
G. Barthe, A. Pardo, and G. Schneider (Eds.): SEFM 2011, LNCS 7041, pp. 19–34, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Developing Model-Checking Mechanisms for ASSL:
An Experience Report

Emil Vassev and Mike Hinchey

Lero—The Irish Software Engineering Research Centre
University of Limerick, Limerick, Ireland

{Emil.Vassev,Mike.Hinchey}@lero.ie

Abstract. The Autonomic System Specification Language (ASSL) is a formal
method dedicated to autonomic computing, and as such, assists developers with
formal specification, validation and code generation of autonomic systems. Due
to the synthesis approach of automatic code generation, ASSL guarantees
consistency between a specification and the corresponding implementation.
Moreover, one of the major objectives of the framework is to assure the
correctness of autonomic systems via the inclusion of tools targeting model
checking. In this paper, we report our experience in developing model-checking
mechanisms for ASSL.

Keywords: model checking, formal methods, ASSL, autonomic computing.

1 Introduction

The Autonomic System Specification Language (ASSL) [1, 2] is an initiative for self-
management of complex systems where we approach the problem of formal
specification, validation, and code generation of autonomic systems (ASs) within a
framework. Being dedicated to autonomic computing (AC) [3], ASSL helps AC
researchers with problem formation, system design, system analysis and evaluation,
and system implementation. The framework provides tools that allow ASSL
specifications to be edited and validated. From any valid specification, ASSL can
generate an operational Java application skeleton. The ASSL formal validation is
addressed by multiple model checking mechanisms, some fully implemented and
some still under development.

In general, model checking advocates for formal verification whereby software
programs are automatically checked for specific flaws by considering correctness
properties. In ASSL, some of those properties are defined as semantic definitions
forming a theory that aids in the construction of correct AS specifications. For the
purpose of developing flawless ASs, we are considering four distinct model checking
mechanisms for ASSL: 1) a consistency checker; 2) a built-in model checker; 3) a
mechanism for mapping ASSL specifications to a formal notation with provided tool
support for model checking; and 4) a post-implementation model checker. Whereas
the first three model-checking methods check ASSL specifications, the fourth one
verifies the generated Java code. Note that despite careful specification and the
existence of ASSL-level model checking, it is possible to generate ASs containing

20 E. Vassev and M. Hinchey

fatal errors (e.g., deadlocks). This is mainly due to the so-called state-explosion
problem. Moreover, with the post-implementation model checker we may verify not
only the newly-generated code but also all consecutively updated versions of the
same. In this paper, we report our experience in developing the ASSL model checking
mechanisms in the course of research projects at Lero–the Irish Software Engineering
Research Centre.

The rest of this paper is organized as follows: In Section 2, we briefly present the
ASSL formal specification model. In Section 3, we present our experience in the
development of the four ASSL model checking mechanisms. Section 4 briefly
outlines a case study where the built-in model checking approach is applied. Finally,
Section 5 provides brief concluding remarks and a summary of future research goals.

2 ASSL

ASSL [1, 2] is based on a specification model exposed over hierarchically organized
formalization tiers (see Table 1). This specification model provides both infrastructure
elements and mechanisms needed by an AS (autonomic system).

Table 1. ASSL multi-tier specification model

AS

AS Service-level Objectives

AS Self-management Policies
AS Architecture
AS Actions
AS Events
AS Metrics

ASIP
AS Messages
AS Channels
AS Functions

AE

AE Service-level Objectives

AE Self-management Policies
AE Friends

AEIP

AE Messages

AE Channels

AE Functions

AE Managed Elements

AE Recovery Protocols
AE Behavior Models
AE Outcomes
AE Actions
AE Events
AE Metrics

 Developing Model-Checking Mechanisms for ASSL 21

Each tier of the ASSL specification model is intended to describe different aspects
of the AS in question, such as service-level objectives, policies, interaction protocols,
events, actions, autonomic elements, etc. This allows us to specify an AS at different
levels of abstraction (imposed by the ASSL tiers) where the AS in question is
composed of special autonomic elements (AEs) interacting over interaction protocols
(IPs). As shown in Table 1, the ASSL specification model decomposes an AS in two
directions: 1) into levels of functional abstraction; and 2) into functionally related
sub-tiers. The first decomposition presents the system at three different tiers [1, 2]:

1) a general and global AS perspective – we define the general system rules
(providing autonomic behavior), architecture, and global actions, events, and
metrics applied in these rules;

2) an interaction protocol (IP) perspective – we define the means of
communication between AEs within an AS;

3) a unit-level perspective – we define interacting sets of individual computing
elements (AEs) with their own autonomic behavior rules, actions, events,
metrics, etc.

