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Abstract. This paper introduces a rigorous methodology for require-
ments specification of systems that react to external stimulus by evolving
through different operational modes. In each mode different function-
alities are provided. Starting from a classical state-machine specification,
the envisaged methodology interprets each state as a different mode of
operation endowed with an algebraic specification of the corresponding
functionality. Specifications are given in an expressive variant of hybrid
logic which is, at a later stage, translated into first-order logic to bring
into scene suitable tool support. The paper’s main contribution is to pro-
vide rigorous foundations for the method, framing specification logics as
institutions and the translation process as a comorphism between them.

1 Introduction

Motivation. The successful development and deployment of safety-critical, re-
active systems, from the early concept and system definition phases, down to
implementation and validation, poses a number of challenges that engineers must
overcome. From the outset, there are two basic approaches to formally capture
requirements for this sort of software: one emphasizes behaviour and its evolu-
tion; the other focus on data and their transformations.

Within the first paradigm, reactive systems are typically specified through
(some variant of) state-machines. Such models capture system’s evolution in
terms of event occurrence and its impact in the system internal state configu-
ration. Automata theory, and its more recent, abstract rendering in coalgebraic
terms, provide a suitable formalism for both specification and analysis. Crucial
notions of bisimulation, minimization and invariant, among others, play a fun-
damental, long established role in this framework. In the dual, data-oriented
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approach the system’s functionality is given in terms of input-output relations
modeling operations on data. A specification is a theory in a suitable logic, ex-
pressed over a signature, which captures its syntactic interface. Its semantics is
a class of concrete algebras acting as models for the specified theory [5,18].

In practice, however, both approaches are interconnected: the functionality
offered by the system, at each moment, may depend on the stage of its evolution.
Such is typically the case of complex, reactive, reconfigurable software.

This paper explores such a interconnection. Starting from a classical state-
machine specification, the methodology illustrated in the sequel goes a step fur-
ther: different states are interpreted as different modes of operation and each
of them is equipped with an algebraic specification (over the system’s interface)
of the corresponding functionality. Technically, specifications become structured
state-machines, states denoting algebras, rather than sets.

The following paragraph sums up the envisaged approach. It should be re-
marked this has been developed in a concrete, industrial context — that of a
leading, portuguese IT company, whose mission includes the production of for-
mally certified software for critical systems. Such a context makes effective, but
sound tool support a must. As discussed in the sequel, rigorous foundations also
(may) lead to fulfill this objective.

Approach and paper outline. The approach proposed in the paper is sketched
in Figure 1. The upper plane sums up the envisaged methodology. The block
on the left hand side represents the specification framework, structured in two
stages, as explained below. The annotation on top — Hybrid logic — states the
underlying logic. The block on the right concerns verification and analysis of hy-
brid specifications suitably translated to first order logic (FOL). The translation
itself is depicted as a comorphism between the two logic systems in presence:
hybrid logic, chosen for its expressive power, first order, to benefit from exis-
tent verification support. Hybrid logic [2] plays a fundamental role here given
its ability to make explicit references, through special symbols called nominals,
to specific states within a model.

The lower plane of Figure 1 refers to the methodology foundations. Actually,
a basic property to require from a specification formalism is its ability to be
framed as an institution [7,4]. This is not a formal idiosyncrasy: institutions, as
abstract, general representations of logical systems, provide modular structuring
and parameterization mechanisms which are defined ‘once and for all’ abstracting
from the concrete particularities of the each specification logic [24]. Moreover,
several current specification formalisms, notably, CafeOBJ [5], Casl [18] and
Hets [20] were designed to take advantage of such a general framework.

Moreover institutions provide a systematic way to relate logics and transport
results from one to another [17], which means that a theorem prover for the
latter can be used to reason about specifications written in the former. This
is achieved through a special class of maps between institutions, referred to as
comorphisms, as depicted in Figure 1.

The rest of the paper is organized around two main sections: one on the
methodology (sections 2) and another on foundations (section 3). Section 4
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Fig. 1. The approach

discusses current work on suitable tool support based on Hets [20]. Section
5 concludes and provides a few pointers for future work. The reader may found
the detailed proofs of all formal claims of the paper on the technical report [13].

2 A Specification Methodology

As stated above, the paper proposes a methodology to the specification and anal-
ysis of reactive systems which is intended to be effectively used in an industrial
context. The methodology has the following stages, which will be detailed later
in the paper:

I (I.1) Express the requirements in hybrid propositinal logic (HPL), identifying states
and transitions to build a first state-machine; (I.2) Specify local properties as
propositions; At this stage, traditional technics of state machine analysis/refine-
ment may be applied, and available reasoning tools for HPL used (see Section
2.1).

II (II.1)Define the actual system’s interface through the set of (external) services of-
fered. Technically, this is supported by the definition of a (multi-sorted) first-order
signature. (II.2) Express, whenever possible, the attributes of the first machine as
functional properties over this signature.

