

Lecture Notes in Computer Science 7041
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Gilles Barthe Alberto Pardo
Gerardo Schneider (Eds.)

Software Engineering
and Formal Methods
9th International Conference, SEFM 2011
Montevideo, Uruguay, November 14-18, 2011
Proceedings

13

Volume Editors

Gilles Barthe
Fundación IMDEA Software, Facultad de Informática (UPM)
Campus Montegancedo, 28660 Boadilla del Monte, Madrid, Spain
E-mail: gilles.barthe@imdea.org

Alberto Pardo
Universidad de la República
Facultad de Ingeniería, Instituto de Computación
Julio Herrera y Reissig 565 - Piso 5, 11300 Montevideo, Uruguay
E-mail: pardo@fing.edu.uy

Gerardo Schneider
Chalmers | University of Gothenburg
Department of Computer Science and Engineering
Kunskapsgatan 3, 41756 Gothenburg, Sweden
and
University of Oslo, Department of Informatics
PB 1080 Blindern, 0316 Oslo, Norway,
E-mail: gersch@chalmers.se

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-24689-0 e-ISBN 978-3-642-24690-6
DOI 10.1007/978-3-642-24690-6
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011938201

CR Subject Classification (1998): D.2.4, D.2, F.3, D.3, D.1.5, C.2, C.2.4

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the proceedings of the 9th International Conference on
Software Engineering and Formal Methods (SEFM 2011) held on November
14–18, 2011 in Montevideo, Uruguay, under the auspices of the Facultad de In-
genieŕıa (InCo), Universidad de la República, Uruguay. The aim of SEFM is
to bring together practitioners and researchers from academia, industry and
government to advance the state of the art in formal methods, to scale up
their application in software industry and to encourage their integration with
practical engineering methods.

The Program Committee of SEFM 2011 received 105 abstracts and 85 full
submissions from all over the world. We would like to thank all authors for
submitting their papers. Each paper was reviewed by at least three reviewers.
Based on the review reports and intensive discussions conducted electronically,
the Program Committee selected 22 regular papers, 2 tool papers and 1 short
paper (acceptance rate around 29%), for inclusion in this volume. We would like
to thank the Program Committee members and all reviewers for their efforts in
the selection process.

Besides the regular session, the conference held a special track devoted to
“Modelling for Sustainable Development”, organized by Antonio Cerone from
UNU-IIST. The special track received 7 submissions and accepted 5 papers,
which are included in this volume.

In addition to the contributed papers, the conference program included
four keynote speakers: Holger Hermanns (Saarland University, Germany), Mike
Hinchey (LERO, Ireland) and Daniel Le Métayer (INRIA, France) for the main
track, and Matteo Pedercini (Millennium Institute, USA) for the special track.

As is the tradition with SEFM, the conference was preceded by a grad-
uate school and tutorials. The school courses were offered by: Dave Clarke
(Katholieke Universiteit Leuven, Belgium), Klaus Havelund (Jet Propulsion Lab-
oratory, USA), Yassine Lakhnech (University Joseph Fourier / VERIMAG,
France), Martin Leucker (University of Lübeck, Germany), Davide Sangiorgi
(INRIA, France, and University of Bologna, Italy), and Tarmo Uustalu (Tallin
University of Technology, Estonia).

The tutorials were offered by: Gustavo Betarte (Universidad de la República,
Uruguay), Pedro D’Argenio (Universidad Nacional de Córdoba, and CONICET,
Argentina), Dilian Gurov (KTH, Sweden), Sebastián Uchitel (Imperial College
London, UK, and Universidad de Buenos Aires, Argentina), and Santiago Zanella
(IMDEA Software, Spain).

We are grateful to the invited speakers, tutorialists, and lecturers for accept-
ing our invitation to address the conference or lecture at the school.

VI Preface

We also would like to thank the members of the Steering Committee and the
Organizing Committee as well as several other people whose efforts contributed
to making the conference a success. In particular, we would like to thank Carlos
Luna and Luis Sierra (Universidad de la República, Uruguay) for helping with
the local organization.

August 2011 Gilles Barthe
Alberto Pardo

Gerardo Schneider

Conference Organization

Conference Committees

Conference Chair Alberto Pardo, Universidad de la República
(Uruguay)

Program Chairs Gilles Barthe, IMDEA Software Institute (Spain)
Gerardo Schneider, Chalmers | University of

Gothenburg (Sweden), and University of Oslo
(Norway)

Local Organization Carlos Luna, Universidad de la República (Uruguay)
Alberto Pardo, Universidad de la República

(Uruguay)
Luis Sierra, Universidad de la República (Uruguay)

Special Track Chair Antonio Cerone, UNU-IIST (China)

Steering Committee

Manfred Broy TU Munich (Germany)
Antonio Cerone UNU-IIST (China)
Mike Hinchey LERO (Ireland)
Mathai Joseph TRDDC (India)
Zhiming Liu UNU-IIST (China)
Andrea Maggiolo-Schettini University of Pisa (Italy)

Program Committee

Bernhard K. Aichernig TU Graz
Luis Barbosa Universidade do Minho
Gilles Barthe IMDEA Software Institute
Thomas Anung Basuki Parahyangan Catholic University
Alexandre Bergel University of Chile
Gustavo Betarte Universidad de la República
Ana Cavalcanti University of York
Pedro R. D’Argenio Universidad Nacional de Córdoba - CONICET
Van Hung Dang Vietnam National University
George Eleftherakis University of Sheffield
José Luiz Fiadeiro University of Leicester

VIII Conference Organization

Martin Fränzle Carl von Ossietzky Universität Oldenburg
Stefania Gnesi ISTI-CNR
Rob Hierons Brunel University
Paola Inverardi Università dell’Aquila
Jean-Marie Jacquet University of Namur
Tomasz Janowski UNU-IIST
Jean-Marc Jezequel University of Rennes 1 and INRIA
Joseph Kiniry IT University of Copenhagen
Paddy Krishnan Bond University
Martin Leucker University of Lübeck
Xuandong Li Nanjing University
Peter Lindsay The University of Queensland
Antónia Lopes University of Lisbon
Nenad Medvidovic University of Southern California
Mercedes G. Merayo Universidad Complutense de Madrid
Stephan Merz INRIA Nancy
Madhavan Mukund Chennai Mathematical Institute
Martin Musicante Universidade Federal do Rio Grande do Norte
César Muñoz NASA
Mizuhito Ogawa Japan Advanced Institute of Science and

Technology
Olaf Owe University of Oslo
Gordon Pace University of Malta
Ernesto Pimentel University of Malaga
Sanjiva Prasad Indian Institute of Technology Delhi
Anders Ravn Aalborg University
Leila Ribeiro Universidade Federal do Rio Grande do Sul
Augusto Sampaio Universidade Federal de Pernambuco
Gerardo Schneider Chalmers | University of Gothenburg, and

University of Oslo
Sebastian Uchitel Imperial College London and Universidad de

Buenos Aires
Willem Visser Stellenbosch University
Sergio Yovine CONICET - Universidad de Buenos Aires

Special Track Program Committee

Roberto Barbuti University of Pisa (Italy)
Antonio Cerone UNU-IIST (China)
Elsa Estevez UNU-IIST (China)
Peter Haddawy UNU-IIST (China)
Siu-Wai Leung University of Macau (China)
Dora Marinova Curtin University (Australia)
Paolo Milazzo University of Pisa (Italy)
Ion Petre Åbo Akademi University (Finland)

Conference Organization IX

Weishuang Qu Millennium Institute (USA)
Dave Robertson University of Edinburgh (UK)
Siraj Shaikh Coventry University (UK)
Michael Sonnenschein University of Oldenburg (Germany)
Hefeng Tong Institute of Scientific and Technical

Information of China (China)
Jianhong Wu York University (Canada)
Shaofa Yang Chinese Academy of Sciences, SIAT (China)

Additional Reviewers

Abraham, Erika Almeida, José Bacelar Asirelli, Patrizia
Baliosian, Javier Baltazar, Pedro Bocchi, Laura
Boronat, Artur Brandán Briones, Laura Bu, Lei
Buntrock, Gerhard Bøgholm, Thomas Cadavid Gómez, Juan-José
Cajueiro, Adalberto Calegari, Daniel Castro, Pablo
Costa, Umberto Crole, Roy Cubo, Javier
Dang Duc, Hanh Decker, Normann Demange, Delphine
Dolques, Xavier Fantechi, Alessandro Filliâtre, Jean-Christophe
Fontaine, Pascal Forejt, Vojtech Francalanza, Adrian
Giménez, Eduardo Goodloe, Alwyn Hagen, George
Hauptmann, Benedikt Hungar, Hardi Iyoda, Juliano
Jöbstl, Elisabeth Kromodimoeljo, Sentot Kunz, César
Lal, Akash Legay, Axel Li, Xin
Martins Moreira, Anamaria Martins, Francisco Massoni, Tiago
Mehta, Farhad Mori, Marco Nakajima, Shin
Narkawicz, Anthony Nguyen, Tang Nowotka, Dirk
Ogata, Kazuhiro Okikka, Joseph Owens, Scott
Pelozo, Silvia Pham Ngoc, Hung Prisacariu, Cristian
Ramalingam, Ganesan Ramanujam, R. Rinetzky, Noam
Rodrigues, Nuno Rosa, Cristián Rossi, Matteo
Sannier, Nicolas Schapachnik, Fernando Schlatte, Rudolf
Seki, Hiroyuki Shankar, Natarajan Siminiceanu, Radu
Smith, Graeme Spalazzese, Romina Srba, Jiri
Sternagel, Christian Stocks, Phil Stümpel, Annette
Swaminathan, Mani Teige, Tino Thoma, Daniel
Thuong Tran, Thi Mai Vallespir, Diego Vicario, Enrico
Vighio, Saleem Vorobyov, Kostyantyn Wang, Linzhang
Winter, Kirsten Zhao, Jianhua

X Conference Organization

Sponsors

– ANII (Agencia Nacional de Investigación e Innovación, Uruguay)
– CSIC (Comisión Sectorial de Investigación Cient́ıfica, Universidad de la

República, Uruguay)
– PEDECIBA Informática (Programa de Desarrollo de las Ciencias Básicas,

Uruguay)

Table of Contents

Keynote Talks

Formal Methods in Energy Informatics . 1
Holger Hermanns

Formal Methods as a Link between Software Code and Legal Rules 3
Daniel Le Métayer

Developing Model-Checking Mechanisms for ASSL: An Experience
Report . 19

Emil Vassev and Mike Hinchey

Models and Communication in the Policy Process . 35
Matteo Pedercini

Regular Papers

Distributed Implementation of Systems with Multiparty Interactions
and Priorities . 38

Imene Ben-Hafaiedh, Susanne Graf, and Nejla Mazouz

Verification of PLC Properties Based on Formal Semantics in Coq 58
Jan Olaf Blech and Sidi Ould Biha

Broadcast Psi-calculi with an Application to Wireless Protocols 74
Johannes Borgström, Shuqin Huang, Magnus Johansson,
Palle Raabjerg, Björn Victor, Johannes Åman Pohjola, and
Joachim Parrow

A Formalisation of Java Strings for Program Specification and
Verification . 90

Richard Bubel, Reiner Hähnle, and Ulrich Geilmann

dCTL: A Branching Time Temporal Logic for Fault-Tolerant System
Verification . 106

Pablo F. Castro, Cecilia Kilmurray, Araceli Acosta, and
Nazareno Aguirre

A Machine-Checked Framework for Relational Separation Logic 122
Juan Manuel Crespo and César Kunz

A Dataflow Analysis to Improve SAT-Based Bounded Program
Verification . 138

Bruno Cuervo Parrino, Juan Pablo Galeotti,
Diego Garbervetsky, and Marcelo F. Frias

XII Table of Contents

Reverse Hoare Logic . 155
Edsko de Vries and Vasileios Koutavas

Improving SAT Modulo ODE for Hybrid Systems Analysis by
Combining Different Enclosure Methods . 172

Andreas Eggers, Nacim Ramdani, Nedialko Nedialkov, and
Martin Fränzle

Verification of B+ Trees: An Experiment Combining Shape Analysis
and Interactive Theorem Proving . 188

Gidon Ernst, Gerhard Schellhorn, and Wolfgang Reif

Runtime Verification of Component-Based Systems 204
Yliès Falcone, Mohamad Jaber, Thanh-Hung Nguyen,
Marius Bozga, and Saddek Bensalem

Translating Alloy Specifications to UML Class Diagrams Annotated
with OCL . 221

Ana Garis, Alcino Cunha, and Daniel Riesco

Safe Distribution of Declarative Processes . 237
Thomas Hildebrandt, Raghava Rao Mukkamala, and Tijs Slaats

Verifying B Proof Rules Using Deep Embedding and Automated
Theorem Proving . 253

Mélanie Jacquel, Karim Berkani, David Delahaye, and
Catherine Dubois

Hybrid Specification of Reactive Systems: An Institutional Approach . . . 269
Alexandre Madeira, José M. Faria, Manuel A. Martins, and
Lúıs S. Barbosa

Leveraging State-Based User Preferences in Context-Aware
Reconfigurations for Self-Adaptive Systems . 286

Marco Mori, Fei Li, Christoph Dorn, Paola Inverardi, and
Schahram Dustdar

Context-Bounded Model Checking of LTL Properties for ANSI-C
Software . 302

Jeremy Morse, Lucas Cordeiro, Denis Nicole, and Bernd Fischer

Modular Modelling of Software Product Lines with Feature Nets 318
Radu Muschevici, José Proença, and Dave Clarke

Table of Contents XIII

Synchronizing Asynchronous Conformance Testing 334
Neda Noroozi, Ramtin Khosravi, Mohammad Reza Mousavi, and
Tim A.C. Willemse

Using Coq in Specification and Program Extraction of Hadoop
MapReduce Applications . 350

Kosuke Ono, Yoichi Hirai, Yoshinori Tanabe, Natsuko Noda, and
Masami Hagiya

ProMoVer: Modular Verification of Temporal Safety Properties 366
Siavash Soleimanifard, Dilian Gurov, and Marieke Huisman

Usable Verification of Object-Oriented Programs by Combining Static
and Dynamic Techniques . 382

Julian Tschannen, Carlo A. Furia, Martin Nordio, and
Bertrand Meyer

Short Papers

Efficient Computation of Dominance in Component Systems
(Short Paper) . 399

Jaap Boender

Tool Papers

The Boogie Verification Debugger (Tool Paper) . 407
Claire Le Goues, K. Rustan M. Leino, and Micha�l Moskal

Object-Oriented Formal Modeling and Analysis of Interacting Hybrid
Systems in HI-Maude . 415

Muhammad Fadlisyah, Peter Csaba Ölveczky, and Erika Ábrahám

Special Track:
“Modelling for Sustainable Development”

Towards an Agent-Based Methodology for Developing Agro-Ecosystem
Simulations . 431

Jorge Corral and Daniel Calegari

Development Policy Analysis in Mali: Sustainable Growth Prospects 447
Matteo Pedercini

Using System Dynamics to Assess the Role of Socio-economic Status in
Tuberculosis Incidence . 464

Marisa Anaĺıa Sánchez

XIV Table of Contents

Energy Consumption and CO2 Emissions of Beijing Heating System:
Based on a System Dynamics Model . 476

Hefeng Tong and Weishuang Qu

A Formal Approach to Analysing Knowledge Transfer Processes in
Developing Countries . 486

Jin Tong, Siraj A. Shaikh, and Anne E. James

Author Index . 503

Formal Methods in Energy Informatics

Holger Hermanns

Dependable Systems and Software, Universität des Saarlandes, Saarbrücken, Germany
http://d.cs.uni-saarland.de/hermanns/

Abstract. The European electricity market is rapidly evolving towards
a decentralized structure, not only because of climatical and political cir-
cumstances. With the foreseeable depletion of fossile energy sources this
trend is expected to catch momentum also on other continents. The in-
crease of production based on renewable energy implies drastically higher
fluctuations in available electricity. The resulting mathematical problem,
stochastic electricity balancing, has many facets where quantitative for-
mal methods provide a promising foundation to develop IT-supported
strategies to counteract this problem.

The European electricity supply systems are rapidly evolving towards a situation
in which not only the consumer behavior, but also the producer behavior must
be considered as a stochastic process. This is a direct consequence of small and
medium scale renewable energy plants deployed massively, together with the
fact that sun intensity and wind speed are uncontrollable. This asks for novel
methods to control and manage electricity networks in a decentralized way. The
core objective is to continuously match production and consumption of electricity
across networks. If both do not match, this impacts the frequency of the supplied
power, and this frequency skew in fact serves as a limited buffer for misbalanced
production and consumption.

Traditionally, the balance is maintained by the electricity producers on the
basis of periodic (weekly, daily, hourly, 15 min) predictions of the anticipated
consumption. The real-time match of production and consumption is obtained
by dedicated power plants and control loops, which continuously supervise and
stabilize the frequency at 50Hz (in Europe). These mechanisms can buffer about
10% of the peak electricity consumption.

This traditional approach however is based on the assumption that the pro-
duction is a deterministc and a controllable process. Both assumptions are in-
valid in the future. The resulting challenge, the stochastic energy balancing
problem [1], is the problem of decision making to keep the consumption and
production of electricity within very tight bounds, where both consumption and
production exhibit stochastic behavior. This problem induces a set of principal
requirements for future modeling and analysis techniques and supporting tools
needed to study, predict and guarantee behavioral properties of electrical energy
networks. Quanitative formal methods can play a distinguished role in attacks
to solve the problem. They need to combine elements from concurrency theory,

G. Barthe, A. Pardo, and G. Schneider (Eds.): SEFM 2011, LNCS 7041, pp. 1–2, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://d.cs.uni-saarland.de/hermanns/

2 H. Hermanns

stochastic process theory, differential equations or inclusions, with methods from
computer aided verification. The aim is to arrive at IT-supported approaches to
counter the stochastic energy balancing problem. The current focus of major
European electricity producer aims at making the consumption more control-
lable, to be able to buffer the uncontrollable fluctuations in production at the
consumer side. These cooperative strategies of producers, consumers and infras-
tructure providers need advanced software engineering, modeling and analysis
techniques for behavioral properties of electricity networks.

Reference

1. Hermanns, H., Wiechmann, H.: Future Design Challenges for Electric Energy
Supply. In: Proceedings of the 14th IEEE International Conference on Emerging
Technologies & Factory Automation, pp. 1310–1317 (2009)

Formal Methods as a Link between Software

Code and Legal Rules

Daniel Le Métayer

INRIA Grenoble Rhône-Alpes
France

Daniel.Le-Metayer@inria.fr

Abstract. The rapid evolution of the technological landscape and the
impact of information technologies on our everyday life raise new chal-
lenges which cannot be tackled by a purely technological approach. Gen-
erally speaking, legal and technical means should complement each other
to reduce risks for citizens and consumers : on one side, laws (or con-
tracts) can provide assurances which are out of reach of technical means
(or cope with situations where technical means would be defeated); on
the other side, technology can help enforce legal and contractual com-
mitments. This synergy should not be taken for granted however, and
if legal issues are not considered from the outset, technological decisions
made during the design phase may very well hamper or make impossible
the enforcement of legal rights. But the consideration of legal constraints
in the design phase is a challenge in itself, not least because of the gap
between the legal and technical communities and the difficulties to estab-
lish a common understanding of the concepts at hand. In this paper, we
advocate the use of formal methods to reduce this gap, taking examples
in areas such as privacy, liability and compliance.

Keywords: regulation, law, legal, liability, accountability, privacy,
compliance, formal model, causality.

1 Motivation

The rapid evolution of the technological landscape and the impact of information
and communication technologies (ICT) on our everyday life raise new challenges
which cannot be tackled by a purely technological approach [Poullet - 2006].
For example, the protection of privacy rights on the Internet or in pervasive
computing environments is by definition multidimensional and requires expertise
from disciplines such as social sciences, economics, ethics, law and computer
science [Rouvroy - 2008]. Other examples of the ever-growing intermingling of
ICT and law include electronic commerce, digital rights management (DRM),
software contracts, social networks, forensics, cybercrime, Internet regulation,
e-government, and e-justice - and this list is far from limitative. As far as research
is concerned however, there are still very few links between the ICT and law
communities. This situation is unfortunate considering the importance of the
interests at stake (not only in economic terms but also for society as a whole).

G. Barthe, A. Pardo, and G. Schneider (Eds.): SEFM 2011, LNCS 7041, pp. 3–18, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

4 D. Le Métayer

Starting from this observation, the general goal of the research outlined here is
to contribute, in partnership with lawyers, to the development of new approaches
and methods for a better integration of technical and legal instruments.

In practice, the interactions between ICT and law take various forms and go
in both directions [Le Métayer, Rouvroy - 2008]:

– ICT “objects” are, as any other objects, “objects of law”: on one hand, there
is no reason why new technologies and services should escape the realm of
law; on the other hand, it may be the case that existing regulations need
to be adapted to take into account the advent of new, unforeseen techno-
logical developments (e.g. certain provisions of privacy regulations become
inapplicable in a pervasive computing context, intellectual property laws
are challenged by the new distribution modes of electronic contents). Under-
standing precisely when this is the case and how regulations should evolve to
cope with the new reality is a complex “technico-legal” issue with potential
impact on both disciplines.

– ICT can also provide new enforcement mechanisms and tools for the benefit
of the law: Privacy Enhancing Technologies (PETs) [Goldberg - 2007] help
reduce privacy threats , certified tools can be provided to support electronic
signature, DRM technologies are supposed to “implement” legal provisions
and contractual commitments, computer logs can be used as evidence in
courts, etc. At another level, data mining or knowledge management systems
can be applied to the extraction of relevant legal cases or the formalization
of legal reasoning.

Generally speaking, legal and technical means should complement each other to
reduce risks and to increase citizens’ and consumers’ trust in ICT : on one side,
laws (or contracts) can provide assurances which are out of reach of technical
means (or cope with situations where technical means would be defeated); on
the other side, technology can help enforce legal and contractual commitments
[Le Métayer - 2010c]. These interactions are quite subtle however and this syn-
ergy should not be taken for granted: if legal issues are not considered from the
outset, technological decisions made during the design phase may very well ham-
per or make impossible the enforcement of legal rights; similarly, new regulations
or contracts drafted without proper consideration for the possibilities offered by
the technology are bound to remain ineffective. But the consideration of legal
constraints in the design phase of an IT system is a challenge in itself, not least
because of the gap between the law and computer science communities and the
difficulties to establish a common understanding of the concepts at hand. In this
paper, we argue that formal methods, both for fundamental and practical rea-
sons, can help reduce this gap (Section 2). We illustrate the feasibility and the
interest of this approach through examples in software liability (Section 3), pri-
vacy (Section 4), and compliance (Section 5). We then identify further challenges
for both disciplines (Section 6), showing that the link between ICT and law is
a fruitful research area both for computer scientists and for lawyers, and we
conclude with a discussion on a methodology for interdisciplinarity (Section 7).

Formal Methods as a Link between Software Code and Legal Rules 5

2 Formal Methods as a Link between ICT and Law

Beyond their many differences, ICT and law share a strong emphasis on for-
malism. This commonality is not without reason: in both cases, formalism is
a way to avoid ambiguity and to provide the required level of rigour, trans-
parency, and security. As an illustration, L. Fuller in his book “The morality
of law” [Fuller - 1964] puts forward the following distinctive features of a legal
system: (1) a set of rules (2) without contradiction, (3) understandable, (4) ap-
plicable, (5) predictable, (6) publicized and (7) legitimate. Even though they
were obviously not proposed with such a comparison in mind, it is interesting
to note that, among these features, the first five are also often used in computer
science to characterize a good software specification and the sixth one can be
related to the notion of open access to source code. The last one, legitimacy, is
actually a key distinctive feature of legal normativity with respect to technical
normativity. We come back to this critical issue in the conclusion.

As far as software is concerned, the fact that both disciplines refer to the word
“code” is not insignificant and the exploration of the commonalities can be very
fruitful - and not only from a theoretical perspective. Indeed, there are many
situations where the frontier between the two notions seems to be blurring1. Just
to take a few examples:

– Software contracts typically incorporate references to technical requirements
or specifications which can be used, for example, to decide upon acceptance of
the software by the customer or validity of an error correction request. In case
of litigation, these specifications can also be used by the judge as they are
part of the contract executed by the parties. In this perspective, the contract
can thus be seen as an extension of the technical specification including
further legal provisions such as intellectual property rights, warranty, and
liability.

– The DRM technologies are supposed to implement legal provisions and con-
tractual commitments about the use of digital content such as music or
video.

– More and more transactions are performed on the basis of electronic con-
tracts (SLA, or “Service Level Agreements” for web services, electronic soft-
ware licenses, e-commerce contracts, etc.).

In fact, the convergence has developed so much that lawyers have expressed wor-
ries that “machine code” might more and more frequently replace “legal code”,
with detrimental effects on individuals. This topic has stirred up discussions
in the legal community (see, for example, [Lessig - 2001], [Lessig - 2007] and
[Reidenberg - 1998]) and is bound to remain active for quite a long time. In-
deed, the implementation of contractual commitments by computer code raises
a number of issues such as the lack of flexibility of automated tools, the poten-
tial inconsistency between computer code and legal code, the potential errors or
1 Lawrence Lessig refers to East Coast Code and West Coast Code to denote respec-

tively law and software code [Lessig - 2007].

6 D. Le Métayer

flaws in the computer code itself, not to mention the legitimacy issue pointed
out above.

In any event, the reality is that software code and legal provisions are in-
creasingly intermingled, sometimes with complementary roles, sometimes in a
fuzzy or conflicting relationship. It is also the case that legal provisions, just like
software code, are assumed to meet specific goals or requirements. Just like soft-
ware specifications, these requirements can be defined precisely, even formally
(at least to a certain extent, because legal provisions must usually leave some
room for interpretation by the judge) using dedicated logics (see, for example,
[Farrell et. al. - 2005] and [Prisacariu, Schneider - 2007]). Based on this double
observation, we argue that the first step for a fruitful and useful exploration
of the relationships between legal provisions and software code is the definition
of a formal framework for expressing the notions at hand, understanding them
without ambiguity, and eventually relating or combining them. Stated in so gen-
eral terms, one may wonder whether such an approach can really be turned into
practice and if it can have any impact beyond theoretical considerations. In the
next three sections, we show the feasibility of the approach through its appli-
cation to three areas in which the link between law and technology is of prime
importance, namely software liabilities, privacy and compliance.

3 Liability Issues in Software Engineering

As mentioned above, software contracts between professionals (“B2B contracts”)
typically include references to technical requirements or specifications which can
be used, for example, to decide upon acceptance of the software by the cus-
tomer or liability in case of failure of the system. It is often the case that these
requirements are not stated very precisely though, which may lead to misun-
derstandings between the parties or potential conflicts between them during the
execution of the contract.

The legal situation is often simpler, at least apparently, in typical licenses for
“off the shelf” software, which usually include strong liability limitations or even
exemptions of the providers for damages caused by their products. This situa-
tion does not favour the development of high quality software though, because
software vendors do not have sufficient economic incentives to apply stringent de-
velopment and verification methods (see, for example, [Anderson, Moore - 2009],
[Berry - 2007] and [Ryan - 2003]). Indeed, experience shows that products tend
to be of higher quality and more secure when the actors in position to influ-
ence their development are also the actors bearing the liability for their defects.
In addition, the validity of contractual liability limitations and exemptions can
sometimes be questioned. For example, most regulations provide specific protec-
tions to consumers which make such clauses invalid in B2C contracts. Even in
B2B contracts, liability limitations are usually considered null and void when the
party claiming the benefit of the clause has committed acts of intentional fault,
wilful misrepresentation or gross negligence. Another case is the situation where
the limitation would undermine an essential obligation of a party and would thus

Formal Methods as a Link between Software Code and Legal Rules 7

introduce an unacceptable imbalance in the contract [Steer et. al. - 2011]. This
situation is more difficult to assess though, and left to the appraisal of the judge
who may either accept the limitation, consider it null, or even fix a different
liability level.

Whether liability clauses are defined too vaguely or unequally with risks of
being invalidated in court, they result in contracts with high legal uncertain-
ties, which is not a desirable situation, neither for business nor for society in
general. The usual argument to justify this situation is the fact that software
products are too complex and versatile objects whose expected features (and
potential defects) cannot be characterised precisely, and which thus cannot be
treated as traditional (tangible) goods. Admittedly, this argument is not without
any ground: it is well known that defining in an unambiguous, comprehensive
and understandable way the expected behaviour of software systems is quite a
challenge, not to mention the use of such a definition as a basis for a liability
agreement. But the fact that specifying entire software systems and all associ-
ated liabilities is usually out of reach does not mean that the most significant
scenarios and sources of liabilities cannot be identified and formally specified.
Actually, specifying formally all liabilities would not even be a desirable goal.
Usually, the parties wish to express as precisely as possible certain aspects which
are of prime importance to them and prefer to state other aspects less precisely
(either because it is impossible to foresee, when signing the contract, all the
events that may occur or because they do not want to be bound by overly pre-
cise commitments).

To address this need, we have proposed a framework providing different lev-
els of services which can be used by the parties depending on factors such as
the economic stakes and the timing constraints for the drafting of the con-
tract [Le Métayer et. al. - 2010a]:

1. The first level is a systematic (but informal) definition of liabilities based on
a library of (parameterized) legal clauses [Steer et. al. - 2011].

2. The second level is the formal definition of liabilities. This formal definition
can be more or less detailed and does not have to encompass all the liability
rules defined informally. In addition, it does not require a complete specifica-
tion of the software but only the properties relevant for the targeted liability
rules.

3. The third level is the implementation of a log infrastructure or the enhance-
ment of existing logging facilities to ensure that all the information required
to establish liabilities will be available if a claim is raised and will be trustable
to be used as evidence for the case.

4. The fourth level is the implementation of a log analyser to assist human
experts in the otherwise tedious and error-prone log inspection task.

Each level contributes to further reducing the uncertainties with respect to lia-
bilities, and the parties can decide to choose the level commensurate with the
risks linked to potential failures of the system.

The keystone of the formal specification of liabilities is the notion of “claim
property”. Basically, claim properties represent the grounds for the claims: they

8 D. Le Métayer

correspond to failures of the system as experienced by the users. In practice,
for them to give rise to liabilities, such failures should cause damages to the
plaintiff, but damages are left out of the formal model. As an illustration, a claim
property can express the fact that a signature application has sent to the server
a message indicating that a given user has signed a specific document (identified
by a stamp) when the user has never been presented any document with this
stamp [Le Métayer et. al. - 2011]. Claims can be expressed as trace properties
using temporal or predicate logics. The choice of the language of properties does
not have any impact on the overall process but it may make some of the technical
steps, such as the log analysis, more or less difficult.

