
Verification of B+ Trees:
An Experiment Combining Shape Analysis and

Interactive Theorem Proving

Gidon Ernst, Gerhard Schellhorn, and Wolfgang Reif

University of Augsburg, Germany
{ernst,schellhorn,reif}@informatik.uni-augsburg.de

Abstract. Interactive proofs of correctness of pointer-manipulating programs
tend to be difficult. We propose an approach that integrates shape analysis and
interactive theorem proving, namely TVLA and KIV. The approach uses shape
analysis to automatically discharge proof obligations for various data structure
properties, such as “acyclicity”. We verify the main operations of B+ trees by
decomposition of the problem into three layers. At the top level is an interac-
tive proof of the main recursive procedures. The actual modifications of the data
structure are verified with shape analysis. To this purpose we define a mapping
of typed algebraic heaps to TVLA. TVLA itself relies on various constraints and
lemmas, that were proven in KIV as a foundation for an overall correct analysis.

1 Introduction

Interactive theorem provers are powerful tools for formal verification. However, reason-
ing about pointer structures in the presence of destructive updates can be quite difficult
with them. In contrast, fully automatic tools based on shape analysis, such as TVLA
[14,2], are specifically designed to perform well in these situations, but can not deal
with precise arithmetic and induction, for example.

B+ trees [1] are ordered, balanced trees that are commonly used to implement indices
in databases or file systems. They have several invariants regarding tree shape, sorting,
balance and node sizes.

Verification of B+ trees is a hard problem. We are aware of several efforts to verify
them. Two pen-and-paper proofs are [4] and [15]. The first uses two refinements with
an intermediate level of nested sets. The implementation is given as Pascal code. The
other uses separation logic. Algorithms are given by transitions of an abstract machine
specifically designed for the problem.

The only complete mechanized verification we are aware of is [10]. It uses the sepa-
ration logic framework of the Coq theorem prover and a similar formalization as [15].
Although the authors state that a significant degree of automation was achieved by cus-
tomized proof tactics, the effort is still high: approx. 5000 lines of proof script were
needed. Their verification, however, considers some additional operations (e.g., effi-
cient range queries) we have not verified.

Preliminary work in TVLA is [8]. It verifies some properties of B+ trees, but is
restricted to a statically bounded rank.

G. Barthe, A. Pardo, and G. Schneider (Eds.): SEFM 2011, LNCS 7041, pp. 188–203, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Verification of B+ Trees 189

Our approach uses algebraic specifications and wp-calculus as a convenient frame-
work for verification of the relevant algorithms. Shape analysis is used as a kind of
decision procedure that discharges some of the proof goals automatically. However, the
proposed integration differs from common approaches with similar goals (that use for
example SAT-solvers): shape analysis is parameterized with constraints that are specific
to the problem domain. These constraints are used as unvalidated assumptions to guide
the automatic proof. To ensure a correct analysis they have to be verified interactively.

In this work, we perform a conceptual integration by translating manually between
the two worlds. We evaluate how the rather different high-level specification style used
in algebraic specifications can be mapped to the shape graphs and logic of TVLA.

We use the theorem prover KIV [11], but the approach should be applicable with
other interactive theorem provers, too. By combining KIV and TVLA, we have verified
that our implementation of the insertion and deletion operations on B+ trees maintains
the invariants for tree shape, balance, sorting and node sizes and that they are a refine-
ment of their counterparts on algebraic sets. We ensure correctness of the shape analysis
specifications and – where possible – abstract from B+ trees as the concrete data struc-
ture, so that many generic constraints can be reused for other pointer structures. The
proofs done in KIV as well as the TVLA input files are available online at [3].

This work is organized as follows: Section 2 introduces B+ trees, our verification ap-
proach and an algebraic specification of pointer structures. Section 3 briefly describes
the shape analysis implemented by TVLA. Section 4 formalizes B+ tree invariants and
explains how these can be tracked with shape analysis. Sec. 5 summarizes our experi-
ences, and Sec. 6 draws conclusions.

2 B+ Trees and Approach

B+ trees are ordered, balanced N-ary trees. They are used to implement large sets of
keys (or key-value maps). They maintain several invariants to guarantee logarithmic-
time operations. The main operations on B+ trees are lookup, insertion and deletion.
In a B+ tree of rank N , a node is either a branch, that stores N ≤ k ≤ 2N keys and
k+ 1 downward pointers, or it is a leaf, that stores between N and 2N keys (for sets) or
key-value mappings. There is an exception to this rule for the root, which must contain
at least one key instead of N . A total order on keys is required. The actual content of
the B+ tree only consists of the information in the leaves, the keys in the branch nodes
organize efficient access (in contrast to B-trees, that store content in internal nodes, too).
A B+ tree is balanced if all leaves are on the same level, and sorted if in each node the
keys are sorted in increasing order, while subtrees only contain keys between adjacent
keys in the parent.

We use linked lists instead of arrays for the representation of nodes. An encoding
of arrays in TVLA has been developed [5,6], but unfortunately the modified TVLA
versions are not available, so we remain with the core concepts in this case study.

Figure 1 shows an example B+ tree in this model, compared to an equivalent array-
based one. Graphical nodes displayed as boxes serve as representatives of entire B+ tree
nodes (subsequently called heads), while the round nodes (subsequently called entries)
store the keys. The edge labels next and down indicate the names of the corresponding
selectors of the respective objects. This B+ tree represents the set {2, 6, 7, 9}.