The second decomposition presents the major tiers, AS and ASIP, as composed of
functionally related sub-tiers, where new AS properties emerge at each sub-tier. The
AS Tier specifies an AS in terms of service-level objectives (AS SLOs), self-
management policies, architecture topology, actions, events, and metrics (see Table
1). The AS SLOs are a high-level form of behavioral specification that helps
developers establish system objectives such as performance. The self-management
policies are driven by events and trigger the execution of actions driving an AS in
critical situations. The metrics constitute a set of parameters and observables
controllable by an AS. With the ASIP Tier, the ASSL framework helps developers
specify an AS-level interaction protocol as a public communication interface
expressed with special communication channels, communication functions, and
communication messages. At the AE Tier, the ASSL formal model exposes
specification constructs for the specification of the system’s AEs. Note that AEs are
considered to be analogous to software agents able to manage their own behavior and
their relationships with other AEs. An AE may also specify a private AE interaction
protocol (AEIP) shared with special AE considered as “friends” (AE Friends tier).

It is important to mention that the ASSL tiers are intended to specify different
aspects of the AS in question, but it is not necessary to employ all of them in order to
develop an AS. Conceptually, it is sufficient to specify self-management policies
only, because those provide self-management behavior at the level of AS (the AS tier)
and at the level of AE (AE tier). These policies are specified within the AS/AE Self-
management Policies sub-tier (the ASSL construct is AS[AE]SELF_MANAGEMENT) with
special ASSL constructs termed fluents and mappings [1, 2]. A fluent is a state where
an AS enters with fluent-activating events and exits with fluent-terminating events. A
mapping connects fluents with particular actions to be undertaken. Usually, an ASSL
specification is built around one or more self-management policies, which make that
specification AS-driven. Self-management policies are driven by events and actions
determined deterministically. The following ASSL code presents a sample
specification of a self-healing policy.

22 E. Vassev and M. Hinchey

ASSELF_MANAGEMENT {
 SELF_HEALING {
 FLUENT inLosingSpacecraft {
 INITIATED_BY { EVENTS.spaceCraftLost }
 TERMINATED_BY { EVENTS.earthNotified } }
 MAPPING {
 CONDITIONS { inLosingSpacecraft }
 DO_ACTIONS { ACTIONS.notifyEarth } }
 }
} // ASSELF_MANAGEMENT

As shown, fluents are expressed with fluent-activating and fluent-terminating

events. In order to express mappings, conditions and actions are considered, where the
former determine the latter in a deterministic manner.

Once a specification is complete, it can be validated with the ASSL built-in
verification mechanisms (e.g., consistency checking) and a functional application
skeleton can be generated automatically. The application skeletons generated with the
ASSL framework are fully-operational multithreaded event-driven applications with
embedded messaging.

3 Model Checking with ASSL

The ASSL framework helps developers edit and validate ASSL specifications and
generate Java code, i.e., the ASSL toolset provides powerful tools needed to formally
process an ASSL specification and automatically generate the corresponding
implementation. The following subsections present the ASSL model checking
mechanisms, used to validate the ASSL specifications.

3.1 Consistency Checking

The ASSL tiers can be classified as declarative (or imperative) and operational tiers
[1, 2]. Whereas the former simply describe definitions in the AS under consideration,
the latter not only describe definitions but also focus on the operational behavior of
that AS. The ASSL framework evaluates an AS specification formally to construct a
special declarative specification tree needed to perform both consistency checking
(and eventually model checking) and code generation. The declarative specification
tree is created by the framework when parsing an AS specification and copes with the
hierarchical tier structure of that specification. Each specified tier/sub-tier is presented
as a tier instance. Consistency checking (see Fig. 1) is a framework mechanism for
verifying specifications by performing exhaustive traversing of the declarative
specification tree. In general, the framework performs two kinds of consistency-
checking: 1) light – checks for type consistency, ambiguous definitions, etc.; and 2)
heavy – checks whether the specification model conforms to special correctness
properties. The “heavy” consistency checking can be considered as a form of model
checking, where the model is verified against predefined correctness properties.

