
Distributed Implementation of Systems

with Multiparty Interactions and Priorities

Imene Ben-Hafaiedh1, Susanne Graf1, and Nejla Mazouz2

1 VERIMAG. 2, avenue de Vignate
38610 Gieres, France

2 Tunisia Polytechnic School
{benhfaie,graf,mazouz}@imag.fr

Abstract. Rich interaction models are a powerful mechanism allowing
to synchronize several entities in order to achieve some common goal and
to specify global properties in an abstract manner. In this paper we focus
on two types of interaction models, namely multiparty interactions and
priorities where priorities may be used to specify different scheduling
policies. We propose a protocol for building distributed implementation
of component-based models with multiparty interactions and priorities.
We also present a set of experiments providing a performance analysis
of the protocol.

Keywords: priorities, multiparty interaction, distributed systems.

1 Introduction

Providing a distributed implementation of component-based systems while
preserving global properties is a very challenging task [5,18], as we cannot de-
termine exactly the global state of distributed systems, but we can only approx-
imate it [11]. Interaction models in component-based systems are a means for
abstracting global properties of these systems. In this paper we focus on two
types of interaction models, namely multiparty interactions and priorities.

Multiparty interactions provide a convenient means for describing the global
behavior of a distributed system. Thus they can be later refined into efficient
low-level protocols with respect to the platform in use. A multiparty interaction
consists of a set of actions that need to be executed jointly by a number a
components.

Priorities between interactions in component-based systems are widely used
in system design as a way of defining different scheduling policies. They are
expressive enough to enforce safety properties without inducing any deadlock in
the system [13]. In fact, enforcing priorities means that when two interactions
can be fired simultaneously, the one with higher priority must be executed. Thus,
they restrict the behavior of the initial system which means that they preserve
deadlock freedom if the initial system is deadlock-free.

The main challenge in enforcing priorities in a distributed setting is that com-
ponents need to obtain a common and precise knowledge about the enabledness
of interactions so the interaction with higher priority can be executed.

G. Barthe, A. Pardo, and G. Schneider (Eds.): SEFM 2011, LNCS 7041, pp. 38–57, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Implementing Multiparty Interactions and Priorities 39

In [5], a partially distributed implementation has been proposed for component-
based systems with priorities, but where a centralized engine manages interactions
and enforce priorities. Existing distributed protocols implementing multiparty in-
teractions [1,17] do not handle priorities. In [6], we have proposed a protocol for
distributed implementation of systems with binary interactions and priorities. In
a binary interaction exactly two components are involved. Which means that it is
sufficient that each of the involved components gets information about the other
to decide the execution of an interaction. Thus, the protocol presented in [6], is
completely symmetric, which means that it does not distinguish between the two
participants of an interaction. In the case of a multiparty interactions a completely
symmetric protocol may, in the case where all partners of an n-ary interaction
initiate the protocol almost simultaneously, lead to a huge number of messages.
For this reason, most existing solutions for multi-party interactions (e.g. [17]) are
asymmetric and predefine an ”initiator” for each interaction; here we also choose
this asymmetric approach.

In this paper, we propose a protocol providing a distributed implementation
of component-based systems with multiparty interactions and priorities.

The paper is organized as follows. In Section 2, we present the basic semantics
of a distributed system with multiparty interactions and priorities. Section 3 is
dedicated to a thorough description of the protocol, and we prove its correctness
in Section 4. We discuss in Section 5 some experimental results. In Section 6, we
compare our proposal with other existing approaches.

2 Distributed System with Priorities

In this section, we present our notion of distributed systems defined by a set of
components.

Definition 1 (component). A component K is a labeled transition system
(LTS) (Q, q0, IK , δ): Q is a set of states with initial state q0 ∈ Q, IK is the label
set. δ ⊆ Q × I × Q is a transition relation. (q, a, q′) ∈ δ is denoted q

a−→ q′ and
we denote by q

a−→ the fact that ∃ q′ ∈ Q such that q
a−→ q′.

Definition 2 (distributed system). A distributed system DSK is defined by
a set of components K = {Ki}n

i=1. It defines an LTS (S, I, Δ) where:
– I is a set of multiparty interactions. An interaction a may belong to more

than one component and Ka = {Ki ∈ K|a ∈ IKi}.
– S is the set of global states where S0 ∈ S is the initial state. If S ∈ S, then

S = (q1, . . . , qn) where qi ∈ Qi. A local state SKi = qi is the restriction of
the global state S to the states of Ki.

– Δ ⊆ S × I × S is a transition relation.

If a transition τ ∈ Δ, τ = (S, a, S′) is fired, which means that the interaction
a is executed, then the new global state S′ is reached and we denote this by
S

a−→ S′. Δ is the least set of transitions satisfying the following rule:

a ∈ I ∀i s.t. Ki ∈ Ka, qi
a−→ q′i ∀i s.t. Ki �∈ Ka, qi = q′i

(q1, . . . , qn) a−→ (q′1, . . . , q′n)



40 I. Ben-Hafaiedh, S. Graf, and N. Mazouz

Intuitively this rule means that a distributed system DS can execute an interac-
tion in a global state S, if all components involved in this interaction can execute
it in their local state corresponding to S. This means that firing a corresponds to
synchronously firing the corresponding interactions a of the components in Ka.

Priorities. Given a set of interactions I, a priority between two interactions
specifies which one is preferred over the other when both can be executed. Pri-
orities are defined as partial orders <⊆ I × I and we write a < b means that a
has less priority than b.

Definition 3 (distributed system with priorities). A distributed system
DSK = (S, I, Δ) with a priority order <⊆ I × I is a distributed transition
system DSK

< = (S, I, Δ<) where: Δ< ⊆ S × I × S is the largest transition
relation satisfying the following rule:

S
a−→ S′, �b ∈ I s.t. a < b and S

b−→
S

a−→< S′

Definition 4 (locally ready, globally ready, enabled interaction). Let
DSK

< be a distributed system with priorities as above. Consider a global state
S = (q1, . . . , qn) ∈ S, and an interaction a ∈ I.
– a is locally ready in the local state qi iff qi

a−→i

– a is globally ready in S iff ∀i s.t.Ki ∈ Ka, qi
a−→i

– a is enabled in S iff a is globally ready in S and no interaction with higher
priority is also globally ready in S.

