
Reverse Hoare Logic�

Edsko de Vries and Vasileios Koutavas

Trinity College Dublin, Ireland
{Edsko.de.Vries,Vasileios.Koutavas}@cs.tcd.ie

Abstract. We present a novel Hoare-style logic, called Reverse Hoare
Logic, which can be used to reason about state reachability of imperative
programs. This enables us to give natural specifications to randomized
(deterministic or nondeterministic) algorithms. We give a proof system
for the logic and use this to give simple formal proofs for a number of
illustrative examples. We define a weakest postcondition calculus and
use this to show that the proof system is sound and complete.

1 Introduction

Hoare Logic [12] is a popular method for proving properties of imperative pro-
grams. The following specification for sort is a classical example:

{�} sort(a) {sorted(a) ∧ a ∈ Π(old(a))} (1)

The empty precondition of this Hoare triple says that sort makes no assump-
tions about its input; the postcondition says that array a will be sorted and a
permutation (Π(old(a))) of the original (“old”) value of a after sort terminates.

For other algorithms, especially randomized ones, it is not so clear what the
right specification is. For instance, consider an algorithm to shuffle the elements
of an array. Certainly, shuffle should generate a permutation of the array, but

{�} shuffle(a) {a ∈ Π(old(a))} (2)

is an incomplete specification of shuffle at best. In fact, clearly sort satisfies spec-
ification (2) too, but for most purposes sort would be a badly behaved implemen-
tation of shuffle! A better specification would require that shuffle can generate
all permutations. If we allow so-called logic variables in the triples we might give
the Hoare triple (schema)

{α ∈ Π(a)} shuffle(a) {a = α} (3)

Unfortunately, although an abstract implementation of shuffle based on non-
deterministic choice (�) such as

⊔

α∈Π(a)

a := α (4)

satisfies specification (3), real implementations of shuffle that rely on a pseudo-
random number generator do not: the permutation they generate will be dictated
by the state of the random number generator.
� This research was supported by SFI project SFI 06 IN.1 1898.

G. Barthe, A. Pardo, and G. Schneider (Eds.): SEFM 2011, LNCS 7041, pp. 155–171, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

156 E. de Vries and V. Koutavas

We can model a random number generator as a stream of random numbers
available through some global variable r. This suggests a Hoare triple of the
form

{α ∈ Π(a), r = ?} shuffle(a) {a = α} (5)

but it is unclear what we should put at the location of (?). We would like to
state that every permutation can be generated by some (unspecified) choice of
random number stream, but unfortunately we are forced to be more precise
than that. Choose some enumeration of permutations, and let Πι(α) be the ιth
permutation of α. Then we could give the following specification:

{α = Πι(a), r = ρι} shuffle(a) {a = α} (6)

Specification (6) says that if shuffle is executed in an initial state with random
number stream ρι, then it will generate the ιth permutation. This is however
rather unsatisfactory. We cannot define ρ without detailed knowledge of the
algorithm; an alternative shuffling program would require a different mapping
ρ′ and would not satisfy the above specification. In fact, we would prefer not to
have to mention r in the specification at all so that we do not have to adjust
the specification when we refine an abstract, non-deterministic, implementation
of shuffle to a real one that relies on some global state.

The main problem is that Hoare Logic uses a universal quantification over
initial states (“for all initial states satisfying the precondition. . . ”), while shuffle
is more naturally specified using a universal quantification over final states (“for
all permutations. . . ”). This is precisely the purpose of Reverse Hoare Logic, in
which we can give the following specification for shuffle:

〈a = α〉 shuffle(a) 〈a ∈ Π(α)〉 (7)

or, using an operator “new” dual to “old”, without logic variables:

〈new(a) ∈ Π(a)〉 shuffle(a) 〈�〉 (8)

The reverse triple (7) is satisfied when all final states in which a is a permutation
of α are reachable by executing shuffle in some initial state in which a has value α.
It states precisely that shuffle can generate all permutations, exposes none of the
implementation so that we can give this specification without reference to the
algorithm, and can be used for many algorithms, regardless of whether they use
random number streams or non-determinism.

Reverse triples are statements about the reachability of all “good” final states
but say nothing about “bad” states. They are essentially dual to Hoare triples,
which are statements about “bad” states not being reachable but do not guar-
antee that “good” states are reachable. This duality between the logics can also
be observed in certain proof rules, such as the rule for consequence, where im-
plications are reversed, and in the proof of completeness, which requires the
definition of a weakest postcondition, rather than a weakest precondition, calcu-
lus. We believe that the two logics complement each other and their combination
can express a complete specification for shuffle.

Reverse Hoare Logic 157

Since we are interested in reachability, we are interested in the existence of
paths: a triple 〈P 〉 c 〈Q〉 is satisfied when for each final state σ′ satisfying Q there
is a state σ satisfying P such program c, when started in state σ, can terminate
in state σ′. In this sense, Reverse Hoare Logic is a total logic, although the above
triple does not require that c never diverges.

We make the following contributions in this paper:

1. We define Reverse Hoare Logic, a logic in which we can naturally express
reachability specifications for imperative programs. Equivalent specifications
in Hoare Logic would be less abstract and more difficult to define.

2. We give a proof system (Sect. 3) which can be used to prove the validity of
reverse triples, without appealing to the underlying model of the logic. Some
of the rules are familiar from Hoare Logic but others are different in subtle
and sometimes surprising ways; for instance, the rule for loops requires the
loop variant to increase rather than decrease.

