg (2008)

19. Shulman, L.S.: Those Who Understand: Knowledge Growth in Teaching. Educational
Teacher 15(2), 4–14 (1986)

20. Shulman, L.S.: Reconnecting Foundations to the Substance of Teacher Education. Teach.
Coll. Record 91(3), 300–310 (1990)

21. Stephenson, C., Gal-Ezer, J., Haberman, B., Verno, A.: The New Educational Imperative:
Improving High School Computer Science Education, Final Report of the CSTA,
Curriculum Improvement Task Force (2005)
http://csta.acm.org/Communications/sub/DocsPresentationFiles/White_Paper07_06.pdf
(April 2011)

22. Teitel, L.: The Professional Development Schools Handbook: Starting, Sustaining and
Partnerships that Improve Student Learning, pp. 1–7. Corwin Press, Inc., Thousand Oaks
(2003)

I. Kalaš and R.T. Mittermeir (Eds.): ISSEP 2011, LNCS 7013, pp. 117–128, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Teaching Theoretical Informatics to Secondary School
Informatics Teachers

Daniela Bezáková and Michal Winczer

Department of Informatics Education,
Faculty of Mathematics, Physics and Informatics,

Comenius University, Mlynská Dolina, 842 48 Bratislava, Slovakia
{bezakova,winczer}@fmph.uniba.sk

Abstract. This paper describes an exploration and discovery-based introduction
of theoretical informatics for (a) pre-service teachers of informatics and (b) in-
service teachers of informatics who lack the qualification. It was taught at
Comenius University in Bratislava, Slovakia. It shows how this particular
approach allowed us to teach fundamental concepts of theoretical informatics in
an engaging yet scientifically sound manner to students with a limited
mathematical background. A short participant evaluation of this approach,
based on questionnaires and interviews, is presented.

Keywords: pre-service and in-service teachers of informatics, introduction to
theoretical informatics.

1 Introduction

This paper considers a long-standing problem: how to teach an introduction to
theoretical informatics (TI) to secondary school pre-service and in-service teachers of
informatics who lack sufficient mathematical background?

This is an important issue in Slovakia because students are entering universities
with a weaker mathematical background than in the past. There is less mathematics
taught at the secondary school level; several topics taught a decade ago are now
absent from the compulsory teaching plans, and students are not fluent in the
language of mathematics or in mathematical thinking. Additionally there are many in-
service informatics teachers without sufficient mathematical background and with no
informatics education. It is our belief that informatics teachers need to understand the
principles of TI, at least at the introductory level. Without this understanding,
informatics education tends to degrade to the straightforward use of ICT.

The following is a detailed description of the present situation of teacher education
in Slovakia and our approach to teaching TI to that audience.

2 Present Situation

The situation described here is based on long experience with teaching pre-service
and in-service secondary school teachers at Comenius University, Bratislava,

118 D. Bezáková and M. Winczer

Slovakia. Secondary school teachers in Slovakia are required to have a specialization
in two subjects (e.g. Slovak Language and History, Mathematics and Physics, Biology
and Geography, etc.). They are allowed to choose virtually any combination of the
two subjects. Their study consists of three equally important parts: one part is general
pedagogy and psychology; the other two parts consist of the chosen subject areas
combined with those subjects’ specialized pedagogies.

The secondary school subject concentrated on here is called informatics. It deals
with all aspects of digital technologies, focusing on basic principles rather than how
to use the technologies and the necessary skills needed to use them.

In this article we focused on courses for informatics teachers covering theoretical
informatics (Computer science). We worked with two groups of students:

• Pre-service teachers - students of the Faculty of Mathematics, Physics and
Informatics at Comenius University. These students study the teaching of
informatics, in combination with mathematics, physics, biology, geography
or chemistry.

• In-service teachers of informatics who have no qualification for teaching
informatics, but who are willing to obtain it.

The second category consisted of 200 teachers who participated in the Slovak national
project, Education of In-service secondary school teachers of informatics (DVUI
project 2009-2011). The goal was to target curriculum for these teachers who are
already teaching informatics, but who have no formal preparation in the subject. The
teachers in this group had been attending courses for five semesters. The course of
study consisted of 57 modules structured in four groups: digital literacy, the modern
school, specialized informatics content and didactics of informatics. Each module
consisted of eight 60-minute periods. The specialized informatics content contained
modules on programming, algorithms and data structures and TI [4, 5, 6].

2.1 More Detailed Description of the Student Groups

The following is a more detailed description of the expectations and mathematical
knowledge of both groups prior to attending our courses in TI, in the hope that the
reasons for this approach will be clarified.

Pre-service Teachers. As mentioned above, the pre-service secondary school
teachers are prepared to teach two subjects. Future teachers can combine informatics
with geography, chemistry, biology, mathematics or physics, but theoretically, the
second subject might be arbitrary. The number of students in these combinations is
generally small. It cannot be assumed that the incoming students have taken the
comprehensive final exam (abitur, matura) in mathematics at the completion of their
secondary school studies. According to our surveys 40% of the pre-service teachers at
our own faculty have not taken this exam in mathematics, 73% of them have not
taken this exam in informatics and 30% of them have not taken this exam in either
mathematics or informatics. Future teachers combining informatics and mathematics
have typically taken the exam in mathematics, in contrast to students with the
combination of geography, chemistry, or biology.

 Teaching Theoretical Informatics to Secondary School Informatics Teachers 119

Students combining informatics with a subject other than mathematics have
substantially fewer mathematics lessons, and consequently their mathematical
background is insufficient for studying the theoretical foundation of informatics at the
usual university level. Therefore, the content of TI courses needs to be adjusted, to
make it manageable, even for students with a weaker mathematical background.

All first-year students who intend to be future teachers of informatics attend a
semester seminar (two hours per week) which has a primarily didactical goal “to
build concrete tangible foundations, to increase motivation and preconditions for a
more successful encounter with elements of theoretical informatics” [1]. The students
explore prepared microworlds and become familiar with some basic concepts of TI.
For example, they connect basic logical gates to implement a given logical function,
they compose rules for generating L-systems and discover how the outcome can be
visualized, or they play with ciphers, coding and encoding messages. In time, the
content of the seminar naturally evolved and we added much more material in the
spirit of the text by Hromkovič [2], including limits of computability, complexity
theory, the concept of randomness and its importance in TI, DNA computing and
quantum computers. Later in their study, students encounter some of the themes from
this seminar in a more formal way in a course similar to the one described in part 3.1
of this article.

In-service Teachers. In the DVUI project, there were 200 in-service secondary
school teachers of informatics without an informatics qualification. We taught a group
of 34 such in-service teachers at our faculty. A majority of them, 28, were lower
secondary school (middle school) teachers. Only six members of the group were
upper secondary school (high school) teachers (four from vocational schools). Twenty
of them were teachers of mathematics and nine of physics, while six were both math
and physics teachers. The majority of the group was only familiar with very simple
mathematics -- corresponding to lower secondary school or upper vocational school.
A great number of them were teachers with a humanities background (history, arts
and languages) who were educated in mathematics a long time ago and only at the
secondary school level.

During the project, the participants completed three modules of mathematics, each
consisting of eight hours of instruction time. It seems clear that one could not cover as
much mathematics as necessary in such a short time.

Both groups of students considered in this study lacked the mathematical background
that is typically required for courses in TI. A question arises immediately: should TI
ever be taught under such conditions? The answer is YES! A way must be found to
make TI accessible, to avoid formalism as much as possible, but without
compromising exactness. In a way, these are contradictory requirements. In spite of
this, we try to balance informality and exactness in the courses. One way to do this is
to find clever examples or problems that enable the learners to gain the experience of
discovering ideas and concepts for themselves.

3 Implementation

In order to implement our vision we try to follow a few useful principles:

120 D. Bezáková and M. Winczer

• Teaching less may mean learning more.
• Concentrate on very basic and important concepts.
• As much as possible, use carefully chosen examples and let the students discover

the relevant concepts.

At the same time we focus on two goals:

• to present the necessary information to the students to build knowledge and
• to do it in a didactical way that motivates the students and provides inspiration

for their teaching practice.

It is important to make sure that the students fully understand the presented concepts,
why they were introduced and how they are connected to practical issues. It is very
important that teachers are ready and able to explore new challenges, possibilities and
approaches together with their students. Teachers must be prepared to give hints and
to clarify misunderstandings, to be more like partners and advisors than reproducers
of information. Teachers should inspire their students and at the same time, students
should inspire the teacher’s work.

In the following section, an overview of the concepts introduced to the students in
our course for secondary school teachers of informatics, and some examples of our
approach to teaching these concepts are presented in more detail.

3.1 Overview of Taught Material

The DVUI project allocated three modules to TI, with a printed textbook created for
each of them [4, 5, 6]. The first module dealt with the design of algorithms [4], the
second dealt with more theoretical topics such as the finite automata and the Turing
machines [5] and the third emphasized contemporary topics such as cryptography
and randomized algorithms [6]. Our approach to the presentation of the concepts and
ideas was similar to those used in [7, 8, 9, 10, 11]. However, the works mentioned
either focused on different areas of TI or they have different target groups.

As an example, we describe how we taught the second module. We wanted to
introduce the following concepts: the simplest computational model – finite
automaton, alphabet, word, language, configuration, computation step, computation,
accepting and rejecting computation, language recognized by a finite automaton,
simulation, non-existence of a finite automaton for a language, determinism, non-
determinism, various possibilities of extending the finite automaton model and the
Turing machine. This list is quite long. The individual concepts are important but at
the same time are abstract and difficult to understand at first encounter, especially if
the student is not trained in formal mathematics. That is why we encourage the
participants to play, and through that play, guide them to discover the concepts for
themselves. Each new concept is connected to real situations.

Teachers started by solving five tasks from the Bebras contest [3], a highly popular
event among secondary school students. Surprisingly, it was quite interesting for the
teachers to solve tasks intended for their students. The selected tasks had elements in
common with the diagrams shown in Fig. 1 and Fig. 2.

 Teaching Theoretical Informatics to Secondary School Informatics Teachers 121

Fig. 1. Diagrams from the task of the Bebras competition used for generating English sentences
and recognizing whether the given English sentence could be read according to the diagram

Fig. 2. Diagrams from the task of the Bebras competition used for recognizing login names

The tasks explained the meaning of the diagrams (how to interpret them), but still
there was a lot of intuition needed (for example, one starts in the leftmost node and
finishes in the rightmost node, when can one move from one node to another, etc.).
Students were asked to explain where the starting node in the diagram is, and to make
it clear that the starting and terminal nodes (later recognized as the accepting nodes)
are important and have special meaning. The task in Fig. 1 was about generating or
recognizing English sentences. The left diagram in Fig. 1 generates only a few
sentences, but the right one generates infinitely many more of them. This was
a striking discovery - that a finitely described diagram can generate to infinitely many
objects (sentences). When teaching these concepts we made sure that the students
understood the real power of these diagrams. The second task, Fig. 2, was to
recognize the diagram that described the logins consisting of several parts, where each
part starts with a capital letter followed by at least one lower case letter. Further
examples included automata for generating necklaces and describing some processes.
After everybody was comfortable working with such diagrams it was revealed that
these diagrams represent an important TI computational model − finite automata. The
diagram examples were used to explain what an alphabet is and what a word is, and
we pointed out the differences and the similarities with the real life meaning of these
concepts. We also noted that the next step in the diagram has always been uniquely
determined. In CS we call this concept determinism.

The next step was to explore whether we could implement the diagrams in the
programming language that the students learned in the programming modules. After
some trials, students discovered that the diagram can be represented as a table, albeit
two-dimensional. Each row in the table represents one node in the diagram. The
columns represent arrows from this node (one for each arrow) and are labeled the
same as the corresponding arrow. So the program simulating the diagram turns out to

122 D. Bezáková and M. Winczer

be one relatively simple cycle containing only one assignment: knowing the node we
are in and the symbol at the arrow we have just read, we can find the next node in the
corresponding row and column in the table.

Students also learned that it is very useful to have more than one representation of
an automaton (and of any object in general) because different representations can be
useful for different reasons. For example most people use a diagram representation of
automata, but for computer programs a table representation is better.

We were now ready to formalize the concept of computation, machine, and the
language it recognizes. The students were asked if they could specify what was done
in the diagram examples in a more formal way. Could the computation be formalized
with diagrams? With the students we specified the steps taken on the diagrams and
thus defined the computational step. We then realized we needed a concept of
configuration – the description of the momentary status of the computation. After
some experimenting, we were able to say what computation is. The computation is
accepting, when it is terminating in an accepting node in the diagram. At this point we
could ask if for a given diagram it is possible to characterize all inputs it accepts – that
is, the language it recognizes.

a b

Fig. 3. a) Diagram of an automaton accepting words over the alphabet {0,1} with an even
number of 0’s b) Diagram of an automaton accepting words over the alphabet {0,1} such that
the number 1 is divided by 3 and has a remainder equal to 1

The next task was to see if automata could be designed that would perform specific
tasks. Along with the students we analyzed a very simple diagram with two nodes and
a two-letter alphabet consisting of 0 and 1, which accepts words with an even number
of 0’s (Fig. 3a).

After successfully finishing this task we were ready to try to design a more real life
automaton – a simplified coffee machine (nearly everybody in the class was familiar
with the real coffee machine they used during each break). Our machine accepted
only 50c and 1 Euro coins and dispensed tea, coffee and hot chocolate. The first step
(not quite so easy) is to specify what the nodes are and what the alphabet of the
desired automaton is. In this activity the students understood that designing the auto-
maton is in fact very similar to programming. They realized quite immediately that
according to their design decisions they needed different numbers of nodes, or to put
it in another way, each design leads to a solution of a different complexity (Fig. 4).

 Teaching Theoretical Informatics to Secondary School Informatics Teachers 123

Fig. 4. Diagrams of the coffee machine

Another lesson learned was that it was far from clear that the designed automaton
does what it was intended to do. We emphasized this fact and compared it with real
situations we must cope with when we are programming. How is the program that is
claimed to be the solution connected with the problem it was intended to solve? This
is a very important but often neglected question.

The next level was the design of another “counting” diagram with three nodes and
also with the 0 and 1 alphabet. This time it counted if the number 1 in the input
divided by 3 has a remainder equal to 1 (Fig. 3b). This turned out to be quite easy.

We then asked if it would be possible to design an automaton which would
simulate in parallel this automaton and the previous counting automaton (accepting
the words with an even number of 0’s). After some trials we found how to simulate
two automata in parallel. This turned out to be more powerful than it looked at first
sight, because it gave us a method for constructing correct automata, provided we can
define the language which should be recognized as the union, the intersection and/or
the difference of “simpler” languages. Again we emphasize the similarity with
programming and the importance of a methodology that assures the ability to safely
put together correct programs from smaller correct programs. Another important fact
is the importance of the decomposition of the problem to smaller problems.

Towards the end of this module we returned once more to the diagrams in Fig 2.
We then focused on the cases that were previously omitted as wrong, and in which the
next step is not uniquely determined. Either there are two arrows with the same label
or arrows were some labels are missing. With all our previous experience with the
design and finding how things work it is not so surprising that the cases previously
intuitively considered wrong can now be turned into correct ones. Of course, the
understanding of some previously built concepts must be updated. However, this is
the way scientists actually work The concept of computation must be updated to
determine the acceptable computation. We introduce non-determinism.

In order to illustrate the usefulness of the nondeterministic finite automaton we
used the automaton for a pattern-matching problem. This problem is familiar to most
people who work with computers. For example, we want to find all files containing
some text or find a given text on the web page or in a document. We can now explain

124 D. Bezáková and M. Winczer

that every nondeterministic finite automaton can be simulated by some deterministic
finite automaton and therefore the deterministic and nondeterministic finite automata
are equivalent (in their computational power). Unfortunately the number of nodes in
the corresponding deterministic automaton can be exponentially greater than in the
nondeterministic one. Fortunately this is not the case when we transform the
nondeterministic automaton for the pattern-matching problem to a deterministic one
which can work exactly as it works in real applications. The students appreciated this
example of non-determinism because they are familiar with the problem, but did not
realize it can be solved in this way.

Finally, the limits of automata were discussed with the students. We showed that
the automaton has only very limited memory – in fact it has no variables, its whole
memory is in the nodes (in the diagram representation). Therefore it will not be able
to recognize the languages which require remembering some unbounded number (e.g.
words with an equal number of 0’s and 1’s). Once it was recognized that the finite
automata did not recognize every language, the natural question arose: Can we
modify the computational model so that we can recognize languages that were not
recognizable by finite automata? The answer is yes. It is possible to let students try to
design such enhancements of finite automata. In the end we introduced the most
general enhancement – the Turing machine. Our experience shows that designing a
Turing machine is a highly elaborate and time-consuming process. We do not
recommend doing this with in-service teachers in general, unless supported by
excellent interactive software and a simulation tool.

When discussing Turing machines with the students it was emphasized that all
concepts introduced by finite automata are still valid. Some definitions were
modified, but all computations performed by finite automata can be accomplished.
Moreover some computations that could not be accomplished before can be now. It is
important to mention to the students that this will be the same with any other
computation model they might eventually define and explore.

4 Observations

After completion of these modules, students were asked to fill in a questionnaire
concerning the course. All activities from the lessons were listed:

1. playing with diagrams describing logins, English sentences, necklaces etc.
using the diagrams as recognizers and generators of some words or objects.

2. formalizing the diagrams to finite automata.
3. discussing how to design an automaton that worked exactly as desired.
4. designing an automaton – a coffee machine for three kinds of drinks

allowing the user to pay with two kinds of coins.
5. recognizing zip codes, car number plates, and national identification

numbers.
6. formalizing the concept of a configuration, of a computation step and of

computation as well as the accepting and rejecting computation.
7. discussing whether it is possible to recognize an arbitrary set with a finite

automaton. (We found out that this is not the case and we explained
intuitively why.)

 Teaching Theoretical Informatics to Secondary School Informatics Teachers 125

8. extending the finite automaton model to a nondeterministic one.
9. As an example we showed how to find a substring in the text using a

nondeterministic automaton.
10. showing the main idea of the equivalence of deterministic and

nondeterministic automata, concerning the sets of words they recognize.
11. showing that an automaton can be described as a diagram, a program, a table

or a regular expression.
12. extending the model of the finite automaton to the Turing machine, which

can control the moves of the read/write head and rewrite the tape.
13. showing the difference in computation of a finite automaton and a Turing

machine, concerning termination and accepting or rejecting.
14. discussing an extension of the Turing machine to a nondeterministic one.

Fig. 5. Numbers of participants remembering listed activities

Students were asked the following:

a) List the number of activities you remembered,
b) List the number of activities you understood.
c) Have you studied some topics from TI in the past?

Out of 34 course participants, 13 answered our questionnaire. From those only one
had studied TI previously.

Fig. 5 shows the responses to question a), (which activities participants
remembered). Most answers had the form of a list of numbers identifying the
remembered activities (as we had anticipated). One answer was “a few”. Two answers
were “all” or “I remember all activities, but mainly activities No.: …”.

126 D. Bezáková and M. Winczer

From the graph in Fig. 5 it is obvious that the most remembered topics were
those connected with concrete examples (tasks from the Bebras competition or the
design of the coffee machine). Less remembered were the more formal parts and
generalizations (2, 6, 8, 10). A real surprise was that activities 12 and 13 (Turing
machines and their computation) were mentioned relatively often, although we
considered them as generalizations. Perhaps it is because they were covered towards
the end of the course.

The second question concerning the understanding of topics learned was answered
mostly with words and not with numbers (Fig.6).

Fig. 6. Numbers of participants indicating their understanding

Answers were sorted into several categories:

a) all – only one answer,
b) 1-5 – four answers,
c) partial – two answers,
d) understanding at the time of learning – three answers

o „While listening to the lesson I had the feeling that I understood
everything, but I did not remember it to the extent that I could
reproduce it. “

o „I understood everything during the lesson, but then I did not fix the
new knowledge and did not devote any time to it. “

e) understanding the principles – two participants - „I understood the
principles of all presented concepts, they were well explained, but I would
not try to explore them in greater depth. “

f) other (no answer, misunderstanding) – two participants. „ I cannot answer. I
did not understand details, but it was great progress for me to hear about
those concepts for the first time in my life. I am grateful for this, thank You. “

Some participants wrote other messages:

• “To be honest it was too hard stuff for me.”
• “This topic was too remote for me as a lower secondary school teacher.

I cannot imagine how to use it in lower secondary school. It must be very
hard to mediate these concepts to us. ”

 Teaching Theoretical Informatics to Secondary School Informatics Teachers 127

Based on a short interview with two participants we concluded that some of the
participants would appreciate even more examples, pictures and microworlds than we
provided. The generalization of concepts was very hard and too abstract for some of
the participants.

We conclude that in order to teach the introduction to TI to lower secondary
teachers one must use many examples and progress very carefully.

5 Conclusion

There is not wide agreement on the best ways to teach future teachers of Informatics.
There are two extreme approaches: A formal approach, where everything is taught
very formally and rigorously using exact mathematical language, and a practical
approach, where only immediately usable examples are emphasized. We believe that
the right way lies (as usual) somewhere in-between those two extremes, especially if
the mathematical background of the students is not strong. We are convinced that
constructivist and constructionist approaches to teaching secondary school teachers TI
will make their understanding of the important concepts of TI deeper and that as a
result they will be able to use a similar approach with their students based on
discovery and exploration in their teaching of informatics.

Acknowledgments. We would like to thank all the participants of the DVUI project
for their inspiration during the two years that we taught at Comenius University in
Bratislava, and thanks to Ivan Kalaš who initiated the idea of this paper, and to our
families for their support.

References

1. Kalaš, I.: Discovering Informatics Fundamentals Through Interactive Interfaces for
Learning. In: Mittermeir, R.T. (ed.) ISSEP 2006. LNCS, vol. 4226, pp. 13–24. Springer,
Heidelberg (2006)

2. Hromkovič, J.: Algorithmic Adventures, From Kowledge to Magic. Springer, Heidelberg
(2009)

3. Bebras, International Contest on Informatics and Computer Fluency,
http://www.bebras.org/en/welcome

4. Forišek, M., Šišková, J.: Selected chapters on theoretical informatics 1 (algorithms) ĎVUI,
ŠPÚ, Bratislava (2010) (in Slovak)

5. Andrejková, G., Krajči, S.: Selected chapters on theoretical informatics 2 (automata and
Turing machines) ĎVUI, ŠPÚ, Bratislava (2011) (in Slovak)

6. Winczer, M., Galčík, F., Forišek, M.: Selected chapters on theoretical informatics 3
(Cryptography and randomized algorithms) ĎVUI, ŠPÚ, Bratislava (2011) (in Slovak)

7. Mittermeir, R.T., Bischof, E., Hodingg, K.: Showing Core-Concepts of Informatics to Kids
and Their Teachers. In: Hromkovič, J., Královič, R., Vahrenhold, J. (eds.) ISSEP 2010.
LNCS, vol. 5941, pp. 143–154. Springer, Heidelberg (2010)

8. Futschek, G.: Algorithmic Thinking: The Key for Understanding Computer Science. In:
Mittermeir, R.T. (ed.) ISSEP 2006. LNCS, vol. 4226, pp. 159–168. Springer, Heidelberg
(2006)

128 D. Bezáková and M. Winczer

9. Gruber, P.: Bringing Abstract Concepts Alive. How to Base Learning Success on the
Principles of Playing, Curiosity and In-Classroom Differentiation. In: Mittermeir, R.T.,
Sysło, M.M. (eds.) ISSEP 2008. LNCS, vol. 5090, pp. 134–141. Springer, Heidelberg
(2008)

10. Weigend, M.: To Have or to Be? Possessing Data Versus Being in a State — Two
Different Intuitive Concepts Used in Informatics. In: Mittermeir, R.T., Sysło, M.M. (eds.)
ISSEP 2008. LNCS, vol. 5090, pp. 151–160. Springer, Heidelberg (2008)

11. Bell, T., Witten, I.H., Fellows, M.: Computer Science Unplugged, An enrichment and
extension program for primary-aged children,
http://csunplugged.org/sites/default/files/activity_pdfs_ful
l/CS_Unplugged-en-10.2006.pdf

I. Kalaš and R.T. Mittermeir (Eds.): ISSEP 2011, LNCS 7013, pp. 129–142, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Informatics in Primary School
Principles and Experience

Andrej Blaho and Ľubomír Salanci

Department of Applied Informatics, Department of Informatics Education,
Faculty of Mathematics, Physics and Informatics,

Comenius University, 842 48 Bratislava, Slovak Republic
{blaho,salanci}@fmph.uniba.sk

Abstract. Informatics is gradually emerging, in different forms, at the first level
in primary schools. We have seen that informatics is often included in other
subjects but only at the level of using digital technologies. At other times, it is
inspired by teaching methods in mathematics and computer science tasks that
are addressed on paper only. We are concerned with the concept, form and
teaching methods of informatics. In addition to scientific content, we analyze
the teaching of informatics from the perspective of various educational theories.
We have built our theory on the activities of students who work with
specialized educational software. Our conclusion is founded on the experiences
and consequences of introducing informatics education to teaching at the first
level of primary school.

Keywords: primary education, informatics, curriculum, educational software,
digital competencies, digital literacy.

1 Introduction

The attributes of informatics education at the first level of primary schools varies
from country to country: work with computers is often scattered across different
subjects with students remaining at the user level of digital technologies. In only a
few countries does informatics constitute an independent subject. Slovakia joined this
group of countries in 2009 when elementary informatics became an independent and
compulsory subject at the first level of primary education. This arrangement followed
ten years of experimentation with the teaching of computer science, during which
time a variety of issues were addressed. For example:

– Why does informatics need to be a separate subject?
– Is it not sufficient for pupils to utilize digital technologies within other existing

courses?

If we can manage to have informatics as a separate subject, then a series of other
questions have to be dealt with:

– What should the content of informatics education be?
– What pedagogic methods are appropriate in the teaching of informatics

education?

130 A. Blaho and Ľ. Salanci

The creation and proposal of a specific content and methodology of teaching
informatics is a very difficult assignment. The complexity of this task is due to the
fact that we are working with pupils aged 7-10 years, which means that we must
understand a great number of varying factors. For example, we must take age into
account, because we know the problem-solving capabilities of children at different
ages, as well as what they are able to understand [1]. In addition, we must consider
not only the global concept (curriculum, syllabus, textbooks for various classes,
lesson scenarios, and the terminology used in tasks assigned to pupils) but also the
pedagogical materials and appropriate educational software available to teachers.
(The latter is not always obvious in our country).

2 Informatics Education Around Us – Analysis of the Status

It is now common for children to experience computers at home as well as in the early
years of primary school. Even in pre-schools and kindergartens, computers are now
frequently made available to children for play and learning activities [2].

2.1 Definitions

In order to better explain and compare the different approaches to the teaching of
informatics, we will try to clarify some terms, such as ‘digital technologies’, ‘digital
literacy’ or ‘digital competence’ in relation to informatics.

From our perspective, we have distinguished the following levels in the teaching of
informatics:

– The use of digital technologies = Use of DT – this is the lowest level in
computer studies. Here, the didactic priority is to teach a limited number of
skills so pupils can use certain tools in order to enjoy working with computers.

– Digital literacy = DL – at this higher level of computer studies a pupil learns
how to collect, evaluate, store, create, exchange, collaborate and communicate
information. The priority here is to teach the correct use of applications.

– Digital competence = DC – this is an advanced level, which ensures that pupils
can use information technology confidently and decisively for work, leisure and
communication. Emphasis is placed on teaching positive attitudes towards
computing, and on showing how computers can be used to resolve problems
associated with the handling of information. [3]

– Informatics – exploring the basics of computer science. The priority here is
algorithmic problem solving, the use of knowledge for the effective functioning
of DT, problem solving, and an understanding of the range of influences on the
current Information Society.

Note that each higher level covers the content of all the lower ones, but it exceeds the
priorities.

 Informatics in Primary School Principles and Experience 131

Fig. 1. The intuitive (and simplified) understanding of the relationship between DT, DL, DC
and Informatics, discovered whilst analyzing the role of informatics in schools globally

2.2 Informatics in Other Countries

Interesting comparisons can be made with reference to the European study on Digital
Competences [4]. Seven countries participated in this study: Slovakia, the Czech
Republic, Portugal, Finland, Norway, Switzerland and Lithuania. Results show that
all the participating countries, except Portugal, included some digital skills (digital
literacy) in their educational system in primary schools. The study shows that digital
competence is a core element in the national, primary curriculums of Slovakia,
Norway, Switzerland and Finland. In addition to the Czech and Slovak Republics,
where DT is taught as a separate subject, other countries are using cross-curricular
ways of introducing computer skills.

There is a very interesting situation in Russia. The subject of academic computer
science, particularly in secondary schools, has a longstanding tradition in this country.
Over the last decade this subject has also penetrated into primary schools, and even
into kindergartens. Russia, however, suffers from a huge discrepancy in the type of
technologies made available to schools, with some primary institutions having no
access to computers at all. The subject of computer science at primary school is not,
therefore, focused on skills (in terms of the use of computers); priority is given to
learning how to handle data structures, algorithmic problem-solving and logical
thinking [5].

2.3 Informatics in Slovakia

An educational reform, launched in Slovakia in 2008, has brought great changes to
the content of all subjects in primary and secondary schools. With this reform came
the introduction of compulsory Informatics Education at the first level (grades 2-4)
and computer science in the lower secondary level (grades 5-9). This was a
completely new development with an innovative and beneficial vision of the
educational syllabus. Before 2008 the national curriculum was designed by the

Digital literacy

Use of DT

Digital competences

Informatics as science

Algorithms and
problems solving

In
f.

ar
ou

nd
 u

s

S
oc

ia
l .

..
Math.

Informatics in schools

P
rin

ci
pl

es
 o

f D
T

132 A. Blaho and Ľ. Salanci

Ministry of Education, who decided what teachers must teach (an inputs-orientated
curriculum). Now, conversely, the standards (ISCED) describe what the student
should know (an outcomes-oriented curriculum).

Based on the 25-year tradition of Informatics education in Slovakia, informatics at
primary and secondary schools consists of the following five collective thematic
units1:

1. Information around us
2. Communication through DT
3. Procedures, problem solving, algorithmic thinking
4. Principles of the functioning of DT
5. The information society

These five themes are embedded at all levels of education, but at each level they have
different goals and different demands. For example, while at level ISCED 1, the
thematic unit for algorithmic thinking focuses on the introduction of basic concepts
by means of controlling the movement of some character in an area; in level ISCED
3, pupils deal with the effectiveness of a particular algorithm and work with an actual
higher programming language.

3 Forming the Conception of Informatics Education

We considered it necessary to find an answer to the following question: what are the
aims of informatics education? We studied different approaches to the teaching of
informatics in different countries and through analysis we discovered the various
advantages and disadvantages of these approaches. Finally, we formulated for
ourselves several requirements and principles, which we wish to pursue further.

3.1 Inspiring Approaches to Informatics Education

From the analysis of foreign educational programs and textbooks, we discovered two
major approaches to the teaching of informatics. We called these approaches simply:
‘user informatics’ and ‘mathematical informatics’. By clarifying the differences
between these two approaches, we are able to reflect on their advantages and
disadvantages. The following is an explanation of these approaches:

User informatics is focused on skills development, operating a computer and the use
of software. Such education remains at the level of instruction and could be likened to
ECDL where the pupils’ skills are developed only to the point of knowing how to deal
with and use DT. Such an approach has significant risks because instead of
informatics, it pursues other objectives, such as: placing an emphasis on skills ("Type
text as fast as possible ..."), using programs ("which command in the menu is used to
...") or teaching a sequence of steps leading to a certain result ("insert the image into

1 It is interesting to note, that the ACM is beginning to consider a similar direction - see the

new draft of the curriculum [6].

 Informatics in Primary School Principles and Experience 133

the text…"). Pupils are often evaluated for encyclopaedic knowledge ("List the rules
of conduct on the Internet ...") or for compliance of aesthetic criteria while doing a
task ("Nicely format the text ..."). In the last example, the teacher does not evaluate
whether the student used the appropriate tools, but how nicely the student formatted
the text – which is a goal of typography or graphic design). This means that instead of
informatics criteria, criteria from other disciplines are applied. It is this user approach
to informatics education, at the first level of primary school, which currently prevails
in most countries.

Mathematical informatics is focused on solving computer science problems without
using a computer. The main objective is not to teach pupils to work with a computer
nor to gain digital literacy. Pupils solve problem-oriented tasks that are based on
computer science: getting to know the idea of sequences ("Arrange beads on a
necklace so that ..."), getting familiar with the combinatorial principles ("How many
objects have property ...") , learning to design and read algorithms ("Write a program
for the robot so that ..."), reflecting on strategies (" What might be the outcome of the
game ...") or getting to know structures ("Which texts are hidden in the tree ...").
Tasks are designed so that they can be solved on paper, without a computer. However,
if computers and specialized applications (so-called micro-worlds) are available,
pupils have the advantage of programs that can help them solve problems, offer
variations, or evaluate a solution. A mathematical approach to teaching computer
science has, in our opinion, several disadvantages. Since, with this approach, working
with a computer is postponed until later grades, there is a risk that pupils acquire
digital literacy unnecessarily late, and they do not learn some things at all. In addition,
pupils, parents and even teachers may not (possibly) understand why the children only
deal with mathematically oriented tasks. This approach places much more stringent
demands on both the teacher and pupil.