Definition 5 (global and local priorities). Consider a system DSK
< =

(K,S, I, Δ<). A priority rule a < b is called local if the interactions a and b
have a common component, i.e., Ka ∩ Kb �= ∅. Otherwise, we call this priority
rule global.

We can now define the usual notions of concurrency and conflict of interactions,
where in a distributed setting we want to allow the independent execution of
concurrent interactions (so as to avoid global sequencing). We distinguish ex-
plicitly between the usual notion of conflict which we call structural conflict,
and a conflict due to priorities.

Definition 6 (concurrent interactions, conflicting interactions). Let a, b
be interactions of I and S ∈ S a global state in which a and b are globally ready.

– a and b are called concurrent in S iff Ka∩Kb = ∅. That is, when a is executed
then b is still globally ready afterward, and vice versa, and if executed, both
interleavings lead to the same global state.

– a and b are called in structural conflict in S iff they are not concurrent in
S, that is a and b are alternatives disabling each other.

– a and b are in (purely) prioritized conflict in S iff a and b are concurrent in
S but a < b or b < a holds.



Implementing Multiparty Interactions and Priorities 41

Note that in case of prioritized conflict, it is known which interaction cannot be
executed, whereas in case of structural conflict, the situation is symmetric. We
use the notations ConcurrentS(a), ConflictS(a), PrioConflictS(a) to denote the
set of interactions that in state q are concurrent with a, respectively in structural
or prioritized conflict with a.

In distributed systems [9,8] the detection of some situations is important for
designing correct protocols. Confusion is such a situation occurring when con-
currency and conflict are mixed. More precisely, confusion arises in a state where
two interactions a1 and a2 may fire concurrently, but firing one modifies the set
of interactions in conflict with the other (see Definition 7). In presence of pri-
orities, confusion situations may compromise the correctness of a distributed
implementation of a specification.

Definition 7 (confusion). Let a and b be interactions, and S a global state
of DS<. We suppose that a and b are concurrent — and thus globally ready —
in S.
– a is in structural confusion with b iff ∃S′ ∈ S, S

b−→ S′ implies
ConflictS(a) �= ConflictS′(a)

– a is in prioritized confusion with b iff ∃S′ ∈ S, S
b−→ S′ implies

PrioConflictS(a) �= PrioConflictS′(a)

In Section 3, we propose a distributed implementation of systems DS< in which
concurrent interactions are executed independently, based on the notion of con-
currency of Definition 6 and our implementation does not support systems DS<

with prioritized confusion situations. To realize a distributed implementation of
DSK

< we use a distributed controller obtained by a set of local controllers ex-
changing messages with each other. By a local controller of a component K we
understand a component that may allow or disallow interactions b of K. b is
allowed by offering an interaction synchronizing with b and b is forbidden by not
offering it.

Definition 8 (distributed controller). A finite set of local controllers for a
distributed system DSK, is a set of labeled transition systems {LCKi}n

i=1 each
associated to one component Ki of DS. LCKi restricts the behavior of Ki. In
a state qi ∈ Qi of Ki, LCKi decides which interaction to execute together with
other local controllers, and synchronizes with Ki on this interaction. The set
of local controllers {LCKi}n

i=1 communicate amongst each others, by message
passing, to decide which interaction to execute (see Figure 1).

This definition of controller ensures a part of a safety property stating that only
interactions specified by the local behavior of components can be executed as
each local controller and its corresponding controlled component synchronize on
the interaction a chosen to be executed. Moreover all components in Ka must
also synchronize and execute a and this is what we will prove in Section 4. Thus
interactions not specified by DS< cannot be executed.

The behavior of a given local controller is described by the protocol proposed
in Section 3, where we describe how local controllers communicate using messages
exchange to schedule an interaction for execution.



42 I. Ben-Hafaiedh, S. Graf, and N. Mazouz

K1 K2 Kn

Communication : Message Passing

System
Level

LCK1 LCK2 LCKn
Implementation

Level

Controls

Multiparty

Interactions

Fig. 1. Local Controllers and their Controlled Components

3 Protocol Description

In this section, we provide an overall picture of the distributed controller that
is a protocol describing the global behavior of the set of local controllers. The
behavior of the controller LCK depends in each state q of K on the set of
interactions locally ready in this state. LCK exchanges messages with other local
controllers of to decide when and which interaction to fire. Once an interaction
a is chosen, LCK synchronizes with K, and thus implicitly also with all other
components involved in a to execute it.

In the following, we refer to K instead of LCK whenever this is not misleading.
To decide when and which interaction to fire, local controllers communicate

using message passing. We assume that the message passing mechanism, used by
the controllers, ensures the following basic properties: (1) any message is received
at the destination within a finite delay; (2) messages sent are received in the
order in which they have been sent; (3) there is no duplication nor spontaneous
creation of messages.

Table 1. Messages used by the Protocol

Message Description

POSSIBLE(a) If a is locally ready, the controller uses this message
to inform the negotiator of a.

NOTPOSSIBLE(a) Respond a negotiator that a is not locally ready.
COMMIT(a) Message sent by the negotiator of a to its peers to lock them

or sent back by a peer to respond the negotiator.
READY (a) Sent by a negotiator to ask about the global readiness of a.
NOTREADY (a) Sent by a negotiator to inform that a is not globally ready.
START (a) Message sent by the negotiator to all the peers of a to

order the execution of a.
REFUSE (a) Sent by a controller to inform that it cannot commit to a.