190 G. Ernst, G. Schellhorn, and W. Reif

root 4
next

 down

7
next

 down down

2 6 97

(a) pointer-based

root
4 7

2 6 7 9

(b) array-based

Fig. 1. B+ tree representations
2.1 Algorithms

Both the insertion and deletion algorithm on B+ trees essentially follow the same strat-
egy: recursively traverse the tree down to a leaf node that is responsible for holding the
given key k and perform the desired modification locally on that leaf. This may cause
an underflow or overflow with respect to the node size invariant, which is restored by
restructuring the tree. For example, an overfull leaf is split into halves, and an additional
down-pointer and key are added to the parent. Therefore, restructuring may cascade up-
wards along the path the recursive descent has taken, possibly leading to growth and
shrinking at the root.

insert node(k, rn) {
if rn.leaf?
then insert leaf(rn, k)
else if k ≤ rn.next.key

then insert node(rn.down, k)
if overfull(rn.down)
then split node(rn ; rt)

else insert bentry(rn.next, k)
}

insert bentry(k, rbe) {
if rbe.next = null

∨ k ≤ rbe.next.key
then insert node(rbe.down, k)

if overfull(rbe.down)

then split bentry(rbe ; rt)
else insert bentry(rbe.next, k)

}

Fig. 2. Mutually recursive insertion routines

Figure 2 lists two mutually recursive subroutines of the insertion algorithm, given in
the abstract program syntax used in KIV. They receive the current key as a parameter
k and the current node in rn and rbe respectively – insert node descends at a node head
(displayed as boxes in Fig. 1), while insert bentry performs similar actions at branch en-
tries (displayed as circles). The top-level routine insert, which is not shown here, is very
similar to insert node but additionally has to deal with an empty tree as well as growth
and shrinking. The actual modifications of the data structure are hidden inside the func-
tions insert leaf, which stores a key in a leaf, and split node(rn ; rt) and split bentry(rbe ;
rt) that split the overfull down-child of rn resp. rbe at its median elements. The deletion
algorithm is similar but more complicated because balance may be restored either by
merging nodes or by transferring keys between adjacent nodes.

Figure 3 shows the implementation of split node and its effect on the data structure,
rn is the overfull node, its parent is rp and r1 denotes the entry just before the median r2.
The newly allocated node is returned in rt (which is required to specify the contract).

Verification of B+ Trees 191

split node(rp ; rt) {
rn := rp.down
compute r1
r2 := r1.next

r3 := r2.next
r1.next := null
rc := r2.down

rt := new Branch
r2.down := rt
rt.down := rc

rt.next := r3
rq := rp.next
rp.next := r2

r2.next := rq
}

(a) Code

rp

rn

rq

r1

rc

...

r2 r3 ...

rp

rn

r2

r1

rc

rt r3

rq ...

...

(b) Structure before/after modification

Fig. 3. Restructuring routine split node

2.2 Verification Approach

The verification of B+ trees must establish two properties of the implementation: 1)
insertion and deletion retain the B+ tree invariants and 2) the operations correspond to
their set-theoretic counterparts. Invariants are collected in a predicate btree(r) (formal-
ized in Sec. 4) that specifies r as the root of a proper B+ tree. The set of elements that
a B+ tree with root r represents is denoted by elts(r) in the following. Formally,

btree(r) ∧ e = elts(r) → wp(insert(k; r), btree(r) ∧ elts(r) = e ∪ {k}) (1)

btree(r) ∧ e = elts(r) → wp(delete(k; r), btree(r) ∧ elts(r) = e \ {k}) (2)

must be proved, where wp(α,ϕ) denotes the weakest precondition of program α with
postcondition ϕ. e denotes the elements of the initial tree. Programs insert and delete are
called with the key k to insert or delete. The root r of the tree is passed by reference as
it may change.

The correctness criteria for the verification of B+ trees can be decomposed into three
layers along the structure of the algorithms. The top level consists of interactive proofs
of the recursive insertion and deletion algorithms. These depend on shape analysis
to verify subroutines that perform actual modifications to the data structure, such as
split node, split bentry and insert leaf, forming the intermediate layer. The basis for the
verification is an algebraic specification of B+ trees as pointer structures. It also serves
for consistency proofs of the constraints and theorems required for shape analysis.

The interactive proofs in KIV are performed by symbolic execution of the program
source code. KIV implements the wp-calculus in the form of Dynamic Logic [7], but
any prover that supports Hoare calculus would be sufficient. Calls to subroutines which
are verified with shape analysis are dispatched via their contracts, so the interactive
verification does not have to deal with the implementation of these subroutines at all.
These contracts form the interface between the top and intermediate layer.