The liabilities arising under a given contract can be expressed as a function
mapping claims and traces onto sets of (liable) parties. One way to define the
liability function is to specify typical faults in the execution of the components
and to associate a set of liable parties with each claim and combination of faults.
Faults can be expressed in the same trace property language as the claims.
Another possibility is to define a causality relationship between the occurrences
of certain types of faults and failures [Goessler et. al. - 2010]. Causality has been
studied for a long time in computer science [Lamport - 1978], but with quite
different perspectives and goals. In the distributed systems community, causality
is seen essentially as a temporal property. In [Goessler et. al. - 2010], we have
defined several variants of logical causality allowing us to express the fact that
an event e2 (e.g. a failure) would not have occurred if another event e1 had
not occurred (“necessary causality”) or the fact that e2 could not have been
avoided as soon as e1 had occurred (“sufficient causality”). We have shown that
these causality properties are decidable and proposed trace analysis procedures
to establish them.

Another key design choice is the distribution of the log files themselves. Indeed,
recording log entries on a device controlled by an actor who may be involved in a
claim for which this log would be used as evidence may not be acceptable to the
other parties. In [Le Métayer et. al. - 2010b], we have introduced a framework
for the specification of log architectures and proposed criteria to characterize
“acceptable log architectures”. These criteria depend on the functional architec-
ture of the system itself and the potential claims between the parties. They can
be used to check that a log architecture is appropriate for a given set of potential
claims and to suggest improvements to derive an acceptable log architecture from
a non-acceptable log architecture. On the formal side, we have shown that, for
a given threat model, the logs produced by acceptable log architectures can be
trusted as evidence for the determination of liabilities: technically speaking, any
conclusive evaluation of a claim based on these logs produces the same verdict
as the evaluation of the claim based on the sequence of real events.

As far as the log analysis itself is concerned, we have proposed a formal speci-
fication of the analyser using the B method in [Mazza et. al. - 2010] and we have
shown the correctness of an incremental analysis process. This result makes it
possible to build upon the output of a first analysis to improve it by considering
additional logs or further properties.

Formal Methods as a Link between Software Code and Legal Rules 9

The overall approach has been applied to several representative case studies:
an electronic signature application on a mobile phone [Le Métayer et. al. - 2011],
a distributed hotel booking service [Le Métayer et. al. - 2010b] and a cruise con-
trol system [Goessler et. al. - 2010].

4 Privacy

Another area where technical and legal issues become more and more entan-
gled is privacy. Even in countries where they benefit from apparently strong
legal protections, many citizens feel that information technologies have invaded
so much of their life that they no longer have suitable guarantees about their
privacy. Indeed, the fact that the massive use of information technologies is the
source of new risks for privacy is unquestionable. Many data communications
already take place nowadays on the Internet without the users’ notice and the
situation is going to get worse with the advent of “ambient intelligence” or “per-
vasive computing”. One of the most challenging issues in this context is the
compliance with the “informed consent” principle, which is a pillar of most data
protection regulations. For example, Article 7 of the EU Directive 95/46/EC
states that “personal data may be processed only if the data subject has unam-
biguously given his consent” (unless waiver conditions are satisfied, such as the
protection of the vital interests of the subject). In addition, this consent must be
informed in the sense that the controller must provide sufficient information to
the data subject, including “the purposes of the processing for which the data are
intended”.

Technically speaking, the consent of the subject can be implemented through a
“privacy policy” which should reflect his choices in terms of disclosure and use of
personal data. We have proposed an implementation of privacy policies through
“Privacy Agents”, dedicated software components acting as “surrogates” of the
subjects and managing their personal data on their behalf. The subject can define
his privacy requirements once and for all, with all information and assistance
required, and then rely on his Privacy Agent to implement these requirements
faithfully. However, this technical solution raises a number of questions from the
legal side: for example, to what extent should a consent delivered via a software
agent be considered as legally valid? Are current regulations flexible enough to
accept this kind of delegation to an automated system? Can the Privacy Agent be
“intelligent” enough to deal with all possible situations? Should subjects really
rely on their Privacy Agent and what would be the consequences of any error
(bug, misunderstanding. . .) in the process?

In order to shed some light on these legal issues, we have focused on three
main aspects of consent : its legal nature (unilateral versus contractual act), its
essential features (qualities and defects) and its formal requirements. In a second
stage, we have drawn the lessons learned from this legal analysis to put forward
design choices ensuring that Privacy Agents can be used as valid means to deliver
the consent of the data subject [Le Métayer, Monteleone - 2009]. Several kinds
of Privacy Agents have been proposed (Subject Agents, Controller Agents and

10 D. Le Métayer

Auditor Agents) and the roles of the different actors involved in the process
have been defined precisely. Privacy policies themselves can be expressed in a
restricted (pattern based) natural language. In order to avoid ambiguities in the
expression of the policies, a mathematical semantics of the privacy language has
been defined. This mathematical semantics characterizes precisely the expected
behaviour of the Privacy Agents (based on the privacy policies defined by their
users) in terms of compliant execution traces.

This work is an illustration of the privacy by design approach which is often
praised by lawyers as well as computer scientists as an essential step towards a
better privacy protection [Le Métayer - 2010d]. The general philosophy of pri-
vacy by design is that privacy should not be treated as an afterthought but rather
as a first-class requirement during the design of IT systems; in other words, de-
signers should have privacy in mind from the moment they define the features
and architecture of a system and throughout its life cycle. The privacy by design
approach has been applied in different areas such as electronic health record sys-
tems [Anciaux et. al. - 2008], location based services [Kosta et. al. - 2008], elec-
tronic traffic pricing ([De Jonge, Jacobs - 2008], [Balash et. al. - 2010]). More
generally, it is possible to identify a number of core principles that are widely
accepted and can form a basis for privacy by design. For example, the Organiza-
tion for Economic Co-operation and Development (OECD) has put forward the
following principles [OECD - 1980]:

– The collection limitation principle: lawful collection of data with the “knowl-
edge or consent” of the data subject.

– The purpose specification and use limitation principles: specification of the
purposes, collection and use limited to those purposes.

– The data quality principle: accuracy of the data, relevance for the purpose
and minimality.

– The security principle: implementation of reasonable security safeguards to
avoid “unauthorised access, destruction, use, modification or disclosure of
data”.

– The openness and individual participation principles: right to obtain infor-
mation about the personal data collected, “to challenge” the data and, if
the challenge is successful, to have the data “erased, rectified, completed or
amended”.

– The accountability principle: data controllers should be accountable for com-
plying with these principles.

These principles have inspired a number of privacy regulations. They are also
very much in line with the European Directive 95/46/EC on the protection
of individuals with regard to the processing of personal data and on the free
movement of such data2.

One must admit however that the take-up of privacy by design in the ICT
industry is still rather limited. This situation is partly due to legal and

2 The latter however puts more emphasis on the explicit consent of the subject.

Formal Methods as a Link between Software Code and Legal Rules 11

economic reasons: as long as the law does not impose binding commitments3,
ICT providers and controllers do not have sufficient incentives to invest into
privacy by design. But part of the reason is also technical: computer scientists
have devised a number of privacy enhancing tools, but no general methodol-
ogy is available to integrate them in a consistent way to ensure suitable privacy
properties. In the same way as the use of cryptography is by no means a guar-
antee of security, the use of privacy enhancing tools does not bring by itself a
guarantee of privacy. The next challenge in this area is thus to go beyond indi-
vidual cases and to establish sound foundations and methodologies for privacy
by design [Le Métayer - 2010d].

As a first step in this direction, we have proposed a formal framework for
the implementation of the data minimization principle which stipulates that the
collection should be limited to the data strictly necessary for the purpose. This
framework allows us to define:

– The service to be performed, expressed as a set of equations characterizing
the values to be computed.

– The actors involved.
– The requirements of each actor, defined as constraints on the variables used

in the equations. Typical requirements may express the fact that a given
value should not be collected or that it should be collected only in a specific
form (aggregated, sampled, ciphered, etc.).

An operational semantics defines the effect of each action on the state of the
actors and the underlying threat model (possibilities of tampering with vari-
ables, properties of cryptographic commitments or secure components, etc.). An
inference system based on this operational semantics allows us to derive prop-
erties of the variables such as, for example, the fact that an actor can obtain
enough knowledge to identify an error (or potential fraud) in the computation
of a variable. This inference system can be used to explore the design space sys-
tematically, for example to infer architectures meeting the requirements of the
parties (e.g. limited disclosure on side the data subject and ability to discover
certain types of frauds on the side of the data controller) or to detect conflicting
requirements.

Even if much work has still to be done in this area, as suggested in Section 6,
we believe that the added value of the formal approach for privacy by design can
be decisive: in addition to the usual benefits (precise definitions of assumptions
and requirements, detection of inconsistencies, verification), it can be used to
provide designers with practical means for the systematic exploration of the
available options and for the justification of their architectural choices.

5 Compliance

Compliance is yet another legal area where the use of formal methods can
be very beneficial. Nowadays, organizations have to comply with a growing
3 This situation might change in Europe though, with the revision of the European

Directive 95/46/EC which is currently under discussion.

12 D. Le Métayer

number of legal rules stemming from law, regulations, corporate policies or con-
tractual agreements. These rules have a potential impact on all their activities
and breaches may lead to different types of damages, including financial losses,
lawsuits, competitive disadvantages and disrepute. But manual compliance en-
forcement or verification are error prone and tend to exceed the capacity of
most organizations. IT systems, even if they cannot provide the full answer to
this complex issue, can help organizations in the management and monitoring
of their obligations.

To address this need, we have proposed a framework based on a formal-
ism called Flavor

4 [Thion - 2011] which provides the following combination of
features:

– Contrary to duty obligations [Prakken - 1996]: a contrary to duty obligation
consists of a primary obligation and an alternative obligation which becomes
effective when (and if) the primary obligation is breached. Contrary to duty
obligations are useful to express penalty clauses in contracts as well as com-
pensations and sanctions for breaches of legal rules.

– Combinations of temporal and deontic modalities: one of the most perva-
sive characteristics of legal rules is the interaction between temporal (“al-
ways”, “eventually”) and deontic (“obligatory”, “prohibited”) modalities
[Pace, Schneider - 2009]. This interaction clearly appears in constructions
such as “shall . . . within . . . days after . . . ”, or “must . . . within . . . ”. Actu-
ally most obligations or prohibitions come with a deadline which may be
defined by a fixed date, by a delay or by a specific event.

– Conditions and contexts: legal rules are generally expressed as abstract and
general statements intended to be applied in a variety of circumstances. To
this aim, the wording of a legal rule generally distinguishes the effect of the
rule (action to be performed or prevented) and its context of application.
The context of application typically involves parameters and data (e.g. price,
reference number, time, . . .) related to specific events.

We have defined a semantics for the language which is suitable for the implemen-
tation of an auditing tool and which avoids the paradoxes and counter-intuitive
meanings often arising in modal logics. Based on this semantics, we have pro-
vided criteria for analysing obligations and defined a strength ordering which can
be used to reason on contractual clauses. The framework has been illustrated
with typical business contracts and privacy policy rules.

6 Further Challenges

The contributions sketched in the previous sections have been presented here
only for illustrative purposes, to show that the use of formal methods as a link
between law and software code is not a purely speculative idea. Needless to say,
much work remains to be done, not only in the application areas mentioned here,
but also more generally on the interactions between law and ICT.
4 Formal Language for A posteriori Verification Of legal Rules.

Formal Methods as a Link between Software Code and Legal Rules 13

The notion of causality, for example, is extremely rich and complex, and it
represents in itself a very fruitful area for further research. First, it would be
interesting to express causality in a more abstract way, independently of the
underlying computation and communication models, and to establish precise
links with related notions in dependability, diagnosis and security. The study
of the correspondence between formal characterisations and legal definitions of
causality is obviously another area for further work. To this respect, it would
also be interesting to introduce probabilities in the formal framework in order
to reflect certain interpretations of causality in the legal sense, the differences
between several causes being often considered with respect to their effects on
the likeliness of the occurrence of the damage [Busnelli et. al. - 2005].

As far as compliance is concerned, a number of key issues have already been
investigated but still require further work [Pace, Schneider - 2009], especially to
ensure that formal models are consistent both with the legal views and with the
practical constraints that organizations have to face [Governatori et. al. - 2006].
Among these issues, we should mention the possibility to detect conflicts between
obligations [Fenech at. al. - 2009], to verify statically the compliance of a system
or to monitor its actions in order to ensure that no obligation can be violated.
There are also other significant aspects of the problems faced by organizations
that are not fully taken into consideration by previous work:

1. The first aspect is the dynamic nature of contracts. Most companies execute
new contracts on a daily basis and these contracts usually have termination
provisions. The execution of new contracts and their termination represent a
substantial part of the difficulty and must be integrated in formal frameworks
for obligations.

2. The second aspect is the fact that organizations have to cope with events
which are not within their control and must take them into account before
deciding to enter into new legal agreements.

3. The third aspect is the observation that, in practice, conflicts between obli-
gations do not necessarily take the form of sheer contradictions: the situation
is often more subtle, for example the consequences of a breach can be more
or less significant; sometimes the conjunction of obligations does not lead
to a contradiction but to a detrimental reduction of the choice space of the
organization. Last but not least, following point 2 above, potential breaches
may or may not be under the control of the organization.

Needless to say, privacy is also an area where a lot of difficult problems remain
to be solved (and many others are bound to arise in the future). The main
challenges in this area concern both privacy by design and privacy evaluation.
First, much work remains to be done to turn privacy by design into practice,
both from a formal point of view and from a methodological perspective. The
work sketched in Section 4 is a first step in this direction, addressing the min-
imization principle, but other principles such as, for example, transparency or
accountability require more attention. Indeed, Transparency Enhancing Tools
(TETs) have been called for by lawyers (see, for example, [Hildebrandt - 2008]
and [Hildebrandt - 2006]) but they have not yet become a reality. These tools

14 D. Le Métayer

should provide ways for individuals to understand how their personal data (and,
ideally, any data that can be used in a processing with potential effects on them)
are collected, generated, managed, transferred, etc. The transparency require-
ment is of upmost importance in a context where information flows are growing
dramatically and the data mining and inference techniques become more and
more powerful.

The concept of accountability is already applied in certain areas such as the
finance and public governance and it is likely to be included in the future ver-
sion of the European Directive on Data Protection 95/46/EC currently under
discussion. Accountability puts emphasis on “how responsibility is exercised and
making it verifiable”. Technically, it involves at least two dimensions: trans-
parency (making processing visible) and security (in the sense of integrity and
non repudiation of the accountability data). More generally, it is a multi-faceted
notion, involving social, legal and political aspects. The relationship between
accountability and privacy is also rather complex: accountability can be used
to strengthen privacy rights (when it applies to the data controllers) but it can
also represent a threat to privacy (when it applies to the data subjects, e.g.
within financial transactions, or when it requires to record excessive amounts of
personal data). More research is needed to clarify the technical definition of ac-
countability and associated requirements (in line with the legal view), to ensure
that accountability can go hand in hand with privacy, and to provide practi-
cal and trustworthy implementation methods and tools helping organizations to
comply with the transparency and accountability requirements.

The definition of realistic and formally grounded measures of privacy is
also a challenging task. Several proposals have been made to define relevant
privacy metrics such as k-anonymity [Sweeney - 2002] or differential privacy
[Dwork - 2006] but the problem remains open : some of these metrics do not
necessarily measure a true protection level because they are vulnerable to cer-
tain types of attacks, while others provide guarantees which are difficult to reach
in practice because they would result in unacceptable reductions of data utility.
Also, it is not clear whether a single type of metric can be suitable for different
application areas corresponding to varied needs and expectations in terms of
privacy.

Needless to say, the above challenges concern the lawyers as well as the com-
puter scientists. As an illustration, key notions of European data protection laws
such as “personal data”, “informed consent”, “subject” or “controller” are chal-
lenged, if not made ineffective, by new technologies. Another illustration is the
role of the consent of the subject in current data protection regulations. Some
lawyers have expressed the view that putting too much stress on consent can
lead to an exclusively individualistic view of privacy disregarding the collective
value of privacy as a fundamental right. To avoid this drift, clear limitations
should be placed on the legitimacy of consent: for example, certain data should
be considered as inalienable and, when consent is authorized, it should come
with strong requirements in terms of transparency to ensure that the subject
really understands the consequences of his consent. But where to place the red

Formal Methods as a Link between Software Code and Legal Rules 15

line and on which grounds are difficult questions, and, as suggested above, the
effective implementation of transparency and consent delivery is also a challenge
for computer scientists. In certain cases, the implementation of transparency can
even create conflicts with the legal protection of intellectual property rights (e.g.
with respect to profiling algorithms). Legal, social and technical dimensions are
thus strongly intermingled and an interdisciplinary approach is required to make
any progress on these topics.

7 Conclusion: Interdisciplinarity in Practice

In this paper, we have argued that the development of the new information so-
ciety raises a number of challenges which require stronger collaboration between
lawyers and computer scientists. But setting up this kind of interdisciplinary
collaboration also represents a challenge in itself, especially when it concerns
disciplines which have very different histories and cultures and have built very
different modes of functioning (research development, assessment, collaborations,
etc.). On one hand, each discipline should keep its criteria of excellence; on the
other hand, disciplines should find together new ways of creating, communicat-
ing and evaluating research results. Needless to say, researchers in each discipline
have also to overcome any misconception about the other discipline and accept
points of views from “outsiders” questioning their own discipline. As shown by
the pieces of work sketched in Sections 3, 4 and 5, this objective is not out of
reach though. Drawing on the lessons of these projects, we believe that such an
inderdisciplinary collaboration should be based on a precise methodology and it
should include at least the following steps:

– The comparison of the terminologies and notions used in the different disci-
plines: often the same term is used in two disciplines with different meanings
or intentions; vice versa, it also happens that the same notion is named in
different ways in different disciplines. Indeed, there is no shortage of terms
which may lead to confusion in discussions between lawyers and computer
scientists (e.g. “causality”, “accountability”, “effectiveness”, “proof”, “secu-
rity” , etc). The analysis of these shifts is a pre-requisite for mutual un-
derstanding; in addition it can shed new light on each discipline and help
refining the underlying concepts.

– The comparison of the procedures, modes of operation in the different dis-
ciplines: for example how are the instruments conceived, how are they ac-
cepted, monitored, revised? How is their effectiveness defined and measured?
Such a comparison, in addition to enhancing mutual understanding, can be
a source of inspiration and improvement in each discipline. For example, the
legal procedures can be a source of inspiration to provide a more transpar-
ent or democratic process for the development of new technologies, to devise
technologies with “contradiction means” (possibility to bypass the proce-
dure implemented by the tools). Vice versa, new ideas can come from the
technology concerning criteria such as evolutivity or effectiveness.

16 D. Le Métayer

– The study of the problems at hand in an iterative way where each discipline
can bring its own analysis, views and findings before confronting them to the
findings of the other disciplines and, based on this enlarged view, proposing
a refined solution, which can be confronted again to the other ones.

Beyond research collaborations, the complex issues raised in this paper also
question the relationships between the legal and technological normativities: how
can the law face the “over-effectiveness” of technological norms and their opaque
dissemination mode? How can the stability required by the legal systems adapt
to the fast evolution of technologies? At what stage should the legal dimension
be taken into account in the deployment of new technical infrastructures? How
to introduce a mode of contestation or democratic debate in the elaboration of
technological choices? Needless to say, these issues go beyond law and technology,
they are by essence political, which should not come as a surprise considering
the tremendous (and still growing) impact of information technologies on our
everyday life [Jacobs - 2009].

Acknowledgments. This work was partly supported by the French ANR
projects LISE under the grant ANR-07-SESU-007 and FLUOR under the grant
ANR-07-SESU-005.

References

[Anciaux et. al. - 2008] Anciaux, N., Benzine, M., Bouganim, L., Jacquemin, K.,
Pucheral, P., Yin, S.: Restoring the patient control over her medical history.
In: 21st IEEE International Symposium on Computer-Based Medical Systems,
pp. 132–137. IEEE Computer Society, Los Alamitos (2008)

[Anderson, Moore - 2009] Anderson, R., Moore, T.: Information security economics –
and beyond. Information Security Summit (IS2) (2009)

[Balash et. al. - 2010] Balasch, J., Rial, A., Troncoso, C., Geuens, C., Preneel, B., Ver-
bauwhede, I.: PrETP: privacy-preserving electronic toll pricing. In: Proc. 19th
USENIX Security Symposium (2010)

[Berry - 2007] Berry, D.M.: Abstract appliances and software: the importance of the
buyer’s warranty and the developer’s liability in promoting the use of systematic
quality assurance and formal methods. Scientific Literature Digital Library and
Search Engine (2007), http://www.scientificcommons.org/42749418

[Busnelli et. al. - 2005] Busnelli, F.D., et al.: Principles of European tort law. Springer,
Heidelberg (2005)

[Dwork - 2006] Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone,
V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidel-
berg (2006)

[Farrell et. al. - 2005] Farrell, A.D.H., Sergot, M.J., Sallé, M., Bartolini, C.: Using the
event calculus for tracking the normative state of contracts. International Journal
of Cooperative Information Systems (IJCIS) 14(2-3), 99–129 (2005)

[Fenech at. al. - 2009] Fenech, S., Pace, G., Schneider, G.: Automatic Conflict De-
tection on Contracts. In: Leucker, M., Morgan, C. (eds.) ICTAC 2009. LNCS,
vol. 5684, pp. 200–214. Springer, Heidelberg (2009)

http://www.scientificcommons.org/42749418

Formal Methods as a Link between Software Code and Legal Rules 17

[Fuller - 1964] Fuller, L.L.: The morality of law. Yale University Press, New Haven
(1964)

[Goessler et. al. - 2010] Gössler, G., Le Métayer, D., Raclet, J.-B.: Causality analysis
in contract violation. In: Barringer, H., Falcone, Y., Finkbeiner, B., Havelund,
K., Lee, I., Pace, G., Roşu, G., Sokolsky, O., Tillmann, N. (eds.) RV 2010. LNCS,
vol. 6418, pp. 270–284. Springer, Heidelberg (2010)

[Goldberg - 2007] Goldberg, I.: Privacy-enhancing technologies for the Internet III:
Ten years later. In: Digital Privacy: Theory, Technologies, and Practices (2007)

[Governatori et. al. - 2006] Governatori, G., Milosevic, Z., Sadiq, S.W.: Compliance
checking between business processes and business contracts. In: EDOC, pp. 221–
232. IEEE, Los Alamitos (2006)

[Hildebrandt - 2006] Hildebrandt, M.: Profiling: from data to knowledge. DuD: Daten-
schutz und Datensicherheit 30(9), 548–552 (2006)

[Hildebrandt - 2008] Hildebrandt, M.: Profiling and the rule of law. Identity in the
Information Society 1(1), 55–70 (2008)

[Jacobs - 2009] Jacobs, B.: Architecture is politics: security and privacy issues in trans-
port and beyond. Data Protection in a Profiled World. Springer, Heidelberg
(2010)

[De Jonge, Jacobs - 2008] De Jonge, W., Jacobs, B.: Privacy-friendly electronic traf-
fic pricing via commits. In: Degano, P., Guttman, J., Martinelli, F. (eds.)
FAST 2008. LNCS, vol. 5491, pp. 143–161. Springer, Heidelberg (2009)

[Kosta et. al. - 2008] Kosta, E., Zibuschka, J., Scherner, T., Dumortier, J.: Legal con-
siderations on privacy-enhancing location based services using PRIME technol-
ogy. Computer Law and Security Report 24, 139–146 (2008)

[Lamport - 1978] Lamport, L.: Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM 21(7), 558–565 (1978)

[Le Métayer, Rouvroy - 2008] Le Métayer, D., Rouvroy, A.: STIC et droit: défis, con-
flits et complémentarités. Interstices (2008), http://interstices.info/jcms/
c 34521/stic--et--droit--defis--conflits--et--complementarites

[Le Métayer, Monteleone - 2009] Le Métayer, D., Monteleone, S.: Automated consent
through privacy agents: legal requirements and technical architecture. The Com-
puter Law and Security Review 25(2) (2009)

[Le Métayer et. al. - 2010a] Le Métayer, D., Maarek, M., Mazza, E., Potet, M.-L.,
Frenot, S., Viet Triem Tong, V., Crépeau, N., Hardouin, R.: Liability in soft-
ware engineering: overview of the LISE approach and application on a case study.
In: International Conference on Software Engineering, ICSE 2010, pp. 135–144.
ACM/IEEE (2010)

[Le Métayer et. al. - 2010b] Le Métayer, D., Mazza, E., Potet, M.-L.: Designing log
architectures for legal evidence. In: 8th International Conference on Software
Engineering and Formal Methods, SEFM 2010, pp. 156–165. IEEE, Los Alamitos
(2010)

[Le Métayer - 2010c] Le Métayer, D.: (ed.) Les technologies au service des droits, op-
portunités, défis, limites. Bruylant, Cahiers du CRID 32 (2010)

[Le Métayer - 2010d] Le Métayer, D.: Privacy by design: a matter of choice. Data Pro-
tection in a Profiled World, pp. 323–334. Springer, Heidelberg (2010)

[Le Métayer et. al. - 2011] Le Métayer, D., Maarek, M., Mazza, E., Potet, M.-L.,
Frenot, S., Viet Triem Tong, V., Crépeau, N., Hardouin, R.: Liability issues
in software engineering. The use of formal methods to reduce legal uncertainties.
Communications of the ACM (2011)

http://interstices.info/jcms/$c_3$4521/stic--et--droit--defis--conflits--et--complementarites
http://interstices.info/jcms/$c_3$4521/stic--et--droit--defis--conflits--et--complementarites

18 D. Le Métayer

[Mazza et. al. - 2010] Mazza, E., Potet, M.-L., Le Métayer, D.: A formal framework
for specifying and analyzing logs as electronic evidence. In: Davies, J. (ed.)
SBMF 2010. LNCS, vol. 6527, pp. 194–209. Springer, Heidelberg (2011)

[Lessig - 2001] Lessig, L.: The future of ideas: the fate of the commons in a connected
world. Random House (2001)

[Lessig - 2007] Lessig, L.: Code and other laws of cyberspace, Version 2.0. Basic Books,
New York (2007)

[OECD - 1980] OECD guidelines on the protection of privacy and transborder flows of
personal data. Organization for Economic Co-operation and Development (1980)

[Pace, Schneider - 2009] Pace, G.J., Schneider, G.: Challenges in the specification of
full contracts. In: Leuschel, M., Wehrheim, H. (eds.) IFM 2009. LNCS, vol. 5423,
pp. 292–306. Springer, Heidelberg (2009)

[Poullet - 2006] Poullet, Y.: The Directive 95/46/EC: ten years after. Computer Law
and Security Report 22, 206–217 (2006)

[Prakken - 1996] Prakken, H., Sergot, M.J.: Contrary-to-duty obligations. Studia Log-
ica 57, 91–115 (1996)

[Prisacariu, Schneider - 2007] Prisacariu, C., Schneider, G.: A formal language for elec-
tronic contracts. In: Bonsangue, M.M., Johnsen, E.B. (eds.) FMOODS 2007.
LNCS, vol. 4468, pp. 174–189. Springer, Heidelberg (2007)

[Reidenberg - 1998] Reidenberg, J.: Lex informatica: the formulation of information
policy rules through technology. Texas Law Review 76, 3 (1998)

[Rouvroy - 2008] Rouvroy, A.: Privacy, data protection and the unprecedented chal-
lenges of ambient intelligence. Studies in Ethics, Law and Technology. Berkley
Electronic Press (2008)

[Ryan - 2003] Ryan, D.J.: Two views on security and software liability. Let the legal
system decide. IEEE Security and Privacy (2003)

[Steer et. al. - 2011] Steer, S., Craipeau, N., Le Métayer, D., Maarek, M., Potet, M.-L.,
Viet Triem Tong, V.: Définition des responsabilités pour les dysfonctionnements
de logiciels : cadre contractuel et outils de mise en oeuvre. Actes du colloque
Droit, sciences et techniques: quelles responsabilités, LITEC, collection Colloques
et Débats (2011)

[Sweeney - 2002] Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J.
Uncertain. Fuzziness Knowl.-Based Syst. 10(5), 557–570 (2002)

[Thion - 2011] Thion, R., Le Métayer, D.: FLAVOR: a formal language for a posteriori
verification of legal rules. In: IEEE International Symposium on Policies for
Distributed Systems and Networks. IEEE, Los Alamitos (2011)

G. Barthe, A. Pardo, and G. Schneider (Eds.): SEFM 2011, LNCS 7041, pp. 19–34, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Developing Model-Checking Mechanisms for ASSL:
An Experience Report

Emil Vassev and Mike Hinchey

Lero—The Irish Software Engineering Research Centre
University of Limerick, Limerick, Ireland

{Emil.Vassev,Mike.Hinchey}@lero.ie

Abstract. The Autonomic System Specification Language (ASSL) is a formal
method dedicated to autonomic computing, and as such, assists developers with
formal specification, validation and code generation of autonomic systems. Due
to the synthesis approach of automatic code generation, ASSL guarantees
consistency between a specification and the corresponding implementation.
Moreover, one of the major objectives of the framework is to assure the
correctness of autonomic systems via the inclusion of tools targeting model
checking. In this paper, we report our experience in developing model-checking
mechanisms for ASSL.

Keywords: model checking, formal methods, ASSL, autonomic computing.

1 Introduction

The Autonomic System Specification Language (ASSL) [1, 2] is an initiative for self-
management of complex systems where we approach the problem of formal
specification, validation, and code generation of autonomic systems (ASs) within a
framework. Being dedicated to autonomic computing (AC) [3], ASSL helps AC
researchers with problem formation, system design, system analysis and evaluation,
and system implementation. The framework provides tools that allow ASSL
specifications to be edited and validated. From any valid specification, ASSL can
generate an operational Java application skeleton. The ASSL formal validation is
addressed by multiple model checking mechanisms, some fully implemented and
some still under development.

In general, model checking advocates for formal verification whereby software
programs are automatically checked for specific flaws by considering correctness
properties. In ASSL, some of those properties are defined as semantic definitions
forming a theory that aids in the construction of correct AS specifications. For the
purpose of developing flawless ASs, we are considering four distinct model checking
mechanisms for ASSL: 1) a consistency checker; 2) a built-in model checker; 3) a
mechanism for mapping ASSL specifications to a formal notation with provided tool
support for model checking; and 4) a post-implementation model checker. Whereas
the first three model-checking methods check ASSL specifications, the fourth one
verifies the generated Java code. Note that despite careful specification and the
existence of ASSL-level model checking, it is possible to generate ASs containing

20 E. Vassev and M. Hinchey

fatal errors (e.g., deadlocks). This is mainly due to the so-called state-explosion
problem. Moreover, with the post-implementation model checker we may verify not
only the newly-generated code but also all consecutively updated versions of the
same. In this paper, we report our experience in developing the ASSL model checking
mechanisms in the course of research projects at Lero–the Irish Software Engineering
Research Centre.