Implementing Multiparty Interactions and Priorities 43

The behavior of each local controller LCK is given by a labeled transition
system (see Figure 2) where the states of this LTS represent the different phases
of the protocol. Transitions represent reactions to messages received by peer
components which may consist in a local phase change and/or transmission of
messages to some (other) peers. Thus, every transition of Figure 2 is specified by
a message received, a guard and an action (see Table 3). Here message denotes
the message that triggers a transition if the guard holds. If there is no message,
the transition depends only on its guard. The role of each message is described
in Table 1 where we use expressions of the form MESSAGE(interaction, sender)
to denote the message triggering a given transition. The action of a transition
denotes the list of statements to be executed if the transition occurs and may
include message sending expressions of the form Send(message, recipient).

Some parts of the behavior of LCK can be performed independently, thus we
choose to describe it as a set of labeled transitions systems running in parallel
and called activities (see Figure 3). These activities share the set of variables
depicted in Table 2 and treat a set of disjoint messages. The transitions of Table 3
are performed by these activities where actions of the transitions may describe
variable assignments, message sending or creating and killing new activities.

For each interaction of the to be controlled system DSK
< , we associate the

role of negotiator to a local controller of one of the components involved in this
interaction. Thus, a local controller may be the negotiator of a set of interac-
tions in which its involved and each interaction has exactly one negotiator. The
choice of negotiators of interactions and how it may affect the performance of
the protocol is discussed in Section 5.1. This particular role of negotiator corre-
sponds to the notion of coordinator defined in [17] and to the notion of manager
presented in [3,2]. Note that comparing to the protocol for binary interactions,
presented in [6], here negotiators are assigned to all interactions and not only
to interactions involved in some priority rule as is the case in [6]. The reason is
that in addition to the role of checking the enabledness of an interaction, the
negotiator here checks also its global readiness. Thus, a controller presents a two
phase behavior. A first phase is collecting knowledge about the global readiness
of possible interactions and a second negotiating the enabledness of ready inter-
actions. The phase Active is first entered by the transition 0, providing the set of
interactions locally ready (possibleSet(q0)) of the initial state of the controlled
component. The controller LCK looks for a next interaction to fire by proceeding
as follows:

� Once in phase Active, the activities Main and WaitingForCommit are cre-
ated and run in parallel. Main starts by checking its locally ready interactions
(possibleSet) for interactions that are globally ready and for which it is the ne-
gotiator. For interactions in possibleSet for which LCK is not the negotiator,
it only informs their corresponding negotiators about the local readiness of the
interaction.

To check the global readiness of an interaction a, messages of the form
POSSIBLE (a) are exchanged (Transition 1 of Figure 2), and peers in which



44 I. Ben-Hafaiedh, S. Graf, and N. Mazouz

10 9

8

1 3

2

4

4

6

7 5

57

11

12

0

Negotiating

Active Waiting

Committing

Fig. 2. The Phases of the Local Controller behavior (see Table 3 for the transitions)

a is currently not locally enabled respond with NOTPOSSIBLE(a) after which
the requesting controller abandons a.

If LCK is the negotiator of a (a ∈ toNegotiate) and if it collects POSSIBLE (a)
from all the participants of a, then a is detected to be globally ready. If, in addi-
tion, a is involved in a priority rule, Main creates a new activity Negotiate(a)
which checks whether a is enabled and the LCK goes to phase Negotiating
through transition 4.
� Negotiate(a) activity checks the enabledness of an interaction a by sending a
READY (b) message to all negotiators of interactions b with higher priority than
a (b ∈ higherPrio(a)), it checks whether their interactions are globally ready
(and thus a cannot be executed now).

In turn the negotiators of b, as soon as they are not executing an interaction
and have found out whether b is globally ready, respond positively or nega-
tively as soon as they have the information available. In fact, it is sufficient that
NOTREADY (b) messages are sent as a is blocked anyway as long as it does
not have a response concerning b.
� If an interaction with maximal priority is globally ready, it is immediately
known to be enabled and a Committing phase is entered through transitions 5
or 6 by killing activities Main, WaitingForCommit and Negotiate and creat-
ing TryToStart (see further down).
� The Main activity, which is running while LCK is in the phases Active,
Negotiating and Waiting, handles local priorities locally. Whenever an interac-
tion b is known to be globally ready, it kills all activities Negotiate(a) if a < b.
� Concurrently to Main, the activity WaitingForCommit handles incoming
COMMIT messages. Whenever a COMMIT (a) is received from the negotiator
of a, which means that a is checked to be enabled by the negotiator of a. All
other negotiation activities are terminated and a TryToStart activity is created
(Transition 7). The existence of the activity WaitingForCommit means that
no other actions is in its Committing phase yet.



Implementing Multiparty Interactions and Priorities 45

� To avoid multiple commits for different interactions, COMMIT message is only
sent by TryToStart activity as it is created when all other activities terminate.
� If LCK is the negotiator of a, then TryToStart(a) sends a COMMIT (a) mes-
sage to all participants of a and waits for a COMMIT response from all of them.
Once, all participants send back a COMMIT , the negotiator orders the execution
of a by sending a START message and it executes a together with the controlled
component. Note that if TryToStart fails committing to a because it receives
a REFUSE message from at least one of the participants — in that case the
peer has committed to a conflicting interaction — the controller starts again by
checking the global readiness of its locally ready interactions (transition 8).
� If LCK is not the negotiator of a, then TryToStart(a) sends a COMMIT (a)
message to the negotiator of a and waits for a START or a REFUSE . If it
receives START , the controller executes a together with the controlled com-
ponent which corresponds to the transition 12 of Table 3. If a REFUSE mes-
sage is received, then activity TryToStart(a) terminates and new Main and
WaitingForCommit activities are created.
� Finally, an activity AnswerNegotiators (not represented in Figure 3) is always
running in all states of the state diagram of Figure 2, if LCK is the negotiator for
at least one interaction a that dominates some other interaction. This activity
receives messages of the form READY (a). It returns NOTREADY (a) if a is
in the notReadySet, returns READY (a) if a is in the readySet, and otherwise
defers the answer until the status of a is known.