3.2 Our Vision of Elementary Informatics

Our Elementary Informatics will be, to some extent, a combination of the two
previously mentioned approaches with an emphasis on choosing the very best ideas
from both. We want our pupils to learn how to work with computers right from the
very beginning while, at the same time, they are solving informatics/computer science
problems.

We know that it is not easy for young pupils, who have no prior experience
working with computers, to coordinate the movement of the hand whilst they follow
the mouse cursor on the screen. Even more difficult is the action of placing a mouse
cursor on the correct area of the screen, and then to click on this area without moving
the mouse at the same time. This is a basic skill of using digital technologies that all
pupils need to learn. We want to teach this development of fine motor skills by
engaging pupils with playful computer activities - but at the same time we want these
activities to contain various informatics elements (Fig. 2).

134 A. Blaho and Ľ. Salanci

Fig. 2. In this activity “it is necessary to click on all the flowers in the corners first, and to leave
clicking on the central flower until the end”. This activity is for pupils of age 7. Whilst on first
sight it appears that only computer skills are being taught, the task also contains simple rules,
which the pupils must follow – these are sequencing and abiding rules that are primary
computer science concepts.

In activities that are aimed at the development of digital skills, we will incorporate
computer science content, even if pupils are being taught to work with a keyboard,
graphics, texts, tables, sounds, the internet etc. We are also trying to implement a
similar philosophy conversely. This means that pure computer science topics can be
realized in a way that develops a pupil’s digital competency. For example, if we teach
topics like logic, combinatorics, algorithmic problem solving, or informatics
structures, we will try to present them in a playful form using computers (Fig. 3).

Fig. 3. Kitty wants to build a tower as shown, but she does not know in what order to pick the
blocks from the box. Help her by lining up the blocks in the correct order.” This activity is for
7-year-old pupils. A computer scientist will very quickly recognize, through this activity, an
introduction to algorithms (a simple design formula). Pupils are, moreover, taught how to drag
objects using the mouse (a skill which is at the use of DT level).

In our view, informatics should contain the following:

Development of Digital Skills + Development of Informatics Thinking

 Informatics in Primary School Principles and Experience 135

3.3 The Emphasis on Pupil Activity and Amusing Tasks

From the previous examples one can already see that we are placing great emphasis
on activities that are fun to do. To some this approach may seem the obvious one to
take, but to others it may appear frivolous and too playful. We therefore must address
both points of view.

During the formation of our theories we noticed that such a playful approach is not
at all obvious to many people. Many authors of textbooks and children’s books about
computers (as well as teachers) do try to pass on information to their pupils – at first
they focus on explaining the theory and only then go on to give examples and
demonstrations. In our investigation we have seen this approach at work:

– At the beginning of the hour-long lesson a teacher will explain to the pupils what
a computer is, its different parts and how it works. However, for many pupils,
this might be the first time that they have ever encountered a computer.

– At the start of the topic, Working with Graphics, a teacher describes the
graphical environment, the buttons, menus, and the commands in the menus.
The student can only begin to draw when the description is finished.

– A class about algorithms begins with an explanation of the properties of
algorithms, the stages of problem solving, and how large companies develop
software from this perspective. Only after the teacher’s explanation can a pupil
begin to write their first program and learn more about programming.

Such a traditional, authoritarian approach has a long tradition in Slovakia. However,
we consider it inappropriate, since pupils are treated as passive recipients of
information. They sit and listen to the teacher or watch a presentation, and this kind of
lesson usually ends up being mostly boring for them. It is risky for a teacher to talk
about a topic with which his pupils have little or no experience. For example, when a
teacher is talking about the characteristics of algorithms before the pupils have
programmed for the first time, that teacher is skipping five levels of Bloom's
taxonomy: the consideration of the properties of algorithms (which is the highest
level) are then handled by pupils who do not have any programming experience nor
even a knowledge of algorithms, which is considered the lowest level of Revised
Bloom's taxonomy. Consequently, a pupil's knowledge is very shallow and has a short
lifespan. As the pupils begin to formulate their own solutions to a task, they often
realize that they did not understand the teacher’s presentations.

We want our pupils to perceive work performed during an Informatics lesson as fun
and as a game – but having fun is not the only goal of this approach. From the
perspective of Informatics, pupils get to know serious Informatics concepts such as:
propositional calculus, combinatorics, structures (sequences, tables, trees, and graphs),
algorithms (writing, reading, debugging, and efficiency), principles (coding, functioning
of devices), etc. We have to distinguish between playing games on the computer, into
which informatics teachers like to slip, and actual problem-solving activities.

3.4 We Rely on Theories

In our hypothesis, we rely mainly on constructionism as a theory of learning. Put
simply, this theory says that knowledge cannot be passed on through a passive

136 A. Blaho and Ľ. Salanci

reception of ideas and facts. Knowledge must be constructed by the pupil. They must
discover it for themselves with the help of a facilitator in the form of a person, a book,
a film etc. – and, most productively, through an activity that they perform [7]. We
have had many good experiences with constructionism in teaching informatics and,
therefore, want our approach to teaching to be based on pupil activities. In this way
pupils learn to solve a number of tasks and problems independently. We want to
suppress the instructive approach to teaching as much as possible.

Of course, it will have a major impact on the role that the teacher has in the
classroom. The subsequent change will not be easy. Teachers will have to transform
their role from that of a person who stands before their pupils whilst explaining topics
to them and then testing their knowledge, to that of someone who helps, advises, and
guides their pupils appropriately. If a teacher does need to explain something to the
pupils, then we strongly advocate that they explain only the necessary minimum.

However, we want to avoid so-called naive constructionism. This approach leaves
the pupils without proper leadership, to haphazardly grope their way through problem
solving, because the tasks they have been set are poorly conceived. Our activities,
therefore, have to be precisely and very shrewdly designed. We have several
instruments which help us to avoid bad practices.

The theory of constructivism [1] provides us with levels of cognitive development
that informs us about what pupils at a certain age are able to understand and how they
formulate their understanding. Our pupils are at the beginning stage of concrete
operations, so they can think logically and solve problems which concern only
specific objects. They do not strive to solve tasks that are based on formal definitions.

Fig. 4. Appropriate motivation is extremely important for younger pupils. Therefore, our tasks
are embedded in stories, for example: "Draw a path for the small bee to visit all the flowers and
then to finish in the beehive." From the perspective of Informatics this is a simple graph
problem.

Furthermore, we believe that informatics knowledge is formed gradually in a number
of stages. We, therefore, follow every single stage of the cognitive process [8]:

Motivation Collecting of experiences Abstraction
Knowledge Training of knowledge

It appears that pupils understand new concepts only after they have had numerous
experiences with them. They then draw comparisons among the experiences and put

 Informatics in Primary School Principles and Experience 137

everything into a context. Teachers can very effectively help to stimulate motivation
in children and provide situations for them to collect their own experience.

In order to make the tasks and texts for pupils understandable, we find it necessary
to prepare our own dictionary of the words that pupils should know or progressively
get to know. We also try to imagine (and design a model of) what pupils already
know.

3.5 Conclusive Fine-Tuning

It was absolutely necessary for us to subject informatics topics to rigorous analysis in
order to find a place for them within the elementary curriculum for teaching computer
science. We, therefore, examined textbooks for other subjects, as well as foreign
textbooks on Informatics.

In addition, we consulted with a selection of practicing teachers about our ideas.
Such cooperation proved to be extremely rewarding. The teachers helped us to adjust
the level of difficulty in our tasks so that they are more appropriate for pupils.
Moreover, they helped us understand the many subtle relationships between teachers
and pupils, relationships regarding subject areas, regarding the sequencing of topics,
and the ages of the children and their motor skills and ability to understand things.

We discovered a number of various issues to be aware of in order to prepare
suitable tasks that reflect the learning stages of the pupils. For example, if we want to
teach 2nd grade pupils to use mouse clicks competently, we should not set them a task
that specifies "click on the letters in alphabetical order", because alphabetical ordering
is not taught until the 3rd grade. Similar issues exist not only among subject areas but
also in elementary informatics itself. For example, we cannot begin to specify a task
such as, "Write the following URL address in the browser window...", if a large group
of pupils does not know how to type.

After long consideration, we decided on the division of elementary informatics into
the following thematic units:

– Working with text,
– Working with graphics,
– Working with multimedia,
– Working with a story,
– Structures in informatics,
– Internet and communication,
– Problem solving and algorithms,
– About a computer,
– Information Society.

We analyzed each thematic unit and we clarified:

– what is the educational objective,
– what activities we need to implement with the pupils,
– what informatics competencies we need to develop through each activity,
– what tools we will use in teaching,
– which terms pupils need to learn,
– in which grade do we need to implement activities.

138 A. Blaho and Ľ. Salanci

We have designed a uniform structure, which we have written down using tables
similar to those in Table 1 (below). A comparable series of tables was created for
each thematic unit in which we methodically sorted activities according to their
different dimensions.

Table 1. A part of the table that relates to the inclusion of IT structures in the teaching of
elementary informatics. We also created similar tables for other topics:

Activities Informatics capability Tools Terms Year
Sequence and completion
(geometric shapes, letters ...)

generating according to certain
rules

finding errors

understanding of the
sequence properties

object manipulation

interpretation of rules of a
given sequence

graphical editor, or
a specialized
children's program

sequence

missing,
unused
element

true, false

2-4

classifying of things and
objects according to certain
characteristics

the recognition of
common properties and
assigning things to
categories

graphical editor, or
a specialized
children's program

group,
belongs to,
not belong to

2-4

making of a frequency table
and a bar chart

reading of a specified diagram
(chart)

gathering information from
classmates (about animals) and
creation of a frequency table

become familiar with
tables,

making and reading tables
and bar chart

graphical editor, or
a specialized
children's program

table

bar chart

maximum,
minimum

3,4

etc.

4 Outcomes, Observations and Evaluation

The first consequence of our studies is the development of an informatics education
textbook for the 2nd grade [9]. There are approximately 200 assignments, or activities,
in this textbook - all of which need specific software for a given activity.

The new national project called “In-service Training for Informatics Teachers”2
(ITIT) which began in Slovakia in 2009 aims to develop and implement pilot training
for informatics teachers. Several hundred teachers (which is only about 10% of all
such teachers in the country) have consequently received basic training in how to
teach/learn subject matter pertaining to informatics. These teachers developed digital
capabilities, teaching competencies using digital technologies, and skills in instructing
pupils about elementary informatics at primary schools. These are all very different
and challenging skills. As project designers, we had the task of developing
educational materials for teachers on digital literacy and the didactics of informatics
education: the most interesting of undertakings.

Because of this project we met with many teachers from primary schools. We
learnt about their attitudes and received their feedback and observations.

2 In Slovak: Ďalšie vzdelávanie učiteľov informatiky (DVUi), dvui.ccv.upjs.sk

 Informatics in Primary School Principles and Experience 139

4.1 Teachers’ Attitudes

We learnt that the majority of teachers have initial difficulties with the application of
technologies - which results in false expectations about the kind of problems that
students may have when first introduced to digital technologies. Many teachers do
not understand the level of difficulty in passing on skills and knowledge and,
therefore, teach too much content (often didactically inappropriate). They frequently
use unsuitable tools, insist on unimportant details, and fail to understand basic
concepts and principles about the function of digital technologies. The following
quote by a teacher illustrates this situation: „Until we finished the ITIT training we
had a completely different idea about how to teach informatics.”

Since teacher development in DT started in Slovakia such a short time ago (2009) ,
only a minority of teachers understands DT, are aware of the risks of using DT (e.g.,
viruses) and understand the principles of personal data protection. We observed, also,
that teachers frequently avoided the topic of „Algorithms and problem solving“.
However, their opinions may change when they begin to observe which activities are
most enjoyable to their pupils.

The ITIT project has had a great impact on teachers. Many have been left with a
positive attitude towards the training that they received. Moreover, many teachers
who have completed ITIT training now look a bit more critically at colleagues who
have not been trained.

It is rare that primary school teachers have a proper informatics background. When
they do have it, there is a good chance that they also have high standards of teaching.
There is, however, the irony that such teachers may overload their pupils with too
much inappropriate content.

4.2 Software and the Internet

Our approach assumes that students will work with computers and appropriate
programs. Each activity should be associated with a specialized program designed to
help the pupil solve the assigned task.

At present (at least in Slovakia) there is a shortage of programs for children.
Examples of desirable software include: a suitable text editor, a spreadsheet editor for
children, a children's tool for working with sounds, etc. The reasoning behind this is
that environments for children need to look completely different from those designed
for adults (for example, we can compare the children's graphic editor, Revelation
Natural Art, with an environment suitable for professionals, e.g. Photoshop or GIMP).

A separate group of problems deals with teachers' attitudes to software. Teachers
often take existing software as an authoritative product ‘given from above’ and
because it is installed on their computer, it must be used by pupils. In addition, many
teachers want students to use the broadest possible range of instruments, often of
dubious quality, arguing that “the students get bored when working with one
program” or that “students need to amass as much experience as possible of different
programs”. These are the main explanations for why pupils, for example, end up
using five different graphic editors. We consider this highly inappropriate for children
in this age group.

140 A. Blaho and Ľ. Salanci

The teacher might not be aware that a pupil working with unsuitable software can
get de-motivated, and even formulate misconceptions about the functionality of DT.
We often encounter a recurring attitude amongst teachers, parents, those without
experience in computer science, as well as the professional community, that open-
source programs, freeware, and shareware need to be utilized as much as possible.
The reasoning for this is that free software reduces "the financial budget of the
school" and pupils are also, at no extra cost, able to install the programs at home. But
this software is often didactically very inappropriate. The authors of such programs
are most often professional computer scientists who are very good programmers, but
who have no pedagogical experience in education. They often do not take into
account the real users - that is, the technically inexperienced teachers and the 6–10
year-old pupils.

A big problem is the use of office suite packages for teaching pupils. In terms of
criteria for educational software, these office suites are wholly unsuitable for the
classroom. We believe that office programs violate most of the criteria by which we
assess the suitability of a teaching aid, for example:

– the number, size and layout of controls,
– the ease of the dialogue - working with files, adjusting fonts, paragraphs ...
– the number of possibilities for different options – a variety of font types,

numerous styles, a selection of colours,
– the operations - inserting images, tables, fancy fonts, placing them (wrapping).

If we compared this software scenario with a similar case in any other subject taught
at this school age, we would not find teachers using products with their pupils that
were intended for adults. It seems that only in informatics do we find poor
understanding of the risks associated with the use of inappropriate tools.

There is no doubt that the majority of internet content is intended for adults with
much of it being inappropriate, or even detrimental, for children. The educational
institutions do almost nothing to protect children against harmful content. If there
is any consideration about this problem, then it is voiced only through a general
statement about the need to protect children from accessing inappropriate websites.
Unfortunately, there is practically no initiative for addressing this problem by creating
a web for children, which would include enough resources to make accessing adult
sites unnecessary.

4.3 Attitudes of the Public

The majority of the public, even though they do not have any computer science
education, is eager to give opinions on the integration of DT - particularly in
education. Teachers may encounter this fact when they communicate with parents
who have learnt about DT, and how it is supposed to be taught, from different media.
It is interesting to note that no other school subject (e.g. mathematics, science,
language studies) has caused so much interest amongst the general public and
spawned so many different opinions. It is often obvious on many levels that an
author/programmer did not receive any computer science tutoring during their own
schooling and, therefore, has no grasp of the contemporary educational system. We
often encounter inappropriate advice about how software, computers and the Internet

 Informatics in Primary School Principles and Experience 141

should be used in schools or how a teacher should teach, classify, evaluate, and so on.
This makes it far more difficult for teachers now than in the past (for example, before
the internet was invented), to explain to parents the objectives behind introducing DT
into the classroom.

The professional public (e.g. experts in computer science - practical or academic)
is a very interesting group to take into consideration. They like to speak about
informatics content in elementary and secondary schools. Informatics specialists also
often recommend that students should use the most popular technology at the time:
modern software packages, the latest technological fads, the most successful
professional approaches and so on. Such experts seldom realise that schools educate
pupils for the future – our students, after all, will begin their professional lives
sometime in the next fifteen years or so. Therefore, it is more important to teach about
general principles than to promote current technological innovations. Some academic
computer scientists do have the courage to speak about the content and methods that
should be used when teaching informatics in schools. They recommend that students
should focus on mathematical foundations for algorithmic problem solving. They
recommend this instead of students learning how to control applications for
processing various types of information, working with the Internet, using DT for
communication, learning the basics of programming concepts using computers in a
playful manner, learning about the social aspects of computer science and so on.
Actually, they do not consider this as informatics. We commented in the previous
chapter (Mathematical informatics) why such an attitude is inappropriate.

5 Summaries

A lot of issues must be considered when designing a new curriculum: the topics to be
included in informatics, the relationship to other subjects and the didactics of informatics
in the first stage of the primary school. An important outcome of our studies is finding
that adequate software tools must be developed for students. Our experience shows that
only a limited number of people at present can understand the concept of good
educational software and are able to evaluate or even develop such tools.

We discovered that most primary teachers do not understand what informatics
means, what the objectives are for teaching informatics or what themes it addresses.
Almost all teachers think that the curriculum is comprised of how to use digital
technologies as a tool. We have shown that consistent design, analysis and the writing
of textbooks is not enough to make informatics education successful in schools. It is
very important that teachers receive appropriate methodological materials and, even
more essential, that they receive adequate training.

References

1. Rybár, J.: Úvod do epistemológie Jeana Piageta. In: Introduction into Epistemology of
Jean Piaget. IRIS, Bratislava (1997) ISBN 80- 88778-43-3

2. Moravčík, M., Pekárová, J., Kalaš, I.: Digital Technologies at Preschool: Class Scenarios.
In: Proc. of 9th WCCE: IFIP World Conference on Computers in Education (2009) ISBN
978-3-901882-35-7

142 A. Blaho and Ľ. Salanci

3. Review of National Curricula and Assessing Digital Competence for Students and Teachers:
Findings from 7 Countries, Digital Skills Working Group, European Schoolnet (2010)

4. Recommendations of the European Parliament and The European Council about the key
competences for the life-long learning. Official Journal of the European Union (December
30, 2006)

5. Semenov, A.L., Rudchenko, T.A.: Series of textbooks of Informatics, Institute of new
technologies, Moscow 2004 (2005) ISBN 5-09-012563-5, ISBN 5-09-012562-7, ISBN 5-
09-013872-9, ISBN 5-09-013873-7, ISBN 5-09-013876-1, ISBN 5-09-013877-X

6. New CS Curriculum Standards (Draft for Public Comment),
http://csta.acm.org/includes/Other/CS_Standards.html

7. Ackermann, E.: Constructivism(s): Shared roots, crossed paths, multiple legacies. In: Proc.
of Constructionism 2010. Comenius University, in association with The American
University of Paris, Bratislava (2010) ISBN 978-80-89186-66-2

8. Hejný, M., Kuřina, F.: Dítě, škola a matematika. In: Children, School and Mathematics.
Praha, Portál (2009) ISBN 978-80-7367-397-0

9. Blaho., A., Salanci, Ľ.: Informatická výchova pre 2. ročník ZŠ, Bratislava (2010) ISBN
978–80–89375–17–2

Teaching Programming at Primary Schools:
Visions, Experiences,

and Long-Term Research Prospects�

Giovanni Serafini

Department of Computer Science, ETH Zurich, Switzerland
giovanni.serafini@inf.ethz.ch

Abstract. The key contribution of computer science to general and
school education relies on the concept of Computational Thinking. Teach-
ing programming in Logo at the primary school is an appropriate di-
dactic approach towards Computational Thinking, it permits to embed
Computational Thinking into a spiral curriculum at a very early stage
and should enable specific transfer to related school subjects. The paper
describes our concrete experiences in teaching programming in Logo at
Swiss primary schools, reflects on didactic visions and consider prospects
for long-term empirical research.

1 Introduction

Computer science is nowadays omnipresent in real life. University programs in
computer science were already introduced in the late sixties of the last century
and are actually well established. It is to be considered a kind of paradox that
despite of its everyday relevance and its importance for university education and
research, efforts aiming at introducing a dedicated computer science school sub-
ject evoke controversial discussions among school communities as well as among
the scientific community [10]. A missing general consent about goals, teaching
topics, and even about the scope of computer science and the delimitations to
related disciplines characterizes the debate.

Jeannette Wing brings order into the discussion declaring Computational
Thinking as the key contribution of computer science to general and thus to
school education [11]. According to Wing’s vision, we believe that Computa-
tional Thinking is an attitude as well as an extensive framework of concepts,
abilities, and skills young people should learn in school. We are convinced that
learning programming on an adequate level of abstraction is a very effective
didactic approach to Computational Thinking, independent of the age of the
pupils.

In this paper, we focus on our school projects aiming to introduce primary
school pupils to Computational Thinking by teaching them how to program.
The pupils usually attend grade 3 to 7 and are roughly between 8 and 13 years
� This work was partially supported by the Hasler Foundation.

I. Kalaš and R.T. Mittermeir (Eds.): ISSEP 2011, LNCS 7013, pp. 143–154, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

144 G. Serafini

old. During the last 6 years we were allowed to teach several hundred children
programming in Logo, during on-site school projects as well as in dedicated
events directly at our university.

The paper is organized as follows: Section 2 addresses the nature as well as
the scientific fundamentals of Computational Thinking. Section 3 focusses on the
adopted didactic approach while teaching programming at the primary school:
we discuss the didactic and technical requirements for a programming language
for very young pupils, present the vision and the didactic approach we follow,
and further give a concise overview of the teaching materials we developed. In
the following section, the structure and the timeline of a typical school project
are shortly addressed. In Section 5, we reflect on general experiences and learning
achievements during the school projects. Section 6 highlights research prospects
dealing with Computational Thinking and with starting programming courses
at primary schools, and finally outline prospects for empirical research.

2 Addressing the Nature of Computational Thinking

2.1 Computational Thinking Is Unique to Computer Science

In a seminal contribution, Jeannette Wing highlights Computational Thinking
as a new thinking paradigm, which enables innovative ways for addressing prob-
lems in everyday life as well as for approaching research subjects in apparently
completely unrelated scientific fields. Wing assesses that everyone, not only com-
puter scientists, would be eager to learn and to use it [11].

Juraj Hromkovic explains in detail, that computer science has aspects of math-
ematics, natural sciences, technics and even of philosophy, but is not exactly in-
cluded in one of these. He highlights that computer science is an independent sci-
entific discipline which formally studies ways to automatically (algorithmically)
solve problems, and assesses that the concept of algorithm should be considered
as the first axiom of computer science. Since algorithms are the core of computer
science, Computational Thinking is the key contribution of computer science to
general education [3,5].

According to these two very similar definitions, algorithms are unique to com-
puter science, and computational (or algorithmic) thinking can only be learned
in a dedicated computer science school subject.

2.2 Children Should Learn Computational Thinking for Life

Computational thinking is a scalable concept whose extent can be adapted, de-
pending on the abstraction skills and on the prior knowledge of the involved
actors. We think that Computational Thinking can be introduced and taught
on an appropriate and adequate level of abstraction at all school stages, and that
it is well suited to be taught in a cognitive actively form of learning, within a
spiral curriculum. We are firmly convinced that learning how to program repre-
sents a scientific sound, but very effective didactic approach to Computational
Thinking, independent of the age of the pupils.

Teaching Programming at Primary Schools 145

We believe that Computational Thinking is nowadays essential and that chil-
dren should learn it for life. We therefore promote the idea that a computer
science subject relying on Computational Thinking should be mandatory at ev-
ery school stage, including the primary school. We do not pursue the goal to
make a computer scientist or a software engineer out of each child, but we as-
sume that introducing programming at a very early school stage might help
increasing the interest in computer science and MINT subjects1. We hope that
therefore, on a long-term perspective, more school-graduates would consider to
enrol for a university program or to start a career in a MINT field.

3 Didactic Concept and Teaching Approach

3.1 The Quest for the Programming Language

We believe that Logo [9] still is one of the most adequate programming language
for beginners, particularly for classes at primary school. Logo is a mini-language
and, in contrast to general-purpose programming languages, it was explicitly de-
veloped for teaching programming [4]. In order to write and run Logo programs,
beginners do not need to learn a consistent language subset and do not have
to deal in any way with the intrinsic complexity and the particular features of
a larger, general-purpose programming language [1]. Logo permits the user to
focus on a very reduced set of instructions with an adequate, clear syntax. In
contrast to sophisticated programming environments for other, well established
mini-languages, simple Logo editors do not rely on a click-and-drag approach and
allow the pupils to type the instructions by themselves. This permits them to
care for correct syntax and dramatically reduces the cognitive overload caused
by an unmanageable list of instructions or by an overcharged graphical user
interface.

Moreover, the open-source programming environment XLogo [7] satisfies all
our most relevant expectations. It is free of charge, it runs on multiple platforms,
it does not need an internet connection at run-time and runs quite well on slow
computers. Schools are therefore able to simply deploy it, even in older computer
rooms, teachers as well as pupils and their families are allowed to use it without
further constraints on their private computers.

3.2 Didactic Approach and Teaching Materials

The German textbook Einführung in die Programmierung mit Logo [4,2] is a
detailed introduction to programming in Logo permitting to intensively teach
classes of different school stages on a regular basis. The contents of the first part
of the textbook are well suited for teaching programming at primary schools.

School projects aiming to introduce children to programming usually have
very restricting time limitations. We therefore decided to develop compact, ad-
hoc-teaching materials for primary schools adhering to these constraints which
1 MINT is an acronym for mathematics, informatics, natural sciences, and technics.

146 G. Serafini

still rely on the didactic guidelines from the mentioned textbook. The teaching
materials are meant to be the ideal support for our school projects and have
further made been available online, free of charge, for interested schools and
institutions [6].

The teaching materials are organized in six different lessons and do not require
prior knowledge in programming.

3.3 Lessons 1 to 4

The first lesson introduces the concept of a program as a sequence of simple
computer instructions. The pupils learn the exact meaning of the four basic
instructions fd, bk, rt, and lt which permit to move and to rotate the turtle, as
well as the instruction cs used to clear the screen. They learn that the computer
does only understand clear, unambiguously formulated instructions, and they
further get introduced to the simple, but very effective XLogo-programming
environment.

Lesson 2 focusses on the concept of a basic loop with a constant, a priori
known number of iterations. The children are lead to discover the need for a
way to automatically repeat a specific code segment, and learn the exact, but
not yet very intuitive syntax of the repeat instruction. They start therefore
writing shorter, clever programs which reuse code they already wrote and directly
influence the sequential execution flow. At this stage, children do not need to be
introduced to the concept of a variable.

Lesson 3 introduces the approach of modular design of programs, which is not
unique to computer science and represents an ideal bridge to other technical dis-
ciplines. First of all, the pupils learn that programs mostly need a name and that
a named program can be nested in a larger program. In a small project, pupils
have to draw a town consisting of identical streets of exactly the same house type.
The children recognize that modularity is a very powerful concept, permitting to
conceive and produce programs solving complex assignments. They understand
that modular design simply reuses existing programs in a very elegant way. The
assignments need the two additional instructions penup and pendown.

Lesson 1 to 3 allow us to highlight some characteristics of the chosen didactic
approach and of the teaching materials:

– There is no systematic direct instruction of the children by a teacher. The
pupils are expected to work autonomously, relying on the teaching materials
and on the interactions with the tutors.

– The theory blocks and the texts are very short, the language is simple, but
the terminology is precise.

– Pupils are able to write and execute their first program within minutes. They
only need to know a few instructions.

– The exercises of the first two lessons are simple and permit the pupils to fa-
miliarize themselves with the programming language and the basic concepts
we introduced.

– The exercises focus on small algorithmic problems: the assignments are con-
cise and the expected solutions are compact. Pupils are even able to verify

Teaching Programming at Primary Schools 147

their solutions by themselves, on the screen, without a formal feedback of a
teacher. If not, they can autonomously start debugging the code.

– A didactic sound approach allows to rapidly introduce basic concepts such
as program, loop and modular design.

The fourth lesson deals with drawing regular polygons and circles. The new
instruction setpencolor permits to change the color of the pencil. In this lesson,
no new programming concepts are introduced. The pupils are mainly expected
to gain deeper routine in programming by solving assignments for which they
generally have prior knowledge from geometry and mathematics.

3.4 Lessons 5, 6 and the Concept of a Constant Parameter

Lesson 5 introduces a substantially simplified concept of a variable in form of
a constant parameter. Relying on a placeholder abstraction and lead by the
teaching materials, pupils learn that programs are usually able to solve a class
of problems whose instances only differ in the value of one or more specific
parameters. The initial example focusses on drawing a square. The exercises
permit to vary the figure the pupils have to draw and to change the number
of parameters. This approach allows to efficiently mask the hardware layer and
therefore to reduce the intrinsic complexity of the concept of a variable to an
appropriate level for primary school kids.

In Lesson 6, the pupils learn to combine parameters with modular design. They
write challenging programs expected to pass parameter values to subprograms,
integrating all the basic concepts and the instructions of the lessons 1 to 5.

The didactic approach behind lessons 5 and 6 is similar to the approach we
chose for the first four lessons. Even if contents and exercises are now more com-
plex, the pupils are still writing small programs based on very few instructions,
in a simple and effective programming environment. The pupils can still learn,
program, test, and debug in an autonomous way, while tutors assist them.

4 Programming Projects at Primary Schools

4.1 School Projects

Practical organisational constraints impose a very similar but flexible plan for
each new school project. A typical school project currently consists of 12 to 16
units of 45 minutes each, which are usually taught in 3 to 4 half-day blocks.
Classes are split into parallel groups of up to 12 pupils. Two tutors and usually
one class teacher supervise each group. Each child uses an off-the-shelf-netbook,
learns and programs autonomously and is therefore implicitly able to adapt his
pace. Each school project ends with a programming contest which give us a
more concrete impression of the learning achievements of the pupils. A closing
act give us a feeling of the attitude of kids, teachers, school board and political
authorities with respect to programming classes.

148 G. Serafini

4.2 Class Teachers and University Tutors

We explicitly involve the teachers at the host-schools and expect them to ac-
tively support their classes during the school project, but we have no particular
requirements with respect to their prior knowledge in programming. According
to the mission of the primary school, classes are usually taught on a one-teacher
basis and teachers are therefore required to integrate wide-ranging school sub-
ject competence with deep pedagogical and didactic skills. Their education in
computer science mainly focusses on mastering computer applications which sup-
port the preparation and the documentation of their lessons. Consequently, the
first project stage consists of training the teachers. This usually happens on-site,
during a half-day workshop, relying on exactly the same didactic approach and
the same teaching materials we later use with their pupils.

The school projects still involve tutors from our university. The composition
of the team varies and comprises faculty members, lecturers, postdocs and PhD
candidates, as well as several undergraduate computer science students. Female
and male tutors are usually equally represented.

5 General Experiences

In this section, we present selected major observations from our school projects.
These observations are common to most of the school projects and enable us
to summarize our experiences in a general, meaningful way. Furthermore, we
consider the results of a survey among pupils and teachers taking part in re-
cent projects, present the assignments of a programming contest, and comment
the results. The reflections generally focus on didactic issues to be additionally
addressed and eventually empirically investigated.

5.1 Major Observations

– During each project, the pupils need up to 30 minutes at the beginning of
day 1 in order to get used to learning autonomously.

– Pupils get rapidly used to the Logo syntax. Typing the code by themselves
is not a particular issue.

– The pupils are really dedicated. They visibly like programming and are still
proud to show their progress and the solutions to the assignments. They usu-
ally have to be forced to leave the classroom during the mandatory breaks.

– The kids always try to improve their solutions. The are not satisfied with a
weak solution.

– Girls are as engaged and achieve the same goals as boys.
– Starting with lesson 4, the cognitive complexity of the taught contents in-

creases. Pace differences among the pupils increase, too. Since the pupils are
working autonomously, tutors do not have to assist the whole group but are
able to actively support kids having particular problems or looking for being
challenged.

Teaching Programming at Primary Schools 149

– Teachers are really motivated, even if they do not have any kind of prior
knowledge. They enjoy to learn programming, like to have well-prepared
teaching materials they can later use and like the exchange of insights about
programming and didactic issues with university staff and tutors.

– The teachers are not necessary faster in learning than the kids.

5.2 School Project in Attinghausen

A recent project took place a the primary school of Attinghausen, in the Swiss
Canton of Uri, near to the Saint-Gotthard Massif. 16 pupils of grade 5 and 23
pupils of grade 6 were taught in 4 parallel groups during 3 half-day blocks, in
the morning of March 14th, 16th, and 18th 2011. Three weeks before, 4 teachers,
the school director as well as a local politician were introduced to Logo within
a three hours course. Each group of pupils was supervised by two tutors as
well as by one class teacher. Every group acted independently from the others.
One computer for each of the pupils was available. The last 90 minutes of the
school project were reserved for a programming contest and for the common
closing act.

