
A Machine-Checked Framework
for Relational Separation Logic�

Juan Manuel Crespo1 and César Kunz1,2

1 IMDEA Software Institute, Madrid, Spain
2 Universidad Politécnica de Madrid

Abstract. Relational methods are gaining growing acceptance for specifying and
verifying properties defined in terms of the execution of two programs—notions
such as simulation, observational equivalence, non-interference, and continuity
can be elegantly cast in this setting. In previous work, we have proposed program
product construction as a technique to reduce relational verification to standard
verification. This method hinges on the ability to interpret relational assertions as
traditional predicates, which becomes problematic when considering assertions
from relational separation logic. We report in this article an alternative method
that overcomes this difficulty, defined as a relational weakest precondition calcu-
lus based on separation logic and formalized in the Coq proof assistant. The for-
malization includes an application to the formal verification of the Schorr-Waite
graph marking algorithm. We discuss additional variants of relational separation
logic inspired by the standard notions of partial and total correctness, and exten-
sions of the logic to handle non-structurally equivalent programs.

1 Introduction

Separation logic [15, 23, 24] is a formalism devised to verify pointer programs using
local reasoning; its extensions and variants have been used successfully in a variety of
large scale programs [30] and smaller but challenging examples [17], including lock-
free algorithms [13].

Relational reasoning, on the other hand, provides an effective means to understand
program behavior: in particular, it allows one to establish that the same program be-
haves similarly on two different runs, or that two programs execute in a related fashion.
Relational judgments are often formalized by quadruples {ϕ} c1 ∼ c2 {ψ}, denoting
that every pair of executions of c1 and c2 with initial states related by ϕ returns with
final states related by ψ. Prime examples of relational properties include notions of sim-
ulation and observational equivalence, and 2-properties, such as non-interference and
continuity.

Syntactic methods [7] have been developed to support relational reasoning. In par-
ticular, relational separation logic [29] is a variant of separation logic that supports

� Partially funded by European Projects FP7-231620 HATS and FP7-256980 NESSoS, Spanish
project TIN2009-14599 DESAFIOS 10, Madrid Regional project S2009TIC-1465 PROMETI-
DOS. César Kunz is funded by a Juan de la Cierva Fellowship, MICINN, Spain.

G. Barthe, A. Pardo, and G. Schneider (Eds.): SEFM 2011, LNCS 7041, pp. 122–137, 2011.
© Springer-Verlag Berlin Heidelberg 2011

A Machine-Checked Framework for Relational Separation Logic 123

reasoning about two pointer programs; it embodies the conventional wisdom that cast-
ing program correctness as an equivalence between two programs is often more benefi-
cial than functional verification. More concretely, relational separation logic is intended
to prove program correctness by showing the equivalence between the program to be
verified and a reference implementation: e.g. Yang [29] provides an elegant proof in
relational separation logic that the Schorr-Waite graph marking algorithm is equivalent
to depth-first search.

However, these syntactic methods suffer from two important caveats: on the one
hand, these logics confine reasoning to structurally equivalent programs with equivalent
guards; on the other hand, tool support is negligible, with the exception of recent work
by Aleks Nanevski et al [22]—which focuses mainly on the specification and proof
of a rich set of security policies and its static enforcement. Although the relational
postconditions used to describe such policies can be arbitrary relations between pairs
of initial, final heaps and results, this tool seems to be specially tailored to reason about
two runs of the same program, rather than about two different programs. To some extent
it is possible to circumvent such restriction by casting two different programs P and P’
as a single program with a guard deciding which program to execute, i.e. if x then
P else P’. However, this approach seems a bit awkward and it is not at all clear
whether doing this can enable reasoning in terms of relational invariants—which is
essential to keep invariants simple.

In recent work [4] we propose a technique—product program construction—that
reduces relational program reasoning to traditional program reasoning—even for non-
structurally equivalent programs. Perhaps more importantly, it enables the use of tradi-
tional verification tools, circumventing two of the main issues of techniques supporting
relational reasoning. However, this method relies on the ability to interpret relational
assertions (predicates on two states) as traditional assertions (predicates on one state),
but this is not straightforward when using assertions from relational separation logic.
More precisely, an issue arises when trying to interpret the relational assertion

R =
(
p
q

)

(two heaps h1 and h2 are related by R if p holds in h1 and q holds in h2) as a predicate
p � q. Note that this interpretation induces a loss of information: predicateR holds for a
fixed partition of the heap while the latter holds for any partition of the heap. This loss
of information renders our method unsound. Indeed, {P � emp}skip; skip{emp � P} is
a valid separation logic judgment for all P , whereas the following relational judgment
is not: (

P
emp

)
skip ∼ skip

(
emp
P

)

We present in this article an alternative approach that overcomes the difficulties of re-
lational verification by product construction, based on a weakest precondition calculus
for relational separation logic. The calculus is complete and formalized in the Coq proof
assistant, and can be regarded as a first step towards providing tool support for relational
methods that enables reasoning about heap manipulating programs.

The formalization provides a framework to reason about a small imperative language
—using a deep embedding—with heap manipulating instructions very similar to the one

124 J.M. Crespo and C. Kunz

described in Yang’s article. We have formalized its semantics and provided a soundness
proof of the relational weakest precondition. Local reasoning is supported by proving
that the calculus is compatible with the frame rule. Also, we have defined an alternative
calculus ensuring total relational correctness relying on variants (or ranking functions)
defining a well-founded order on states.

The Coq formalization has been used to provide a formal proof of the equivalence
of Depth First Search and the Schorr-Waite graph marking algorithm, reproducing the
proof of the Schorr-Waite graph marking algorithm performed by Yang. We have ex-
tended Yang’s proof to the total relational correctness case, hence ensuring that both
programs terminate. The formal proof of the Schorr-Waite algorithm required a slightly
stronger loop invariant, indicating perhaps a small weakness in the original specification
provided in Yang’s article.

