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Abstract. Programmable Logic Controllers (PLC) are widely used in
embedded systems for the industrial automation domain. We propose
a formal semantics of two languages defined in the IEC 61131-3 stan-
dard for PLC programming. The first one is the Instruction List (IL)
language, an assembly like language. The second one is the Sequential
Function Charts (SFC) language, a graphical high-level language that
allows to describe the main control-flow of the system. A PLC system
description may comprise SFC and IL code. We formalized the seman-
tics in the proof assistant Coq. Furthermore, we present an associated
tool for automatically generating SFC representations from a graphical
description – the text based IL code can be handled in Coq directly –
and its usage for verification purposes. We demonstrate our approach to
prove safety properties of a PLC in a real industrial demonstrator.

1 Introduction

Discovering and validating properties of Programmable Logic Controllers (PLC),
is a prerequisite for the development of safety critical embedded systems. Tools
and techniques for different kinds of systems and analysis scenarios have been
developed. These comprise techniques aimed for distinct usage scenarios based
on model checking and abstract interpretation.

In this work, we describe a general purpose way for the verification of PLC
that are modeled using the Instruction List (IL) and Sequential Function Chart
(SFC) languages of the IEC 61131–3 [15] standard. The standard is mainly used
for modeling PLC functionality in the development of embedded systems for the
industrial automation domain. We describe a tool set and method: For a given
PLC description given in the graphical SFC language we automatically generate
a Coq [9] description and some basic theorems and their proofs. In addition to
the SFC language, text based IL programs are used in our PLC descriptions. We
have formalized a syntactic representation of IL, thus, IL programs can be im-
ported directly into our Coq environment. We present some standard techniques
to reason about our PLC descriptions and verify properties. Furthermore, we
present a case study of a PLC used inside a sorting machine.
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The formalization of the IL and SFC semantics is done in the formal proof
system Coq and its extension SSReflect [10]. Choosing Coq enables us to use its
extraction mechanisms later and produce a certified compiler or interpreter for
PLC based on our semantics. In this development, we also use some SSReflect
libraries. In particular we use the libraries on booleans, natural numbers, lists
and generic interface for types with decidable equality. The most important
contributions of this paper comprise:

– Formal Coq semantics of the IL and SFC languages which are reusable for
other projects.

– On overview on a tool to automatically generate SFC representations and
some proofs.

– A case study on the verification of PLC properties using an IL and SFC
description of a PLC.

Overview

This paper is organized as follows. We give an overview on PLC in Section 2.
The IL and SFC language are presented in Section 3 and Section 4. A tool for
generating Coq readable SFC representations and related proofs is described in
Section 5. A case study is presented in Section 6. Section 7 discusses related
work and a conclusion is featured in Section 8.

2 Programmable Logic Controller

A PLC is composed of a microprocessor, a memory, input and output devices
where signals can be received from sensors or switches and sent to actuators.
Figure 1 shows the architecture of a PLC system. A main characteristic of PLC is
their execution mode. A PLC program is typically executed in a permanent loop.
PLC program execution can be structured into scan cycles which are associated
with a cycle time, the inputs are read, the program instructions are executed and
the outputs are updated. The cycle time is often fixed or has an upper bound
limit. Therefore the instructions which are scheduled to be executed in the cycle
should terminate during the cycle time interval.

Input
Interface

Processor
Output
Interface

Fig. 1. PLC system

Since the introduction of PLC in the industry, each manufacturer has de-
veloped its own PLC programming languages. In 1993, the International Elec-
trotechnical Committee (IEC) published the IEC 1131 International Standard
for PLC. The third volume of this standard defines the programming languages
for PLC. It defines 5 languages :
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– Ladder Diagrams (LD) : graphical language that represent PLC programs
as relay logic diagrams.

– Functional Block Diagrams (FBD) : graphical language that represent PLC
programs as connection of different function blocks.

– Instruction List (IL) : an assembly like language.
– Structured Text (ST) : a textual (PASCAL like) programming language.
– Sequential Function Charts (SFC): a graphical language for describing top-

level control-flow and associated data-flow in the PLC.