The rest of this paper is organized as follows: In Section 2, we briefly present the
ASSL formal specification model. In Section 3, we present our experience in the
development of the four ASSL model checking mechanisms. Section 4 briefly
outlines a case study where the built-in model checking approach is applied. Finally,
Section 5 provides brief concluding remarks and a summary of future research goals.

2 ASSL

ASSL [1, 2] is based on a specification model exposed over hierarchically organized
formalization tiers (see Table 1). This specification model provides both infrastructure
elements and mechanisms needed by an AS (autonomic system).

Table 1. ASSL multi-tier specification model

AS

AS Service-level Objectives

AS Self-management Policies
AS Architecture
AS Actions
AS Events
AS Metrics

ASIP
AS Messages
AS Channels
AS Functions

AE

AE Service-level Objectives

AE Self-management Policies
AE Friends

AEIP

AE Messages

AE Channels

AE Functions

AE Managed Elements

AE Recovery Protocols
AE Behavior Models
AE Outcomes
AE Actions
AE Events
AE Metrics

 Developing Model-Checking Mechanisms for ASSL 21

Each tier of the ASSL specification model is intended to describe different aspects
of the AS in question, such as service-level objectives, policies, interaction protocols,
events, actions, autonomic elements, etc. This allows us to specify an AS at different
levels of abstraction (imposed by the ASSL tiers) where the AS in question is
composed of special autonomic elements (AEs) interacting over interaction protocols
(IPs). As shown in Table 1, the ASSL specification model decomposes an AS in two
directions: 1) into levels of functional abstraction; and 2) into functionally related
sub-tiers. The first decomposition presents the system at three different tiers [1, 2]:

1) a general and global AS perspective – we define the general system rules
(providing autonomic behavior), architecture, and global actions, events, and
metrics applied in these rules;

2) an interaction protocol (IP) perspective – we define the means of
communication between AEs within an AS;

3) a unit-level perspective – we define interacting sets of individual computing
elements (AEs) with their own autonomic behavior rules, actions, events,
metrics, etc.

The second decomposition presents the major tiers, AS and ASIP, as composed of
functionally related sub-tiers, where new AS properties emerge at each sub-tier. The
AS Tier specifies an AS in terms of service-level objectives (AS SLOs), self-
management policies, architecture topology, actions, events, and metrics (see Table
1). The AS SLOs are a high-level form of behavioral specification that helps
developers establish system objectives such as performance. The self-management
policies are driven by events and trigger the execution of actions driving an AS in
critical situations. The metrics constitute a set of parameters and observables
controllable by an AS. With the ASIP Tier, the ASSL framework helps developers
specify an AS-level interaction protocol as a public communication interface
expressed with special communication channels, communication functions, and
communication messages. At the AE Tier, the ASSL formal model exposes
specification constructs for the specification of the system’s AEs. Note that AEs are
considered to be analogous to software agents able to manage their own behavior and
their relationships with other AEs. An AE may also specify a private AE interaction
protocol (AEIP) shared with special AE considered as “friends” (AE Friends tier).

It is important to mention that the ASSL tiers are intended to specify different
aspects of the AS in question, but it is not necessary to employ all of them in order to
develop an AS. Conceptually, it is sufficient to specify self-management policies
only, because those provide self-management behavior at the level of AS (the AS tier)
and at the level of AE (AE tier). These policies are specified within the AS/AE Self-
management Policies sub-tier (the ASSL construct is AS[AE]SELF_MANAGEMENT) with
special ASSL constructs termed fluents and mappings [1, 2]. A fluent is a state where
an AS enters with fluent-activating events and exits with fluent-terminating events. A
mapping connects fluents with particular actions to be undertaken. Usually, an ASSL
specification is built around one or more self-management policies, which make that
specification AS-driven. Self-management policies are driven by events and actions
determined deterministically. The following ASSL code presents a sample
specification of a self-healing policy.

22 E. Vassev and M. Hinchey

ASSELF_MANAGEMENT {
 SELF_HEALING {
 FLUENT inLosingSpacecraft {
 INITIATED_BY { EVENTS.spaceCraftLost }
 TERMINATED_BY { EVENTS.earthNotified } }
 MAPPING {
 CONDITIONS { inLosingSpacecraft }
 DO_ACTIONS { ACTIONS.notifyEarth } }
 }
} // ASSELF_MANAGEMENT

As shown, fluents are expressed with fluent-activating and fluent-terminating

events. In order to express mappings, conditions and actions are considered, where the
former determine the latter in a deterministic manner.

Once a specification is complete, it can be validated with the ASSL built-in
verification mechanisms (e.g., consistency checking) and a functional application
skeleton can be generated automatically. The application skeletons generated with the
ASSL framework are fully-operational multithreaded event-driven applications with
embedded messaging.

3 Model Checking with ASSL

The ASSL framework helps developers edit and validate ASSL specifications and
generate Java code, i.e., the ASSL toolset provides powerful tools needed to formally
process an ASSL specification and automatically generate the corresponding
implementation. The following subsections present the ASSL model checking
mechanisms, used to validate the ASSL specifications.

3.1 Consistency Checking

The ASSL tiers can be classified as declarative (or imperative) and operational tiers
[1, 2]. Whereas the former simply describe definitions in the AS under consideration,
the latter not only describe definitions but also focus on the operational behavior of
that AS. The ASSL framework evaluates an AS specification formally to construct a
special declarative specification tree needed to perform both consistency checking
(and eventually model checking) and code generation. The declarative specification
tree is created by the framework when parsing an AS specification and copes with the
hierarchical tier structure of that specification. Each specified tier/sub-tier is presented
as a tier instance. Consistency checking (see Fig. 1) is a framework mechanism for
verifying specifications by performing exhaustive traversing of the declarative
specification tree. In general, the framework performs two kinds of consistency-
checking: 1) light – checks for type consistency, ambiguous definitions, etc.; and 2)
heavy – checks whether the specification model conforms to special correctness
properties. The “heavy” consistency checking can be considered as a form of model
checking, where the model is verified against predefined correctness properties.

The correctness properties are ASSL semantic definitions [1, 2] defined per tier.
Although, they are expressed in First-Order Linear Temporal Logic (FOLTL)1 [5],

1 In general, FOLTL can be seen as a quantified version of linear temporal logic. FOLTL is

obtained by taking propositional linear temporal logic and adding a first order language to it.

 Developing Model-Checking Mechanisms for ASSL 23

currently ASSL does not incorporate a FOLTL engine, and thus, the consistency
checking mechanism implements the correctness properties as Java statements. Here,
the FOLTL operators (forall) and (exists) work over sets of ASSL tier instances. It
is important to mention that the consistency checking mechanism generates
consistency errors and consistency warnings. Warnings are specific situations where
the specification does not contradict the correctness properties, but rather introduces
uncertainty as to how the code generator will handle it.

Fig. 1. Consistency Checking with ASSL

As mentioned above, a variety of predefined correctness properties are subject of
consistency checking. One of those correctness properties is the so-called
autonomicity rule [1, 2]. According to that rule, every autonomic system specified
with ASSL must have specified at least one self-management policy. Fig. 2 shows an
error reported by the ASSL consistency checker, because the processed ASSL
specification violates the autonomicity rule (the entire ASSELF_MANAGEMENT sub-tier
comprising the self-management policies is commented).

Fig. 2. Checking for “Autonomicity” with the ASSL Consistency Checker

3.2 Built-in Model Checker

In this approach, an ASSL specification is translated into a state-transition graph,
over which model checking is performed to verify whether an ASSL specification
satisfies correctness properties. Here, the model-checking problem is: given the AS A
and its ASSL specification a, determine in the AS’s state graph g (called ASG)

24 E. Vassev and M. Hinchey

whether the behavior of A, expressed with the correctness properties p, meets the
specification a [4]. An ASG formally stems from the concept of Kripke Structure [5].
The latter is basically a graph having the reachable states of an ASSL-specified
system as nodes and the state transitions of the system as edges. In addition, to allow
for formal verification, each system state must be labeled with properties (called
atomic propositions AP) that hold in that state and each state transition must be
associated with one or more state transition operations Op. The notion of state in
ASSL is related to the ASSL specification constructs called ASSL tier instances [1, 2]
(specified tiers and sub-tiers). The ASSL operational semantics [1, 2] considers a
state-transition model where tier instances can be in different tier states, e.g.,
instances of the SLO (Service-Level Objectives) tier can be evaluated as satisfied or
not satisfied. Here, an ASSL-developed AS transits from one state to another when a
particular tier instance evolves from a tier state to another tier state. Here, transition
operations Op cause tier instances to evolve.

3.2.1 Building the Autonomic System Graph
In order to build the ASSL model checker, we had to do some preliminary theoretical
work to prepare the program structures holding an ASG. Here, we had to define:

1) the reference state model for ASSL-specified ASs, which appeared to be a
product machine that consists of high-level tier states composed of
multilevel nested tier states, and the global system state is a product of all
nested states (we had to identify an initial state and all the possible tier states
S);

2) a set of all atomic propositions AP, which denote the properties of individual
states S, and present the S-AP relationship as tuples of the form (Sn, AP1,
…. APn);

3) all possible transition relations R as tuples of the form (S1, Op, S2).

Next, we had to implement structures holding the S-AP and R tuples. Note that those
are recorded in two flat files (one per tuple type) and are loaded into the implemented
program structures at the time of ASSL loading. This helps the model-checker tool
cope with future extensions to ASSL. To implement the tuple structures, we used a
distinct token class per tuple type (S-AP and R) and used vectors of tuple tokens. In
addition, a generic algorithm is implemented to traverse those vectors and return a
sub-vector of tuple tokens refined by state, by operation, or by atomic proposition.
Thus, at runtime, the model-checking tool can obtain all the atomic propositions and
related transition operations for a particular state. Here,

• tier states S are recorded with tier instance name and state name;
Example: tier { SLO } name { performance } state { unsatisfied }

• transition operations Op are recorded with their ASSL predefined names [1];
• atomic propositions AP are recorded with “if” and “then” sections and

optional “temporal” operators (a temporal logic operator).
Example: if { event prompted } then { tempOperator { eventually } fluent initiated }

In the next step, we had to develop a mechanism constructing the ASG from an ASSL
specification. Here, the ASG is constructed by the ASSL framework by using a
special declarative specification tree created by the framework when parsing an AS

 Developing Model-Checking Mechanisms for ASSL 25

specification [1, 2]. The declarative specification tree contains the hierarchical tier
structure of the actual specification. Thus, enriched with the tier states S, it can be
used to derive the composite multilevel structure of the ASG by taking into
consideration that all the tier instances run concurrently as state machines. Thus, the
tier states S are derived from the declarative specification tree and enriched with the
appropriate atomic propositions AP. The latter are retrieved per state.

In addition, the so-called operational evaluation [1, 2] performed on the ASSL
specification is used to derive all the transition relations R (S1, Op, S2) needed to
connect the states S and thus, to construct the ASG. Here, an ASG is composed of
nodes that can be presented formally as a tuple (s, R, AP) where: s is the tier state; R
is a set of transition relations connecting the state s to other states via system
operations; AP is a set of atomic propositions held in s. Similar to the declarative
specification tree, the generated ASG is hierarchical, i.e., composed of multilevel
composite tier states. Note that the generated ASG is stored in a flat file, which helps
us trace the graph. Fig. 3 depicts the transformation of the declarative specification
tree into an ASG, where the latter is presented at the highest possible level of
abstraction comprising a single composite state “AS Active”, which is a product
machine consisting of product states.

Fig. 3. Transformation of the Declarative Specification Tree into an ASG

3.2.2 Building the Model-Checking Engine
Next, we had to implement the model checking engine that should work over the
following algorithm: given that Ф is a correctness property expressed in a temporal
logic formula, determine whether the “AS Active” tier state (see Fig. 3) satisfies Ф,
which implies that all possible compositions of nested tier states satisfy Ф.

Thus, the model-checking engine traverses all the possible paths in an ASG to
check whether special correctness properties Ф (expressed in a temporal logic) are
satisfied. In case such a property is not satisfied, the ASSL framework produces a
counterexample. The latter is an execution path of the ASG for which the desired
correctness property is not true.

At the time of writing, the model-checking engine is still under development. We
are currently examining two possible solutions: 1) developing our own engine; or 2)
integrating an already existing engine that can process the generated ASG file.
Engines of current interest are SPIN [6] and GEAR [7]. In all approaches though, we
need to consider the so-called state-explosion problem. In general, the size of an ASG
is at least exponential in the number of ASSL tier instances running concurrently in

26 E. Vassev and M. Hinchey

the system (recall that an ASG is a product machine). We are currently working on
two possible solutions to that problem - abstraction and prioritized tiers. The first
solution is to use composite tier states to abstract their nested tier states. Thus, given
an original state graph G (derived from an ASSL specification) an abstraction is
obtained by suppressing low-level tier states yielding a simpler and likely smaller
state graph Ga. This reduces the total amount of states to be considered but is likely to
introduce a sort of conservative view of the system where the abstraction ensures only
that correctness of Ga implies correctness of G. The other possible solution is to
prioritize ASSL tiers by giving their tier states a special probability weight pw. This
can be used as a state-reduction factor to derive probability graphs Gpw with a specific
level of probability weight, e.g., pw > 0,5. However, this approach is likely to
introduce probability to the model-checking results, which correlates with the
probability level of the graph Gpw.

3.3 External Model Checker

Another research direction of ours is towards mapping ASSL specifications to special
service logic graphs supporting the so-called reverse model checking [8]. In this
approach, to complement the original textual view of an ASSL specification, and in
perspective to visualize and reify certain aspects of the operational semantics of
ASSL, we map selected ASSL-specified behavioral elements to GEAR’s behavioral
models. These can be visualized as special Service Logic Graphs (SLGs) in the jABC
framework [9] (of which GEAR is the model checking plugin) and analyzed, guiding
the user through the processes and workflows of the specified autonomic system.
Note that these models are directly amenable to model checking. SLGs themselves are
composed of reusable building blocks that are called Service Independent Building
Blocks, and may represent a single atomic service or a whole subgraph (i.e., another
SLG). Thus SLGs can be hierarchical, which grants a high reusability not only of the
building blocks, but also of the models themselves, within larger systems. SLGs
formally stem from the concept ofa Kripke Transition System (KTS) [5]. Similar to
any KTS, SLGs are graph structures with labeled branches and nodes that are
enriched with atomic propositional properties, thus sufficing to adopt the established
model checking technologies for SLGs.

From the point of view of model generation, AS and AE specifications are
structurally identical with reference to events, self-management policies and actions,
but differ in terms of scoping - while the AS specification has a global scope, the AE
specification is only valid for the element in question (see Section 2). Due to the
similarities, we focus on the description of the AE tier. The AS tier is captured
similarly, by means of hierarchy (where single nodes of the AS-level KTS are
expandable to AE-level models).

Fig. 4 shows a specification fragment of an ASSL specification of the Voyager
spacecraft [10] (right) and the corresponding section of the behavioral model (left). In
the textual specification (right), we have two events, one fluent with a mapping, and
one action. Dashed arrows illustrate a trace of an event within the specs. Arrows
indicate the correspondence between elements of the ASSL-specification and of the
behavioral. The InTakingPicture cloud defines the current state of the system (an
atomic proposition).

 Developing Model-Checking Mechanisms for ASSL 27

Event is the central language element in ASSL. It specifies fluents, actions, and
policies globally in the AS tier and locally in the AE tier. Events can be activated by
messages, other events, actions or metrics [1, 2]. In our behavioral model, events are
mapped to homonymous Branches. In Fig. 4, the behavioral model starts with the
event timeToTakePicture. It initiates the self-management policy (fluent)
inTakingPicture.

Fig. 4. Action, Event, Fluent, and Mapping in KTS behavioral model representation

An AE self-management policy defines the behavior of the AE by connecting
specific system states (expressed with fluents) with the intended (re)action (expressed
with mappings) (see Section 2). Fluents and mappings are central to the model
extraction: the information contained in a self-management policy is used and useful
both for model construction and for verification. Together, fluent and mappings
define the control flow, i.e. create branches with the name of the initiating event.
They define all possible incoming branches of an action. The specific condition that
activates the fluent is stored in the context of the system’s model. The context
represents the current global state of the system, like a global Blackboard or shared
memory-mechanism. For model checking purposes, the fluent is additionally
associated as atomic proposition to the corresponding node(s) of the behavioral
model. This enables global model checking. The fluent can be used as preconditions
of actions. They hold on all states in the region between initiation and termination.

The fluent in our example is activated by the timeToTakePicture event and the
overall status of the AS is changed to intakingPicture. This change activates an
action: takePicture which is specified in the mapping section of the self-management
policy. The self-management policy which connects the event to actions is
additionally used to annotate the nodes in the behavioral model with atomic

28 E. Vassev and M. Hinchey

propositions (APs). The name of the AP is equal to the name of the fluent. They can
later be used for model checking.

Actions are routines performed by an AE or AS (global and local) [1,2]. In our
behavioral model, they are the second essential element. The different elements of an
action are used to describe the nodes and for verification purposes. Action parameters
become parameters of a node; the DOES part [1, 2] (see the ASSL specification in
Fig.4) represents the body of a node. It can be a single action (then the node is an
atomic node), or a more complex structure where the latter is represented as an entire
behavioral model. We then model them as a SLG hierarchy, as shown in Figure 4: the
node takePicture has a corresponding submodel presented on the left.

The action’s guards, returns and outcomes [1, 2] are used for verification. We offer
two possibilities for verification:

• The GEAR’s Localchecker mechanism uses the guard to verify if an action
could be executed within the current system state (defined by the fluents and
stored in a global context).

• We can use a model checker to verify relations of nodes and actions expressed
as temporal logic [5] constraints. Internally, GEAR uses the modal µ -
calculus [11] enriched with forward and backward modalities, so it is best
equipped, for example, to express dataflow properties, or other behavioral
constraints such as temporal logic formulas.

The specified action in Fig. 4 contains a guard, which must conform to the AP
annotated at the node.

3.4 Post-Implementation Model Checker

In this approach, we rely on the Java PathFinder [12] tool to perform model checking
on the ASSL-generated Java code.

3.4.1 Java PathFinder
Java PathFinder is a post-implementation model checker tool written in Java and
targeted at Java programs [12, 13]. It can check Java programs for deadlocks,
invariants and user-defined assertions in the code. Moreover, properties expressed in
Linear Temporal Logic [14] can be checked. In general, it is claimed that Java
PathFinder is capable of checking any Java program that does not rely on native
methods. However, it is important to mention that the state-explosion problem limits
the size of the applications that can be checked effectively up to 10,000 lines of code.
Similar to any regular model checking tool, Java PathFinder performs exhaustive
testing. The difference is that it works on the real Java code instead of on a state
graph. Here, the basic technique is multiple execution of the program under
consideration to check all the possible executions for paths that can lead to property
violations, such as deadlocks or unhandled exceptions. If an error is found, Java
PathFinder reports the execution path that leads to it. Note that every execution step is
recorded, so we can trace the execution path that gets to property violation.

Fig. 5 depicts the operational model of Java PathFinder. As depicted, different
components (tools) work by accompanying the execution of the compiled Java
program (in Java bytecode), e.g., an ASSL-generated AS compiled to Java bytecode

 Developing Model-Checking Mechanisms for ASSL 29

with a regular Java Compiler. As shown in Fig. 5, special configurable search
strategies are provided to solve the problem of state explosion. Because for large
(more than 10,000 lines of code) applications the whole state space cannot be
searched effectively, these search strategies are used to direct the search.

In addition, different state-reduction techniques can help to reduce the number of
states that have to be stored:

• Special heuristic choice generators are provided to set possible choices where
a certain state does not have to be complete. These generators have the form
of Java PathFinder APIs that can be embedded in the tested applications.

• A special library abstraction per state reduces the overhead coming from
tracking the run-time data changes taking place in the checked Java
application. Note that all the heap, stack, and thread changes are stored by
default. This can cause a big overhead if abstraction is not provided.

Fig. 5. Java PathFinder operational model (elaborated from [12])

3.4.2 Embedding Java PathFinder in ASSL
In general, Java PathFinder provides capabilities for non-deterministic testing via
random input data generators [12] that can be embedded in the tested Java
application. Special APIs are provided, which can significantly ease the creation of
test drivers. Hence, the ASSL framework can automatically generate such test drivers
based on the Java PathFinder API. ASSL could generate these special test drives as
non-deterministic choices implemented in the generated code. Here, to simulate non-
deterministic testing we rely on two Java PathFinder capabilities – backtracking and
state matching.

With backtracking, we use the Java PathFinder tool to restore previous execution
states, which helps to determine whether there are unexplored choices left. Therefore,
if an end state is reached, backward steps can be performed to find execution paths
that are still not executed, and thus, the program does not have to be re-executed from
the very beginning.

With state matching, the Java PathFinder checks whether a specific execution path
has already been explored any time when an ASSL-generated non-deterministic
choice is reached. In such a case, model checking does not continue along the current
execution path, but does backtracking to reach the nearest non-explored path that

30 E. Vassev and M. Hinchey

starts from the nearest non-deterministic choice. For example, the following run()
method could be generated by the ASSL framework for an autonomic element.

public class AE_WORKER {
 ...
 public void run () {
 boolean cond = Verify.getBoolean();
 if (cond) { ... }
 else { ... }
 }
 ...
}

Note that autonomic elements are generated by ASSL as Java Threads [1, 2]. Here,
a non-deterministic PathFinder choice point will be generated (see cond =

Verify.getBoolean) to test two different paths of execution of the autonomic
element.Both backtracking and state matching techniques will be used to trace the
two possible execution path – when cond = true and when cond = false.

4 Case Study: Checking Liveness Properties with ASSL

This section demonstrates how the ASSL built-in model-checking mechanism can
perform formal verification to check liveness properties of an AS specified and
generated with ASSL. Our example is the ASSL specification model for the NASA
Voyager Mission [10]. In this case study, we specified the Voyager II spacecraft and
the antennas on Earth as AEs (autonomic elements) that follow their encoded
autonomic behavior to process space pictures, and communicate those via predefined
ASSL messages. In this section, we use a sample from this specification to
demonstrate how a liveness property such as ”a picture taken by the Voyager
spacecraft will eventually result in sending a message to antennas on Earth” can be
checked with the ASSL model-checking mechanism. Note that the ASSL
specification model for the NASA Voyager Mission is relatively large (over 1000
lines of specification code). Thus, we do not present the entire specification but a
specification sample. For more details on that specification, please refer to [10].

Fig. 6. The IMAGE_PROCESSING policy

 Developing Model-Checking Mechanisms for ASSL 31

Fig. 6 presents a partial ASSL specification of the IMAGE_PROCESSING self-
management policy of the Voyager AE. Here the pictureTaken event will be prompted
when a picture has been taken. This event initiates the inProcessingPicturePixels fluent. The
same fluent is mapped to a processPicture action, which will be executed once the fluent
gets initiated. As it is specified, the processPicture action prompts the execution of the
sendBeginSessionMsgs communication function (see Fig. 6), which puts a special message
x on a special communication channel [10] (message x is sent over that channel).
Note that the specification of both the pictureTaken event and the sendBeginSessionMsgs
function is not presented here. As we have already mentioned in Section 3.2, the
ASSL model-checking mechanism builds the ASG (autonomic system graph) from
the ASSL specification. Here both the declarative specification tree and the ASSL
operational semantics [1, 2] are used to derive tier states S and transition relations R,
and to associate those tier states via the ASSL transition operations Op. Next the
labeling function L(s) (integrated in the model-checking mechanism) labels each tier
state s with appropriate atomic propositions AP.

Fig. 7 presents a partial ASSL ASG of the sub-tiers of the Voyager AE. These sub-
tiers are derived from the declarative specification tree constructed for the Voyager
AE. Note that this ASG is a result of our analytical approach and for reasons of clarity
it is simplified, i.e., not all the possible tier states are presented here.

Fig. 7. State machines of the Voyager AE sub-tiers

As shown, each sub-tier instance forms a distinct state machine (basic machine)
within the AE state machine and the AE state machine is a Cartesian product of the
state machines of its sub-tiers. It is important to mention that by taking the Cartesian
product of a set of basic sub-tier machines, we form a product machine consisting of
product states. The latter are tuples of concurrent basic sub-tier states. Moreover, in
the AE product machine, the ASSL state-transition operations Op are considered
product transitions that move from one product state to another. Note that the states in
the state machine of the whole AS product machine can be obtained by the Cartesian
product of all the AE product machines. Thus, by considering the sub-tier state
machines we construct the Voyager AE product machine (see Fig. 8). Note that this is
again a simplified model where not all the possible product states are shown.

32 E. Vassev and M. Hinchey

Fig. 8 presents the AE product states as large circles embedding the sub-tier states
(depicted as smaller circles). Here we use the following aliases: e states for Event
state machine; f states for Fluent state machine; a states for Action state machine; y
states for Communication Function state machine; x states for Message state
machine. Moreover, white circles present ”idle” state and gray circles present the
corresponding ”active” state of the sub-tier state machine under consideration (such
as: prompted for events, initiated for fluents, etc.; see Fig. 7).

Fig. 8. Voyager AE product machine

Therefore, the formal presentation (S; Op; R; S0; AP; L) (see Section 4.1) of the
Voyager AE ASG is:

• S = {S1; S2; S3; S4; S5; S6; S7}
• Op = {Event; FluentIn; EventOver; ActionMap; Function; MsgSent}
• R = {(S1;S2;Event); (S2;S3;FluentIn); (S3;S4;EventOver);

(S4;S5;ActionMap); (S5;S6;Function); (S6;S7;MsgSent)}
• S0 = S1 (initial state)
• AP = { event pictureTaken occurs, event pictureTaken terminates, action

processPicture starts, fluent inProcessingPicturePixels initiates,
function sendBeginSessionMsgs starts, sends message x }

• L(S):

o L(S1) = { event pictureTaken occurs };
o L(S2) = { fluent inProcessingPicturePixels initiates };
o L(S3) = { event pictureTaken terminates };
o L(S4) = { action processPicture starts };
o L(S5) = { function sendBeginSessionMsgs starts };
o L(S6) = { sends message x };

Moreover, we consider the following correctness properties applicable to our case:

• If an event occurs eventually a fluent initiates.
• If an event occurs next eventually it terminates.
• If a fluent initiates next actions start.
• If an action starts eventually a function starts.
• If a function starts eventually it sends a message.

The ASSL model-checking mechanism uses the correctness property formulae to
check if these are held over product states considering the atomic propositions AP
true for every state. Thus, the ASSL framework is able to trace the state path shown in
Fig. 6 and to validate the liveness property stated above. Note that in this example, we
intentionally presented a limited set of atomic propositions AP and correctness

 Developing Model-Checking Mechanisms for ASSL 33

properties. The former are derivable, that is, deduced from the operational evaluation
of the ASSL specification. Moreover, the Voyager AE product machine presents only
product states relevant to our case study.

5 Conclusion and Future Work

We have presented our experience to-date in developing model-checking software
verification mechanisms for the ASSL framework. Currently ASSL supports a family
of software-verification framework tools (implemented or still under implementation)
including a consistency checker, a built-in model checker, an ASSL-to-SLG
specification mapper to support external model checking with the GEAR model
checker and an integration of the Java PathFinder model checker to support post-
implementation model checking. Currently, the ASSL consistency checker is the only
fully implemented tool. It automatically checks ASSL specifications for consistency
errors and some design flaws. The latter are verified against special consistency rules
implemented as semantic definitions.

The other model mechanisms for ASSL require different implementation
approaches. For example, to implement the built-in model checker, we developed
program structures and algorithms that help an ASSL specification be transformed
into a state-transition graph composed of special tier states with associated atomic
propositions and transition relations connecting those states. We are currently
developing a model-checking engine that works on the state transition graph. In
addition, possible solutions to the so-called state-explosion problem are considered.

Our plans for future work are mainly concerned with further development of the
model checker and test-case generator tools for ASSL. Moreover, in addition to the
model-checking mechanisms, we are currently working on a special test-case
generator, which aims at automatic generation of test suites for self-management
policies. A test case is generated with a policy-execution path and test attributes that
come in the form of inputs and special replacement ASSL constructs ensuring the
execution of a tested policy. The test attributes are determined by change-impact
analysis of the effect of a change in particular events or particular actions employed
by an execution path. It is our understanding that such a testing mechanism will have
a great impact on the development of prototype models for current and future space-
exploration missions. Properly tested prototypes, eventually, will lead to the
construction of more reliable spacecraft systems. Note that traditional methods, such
as analyzing each requirement and developing test cases to verify the correctness of
ASSL-implemented ASs, are not effective, because they require complete
understanding of the overall complex system’s self-management behavior.

Acknowledgment. This work was supported in part by Science Foundation Ireland
grant 03/CE2/I303_1 to Lero—the Irish Software Engineering Research Centre.

References

1. Vassev, E.: Towards a Framework for Specification and Code Generation of Autonomic
Systems. PhD Thesis, Computer Science and Software Engineering Department,
Concordia University, Quebec, Canada (2008)

34 E. Vassev and M. Hinchey

2. Vassev, E.: ASSL: Autonomic System Specification Language - A Framework for
Specification and Code Generation of Autonomic Systems. LAP Lambert Academic
Publishing (2009)

3. Murch, R.: Autonomic Computing: On Demand Series. IBM Press (2004)
4. Vassev, E., Hinchey, M., Quigley, A.: Model Checking for Autonomic Systems Specified

with ASSL. In: Proceedings of the First NASA Formal Methods Symposium (NFM 2009),
NASA, pp. 16–25 (2009)

5. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (1999)
6. Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual. Addison-

Wesley, Boston (2003)
7. Bakera, M., Renner, C.: GEAR - Game-based, Easy and Reverse Model Checking (2008),

http://jabc.cs.tu-dortmund.de/modelchecking/
8. Bakera, M., Wagner, C., Margaria, T., Vassev, E., Hinchey, M., Steffen, B.: Component-

oriented Behavior Extraction for Autonomic System Design. In: Proceedings of the First
NASA Formal Methods Symposium (NFM 2009), NASA, pp. 66–75 (2009)

9. Nagel, R.: jABC, http://www.jabc.de
10. Vassev, E., Hinchey, M.: Modeling the Image-processing Behavior of the NASA Voyager

Mission with ASSL. In: Proceedings of the Third IEEE International Conference on Space
Mission Challenges for Information Technology (SMC-IT 2009), pp. 246–253. IEEE
Computer Society, Los Alamitos (2009)

11. Kozen, D.: Results on the propositional μ-calculus. In: Nielsen, M., Schmidt, E.M. (eds.)
ICALP 1982. LNCS, vol. 140, pp. 348–359. Springer, Heidelberg (1982)

12. Java PathFinder, http://javapathfinder.sourceforge.net/
13. Visser, W., Havelund, K., Brat, G., Park, S.-J.: Model Checking Programs. In:

Proceedings of the 15th IEEE International Conference on Automated Software
Engineering (ASE 2000). IEEE Computer Society, Los Alamitos (2000)

14. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge (2008)

G. Barthe, A. Pardo, and G. Schneider (Eds.): SEFM 2011, LNCS 7041, pp. 35–37, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Models and Communication in the Policy Process

Matteo Pedercini

Millennium Institute
Washington D.C., U.S.A.

mp@millennium-institute.org

Policy-making is a complex process that involves a variety of actors. Several
difficulties of various nature intervene in such process, making the identification and
implementation of successful policies especially difficult. The usefulness of models in
addressing technical obstacles related to the incorrect understanding of the issues and
inferring of policy impacts have been broadly investigated [1,2]. Beyond facilitating
technical aspects of the policy process, models can also facilitate communication
among actors involved in such process.