III Translate both specifications into FOL, providing a common ground for testing
and verification.

In the sequel the methodology is illustrated in a number of specification frag-
ments of an automatic cruise control (ACC) system. The example, small but
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self-contained, is taken from [9], where the overall requirements are summarized
as follows:

“The mode class CruiseControl contains four modes, Off, Inactive, Cruise, and
Override. At any given time, the system must be in one of these modes. Turning the
ignition on causes the system to leave Off mode and enter Inactive mode, while turning
the cruise control level to const when the brake is off and the engine running causes
the system to enter Cruise mode. (...) Once cruise control has been invoked, the system
uses the automobile’s actual speed to determine whether to set the throttle to accelerate
or decelerate the automobile, or to maintain the current speed (...)To override cruise
control (i.e., enter Override), the driver turns the lever to off or applies the brake”.

2.1 Hybrid Specifications (Stage I)

The requirements for the cruise control system example can be captured by
the state machine depicted in Figure 2. This section introduces its specification
in propositional hybrid logic (HPL). Such a presentation has the advantage of
being compact, unambiguous and closer to the input format of typical verification
engines.

off

inactive

cruise

overrride

IgnOn

LeverCons ∧
EnRunning ∧

¬Brake

Brake

¬EngRunning
∨LeverOff

¬IgnOn

¬IgnOn

¬IgnOn

¬IgnOn

LeverCons ∧
EnRunning ∧

¬Brake
LeverOff

Fig. 2. State-machine of the system

The set of HPL formulas is defined by the following grammar:

ϕ,ψ ::= p | i | ¬ϕ|[λ]ϕ |@iϕ |ϕ ∧ ψ |ϕ ∨ ψ |ϕ ⇒ ψ (1)

where λ ranges over a set Λ of modal operators. Models of this logic are state-
machines with an additional function state : Nom → S which assigns to each
nominal a state. This allows explicit reference to particular states in a specifi-
cation. Thus, models are tuples P = 〈S, state, (Rλ)λ∈Λ, (Ps)s∈S〉 where S is a
set of states, Rλ ⊆ S × S is the accessibility relation associated to the modality
λ and Ps : Prop → {�,⊥} is the function that assigns the propositions on the
state s ∈ S. The satisfaction relation is defined as in standard modal logic (e.g.
P |=s p iff Ps(p) = �; P |=s [λ]ϕ iff P |=s′

ϕ for any s′ such that (s, s′) ∈ Rλ)
adding the following cases related to nominals:

– P |=s @iϕ iff P |=state(i) ϕ;
– P |=s i iff state(i) = s.

Moreover, we abbreviate formulas ¬[λ]¬ϕ and 〈λ〉ϕ ∧ [λ]ϕ to 〈λ〉 and 〈λ〉◦ϕ,
respectively.
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For the running example, a modality {next} is introduced to denote the state-
machine accessibility relation. Nominals in {off, inactive, override, cruise} cor-
respond to the operation modes mentioned in the requirements. Finally, a set of
propositions is considered — one for each label in Figure 2. With such signature,
transitions are specified as follows:

• (T1)@off ( IgnOn ⇒ 〈next〉◦inactive )
• (T2)¬ IgnOn ⇒ 〈next〉◦off
• (T3)@inactive(LeverCons ∧ IgnOn ∧ ¬ Brake ⇒ 〈next〉◦cruise)
• (T4)@cruise(¬ EngRunning ∨LeverOff ⇒ 〈next〉◦inactive)
• (T5)@cruise( Brake ⇒ 〈next〉◦override)
• (T6)@override(LeverCons ∧ IgnOn) ∧ EngRunning ∧ ¬ Brake ⇒ 〈next〉◦cruise)

Local properties can also be expressed resorting to the satisfaction operator
@i, for each nominal i, to reference the corresponding state. For instance, the
requirement that the engine controls speed decelerating the car if the speed is
high and maintaining it when it is considered adequate is modelled by

• (L1
cruise)@cruise( IgnOn ∧ EngRunning ∧ HighSpeed ⇒ decel)

• (L2
cruise)@cruise(IgnOn ∧ EngRunning ∧ AdmissibleSpeed⇒ mantain)

Finally, admissibility properties, concerning propositions, are also captured. For
instance, the fact that the lever cannot be switched in more than one position at
each time, and similarly for the acceleration and speed modes, is expressed as

• (A1)LeverOff ⇔ ¬ LeverCons
• . . .
• (A4)HighSpeed ⇒ ¬ CruiseSpeed ∧ ¬ LowSpeed

2.2 States-as-Algebras Models (Stage II)

The logic. The second stage in the methodology equips each state of the un-
derlying state-machine with an algebra, more precisely a first-order structure,
to model its local functionality. Therefore, hybrid structures are enriched with
a family of first-order structures indexed by the set of states, i.e., they become
structures

M = 〈S, state, (Rλ)λ∈Λ, (Ps)s∈S , (As)s∈S〉

where first-order structures in the family (As)s∈S are defined over the same
signature and universe, say A. Each As models the system’s behaviour at state
s ∈ S.