COMMIT
NOTREADY

READY

REFUSE

NOTPOSSIBLE
POSSIBLE

Main
Negotiate Negotiate

WaitingForCommit

All Messages

TryToStart(a)

Fig. 3. Structure of the Protocol for a Local Controller

Avoiding Deadlocks Due to Decision Cycles

The protocol as described above may lead to a deadlock or a livelock in a situ-
ation where a set of components are all ready to execute at least 2 from a set
of conflicting enabled interactions. Such a situation may occur in Committing



46 I. Ben-Hafaiedh, S. Graf, and N. Mazouz

Table 2. Variables used by the Protocol

Variable Description

possibleSet(q) The set of interactions locally ready in q.
readySet The set of interactions detected to be globally ready.
notReadySet The set of interactions which are locally ready

but detected to be not globally ready.
toNegotiate The set of interactions for which the local controller is

the negotiator.
lessPrio(a) Interactions locally ready with less priority than a
higherPrio(a) Interactions locally ready with higher priority than a.
Peers(a) The set of participants in the interaction a.
Neg(a) The negotiator of the interaction a.
ReadyPeers(a) The set of participants in a for which a is locally ready.

phase of the protocol, where a negotiator has sent a COMMIT message to
all participants and waits for their response. Similarly one of these participants
could be a negotiator of a different interaction and being in a Committing phase.
This may lead to a deadlock if the set of interactions for which the negotiators
are committing forms what we call a cycle.

Definition 9. A cycle is a set of interactions A = {ai}n
i=1 involving a set of

components {Ki}n
i=1 for which the following holds: For all i ∈ [1, n], ai is an

interaction involving the two components Ki and K{i+1modn} and there exists at
least one global state in which all these interactions are enabled. We denote the
fact that A is a cycle by Cycle(A). Note that in such a global state each Ki has
at least two enabled interactions, in the corresponding local state, one interaction
with Ki−1 and the other with Ki+1.

To avoid deadlocks due to such cycles, we use a solution that we have already
proposed for the binary version of our protocol described in [6]. The idea is to
detect statically the set of potential cycles of the system. Then, we define for each
cycle statically one of the components involved as a Cyclebreaker. Whenever a
potential deadlock may be reached (from the point of view of the Cyclebreaker),
the Cyclebreaker will commit to one of the interactions and refuse the other. This
approach avoids defining a total order over all interactions or components, as
proposed in [1,17], which may lead to systematically avoiding certain interactions
and which may compromise liveness. Our solution is more faithful to the initial
description of the system as it does not exclude any interactions unless an actual
cycle occurs. Thus to avoid deadlocks due to cycles, if a given controller sends a
COMMIT message and then it receives another COMMIT message for a different
interaction, then either there is no cycle involving these two interactions or
there exists at least one. In the second case, if the received COMMIT concerns
the interaction committed by a Cyclebreaker, then the controller cannot send
back a REFUSE and thus if this interaction is not the one committed by the



Implementing Multiparty Interactions and Priorities 47

Cyclebreaker, the controller will send back a REFUSE which breaks the cycle.
To perform this solution locally, we define pairs of interactions representing the
local view of LCK about a given cycle.

Notation 1. We denote by cyclesof(K), the set of pairs of interactions of K
involved in some cycle. (a, b) ∈ cyclesof(K) implies that a and b are interactions
of K and ∃ A such that Cycle(A) ∧ {a, b} ⊆ A.
We denote by Cyclebreaker(A, K) the predicate which holds if the component K
is the Cyclebreaker of a cycle A.
We denote also by notRefuse(K) the set of pairs of interactions of the form
(a, b) such that (a, b) ∈ notRefuse(K) implies:
1. (a, b) ∈ cyclesof(K)
2. ∀ cycles A such that {a, b} ⊆ A, Cyclebreaker(A, Ka) holds, where Ka

is a participant in the interaction a. This means that whenever K sends
COMMIT (b) message, and then it receives COMMIT (a), it will not send
back REFUSE (a).

Note that the order of interactions of a pair in notRefuse(K) is relevant as
the first interaction is the one that cannot be refused by K. Note that a pair of
interactions (a, b) �∈ notRefuse(K) means that either there is no cycles involving
these two interactions ((a, b) �∈ cyclesof(K)) or that there exist such cycles
((a, b) ∈ cyclesof(K)) but if K commit for b and receives a COMMIT message
for a then it can send back a REFUSE (a) to its peer Ka because the latter is
not the Cyclebreaker of these cycles. Theorem 3 proves that this way to deal
with cycles allows indeed to avoid deadlocks.

4 Correctness

We now prove that the proposed protocol satisfies the following properties [2]:
– Correctness: Only interactions allowed by DSK

< can be executed:
1. only locally ready interactions can be executed.
2. if a component executes an interaction, the remaining components par-

ticipating in that interaction will execute it (Synchronization).
3. interactions in conflict (structural or prioritized conflict) cannot be com-

mitted simultaneously (Safety).
– Progress: when an interaction is enabled it will eventually be executed or

one of its participants executes a conflicting interaction.

The first item of the correctness property is guaranteed by Definition 8, as each
local controller and its corresponding controlled component synchronize on the
interaction chosen to be executed. Thus only interactions which are locally ready
for components can be executed.

Theorem 1 (Synchronization). Our protocol guarantees that if a partici-
pant executes interaction b, then all of the components participating in b will
execute it.