From a high level perspective, the fundamental categories of actors involved in the
policy process include: the broad public (holding a set of issues); politicians (elected
to solve such issues); researchers (producing relevant knowledge and tools); and
planners (applying such knowledge and tool to define policy options). When
communication among actors does not work, the process should not be expected to
identify the best solutions to the issues at stake. In such case one could expect, at best,
some “Muddling Through” [3]: policy problems are never solved comprehensively
and thus policy solutions advance toward better states by an ongoing process of
iteration. At worst, the implemented policies can lead to undesired results [4]. Correct
communication among actors is therefore essential for effective policy-making, and
modeling constitute a fundamental connecting mechanism in the process.

One of the reasons of the difficulty in communication among actors has to do with
the fact that different actors have different mental models, i.e. different informal
theories, about present issues. In the words of Meadows, “Even in the modern age of
science and industrialization social policy decisions are based on incompletely-
communicated mental models” [5]. The use of formal modeling methods can help
addressing this problem, potentially providing a solid, shared platform for discussion
and policy analysis [1]. Specifically, models can be useful in facilitating transfer of
key information about: (1) the identification of the key issues, by facilitating input
from multiple stake-holders; (2) their causes, by illustrating underlying causal
mechanisms; and (3) the possible policies to address them, by producing results in
friendly formats.

In summary, models can help moving from a “Muddling Through” type of process,
towards Saeed calls “Effective Policy Design” [6]. Nevertheless, to fully exploit their
potential, modeling tools are to fulfill specific characteristics, most importantly a high
degree of transparency [7, 8, 9, 10]. With the broad term “transparency” we consider
here the following four characteristics: (1) based on clear assumptions; (2) broadly
accessible; (3) user friendly; (4) produce clear and readily understandable outcomes.

36 M. Pedercini

Beyond model transparency, the characteristics of the modeling process are also
fundamental for models to facilitate communication among actors in the policy
process. Specifically, open modeling processes such as Group Model Building
(GMB) can effectively increase understanding and confidence of model users and
stakeholders in the results produced [11, 12, 13, 14]. Relevant aspects of such
modeling approaches when applied to public policy-making include: (1) involving
stake holders in definition of key issues; (2) involving experts in definition of key
assumptions; (3) understanding how results will be used in the policy process; (4) and
considering implications for policy-makers when formulating policy scenarios.

Based on the principles of transparency and GMB illustrated above, the
Millennium Institute has, over the last two decades, developed a variety of modeling
tools to support national development planning. Two cases illustrate especially well
the application of such principles in different settings. A first such case is the Multy-
Entity Gaming (MEG) tool developed in the early 2000's to facilitate regional policy
discussion among the recently independent Balkan countries. MEG included a
simulator enabling country representatives to introduce simultaneously their policy
choices, and observe their impacts for each country and for the region as a whole. The
relevance of the issues being addressed for the future of the region called for an
effective way of communicating to the broad public results from the various
scenarios. The characteristic of the modeling method used (System Dynamics) made
it possible to trace results over time for key indicators, explain their relationship, and
produce effective graphs and tables. Such results were then transformed into articles
for a virtual newspaper (dated October 2015), illustrating what the future might look
like depending on the different policy choices implemented. Such use of model results
proven useful to facilitate communication among policy-makers and the broad public,
laying the foundations for a successful policy-process.

A second case of application designed to facilitate communication among policy
actors is the Bergen Learning Environment for National Development (BLEND),
jointly developed with the University of Bergen. The first version of BLEND (as
several versions have followed [15]) was designed to involve policy-makers (playing
the role of different ministers) in simultaneous decision-making for a virtual country.
The tool illustrates how decisions implemented by a given minister (say of education)
affect performance of other ministers (say of health, infrastructure...) and thus the
importance of communication among policy-makers. Allowing for different degrees
of communication in different simulation sessions, policy-makers could appreciate
how policy coordination and agreement on a shared development plan is essential for
an effective policy process.

In summary, the usefulness of a modeling tool for actual policy analysis is strictly
related to the possibility for policy makers to understand and use its results; and to the
ability of involving the relevant actors of the policy process in the modeling. The
transparency of the modeling tool and the opennes of the modeling process are
therefore essential aspects for successful model-based policy analysis. The
millennium Institute has, over the years, developed a vairety of applications following
such principles, in order to support effective policy-making. Better software and
better knowledge about the policy process are being continuously produced, faciliting
further progress towards a type of modeling that is aware and sensitive to
communication issues, and thus more useful to support policy-making. Despite

 Models and Communication in the Policy Process 37

computer modeling is a highly technical discipline, it is fundamental that such soft
aspects are properly considered: as Meadows puts it “The main problem is learning to
communicate from each world to the other: we are not talking about a tool, we are
talking about a subtle process of human communication” [5].

References

1. Sterman, J.D.: Business Dynamics: Systems Thinking and Modelling for a Complex
World. McGraw-Hill Higher Education, New York (2000)

2. Tversky, A., Kahneman, D.: Judgment under uncertainty: Heuristics and biases. Science,
New Series 185(4157), 1124–1131 (1982)

3. Lindblom, C.E.: The Science of “Muddling Through”. Public Administration
Review 19(2), 79–88 (1959)

4. Saeed, K.: A Re-evaluation of the Effort to Alleviate Poverty and Hunger. Socio
Economic Planning Sciences 21(5), 291–304 (1987)

5. Meadows, D., Robinson, J.: The electronic oracle: computer models and social decisions.
System Dynamics Review 18(2), 271–308 (2002)

6. Saeed, K.: Development planning and policy design, a System Dynamics approach.
Ashgate, Londo (1994)

7. Senge, P., Sterman, J.D.: Systems thinking and organizational learning: Acting locally and
thinking globally in the organization of the future. European Journal of Operational
Research 59(1), 137–150 (1992)

8. Sterman, J.D.: Learning in and about complex systems. System Dynamics Review 10(2-
3), 291–330 (1994)

9. Davidsen, P.I.: Educational Features of the System Dynamics Approach to Modelling and
Learning. Journal of Structural Learning 12(4), 269–290 (1996)

10. Größler, A., Maier, F.H., et al.: Enhancing Learning Capabilities by Providing
Transparency in Business Simulators. Simulation & Gaming 31(2), 257–278 (2000)

11. Vennix, J.A.M.: Building consensus in strategic decision making: system dynamics as a
group support system. Group Decision and Negotiation 4(4), 335–355 (1995)

12. Andersen, D.F., Richardson, G.P., et al.: Group Model Building: Adding More Science to
the Craft. System Dynamics Review 13(2), 187–201 (1997)

13. Ford, D.N., Sterman, J.D.: Expert Knowledge Elicitation to Improve Formal and Mental
Models. System Dynamics Review 14(4), 309–340 (1998)

14. Fiddaman, D.: Dynamics of Climate Policy. Syst. Dyn. Rev. 23, 21–34 (2007)
15. Kopainsky, B., Pedercini, M., Davidsen, P.I., Alessi, S.M.: Blending planning and

learning for national development. Simulation & Gaming 41(5), 641–642

Distributed Implementation of Systems

with Multiparty Interactions and Priorities

Imene Ben-Hafaiedh1, Susanne Graf1, and Nejla Mazouz2

1 VERIMAG. 2, avenue de Vignate
38610 Gieres, France

2 Tunisia Polytechnic School
{benhfaie,graf,mazouz}@imag.fr

Abstract. Rich interaction models are a powerful mechanism allowing
to synchronize several entities in order to achieve some common goal and
to specify global properties in an abstract manner. In this paper we focus
on two types of interaction models, namely multiparty interactions and
priorities where priorities may be used to specify different scheduling
policies. We propose a protocol for building distributed implementation
of component-based models with multiparty interactions and priorities.
We also present a set of experiments providing a performance analysis
of the protocol.

Keywords: priorities, multiparty interaction, distributed systems.

1 Introduction

Providing a distributed implementation of component-based systems while
preserving global properties is a very challenging task [5,18], as we cannot de-
termine exactly the global state of distributed systems, but we can only approx-
imate it [11]. Interaction models in component-based systems are a means for
abstracting global properties of these systems. In this paper we focus on two
types of interaction models, namely multiparty interactions and priorities.

Multiparty interactions provide a convenient means for describing the global
behavior of a distributed system. Thus they can be later refined into efficient
low-level protocols with respect to the platform in use. A multiparty interaction
consists of a set of actions that need to be executed jointly by a number a
components.

Priorities between interactions in component-based systems are widely used
in system design as a way of defining different scheduling policies. They are
expressive enough to enforce safety properties without inducing any deadlock in
the system [13]. In fact, enforcing priorities means that when two interactions
can be fired simultaneously, the one with higher priority must be executed. Thus,
they restrict the behavior of the initial system which means that they preserve
deadlock freedom if the initial system is deadlock-free.

The main challenge in enforcing priorities in a distributed setting is that com-
ponents need to obtain a common and precise knowledge about the enabledness
of interactions so the interaction with higher priority can be executed.

G. Barthe, A. Pardo, and G. Schneider (Eds.): SEFM 2011, LNCS 7041, pp. 38–57, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Implementing Multiparty Interactions and Priorities 39

In [5], a partially distributed implementation has been proposed for component-
based systems with priorities, but where a centralized engine manages interactions
and enforce priorities. Existing distributed protocols implementing multiparty in-
teractions [1,17] do not handle priorities. In [6], we have proposed a protocol for
distributed implementation of systems with binary interactions and priorities. In
a binary interaction exactly two components are involved. Which means that it is
sufficient that each of the involved components gets information about the other
to decide the execution of an interaction. Thus, the protocol presented in [6], is
completely symmetric, which means that it does not distinguish between the two
participants of an interaction. In the case of a multiparty interactions a completely
symmetric protocol may, in the case where all partners of an n-ary interaction
initiate the protocol almost simultaneously, lead to a huge number of messages.
For this reason, most existing solutions for multi-party interactions (e.g. [17]) are
asymmetric and predefine an ”initiator” for each interaction; here we also choose
this asymmetric approach.

In this paper, we propose a protocol providing a distributed implementation
of component-based systems with multiparty interactions and priorities.

The paper is organized as follows. In Section 2, we present the basic semantics
of a distributed system with multiparty interactions and priorities. Section 3 is
dedicated to a thorough description of the protocol, and we prove its correctness
in Section 4. We discuss in Section 5 some experimental results. In Section 6, we
compare our proposal with other existing approaches.

2 Distributed System with Priorities

In this section, we present our notion of distributed systems defined by a set of
components.

Definition 1 (component). A component K is a labeled transition system
(LTS) (Q, q0, IK , δ): Q is a set of states with initial state q0 ∈ Q, IK is the label
set. δ ⊆ Q× I ×Q is a transition relation. (q, a, q′) ∈ δ is denoted q a−→ q′ and
we denote by q a−→ the fact that ∃ q′ ∈ Q such that q a−→ q′.
Definition 2 (distributed system). A distributed system DSK is defined by
a set of components K = {Ki}n

i=1. It defines an LTS (S, I, Δ) where:
– I is a set of multiparty interactions. An interaction a may belong to more

than one component and Ka = {Ki ∈ K|a ∈ IKi}.
– S is the set of global states where S0 ∈ S is the initial state. If S ∈ S, then
S = (q1, . . . , qn) where qi ∈ Qi. A local state SKi = qi is the restriction of
the global state S to the states of Ki.

– Δ ⊆ S × I × S is a transition relation.

If a transition τ ∈ Δ, τ = (S, a, S′) is fired, which means that the interaction
a is executed, then the new global state S′ is reached and we denote this by
S

a−→ S′. Δ is the least set of transitions satisfying the following rule:

a ∈ I ∀i s.t. Ki ∈ Ka, qi
a−→ q′i ∀i s.t. Ki �∈ Ka, qi = q′i

(q1, . . . , qn) a−→ (q′1, . . . , q′n)

40 I. Ben-Hafaiedh, S. Graf, and N. Mazouz

Intuitively this rule means that a distributed system DS can execute an interac-
tion in a global state S, if all components involved in this interaction can execute
it in their local state corresponding to S. This means that firing a corresponds to
synchronously firing the corresponding interactions a of the components in Ka.

Priorities. Given a set of interactions I, a priority between two interactions
specifies which one is preferred over the other when both can be executed. Pri-
orities are defined as partial orders <⊆ I × I and we write a < b means that a
has less priority than b.

Definition 3 (distributed system with priorities). A distributed system
DSK = (S, I, Δ) with a priority order <⊆ I × I is a distributed transition
system DSK< = (S, I, Δ<) where: Δ< ⊆ S × I × S is the largest transition
relation satisfying the following rule:

S
a−→ S′, �b ∈ I s.t. a < b and S b−→

S
a−→< S′

Definition 4 (locally ready, globally ready, enabled interaction). Let
DSK< be a distributed system with priorities as above. Consider a global state
S = (q1, . . . , qn) ∈ S, and an interaction a ∈ I.
– a is locally ready in the local state qi iff qi

a−→i

– a is globally ready in S iff ∀i s.t.Ki ∈ Ka, qi
a−→i

– a is enabled in S iff a is globally ready in S and no interaction with higher
priority is also globally ready in S.

Definition 5 (global and local priorities). Consider a system DSK< =
(K,S, I, Δ<). A priority rule a < b is called local if the interactions a and b
have a common component, i.e., Ka ∩ Kb �= ∅. Otherwise, we call this priority
rule global.

We can now define the usual notions of concurrency and conflict of interactions,
where in a distributed setting we want to allow the independent execution of
concurrent interactions (so as to avoid global sequencing). We distinguish ex-
plicitly between the usual notion of conflict which we call structural conflict,
and a conflict due to priorities.

Definition 6 (concurrent interactions, conflicting interactions). Let a, b
be interactions of I and S ∈ S a global state in which a and b are globally ready.

– a and b are called concurrent in S iff Ka∩Kb = ∅. That is, when a is executed
then b is still globally ready afterward, and vice versa, and if executed, both
interleavings lead to the same global state.

– a and b are called in structural conflict in S iff they are not concurrent in
S, that is a and b are alternatives disabling each other.

– a and b are in (purely) prioritized conflict in S iff a and b are concurrent in
S but a < b or b < a holds.

Implementing Multiparty Interactions and Priorities 41

Note that in case of prioritized conflict, it is known which interaction cannot be
executed, whereas in case of structural conflict, the situation is symmetric. We
use the notations ConcurrentS(a), ConflictS(a), PrioConflictS(a) to denote the
set of interactions that in state q are concurrent with a, respectively in structural
or prioritized conflict with a.

In distributed systems [9,8] the detection of some situations is important for
designing correct protocols. Confusion is such a situation occurring when con-
currency and conflict are mixed. More precisely, confusion arises in a state where
two interactions a1 and a2 may fire concurrently, but firing one modifies the set
of interactions in conflict with the other (see Definition 7). In presence of pri-
orities, confusion situations may compromise the correctness of a distributed
implementation of a specification.

Definition 7 (confusion). Let a and b be interactions, and S a global state
of DS<. We suppose that a and b are concurrent — and thus globally ready —
in S.
– a is in structural confusion with b iff ∃S′ ∈ S, S b−→ S′ implies

ConflictS(a) �= ConflictS′(a)
– a is in prioritized confusion with b iff ∃S′ ∈ S, S b−→ S′ implies

PrioConflictS(a) �= PrioConflictS′(a)

In Section 3, we propose a distributed implementation of systems DS< in which
concurrent interactions are executed independently, based on the notion of con-
currency of Definition 6 and our implementation does not support systems DS<

with prioritized confusion situations. To realize a distributed implementation of
DSK< we use a distributed controller obtained by a set of local controllers ex-
changing messages with each other. By a local controller of a component K we
understand a component that may allow or disallow interactions b of K. b is
allowed by offering an interaction synchronizing with b and b is forbidden by not
offering it.

Definition 8 (distributed controller). A finite set of local controllers for a
distributed system DSK, is a set of labeled transition systems {LCKi}n

i=1 each
associated to one component Ki of DS. LCKi restricts the behavior of Ki. In
a state qi ∈ Qi of Ki, LCKi decides which interaction to execute together with
other local controllers, and synchronizes with Ki on this interaction. The set
of local controllers {LCKi}n

i=1 communicate amongst each others, by message
passing, to decide which interaction to execute (see Figure 1).

This definition of controller ensures a part of a safety property stating that only
interactions specified by the local behavior of components can be executed as
each local controller and its corresponding controlled component synchronize on
the interaction a chosen to be executed. Moreover all components in Ka must
also synchronize and execute a and this is what we will prove in Section 4. Thus
interactions not specified by DS< cannot be executed.

The behavior of a given local controller is described by the protocol proposed
in Section 3, where we describe how local controllers communicate using messages
exchange to schedule an interaction for execution.

42 I. Ben-Hafaiedh, S. Graf, and N. Mazouz

K1 K2 Kn

Communication : Message Passing

System
Level

LCK1 LCK2 LCKn
Implementation

Level

Controls

Multiparty

Interactions

Fig. 1. Local Controllers and their Controlled Components

3 Protocol Description

In this section, we provide an overall picture of the distributed controller that
is a protocol describing the global behavior of the set of local controllers. The
behavior of the controller LCK depends in each state q of K on the set of
interactions locally ready in this state. LCK exchanges messages with other local
controllers of to decide when and which interaction to fire. Once an interaction
a is chosen, LCK synchronizes with K, and thus implicitly also with all other
components involved in a to execute it.

In the following, we refer toK instead of LCK whenever this is not misleading.
To decide when and which interaction to fire, local controllers communicate

using message passing. We assume that the message passing mechanism, used by
the controllers, ensures the following basic properties: (1) any message is received
at the destination within a finite delay; (2) messages sent are received in the
order in which they have been sent; (3) there is no duplication nor spontaneous
creation of messages.

Table 1. Messages used by the Protocol

Message Description

POSSIBLE(a) If a is locally ready, the controller uses this message
to inform the negotiator of a.

NOTPOSSIBLE(a) Respond a negotiator that a is not locally ready.
COMMIT(a) Message sent by the negotiator of a to its peers to lock them

or sent back by a peer to respond the negotiator.
READY (a) Sent by a negotiator to ask about the global readiness of a.
NOTREADY (a) Sent by a negotiator to inform that a is not globally ready.
START (a) Message sent by the negotiator to all the peers of a to

order the execution of a.
REFUSE (a) Sent by a controller to inform that it cannot commit to a.

Implementing Multiparty Interactions and Priorities 43

The behavior of each local controller LCK is given by a labeled transition
system (see Figure 2) where the states of this LTS represent the different phases
of the protocol. Transitions represent reactions to messages received by peer
components which may consist in a local phase change and/or transmission of
messages to some (other) peers. Thus, every transition of Figure 2 is specified by
a message received, a guard and an action (see Table 3). Here message denotes
the message that triggers a transition if the guard holds. If there is no message,
the transition depends only on its guard. The role of each message is described
in Table 1 where we use expressions of the form MESSAGE(interaction, sender)
to denote the message triggering a given transition. The action of a transition
denotes the list of statements to be executed if the transition occurs and may
include message sending expressions of the form Send(message, recipient).

Some parts of the behavior of LCK can be performed independently, thus we
choose to describe it as a set of labeled transitions systems running in parallel
and called activities (see Figure 3). These activities share the set of variables
depicted in Table 2 and treat a set of disjoint messages. The transitions of Table 3
are performed by these activities where actions of the transitions may describe
variable assignments, message sending or creating and killing new activities.

For each interaction of the to be controlled system DSK< , we associate the
role of negotiator to a local controller of one of the components involved in this
interaction. Thus, a local controller may be the negotiator of a set of interac-
tions in which its involved and each interaction has exactly one negotiator. The
choice of negotiators of interactions and how it may affect the performance of
the protocol is discussed in Section 5.1. This particular role of negotiator corre-
sponds to the notion of coordinator defined in [17] and to the notion of manager
presented in [3,2]. Note that comparing to the protocol for binary interactions,
presented in [6], here negotiators are assigned to all interactions and not only
to interactions involved in some priority rule as is the case in [6]. The reason is
that in addition to the role of checking the enabledness of an interaction, the
negotiator here checks also its global readiness. Thus, a controller presents a two
phase behavior. A first phase is collecting knowledge about the global readiness
of possible interactions and a second negotiating the enabledness of ready inter-
actions. The phase Active is first entered by the transition 0, providing the set of
interactions locally ready (possibleSet(q0)) of the initial state of the controlled
component. The controller LCK looks for a next interaction to fire by proceeding
as follows:

� Once in phase Active, the activities Main and WaitingForCommit are cre-
ated and run in parallel. Main starts by checking its locally ready interactions
(possibleSet) for interactions that are globally ready and for which it is the ne-
gotiator. For interactions in possibleSet for which LCK is not the negotiator,
it only informs their corresponding negotiators about the local readiness of the
interaction.

To check the global readiness of an interaction a, messages of the form
POSSIBLE (a) are exchanged (Transition 1 of Figure 2), and peers in which

44 I. Ben-Hafaiedh, S. Graf, and N. Mazouz

10 9

8

1 3

2

4

4

6

7 5

57

11

12

0

Negotiating

Active Waiting

Committing

Fig. 2. The Phases of the Local Controller behavior (see Table 3 for the transitions)

a is currently not locally enabled respond with NOTPOSSIBLE(a) after which
the requesting controller abandons a.

If LCK is the negotiator of a (a ∈ toNegotiate) and if it collects POSSIBLE (a)
from all the participants of a, then a is detected to be globally ready. If, in addi-
tion, a is involved in a priority rule, Main creates a new activity Negotiate(a)
which checks whether a is enabled and the LCK goes to phase Negotiating
through transition 4.
� Negotiate(a) activity checks the enabledness of an interaction a by sending a
READY (b) message to all negotiators of interactions b with higher priority than
a (b ∈ higherPrio(a)), it checks whether their interactions are globally ready
(and thus a cannot be executed now).

In turn the negotiators of b, as soon as they are not executing an interaction
and have found out whether b is globally ready, respond positively or nega-
tively as soon as they have the information available. In fact, it is sufficient that
NOTREADY (b) messages are sent as a is blocked anyway as long as it does
not have a response concerning b.
� If an interaction with maximal priority is globally ready, it is immediately
known to be enabled and a Committing phase is entered through transitions 5
or 6 by killing activities Main, WaitingForCommit and Negotiate and creat-
ing TryToStart (see further down).
� The Main activity, which is running while LCK is in the phases Active,
Negotiating and Waiting, handles local priorities locally. Whenever an interac-
tion b is known to be globally ready, it kills all activities Negotiate(a) if a < b.
� Concurrently to Main, the activity WaitingForCommit handles incoming
COMMIT messages. Whenever a COMMIT (a) is received from the negotiator
of a, which means that a is checked to be enabled by the negotiator of a. All
other negotiation activities are terminated and a TryToStart activity is created
(Transition 7). The existence of the activity WaitingForCommit means that
no other actions is in its Committing phase yet.

Implementing Multiparty Interactions and Priorities 45

� To avoid multiple commits for different interactions, COMMIT message is only
sent by TryToStart activity as it is created when all other activities terminate.
� If LCK is the negotiator of a, then TryToStart(a) sends a COMMIT (a) mes-
sage to all participants of a and waits for a COMMIT response from all of them.
Once, all participants send back a COMMIT , the negotiator orders the execution
of a by sending a START message and it executes a together with the controlled
component. Note that if TryToStart fails committing to a because it receives
a REFUSE message from at least one of the participants — in that case the
peer has committed to a conflicting interaction — the controller starts again by
checking the global readiness of its locally ready interactions (transition 8).
� If LCK is not the negotiator of a, then TryToStart(a) sends a COMMIT (a)
message to the negotiator of a and waits for a START or a REFUSE . If it
receives START , the controller executes a together with the controlled com-
ponent which corresponds to the transition 12 of Table 3. If a REFUSE mes-
sage is received, then activity TryToStart(a) terminates and new Main and
WaitingForCommit activities are created.
� Finally, an activity AnswerNegotiators (not represented in Figure 3) is always
running in all states of the state diagram of Figure 2, if LCK is the negotiator for
at least one interaction a that dominates some other interaction. This activity
receives messages of the form READY (a). It returns NOTREADY (a) if a is
in the notReadySet, returns READY (a) if a is in the readySet, and otherwise
defers the answer until the status of a is known.

COMMIT
NOTREADY

READY

REFUSE

NOTPOSSIBLE
POSSIBLE

Main
Negotiate Negotiate

WaitingForCommit

All Messages

TryToStart(a)

Fig. 3. Structure of the Protocol for a Local Controller

Avoiding Deadlocks Due to Decision Cycles

The protocol as described above may lead to a deadlock or a livelock in a situ-
ation where a set of components are all ready to execute at least 2 from a set
of conflicting enabled interactions. Such a situation may occur in Committing

46 I. Ben-Hafaiedh, S. Graf, and N. Mazouz

Table 2. Variables used by the Protocol

Variable Description

possibleSet(q) The set of interactions locally ready in q.
readySet The set of interactions detected to be globally ready.
notReadySet The set of interactions which are locally ready

but detected to be not globally ready.
toNegotiate The set of interactions for which the local controller is

the negotiator.
lessPrio(a) Interactions locally ready with less priority than a
higherPrio(a) Interactions locally ready with higher priority than a.
Peers(a) The set of participants in the interaction a.
Neg(a) The negotiator of the interaction a.
ReadyPeers(a) The set of participants in a for which a is locally ready.

phase of the protocol, where a negotiator has sent a COMMIT message to
all participants and waits for their response. Similarly one of these participants
could be a negotiator of a different interaction and being in a Committing phase.
This may lead to a deadlock if the set of interactions for which the negotiators
are committing forms what we call a cycle.

Definition 9. A cycle is a set of interactions A = {ai}n
i=1 involving a set of

components {Ki}n
i=1 for which the following holds: For all i ∈ [1, n], ai is an

interaction involving the two components Ki and K{i+1modn} and there exists at
least one global state in which all these interactions are enabled. We denote the
fact that A is a cycle by Cycle(A). Note that in such a global state each Ki has
at least two enabled interactions, in the corresponding local state, one interaction
with Ki−1 and the other with Ki+1.

To avoid deadlocks due to such cycles, we use a solution that we have already
proposed for the binary version of our protocol described in [6]. The idea is to
detect statically the set of potential cycles of the system. Then, we define for each
cycle statically one of the components involved as a Cyclebreaker. Whenever a
potential deadlock may be reached (from the point of view of the Cyclebreaker),
the Cyclebreaker will commit to one of the interactions and refuse the other. This
approach avoids defining a total order over all interactions or components, as
proposed in [1,17], which may lead to systematically avoiding certain interactions
and which may compromise liveness. Our solution is more faithful to the initial
description of the system as it does not exclude any interactions unless an actual
cycle occurs. Thus to avoid deadlocks due to cycles, if a given controller sends a
COMMIT message and then it receives another COMMIT message for a different
interaction, then either there is no cycle involving these two interactions or
there exists at least one. In the second case, if the received COMMIT concerns
the interaction committed by a Cyclebreaker, then the controller cannot send
back a REFUSE and thus if this interaction is not the one committed by the

Implementing Multiparty Interactions and Priorities 47

Cyclebreaker, the controller will send back a REFUSE which breaks the cycle.
To perform this solution locally, we define pairs of interactions representing the
local view of LCK about a given cycle.

Notation 1. We denote by cyclesof(K), the set of pairs of interactions of K
involved in some cycle. (a, b) ∈ cyclesof(K) implies that a and b are interactions
of K and ∃ A such that Cycle(A) ∧ {a, b} ⊆ A.
We denote by Cyclebreaker(A,K) the predicate which holds if the component K
is the Cyclebreaker of a cycle A.
We denote also by notRefuse(K) the set of pairs of interactions of the form
(a, b) such that (a, b) ∈ notRefuse(K) implies:
1. (a, b) ∈ cyclesof(K)
2. ∀ cycles A such that {a, b} ⊆ A, Cyclebreaker(A,Ka) holds, where Ka

is a participant in the interaction a. This means that whenever K sends
COMMIT (b) message, and then it receives COMMIT (a), it will not send
back REFUSE (a).

Note that the order of interactions of a pair in notRefuse(K) is relevant as
the first interaction is the one that cannot be refused by K. Note that a pair of
interactions (a, b) �∈ notRefuse(K) means that either there is no cycles involving
these two interactions ((a, b) �∈ cyclesof(K)) or that there exist such cycles
((a, b) ∈ cyclesof(K)) but if K commit for b and receives a COMMIT message
for a then it can send back a REFUSE (a) to its peer Ka because the latter is
not the Cyclebreaker of these cycles. Theorem 3 proves that this way to deal
with cycles allows indeed to avoid deadlocks.

4 Correctness

We now prove that the proposed protocol satisfies the following properties [2]:
– Correctness: Only interactions allowed by DSK< can be executed:

1. only locally ready interactions can be executed.
2. if a component executes an interaction, the remaining components par-

ticipating in that interaction will execute it (Synchronization).
3. interactions in conflict (structural or prioritized conflict) cannot be com-

mitted simultaneously (Safety).
– Progress: when an interaction is enabled it will eventually be executed or

one of its participants executes a conflicting interaction.

The first item of the correctness property is guaranteed by Definition 8, as each
local controller and its corresponding controlled component synchronize on the
interaction chosen to be executed. Thus only interactions which are locally ready
for components can be executed.