The last language differs from the other. It corresponds to a graphical method
for structuring programs and allows to describe the system as a parallel state
transition diagram. Each state is associated to some actions. An action is de-
scribed using one of the other 4 PLC programming languages like LD or IL.
SFC are well suited for writing concurrent control programs. In this paper we
concentrate on the IL and SFC languages.

3 Instruction Lists

Instruction list (IL) is one of the five programming languages defined in the IEC
61131-3 standard. It is an assembly like language widely used for programming
PLC systems. Our IL model is a significant subset of the language defined by the
IEC 61131-3 standard. This subset covers assignments instructions and boolean
and integer operations. It covers also comparison and branching instructions
and on-delay timers. We choose to consider only booleans and integers as basic
data types. In most of PLC systems, reals are available as basic data types, but
rarely used. In practice, real number computation costs much time and may be
delegated to an external device that can communicate with the PLC. This is
motivated by the need to keep the program scan cycle within a relatively small
time upper bound. The IL model we present in the following is an extension of
the model defined in a previous work [14].

3.1 Syntax

An IL program comprises declarations of variables followed by a list of instruc-
tions. An IL program example is the following:

LABEL OPERATOR OPERAND
l1: LD x

AND y
LD z
ORs
JMPC l1

In the first line of the example above, the value of the variable x is loaded on a
stack. After the execution of the second line, the stack contains the conjunction
of x and y. In the third line, the value of z is put on the top of the stack. The
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instruction ORs of the example above removes the two previous values loaded on
the stack and replace them with (x ∧ y) ∨ z. The branching instruction JMPC is
executed if the value at the top of the stack is equal to true.

An IL instruction starts with an operator that can be followed by one or more
operands: variables or constants. In an instruction, the operator can be preceded
by a label.
Instructions:

i ::= LD op | LDN op load
| ST id | STN id | SR id | RS id store, set and reset
| JMP lb | JMPC lb | JMPC lb jump
| AND op | OR op | XOR op boolean operations
| ANDN op | ORN op | XORN op
| ANDs | ORs | XORs
| ADD op | MUL op | SUB op integer operations
| ADDs | MULs | SUBs
| GT op | GE op | EQ op comparison
| GTs | GEs | EQs
| TON id , n On delay timer
| RET end of program

Operands:
op ::= id | cst variable identifier or constant

Constants:

cst ::= n ∈ Z | b ∈ B integer or boolean literal

The data domains of IL constants is the union of integers Z and booleans B. In
practice integers used in PLC are bounded. For simplicity, we restrict ourselves
to unbounded integers in the presentation of this work. Adjusting the integer
size in Coq – and other higher-order theorem prover based – developments is
not a difficult task and has been studied before (e.g., [12]).

We denote the set of IL instructions by Instr. For simplicity, we suppose
that IL program labels are natural numbers. Since an IL program is a list of
instructions, a label indicates the position of the corresponding instruction in
the list. For a given program p and an index i, p(i) ∈ Instr represents the
instruction of p at the position i.

3.2 Semantics

We defined a small step operational semantics of IL programs. For the purpose
of modeling PLC timers, we suppose having a global discrete time clock and that
each program execution cycle has a fixed time duration denoted δ.

Stack: in IL an evaluation stack is used for the current result computation.
It is also used to store intermediate results that will be pulled back when an
instruction like ADDs or ANDs are executed. A stack V := v1, . . . , vm is a finite
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LD
p(i) = LD op

(s, σ, i) → (push op s, σ, i + 1)

p(i) = LDN op

(s, σ, i) → (push ¬op s, σ, i + 1)
LDN

ST
p(i) = ST x σ′ = σ[x �→ top s]

(s, σ, i) → (s, σ′, i + 1)

p(i) = STN x σ′ = σ[x �→ ¬top s]

(s, σ, i) → (s, σ′, i + 1)
STN

SR
p(i) = SR x σ

′
= σ[x �→ x ∨ top s]

(s, σ, i) → (s, σ
′
, i + 1)

p(i) = RS x σ
′
= σ[x �→ x ∧ ¬top s]

(s, σ, i) → (s, σ
′
, i + 1)