We also introduce an extension of the relational calculus beyond structurally equiv-
alent program, preserving relational reasoning over loop invariants, and thus retaining
the aforementioned advantages. We illustrate the application of the calculus with the
validation of a complex program optimization.

Contents. The rest of the paper is structured as follows: Section 2 describes the for-
malization of the relational weakest precondition calculus, instantiated with a simple
programming setting. In this section, we briefly review relational separation logic and
present the main properties of the calculus: soundness and framing. Also, we present
a variant of the calculus that ensures termination of both programs. Section 3 presents
our main case study, the proof of equivalence between the Schorr-Waite graph marking
algorithm w.r.t. depth-first search. Section 4 describes an extension to non-structurally
equivalent code.

2 Formalization of Relational Separation Logic

We start this section by introducing a simple program setting and then we provide an
overview of relational separation logic. Afterwards, we develop our relational calculus
based on weakest precondition computation.

The programming language presented in Figure 1 is a mild extension of the typical
setting used in standard separation logic [23] to include list expressions. List values are
rather uncommon in similar formalizations of imperative languages but are included
here to ease the description of the Depth First Search (DFS) algorithm, which uses a
stack as auxiliary data structure. In the figure, α stands for a list variable. We let BExp
denote the set of boolean expressions and Stmt the set of statements.

State model. We let S denote the set of states. A state comprises two components:
the store and the heap. The store itself comprises two components to accommodate
two types of expressions: natural numbers and lists. Each of the store components is
modeled the usual way, as a finite mapping from scalar variables in VarN to natural
numbers and as a finite mapping from list variables in VarL to lists of natural numbers.
We assume that the sets of variables VarN and VarL are disjoint. We let upd(x, n, s)
stand for the result of updating the variable x to value n in the store s.

A Machine-Checked Framework for Relational Separation Logic 125

(integer expressions) E ::= 0 | 1 | E + E | E × E | E − E | hd(L)
(boolean expressions) B ::= false | B ⇒ B | E = E | E < E | L = L

(list expressions) L ::= α | ε | E::L | tl(L)
(instructions) I ::= x := alloc(E) | x := [E] | [E] := E | free(E) |

x := E | α := L | assert(B)
(statements) C ::= I | C1; C2 | if B then C1 else C2 | while b do c | skip

Fig. 1. Syntax of Programs

The heap is modeled as a finite mapping from locations (natural numbers) to values.
The special location 0 is denoted null and cannot belong to the domain of a heap. Heaps
are equipped with several operations such as look-up, free, fresh, disjoint union and
interact in the expected way:

Expression Meaning
freshn(h, n) base location for a sequence of n consecutive free cells in h;
look(h, n) value of the cell n in the heap h;
mut(n,m, h) result of setting the contents of cell n of heap h to m;
dealloc(h, n) result of freeing cell n from heap h;

Moreover, we let dom(h) stand for the set of allocated locations of heap h, and h1 � h2

denote the disjoint union of heaps h1 and h2. In the actual Coq development, failure is
captured in an error monad, but for simplicity we omit these details here. Much of the
formalization is adapted from Nanevski et al [21].

Semantics of basic instructions. The semantics of an instruction i is modeled as a
relation [[i]] on states; the rules are given in Fig. 2. The denotation of an instruction is
a relation between states. States are noted as tuples (h, si, sl) where h represents the
heap and si and sl denote the stores for integer and list variables, respectively. The
instruction x := alloc(E) evaluates the expression E to a natural number n and then
allocates n free contiguous heap cells, initializes them with value 0 and sets the value
of x to the first allocated cell. The look up instruction x := [E] evaluates expression E
to a location n and if it is allocated it updates the value of variable x to the contents of
the heap cell n. The mutation instruction [E1] := E2 evaluates E1 to a location n and
if n is a valid location in the current heap, this is modified so that it maps n to the result
of evaluating E2. A field access x := E.f is used as a syntactic sugar of x := [E+f],
when the field identifier f represents a known offset. Similarly, we use E1.f := E2 as a
syntax sugar of [E1+f] := E2. The instruction free(E) releases the heap cell allocated
at the location represented by E. The assert instruction has blocking semantics. The
remaining assignments for integer and list variables are completely standard.

Semantics of commands. The semantics [[c]] of a command is defined as a relation on
states (big step style), using as auxiliary definition the semantics of boolean expressions,
modeled as a function from states to booleans. The definitions are standard and omitted.
Also, we denote 〈c, μ〉 � 〈c′, μ′〉 the small-step command semantics and we use ��

for its reflexive transitive closure. Obviously these two semantic styles are sound and

126 J.M. Crespo and C. Kunz

((h, si, sl), (h
′, s′i, s

′
l)) ∈ [[x := alloc(E)]]

.
= s′i = upd(x, m, si)

∧ s′l = sl ∧ h′ = h � (
n−1⊎
i=0

(m + i) �→ 0)

∧ m = freshn(h, n) ∧ n ∈ ([[E]] (h, si, sl))
((h, si, sl), (h

′, s′i, s
′
l)) ∈ [[x := [E]]]

.
= s′l = sl ∧ h′ = h ∧ s′i = upd(x, look(h, n), si)
∧ n ∈ dom(h) ∧ n ∈ ([[E]] (h, si, sl))

((h, si, sl), (h
′, s′i, s

′
l)) ∈ [[[E1] := E2]]