Definition 1. Let Σ a first-order signature and X a set of variables for it,
Nom, Prop and Λ three disjoint sets of nominals, propositions and modalities
respectively. The set of hybrid equational formulas is defined by the following
grammar:

ϕ, ψ ::= p | i| t ≈ t′|P (t̄) | ¬ϕ|ϕ � ψ| [λ]ϕ |@iϕ | ∀xϕ (2)

where � ∈ {∨,∧,⇒}, p is a proposition, i is a nominal, t ≈ t′ is a Σ-equation
over X, x ∈ X, P is a Σ-predicate of type s1, . . . , sn where t̄ := t1, . . . , tn and
ti ∈ (TΣ(X))si .
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An assignment for M = 〈S, state, (Rλ)λ∈Λ, (Ps)s∈S , (As)s∈S〉 consists of a
(sorted-set) function g : X → A, where A is the carrier set of the first-order
structures of M and X is a set of variables. We write g ∼x g′ if for any variable
y �= x, g(y) = g′(y). Note that the assignment g : X → A induces an S-family
of assignments gs : TΣ(X) → A defined, for any x ∈ X , by gs(x) = g(x) and,
for each term f(t1, . . . , tn), by gs(f(t1, . . . , tn)) = fAs(gs(t1), . . . , gs(tn)).

Definition 2. Let M = 〈S, state, (Rλ)λ∈Λ, (Ps)s∈S , (As)s∈S〉 be an hybrid struc-
ture. For any assignment g : X → A, the satisfaction relation is recursively
defined as follows:

– M, g |=s i if state(i) = s;
– M, g |=s p if Ps(p) = �;
– M, g |=s t ≈ t′ if As |= t ≈ t′[g] i.e., if gs(t) = gs(t′);
– M, g |=s Q(t1, . . . , tn) if As |= Q(t1, . . . , tn)[g], i.e., if
QAs(gs(t1), . . . , g

s(tn));
– M, g |=s ρ ∨ ρ′ if M |=s ρ or M |=s ρ′; and similarly for the remaining boolean

connectives;
– M, g |=s ∀xρ if, for any assignment g′ : X → A, if g ∼x g′, one has M, g′ |=s ρ;

– M, g |=s [λ]ρ if, for any s′ ∈ S such that (s, s′) ∈ Rλ, one has M |=s′ ρ.

We write M |=s ρ when for any assignment g : X → A, M, g |=s ρ and
M, g |= ρ when for any s ∈ S, M, g |=s ρ.

In order to model the system’s functionality, as provided by the car artifact, we
resort to a classical algebraic specification. This entails the need for introducing
data types able to support the envisaged notions of time, speed and accelera-
tion. In the running example integer numbers, with the usual operations and
predicates {+,≤,≥, <,>}, can do the job.

spec TimeSort =Int with sort Int �→ time, ops 0 �→ init, suc �→ after end
spec SpeedSort =Int with sort Int �→ speed end
spec AcellSort =Int with sort Int �→ accel end

Thus, the operation Pedal models the accelerations applied by the driver at
each moment. On the other hand, Automatic captures accelerations applied on
the engine by the ACC, and CurrentSpeed records the current speed. Finally,
constant MaxCruiseSpeed represents the maximum speed allowed on the ACC
mode:

spec ACCSign =
TimeSort and SpeedSort and AcellSort

then ops Pedal : time → accel;
Automatic : time → accel;
Speed : speed × accel → speed;
CurrentSpeed : time → speed;
MaxCruiseSpeed : speed

There are properties that globally hold, in all the configurations of the system.
For instance,
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∀ s : speed; a : accel; t : time
• (G1)Speed(s, a) ≥ 0
• (G2)CurrentSpeed(t) = 0 ∧ Pedal(t) ≥ 0 ⇒ CurrentSpeed(after(t)) ≥ 0
• (G3)Pedal(t) ≥ 0 ⇔ CurrentSpeed(t) <CurrentSpeed(after(t))
• (G4)Speed(s, a) = s ⇔ a = 0
• (G5)CurrentSpeed(after(t)) =Speed(CurrentSpeed(t),Pedal(t))

Local properties. Differently from the properties above, local requirements
hold only at particular configurations. Let us explore some of them. First, in state
off , it is required that speed and acceleration are null and no other operations
in the interface react:
∀ t : time; s : speed; a : accel
• (L1

off )@offCurrentSpeed(t) = 0

• (L2
off )@offSpeed(s, a) = 0

In state inactive, the speed and acceleration depend on the accelerations auto-
matically introduced in the system, i.e,
∀ s : speed; a : accel
• (L1

inactive)@inactiveSpeed(s, a) = s + a

∀ t: time; s : speed; a : accel

• (L1′
cruise) @cruise[CurrentSpeed(t) > MaxCruiseSpeed ⇒Automatic(after(t)) < 0]

• (L2′
cruise) @cruise[CurrentSpeed(t) ≤ MaxCruiseSpeed ⇔ Automatic(after(t)) = 0]

• (L3
cruise)@cruiseSpeed(s, a) = s + a

• (L4
cruise)@cruisePedal(t) ≥ 0 ⇒ Pedal(t) = Automatic(t)

An interesting feature in this example is that properties local to states override
and off do coincide. The system’s behaviour on both states only differs in what
concerns the definition of the allowed transitions. The latter are dealt as follows.