The school board initiated a survey, mainly aiming to assess the impression
among all the pupils and two of the teachers. Table 1 shows selected items from
the survey. Each item was graded on a scale from 1 (I totally disagree) to 6
(I totally agree). The pupils and the teachers really enjoyed the project. Their
feedbacks are very consistent. One teacher pointed out, that he would like to
install XLogo at home, but he would need a short break in his time intensive
job. Furthermore, we noted that not all the kids knew where they can download
XLogo.

5.3 School Projects in Domat/Ems and in Saas im Prättigau

The Higher School of Pedagogics of the Swiss Canton of Graubünden is very
interested in supporting the introduction of computer science at the local primary
schools.

During two large pilot projects in 2010 and 2011, in Domat/Ems, our team
was able to teach up to 120 kids of grades 5 and 6 during three half-day blocks,
as well as to train their teachers. A summary of the 2010 project is available
online [8]. The statements of the pupils and of the teachers are consistent with
those of Attinghausen.

On May 12th, 19th, 26th and June 9th 2011 we taught a grade 5 class com-
prising 17 pupils at the primary school of Saas im Prättigau. The usual half-day
blocks were split into two 90 minutes units just before and just after lunch. The
large and comfortable classroom allowed to teach all kids together, with the su-
pervision of two or three tutors and of the class teacher. One computer for each
of the pupils was available. As usual, the last 90 minutes of the school project
were reserved for a programming contest and for the common closing act.

150 G. Serafini

Table 1. Selected items from the Attinghausen’s survey

grade 5 grade 6 teachers

I liked the project. I recommend it to
other schools. 16 16 16

The teaching materials are well-arranged
and are comprehensible. 16 16 16

I found it proper and important, that
each pupil was allowed to individually use
one computer.

16 16 16

My perception of the coaching by ETH
tutors and class teachers was positive.
Tutors helped me by questions and
supported me with hints.

16 16 16

Working in four small groups, instead of
the whole class, was helpful for this
project.

16 16 16

The closing act, with programming
contest and dia-show was good and
motivating.

16 16 16

The distribution of the courses over 3
mornings was optimal. 16 16 16

I like to occasionally program with XLogo
and would enjoy to take part to a
continuation of the school project.

16 16 16

I plan to installed XLogo at home (or I
already did it), so that I can continue to
program.

16 16 16

5.4 Programming Contests

The programming contests generally consist of six to nine tasks which are very
similar to the exercises the pupils had to solve during the course and they are
similar over all the projects. Table 2 shows the tasks of the programming contest
we organized in Saas im Prättigau. The contests are neither a school examination
nor an empirical test to assess the learning achievements of the pupils. They
should help increasing the motivation of the children and allow to celebrate the
end of the project.

We do not prepare an official ranking of the constants, but usually gift the
participants solving all the tasks (or most of them) with a Logo textbook [4].
The pupils are free to choose the tasks they like to solve first and are allowed
to submit their solution to a tutor several times, until they have the correct
one. Therefore, we only reward correct solutions with one point. Only in very
particular situations (e.g. when the time is running out and a child submits a
good but not perfect solution) we distribute a fraction of a point.

Teaching Programming at Primary Schools 151

Figure 1 summarizes the results for each of the tasks of the contest of Saas im
Prättigau: 15 of the originally 17 pupils attended the contest. The pupils were
expected to solve 7 exercises resp. 9 different tasks. The class reached an average
of 6.4 out of 9 points. 60% of the children solved at least 6 tasks, 47% of them
solved 7 tasks and 3 pupils were able to solve all the nine tasks. These remarkably
good results confirmed the excellent feeling we had during the lectures.

The Attinghausen project consisted of only three half-day blocks. The pro-
gramming contests was therefore easier and shorter. Only two tasks required to
be solved using parameters. The two overall best participants were two grade 6
girls. They were able to solve all the six assignments very rapidly, within 31 resp.
33 minutes.

1 2 3 4 5a 5b 6a 6b 7
0

3

6

9

12

15
15

12
11

12 11.5

8.5

13

8

4.8

Task

Po
in

ts
(o

ut
of

15
)

Fig. 1. Saas im Prättigau: Points per Task

6 Research Prospects

The very exiting and promising teaching experiences we made in the schools con-
firmed us in our conviction that extended, long-term empirical research on Com-
putational Thinking should not be postponed. In this section, we first consider
the general idea of assessing Computational Thinking, we focus on exemplary
research topics dealing with the concept of a variable, and finally shortly point
out our next steps.

6.1 Assessing the Influence of Computational Thinking

It can be reasonably assumed that the interdisciplinary nature of computer sci-
ence may encourage a specific transfer of Computational Thinking to other scien-
tific fields. Long-term empirical research projects are needed in order to formally
investigate the impact and the probable benefits of increasing Computational
Thinking skills on closely related school areas such as mathematics, natural sci-
ences and technics. We believe that starting to program at a very early school
stage plays a central role in learning Computational Thinking, and suggest to
start programming classes, within a spiral curriculum, at primary schools.

152 G. Serafini

Table 2. Programming Contest of Saas im Prättigau

1. Let a program draw the following
picture.

200

100

100

2. Draw the following picture.
Use repeat.

80 80

3. Write a program for this figure.
Use repeat.
The gray lines must not be drawn

10050

5. Fill in the necessary parts in the given
programs in order to draw the picture.
a) repeat 9 [repeat 7 [fd 40 rt 90]
...]
b) fd 40 rt 90 fd 360 rt 90 fd 40 rt
90 fd 40 repeat 8 [rt 90 fd 40 ...]

40
40

4. The program
HALFCIRCLERIGHT
HALFCIRCLELEFT
HALFCIRCLERIGHT
should draw the following picture. Write
the subprograms HALFCIRCLERIGHT and
HALFCIRCLELEFT which allow to achieve
this goal.
You can freely choose the dimension of
the semi-circles.

6. a) Write a program HEXAGON :GR to
draw a regular hexagon with side length
:GR.

:GR

b) Use HEXAGON :GR as a sub-program of
the program PATTERN :GR to draw the
following picture:

:GR

7. Write a program which draws the fol-
lowing picture. Users should be free to
choose the side length of the squares and
the number of black squares. There are as
many gray squares as black squares.

In hypothetical experimental settings, a group of pupils receives an additional,
excellent education in computer science, while the other groups independently
get an additional, excellent education in closely related school subjects. A con-
trol group has no additional education at all. This or similar experiments, even
experiments with additional education in not-MINT-topics, and the comparison
of the overall learning progress of the scholar groups over several years may help
addressing the influence of Computational Thinking in the context of general
education.

Variations of these experimental settings allow to assess the impact of Com-
putational Thinking skills on specific groups of pupils, e.g., female pupils, very
young pupils, pupils with an high IQ or pupils with a low IQ.

Teaching Programming at Primary Schools 153

6.2 Research on the Concept of a Variable

The concept of a variable is usually the first crucial issue for programmer novices
of each age. Its cognitive complexity can be reduced by splitting the learning
process into two phases. The pupils first learn to deal with a constant parameter,
relying on a simple placeholder abstraction. The primary school kids of our school
projects usually master this abstraction level. In a second step, eventually at a
higher school stage, the pupils learn that parameter values may vary over time,
and that a variable parameter is intrinsically related to computer memory. A
simple, but adequate abstraction allows to represent it as a register. How old
should children be at least, in order to master this approach, in particular the
step from a constant to a variable parameter? What kind of abstraction skills or
prior knowledge do they need? Is the concept of a variable parameter generally
too hard for primary school kids?

Mastering variables in computer science may open new, even unexpected di-
dactic perspectives. One of the most fascinating and challenging research prospect
refers to the only apparently similar role of variables in computer science and
mathematics. Children starting to program early, in the primary school, do not
have any school related prior knowledge on variables. They therefore develop
this concept from scratch. Even relying on the register abstraction, a variable in
computer science is more concrete than in mathematics. Children who first learn
to program and later have to deal with the more abstract concept of variables
in mathematics classes, may benefit from their programming skills.

6.3 Upcoming Research Activities

Gaining empirical evidence of learning progress requires a sound test design as
well as a large population of pupils to be followed over a long period. The pupils
have eventually to be followed over most of their mandatory school, and even
longer. We are looking ahead for planning and soon starting long-term research
projects with partner institutions and an interdisciplinary group of scientists
and teachers. Highly interested primary schools are already available. Classes at
higher school stages have to be found.

7 Conclusion

This paper considers Computational Thinking as the key contribution of com-
puter science to general education. It presents our experiences in introducing
primary school kids to Computational Thinking by teaching them how to pro-
gram. In our projects, primary school kids are expected to learn autonomously,
without a systematic direct instruction. The pupils solve small algorithmic prob-
lems by programming in Logo, relying on very few commands in a simple editor.
They are therefore much less exposed to the undesirable effects of cognitive over-
load.

Even relying on an appropriate sound didactic concept, programming remains
a very challenging cognitive activity. Modular design is one method the kids learn

154 G. Serafini

in order to address this complexity. Observation during the courses, the results
of the programming contests, and the feedback of pupils and teachers informally
confirm that the kids achieve the goals we set, and point out the quality of the
chosen didactic approach, independent from the gender of the pupils.

Computational thinking may permit specific transfer from computer science to
the other MINT subjects, and may eventually open new didactic opportunities.
Extensive research projects are needed to gain empirical evidence of the its
importance.

References

1. Brusilovsky, P., Calabrese, E., Hvorecky, J., Kouchnirenko, A., Miller, P.: Mini-
languages: a way to learn programming principles. Education and Information
Technologies 2, 65–83 (1998)

2. Freiermuth, K., Hromkovič, J., Steffen, B.: Creating and testing textbooks for
secondary schools. In: Mittermeir, R.T., Sys�lo, M.M. (eds.) ISSEP 2008. LNCS,
vol. 5090, pp. 216–228. Springer, Heidelberg (2008)

3. Hromkovič, J.: Contributing to General Education by Teaching Informatics. In:
Mittermeir, R.T. (ed.) ISSEP 2006. LNCS, vol. 4226, pp. 25–37. Springer, Heidel-
berg (2006)

4. Hromkovič, J.: Einführung in die Programmierung mit Logo. Vieweg+Teubner
(2010)

5. Hromkovič, J.: Informatik und allgemeine Bildung (May 2010),
http://www.educ.ethz.ch/unt/um/inf/all_inf/unt/um/inf/all_inf/

6. Hromkovič, J., Keller, L., Serafini, G., Steffen, B.: Programmieren mit Logo,
http://abz.inf.ethz.ch/primarschule-unterrichtmaterialien

7. Le Coq, L.: Xlogo. Website, http://xlogo.tuxfamily.org/
8. Matter, B.: Projekt programmieren in der primarschule. Website,

http://abz.inf.ethz.ch/media/archive1/programmierenfuerkinder
/InfobroschAug2010-3.pdf

9. Papert, S.: Mindstorms: Children, Computers and Powerful Ideas, 2nd edn. Basic
Books, New York (1993)

10. Schnabel, R.B.: Educating computing’s next generation. Commun. ACM 54, 5
(2011)

11. Wing, J.M.: Computational thinking. Commun. ACM 49(3), 33–35 (2006)

http://www.educ.ethz.ch/unt/um/inf/all_inf/unt/um/inf/all_inf/
http://abz.inf.ethz.ch/primarschule-unterrichtmaterialien
http://xlogo.tuxfamily.org/
http://abz.inf.ethz.ch/media/archive1/programmierenfuerkinder/InfobroschAug2010-3.pdf
http://abz.inf.ethz.ch/media/archive1/programmierenfuerkinder/InfobroschAug2010-3.pdf

I. Kalaš and R.T. Mittermeir (Eds.): ISSEP 2011, LNCS 7013, pp. 155–164, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Learning Algorithmic Thinking with Tangible Objects
Eases Transition to Computer Programming

Gerald Futschek and Julia Moschitz

Vienna University of Technology,
Institute of Software Engineering & Interactive Systems,

Karlsplatz 13, 1040 Vienna, Austria
{Gerald.Futschek,Julia.Moschitz}@ifs.tuwien.ac.at

Abstract. Learning algorithmic thinking can start in early years and must be
oriented on the thinking ability of young children. Suitable environments with
tangible objects and easy to understand problems motivate the young to learn
the first concepts of algorithms. We present in this paper a learning scenario
Tim the Train for primary school children, that involves tangible objects and
allows a variety of interesting tasks to learn basic concepts of algorithmic
thinking. We also show how a smooth transition from a playful environment
with tangible objects to a virtual Scratch/BYOB environment may help the
young learners to learn their first steps in understanding virtual environments
and programming concepts.

Keywords: Algorithmic thinking, primary education, explorative learning,
tangible objects, learning by doing.

1 Introduction

At the beginning of learning algorithmic thinking learners often have problems with
this abstract type of thinking and with the abstraction in a programming environment.
Therefore, we try to build a bridge between the real world and a programming
environment. Tim the Train is an example which helps especially beginners to pass
the river between the tangible world and the abstract world of programming
environments and languages.

Many efforts to create environments and learning scenarios have been made in
order to make learning algorithmic thinking and programming easier, more pleasant
and more efficient. Some more prominent programming environments that are
suitable also for very young children are Logo, Alice, Baltie and Scratch [1,2,3,4]. All
these environments allow the manipulation of virtual objects with a wide variety of
commands. Learning environments should try to attract as many learners as possible
by appealing to different senses and learning styles. For young learners the kinesthetic
aspect of learning is very important, because they learn by touching, seeing, hearing,
feeling and smelling [5]. Kinaesthetic elements are very important even for
engineering education in higher education, because the students are invited to be
active with more than one sense in the learning process [6]. Some programming
environments involve tangible objects, the mechanical Logo turtle and programmable
robots are well-known examples [7].

156 G. Futschek and J. Moschitz

In this paper we propose a learning scenario with real tangible objects that is
suitable to learn the basic concepts of algorithmic thinking. It has a limited number of
commands that are easy to understand. A simulation of this scenario in Scratch allows
a smooth transition to virtual learning environments and the world of computer
programming.

2 Learning Scenario Tim the Train

Tim the Train describes a bin packing scenario. The containers of a train should be
loaded with parts of different shapes. No container should be overloaded. This
learning scenario provides the opportunity to come in contact with a more advanced
problem of computer science. Tim the Train helps beginners to train algorithmic
thinking in a playful way and to understand some aspects of the bin packing problem
as well.

The implementation of Tim the Train consists of a set of wooden elements for
train, containers and load parts (see Fig. 1) and also of a simulation in Scratch/BYOB.
Tim the Train includes a locomotive, containers, parts in different shapes and sizes
and a set of symbolic commands. The colours of the train are chosen so that they are
attractive for boys and girls. The wooden train and the simulation in Scratch/BYOB
use the same structure and colours, so that a recognition factor is given, which helps
beginners to get a feeling for the simulation environment on the computer.

Fig. 1. Tim the Train with tangible parts made of coloured woodIntroduction

A variety of interesting tasks can be performed with this learning scenario.
Basically, learners do not need special pre-knowledge to solve these assignments. The
game-like tasks are suitable for children from the age of 5 years onwards. Reading is
not necessarily required, because the instructions for the algorithms are marked with
symbols and words. The teacher should explain the tasks and the meaning of the
commands anyway. The number of symbols for describing the commands (a sort of
programming language) is kept small to help the learners to focus on the basic
algorithmic concepts. The learners get a card with explanations about the actions and
their acceptation. The programming language is easily expandable, because the

 Learning Algorithmic Thinking with Tangible Objects Eases Transition 157

language is realized on cards. New command cards may be created by the learners
themselves. For advanced learners it is a challenge to create new actions or forms of
loops and suitable symbols for these actions and loops.

The problems (tasks) are chosen in a way that they are interesting for beginners as
well as for advanced learners, because the tasks provide different levels of difficulties.
Advanced learners can solve the easier problems too in order to revise and consolidate
the basic skills of algorithmic thinking. However, the material is also appropriate to
adolescents and adults who want to learn algorithmic thinking in a playful way.

3 Basic Algorithmic Concepts

Learning concepts is much more important than learning systems or programming
languages. At the very beginning of learning algorithmic thinking we can observe
very basic concepts that should be involved in learning scenarios:

Basic commands – basic actions
Sequence of commands
Alternative of commands (if)
Iteration of commands (loop)
Abstraction command (method)

Commands are usually represented by symbols or by text. The main purpose of a
command is that when executed it invokes well defined actions. Each basic command
is related to a basic action in the learning scenario. So a learner has to understand that
a command is an abstraction of an action. The concepts sequence, alternative and
iteration define the order in which commands are executed. These concepts are
essential in algorithmic thinking.

Other important algorithmic concepts like recursion, parameters, variables, data
types are omitted intentionally when addressing very young learners. These concepts
need deeper abstract thinking skills and are therefore suitable only for elder learners
or more advanced learners.

4 Interesting Tasks

This chapter describes three different tasks for beginners to play/learn with Tim the
Train that lead to first algorithmic thinking skills. The level of difficulty increases
from task to task. These three tasks are just examples of tasks that can be given.
A teacher may vary these tasks or can pose even his own tasks.

4.1 Playing a Given Algorithm

In the first level the beginners have to reproduce a given algorithm. By this way the
beginners familiarize themselves with the symbols (commands) of Tim the Train.
Additionally, the learners try to play (execute) the given algorithm and to find out the
result of the given algorithm. This game is appropriate for beginners who have no or

158 G. Futschek and J. Moschitz

only few experiences of algorithmic thinking. This problem is also adequate for very
young children, who cannot read or write. At the beginning the containers of the train
(Fig. 2) contain some parts to show what the action “reset” does at the beginning.

Fig. 2. A train at the beginning of the algorithm

The following table shows the parts and the order of their appearance.

Table 1. A sequence of incoming parts

1st part

2nd Part

3rd part 4th part 5th part 6th part

The first command (reset) of the algorithm (Fig. 3) is to clear all containers of the

train. Then the train is empty and the first part can be dropped. The instruction “drop”
means to drop the part at the leftmost position where the part would reach the
deepest place. This step will be repeated four times. After these drops the last part
overloads the wagon therefore it is lifted again. Then the next wagon is loaded with
three parts.

Fig. 3. Example of a given algorithm

The learners have two possibilities to build the solution. On the one hand they can
play the algorithm with the wooden train, on the other hand they can even use the
simulation in Scratch/BYOB to find the solution. When the algorithm is finished, one
can find the following final state (Fig. 4):

Fig. 4. The train at the end of the algorithm

 Learning Algorithmic Thinking with Tangible Objects Eases Transition 159

4.2 Second Task: Writing an algorithm

In the second task, the result (Fig. 5) is given and learners have to find out the
algorithm that leads to the given result.

Fig. 5. The final state to be achieved

For beginners a set of instructions cards (Fig. 6), which are required in the
algorithm, may be given.

Fig. 6. A given set of instruction cards

As additional help to find out the basics of the algorithm, a few tips may help: “At
first you have to find out in which order the parts are fitted in the wagons.”, “Check
the parts, if they are in the right position. Maybe you have to flip or rotate some of the
parts.”

Advanced learners may begin to solve the problem without the tips and the set of
given commands. As an additional task, advanced learners may try to find a better
solution by use of iterations.

If the learners use the actions shown in Fig. 6, the parts have to come in the
following order and orientation:

Table 2. The sequence of incoming parts

1st part 2nd part 3rd part 4th part 5th part 6th part

The solution with the instructions given is without any use of loops. Therefore, it

will be easy to solve for beginners (Fig. 7). The beginners can think about: What is
happening when the parts are in another order or orientation? How must the algorithm
be changed to reach the given result? Does the algorithm always work for all possible
input sequence of parts? These questions are instructive for beginners, because they
will recognize by this way that the solution is only effective for the given sequence of
parts and not a universally valid solution for this kind of problem.

160 G. Futschek and J. Moschitz

Fig. 7. A possible solution for the required algorithm

4.3 First Algorithm with Loops

The next task allows beginners to develop repeat–loops in an easy way. The didactic
approach is that the learners develop the loop step by step. At first the learners have to
find out what a given algorithm does and then they have to reformulate the given
algorithm using the loop construct. Next they have to find out: “Under what condition
is the algorithm correct and under what condition not?” This question should help
especially beginners to think about the differences between an algorithm which is
generally effective and one that is effective only for a specific problem. The
precondition for the algorithm of Fig. 8 is that the train has at least three wagons and
overloading is possible. As additional difficulty, the learners do not know in which
order the parts are coming. The following algorithm drops a part in each of the first
three wagons. This action is repeated three times.

Fig. 8. A given simple algorithm at the beginning of the task

At first the learners have to find out which parts of the algorithm are repeated. It is
easy to see that the sequence of commands contained in the 3 rows is exactly the
same. But also inside each row one can find repetitions. The left block in Fig. 9 shows
the actions “drop and go to next wagon” which are repeated 3 times. The right block
in Fig. 9 shows that the action “go to the previous wagon” is also repeated three
times.

Fig. 9. The repeated parts of each row are marked by coloured blocks

 Learning Algorithmic Thinking with Tangible Objects Eases Transition 161

As intermediate step the learners may build an algorithm using loops only for the
two blocks in Fig.9, because loops, especially nested loops, are not so easy to
understand. For beginners the breaking points of loop understanding are to find the
repeated actions and to set the right limitation of the loop.

An example of a solution is given in the following picture (Fig. 10). This solution
shows explicitly, that the two loops of the first line are repeated three times.

Fig. 10. An algorithm with six loops

Additionally, by this way the learners discover that they can simplify the solution
once again and develop their first nested loop in an easy way. A solution with an
additional loop may simplify this algorithm even further, see (Fig. 11).

Fig. 11. A solution with nested loops

This example shows how loops can be introduced to beginners. Step by step the
learners develop new versions of algorithms.

As additional tasks it would be interesting to write algorithms to fill a wagon and
to empty a wagon. These loops are easy to build, but they are good exercises to
develop skills in loop understanding. The algorithm to empty a wagon is simple,
because one needs only the action “lift” and the condition “empty” (Fig. 12).

162 G. Futschek and J. Moschitz

Fig. 12. Emptying a wagon

Filling a wagon is only slightly more difficult. The additional difficulty is to detect
that a wagon cannot be filled any more. A possible solution is to drop parts until the
wagon is overloaded. Then the last dropped part has to be lifted back (Fig. 13).

Fig. 13. Filling a wagon

5 Learning Experiences

All the examples described in the last chapter try to help beginners to train their
competences in algorithmic thinking. Although the complexity of Tim the Train is
simple, it has a lot of possibilities to construct interesting tasks for different levels of
algorithmic thinking skills.

Fig. 14. Filling the wagons with tangible parts

For learners who have problems with algorithmic thinking or who are using
preferably visual or kinaesthetic learning styles, the wooden train helps them to
understand the problem and eases finding a solution (see Fig. 14). This type of

 Learning Algorithmic Thinking with Tangible Objects Eases Transition 163

learners is grateful, when they can touch and flip the real parts in the real world or to
execute an algorithm without a computer environment. At the beginning these
learners are often overstrained with doing both: algorithmic thinking and at the same
time orienting in a new abstract programming environment.

We strongly recommend that the learners work in groups. With help of the wooden
train the learners can work together, can discuss their problems, and they can find
solutions to their problems faster.

In the examples described Tim the Train is standing and a crane is moving from
one container to another. Advanced and more talented learners like to find new tasks
or to expand the set of commands. For example, it would be interesting to move the
crane or the train in both directions. This learning scenario would enable a lot of
further solutions and a basis for discussions of the different solutions.

Advanced learners are highly motivated to implement their commands also in
Scratch or BYOB [8]. The principles of algorithmic thinking are in a virtual
programming environment like Scratch or BYOB the same as with tangible objects. It
differs in the granularity of the basic actions. Even the basic commands of the wooden
model have to be programmed, see Fig. 15.

Fig. 15. Implementation of command “drop” in BYOB

The advantage of this learning scenario is that the learners may decide between
different learning environments adapted to their individual learning styles and types.

6 Conclusions

Tim the Train is a physical micro world which helps learners to train algorithmic
thinking and helps them to have a smooth transition to virtual learning environments

164 G. Futschek and J. Moschitz

and the world of computer programming. The children learn about the basics of the
bin packing problem and make their first steps in the programming environment of
Scratch.

With Tim the Train the beginners are motivated to do further programming in
different environments. This holds even for those learners who are not absolutely
ecstatic of programming at the beginning.

References

1. Papert, S.: Mindstorms: Children, computers, and powerful ideas (1980)
2. Cooper, S., Dann, W., Pausch, R.: Teaching Objects-first. In: Proceedings of the 34th

SIGCSE Technical Symposium on Computer Science Education, Introductory Computer
Science, pp. 191–195 (2003)

3. Baltie home page, http://progopedia.com/language/baltie/
4. Maloney, J., Burd, L., Kafai, Y., Rusk, N., Silverman, B., Resnick, M.: Scratch: A Sneak

Preview. In: Second International Conference on Creating, Connecting, and Collaborating
through Computing, Kyoto, Japan, pp. 104–109 (2004)

5. Hayes, D.: Encyclopedia of Primary School, pp. 231–232. Routledge, Chapman & Hall
(2010)

6. Felder, R., Silverman, B.: Learning and Teaching Styles in Engineering Education. Journal
of Engineering Education 78(7), 674–681 (1988)

7. Horn, M., Jacob, R.: Designing Tangible Programming Languages for Classroom Use. In:
1st International Conference on Tangible and Embedded Interaction, pp. 159–162. ACM,
New York (2007)

8. BYOB - Build Your Own Blocks, An extension of Scratch to program own commands,
http://byob.berkeley.edu/

I. Kalaš and R.T. Mittermeir (Eds.): ISSEP 2011, LNCS 7013, pp. 165–176, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Transfer, Cognitive Load, and Program
Design Difficulties

David Ginat1, Eyal Shifroni2, and Eti Menashe1

1 Tel-Aviv University,
Science Education Department,

Ramat Aviv, Tel-Aviv, Israel 699978
ginat@post.tau.ac.il, etime@zahav.net.il

2 Tel-Hai College,
Computer Science Department
eyalshif@telhai.ac.il

Abstract. We display a series of five studies of student difficulties with transfer
during the design of computer programs. The difficulties are characterized with
five transfer aspects – recognition, abstraction, mapping, embedment, and
flexibility. Each study involves a programming task, and unfolds difficulties
with one or more of the above aspects. The majority of the posed tasks were
rather simple CS1 (Computer Science 1) or CS2 tasks, and involved specific
transfer. One of the posed tasks was more involved and required both specific
and non-specific transfer (and a subtler combination of the above aspects). We
tie our findings to the notion of cognitive load, and its sub-notion of intrinsic
cognitive load. Following our findings, we offer recommendations and
guidelines for tutors, for developing improved transfer in program design.

1 Introduction

"Transfer occurs when a person's prior experience and knowledge affect learning or
problem solving in a new situation" ([5], p. 48). In the domain of programming, we
regard transfer as the effect of one's prior design experience and knowledge in new
program design situations. In particular, transfer may appear as the invocation and
utilization of suitable programming patterns [1,8], as well as other design elements,
such as top-down decomposition or modelling.

Transfer involves a few aspects, among them: recognition, abstraction, and
mapping [5]. Recognition, in the sense of a reminded, potential analogue (such as an
analogous problem, scheme, or representation); abstraction, in the sense of an
identified general structure, which may be diversely manipulated; and mapping, in the
sense of successfully relating the recognized analogue to the task at hand. Diverse
manipulations and mapping involve flexibility and embedment – flexibility in the
sense of "local" modifications, in order to adapt to the task at hand; and embedment in
the sense of combining one element with another, such that the second element
"serves as a conduit" to the first [4].

The notion of cognitive load refers to the number of cognitive elements (possibly
patterns, or resources), which are handled during learning, or problem solving, in

166 D. Ginat, E. Shifroni, and E. Menashe

one's working (short term) memory [4,9,10]. Yet, not only the number of cognitive
elements is relevant, but also the elements' interactivity. The aspect directly related to
element interactivity is considered as intrinsic cognitive load, as demands on working
memory capacity, which is imposed by element interactivity, is regarded as implicit to
the learned elements [7].

Cognitive load in general, and intrinsic cognitive load in particular, are considered
to be directly related to knowledge organization in one's long-term memory. Well-
organized long-term memory involves structured and richly connected cognitive
schemes, encapsulating one's knowledge and skills. Such organization reduces
cognitive load upon learning and problem solving, and yields higher competence. One
of the primary differences between experts and novices derives from their different
knowledge organizations, e.g., [3,10].

A variety of research studies in the last two decades advocated the development of
students' knowledge organization, by explicit presentation of basic programming, or
algorithmic patterns (also called design patterns, templates, schemes, and idioms [1]).
These patterns were specified by experts, primarily due to their repeated, or reusable
occurrences as code building blocks. Some fundamental algorithmic patterns are:
counting, summation, max-computation, and previous-current progression (as in the
computation of the Fibonacci sequence).

Suitable utilization of algorithmic patterns involves the transfer aspects indicated
above, of recognition, abstraction, mapping, flexibility, and embedment. These, in
turn, are related to the amount of cognitive load (including intrinsic cognitive load)
upon problem solving.

In particular, upon solving an algorithmic/programming task, one should recognize
the relevance of particular patterns, possibly abstract them, and/or use them with
some flexibility, and/or embed them together, and map the outcome to the task at
hand. Well-organized, structured conception of algorithmic patterns, which also
includes their interconnections, may yield reduced cognitive load upon problem
solving, enable suitable transfer, and improve competence.

Studies such as [3] offered structured frameworks for algorithmic patterns'
organization. Yet, little was studied about concrete student difficulties with
algorithmic patterns' employment. Two exceptions are [6,8], which examined pattern
composition, in terms of goals of combined sub-components. Yet, all of these studies
did not examine difficulties with design transfer, and the aspects of recognition,
abstraction, mapping, flexibility, and embedment. A study of these aspects, with
relation to the notion of cognitive load, may help tutors better understand their student
behaviours, and may yield improved teaching practices.

In this paper, we display a series of studies that illuminate a variety of difficulties
with respect to aspects of transfer during program design. We reveal the difficulties
through five examples with CS1/CS2 high-school students, high-school teachers, and
college students. In the next section we present student difficulties and relate them to
elements of transfer and cognitive load. In the section that follows, we discuss our
findings, relate them to implications on teaching, and offer some recommendations
and guidelines for CS tutors.

 Transfer, Cognitive Load, and Program Design Difficulties 167

2 Design Transfer Difficulties

We display below five studies, which we conducted with high-school students, high-
school teachers, and college students, in order to examine the transfer aspects
indicated in the Introduction. Each of the following five subsections presents one
study. Each study involves one programming/algorithmic task, of sequence
processing, which we posed to the participants. The task in the first study was
elementary, and the tasks in the studies that follow were, gradually, more involved.
None of the tasks were challenging, apart from the last one. Yet, the participants
demonstrated various difficulties, which differed between the tasks. In each
subsection, we first indicate the population and display the task. Then, we describe
the participants’ solutions, and analyze them with respect to transfer aspects and the
notion of cognitive load. We name each subsection according to the dominant transfer
difficulty (or difficulties) revealed by the task posed in its study.

2.1 Difficulties with Flexibility

The first population included 95 11th grade, high-school students, who have
completed their first of two CS1 years (which they studied with JAVA). They learnt
diverse utilizations of if-statements, loops, and arrays, with elementary algorithmic
patterns, such as counting, summation, max-computation, and integer decomposition
(into digits). We posed the following elementary task. Although very elementary, we
still (surprisingly) noticed difficulties.

Last rainy day. Develop a program for which the input is 365 integers indicating
the amount of rain in each day of the year; and the output is the (index of the) last
rainy day.

Trivial? Indeed; so it was for the vast majority of the students; but not for all of them.
The solution of this task is, in a sense, a variant of the max computation, in which
every input element is compared to some value, and a corresponding variable is
updated accordingly. In the max computation, the comparison is to the value of the
max variable; here, the comparison is to the constant 0. If greater than 0, a last
variable should be updated, according to the location (index) of the last-read element.
The solution may also be seen as a variant of conditional counting in which each read
element is checked, and a counter is updated accordingly. Here, there is no counter,
but rather a location variable.

Max and counting computations are basic, "canonical" algorithmic patterns, with
which all the students were familiar. In solving this task, students only needed to
flexibly utilize one of these patterns in order to yield the necessary solution.

Still, 26 students (27%) provided an erroneous solution. Some may have misread
the task (e.g., computed the last non-rainy day); but others demonstrated a difficulty
in devising a suitable solution. In particular, 12 students (13%) simply applied one of
the above "canonical" patterns (max, counting), or offered an unsuitable variant of
these patterns. Several interviews with these students unfolded a vague adaptation of
the invoked "canonical" patterns. The students "felt" that they had to offer a structure
similar to their invoked patterns, but "did not exactly manage to do so".