.
= s′i = si ∧ s′l = sl ∧ h′ = mut(n, m, h)
∧ n ∈ dom(h) ∧ n ∈ ([[E1]] (h, si, sl))
∧ m ∈ ([[E2]] (h, si, sl))

((h, si, sl), (h
′, s′i, s

′
l)) ∈ [[free(E)]]

.
= s′i = si ∧ s′l = sl ∧ h′ = dealloc(h, n)
∧ n ∈ dom(h) ∧ n ∈ ([[E]] (h, si, sl))

((h, si, sl), (h
′, s′i, s

′
l)) ∈ [[x := E]]

.
= h′ = h ∧ s′l = sl ∧ s′i = upd(x,n, si)
∧ n ∈ ([[E]] (h, si, sl))

((h, si, sl), (h
′, s′i, s

′
l)) ∈ [[α := L]]

.
= h′ = h ∧ s′i = si ∧ s′l = upd(α, xs, sl)
∧ xs ∈ ([[L]] (h, si, sl))

((h, si, sl), (h
′, s′i, s

′
l)) ∈ [[assert(B)]]

.
= [[b]](h, si, sl) ∧ h = h′ ∧ si = s′i ∧ sl = s′l

Fig. 2. Semantics of basic instructions

complete w.r.t. each other, i.e. [[c]]μμ′ if and only if 〈c, μ〉 �� 〈skip, μ′〉. Also, we say
that a command c is ϕ-safe if for any μ such that ϕμ there exists μ′ and c′ such that
〈c, μ〉 � 〈c′, μ′〉, i.e., c is not stuck in ϕ-states.

2.1 Relational Calculus

We introduce in this section the relational calculus establishing the validity of rela-
tional specifications. Relational judgments are formalized as quadruples of the form
{ϕ} c1 ∼ c2 {ψ}, where ϕ and ψ are relations on states and c1 and c2 are programs,
establishing a relation over every pair of executions of c1 and c2, as formalized in the
following definition:

Definition 1 (valid relational judgment). Two commands c1 and c2 satisfy the pre
and post-relation ϕ and ψ, denoted by the judgment � {ϕ} c1 ∼ c2 {ψ} if for all states
μ1, μ2 s.t. [[ϕ]]μ1 μ2 one of the following holds:

– c1 diverges with initial state μ1 iff c2 diverges with initial state μ2; or
– for all states μ′

1 and μ′
2 s.t. [[c1]]μ1 μ

′
1 and [[c2]]μ2 μ

′
2 we have [[ψ]]μ′

1 μ
′
2.

Assertions. Rather than representing assertions as syntactic objects, we have modeled
them as relations between states. All of the assertions presented in Yang’s work have a
straightforward interpretation as state relations. The definition of some of them is shown
in Figure 3. We let P,Q stand for relational assertions and p, q for standard separation
logic assertions.

Adopting a shallow embedding of assertions provides extra flexibility by not com-
mitting beforehand to a particular logical language, and allows inheriting all the fea-
tures of Coq’s rich higher-order language. This proved to be convenient when defining

A Machine-Checked Framework for Relational Separation Logic 127

Same st1 st2
.
= st1.h = st2.h

emp2 st1 st2
.
= st1.h = empty ∧ st2.h = empty

(P � Q) st1 st2
.
= ∃h11 h12 h21 h22.

st1.h = h11 � h12 ∧ st2.h = h21 � h22

∧ P (h11, st1.si, st1.sl)(h21, st2.si, st2.sl)
∧ Q(h12, st1.si, st1.sl)(h22, st2.si, st2.sl)(

p
q

)
st1 st2

.
= p st1 ∧ q st2

Fig. 3. Definition of some Relational Assertions

wp(x := alloc(E)) ϕ (h, si, sl)
.
= ∀n m. n ∈ ([[E]] (h, si, sl)) ∧ m = freshn(h, n) ⇒

ϕ(h �
n−1⊎
i=0

(m + i) �→ 0, si, sl)

wp(x := [E]) ϕ (h, si, sl)
.
= ∀n. n ∈ ([[E]] (h, si, sl)) ⇒

ϕ(h, upd(x, look(h, n), si), sl)
wp([E1] := E2) ϕ (h, si, sl)

.
= ∀n m. n ∈ ([[E1]] (h, si, sl)) ∧ m ∈ ([[E2]] (h, si, sl)) ⇒

n ∈ dom(h) ∧ ϕ(mut(n, m, h), si, sl)
wp(free(E)) ϕ (h, si, sl)

.
= ∀n. n ∈ ([[E]] (h, si, sl)) ⇒

n ∈ dom(h) ∧ ϕ(dealloc(h, n), si, sl)
wp(x := E) ϕ (h, si, sl)

.
= ∀n. n ∈ ([[E]] (h, si, sl)) ⇒ ϕ(h, upd(x,n, si), sl)

wp(α := L) ϕ (h, si, sl)
.
= ∀xs. xs ∈ ([[L]] (h, si, sl)) ⇒ ϕ(h, si, upd(α, xs, sl))

wp(assert(B)) ϕ (h, si.sl))
.
= [[B]](h, si.sl) ∧ ϕ(h, si.sl)

Fig. 4. Weakest Precondition of basic instructions

a weakest precondition calculus ensuring termination, in which a well-founded relation
must be provably decreasing throughout loop iterations—see Subsection 2.2.