Transitions specification. To specify state transitions we simply resort to
the state-machine built in Stage I, through axioms (T1), . . . , (Tn) from Section
2.1. However, some propositions may now be expressed by means of algebraic
properties of local states. For instance, we may replace (T4) by
∀ t: time;
• (T4′ )@cruise[CurrentSpeed(t) = 0 ⇒ 〈next〉◦(inactive ∧ CurrentSpeed(after(t)) = 0)]
• (T4′′ )@cruise[LeverOff⇒ 〈next〉◦inactive].

Furthermore, the fact that when ACC is activated by transition T6, the speed
should to be maintained, is captured by
∀ t: time; ∀ s: speed
• (T6′ )@override [(LeverCons∧ CurrentSpeed(t) = s ∧ s ≥ 0) ⇒

〈next〉◦(cruise∧CurrentSpeed(after(t)) = s)].

3 Foundations

3.1 Going “institutional”

Dealing with the sort of specifications produced in Stages I and II above, entails
the need for a uniform specification framework in which both equational proper-
ties of data types, modal properties of transitions and local properties of states
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can be expressed and verified. The canonical way to do it is through the notion
of an institution [7,4], as an abstract representation of a logical system, encom-
passing syntax, semantics and satisfaction. Let us recall the formal definition:

Definition 3 (Institution). An institution
(
SignI , SenI ,ModI , (|=I

Σ)Σ∈|SignI |
)

consists of

– a category SignI whose objects are called signatures.
– a functor SenI : SignI → Set giving for each signature a set whose elements

are called sentences over that signature.
– a functor ModI : (SignI)op → CAT, giving for each signature Σ a cate-

gory whose objects are Σ-models, and whose arrows the corresponding Σ-
morphisms, and

– a satisfaction relation |=I
Σ⊆ |ModI(Σ)| × SenI(Σ)

such that for each morphism ϕ : Σ → Σ′ ∈ SignI , the satisfaction condition

M ′ |=I
Σ′ SenI(ϕ)(ρ) iff ModI(ϕ)(M ′) |=I

Σ ρ (3)

holds for each M ′ ∈ |ModI(Σ′)| and ρ ∈ SenI(Σ).

A well known example of institution is the institution of first order logic, de-
noted in the sequel by FOL (see [4] for a detailed account). Institutions provide
a suitable setting to do abstract specification theory [24], structuring any kind
of specifications through combinators which are institution-independent, i.e. not
tied to a specific logic system. In Casl [18], for example, such combinators al-
low the construction of basic specifications, by defining a signature and a set
of sentences, the union of specifications, and the derivation and translation of
specifications along signature morphisms. The use of this set of (abstract) com-
binators, makes possible to approach, in a uniform way and trough the same
theory, systems expressed in completely different logics.

Therefore, our first aim concerning foundations is to prove that the proposed
specification formalism may be framed on this big picture of institution theory.
Let start by collecting the necessary ingredients to define a suitable institution H.

Category SIGNH: Signatures are tuples 〈(Σ,X),Nom,Prop, Λ〉 where Σ is a
first-order logic signature, X is a set of first-order variables and Nom, Prop
and Λ are (disjoint) sets of symbols of nominals, propositions and modalities.
Signature morphisms

〈(Σ,X),Nom,Prop, Λ〉 ϕ �� 〈(Σ′, X ′),Nom′,Prop′, Λ′〉

are tuples ϕ = (ϕSig, ϕNom, ϕProp, ϕMS) where ϕNom : Nom → Nom′, ϕProp :
Prop → Prop′ and ϕMS : Λ→ Λ′ are functions and ϕSig : (Σ,X) → (Σ′, X ′)
is a morphism in FOL, i.e., a tuple ϕSig = (ϕsort

Sig , ϕ
op
Sig, ϕ

pred
Sig , ϕvar

Sig )

• for any operation f ∈ Σs1...sn,s, ϕ
op
Sig(f) ∈ Σ′

ϕsort
Sig (s1)...ϕsort

Sig (sn),ϕsort
Sig (s);
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• for any predicate Q ∈ Σs1...sn , ϕpred
Sig (Q) ∈ Σ′

ϕsort
Sig (s1)...ϕsort

Sig (sn);

• for any variable x ∈ Xs, ϕvar
Sig (x) ∈ X ′

ϕsort
Sig (s).