The correctness properties are ASSL semantic definitions [1, 2] defined per tier.
Although, they are expressed in First-Order Linear Temporal Logic (FOLTL)1 [5],

1 In general, FOLTL can be seen as a quantified version of linear temporal logic. FOLTL is

obtained by taking propositional linear temporal logic and adding a first order language to it.

 Developing Model-Checking Mechanisms for ASSL 23

currently ASSL does not incorporate a FOLTL engine, and thus, the consistency
checking mechanism implements the correctness properties as Java statements. Here,
the FOLTL operators (forall) and (exists) work over sets of ASSL tier instances. It
is important to mention that the consistency checking mechanism generates
consistency errors and consistency warnings. Warnings are specific situations where
the specification does not contradict the correctness properties, but rather introduces
uncertainty as to how the code generator will handle it.

Fig. 1. Consistency Checking with ASSL

As mentioned above, a variety of predefined correctness properties are subject of
consistency checking. One of those correctness properties is the so-called
autonomicity rule [1, 2]. According to that rule, every autonomic system specified
with ASSL must have specified at least one self-management policy. Fig. 2 shows an
error reported by the ASSL consistency checker, because the processed ASSL
specification violates the autonomicity rule (the entire ASSELF_MANAGEMENT sub-tier
comprising the self-management policies is commented).

Fig. 2. Checking for “Autonomicity” with the ASSL Consistency Checker

3.2 Built-in Model Checker

In this approach, an ASSL specification is translated into a state-transition graph,
over which model checking is performed to verify whether an ASSL specification
satisfies correctness properties. Here, the model-checking problem is: given the AS A
and its ASSL specification a, determine in the AS’s state graph g (called ASG)

24 E. Vassev and M. Hinchey

whether the behavior of A, expressed with the correctness properties p, meets the
specification a [4]. An ASG formally stems from the concept of Kripke Structure [5].
The latter is basically a graph having the reachable states of an ASSL-specified
system as nodes and the state transitions of the system as edges. In addition, to allow
for formal verification, each system state must be labeled with properties (called
atomic propositions AP) that hold in that state and each state transition must be
associated with one or more state transition operations Op. The notion of state in
ASSL is related to the ASSL specification constructs called ASSL tier instances [1, 2]
(specified tiers and sub-tiers). The ASSL operational semantics [1, 2] considers a
state-transition model where tier instances can be in different tier states, e.g.,
instances of the SLO (Service-Level Objectives) tier can be evaluated as satisfied or
not satisfied. Here, an ASSL-developed AS transits from one state to another when a
particular tier instance evolves from a tier state to another tier state. Here, transition
operations Op cause tier instances to evolve.

3.2.1 Building the Autonomic System Graph
In order to build the ASSL model checker, we had to do some preliminary theoretical
work to prepare the program structures holding an ASG. Here, we had to define:

1) the reference state model for ASSL-specified ASs, which appeared to be a
product machine that consists of high-level tier states composed of
multilevel nested tier states, and the global system state is a product of all
nested states (we had to identify an initial state and all the possible tier states
S);

2) a set of all atomic propositions AP, which denote the properties of individual
states S, and present the S-AP relationship as tuples of the form (Sn, AP1,
…. APn);

3) all possible transition relations R as tuples of the form (S1, Op, S2).

Next, we had to implement structures holding the S-AP and R tuples. Note that those
are recorded in two flat files (one per tuple type) and are loaded into the implemented
program structures at the time of ASSL loading. This helps the model-checker tool
cope with future extensions to ASSL. To implement the tuple structures, we used a
distinct token class per tuple type (S-AP and R) and used vectors of tuple tokens. In
addition, a generic algorithm is implemented to traverse those vectors and return a
sub-vector of tuple tokens refined by state, by operation, or by atomic proposition.
Thus, at runtime, the model-checking tool can obtain all the atomic propositions and
related transition operations for a particular state. Here,

• tier states S are recorded with tier instance name and state name;
Example: tier { SLO } name { performance } state { unsatisfied }

• transition operations Op are recorded with their ASSL predefined names [1];
• atomic propositions AP are recorded with “if” and “then” sections and

optional “temporal” operators (a temporal logic operator).
Example: if { event prompted } then { tempOperator { eventually } fluent initiated }

In the next step, we had to develop a mechanism constructing the ASG from an ASSL
specification. Here, the ASG is constructed by the ASSL framework by using a
special declarative specification tree created by the framework when parsing an AS

 Developing Model-Checking Mechanisms for ASSL 25

specification [1, 2]. The declarative specification tree contains the hierarchical tier
structure of the actual specification. Thus, enriched with the tier states S, it can be
used to derive the composite multilevel structure of the ASG by taking into
consideration that all the tier instances run concurrently as state machines. Thus, the
tier states S are derived from the declarative specification tree and enriched with the
appropriate atomic propositions AP. The latter are retrieved per state.