RS

JMPCt
p(i) = JMPC l top s = T

(s, σ, i) → (s, σ, l)

p(i) = JMPC l top s = F

(s, σ, i) → (s, σ, i + 1)
JMPCf

JMPCNf
p(i) = JMPCN l top s = F

(s, σ, i) → (s, σ, l)

p(i) = JMPCN l top s = T

(s, σ, i) → (s, σ, i + 1)
JMPCNt

ANDs
p(i) = ANDs (t, t′) = top2 s

(s, σ, i) → (push (t ∧ t’) (pop2 s), σ, i + 1)

p(i) = AND op t = top s ∧ op

(s, σ, i) → (push t (pop s), σ, i + 1)
AND

ADDs
p(i) = ADDs (t, t′) = top2 s

(s, σ, i) → (push (t + t’) (pop2 s), σ, i + 1)

p(i) = ADD op t = top s + op

(s, σ, i) → (push t (pop s), σ, i + 1)
ADD

GTs
p(i) = GTs (t, t′) = top2 s

(s, σ, i) → (push (t < t’) (pop2 s), σ, i + 1)

p(i) = GT op t = top s < op

(s, σ, i) → (push t (pop s), σ, i + 1)
GT

TON-off
p(i) = TON Tx, Pt top s = F σ′ = σ[Tx.Q �→ F, Tx.ET �→ 0]

p � (s, σ, i) → (s, σ′, i + 1)

TON-on

p(i) = TON Tx, Pt
top s = T Tx.ET < Pt σ′ = σ[Tx.Q �→ F, Tx.ET �→ Tx.ET + δ]

p � (s, σ, i) → (s, σ′, i + 1)

TON-end

p(i) = TON Tx, Pt
top s = T Tx.ET >= Pt σ′ = σ[Tx.Q �→ T, Tx.ET �→ Tx.ET + δ]

p � (s, σ, i) → (s, σ′, i + 1)

Fig. 2. IL operational semantics

sequence of data values. In the following we use the standard stack operations
push (add an element to the stack), pop and pop2 (remove respectively the top
and the two top elements of the stack), top and top2 (return respectively the
top and the two top elements of the stack).

States: functions from variable identifiers to data values. They represent the
program variable states and are denoted σ of the type S = V ar → D, where D
is the union of the IL variables data domains: Z ∪ B.

Configurations: elements of the set E = Stack × S × N. A configuration (s, σ, i)
corresponds to a stack s, a state σ and a position or program location i.

Transitions: relation on configurations ⊆ E ×E . Figure 2 gives some relevant in-
ference rules of the IL configurations transitions relation. We denote the relation
defined by the inference rules of Figure 2 by x−→ where x is an IL instruction. The
IL transition system is defined by an initial configuration (s0, σ0, 0), where s0 is
the empty stack and σ0 is the initial state that maps all the integer variables to
0 and boolean variables to false.
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Left
i < length p (s, σ, i)

p
==⇒ (s′′, σ′′, i′′) (s′′, σ′′, i′′)

[p,x]
====⇒ (s′, σ′, i′)

(s, σ, i)
[p,x]

====⇒ (s
′
, σ

′
, i

′
)

Right
i = length p (s, σ, i)

x−→ (s
′′

, σ
′′

, i
′′
) (s

′′
, σ

′′
, i

′′
)

[p,x]
====⇒ (s

′
, σ

′
, i

′
)

(s, σ, i)
[p,x]

====⇒ (s′, σ′, i′)

Out
length p ≤ i

(s, σ, i)
p

==⇒ (s, σ, i)

Fig. 3. IL natural semantics

The first four transition rules of Figure 2 correspond to the load and store
instructions. In the first case the stack is updated while in the second the variable
state is updated. The transitions corresponding to the set/reset instructions
(rules SR and RS) update the variable state function with the corresponding
values for the given operands and the top of the stack. The transition relation for
the TON instruction is given by the rules TON-off, TON-on and TON-end

of Figure 2. The elapsed time variable ET of the TON timer is incremented by
the global constant δ when the timer is activated (the value of top of the stack
is true). The timer output Q is activated when the elapsed time variable ET is
greater or equal to the timer delay parameter PT.