Weakest precondition calculus for basic instructions. Most program verification tools
rely on weakest precondition calculi rather than program logics: concretely, the prevail-
ing means to verify programs against a pre-condition and a post-condition is to generate
a set of proof obligations using a weakest precondition calculus, and finally to discharge
the proof obligations using automatic or interactive provers. Our formalization supports
a similar methodology for relational judgments, and provides a weakest precondition
calculus that computes a set of proof obligations from relational judgments. The weak-
est precondition of a basic instruction i w.r.t. to a state predicate φ is again, a state
predicate (a function taking states and returning propositions). Here instead of using
λ-abstractions we write the state on the left side as arguments to the wp function. More-
over, by abuse of notation we use pattern matching, i.e. a state is noted as a tuple. The
definition of the weakest precondition of the basic instructions is provided in figure 4.
Its definition is straightforward and obviously sound w.r.t. the semantics.

Weakest precondition calculus for 2-statements. Our weakest precondition calculus
wp2 operates on 2-statements, which combine two structurally equivalent statements
into a single construction. Formally, the set Stmt2 of 2-statements is defined

128 J.M. Crespo and C. Kunz

wp2 〈i1, i2〉φ = wp i1 (λm1. wp i2 (λm2. φ m1 m2))

wp2 (c1; c2) φ = wp2 c1 (wp2 c2 φ)

wp2 (if 〈b, b′〉 then c1 else c2) φ = Ψb,b′ ∧ (b〈1〉 ⇒ wp2 c1 φ) ∧ (¬b〈1〉 ⇒ wp2 c2 φ)

wp2 (while 〈b, b′〉 do c) φ = ∃ϕ.ϕ ∧ ∀m1, m2. Ψb,b′ m1 m2 ∧ Ψϕ m1 m2 ∧ Ψφ m1 m2

where
Ψb,b′

.
= b〈1〉 ⇔ b′〈2〉 guard equivalence

Ψϕ
.
= ϕ ∧ b〈1〉 ⇒ wp2 c ϕ invariant preservation

Ψφ
.
= ϕ ∧ ¬b〈1〉 ⇒ φ valid postcondition

Fig. 5. Relational weakest precondition calculus

inductively by the clauses: i) if i1 and i2 are instructions, then [i1, i2] is a 2-statement;
ii) if c, c1, c2 are 2-statements and b, b′ are boolean expressions, then c1; c2, and
if 〈b, b′〉 then c1 else c2, and while 〈b, b′〉 do c are 2-statements. Each 2-statement yields
two structurally equivalent statements; we write c � (c1, c2) to denote that c is a 2-
statement whose left and right components are the statements c1 and c2 respectively.
Conversely, any two structurally equivalent statements yield a 2-statement. Intuitively,
a 2-statement encodes the simultaneous execution of its components, restricting the
calculus to structurally similar programs. In Section 4 we explain how to remove this
restriction by the application of a preliminary program transformation.

The weakest precondition calculus wp2 is defined inductively on the structure of 2-
statements; the rules are given in Figure 5, where b〈1〉 and b〈2〉 respectively denote the
interpretation of the expression b in the first and second memories, and the extension of
connectives to relations is defined in the usual way.

Frame rule. The frame rule lies at the very heart of any separation logic based ver-
ification framework, being the cornerstone of so called “local reasoning”. In order to
support modular verification, we have shown that it holds on the framework presented
in this paper. Let P , Q, and R be relational assertions and c a 2-statement. Then, if

1. the proposition ∀st1, st2. P st1 st2 ⇒ wp2 c Q st1 st2 holds; and
2. R is independent of the variables modified by c

then the following proposition holds:

∀st1, st2. (P � R) st1 st2 ⇒ wp2 c (Q � R) st1 st2

Intuitively, the hypothesis 1 and 2 implies that the only part of state that program c is
allowed to inspect or operate on is described by P and any other part R will remain
unchanged after its execution. This simplifying result has been systematically used to
ease the verification of the Schorr-Waite algorithm.

One of the most challenging aspects of characterizing the frame rule in our setting is
the fact that there is no syntax for assertions, so the customary side condition on R is
formulated semantically by defining the modset of c, i.e. the set of modified variables,
and requiring the validity of R to be independent of it.

A Machine-Checked Framework for Relational Separation Logic 129

Soundness. The calculus is sound, i.e. for all statements c1 and c2, and 2-statement c
s.t. c � (c1, c2), and assertions ϕ and ψ,

[[ϕ]] ⊆ [[wp2 c ψ]] =⇒ � {ϕ} c1 ∼ c2 {ψ}
Moreover, the weakest precondition calculus is sound and complete w.r.t. relational
separation logic, i.e. for all statements c1 and c2, and 2-statement c s.t. c � (c1, c2), and
assertions ϕ and ψ,

[[ϕ]] ⊆ [[wp2 c ψ]] ⇐⇒
{ϕ} c1 ∼ c2 {ψ}
where
{ϕ} c1 ∼ c2 {ψ} is used to denote that the judgment is derivable in relational
separation logic.

2.2 Total Correctness

One can modify the weakest precondition calculus wp2 to enforce total correctness. To
this end, one must provide for each while statement a variant relation between pairs of
initial and final states, and prove that it is a well-founded order (i.e. no infinite descend-
ing chains) and that it decreases with each iteration. The clause for the while statement
is modified accordingly:

wptc
2 (while 〈b, b′〉 do c)φμ1 μ2

.=
∃ϕ, ∃μ, ϕ ∧ ∀m1,m2. (Ψb,b′ m1m2 ∧ Ψϕ m1m2 ∧ Ψφm1m2)∧
wellfounded(μ) ∧ ∀m1,m2. (ϕm1m2 ∧ [[b]]m1m2 ⇒
wp2 c (λs1, s2. μ (s1, s2) (m1,m2))m1m2)

where Ψb,b′ , Ψϕ, and Ψφ are defined as in Figure 5 (replacing wp2 by wptc
2), and μ stands

for the variant relation. The predicate wellfounded(μ) requires μ to be well-founded to
establish the termination of the loop. Notice that we use wp2 instead wptc

2 in the last
line of the formulae above, to avoid redundancy on the verification of termination of c,
which is already established by Ψϕ. Then, assuming termination of instructions, we can
prove total correctness, i.e. for all statements c1 and c2, and 2-statement c s.t. c�(c1, c2),
and assertions ϕ and ψ, and memories μ1 and μ2 s.t. ϕ μ1 μ2,

[[ϕ]] ⊆ [[wptc
2 c ψ]] =⇒ ∃μ′

1, μ
′
2. [[c1]] μ1 μ

′
1 ∧ [[c2]] μ2 μ

′
2 ∧ ψ μ′

1 μ
′
2

Note that the shallow embedding of assertions plays a crucial role here, a partial appli-
cation of the variant is used as argument for the wp. This would not be possible if we
had established a syntax for the formulae through a deep embedding.