168 D. Ginat, E. Shifroni, and E. Menashe

Viewing the above phenomena in transfer "lenses", we notice that the task’s
solution required transfer that involved flexibility; in the sense of simple, flexible
manipulation of a selected, basic pattern. The 12 indicated students were familiar with
the relevant "canonical" patterns, and have previously seen various variants of these
patterns. They had to recognize the relevance of any of these patterns, select one,
flexibly modify it, and map it to the given task. They did perform the recognition part
(of the relevant pattern), but failed to properly perform the flexible modification that
maps the recognized "canonical" pattern to the task at hand.

In our impression, the above phenomenon may also be related to cognitive load
effects. The students who demonstrated difficulties seemed to struggle with simple
variations of "canonical" patterns. They tried to manipulate the relevant patterns
(which they properly recognized), but their intrinsic cognitive load, which derived
from their limited view of pattern interactivity, and pattern interconnections, yielded
what seemed to be a "blurred" picture of possible element (pattern) manipulations.

2.2 Difficulties with Recognition

The second population included 45 participants, composed of 12 college CS2 students
and 33 high-school teachers, who had different backgrounds. Some of these teachers
completed ordinary undergraduate CS studies, while others majored in different
scientific domains, but learnt the CS1 and CS2 courses. All the participants studied
and practiced diverse, simple and complex utilizations of fundamental algorithmic
patterns. Nevertheless, some demonstrated difficulties with the following basic task.

Number of subsequences. Develop a program for which the input is a long
sequence of 1's and 0's, starting with 1 and ending with 1; and the output is the
number of subsequences of 0's.
Example: For the input 1 1 0 0 1 0 1 0 0 0 1 1 1 0 1, the output should be 4 (we
consider a subsequence composed of one 0 as a valid subsequence).

Another trivial task. So it was for some of the students, but again, only for some. An
elegant solution of this task is based on the observation that the number of desired
subsequences is equivalent to the number of starting-points of such subsequences, or
the number of endpoints of such subsequences. Thus, it is sufficient to count, for
example, the number of endpoints of subsequences of 0's. Each endpoint is
characterized by a 0 that is followed by a 1. In devising the solution, one may
compose the two basic algorithmic patterns of previous-current and counting. The
former pattern will be used for identifying the endpoint of a subsequence, and the
latter – for counting the number of such endpoints. The two patterns should be
composed in an interleaved way, which encapsulates an on-the-fly computation.

In order to solve the task, one had to recognize the observation described above,
and then recognize that the solution is an interleaved composition of the previous-
current pattern with the pattern of counting. This interleaved composition is actually
an embedment of the former pattern in the latter one.

Only 19 participants (42%) yielded the described elegant solution. The rest of the
participants demonstrated recognition and embedment difficulties. 10 students (22%)
did recognize the above observation (of starting-points/endpoints), but offered a rather
cumbersome solution, which involved a flag. They used a flag in order to indicate a

 Transfer, Cognitive Load, and Program Design Difficulties 169

state of "currently reading 1's". When the flag was "on" and the next input element
was 0, the subsequences counter was increased by 1. The idea underlying this solution
is correct, but its implementation is error-prone. And indeed, some of these
participants yielded erroneous solutions, particularly with handling the flag. It seemed
that these participants did not recognize the relevance of the algorithmic pattern of
previous-current for solving the task.

The rest of the participants demonstrated more profound difficulties. 9 of them
(18%) did recognize that the subsequences counter may be increased once a 0 appears
after a 1, but were unable to scan the input in a suitable way. Their code included a
section for reading a subsequence of 0's, without properly handling the end of such a
subsequence. Some of their solutions included this section in a separate procedure,
whereas others involved nested loops that did not properly terminate once the end of a
subsequence of 0's was reached. Thus, they demonstrated a deeper difficulty with
recognizing the suitable pattern to perform the computation.

The remaining (8) participants (18%) offered cumbersome solutions that did not
reveal any insight into the task. In particular, they did not demonstrate any recognition
of a suitable way for conducting the necessary counting (some counted the total
number of 0's; others initialized the counter time and again).

Viewing the above phenomena in a transfer perspective, we notice that the task
solution required two kinds of the transfer aspect of recognition – the recognition of
the task characteristic (of starting-points/endpoints), and the recognition and selection
of suitable algorithmic patterns. More than half of the students demonstrated
difficulties with the second kind, and about a fifth demonstrated difficulties already
with the first kind.

Here again, the observed difficulties seemed to be related to cognitive overload,
which "blurred" the picture of what to focus-on in the input, and how to "translate" an
insightful task observation into a suitable solution scheme. In particular, the
participants who tried to design a solution which "collects" the 0's of each
subsequence felt confused and uncertain in devising a scheme that properly terminates
such a collection, and seemed to have a vague picture of how to adapt their chosen
pattern to the desired solution scheme.

2.3 Difficulties with Embedment and Abstraction

The third population included 31 college students, who have completed the CS1
course (in JAVA), and were in the end of their CS2 course. We posed them a rather
more involved programming task.

Longest stair. We define a stair as a plateau of integers (a sequence of one or
more equal integers) followed by another plateau of integers that are greater by 1
(e.g., 1 1 2 2 2). Develop a program for which the input is a very long sequence
of integers, such that each integer is equal-to or greater-by-1 than the previous
one; and the output is the length (i.e., the number of integers) of the longest stair.
(Notice that stairs overlap.)
Example: For the input 2 2 3 3 4 4 4 5 6 6 6 7, the output should be 5 (due to the
stair 3 3 4 4 4).

170 D. Ginat, E. Shifroni, and E. Menashe

This task is more involved than the previous two tasks, yet its solution is still
relatively short. It is based on an on-the-fly computation, of 'one pass' over the input
(notice that the input is very long), and involves an interleaved composition of four
algorithmic patterns:

• A pattern of previous-current, for comparing the last two read integers.
• A counting pattern, for keeping the location of the last-read integer.
• A max pattern, for keeping the length of the currently longest stair.
• Another pattern of previous-current, for keeping the starting points of the last two

plateaus that compose the latest stair.

In the on-the-fly computation, the length of the latest stair (the last two plateaus), may
be computed when the first integer of a new plateau is just read. That is, the event of
starting a new plateau also yields the end of the latest stair. The length of the latest
stair may be obtained from adding the lengths of the just-ended plateau and the
previous plateau. The computation may be performed by subtracting the starting point
of the previous plateau from the location of the just-read integer. Two additional
updates should be added: an update of the starting points of the two latest plateaus,
and an update of the currently longest (max) stair.

The design of this on-the-fly computation requires interleaved embedding of the
above four patterns. One has to first recognize the relevance of these patterns, and
then properly assemble them together. The recognition and embedding of the first
three patterns is rather simple, whereas the recognition and embedding of the fourth
pattern is more delicate. In particular, the recognition of the fourth pattern involves
abstraction of the basic previous-current pattern. (Notice that this pattern is also used
in its basic form, as indicated in the first of the four algorithmic patterns listed above.)

42% of the students (13 out of the 31) constructed solutions, which combined the
first three patterns, in diverse ways, but did not include the fourth pattern. Their
solutions looked cumbersome and awkward. It seemed that they just assembled
pattern pieces, possibly in order to demonstrate that they "can write something" (as
one of them indicated in a following interview), and show that they are acquainted
with comparisons of adjacent elements and some composition of basic patterns. They
knew that their solutions involved only partial pieces, but could not do better.

35% of the students (11 out of the 31) properly embedded all the four patterns, but
over-simplified the fourth pattern. They ignored the overlapping of stairs, and
computed only every second stair. For example, for the input 2 2 3 3 4 4 4 5 6 6 6 7,
they computed only the first, third, and fifth stairs: 2 2 3 3; 4 4 4 5; and 6 6 6 7. In
interviews that followed, they expressed a difficulty to abstract and properly specify
the fourth pattern, in a form that handles stair overlaps.

Only 22% (7 out of the 31) of the students offered suitable solutions. Some of these
students assembled solutions that properly interleaved all the above four patterns,
while others slightly changed the fourth pattern, and kept counters for computing
plateau lengths, instead of plateau starting points.

Viewing the student solutions in a transfer perspective, we may notice two primary
transfer difficulties. 24 out of the 31 students (77%) demonstrated incompetence
in pattern embedment. In addition, 13 of these 24 students did not abstract the
basic previous-current pattern, into a previous-current scheme of adjacent plateaus.

 Transfer, Cognitive Load, and Program Design Difficulties 171

The other 11 students demonstrated limited abstraction, while oversimplifying the
computation of adjacent plateaus.

The task solution required both pattern abstraction and the interleaved composition
of four algorithmic patterns. The majority of the students, who did not yield the
suitable solution, seemed to (also) be affected by intrinsic cognitive overload. Their
difficulties seemed to stem from a limited picture of pattern interactivity, particularly
with respect to the necessary embedment. Some students managed to handle the
interleaved composition of three patterns, but felt short in doing so with four patterns.

2.4 Difficulties with Mapping

The fourth population included 33 high-school teachers, some of whom completed
ordinary undergraduate CS studies, and others who majored in different scientific
domains (the same teacher population of section 2.2). We posed them the following
task, whose solution scheme is simpler than that of the task in the previous section,
but its required insight may be slightly subtler.

Largest drop. We define the largest drop in a sequence of integers as the maximal
difference between two sequence elements, such that the larger among them
appears first in the sequence. Develop a program for which the input is a very long
sequence of integers; and the output is the value of the largest drop
Example: For the input 8 2 3 1 10 4 4 5 6 2 7, the output should be 8 (due to the
difference between the 10 and the second 2).

Upon reading the task, one clearly sees that it involves a max computation. The
delicate point to observe is the relevant drops to examine. Each difference between
two input elements is a (positive or negative) drop, but not all drops should be
examined. Upon reading the input, the only drop that is relevant to examine after
reading the next input element, is the difference between the max so-far and the newly
read element. No other difference between a value other than the latest max and the
newly-read element is relevant. Thus, the solution involves an on-the-fly computation,
which is composed of an interleaved composition (embedment) of two max patterns –
one for updating the current max, and one for updating the largest drop seen so far.

A third (11) of the participants did not notice the above observation, and designed
the very inefficient solution of examining every possible drop; that is, examining the
difference between every pair of elements. Their non-on-the-fly solution involved a
composition of the max pattern (for the largest drop) with the pattern of thorough
enumeration of all the possible pairs of elements. These students did recognize the
obvious relevance of the max pattern, but fell short in elegantly mapping the
utilization of this pattern into a two max patterns composition for the task at hand.

Ten other participants (30%) attempted an on-the-fly solution, but offered
erroneous solutions. Some calculated the largest difference between the max of the
sequence and the elements that follow it; others also considered the largest difference
between the min of the sequence and the elements that precede it; and some offered
some other variants of these erroneous ideas. Thus, these participants also fell short in
properly mapping the utilization of the max pattern into a two max patterns scheme
for the task at hand. The rest (12) of the participants (36%) did yield the suitable on-
the-fly solution, of the two max patterns scheme described above.

172 D. Ginat, E. Shifroni, and E. Menashe

Viewing the participant solutions in a transfer perspective, we notice that the
participants did recognize the relevance of the max pattern, but about two thirds of
them were unable to elegantly map its two-fold utilization into the task at hand. The
cognitive load aspect that was apparent here was related to the participants' limited
ability to recognize the intrinsic characteristics of the max pattern, and the diverse
ways by which it can be employed, including the interleaved composition of two of its
variants.

2.5 Difficulties with Recognition, Abstraction, and Mapping (Combined)

Our fifth example involves a rather subtle task, which we posed in a national
algorithmic competition. The task was posed to 143 high-school students. Most of
them completed both the CS1 and CS2 courses, and a few only completed CS1. The
algorithmic pattern required for the solution was basic, but the recognition,
abstraction, and mapping of this pattern into the task at hand was not trivial.

Kangaroo hops. Develop a program for which the input is a positive integer d,
that specifies the fixed length of a kangaroo hop, followed by a very long
sequence of N increasing integers that specify the locations of barriers; and the
output is a message indicating whether there is an integer location before (smaller
than) the first barrier, from which the kangaroo can start jumping, and perform N
jumps forward, so that it lands in each jump between (but not on any of) the next
two barriers, and reach a final point past the last barrier.
Example1: For the input 5 2 8 12 18, the output should be "Yes", since the
kangaroo, whose hop is 5, may start jumping from any of the locations -1, 0, or 1,
and perform successfully the desired sequence of jumps (e.g., if it will start from
location 0, then it will land in locations 5, 10, 15, 20).
Example2: For the input 5 6 8 12 18, the output should be "No", as no starting
point may yield a successful sequence of more than one jump.

One way of approaching the task is by trying as starting point each of the d-1 integer
locations just prior to the first barrier. For each such starting point, a sequence of N
jumps will be simulated and checked, using a variant of the linear search pattern.
However, this solution is not really relevant for a long sequence of barriers, as it
requires keeping all the barrier locations in memory.

The suitable solution is based on recognizing the observation that we may "skip
forward" with a continuous range of values rather than with a single integer. That is,
we may start with the range of all the d-1 potential starting points before the first
barrier, jump forward, and land between the first and the second barriers. This may
require some reduction of the range with which we skip, from the lower-end of that
range and from the upper-end. Then, we will jump again, with that remaining
continuous range, and land between the second and the third barrier, and again
possibly reduce the remaining range; and so on. If we will successfully perform N
jumps, and reach the zone past the last barrier with a non-empty range, then the output
will be "Yes". Otherwise, it will be "No".

The above solution idea requires: 1. recognition of the relevance of skipping with a
continuous range; 2. abstraction of the linear search pattern of progressing with a

 Transfer, Cognitive Load, and Program Design Difficulties 173

range, rather than with a single integer; and 3. suitable mapping of that pattern into
the task at hand, by carefully calculating the range reductions after every jump.

Indeed, the need to recognize and combine the latter three elements was difficult to
the vast majority of the students. Nevertheless, as the task was posed in an
algorithmic competition, we expected that only a small minority will provide the
suitable solution.

Over one third of the students did not offer any solution. Another third offered the
inefficient solution, of separately checking validity for each potential starting point.
Each of these students recognized the relevance of the linear search pattern, but many
did not demonstrate sufficient flexibility and employed it erroneously. An additional
sixth of the students attempted an on-the-fly computation, but yielded a variety of
erroneous solutions. Some searched for the smallest gap between neighbouring
barriers, and concluded some irrelevant conclusion from its value, whereas others
offered some other manipulations with differences of locations of neighbouring
barriers.

Less than a ninth of the students (15 out of 143) recognized the relevant
observation described above. They all elegantly described their observation, and
demonstrated suitable abstraction, but less than a half of them (7 students) properly
mapped their suitable idea into a correct variant of linear search.

 As we indicated above, we expected difficulties with this non-trivial task. Its
solution actually involves not only specific transfer of a rather "close" utilization of a
familiar entity, but also non-specific transfer, of problem solving competence that
involves a combination of the aspects of recognition, abstraction, and mapping. The
notion of cognitive overload was apparent here in a slightly different way than with
the previous tasks. It seemed to us that for the vast majority of the students, the
"blurred", or vague picture of the task primarily evolved from the variety of elements
to consider during the task analysis, prior to the algorithmic patterns' selection and
manipulation. Many seemed to feel frustrated from being unable to pinpoint the
required problem solving characteristics on which to capitalize.

3 Discussion

The findings of the studies presented in the previous section reveal difficulties with
the five aspects of transfer introduced in the Introduction: flexibility, embedment,
abstraction, recognition and mapping. These difficulties seem to be related, to some
extent, to the notion of cognitive load.

Difficulties with flexibility were noticed explicitly with the first population, and
implicitly with the other populations. Participants demonstrated incompetence in
adapting, and slightly modifying an elementary algorithmic pattern for solving the
new task at hand.

Difficulties with embedment were observed primarily with the third population.
Although these participants studied interleaved decomposition of patterns, in both
their CS1 and CS2 studies; many of them were unable to assemble basic algorithmic
patterns so that pieces of different patterns are embedded together.

Difficulties with abstraction were observed with the third and the fifth populations.
Although these participants have seen generalizations of specific patterns in their CS1

174 D. Ginat, E. Shifroni, and E. Menashe

and CS2 studies, they did not yield the necessary generalization of the previous-
current pattern and the linear search pattern.

Difficulties with recognition were observed with the second and the fifth
populations. The tasks posed to these participants required recognition of two kinds.
In the case of the second population, the posed task required the recognition of the
basic previous-pattern; in the more subtle case of the fifth population the posed task
required the recognition of an insightful observation on which to capitalize. The
former kind involved (difficulties of recognition with) specific transfer, and the latter
kind involved non-specific transfer. While the latter may be harder to expect from
average students, the former should be expected from such students.

Difficulties with mapping were observed with the last two (fourth and fifth)
populations. The tasks posed to these participants required mapping of recognized
patterns in a way that is suitable for the task at hand. Yet, many demonstrated
difficulties of properly mapping the pattern they recognized as relevant for the task.

The aspects of flexibility, embedment, and abstraction are indicated by Marshall as
essential features of cognitive scheme acquisition and utilization [4]. The aspects of
recognition, abstraction, and mapping are indicated by Gick and Holyoak [2],
Sternberg [9], Mayer and Wittrock [5], and others, as essential components of
transfer.

A primary cognitive theme related to the above aspects is that of cognitive load. In
each of the studies presented in the previous section, it seemed that obstacles faced by
the participants were related to "blurred" and vague pictures they had about relevant
data in the tasks to be solved, about proper utilization of basic algorithmic patterns,
and about interconnections between these patterns. It seemed that knowledge
organizations and problem solving resources of many participants were deficient. We
believe that CS students and teachers may reach higher levels of competence, with
respect to the transfer aspects indicated above, by improved CS teaching practices.

CS instructors may aim beyond ordered presentation and practice of algorithmic, or
programming patterns. While explicit instruction of such patterns may indeed reduce
cognitive load, the way in which such instruction takes place is essential. It may be
made more instructive. Transfer-oriented instruction, which explicitly addresses the
five aspects discussed in this study, may further develop and improve student design
skills.

Sweller and others suggest careful instructional design [7,10], in which the main
premise is to reduce cognitive load on the working memory. This may primarily be
achieved by carefully selecting suitable assignments and worked-out examples upon
teaching. In addition, one may employ 'guided discovery' [5,7], which can assist
integration of new data, and enhance cognitive connections.

We offer an approach of transfer-oriented instruction, for enhancing students'
design skills. First, instructors should be aware of the five transfer aspects displayed
and discussed in this study. Then, we suggest that instructors embed in their teaching
explicit activities that develop competence with respect to transfer aspects, as follows.

• Design transfer-oriented tasks and worked-out examples, and embed them
throughout the current teaching materials. The tasks and examples will be used
both in class and as homework assignments.

• In addressing recognition and mapping, devise and display a set of tasks, and do
not always require these tasks' solutions. Rather, ask the students to group tasks

 Transfer, Cognitive Load, and Program Design Difficulties 175

together into subsets, according to their solution structures. These structures
should encapsulate diverse composition forms of different patterns. You may as
well pose tasks such as the one in our fifth study, and elaborate the recognition-of
and capitalization-on task characteristics.

• For addressing and enhancing flexibility, devise tasks that require "local"
modifications of a just-taught solution scheme, or pattern, as displayed in our first
study. In a following class discussion, compare between the task solutions and the
just-taught pattern, and explicitly indicate the modifications.

• In addressing and enhancing embedment, devise tasks such as the one in our
second, third, and fourth studies, which require interleaved embedment of two or
more patterns. Use the terminology of embedment; explicitly underline pieces of
embedded patterns and discuss which code pieces belong to which patterns.
Students should also be encouraged to offer alternative embedment structures.

• The notion of abstraction is addressed by CS instructors. Yet, one may extend
that. Embed assignments in which basic patterns should be used with higher-level
entities, as shown in our third and fifth studies. In a following discussion,
explicitly display the correlation between a basic pattern and its higher-level
application.

• Devise activities that combine a couple of the above transfer aspects (as in our
third and fifth studies), and refer to the combined aspects in a corresponding class
discussion.

The above guidelines elaborate the focus on structural features of tasks and solutions.
Guided discovery and reflective class discussions, in which students compare their
thought processes, may be most beneficial [5], and offer instructive illuminations.
Pattern invocation, manipulation, and utilization may become more effective, upon
learning to sift out relevant from irrelevant information. Future studies (including one
that we are currently conducting) may examine the effect of various applications of
the above recommendations, in improving transfer during program design.

References

1. Astrachan, O., Berry, G., Cox, L., Mitchener, G.: Design patterns: an essential component
of CS Curricula. In: SIGCSE 1998, pp. 153–160 (1998)

2. Gick, M.L., Holyoak, K.J.: Schema induction and analogical transfer. Cognitive
Psychology 12, 306–355 (1983)

3. Linn, M.C.: The cognitive consequences of programming instruction in classrooms.
Educational Researcher, 14–19 (1985)

4. Marshall, S.P.: Schemas in Problem Solving. Cambridge University Press, Cambridge
(1995)

5. Mayer, R., Wittrock, M.: Problem-Solving Transfer. In: Berliner, D., Calfee, R. (eds.)
Handbook of Educational Psychology, pp. 47–62. Erlbaum, Mahwah (2006)

6. Muller, O., Haberman, B., Ginat, D.: Pattern-oriented instruction and its influence
on problem decomposition and solution construction. In: Proceedings of ITiCSE 2007,
pp. 151–155 (2007)

7. Paas, F., Alexander, R., Sewller, J.: Cognitive load theory and instructional design: recent
developments. Educational Psychologist 38(1), 1–4 (2003)

176 D. Ginat, E. Shifroni, and E. Menashe

8. Spohrer, J.C., Soloway, E., Pope, E.: A Goal/plan analysis of buggy Pascal programs.
Human-Computer Interaction 1(2), 163–207 (1985)

9. Sternberg, R.J.: Metaphors of Mind: Conceptions of the nature of Intelligence. Cambridge
University Press, Cambridge (1990)

10. Sweller, J.: Cognitive load during problem solving: effects on learning. Cognitive
Science 12, 257–285 (1988)

I. Kalaš and R.T. Mittermeir (Eds.): ISSEP 2011, LNCS 7013, pp. 177–188, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Introductory Computing: The Design Discipline

Viera Krňanová Proulx*

Northeastern University, 360 Huntington Ave.,
Boston, MA 02115, USA
vkp@ccs.neu.edu

Abstract. The goal of this paper is to present in context the key didactical
principles behind the Program by Design curricula, motivate the need for the
supporting software, and describe in detail the How to Design Classes
component for teaching introductory object oriented program design using Java
and Java-like languages. The key innovations are a systematic test-first program
design, and the introduction of programming language concepts by designing
abstractions based on existing programs.

Keywords: Informatics in primary and secondary education, design principles,
software for novice programmers, abstractions.

1 Introduction

What is computing? What is informatics? The answer to this question guides the
design of the curriculum that focuses on the principles, not fads. At the heart is the
computation: a program that consumes data and produces new data according to some
formula. But this is just basic algebra, automated. To extend this notion of
computation, we need to deal with more complex data. No algorithm exists apart from
data. What comes first? We believe that understanding data, how information can be
represented as data, and how data conveys information is at the heart of computing
and deserves a serious place early in the curriculum. Well-structured data reveals
clearly numerous algorithms for extracting new information, and provides the context
for learning the foundations of program design. The key questions: the design of
abstractions, the concerns about efficiency, the multiple ways the same information
can be represented as data, the difficulty of reliable and secure data transmission, the
communications protocols, and many others arise naturally in this context.

The traditional curricula for introductory programming start by designing
algorithms and overwhelming the student with complex syntax and language features,
but providing little guidance on what the program design process should be. Out of
more than 20 Java-based textbooks only two mention testing of students programs,
and even then without the appropriate software support [1], [13]. Other recent
approaches use game-like environments to make the programming more attractive
and accessible [3], but still fail to focus on the design process that guides the program
design. Tinkering, trial and error approach rules.

* Partial support for this project has been provided by the two NSF grants DUE-0618543 and

DUE-0920182.

178 V.K. Proulx

In the first part of this paper we describe the key ideas of the Program by Design
project that introduces systematic program design principles for students ranging from
grades 6-7, all the way to the university level. The various components of the
Program by Design curriculum have been developed over the years by a team of
programming language researchers, software developers, and educators. The author
has had a key role in the design and implementation of some of the libraries, and in
the design and implementation of the most advanced component of this curriculum,
formerly known as ReachJava.

In the second part we focus on the ReachJava component, that presents the design
of programs in object-oriented Java-like languages. We describe the role of
supporting libraries that expose to the novice programmer the essential design
principles while hiding the confusing detail. In the third part we show how this
approach leads naturally to a systematic design of abstractions and provides the
context for understanding more complex programming language features, as well as
the design and the use of standard libraries.

2 How to Design Programs

The foundation of Program by Design (known as TeachScheme!) has been presented
in the textbook How to Design Programs [4, 5] and its German language counterpart
Die Macht der Abstraktion [8]. During the past five years, the curriculum has been
adopted and augmented, with dedicated software support, to target young children,
ages 10-13. The Bootstrap curriculum has been taught to hundreds of children and all
materials are available online [1]. The How to Design Programs curriculum is
appropriate for all students in secondary schools and universities, regardless of their
field of interest. While the context of these curricula is the design of programs, the
ultimate goal is to teach the students fundamental skills for solving complex problems
and organizing the solution in a systematic way.

Functions and Algebra: Bootstrap. Typical first programs students often encounter
involve designing and evaluating a simple algebraic function: compute where will a
cyclist be after the given time elapsed, if he is traveling at the speed of 25 km/h. We
see that the distance is a function of time and can be written as distance = fnc(time).
We can explain this idea through simple tables: at times 0, 1, 2, 3, the cyclist will be
0, 25, 50, 75, km away. But with the right programming environment, we can turn
these functions into controls of an interactive animation: the movement of the cyclist
is represented as a function that for each tick of the clock produces the current
location of the cyclist on the screen. Now, what if the response to the left and right
arrow keys that moves another object horizontally is encoded as another function. We
add the detection of a collision as a third function, and we have finished programming
the model of an interactive game. This is the beginning of the TeachScheme!
curriculum and is the key feature of the Bootstrap curriculum. Children in the
Bootstrap program write down the list of locations where the falling ball will be after
each tick of the clock, then design the functions that model the movement. The basket
catching the ball at the bottom moves in response the keys pressed. The conditional (a
function that produces a boolean value) is used to update the score. The image of a
ball or of a basket is a simple primitive data item in the program. The drawing of the

 Introductory Computing: The Design Discipline 179

images on the canvas (the game board), the invocation of the event handlers (the
functions on-tick and on-key defined by children) and the entire animation is
controlled by the provided library.

This is serious work. Children are true designers, learning basic algebra to
implement their games. After nine lessons they can explain the evaluation of
expressions, the substitution principle, the conditionals, and proudly show their game.

Taking Design Seriously. The didactical principles of the Program by Design
curriculum are based on enabling the learner to master a systematic approach to
problem solving by following a well-structured design process encoded in three
design recipes. The design recipes give the instructor a tool to diagnose the student’s
problems by identifying the step in the design process in which the student encounters
difficulties.

When we teach children to design functions, we give them a blueprint, a roadmap
that shows them the steps in the design process. Once we have identified the data
needed to represent both the inputs, and the expected result, we follow the design
recipe for functions/methods:

• Write down in English the purpose statement for the function/method, describing
what data it will consume, and what values will it produce. Add a contract that
specifies the data types for all inputs and the output.

• Make examples of the use of the function/method with the expected outcomes.
• Make an inventory of all data, data parts, and functions/methods available to

solve the problem.
• Now design the body of the function/method. If the problem is too complex, use

a wish list for tasks to be deferred to helper functions.
• Run tests that evaluate your examples. Add more tests if needed.

The children’s version is adapted to their abilities, but the focus on systematic design
remains. The comment from a child ‘I never knew I could divide a big problem into
smaller ones’ affirms that these design principles transcend computing and
programming. Seasoned programmers recognize that we practice test-first design.

Understanding Data. After the first brief introduction to representing simple
programs as functions (that correspond directly to mathematical functions) the How to
Design Programs curriculum focuses on understanding the complexity of data, the
way how information can be represented as data, and, conversely, how data can be
interpreted as the information it represents.

The first step in designing a program is always the design of data that represents
the problem. The design recipe for data definitions guides the students as follows:

• Can you represent the information by a primitive data type?
• Are there several related pieces of information that describe one item? If yes,

design a composite data type (struct, class).
• Does the composite data type contain another complex piece of data? Define that

data type separately and refer to it. (A Book data item contains an Author data
item.)

180 V.K. Proulx

• Are there several variants of the information that are represented differently, but
are related (e.g. a circle, a rectangle, a triangle --- all are shapes)? If yes, design
a union type. (In Java, define a common interface.)

• Repeat these steps. This may lead to self-reference, mutual reference, and
eventually to a complex collection of classes and interfaces.

• Make examples of data for every data type you design.

Students learn to design complex data: ancestor trees (with person’s mother, father,
their ancestors); data that represents files and directories in a computer system; ice
cream cones with the cone and a list of toppings; a river system with confluences and
tributaries; etc. When designing functions for such complex data, the inventory step
of the design recipe calls for identifying not only the function inputs, but also the
parts of any composite data (struct, class), variants of a union type, as well as all
functions that are already available for either the input data or the parts of the input.
So, if one of the shapes is a combination of the top and the bottom shape, any function
defined for shapes can be used for both the top and the bottom parts.

Simple language, complex data, serious program design is our motto. All of this
can be taught in the context of a very simple language that supports only the
appropriate data definitions (with their constructors, selectors, and predicates that
identify the data type) and on the functional side provides the standard arithmetic,
relational, and logical expressions, and a conditional. If every function produces a
new value, the result, then the entire design process is very straightforward:

• Tests are simple, as they only verify that the result matches the expected value.
• Function composition comes naturally, result of any function application can be

used in further computations.
• The order of computation does not affect the result. (However, a function or a

data item must be defined before it can be used.)

To provide fun and challenge, we provide libraries that handle interactive graphics
back ends of game, with students designing the model: the functions that produce a
new scene in the game in response to a key event, or timer tick. Drawing scenes using
shapes and images is supported through functions that support the composition of
images. Games like pong, snake, space invaders, provide a design playground.

Designing Abstractions --- Advanced Programming. After we have written several
programs (functions/methods) that solve similar problems we begin to see patterns:
the solutions are very similar to each other. Students see that certain functions appear
similar, the way the data is handled follows the same pattern, or that some code needs
to be repeated. To simplify the code and to eliminate repetition, students see the need
for more complex programming language features. Rather than using existing
libraries to illustrate the generalized solutions, our goal is to teach students how the
libraries are built. To achieve this goal, we present a systematic design process
encapsulated in the design recipe for abstractions that helps us eliminate code
repetition and produce a more general solution:

• Mark all places where the similar code segments differ.
• Replace them with parameters and rewrite the solution using them as arguments.

 Introductory Computing: The Design Discipline 181

• Rewrite the original solutions to your problems by invoking the generalized
solution with the appropriate arguments.

• Make sure that the tests for the original solution still pass.

The How to Design Programs curriculum now follows with the introduction of local
variables, functions as function arguments, mutation of data, as well as the discussion
of the efficiency of computation, and additional more advanced topics.

The three design recipes are at the heart of the Program by Design curriculum.
They embody the core questions all programmers face and give the student a guide
through the design process. They correspond to the three cornerstones of our
curriculum: understanding the connection between information and data and the
importance of the design of complex structured data, using the test-first design
process for the design of every function or method, and understanding the process of
abstraction that turns a problem-specific solution into a generalized solution
applicable to a collection of related problems.

3 How to Design Classes

The Program by Design curriculum has as its goal to provide a systematic
introduction to the fundamentals of computing and programming. The ideas
introduced at the beginning apply equally well in a more complex context. The
ReachJava component with the draft of a textbook How to Design Classes [4] extends
the original TeachScheme! curriculum to the context of class based programming
using Java-like languages by introducing most of the essential concepts of object-
oriented program design. It is appropriate for secondary schools and universities.

The goal of this section is to reflect on what we learned during the last nine years
of implementing the ReachJava curriculum and designing the supporting software.
We start by showing how the pedagogical principles of Program by Design imply the
need for novice-appropriate software libraries that support this methodology. We then
show how the ReachJava curriculum teaches students through systematic design of
abstractions to build reusable software and to use standard software libraries.

Libraries for Novice Programmers: FunJava. While many functional languages
(such as Scheme) have a compact and fairly simple syntax (at least at the beginner’s
level), statically typed object-oriented languages such as Java or C# require a complex
syntax for solving even the simplest problems. To eliminate a number of problems
novices face, our curriculum starts with a limited version of Java (FunJava). There is
no assignment statement, all fields are initialized either when defined, or in the only
constructor allowed. A class can implement only one interface, and there are
only two statements: if with a required else clause, and return expression.
This enforces a mutation-free programming style, the original goal of the designers of
object-oriented languages. Every method produces a new value, a new instance of
data. Rather than starting with algorithms, we first practice designing classes and
collections of classes and interfaces that represent different, gradually more complex,
information. Students design classes that contain fields that are instances of another
class, unions of classes, self-referential data, mutually-referential data. The earlier

182 V.K. Proulx

examples of data: ancestor trees, a model of a river system with a number of
confluences, the representation of computer files and directories (that contain other
files and directories), the representation of a route through the cities, a student’s
record with the list of courses she is enrolled in, now define a collection of
interconnected classes and interfaces.