Natural semantics: sometimes in the reasoning about IL programs we need to
interpret the execution of the entire program. This can be done using natural
semantics or big-step semantics. On top of the small-step semantics presented
above, we defined also a big-step semantics of IL programs. The inference rules
of this semantics are given in Figure 3. They correspond to the definition of the
transitive closure of the small-step semantics relation. As we mentioned before
an IL program should terminate during the cycle scan time. This termination
property is assured by the rule Out. A final state is one where the location index
is greater than the program instruction list length. By using the rule Out we
can prove that every execution, following the rules of our natural semantics, will
reach a final (or stable) configuration.

3.3 Formalization

We formalized the IL semantics defined above in the formal proof system Coq.
The Coq system provides a powerful mechanism to define recursive or finite
types or sets: inductive types. It is especially useful when defining the syntax
of a programming language. We define the IL syntax and operational semantics
presented above, using the Coq inductive type mechanism. In our formalization,
IL instructions are represented by the type Instr and an IL program or a list
of IL instructions is an object of the type code := seq Instr1.

We also formalized the IL big-step semantics defined in Figure 3 as a Coq
inductive relation. The definition is given in the Figure 4. Since it is not always
1 seq is the type of list in SSReflect.
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Inductive il_exec : code -> ILConf -> ILConf -> Prop :=

| il_exec_consl : forall p x cf cf1 cf2, cf.2 < size p ->

il_exec p cf cf2 -> il_exec (rcons p x) cf2 cf1 ->

il_exec (rcons p x) cf cf1

| il_exec_consr : forall p x cf cf1 cf2, cf.2 = size p ->

il_trans (rcons p x) cf cf2 -> il_exec (rcons p x) cf2 cf1 ->

il_exec (rcons p x) cf cf1

| il_exec_out : forall p cf, size p <= cf.2 -> il_exec p cf cf.

Fig. 4. Coq definition of the IL program execution predicate

possible to know how many transitions are needed to execute an IL program,
we define the program execution as a propositional relation rather than a com-
putational function. However it is possible to define a function that returns the
configuration corresponding to the result of the execution an IL code after a given
number of steps. This function corresponds to the definition given in Figure 5.
We also proved that the relational definition and functional one are equiva-
lent. This is given by the lemmas il_exec_seq_exec and il_exec_exec_seq of
Figure 5.

Fixpoint il_exec_seq n p cf : ILConf :=

if n is n’.+1 then il_exec_seq n’ p (il_transf p cf) else cf.

Lemma il_exec_seq_exec : forall n p cf cf’, cf’ = il_exec_seq n p cf ->

size p <= cf’.2 -> il_exec p cf cf’.

Lemma il_exec_exec_seq : forall p cf cf’, il_exec p cf cf’ ->

exists n, il_exec_seq n p cf = cf’.

Fig. 5. Coq definition of the IL program execution function and equivalence proofs

4 Sequential Function Charts

The SFC language is a graphical language for modeling PLC. It is part of the
IEC 61131–3 standard and frequently used together with IL and other languages
of this standard. SFC are used to describe the overall control flow structure of
a system. Due to the graphical nature of the language, we have written a tool
which generates Coq representations from graphical SFC models.

The parts of the standard describing SFC leave a few semantical aspects open
to the implementation of the PLC modeling and code generation tool. In cases
where the semantics is not well defined by the standard we have adapted our
semantics to be compatible with the EasyLab [1] tool. EasyLab is a tool that
allows the graphical modeling of PLC and C code generation. The description
given in this work follows the description given in [4].
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4.1 Syntax

Syntactically we represent an SFC as a tuple (S, S0, T, A, F, V,ValV ). It com-
prises a set of steps S and a set of transitions T between them. A step is a
system location which may either be active or inactive in an actual system state,
it can be associated with SFC action blocks from a set A. These perform sets of
operations and can be regarded as functors that update functions representing
memory. Memory is represented by a function from a set of variables V to a set
of their possible values ValV . The mapping of steps to sets of action blocks is
done by the function F .

In our SFC framework, action blocks are described using the IL semantics
defined in the previous section. We have established functions that allow conver-
sion of SFC states into IL state and vice versa. Thus, the execution of an action
block comprises the following steps:

– Conversion of the SFC state into an IL state
– Execution of the IL program associated with the action block using the

semantics from Section 3.
– Update of the SFC state by using the final IL state.