In addition, the so-called operational evaluation [1, 2] performed on the ASSL
specification is used to derive all the transition relations R (S1, Op, S2) needed to
connect the states S and thus, to construct the ASG. Here, an ASG is composed of
nodes that can be presented formally as a tuple (s, R, AP) where: s is the tier state; R
is a set of transition relations connecting the state s to other states via system
operations; AP is a set of atomic propositions held in s. Similar to the declarative
specification tree, the generated ASG is hierarchical, i.e., composed of multilevel
composite tier states. Note that the generated ASG is stored in a flat file, which helps
us trace the graph. Fig. 3 depicts the transformation of the declarative specification
tree into an ASG, where the latter is presented at the highest possible level of
abstraction comprising a single composite state “AS Active”, which is a product
machine consisting of product states.

Fig. 3. Transformation of the Declarative Specification Tree into an ASG

3.2.2 Building the Model-Checking Engine
Next, we had to implement the model checking engine that should work over the
following algorithm: given that Ф is a correctness property expressed in a temporal
logic formula, determine whether the “AS Active” tier state (see Fig. 3) satisfies Ф,
which implies that all possible compositions of nested tier states satisfy Ф.

Thus, the model-checking engine traverses all the possible paths in an ASG to
check whether special correctness properties Ф (expressed in a temporal logic) are
satisfied. In case such a property is not satisfied, the ASSL framework produces a
counterexample. The latter is an execution path of the ASG for which the desired
correctness property is not true.

At the time of writing, the model-checking engine is still under development. We
are currently examining two possible solutions: 1) developing our own engine; or 2)
integrating an already existing engine that can process the generated ASG file.
Engines of current interest are SPIN [6] and GEAR [7]. In all approaches though, we
need to consider the so-called state-explosion problem. In general, the size of an ASG
is at least exponential in the number of ASSL tier instances running concurrently in

26 E. Vassev and M. Hinchey

the system (recall that an ASG is a product machine). We are currently working on
two possible solutions to that problem - abstraction and prioritized tiers. The first
solution is to use composite tier states to abstract their nested tier states. Thus, given
an original state graph G (derived from an ASSL specification) an abstraction is
obtained by suppressing low-level tier states yielding a simpler and likely smaller
state graph Ga. This reduces the total amount of states to be considered but is likely to
introduce a sort of conservative view of the system where the abstraction ensures only
that correctness of Ga implies correctness of G. The other possible solution is to
prioritize ASSL tiers by giving their tier states a special probability weight pw. This
can be used as a state-reduction factor to derive probability graphs Gpw with a specific
level of probability weight, e.g., pw > 0,5. However, this approach is likely to
introduce probability to the model-checking results, which correlates with the
probability level of the graph Gpw.

3.3 External Model Checker

Another research direction of ours is towards mapping ASSL specifications to special
service logic graphs supporting the so-called reverse model checking [8]. In this
approach, to complement the original textual view of an ASSL specification, and in
perspective to visualize and reify certain aspects of the operational semantics of
ASSL, we map selected ASSL-specified behavioral elements to GEAR’s behavioral
models. These can be visualized as special Service Logic Graphs (SLGs) in the jABC
framework [9] (of which GEAR is the model checking plugin) and analyzed, guiding
the user through the processes and workflows of the specified autonomic system.
Note that these models are directly amenable to model checking. SLGs themselves are
composed of reusable building blocks that are called Service Independent Building
Blocks, and may represent a single atomic service or a whole subgraph (i.e., another
SLG). Thus SLGs can be hierarchical, which grants a high reusability not only of the
building blocks, but also of the models themselves, within larger systems. SLGs
formally stem from the concept ofa Kripke Transition System (KTS) [5]. Similar to
any KTS, SLGs are graph structures with labeled branches and nodes that are
enriched with atomic propositional properties, thus sufficing to adopt the established
model checking technologies for SLGs.