192 G. Ernst, G. Schellhorn, and W. Reif

Subroutines can be classified into restructuring, such as split node, and content mod-
ifications consisting of insert leaf and delete leaf. There are 16 restructuring routines
(split, merge, transfer a key to left and right sibling) for leaf-level and internal opera-
tions that also differ in whether they affect a node head. The contracts of subroutines
of the same class are very similar, concrete examples are given in (3)1 and (4) where r
denotes the root of the tree. In the precondition, lok(rl, k) (“leaf of key”) specifies that
key k actually belongs into the leaf rl which is required to establish sorting in the result.

btree(r) ∧ reachable(r, rp) ∧ e = elts(r) (3)

→ wp(split node(rp; rt), btree(r) ∧ elts(r) = e)

btree(r) ∧ reachable(r, rl) ∧ e = elts(r) ∧ lok(rl, k) (4)

→ wp(insert leaf(k, rl), btree(r) ∧ elts(r) = e ∪ {k})
The main proof for the insert algorithm is concerned with the mutually recursive proce-
dures insert node and insert bentry (see Fig. 2). We combine these into one proof obliga-
tion, so that recursive calls from one function to the other are covered by the induction
hypothesis. The induction is carried out over the number of nodes in (sub)trees. The
critical proof step is to establish lok(r.next, k) resp. lok(r.down, k) given that lok(r, k)
holds for the current node r and key k – which follows from the key comparisons in the
algorithm.

An alternative to this decomposition scheme is to verify the top-level with TVLA as
well, for example with the technique presented in [13], which automatically computes
the contracts of subroutines. However, the interactive proof also shows termination and
the effort for the recursion is reasonably low.

2.3 Algebraic Formalization of Pointer Structures

Pointer structures consist of objects that live inside a heap and are accessed indirectly
via typed references. The heap H is a partial, polymorphic function H : ref[T] →� T

that maps (“dereferences”) allocated references r ∈ dom(H) with r : ref[T] to objects
o = H(r) of corresponding type T . With this scheme, heap access is statically type-
checked within the logic’s type system.

We model objects as instances of free data types. For B+ trees we obtain three sorts:
Node for branch and leaf heads and BEntry, LEntry for their respective entries. Let refn
abbreviate ref[Node] and let rn denote variables of type refn in the following (similar
conventions for refbe, rbe and refle, rle).

data Node = Branch(next: refbe; down: refn) | Leaf(next: refle)
data BEntry = BEntry (key: Key; next: refbe; down: refn)
data LEntry = LEntry (key: Key; next: refle)

Node, for example, is a type freely generated by the constructors Branch and Leaf.
Overloaded selector functions next and down retrieve the respective constructor argu-
ments and are applied in postfix notation similar to Java fields, e.g., if o = Leaf(r)

1 This contract ignores the node sizes, see (22) for the full contract.

Verification of B+ Trees 193

then o.next = r. Additionally, predicates such as o.leaf? are provided to test by which
constructor an object has been built.

To bridge the gap to the untyped logic of TVLA, we define supersorts/sum-types
ref, object and the enumeration of selectors sel

ref = refn + refbe + refle

object = Node + BEntry + LEntry

sel = next | down

We assume a constant null : ref that is never allocated in a Heap. A predicate wt :

object × sel such that wt(o, s) iff o.s is well typed allows us to define heap properties
without referring to concrete types of the case study, for example paths and treeness
(see Sec. 4.1).

As opposed to TVLA, algebraically specified heaps can contain dangling pointers
(references pointing outside the heap). A consistent heap requires that whenever an
object is stored in the heap, all of its reference selectors are either null or point inside
the heap again. In the remainder of this text, we assume that all heaps are consistent.

consistent(H) ↔ ∀r ∈ dom(H), s : sel.

wt(H(r), s) → (H(r).s = null ∨H(r).s ∈ dom(H))

3 Introduction to Parametric Shape Analysis

Parametric shape analysis [14] is an instance of abstract interpretation. The actual com-
putations are performed over an approximation of concrete states. A fully automatic
analysis is achieved by keeping the abstract state space finite, so that it can be explored
exhaustively. The analysis is conservative, i.e., proofs sometimes fail even if the pro-
gram is correct, but not the other way round. Parametric shape analysis is a generic
framework. The user controls abstraction, the encoding of data structure properties and
the program statement semantics. The approach is implemented in the TVLA (Three-
Valued Logic Analyzer) tool.

Parametric shape analysis is based on untyped first-order logic with transitive clo-
sure, but without function symbols (which are encoded as predicate symbols). The logic
is three-valued with the domain of truth values B3 = {0, 1

2 , 1}. The third value 1
2 de-

notes unknown truth (sometimes called “indefinite”) and aggregates contradicting truth
values in abstract states. An abstraction function maps the infinite concrete domain of
possible data structures to finitely many bounded abstract structures.

The key idea is to partition objects allocated in the heap into finitely many equiv-
alence classes, so that all objects in the same class are indistinguishable by a set of
user-definable properties of interest. These properties are given by unary abstraction
predicates. Typically, there are singleton classes for objects pointed to by program vari-
ables. Classes with more than one element are called summary nodes. A single summary
node can represent a whole subtree, for example.

As an example, Fig. 4a shows a shape graph for a heap which contains a singly-
linked list. Node a represents a single object, while all other memory cells are grouped

194 G. Ernst, G. Schellhorn, and W. Reif

x

a b
next

reachable

next, reachable

(a) original structure

b1

b2
next

reachable next, reachable

x

a

next

reachable
reachable

(b) after splitting b into b1 and b2

Fig. 4. Splitting of a summary node

into the (doubly circled) summary node b. The partitioning is according to the fact that
program variable x points to a.

The program signature (program variables and selectors) is encoded as part of the
logical signature. A program variable x becomes an unary predicate symbol x(r) that
is constrained to hold for one node only: the one x points to. Selectors become binary
predicate symbols, for example H [r1].next = r2 is encoded as next(r1, r2) = 1. These
predicates are constrained to be partial functions. The predicate symbols arising from
the program signature are called core predicates.