Theorem 1 (Synchronization). Our protocol guarantees that if a partici-
pant executes interaction b, then all of the components participating in b will
execute it.

48 I. Ben-Hafaiedh, S. Graf, and N. Mazouz

Table 3. Transitions of the Local Controller State Diagram

Tr message guard action

0
possibleSet(q0) �= ∅, q0: initial state
of K

Create(Main),
Create(WaitingForCommit)

1 possibleSet �= ∅

∀a ∈(possibleSet∩toNegotiate),
send(POSSIBLE(a),Neg(a))
∀a ∈(possibleSet\toNegotiate),
send(POSSIBLE(a), Peers(a))

2 POSSIBLE(a) (a ∈possibleSet\toNegotiate) send(POSSIBLE(a),Neg(a))

2 NOTPOSSIBLE(a) (a ∈possibleSet∩toNegotiate) notReadySet:= notReadySet ∪ a

3 POSSIBLE(a, K)
(a ∈possibleSet∩toNegotiate)
∧(Peers(a) �=readyPeers(a)∪K)

readyPeers(a):= readyPeers(a)∪K

4 POSSIBLE(a, K)
(a ∈possibleSet∩toNegotiate)
∧(Peers(a)==readyPeers(a)∪K)
∧ a �∈ prioFree

create(Negotiate(a)),
readySet:=readySet∪a,
(∀ b ∈lessPrio(a),kill(Negotiate(b))

5 POSSIBLE(a, K)
(a ∈possibleSet∩toNegotiate)
∧(Peers(a)==readyPeers(a)∪K)
∧ a ∈ prioFree

Kill(WaitingForCommit),
Kill(Main),
Send(COMMIT(a),Peers(a))

6 Negotiate(a)==OK
Kill(WaitingForCommit)
Kill(Main),
Send(COMMIT(a),Peers(a))

7 COMMIT(a) (a ∈possibleSet\toNegotiate)
Kill(WaitingForCommit)
Kill(Main),
Send(COMMIT(a),Neg(a)

8 REFUSE(a) Committed(a)
Goto(Active),Reset(readySet),
Keep(possibleSet), Create(Main),
Create(WaitingForCommit).

9 COMMIT(b)
Committed(a),(a �= b)
(a, b) �∈ cyclesof(K) or
(a, b) ∈ notRefuse(K)

waitingSet:=waitingSet∪{b}

10 COMMIT(b)
Committed(a),(a �= b)and((a, b) ∈
cyclesof(K) and
(a, b) �∈ notRefuse(K))

Send(REFUSE(b),
Peers(b))∧readySet:=readySet\{b}

11 COMMIT(a, K)
Peers(a) �= readyToCommit(a)∪K,
a ∈ possibleSet∩toNegotiate

readyToCommit(a):=
readyToCommit(a)∪K

12 COMMIT(a, K)
Peers(a)==readyToCommit(a)∪K,
a ∈ possibleSet∩toNegotiate

Send(START(a), Peers(a)) and
∀ b ∈possibleSet,
Send(REFUSE(b), Peers(b))∧
Execute(a)

12 START(a) a ∈ possibleSet\toNegotiate

∀b ∈possibleSet,b �= a,
Send(REFUSE(b),Peers(b)),
Execute(a),Update(possibleSet(q)),
Create(Main),
Create(WaitingForCommit).

Proof. What we have to prove is that if a participant Ki of the interaction b
executes it, then the rest of participants will also do so. If a component Ki

which is the negotiator of b, executes b then it must according to transition 12 of
Table 3 have received COMMIT messages from all the participants of b. Note
that COMMIT is a blocking message, which means that all participants will
stay waiting for a response from the negotiator and once they receive the START
message they will also execute b. If a component Kj which is not the negotiator

Implementing Multiparty Interactions and Priorities 49

of b, executes b then it must according to transition 12 of Table 3 have received
a START message from the negotiator Kb of b. This means that similarly, Kb

has sent a START message to all participants of b, and as previously detailed
all these participants are in a blocking state waiting for the message of the
negotiator.

Theorem 2 (Safety). Let be S a global state, b1 an interaction and denote A
the set ConflictS(b1)∪PrioConflictS(b1) of interactions that are in conflict with
b1 in the global state S. Our protocol guarantees that if b1 is fired in state S, no
interaction in A is fired in S.

Proof. Suppose for b2 ∈ A that:
First case: b2 ∈ ConflictS(b1), that is b1 and b2 share a common component K.
First of all, only interactions, for which the corresponding negotiator has sent
a START message to all participants, are executed. If the common component
participating in b1 and b2 is the negotiator of both interactions, then only one
interaction can be executed as according to transition 12 of Figure 2 a negotiator
can send START only for one interaction at a time and the property is satisfied.
If b1 and b2 have different negotiators. Suppose that both negotiators have sent a
START message to execute b1 and b2. This means that all participants involved
in b1 and b2 have sent a COMMIT message to their negotiators (according to
transition 12 of Table 3). As K is a common component, then this means that
K has sent two COMMIT messages one for the negotiator of b1 and one for
those of b2 which is impossible as only one COMMIT message can be sent at a
time. In fact, a COMMIT message can only be sent by the TryToStart activity
which does not have any other concurrent activity (see Figure3).
Second case: b2 ∈ PrioConflictS(b1), that is b1 and b2 are concurrent (and thus
belong to different components) and either b1 < b2 or b2 < b1. Suppose that Kb1

is the negotiator for b1 and Kb2 is the negotiator for b2.
If b2 < b1, then b2 should not be executed before the execution of b1 — which

has started — has been completed and Kb1 enters Active phase for the successor
state of S. We have now to prove that from that moment on Kb2 cannot “believe
that b1 is not ready” which is the condition for committing to b2.

Indeed, if Kb2 does not yet know about the readiness of b1, before committing
b2, it will send a READY (b1) message to Kb1 , but as b1 is already engaged for
execution,Kb1 will not send any response before the execution of b1 is terminated
the next state reached, and the readiness of b1 evaluated in the new state; and
Kb2 remains blocked for b2 during this time.

Now, we must prove that Kb2 cannot have old, depreciated knowledge that b1
is not ready. This can only be the case, if at some point b1 was not ready andKb1

has sent NOTREADY (b1) to Kb2 , and then transitions concurrent to b2 have
been executed leading to the current state S in which b1 is ready and executed,
and Kb2 may use incorrect knowledge and execute b2. This corresponds exactly
to a situation of confusion, which we have excluded (see Section 2). If b1 < b2,
the situation is almost symmetric.

50 I. Ben-Hafaiedh, S. Graf, and N. Mazouz

Lemma 1. If a negotiator K1 of an interaction a0 sends a COMMIT message
to a participant K2, then K1 will receive a REFUSE(a0) or a COMMIT (a0)
message from K2 within a finite delay.

Proof. We assume that the actual execution of an interaction a0 as well as all
the basic functions used in our protocol terminate and every message reaches
its recipient within a finite delay. If K1 waits for a response, after sending a
COMMIT (a0) message to K2, this means that it exists a global state S of
the system in which a0 is enabled and that K2 is in the phase Committing(a1)
(a0 �= a1) (see the diagram of Figure 2). IndeedK2 cannot be in any of the rest of
the phasesWaiting, Active or Negotiating as the activityWaitingForCommit
running in these phases (see Figure 3) will catch this COMMIT (a0) message and
will send back a COMMIT (a0) to K1. Thus, K2 does not respond because it
is trying to commit to another interaction a1 �= a. Which means that K2 is in
the phase Committing(a1) and that in the same global state S, a1 is enabled.
According to the Table 3 one of the following cases holds:
1- (a0, a1) ∈ cyclesof(K2) and (a0, a1) �∈ notRefuse(K1) (according to the
guard of transition 10 of Table 3), in this case K2 sends back a REFUSE (a0) to
K1 within a finite delay.
2- (a0, a1) �∈ cyclesof(K2) ∨ (a0, a1) ∈ notRefuse(K2), in this case K2 is also
waiting for an answer from K3 about a1. Similarly, if K3 does not answer with a
REFUSE (a1), then it exists an interaction a2 enabled in S such that (a1, a2) �∈
cyclesof(K3) ∨ (a1, a2) ∈ notRefuse(K3). As there exists a finite number n of
components in the system, this means that there exists some cycle of size k in
S for which the following holds:

(a0, a1) �∈ cyclesof(K2) ∨ (a0, a1) ∈ notRefuse(K2)
(a1, a2) �∈ cyclesof(K3) ∨ (a1, a2) ∈ notRefuse(K3)

. . .
(ak−2, ak−1) �∈ cyclesof(Kk) ∨ (ak−2, ak−1) ∈ notRefuse(Kk)

This is a contradiction. Indeed, the first part of each property means that there
is no cycle containing these interactions, which is not true as we have a circular
sequence which means a cycle. The second part does not hold as we assume that
each cycle has exactly one Cyclebreaker which may try to commit to one of the
interactions only.

Theorem 3 (Progress). Let b be an enabled interaction. Our protocol guaran-
tees that b will eventually be executed or a component participating in it executes
another interaction.

Proof. The enabledness of an interaction is first detected by the negotiator of this
interaction. An interaction b is enabled for its negotiator Kb, when COMMIT(b)
messages are sent from all the participants of b. When it is detected to be enabled
the negotiator of b goes to phase committing(b). b becomes disabled when its
negotiator leaves this state either by executing b (through transition 12 according
to Table 3) or because one of the participants of b executes another interaction

Implementing Multiparty Interactions and Priorities 51

(through transition 8 according to Table 3). In other words what we have to prove
is that the negotiator Kb of b cannot stay in this state eternally. When Kb is in
phase committing(b), then it has send COMMIT messages to all participants
of b, and according to Lemma 1, K will receive eventually a COMMIT messages
from all participants or at least one REFUSE from one of the participants and
thus will leave the phase committing(b) through transition 12 or 8.

5 Experimental Results

In this section, we report the results of experiments undertaken using an im-
plementation of our protocol. Our implementation uses JAVA 1.6 to ensure the
different algorithm computations and Message Passing Interfaces (MPIs) [15,19]
to ensure the communication layer between components. Two metrics have been
used to evaluate the performance of the protocol, namely response-time and
message-count. The metric message-count computes the average number of mes-
sages needed to schedule one interaction for execution. The response-time is
measured from the instant at which an interaction becomes locally ready (as
viewed by its negotiator) to the instant at which it is selected for execution
by the protocol. This metric is defined as the sum of two other metrics: sync-
time and selection-time: sync-time measures the (mean) time taken by the al-
gorithm to ensure that a given interaction is globally ready, starting from the
moment when it is locally ready in its negotiator. selection-time measures the
(mean) time taken by the algorithm to select an interaction for execution once
it has been found globally ready. Note that the enabledness of an interaction is
checked during the selection-time. sync-time is independent of priorities between
interactions.

5.1 Sensitivity to the Choice of Negotiators

We illustrate the sensitivity of our protocol to the choice of negotiators by means
of the well-known Dining Philosophers problem [12]. As proposed in [17], using
multiparty interactions, a simple solution to this problem can be provided as
each philosopher could pickup both two forks at a time by means of a three-
party interaction (see Figure 5). However, using only binary interactions, the
solutions to this problem must rely on some distinction amongst the behaviors
of the philosophers, which makes such solutions not scalable nor reusable [16].
This problem models any situation where any entity needs to access a set of
resources in mutual exclusion.

Using this example, we study how the choice of negotiators in a system may
affect the performance of the protocol. We have carried out a series of experi-
ments for the system of dining philosophers depicted in Figure 5 in the case of
2, 3 and 4 philosophers.

For each case, we have measured the already described metrics (message-
count, sync-time and selection-time) to execute one interaction and we have
focused on two configurations depending on the choice of the negotiators for

52 I. Ben-Hafaiedh, S. Graf, and N. Mazouz

interactions. In a first configuration, we have assigned as negotiator of the in-
teraction the component Philosopher involved in this interaction. Then, in a
second configuration we have assigned the Fork component as negotiator for in-
teractions in which it is involved. Figure 4, shows that the message-count when
the Philosophers are the negotiators is higher than the case when Forks com-
ponents are chosen as negotiators.

This is expected as the component Fork is involved in more than one inter-
action and thus it has more knowledge about the state of the participants of
these interactions. However, the component Philosopher is involved in only one
interaction and so, when it has to schedule an interaction for execution, it needs
to communicate with other components to get knowledge about their states and
thus exchanges more messages. More precisely, in the case of the system with
two Philosophers, when the component Philosopheri is the negotiator of the in-
teraction getForksi, then according to the description of the protocol provided
in Section 3, each Philosopher tries to commit for its interaction by sending to
both Forks a COMMIT message making a total of 4 COMMIT messages.
When a component Fork1, for example, is the negotiator of both interactions in
the system namely, getFork1 and getFork2, then Fork1 tries to commit to only
one interaction which means that only 2 COMMIT messages will be sent by the
negotiator. Consequently, when assigning negotiators in a system, the designer
has to take into account the number of interactions in which negotiators are
involved. Thus, the more the interactions in which a negotiator is involved, the
less it needs to exchange messages. Similarly, the response-time metric is also
affected by the choice of negotiators as it can be observed in the right-hand side
of Figure 4.

Fig. 4. Sensitivity to the choice of negotiators

Implementing Multiparty Interactions and Priorities 53

getForks2

getForks1

Philosopher1

getForks3

Fork1Fork3

Philosopher3 Fork2 Philosopher2

getForksi

getForksi+1

returnForksi

returnForksi+1

The behavior of Forki

The behavior of Philosopheri

getForksi

returnForksi

Fig. 5. The Dining Philosophers with multiparty interactions

5.2 Example with Priorities: Jukebox System

We use a Jukebox example to illustrate the use of priorities and to study how our
algorithm performs, in particular, when global priorities are defined. The system
is defined by a set of readers (R1, . . .,R4) which need to access data located on
Discs (D1,D2). Access to discs is handled by Jukebox components (J1,J2). Each
Jukebox can load any disc to one of the readers it manages. Figure 6, represents
the structure of the Jukebox system, where each load interaction corresponds to
a loadJiDiRi interaction with Ji, Di and Ri are respectively the connected Juke-
box, Disc and Reader. The Jukebox J1 manages the access of the readers R1 and
R2, and J2 the access of the readers R3 and R4. The behavior of each component
is depicted in Figure 7. The interaction loadJiDiRi is a three-party interaction
between the Jukebox Ji, The Disc Di and the Reader Ri allowing, Ji to load Di

for the reader Ri. The interaction unloadjiDi of unloading the disc is a binary
interaction as it does not involve the reader. In Figure 7, the jukebox system is
modeled without priorities. However, two types of priorities could be defined:
– Priorities to enforce termination: We give priority to load interactions over

the unload ones. Formally, it defines the following priorities: {unloadjjDi <
loadJjDiRi}j∈{1,2}. Note that this set of priorities defines local priorities
as they include interactions of a common component namely the jukebox.
Table 4, depicts the different results obtained when running the Jukebox sys-
tem and measures the time taken and the message-count for the execution of
two load interactions. Note that with priorities, the time taken to satisfy two
readers is considerably lower than for the case without priorities. However,
as introducing priorities needs more communication a main drawback is the
message-count.

54 I. Ben-Hafaiedh, S. Graf, and N. Mazouz

J1

R2R1 R3 R4

J2

D1 D2

load

load

load

load
load

load

load

load

unload unload

unload unload

Fig. 6. The Jukebox System

– Priorities to manage resource access: We define priorities between Readers
when accessing to a given Disc. We define for example the priority rule:
loadJ1D1R1 < loadJ2D1R3 which means that whenever the Readers R1 and
R3 want to load the Disc D1, the priority is given to the Reader R3. Such
a priority rule involves the Disc as a common component which can con-
sequently ensure this rule locally. However, in general, resources are repre-
sented by passive components which are not designed to manage or to make
decisions. As managing access to resources is handled by the Jukebox compo-
nent, we assign J1 and J2 as negotiators of the load interactions. Thus such
a priority will be handled as a global priority rule, as components J1 and J2
have to communicate to decide which interaction to fire. Without this prior-
ity rule, for 20 executions of load interactions, which may involve any of the
4 Readers, we obtain an average of 915 messages exchanged. However, with
loadJ1D1R1 < loadJ2D1R3, no interaction load for Reader 1 takes place and
the average of the messages exchanged is about 1050, which is expected as
global priorities are handled by the exchange of additional messages, namely
READY and NOTREADY , between the negotiators.

Table 4. Enforcing Termination using Priorities

elapsed-time (ms) message-count

Without priorities 580 65
With priorities 300 75

6 Related Work

This paper handles two important issues in the context of distributed control.
The first one concerns the enforcement of global properties, which are here

priorities between interactions, in a distributed setting which is challenging to
implement [5,11].

Implementing Multiparty Interactions and Priorities 55

Jukebox1Readeri

{loadJ1D2R1, loadJ1
D2R2, unloadJ1

D2}

loadJj
D1Ri {loadJ1D1R1, loadJ1D1R2, unloadJ1D1}

unloadJ2
Di

loadJ1
DiR2

loadJ2
DiR3loadJ1

DiR1

loadJ2
DiR4

unloadJ1
Di

Disci

loadJj
D2Ri

Fig. 7. Components of the Jukebox System

In [14,4,7], model-checking and knowledge are used to transform the system
with priorities into a new system without priorities by restricting the possible
choices in order to impose priorities. This means that they reduce concurrency
of the initial system, whereas in our approach we guarantee maximal progress,
which means that we allow all possible interactions of the initial description.

Similarly, to enforce priorities the approach proposed in [10] codes the prior-
ities in the behavior of the initial system, so as to obtain a new model without
priorities, then implements the so-obtained model in a distributed setting. Such
approach adds to the system particular components called managers associated
to each interaction which increase considerably the size of the studied system.
Moreover, this makes their implementation less flexible to any change on the set
of priorities as it means changing the system structure whenever the set of pri-
orities is changed. Whereas in our approach the implementation of the protocol
is still the same to any set of priorities.

Second, we propose a new protocol implementing multiparty interactions in
a distributed setting. In [2,1,17], similar algorithms have been proposed but no
global priorities are handled. In [3] local priorities have been defined to deal with
deadlocks due to decision cycles as each controller explores its possibleSet in
a decreasing order of priority which means that exactly one interaction, which
has the highest priority, will be always executed if it is enabled. Similarly, to
deal with such problem, the α-core algorithm proposed in [17] defines a total
order between components which also means that some interactions can never
be executed if they are in conflict with the interactions of the component with
the highest priority, which limits the variability of the executions of the initial
system. However, the solution we propose to deal with deadlocks due to decision
cycles, uses some static knowledge about the structure of the system to define
beforehand the set of potential cycles and then defines, only when needed, a
priority given to the interaction chosen by the Cyclebreaker.

The α-core algorithm defines for each interaction a particular component
called Coordinator managing the corresponding interaction and collecting infor-
mation from all its participants to decide about its execution. In our approach
the coordinator, i.e. the negotiator is one of the participant which allows to re-
duce the number of messages exchanged as the negotiator exploits already some
local knowledge.

Similarly, in [1], managers are associated to interactions. However, a given
manager is responsible for managing a subset of interactions and thus managing

56 I. Ben-Hafaiedh, S. Graf, and N. Mazouz

conflicts between managers is achieved by means of a circulating token allowing
the manager having it to execute its corresponding non-conflicting interactions.
This solution based on a circulating token may lead to a situation in which a
manager can never execute its interactions as it never gets the token at the right
moment.

7 Conclusion

In this paper, we have focused on component-based systems with multiparty
interactions and priorities. We have provided a protocol to implement such sys-
tems in a distributed setting. A variety of protocols for implementing multiparty
interactions exist in the literature, but our approach is innovative as it handles in
addition global priorities between interactions. An implementation of the pro-
posed protocol is also provided with a set of experimental results allowing to
analyze its performance. There are several research directions for future work.
First, more experimentation is needed in particular to compare the performance
of the protocol to existing approaches. Second, we are interested in combining
our approach with knowledge-based methods, as it is proposed in [4], in order to
optimize the performance of our protocol by taking into account a pre-calculated
knowledge and thus reducing communication between local controllers.

References

1. Bagrodia, R.: A distributed algorithm to implement n-party rendezvous. In: Nori,
K. (ed.) FSTTCS 1987. LNCS, vol. 287, pp. 138–152. Springer, Heidelberg (1987)

2. Bagrodia, R.: Process synchronization: Design and performance evaluation of dis-
tributed algorithms. IEEE Trans. Software Eng. 15(9), 1053–1065 (1989)

3. Bagrodia, R.: Synchronization of asynchronous processes in CSP. ACM Trans.
Program. Lang. Syst. 11(4), 585–597 (1989)

4. Basu, A., Bensalem, S., Peled, D., Sifakis, J.: Priority Scheduling of Distributed
Systems Based on Model Checking. In: Bouajjani, A., Maler, O. (eds.) CAV 2009.
LNCS, vol. 5643, pp. 79–93. Springer, Heidelberg (2009)

5. Basu, A., Bidinger, P., Bozga, M., Sifakis, J.: Distributed Semantics and Imple-
mentation for Systems with Interaction and Priority. In: Suzuki, K., Higashino, T.,
Yasumoto, K., El-Fakih, K. (eds.) FORTE 2008. LNCS, vol. 5048, pp. 116–133.
Springer, Heidelberg (2008)

6. Ben-Hafaiedh, I., Graf, S., Quinton, S.: Building distributed controllers for systems
with priorities. Journal of Logic and Algebraic Programming (2010)

7. Bensalem, S., Peled, D., Sifakis, J.: Knowledge based scheduling of distributed
systems. In: Manna, Z., Peled, D.A. (eds.) Time for Verification. LNCS, vol. 6200,
pp. 26–41. Springer, Heidelberg (2010)

8. Bolton, C.: Adding Conflict and Confusion to CSP. In: Fitzgerald, J.S., Hayes, I.J.,
Tarlecki, A. (eds.) FM 2005. LNCS, vol. 3582, pp. 205–220. Springer, Heidelberg
(2005)

9. Bolton, C.M.: Capturing Conflict and Confusion in CSP. In: Davies, J., Gibbons,
J. (eds.) IFM 2007. LNCS, vol. 4591, pp. 413–438. Springer, Heidelberg (2007)

Implementing Multiparty Interactions and Priorities 57

10. Quilbeuf, J., Bonakdarpour, B., Bozga, M.: Automated distributed implementation
of component-based models with priorities. Technical Report TR-2011-3, Verimag
Research Report

11. Mani Chandy, K., Lamport, L.: Distributed snapshots: determining global states
of distributed systems. ACM Trans. Comput. Syst. 3(1), 63–75 (1985)

12. Dijkstra, E.W.: Hierarchical ordering of sequential processes, pp. 198–227.
Springer-Verlag New York, Inc., New York (2002)

13. Gößler, G., Sifakis, J.: Priority Systems. In: de Boer, F.S., Bonsangue, M.M., Graf,
S., de Roever, W.-P. (eds.) FMCO 2003. LNCS, vol. 3188, pp. 314–329. Springer,
Heidelberg (2004)

14. Graf, S., Peled, D., Quinton, S.: Achieving Distributed Control through Model
Checking. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174,
pp. 396–409. Springer, Heidelberg (2010)

15. Gropp, W., Lusk, E., Skjellum, A.: Using MPI: portable parallel programming with
the message-passing interface, 2nd edn. MIT Press, Cambridge (1999)

16. Lynch, N.A., Merritt, M., Weihl, W.E., Fekete, A.: Atomic Transactions. Morgan
Kaufmann, San Francisco (1993)

17. Pérez, J.A., Corchuelo, R., Toro, M.: An order-based algorithm for implementing
multiparty synchronization. Concurrency - Practice and Experience 16, 1173–1206
(2004)

18. Rudie, K., Murray Wonham, W.: Think globally, act locally: decentralized super-
visory control. IEEE Transactions on Automatic Control 37(11), 1692–1708 (1992)

19. Snir, M., Otto, S.W., Huss-Lederman, S., Walker, D.W., Dongarra, J.: MPI: The
complete reference. MIT Press, Cambridge (1996)

Verification of PLC Properties

Based on Formal Semantics in Coq

Jan Olaf Blech1 and Sidi Ould Biha2

1 fortiss GmbH, Munich
joblech@gmail.com

2 INRIA and Tsinghua University, Beijing
Sidi.Ould_Biha@inria.fr

Abstract. Programmable Logic Controllers (PLC) are widely used in
embedded systems for the industrial automation domain. We propose
a formal semantics of two languages defined in the IEC 61131-3 stan-
dard for PLC programming. The first one is the Instruction List (IL)
language, an assembly like language. The second one is the Sequential
Function Charts (SFC) language, a graphical high-level language that
allows to describe the main control-flow of the system. A PLC system
description may comprise SFC and IL code. We formalized the seman-
tics in the proof assistant Coq. Furthermore, we present an associated
tool for automatically generating SFC representations from a graphical
description – the text based IL code can be handled in Coq directly –
and its usage for verification purposes. We demonstrate our approach to
prove safety properties of a PLC in a real industrial demonstrator.

1 Introduction

Discovering and validating properties of Programmable Logic Controllers (PLC),
is a prerequisite for the development of safety critical embedded systems. Tools
and techniques for different kinds of systems and analysis scenarios have been
developed. These comprise techniques aimed for distinct usage scenarios based
on model checking and abstract interpretation.

In this work, we describe a general purpose way for the verification of PLC
that are modeled using the Instruction List (IL) and Sequential Function Chart
(SFC) languages of the IEC 61131–3 [15] standard. The standard is mainly used
for modeling PLC functionality in the development of embedded systems for the
industrial automation domain. We describe a tool set and method: For a given
PLC description given in the graphical SFC language we automatically generate
a Coq [9] description and some basic theorems and their proofs. In addition to
the SFC language, text based IL programs are used in our PLC descriptions. We
have formalized a syntactic representation of IL, thus, IL programs can be im-
ported directly into our Coq environment. We present some standard techniques
to reason about our PLC descriptions and verify properties. Furthermore, we
present a case study of a PLC used inside a sorting machine.

G. Barthe, A. Pardo, and G. Schneider (Eds.): SEFM 2011, LNCS 7041, pp. 58–73, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Verification of PLC Properties Based on Formal Semantics in Coq 59

The formalization of the IL and SFC semantics is done in the formal proof
system Coq and its extension SSReflect [10]. Choosing Coq enables us to use its
extraction mechanisms later and produce a certified compiler or interpreter for
PLC based on our semantics. In this development, we also use some SSReflect
libraries. In particular we use the libraries on booleans, natural numbers, lists
and generic interface for types with decidable equality. The most important
contributions of this paper comprise:

– Formal Coq semantics of the IL and SFC languages which are reusable for
other projects.

– On overview on a tool to automatically generate SFC representations and
some proofs.

– A case study on the verification of PLC properties using an IL and SFC
description of a PLC.

Overview

This paper is organized as follows. We give an overview on PLC in Section 2.
The IL and SFC language are presented in Section 3 and Section 4. A tool for
generating Coq readable SFC representations and related proofs is described in
Section 5. A case study is presented in Section 6. Section 7 discusses related
work and a conclusion is featured in Section 8.

2 Programmable Logic Controller

A PLC is composed of a microprocessor, a memory, input and output devices
where signals can be received from sensors or switches and sent to actuators.
Figure 1 shows the architecture of a PLC system. A main characteristic of PLC is
their execution mode. A PLC program is typically executed in a permanent loop.
PLC program execution can be structured into scan cycles which are associated
with a cycle time, the inputs are read, the program instructions are executed and
the outputs are updated. The cycle time is often fixed or has an upper bound
limit. Therefore the instructions which are scheduled to be executed in the cycle
should terminate during the cycle time interval.

Input
Interface

Processor
Output

Interface

Fig. 1. PLC system

Since the introduction of PLC in the industry, each manufacturer has de-
veloped its own PLC programming languages. In 1993, the International Elec-
trotechnical Committee (IEC) published the IEC 1131 International Standard
for PLC. The third volume of this standard defines the programming languages
for PLC. It defines 5 languages :

60 J.O. Blech and S. Ould Biha

– Ladder Diagrams (LD) : graphical language that represent PLC programs
as relay logic diagrams.

– Functional Block Diagrams (FBD) : graphical language that represent PLC
programs as connection of different function blocks.

– Instruction List (IL) : an assembly like language.
– Structured Text (ST) : a textual (PASCAL like) programming language.
– Sequential Function Charts (SFC): a graphical language for describing top-

level control-flow and associated data-flow in the PLC.

The last language differs from the other. It corresponds to a graphical method
for structuring programs and allows to describe the system as a parallel state
transition diagram. Each state is associated to some actions. An action is de-
scribed using one of the other 4 PLC programming languages like LD or IL.
SFC are well suited for writing concurrent control programs. In this paper we
concentrate on the IL and SFC languages.

3 Instruction Lists

Instruction list (IL) is one of the five programming languages defined in the IEC
61131-3 standard. It is an assembly like language widely used for programming
PLC systems. Our IL model is a significant subset of the language defined by the
IEC 61131-3 standard. This subset covers assignments instructions and boolean
and integer operations. It covers also comparison and branching instructions
and on-delay timers. We choose to consider only booleans and integers as basic
data types. In most of PLC systems, reals are available as basic data types, but
rarely used. In practice, real number computation costs much time and may be
delegated to an external device that can communicate with the PLC. This is
motivated by the need to keep the program scan cycle within a relatively small
time upper bound. The IL model we present in the following is an extension of
the model defined in a previous work [14].

3.1 Syntax

An IL program comprises declarations of variables followed by a list of instruc-
tions. An IL program example is the following:

LABEL OPERATOR OPERAND
l1: LD x

AND y
LD z
ORs
JMPC l1

In the first line of the example above, the value of the variable x is loaded on a
stack. After the execution of the second line, the stack contains the conjunction
of x and y. In the third line, the value of z is put on the top of the stack. The

Verification of PLC Properties Based on Formal Semantics in Coq 61

instruction ORs of the example above removes the two previous values loaded on
the stack and replace them with (x ∧ y) ∨ z. The branching instruction JMPC is
executed if the value at the top of the stack is equal to true.

An IL instruction starts with an operator that can be followed by one or more
operands: variables or constants. In an instruction, the operator can be preceded
by a label.
Instructions:

i ::= LD op | LDN op load
| ST id | STN id | SR id | RS id store, set and reset
| JMP lb | JMPC lb | JMPC lb jump
| AND op | OR op | XOR op boolean operations
| ANDN op | ORN op | XORN op
| ANDs | ORs | XORs
| ADD op | MUL op | SUB op integer operations
| ADDs | MULs | SUBs
| GT op | GE op | EQ op comparison
| GTs | GEs | EQs
| TON id , n On delay timer
| RET end of program

Operands:
op ::= id | cst variable identifier or constant

Constants:

cst ::= n ∈ Z | b ∈ B integer or boolean literal

The data domains of IL constants is the union of integers Z and booleans B. In
practice integers used in PLC are bounded. For simplicity, we restrict ourselves
to unbounded integers in the presentation of this work. Adjusting the integer
size in Coq – and other higher-order theorem prover based – developments is
not a difficult task and has been studied before (e.g., [12]).