3. We show the usefulness of the proof system by using it to derive admissible
rules for complex commands, and use it to give an elegant proof for the
specification of shuffle (Sect. 4).

4. We show that the proof system is sound and complete (Sect. 6). The com-
pleteness proof is based on a weakest postcondition calculus, which is also
useful in showing the invalidity of reverse triples (Sect. 5).

2 Definitions

We use a standard imperative language with local definitions and choice (�);
its big-step semantics is given in Fig. 1 as a mapping from states to states.
Throughout this paper we will use (σ, x �→ n) to denote the extension of σ with
variable x (i.e., x /∈ dom σ) and (σ † x �→ n) to denote the extension or update of
σ. We assume the Barendregt convention: all bound variables are assumed to be
different to all other variables, and we identify programs up to alpha-renaming.

We let e range over arithmetic expressions, n over natural numbers, and let
b range over boolean expressions. We use �e�σ to denote the evaluation of ex-
pression e in state σ; we leave the exact definition of the syntax for arithmetic
expressions and their evaluation relation open.

We use a standard first-order infinitary assertion language based on Lω1,ω

with the satisfaction relation shown in Fig. 1. To make the technical development
smoother we will allow for logic variables, ranged over by ι, in expressions in the
assertion language. We use e to range over these “extended” expressions too, as
the intended meaning will be clear from the context. The value of these variables
is given by an interpretation I, a mapping from logic variables to values. We can
define existentials and universals in the assertion language as syntactic sugar:

∀� ∈ L · P def=
∧

�∈L

P ∃� ∈ L · P def=
∨

�∈L

P (9)

Likewise, we will use P ∧ Q and P ∨ Q to denote binary conjunctions and dis-
junctions, respectively. A formula P is valid iff σ �I P for all states σ and
interpretations I.

158 E. de Vries and V. Koutavas

Operational Semantics

σ
skip−−→ σ σ

x:=e−−−→ σ † x �→ �e�σ

(σ, x �→ �e�σ)
c−→ (σ′, x �→ n′)

σ
local x=e in c−−−−−−−−−→ σ′

σ
c0−→ σ′ σ′ c1−→ σ′′

σ
c0;c1−−−→ σ′′

σ � b σ
c0−→ σ′

σ
if b then c0 else c1−−−−−−−−−−−−→ σ′

σ � ¬b σ
c1−→ σ′

σ
if b then c0 else c1−−−−−−−−−−−−→ σ′

σ � ¬b

σ
while b do c−−−−−−−→ σ

σ � b σ
c−→ σ′ σ′ while b do c−−−−−−−→ σ′′

σ
while b do c−−−−−−−→ σ′′

σ
c0−→ σ′

σ
c0�c1−−−−→ σ′

σ
c1−→ σ′

σ
c0�c1−−−−→ σ′

Satisfaction Relation

σ �I �
σ �I (e0 = e1) if �e0�σ,I = �e1�σ,I

σ �I (e0 ≤ e1) if �e0�σ,I ≤ �e1�σ,I

σ �I ¬P if not σ �I P
σ �I P ⇒ Q if σ �I P implies σ �I Q

σ �I
∧

�∈L

P� if σ �I P� for all � ∈ L

σ �I
∨

�∈L

P� if σ �I P� for some � ∈ L

Fig. 1. Operational Semantics and Satisfaction of Assertions

Definition 1 (Reverse Hoare validity). We write �I 〈P 〉 c 〈Q〉 iff

∀σ′ �I Q · ∃σ �I P · σ c−→ σ′

We write � 〈P 〉 c 〈Q〉 iff �I 〈P 〉 c 〈Q〉, for all I.

3 Program Logic

In order to abstract away from states and interpretations, we introduce a pro-
gram logic, shown in Fig. 2, which gives proof rules for each of the constructs in
the language. We will show in Sect. 6 that these rules are sound and complete;
in this section, we explain the rules and give examples.

Rules Skip and Assn are familiar from Hoare Logic. We can think of the
existential ι in the postcondition as the old value of x. Here is a simple example:

Assn〈
x = ι′

〉
x := x + 1

〈∃ι ∈ Z · ι = ι′ ∧ x = ι + 1
〉

Con〈
x = ι′

〉
x := x + 1

〈
x = ι′ + 1

〉 (10)

We use rule Con to bring the postcondition into the right form; note the direction
of the implications! This is a consequence of the underlying semantics of reverse
Hoare triples.

Reverse Hoare Logic 159

Assn (where L is the type of x)
〈P 〉 x := e 〈∃ι ∈ L · P (ι/x) ∧ x = e(ι/x)〉

〈P ∧ x = e〉 c 〈Q〉 x /∈ fn P
Local (where L is the type of x)

〈P 〉 local x = e in c 〈∃x ∈ L · Q〉

〈Pι ∧ b〉 c 〈Pι+1〉
While (ι fresh)

〈P0〉 while b do c 〈¬b ∧ ∃ι ∈ N · Pι〉

Skip

〈P 〉 skip 〈P 〉
〈P 〉 c0 〈Q〉 〈Q〉 c1 〈R〉

Seq

〈P 〉 c0; c1 〈R〉

〈P ∧ b〉 c0 〈Q〉
Then

〈P 〉 if b then c0 else c1 〈Q〉
〈P ∧ ¬b〉 c1 〈Q〉

Else

〈P 〉 if b then c0 else c1 〈Q〉

〈P 〉 c0 〈Q〉
Left

〈P 〉 c0 � c1 〈Q〉
〈P 〉 c1 〈Q〉

Right

〈P 〉 c0 � c1 〈Q〉

P ′ ⇒ P
〈
P ′〉 c

〈
Q′〉 Q ⇒ Q′

Con

〈P 〉 c 〈Q〉

(
∀� ∈ L · 〈P 〉 c 〈Q�〉

)