In Fig. 4a the dotted arrow indicates that next(a, b) = 1
2 , since the next selector of

node a points to some node in class b, but not to all. All nodes summarized by b are
definitely reachable from a, as indicated by the solid arrow.

The program itself is represented by a finite transition system between states, each
state corresponding to a specific value of the program counter. For each state shape
analysis computes the set of shape graphs that approximate all heap structures that are
possible at that program point. This can be done by a fixpoint computation, since the
number of states as well as the number of shape graphs is finite.

To compute the fixpoint, for each transition a precondition (%p in TVLA) and an up-
date formula must be defined. The precondition encodes tests of conditionals or loops,
the update formula must specify the effects of assignments for all core predicates.

As an example x := y is represented by the update formulas ϕx
x := y(r) = y(r) for x and

ϕp
x := y(r) = p(r) for all other predicates p. A transition is executed by evaluating each

update formula in the old state yielding the predicate’s values in the new state. The
statement x.next := y is represented as ϕnext

x.next := y(r1, r2) = next(r1, r2) ∨ x(r1) ∧ y(r2).2

[14] defines preconditions and update formulas for standard statements such as assign-
ments, selector access and case distinctions. All selector assignment statements x.sel :=
y assume, that x.sel = null, so that edges are either added or removed but not both in one
step. Therefore when translating KIV programs to TVLA, these assignments have to be
rewritten into x.sel := null; x.sel := y.

During the run of a program, the abstraction is dynamically adjusted with every
statement. Suppose, the statement x := x.next should be executed in Fig. 4a and recall that
each program variable should point to a singleton node: for x we have to get hold of the
object a.next in this case. Parametric shape analysis splits summary nodes as necessary
with an operation called materialization, as shown in Fig. 4b. Here, b1 = a.next is the

2 For x : refbe, this corresponds to H := H [x
→ BEntry(H(x).key, y,H(x).down)] in KIV.

Verification of B+ Trees 195

direct successor of a and b2 represents the remaining elements of b.3 Technically, the
analysis ensures that a given set of focus formulas yields definitive values for all objects
r. For the assignment x := x.next the focus formulas are x(r) and ∃r1. x(r1) ∧ next(r1, r).
Additional focus formulas can be given to cause extra splits of summary nodes. We will
need these in Sec. 4.3.

Switching to a finite domain cannot preserve all information available in the infinite
domain. To preserve more information, two strategies are possible, the instrumentation
and the guard strategy. The first explicitly defines additional instrumentation predicates.
Predicates reachable and step, defined by

reachable(r1, r2) ↔ step∗(r1, r2) and step(r1, r2) ↔
∨

s∈sel

s(r1, r2)

are such instrumentation predicates (step* is the reflexive transitive closure of step). The
guard strategy uses global invariants INV that hold at all times during the execution
of an algorithm. Formally, these are defined by consistency rules (%r in TVLA). For
example, the following rule expresses that an algorithm never creates cyclic structures

reachable(r1, r2) → ¬step(r2, r1)

The value of instrumentation predicates is explicitly stored in shape graphs. By de-
fault, executing a transition reevaluates the defining formula in the new state. However,
this may lose the definite information that an instrumentation predicate stores. For the
structure resulting from the assignment shown in Fig. 4b we have reachable′(b1, b2) =

next′∗(b1, b2) = 1
2 . To prevent this, parametric shape analysis allows explicit update for-

mulas for instrumentation predicates. Assuming that x.sel = null and y �= null the update
formula for reachable and an assignment x.sel := y is

ϕreachable
x.sel:=y (r1, r2) = reachable(r1, r2) ∨ reachable(r1, x) ∧ reachable(y, r2)

This update formula preserves definite reachability of b2 from b1. However, update
formulas that do not comply with the definitions of instrumentation predicates lead
to an unsound analysis. To ensure soundness, we verify in KIV that given an update
formula ϕp

stm for statement stm and predicate p

INV ∧H0 = H → wp
(
stm, τ

(
ϕp

stm

)
(r1, . . . , rn,H0) ↔ p(r1, . . . , rn,H)

)
(5)

holds, i.e., the update formula evaluated in the old heap H0 must equal the instrumenta-
tion predicate evaluated in the heap H after stm has been executed. Here, τ (ϕ) denotes
the translation of formula ϕ to KIV’s logic (see appendix A). Note that the proof obliga-
tion may assume the global invariants established by the guard strategy to yield stronger
update formulas. To establish such global invariants, guards (%message in TVLA) are
attached to transitions, that ensure that the invariant is preserved (therefore the name).
TVLA stops the analysis whenever it finds that an input shape graph for a transition
violates its guard. To ensure soundness, we verify in KIV

INV ∧ τ (ψ) → wp(stm, INV) (6)

for each assignment stm and its guard formula ψ.

3 A second shape graph (not shown) is necessary for the special case where b1 has no successors.

196 G. Ernst, G. Schellhorn, and W. Reif

When defining a global invariant is possible, then checking guards is typically more
efficient than the definition of INV as an additional instrumentation predicate, that has
to be tracked to be valid in all intermediate states. It is also easier to verify guards in
KIV, since update formulas for invariants tend to be rather complex, while guards can
often be simplified by making them stronger than strictly necessary to prove (6), see
(11) for an example.