3 Verification of the Schorr-Waite Algorithm

The Schorr-Waite graph marking algorithm is a widely used case study, see Section 5.
Yang [29] uses relational separation logic to prove the equivalence between the Schorr-
Waite algorithm and depth-first search, and convincingly argues that the proof in re-
lational separation logic is more elegant and more concise than an earlier functional

130 J.M. Crespo and C. Kunz

verification [28] of the SW algorithm in separation logic. In this section we report on a
machine-checked proof of the Schorr-Waite algorithm using the weakest precondition
calculus described in the previous section. The structure of the proof is similar to Yang’s
pen-and-paper proof [29]; one difference is that we prove total correctness rather than
co-termination.

Algorithm and relational specification. DFS traverses a binary tree marking every node
in a depth-first basis. In order to backtrack the tree traversal, it uses a stack as an auxil-
iary storage to keep track of the parent nodes that need to be revisited. The Schorr-Waite
algorithm optimizes the space needed by DFS by removing the stack. The set of nodes
to be revisited are encoded as a transformation on the heap structure: pushing a node
in the stack is implemented as an inversion of the left edge that is traversed, removing
a node from the stack is defined as restoring the original edge. Figure 6 shows a 2-
statement merging the Schorr-Waite algorithm (marked with a gray shadow) with DFS.

Verification. We have used the Coq framework to verify the 2-statement in Figure 6
against the specification:

Pre
.= Same ∧ c=c′ ∧

(
noDangG ∧ c ∈ G∪{nil}
noDangG ∧ c′ ∈ G∪{nil}

)

Post
.= Same

where c and c′ represent the corresponding tree roots and G denotes the set of tree
nodes. The predicate noDangG states that G is a set of non-dangling pointers closed
under heap reachability:

noDangG
.= ∀�x ∈ G. ∃lr. (x �→ l, r,−,−) ∧ l ∈ G∪{nil} ∧ r ∈ G∪{nil}

The additional condition c ∈ G implies that the set of tree nodes reachable from the
root c is a subset of G. The specification states that under initial heaps with the same
tree structure with root c, SW and DFS terminate with the same final states.

The application of the wp2 function to the 2-statement and the postcondition above
returns a verification condition that contains an existential quantification for the loop in-
variant. We have used a slightly modified version of the invariant proposed by Yang [29]:

Same � uniqα ∧ Stack p c α ∧ p=p′ ∧
(

noDangG ∧ p∈G ∧ c ∈ G
noDangG ∧ p′∈G ∧ α ⊆ G∪{nil}

)

Basically, the invariant establishes that no dangling pointers can be introduced during
the algorithms execution, and provides a relation between the auxiliary stack storage
used by DFS and its representation in the Schorr-Waite algorithm. This relation is for-
malized by the predicate Stack:

Stack p c ε
.= c=nil

Stack p c a::α .= ∃n0, x. Stack c n0 α � c=a∧[(
c �→ n0, x,Marked, Left
c �→ p, x,Marked, Left

)
∨

(
c �→ x, n0,Marked,Right
c �→ x, p,Marked,Right

)]

A Machine-Checked Framework for Relational Separation Logic 131

if 〈 c = nil , c′ = nil〉 then⎡
⎢⎢⎣

p := c.Left;
c.Mark := Marked
c.Current := isLeft;
c.Left := nil

,

p′ := c′.Left;
c′.Mark := Marked;
c′.Current := isLeft;
α := c′::ε

⎤
⎥⎥⎦

else[
p := nil ,

p′ := nil;
α := ε

]

fi

while 〈 c = nil , α = ε〉 do

if 〈 p = nil , p′ = nil〉 then

[m := p.Mark , m′ := p′.Mark]

else

[m := Marked , m′ := Marked]
fi

if 〈 p = nil ∧ m = Marked , p′ = nil ∧ m′ = Marked〉 then⎡
⎢⎢⎢⎢⎢⎢⎣

t := p.Left;
p.Left := c;
c := p;
p := t;
c.Mark := Marked;
c.Current := isLeft

,

α := p′::α;
p′.Mark := Marked;
p′.Current := isLeft;
p′ := p′.Left

⎤
⎥⎥⎥⎥⎥⎥⎦

else

[d := c.Current , d′ := (hd α).Current]

if 〈 d = isLeft , d′ = isLeft〉 then⎡
⎢⎢⎢⎢⎣

t := c.Left;
c.Left := p;
p := c.Right;
c.Right := t;
c.Current := isRight

,
(hd α).Current := isRight;
p′ := (hd α).Right

⎤
⎥⎥⎥⎥⎦

else⎡
⎢⎢⎣

t := p;
p := c;
c := p.Right;
p.Right := t

,
p′ := hd α;
α := tl α

⎤
⎥⎥⎦

fi
fi

done

Fig. 6. Schorr-Waite and DFS 2-statement

132 J.M. Crespo and C. Kunz

In particular, when c �= nil, c is the top element in the stack α and p its left or right
child. The remaining stack elements are related inductively. The difference with respect
to Yang’s invariant consists on the predicate uniq α, that states that the list α does
not contain repeated elements. The need for this extra condition became evident when
discharging the verification conditions in the Coq proof assistant.