Split

〈P 〉 c

〈
∨

�∈L

Q�

〉

〈P 〉 c 〈Q〉
Frame (no variable occurring free in R is modified by c)

〈P ∧ R〉 c 〈Q ∧ R〉

Fig. 2. Reverse Hoare Rules

In Hoare Logic, {P (e/x)} x := e {P} is a popular alternative rule for assign-
ment. The naive translation of this rule to 〈P (e/x)〉 x := e 〈P 〉 is neither sound
nor complete; for instance, it allows us to derive 〈�〉 x := 2 〈�〉, which is invalid:
it says that any state at all (including one where x = 2) is reachable by executing
x := 2, which is clearly not true. On the other hand, 〈�〉 x := y 〈x = 2〉 cannot
be derived using this rule, while this is a valid reverse Hoare triple.

The rule for the introduction of a local variable x hides x from the postcondi-
tion and requires that x must have the specified initial value in the initial state.
Here is an example:

Assn

〈x = y〉 z := x 〈∃ι ∈ Z · x = y ∧ z = x〉
Con

〈x = y〉 z := x 〈x = y ∧ z = y〉
Local

〈�〉 local x = y in z := x 〈∃x ∈ Z · x = y ∧ z = y〉
Con

〈�〉 local x = y in z := x 〈z = y〉

(11)

160 E. de Vries and V. Koutavas

Rule Local is particularly useful in our setting because all global variables
assigned to by the program need to be mentioned in the postcondition. For
example, the triple

〈�〉 x := y; z := x 〈z = y〉 (12)

is not valid, since final states in which x = y are not reachable by executing
x := y; z := x.

The rule for sequential composition is as expected; the rule for conditions
is more interesting. Rule Then can be used if all states that satisfy the post-
condition can be reached by executing the true-branch of the conditional; rule
Else is the analogous rule for the false-branch of the conditional. Typically, rule
Split will first be used to partition the set of final states into those that can be
reached by the true-branch and those that can be reached by the false-branch.
For example:

...

〈b〉 x := 1 〈x = 1〉
Then

〈�〉 . . . 〈x = 1〉

...

〈¬b〉 x := 2 〈x = 2〉
Else

〈�〉 . . . 〈x = 2〉
Split

〈�〉 if b then x := 1 else x := 2 〈x = 1 ∨ x = 2〉

(13)

The rules for non-deterministic choice are similar to the rules for conditionals. It
remains to explain the rule for the loop construct. Like in standard Hoare logics
for total correctness [1] we have to provide a loop variant P , a predicate over
natural numbers. Unlike in standard Hoare logics, however, we have to show
that P holds for a smaller number before the loop body. Consider the following
example:

〈x = 0〉 while b do x := x + 1 � b := ⊥ 〈¬b〉 (14)

Intuitively, specification (14) is valid: any state which satisfies ¬b, in particular,
any state where x has some value n, can be reached from a state in which x = 0
(pick a state where b = �) by executing x := x+1 the first n iterations through
the loop, followed by one iteration executing b := ⊥. We can prove the validity
of this program by picking the loop variant1

φn
def= (x = n ∧ b) ∨ (x = n − 1 ∧ ¬b) (15)

The proof is given in Fig. 3.

4 Case Studies

In this section we prove admissible proof rules for complex commands using the
program logic and use them when we formally prove that shuffle can generate
any permutation of the input array. The proof rules are summarized in Fig. 4.

1 To simplify the example we assume 0 − 1 = 0 for natural numbers.

Reverse Hoare Logic 161

...

〈x = ι ∧ b〉 x := x + 1 〈x = ι + 1 ∧ b〉
Left

〈x = ι ∧ b〉 . . . 〈x = ι + 1 ∧ b〉
Con

〈φι ∧ b〉 . . . 〈x = ι + 1 ∧ b〉

...

〈x = ι ∧ b〉 b := ⊥ 〈x = ι ∧ ¬b〉
Right

〈x = ι ∧ b〉 . . . 〈x = ι ∧ ¬b〉
Con

〈φι ∧ b〉 . . . 〈x = ι ∧ ¬b〉
Split

〈φι ∧ b〉 x := x + 1 � b := ⊥ 〈φι+1〉
While

〈φ0〉 . . . 〈¬b ∧ ∃ι ∈ N · φι〉
Con

〈x = 0〉 while b do x := x + 1 � b := ⊥ 〈¬b〉

Fig. 3. Loop Example (φn defined in equation (15))

4.1 Picking Random Numbers

Assuming the availability of a stream of random numbers n1 : n2 : . . . through
global variable r, picking a random number boils down to

(
x := rnd[0, e]

)
def=

(
x := head(r); r := tail(r)

)
(16)

The proof that this satisfies the expected specification is an easy exercise. Let
Q be the post-condition ∃ι · P (ι/x) ∧ e ≤ x ≤ e′. Observe that

Assn

〈 P
∧ ∃ρ, ι · e ≤ ι ≤ e′

∧ r = ι : ρ

〉
. . .