A transition is a tuple (Sin, g, Sout). It features a set of steps that have to be
enabled Sin ⊆ S in order to take the transition. It features a guard g that has to
be evaluated to true for the given system state. The guard g is a function from
system memory to a truth value – in Coq we formalize this as a function to the
Prop datatype. A transition may have multiple successor steps Sout ⊆ S. The
types ValV that are formalized in our SFC language comprise different integer
types and boolean values. The set of SFC steps includes also a set S0 ⊆ S
representing the initially active steps.

Figure 6 shows an example of an SFC structure realizing a loop with a condi-
tional branch. The execution starts with an initialization step init. After it has
been processed control may pass to either Step2 or to a step Return. Once Step2
has been processed control is passed to init again.

Fig. 6. A loop in the SFC language
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Please note that in addition to loops and branches, SFC allows also the def-
inition of parallel processing and synchronization of control. This is due to the
multiple successor and predecessor steps in a transition.

The Coq realization of the SFC syntax follows the presented description. For
compatibility with the EasyLab tool and to ease generation we distinguish be-
tween steps and step identifiers in our Coq files, thereby introducing some level
of indirection.

4.2 Semantics

Semantically the execution of an SFC encounters states, which are (m, s, a) tu-
ples. They are characterized by a memory state m, the function from variables
to their values, a set of active steps s and a set of active action blocks a that
need to be processed.

The semantics is defined by a state transition system which comprises two
kinds of rules:

1. A rule for processing an action block from the set of active action blocks a.
This corresponds to updating the memory state and removing the processed
action block from a.

2. A rule for performing a state transition. The effect on the system state is
that some steps are deactivated, others are activated. Each transition needs
a guard that can be evaluated to true and a set of active steps. Furthermore,
we require that all pending action blocks of a step that is to be deactivated
have been executed.

It is custom to specify the timing behavior of a step by time slices: a (maximal)
execution time associated with it. In our work, this is realized using special
variables that represent time.

5 Tool Support for PLC Verification and Proving
Principles

For the generation of graphical SFC representations and reasoning about them
we have created a tool (CertPLC, described in a report [3]). It is implemented in
Java and uses SFC files built with a graphical PLC configuration environment:
EasyLab [1]. The text-based IL code can be imported directly into the gener-
ated file. In this section we describe our tool’s architecture, usage scenarios and
frequently used principles for proving properties.

5.1 The CertPLC Tool

Figure 7 shows the CertPLC ingredients and their interconnections. In an in-
vocation of the tool framework an SFC model is given to a representation
generator which generates a Coq representation out of it. This is included in
one or several files containing the model specific parts of the semantics of the
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CertPLC

representation generator proof generator

PLC model

(SFC)

basic properties 
+

proofs
Coq representation

certificate 

proofs + tactics

user defined properties 

CertPLC CertPLC

Fig. 7. CertPLC overview

SFC model. The Coq representation is human readable and can be validated
against the original graphical SFC specification by experienced users. No repre-
sentation generation is required for IL, since IL is already a textual format which
can be used directly within the Coq proof assistant.

The same SFC model is given to a proof generator which generates Coq
proof scripts that contain lemmas and their proofs for some basic properties
that state important facts needed for machine handling of the proofs of more
advanced properties. For example a proof script is generated for a fact that the
set of active action blocks in all reachable states of the PLC system does contain
only action blocks specified by the syntactic PLC descriptions. The PLC shows
only behavior achieved by combining these action blocks.

One goal of CertPLC is the generation of Coq files – a certificate – that certifies
a property of a PLC. For this, one needs to formalize the desired property. The
property is proved in Coq by using a provided tactic or a hand written proof
script. We provide a collection of some proofs and tactics. This is a kind of
library to be used in our proofs. The Coq system description, used lemmas and
their proofs, and the property and its proof form a certificate.

5.2 Proof Structure for Inductive Properties

As stated above, some inductive properties are already generated together with
the Coq representation generation. Others can also be proven by using the fol-
lowing scheme: We start with an inductive invariant property I and an SFC
description of a PLC SFC. Following the ideas presented in [5] the structure of a
proof contained in our certificates is realized by generated proof scripts, generic
lemmas and tactics. They establish a proof principle that proves the following
goal:
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∀ s . s ∈ ReachableSFC =⇒ I(s)

ReachableSFC is the inductively defined set of reachable states, �SFC � specifies
the state transition relation (cf. Section 5). First we perform an induction using
the induction rule of the set of reachable states. This rule is automatically estab-
lished by Coq when defining inductive sets. After the application the following
subgoals are left open:

1. I(s0) for initial states s0,
2. I(s) ∧ (s, s′) ∈ �SFC � =⇒ I(s′)

The first goal can be solved by some relatively simple tactic which just checks
that all conditions derived from I are fulfilled in the initial states.