Functor SENH: This functor maps a signature Δ = 〈(Σ,X),Nom,Prop, Λ〉
into the set of hybrid sentences, i.e., on the subset of bonded-variables for-
mulas of Definition 1, and a morphism

〈(Σ,X),Nom,Prop, Λ〉 ϕ �� 〈(Σ′, X ′),Nom′,Prop′, Λ′〉

into the sentence translation

SenH(〈(Σ,X),Nom,Prop, Λ〉)
SenH(ϕ)�� SenH(〈(Σ′, X ′),Nom′,Prop′, Λ′〉)

recursively defined as follows

• SenH(ϕ)(ρ) = SenFOL(ϕSig)(ρ) for any ρ ∈ SenFOL(Σ);
• SenH(ϕ)(i) = ϕNom(i), i ∈ Nom;
• SenH(ϕ)(p) = ϕProp(p), p ∈ Prop;
• SenH(ϕ)(t ≈ t′) = ϕterm(t) ≈ ϕterm(t), where ϕterm : TΣ(X) → TΣ′(X ′) is a

function recursively defined as follows
� ϕterm(x) = ϕvar

Sig (x) for x ∈ X;
� ϕterm(f(t1, . . . , tn)) = ϕop

Sig(f)(ϕterm(t1), . . . , ϕ
term(tn)), for any f ∈

Σs1...sn,s, ti ∈ (TΣ(X))si .
• SenH(ϕ)(Q(t1, . . . , tn)) = ϕpred

Sig (Q)(ϕterm(t1), . . . , ϕ
term(tn));

• SenH(ϕ)(¬ρ) = ¬SenH(ϕ)(ρ);
• SenH(ϕ)(ρ� ρ′) = SenH(ϕ)(ρ) � SenH(ϕ)(ρ′), � ∈ {∨,∧,→};
• SenH(ϕ)(@iρ) = @ϕNom(i)SenH(ϕ)(ρ);
• SenH(ϕ)([λ]ρ) = [ϕMS(λ)]SenH(ϕ)(ρ);
• SenH(ϕ)(∀xρ) = ∀ϕvar

Sig (x)SenH(ϕ)(ρ).

Functor ModH: This functor maps each signature 〈(Σ,X),Nom,Prop, Λ〉
to a category whose models are the hybrid structures M =
〈S, state, (Rλ)λ∈Λ, (Ps)s∈S , (As)s∈S〉 defined above. Morphisms between
models 〈S, state, (Rλ)λ∈Λ, (Ps)s∈S , (As)s∈S〉 and 〈S′, state′, (R′

λ)λ∈Λ,
(P ′

s)s∈S′ , (A′
s)s∈S′〉 consists of pairs (hst, hmod) such that

• hmod is an S-family
(
hmods : As → A′

hst(s)

)
s∈S

of first-order structures mor-
phisms;

• Ps(p) = P ′
hst(s)

(ϕProp(p));
• hst : S → S′ is a function such that

� (s, s′) ∈ Rλ implies that (hst(s), hst(s
′)) ∈ R′

λ,
� state′(n) = hst(state(n)),

Functor ModH maps each morphism

〈(Σ,X),Nom,Prop, Λ〉 ϕ �� 〈(Σ′, X ′),Nom′,Prop′, Λ′〉

into the reduct functor

ModH(〈(Σ,X),Nom,Prop, Λ〉) ModH(〈(Σ′, X ′),Nom′,Prop′, Λ′〉)
ModH(ϕ)��
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that maps each 〈(Σ′, X ′),Nom′,Prop′, Λ′〉-model
〈S′, state′, (R′

λ)λ∈Λ′ , (P ′
s)s∈S′ , (A′

s)s∈S′〉 into the 〈Σ,Nom,Prop, Λ〉-model
〈S, state, (Rλ)λ∈Λ, (Ps)s∈S , (As)s∈S〉 such that

• S = S′;
• state(n) = state′(ϕNom(n)) for any n ∈ Nom;
• Rλ = R′

ϕMS(λ) for any λ ∈ Λ;

• As = ModFOL(ϕSig)(A
′
s) for any s ∈ S, where ModFOL(ϕSig), the reduct

notion on the institution of first-order logic, consists of the classical reduct
notion on first-order structures;

• Ps(p) = P ′
s(ϕProp(p)) for any p ∈ Prop

Satisfaction |=H: Satisfaction is the restriction of Definition 2 to sentences.

Theorem 1. Let Δ = ((Σ,X),Nom,Prop, Λ) and Δ′ two H-signatures and
ϕ : Δ→ Δ′ a morphism of signatures. For any ρ ∈ SenH(Δ),
M′ = 〈S′, state′, RΛ′ , (P ′

s)s∈S′ , (A′
s)s∈S′〉 ∈ |ModH(Δ′)|, and s ∈ S,

ModH(ϕ)(M′), g |=s ρ iff M′, g′ |=s SenH(ϕ)(ρ).
where, for any x ∈ X, g(x) = g′(ϕvar

Sig (x)).