〈∃ι′ · P (ι′/x)
∧ ∃ρ, ι · e ≤ ι ≤ e′

∧ r = ι : ρ
∧ x = head(r)

〉

Con〈
P ∧ ∃ρ, ι · e ≤ ι ≤ e′ ∧ r = ι : ρ

〉
. . . 〈Q ∧ ∃ρ · r = x : ρ〉

Con

〈P 〉 x := head(r) 〈Q ∧ ∃ρ · r = x : ρ〉

(17)

Moreover,

Assn

〈Q ∧ ∃ρ · r = x : ρ〉 r := tail(r)
〈∃ρ′ · Q ∧ ∃ρ · ρ′ = x : ρ ∧ r = tail(ρ′)

〉

Con

〈Q ∧ ∃ρ · r = x : ρ〉 r := tail(r) 〈Q ∧ ∃ρ · r = ρ〉
Con

〈Q ∧ ∃ρ · r = x : ρ〉 r := tail(r) 〈Q〉

(18)

The required specification follows by combining (17) and (18) using Seq. We
leave the generalization to x := rnd[e, e′] as an (easy) exercise for the reader.

4.2 Arrays

We deal with arrays by adopting the approach taken in Hoare Logic [13]: we
consider an expression language that contains expressions a[e] and a † e �→ e′

for array indexing and override, respectively.

162 E. de Vries and V. Koutavas

We define two derived commands to update the value of an array at a partic-
ular index and two swap to elements:

(
a[e] := e′

)
def=

(
a := a † e �→ e′

)

(
swap a[e, e′]

)
def=

(
local x = a[e] in a[e] := a[e′]; a[e′] := x

)

The associated proof rules Upd and Swap are shown in Fig. 4. As syntactic
conventions, we use a to range over array valued expressions, a for array valued
program variables, and α for array valued logic variables.

4.3 Iteration

We introduce a for loop as syntactic sugar; for simplicity, we fix the lower bound:
(
for x in [0, e) do c

)
def=

(
local x = 0 in while x < e do c; x := x + 1

)
(19)

Rule For is simpler than While, because termination is guaranteed; hence, we
only need to provide a loop invariant P , rather than a loop variant.2

Proving For is a good exercise. Let φn
def= P ∧ x = n ≤ e. We derive the rule

as follows:

〈P 〉 c
〈
P (x+1/x)

〉

Frame

〈P ∧ x = i < e〉 c
〈
P (x+1/x) ∧ x = i < e

〉 ∇
Seq

〈P ∧ x = i < e〉 c; x := x + 1 〈P ∧ x = i + 1 ≤ e〉
Con

〈P ∧ x = i ≤ e〉 c; x := x + 1 〈P ∧ x = i + 1 ≤ e〉
While

〈φ0〉 while x < e do . . . 〈¬(x < e) ∧ ∃i · φi〉
Con

〈P ∧ x = 0〉 while x < e do . . . 〈¬(x < e) ∧ x ≤ e ∧ P 〉
Con

〈P ∧ x = 0〉 while x < e do . . . 〈x = e ∧ P 〉
Local〈

P (0/x)
〉
local x = 0 in . . . 〈∃x · x = e ∧ P 〉

Con〈
P (0/x)

〉
for x in [0, e) do c 〈P (e/x)〉

(20)

where ∇ is a derivation with conclusion
〈
P (x+1/x) ∧ x = i < e

〉
x := x + 1 〈P ∧ x = i + 1 ≤ e〉 (21)

4.4 Shuffle

We are now in a position to prove that shuffle can generate any permutation.
We give the Fisher-Yates implementation of shuffle as follows:

for x in [0, |a|) do local y = 0 in y := rnd[x, |a| − 1]; swap a[x, y] (22)
2 P truly is a loop invariant; although we require P (x+1/x) after c, this means that P

will be true again after x is incremented.

Reverse Hoare Logic 163

〈P 〉 c
〈
P (x+1/x)

〉

For〈
P (0/x)

〉
for x in [0, e) do c 〈P (e/x)〉

(
c cannot change x or any variable
appearing in e

)

x /∈ e, e′
Rnd

〈P 〉 x := rnd[e, e′]
〈∃ι · P (ι/x) ∧ e ≤ x ≤ e′

〉

a /∈ e
Upd

〈P 〉 a[e] := e′
〈∃α ∈ [Z] · P (α/a) ∧ a = α † e �→ e′(α/a)

〉

a /∈ e, e′

Swap

〈P 〉 swap a[e, e′]
〈∃α ∈ [Z] · P (α/a) ∧ a = α † e ↔ e′

〉

Fig. 4. Derived Proof Rules

In order to prove shuffle correct, we need a lemma that says that any permutation
of an array α of size |α| can be generated by first swapping the first element with
an element 0 ≤ m < |α|, then the second element with an element 1 ≤ m′ < |α|,
etc. Formally:

Lemma 1 (Permutations). Define an indexed predicate πn as follows.

a′ π0 a iff a′ = a
a′ πn+1 a iff ∃m · a′ πm

n+1 a

where a′ πm
n+1 a = ∃a′′ · n ≤ m < |a| ∧

(
a′ = a′′ † n ↔ m

)
∧ a′′ πn a.

Then a′ ∈ Π(a) iff a′ π|a| a.

We can use a πx α as our loop invariant3 and give the following proof:

∇1 ∇2

Seq

〈a πx α ∧ y = 0〉 . . .
〈
a πy

x+1 α
〉

Local

〈a πx α〉 local y = 0 in . . .
〈∃y · a πy

x+1 α
〉

Con

〈a πx α〉 local y = 0 in . . . 〈a πx+1 α〉
For〈

(a πx α)(0/x)
〉
for x in [0, |a|) do . . .