Fig. 1. The examples and a class diagram for a program that models a hanging mobile

Libraries for Novice Programmers: Tester Library. The design recipe for data
definitions guides the design decisions and teaches a systematic approach to
understanding the complexity of data. We use a simple version of class diagrams to
illustrate the relationships between classes and interfaces: the containment and the
inheritance.

Once we have examples of classes and data, we turn to designing methods,
following the same design recipe. Functions become methods, and the object that
invokes the method (this) becomes just an additional argument the method
consumes. Without mutation, the outcome of every method depends only on its
inputs. So the students only need to check that the outcome of a method invocation
produces the desired value.

Fig. 2. Sample method in class Complex for a program that models a hanging mobile

Here we encountered a problem: Java and most object-oriented languages do not
support equality comparison based on the value of data, and so the design and
evaluation of tests in this context becomes a daunting task. We have solved this
problem by designing the tester library [7], [8], [9] that compares any two objects by
the value of their fields, traversing deeply to the primitive components, detecting
circularity of data definitions, and making the test design simple and straightforward.

 Introductory Computing: The Design Discipline 183

When the tests are evaluated, the student may choose to pretty-print all data fields
defined in the Examples class, the class that represents the client to the student
code, and to print either all test results, or only those that have failed.

Fig. 3. The examples of data and tests for a program that models a hanging mobile

Libraries for Novice Programmers: World Game Library. One may ask, what
kind of programs can students write in such a simple environment? Well we can
design binary search trees, programs that represent cells in a spreadsheet that refer to
other cells with formulas that need to be evaluated, build recursively defined lists of
items, thus implementing a stack data type, tennis tournaments, etc. But to support
design explorations and to motivate students, we have also built a world library [7]
that allows students to program the behavior (the model and the display) of a
graphics-based interactive game. Students extend the World class by adding fields
that represents various game objects. They define the methods that represent the
actions in response to the timer or a key press, producing a new instance of a changed
world, and the methods that produce the scene that represents the current state of the
world. The library creates the game canvas in a new frame, installs the necessary
event listeners, and provides event handlers that invoke student-defined methods.

We can accomplish a lot with simple tools. The three libraries: FunJava that
provides a novice-friendly simple language, the tester library, that makes the test
design, method evaluation, and data display easy, and the world library that turns
simple programs into interactive graphics-based games provide the infrastructure
where student’s focus is on the program design, free of idiosyncrasies and
complexities of professional programming languages and libraries.

The great advantage of this approach is that the students learn to program in a truly
object-oriented style from the beginning. They understand the dynamic dispatch of
methods. We insist that every method handles only one task and delegates to helper
method any complex tasks that arise (the chain of responsibility principle). Students
have to reason about which class needs to be responsible for every task (i.e., where
should the methods be defined), and they have to write examples of method
invocation with the expected outcomes (tests) for every method they define.

184 V.K. Proulx

Fig. 4. The snake game (by Matthias Felleisen). The snake moves on each tick, changes the
direction in response to the arrow keys, looks for food, grows with each food eaten, avoiding
the walls or itself.

With this foundation, we are ready to discuss more advanced ideas of program
design and introduce programming language features that enable the design of
reusable libraries. Each new programming language feature is introduced in the
context of solving a problem encountered earlier: the way to eliminate code repetition,
the way to handle problems that cannot be solved using purely functional style, the
way to eliminate the need for excessive saving of intermediate results, etc. The
framework for this stage of the curriculum is the study of designing abstractions.

4 How to Design Libraries

A novice has a hard time learning a number of features of modern object-oriented
languages that have been designed to help a seasoned programmer to work
effectively. It is important to present every language feature in the context of
compelling examples that illustrate the reason for introducing that feature. Once our
students mastered the basics of the program design in the object-oriented style, we
focus on the design of abstractions that leverage different language features to avoid
code repetition and to build reusable code. This provides a context for learning how
libraries are designed and used. The design recipe for abstractions provides a
systematic way to examine where abstraction is possible, to define what needs to be
done, and to verify that the abstraction correctly accomplishes the desired task.

Abstract Classes. In the introductory weeks students have seen several classes
(Circle, Square, Rectangle) that implement the common interface Shape.
Each class included a field that represented the location of the shape in some Canvas,
and it included methods that compute the area of the Shape, it distance to the origin,
and a method isSmallerThan that compared the area of this Shape to the area of
the given Shape. The code repetition in these classes is obvious, and it is easy to
motivate the need for an abstract class that defines all common fields, includes a

 Introductory Computing: The Design Discipline 185

constructor that initializes them, and contains a concrete implementation of the
common methods as well as those that are common to most subclasses.

The other side of this coin is the introduction of our abstract World class that
provides the entire functionality for designing an interactive graphics-based game,
leaving to students the task of implementing the abstract onDraw method, and
overriding the stubs of the onKey and onTick methods. This is their first encounter
with a library. It provides an environment for designing interesting applications while
focusing only on the design of the model.

Function Objects. Java Collections Framework includes several interfaces that
specify functional behavior. The most commonly used ones are the Comparable
interface and the Comparator. The only role the Comparator plays is to provide a
wrapper for a method compare that compares two objects of the same type. In many
functional languages, a function can be passed as an argument to another function
(functions are first class values), but Java designers did not provide for this. Thus the
programmer needs to define a class that implements this interface, design the needed
method, define an instance of this class and pass that as the argument to the methods
like sort or findMin, or findMax. However, rather than introducing these
interfaces, we start with interfaces ISelectBook or ISelectPerson that
implements a predicate that selects the objects with the desired properties and is used
by methods like findBook, containsPerson, etc. The reason is to delay
introducing the type parameters, and to show the students both the definition of the
interface and the design of the classes that implement it. One example we use is to
select all runners in the Boston Marathon that are female under 40 years old, all
masters runners (over 50) etc. It is clear that we do not want to design the same
selectRunners method several times, when the only thing that changes is the
selection criterion.

We do mention that a similar technique is used for defining the action that the
computer performs in response to the GUI button press or when an event handler is
activated by the event it is listening to.

Mutation (State Change). We introduce the assignment statement and the resulting
change of the state of a variable once the students are comfortable with designing
classes, designing methods, and they understand the dynamic dispatch of the methods.
We present problems that either cannot be solved without mutation (or some
additional language construct), or where mutation simplifies the work to be done. One
cannot design the data that represents students enrolled in courses, when the course
data contains the list of currently enrolled students, and the student data contains the
list of courses student is enrolled in, without changing the values of the data fields
after they have been defined. A bank record representing an account needs to be
modified when a deposit or a withdrawal is made, so that every program that has
access to this data sees the change. The variable that holds the user’s response to a
question will only get its value once the user responds.

A survey of typical textbooks and papers describing introductory curricula shows
that only a handful of them pay any attention to systematic design of tests from the
beginning. We attribute this to two problems: the design of tests in the presence of
state change is quite complex, and the design of test for mutation-free programs

186 V.K. Proulx

requires support for extensional equality tests. Yet, designing programs that are not
tested is a very bad habit to learn. Our experience has repeatedly shown us that even
seasoned programmers make trivial mistakes in the simplest program components and
that these are either very hard to find, or go undetected for extended periods of time.

Our introduction to state change comes hand-in-hand with the design of tests: with
the setup of needed data, method invocation, testing of the effects of the method, and
the reset of the data that has been used. The purpose statement for the method changes
to include the word EFFECT where necessary. We defer until later the use of methods
that combine the state change with returning a new value.

This is also the time when we begin to discuss the difference between two objects
that represent the same value and two names for the same object. By now students are
comfortable with the basic program design, the language syntax, and they can appre-
ciate the subtleties of the data representation and aliasing.

Program Integrity and Usability. At this point students are ready to think of
programs that will be used and modified by others. We introduce several techniques a
programmer can use to expose the program behavior while hiding and protecting the
internal details of implementation. We talk about the visibility modifiers, show how
constructors can provide several different ways for the user to instantiate objects and
to verify that the data satisfies the desired constraints (month is one of 12 possible
values, hour does not go beyond 24, etc.), and introduce the exception handling.

Another important topic we begin to discuss is the definition of equality and the
implementation of methods that compare two objects. Are two lists the same if they
refer to the same instance? Or are they the same if their respective elements refer to
the same instances or just represent the same values? The need for detecting
circularity in data also comes into play.

Parametrized Types. Students see that we have been defining similar methods for
data collections of different data types: binary search trees of persons, cities; lists of
books or songs, etc. Even the function objects were targeted for only one type of
objects. Having seen this, the introduction of generics (parametrized types) is a
welcome new abstraction in spite of the complexities of the necessary syntax.

Abstracting over Traversals. All along we also present examples of methods that
represent traversal over the items in the collection of data. We design methods
isEmpty(), Data getFirst(), and Collection getRest() for both lists and
binary search trees. Abstraction over the collection of these three methods introduces
a new interface, Traversal, that represents a functional iterator:

Interface Traversal<T>{
 public boolean isEmpty();
 T getFirst();
 public Traversal<T> getRest();
}

We see that the methods that manipulate the collections of data can be defined outside
of the class definitions of these collections. We have come a full circle: starting from
standalone functions in the functional language, to designing methods that rely on the
dynamic dispatch for selecting the appropriate action, to moving the methods to the

 Introductory Computing: The Design Discipline 187

Algorithms class that deals with an arbitrary data, as long as the data collection
provides the necessary hooks.

Loops, the Java Collections Framework Iterator interface, and the Iterable
interface are introduced at this time.

Abstract Data Types. With this background we introduce the ArrayList, the
HashMap, the Stacks and Queue, and other classes in the Java Collections
Framework. We ask the students to implement the Stack and the Queue interface;
design a mutable linked list, and use them in the context where one or the other can be
used interchangeably. The Depth-First Search and the Breadth-First Search over
graphs differ only in the way we implement the data set that keeps track of the next
set of edges to consider.

When introducing the hash maps, we revisit the issue of equality. We show how to
correctly override both the equals method and the hashCode method. Using the
JUnit test framework, reading and writing the Javadoc style documentation are the
last couple of steps for students to be ready to fully use the standard Java libraries.

Java Collections Framework. With students’ knowledge of the meaning of
interfaces for defining the behavior of data, abstract classes for implementing the
common behavior of a union of similar data types, the use of function objects to
define functions that algorithms can use, the introduction of the Java Collection
Framework is very straightforward. Students understand the design, can reason about
the implementation, and can implement some of the library classes themselves.

We complete the work with several discussions of the resource management
issues. Memory usage, time-complexity of algorithms, the cost of using structural
recursion, all are made visible through an assignment where students evaluate stress
test runs. The classical data structures and algorithms are presented only to illustrate
the design choices: indexed data structures make binary search possible, key-value
associations allow for fast data lookup, linked lists allow localized modification of the
structure, quicksort leverages the divide and conquer strategy, etc. Through simple
programming assignments we show students the different ways how information can
be represented as data: students manipulate images by modifying image pixels, they
process text data computing word frequencies, they use our simple sound library to
generate sound effects and background music for their games.

5 Summary

The Program by Design curriculum evolves. The Bootstrap component is building a
web-based programming environment [10], the second edition of HtDP includes
support for client-server computing over the network [3]. We have piloted a library
that supports the design of applications for mobile devices. The tester library is a
foundation for the development of a comprehensive software testing curriculum.

The curriculum has been used in many settings (after-school programs, summer
camps for children, secondary schools, universities). Teachers of children who
completed the Bootstrap program wonder at their improved math grades. Secondary
school students who started with the Program by Design curriculum do well in the
Advanced Placement in Computer Science (AP) test, even though the AP curriculum

188 V.K. Proulx

follows a more traditional programming curriculum. Our university added a required
course for the graduate Master’s of Science program that is based on the Program by
Design curriculum, to improve advanced student’s program design skills.

Acknowledgments. The Program by Design is a work of the team led by Matthias
Felleisen, with Matthew Flatt, Robby Findler, and Shriram Krishnamurthi its co-
founders [7]. Kathy Gray has contributed to the design and initial implementation of
the ReachJava segment [6, 11]. Kathi Fisler has worked on the further development of
the curriculum. Emmanuel Schanzer is the designer of the Bootstrap component [2],
[14]. Erich Neuwirth inspired the development of the sound library [9].

The two grants by the National Science Foundation (Redesigning Introductory
Computing: The Design Discipline, DUE-0618543 and Integrating Test Design into
Computing Curriculum from the Beginning DUE CCLI 0920182) provided partial
support for the development and dissemination of this project.

References

1. Barnes, D.J., Kölling, M.: Objects First with Java: A Practical Introduction using BlueJ.
Prentice Hall / Pearson Education (2008)

2. Bootstrap Project, http://www.bootstrapworld.org
3. Dann, W.P., Cooper, S., Pausch, R.: Learning to Program with Alice, 3rd edn. Prentice

Hall, Englewood Cliffs (2012)
4. Felleisen, M., Findler, R.B., Flatt, M., Krishnamurthi, S.: How to Design Programs. MIT

Press, Cambridge (2001)
5. Felleisen, M., Findler, R.B., Flatt, M., Krishnamurthi, S.: How to Design Programs, 2nd

edn., http://www.ccs.neu.edu/home/matthias/HtDP2e/index.html
6. Felleisen, M., Findler, R.B., Flatt, M., Gray, K., Krishnamurthi, S., Proulx, V.K.: How to

Design Classes, http://www.ccs.neu.edu/home/matthias/htdc.html
7. Findler, R.B., Flanagan, C., Flatt, M., Krishnamurthi, S., Felleisen, M.: DrScheme: A

pedagogic programming environment for Scheme. In: Hartel, P.H., Kuchen, H. (eds.)
PLILP 1997. LNCS, vol. 1292, pp. 36–388. Springer, Heidelberg (1997)

8. Klaeren, H., Sperber, M.: Die Macht der Abstraktion, B. G. Teubner Verlag, Wiesbaden
(2007)

9. Neuwirth, E.: http://sunsite.univie.ac.at/musicfun/MidiCSD/
10. Proulx, V.K.: ReachJava Libraries, http://www.ccs.neu.edu/javalib
11. Proulx, V.K.: Test-Driven Design for Introductory OO Programming. SIGCSE

Bulletin 41(1), 138–142 (2009)
12. Proulx, V.K., Gray, K.E.: Design of Class Hierarchies: An Introduction to OO Program

Design. SIGCSE Bulletin 38(1), 288–292 (2006)
13. Riley, D.D.: The Object of Data Abstraction and Structures Using Java. Addison Wesley,

Reading (2003)
14. WeScheme, http://www.wescheme.org/

A Short Introduction to Classical Cryptology as
a Way to Motivate High School Students for

Informatics

Lucia Keller, Barbara Scheuner, Giovanni Serafini, and Björn Steffen

Department of Computer Science, ETH Zurich, Switzerland
{lucia.keller,barbara.scheuner,giovanni.serafini,

bjoern.steffen}@inf.ethz.ch

Abstract. In Swiss high schools, programming is the typical content of
an introductory informatics course. This is an important topic, but nev-
ertheless it is only a part of the field. By integrating short introductions
to other topics, students get a better understanding of the broadness of
informatics.

This article presents such a short introduction unit about classical
cryptology without requiring any school-related prior knowledge in in-
formatics. The basis of this unit is the everlasting game between code
designers and code breakers to build, respectively break, cryptosystems.
The challenge of breaking the codes presented by the teacher is the core
and motivating factor of our didactical concept. Although the theoreti-
cal concepts cannot be presented in detail, the unit demands analytical
skills and encourages critical thinking.

The unit motivated 70 % of the participating students to learn more
about the topic, which is a good pre-condition for subsequent cryptology
courses.

1 Introduction

Cryptology is nowadays an interdisciplinary research field, which integrates el-
ements of mathematics [1,3], algorithmic fundamentals of computer science [8]
as well as physics [4]. Moreover, cryptology is an exciting school subject, which
allows the combination of the student’s real-life experiences with deep scientific
knowledge. Students of different ages and with different abstraction skills can be
introduced to the basic mechanisms of cryptology.

Koblitz stated already in 1997 the impressive value of cryptography as a teach-
ing tool. In his article [12] he highlighted his didactic approach and his experi-
ences teaching symmetric and public-key cryptography concepts to children of
primary schools. Bell et. al. devoted some of their off-line activities and games
to cryptology in Computer Science Unplugged [2]. Also the very popular book of
Singh [13] shows that the history behind cryptology can attract a large audience.

Our paper relies on a similar didactic concept, but describes a teaching se-
quence especially for high school students, which only focuses on classical cryp-
tography and, therefore, handles more cryptosystems than Koblitz did. This

I. Kalaš and R.T. Mittermeir (Eds.): ISSEP 2011, LNCS 7013, pp. 189–200, 2011.
© Springer-Verlag Berlin Heidelberg 2011

190 L. Keller et al.

teaching unit does not require any school-related prior knowledge in informatics.
It is designed as an interaction between the code designer (the teacher) and the
code breakers (the students). While the mere encryption of a given plaintext and
the decryption of an available cryptotext soon becomes annoying, students chal-
lenged to break cryptosystems are really involved and implicitly adopt a critical
attitude regarding scientific subjects.

The introduced teaching unit on classical cryptology is a part of a comprehen-
sive collection of teaching materials for high schools developed at ETH Zurich
during the last five years. The authors attach importance to a precise and un-
derstandable explanation of concepts and notions. This is an important basis
for a profound comprehension of the design and the analyis of the introduced
cryptosystems. Those books are self-contained and can be used for individual
learning [5]. The basis of the presented teaching unit are chapters 1 to 3 (90
pages) of the textbook about cryptology. The whole book is covering topics such
as classical and modern cryptology, symmetric and public-key cryptosystems,
zero-knowledge protocols as well as their mathematical and algorithmic funda-
mentals [6]. This teaching unit was intensively tested in some informatics classes
and during several project weeks or single visits aiming to promote informatics at
high schools. For a thorough discussion of those chapters we allocate 18 lessons
in a informatics class in the last year of high school.

The goal of our teaching unit is not a thorough discussion of this topic but
to give the students some interesting insights to classical cryptology without
using the formal language of mathematics too intensively. We want to elate the
students for informatics and to motivate them for visiting further informatics
courses. Therefore, we use classical cryptosystems, although they are far from
satisfying modern security requirements. But they represent an essential didactic
tool in order to introduce the basic concepts and the well-established, precise
terminology of cryptology.

The paper is organized as follows: in Section 2, we introduce the concepts of
classical cryptology as well as the basic terminology. After that, we describe the
main idea, the goals and the structure of the teaching unit. Section 3 presents a
sample lesson held at the beginning of 2011 at the high school MNG in Zurich
and discusses the results of a survey the students had to complete in conjunction
with the sample lesson. We conclude with general reflections on our experiences
dealing with motivation, expectations and achievements introducing high school
students to classical cryptology in Section 4.

2 Classical Cryptosystems and the Concept of Security

It is important to determine the terminology before starting to introduce exam-
ples of cryptosystems.

We consider classical cryptosystems as symmetric (secret-key), paper-and-
pencil cryptographic systems, which were conceived and employed in the pre-
computer era.

A person, called the sender, wants to send a message (the plaintext) in a nat-
ural language to a second person, the receiver. The plaintext will be sent over

A Short Introduction to Classical Cryptology 191

an insecure channel. Hence, the message may be eavesdropped by an unautho-
rized person. Therefore, we have to encrypt the message with a secret key such
that we can send the cryptotext over the insecure channel. The receiver decrypts
the message with a method that inverts the encryption. Such cryptosystems are
called symmetric cryptosystems because the sender and the receiver encrypt and
decrypt with the same secret key.

2.1 Security of Cryptosystems

It is naive to assume that it is adequate to keep the method of encryption
and decryption secret between the sender and the receiver. In 1883, Kerckhoffs
formulated the so called Kerckhoffs’ Principle of Security:

A cryptosystem is secure, if one, knowing the art of the functioning of
the cryptosystem but not knowing the key used, is not able to derive the
original plaintext from the given cryptotext. ([8], cf. [10,11])

Nowadays, being not able to derive the original plaintext means that the unau-
thorized person is not able to find the plaintext with his actual computational
resources in reasonable time. In some applications, reasonable time means 10
seconds and in other applications it means 30 years. This depends on the im-
portance of the plaintext and the time how long a cryptotext has to remain
confidential. We will see that it is not sufficient for building secure cryptosys-
tems to have a huge number of keys, but there also must not exist an efficient
algorithm that can break a cryptotext without the knowledge of the key.

According to Kerckhoffs’ Principle of Security, a secure cryptosystem has not
to be kept a secret. Also if an enemy knows everything about the cryptosystem,
he is not able to decrypt a cryptotext without knowing the key. Hence, the secu-
rity only depends on the secrecy of the key and the strength of the cryptosystem.

In this paper, the plaintext is encrypted without punctuation marks and
spaces. For example, the sentence

This is a sample sentence.

is transformed to

THISISASAMPLESENTENCE

before encrypting it.

3 The Didactical Concept of the Lecture

In the following, we describe how we introduce the students to classical cryptol-
ogy. The presented lesson takes about 90 minutes and is only meant to give an
overview of the topic. A thorough introduction would need much more time (ap-
proximately 18 lessons) as classical cryptology is strongly related to non-trivial
concepts of probability theory and algorithmics which are used for the design

192 L. Keller et al.

and the analysis of the cryptosystems. A detailed descryption of a longer in-
troduction of classical cryptology can be found in the textbook [6]. A shorter
introduction is given by Hromkovič [8,7]. Nevertheless, we focus on clear expla-
nations of concepts and notions as a basis for following lessons.

3.1 Teaching Goals

The principal aim of our teaching unit consists in influencing the attitude and the
interest of high school students with respect to cryptology and its applications
in real-life: we expect that after completing the teaching unit, the students are
aware of the relevance of cryptology for today’s life and in particular for secure
communication systems. At the same time, we try to stimulate the student’s
interest on cryptology and informatics in general and possibly to motivate them
to learn more about this topic.

Students attending the teaching unit presented in this paper acquire con-
crete, observable skills and capabilities: they know and understand the concepts
of cryptosystems, sender, receiver, eavesdropper, encryption, decryption, secret-
key, plaintext, cryptotext as well as the definition of the concept of security
for cryptosystems. Students correctly explain all these concepts to school col-
leagues without prior knowledge in cryptology, in a non-formal way, relying on
the introduced terminology and the presented graphical schemes.

Students are able to correctly deal with the presented classical cryptosystems
and to encrypt and decrypt simple messages by hand (without a computer).
Given a message encrypted with one of the presented cryptosystems, students
are able to compute the size of the key-space and to break the encryption carrying
out a cryptotext-only-attack, by hand, working alone or in small groups.

3.2 Introducing the Concepts of Cryptology

In the following, we summarize our teaching unit divided in 9 steps.

Step 1: Introduction. We start with a short introduction where we briefly
mention some applications of cryptology to motivate the students for these two
lessons. Some of them are listed in [8].

Step 2: Two Ciphers. One of the first known ciphers1 is POLYBIOS. The
greek writer Polybios arranged the Greek alphabet, consisting of 24 characters,
in a 5x5-matrix from left to right and top to bottom. To encrypt, he replaced
every character by a pair, the number of the row and the number of the column.

Another well-known possibility to encode characters is the cipher FREEMA-
SON. It was invented in the 18th century. Every character of the alphabet is
replaced by the lines and dots in the neighbourhood of the character (see Fig. 1).

1 Note, that we distinguish the words cipher and cryptosystem. Cryptosystems use
keys for encryption and ciphers do not.

A Short Introduction to Classical Cryptology 193

A B C

D E F

G H I

J

K L

M

N O P

Q R S

T U V

W

X Y

Z

Fig. 1. The FREEMASON cipher [13]. Some examples: A = �, J = �, S = �, Z =
�, and so on.

Step 3: Cryptosystems. At this point, we ask the students why the mentioned
ciphers are not practicable and secure. The students immediately see that it is
sufficient to know which cipher is used for the cryptotext and then it is easy
to decrypt since you can consult the table. Therefore, we need more involved
ciphers. Those ciphers should have the property that you do not have to keep
the method of encryption secret but only the key. Hence, you need ciphers with
a larger variety to encrypt. Those ciphers are called cryptosystems. The two
ciphers from Step 2 are not cryptoystems because they do not have keys.

Step 4: The Cryptosystem CAESAR. The probably most popular cryp-
tosystem is CAESAR. In this cryptosystem every character is shifted cyclically
by a fixed amount of positions indicated by the key. In the following picture, the
key is 2:

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

I

I

J

J

K

K

L

L

M

M

N

N

O

O

P

P

Q

Q

R

R

S

S

T

T

U

U

V

V

W

W

X

X

Y

Y

Z

Z

Z

A

This cryptosystem has only 26 keys and hence, is easy to break for an unautho-
rized person. One can, for example, try exhaustively all keys and if a reasonable
text shows up one can assume that the plaintext was found. However, it highly
depends on the plaintext and the cryptosystem, if such a brute-force cryptanal-
ysis can succeed in general or not.

Cryptology was and still is a game between the code designers and the code
breakers. The code designers always try to invent new cryptosystems that are
secure and the code breakers want to break those systems. We use this game
to get the attention of the students. During the whole lecture, the teacher plays
the role of the code designer and the students break the systems. This motivates
the students because, finally, they can for once correct the teacher. Moreover,
the kids also have fun solving puzzles.

Step 5: The Cryptosystem SKYTALE. To get a better cryptosystem, we
have to design one with more keys. One possibility is the cryptosystem SKY-
TALE. The sender and the receiver have a wooden stick with the same diameter.
The sender wraps a paper or a leather strip around the stick and writes the

194 L. Keller et al.

message row by row onto the paper such that he places one character on one
winding of the strip. The amount of characters on one winding (the diameter)
is the key of the cryptosystem. If the strip is unwrapped, we get the cryptotext.
The receiver has to again wrap the strip around the stick in order to read the
plaintext. But how many keys do we have? It is easy to see, that this number
depends on the length of the text, say n. In this case we have at most n possible
keys. But not all keys make sense. In practice, the number of keys is not very
large.

Afterwards, we shortly discuss one problem with the cryptosystem SKYTALE.
The blanks at the end of the written message give the cryptanalyst a hint about
the size of the key. How can we hide these blanks? Usually, the students have
some ideas like filling in arbitrary characters at the end of the text, or adjusting
the size of the key and the number of windings to the length of the text, such
that there will not be any blanks at the end of the text.

Note, that this cryptosystem is based on a different principle than the previous
one – instead of replacing symbols we change their positions.

Step 6: The Cryptosystem RICHELIEU. The last simple symmetric cryp-
tosystem we want to introduce is RICHELIEU. This system was invented in the
17th century by the cardinal Richelieu. He used a cardboard where some holes
are punched in. Then he writes the plaintext onto the paper through these holes.
Afterwards he removes the cardboard and filles in the gaps with arbitrary char-
acters to get the cryptotext. The receiver can decrypt the ciphertext by placing
the same cardboard with the same holes on top of the cryptotext. How many
keys do we have? Suppose that the number of rows on this cardboard is m and
the number of columns is n. Each field on this cardboard can either be punched
out or not. Hence, we have two possibilities for every field and 2m·n is therefore
the total number of keys.

If the students are familiar with combinatorics, then they have no problems
to figure out the number of keys. Otherwise, the teacher has to help the students,
but also in classes with younger students, it was never a problem to explain how
the number of keys is calculated.

Step 7: An Exercise. The Spartans want to send a secret message from Sparta
to Athens. In this message, a strategy for the upcoming battle is described. The
battle begins in 3 days.

The goal of the Spartans is to encrypt this message in such a way that the
enemies need more than 3 days to break it. The Spartans know that the enemies
have only one cryptanalyst. He is very smart and works efficiently. For one trial
to decrypt the cryptotext, he needs only 1.5 minutes. This trial corresponds to
testing one key. The unresting cryptanalyst can work three days and three nights
at a stretch. The Spartans have to reckon that the smart cryptanalyst knows
which cryptosystem is used for the encryption.

The Spartans decide to use the following cryptosystem:

A Short Introduction to Classical Cryptology 195

Cryptosystem 3DAYS
plaintext alphabet: Latin characters
cryptotext alphabet: Latin characters
set of keys: (i, k, j) with i, j ∈ {0, 1, . . . , 25} and k ∈ {1, 2, . . . , 100}
encryption: Encryption in 3 steps:

1. Encrypt the plaintext with CAESAR and key i to text1.
2. Encrypt text1 with SKYTALE and key k to text2.
3. Encrypt text2 with CAESAR and key j to text3.

Describe the decryption of a message encrypted with 3DAYS. Did the Spartans
make a good choice?

Most of the students realize that SKYTALE and CAESAR are independent
and that therefore the order of the encryption steps is irrelevant. Further they
come to the conclusion that the successive application of CAESAR with keys i
and j results in a single CAESAR encryption with the key i+ j mod 26. Hence,
the number of different keys is small enough to check all of them within 3 days.

Step 8: A Monoalphabetic Cryptosystem. Now, we look at a better cryp-
tosystem, called the MONOALPHABETIC cryptosystem, it is similar to CAE-
SAR. Again, every character is replaced by a different character, but instead of
shifting the characters by a fixed number of positions, we jumble the characters
arbitrarily (i.e. we take a permutation of the characters):

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

I

I

J

J

K

K

L

L

M

M

N

N

O

O

P

P

Q

Q

R

R

S

S

T

T

U

U

V

V

W

W

X

X

Y

Y

Z

Z

How many keys do we have now? 26! ≈ 4.03 ·1026 and this is a huge number. No-
body is able to check so many keys within reasonable time. But can one exclude
another possibility to break a cryptotext that is encrypted with this cryptosys-
tem? Many students discover by their own how the cryptanalysis works: In every
language, some of the characters appear more often than other characters. In
German, for example, E is the most frequent character followed by N and I.
Comparing the frequencies of the letters of a given cryptotext to the expected
statistical distribution provides us with a hint for the cryptanalysis. Additionally,
we can pay attention to some words that occur often in texts, such as und or
das in German.

It is important though that this frequency analysis only works reliably for
large cryptotexts. For the students, a text should be provided that is not too
long, but in which the frequencies of the characters more or less coincide with
the expected statistical distribution. Tables of these distributions are given for
example by Wätjen [14] for German and English.

Step 9: A Longer Exercise. Now, it is time for a longer exercise. The students
form groups of two or three people and every group gets a print-out of a table

196 L. Keller et al.

with the expected letter frequencies and a cryptotext, which is a monoalphabetic
encryption of a German text. We use the following text [6] at schools2:

H O Q H Q K S D , D O C O P T S P X X O K E R J E H O L Z O S , P X N PT V O X O S
H O X T O S X L C O S N P O R O P S D O V E Q J O I N ; X L C M S H P O
O P S R K L C X N O S O E D P O Q W O Q E C N UK K E R H O Q K E X X P L C N , O P S
V P X X O S JE N O P I O S , H K X K S H O Q O E S X Y M Q O S N C K I N O S .
O P S P D O X P S H D I E O L Z I P L C D O S E D , O P S O S W O Q E R JE
R P S H O S , H O Q PS H O Q I M O X E S D Y M S Q K O N X O I S W O X N O C N .
K W O Q H P O T O P X N O S Y M S E S X T E O X X O S H P O X O S H Q K S D T P N
H O Q I M O X E S D Z E O S X N I P L C JE E S X O Q O Q E S N O Q C K I N E S D
K E X D O H K L C N O Q Q K O N X O I K E R D K W O S X N P I I O S .
H O N O Z N P Y D O X L C P L C N O S E S H Z Q O E J V M Q N Q K O N X O I V O Q H O S
Y P O I O S S E N J O S ; O P S P D O V O S P D O T M O D O S X P L C H O Q
O S N X L C I E O X X O I E S D Y M S D O C O P T X L C Q P R N O S C P S D O W O S .

Most of the students need between 20 and 30 minutes to break this text. Those
groups are successful, which divide the work in reasonable parts. It is not nec-
essary to count all the characters. Sometimes it is sufficient to determine what
E, N and I are and then you may see some patterns from words that you know.
The best way to break it is possibly a mixture between counting the characters
and searching for known patterns. The students choose this way intuitively.

In this exercise, the students can live out their curiosity for puzzles. We ob-
served that also students that are usually not easy to motivate for informatics
like this type of exercise. Because they are in the position of the cryptanalyst
and some minutes ago the task seemed to be unsolvable, their ambition to break
the cryptotext is really high.