We denote the set of IL instructions by Instr. For simplicity, we suppose
that IL program labels are natural numbers. Since an IL program is a list of
instructions, a label indicates the position of the corresponding instruction in
the list. For a given program p and an index i, p(i) ∈ Instr represents the
instruction of p at the position i.

3.2 Semantics

We defined a small step operational semantics of IL programs. For the purpose
of modeling PLC timers, we suppose having a global discrete time clock and that
each program execution cycle has a fixed time duration denoted δ.

Stack: in IL an evaluation stack is used for the current result computation.
It is also used to store intermediate results that will be pulled back when an
instruction like ADDs or ANDs are executed. A stack V := v1, . . . , vm is a finite

62 J.O. Blech and S. Ould Biha

LD
p(i) = LD op

(s, σ, i) → (push op s, σ, i + 1)

p(i) = LDN op

(s, σ, i) → (push ¬op s, σ, i + 1)
LDN

ST
p(i) = ST x σ′ = σ[x �→ top s]

(s, σ, i) → (s, σ′, i + 1)

p(i) = STN x σ′ = σ[x �→ ¬top s]

(s, σ, i) → (s, σ′, i + 1)
STN

SR
p(i) = SR x σ

′
= σ[x �→ x ∨ top s]

(s, σ, i) → (s, σ
′
, i + 1)

p(i) = RS x σ
′
= σ[x �→ x ∧ ¬top s]

(s, σ, i) → (s, σ
′
, i + 1)

RS

JMPCt
p(i) = JMPC l top s = T

(s, σ, i) → (s, σ, l)

p(i) = JMPC l top s = F

(s, σ, i) → (s, σ, i + 1)
JMPCf

JMPCNf
p(i) = JMPCN l top s = F

(s, σ, i) → (s, σ, l)

p(i) = JMPCN l top s = T

(s, σ, i) → (s, σ, i + 1)
JMPCNt

ANDs
p(i) = ANDs (t, t′) = top2 s

(s, σ, i) → (push (t ∧ t’) (pop2 s), σ, i + 1)

p(i) = AND op t = top s ∧ op

(s, σ, i) → (push t (pop s), σ, i + 1)
AND

ADDs
p(i) = ADDs (t, t′) = top2 s

(s, σ, i) → (push (t + t’) (pop2 s), σ, i + 1)

p(i) = ADD op t = top s + op

(s, σ, i) → (push t (pop s), σ, i + 1)
ADD

GTs
p(i) = GTs (t, t′) = top2 s

(s, σ, i) → (push (t < t’) (pop2 s), σ, i + 1)

p(i) = GT op t = top s < op

(s, σ, i) → (push t (pop s), σ, i + 1)
GT

TON-off
p(i) = TON Tx, Pt top s = F σ′ = σ[Tx.Q �→ F, Tx.ET �→ 0]

p 	 (s, σ, i) → (s, σ′, i + 1)

TON-on

p(i) = TON Tx, Pt
top s = T Tx.ET < Pt σ′ = σ[Tx.Q �→ F, Tx.ET �→ Tx.ET + δ]

p 	 (s, σ, i) → (s, σ′, i + 1)

TON-end

p(i) = TON Tx, Pt
top s = T Tx.ET >= Pt σ′ = σ[Tx.Q �→ T, Tx.ET �→ Tx.ET + δ]

p 	 (s, σ, i) → (s, σ′, i + 1)

Fig. 2. IL operational semantics

sequence of data values. In the following we use the standard stack operations
push (add an element to the stack), pop and pop2 (remove respectively the top
and the two top elements of the stack), top and top2 (return respectively the
top and the two top elements of the stack).

States: functions from variable identifiers to data values. They represent the
program variable states and are denoted σ of the type S = V ar → D, where D
is the union of the IL variables data domains: Z ∪ B.

Configurations: elements of the set E = Stack × S ×N. A configuration (s, σ, i)
corresponds to a stack s, a state σ and a position or program location i.

Transitions: relation on configurations ⊆ E ×E . Figure 2 gives some relevant in-
ference rules of the IL configurations transitions relation. We denote the relation
defined by the inference rules of Figure 2 by x−→ where x is an IL instruction. The
IL transition system is defined by an initial configuration (s0, σ0, 0), where s0 is
the empty stack and σ0 is the initial state that maps all the integer variables to
0 and boolean variables to false.

Verification of PLC Properties Based on Formal Semantics in Coq 63

Left
i < length p (s, σ, i)

p
==⇒ (s′′, σ′′, i′′) (s′′, σ′′, i′′)

[p,x]
====⇒ (s′, σ′, i′)

(s, σ, i)
[p,x]

====⇒ (s
′
, σ

′
, i

′
)

Right
i = length p (s, σ, i)

x−→ (s
′′

, σ
′′

, i
′′
) (s

′′
, σ

′′
, i

′′
)

[p,x]
====⇒ (s

′
, σ

′
, i

′
)

(s, σ, i)
[p,x]

====⇒ (s′, σ′, i′)

Out
length p ≤ i

(s, σ, i)
p

==⇒ (s, σ, i)

Fig. 3. IL natural semantics

The first four transition rules of Figure 2 correspond to the load and store
instructions. In the first case the stack is updated while in the second the variable
state is updated. The transitions corresponding to the set/reset instructions
(rules SR and RS) update the variable state function with the corresponding
values for the given operands and the top of the stack. The transition relation for
the TON instruction is given by the rules TON-off, TON-on and TON-end

of Figure 2. The elapsed time variable ET of the TON timer is incremented by
the global constant δ when the timer is activated (the value of top of the stack
is true). The timer output Q is activated when the elapsed time variable ET is
greater or equal to the timer delay parameter PT.

Natural semantics: sometimes in the reasoning about IL programs we need to
interpret the execution of the entire program. This can be done using natural
semantics or big-step semantics. On top of the small-step semantics presented
above, we defined also a big-step semantics of IL programs. The inference rules
of this semantics are given in Figure 3. They correspond to the definition of the
transitive closure of the small-step semantics relation. As we mentioned before
an IL program should terminate during the cycle scan time. This termination
property is assured by the rule Out. A final state is one where the location index
is greater than the program instruction list length. By using the rule Out we
can prove that every execution, following the rules of our natural semantics, will
reach a final (or stable) configuration.

3.3 Formalization

We formalized the IL semantics defined above in the formal proof system Coq.
The Coq system provides a powerful mechanism to define recursive or finite
types or sets: inductive types. It is especially useful when defining the syntax
of a programming language. We define the IL syntax and operational semantics
presented above, using the Coq inductive type mechanism. In our formalization,
IL instructions are represented by the type Instr and an IL program or a list
of IL instructions is an object of the type code := seq Instr1.

We also formalized the IL big-step semantics defined in Figure 3 as a Coq
inductive relation. The definition is given in the Figure 4. Since it is not always
1 seq is the type of list in SSReflect.

64 J.O. Blech and S. Ould Biha

Inductive il_exec : code -> ILConf -> ILConf -> Prop :=

| il_exec_consl : forall p x cf cf1 cf2, cf.2 < size p ->

il_exec p cf cf2 -> il_exec (rcons p x) cf2 cf1 ->

il_exec (rcons p x) cf cf1

| il_exec_consr : forall p x cf cf1 cf2, cf.2 = size p ->

il_trans (rcons p x) cf cf2 -> il_exec (rcons p x) cf2 cf1 ->

il_exec (rcons p x) cf cf1

| il_exec_out : forall p cf, size p <= cf.2 -> il_exec p cf cf.

Fig. 4. Coq definition of the IL program execution predicate

possible to know how many transitions are needed to execute an IL program,
we define the program execution as a propositional relation rather than a com-
putational function. However it is possible to define a function that returns the
configuration corresponding to the result of the execution an IL code after a given
number of steps. This function corresponds to the definition given in Figure 5.
We also proved that the relational definition and functional one are equiva-
lent. This is given by the lemmas il_exec_seq_exec and il_exec_exec_seq of
Figure 5.

Fixpoint il_exec_seq n p cf : ILConf :=

if n is n’.+1 then il_exec_seq n’ p (il_transf p cf) else cf.

Lemma il_exec_seq_exec : forall n p cf cf’, cf’ = il_exec_seq n p cf ->

size p <= cf’.2 -> il_exec p cf cf’.

Lemma il_exec_exec_seq : forall p cf cf’, il_exec p cf cf’ ->

exists n, il_exec_seq n p cf = cf’.

Fig. 5. Coq definition of the IL program execution function and equivalence proofs

4 Sequential Function Charts

The SFC language is a graphical language for modeling PLC. It is part of the
IEC 61131–3 standard and frequently used together with IL and other languages
of this standard. SFC are used to describe the overall control flow structure of
a system. Due to the graphical nature of the language, we have written a tool
which generates Coq representations from graphical SFC models.

The parts of the standard describing SFC leave a few semantical aspects open
to the implementation of the PLC modeling and code generation tool. In cases
where the semantics is not well defined by the standard we have adapted our
semantics to be compatible with the EasyLab [1] tool. EasyLab is a tool that
allows the graphical modeling of PLC and C code generation. The description
given in this work follows the description given in [4].

Verification of PLC Properties Based on Formal Semantics in Coq 65

4.1 Syntax

Syntactically we represent an SFC as a tuple (S, S0, T, A, F, V,ValV). It com-
prises a set of steps S and a set of transitions T between them. A step is a
system location which may either be active or inactive in an actual system state,
it can be associated with SFC action blocks from a set A. These perform sets of
operations and can be regarded as functors that update functions representing
memory. Memory is represented by a function from a set of variables V to a set
of their possible values ValV . The mapping of steps to sets of action blocks is
done by the function F .

In our SFC framework, action blocks are described using the IL semantics
defined in the previous section. We have established functions that allow conver-
sion of SFC states into IL state and vice versa. Thus, the execution of an action
block comprises the following steps:

– Conversion of the SFC state into an IL state
– Execution of the IL program associated with the action block using the

semantics from Section 3.
– Update of the SFC state by using the final IL state.

A transition is a tuple (Sin, g, Sout). It features a set of steps that have to be
enabled Sin ⊆ S in order to take the transition. It features a guard g that has to
be evaluated to true for the given system state. The guard g is a function from
system memory to a truth value – in Coq we formalize this as a function to the
Prop datatype. A transition may have multiple successor steps Sout ⊆ S. The
types ValV that are formalized in our SFC language comprise different integer
types and boolean values. The set of SFC steps includes also a set S0 ⊆ S
representing the initially active steps.

Figure 6 shows an example of an SFC structure realizing a loop with a condi-
tional branch. The execution starts with an initialization step init. After it has
been processed control may pass to either Step2 or to a step Return. Once Step2
has been processed control is passed to init again.

Fig. 6. A loop in the SFC language

66 J.O. Blech and S. Ould Biha

Please note that in addition to loops and branches, SFC allows also the def-
inition of parallel processing and synchronization of control. This is due to the
multiple successor and predecessor steps in a transition.

The Coq realization of the SFC syntax follows the presented description. For
compatibility with the EasyLab tool and to ease generation we distinguish be-
tween steps and step identifiers in our Coq files, thereby introducing some level
of indirection.

4.2 Semantics

Semantically the execution of an SFC encounters states, which are (m, s, a) tu-
ples. They are characterized by a memory state m, the function from variables
to their values, a set of active steps s and a set of active action blocks a that
need to be processed.

The semantics is defined by a state transition system which comprises two
kinds of rules:

1. A rule for processing an action block from the set of active action blocks a.
This corresponds to updating the memory state and removing the processed
action block from a.

2. A rule for performing a state transition. The effect on the system state is
that some steps are deactivated, others are activated. Each transition needs
a guard that can be evaluated to true and a set of active steps. Furthermore,
we require that all pending action blocks of a step that is to be deactivated
have been executed.

It is custom to specify the timing behavior of a step by time slices: a (maximal)
execution time associated with it. In our work, this is realized using special
variables that represent time.

5 Tool Support for PLC Verification and Proving
Principles

For the generation of graphical SFC representations and reasoning about them
we have created a tool (CertPLC, described in a report [3]). It is implemented in
Java and uses SFC files built with a graphical PLC configuration environment:
EasyLab [1]. The text-based IL code can be imported directly into the gener-
ated file. In this section we describe our tool’s architecture, usage scenarios and
frequently used principles for proving properties.

5.1 The CertPLC Tool

Figure 7 shows the CertPLC ingredients and their interconnections. In an in-
vocation of the tool framework an SFC model is given to a representation
generator which generates a Coq representation out of it. This is included in
one or several files containing the model specific parts of the semantics of the

Verification of PLC Properties Based on Formal Semantics in Coq 67

CertPLC

representation generator proof generator

PLC model

(SFC)

basic properties
+

proofs
Coq representation

certificate

proofs + tactics

user defined properties

CertPLC CertPLC

Fig. 7. CertPLC overview

SFC model. The Coq representation is human readable and can be validated
against the original graphical SFC specification by experienced users. No repre-
sentation generation is required for IL, since IL is already a textual format which
can be used directly within the Coq proof assistant.

The same SFC model is given to a proof generator which generates Coq
proof scripts that contain lemmas and their proofs for some basic properties
that state important facts needed for machine handling of the proofs of more
advanced properties. For example a proof script is generated for a fact that the
set of active action blocks in all reachable states of the PLC system does contain
only action blocks specified by the syntactic PLC descriptions. The PLC shows
only behavior achieved by combining these action blocks.

One goal of CertPLC is the generation of Coq files – a certificate – that certifies
a property of a PLC. For this, one needs to formalize the desired property. The
property is proved in Coq by using a provided tactic or a hand written proof
script. We provide a collection of some proofs and tactics. This is a kind of
library to be used in our proofs. The Coq system description, used lemmas and
their proofs, and the property and its proof form a certificate.

5.2 Proof Structure for Inductive Properties

As stated above, some inductive properties are already generated together with
the Coq representation generation. Others can also be proven by using the fol-
lowing scheme: We start with an inductive invariant property I and an SFC
description of a PLC SFC. Following the ideas presented in [5] the structure of a
proof contained in our certificates is realized by generated proof scripts, generic
lemmas and tactics. They establish a proof principle that proves the following
goal:

68 J.O. Blech and S. Ould Biha

∀ s . s ∈ ReachableSFC =⇒ I(s)

ReachableSFC is the inductively defined set of reachable states, �SFC � specifies
the state transition relation (cf. Section 5). First we perform an induction using
the induction rule of the set of reachable states. This rule is automatically estab-
lished by Coq when defining inductive sets. After the application the following
subgoals are left open:

1. I(s0) for initial states s0,
2. I(s) ∧ (s, s′) ∈ �SFC � =⇒ I(s′)

The first goal can be solved by some relatively simple tactic which just checks
that all conditions derived from I are fulfilled in the initial states.

For the second goal the certificate realizes a proof script which – in order
to allow efficient certificate checking – performs most importantly the following
operations:

– Splitting of conjunctions in invariants into independently verifiable invari-
ants.

– Splitting of disjunctions in invariants into two independently verifiable sub-
goals.

– Normalizing arithmetic expressions and expressions that make distinctions
on active steps in the SFC.

– Exhaustive case distinctions on possible transitions. Each case distinction
corresponds to one transition in the control flow graph of the SFC. A typical
case can have the following form:

Precondition on states associated with a case distinction

Transition condition associated with a case distinction

Conditions on possible reachable states after one transition

=⇒
Property holds for succeeding states

The elements in such a goal can feature arithmetic constraints, which can
be split into further cases.

Some of the cases that occur can have contradictions in the hypothesis. For exam-
ple one can imagine an arithmetic constraint for a variable from a precondition
of a state contradicting with a condition on a transition. These contradictions
result from the fine granularity of our case distinctions. Some effort can be spent
to eliminate contradicting cases as soon as possible (cf. [5]) which can speed up
the checking process.

6 Case Study

Figure 8 shows an overview of the SFC structure of a PLC program that controls
a sorting station on the left side and a picture of the sorting station itself on

Verification of PLC Properties Based on Formal Semantics in Coq 69

...

identification

workpiece

...initialization

...

...

alternative 1 alternative 2 alternative 3

alternatives continued

Fig. 8. Sorting machine overview

the right side. Work pieces are transported to two sensors. Based on the values
observed by these sensors, a work piece is handled in a different way. The sensor
observation is done in the step workpiece identification. The handling is done by
choosing one of the three alternatives. We have modeled this system in EasyLab
and generated the Coq representation of the SFC structure for this case study
using CertPLC. We have imported the IL programs describing the actions which
are taken at the different SFC steps.

Based on this, we have verified that consistency conditions hold. These
comprise:

– The verification of inductive invariant based properties. This is described in
Sections 5.1 and 5.2.

– The verification of non-inductive properties. During the conduction of the
case study it turned out that non-inductive properties like: Identification
of a certain work piece implies treatment in a work piece specific way and
this occurs within a fixed amount of execution steps, are also of relevance.
Mutual exclusion properties of work piece treatment can be proved by doing
these work piece specific proofs for all kinds of possible work pieces, first,
and using these results for proving the mutual exclusion property.

Proofs for are done in a modular fashion: we verify the effect of IL parts in the
PLC execution and use these proofs to derive facts on the execution of several
SFC steps.

Figure 9 shows an example of Coq code + pseudo code to give a look and feel
on the nature of our proof goals. Given a concrete workpiece and conditions on
a state x which corresponds to a state just before the workpiece identification.
A succeeding state x′ in the SFC language has to fulfill requirements on variable
values m′ the set of currently active steps S′ and currently active actions A′

after a certain execution time. In our example it involves several single SFC

70 J.O. Blech and S. Ould Biha

conditions on workpiece

->

let ’(m,S,A):= x in

(conditions on m /\ S = SWorkPieceId::nil /\ A = AWorkPieceId::nil

)

->

...

transition conditions between x x’

...

->

let ’(m’,S’,A’):= x’ in

(some conditions on m’ /\ S’ = S13::nil /\ A’ = nil))

Fig. 9. Constraint in Coq

state transitions (state transition rule applications, cf. Section 4) to get from
x to x′. This is given in the transition conditions between x and x′. The set
of currently active steps in the resulting state x′ comprises one step S13 which
corresponds to a step in the first alternative for handling our workpiece.

Evaluation Aspects: Coq representation generation for SFC programs and the
import of IL code is feasible for IEC 61131–3 based PLC descriptions that are
solely described with these languages. Extending the semantics definition for
additional commands which may appear in some PLC descriptions is relatively
easy, due to the modularity of our semantics framework.

The inductive proof techniques used in the properties generated by the Cert-
PLC tool and the non-inductive proof techniques used manually in the case study
have been successfully applied in previous work which did not deal with PLC
(e.g., our own work [5]). Here we have demonstrated their applicability for a
realistic PLC. Using our Coq semantics and CertPLC, basic properties of a PLC
can be verified by experienced Coq users within several hours. This may result
in up to a few hundred lines of proof code for an example as in Figure 9. Com-
mon tactic applications are encapsulated into user defined tactics and libraries
to further speed this process up, make the scripts smaller, and especially make
the approach usable for people who have some knowledge in formal methods but
are not Coq experts.

7 Related Work

Formal treatment of PLC and the IEC 61131–3 standard has been discussed by
a larger number of authors before. Formalization work on the semantics of the
Sequential Function Charts is given in [6,7]. This work was a starting point for
our formalization of SFC semantics.

Verification of PLC Properties Based on Formal Semantics in Coq 71

Work on the formal treatment of the FBD language – which is also a part of
IEC 61131–3 – can be found in [20,19]. The FBD programs are checked using a
model-checking approach.

The approach presented in [16] regards a translation from the IL language
to an intermediate representation (SystemC). A SAT instance is generated out
of this representation. The correctness of an implementation is guaranteed by
equivalence checking with the specification model.

There are plenty of examples of the use of model checking for the verification of
PLC programs. The paper [2] considers the SFC language. Untimed SFC models
are transformed in to the input language of the Cadence SMV tool. Timed SFC
models are transformed into timed automata. These can be analyzed by the
Uppaal tool. In [13] a semantics of IL is defined using timed automata. The
language sub-set contains TON timers but data types are limited to booleans.
The formal analysis is performed by the model checker Uppaal.

In [8] an operational semantics of IL is defined. A significant sub-set of IL
is supported by this semantics, but it does not include timer instructions. The
semantics is encoded in the input language of the model checker Cadence SMV
and linear temporal logic (LTL) is used to specify properties of PLC programs.

In contrast to the model checking work, we are using a higher-order theorem
prover for our work. In general higher-order theorem provers require a higher
level of interaction (we are aiming at overcoming this drawback by generating
proof scripts and providing automatic tactics). On the plus side they allow in
general richer specifications, abstractions and proofs. In the theorem proving
community, there has been some work on the formal analysis of PLC programs.
In [17] the theorem prover HOL is used to verify PLC programs written in
FBD, SFC and ST languages. In this work, modular verification is used for
compositional correctness and safety proofs of programs. For the Coq system,
an example of verification of a PLC program with timers is presented in [18]. A
quiz machine program is used as an example in this work, but no generic model
of PLC programs is formalized. There is also a formalization of a semantics2 of
the LD languages in Coq. This semantics support a sub-set of LD that contains
branching instructions. This work is a component of a development environment
for PLC.

8 Conclusions and Future Works

Programmable Logic Controller applications can be critical in a safety or eco-
nomical cost sense. Therefore formal verification of PLC programs does increase
the confidence in such applications. In this paper we presented a formal frame-
work for the verification of PLC programs written in the languages IL and SFC.
We defined a formal semantics of these two languages in the formal proof system
Coq. These semantics are used by the CertPLC tool that automatically gener-
ates an SFC formal representation from a graphical representation. Using our
2 Research report in Korean available at: http://pllab.kut.ac.kr/tr/2009/

ldsemantics.pdf

http://pllab.kut.ac.kr/tr/2009/
ldsemantics.pdf

72 J.O. Blech and S. Ould Biha

formal semantics, we proved safety properties for a PLC based real industrial
demonstrator.

Future Work

The study of other languages from the IEC 61131–3 standard is an interesting
subject for future work. Furthermore, we are interested in extending the tool
support for verification of properties based on these semantics.

Another perspective of this work is the development of a certified compiler
front-end for PLC. This is an ongoing work and we plan to formalize and certify
a transformation of PLC programs written in the graphical language LD to IL.
This will open the way to the development of a certified compilation chain for
PLC. This chain can be build on top of the CompCert C certified compiler [12].
An integration of our formal semantics of PLC and the certified compiler to
the EasyLab framework is also an interesting perspective. This can lead to a
complete environment for the development of certified PLC programs.

References

1. Barner, S., Geisinger, M., Buckl, C., Knoll, A.: EasyLab: Model-based development
of software for mechatronic systems. In: Mechatronic and Embedded Systems and
Applications, IEEE/ASME (October 2008)

2. Bauer, N., Engell, S., Huuck, R., Lohmann, S., Lukoschus, B., Remelhe, M., Sturs-
berg, O.: Verification of PLC programs given as sequential function charts. In:
Ehrig, H., Damm, W., Desel, J., Große-Rhode, M., Reif, W., Schnieder, E., West-
kämper, E. (eds.) INT 2004. LNCS, vol. 3147, pp. 517–540. Springer, Heidelberg
(2004)

3. Blech, J.O.: A Tool for the Certification of PLCs based on a Coq Semantics for
Sequential Function Charts (2011), http://arxiv.org/abs/1102.3529

4. Blech, J.O., Hattendorf, A., Huang, J.: An Invariant Preserving Transformation
for PLC Models. In: IEEE International Workshop on Model-Based Engineering
for Real-Time Embedded Systems Design (2011)

5. Blech, J.O., Périn, M.: Generating Invariant-based Certificates for Embedded Sys-
tems. ACM Transactions on Embedded Computing Systems (TECS) (accepted)

6. Bornot, S., Huuck, R., Lakhnech, Y., Lukoschus, B.: An Abstract Model for Sequen-
tial Function Charts. In: Discrete Event Systems: Analysis and Control, Workshop
on Discrete Event Systems (2000)

7. Bornot, S., Huuck, R., Lakhnech, Y., Lukoschus, B.: Verification of Sequential
Function Charts using SMV. In: Parallel and Distributed Processing Techniques
and Applications (PDPTA 2000). CSREA Press (June 2000)

8. Canet, G., Couffin, S., Lesage, J.J., Petit, A., Schnoebelen, P.: Towards the auto-
matic verification of PLC programs written in Instruction List. In: IEEE Interna-
tional Conference on Systems, Man, and Cybernetics (2000)

9. The Coq Development Team. The Coq System, http://coq.inria.fr
10. Gonthier, G., Mahboubi, A.: A small scale reflection extension for the Coq system.

INRIA Technical report, http://hal.inria.fr/inria-00258384
11. Huuck, R.: Semantics and Analysis of Instruction List Programs. Electr. Notes

Theor. Comput. Sci. (2005)

http://arxiv.org/abs/1102.3529
http://coq.inria.fr
http://hal.inria.fr/inria-00258384

Verification of PLC Properties Based on Formal Semantics in Coq 73

12. Leroy, X.: A formally verified compiler back-end. Journal of Automated Reason-
ing 43(4), 363–446 (2009)

13. Mader, A., Wupper, H.: Timed Automaton Models for Simple Programmable Logic
Controllers. In: Euromicro Conference on Real-Time Systems (1999)

14. Ould Biha, S.: A formal semantics of PLC programs in Coq. In: 35th IEEE Com-
puter Software and Applications Conference, COMPSAC 2011, Munich (2011)

15. Programmable controllers - Part 3: Programming languages, IEC 61131-3: 1993,
International Electrotechnical Commission (1993)

16. Sülflow, A., Drechsler, R.: Verification of plc programs using formal proof tech-
niques. In: Formal Methods for Automation and Safety in Railway and Automotive
Systems (FORMS/FORMAT 2008), Budapest, pp. 43–50 (2008)

17. Volker, N., Kramer, B.J.: Automated verification of function block-based industrial
control systems. Science of Computer Programming 42, 101–113 (2002)

18. Wan, H., Chen, G., Song, X., Gu, M.: Formalization and Verification of PLC
Timers in Coq. In: 33rd IEEE Computer Software and Applications Conference,
COMPSAC (2009)

19. Yoo, J., Cha, S., Jee, E.: A verification framework for fbd based software in nuclear
power plants. In: 15th Asia Pacific Software Engineering Conference (APSEC),
Beijing, China, December 3-5 (2008)

20. Yoo, J., Cha, S., Jee, E.: Verification of plc programs written in fbd with vis.
Nuclear Engineering and Technology 41(1), 79–90 (2009)

Broadcast Psi-calculi

with an Application to Wireless Protocols

Johannes Borgström1, Shuqin Huang2, Magnus Johansson1, Palle Raabjerg1,
Björn Victor1, Johannes Åman Pohjola1, and Joachim Parrow1

1 Department of Information Technology, Uppsala University, Sweden
2 Peking University, China

Abstract. Psi-calculi is a parametric framework for extensions of the
pi-calculus, with arbitrary data structures and logical assertions for facts
about data. In this paper we add primitives for broadcast communication
in order to model wireless protocols. The additions preserve the purity of
the psi-calculi semantics, and we formally prove the standard congruence
and structural properties of bisimilarity. We demonstrate the expressive
power of broadcast psi-calculi by modelling the wireless ad-hoc routing
protocol LUNAR and verifying a basic reachability property.

1 Introduction

Psi-calculi is a parametric framework for extensions of the pi-calculus, with ar-
bitrary data structures and logical assertions for facts about data. In psi-calculi
(described in Section 2) the purity of the semantics is on par with the original
pi-calculus, the generality and expressiveness exceeds many earlier extensions of
the pi-calculus, and the meta-theory is proved correct once and for all using the
interactive theorem prover Isabelle/Nominal [26].

In order to model wireless communication used in WSN (Wireless Sensor
Network) and MANET (Mobile Ad-hoc Network) applications, the concept of
broadcast communication is needed, where one transmission can be received
by several processes. Broadcast communication cannot be encoded in the pi-
calculus [5]; we extend the psi-calculi framework with broadcast primitives (Sec-
tion 3). The broadcast primitives are added using new operational actions and
rules, and new connectivity predicates. We formally prove the congruence prop-
erties of bisimilarity and the soundness of structural equivalence laws using the
Isabelle/Nominal theorem prover.

The connectivity predicates allow us to model systems with limited reachabil-
ity, for instance where a transmitter only reaches nodes within a certain range,
and systems with changing reachability, for instance due to physical mobility
of nodes. In Section 4, we present a technique for treating different generations
of connectivity information. Broadcast channels can be globally visible or have
limited scope. Scoped channels can be protected from externally imposed con-
nectivity changes, while permitting connectivity changes by processes within the
scope of the channel.

G. Barthe, A. Pardo, and G. Schneider (Eds.): SEFM 2011, LNCS 7041, pp. 74–89, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Broadcast Psi-calculi with an Application to Wireless Protocols 75

We demonstrate the expressive power of the resulting framework in Section 5,
where we provide a model of the LUNAR protocol for routing in ad-hoc wire-
less networks [24]. The model follows the specification closely, and demonstrates
several features of the psi-calculi framework: both unicast and broadcast com-
munication, application-specific data structures and logics, classic unstructured
channels as well as pairs corresponding to MAC address and port selector. Our
model is significantly more succinct than earlier work [28,27] (ca 30 vs 250 lines).
We show an expected basic reachability property of the model: if two network
nodes, a sender and a receiver, are both in range of a third node, but not within
range of each other, the LUNAR protocol can find a route and transparently
handle the delivery of a packet from the sender to the receiver.

We discuss related work on process calculi for wireless broadcast in Section 6,
and conclude and present ideas for future work in Section 7.

2 Psi-calculi

This section is a brief recapitulation of psi-calculi; for a more extensive treatment
including motivations and examples see [3,4].

We assume a countably infinite set of atomic names N ranged over by a, b, . . . ,
z. Intuitively, names will represent the symbols that can be scoped, and also
represent symbols acting as variables in the sense that they can be subject to
substitution. A nominal set [18,6] is a set equipped with a formal notion of what
it means for a name a to occur in an element X of the set, written a ∈ n(X)
(often pronounced as “a is in the support of X”). We write a#X , pronounced “a
is fresh for X”, for a �∈ n(X), and if A is a set of names we write A#X to mean
∀a ∈ A . a#X . In the following ã means a finite sequence of names, a1, . . . , an.
The empty sequence is written ε and the concatenation of ã and b̃ is written ãb̃.
When occurring as an operand of a set operator, ã means the corresponding set
of names {a1, . . . , an}. We also use sequences of other nominal sets in the same
way.