Total correctness. We have also developed a total correctness argument for the Schorr-
Waite algorithm using the total correctness version of the weakest precondition calculus
presented earlier. Then, we extended the proof with the addition of a variant relation,
a lexicographic order similar to the one used by Giorgino et al [12]: let (st1, st2) and
(st′1, st

′
2) be pairs of states, then var(st1, st2)(st′1, st

′
2) iff one of the following holds:

– the number of unmarked nodes in (st1, st2) is smaller than the number of unmarked
nodes in (st′1, st′2),

– the number of unmarked nodes in (st1, st2) and (st′1, st′2) is the same but the
number of nodes in (st1, st2) with Current field set to isLeft is smaller than
in (st′1, st

′
2), or

– the number of unmarked nodes and the number of nodes of (st1, st2) and (st′1, st′2)
is the same but the size of the stack α in (st1, st2) is smaller than in (st′1, st

′
2).

We showed that this is a well-founded order and proved that it holds for the pre and post
states of the loop body using the wp2 calculus. In particular note that of the three ways
to construct the order, the first one corresponds to a push, the second one to a swing and
the third one to a pop operation.

4 Beyond Structurally Equivalent Programs

A common caveat of syntactic relational methods is the limited support for non struc-
turally equivalent programs. Although this restriction can be circumvented in the setting
of relational separation logic by using the embedding rule, the ability to reason in terms
of relational loop invariants is still not supported.

In this section, we present a different strategy that cleanly extends the weakest pre-
condition based calculus presented in Section 2 to cope with non structurally equivalent
code. We enhance the previous formalism through a preliminary transformation that is
performed on the programs to be verified. This syntactic transformation can yield struc-
turally equivalent programs while retaining some semantic properties that ensure that
the relational validity on the transformed programs also holds on the original programs.

Let us first make precise the notion of refinement we adopt. We say that c is a refine-
ment of c′, noted c� c′ if the following conditions hold for all μ, μ′, μ′′ and σ:

– if [[c′]] μ μ′ then [[c]] μ μ′;
– if [[c′]] μ μ′ and [[c]] μ μ′′ then μ′ = μ′′ and
– if c is σ-safe then c′ is σ-safe.

We know, under this rather weak definition of refinement, that in order to establish a
relational property on two programs c1 and c2, it is sufficient to establish such property
for any two programs c′1 and c′2 s.t. c1 � c′1 and c2 � c′2:

A Machine-Checked Framework for Relational Separation Logic 133

(RO)� c; d � d; c
if fv(c) ∩ fv(d) = ∅ (SK)� c; skip � c

(IF1)� if b then c1 else c2 � assert(b); c1

(IF2)� if b then c1 else c2 � assert(¬b); c2

(WHU)� while b do c � assert(b); c; while b do c

(WHS)� while b do c � assert(b); c; assert(¬b)

(IFM)� if b then c ; if b′ then c′ � assert(b ⇔ b′); if b then c; assert(b′); c

(LRS)� for i=m to n by k do c � assert(m ≤ n′ ≤ n); for i=m to n′ by k do c;
for j = i to n by k do c[j/i]

(LT)� for i=0 to n by 1 do c � assert(n mod k = 0);
for i=0 to n by k do (for j =0 to k by 1 do c[i+j/i])

(R-RI)
� for i=m to n by k do c � assert(

⌈n − m

k

⌉
=

⌈
n′ − m′

k

⌉
);

for i=m′ to n′ by k do c[(i−m′+m)/i]

Fig. 7. Syntactic refinement rules (excerpt)

Lemma 1. For all programs c1 and c2, and c′1, c′2 such that c1 � c′1 and c2 � c′2, if
� {ϕ} c′1 ∼ c′2 {ψ} then � {ϕ} c1 ∼ c2 {ψ}, provided c′1 and c′2 are ϕ-safe.

Figure 7 provides a set of syntactic rules deriving a refinement relation. For clarity,
we introduce the statement for i = m to n by k do c as a syntax sugar for statement
i:=m; while i<n do c; i:= i+k. As can be seen in the figure, the rules consist of basic
structure transformations. The most complex rules are perhaps (LRS) and (LT), which
perform loop range splitting and loop tiling, respectively. The set of refinement rules in
Figure 7 is sound, i.e., it induces a refinement relation:

Lemma 2. For all statements c and c′, if
 c� c′ then c� c′.

Example: vectorization of sum. Figure 8 presents a simple algorithm that computes
the sum of the values of the node elements in a singly linked list. A program vector-
ization consists on relying on special purpose SIMD (single instruction, multiple data)
instructions, taking advantage of the associativity and commutativity of the arithmetic
computation performed in a program loop. Intuitively, for this particular example the
vectorization consists in grouping the loop iterations in chunks of 4 iterations, and per-
forming 4 addition operations simultaneously with the mm add epi32 instruction.
Figure 9 shows the vectorized algorithm. Let n denote the length of the linked list
pointed by head. The first loop iterates n÷ 4 times and computes the summation of the
first 4 × (n ÷ 4) elements of the linked list, storing it in the 128-bits vector sum. The
second loop computes the summation of the remaining n mod 4 elements and stores it
in variable rest. The final value is computed by adding to the variable rest the partial
results stored in the bit vector sum.