For the second goal the certificate realizes a proof script which – in order
to allow efficient certificate checking – performs most importantly the following
operations:

– Splitting of conjunctions in invariants into independently verifiable invari-
ants.

– Splitting of disjunctions in invariants into two independently verifiable sub-
goals.

– Normalizing arithmetic expressions and expressions that make distinctions
on active steps in the SFC.

– Exhaustive case distinctions on possible transitions. Each case distinction
corresponds to one transition in the control flow graph of the SFC. A typical
case can have the following form:

Precondition on states associated with a case distinction

Transition condition associated with a case distinction

Conditions on possible reachable states after one transition

=⇒
Property holds for succeeding states

The elements in such a goal can feature arithmetic constraints, which can
be split into further cases.

Some of the cases that occur can have contradictions in the hypothesis. For exam-
ple one can imagine an arithmetic constraint for a variable from a precondition
of a state contradicting with a condition on a transition. These contradictions
result from the fine granularity of our case distinctions. Some effort can be spent
to eliminate contradicting cases as soon as possible (cf. [5]) which can speed up
the checking process.

6 Case Study

Figure 8 shows an overview of the SFC structure of a PLC program that controls
a sorting station on the left side and a picture of the sorting station itself on
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...

identification

workpiece

...initialization

... ... ...

... ......

alternative 1 alternative 2 alternative 3

alternatives continued

Fig. 8. Sorting machine overview

the right side. Work pieces are transported to two sensors. Based on the values
observed by these sensors, a work piece is handled in a different way. The sensor
observation is done in the step workpiece identification. The handling is done by
choosing one of the three alternatives. We have modeled this system in EasyLab
and generated the Coq representation of the SFC structure for this case study
using CertPLC. We have imported the IL programs describing the actions which
are taken at the different SFC steps.

Based on this, we have verified that consistency conditions hold. These
comprise:

– The verification of inductive invariant based properties. This is described in
Sections 5.1 and 5.2.

– The verification of non-inductive properties. During the conduction of the
case study it turned out that non-inductive properties like: Identification
of a certain work piece implies treatment in a work piece specific way and
this occurs within a fixed amount of execution steps, are also of relevance.
Mutual exclusion properties of work piece treatment can be proved by doing
these work piece specific proofs for all kinds of possible work pieces, first,
and using these results for proving the mutual exclusion property.

Proofs for are done in a modular fashion: we verify the effect of IL parts in the
PLC execution and use these proofs to derive facts on the execution of several
SFC steps.

Figure 9 shows an example of Coq code + pseudo code to give a look and feel
on the nature of our proof goals. Given a concrete workpiece and conditions on
a state x which corresponds to a state just before the workpiece identification.
A succeeding state x′ in the SFC language has to fulfill requirements on variable
values m′ the set of currently active steps S′ and currently active actions A′

after a certain execution time. In our example it involves several single SFC
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conditions on workpiece

->

let ’(m,S,A):= x in

(conditions on m /\ S = SWorkPieceId::nil /\ A = AWorkPieceId::nil

)

->

...

transition conditions between x x’

...

->

let ’(m’,S’,A’):= x’ in

(some conditions on m’ /\ S’ = S13::nil /\ A’ = nil))

Fig. 9. Constraint in Coq

state transitions (state transition rule applications, cf. Section 4) to get from
x to x′. This is given in the transition conditions between x and x′. The set
of currently active steps in the resulting state x′ comprises one step S13 which
corresponds to a step in the first alternative for handling our workpiece.

Evaluation Aspects: Coq representation generation for SFC programs and the
import of IL code is feasible for IEC 61131–3 based PLC descriptions that are
solely described with these languages. Extending the semantics definition for
additional commands which may appear in some PLC descriptions is relatively
easy, due to the modularity of our semantics framework.