48 I. Ben-Hafaiedh, S. Graf, and N. Mazouz

Table 3. Transitions of the Local Controller State Diagram

Tr message guard action

0
possibleSet(q0) �= ∅, q0: initial state
of K

Create(Main),
Create(WaitingForCommit)

1 possibleSet �= ∅
∀a ∈(possibleSet∩toNegotiate),
send(POSSIBLE(a),Neg(a))
∀a ∈(possibleSet\toNegotiate),
send(POSSIBLE(a), Peers(a))

2 POSSIBLE(a) (a ∈possibleSet\toNegotiate) send(POSSIBLE(a),Neg(a))

2 NOTPOSSIBLE(a) (a ∈possibleSet∩toNegotiate) notReadySet:= notReadySet ∪ a

3 POSSIBLE(a, K)
(a ∈possibleSet∩toNegotiate)
∧(Peers(a) �=readyPeers(a)∪K)

readyPeers(a):= readyPeers(a)∪K

4 POSSIBLE(a, K)
(a ∈possibleSet∩toNegotiate)
∧(Peers(a)==readyPeers(a)∪K)
∧ a �∈ prioFree

create(Negotiate(a)),
readySet:=readySet∪a,
(∀ b ∈lessPrio(a),kill(Negotiate(b))

5 POSSIBLE(a, K)
(a ∈possibleSet∩toNegotiate)
∧(Peers(a)==readyPeers(a)∪K)
∧ a ∈ prioFree

Kill(WaitingForCommit),
Kill(Main),
Send(COMMIT(a),Peers(a))

6 Negotiate(a)==OK
Kill(WaitingForCommit)
Kill(Main),
Send(COMMIT(a),Peers(a))

7 COMMIT(a) (a ∈possibleSet\toNegotiate)
Kill(WaitingForCommit)
Kill(Main),
Send(COMMIT(a),Neg(a)

8 REFUSE(a) Committed(a)
Goto(Active),Reset(readySet),
Keep(possibleSet), Create(Main),
Create(WaitingForCommit).

9 COMMIT(b)
Committed(a),(a �= b)
(a, b) �∈ cyclesof(K) or
(a, b) ∈ notRefuse(K)

waitingSet:=waitingSet∪{b}

10 COMMIT(b)
Committed(a),(a �= b)and((a, b) ∈
cyclesof(K) and
(a, b) �∈ notRefuse(K))

Send(REFUSE(b),
Peers(b))∧readySet:=readySet\{b}

11 COMMIT(a, K)
Peers(a) �= readyToCommit(a)∪K,
a ∈ possibleSet∩toNegotiate

readyToCommit(a):=
readyToCommit(a)∪K

12 COMMIT(a, K)
Peers(a)==readyToCommit(a)∪K,
a ∈ possibleSet∩toNegotiate

Send(START(a), Peers(a)) and
∀ b ∈possibleSet,
Send(REFUSE(b), Peers(b))∧
Execute(a)

12 START(a) a ∈ possibleSet\toNegotiate

∀b ∈possibleSet,b �= a,
Send(REFUSE(b),Peers(b)),
Execute(a),Update(possibleSet(q)),
Create(Main),
Create(WaitingForCommit).

Proof. What we have to prove is that if a participant Ki of the interaction b
executes it, then the rest of participants will also do so. If a component Ki

which is the negotiator of b, executes b then it must according to transition 12 of
Table 3 have received COMMIT messages from all the participants of b. Note
that COMMIT is a blocking message, which means that all participants will
stay waiting for a response from the negotiator and once they receive the START
message they will also execute b. If a component Kj which is not the negotiator



Implementing Multiparty Interactions and Priorities 49

of b, executes b then it must according to transition 12 of Table 3 have received
a START message from the negotiator Kb of b. This means that similarly, Kb

has sent a START message to all participants of b, and as previously detailed
all these participants are in a blocking state waiting for the message of the
negotiator.

Theorem 2 (Safety). Let be S a global state, b1 an interaction and denote A
the set ConflictS(b1)∪PrioConflictS(b1) of interactions that are in conflict with
b1 in the global state S. Our protocol guarantees that if b1 is fired in state S, no
interaction in A is fired in S.

Proof. Suppose for b2 ∈ A that:
First case: b2 ∈ ConflictS(b1), that is b1 and b2 share a common component K.
First of all, only interactions, for which the corresponding negotiator has sent
a START message to all participants, are executed. If the common component
participating in b1 and b2 is the negotiator of both interactions, then only one
interaction can be executed as according to transition 12 of Figure 2 a negotiator
can send START only for one interaction at a time and the property is satisfied.
If b1 and b2 have different negotiators. Suppose that both negotiators have sent a
START message to execute b1 and b2. This means that all participants involved
in b1 and b2 have sent a COMMIT message to their negotiators (according to
transition 12 of Table 3). As K is a common component, then this means that
K has sent two COMMIT messages one for the negotiator of b1 and one for
those of b2 which is impossible as only one COMMIT message can be sent at a
time. In fact, a COMMIT message can only be sent by the TryToStart activity
which does not have any other concurrent activity (see Figure3).
Second case: b2 ∈ PrioConflictS(b1), that is b1 and b2 are concurrent (and thus
belong to different components) and either b1 < b2 or b2 < b1. Suppose that Kb1

is the negotiator for b1 and Kb2 is the negotiator for b2.
If b2 < b1, then b2 should not be executed before the execution of b1 — which

has started — has been completed and Kb1 enters Active phase for the successor
state of S. We have now to prove that from that moment on Kb2 cannot “believe
that b1 is not ready” which is the condition for committing to b2.

Indeed, if Kb2 does not yet know about the readiness of b1, before committing
b2, it will send a READY (b1) message to Kb1 , but as b1 is already engaged for
execution, Kb1 will not send any response before the execution of b1 is terminated
the next state reached, and the readiness of b1 evaluated in the new state; and
Kb2 remains blocked for b2 during this time.

Now, we must prove that Kb2 cannot have old, depreciated knowledge that b1

is not ready. This can only be the case, if at some point b1 was not ready and Kb1

has sent NOTREADY (b1) to Kb2 , and then transitions concurrent to b2 have
been executed leading to the current state S in which b1 is ready and executed,
and Kb2 may use incorrect knowledge and execute b2. This corresponds exactly
to a situation of confusion, which we have excluded (see Section 2). If b1 < b2,
the situation is almost symmetric.



50 I. Ben-Hafaiedh, S. Graf, and N. Mazouz

Lemma 1. If a negotiator K1 of an interaction a0 sends a COMMIT message
to a participant K2, then K1 will receive a REFUSE(a0) or a COMMIT (a0)
message from K2 within a finite delay.