A nominal datatype is a nominal set together with a set of functions on it.
In particular we shall consider substitution functions that substitute elements
for names. If X is an element of a datatype, the substitution X [ã := Ỹ] is an
element of the same datatype as X . There is considerable freedom in the choice
of functions and substitutions; see [3,4] for details.

A psi-calculus is defined by instantiating three nominal data types and four
operators:

Definition 1 (Psi-calculus parameters). A psi-calculus requires the three
(not necessarily disjoint) nominal data types: the (data) terms T, ranged over
by M,N , the conditions C, ranged over by ϕ, the assertions A, ranged over by
Ψ , and the four equivariant operators:

.↔ : T×T→ C Channel Equivalence
⊗ : A×A→ A Composition
1 : A Unit
� ⊆ A×C Entailment

76 J. Borgström et al.

and substitution functions [ã := M̃], substituting terms for names, on each
of T, C and A.

The binary functions above will be written in infix. Thus, if M and N are
terms then M .↔ N is a condition, pronounced “M and N are channel equiva-
lent” and if Ψ and Ψ ′ are assertions then so is Ψ ⊗ Ψ ′. Also we write Ψ � ϕ, “Ψ
entails ϕ”, for (Ψ, ϕ) ∈ �.

We say that two assertions are equivalent, written Ψ � Ψ ′ if they entail the
same conditions, i.e. for all ϕ we have that Ψ � ϕ ⇔ Ψ ′ � ϕ. We impose
certain requisites on the sets and operators. In brief, channel equivalence must
be symmetric and transitive, ⊗ must be compositional with regard to �, and
the assertions with (⊗,1) form an abelian monoid modulo �. For details see [3].

A frame F can intuitively be thought of as an assertion with local names: it is
of the form (νb̃)Ψ where b̃ is a sequence of names that bind into the assertion Ψ .
We use F,G to range over frames. We overload Ψ to also mean the frame (νε)Ψ
and ⊗ to composition on frames defined by (νb̃1)Ψ1⊗(νb̃2)Ψ2 = (νb̃1b̃2)(Ψ1⊗Ψ2)
where b̃1#b̃2, Ψ2 and vice versa. We write (νc)((νb̃)Ψ) for (νcb̃)Ψ .

Alpha equivalent frames are identified. We define F � ϕ to mean that there ex-
ists an alpha variant (νb̃)Ψ of F such that b̃#ϕ and Ψ � ϕ. We also define F � G
to mean that for all ϕ it holds that F � ϕ iff G � ϕ.

Definition 2 (Psi-calculus agents). Given valid psi-calculus parameters as in
Definition 1, the psi-calculus agents, ranged over by P,Q, . . ., are of the following
forms.

0 Nil
MN .P Output
M(λx̃)N .P Input
case ϕ1 : P1 [] · · · [] ϕn : Pn Case
(νa)P Restriction
P | Q Parallel
!P Replication
(|Ψ |) Assertion

Restriction binds a in P and Input binds x̃ in both N and P . We identify alpha
equivalent agents. An assertion is guarded if it is a subterm of an Input or
Output. An agent is assertion guarded if it contains no unguarded assertions.
An agent is well-formed if in M(λx̃)N.P it holds that x̃ ⊆ n(N) is a sequence
without duplicates, that in a replication !P the agent P is assertion guarded, and
that in case ϕ1 : P1 [] · · · [] ϕn : Pn the agents Pi are assertion guarded.

The agent case ϕ1 : P1 [] · · · [] ϕn : Pn is sometimes abbreviated as case ϕ̃ : P̃ ,
or if n = 1 as if ϕ1 then P1.

The frame F(P) of an agent P is defined inductively as follows:

F(M(λx̃)N .P) = F(M N .P) = F(0) = F(case ϕ̃ : P̃) = F(!P) = 1
F((|Ψ |)) = (νε)Ψ
F(P | Q) = F(P)⊗ F(Q)
F((νb)P) = (νb)F(P)

Broadcast Psi-calculi with an Application to Wireless Protocols 77

Table 1. Structured operational semantics. Symmetric versions of Com and Par are
elided. In the rule Com we assume that F(P) = (νb̃P)ΨP and F(Q) = (νb̃Q)ΨQ where

b̃P is fresh for all of Ψ, b̃Q, Q, M and P , and that b̃Q is similarly fresh. In the rule

Par we assume that F(Q) = (νb̃Q)ΨQ where b̃Q is fresh for Ψ, P and α. In Open the
expression ã ∪ {b} means the sequence ã with b inserted anywhere.

In

Ψ
 K
.↔M

Ψ � M(λỹ)N . P
K N[ỹ:=L̃]−−−−−−→ P [ỹ := L̃]

Out

Ψ
M
.↔ K

Ψ � M N . P
KN−−→ P

Case

Ψ � Pi
α−→ P ′ Ψ
 ϕi

Ψ � case ϕ̃ : P̃
α−→ P ′

Com

Ψ ⊗ ΨP ⊗ ΨQ
M
.↔ K

ΨQ ⊗ Ψ � P
M(νã)N−−−−−→ P ′ ΨP ⊗ Ψ � Q

K N−−−→ Q′

Ψ � P | Q τ−→ (νã)(P ′ | Q′)
ã#Q

Par

ΨQ ⊗ Ψ � P
α−→ P ′

Ψ � P | Q α−→ P ′ | Q
bn(α)#Q Scope

Ψ � P
α−→ P ′

Ψ � (νb)P
α−→ (νb)P ′

b#α, Ψ

Open

Ψ � P
M(νã)N−−−−−→ P ′

Ψ � (νb)P
M(νã∪{b})N−−−−−−−−→ P ′

b#ã, Ψ, M
b ∈ n(N)

Rep

Ψ � P | !P α−→ P ′

Ψ � !P
α−→ P ′

The actions ranged over by α, β are of the following three kinds:

OutputM(νã)N where α ⊆ n(N), InputMN , and Silent τ . Here we refer toM
as the subject and N as the object. We define bn(M(νã)N) = ã, and bn(α) = ∅
if α is an input or τ . We also define n(τ) = ∅ and n(α) = n(M) ∪ n(N) for the
input and output actions.

Definition 3 (Transitions). A transition is written Ψ � P
α−→ P ′, meaning

that in the environment Ψ the well-formed agent P can do an α to become P ′.
The transitions are defined inductively in Table 1. We write P α−→ P ′ without
an assertion to mean 1 � P

α−→ P ′.

Agents, frames and transitions are identified by alpha equivalence. In a transition
the names in bn(α) bind into both the action object and the derivative, therefore
bn(α) is in the support of α but not in the support of the transition. This means
that the bound names can be chosen fresh, substituting each occurrence in both
the object and the derivative.

Definition 4 (Strong bisimulation). A strong bisimulation R is a ternary
relation on assertions and pairs of agents such that R(Ψ, P,Q) implies all of

1. Static equivalence: Ψ ⊗F(P) � Ψ ⊗F(Q)
2. Symmetry: R(Ψ,Q, P)

78 J. Borgström et al.

3. Extension of arbitrary assertion: ∀Ψ ′. R(Ψ ⊗ Ψ ′, P,Q)
4. Simulation: for all α, P ′ such that bn(α)#Ψ,Q there exists a Q′ such that

Ψ � P
α−→ P ′ =⇒ Ψ � Q

α−→ Q′ ∧R(Ψ, P ′, Q′)

We define P .∼Ψ Q to mean that there exists a bisimulation R such that R(Ψ, P,
Q), and write .∼ for .∼1.

Strong bisimulation is preserved by all operators except input prefix and satisfies
the expected algebraic laws such as scope extension, for details see [3,4].

3 Broadcast Semantics

In this section we extend the unicast psi-calculi of the previous section with
a broadcast semantics that models wireless (i.e., synchronous and unreliable)
broadcast. As an example, assume that the connectivity information Ψ allows
receiversM1 andM2 to listen to channel K. We would then expect the following
transition: Ψ � KN.P |M2(x).Q |M3(y).R K N−−−→ P | Q[x :=N] | R[y :=N].

To allow connectivity to depend on assertions, and to permit broadcast chan-
nels to be computed at run-time, we assume a psi-calculus with the following
extra predicates:

Definition 5 (Extra predicates for broadcast)
.
≺ : T×T→ C Output Connectivity
.
� : T×T→ C Input Connectivity

The first predicate, M
.
≺ K, is pronounced “M is out-connected to K” and

means that an output prefix M N can result in a broadcast on channel K. The
second, K

.
� M , is pronounced “M is in-connected to K” and means that an

input prefix M(λx̃)N can receive broadcast messages from channel K. As usual
in broadcast calculi, the receivers need to be using the same broadcast channel
as the sender in order to receive a message.

As an example, we can model routing table lookup: if tab is a term corre-
sponding to a routing table we can let Ψ � lookup(tab, id)

.
≺ ch be true if (id, ch)

appears in tab. We can also model connectivity: if Ψ contains connectivity infor-
mation between receivers n and channels ch we may let Ψ � ch

.
� rcv(n, ch) be

true if n is connected to ch according to Ψ .
In contrast to unicast connectivity, we do not require broadcast connectedness

to be symmetric or transitive, so in particular M
.
≺ K might not be equivalent

to K
.
�M . Instead, for technical reasons related to scope extension, broadcast

channels must have no greater support than the input and output prefixes that
can make use of them.

Definition 6 (Requirements for broadcast)

1. Ψ �M
.
≺ K =⇒ n(M) ⊇ n(K)

2. Ψ � K
.
�M =⇒ n(K) ⊆ n(M)

Broadcast Psi-calculi with an Application to Wireless Protocols 79

Table 2. Operational broadcast semantics. A symmetric version of BrCom is elided.
In rules BrCom and BrMerge we assume that F(P) = (νb̃P)ΨP and F(Q) = (νb̃Q)ΨQ

where b̃P is fresh for P, b̃Q, Q, K and Ψ , and that b̃Q is fresh for Q, b̃P , P, K and Ψ .

BrOut

Ψ
M
.
≺ K

Ψ � M N . P
!K N−−−→ P

BrIn

Ψ
 K
.
�M

Ψ � M(λỹ)N . P
?K N[ỹ:=L̃]−−−−−−−→ P [ỹ := L̃]

BrMerge

ΨQ ⊗ Ψ � P
?K N−−−→ P ′ ΨP ⊗ Ψ � Q

?K N−−−→ Q′

Ψ � P | Q ?K N−−−→ P ′ | Q′

BrCom

ΨQ ⊗ Ψ � P
!K (νã)N−−−−−−→ P ′ ΨP ⊗ Ψ � Q

?K N−−−→ Q′

Ψ � P | Q !K (νã)N−−−−−−→ P ′ | Q′
ã#Q

BrClose

Ψ � P
!K (νã)N−−−−−−→ P ′

Ψ � (νb)P
τ−→ (νb)(νã)P ′

b ∈ n(K)
b#Ψ

Definition 7 (Transitions of Broadcast Psi). To the actions of psi-calculi
we add broadcast input, written ?K N for a reception of N on K, and broadcast
output, written !K (νã)N for a broadcast of N on K, with names ã fresh in K.
As before, we omit (νã) when ã is empty, and in examples we omit N when it
is not relevant. The transitions of well-formed agents are defined inductively in
Tables 2 and 1, where we let α range over both unicast and broadcast actions.

The rule BrOut, allows transmission on a broadcast channel K that the sub-
ject M of an output prefix is out-connected to. Similarly, the rule BrIn allows
input from a broadcast channel K that the subject M of an input prefix is in-
connected to. When two parallel processes both receive a broadcast on the same
channel, the rule BrMerge combines the two actions. This rule is necessary
to ensure the associativity of parallel composition. After a broadcast commu-
nication using BrCom, the resulting action is the original transmission. This
is different from the unicast Com rule, where a communication yields an inter-
nal action τ . Finally, rule BrClose states that a broadcast transmission does
not reach beyond its scope. This allows for broadcasting on restricted channels.
Dually, the Res rule (of Table 1) ensures that broadcast receivers on restricted
channels cannot proceed unless a message is sent. We allow the Open rule to also
apply to broadcast output actions, in order to communicate scoped data. The
Par rule allows for broadcasts to bypass a process, as in most other broadcast
calculi for wireless systems.

We have developed a meta-theory for broadcast psi-calculi. In the following
we restrict attention to well-formed agents. The expected compositionality prop-
erties of strong bisimilarity hold:

80 J. Borgström et al.

Theorem 8 (Congruence properties of strong bisimulation). For all Ψ :

P
.∼Ψ Q =⇒ P | R .∼Ψ Q | R

P
.∼Ψ Q =⇒ (νa)P .∼Ψ (νa)Q if a#Ψ

P
.∼Ψ Q =⇒ !P .∼Ψ !Q if P,Q assertion guarded

∀i.Pi
.∼Ψ Qi =⇒ case ϕ̃ : P̃ .∼Ψ case ϕ̃ : Q̃
P

.∼Ψ Q =⇒ M N .P
.∼Ψ M N .Q

(∀L̃. P [x̃ := L̃] .∼Ψ Q[x̃ := L̃]) =⇒ M(λx̃)N .P .∼Ψ M(λx̃)N .Q

As usual in channel-passing calculi, bisimulation is not a congruence for input
prefix. We can characterise strong bisimulation congruence in the usual way.

Definition 9 (Strong Congruence). P ∼Ψ Q iff for all sequences σ of sub-
stitutions it holds that Pσ .∼Ψ Qσ. We write P ∼ Q for P ∼1 Q.

Theorem 10. Strong congruence ∼Ψ is a congruence for all Ψ .

The standard structural laws hold for strong congruence.

Theorem 11 (Structural equivalence). Assume that a#Q, x̃,M,N, ϕ̃. Then

case ϕ̃ : (̃νa)P ∼ (νa)case ϕ̃ : P̃ (νa)0 ∼ 0
M(λx̃)N . (νa)P ∼ (νa)M(λx̃)(N) . P Q | (νa)P ∼ (νa)(Q | P)
M N . (νa)P ∼ (νa)M N .P (νb)(νa)P ∼ (νa)(νb)P
P | (Q | R) ∼ (P | Q) | R !P ∼ P | !P

P | Q ∼ Q | P P ∼ P | 0

Theorems 8, 10 and 11 give us assurance that any broadcast psi-calculus has a
compositional labelled bisimilarity that respects important structural laws. The
proofs [21] are formally verified in the interactive theorem prover Isabelle/Nominal.
The full formalisation of broadcast psi-calculi amounts to ca 33000 lines of Isabelle
code, of which about 21000 lines are re-used from our earlier work [4]. The fact that
the BrComm rule defers the closing of the communication to BrClose causes
most of the added complications.

4 Modelling Network Topology Changes

When modelling wireless protocols, one important concern is dealing with con-
nectivity changes. We here give a general description of a method of modelling
different connectivity configurations using assertions.

The idea is to allow for different generations of assertions by tagging each
part of an assertion with a generation number. Only the most recent generation
is used; a generation is made obsolete by adding an assertion from a later gen-
eration. We here consider broadcast connectivity, but this technique can also be
used in other scenarios where there is a need to retract assertions.

In the following we assume a set of broadcast terms B ⊆ T; we let B,B′

range over elements of B. For simplicity, we assume that no rewriting happens

Broadcast Psi-calculi with an Application to Wireless Protocols 81

in broadcast output, i.e., that
.
≺ is the equality relation of B. Assertions are

finite sets of connectivity information, labelled with a generation, with set union
as assertion composition ⊗ and the empty set as the unit assertion. Formally,

C � {currentGeneration(i) : i ∈ N} ∪
{K
.
�M : K,M ∈ T} ∪ {M

.
≺ K : K,M ∈ T}

A � Pfin({〈i,K
.
�M〉 : i ∈ N, K,M ∈ T} ∪ {〈i, 0〉 : i ∈ N})

Ψ � currentGeneration(i) if ∀〈j, ∗〉 ∈ Ψ . j ≤ i and ∃〈j, ∗〉 ∈ Ψ . i = j
where ∗ is B

.
� B′ or 0

Ψ � B
.
≺ B′ if B = B′

Ψ � B
.
� B′ if 〈i, B

.
� B′〉 ∈ Ψ and n(B) ⊆ n(B′) and Ψ � currentGeneration(i)

The condition currentGeneration(i) is used to test if i is the most recent gen-
eration. The assertion {〈i, B

.
� B′〉} states that B′ is in-connected to B in

generation i if n(B) ⊆ n(B′), while the assertion {〈i, 0〉} states that nothing is
connected in generation i.

As an example, we can define a topology controller (assuming a suitable en-
coding of the τ prefix):

T = (|{〈1, 0〉}|) | τ .
(
(|{〈2,K

.
�M〉, 〈2,K

.
� N〉}|) | τ . ((|{〈3,K

.
�M〉}|))

)
In the process P | T , P can broadcast on K while T manages the topology.

Initially F(T) = {〈1, 0〉} and the broadcast is disconnected; after T τ−→ T ′ then
F(T ′) = {〈1, 0〉, 〈2,K

.
�M〉, 〈2,K

.
� N〉} and a broadcast on K can be received

on both M and N , and after T ′ τ−→ T ′′ then a broadcast can be received only
on M , since F(T ′′) = {〈1, 0〉, 〈2,K

.
�M〉, 〈2,K

.
� N〉, 〈3,K

.
�M〉}.

5 The LUNAR Protocol in Psi

In this section we present a model of the LUNAR routing protocol for mobile
ad-hoc networks [24,25]. LUNAR is intended for small wireless networks, ca 15
nodes, with a network diameter of 3 hops. It does not handle route reparation,
caching etc, and routes must be re-established every few seconds. It is reason-
ably simple in comparison to many other ad-hoc routing protocols, and allows
us to focus on properties such as dynamic connectivity and broadcasting. It
has previously been verified in [28,27] using SPIN and UPPAAL; our model is
significantly shorter and at an abstraction level closer to the specification.

The LUNAR protocol is at “layer 2.5”, between the link and network layers
in the Internet protocol stack. Addressing is by pairs of MAC/Ethernet ad-
dresses and 64-bit selectors, similarly to the IP address and port number used
in UDP/TCP. The selectors are used to find the appropriate packet handler
through the FIB (Forwarding Information Base) table.

Below, we define a psi-calculus for modelling the LUNAR protocol. In an
effort to keep our model simple we abstract from details such as TTL fields in

82 J. Borgström et al.

messages, optional protocol fields, globally unique host identifiers, etc. We do
not deal with time at all.

Channels are of two kinds: broadcast channels are terms nodei with (for sim-
plicity) empty support, whose connectivity is given by the

.
� and

.
≺ predicates

as defined in Section 4, and unicast channels which are pairs 〈sel ,mac〉 where
sel is a selector name and mac is a MAC address name. The mac part can also
be a RouteOf(node, ip) construction, which looks up the route of an IP address
ip in the routing table of the node node. Special channels 〈delivered, nodei〉 are
used to signal delivery of a packet to the IP layer. Assertions record requests
originated at the local node using Redirected(node, sel) and specify found routes
using HaveRoute(node, destip, hops , sel). The conditions contain predicates for
testing if a route has been found (HaveRoute(node, ip)), if a selector has been
used for a request originating at the local node (Redirected(node, sel)), and to
extract the forwarder of a route (〈x,RouteOf(node, ip)〉 .↔ 〈x, ip〉).

LUNAR protocol messages are of two types. The first is a route request mes-
sage RREQ(selector , targetIP , replyTo), where the selector identifies the request,
targetIP is the IP address the route should reach, and replyTo is the 〈sel ,mac〉
channel the response should be sent to. The second is a route reply message,
RREP(hops , fwdptr)), where hops is the number of hops to the destination, and
fwdptr is a forwarding pointer, i.e. a 〈sel ,mac〉 channel where packets can be
sent.

The parameters of the psi-calculus for LUNAR extend the general topology
psi-calculus in Section 4 as follows. The sets T,C and A recursively include
terms in order to be closed under substitution of terms for names.

T � N ∪ {nodei : i ∈ N} ∪ {delivered} ∪
{RREQ(Ser ,TargIp,Rep) : Ser , TargIp, Rep ∈ T} ∪
{RREP(i,Fwd) : i, Fwd ∈ T} ∪
{RouteOf(Node , Ip) : Node, Ip ∈ T} ∪
{〈Sel , N〉 : Sel , N ∈ T} ∪ {N + 1 : N ∈ T} ∪ {0}

C � {M = N,HaveRoute(M,N),Redirected(M,N) :M,N ∈ T}
A � Pfin({HaveRoute(M,N1, i, N2) : i, M,N1, N2 ∈ T} ∪

{Redirected(M,N) :M,N ∈ T})

Ψ � a = a, a ∈ N
Ψ � 〈a, b〉 .↔ 〈a, b〉, a, b ∈ N
Ψ � 〈delivered, nodei〉 .↔ 〈delivered, nodei〉, i ∈ N

Ψ ∪ {HaveRoute(nodei, a, j, b)} � 〈RouteOf(nodei, a), x〉 .↔ 〈b, x〉
Ψ ∪ {HaveRoute(nodei, a, j, b)} � HaveRoute(nodei, a)
Ψ ∪ {Redirected(nodei, s)} � Redirected(nodei, s)

Ψ � ¬ϕ if ¬(Ψ � ϕ)

Figures 1-7 describe our psi-calculus model of the LUNAR protocol. We use
process identifiers to improve the readability of the model. Process identifiers and
recursion can be encoded in a standard fashion using replication, see e.g. [22].
In this section we use process declarations of the form M(Ñ) ⇐ P , where M is

Broadcast Psi-calculi with an Application to Wireless Protocols 83

a process identifier (and also a term, implicitly included in T), Ñ a list of terms
where occurrences of names are binding, and P is a process s.t. n(P) ⊆ n(Ñ). In
a process, we write M(Ñ) for invoking a process declaration M(K̃) ⇐ P such
that Ñ = K̃[x̃ := L̃] with x̃ = n(K̃), resulting in the process P [x̃ := L̃]. We write
if ϕ then P else Q for case ϕ : P [] ¬ϕ : Q, and assume a suitable encoding of
the τ prefix.

Our model of the protocol closely follows the informal protocol description
in [25, Section 4]. Each figure in our model corresponds quite directly to one or
more of part 0-5 of the protocol description. To allocate a selector, we simply
bind a name; to associate (or bind) a selector to a packet handler we use a
replicated process which receives on the unicast channel described by the pair
of the selector and our MAC address (see e.g. the second line of the LunARP
process declaration in Figure 1). In the informal protocol description [25], the
FIB is “abused” by installing a null packet handler for the selector created when
sending a route request. This FIB entry is only used to detect and avoid circular
forwarding of route requests. We model this by an explicit assertion Redirected
and a matching condition. The routing table is modelled using assertions, to
show how these can be used as a global data structure. For simplicity we do not
model route timeouts and the deletion of routes, but this could be done using
the mechanism in Section 4.

The LUNAR procedure for route discovery starts when a node wants to send
a message to a node it does not already have a route to (Figure 7, else branch).
It then (Figure 1) associates a fresh selector with a response packet handler,
and broadcasts a Route Request (RREQ) message to its neighbours. A node
which receives a RREQ message (Figure 2) for its own IP address sets up a
packet handler to deliver IP packets, and includes the corresponding selector in a
response Route Reply (RREP) message to the reply channel found in the RREQ
message. If the RREQ message was not for its own IP address, the message is
re-broadcast after replacing the reply channel with a freshly allocated reply
selector and its own MAC address. When such an intermediary node receives a
RREP message (Figure 3), it increments the hop counter and forwards the RREP
message to the source of the original RREQ message. When the originator of a
RREQ message eventually receives the matching RREP (Figure 4), it installs
a route and informs the IP layer about it. The message can then be resent
(Figure 7, then branch) and delivered (Figure 5) by unicast messages through
the chain of intermediary forwarding nodes.

We show the basic correctness of the model by the following theorem, which
in essence corresponds to the correct operation of an ad-hoc routing protocol [28,
Definition 1]: if there is a path between two nodes, the protocol finds it, and it
is possible to send packets along the path to the destination node.

The system to analyse consists of n nodes with their respective broadcast
handler; node 0 attempts to transmit a packet to the IP address of node n.

Specn(pkt , ip0, . . . , ipn) ⇐ (νmac0, . . . ,macn)(∏
0≤i≤n BrdHandler(nodei,maci, ipi)
| ! IPtransmit(node0,mac0, ipn, pkt)

)

84 J. Borgström et al.

LunARP(mynode,mymac, destip)⇐
(νrchosen , schosen)⎛⎝ ! 〈rchosen ,mymac〉(x) . SRrepHandler(mynode, mymac, destip, x)

| (|Redirected(mynode, schosen)|)
| mynode〈RREQ(schosen, destip, 〈rchosen, mymac〉)〉 .0

⎞⎠
Fig. 1. Part 0: the initialisation step at the node that wishes to discover a route

RreqHandler(mynode,mymac, myip, RREQ(schosen, destip, repchn))⇐
if Redirected(mynode, schosen) then 0

else τ .
(

(|Redirected(mynode, schosen)|) |
if destip = myip then /* Part 2: Target found */

(νrchosen)(
! 〈rchosen, mymac〉(x) . IPdeliver(x , mynode)

| repchn〈RREP(0, 〈rchosen, mymac〉)〉 . 0

)
else

(νrchosen)(
! 〈rchosen, mymac〉(x) . IRrepHandler(mymac, repchn , x)

| mynode〈RREQ(schosen, destip, 〈rchosen, mymac〉)〉 .0

))
Fig. 2. Part 1: RREQ packet handler, and Part 2: Target found branch

IRrepHandler(mymac, repchn , RREP(hops, fwdptr))⇐
(νrchosen)(

! 〈rchosen, mymac〉(x) . fwdptr x .0

| repchn〈RREP(hops + 1 , 〈rchosen, mymac〉)〉 .0

)

Fig. 3. Part 3: Intermediate RREP packet handler

SRrepHandler(mynode,mymac, destip, RREP(hops, fwdptr))⇐
(νrchosen)(

! 〈rchosen, mymac〉(x) . fwdptr x .0

| (|HaveRoute(mynode, destip, hops, rchosen)|)

)
Fig. 4. Part 4: Source RREP packet handler

IPdeliver(x,node) ⇐ 〈delivered, node〉 x .0

Fig. 5. Part 5: IP delivery

BrdHandler(mynode, mac, ip)⇐

mynode(λs, t, r)RREQ(s, t, r) .

(
RreqHandler(mynode, mac, ip, RREQ(s, t, r))
| BrdHandler(mynode, mac, ip)

)
Fig. 6. Broadcast handler

IPtransmit(mynode, mymac, destip, pkt)⇐
if HaveRoute(mynode, destip) then 〈RouteOf(mynode, destip),mymac〉 pkt . 0
else LunARP(mynode,mymac, destip)

Fig. 7. IP transmission: if have route, send it to local forwarder, else ask for route

Broadcast Psi-calculi with an Application to Wireless Protocols 85

Theorem 12. If Ψ connects node0 and noden via a node nodei (i.e. Ψ � node0

.
�

nodei and Ψ � nodei

.
� noden), then

Ψ | (νip0, . . . , ipn)Specn(pkt, ip0, . . . , ipn)

=⇒ 〈delivered,noden〉pkt−−−−−−−−−−−−→ Ψ | (νip0, . . . , ipn)S

and F(S) � HaveRoute(node0, ipn), where =⇒ stands for an interleaving of τ
and broadcast output transitions.

Proof. By following transitions.

Our analysis is limited to a two-hop configuration due to the labour of manually
following transitions in a non-trivial specification. We anticipate this can be au-
tomated using a future extension of our symbolic semantics for psi-calculi [10,11].

The definition of BrdHandler illustrates a peculiarity of broadcast semantics:
a reader well-versed in pi-calculus specifications with replication and recursion
may consider a more concise variant of the definition using replication instead
of recursion, e.g.

BrdHandler′(mynode,mac, ip) ⇐
! mynode(λs, t, r)RREQ(s, t, r) .RreqHandler(mynode,mac, ip,RREQ(s, t, r))

When the input prefix is over a broadcast channel, as is the case here, the two
are not equivalent since a single communication with BrdHandler′ may result in
arbitrarily many RreqHandler processes, while BrdHandler only results in one.

6 Related Work

Process calculi with broadcast communication go back to the early 1980’s. Mil-
ner developed SCCS [16] as a generalisation of CCS [15] to include multiway
communication, of which broadcast can be seen as a special case. At the same
time Austry and Boudol presented MEIJE [2] as a semantic basis for high-level
hardware definition languages.

The first process calculus to seriously consider broadcast with an asynchronous
parallel composition was CBS [19,20]. Its development is recorded in a series of
papers, examining it from many perspectives. The main focus is on employing
broadcast as a high level programming paradigm. CBS was later extended to the
pi-calculus in the bπ formalism [5]. Here the broadcast communication channels
are names that can be scoped and transmitted between agents. The main point of
this work is to establish a separation result in expressiveness: in the pi-calculus,
broadcast cannot be uniformly encoded by unicast.

Recent advances in wireless networks have created a renewed interest in the
broadcast paradigm. The first process calculus with this in mind was proba-
bly CBS� [17]. This is a development of CBS to include varying interconnection
topologies. Input and output is performed on a universal ether and transitions
are indexed with topologies which are sets of connectivity graphs; the connec-
tivity graph matters for the input rule (reception is possible from any connected

86 J. Borgström et al.

location). Main applications are on cryptography and routing protocols in mo-
bile ad hoc wireless networks. CBS� has been followed by several similar calculi.
In CWS [14,12] the focus is on modelling low level interference. Communication
actions have distinct beginnings and endings, and two actions may interfere if
one begins before another has ended. The main result is an operational corre-
spondence between a labelled semantics and a reduction semantics. CMAN [8] is
a high level formalism extended with data types, just as the applied pi-calculus
extends the original pi-calculus. Data can contain constructors and destructors.
There are results on properties of weak bisimulation and an analysis of a cryp-
tographic routing protocol. In the ω-calculus [23] emphasis is on expressing con-
nectivity using sets of group names. An extension also includes separate unicast
channels, making this formalism the first to accommodate both multicast and
unicast. There are results about strong bisimulation and a verification of a mobile
ad hoc network leader election protocol through weak bisimulation. RBPT [7]
is similar and uses an alternative technique to represent topology changes, lead-
ing to smaller state spaces, and is also different in that it can accommodate an
asymmetric neighbour relation (to model the fact that A can send to B but not
the other way).
bAπ [9] is an extension of the applied pi-calculus [1] with broadcast, where

connectivity information appears explicitly in the process terms and can change
non-deterministically during execution. The claimed result of the paper is prov-
ing that a weak labelled bisimulation, for which connectivity is irrelevant, coin-
cides with barbed equivalence. However, for the same reasons as in the applied
pi-calculus (cf. [3]), labelled bisimilarity is not compositional in bAπ, so the cor-
respondence does not hold. A suggested fix is to remove unicast channel mobility
from the calculus. We would finally mention CMN [13]. The claimed result is
to compare two different kinds of semantics for a broadcast operation, but it
is in error. The labelled transition semantics contains no rule for merging two
inputs as in our BrMerge. As a consequence parallel composition fails to be
associative. Consider the situation where P does an output and Q and R both
do inputs. A broadcast communication involving all three agents can be derived
from (P |Q) |R but not from P | (Q|R), since in the latter agent the component
Q|R cannot make an input involving both Q and R.