Proof. The proof is done by induction on the structures of sentences.

The satisfaction condition for H follows from a well known fact, which states
that satisfaction of a formula only depends on assignment of free variables.
Actually,

Corollary 1 (Satisfaction condition). Let Δ = ((Σ,X),Nom,Prop, Λ)
and Δ′ be two H-signatures and ϕ : Δ→ Δ′ a morphism of signatures. For
any ρ ∈ SenH(Δ), M′ = 〈S′, state′, RΛ′ , (P ′

s)s∈S′ , (A′
s)s∈S′〉 ∈ |ModH(Δ′)|,

ModH(ϕ)(M′) |= ρ iff M′ |= SenH(ϕ)(ρ).

Therefore,
Corollary 2. (SignH, SenH,ModH, |=H) is an institution.

Finally, observe that models, language and satisfaction presented on Section 2.1
also constitute an institution. This institution is similarly defined, by forgetting
the first-order signature from hybrid signatures, the state-family of first-order
structures from models and the equations and quantifications from sentences.
By obvious reasons, we call this the institution of propositional hybrid logic and
write HPL.

3.2 Translating to FOL (Stage III)

Stage III in the envisaged methodology was not discussed in section 2. Actually,
from a methodological point of view it is rather straightforward: a translation
of specifications to a well-known first order setting. Technically, however, this
can be stated in a very precise way as a comorphism. Comorphims play, at the
institutional level, the role of logical translations, lifting specifications expressed
within different institutions to a common level [17]. Therefore, any tools, namely
proof assistants, available at the target institution, can be borrowed by the source
one. Formaly,
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Definition 4 (Comorphism). Given institutions I = (Sign, Sen,Mod, |=) and
I ′ = (Sign′, Sen′,Mod′, |=′) a comorphism (Φ, α, β) : I → I′ consists of

1. a functor Φ : Sign → Sign′,
2. a natural transformation α : Sen ⇒ Φ; Sen′, and
3. a natural transformation β : Φop; Mod′ ⇒ Mod

such that the following satisfaction condition holds

M ′ |=′
Φ(Σ) αΣ(ρ) iff βΣ(M ′) |=Σ ρ

for each signature Σ ∈ |Sign|, Φ(Σ)-model M ′, and Σ-sentence ρ.
The comorphism is conservative whenever, for each Σ-model M in I, there

exists a Φ(Σ)-model M ′ in I ′ such that M = βΣ(M ′).

Note that the comorfism conservativeness is necessary to borrow institutions
proof support since it entails that Γ |=Σ ρ iff αΣ(Γ ) |=′

Φ(Σ) α(ρ), when we just
have the left-right implication on its absence.

In this sub-section, we establish a comorphism from H into FOL. The trans-
lation procedure is based on the addition of a special sort to represent states.
Hence, in order to ‘collapse’ every local state algebra in a unique structure, the
signature of all operations and predicates is enriched with an argument of this
sort. Moreover, nominals are regarded as constants over ST, modalities as usual
first-order relations and propositions as unary predicates over ST. For that we
have a functor

Φ : SignH −→ SignFOL

〈(Σ,X),Nom,Prop, Λ〉 �−→
(
〈SΣ + {ST}, FΣ + Nom, PΣ + Prop + Λ〉, X̄

)
,

where Σ = (SΣ, FΣ , PΣ) and

– FΣ =

{
(FΣ)STw→s = (FΣ)w→s, for any s ∈ SΣ, w ∈ S∗

Σ

∅, for the other cases
;

– PΣ =

{
(PΣ)STw = (PΣ)w, for any w ∈ S∗

Σ ;
∅, for the other cases

– Nom = {ci : → ST | i ∈ Nom};
– Prop = {p̄ : ST | p ∈ Prop};
– Λ = {λ : STn | λ ∈ Λn}.

– X =

{
Xsort = Xsort, for any sort ∈ SΣ ;
XST = {w, v}

Natural transformation β : Φop; ModFOL ⇒ ModH maps each first-order struc-
ture (M ;MF̄ +MNom;MP̄ +MProp +MΛ̄) ∈ Mod(〈SΣ + {ST}, FΣ +Nom, PΣ +
Prop + Λ〉) into

〈S, state,RΛ, (Ps)s∈S, (As)s∈S〉 〈M ;MF̄ +MNom;MP̄ +MProp +MΛ̄〉�βb〈F,Nom,Prop,Λ〉�� ,
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where for any i ∈ Nom, state(i) = cMi , for any λ ∈ Λ, Rλ = RM
λ . Moreover,

As, s ∈ S is a first-order structure whose carrier set is ASΣ ; functions f ∈
FΣ

s1...sn,s and predicates Q ∈ PΣ
s1,...,sn

are defined for each ui ∈ U , i ≤ n, by
fAs(u1, . . . , un) = f̄M (s, u1, . . . , un) and QAs(u1, . . . , un) = P̄M (s, u1, . . . , un)
respectively. The family (Ps)s∈S , is defined, for each s as Ps(p) = � iff p̄M (s).