〈
(a πx α)(|a|/x)

〉

Con (Lem. 1)
〈a = α〉 shuffle(a) 〈a ∈ Π(α)〉

(23)

where ∇1 is a derivation with conclusion

〈a πx α ∧ y = 0〉 y := rnd[x, |a| − 1] 〈a πx α ∧ x ≤ y < |a|〉 (24)

3 Technically the subscript to π must be a natural number; we can regard this loop

invariant as syntactic sugar for
∨

n∈N

a πn α ∧ x = n.

164 E. de Vries and V. Koutavas

which can be proved using Rnd and Con. Derivation ∇2 is given by

Swap

〈
a πx α ∧ x ≤ y < |a| 〉 swap a[x, y]

〈∃α′· α′ πx α
∧ (a = α′ † x ↔ y)
∧ x ≤ y < |a|

〉

Con

〈a πx α ∧ x ≤ y < |a|〉 swap a[x, y]
〈
a πy

x+1 α
〉

(25)

The difficulty of this proof is on par with the difficulty of proofs of comparable
properties in Hoare Logic, for instance proving that sort is correct. As in Hoare
Logic proofs, the key step in the proof is identifying the loop invariant.

5 Weakest Postcondition Calculus

In Sect. 3 we presented a program logic for deriving reverse Hoare triples. In this
section we present a weakest-postcondition calculus, shown in Fig. 5, which com-
putes wpo(P, c), the weakest postcondition given a precondition P and program
c. We then have that 〈P 〉 c 〈Q〉 is a valid triple if and only if Q ⇒ wpo(P, c).
As we shall see in Sect. 6, the calculus is also an essential ingredient in proving
completeness of the program logic.

Moreover, a weakest postcondition calculus gives us a tool for proving that
triples are not valid. For instance, in Sect. 3 we claimed that triple (12)

〈�〉 x := y; z := x 〈z = y〉
was invalid. Using our calculus we can prove this formally. We compute

wpo(�, x := y; z := x) = wpo(wpo(�, x := y), z := x)
= wpo(x = y, z := x) = (x = y ∧ z = x) = (x = y ∧ z = y)

Since z = y ⇒ x = y ∧ z = y (it is easy to find a counterexample) we can
conclude that this triple is indeed invalid, and the weakest postcondition tells
us precisely what is missing: the condition on x.

6 Soundness and Completeness

We first show that any reverse Hoare triple derivable by the proof system is
valid. We rely on two auxiliary lemmas, which we state without proof. The first
is a standard substitution lemma:

Lemma 2. σ �I P (n/x) iff (σ † x �→ n) �I P .

The second states that predicates are preserved by programs that do not modify
any of the variables mentioned in the predicate:

Lemma 3. If σ′ �I P , σ
c−→ σ′ and no variable occurring free in P is modified

by c, then σ �I P .

Reverse Hoare Logic 165

wpo(P, skip) = P

wpo(P, x := e) = ∃� ∈ L · P (�/x) ∧ x = e(�/x)

wpo(P, c0; c1) = wpo(wpo(P, c0), c1)

wpo(P, if b then c0 else c1) = wpo(P∧b, c0) ∨ wpo(P∧¬b, c1)

wpo(P, c0 � c1) = wpo(P, c0) ∨ wpo(P, c1)

wpo(P, local x = e in c) = ∃x ∈ L · wpo(P ∧ x = e, c)

wpo(P, while b do c) = ¬b ∧
∨

n∈N

Υb,c,P (n)

where

Υb,c,P (0) = P

Υb,c,P (n + 1) = wpo(Υb,c,P (n) ∧ b, c)

Fig. 5. Weakest Postcondition Calculus

We can now state and prove soundness.

Theorem 1 (Soundness). If � 〈P 〉 c 〈Q〉 then � 〈P 〉 c 〈Q〉.
Proof. By induction on the derivation of 〈P 〉 c 〈Q〉. The cases for Skip, Seq,
Then, Else, Left, Right, Con and Split are straightforward. We give details
for the other cases.

1. Case Assn〈P 〉 x := e
〈∃i · P (i/x) ∧ x = e(i/x)

〉 .

Pick an I, σ′ such that σ′ �I ∃i ·P (i/x)∧x = e(i/x) i.e. ∃n ·σ′ �I P (n/x)∧x =
e(n/x). Choose σ = (σ′ † x �→ n). By Lem. 2 we have σ′ � P (n/x) iff σ′, x �→
n � P . Finally, since σ † x �→ �e�σ = (σ′ † x �→ n) † x �→ �e�σ′†x �→n = σ′ †
x �→ �e�σ′†x �→n = σ′ † x �→ �e(n/x)�σ′ = σ′, we have σ

x:=e−−−→ σ′.

2. Case
〈P ∧ x = e〉 c 〈Q〉 x /∈ fnP

Local〈P 〉 local x = e in c 〈∃x · Q〉 .

Pick an I, σ′ such that σ′ �I ∃x · Q. We have σ′ �I ∃x · Q i.e. ∃n′ · σ′ �I

Q(n′
/x) i.e. ∃n′ · (σ′, x �→ n′) �I Q. By the induction hypothesis there exist

a σ0 such that σ0
c−→ (σ′, x �→ n′) and σ0 �I P ∧ x = e. Hence, there must

be some σ �I P such that σ0 = σ, x �→ �e�σ0 = σ, x �→ �e�σ (since x /∈ e, P).

The proof is completed by
(σ, x �→ �e�σ) c−→ (σ′, x �→ n′)

σ
local x=e in c−−−−−−−−−→ σ′

.