4 Formalization and Verification of B+ Tree Invariants

In this section, we formalize B+ tree invariants. We start with the intuitive definitions
as used in KIV and adapt them to shape analysis by using instrumentation predicates,
consistency rules, guards and update formulas. We focus on critical aspects, so this
section is not exhaustive – additional instrumentation predicates and constraints are
often required to achieve a precise analysis result.

The B+ tree invariants are collected in the predicate btree, the set of keys elts(r) that
a B+ tree with root r represents is axiomatized as shown. The predicate root restricts the
heap to contain only the tree pointed to by r. Predicates in this section have an implicit
heap parameter H and H [r].s is abbreviated as r.s.

btree(r, [r1, . . . , rm]) ↔ root(r) ∧ tree(r) (7)

∧ ∀r′. reachable(r, r′) → balanced(r′) ∧ sorted(r′)
∧ r′ /∈ {r1, . . . , rm} → oksize(r′)

where root(r) ↔ ∀r′. reachable(r, r′)
k ∈ elts(r) ↔ ∃r′. reachable(r, r′) ∧ r′.lentry? ∧ r′.key = k

Predicate btree has an optional list of nodes r1, . . . , rm whose size may be out of bounds,
which is used in contracts of restructuring subroutines.

Quantifiers range over allocated references, and by convention, free variables are uni-
versally quantified. The following subsections specify predicates tree (has tree shape),
balance and sorted (tree is balanced and sorted), elts and oksize, and show the difficulties
of encoding them in TVLA.

4.1 Tree Shape

We characterize trees as follows: a node is the root of a tree if there is at most one path
from the root to every node in that tree. A path starts with some reference r1 and follows
a sequence of applicable selectors xs : list[sel] to another reference r2 ([] denotes the
empty list, + list concatenation).

tree(r) ↔ r �= null ∧ ∀x1, x2, r1, r2.

path(r, x1, r1) ∧ path(r, x2, r2) → (x1 = x2 ↔ r1 = r2)

path(r1, [], r2) ↔ r1 �= null ∧ r1 = r2

path(r1, s+ xs, r2) ↔ r1 �= null ∧ path(r1.s, xs, r2) ∧ wt(H(r1), s)

Verification of B+ Trees 197

These definitions serve as an intuitive formalization and are used in the algebraic speci-
fication for various consistency proofs. For shape analysis though, an alternative charac-
terization is required that does not use recursive definitions or an explicit representation
of paths. We employ the guard strategy, as the algorithms preserve tree shape in all in-
termediate structures. It is sufficient to prohibit cyclic and converging paths in general,
similar to [9]. Converging paths are excluded by consistency rules (8) and (9), cycles
are excluded by (10), forming the global invariant for tree shape. Guard (11) is used for
assignments x.sel := y.

r1.next = r2.down → r1.next = null (8)

r1.s = r2.s ∧ r1.s �= null → r1 = r2 for s ∈ {next, down} (9)

r1.s = r2 → ¬reachable(r2, r1) (10)

¬reachable(y, x) ∧ ¬∃r. (reachable(r, y) ∧ r �= y) (11)

We have proven that these constraints are equivalent to ∀r. tree(r) under the assumption
that there is some r with root(r). The latter is an instrumentation predicate that shape
analysis can prove easily to be true in the final states of the subroutines. root(r) cannot
be used as an invariant, since routines like split node have intermediate states where the
tree is split into several parts.

4.2 Balance

We characterize balance as follows: A B+ tree is balanced, if each node fulfills the con-
straint that its down successor is the root of a subtree of height one less than the subtree
of its next successor. The height of a node is determined by the maximum number of
down selectors on a path to a leaf starting at that node.

height(r) =

{
0 if r = null

max [height(r.next), height(r.down) + 1] otherwise
(12)

balanced(r) ↔ r.next �= null ∧ r.down �= null (13)

→ height(r.next) = height(r.down) + 1

This as well as the following definitions assume that tree(r) holds for all relevant refer-
ences r. Note that for arbitrary heaps with cyclic structures they would be inconsistent.

These definitions are hard to reproduce in shape analysis as they are based on arith-
metic. Therefore we use different definitions in TVLA based on two binary predicates
eqh (“equal height”) and olh (“one-less height”) defined by (14) and (15) that do a local
comparisons of heights. (16) is a definition of balanced in terms of these predicates that
can be proven to be equivalent to (13).

eqh(r1, r2) ↔ height(r1) = height(r2) (14)

olh(r1, r2) ↔ height(r1) + 1 = height(r2) (15)

balanced(r) ↔ (r.next �= null → eqh(r.next, r)) (16)

∧ (r.down �= null → olh(r.down, r))

198 G. Ernst, G. Schellhorn, and W. Reif

As the height function is not available during shape analysis, eqh and olh must be
specified as core predicates. Several constraints compensate the missing definitions
and propagate height comparisons (transitively) between nodes, such as eqh(r1, r2) →
¬olh(r1, r2) and olh(r1, r3) ∧ olh(r2, r3) → eqh(r1, r2).

Specified as core predicates, eqh and olh do not automatically reflect changes to the
height of nodes arising from modifications, so they must be updated explicitly. The
critical statements are null assignments to selectors.