Natural transformation α : SenH ⇒ Φ; SenFOL is defined for each
(F,Nom, Λ)-sentence by α(ρ) = (∀w)αw(ρ), where w is a variable of ST and
αw is recursively defined as follows:

αw(t ≈ t′) = Tw(t) ≈ Tw(t′) t, t′ ∈ (TΣ(x))s, s ∈ SΣ

αw(Q(t1, . . . , tn)) = Q̄(w, Tw(t1), . . . , Tw(tn)) Q ∈ PΣ
s1,...,sn

, ti ∈ (TΣ(X))si

αw(i) = ci ≈ w, i ∈ Nom
αw(p) = p̄(w), p ∈ Prop

αw(@iρ) = αci(ρ),
αw([λ]ρ) = (∀v)[(w, v) ∈ Rλ → αv(ρ)], λ ∈ Λ
αw(¬ρ) = ¬αw(ρ)

αw(ρ� ρ′) = αw(ρ) � αw(ρ′), � ∈ {∨,∧,→}
αw(∀xρ) = ∀x αw(ρ) x ∈ X

where Tw : TΣ(X) → TΣ̄(X), for Σ = (SΣ , FΣ , PΣ), defined for each variable
x ∈ X , Tw(x) = x and for each f(t1, . . . , tn) ∈ TΣ(X) by Tw(f(t1, . . . , tn)) =
f̄(w, Tw(t1), . . . , Tw(tn)).

Theorem 2. Let Δ ∈ |SIGNH|, ρ ∈ SENH and M ′ ∈ ModFOL(Φ(Δ)). Then,
for α and β defined as above, for any s ∈ S and any assignment g : X̄ → A such
that whenever g(w) = s, we have that

βΔ(M ′), g�X |=s
H ρ iff M ′, g |=FOL

Φ(Δ) αw(ρ). (4)

Proof. The proof is done by induction on the structures of sentences.

As direct consequence we have the general satisfaction condition for comor-
phisms:

Corollary 3 (Comorphism satisfaction condition). Let Δ ∈ |SIGNH|, ρ ∈
SENH and M ′ ∈ ModFOL(Φ(Δ)). Then, for α and β defined as above we have
that,

βΔ(M ′) |=H
Δ ρ iff M ′ |=FOL

Φ(Δ) αΔ(ρ). (5)

Moreover it is conservative: this is directly entailed by the assumption that
states have constant domains. It is straitforward to see that, we may define
a comorphism from HPL into FOL from the presented one. This is achieved
by forgetting the first-order components of the signatures and models and by
restricting α to the hybrid propositional formulas.

Recalling our running example, we end up with the signature
ops

Speed∗ : st∗ × speed × accel → speed; Pedal∗ : st∗ × time → accel;. . .
pred

next : st∗ × st∗; IgnOn∗ : st∗; . . .
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Note that, now, global properties are universally quantified, and local proper-
ties take as state argument the respective nominal. For instance, global properties
(G1) and (G2) are translated into

∀ s : speed; w : st∗; a : accel;t : time
• (G1∗ ) ≥∗(w ,Speed* (w, s, a), 0∗(w))
• (G2∗ ) CurrentSpeed∗(w,t) = 0∗(w) ∧ ≥∗(w, Pedal* (w,t), 0∗(w)).

and local properties (L1
off) and (L4

cruise), into
∀ t : time

• (L1∗
off )CurrentSpeed* (off ,t) = 0∗(off)

• (L4∗
cruise)≥∗(cruise,Pedal* (cruise,t),0∗(cruise))⇒Pedal(cruise,t) = Automatic* (cruise,t).

For instance, transition (T1) is expressed by
•(T1∗) IgnOn(off)⇒
[(∀w : st∗) (off, w) ∈ next ⇒ inactive = w ∧ (∃w′ : st∗) (off, w′) ∈ next ⇒ inactive = w′],

i.e.,
•IgnOn(off)⇒(off, inactive) ∈ next.

4 Tool Support

A central ingredient for the successful integration of a formal method in the
industrial practice is the existence of effective tool support.

Certainly hybrid specifications produces in Stage I of our methodology can be
anchored on recent implementations of logical calculus for HPL (see e.g. HTab

[11], HyLoTab [25] and Spartacus [8]). Moreover, model checking for HPL
models is also an active research issue (e.g. [12,10]).

Our focus is, however, a different, somehow more standard, one: hybrid spec-
ifications are translated to FOL through a suitable comorphism. This solution
provides a uniform first order logical framework for analysis and verification sup-
porting the whole methodology. Moreover, to the best of our knowledge, richer
versions of hybrid logic, as required at Stage II, lack effective tool support, which
makes our approach by translation the only option available. Beyond the concep-
tual support of institutions theory and the structured specification methodology
offered by CASL, we have effective computational tools, to support our sort of
specification. On this perspective HETS-heterogeneous tools set [20] deserves a
special attention.