It is important that we do not break off the exercise sessions until at least half
of the students finish their work and almost everybody understands how to break
the cryptosystems or to solve the exercise. Usually, most of the students finish
the cryptoanalysis approximatly at the same time. If this is not the case, you
can give the faster students more challenging exercises to solve until the others
are finished. Also, if some of the students have already found the solution, the
other students are still eager to break the cryptotext on their own. Sometimes
we offer prizes for the first groups who break the text but even if there is nothing
to win, the students are willing to solve the exercise.

Steps 1 to 6 are strongly teacher leaded parts. The teacher presents the cryp-
tosystems and the students try to find together the weeknesses of the systems.
From Step 7 on, the students work for the most time for themselves and in
smaller groups. They need much more time for the last three steps.

In most classes, we need 90 minutes up to this point. It is not unusual that
some classes are faster. We were able to give them also a short overview of
polyalphabetic cryptosystems.

2 To make the task easier, we do not take out the punctuation marks and the blanks.

A Short Introduction to Classical Cryptology 197

3.3 Continuing Lessons

The search for a secure cryptosystem continues. The first measure of the code de-
signers was to build cryptosystems with more and more keys. The monoalphabetic
cryptosystem has a lot of keys, but we were still able to break the cryptotexts with
a frequency analysis. The problem was that the frequencies of the characters in the
plaintext are a permutation of the frequencies of the characters in the cryptotext. Is
there a possibility to mask those frequencies in the cryptotext? One possibility is to
use polyalphabetic cryptosystems. One example is the cryptosystem VIGENÈRE.
The sender and the receiver must agree on a keyword, which is written from left to
right multiple times without a gap underneath the plaintext. Every character of the
plaintext is encrypted with the cryptosystem CAESAR: The rank of the character
in the alphabet of the keyword underneath the character of the plaintext deter-
mines the shift. Hence, it depends on the position of the character in the plaintext,
with which shift it is encrypted.

VIGENÈRE was invented around 1550 and named after Blaise de Vigenère.
At that time, it was considered as unbreakable. Not until 300 years later, Charles
Babbage managed to break this cryptosystem: For a key length n, he divided the
cryptotext in n parts such that the characters in every part were encrypted with
the same shift. Then, every part can be tackled with the frequency analysis. For
this analysis, we have to assume that we know the length of the key. However,
there are also methods to determine the key length (see [6,13]).

If the teacher only wants to give an overview to cryptology, he can outline
public-key cryptology instead. A teaching unit as well as its scientific background
is, for example given by Keller et. al. [9] (cf. [2,12]).

4 Experiences

We were teaching this lesson in about 20 schools in Switzerland. In the majority
of cases, the schools invited us for a workshop, where this lesson was only a small
part of the day. But we have also given short talks about this topic.

The last lecture before school holidays is always a special one. On one hand,
the students are tired from the semester. On the other hand, they look forward
to the school-free time and they are excited. Hence, it is a special challenge for
the teacher to choose a topic which is interesting enough to elate the students
in this situation.

In January 2011, we performed the presented lesson at a high school in Zurich
in the framework of a regular informatics course. The lesson was for a program-
ming class (in 10th school year, ages 17 to 18) and it was the last lecture before
holidays. We wanted to give the students some insights to an interesting and
important topic. Altogether we had 53 students.

A question which arose from time to time during the semester was, why is
informatics important for everyday life. The goal was to show with this sample
lesson the importance of informatics using cryptology as an example.

We aimed to create a lesson which elates all students, even those who are not
very interested in informatics.

198 L. Keller et al.

4.1 Evaluation

Influencing or changing students’ attitudes to school subjects is generally a very
hard objective, even when teaching classes over a very long time. Since attitudes
are difficult to observe or to quantify, gaining evidence of a change in the way
students think about a specific matter is a complex task, requiring formal em-
pirical tests and deep know-how in cognitive psychology. The short survey we
are going to present and to discuss aims to help confirming or rejecting the im-
pression we had during the lecture. It clearly does not fulfil the requirements of
a formal empirical study.

We were interested, whether this short introductory lesson into cryptology
has an effect on the opinion of the students. Therefore we conducted a post-
questionnaire four weeks after this introductory lesson took place. 53 students
had to rate six statements with a rating between “total agreement” (rated 5)
to “total disagreement” (rated 1). This questionnaire is not meant to be a full
evaluative test, but merely a way to get some feedback (see Fig. 2).

The first question covered the previous knowledge about the topic. On average,
this question was rated with a 2.5, which is higher than we expected. This
could indicate that the topic is interesting enough, so that the students had
already read something about it. A questionnaire from a comparable group of
students showed that 50 % of them did not know the meaning of the expression
“cryptology”. In that group we had 87 students. One possible explanation of the
relatively high value in this study is that the students were familiar with the
term “cryptology”.

With the second statement, we wanted to know whether we did a good job on
getting the attention of the students. With an average rating of 4, the students
attested that the instruction was indeed interesting, none of them answered that
it wasn’t interesting at all and 80 % rated the statement higher than 3. Certainly
we hope that we did a good job, but we also believe that this in part means that
cryptology is indeed an interesting subject.

The third point stated: “I would like to know more about the topic”. 70 %
answered that they agree or totally agree with this statement. Only six students
do not want to know more about the topic. As this question was also answered
very positively, we hope that the student’s interest is strong enough that they
might conduct some further reading on their own.

With statement 4, we wanted to find out whether the students believe that
cryptology is indeed used in real life rather than just being a theoretical toy.
Although the average of 3.8 is quite high, we think we could do better here. The
quite similar statement 5 was on the other hand answered with much more agree-
ment (average 4.3). It is good to see that the students approve that cryptology is
important for today’s communication. Possibly the previous question was rated
lower because none of the students has ever used cryptology outside of school.

We are surprised with the outcome of the last statement. We hoped that the
students would agree much more with this proposition. However, the question is

A Short Introduction to Classical Cryptology 199

formulated very vague. If the statement would have been “Everyone should know
that cryptosystems exist and can protect your data” for example, the answers
would probably look quite different.

The most important conclusion we made is, that after a few weeks, the stu-
dents still remember this lecture. This topic is strongly related to their real life
and therefore, this lecture seemed to influence the students attitudes towards
informatics. Although, this lecture was meant to be only a short overview, some
knowledge transfer happened.

Fig. 2. Chart showing the graphically prepared data

200 L. Keller et al.

5 Conclusion

In this paper, we introduced a classical cryptology lesson in which the students
take the position of the cryptanalyst. The teacher takes the role of the code
designer and presents the students some cryptosystems, and the students try to
break these systems. Students are able to do that and this gives them a feeling
of success. Also, the interesting history about cryptology motivates the students
for further cryptology lessons.

This sample lesson can of course also take place in a math class since cryptol-
ogy is a topic strongly related to both mathematics and informatics.

References

1. Bauer, F.L.: Decrypted Secrets: Methods and Maxims of Cryptology, 4th edn.
Springer, Heidelberg (2006)

2. Bell, T., Fellows, M., Witten, I.H.: Computer Science Unplugged - Off-line
activities and games for all ages (1999), http://www.csunplugged.org

3. Beutelspacher, A.: Cryptology. Mathematical Association of America,
Washington, DC (1994)

4. Bruss, D., Erdélyi, G., Meyer, T., Riege, T., Rothe, J.: Quantum cryptography: A
survey. ACM Comput. Surv. 39 (July 2007)

5. Freiermuth, K., Hromkovic, J., Steffen, B.: Creating and testing textbooks for
secondary schools. In: Mittermeir, R.T., Sysło, M.M. (eds.) ISSEP 2008. LNCS,
vol. 5090, pp. 216–228. Springer, Heidelberg (2008)

6. Freiermuth, K., Hromkovič, J., Keller, L., Steffen, B.: Einführung in die
Kryptologie. Vieweg+Teubner (2009)

7. Hromkovič, J.: Sieben Wunder der Informatik. Vieweg+Teubner (2008)
8. Hromkovič, J.: Algorithmic Adventures. Springer, Berlin (2009)
9. Keller, L., Komm, D., Serafini, G., Sprock, A., Steffen, B.: Teaching public-key

cryptography in school. In: Hromkovič, J., Královič, R., Vahrenhold, J. (eds.)
ISSEP 2010. LNCS, vol. 5941, pp. 112–123. Springer, Heidelberg (2010)

10. Kerckhoffs, A.: La cryptographie militaire. Journal des sciences militaires IX,
5–38 (1883)

11. Kerckhoffs, A.: La cryptographie militaire. Journal des sciences militaires IX,
161–191 (1883)

12. Koblitz, N.: Cryptography as a teaching tool. CRYPTOLOGIA:
Cryptologia 21(4), 317–326 (1997)

13. Singh, S.: The Code Book. Doubleday (1999)
14. Wätjen, D.: Kryptographie. Springer, Heidelberg (2008)

http://www.csunplugged.org

I. Kalaš and R.T. Mittermeir (Eds.): ISSEP 2011, LNCS 7013, pp. 201–212, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Little Beaver – A New Bebras Contest Category for
Children Aged 8–9

Monika Tomcsányiová and Peter Tomcsányi

Department of Informatics Education,
Faculty of Mathematics, Physics and Informatics, Comenius University,

842 48 Bratislava, Slovakia
{Monika.Tomcsanyiova,Peter.Tomcsanyi}@fmph.uniba.sk

Abstract. The teaching of Informatics in lower and upper secondary education
has a long tradition in Slovakia. In 2009, a new subject, Elementary Informatics
(“Informatická výchova“ in the Slovak language), was introduced into primary
education. This paper describes its aims and relates how contests can be a form
of learning and a way to test children’s knowledge. Secondary schools have the
Bebras Contest, and in this article we present the process of transforming tasks
from the international database of Bebras tasks so that they are appropriate for
the national contest in Slovakia. Furthermore, in order to facilitate participation
of primary school children in the contest, we prepared and tested tasks in a new
contest category, Little Beaver. The paper presents criteria of an appropriate
contest task for children who are between 8 and 9 years old. Several tasks,
which were solved by them in the pilot year of the contest, are included.

Keywords: Informatics, primary education, contest, Bebras Contest, children at
the age of 8-9.

1 Introduction

Slovakia has a long tradition of teaching informatics. It is taught in the lower and
upper secondary schools as a subject of general education. To support this subject,
several textbooks were published (see [1]), which stress the understanding of
informatics as a separate subject and not only as part of other subjects in which ICT
are used.

Informatics is taught in all the grades and is divided into 5 topics:

• Information Around Us
• Using ICT for Communication
• Workflows, Problem Solving, Algorithmic Thinking
• Principles of ICT
• Information Society

Its content and range at each level of education is designed with respect to the abilities
and needs of the students at their respective ages. The school reform of 2008
introduced a new subject to primary education, Elementary Informatics. This new
subject includes the same topics as mentioned above.

202 M. Tomcsányiová and P. Tomcsányi

2 The Subject Elementary Informatics

In the school year 2009/10, the new subject of Elementary Informatics for primary
schools was established. It is intended for children from grades 2 to 4, who are 7, 8
and 9 years old at the beginning of their respective grades. The aim of this subject at
this educational level is to guide children to use digital technologies effectively during
searching and processing information, when solving problems and during general
learning activities. Elementary Informatics also prepares children to understand the
basic terms and mechanisms important to solving various kinds of problems by using
digital technologies. It teaches children how to use the Internet as a communication
tool, for learning, for information researching and for the presentation of information.
Another important aim of the subject is to give the pupils the basics of algorithmic
thinking and the ability to solve problems by using digital technologies.

The standard for the new subject, (see [2]), defines the abilities and skills of the
pupils very generally. Therefore the choice of activities depends very much on the
teacher. At this time, a textbook is available only for the 2nd grade (see [3]). There is
no official textbook for the 3rd and 4th grade. However, we believe that a creative
teacher is quite able to prepare many different tasks, problems or inter-subject
projects that will help his/her pupils to gain skills in using digital technologies. We
realise that for a teacher who has had no specialised education in informatics as
a science, it will be a tough task, so in order to help them, we implemented a project
of additional education in informatics for teachers in Slovakia.

Another way of educating both teachers and pupils is a contest. It can be an in-
school activity or out-of-school activity, which helps pupils to enhance their abilities
and skills in a given area, (see [4]). Therefore we decided to implement a new
category for primary schools in the successful Bebras contest.

3 The Bebras Contest

The first Bebras contest was organized in Lithuania in 2004. The main aim was to
promote interest in Information and Communication Technologies (ICT) to all school
students, and to encourage children to use modern technologies more intensively and
creatively in their learning activities.

Several other countries started to organize national Bebras contests, (see [5]), and
in the school year 2007/2008 Slovakia joined the contest as well (see [6]). Since then
the number of Slovakian participants has increased each year. In the school year
2010/11 there were 22139 contestants from ages 10 to 18, in four categories:
Benjamins, Cadets, Juniors and Seniors1.

For this kind of contest it is very important to create interesting contest tasks that
will attract many students. Another role of the tasks is to differentiate students
according to their understanding of informatics terms, how they understand different
ways to represent data, and whether they can use their knowledge effectively and
creatively in solving problems.

1 In Slovakia Benjamins are aged 10–12, Cadets 13–14, Juniors 15–16, and Seniors 17–18. In

other countries the ages may vary.

 Little Beaver – A New Bebras Contest Category for Children Aged 8–9 203

3.1 The Tasks

Task proposals are designed by each country’s representatives and then are submitted
to the international database. The best ones are selected by the participants of the
International Bebras Task Workshop (see [7]). This collaboration among countries is
possible because many of them have included informatics into the curricula of lower
and upper secondary education (even though the content may differ from country to
country). In order to use a task in a national contest, the participating country has to
re-evaluate tasks from the international database, and select the tasks which match
their curriculum. If the country decides to use a task from the international database, it
has to perform the steps described below.

• Translate the task – The tasks in the international database are in English.
Therefore, they must be translated into the language of the country.

J_ALG_NL_014.doc

Junior, hard

Character exchange
Beaver plays with transforming words. His favourite operation
exchanges the first character of a word with another character
somewhere in that word. For instance you can transform the
word “bicycle” into “cibycle” by applying the operation once.

What is the minimum number of operations needed to transform
the word “bicycle” into “elcycib”?

(we suggest to include an interactive "helper" to experiment
before answering)

a. 4
b. 3
c. 5
d. 6

Hra so slovami

Bobor Bruno sa rád hrá so slovami. Najradšej má hru, v ktorej
zoberie prvé písmeno slova a vymení ho s niektorým iným
písmenom v tomto slove. Napríklad zo slova JAZERO dostane
jednou výmenou slovo ZAJERO.
Aký najmenší počet výmen musí urobiť, aby zo slova JAZERO
dostal slovo ORZEAJ?

a) 2
b) 3
c) 4
d) 5

Fig. 1. The process of translation. The left picture shows the original English, the right one
shows the final Slovak task with an interactive helper, category Junior 2008/09, easy task.

• Adapt and translate the data in the task – Many tasks contain data which are
either in the accompanying images or directly in the assignment, e.g.: names,
terms, menus of actual computer programs, etc. Each country has to replace them
so they correspond to its tradition and terminology.

• Specify the category in the national contest – In each participating country,
particular knowledge, skills or abilities may be learnt or achieved in a different
grade or at a different age, so the task could be moved to a different category than
the one suggested in the international database.

• Reword and sometimes simplify the task assignment – The task should not
contain overly long texts. Correct formulations must be found which take into
account the translated language and the chosen category.

• Redraw the images or draw new ones – Original images in the database are often
schematic or they do not exist at all or they do not correspond to the reworded task.

• Implement the software – Interactive tasks need to be implemented as small
applets. It depends on the manner in which that particular country implements
interactive tasks. This often differs from the software programmed by the country
that designed the task.

204 M. Tomcsányiová and P. Tomcsányi

The fastest way
You want to visit your friend as quickly as
possible. You drive from your house to your
friend’s house. The numbers on the map
express how many minutes the car takes to
drive each part of the way.
Mark the fastest path clicking on the parts of
the way.

The map
Tom found a map leading to a treasure. There are
written numbers in several boxes and he remembers
that at the time of drawing it he wrote in the boxes the
shortest distance from the box with the treasure.
Secondly he remembers that you can walk from any box
to the next one only by their adjacent side.

Mark the box with the treasure.
For example: here is a
picture of the map and you
can see the written numbers
and the marked steps
leading towards the red
treasure.

Fig. 2. Sample interactive tasks showing the Slovakian interactive application, Find the Path,
Senior, 2009/10, medium, The Map, Benjamins, 2010/11, hard

The contestants in a particular country solve the adapted tasks using the specific
contest system of the country. In some countries contestants solve tasks online (e.g.,
in Slovakia); in other national contests the schools are given a computer program in
which students solve the tasks offline. Nevertheless in each participating country the
students solve the tasks directly at the computer.

Domino
John makes up a rectangle of domino tiles. A tile is
attached to the previous one in the line if their number
of dots equal. The picture shows what he has already
built. He has seven extra tiles which are located in the
bottom of the picture.
Try to finish the rectangle by
dragging the tiles into the three
empty boxes. If you doble-click a
tile, it will turn.
In how many different ways can the
rectangle be completed?
a)1
b)2
c)3
d)4

Houses
You need to colour some houses by using the
fill tool and two colors - red and blue. They
must be painted in such a way that no two of
them are equal. Each house must have both
its triangle and square part painted.
You can try it out by clicking on the squares
and triangles below.
How many different houses can be painted?

a) 2
b) 3
c) 4
d) 5

Fig. 3. Sample tasks with interactive helpers. Domino, Juniors, 2009/10, hard. The little houses,
Little Beaver-pilot, 2010/11, hard.

The advantage of this approach over using pen and pencil is not only the use of
ICT and developing computer literacy, but it also adds the possibility of solving
interactive tasks. Students solve these by manipulating objects within the task
assignment (dragging the objects, clicking on them) and leave the object(s) in a state
that corresponds to the task’s assignment.

Another type of task which involves interactivity, both to make the solution easier
and help to achieve the correct understanding of the assignment, is a multiple choice
task with an interactive helper. Similarly to an interactive task, the interactive helper
provides direct manipulation of the task’s objects in order to experiment with them.
According to [8], experimenting is a problem-solving scheme. It helps to better
understand the task and transform it into the contestant’s mind. After experimenting,

 Little Beaver – A New Bebras Contest Category for Children Aged 8–9 205

and according to their own experience with the task, the contestants can enter the
solution by ticking the correct choice just like in a multiple choice task (see figure 3).

We think that for 8- and 9-year-olds the aforementioned two kinds of tasks that
include interactivity should be preferred over purely multiple choice tasks.

4 Preparing the Little Beaver

Since Elementary Informatics started in 2009, the first pupils who went through it will
be in 4th grade in November 2011. Therefore, for the school year 2011/2012 we
decided to create a new Bebras contest category called Little Beaver.

While preparing the tasks we assumed that pupils will have gained the knowledge
and skills needed for solving them in their Elementary Informatics lessons.
However, we also assumed that pupils use digital technologies at home, too.
Experiments show (see [9]) that children who are 8 and 9 use their own electronic
equipment (a mobile phone is used by 95.7 % of pupils) or the equipment found in
their home, i.e. television, camera, computer, and printer. Using and controlling these
devices becomes natural for them and they gain the needed skills very quickly just by
using this equipment. They do mention the standardization of the devices’ controls
and layouts and the use of icons and texts for labelling controls have the same or
similar meaning on different devices. Therefore, children who are 8 and 9 know the
icons for turning the devices on/off, and the icons for running or stopping the video,
and so on. Of course, pupils expect the same controls on other devices and in PC
programs or PC games.

4.1 Differences between Bebras and Little Beaver

When preparing tasks for children who are 8 and 9, we must consider the differences
between them and pupils aged 10 to 18 for whom the other categories of the Bebras
contest are intended. First of all, their psychological and psychomotorical
development [10] completely differs from students aged 10 to 18.

Following the principles for designing software for children (see [11]) we will
focus on the following aspects:

• Pupils of these ages read more slowly and do not always understand the text
correctly – We will try to reduce the text, make the task assignment succinct and
make the font large enough.

• Children at this age need to work with concrete objects within the software and
they do not understand abstraction – the task assignments will be created with
concrete people, things and events that they can experience in real life or meet in
fairy tales.

• The objects’ size and distances on the computer screen have to be adapted to the
child’s age – we will try using graphics which appeal to children, similar to
illustrations in story books.

• Children at this age cannot focus on a task for a long time – we will shorten the
duration of the contest to 30 minutes and the number of tasks to 12 (for the older
categories we use 15 tasks and 40 minutes).

206 M. Tomcsányiová and P. Tomcsányi

Besides the above-mentioned differences, in the category of Little Beaver, the
majority of tasks will be either interactive or tasks with an interactive helper.
According to [10], manipulation of objects is very important for children at this age,
more important than it is in higher categories.

4.2 Using a Bebras Task for the Little Beaver

In this section we will present two tasks included in the Benjamins category in
previous years. While preparing the new contest category, we consider how and
whether to use this type of task. We also make clear whether it is possible and
appropriate to put them in the new contest category. We select the tasks with the
knowledge and skills learnt when they studied Elementary Informatics from the
beginning of the school year 2009/10 till the day of the contest.

Red and blue beads
In ten small holes in a row there are ten beads which colour can
be either red (light) or blue (dark). Each bead is put in one hole.
The holes are numbered 1 to 10.
A robot can sort the beads so that red beads should be in the
first holes from the left and blue beads should be on first holes
from the right.
In one step the robot exchanges two beads.
The robot started with its work and after three steps he finished
it. The steps were 1 ↔ 9, 2 ↔ 4, 3 ↔ 5
What was the starting position?

a)

b)

c)

d)

Patterns
We use this three patterns to draw the pictures
t (tooth) r (road) s (step)

To draw a compound picture, we put them on the
paper step by step and trace over. For example using
the patterns s r r t we will get the picture

Which sequence of the patterns will make this picture?
a) t r r s s r
b) t r r s t r
c) t r r s t r
d) t r s r t r

Fig. 4. Red (light) and blue (dark) beads - Benjamins, 2009/10, medium, Patterns - Benjamins,
2010/11, easy

If we decide to use this type of task in the new category, Little Beaver, we will
consider:

• task classification into one of the topics of Elementary Informatics, (see [4]), and
its categorization according to the international agreement (see [12]),

• task adequacy to the children’s age in this contest category; here we consider the
task’s motivation and the graphic used,

• task formulation to be ready for transformation and translation for national
contests in other countries,

• classification according to its difficulty: easy, medium, hard; the task difficulty is
often determined by its formulation and interactivity,

• an interactive variant of the task – whether it is possible to make the task
interactive or prepare an interactive helper for it; we prefer this type of task in the
Little Beaver category,

• in the case of non-interactive tasks we consider the appropriate distractors which allow
us to detect misconceptions in children’s knowledge when evaluating their answers,

• reasoning for the right solution of the task – sometimes pupils do not understand
why other answers are not right even when the correct answer is told to them
immediately after the contest.

 Little Beaver – A New Bebras Contest Category for Children Aged 8–9 207

5 From the Idea Till Its Implementation

Next sections present how a creative author can prepare a task for the new contest
category. We will show how to find good topics and how to convert the first idea of
a task into its final implementation.

5.1 The Idea

When looking for an appropriate contest task one can be inspired in different ways.
Informatics background and concepts of informatics can be found in real problems
that children at the age of 8 and 9 could experience. One of the author's inexhaustible
sources can be the Internet. The author can use either websites designed directly for
children or any other sites which are realistic enough for children of the given age.

Just imagine that you and your children want to go to the cinema and together you
look at the cinema’s web page. It contains the reservation system of the cinema which
allows selection and reservation of seats and even allows buying tickets for them. We
were actually using this site with our children and we started to think about how to
use it in the Little Beaver contest. We asked ourselves:

• Could we use this idea in a contest task for children who are 8 and 9?
• What is the informatics background of the task?
• Which of the children’s knowledge, abilities and skills will be tested? What

activity must the visitor and the children do on the web site to reserve the tickets?
• Does a child of 8 or 9 have the knowledge and abilities to manage the task?
• Is the problem realistic enough for children of this age? Do they understand it?
• Are we able to prepare an adequate and appropriate task out of this idea?

If one decides to use this idea to create the task, he/she must concretize it further for
our assignment:

• How large should the cinema be to be appropriate for the Little Beaver Category?
• How should visualize the occupied seats be visualized? Should they be in colour

and abstract or is it better to locate figures or faces on them?
• How will the task be controlled? Will the child click on the seats or will he place

figures on the seats?

5.2 Choosing a Formulation

At first we design several types of tasks (without their concrete formulation) by using
the idea of seat reservation. Later we decide which type of task is the most
appropriate for the contest. We formulate the chosen task as accurately and clearly as
possible. For example, we consider the following:

• In an empty cinema, we search for several possibilities for seat placement: seats
which are in the middle of the row, which are as far from the screen as possible, as
near to the screen as possible, about in the middle of the row, at the edge of a row,
close to the cinema’s exit.

208 M. Tomcsányiová and P. Tomcsányi

• In a partly occupied cinema, we search for three places which are not too far from
the screen, only the seats at the edge, and the seats close to the cinema’s exit etc.

• In a quite occupied cinema, we want to find several seats next to each other – for
this assignment we can prepare several rooms with various numbers of seats to
search for in various occupied cinemas.

• We also consider preparing a task that has no solution. If we use it in the contest, it
will be significantly more difficult than a task which can be solved.

Fig. 5. Solving the task by placing the faces (left) and finding the solution by more abstract way
(right)

5.3 The Implementation

To finalize the task we must:

• determine the cinema’s size and shape, determine how many seats will be required
to solve the task – if the cinema is too large and has too many seats to search for, it
can discourage the children from solving the task at all,

• design the exact task assignment - the difficulty of the solution will depend on it,
• decide the manner of manipulating the objects in the task, which will determine

how the children will find the solution. In this case of an interactive type of task
there are two possibilities: children will drag the faces (see Fig 5 left) or we can
represent the occupied seats by colours. The latter will make reserving seats more
abstract since only the colour of the seat will change (Fig 5 right). For the Little
Beaver Category, it would be more natural to solve the task by dragging the faces,

• after the concretization of the task, we define the difficulty of it – easy, medium,
hard,

• draw the images which are interesting and eye-catching for the children,
• program the task so that it can be used in our national contest system or we can

present it to teachers and the international committee who select tasks for the
international database.

6 The Pilot-Run of Little Beaver

In order to try our ideas for the tasks and also to gain some knowledge of how
difficult they would be for real children, we decided to run a pilot contest.

 Little Beaver – A New Bebras Contest Category for Children Aged 8–9 209

Since the decision was made quickly, we did not use our complete contest software
for the new category. Instead we adapted our demo version of the contest for this
purpose. Normally we use the demo version to allow anybody to enter the archive of
tasks from previous years and try them out. Since it does not require any registration
prior to the contest, it has been easier to adapt. The downsides of this decision are (1)
that the same pupil can participate several times (i.e. he/she can try to solve the same
task several times), and (2) that without adding extra measures (see later in this
chapter), we cannot generate any lists of results per school.

The interest for the contest among the teachers has been unexpectedly high. We even
had to stop registration when we exceeded the estimated number of 1000 participants.

We prepared 11 tasks, 4 easy, 4 medium and 3 hard ones. The 12th task was to
write down the name of the participant. We added this task to be able to create a list
of participants (and winners) for the participating teachers. This task has been
excluded from evaluation so that no pupil would be forced to write down his/her
name. 7 out of 11 tasks were interactive. Only 4 tasks required choosing the correct
answer from a list of 4 answers, and one of those tasks had an interactive helper.
Therefore, 8 out of 11 tasks involved some type of interaction and manipulation. Only
the remaining 3 tasks had to be solved without any kind of on-screen experiments.

The evaluation scheme has been modified (compared to other Bebras categories) to
avoid non-integral numbers of points. To avoid a negative total number of points we
added a bonus of 24 points to each participant. Because the 12th task was not
evaluated, the actual minimum of total points is 3 and the maximum is 87.

The pilot-run was executed on 29th of April 2011 between 10:00 and 13:00. By the
end of the contest there were 1370 participants from about 60 schools who finished
the contest and another 220 participants who started the contest but did not finish.

We decided that, for the purpose of analysis, we would use only data from those
participants who identified themselves and who either finished the contest or
answered more than half of the tasks. These rules were satisfied by 1216 contestants.

4 8 1216 2024 2832 3640 444852 5660 6468 7276 8084 88
0

20

40

60

80

100

120

140

160

C
o

m
p

ut
er

 p
ar

ts

O
pp

os
ite

H
am

b
ur

g
er

E
xa

ct
ly

 fi
ve

C
la

ss
ro

om

R
ec

ta
ng

le
s

O
rd

er

F
la

gs

H
o

us
es

M
ou

se

N
am

e
D

ay
s

Y
ou

r N
am

e

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

correct none unknown incorrect

Easy tasks Medium tasks Hard tasks

Fig. 6. Left: distribution of achieved total points (bars) compared to the theoretical normal
distribution computed from the mean and standard deviation of the data set (line). Right: the
rate of correct, incorrect, absent and unknown (due to a software problem on client's side)
solutions for each of the 12 tasks (note that there are very little “unknown” solutions to see
them in the small graph). The 12th task has not been evaluated and therefore it has been treated
as 100% not answered.

210 M. Tomcsányiová and P. Tomcsányi

OppositeBeaver Eddie
learnt the
meaning of
“opposite” in
school.

He knows that the
opposite of black
is white. Help him
to assign the
opposites
correctly:

Mouse

Which way should the mouse
go to get the cheese?
The mouse will move on the
lines according to the arrows.

a)

b)

c)

d)

Fig. 7. The easiest task (Opposite) and the hardest one (Mouse)

We draw these conclusions from the diagrams of figure 6:

• The tasks were quite easy for the children; the hardest was solved correctly by 46%
of the participants and the easiest was solved correctly by 94% of the participants.

• We were quite successful in predicting the complexity of the tasks (unusually
successful compared to the other categories of our Bebras Contest). The three tasks
that we estimated as being hard were actually the three hardest ones in the contest.
And only two tasks stand out of their respective group: the task Computer Parts
(figure 8) was estimated as easy, while it is a medium task according to the results,
and Classroom (not shown in this paper) was estimated as medium while it turned
out to be easy.

• The extra high peak at the values between 73 and 76 points can be explained by the
fact that this interval includes the value 75 points, which could be achieved by
incorrectly solving only one hard task, which happened quite often.

Rectangles

Using the filled rectangle tool we painted this
picture.

What was the order of painting the rectangles?

a) blue, green, red
b) red, blue, green
c) green, blue, red
d) red, green, blue

Computer parts

Drag the names of computer parts towards
thier pictures.

Fig. 8. Two more tasks with interesting findings (see the text for details)

When we analyzed more closely the incorrect answers, we have found some
interesting facts:

• The most frequent incorrect answer to the task Mouse (figure 7) was answer a),
(36% of participants chose it). The answer contains a sequence of moves to the left
followed by a sequence of down moves. Our initial guess was that many

 Little Beaver – A New Bebras Contest Category for Children Aged 8–9 211

participants had not been able to understand the more complicated programs in the
other answers at all. Then a teacher complained that the picture of the cheese has
been connected only to the right gridline, not to the top and right one. So the
children assumed that there is no path leading to the cheese from its left side or top
side. Therefore they tried to approach it from the right using the answer a).

• The most frequent incorrect answer to the task Houses (figure 3 at the end of
chapter 3) was 2 (22%). This means that many children did not consider painting
the roof of the house with a different colour than its body.

• The most frequent incorrect answer to the task Rectangles (figure 8) was c) (20%),
which gives just the opposite order of how the rectangles were really painted. This
is a bit surprising because we expected that the vast majority of children would
have already painted rectangles in a graphical editor.

• The task Computer Parts (figure 8) proved to be harder than we expected. Actually
24% of participants reversed the labels for “computer” and “monitor”. Even though
we see this mistake among young children quite often (they often react to the
command “switch off the computer” by switching off the monitor), we did not
expect such a high ratio of incorrect answers. Maybe the word “monitor” is too
hard for some of them and we should have considered the word “screen” instead.

We have received several positive reactions from the teachers. They reported that the
children enjoyed the contest and many of them considered the tasks easy even if they
did not have a high score.

Some teachers reported technical problems. We must analyse them in more detail
before the regular round of the contest in November 2011. Some of the problems may
arise from the fact that many primary teachers are less experienced in setting up the
computers and that many computer labs are set up by external administrators.

The pilot-run was successful. It proved that the tasks were appropriate for the
considered age group (even possibly too easy) and that most of the involved primary
teachers were able to organize the contest successfully in their schools.

7 Conclusion

In our article we presented the development of our idea for a new category in the
Bebras contest, which we call Little Beavers. We explained the history and reasons
for its creation, the way we select tasks and the procedure we used to execute a pilot-
run of the contest as well as the results of that pilot.

We offer these thoughts and experiences to anyone who would like to implement
the same ideas in his/her own country.