Proof. We assume that the actual execution of an interaction a0 as well as all
the basic functions used in our protocol terminate and every message reaches
its recipient within a finite delay. If K1 waits for a response, after sending a
COMMIT (a0) message to K2, this means that it exists a global state S of
the system in which a0 is enabled and that K2 is in the phase Committing(a1)
(a0 �= a1) (see the diagram of Figure 2). Indeed K2 cannot be in any of the rest of
the phases Waiting, Active or Negotiating as the activity WaitingForCommit
running in these phases (see Figure 3) will catch this COMMIT (a0) message and
will send back a COMMIT (a0) to K1. Thus, K2 does not respond because it
is trying to commit to another interaction a1 �= a. Which means that K2 is in
the phase Committing(a1) and that in the same global state S, a1 is enabled.
According to the Table 3 one of the following cases holds:
1- (a0, a1) ∈ cyclesof(K2) and (a0, a1) �∈ notRefuse(K1) (according to the
guard of transition 10 of Table 3), in this case K2 sends back a REFUSE (a0) to
K1 within a finite delay.
2- (a0, a1) �∈ cyclesof(K2) ∨ (a0, a1) ∈ notRefuse(K2), in this case K2 is also
waiting for an answer from K3 about a1. Similarly, if K3 does not answer with a
REFUSE (a1), then it exists an interaction a2 enabled in S such that (a1, a2) �∈
cyclesof(K3) ∨ (a1, a2) ∈ notRefuse(K3). As there exists a finite number n of
components in the system, this means that there exists some cycle of size k in
S for which the following holds:

(a0, a1) �∈ cyclesof(K2) ∨ (a0, a1) ∈ notRefuse(K2)
(a1, a2) �∈ cyclesof(K3) ∨ (a1, a2) ∈ notRefuse(K3)

. . .
(ak−2, ak−1) �∈ cyclesof(Kk) ∨ (ak−2, ak−1) ∈ notRefuse(Kk)

This is a contradiction. Indeed, the first part of each property means that there
is no cycle containing these interactions, which is not true as we have a circular
sequence which means a cycle. The second part does not hold as we assume that
each cycle has exactly one Cyclebreaker which may try to commit to one of the
interactions only.

Theorem 3 (Progress). Let b be an enabled interaction. Our protocol guaran-
tees that b will eventually be executed or a component participating in it executes
another interaction.

Proof. The enabledness of an interaction is first detected by the negotiator of this
interaction. An interaction b is enabled for its negotiator Kb, when COMMIT(b)
messages are sent from all the participants of b. When it is detected to be enabled
the negotiator of b goes to phase committing(b). b becomes disabled when its
negotiator leaves this state either by executing b (through transition 12 according
to Table 3) or because one of the participants of b executes another interaction



Implementing Multiparty Interactions and Priorities 51

(through transition 8 according to Table 3). In other words what we have to prove
is that the negotiator Kb of b cannot stay in this state eternally. When Kb is in
phase committing(b), then it has send COMMIT messages to all participants
of b, and according to Lemma 1, K will receive eventually a COMMIT messages
from all participants or at least one REFUSE from one of the participants and
thus will leave the phase committing(b) through transition 12 or 8.

5 Experimental Results

In this section, we report the results of experiments undertaken using an im-
plementation of our protocol. Our implementation uses JAVA 1.6 to ensure the
different algorithm computations and Message Passing Interfaces (MPIs) [15,19]
to ensure the communication layer between components. Two metrics have been
used to evaluate the performance of the protocol, namely response-time and
message-count. The metric message-count computes the average number of mes-
sages needed to schedule one interaction for execution. The response-time is
measured from the instant at which an interaction becomes locally ready (as
viewed by its negotiator) to the instant at which it is selected for execution
by the protocol. This metric is defined as the sum of two other metrics: sync-
time and selection-time: sync-time measures the (mean) time taken by the al-
gorithm to ensure that a given interaction is globally ready, starting from the
moment when it is locally ready in its negotiator. selection-time measures the
(mean) time taken by the algorithm to select an interaction for execution once
it has been found globally ready. Note that the enabledness of an interaction is
checked during the selection-time. sync-time is independent of priorities between
interactions.

5.1 Sensitivity to the Choice of Negotiators

We illustrate the sensitivity of our protocol to the choice of negotiators by means
of the well-known Dining Philosophers problem [12]. As proposed in [17], using
multiparty interactions, a simple solution to this problem can be provided as
each philosopher could pickup both two forks at a time by means of a three-
party interaction (see Figure 5). However, using only binary interactions, the
solutions to this problem must rely on some distinction amongst the behaviors
of the philosophers, which makes such solutions not scalable nor reusable [16].
This problem models any situation where any entity needs to access a set of
resources in mutual exclusion.

Using this example, we study how the choice of negotiators in a system may
affect the performance of the protocol. We have carried out a series of experi-
ments for the system of dining philosophers depicted in Figure 5 in the case of
2, 3 and 4 philosophers.

For each case, we have measured the already described metrics (message-
count, sync-time and selection-time) to execute one interaction and we have
focused on two configurations depending on the choice of the negotiators for



52 I. Ben-Hafaiedh, S. Graf, and N. Mazouz

interactions. In a first configuration, we have assigned as negotiator of the in-
teraction the component Philosopher involved in this interaction. Then, in a
second configuration we have assigned the Fork component as negotiator for in-
teractions in which it is involved. Figure 4, shows that the message-count when
the Philosophers are the negotiators is higher than the case when Forks com-
ponents are chosen as negotiators.

This is expected as the component Fork is involved in more than one inter-
action and thus it has more knowledge about the state of the participants of
these interactions. However, the component Philosopher is involved in only one
interaction and so, when it has to schedule an interaction for execution, it needs
to communicate with other components to get knowledge about their states and
thus exchanges more messages. More precisely, in the case of the system with
two Philosophers, when the component Philosopheri is the negotiator of the in-
teraction getForksi, then according to the description of the protocol provided
in Section 3, each Philosopher tries to commit for its interaction by sending to
both Forks a COMMIT message making a total of 4 COMMIT messages.
When a component Fork1, for example, is the negotiator of both interactions in
the system namely, getFork1 and getFork2, then Fork1 tries to commit to only
one interaction which means that only 2 COMMIT messages will be sent by the
negotiator. Consequently, when assigning negotiators in a system, the designer
has to take into account the number of interactions in which negotiators are
involved. Thus, the more the interactions in which a negotiator is involved, the
less it needs to exchange messages. Similarly, the response-time metric is also
affected by the choice of negotiators as it can be observed in the right-hand side
of Figure 4.