3. Case
〈Pi ∧ b〉 c 〈Pi+1〉

While〈P0〉 while b do c 〈¬b ∧ ∃i · Pi〉
.

Pick an interpretation I and a state σ′ such that σ′ �I ¬b∧∃i·Pi i.e. ∃n·σ′ �I

¬b∧Pn. If n = 0 we take σ = σ′ and we’re done. Otherwise we use the premise
to obtain a series of states which satisfy P (n′) ∧ b for a decreasing n′ until
we reach a state that satisfies P (0).

4. Case
〈P 〉 c 〈Q〉

Frame〈P ∧ R〉 c 〈Q ∧ R〉 .

166 E. de Vries and V. Koutavas

Pick an interpretation I and a state σ′ �I Q ∧ R. Clearly σ′ �I Q so that
by the premise there exist an σ �I P where σ

c−→ σ′; σ �I R follows from
Lem. 3.

We prove relative completeness4 in two steps. We establish that our weakest-
postcondition calculus calculates the largest set of states that can be reached by
a precondition and a program, and then use this result to prove completeness.

Definition 2 (Weakest postcondition). The weakest postcondition of a pre-
condition P and program c, with respect to an interpretation I, is defined by

wpoI�P, c�
def= {σ′ | ∃σ · σ �I P ∧ σ

c−→ σ′}
The calculus presented in Sect. 5 characterizes exactly this set. This property is
sometimes referred to as the expressivity of the assertion language. To prove it,
we first give a characterization of Υ :

Lemma 4 (Υ). Given a program c such that

∀σ′, P, I · σ′ ∈ wpoI�P, c� iff σ′ �I wpo(P, c)

and given boolean predicate b and precondition P we have ∀n, σ′·
σ′ �I Υb,c,P (n) iff ∃σ0≤i≤n · σn = σ′ ∧ σ0≤i<n � b ∧ σ0 �I P ∧ σ0≤i<n

c−→ σi+1

Proof. By induction on n.

Proposition 1. ∀σ′ · σ′ ∈ wpoI�P, c� iff σ′ �I wpo(P, c).

Proof. By induction on c, similar to the proof of Theorem 1. The case for loops
relies on Lem. 4.

It remains to show that the weakest postcondition is always derivable in the
program logic; completeness of the logic then follows.

Proposition 2. ∀c, P we have � 〈P 〉 c 〈wpo(P, c)〉.
Proof. By induction on c. The cases for Skip and Assn are immediate. The
other cases are detailed below.

1. Case c = local x = e in c0.

〈P ∧ x = e〉 c0 〈wpo(P ∧ x = e, c)〉
Local〈P 〉 local x = e in c0 〈∃x · wpo(P ∧ x = e, c)〉

2. Case c = c0; c1.

〈P 〉 c0 〈wpo(P, c0)〉 〈wpo(P, c0)〉 c1 〈wpo(wpo(P, c0), c1)〉
Seq〈P 〉 c0; c1 〈wpo(wpo(P, c0), c1)〉

4 Also known as completeness in the sense of Cook [1, Sect. 2.8].

Reverse Hoare Logic 167

3. Case c = if b then c0 else c1.

〈P ∧ b〉 c0 〈wpo(P ∧ b, c0)〉
Then〈P 〉 . . . 〈wpo(P ∧ b, c0)〉

〈P ∧ ¬b〉 c1 〈wpo(P ∧ ¬b, c1)〉
Else〈P 〉 . . . 〈wpo(P ∧ ¬b, c1)〉

Split〈P 〉 if b then c0 else c1 〈wpo(P ∧ b, c0) ∨ wpo(P ∧ ¬b, c1)〉
4. Case c = while b do c0.

〈Υb,c0,P (n) ∧ b〉 c0 〈wpo(Υb,c0,P (n) ∧ b, c0)〉
Con〈Υb,c0,P (n) ∧ b〉 c0 〈Υb,c0,P (n + 1)〉

While

〈Υb,c0,P (0)〉 while b do c0

〈
¬b ∧

∨

n

Υb,c0,P (n)

〉

Con〈P 〉 while b do c0 〈¬b ∧ ∃i · Υb,c0,P (i)〉
5. Case c = c0 � c1.

〈P 〉 c0 〈wpo(P, c0)〉
Left〈P 〉 c0 � c1 〈wpo(P, c0)〉

〈P 〉 c1 〈wpo(P, c0)〉
Right〈P 〉 c0 � c1 〈wpo(P, c0)〉
Split〈P 〉 c0 � c1 〈wpo(P, c0) ∨ wpo(P, c1)〉

Lemma 5. If � 〈P 〉 c 〈Q〉 then Q ⇒ wpo(P, c).

Proof.

� 〈P 〉 c 〈Q〉 iff ∀I, σ′ �I Q · ∃σ �I P ∧ σ
c−→ σ′ iff ∀I, σ′ �I Q · σ′ ∈ wpoI�P, c�

iff ∀I, σ′ �I Q · σ′ �I wpo(P, c) iff Q ⇒ wpo(P, c)

Theorem 2 (Completeness). If � 〈P 〉 c 〈Q〉 then � 〈P 〉 c 〈Q〉.
Proof. Follows from rule Con and Prop. 2.

7 Related Work

Hoare Logic was introduced by Hoare in 1969 [12], and has since grown into a
very active research field. Ten years after its invention a survey already spanned
two papers [1,2]. Recent work has introduced the concept of separation into the
logic to deal with aliasing [25], extended it to functional languages [15,16] and
embedded Hoare logic in type theory [22].