We demonstrate the strategy for x.next := null. There are two cases: If x.down = null
the height of x is reduced to one, possibly changing the heights of its ancestors, too. We
model this by forgetting the height relations of the affected nodes. If x.down is non-null
and x is balanced, then the height of x remains unchanged. This implies that the height
of all other nodes, in particular its ancestors, is unaffected too. This is expressed by
lemma (17), which implies that relative comparisons eqh are also unaffected (second
case of (18)).

x.next �= null ∧ h = height(r) ∧ ∀r0. tree(r0) ∧ balanced(r0) (17)

→ wp (x.down := null, h = height(r))

Formula (18) shows the update of eqh. We ensure that x is actually balanced with an
appropriate guard.

eqh′(r1, r2) ↔

⎧
⎪⎪⎨

⎪⎪⎩

1
2 if reachable(r1, x) ∨ reachable(r2, x)

and x.down1 = null

eqh(r1, r2) otherwise

(18)

Updates for the first case immediately destroy balance information at ancestors. To
avoid this problem, the statements are rearranged to ensure that no ancestor is affected
at all by first detaching the node in question from its parent. For example, the underlined
statement r1.next := null in Fig. 3 is therefore placed before any heap modification.

Height information is recovered when the first child is attached to a node: the height
of a node with exactly one non-null selector is determined by its (single) child, as ex-
pressed by the following constraints:

r.down = null ∧ r.next �= null → eqh(r.next, r)

r.down �= null ∧ r.next = null → olh(r.down, r)

4.3 Sorting

A B+ tree is sorted if all of its nodes obey the constraints graphically given in Fig.
5. Sorting is maintained with the guard strategy. Equation (19) formalizes the sorting
constraint shown in Fig. 5b for branch entries rbe1 that is preserved in all intermediate
states of the algorithm.

∀r. reachable(rbe1.down, r) → rbe1 <k r ∧ r ≤next rbe1 (19)

where r ≤next rbe1 ↔ rbe1.next �= null → r ≤k rbe1.next

and r1 ≤k r2 ↔ r1.key ≤ r2.key (<k is defined similarly)

Verification of B+ Trees 199

b rbe

≤ rbe

(a) branches

rbe1 rbe2
<

> rbe1≤ rbe2

(b) branch entries

rle1 rle2
<

(c) leaf entries

Fig. 5. Sorting Constraints. Branch-nodes are shown as boxes, entries as circles.

The guard for the assignment x.next := y is

x <k y ∧ (∀r. reachable(x.down, r) → r ≤k y) ∧ (20)

∀r1, r2. reachable(r1.down, x) ∧ reachable(y, r2) → r2 ≤next r1

The first conjunct ensures that keys in the linked list of entries remain ordered. The
second conjunct checks elements in the down subtree of x to conform to y. The third
conjunct checks that nodes in the attached subtree conform to all ancestors r with a
down-pointer towards x, where reachable(r1.down, x) determines these ancestors. The
guard for x.down := y is similar.

The hard problem in TVLA is to ensure that the guard definitely holds when such
statements are executed. Fig. 6 shows the execution of the typical sequence y := z.next;
z.next := null; x.next := y starting with Fig. 6a. The critical relations are depicted as thick
arrows in Fig. 6b, each corresponds to one of the conjuncts. When these relations eval-
uate to definite values, the guard holds, as shown in Fig. 6c.

The first conjunct x <k y follows by transitivity over z and is established in (b). To
derive the other two conjuncts, we focus on nodes r such that reachable(z.next, r) when
executing y := z.next, and we focus on nodes r such that reachable(r.down, x) when ex-
ecuting z.next := null. These have the effect of splitting b and a respectively. b1 now
represents the subtree that must be checked in the second conjunct and a1 gives exactly

root

a

x

z

 ≤next

b

 <k

 ≤k down,next

(a) starting structure

root

a1

a2 x

b1

y

≤k (2)

b2

z

 <k <k (1)

<k, next

≤next (3)

(b) after materializations

root

a1

a2 x

b1

y

≤k b2z

 <k

<k, next

≤next

(c) after modification

Fig. 6. Tracking sorting through modifications

200 G. Ernst, G. Schellhorn, and W. Reif

the ancestors that are covered by the third conjunct. The necessary relations are then de-
rived from the sorting invariant before the statement z.next := null is executed, explicitly
stored in the structure and thus available when the guard is evaluated.

Note that in order to prevent nodes that are materialized from being merged back,
we have to employ several derived abstraction predicates, e.g., reachable-from-x(r) ↔
reachable(x, r) for program variables x. Deriving unary (reachability) predicates from
binary ones with respect to program variables is a common idiom in TVLA.

4.4 Elements

In [12], the set elts of elements a pointer structure represents is tracked by explicitly
labeling objects whose key is in the set in the initial state with an additional (core)
predicate. The final state is then related to this predicate. For our case this formalization
has the drawback that leaf entries must be kept distinct from other objects, so that
rle.key ∈ elts(r) always yields definite values. Instead, we mark a leaf entry when its
keys changes, or when it is allocated or deallocated. For insert leaf we establish that it
allocates at most one leaf entry, and changes no key. This is expressed as postcondition
(21), where H and H ′ are the initial and the final heap. The modifications of elts can be
derived from this condition in KIV. A similar postcondition is proved for delete leaf.