References

1. Kalas, I., Winczer, M.: Informatics as a Contribution to the Modern Constructivist
Education. In: Mittermeir, R.T., Sysło, M.M. (eds.) ISSEP 2008. LNCS, vol. 5090,
pp. 229–240. Springer, Heidelberg (2008)

2. Štátny vzdelávací program Informatická výchova, Príloha ISCED 1 (The standards for
Elementary Informatics in Slovakian), http://www.statpedu.sk/

212 M. Tomcsányiová and P. Tomcsányi

3. Blaho, A., Salanci, Ľ., Chalachánová, M., Gabajová, Ľ.: Informatická výchova pre 2.
ročník, aitec, Bratislava (2010) (Textbook of Elementary Informatics, in Slovakian)

4. Kalas, I., Tomcsanyiova, M.: Students’ Attitude to Programming in Modern Informatics.
In: 9th WCCE: IFIP World Conference on Computers in Education – Education and
Technology for a Better World, pp. 127–135. Porto Alegre (2009)

5. International Web page of the Bebras contest, http://www.bebras.org/
6. Hrušecká, A., Pekárová, J., Tomcsányi, P., Tomcsányiová, M.: Informatický bobor – nová

súťaž v informačných technológiách pre žiakov základných a stredných škôl. In:
Proceedings Didinfo, Banská Bystrica (2008) (Informatic Beaver – a new contest in ICT
for lower and upper secondary students, in Slovakian)

7. Dagiene, V., Futschek, G.: Bebras International Contest on Informatics and Computer
Literacy: Criteria for Good Tasks. In: Mittermeir, R.T., Sysło, M.M. (eds.) ISSEP 2008.
LNCS, vol. 5090, pp. 19–30. Springer, Heidelberg (2008)

8. Polya, G.: How to Solve It: Summary. Princeton University Press, Princeton (1957)
9. Gregussová, M., Kovacikova, D.: Sú naše deti vo virtuálnom prostredí v bezpečí? (Are our

children safe in the virtual environment? In Slovakian),
http://www.zodpovedne.sk/index.php

10. Piaget, J., Inhelder, B.: The Psychology of the Child. Basic Books, New York (1969)
11. Chiasson, S., Gutwin, C.: Design Principles for Children’s Technology,

http://hci.usask.ca/publications/2005/HCI_TR_2005_02_Design.pdf
12. Futschek, G., Dagiene, V.: A Contest on Informatics and Computer Fluency Attracts

School Students to Learn Basic Technology Concepts. In: 9th WCCE IFIP World
Conference on Computers in Education – Education and Technology for a Better World,
pp. 1–9. Porto Alegre (2009)

What’s the Fun in Informatics?
Working to Capture Children and Teachers

into the Pleasure of Computing�

Violetta Lonati1, Mattia Monga2, Anna Morpurgo1, and Mauro Torelli1

1 Università degli Studi di Milano,
Dipartimento di Scienze dell’Informazione

2 Università degli Studi di Milano, Dipartimento di Informatica e Comunicazione,
Via Comelico 39, 20135 Milano, Italy

{violetta.lonati,mattia.monga,anna.morpurgo,mauro.torelli}@unimi.it

Abstract. The importance of computer science education in secondary,
and even primary school, has been pointed out by many authors. But
too often pupils only experience ICT, both at home and at school, and
confuse it with computer science. We organized a game-contest, the Kan-
gourou of Informatics, with the aim to attract all pupils (not only the
talented ones), expose them to the scientific aspects of informatics in
a fun way, and convey a correct conception of the discipline. Peculiari-
ties of the game are its focus on team work and on engaging pupils in
discovering what lays behind what they experience every day.

Keywords: informatics and education, learning contests.

1 Introduction

“I think that it’s extraordinarily important that we in computer science keep fun
in computing. When it started out, it was an awful lot of fun.” The pioneer Alan
Perlis (1922–1990) stated this very clearly as a priority goal, but today infor-
matics is rarely depicted as a rewarding activity in itself. Although our lives are
inevitably interwoven with computers, software, and automatic computations,
most of the general public perceives informatics as technological overhead to be
avoided as much as possible. In fact, informatics is great in producing ready-
to-use abstractions that can be used as black boxes for specific tasks, but the
abstract nature of computation is there, and it needs to be discovered to open
up real innovation and human development. So we are increasingly facing the
problem of convincing non-experts that the desirability of informatics is not just
in its value as an instrument, but also as a human challenge, both intellectual
and social. A basic understanding of the underlying principles of informatics
should therefore be common knowledge among the general public as are the
principles of other more traditional sciences. However, not everyone is convinced
� This work was partially funded by Google under the Computer Science for High

Schools (CS4HS) program.

I. Kalaš and R.T. Mittermeir (Eds.): ISSEP 2011, LNCS 7013, pp. 213–224, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

214 V. Lonati et al.

that teaching computing to kids is desirable or, perhaps, feasible. Indeed, infor-
matics could play a very important role in education as it promotes the ability to
deal with abstract concepts, the acquisition of the scientific method, and a prag-
matic approach to problem solving and work organization [11,2]. Historically,
as it became evident that the computer was beginning to play a very impor-
tant role in our every day life (in 1982 “The Computer” was named Machine
of the Year by Time Magazine), projects to introduce informatics in schools
were developed. Informatics education started with programming, and the Logo
programming language was used for a while for that aim. But as the personal
computer made its way through in schools and homes, the attention shifted
from informatics to the use of the PC and its applications: computers were
sometimes bought by schools before developing informatics curricula and prepar-
ing teachers adequately. Most was left at the individual initiative and fantasy.
The effect was a serious misconception of what informatics is about, and infor-
matics is still nowadays too often confused for ICT [4]. Thus, even if the last
decades have seen an increasing exposure of children to computer applications,
the basics of information, computing, and software sciences are still not part
of the curricula of primary and secondary schools in several parts of the world.
According to a report of ACM and the Computer Science Teachers Associa-
tions (http://www.acm.org/runningonempty) the number of computer science
courses in the US has decreased in the past five years, and when the schools
offer a course, it is usually an elective one. Moreover, most of these courses are
in fact about information technology literacy rather than a look-ahead toward
the issues introduced by the automatic elaboration of information. In Italy the
context is even worse: only computer literacy, mostly presented as an instrument
to increase one’s proficiency in other subjects, is indicated as an important ed-
ucational goal, and even that is never taught as a specific subject by experts of
the field (except for vocational, technical, schools). In most Eastern European
countries informatics as a separate subject was established 30 years ago: train-
ing of programming skills used to get more attention at the beginning, while
nowadays much more consideration is devoted to developing ICT skills [6].

1.1 The Many Facets of Informatics

Indeed basic computer application literacy is certainly a useful skill to acquire,
but not at the cost of confusing pieces of knowledge that are largely independent:
fluency in an application domain and familiarity with the computing disciplines.

Mirolo [13] points out that the term informatics is used in different contests
with different meanings:
1. informatics as a science, providing its own peculiar key to interpret reality

and its specific approach to problem solving;
2. informatics as a technology, concerning the characteristics, structure and

working principles of the now ubiquitous hardware and software devices;
3. informatics as an instrument, providing practical tools to manage informa-

tion in many different contexts.

http://www.acm.org/runningonempty

Capture Children and Teachers into the Pleasure of Computing 215

It is not easy to give a precise and complete definition of what computer sci-
ence is. Hromkovič [11] points out that computer science is for some aspects a
meta science such as mathematics, as it investigates general categories; a nat-
ural science for other aspects, as it studies objects and processes, it deals with
quantitative rules of natural processes, it investigates what is possible and what
is impossible, and it uses the scientific method; it is a problem oriented and
practical engineering discipline dealing with technical and management issues.
It is therefore a challenging task to work for a correct perception of informatics.
To clear the confusion from the ground up, we coined a specific word for the use
of computer applications that does not require computing skills: we called that
applimatics in [12]. Applimatics is not only the use of office automation tools,
but also the use of a dynamic geometry program to explore Euclidean axioms.
Even the use of things like the Alice [5] programming environment to explore the
properties of bodies immersed in a 3D space and graphic animation techniques or
the meritorious Logo are not, per se, informatics, if the emphasis shifts from com-
putational thinking to geometry1. We liked the challenge and started the Kan-
gourou of Informatics game-contest (http://kangourou.dsi.unimi.it), which
aims at giving a correct view of computer science to both pupils and teachers, by
exposing them to the scientific aspects of informatics, not considered in syllabi
of most schools. The intention is to convey the correct conception of informatics
in a fun way and attract all pupils, not only the talented ones. We identified,
however, three main obstacles that have to be overcome to effectively propose
computing games to children and (non expert) teachers. On the one hand there is
the abstract nature of computing (mostly shared with mathematics), that makes
it difficult to show the concepts by referring to physical objects and the fact that
often specialized language and terms are needed; the games should avoid too
abstract tasks and the use of jargon to propose the challenges (we sometimes
propose jargon as a challenge in itself!). On the other hand, however, it is very
important to avoid to completely disappoint the expectations of pupils about
informatics; the link with applimatics to which they are daily exposed should be
made clear as much as possible, to grow a consistent and fertile global picture.

In the following sections we will describe the main ideas that drove us in set-
ting our game-contest: in Section 2 we briefly survey informatics competitions;
in Section 3 we describe our experience in organizing the Kangourou of Infor-
matics; in Section 4 we report the feedback we got from the participants; and in
Section 5 we draw some conclusions.

2 Promoting Informatics through Competitions

Consistently with the idea that computing is fun when you engage in it, games
and contests are rather common among computer science experts. The most fa-
mous contest is probably the International Olympiad in Informatics (IOI) [17,16].
The first IOI was held in Bulgaria in 1989 under the sponsorship of UNESCO.
IOI is open to high school pupils throughout the world. The competition tasks
1 Indeed Logo was originally proposed to improve the teaching of mathematics [15].

http://kangourou.dsi.unimi.it

216 V. Lonati et al.

proposed to participants are of algorithmic nature, and, while they aim at stim-
ulating interest in informatics and information technology, the explicit goal of
IOI is to give recognition to young pupils from around the world who are the
most talented in computing. On similar lines the ACM organizes an International
Collegiate Programming Contest (ICPC) in which teams are given 5 hours to
solve between 8 and 12 programming problems: the winner is the team which
correctly solves most problems. Moreover, contests are increasingly common in
the information security arena. In the ’90s the DEF CON conference popularized
a computer security wargame called “Capture The Flag” (CTF): each team is
given a (virtual) machine or a small virtual network to defend from the attempts
of intrusion of the other players. Teams are scored for both successful defense
and attacks. CTFs evolved into full educational exercises to give participants ex-
perience in securing complex systems. In 2004 an international, academic CTF
was started by the University of California at Santa Barbara, and several other
similar contests are organized around the world and often attract online con-
testants from several countries and different educational backgrounds. These
competitions, however, assume that participants have already acquired some ex-
pert skills in the field: an accompanying training is sometimes planned to bring
the contestants to the level required to compete. IOI, for example, promotes
local training sessions (often several weeks long) to teach high school pupils the
programming skills needed for the Olympics. Thus, such competitions mostly
address an audience that is already inside the fun of informatics or had at least
the opportunity to see it from a technical point of view. This chance occurs
either because of a meeting with an especially motivated teacher or, more likely,
to pupils attending a specialized educational program. Thus, most pupils are out
of reach of these contests, at least in countries (like Italy) where computing is
not explicitly part of generic curricula: they often end up in knowing only the
applimatics face of informatics, but the challenges of information technology are
rarely presented to them.

An important step in popularizing the fun of informatics to a public with little
knowledge of the technicalities of the discipline is the rise of non-specialized game-
contests. In 2009 we started the Kangourou of Informatics by piggy-backing the
experience of our University in organizing the Kangourou of Mathematics. In
Kangourous the games have the explicit intent to attract the maximum num-
ber of pupils without aiming at any national selection nor at a comparison be-
tween countries and we embraced exactly those goals to foster the knowledge
of computing to an audience as vast as possible. In fact, we recently discovered
that Kangourous were inspiring several other people long before us. In 2004
Valentina Dagiene started a Kangourou-inspired game-contest in Lithuania un-
der the name of Beaver [7,9,8,1]. The game became international in 2007 and it
has several points of contact with our proposal: indeed we would really love to
join our efforts. In the following sections we try to describe the peculiarities of
our approach in organizing our game-contest and what we want to convey to
pupils about our discipline.

Capture Children and Teachers into the Pleasure of Computing 217

3 The Kangourou of Informatics

A game-contest, the Kangourou des Mathématiques, was created in 1991 in
France by André Deledicq on the model of the Australian Mathematics Com-
petition, with the goal of contributing to the popularization and the promotion
of mathematics among young people. The success was immediate also thanks to
the associated distribution of a massive and pleasant documentation on mathe-
matics to the participating pupils and their teachers. The French experience was
exported abroad, first to Europe and then to other continents through an inter-
national association, Kangourou sans frontières, founded in France in 1995. The
association’s aim is to promote the spreading of a basic mathematical culture by
all means and, in particular, by organizing the annual game-contest to be held on
the same day in all participating countries. The game now counts millions of par-
ticipants among primary and secondary school kids (48,000 in Italy in 2010). In
Italy, which joined the association in 1999, the game is organized in cooperation
with the Mathematics Department of the Università degli Studi di Milano. As a
consequence of the effectiveness of the event, in 2005, at the yearly Kangourou
Sans Frontières international meeting, the Romanians suggested to extend the
game-contest to foreign languages and informatics. In 2008, Kangourou Italy
invited two Informatics Departments of Università degli Studi di Milano, AICA,
and SDA-Bocconi to study a formula for an informatics game-contest. On the
basis of our previous experiences with IOI (as trainers for the Italian national
IOI team) and UCSB International Capture the Flag (our team won in 2007
and and was placed among the first positions in 2008 and 2009), we took up the
challenge. The first contest was held in 2009, and the third edition this year.

3.1 Organization of the Game-Contest

The Kangourou of Informatics is a team game-contest and is held yearly nation-
wide. Each team is composed of four pupils; at the moment there are two cate-
gories: category “medie” for junior high school pupils (age 11–13) and category
“biennio” for pupils in the first two years of high school (age 14–15), with slightly
diversified difficulty levels. We plan to extend the game also to younger pupils.
There are two phases:
1. a qualifying round carried out on-line and organized locally in March in the

schools under the supervision of the schools’ teachers;
2. a final round in May for the best 24 teams, held in Mirabilandia, an amuse-

ment park near Ravenna.

In both rounds the problems are presented in a playful way, since one of the
main goals is to make pupils enjoy themselves while discovering what infor-
matics is. The game is mostly skill-oriented, as no prior knowledge can be as-
sumed. Moreover, pupils are allowed and encouraged to use the Web in both
rounds to search for information or hints they may need to answer the ques-
tions. The problems are at different levels of difficulty and spanning various as-
pects of informatics, from logic to programming, from grammars to concurrency.

218 V. Lonati et al.

The questions are chosen so that it is very unlikely to score zero points, but also
very difficult to totalize the maximum score. The game-contest is partly self-
supported with the subscription fees and has commercial sponsors which also
provide some prizes for the first three teams in each category and their schools.
After the qualifying round a booklet on the contest is published and sent to the
schools. It contains the problems as presented during the game and, for each
problem, the answer and how it can be obtained and the informatics topic to
which the problem refers. Both the booklet and the on-line test are available on
the Kangourou’s website. The booklet should, respectively could, help teachers
discover this discipline and overcome their fear of inadequacy regarding com-
puter science (we refer to mathematics and technical education teachers, since
in many Italian schools computer science is not taught as a separate subject).
Besides it is intended as an aid in preparing for the final round and for the next
year’s competition both for pupils and for teachers.

3.2 Qualifying Round

The qualifying round is carried out on-line locally by the schools under the
supervision of the teachers. The software and the problems are downloaded from
a central server. The teams have to solve around 10 problems (see below for
examples) in about an hour (it may vary slightly from year to year). The software
keeps the time, collects the answers and sends them to the server for evaluation.
We think the use of the computer in the contest, though not essential for the
questions per se, is very important in order to keep the link explicit with what
pupils and teachers normally associate with the word informatics. We believe it
is very important to clinch to the fact we are not discussing something different
from what the world expects from computer science experts: we are just trying
to explain better what is under the hoods.

3.3 Examples of Qualifying Challenges

This subsection describes some of the games we proposed.
Maze. One of the problems was how to reach a treasure in a maze. The setting
was a sequence of rooms, each one identified by a number, n, and with two exit
doors, the left one leading to room number 2n and the right one leading to
room number 2n+ 1. The goal was to reach room number 69, where a treasure
was kept. The task was to guess the correct sequence of doors that had to be
passed through to reach the target room. If an erroneous door was opened, the
player lost one of his or her three lives and had to start over. The task could
be solved with different approaches: by trial and error, by drawing the graph of
the rooms’ connections and finding there the path connecting the two rooms, by
noticing that each room in this maze can be reached only from one other room
and working backwards from room 69 to room 1: all even numbered rooms are
reached by a left door, all odd numbered rooms by a right door. 20% of the
teams (16% in the “medie”) got the maximum score (no lives were consumed in

Capture Children and Teachers into the Pleasure of Computing 219

unsuccessful tries) and another 31% (same percentage in the “medie”) were able
to solve it with two or three trials.
A pipe and filter game. The problem stated that Riccardo has two lists of
soccer teams: OldTeams and NewTeams. In the former he collects the teams of
the 2010 edition of Champions League and in the latter the ones participating in
the 2011 edition. He wants to know which teams participated for the first time,
i.e., which teams are in NewTeams but not in OldTeams. In order to compute
the solution, Riccardo may combine three programs:
1. catenate, which is able to append a list to a given one;
2. dups, which returns a list of duplicates in a list;
3. uniqs, which returns a list of unique values in a list.

The game was proposed in two different versions for “medie” and “biennio”.
The easier one (“medie”) asked to identify a correct solution among different
sequences of program applications, expressed in natural language: the correct
solution was “Catenate NewTeams to OldTeams; find duplicates in the result;
catenate them to NewTeams; find unique elements in the result”. The quiz was
answered correctly by 40% of the teams. The “biennio” version asked to build a
solution by combining the programs: each program was represented by a graphic
block with changeable inputs and an arrow denoting the output as input filtered
by the block. The goal was to produce a sequence by connecting a block to
the preceding one: in fact all the blocks but the first had one input fixed to
the output of the previous as in a pipeline of filters; the number of blocks was
limited to a maximum of five. Although the pupils were driven by the graphical
scaffolding, this version turned out to be much more difficult. Very few teams
were able to find an optimal solution with only three blocks, and some others
found a solution with 4 or 5 blocks (in total, a correct solution was built by the
19% of the teams only).
Secret sentences. In this problem a group of friends decided to defend their
hiding place using secret sentences. To enter, one has to pronounce a valid sen-
tence, which is built according to the following rules:

– valid sentence: a simple sentence or a simple sentence followed by an adverb,
a verb, and a valid sentence;

– simple sentence: an article followed by a description of a mouse, or an article
followed by a description of a cat;

– description of a mouse: “mouse”, or a description of a mouse followed by
“white”;

– description of a cat: “cat”, or a description of a cat followed by “fat”, or
“red” followed by a description of a cat.

The pupils had to identify which sentences from a given set were valid and al-
lowed entrance into the hidden place. The topic dealt with by the question is the
use of a formal grammar to generate valid sentences. The grammar is based on
the pupils’ natural language, but allows some counter-intuitive constructions: an
adjective may follow a noun, and the same adjective may be repeated consecu-
tively, thus the pupils had to be careful not to confuse the concept of correctness

220 V. Lonati et al.

under the rules of the game and correctness in their mother language. The ques-
tion (proposed only for the “biennio” category) turned out to be quite difficult:
only 15% of the teams solved the game perfectly and gained the full score. How-
ever, in total 92% of the teams were able to get some correct answers.

3.4 Final Round

The final round of the Kangourou of Informatics game-contest takes place in
Mirabilandia amusement park and is reserved to 24 of the best qualified teams
(at most one team from each school is admitted, in order to discourage cheating
in the qualifying round). Participating in the final round is seen as a prize for all
finalists: they are hosted with no extra expenses by Kangourou Italia and have
a free admission ticket to all park attractions during the days of the finals.

The round is organized as follows. In the first evening a welcome meeting
with all team members and accompanying teachers is scheduled, where they
get information about regulations and the timetable. On the next morning all
finalists are called for the actual contest that lasts the whole morning. During the
contest, accompanying teachers are offered some lessons and labs, that suggest
topics and innovative ways to convey informatics culture to pupils. The rest
of the day is occupied with the grading process which is usually quite time-
consuming. The day after the contest, a conference is organized for both finalists
and accompanying teachers, which ends in the award ceremony.

The final competition consists of several games of different types. First, each
team member is involved in a game aimed at obtaining its account to access
a computer and an envelope containing the other assignments. These can be
tackled in any order and have to be handed in all together at the end of the
contest. Such assignments usually consist of written problems and questions,
tasks to be developed on the computer, search tasks on the Web.

With the aim of stressing some peculiar aspects of informatics, we impose
some rules that promote team work and smart use of limited resources: there
is only one computer for every two teams and each session expires after 15
minutes. Moreover, computers are located at some distance from the place where
team members are seated. Hence, it is important to manage some sort of team
organization and time expenditure. The best teams often show an interesting
subdivision of roles (the “programmer”, the “logical thinker”, the “pony express”,
the “checker”, . . .), some multi-threading of tasks (i.e., combination of individual
work, work in pairs, and discussions in the whole team), and a good ability in
avoiding downtime (e.g., when the computer is unavoidable, time is not wasted
by waiting, but it is used to establish which search should be done later on the
Web, to design the solutions to be implemented, and to prepare instructions or
entire programs to edit and execute later on the computer).

The initial game actually starts the evening before the contest, just after
the welcome meeting: each team receives some material to read or to examine,
which can be used to get some training for the competition. All team members
get immediately excited by this unexpected preview and plunge into the material
trying to catch it and figure out how it could be used! For instance, in the contest

Capture Children and Teachers into the Pleasure of Computing 221

of 2009, we divided each team into 2 subgroups, gave the team user-name to one
subgroup and the team password to the other one, and asked them to exchange
their information on a public channel using the cryptographic method described
the day before, in order to complete the whole picture about their own accounts.
In 2010, instead, the game was based on a riddle about trees, leaves, and heaps.
This year, the game required to understand a non-losing strategy, described in a
visual way, for tic-tac-toe. This part of the contest does not increase the score of
the teams, but gives them the possibility to gain time over the other contestants.
If a team does not succeed in solving the game within a fixed amount of time,
the account information is revealed, a penalty is assigned, and the team is given
the next assignments.

Written problems are quite standard, in that they focus on typical problem-
solving issues in the field of data representation, cryptography, combinatorics,
algorithms and data structures, languages (grammars and automata), games,
logic, and so on. However it should be emphasized that problems are not in
multiple-choice form. Usually open questions are asked and a brief explanation
that motivates the answer is requested. The score assigned to this part of the
test obviously takes into consideration the correctness of the answer, but also
depends on other parameters: is the motivation relevant, accurate, complete,
well-written?

The tasks requiring the use of computers usually concern some aspects of
informatics we consider typical and educational.
Problem-solving and programming. We assume no prior knowledge about
programming language syntax. Hence we propose visual programming environ-
ments than can be understood and mastered easily and quickly, like Logo [15],
Scratch [14], Etoys [10]. The goals to achieve are also graphical: contestants had
to build paths around obstacles in 2009, to draw colored geometrical pictures in
2010, to find a way of escape from mazes this year. A sequence of exercises is
proposed, with increasing difficulty: first only sequential instructions are needed,
then loops, sub-routines, and variables become necessary as the level increases.
Some bonus points can be gained when a solution is correct with respect to
several instances, in order to introduce the idea of generality of algorithms.
Text description and structuring. Teenagers are familiar with word pro-
cessors that follow the what-you-see-is-what-you-get paradigm, like Microsoft
Word or Microsoft PowerPoint. However, they do not have any idea about how
these programs work internally, and have no model about how a text is rep-
resented by such kinds of software suites [3]. Moreover, they usually use these
programs naively and often ignore the possibility to structure texts with para-
graph styles, or to distinguish semantic structure from typographic aspects. This
somehow corresponds to a deeper, logical, confusion between the meaning of
the content and its appearance. During the final round, we always schedule a
game that aims at discovering these aspects of text processing, asking to provide
some written “formal description” of a structured text. In order to keep abstrac-
tion and concreteness in touch, we specifically designed and implemented web-
based programs that were at disposal of the teams to test their solutions: such

222 V. Lonati et al.

programs use these formal descriptions (also if partial) to re-build the document.
Thus pupils have the possibility to check what seems right and what is wrong,
and they have the chance to correct mistakes, with a trial-and-error approach.

In 2009 we proposed the use of a wiki, i.e. the use of a simplified mark-up
language that uses, for instance, quotation marks for emphasized text, marker
“-” and proper indentation for itemized lists, and so on. The teams received
a written tutorial about basic formatting rules with some examples and were
asked to reproduce a full formatted text. In 2010 the game was titled “Into
PowerPoint” and it asked for the description of a slide presentation in a tabular
form. Contestants received a pdf with the slide presentation and a printed page
with the set of all text elements occurring in the presentation. They first had
to classify each slide according to a list of possible page formats. Then they
had to fill in a table having a row for each text element, by defining the slide
containing it and its position in the slide. Finally they had to describe some
graphical aspects (text color, background color, thickness, alignment) of some
basic elements of the presentation (titles, footer, . . .)2. In 2011 we played with
HTML: here the main goal was to recognize the tree structure of a given text,
and mark each inner node according to its structural role (title, section title,
paragraph, link, . . .).
Informatics jargon. Web searches, which are allowed for all proofs, are mainly
used for this part of the contest. Contestants have the chance to discover the
meaning of words or expressions they already heard but whose meaning they
ignore (often also because they are not translated into Italian), to dissolve false
ideas, and to correct the improper use of some technical expressions. Moreover,
the intent is to tell some stories or anecdotes about the history of informatics,
computer scientists, and informatics practitioners.

In 2009 the teams had to fill in the blanks in some short stories. Missing key-
words were for instance Alan Turing, artificial intelligence, CamelCase, spam, or
Linux. In 2010 we used a bad translator from English to Italian to produce some
incomprehensible and funny texts about files, hardware components, or opera-
tions on computers. We exploited the double meaning of words – for instance, file
is also the English word denoting “a metal tool with a rough surface for cutting
or shaping hard substances or for making them smooth”; or the word folder can
be seen as formed by the verb “to fold” plus a suffix “-er”, and hence can be
translated with the meaning of a “person who bends something, especially paper
or cloth, so that one part lies on top of another part”! In 2011 we joked with
geek humour, inspired by those T-shirt with geeky sentences written on front:
“to understand recursion first one must understand recursion”, “there are only
10 types of people in the world: those who understand binary and those who
don’t”, “there’s no place like 127.0.0.1”, “2B | [∧B]{2}”. Each sentence had to
be related to an image: a fractal picture for recursion, an image representing the
conversion of a decimal number into binary, a warmy home for the localhost IP,

2 It should be noticed that the tool implemented to support teams in testing their
solution actually built the presentation using LATEX-Beamer instead of PowerPoint
since this gives much more control on structure and styles!

Capture Children and Teachers into the Pleasure of Computing 223

a portrait of Shakespeare for the “to be or not to be” regular expression. Clearly,
to guess the right matchings, teams had to first understand the general meaning
of the sentences or, at least, their context.

4 Participants Feedback
We are currently setting up collaborations with teachers to be able to collect
a formal feedback from the participants and correlate it with the participants’
performance and backgrounds. We already monitored some of the web pages
and the student newspapers the pupils wrote after the participation. They de-
scribe the experience as fun and challenging. A common remark is that some of
the issues, for instance those about jargon, are quite strange and unexpected;
probably their comments are due to the fact that they did not associate with
computer science many of the terms and expressions we proposed (like regular
expressions or camel case or root). The choice of organizing the game around
teams has a positive side effect: in order to be able to participate, pupils more fo-
cused on computers solicit friends with lesser interest, and the teams are indeed
heterogeneously composed.

A strong positive feedback also comes from the teachers. In particular, they
welcome the availability of the booklets we prepare: whenever they want to dis-
cuss informatics in their classes, they usually have to choose between specialized
literature (mostly out of reach for a high school audience in a non technical
environment) and ICT/business-oriented publications. The descriptions of the
Kangourou challenges, instead, provide a way to introduce a topic and how it
relates to applimatics and ICT and the references provide pointers to further
studies. We are also considering the preparation of other types of support that
are more specific to class work.

5 Conclusions
We firmly believe that informatics is a scientific discipline with an important
educational value and sufficiently basic to be taught as a fundamental formative
subject. It is also our belief that computing is indeed fun and that, by playing
and working in team, pupils can discover some of the most important aspects
of this discipline. We used these characteristics to organize the Kangourou of
Informatics, a two rounds national game-contest. In the qualifying round we can
attract a wide audience to the basic issues of informatics. In the final round
we can engage pupils in more challenging tasks and offer refresher courses and
laboratories to their teachers. In this way, pupils can experience what informatics
is, and go beyond ICT, which is the usual approach of schools to this subject.

References
1. Antonitsch, P.K., Grossmann, A., Micheuz, P.: Beaver, Kangaroo and classroom

situations: A promising symbiosis. In: Hromkovič, J., Královič, R., Vahrenhold, J.
(eds.) ISSEP 2010. LNCS, vol. 5941, pp. 16–31. Springer, Heidelberg (2010),
http://www.issep2010.org/proceedings_of_short_communications.pdf

http://www.issep2010.org/proceedings_of_short_communications.pdf

224 V. Lonati et al.

2. Barr, J., Cooper, S., Goldweber, M., Walker, H.: What everyone needs to know
about computation. In: Lewandowski, G., Wolfman, S.A., Cortina, T.J., Walker,
E.L. (eds.) Proc. of the 41st ACM Technical Symposium on Computer Science
Education, SIGCSE 2010, Milwaukee, Wisconsin, USA, pp. 127–128. ACM, New
York (2010)

3. Ben-Ari, M.: Constructivism in computer science education. In: Lewis, J., Prey, J.,
Joyce, D., Impagliazzo, J. (eds.) Proc. of the 29th SIGCSE Technical Symposium
on Computer Science Education, Atlanta, Georgia, USA, pp. 257–261. ACM, New
York (1998), http://doi.acm.org/10.1145/273133.274308

4. Brinda, T., Puhlmann, H., Schulte, C.: Bridging ICT and CS: educational stan-
dards for computer science in lower secondary education. In: Brézillon, P., Russell,
I., Labat, J.M. (eds.) Proc. of the 14th Annual SIGCSE Conference on Innovation
and Technology in Computer Science Education, ITiCSE 2009, Paris, France, pp.
288–292. ACM, New York (2009),
http://doi.acm.org/10.1145/1562877.1562965

5. Carnegie Mellon University: Alice website, http://www.alice.org
6. Dagiene, V.: Teaching information technology in general education: Challenges and

perspectives. In: Mittermeir, R.T. (ed.) ISSEP 2005. LNCS, vol. 3422, pp. 53–64.
Springer, Heidelberg (2005),
http://dx.doi.org/10.1007/978-3-540-69924-8_27

7. Dagiene, V.: Information technology contests – Introduction to computer science
in an attractive way. Informatics in Education 5(1), 37–46 (2006),
http://www.mii.lt/informatics_in_education/htm/INFE069.htm

8. Dagiene, V.: Sustaining informatics education by contests. In: Hromkovič, J.,
Královič, R., Vahrenhold, J. (eds.) ISSEP 2010. LNCS, vol. 5941, pp. 1–12.
Springer, Heidelberg (2010), http://dx.doi.org/10.1007/978-3-642-11376-5_1

9. Dagiene, V., Futschek, G.: Bebras international contest on informatics and com-
puter literacy: Criteria for good tasks. In: Mittermeir, R.T., Sysło, M.M. (eds.)
ISSEP 2008. LNCS, vol. 5090, pp. 19–30. Springer, Heidelberg (2008),
http://dx.doi.org/10.1007/978-3-540-69924-8_2

10. Squeak Etoys website, http://www.squeakland.org/
11. Hromkovic, J.: Contributing to general education by teaching informatics. In: Mit-

termeir, R.T. (ed.) ISSEP 2006. LNCS, vol. 4226, pp. 25–37. Springer, Heidelberg
(2006), http://dx.doi.org/10.1007/11915355_3

12. Lissoni, A., Lonati, V., Monga, M., Morpurgo, A., Torelli, M.: Working for a leap in
the general perception of computing. In: Cortesi, A., Luccio, F. (eds.) Proceedings
of Informatics Education Europe III. IFIP, pp. 134–139. ACM, New York (2008),
http://www.dsi.unive.it/IEEIII/atti/PROCEEDINGS_IEEIII08.pdf

13. Mirolo, C.: Quale informatica nella scuola (2003) (in Italian),
http://nid.dimi.uniud.it/pages/materials/discussion/educazione.pdf

14. MIT Media Lab: Scratch website, http://scratch.mit.edu/
15. Papert, S.: Teaching children to be mathematicians vs. teaching about mathemat-

ics. Artificial Intelligence Memo AIM-249, MIT (1971)
16. Verhoeff, T.: The role of competitions in education (1997),

http://www.win.tue.nl/~wstomv/publications/competit.pdf, presented at Fu-
ture World: Educating for the 21st Century, a conference and exhibition at IOI
1997

17. Verhoeff, T.: The IOI is (not) a science olympiad. Informatics in Education 5(1),
147–159 (2006),
http://www.mii.lt/informatics_in_education/htm/INFE078.htm

http://doi.acm.org/10.1145/273133.274308
http://doi.acm.org/10.1145/1562877.1562965
http://www.alice.org
http://dx.doi.org/10.1007/978-3-540-69924-8_27
http://www.mii.lt/informatics_in_education/htm/INFE069.htm
http://dx.doi.org/10.1007/978-3-642-11376-5_1
http://dx.doi.org/10.1007/978-3-540-69924-8_2
http://www.squeakland.org/
http://dx.doi.org/10.1007/11915355_3
http://www.dsi.unive.it/IEEIII/atti/PROCEEDINGS_IEEIII08.pdf
http://nid.dimi.uniud.it/pages/materials/discussion/educazione.pdf
http://scratch.mit.edu/
http://www.win.tue.nl/~wstomv/publications/competit.pdf
http://www.mii.lt/informatics_in_education/htm/INFE078.htm

I. Kalaš and R.T. Mittermeir (Eds.): ISSEP 2011, LNCS 7013, pp. 225–235, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Criteria for Writing Exams Which Reflect the K12 CS
Foundations Study Material

Haim Averbuch1, Tamar Benaya2, and Ela Zur2

1 Alon High School,
101 Oshiskin St., Ramat Hasharon, Israel

haimav@zahav.net.il
2 The Open University of Israel, Computer Science Department,

108 Ravutzky st., Raanana, Israel 43107
{ela,tamar}@openu.ac.il

Abstract. All high school students in the Israeli high school system are required
to take matriculation exams in the main subjects studied in high school. The
matriculation exams are similar to the American AP exams in that they are
external nationwide exams. The high school teachers are required to prepare the
high school students for the matriculation exams. This is done by using internal
exams which should reflect the matriculation exams. The first part of the Israeli
Computer Science high school curriculum includes the courses Foundations of
Computer Science 1 and 2. In this paper we describe the structure and content
of the matriculation exam of Foundations of Computer Science 1 and 2. We
define several criteria for constructing the internal exams. In addition, we
discuss the following issues: What qualities contribute to an effective exam?
How well the internal exams reflect the matriculation exams? How teachers can
prepare better exams?