As already discussed, however, Hoare logics are not suitable for state reachabil-
ity specifications, with the exception of probabilistic Hoare logics [23,18,10,5,21].
A probabilistic specification for shuffle might say that the probability of the gen-
eration of any permutation is greater than zero; indeed, it might say that every
permutation is equally likely. Although such exact guarantees cannot be proven
using Reverse Hoare Logic, proofs in Reverse Hoare Logic are simpler than proofs

168 E. de Vries and V. Koutavas

in probabilistic Hoare logics. The assertion language in Reverse Hoare Logic is a fa-
miliar first order logic, and reasoning does not involve manipulating probabilities
or state distributions.

The notions of “weakest postcondition” and “strongest precondition” appear
only occasionally in the literature, mostly in the context of incomplete knowl-
edge. For instance, when using dynamic binding in object oriented programming,
the caller can only assume the weakest postcondition, i.e. the postcondition of
the method in the top of the inheritance hierarchy [11]. Similar situations arise
with web services [19] and contracts [24], and in artificial intelligence when omit-
ting information in an attempt to simplify a search domain [3,26]. In UTP these
notions are used to define recursion in the theory of “designs” [27].

Dynamic logic [8,9] is a multi-modal logic; for any program c the formula
〈c〉P is satisfied if c can terminate in a state satisfying P , and the formula [c]P
is satisfied if all states that c terminates in satisfy P (there might not be any).
The Hoare triple {α ∈ Π(a)} shuffle {a = α} can be expressed as

∀α · α ∈ Π(a) → 〈shuffle(a)〉(a = α) (26)

in Dynamic Logic. Like in Hoare Logic, however, an implementation of shuffle
which relies on a global random number stream would not satisfy specification
(26). The more general treatment of qualifiers in Dynamic Logic means that in
Dynamic Logic we do not have to be quite as precise as in Hoare Logic:

∀α, ι · ∃ρ · α = πi(a), r = ρ → 〈shuffle(a)〉(a = α) (27)

Specification (27) is better than the Hoare triple (6) as we do not have to specify
the precise relation between permutations and random number streams, so that
this specification is satisfied by more implementations of shuffle. Nevertheless,
this specification still exposes an implementation detail (the reliance on r).

One might envision extending Dynamic Logic with a reverse modality to ob-
tain a “Reverse Dynamic Logic”. This would certainly be of interest. Finally,
we remark that a lot of the literature on Dynamic Logic is concerned with the
treatment of “totality” in the presence of non-determinism; this is less relevant
in our setting, since we are interested in reachability.

If we have an inverse operation c−1 on programs such that σ
c−1−−→ σ′ exactly

when σ′ c−→ σ, it is immediate from the definitions of validity of total Hoare
triples (with “for all initial. . . exists final. . . ” semantics) that 〈P 〉 c 〈Q〉 exactly
when {Q} c−1 {P}. Reverse Hoare Logic is thus related to the old idea of pro-
gram inversion [6,28], but we avoid the need for computing program inverses.
From another perspective, Reverse Hoare Logic provides a way to prove Hoare
specifications of inverse programs without having to compute the inverse.

Hoare-style “contracts” (pre- and post-conditions) are often implemented as
runtime checks in programming languages such as Eiffel [20]. It is not obvious
how to check “reverse contracts” at runtime. However, static verification of con-
tracts is slowly becoming a reality through tools such as ESC/Java2 [7] and
Spec# [4]. It should not be too difficult to extend these tools to support verifi-
cation of reverse contracts too, although we have not attempted to do so. Some

Reverse Hoare Logic 169

of these tools do not support logic variables, amplifying the need for a reverse
logic to reason about reachability.5

8 Conclusions

Reverse Hoare Logic can be used to give and prove reachability specifications.
Compared to the alternatives, the specifications can be more abstract than in
Hoare logic, and the corresponding proofs are simpler than when using a proba-
bilistic logic. Reverse Hoare Logic naturally gives rise to the concept of a weakest
postcondition, which we have used to show that the proof system is complete.

It would be worthwhile to attempt to combine standard and reverse Hoare
logic, yielding a logic in which we can express both the reachability of good states
and the non-reachability of bad states. An extension to functional languages,
especially higher-order ones, would also be of interest.

The use of an infinitary logic enabled an elegant definition of the weakest
postcondition calculus and hence made the completeness proof easier. However,
a formulation using a finitary logic would be useful for an implementation of
Reverse Hoare Logic in an automatic theorem prover.

Finally, it would be interesting to look at adaptation in the context of Reverse
Hoare Logic. We believe that a simple adaptation rule such as equation (6) in
[17] is sound for Reverse Hoare Logic (mutatis mutandis), but it is unclear at
present if Reverse Hoare Logic can be made adaptation complete.

Acknowledgements. We would like to thank Colm Bhandal for an insightful
discussion on the expressivity of Hoare triples in the presence of non-determinism,
and to Hugh Gibbons for providing valuable references.