Fig. 4. Sensitivity to the choice of negotiators



Implementing Multiparty Interactions and Priorities 53

getForks2

getForks1

Philosopher1

getForks3

Fork1Fork3

Philosopher3 Fork2 Philosopher2

getForksi

getForksi+1

returnForksi

returnForksi+1

The behavior of Forki

The behavior of Philosopheri

getForksi

returnForksi

Fig. 5. The Dining Philosophers with multiparty interactions

5.2 Example with Priorities: Jukebox System

We use a Jukebox example to illustrate the use of priorities and to study how our
algorithm performs, in particular, when global priorities are defined. The system
is defined by a set of readers (R1, . . .,R4) which need to access data located on
Discs (D1,D2). Access to discs is handled by Jukebox components (J1,J2). Each
Jukebox can load any disc to one of the readers it manages. Figure 6, represents
the structure of the Jukebox system, where each load interaction corresponds to
a loadJiDiRi interaction with Ji, Di and Ri are respectively the connected Juke-
box, Disc and Reader. The Jukebox J1 manages the access of the readers R1 and
R2, and J2 the access of the readers R3 and R4. The behavior of each component
is depicted in Figure 7. The interaction loadJiDiRi is a three-party interaction
between the Jukebox Ji, The Disc Di and the Reader Ri allowing, Ji to load Di

for the reader Ri. The interaction unloadjiDi of unloading the disc is a binary
interaction as it does not involve the reader. In Figure 7, the jukebox system is
modeled without priorities. However, two types of priorities could be defined:
– Priorities to enforce termination: We give priority to load interactions over

the unload ones. Formally, it defines the following priorities: {unloadjj Di <
loadJj DiRi}j∈{1,2}. Note that this set of priorities defines local priorities
as they include interactions of a common component namely the jukebox.
Table 4, depicts the different results obtained when running the Jukebox sys-
tem and measures the time taken and the message-count for the execution of
two load interactions. Note that with priorities, the time taken to satisfy two
readers is considerably lower than for the case without priorities. However,
as introducing priorities needs more communication a main drawback is the
message-count.



54 I. Ben-Hafaiedh, S. Graf, and N. Mazouz

J1

R2R1 R3 R4

J2

D1 D2

load

load

load

load
load

load

load

load

unload unload

unload unload

Fig. 6. The Jukebox System

– Priorities to manage resource access: We define priorities between Readers
when accessing to a given Disc. We define for example the priority rule:
loadJ1D1R1 < loadJ2D1R3 which means that whenever the Readers R1 and
R3 want to load the Disc D1, the priority is given to the Reader R3. Such
a priority rule involves the Disc as a common component which can con-
sequently ensure this rule locally. However, in general, resources are repre-
sented by passive components which are not designed to manage or to make
decisions. As managing access to resources is handled by the Jukebox compo-
nent, we assign J1 and J2 as negotiators of the load interactions. Thus such
a priority will be handled as a global priority rule, as components J1 and J2

have to communicate to decide which interaction to fire. Without this prior-
ity rule, for 20 executions of load interactions, which may involve any of the
4 Readers, we obtain an average of 915 messages exchanged. However, with
loadJ1D1R1 < loadJ2D1R3, no interaction load for Reader 1 takes place and
the average of the messages exchanged is about 1050, which is expected as
global priorities are handled by the exchange of additional messages, namely
READY and NOTREADY , between the negotiators.

Table 4. Enforcing Termination using Priorities

elapsed-time (ms) message-count

Without priorities 580 65
With priorities 300 75

6 Related Work

This paper handles two important issues in the context of distributed control.
The first one concerns the enforcement of global properties, which are here

priorities between interactions, in a distributed setting which is challenging to
implement [5,11].



Implementing Multiparty Interactions and Priorities 55

Jukebox1Readeri

{loadJ1D2R1, loadJ1
D2R2, unloadJ1

D2}

loadJj
D1Ri {loadJ1D1R1, loadJ1D1R2, unloadJ1D1}

unloadJ2
Di

loadJ1
DiR2

loadJ2
DiR3loadJ1

DiR1

loadJ2
DiR4

unloadJ1
Di

Disci

loadJj
D2Ri

Fig. 7. Components of the Jukebox System

In [14,4,7], model-checking and knowledge are used to transform the system
with priorities into a new system without priorities by restricting the possible
choices in order to impose priorities. This means that they reduce concurrency
of the initial system, whereas in our approach we guarantee maximal progress,
which means that we allow all possible interactions of the initial description.

Similarly, to enforce priorities the approach proposed in [10] codes the prior-
ities in the behavior of the initial system, so as to obtain a new model without
priorities, then implements the so-obtained model in a distributed setting. Such
approach adds to the system particular components called managers associated
to each interaction which increase considerably the size of the studied system.
Moreover, this makes their implementation less flexible to any change on the set
of priorities as it means changing the system structure whenever the set of pri-
orities is changed. Whereas in our approach the implementation of the protocol
is still the same to any set of priorities.

Second, we propose a new protocol implementing multiparty interactions in
a distributed setting. In [2,1,17], similar algorithms have been proposed but no
global priorities are handled. In [3] local priorities have been defined to deal with
deadlocks due to decision cycles as each controller explores its possibleSet in
a decreasing order of priority which means that exactly one interaction, which
has the highest priority, will be always executed if it is enabled. Similarly, to
deal with such problem, the α-core algorithm proposed in [17] defines a total
order between components which also means that some interactions can never
be executed if they are in conflict with the interactions of the component with
the highest priority, which limits the variability of the executions of the initial
system. However, the solution we propose to deal with deadlocks due to decision
cycles, uses some static knowledge about the structure of the system to define
beforehand the set of potential cycles and then defines, only when needed, a
priority given to the interaction chosen by the Cyclebreaker.