From the point of view of model generation, AS and AE specifications are
structurally identical with reference to events, self-management policies and actions,
but differ in terms of scoping - while the AS specification has a global scope, the AE
specification is only valid for the element in question (see Section 2). Due to the
similarities, we focus on the description of the AE tier. The AS tier is captured
similarly, by means of hierarchy (where single nodes of the AS-level KTS are
expandable to AE-level models).

Fig. 4 shows a specification fragment of an ASSL specification of the Voyager
spacecraft [10] (right) and the corresponding section of the behavioral model (left). In
the textual specification (right), we have two events, one fluent with a mapping, and
one action. Dashed arrows illustrate a trace of an event within the specs. Arrows
indicate the correspondence between elements of the ASSL-specification and of the
behavioral. The InTakingPicture cloud defines the current state of the system (an
atomic proposition).

 Developing Model-Checking Mechanisms for ASSL 27

Event is the central language element in ASSL. It specifies fluents, actions, and
policies globally in the AS tier and locally in the AE tier. Events can be activated by
messages, other events, actions or metrics [1, 2]. In our behavioral model, events are
mapped to homonymous Branches. In Fig. 4, the behavioral model starts with the
event timeToTakePicture. It initiates the self-management policy (fluent)
inTakingPicture.

Fig. 4. Action, Event, Fluent, and Mapping in KTS behavioral model representation

An AE self-management policy defines the behavior of the AE by connecting
specific system states (expressed with fluents) with the intended (re)action (expressed
with mappings) (see Section 2). Fluents and mappings are central to the model
extraction: the information contained in a self-management policy is used and useful
both for model construction and for verification. Together, fluent and mappings
define the control flow, i.e. create branches with the name of the initiating event.
They define all possible incoming branches of an action. The specific condition that
activates the fluent is stored in the context of the system’s model. The context
represents the current global state of the system, like a global Blackboard or shared
memory-mechanism. For model checking purposes, the fluent is additionally
associated as atomic proposition to the corresponding node(s) of the behavioral
model. This enables global model checking. The fluent can be used as preconditions
of actions. They hold on all states in the region between initiation and termination.

The fluent in our example is activated by the timeToTakePicture event and the
overall status of the AS is changed to intakingPicture. This change activates an
action: takePicture which is specified in the mapping section of the self-management
policy. The self-management policy which connects the event to actions is
additionally used to annotate the nodes in the behavioral model with atomic

28 E. Vassev and M. Hinchey

propositions (APs). The name of the AP is equal to the name of the fluent. They can
later be used for model checking.

Actions are routines performed by an AE or AS (global and local) [1,2]. In our
behavioral model, they are the second essential element. The different elements of an
action are used to describe the nodes and for verification purposes. Action parameters
become parameters of a node; the DOES part [1, 2] (see the ASSL specification in
Fig.4) represents the body of a node. It can be a single action (then the node is an
atomic node), or a more complex structure where the latter is represented as an entire
behavioral model. We then model them as a SLG hierarchy, as shown in Figure 4: the
node takePicture has a corresponding submodel presented on the left.

The action’s guards, returns and outcomes [1, 2] are used for verification. We offer
two possibilities for verification:

• The GEAR’s Localchecker mechanism uses the guard to verify if an action
could be executed within the current system state (defined by the fluents and
stored in a global context).

• We can use a model checker to verify relations of nodes and actions expressed
as temporal logic [5] constraints. Internally, GEAR uses the modal µ -
calculus [11] enriched with forward and backward modalities, so it is best
equipped, for example, to express dataflow properties, or other behavioral
constraints such as temporal logic formulas.

The specified action in Fig. 4 contains a guard, which must conform to the AP
annotated at the node.

3.4 Post-Implementation Model Checker

In this approach, we rely on the Java PathFinder [12] tool to perform model checking
on the ASSL-generated Java code.

3.4.1 Java PathFinder
Java PathFinder is a post-implementation model checker tool written in Java and
targeted at Java programs [12, 13]. It can check Java programs for deadlocks,
invariants and user-defined assertions in the code. Moreover, properties expressed in
Linear Temporal Logic [14] can be checked. In general, it is claimed that Java
PathFinder is capable of checking any Java program that does not rely on native
methods. However, it is important to mention that the state-explosion problem limits
the size of the applications that can be checked effectively up to 10,000 lines of code.
Similar to any regular model checking tool, Java PathFinder performs exhaustive
testing. The difference is that it works on the real Java code instead of on a state
graph. Here, the basic technique is multiple execution of the program under
consideration to check all the possible executions for paths that can lead to property
violations, such as deadlocks or unhandled exceptions. If an error is found, Java
PathFinder reports the execution path that leads to it. Note that every execution step is
recorded, so we can trace the execution path that gets to property violation.