Keywords: Computer Science Education, K-12, Assessment.

1 Introduction

In the last three decades, there has been considerable activity surrounding Computer
Science (CS) curricula on all levels (beginning with ACM Curriculum Committee on
Computer Science [1] through Computing Curricula 1991 [2] and up to Computing
Curricula 2001 [3]). Notable is the high-school curriculum designed by the special
ACM task force [4], and in particular the new K-12 curriculum [5]. The goal of the
new K-12 curriculum (2nd edition), was to create a 4-level curriculum that could be
widely disseminated, accessible to every high school student in the US. Its aim was
to enable every CS student to understand the nature of the field and the place of CS in
the modern world. Students need to understand that CS combines theoretical
principles and application skills. They need to be capable of algorithmic thinking and
of solving problems in other subject areas and other areas of their lives.

In Israeli high schools, every student must study at least one subject in depth, in
addition to general studies which include Mathematics, English, History, Literature
etc. The highest level of studies is the 5-point (as opposed to 3- or 4-point) program,

226 H. Averbuch, T. Benaya, and E. Zur

each point representing 90 class hours. CS is one of the subjects that high school
students can select to study in depth.

The Israeli CS high school curriculum was designed in the early 1990s and first
implemented in 1995. One particular principle underlying the curriculum is the
interleaving of theoretical principles with application skills. This interleaving notion
is specifically termed in the Israeli curriculum as the "zipper approach" [6]. The
curriculum has two versions, a 3- and a 5-point version. The 3-point program includes
two mandatory core units, Foundations of Computer Science 1 and 2 (denoted by
FCS1 and FCS2), which present the foundations of algorithmic thinking and
programming. The 5-point program is intended for more advanced students. It
includes the 3-point version and the fourth mandatory unit, Software Design, which is
an extension of FCS1 and FCS2. The third and the fifth units can be chosen from
several alternatives. A detailed description of the program is given in [6, 7]. The
curriculum has been updated to some extent since it was first implemented, shifting,
for example, from procedural to Object Oriented languages, and is now undergoing a
more extensive modification.

All high school students are required to take matriculation exams in the main
subjects studied in high school. The Israeli matriculation exams are similar to the
American AP exams in that they are external nation wide exams. The high school
teachers are required to prepare the high school students for the matriculation exams.
This is done by using internal exams which should reflect the matriculation exams.
The final grade in the subject tested is calculated as the average of the matriculation
exam and an internal grade which is partially based on the internal exam and the
student performance throughout the year. It is important that teachers will be familiar
with the matriculation exams in order to prepare their students in the best way
possible [8, 9]. The questions in the matriculation exams, like the AP exams, should
test the intended concepts accurately, unambiguously, and without bias [10].

In this paper we describe the structure and content of the matriculation exam of
FCS1 and FCS2. We define nine criteria for constructing the internal exams. In
addition, we discuss the following issues: What qualities contribute to an effective
exam? How well the internal exams reflect the matriculation exams? How teachers
can better prepare their students for the exams?

The next section describes the courses FCS1 and FCS2 which are the first part of
the high school CS curriculum.

2 Foundations of Computer Science

2.1 Syllabus

The courses FCS1 and FCS2 are taught in Java or C#, according to the CS teachers'
preference in each school. No preliminary knowledge is assumed. Each unit is
designed for 90 school hours (3 weekly hours). According to the recommendations of
the Israeli CS curriculum committee, FCS1 is intended for the 10th grade, and FCS2 –
for the 11th grade; though in many schools both units are taught in the 10th or 11th
grade.

 Criteria for Writing Exams Which Reflect the K12 CS Foundations Study Material 227

The topics of the two course units "zip" conceptual notions with actual algorithmic
(computer program) structures. In addition, they embed both algorithm design notions
and object oriented elements. The former is presented in both units, whereas the latter
is primarily displayed in the 2nd unit.

FCS1 includes the basic computational elements of: variables, conditional
execution, and repetition, interleaved with the conceptual notions of: design stages,
correctness, and efficiency. FCS2 interleaves the essential OOP notions of objects and
classes with the mutual algorithmic/OOP notion of patterns, and the general notion of
problem solving [11].

2.2 Matriculation Exams

The content of the matriculation exam of FCS1 and FCS2 is supposed to reflect the
material described above.

The duration of the exam is three hours. The exam is divided into three sections
according to the Bloom taxonomy [12] which is demonstrated by Thomson et al. in
their paper [13].

The first section contains 5 mandatory ten point questions which test basic skills
such as knowledge and comprehension.

The second section includes 3 fifteen point questions out of which the students are
required to answer two. The questions in this section are application questions which
require the students to solve problems to new situations by applying acquired
knowledge. The questions in this section may require writing a small program, or
writing a sub-program and demonstrating its use or tracing a given program. This
section requires the use of sequential and/or nested patterns.

The third section includes 2 twenty point questions from which the students are
required to answer one. The questions in this section require analytic and synthesis
skills. This section requires writing a complete program which includes: defining
appropriate sub-tasks, defining main variables and data structures and implementing
the code including documentation.

3 Analysis of the Internal Exam

We conducted a preliminary study in order to evaluate the internal exams and to
determine how well they reflect the matriculation exam in FCS1 and FCS2. We first
describe the criteria according to which we analyzed the internal exams and then we
discuss and analyze a sample of internal exams.

We defined the following nine criteria which we believe the teacher should abide
by while constructing the internal exams. The criteria are divided into two groups: the
first group relates to an overview of the exam as a whole and the second group deals
with elements within single questions.

Overview of the exam

• Criterion 1: Exam structure. The exam structure should be identical to the
structure of the matriculation exam.

228 H. Averbuch, T. Benaya, and E. Zur

• Criterion 2: Balanced coverage of the material. The exam should include a
variety of data types and structures, a variety of patterns, etc.

• Criterion 3: Balanced mixture of types of questions such as: designing, writing,
tracing, detecting identical solution, etc.

• Criterion 4: Appropriate difficulty level of the exam which can be solved within
the given time constraints.

• Criterion 5: Equal difficulty of all questions in sections where given a choice.

Elements within single questions:

• Criterion 6: Clear phrasing. Each question should be phrased clearly and
accurately with no ambiguity.

• Criterion 7: Representative examples. Algorithmic questions should include
several representative examples of input values and their expected output.

• Criterion 8: Error free questions.

• Criterion 9: Refraining from nonsense questions, such as tracing a segment of
code which does not present a solution to a meaningful algorithmic problem.

We analyzed thirty one FCS1 and FCS2 internal exams composed by different
teachers and schools from the years 2006-2009. All the exams were written by
teachers who taught FCS1 and FCS2 for at least five years. We analyzed these exams
according to the criteria presented above. We present below an analysis of the
different criteria followed by relevant examples from this sample.

3.1 Overview of the Exam

Criterion 1: Exam structure

We found that all of our sample exams exhibited an identical structure to the structure

of the matriculation exam.

Criterion 2: Balanced coverage of the material

Tew and Guzdiel identified concepts that a wide variety of introductory CS courses
had in common [14]. Similarly, we defined the following elements which should be
included in the internal exams:

• Data types such as: simple variables (integer, double, boolean, character, etc.),
arrays (one and two dimensional), strings and classes.

• Control structures such as: sequential, conditional and repetitive.
• Algorithmic patterns, such as: counting, accumulation, maximum, average,

decomposing a number into its digits, searching, sorting, merging, etc.

Some of the questions should include a combination of sequential and nested structures
and algorithmic patterns described above. For example, finding the maximum prime
number in a given series of numbers combines nested structures and patterns.

We found that 85% of our sample exams exhibited a well-balanced coverage of the
material.

 Criteria for Writing Exams Which Reflect the K12 CS Foundations Study Material 229

Criterion 3: Balanced mixture of types of questions

Programming literacy includes capability of both reading programs and writing
programs. Lister et al. claim that code comprehension and tracing ability are
prerequisite skills to problem solving [15]. We believe that the exam should have a
balanced mixture of types of questions such as:

• Designing a problem solution;
• Writing a program/algorithm or section of code;
• Tracing a section of code. In general, in the case of trace questions we

recommend to also ask the student to explain the purpose of the algorithm;
• Comparing solutions in order to detect their identity;
• Providing representative input values for given outputs;
• Checking correctness of an algorithm or program;
• Filling in missing sections of code;
• Detecting the purpose of the algorithm or program;
• Defining the signature of a method;
• Adapting a given solution to a problem constraint.

The first section of the exam has 5 questions which should exhibit the variety
mentioned above. Unfortunately, not all exams abide by this criterion. We found an
exam that includes 4 tracing questions out of 5. Another exam included two trace
questions and three programming questions. On the other hand, we found several
exams with a good mixture of types of questions. For example, an exam which
included the following types of questions: trace, program correctness, programming a
section of code, programming a complete program, combination of correctness and
comparison.

The second section of the exam requires answering 2 questions out of 3. These
questions are application question. The questions in this section may require writing a
small program, writing a sub-program or tracing a given program. These questions
should have several sections exhibiting a mixture of question types described above.
For example, we found a question which included several question types. The
question presented a method followed by sections requiring the students to trace the
execution, to explain the purpose of the method, to give representative input values,
and to provide an equivalent more efficient solution.

The third section of the exam requires analytic and synthesis skills. The students
must select 1 question out of 2 and it is usually a larger design and programming
question which includes: defining appropriate sub-tasks, defining main variables and
data structures and implementing the code including documentation.

The following question is an example of a good question for the third section of the
exam because it is a relatively complex question. The question requires the ability to
decompose the problem into sub-problems and to apply a combination of sequential
and nested structures and algorithmic patterns and to use of a variety of data
structures.

A square matrix is called "max in rows" if its maximal value appears in more than
one row. For example, the square matrix presented below is "max in rows" because
its maximal value 7 appears in two separate rows (in the 1st and 3rd row).

230 H. Averbuch, T. Benaya, and E. Zur

Develop and write an algorithm which inputs a 20x20 integer matrix. The
algorithm will check if the matrix is a "max in rows" matrix. If it is, the algorithm
should print all the row numbers in which the max appeared, otherwise, the algorithm
should print a statement indicating that the matrix is not a "max in row" matrix.

4 5 9- 7

5 3 0 4

1 7 4 3

6 0 1 2

a. Divide the problem into sub-tasks (at least 2). Define the goal of each sub-task
and write its pre-conditions and post-conditions.

b. Select the main variables, define their data types and write their roles.
c. Write a program which implements the developed algorithm.

Criterion 4: Appropriate difficulty level of the exam which can be solved within
the given time constraints

The duration of the matriculation exam is three hours and therefore the internal exam
should be written accordingly. As mentioned above, the exam has three sections. The
first section which has five ten point questions should be solved in one hour. We
claim that all the questions should be of equal difficulty level and should be solved in
approximately ten minutes. From looking at our sample exams, we found some exams
that included questions of different levels of difficulty. For example, the following
question appeared in one of the exam:

a. Develop an algorithm which receives in variables N and M two positive integers.
The algorithm will display the product of all the numbers between N and M
which can be divided by 7 without a remainder.

b. Given an array C of a length 10:

8 2 -2 3 7 1 5 9 6 -4

Create a new array B of length 10 according to the following rule: B[I] receives
C[9-I] – 1.

 What will be the value in B[7]?

The problem with this question is that it is composed of two unrelated sections and
therefore more difficult to solve within the given time constrains. We suggest that
such a question should appear as two separate questions.

The second section of the exam requires 2 questions out of 3, each of which should
be solved in half an hour. The following is an example of a good question for this
section which we found in our sample exams:

The roller coaster safety regulation in an amusement park requires that a person's
height will be at least 1.60 meters and his weight will be less than 100 kg in order to
participate in the ride. The roller coaster has 80 seats and 150 persons are in the line.
Write a program which inputs the height and weight of each person before he
attempts to enter the roller coaster. The program performs the followings:

 Criteria for Writing Exams Which Reflect the K12 CS Foundations Study Material 231

a. Prints a message indicating whether the roller coaster was full when it departed?
b. Calculates and prints the number of people that were rejected and the number of

people remaining in the line.

This is a good question for this section because it requires the students to solve a
problem to a new situation by applying acquired knowledge.

The third section of the exam requires 1 design and programming question out of 2
and should be solved in one hour. We found that most of the questions in the third
section of our sample exams exhibited appropriate difficulty.

Criterion 5: Equal difficulty of all questions in sections where given a choice

Sections 2 and 3 of the exam are sections that include a choice. The questions in these
sections should be of equal difficulty. We present two questions from our sample
exams which appeared in section 2 of the same exam. These questions exhibit
different levels of difficulty:

Question 1

The following section of code is required to define an array of 50 elements and to
assign it the following values:

0.5 1 1.5 2 2.5 3 3.5…….

double[] arr = new double[50];
for (int i=0; i < arr.length * 2; i++)
 arr[i] = i / 2;

Is this section of code correct?
If not – correct the mistakes so the required output is achieved.

Question 2

a. Write a method that receives an array and returns the largest value in the array.
b. Elections for the class committee were carried out among 5 candidates. Write a

program which inputs the students' votes (numbered 1 to 5). The input ends with
a negative value. The output is the number of votes for each candidate and the id
number(s) of candidate(s) which received the most votes. (Remark: use the
method written in section a).

The first question is too simple for this section and the second question is of
appropriate difficulty level.

3.2 Elements within Single Questions

Criterion 6: Clear phrasing

The following question is an example of a question which is not clear:

A top model is defined by the following characteristics: height, age and weight
measurement. Write an expression which evaluates to true if a model has a weight
value less than 60 kg. and is at least 1.80 meters high or is older than 18.

232 H. Averbuch, T. Benaya, and E. Zur

It is unclear from the question which is the correct expression:

weight < 60 and height > 180 or age > 18 or:
weight < 60 and (height > 180 or age > 18)

Criterion 7: Representative examples

The following questions are examples of questions with representative input and
output examples which are problematic as explained below:

Question 1

Nine-complement of a digit x is defined as 9-x. Nine-complement of a positive integer
is a number where every digit is replaced by its nine-complement. Examples:

The nine-complement of 4 is 5, because 4+5=9
The nine-complement of 0 is 9, because 0+9=9
The nine-complement of 7 is 2, because 7+2=9
The nine-complement of 318 is 681
Write a method which receives a two digit positive integer and returns its nine-
complement.

We found several problems with the representative examples: 1) The explanation of
the examples is not directly derived from the definition; for instance, in the first
example it should be 9-4=5 and not 4+5=9. 2) The examples are not balanced
presenting three examples of one digit and one example of a three digit number and
none of a two digit number.

Question 2

Given a one dimensional array of 55 integers, write a section of code which inputs an
integer number (num) and outputs the number of pairs of sequential elements that
their sum can be divided by num without a remainder.

For example: for the following array of size 8 and num=10

3 7 2 9 1 6 4 6

The output will be 3 because 3+7=10, 9+1=10, 6+4=10, 4+6=10.

We found two problems in the above question. The first is a mistake in the output
which should be 4 and not 3. The second problem, which we want to emphasize, is
that the sum of each pair in the representative example which divides by num is 10.
We think that the representative example should include pairs whose sums are a
variety of multiples of num.

Criterion 8: Error free questions

The following question is an example of a question which has an array index out of
bounds mistake:

 Criteria for Writing Exams Which Reflect the K12 CS Foundations Study Material 233

Given the following algorithm:

1. max a[p]
2. print max
3. for i from p+1 to n do:

2.1 if a[i] > max
 2.1.1 max a[i]
 2.1.2 print max

a. Given p=3, n=8 and the following array a:

12 4 5 32 3 42 202 40

What will be the output?
b. Explain briefly what the algorithm does.

In addition, it is quite difficult to accurately explain what the algorithm does.
Therefore, most students will not be able to gain the maximum of points for section b.

Criterion 9: Refraining from nonsense questions

The following question appeared in the first part of an internal exam. This question is
suitable for the first part but it is an example of a nonsense question:

Given the following algorithm:

1. number 25
2. while number is greater than 0

2.1If number is even
2.1.1 number number/2

2.2number = number-3
3. print number

Use a trace-table to follow the above pseudo code and provide its expected output.

The pseudo code presented above does not present any meaningful algorithm and we
believe that such algorithms should be avoided because they are useless. In addition,
the algorithm should be more general by replacing the first line with an input
statement instead of an assignment and then asking the student to trace the algorithm
for a given input.

4 Summary and Recommendations

In this paper we provided nine criteria which we believe the teachers should abide by
while constructing the internal FCS1 and FCS2 exams. We presented examples taken
from a sample of internal exams written by experienced professional teachers.

We recommend that the teacher will prepare in advance an outline of the exam,
delineating the data types, control structures and algorithmic patterns that the exam
should include. After writing the exam, the teacher should ensure a balanced coverage
of the material, by preparing a checklist of the different data types, control structures
and algorithmic patterns. The teacher should go over the exam and mark the
appropriate items on the list and make sure that the exam is balanced. Similarly,

234 H. Averbuch, T. Benaya, and E. Zur

a checklist should be used in order to ensure that the exam presents a balanced
mixture of question types.

Furthermore, the teacher should not only think of the exam solution but should
actually solve the exam including running the programs. Such solutions insure that the
exam's difficulty level is appropriate and that it can be solved within the given time
constraint. Solving the exam also leads to error detection in the questions and further
refinement of the exam.

We also recommend that the teachers give their exams to their peers to be solved
by them. Unfortunately, many schools have only one CS teacher who works in
isolation. This is due to the fact that a relatively small number of high school students
select to expand their CS studies and this number is constantly decreasing. For these
teachers we recommend the use of the Israel National Center for Computer Science
Teachers Website [16] in order to interact with their colleagues. One of the main
goals of the teachers' center is to promote pedagogical objectives, inspire colleagues
and help them adjust to new courses and topics [17]. We recommend that the center
will conduct workshops which will provide guidelines for teachers in exam
preparation.

References

1. ACM Curriculum Committee on Computer Science, Curriculum ‘68 recommendations for
academic programs in Computer Science, Comm. Assoc. Comput. Mach. 11 (1968)

2. Tucker, A., et al.: Computing Curricula 1991: A Summary of the ACM/IEEE-CS Joint
curriculum Task Force Report. Comm. Assoc. Comput. Mach. 34, 69–84 (1991); Joint
IEEE Computing Society/ACM Task Force on Computing Curricula, Computing Curricula
2001 Final Report,
http://www.acm.org/education/curric_vols/cc2001.pdf

3. Merrit, S., et al.: ACM model high school computer science curriculum. Association for
Computing Machinery, New York (1994)

4. Tucker, A., et al.: A model curriculum for K–12 Computer Science: Final report of the
ACM K-12 Task Force Curriculum Committee, 2nd edn. (2003),
http://csta.acm.org/Curriculum/sub/ACMK12CSModel.html

5. Gal-Ezer, J., et al.: A high-school program in computer science. Computer 28(10), 73–80
(1995)

6. Gal-Ezer, J., Harel, D.: Curriculum and course syllabi for a high-school computer science
program. Computer Science Education 9(2), 114–147 (1999)

7. Drysdale, S., et al.: The year in review....Changes and lessons learned in the design and
implementation of the AP CS exam in Java. In: Proc. of the 36th SIGCSE Technical
Symposium on Computer Science Education, pp. 323–324 (2005)

8. Tymann, P.T., White, L.: The future of the AP CS program. In: Proc. of the 40th SIGCSE
Technical Symposium on Computer Science Education, pp. 331–332 (2009)

9. Hunt, F., et al.: How to develop and grade an exam for 20,000 students (or maybe just 200
or 20). In: Proc. of the 33rd SIGCSE Technical Symposium on Computer Science
Education, pp. 285–286 (2002)

10. Armoni, M., Benaya, T., Ginat, D., Zur, E.: Didactics of Introduction to Computer Science
in High School. In: Hromkovič, J., Královič, R., Vahrenhold, J. (eds.) ISSEP 2010. LNCS,
vol. 5941, pp. 36–48. Springer, Heidelberg (2010)

 Criteria for Writing Exams Which Reflect the K12 CS Foundations Study Material 235

11. Bloom, B.S. (ed.): Taxonomy of Educational Objectives, the classification of educational
goals – Handbook I: Cognitive Domain. McKay, New York (1956)

12. Thompson, E., Luxton-Reilly, A., Whalley, J., Hu, M., Robbins, P.: Bloom’s Taxonomy
for CS Assessment. In: Tenth Australasian Computing Education Conference (ACE 2008),
vol. 78, pp. 155–161 (2008)

13. Tew, A.E., Guzdial, M.: Developing a Validated Assessment of Fundamental CS1
Concepts. In: Proc. of the 41th SIGCSE Technical Symposium on Computer Science
Education, pp. 97–101 (2010)

14. Lister, R., et al.: A Multi-National Study of Reading and Tracing Skills in Novice
Programmers. In: Working Group Reports from ITiCSE on Innovation and Technology in
Computer Science Education, pp. 119–150 (2004)

15. The Israeli National Center for Computer Science Teachers’ Website,
http://cse.proj.ac.il

16. Israel National Center for Computer Science Teachers: ”Machshava” – The Israeli
National Center for High School Computer Science Teachers. In: Proceeding of the 7th
SIGCSE Annual Conference on Innovation and Technology in Computer Science
Education, Aarhus Denmark, vol. 234 (2002)

Author Index

Averbuch, Haim 225

Bell, Tim 71
Benaya, Tamar 225
Bezáková, Daniela 117
Bischof, Ernestine 94
Blaho, Andrej 129
Boytchev, Pavel 1

Calzarossa, Maria Carla 31
Ciancarini, Paolo 31
Curzon, Paul 71
Cutts, Quintin 71

Dagienė, Valentina 9, 71

Futschek, Gerald 155

Ginat, David 165

Haberman, Bruria 71
Hromkovič, Juraj 21

Kanemune, Susumu 82
Keller, Lucia 189

Lonati, Violetta 213

Manabe, Hiroki 82
Menashe, Eti 165
Mich, Luisa 31

Micheuz, Peter 43
Monga, Mattia 213
Morpurgo, Anna 213
Moschitz, Julia 155

Nakano, Yoshiaki 82
Namiki, Mitaro 82

Oster-Levinz, Anat 106

Proulx, Viera Krňanová 177

Ragonis, Noa 106

Sabitzer, Barbara 94
Salanci, L’ubomı́r 129
Scarabottolo, Nello 31
Scheuner, Barbara 189
Serafini, Giovanni 143, 189
Shifroni, Eyal 165
Steffen, Björn 21, 189
Sys�lo, Maciej M. 56

Tomcsányi, Peter 201
Tomcsányiová, Monika 201
Torelli, Mauro 213

Winczer, Michal 117

Zur, Ela 225

	Title Page
	Preface
	Conference Organization
	Table of Contents
	Informatics Education – The Spectrum of Options
	Wild Programming – One Unintended Experiment with Inquiry Based Learning
	About Wild and Cultivated Strawberries
	The Experiment
	The Result
	Afterthoughts
	As an Epilogue
	References

	Informatics Education for New Millennium Learners
	Introduction
	Short Glance at Teaching and Learning Informatics at School
	Opportunities for the New Millennium Learner
	Some Modern Ways of Learning Informatics at School
	Conclusion
	References

	Why Teaching Informatics in Schools Is as Important as Teaching Mathematics and Natural Sciences
	Introduction
	Understanding the World Around Us
	Preparation for University Studies
	A Way of Thinking and Working
	Conclusion
	References

	National Perspectives
	Informatics Education in Italian High Schools
	Introduction
	Methodological Approach
	The Context
	The Monitoring Exercise

	ICT in the Italian High Schools
	Teaching Organization
	Certification of ICT Skills and Education
	Conclusions
	References

	A Competence-Oriented Approach to Basic Informatics Education in Austria
	Introduction
	The Austrian Case Study
	Anamnesis and Diagnosis
	Therapy and Vision

	Clarifying a Fuzzy Field of Terminology
	Informatics Education, Digital Competence or Media Literacy?
	More of the Same? – Living with Plastic Words
	Competence Models in Context

	Structuring Objectives and Contents in the Field
	The Austrian Approach
	Preliminary Considerations
	The Classification Scheme
	Discussion of the Structure and Exemplary Descriptors
	Further Reflections and Actions

	Conclusions
	References

	Outreach to Prospective Informatics Students
	Introduction
	Computer Science Education in Crisis
	Informatics Education in Poland – In the Past and Today
	Education System in Poland
	New Curriculum of Informatics
	Computational Thinking

	Outreach Activities
	New National Curriculum
	Workshops for Students and Teachers
	Competitions and Olympiads in Informatics
	Project Informatics +

	Conclusions
	References

	Outreach Programs
	Overcoming Obstacles to CS Education by Using Non-programming Outreach Programmes
	Introduction
	Bebras
	CS Unplugged
	cs4fn
	CS Inside
	CS, Academia and Industry
	Comparison of the Programmes
	Conclusions
	References

	CS Unplugged Assisted by Digital Materials for Handicapped People at Schools
	Introduction
	Adoption of CS Un plugged in Vocational Training School for Handicapped People
	CS Unplugged Content
	Adopting CS Unplugged to Vocational Training of Disabled Students

	Issues and Achievements with CS Unplugged Practice for Students with Disabilities
	Issues with CS Unplugged Practice for Disabled Students
	Development of Material Assisting Handicapped Students

	Trials on Digital Material to Provide Learning Support
	Activity 2 (Color by Numbers)
	Activity 10 (The Orange Game)
	Activity 8 (Beat the Clock) in Second Life

	Using Digital Materials in High School Lessons
	Activity 2 (Color by Numbers)
	Activity 10 (Orange Game)
	Activity 8 (Beat the Clock)

	Conclusion
	References

	Computer Science in Primary Schools – Not Possible, But Necessary?!
	Introduction
	Automata Theory in Primary Schools
	Instruments and Results
	Population and Instruments
	Comparing Terms Concerning or Non-concerning CS
	Observation of Pupils’ Attention
	Student Questionnaire
	Feedback Letters from Pupils
	Teachers’ Interview

	Conclusion
	References

	Teacher Education
	Pre-service Computer Science Teacher Training within the Professional Development School (PDS) Collaboration Framework
	Introduction
	Practicum Background
	The Practicum in Teacher Preparation Programs
	The PDS Practicum Framework

	The PDS CS Practicum Setting
	The Student Teachers
	The High School CS Curriculum
	Main Objectives of the Practicum

	Training CS Student Teachers within the PDS
	The Schedule of a Typical Day of Practicum
	Practice Teaching
	A Full Week of Practicum
	Evaluation of the Student Teachers

	Summary
	References

	Teaching Theoretical Informatics to Secondary School Informatics Teachers
	Introduction
	Present Situation
	More Detailed Description of the Student Groups

	Implementation
	Overview of Taught Material

	Observations
	Conclusion
	References

	Informatics in Primary Schools
	Informatics in Primary School Principles and Experience
	Introduction
	Informatics Education Around Us – Analysis of the Status
	Definitions
	Informatics in Other Countries
	Informatics in Slovakia

	Forming the Conception of Informatics Education
	Inspiring Approaches to Informatics Education
	Our Vision of Elementary Informatics
	The Emphasis on Pupil Activity and Amusing Tasks
	We Rely on Theories
	Conclusive Fine-Tuning

	Outcomes, Observations and Evaluation
	Teachers’ Attitudes
	Software and the Internet
	Attitudes of the Public

	Summaries
	References

	Teaching Programming at Primary Schools: Visions, Experiences, and Long-Term Research Prospects
	Introduction
	Addressing the Nature of Computational Thinking
	Computational Thinking Is Unique to Computer Science
	Children Should Learn Computational Thinking for Life

	Didactic Concept and Teaching Approach
	The Quest for the Programming Language
	Didactic Approach and Teaching Materials
	Lessons 1 to 4
	Lessons 5, 6 and the Concept of a Constant Parameter

	Programming Projects at Primary Schools
	School Projects
	Class Teachers and University Tutors

	General Experiences
	Major Observations
	School Project in Attinghausen
	School Projects in Domat/Ems and in Saas im Prättigau
	Programming Contests

	Research Prospects
	Assessing the Influence of Computational Thinking
	Research on the Concept of a Variable
	Upcoming Research Activities

	Conclusion
	References

	Learning Algorithmic Thinking with Tangible Objects Eases Transition to Computer Programming
	Introduction
	Learning Scenario $Tim the Train$
	Basic Algorithmic Concepts
	Interesting Tasks
	Playing a Given Algorithm
	Second Task: Writing an algorithm
	First Algorithm with Loops

	Learning Experiences
	Conclusions
	References

	Advanced Concepts of Informatics in Schools
	Transfer, Cognitive Load, and Program Design Difficulties
	Introduction
	Design Transfer Difficulties
	Difficulties with Flexibility
	Difficulties with Recognition
	Difficulties with Embedment and Abstraction
	Difficulties with Mapping
	Difficulties with Recognition, Abstraction, and Mapping (Combined)

	Discussion
	References

	Introductory Computing: The Design Discipline
	Introduction
	How to Design Programs
	How to Design Classes
	How to Design Libraries
	Summary
	References

	A Short Introduction to Classical Cryptology as a Way to Motivate High School Students for Informatics
	Introduction
	Classical Cryptosystems and the Concept of Security
	Security of Cryptosystems

	The Didactical Concept of the Lecture
	Teaching Goals
	Introducing the Concepts of Cryptology
	Continuing Lessons

	Experiences
	Evaluation

	Conclusion
	References

	Competitions and Exams
	Little Beaver – A New Bebras Contest Category for Children Aged 8–9
	Introduction
	The Subject Elementary Informatics
	The Bebras Contest
	The Tasks

	Preparing the Little Beaver
	Differences between Bebras and Little Beaver
	Using a Bebras Task for the Little Beaver

	From the Idea Till Its Implementation
	The Idea
	Choosing a Formulation
	The Implementation

	The Pilot-Run of Little Beaver
	Conclusion
	References

	What’s the Fun in Informatics? Working to Capture Children and Teachers into the Pleasure of Computing
	Introduction
	The Many Facets of Informatics

	Promoting Informatics through Competitions
	The Kangourou of Informatics
	Organization of the Game-Contest
	Qualifying Round
	Examples of Qualifying Challenges
	Final Round

	Participants Feedback
	Conclusions
	References

	Criteria for Writing Exams Which Reflect the K12 CS Foundations Study Material
	Introduction
	Foundations of Computer Science
	Syllabus
	Matriculation Exams

	Analysis of the Internal Exam
	Overview of the Exam
	Elements within Single Questions

	Summary and Recommendations
	References

	Author Index