The α-core algorithm defines for each interaction a particular component
called Coordinator managing the corresponding interaction and collecting infor-
mation from all its participants to decide about its execution. In our approach
the coordinator, i.e. the negotiator is one of the participant which allows to re-
duce the number of messages exchanged as the negotiator exploits already some
local knowledge.

Similarly, in [1], managers are associated to interactions. However, a given
manager is responsible for managing a subset of interactions and thus managing



56 I. Ben-Hafaiedh, S. Graf, and N. Mazouz

conflicts between managers is achieved by means of a circulating token allowing
the manager having it to execute its corresponding non-conflicting interactions.
This solution based on a circulating token may lead to a situation in which a
manager can never execute its interactions as it never gets the token at the right
moment.

7 Conclusion

In this paper, we have focused on component-based systems with multiparty
interactions and priorities. We have provided a protocol to implement such sys-
tems in a distributed setting. A variety of protocols for implementing multiparty
interactions exist in the literature, but our approach is innovative as it handles in
addition global priorities between interactions. An implementation of the pro-
posed protocol is also provided with a set of experimental results allowing to
analyze its performance. There are several research directions for future work.
First, more experimentation is needed in particular to compare the performance
of the protocol to existing approaches. Second, we are interested in combining
our approach with knowledge-based methods, as it is proposed in [4], in order to
optimize the performance of our protocol by taking into account a pre-calculated
knowledge and thus reducing communication between local controllers.

References

1. Bagrodia, R.: A distributed algorithm to implement n-party rendezvous. In: Nori,
K. (ed.) FSTTCS 1987. LNCS, vol. 287, pp. 138–152. Springer, Heidelberg (1987)

2. Bagrodia, R.: Process synchronization: Design and performance evaluation of dis-
tributed algorithms. IEEE Trans. Software Eng. 15(9), 1053–1065 (1989)

3. Bagrodia, R.: Synchronization of asynchronous processes in CSP. ACM Trans.
Program. Lang. Syst. 11(4), 585–597 (1989)

4. Basu, A., Bensalem, S., Peled, D., Sifakis, J.: Priority Scheduling of Distributed
Systems Based on Model Checking. In: Bouajjani, A., Maler, O. (eds.) CAV 2009.
LNCS, vol. 5643, pp. 79–93. Springer, Heidelberg (2009)

5. Basu, A., Bidinger, P., Bozga, M., Sifakis, J.: Distributed Semantics and Imple-
mentation for Systems with Interaction and Priority. In: Suzuki, K., Higashino, T.,
Yasumoto, K., El-Fakih, K. (eds.) FORTE 2008. LNCS, vol. 5048, pp. 116–133.
Springer, Heidelberg (2008)

6. Ben-Hafaiedh, I., Graf, S., Quinton, S.: Building distributed controllers for systems
with priorities. Journal of Logic and Algebraic Programming (2010)

7. Bensalem, S., Peled, D., Sifakis, J.: Knowledge based scheduling of distributed
systems. In: Manna, Z., Peled, D.A. (eds.) Time for Verification. LNCS, vol. 6200,
pp. 26–41. Springer, Heidelberg (2010)

8. Bolton, C.: Adding Conflict and Confusion to CSP. In: Fitzgerald, J.S., Hayes, I.J.,
Tarlecki, A. (eds.) FM 2005. LNCS, vol. 3582, pp. 205–220. Springer, Heidelberg
(2005)

9. Bolton, C.M.: Capturing Conflict and Confusion in CSP. In: Davies, J., Gibbons,
J. (eds.) IFM 2007. LNCS, vol. 4591, pp. 413–438. Springer, Heidelberg (2007)



Implementing Multiparty Interactions and Priorities 57

10. Quilbeuf, J., Bonakdarpour, B., Bozga, M.: Automated distributed implementation
of component-based models with priorities. Technical Report TR-2011-3, Verimag
Research Report

11. Mani Chandy, K., Lamport, L.: Distributed snapshots: determining global states
of distributed systems. ACM Trans. Comput. Syst. 3(1), 63–75 (1985)

12. Dijkstra, E.W.: Hierarchical ordering of sequential processes, pp. 198–227.
Springer-Verlag New York, Inc., New York (2002)

13. Gößler, G., Sifakis, J.: Priority Systems. In: de Boer, F.S., Bonsangue, M.M., Graf,
S., de Roever, W.-P. (eds.) FMCO 2003. LNCS, vol. 3188, pp. 314–329. Springer,
Heidelberg (2004)

14. Graf, S., Peled, D., Quinton, S.: Achieving Distributed Control through Model
Checking. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174,
pp. 396–409. Springer, Heidelberg (2010)

15. Gropp, W., Lusk, E., Skjellum, A.: Using MPI: portable parallel programming with
the message-passing interface, 2nd edn. MIT Press, Cambridge (1999)

16. Lynch, N.A., Merritt, M., Weihl, W.E., Fekete, A.: Atomic Transactions. Morgan
Kaufmann, San Francisco (1993)

17. Pérez, J.A., Corchuelo, R., Toro, M.: An order-based algorithm for implementing
multiparty synchronization. Concurrency - Practice and Experience 16, 1173–1206
(2004)

18. Rudie, K., Murray Wonham, W.: Think globally, act locally: decentralized super-
visory control. IEEE Transactions on Automatic Control 37(11), 1692–1708 (1992)

19. Snir, M., Otto, S.W., Huss-Lederman, S., Walker, D.W., Dongarra, J.: MPI: The
complete reference. MIT Press, Cambridge (1996)


	Distributed Implementation of Systems with Multiparty Interactions and Priorities
	Introduction
	Distributed System with Priorities
	Protocol Description
	Correctness
	Experimental Results
	Sensitivity to the Choice of Negotiators
	Example with Priorities: Jukebox System

	Related Work
	Conclusion
	References