Fig. 5 depicts the operational model of Java PathFinder. As depicted, different
components (tools) work by accompanying the execution of the compiled Java
program (in Java bytecode), e.g., an ASSL-generated AS compiled to Java bytecode

 Developing Model-Checking Mechanisms for ASSL 29

with a regular Java Compiler. As shown in Fig. 5, special configurable search
strategies are provided to solve the problem of state explosion. Because for large
(more than 10,000 lines of code) applications the whole state space cannot be
searched effectively, these search strategies are used to direct the search.

In addition, different state-reduction techniques can help to reduce the number of
states that have to be stored:

• Special heuristic choice generators are provided to set possible choices where
a certain state does not have to be complete. These generators have the form
of Java PathFinder APIs that can be embedded in the tested applications.

• A special library abstraction per state reduces the overhead coming from
tracking the run-time data changes taking place in the checked Java
application. Note that all the heap, stack, and thread changes are stored by
default. This can cause a big overhead if abstraction is not provided.

Fig. 5. Java PathFinder operational model (elaborated from [12])

3.4.2 Embedding Java PathFinder in ASSL
In general, Java PathFinder provides capabilities for non-deterministic testing via
random input data generators [12] that can be embedded in the tested Java
application. Special APIs are provided, which can significantly ease the creation of
test drivers. Hence, the ASSL framework can automatically generate such test drivers
based on the Java PathFinder API. ASSL could generate these special test drives as
non-deterministic choices implemented in the generated code. Here, to simulate non-
deterministic testing we rely on two Java PathFinder capabilities – backtracking and
state matching.

With backtracking, we use the Java PathFinder tool to restore previous execution
states, which helps to determine whether there are unexplored choices left. Therefore,
if an end state is reached, backward steps can be performed to find execution paths
that are still not executed, and thus, the program does not have to be re-executed from
the very beginning.

With state matching, the Java PathFinder checks whether a specific execution path
has already been explored any time when an ASSL-generated non-deterministic
choice is reached. In such a case, model checking does not continue along the current
execution path, but does backtracking to reach the nearest non-explored path that

30 E. Vassev and M. Hinchey

starts from the nearest non-deterministic choice. For example, the following run()
method could be generated by the ASSL framework for an autonomic element.

public class AE_WORKER {
 ...
 public void run () {
 boolean cond = Verify.getBoolean();
 if (cond) { ... }
 else { ... }
 }
 ...
}

Note that autonomic elements are generated by ASSL as Java Threads [1, 2]. Here,
a non-deterministic PathFinder choice point will be generated (see cond =

Verify.getBoolean) to test two different paths of execution of the autonomic
element.Both backtracking and state matching techniques will be used to trace the
two possible execution path – when cond = true and when cond = false.

4 Case Study: Checking Liveness Properties with ASSL

This section demonstrates how the ASSL built-in model-checking mechanism can
perform formal verification to check liveness properties of an AS specified and
generated with ASSL. Our example is the ASSL specification model for the NASA
Voyager Mission [10]. In this case study, we specified the Voyager II spacecraft and
the antennas on Earth as AEs (autonomic elements) that follow their encoded
autonomic behavior to process space pictures, and communicate those via predefined
ASSL messages. In this section, we use a sample from this specification to
demonstrate how a liveness property such as ”a picture taken by the Voyager
spacecraft will eventually result in sending a message to antennas on Earth” can be
checked with the ASSL model-checking mechanism. Note that the ASSL
specification model for the NASA Voyager Mission is relatively large (over 1000
lines of specification code). Thus, we do not present the entire specification but a
specification sample. For more details on that specification, please refer to [10].