134 J.M. Crespo and C. Kunz

sum (list∗ head, int size)

rest:=0;
for i=0 to size by 1 do

rest:= rest+head.val;
head:=head.next;

Fig. 8. Original version of sum algorithm

By applying a sequence of refinement steps over the original program one can obtain
a pair of structurally similar programs. Then, providing a relational invariant becomes
much simpler than verifying each of the programs functionally. Indeed, assume that the
predicate EqList(head, head′, size) holds as precondition, with inductive predicate
EqList is defined by the following clauses:

EqList(l1, l2, 0) .= l1 = l2 =null
EqList(l1, l2, n+1) .= EqList(l′1, l

′
2, n) ∧ ∃v, l′1, l′2. l1 �→ (v, l′1) ∧ l2 �→ (v, l′2)

Then, in order to verify that original and vectorized algorithms compute the same value,
i.e., that rest = rest′ holds as a relational postcondition, it is sufficient to establish the
validity of loop invariants of the form:

sum[0]+sum[1]+sum[2]+sum[3] = rest

and
rest′+sum[0]+sum[1]+sum[2]+sum[3] = rest

Notice that these relational loop invariants are much simpler that those required in a
functional verification of the algorithm.

5 Related Work

Relational methods and program verification techniques have been intimately connected
since their origins. In particular, methods based on program refinement, program equiv-
alence, and logical relations have been used widely to reason about program correct-
ness. In this respect, it is perhaps surprising that relational program logics have only
been introduced recently. Benton [7] develops a relational Hoare logic for a small im-
perative language and shows how program optimizations can be validated using rela-
tional reasoning. Other relational logics include Yang’s relational separation logic [29]
and Barthe, Grégoire and Zanella’s probabilistic relational Hoare logic [5]. More re-
cently, Nanevski, Banerjee and Garg developed a relational separation logic for Hoare
type theory [22]. It extends Yang’s logic to a richer programming and specification lan-
guage, and is tailored for reasoning information flow; the logic is formalized in the Coq
proof assistant; in contrast to our formalization, it uses a shallow embedding of pro-
grams. Independently, Beringer [8] provided a reconstruction of relational separation
logic based on a notion of decomposition that allows reducing relational program log-
ics to standard program logics; the soundness of the logic is formalized in the Isabelle

A Machine-Checked Framework for Relational Separation Logic 135

ssesum (list∗ head′, int size)

sum = mm set1 epi32(0);
for i=0 to size − 3 by 4 do

curr:= mm insert epi32(curr, head′.val, 0);
head′:=head′.next;
curr:= mm insert epi32(curr, head′.val, 1);
head′:=head′.next;
curr:= mm insert epi32(curr, head′.val, 2);
head′:=head′.next;
curr:= mm insert epi32(curr, head′.val, 3);
head′:=head′.next;
sum:= mm add epi32(sum, curr);

rest′:= 0;
for j = i to size by 1 do

rest′:= rest′+head′.val;
head′:=head′.next;

rest′:= rest′+ mm extract epi32(sum, 0)+ mm extract epi32(sum, 1)+
mm extract epi32(sum, 2) + mm extract epi32(sum, 3);

Fig. 9. SSE optimized version of sum algorithm

proof assistant. In addition to these general-purpose logics, specialized relational logics
have been developed for specific properties, and especially information flow [1].

On the formalization side, there have been many machine-checked accounts of sep-
aration logic in proof assistants, e.g. [3, 26], including some frameworks designed to
support automated reasoning in separation logic [2, 11, 18, 20]. Moreover, the Schorr-
Waite algorithm is a classical example in program verification, and has been verified
formally using a variety of tools and techniques. Suzuki [25] provides an early machine-
supported proof of the Schorr-Waite algorithm using an automated verifier for pointer
programs. More recently, Bornat [10] provides a machine-checked proof of the algo-
rithm in the Jape proof assistant. Subsequently, Mehta and Nipkow [19], Hubert and
Marché [14], Bubel [6], Jacobs and Piessens [16] formalize the algorithm in Isabelle,
Caduceus, KeY and VeriFast respectively. More recently, Giorgino et al [12] prove the
correctness and termination of the algorithm in Isabelle, using refinement. All these
formalizations use standard program logics.

6 Conclusion

Relational separation logic is a powerful tool devised for reasoning about the rela-
tion between heap manipulating programs. To the best of our knowledge, we have
formalized in the Coq proof assistant the first certified weakest precondition calculus
for relational separation logic. We illustrated its usefulness and scalability by proving a
challenging case study: the correctness of the Schorr-Waite graph marking algorithm.

The Coq development has been done using ssreflect library which greatly improves
the conciseness of the proofs. For example, the relational weakest precondition,

136 J.M. Crespo and C. Kunz

soundness proofs, the definition and specification and proof of the Schorr-Waite graph
marking algorithm and Depth First Search take 1586 lines of specification and 3538
lines of proofs. We believe that the formalization of the verification setting and the
formal proof of the algorithms poses no significant overhead over hand-written proofs.

In the future, it would be interesting to formalize the modular proof of the algo-
rithm reported in [9] and to prove the equivalence between different implementations of
ADTs; for the latter, we believe that the extensions to non-structurally equivalent code
will prove crucial. Another line of work is to extend our formalization to reason about
concurrent separation logic [27] and verify the correctness of lock-free algorithms [13].

Acknowledgement. The authors would like to thank Aleksander Nanevski for intro-
ducing ssreflect to us and patiently explaining some its main features.