References

1. Apt, K.R.: Ten years of Hoare’s logic: A survey—part I. ACM Trans. Program.
Lang. Syst. 3, 431–483 (1981)

2. Apt, K.R.: Ten years of Hoare’s logic: A survey—part II: Nondeterminism. Theo-
retical Computer Science 28(1-2), 83–109 (1983)

3. Bacchus, F., Yang, Q.: Downward refinement and the efficiency of hierarchical
problem solving. Artificial Intelligence 71(1), 43–100 (1994)

4. Barnett, M., DeLine, R., Fähndrich, M., Jacobs, B., Leino, K.R.M., Schulte,
W., Venter, H.S.: The spec# programming system: Challenges and directions.
In: Meyer, B., Woodcock, J. (eds.) VSTTE 2005. LNCS, vol. 4171, pp. 144–152.
Springer, Heidelberg (2008)

5 In some tools such as ESC/Java2 we can use “ghost variables” (ordinary variables
appearing only in specifications and proofs) to express reachability properties; e.g. for
the nondeterministic shuffle we can write {γ ∈ Π(a)} shuffle {a = γ ∧ γ = old(γ)}.
Again, deterministic implementations of shuffle do not satisfy this specification. Note
that techniques to remove ghost variables (cf. [14]) do not apply here.

170 E. de Vries and V. Koutavas

5. Chadha, R., Cruz-Filipe, L., Mateus, P., Sernadas, A.: Reasoning about probabilis-
tic sequential programs. Theor. Comput. Sci. 379, 142–165 (2007)

6. Chen, W., Udding, J.T.: Program inversion: more than fun! Sci. Comput.
Program. 15, 1–13 (1990)

7. Cok, D., Kiniry, J.: ESC/Java2: Uniting ESC/Java and JML. In: Barthe, G., Burdy,
L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.) CASSIS 2004. LNCS, vol. 3362,
pp. 108–128. Springer, Heidelberg (2005)

8. Goldblatt, R.: Logics of time and computation. Center for the Study of Language
and Information, Stanford, CA, USA (1987)

9. Harel, D.: Logics of programs: Axiomatics and descriptive power. Tech. rep.,
Massachusetts Institute of Technology, Cambridge, MA, USA (1978)

10. den Hartog, J.: Verifying probabilistic programs using a Hoare like logic. In:
Thiagarajan, P., Yap, R. (eds.) ASIAN 1999. LNCS, vol. 1742, pp. 790–790.
Springer, Heidelberg (1999)

11. Heyer, T.: Semantic Inspection of Software Artifacts From Theory to Practice.
Ph.D. thesis, Linköping University (2001)

12. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM 12,
576–580 (1969)

13. Hoare, C.A.R., Wirth, N.: An axiomatic definition of the programming language
PASCAL. Acta Informatica 2, 335–355 (1973)

14. Hofmann, M., Pavlova, M.: Elimination of ghost variables in program logics. In:
Barthe, G., Fournet, C. (eds.) TGC 2007. LNCS, vol. 4912, pp. 1–20. Springer,
Heidelberg (2008)

15. Honda, K., Yoshida, N., Berger, M.: An observationally complete program logic
for imperative higher-order functions. In: LICS, pp. 270–279. IEEE, Los Alamitos
(2005)

16. Kanig, J., Filliâtre, J.C.: Who: a verifier for effectful higher-order programs. In:
ACM SIGPLAN Workshop on ML, pp. 39–48. ACM, New York (2009)

17. Kleymann, T.: Hoare logic and auxiliary variables. Formal Aspects of
Computing 11, 541–566 (1999), http://dx.doi.org/10.1007/s001650050057,
doi:10.1007/s001650050057

18. Kozen, D.: A probabilistic PDL. J. Comp. and Sys. Sc. 30(2), 162–178 (1985)
19. Kumar, A., Srivastava, B., Mittal, S.: Information modeling for end to end com-

position of semantic web services. In: Gil, Y., Motta, E., Benjamins, V.R., Musen,
M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 476–490. Springer, Heidelberg (2005)

20. Meyer, B.: Object-oriented software construction, 2nd edn. Prentice-Hall, Inc., Up-
per Saddle River (1997)

21. Morgan, C., McIver, A., Seidel, K.: Probabilistic predicate transformers. ACM
Trans. Program. Lang. Syst., 325–353 (1996)

22. Nanevski, A., Morrisett, G., Birkedal, L.: Polymorphism and separation in Hoare
Type Theory. SIGPLAN Not. 41, 62–73 (2006)

23. Ramshaw, L.H.: Formalizing the analysis of algorithms. Ph.D. thesis, Stanford
University (1979)

24. Reussner, R., Poernomo, I., Schmidt, H.: Reasoning about software architectures
with contractually specified components. In: Cechich, A., Piattini, M., Vallecillo,
A. (eds.) CBSQ 2003. LNCS, vol. 2693, pp. 287–325. Springer, Heidelberg (2003)

25. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
LICS, pp. 55–74. IEEE Computer Society, Washington, DC, USA (2002)

http://dx.doi.org/10.1007/s001650050057

Reverse Hoare Logic 171

26. ten Teije, A., van Harmelen, F.: Characterising approximate problem solving: by
partially fulfilled pre- and postconditions. In: ECAI 1998. CEUR-WS, vol. 16, pp.
78–82 (1998)

27. Woodcock, J., Cavalcanti, A.: A Tutorial Introduction to Designs in Unifying
Theories of Programming. In: Boiten, E.A., Derrick, J., Smith, G.P. (eds.) IFM
2004. LNCS, vol. 2999, pp. 40–66. Springer, Heidelberg (2004)

28. von Wright, J.: Program inversion in the refinement calculus. Information
Processing Letters 37(2), 95–100 (1991)

	Reverse Hoare Logic
	Introduction
	Definitions
	Program Logic
	Case Studies
	Picking Random Numbers
	Arrays
	Iteration
	Shuffle

	Weakest Postcondition Calculus
	Soundness and Completeness
	Related Work
	Conclusions
	References