Fig. 6. The IMAGE_PROCESSING policy

 Developing Model-Checking Mechanisms for ASSL 31

Fig. 6 presents a partial ASSL specification of the IMAGE_PROCESSING self-
management policy of the Voyager AE. Here the pictureTaken event will be prompted
when a picture has been taken. This event initiates the inProcessingPicturePixels fluent. The
same fluent is mapped to a processPicture action, which will be executed once the fluent
gets initiated. As it is specified, the processPicture action prompts the execution of the
sendBeginSessionMsgs communication function (see Fig. 6), which puts a special message
x on a special communication channel [10] (message x is sent over that channel).
Note that the specification of both the pictureTaken event and the sendBeginSessionMsgs
function is not presented here. As we have already mentioned in Section 3.2, the
ASSL model-checking mechanism builds the ASG (autonomic system graph) from
the ASSL specification. Here both the declarative specification tree and the ASSL
operational semantics [1, 2] are used to derive tier states S and transition relations R,
and to associate those tier states via the ASSL transition operations Op. Next the
labeling function L(s) (integrated in the model-checking mechanism) labels each tier
state s with appropriate atomic propositions AP.

Fig. 7 presents a partial ASSL ASG of the sub-tiers of the Voyager AE. These sub-
tiers are derived from the declarative specification tree constructed for the Voyager
AE. Note that this ASG is a result of our analytical approach and for reasons of clarity
it is simplified, i.e., not all the possible tier states are presented here.

Fig. 7. State machines of the Voyager AE sub-tiers

As shown, each sub-tier instance forms a distinct state machine (basic machine)
within the AE state machine and the AE state machine is a Cartesian product of the
state machines of its sub-tiers. It is important to mention that by taking the Cartesian
product of a set of basic sub-tier machines, we form a product machine consisting of
product states. The latter are tuples of concurrent basic sub-tier states. Moreover, in
the AE product machine, the ASSL state-transition operations Op are considered
product transitions that move from one product state to another. Note that the states in
the state machine of the whole AS product machine can be obtained by the Cartesian
product of all the AE product machines. Thus, by considering the sub-tier state
machines we construct the Voyager AE product machine (see Fig. 8). Note that this is
again a simplified model where not all the possible product states are shown.

32 E. Vassev and M. Hinchey

Fig. 8 presents the AE product states as large circles embedding the sub-tier states
(depicted as smaller circles). Here we use the following aliases: e states for Event
state machine; f states for Fluent state machine; a states for Action state machine; y
states for Communication Function state machine; x states for Message state
machine. Moreover, white circles present ”idle” state and gray circles present the
corresponding ”active” state of the sub-tier state machine under consideration (such
as: prompted for events, initiated for fluents, etc.; see Fig. 7).

Fig. 8. Voyager AE product machine

Therefore, the formal presentation (S; Op; R; S0; AP; L) (see Section 4.1) of the
Voyager AE ASG is:

• S = {S1; S2; S3; S4; S5; S6; S7}
• Op = {Event; FluentIn; EventOver; ActionMap; Function; MsgSent}
• R = {(S1;S2;Event); (S2;S3;FluentIn); (S3;S4;EventOver);

(S4;S5;ActionMap); (S5;S6;Function); (S6;S7;MsgSent)}
• S0 = S1 (initial state)
• AP = { event pictureTaken occurs, event pictureTaken terminates, action

processPicture starts, fluent inProcessingPicturePixels initiates,
function sendBeginSessionMsgs starts, sends message x }

• L(S):

o L(S1) = { event pictureTaken occurs };
o L(S2) = { fluent inProcessingPicturePixels initiates };
o L(S3) = { event pictureTaken terminates };
o L(S4) = { action processPicture starts };
o L(S5) = { function sendBeginSessionMsgs starts };
o L(S6) = { sends message x };

Moreover, we consider the following correctness properties applicable to our case:

• If an event occurs eventually a fluent initiates.
• If an event occurs next eventually it terminates.
• If a fluent initiates next actions start.
• If an action starts eventually a function starts.
• If a function starts eventually it sends a message.

The ASSL model-checking mechanism uses the correctness property formulae to
check if these are held over product states considering the atomic propositions AP
true for every state. Thus, the ASSL framework is able to trace the state path shown in
Fig. 6 and to validate the liveness property stated above. Note that in this example, we
intentionally presented a limited set of atomic propositions AP and correctness

 Developing Model-Checking Mechanisms for ASSL 33

properties. The former are derivable, that is, deduced from the operational evaluation
of the ASSL specification. Moreover, the Voyager AE product machine presents only
product states relevant to our case study.