References

1. Amtoft, T., Bandhakavi, S., Banerjee, A.: A logic for information flow in object-oriented
programs. In: Morrisett, G., Peyton Jones, S. (eds.) Principles of Programming Languages,
pp. 91–102. ACM, New York (2006)

2. Appel, A.: Tactics for separation logic (January 2006) (unpublished manuscript),
http://www.cs.princeton.edu/˜appel/papers/septacs.pdf

3. Appel, A.W., Blazy, S.: Separation logic for small-step cminor. In: Schneider, K., Brandt, J.
(eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 5–21. Springer, Heidelberg (2007)

4. Barthe, G., Crespo, J.M., Kunz, C.: Relational verification using product programs. In:
Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 200–214. Springer, Heidelberg
(2011)

5. Barthe, G., Grégoire, B., Zanella Béguelin, S.: Formal certification of code-based crypto-
graphic proofs. In: Shao, Z., Pierce, B.C. (eds.) Principles of Programming Languages, pp.
90–101. ACM Press, New York (2009)

6. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Software. The
KeY Approach. LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007)

7. Benton, N.: Simple relational correctness proofs for static analyses and program transforma-
tions. In: Jones, N.D., Leroy, X. (eds.) Principles of Programming Languages, pp. 14–25.
ACM Press, New York (2004)

8. Beringer, L.: Relational program logics in decomposed style (2010) (submitted)
9. Bodı́k, R., Chandra, S., Galenson, J., Kimelman, D., Tung, N., Barman, S., Rodarmor, C.:

Programming with angelic nondeterminism. In: Principles of Programming Languages, pp.
339–352 (2010)

10. Bornat, R.: Proving pointer programs in hoare logic. In: Backhouse, R.C., Oliveira, J.N.
(eds.) MPC 2000. LNCS, vol. 1837, pp. 102–126. Springer, Heidelberg (2000)

11. Gast, H.: Lightweight separation. In: Mohamed, O., Muñoz, C., Tahar, S. (eds.) TPHOLs
2008. LNCS, vol. 5170, pp. 199–214. Springer, Heidelberg (2008)

12. Giorgino, M., Strecker, M., Matthes, R., Pantel, M.: Verification of the Schorr-Waite algo-
rithm - From trees to graphs (January 2010)

13. Gotsman, A., Cook, B., Parkinson, M.J., Vafeiadis, V.: Proving that non-blocking algorithms
don’t block. In: Shao, Z., Pierce, B.C. (eds.) Principles of Programming Languages, pp. 16–
28. ACM, New York (2009)

14. Hubert, T., Marché, C.: A case study of c source code verification: the schorr-waite algorithm.
In: Aichernig, B., Beckert, B. (eds.) Software Engineering and Formal Methods, pp. 190–
199. IEEE Computer Society, Los Alamitos (2005)

http://www.cs.princeton.edu/~appel/papers/septacs.pdf

A Machine-Checked Framework for Relational Separation Logic 137

15. Ishtiaq, S., O’Hearn, P.: BI as an assertion language for mutable data structures. In: Principles
of Programming Languages, pp. 14–26 (2001)

16. Jacobs, B., Piessens, F.: The VeriFast program verifier. Technical Report CW-520, Katholieke
Universiteit Leuven (2008)

17. Jacobs, B., Smans, J., Piessens, F.: Verifying the composite pattern using separation logic.
In: Workshop on Specification and Verification of Component-Based Systems, Challenge
Problem Track (November 2008)

18. McCreight, A.: Practical tactics for separation logic. In: Berghofer, S., Nipkow, T., Urban,
C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 343–358. Springer, Heidelberg
(2009)

19. Mehta, F., Nipkow, T.: Proving pointer programs in higher-order logic. Inf. Comput. 199(1-
2), 200–227 (2005)

20. Myreen, M.O.: Separation logic adapted for proofs by rewriting. In: Kaufmann, M., Paulson,
L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 485–489. Springer, Heidelberg (2010)

21. Nanevski, A., Vafeiadis, V., Berdine, J.: Structuring the verification of heap-manipulating
programs. In: Hermenegildo, M., Palsberg, J. (eds.) Principles of Programming Languages,
pp. 261–274. ACM, New York (2010)

22. Nanevski, A., Banerjee, A., Garg, D.: Verification of information flow and access control
policies with dependent types. In: 2011 IEEE Symposium on Security and Privacy. IEEE
Computer Society, Los Alamitos (2011)

23. O’Hearn, P.W., Reynolds, J., Yang, H.: Local reasoning about programs that alter data
structures. In: Fribourg, L. (ed.) CSL 2001 and EACSL 2001. LNCS, vol. 2142, pp. 1–19.
Springer, Heidelberg (2001)

24. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In: Logic in
Computer Science, pp. 55–74. IEEE Computer Society, Los Alamitos (2002)

25. Suzuki, N.: Automatic Verification of Programs with Complex Data Structures. PhD thesis,
Stanford University (1976)

26. Tuch, H., Klein, G., Norrish, M.: Types, bytes, and separation logic. In: Hofmann, M.,
Felleisen, M. (eds.) Principles of Programming Languages, pp. 97–108. ACM, New York
(2007)

27. Vafeiadis, V., Parkinson, M.J.: A marriage of rely/guarantee and separation logic. In: Caires,
L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 256–271. Springer, Hei-
delberg (2007)

28. Yang, H.: Local reasoning for stateful programs. PhD thesis, University of Illinois, Urbana,
IL, USA (2001)

29. Yang, H.: Relational separation logic. Theoretical Computer Science 375(1-3), 308–334
(2007)

30. Yang, H., Lee, O., Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P.: Scalable
shape analysis for systems code. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123,
pp. 385–398. Springer, Heidelberg (2008)

	A Machine-Checked Framework for Relational Separation Logic
	Introduction
	Formalization of Relational Separation Logic
	Relational Calculus
	Total Correctness

	Verification of the Schorr-Waite Algorithm
	Beyond Structurally Equivalent Programs
	Related Work
	Conclusion
	References