∃ rle. H ′[rle].key = k ∧ dom(H ′) = dom(H) ∪ {rle} (21)

∧ ∀rle1 ∈ dom(H). H [rle1].key = H ′[rle1].key

4.5 Node Sizes

The size of a node rn is determined by the number of its entries r, i.e., those reach-
able by following next selectors only. These entries are collected in a set, extensionally
defined as r ∈ nset(rn) ↔ next∗(rn, r). Let N denote the rank of the B+ tree, then

oksize(r) ↔ (r.node? → (if root(r) then 1 else N) ≤ |nset(r)| ≤ 2N)

Node sizes are verified by a strategy similar to [6]. There, the sets of concrete individu-
als represented by summary nodes are tracked, as well as the cardinalities of these sets.
[6] is an extension to TVLA that seems capable to directly verify the node size invari-
ant. However, the prototype implementation is not available, so we imitate the strategy.
As an example, for split node(rp; rt), we prove the following contract with TVLA:

rn = rp.down ∧ btree(r, [rn]) ∧ reachable(r, rp) ∧ e = elts(r) ∧ median(rn, r1.next)

→ wp(split node(rp; rt), btree(r, [rp, rn, rt]) ∧ e = elts(r) (22)

∧ nset(rp) = nset0(rp) ∪ {r1.next}
∧ nset0(rn) = nset(rn) ∪ {r1.next} ∪ nset(rt))

where nset0(r) denotes the set of entries of r in the initial state. nset-membership is
encoded as binary predicates in TVLA. From (22) we prove in KIV that if |nset0(rn)| =

2N + 1 then both rn and rt have now size N and satisfy oksize, implying btree(r, [rp]).

Verification of B+ Trees 201

5 Results and Experiences

To make TVLA usable as a decision procedure we had to solve two problems: the
first was to bridge the gap between explicit, typed algebraic heaps specified as partial
functions and the implicit view of heaps encoded as the domain of predicates defined in
untyped logic. The solution caused some overhead in KIV, to support switching between
the generic specification and its instance for B+ trees. It is however a generic solution
that allows us to verify the constraints shape analysis uses for generic predicates such
as tree shape or acyclicity once and for all. The second problem was to determine (5)
and (6) as the right proof obligations for the instrumentation and the guard strategy.

The overall effort of the case study was around six person-months. The first month
was necessary to get familiar with TVLA’s user interface, which is very low level. A
simple script (available on the website) that removes superfluous information from the
output and colorizes the shape graphs was invaluable. Another script was used to gen-
erate TVLA transition systems from code.

The main task then was to translate the natural definitions of the B+ tree invariants
into suitable TVLA constraints. It roughly took three person-months to iteratively figure
out the right instrumentation predicates, update formulas and consistency rules given in
Sec. 4 for the B+ tree invariants by analyzing failed TVLA proofs.

The remaining two months were spent on setting up the KIV specifications (includ-
ing the generic theory), proving correctness of update formulas/guards and the interac-
tive proofs of the main recursion.

The main proofs for the recursive programs were easy using the lemmas established
by shape analysis. The most expensive consistency proofs are for update formulas like
(17) and guards like (20). Some of them still required some dozen interactions. This
agrees with our expectations that interactive reasoning about pointer manipulations is
difficult. However, we have found that these proofs are required, many of the more
complex constraints we used in TVLA were initially wrong.

TVLA proofs for most of the subroutines required run times below one minute on a
2.8 GHz CPU equipped with 8 Gb of main memory running 64 bit Linux. Consumption
of main memory is high, usually between 500 Mb and 1 Gb, supposedly caused by the
high number of predicates (around 30 binary and over 160 unary predicates). A few
subroutines, such as rotations in the middle of the tree, took up to 5 minutes.

From our experience, attempting an analysis of the whole insert and delete algo-
rithms with the final specification with TVLA seems feasible. Initial attempts, however,
indicate that running TVLA on the composed code requires further optimizations. In
particular, the strategy for sorting creates too many structures when traversing the full
tree. We also think that it is not practical to develop the specification using TVLA on
the full program, since the number of shape graphs grows rapidly with the length of the
program, up to several thousands. These would have to be analyzed to find out where
exactly the analysis goes wrong. For the subroutines the number was much lower, typi-
cally around one hundred.

202 G. Ernst, G. Schellhorn, and W. Reif

6 Conclusion

We have verified an implementation of the main algorithms for B+ trees using a com-
bination of interactive theorem proving and automated shape analysis.

Our results indicate that the combination of both techniques is a significant improve-
ment compared to using one approach alone. Automation using Shape Analysis has
been significantly better than if we would have used KIV exclusively. Soundness of
the shape analysis results would have been rather doubtful without proving the more
complex constraints with an interactive theorem prover.

The case study has also shown how to bridge the gap between an abstract, typed
algebraic approach used by almost all interactive theorem provers and the untyped ap-
proach of TVLA in general. Based on these results it is clear now how to implement
an automated translation of KIV programs, predicates and constraints to TVLA (which
remains work to do).

We must however concede that shape analysis is not as easily usable as a decision
procedure would be. There is still a lot of specific knowledge of the internal working of
TVLA required to define the right instrumentation predicates (for example ≤next), and
(even more) to analyze failed proof attempts from TVLA. Getting meaningful coun-
terexamples from failed proof attempts to analyze whether a proof failed since the goal
was wrong or due to overapproximation is still one of the most time-consuming tasks,
and a topic for further work.

Acknowledgments. We thank Alexander Knapp for valuable feedback.