5 Conclusion and Future Work

We have presented our experience to-date in developing model-checking software
verification mechanisms for the ASSL framework. Currently ASSL supports a family
of software-verification framework tools (implemented or still under implementation)
including a consistency checker, a built-in model checker, an ASSL-to-SLG
specification mapper to support external model checking with the GEAR model
checker and an integration of the Java PathFinder model checker to support post-
implementation model checking. Currently, the ASSL consistency checker is the only
fully implemented tool. It automatically checks ASSL specifications for consistency
errors and some design flaws. The latter are verified against special consistency rules
implemented as semantic definitions.

The other model mechanisms for ASSL require different implementation
approaches. For example, to implement the built-in model checker, we developed
program structures and algorithms that help an ASSL specification be transformed
into a state-transition graph composed of special tier states with associated atomic
propositions and transition relations connecting those states. We are currently
developing a model-checking engine that works on the state transition graph. In
addition, possible solutions to the so-called state-explosion problem are considered.

Our plans for future work are mainly concerned with further development of the
model checker and test-case generator tools for ASSL. Moreover, in addition to the
model-checking mechanisms, we are currently working on a special test-case
generator, which aims at automatic generation of test suites for self-management
policies. A test case is generated with a policy-execution path and test attributes that
come in the form of inputs and special replacement ASSL constructs ensuring the
execution of a tested policy. The test attributes are determined by change-impact
analysis of the effect of a change in particular events or particular actions employed
by an execution path. It is our understanding that such a testing mechanism will have
a great impact on the development of prototype models for current and future space-
exploration missions. Properly tested prototypes, eventually, will lead to the
construction of more reliable spacecraft systems. Note that traditional methods, such
as analyzing each requirement and developing test cases to verify the correctness of
ASSL-implemented ASs, are not effective, because they require complete
understanding of the overall complex system’s self-management behavior.

Acknowledgment. This work was supported in part by Science Foundation Ireland
grant 03/CE2/I303_1 to Lero—the Irish Software Engineering Research Centre.

References

1. Vassev, E.: Towards a Framework for Specification and Code Generation of Autonomic
Systems. PhD Thesis, Computer Science and Software Engineering Department,
Concordia University, Quebec, Canada (2008)

34 E. Vassev and M. Hinchey

2. Vassev, E.: ASSL: Autonomic System Specification Language - A Framework for
Specification and Code Generation of Autonomic Systems. LAP Lambert Academic
Publishing (2009)

3. Murch, R.: Autonomic Computing: On Demand Series. IBM Press (2004)
4. Vassev, E., Hinchey, M., Quigley, A.: Model Checking for Autonomic Systems Specified

with ASSL. In: Proceedings of the First NASA Formal Methods Symposium (NFM 2009),
NASA, pp. 16–25 (2009)

5. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (1999)
6. Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual. Addison-

Wesley, Boston (2003)
7. Bakera, M., Renner, C.: GEAR - Game-based, Easy and Reverse Model Checking (2008),

http://jabc.cs.tu-dortmund.de/modelchecking/
8. Bakera, M., Wagner, C., Margaria, T., Vassev, E., Hinchey, M., Steffen, B.: Component-

oriented Behavior Extraction for Autonomic System Design. In: Proceedings of the First
NASA Formal Methods Symposium (NFM 2009), NASA, pp. 66–75 (2009)

9. Nagel, R.: jABC, http://www.jabc.de
10. Vassev, E., Hinchey, M.: Modeling the Image-processing Behavior of the NASA Voyager

Mission with ASSL. In: Proceedings of the Third IEEE International Conference on Space
Mission Challenges for Information Technology (SMC-IT 2009), pp. 246–253. IEEE
Computer Society, Los Alamitos (2009)

11. Kozen, D.: Results on the propositional μ-calculus. In: Nielsen, M., Schmidt, E.M. (eds.)
ICALP 1982. LNCS, vol. 140, pp. 348–359. Springer, Heidelberg (1982)

12. Java PathFinder, http://javapathfinder.sourceforge.net/
13. Visser, W., Havelund, K., Brat, G., Park, S.-J.: Model Checking Programs. In:

Proceedings of the 15th IEEE International Conference on Automated Software
Engineering (ASE 2000). IEEE Computer Society, Los Alamitos (2000)

14. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge (2008)

	Developing Model-Checking Mechanisms for ASSL: An Experience Report
	Introduction
	ASSL
	Model Checking with ASSL
	Consistency Checking
	Built-in Model Checker
	External Model Checker
	Post-Implementation Model Checker

	Case Study: Checking Liveness Properties with ASSL
	Conclusion and Future Work
	References