The inductive proof techniques used in the properties generated by the Cert-
PLC tool and the non-inductive proof techniques used manually in the case study
have been successfully applied in previous work which did not deal with PLC
(e.g., our own work [5]). Here we have demonstrated their applicability for a
realistic PLC. Using our Coq semantics and CertPLC, basic properties of a PLC
can be verified by experienced Coq users within several hours. This may result
in up to a few hundred lines of proof code for an example as in Figure 9. Com-
mon tactic applications are encapsulated into user defined tactics and libraries
to further speed this process up, make the scripts smaller, and especially make
the approach usable for people who have some knowledge in formal methods but
are not Coq experts.

7 Related Work

Formal treatment of PLC and the IEC 61131–3 standard has been discussed by
a larger number of authors before. Formalization work on the semantics of the
Sequential Function Charts is given in [6,7]. This work was a starting point for
our formalization of SFC semantics.
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Work on the formal treatment of the FBD language – which is also a part of
IEC 61131–3 – can be found in [20,19]. The FBD programs are checked using a
model-checking approach.

The approach presented in [16] regards a translation from the IL language
to an intermediate representation (SystemC). A SAT instance is generated out
of this representation. The correctness of an implementation is guaranteed by
equivalence checking with the specification model.

There are plenty of examples of the use of model checking for the verification of
PLC programs. The paper [2] considers the SFC language. Untimed SFC models
are transformed in to the input language of the Cadence SMV tool. Timed SFC
models are transformed into timed automata. These can be analyzed by the
Uppaal tool. In [13] a semantics of IL is defined using timed automata. The
language sub-set contains TON timers but data types are limited to booleans.
The formal analysis is performed by the model checker Uppaal.

In [8] an operational semantics of IL is defined. A significant sub-set of IL
is supported by this semantics, but it does not include timer instructions. The
semantics is encoded in the input language of the model checker Cadence SMV
and linear temporal logic (LTL) is used to specify properties of PLC programs.

In contrast to the model checking work, we are using a higher-order theorem
prover for our work. In general higher-order theorem provers require a higher
level of interaction (we are aiming at overcoming this drawback by generating
proof scripts and providing automatic tactics). On the plus side they allow in
general richer specifications, abstractions and proofs. In the theorem proving
community, there has been some work on the formal analysis of PLC programs.
In [17] the theorem prover HOL is used to verify PLC programs written in
FBD, SFC and ST languages. In this work, modular verification is used for
compositional correctness and safety proofs of programs. For the Coq system,
an example of verification of a PLC program with timers is presented in [18]. A
quiz machine program is used as an example in this work, but no generic model
of PLC programs is formalized. There is also a formalization of a semantics2 of
the LD languages in Coq. This semantics support a sub-set of LD that contains
branching instructions. This work is a component of a development environment
for PLC.

8 Conclusions and Future Works

Programmable Logic Controller applications can be critical in a safety or eco-
nomical cost sense. Therefore formal verification of PLC programs does increase
the confidence in such applications. In this paper we presented a formal frame-
work for the verification of PLC programs written in the languages IL and SFC.
We defined a formal semantics of these two languages in the formal proof system
Coq. These semantics are used by the CertPLC tool that automatically gener-
ates an SFC formal representation from a graphical representation. Using our
2 Research report in Korean available at: http://pllab.kut.ac.kr/tr/2009/

ldsemantics.pdf

http://pllab.kut.ac.kr/tr/2009/
ldsemantics.pdf
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formal semantics, we proved safety properties for a PLC based real industrial
demonstrator.

Future Work

The study of other languages from the IEC 61131–3 standard is an interesting
subject for future work. Furthermore, we are interested in extending the tool
support for verification of properties based on these semantics.

Another perspective of this work is the development of a certified compiler
front-end for PLC. This is an ongoing work and we plan to formalize and certify
a transformation of PLC programs written in the graphical language LD to IL.
This will open the way to the development of a certified compilation chain for
PLC. This chain can be build on top of the CompCert C certified compiler [12].
An integration of our formal semantics of PLC and the certified compiler to
the EasyLab framework is also an interesting perspective. This can lead to a
complete environment for the development of certified PLC programs.
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