References

1. Bayer, R., McCreight, E.: Organization and maintenance of large ordered indices. Acta In-
formatica 1, 173–189 (1972)

2. Bogudlov, I., Lev-Ami, T., Reps, T., Sagiv, M.: Revamping TVLA: Making Parametric Shape
Analysis Competitive. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp.
221–225. Springer, Heidelberg (2007)

3. Ernst, G.: KIV and TVLA proofs for B+-Trees (2011),
http://www.informatik.uni-augsburg.de/swt/projects/btree.html

4. Fielding, E.: The specification of abstract mappings and their implementation as B+ trees.
Technical report, Oxford University, PRG-18 (1980)

5. Gopan, D., Reps, T., Sagiv, M.: A framework for numeric analysis of array operations. In:
Proc. 32nd ACM SIGPLAN-SIGACT Symp. Principles of Programming Languages, POPL,
pp. 338–350. ACM, New York (2005)

6. Gulwani, S., Lev-Ami, T., Sagiv, M.: A combination framework for tracking partition sizes.
In: Proc. of the 36th ACM SIGPLAN-SIGACT Symp Principles of programming languages,
POPL, pp. 239–251. ACM, New York (2009)

7. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)
8. Herter, J.: Towards shape analysis of B-trees. Master’s thesis, Universität Saarbrücken (2008)
9. Loginov, A., Reps, T., Sagiv, M.: Automated verification of the deutsch-schorr-waite tree-

traversal algorithm. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 261–279. Springer,
Heidelberg (2006)

http://www.informatik.uni-augsburg.de/swt/projects/btree.html

Verification of B+ Trees 203

10. Malecha, G., Morrisett, G., Shinnar, A., Wisnesky, R.: Toward a verified relational database
management system. In: Proc. of the 37th ACM SIGPLAN-SIGACT Symp. Principles of
Programming Languages, POPL, pp. 237–248. ACM, New York (2010)

11. Reif, W., Schellhorn, G., Stenzel, K., Balser, M.: Structured specifications and interactive
proofs with KIV. In: Bibel, W., Schmitt, P. (eds.) Automated Deduction—A Basis for Appli-
cations, pp. 13–39. Kluwer, Dordrecht (1998)

12. Reineke, J.: Shape analysis of sets. In: Workshop “Trustworthy Software”. IBFI (2006)
13. Rinetzky, N., Sagiv, M., Yahav, E.: Interprocedural Shape Analysis for Cutpoint-Free

Programs. In: Hankin, C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 284–302.
Springer, Heidelberg (2005)

14. Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic. ACM Trans.
Program. Lang. Syst. 24, 217–298 (2002)

15. Sexton, A., Thielecke, H.: Reasoning about B+ trees with operational semantics and separa-
tion logic. Electron. Notes Theor. Comput. Sci. 218, 355–369 (2008)

A Translation from KIV to TVLA

This appendix sketches the formal definition of the translation between KIV and TVLA,
which is in essence a standard construction for a homomorphism.

In KIV the semantics of a specification SPEC = (Σ,Ax) with many-sorted signa-
ture Σ = (S, F, P) and Axioms Ax is the class of all algebras A = ((As)s∈S , f

A, pA))

with carrier sets As for every sort s ∈ S, functions fA for f ∈ F and predicates pA for
p ∈ P that satisfies the axioms. A valuation v maps variables to appropriate elements of
the carrier sets. In particular v(H) for the heap H is a partial function from references
to objects.

The corresponding signature used in TVLA contains predicate symbols s for every
selector function .s, a unary predicate x for every program variable and predicates q
for heap dependent predicates from KIV (like btree) dropping the heap parameter. All
other arguments of these predicates are of reference type. A pair of an algebra A and a
valuation v can be translated to an untyped model U := ρ(A, v) of TVLA. The carrier
set U of U is defined as the domain of the heap: U := {a : a ∈ dom(v(H))}. Selectors
are interpreted as

sU :=
{
(a, b) : a ∈ dom(v(H)) ∧ b = v(H)(a).sA ∧ b ∈ dom(v(H))

}

and other predicates q are interpreted as

qU (a1, . . . , an) iff qA(a1, . . . , an, v(H))

The semantic translation ρ of algebras corresponds to a syntactic translation τ of TVLA
formulas to KIV formulas. For example,

τ (s(r1, r2)) = (H [r1].s = r2) and τ (q(r1, . . . , rn)) = q(r1, . . . , rn,H)

It is easy to prove (by induction over the formula) that for any TVLA formula ϕ

ρ(A, v) |= ϕ iff A, v |= τ (ϕ)

Therefore to prove that a formula ϕ is valid in TVLA we prove τ (ϕ) in KIV.
Semantically, assignments stm in KIV map a valuation v to a modified valuation v′.

Proof obligation (5) guarantees that for an update formula ϕp
stm

ρ(A, v′) |= p(r1, . . . , rn) iff ρ(A, v) |= ϕp
stm(r1, . . . , rn)

i.e., the semantics of p in the state ρ(A, v′) after the assignment is as predicted by ϕp
stm.

	Verification of B+ Trees: An Experiment Combining Shape Analysis and Interactive Theorem Proving
	Introduction
	B+ Trees and Approach
	Algorithms
	Verification Approach
	Algebraic Formalization of Pointer Structures

	Introduction to Parametric Shape Analysis
	Formalization and Verification of B+ Tree Invariants
	Tree Shape
	Balance
	Sorting
	Elements
	Node Sizes

	Results and Experiences
	Conclusion
	References