Using a metaphor of [19], HETS may be seen as a “motherboard” where
different “expansion cards” can be plugged. These pieces are individual logics
(with their particular analyzers and proof tools) as well as logic translations.
To make them compatible, logics have to be formalized as institutions and, the
corresponding translations, as comorphisms. Therefore, the integration of the
hybrid specifications on the HETS framework is legitimate, since all formal re-
quirements (e.g., that institutions exist, that a comorphism can be defined, etc.)
are provided in the present work. HETS already integrates parsers, static ana-
lyzers and provers for a wide set of individual logics, and manages heterogeneous
proofs resorting to the so-called graphs of logics, i.e., graphs whose nodes are
logics and, whose edges, are comorphisms between them.
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Furthermore, and directly relevant to our methodology, HETS provides a
rich support for FOL, and consequently, for H and HPL. For instance, provers
SoftFOL, Spass, MathServe Broker, among others, are already “pluged”
into HETS [19], and therefore, all of them provide effective to our specification
methodology (see Figure 3). Moreover, we are also able to take advantage of
a number of “borrowed” provers from other institutions through comorphisms
with source in FOL.

Fig. 3. HETS session

An open issue at this level concerns verification. So far model checking of hy-
brid structures is restricted to propositional hybrid logic [6,12]. The combination
of traditional algebraic specification tools, like first-order provers and rewriting
engines (e.g. CafeObj [5]), together with provers and model checkers for hybrid
logics (e.g. [1,6]) may broaden the scope of application.

5 Conclusions

The paper introduced a rigorous methodology for requirements specification of
reactive systems, flexible enough to capture the existence of different opera-
tional modes at each stage of evolution. Variants of hybrid logic provided the
right conceptual framework to develop such specifications. At a later stage, such
specifications are translated into first-order logic to bring into scene suitable tool
support. The paper’s main contribution was to provide rigorous foundations for
the method, framing specification logics as institutions and the translation pro-
cess as a comorphism between them.
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A lot of work remains to be done. From an experimental point of view, we
are conducting case studies with different size and complexity to assess the
methodology.

Another line of research is concerned with establishing a precise comparison
with approaches to specification with a similar purpose. For instance, many (vari-
ations) of state machines may be represented as hybrid models. Moreover, some
structured state-machines, such as ASM (Abstract State Machines) [3] can also
be represented as our states-as-algebras models. An interesting aspect to explore,
is whether the institutions constructed here may provide an uniform platform
to reason, in a property-oriented perspective, about these model-oriented spec-
ifications. Moreover, recent theoretical developments from the authors justifies
to look to the presented methodology in a more broad sense: it proofs in [16]
that the hybridization idea presented above can be extended to arbitrary institu-
tions. Trough this result it would be worth to consider, on place of the first-order
structures, other kind of semantical models such algebras, temporal frames or
even Haskel modules, since all of these structures are objects of some particular
institution.

Last but not least, refinement. At stage III FOL is used as a common language
to support reasoning and verification on models built on stages I and II. It is,
therefore, expectable to find a way to use this common platform to formally
relate these models. In particular, it would be important to formally assure that
requirements specified on the first stage are not violated on the second one. This
entails the need for a rigorous formalization of the intuitive arrow “?” of figure
1. A natural candidate to do this job, is the classical concept of refinement from
algebraic specifications (e.g. [23]). Throughout this notion, a specification SP
refines a specification SP0 over the same signature, if all the properties satisfied
by SP0 are also satisfied by SP . More generally, when specification signatures
are related by a morphism, a translation of properties is in order wrt to the
signature morphism.

In general, however, this refinement relation is not adequate. For instance, as
suggested on stage II, it is expectable to map a proposition of the state-machine
into an equation on the respective states-as-algebras model. These formulas are
represented in FOL by a predicate and an equation, respectively, which cannot
be related through signature morphisms (which only relate predicates with pred-
icates and equations with equations). Less conventional approaches to refinement
may help to overcome this sort of situations. A possibility we are currently inves-
tigating is to resort to logical interpretations, instead of signature morphisms,
to direct refinement as studied by the authors in [15,14,22]. Interpretations are
multi-functions between the specifications formulas which preserve and reflect
logical consequence.

There are others specification frameworks also based on modal versions of
first-order logic. For instance, in [21] it is defined a logic (for hybrid systems)
based on a dynamical version of first-order logic (over R) with nominals. It is
important to note that the semantical paradigm of those approaches is quite
different for the proposed here; namely, as usual, they deal with states as values
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of system variables on of given moment of execution, evaluated in an unique
first-order structure. In our work, it corresponds not to a set of values, but to
state-families of first-order structures, modeling the behaviour of all the system
functionalities.
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