It is interesting to compare these formalisms and our broadcast psi from a
few important perspectives. Firstly, the broadcast channels are explicitly repre-
sented in ω, bπ, CWS and CMN; they are mobile (in the sense that they can
be transmitted) only in bπ. In ω, only unicast channels can be communicated.
In broadcast psi, channels are represented as arbitrary mobile data terms which
may contain any number of names. Secondly, the data transmitted in CMAN and
bAπ is akin to the applied pi-calculus where data are drawn from an inductively
defined set and contain names which may be scoped. In ω and bπ data are sin-
gle names which may be scoped; in the other calculi data cannot contain scoped
names. In broadcast psi data are arbitrary terms, drawn from a nominal set, and
may include higher order objects as well as bound names. Finally, node mobility
is represented explicitly as particular semantic rules in CMAN, CMN, bAπ and

Broadcast Psi-calculi with an Application to Wireless Protocols 87

ω, and implicitly in the requirements of bisimulation in CBS� and RBPT. In this
respect broadcast psi calculi are similar to the latter: connectivity is determined
by the assertions in the environment, and in a bisimulation these may change
after each transition.

All calculi presented here use a kind of labelled transition semantics (LTS).
bπ, bAπ, CBS�, CWS and ω use it in conjunction with a structural congru-
ence (SC), the rest (including broadcast psi) do not use a SC. In our experience
SC is efficient in that the definitions become more compact and easy to under-
stand, but introduces severe difficulties in making fully rigorous proofs. bAπ,
CWS, CMAN and CMN additionally use a reduction semantics using structural
congruence (RS) and prove its agreement with the labelled semantics. Table 3
summarises some of the distinguishing features of calculi for wireless networks.

Table 3. Comparison of some process algebras for wireless broadcast

Calculus
Broadcast
Channels

Scoped
Data Mobility Semantics

bAπ - term in semantics LTS+SC and RS

CBS� - - in bisimulation LTS+SC
CWS constant - - LTS+SC and RS
CMAN - term in semantics LTS and RS
CMN name - in semantics LTS and RS
ω groups name in semantics LTS+SC
RBPT - - in bisimulation LTS
Broadcast psi term term in bisimulation LTS

Finally, broadcast psi is different from the other calculi for wireless broadcast
in that there is no stratification of the syntax into processes and networks. There
is just the one kind of agent, suitable for expressing both processes operating in
nodes and behaviours of entire networks. In contrast, the other calculi has one set
of constructs to express processes and another to express networks, sometimes
leading to duplication of effort (for example, there can be a parallel composition
operator both at the process and network level). Our conclusion is that broadcast
psi is conceptually simpler and more efficient for rigorous proofs, and yet more
expressive.

7 Conclusion

We have extended the psi-calculi framework with broadcast communication, and
formally proved using Isabelle/Nominal that the standard congruence and struc-
tural properties of bisimilarity hold also after the addition. We have shown how
node mobility and network topology changes can be modelled using assertions.
Since bisimilarity is closed under all assertions, two bisimilar processes are equiv-
alent in all initial topologies and for all node mobility patterns. We demonstrated

88 J. Borgström et al.

expressive power by modelling the LUNAR protocol for route discovery in wire-
less ad-hoc networks, and verified a basic correctness property of the protocol.

The model of LUNAR is simplified for clarity and to make manual analysis
more manageable. The simplifications are similar to those in the SPIN model
by Wibling et al. [28], although we do not model timeouts. Their model [27] is
ca 250 lines of SPIN code (excluding comments) while ours is approximately 30
lines. Our model could be improved at the cost of added complexity. For exam-
ple, allowing broadcast channels to have non-empty support would let us hide
broadcast actions, routing tables could be made local by including a scoped name
per node, and route deletions could be modelled using generational mechanisms
similar to Section 4.

We intend to extend the symbolic semantics for psi-calculi [10,11] with broad-
cast, and implement the semantics in a tool for automatic verification. We also
plan to study weak bisimulation for the broadcast semantics. In order to model
more aspects of wireless protocols, we would like to add general resource aware-
ness (e.g. energy or time) to psi-calculi.

References

1. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In:
Proceedings of POPL 2001, pp. 104–115. ACM, New York (2001)

2. Austry, D., Boudol, G.: Algèbre de processus et synchronisation. Theor. Comput.
Sci. 30, 91–131 (1984)

3. Bengtson, J., Johansson, M., Parrow, J., Victor, B.: Psi-calculi: Mobile processes,
nominal data, and logic. In: Proceedings of LICS 2009, pp. 39–48. IEEE, Los Alami-
tos (2009)

4. Bengtson, J., Johansson, M., Parrow, J., Victor, B.: Psi-calculi: A framework for
mobile processes with nominal data and logic. Logical Methods in Computer Sci-
ence (2011), Accepted for publication. This is an extended version of [3]

5. Ene, C., Muntean, T.: Expressiveness of point-to-point versus broadcast communi-
cations. In: Ciobanu, G., Păun, G. (eds.) FCT 1999. LNCS, vol. 1684, pp. 258–268.
Springer, Heidelberg (1999)

6. Gabbay, M., Pitts, A.: A new approach to abstract syntax with variable binding.
Formal Aspects of Computing 13, 341–363 (2001)

7. Ghassemi, F., Fokkink, W., Movaghar, A.: Restricted broadcast process theory. In:
Cerone, A., Gruner, S. (eds.) SEFM, pp. 345–354. IEEE Computer Society, Los
Alamitos (2008)

8. Godskesen, J.C.: A calculus for mobile ad hoc networks. In: Murphy, A.L., Ryan, M.
(eds.) COORDINATION 2007. LNCS, vol. 4467, pp. 132–150. Springer, Heidelberg
(2007)

9. Godskesen, J.C.: Observables for mobile and wireless broadcasting systems. In:
Clarke, D., Agha, G. (eds.) COORDINATION 2010. LNCS, vol. 6116, pp. 1–15.
Springer, Heidelberg (2010)

10. Johansson, M., Victor, B., Parrow, J.: A fully abstract symbolic semantics for
psi-calculi. In: Proceedings of SOS 2009. EPTCS, vol. 18, pp. 17–31 (2010)

11. Johansson, M., Victor, B., Parrow, J.: Computing strong and weak bisimulations
for psi-calculi (submitted for publication, 2011)

Broadcast Psi-calculi with an Application to Wireless Protocols 89

12. Lanese, I., Sangiorgi, D.: An operational semantics for a calculus for wireless sys-
tems. Theor. Comp. Sci. 411(19), 1928–1948 (2010)

13. Merro, M.: An observational theory for mobile ad hoc networks (full version). Inf.
Comput. 207(2), 194–208 (2009)

14. Mezzetti, N., Sangiorgi, D.: Towards a calculus for wireless systems. Electr. Notes
Theor. Comput. Sci. 158, 331–353 (2006)

15. Milner, R.: A Calculus of Communication Systems. LNCS, vol. 92. Springer, Hei-
delberg (1980)

16. Milner, R.: Calculi for synchrony and asynchrony. Theor. Comput. Sci. 25, 267–310
(1983)

17. Nanz, S., Hankin, C.: A framework for security analysis of mobile wireless networks.
Theor. Comp. Sci. 367(1-2), 203–227 (2006)

18. Pitts, A.M.: Nominal logic, a first order theory of names and binding. Information
and Computation 186, 165–193 (2003)

19. Prasad, K.V.S.: A calculus of broadcasting systems. In: Abramsky, S., Maibaum,
T.S.E. (eds.) CAAP 1991 and TAPSOFT 1991. LNCS, vol. 493, pp. 338–358.
Springer, Heidelberg (1991)

20. Prasad, K.V.S.: A calculus of broadcasting systems. Sci. Comput. Program. 25(2-
3), 285–327 (1995)

21. Raabjerg, P., Åman Pohjola, J.: Broadcast psi-calculus formalisation.
Isabelle/HOL-Nominal formalisation of the definitions, theorems and proofs (July
2011), http://www.it.uu.se/research/group/mobility/theorem/broadcastpsi

22. Sangiorgi, D., Walker, D.: The π-calculus: a Theory of Mobile Processes. Cambridge
University Press, Cambridge (2001)

23. Singh, A., Ramakrishnan, C.R., Smolka, S.A.: A process calculus for mobile ad hoc
networks. Sci. Comput. Program. 75(6), 440–469 (2010)

24. Tschudin, C., Gold, R., Rensfelt, O., Wibling, O.: LUNAR: a lightweight underlay
network ad-hoc routing protocol and implementation. In: Proc. of NEW2AN 2004,
St. Petersburg (February 2004)

25. Tschudin, C.F.: Lightweight underlay network ad hoc routing (LUNAR) protocol.
Internet Draft, Mobile Ad Hoc Networking Working Group (March 2004)

26. Urban, C., Tasson, C.: Nominal techniques in isabelle/HOL. In: Nieuwenhuis, R.
(ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 38–53. Springer, Heidelberg (2005)

27. Wibling, O.: SPIN and UPPAAL ad hoc routing protocol models. Models of
LUNAR scenarios used in [28] (2004),
http://www.it.uu.se/research/group/mobility/adhoc/gbt/other_examples

28. Wibling, O., Parrow, J., Pears, A.: Automatized verification of ad hoc routing
protocols. In: de Frutos-Escrig, D., Núñez, M. (eds.) FORTE 2004. LNCS, vol. 3235,
pp. 343–358. Springer, Heidelberg (2004)

http://www.it.uu.se/research/group/mobility/theorem/broadcastpsi
http://www.it.uu.se/research/group/mobility/adhoc/gbt/other_examples

A Formalisation of Java Strings

for Program Specification and Verification

Richard Bubel1, Reiner Hähnle1, and Ulrich Geilmann2

1 Department of Computer Science and Engineering
Chalmers University of Technology, Sweden

{bubel,reiner}@chalmers.se
2 Department of Computer Science, KIT Karlsruhe, Germany

ugeilmann@googlemail.com

Abstract. We present a formalisation of Java Strings tailored to specifi-
cation and verification of programs (using dynamic logic). The formalism
allows to specify and verify properties about the content of strings—the
most common use-case—in an easy and natural manner. Each instance
of type String is related to an abstract data type representing the string
content as an immutable sequence of characters. This avoids serious tech-
nicalities that would arise if the specification had to resort to Java arrays
to represent sequences of characters. We also discuss advanced aspects
of Java Strings including string literals and the string pool and support
for regular expressions. The approach has been implemented in the KeY
verification system. We demonstrate its practical applicability by case
studies including the verification of a string sanitization function.

1 Introduction

Most Java programs that deal with user input and output make usage of strings.
Formal verification of Java-like languages progressed rapidly regarding the size
and complexity of verifiable programs in the past years, yet none of the state-
of-art systems [1,2,3,4] offers a comparable degree of support and automation
for strings as is on hand for other datatypes of central importance. Typically,
strings are given less priority in formalisation by the designers of verification
tools, because they deal with aspects of programs that are considered to be
computationally trivial. Another reason for little work having been done on
strings is that many Java verification systems concentrated on Java Card or
other Java dialects that have no string support.

Nevertheless, missing or insufficient support for strings makes it impossible to
verify many practically relevant programs or requires to rewrite them before ver-
ification. One should also keep in mind that many attacks on software security
are based on injection of intentionally malformed input1 which makes specifica-
tion and verification of methods with string type much more security-relevant
and less trivial than thought at first.

1 http://www.sans.org/top25-programming-errors/

G. Barthe, A. Pardo, and G. Schneider (Eds.): SEFM 2011, LNCS 7041, pp. 90–105, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.sans.org/top25-programming-errors/

A Formalisation of Java Strings for Program Specification and Verification 91

In this paper we present a formalisation of Java strings within the program
logic of the KeY verification system [3]. This includes a formal specification of a
substantial part of the Java String API (Sect. 3.5) as well as automated reasoning
on first-order string functions and predicates.

Strings in Java-like languages are non-trivial to model for several reasons: first
of all, strings are (immutable) instances of the String class. This means that
strings are objects with all the usual complications such as aliasing. It means
also that several dozen API methods can be applied to Strings whose behaviour
must be specified. In Java and C# immutability of strings is exploited in the
String pool which implements caching of equal string literals.

In order to allow efficient automated reasoning we map Java String objects
and methods into a first-order abstract data type for finite character sequences
(Sect. 3.1). The mechanism used in KeY for symbolic state updates (described in
Sect. 2.2) allows us to do this in a modular fashion, see Sect. 3.2. We also model
the caching of string literals in the Java String pool (Sect. 3.3) and support for
regular expression on character sequences (Sect. 3.4).

We demonstrate the practicability of our approach with three case studies that
exhibit a high degree of automation that can be achieved with our formalisation
when verifying Java programs with strings. Much of our work is also applicable
to C# which has a very similar string concept than Java.

2 Background

2.1 Java Strings

In contrast to many other programming languages, strings in Java are not iden-
tified with an array of characters. Instead, a Java String is an object of class
java.lang.String. Strings are immutable, i.e., once created their content—the
encapsulated character sequence—cannot be changed.

While strings behave like ordinary objects, they are part of the core classes in
the Java Language Specification (JLS) [5] and enjoy special support in the form
of String literals and the String pool. String literals are Java expressions and
consist of a possibly empty sequence of characters enclosed in double quotation
marks (§3.10.5 [5]): StringLiteral := ”(StringCharacter)∗”

String literals are intended to behave like literals of primitive types. Con-
sequently, they are immutable and refer always to the same instance of type
String. Additionally, Java provides the following support for strings:

– The ’+’-operator is overloaded to be defined on Strings: if one of its arguments
is of type String, the second one is (if necessary) translated to its canonical
String representation (§15.18.1 [5]). The result of the application of ’+’ is a
(new) String object representing the concatenation of the argument strings.

– The notion of compile-time constants is extended to cover string literals.
A compile-time constant (§15.28 [5]) is a Java expression adhering to a de-
fined syntactical form that can be (and is) evaluated at compile-time to the
resulting value.

92 R. Bubel, R. Hähnle, and U. Geilmann

– It is ensured that two occurrences of String literals of the same name (no
matter where they are used) refer always to the same String instance; other-
wise one would run into situations where "abc"=="abc" evaluates to false.

For the third item it was necessary to introduce the concept of a String pool.
The String pool is a cache that maps sequences of characters to corresponding
String instances. When are String instances entered into the pool? The answer
is twofold:

Primarily, each time when a class is loaded all of its compile-time constants
of type String (in particular, all String literals) are resolved and replaced by
references to the actual String objects.First it is checked whether an instance of
the same content had already been registered. If such an object is found it is
used to resolve the reference. Otherwise, a new String instance representing the
constant is created, added to the pool and used to resolve the reference.

Additionally, the programmer can add any string to the pool by using the
instance method intern() of class java.lang.String. Invoking s.intern()
checks first whether an instance equal to s had already been registered. If the
check is negative, then the String instance referred to by s is added to the pool
and returned as the result of the method invocation. Otherwise, s is not added
to the pool and the returned instance is the one already registered.

2.2 Dynamic Logic for Sequential Java

As program logic serves us JavaDL [3] a sorted first-order dynamic logic with
updates for sequential Java programs. Actually JavaDL defines a family of logics
of which each concrete logic JavaDL(p) is associated with a Java program p.
The program p is sometimes referred to as context program. We usually omit
the index p if no ambiguities arise.

The signature Σp = ((T ,�),O, Π,F ,P ,V) consists of a set of types T with
type hierarchy �, the usual propositional connectives and first-order quantifiers
as well as the two dynamic logic modal operators 〈·〉· (diamond) and [·]· (box).
Further, it includes the set of executable program statements (i.e. list of Java
statements) Π , and sets of function F , predicate P and variable V symbols.

Terms and formulas are inductively defined as usual and we give here only
the inductive definitions for the modality operators. Let α ∈ Π be an executable
list of Java statements and φ a JavaDL formula then

– 〈α〉φ (spoken: diamond alpha phi) is a JavaDL formula; its intuitive meaning
is that program α terminates and φ holds its final state.

– [α]φ (spoken: box alpha phi) is a JavaDL formula; its intuitive meaning is
that if program α terminates then φ holds its final state.

Note, that the above given intuitive meanings exploit that the sequential frag-
ment of the Java programming language is deterministic. There is a strong rela-
tionship between Hoare logics and dynamic logics and the Hoare triple {φ}α{ψ}
is equivalent to the JavaDL formula φ→ [α]ψ.

Function (predicate) symbols are partitioned into rigid Fr(Pr) and non-rigid
Fnr(Pnr) symbols, where the interpretation of rigid symbols does not depend

A Formalisation of Java Strings for Program Specification and Verification 93

on the current state while non-rigid symbols may change their interpretation
depending on the state in which they are evaluated.

Terms and formulas in JavaDL are evaluated relative to a JavaDL Kripke
structure K = (D, I,S, ρ). The domain D assigns each type T a set of elements
DT (wrt. the type hierarchy). The interpretation I assigns each rigid function
(resp. predicate) symbol f its meaning I(f). On the other hand, states s ∈ S
are used to assign a meaning to non-rigid symbols. The state transition relation
ρ : Π × S × S captures the Java semantics. We write ρ(α)(s1) = {s2}, if the
program α ∈ Π started in state s1 terminates reaching the final state s2. As
Java is deterministic, the set of final states is either empty or a singleton set.

A term (or formula) is then evaluated with respect to a JavaDL Kripke struc-
ture K, a state s ∈ S and a variable assignment β : V → D using the valuation
function valK,β. Its definition is standard, thus we give only two cases:

valK,s,β(a(o1, . . . , on)) =
s(a)(valK,s,β(o1), . . . , valK,s,β(on)) a ∈ Fnr, o1 . . . on ∈ TrmΣ

valK,s,β(〈α〉φ) = tt iff.
exists s′ ∈ S.

(
ρ(α)(s) = {s′} ∧ valK,s′,β(φ)

)
α ∈ ΠΣ , φ ∈ ForΣ

The notions satisfiability, model and validity are defined as usual.
Local program variables are modelled as non-rigid constant symbols, while

attributes and the array access operator are represented by unary resp. binary
non-rigid function symbols. In particular, these symbols form an own class of
non-rigid function symbols namely locations or location functions. The defining
element is that their value can be explicitly changed by a program. Instead of
a(o) where a is a location function representing an attribute, we write o.a.

An important concept in JavaDL is that of updates. Updates are a concise
mean to express state transitions on the syntactical level and can be seen as
some kind of explicit substitutions. An elementary update l := r is a pair with l
denoting an expression where the top level operator is a location function e.g.,
a local program variable and r a Java DL term. Its intuitive meaning is that of
an assignment where the location denoted by l is assigned the value r.

Updates can be combined to parallel updates l1 := r1 || . . . || ln := rn or
conditional updates if φ; l := r. Parallel updates are evaluated simultaneously,
i.e., the assignments within a parallel update do not influence each other. Clashes
within a parallel update, i.e., cases where the same location is assigned a value
twice, are resolved using a last-one-win semantics and the right-most assignment
of the conflicting ones is taken. The conditional update is only “executed” if its
condition φ holds.

Updates u can be applied to formulas {u}φ and terms {u} t which are JavaDL
formulas resp. terms again. The formula/term is then evaluated in the state
reached from the current state by applying the assignments of update u.

A complete account to updates and their application is given in [6,3]. A small
example: The formula (i .= i0∧j .= j0) → {i := j || j := i} (i .= j0∧j .= i0) is valid.
The parallel update expresses a simultaneous swap of the program variables i
and j while the formula behind the update states that the swap has taken place.

94 R. Bubel, R. Hähnle, and U. Geilmann

To prove the validity of Java DL formulas a Gentzen-style sequent calculus
is used and implemented in the KeY-tool [3]. A sequent is denoted by Γ =⇒ Δ
and its meaning is equivalent to

∧
ϕ∈Γ ϕ→

∨
ψ∈Δ ψ (Γ,Δ are sets of formulas).

The calculus is based on the symbolic execution paradigm and realizes a
symbolic interpreter which stepwise reduces complex statements into a sequence
of simple statements until they can be moved to an update or translated into a
classical first-order formula. For instance, the rule

ifSplit
Γ, b

.= TRUE =⇒ 〈π {p} ω〉φ,Δ Γ, b
.= FALSE =⇒ 〈π {q} ω〉φ,Δ

Γ =⇒ 〈π if(b){p}else{q} ω〉φ,Δ

matches on any sequent whose succedent contains a formula with the diamond
operator as top level operator and where the first active statement is a condi-
tional statement. The schema variable π matches on the inactive program prefix
(opening braces, try-s etc.) while ω matches the remaining program. Applying
the rule causes the proof to split into two branches one where the if statement’s
condition is assumed to be true and one where it is assumed to be false.

The assignment rule for local variables

assignment
Γ, b

.= TRUE =⇒ {v := se} 〈π ω〉φ,Δ
Γ =⇒ 〈π v=se; ω〉φ,Δ

is another example of a symbolic execution rule. The schema variable se on the
right matches only on side-effect free expressions and therefore the assignment
can be directly moved into an update. The program is thus successively reduced
to first-order formulas and then treated using classical first-order sequent rules.

The last concept we want to introduce is that of Java-reachable states. Ba-
sically, the Kripke structure contains states not reachable by a Java program.
For instance, each object has an implicit boolean-typed field <created>, which
is set to TRUE when the object in consideration is created. The Kripke struc-
ture contains now states s ∈ S where some created objects have a reference to
a not yet created one. Obviously, these states can never be reached by a Java
program. The non-rigid predicate iRS (in Java-Reachable State) is defined (and
axiomatized) to hold in exactly those states that can be established by a Java
program. The formula iRS→ φ expresses now that if we are in a state reachable
by a Java program then the formula φ holds.

3 Specification of Java Strings

3.1 The Abstract Datatype ��������

We use the abstract data type (ADT) CharList (introduced below) to repre-
sent the content of a String object as an immutable sequence of characters.
In Sect. 3.2 we will establish a formal connection between character sequences
and String objects. Using an abstract data type allows us to specify properties
involving (the content of) Strings conveniently. In addition the ADT has a con-
siderably simpler semantics than Java collections or arrays. This helps to avoid

A Formalisation of Java Strings for Program Specification and Verification 95

constructors
empty | cons (jchar , CharList)

core auxiliary functions
concat (CharList , CharList): CharList
substring (int , int , CharList): CharList
replace (jchar , jchar , CharList): CharList

query functions
length(CharList): int charAt (int , CharList): jchar

indexOf(jchar , int , CharList): int

Fig. 1. Excerpt of the CharList ADT

cluttering specifications and proofs with unnecessary technicalities. Most func-
tion declarations (except some query functions) of the CharList ADT are shown
in Fig. 1. The usual list constructors empty and cons are used to create char-
acter sequences such as cons(’H’,cons(’i’,empty)). For sake of readability,
we employ the short notation ”Hi”CL. The subscript CL distinguishes elements
of CharList from Java String literals. The character indices start with 0 and
counting is from left-to-right, i.e., H has index 0 and i has index 1. The auxiliary
functions of the datatype are also standard:

– concat(s1,s2) concatenates two character sequences;
– substring(i,j,s) projects onto a subsequence of s starting with (and in-

cluding) the character at position i and ending at (and excluding) the char-
acter at position j;

– replace(c1,c2,s) evaluates to a character sequence equal to s except that
all occurrences of character c1 have been replaced by the character c2.

There exist several query functions such as length, charAt, indexOf (in different
variants), as well as contains, startsWith, and endsWith that all have their
obvious meaning.

CharList is an initial ADT and a general induction schema is provided. All
auxiliary and query functions are axiomatized in first-order logic. The axioms
are given as conditional rewrite rules of the following form:

ruleName
φ
t� t′

The semantics of such a rule is that t can be rewritten to t′ whenever the
formula φ can be shown to be valid. By way of example, we list the axioms for
function substring and explain a number of design decisions we made through-
out the axiomatization:2

subBase
substring(0, 0, s) �empty

2 The complete axiomatization with detailed explanations is in [7].

96 R. Bubel, R. Hähnle, and U. Geilmann

subStepOnSnd
j > 0

substring(0, j, cons(c, s)) � concat(cons(c, empty), substring(0, j − 1, s))

subStep
i > 0 ∧ i ≤ j

substring(i, j, cons(c, s)) � substring(i− 1, j − 1, s)

We emphasize that the axioms are intentionally incomplete, for instance, the
case substring(−1, 2, ”Hello”CL) is not covered. We use underspecification [8]
instead of introducing a separate error term or overspecifying unintended cases.
Semantically, this means that an underspecified term has some value of type
CharList, but we do not know which one. Similar cases occur for other functions
and predicates such as charAt when accessing an out of bounds index.

To reason efficiently about character sequences it is necessary to define a nor-
mal form which is obtained by applying the rewrite rules in Fig. 2 exhaustively:

Lemma 1. Let t denote a term of type CharList that (i) consists only of core
auxiliary function applications (as listed in Fig. 1), free variables, and constant
symbols and that is (ii) well-defined, i.e., no subexpression is underspecified.
Then the reduction system given in Fig. 2 terminates and establishes a unique
normal form tNF with the following properties:

– the second argument of a concat function contains no further concat func-
tion application;

– all nested function applications occur exclusively in the order
substring/concat/replace;

– there is at most one occurrence of a substring function application.

Fig. 3 shows some further reduction rules used to eliminate auxiliary functions
occurring within a query function.

3.2 Connecting String and ��������

In the previous section an abstract representation of Java Strings as sequences
of characters has been defined. To enable usage of this abstraction within the
program logic for specifying and verifying properties about Java Strings, we
need to relate Strings and CharList elements. This purpose is achieved by the
location function content : java.lang.String → CharList that maps each
String instance to a sequence of characters. Location functions are functions
whose interpretation is state-dependent and whose values can be updated. The
domain of the location function is a Java reference type, so we write s.content
instead of content(s). As Java Strings are immutable the content function
is only updated when a new instance is created, for example, when a String
concatenation is symbolically executed on the right side of an assignment:

assignAddString

Γ =⇒ {U} {v := newS}
{v.content := concat(s1.content, s2.content)} 〈πω〉φ,Δ

Γ =⇒ 〈π v = s1 + s2; ω〉φ,Δ

A Formalisation of Java Strings for Program Specification and Verification 97

concatLeftAssoc
concat(s1, concat(s2, s3)) � concat(concat(s1, s2), s3)

repSubRed
i ≥ 0 ∧ j ≥ i ∧ j ≤ length(s)

replace(c1, c2, substring(i, j, s)) � substring(i, j, replace(c1, c2, s))

repConcatRed

replace(c1, c2, concat(s1, s2)) � concat(replace(c1, c2, s1), replace(c1, c2, s2))

subSubRed
k ≥ 0 ∧m ≥ k ∧m ≤ length(s) ∧ i ≥ 0 ∧ j ≥ i ∧ j ≤ m− k

substring(i, j, substring(k, m, s)) � substring(i + k, k + j, s)

subConcatRed

R ∧ j ≤ length(s1)

substring(i, j, concat(s1, s2)) � substring(i, j, s1)

R ∧ j > length(s1) ∧ i ≥ length(s1)

substring(i, j, concat(s1, s2)) � substring(i− length(s1), j − length(s1), s1)

R ∧ j > length(s1) ∧ i < length(s1)

substring(i, j, concat(s1, s2)) �
concat(substring(i, length(s1), s1), substring(i, j − length(s1), s2))

with R := i ≥ 0 ∧ j ≥ i ∧ j ≤ length(s1) + length(s2)

Fig. 2. Reduction system for core auxiliary functions of CharList

lengthSubRed
i ≥ 0 ∧ i ≤ j ∧ j ≤ length(s)

length(substring(i, j, s)) � j − i

charAtSubRed
i < k − j ∧ i ≥ 0 ∧ j ≥ 0 ∧ k ≥ j ∧ k ≤ length(s)

charAt(k, substring(i, j, s)) � charAt(i + k, s)

Fig. 3. Further reduction rules (excerpt)

In this rule the schema variables v, s1, and s2 match local program variables
of type String. The value update U and the String-typed term newS cover the
technicalities of object creation (this is not relevant for the paper and not further
explained—details are in [3]). The only rule where the field content is assigned
a value are those rules dealing with instance creation of Strings reflecting the
immutability of class String.

98 R. Bubel, R. Hähnle, and U. Geilmann

3.3 String Literals and the String Pool

The Java String pool caches String instances using their content as key. On
startup of the virtual machine and after class loading all compile-time constants
of type String (in particular all String literals) are resolved to an actual String
object as described in Sect. 2.1. New elements can be added to the cache at
run-time with method intern(), but Java programs cannot remove elements
from the cache.

We model the String pool as updatable location function pool : CharList→
java.lang.String. The pool function is defined by a number of properties. These
properties are not valid in all states, but only in those program states actually
realizable in Java, thus they are qualified with a predicate iRS (for “in Java-
reachable state”). Other rules do not need the qualification as they are do not
rely on the states and we are free to choose a semanntics for not Java reachable
states as long as they are not contradictory.

1. iRS → (pool(c) .= null ∨ pool(c).created .= TRUE) stipulates that each
element of the co-domain of is either created or null.

2. (iRS ∧ ¬(pool(c) .= null)) → pool(c).content .= c ensures that when the
String pool maps a character sequence c to an object then the content of
that object is equal to c.

3. Any compile-time constant of type String with content cLit is not null:
iRS→ ¬(pool(cLit) .= null).

The assignment rule for String literals in the presence of the String pool can
now be defined as follows:

assignStringLiteral

Γ =⇒ {v := pool(sLitCL) || pool(sLitCL).content := sLitCL} 〈π ω〉φ,Δ
Γ =⇒ 〈π v = sLit; ω〉φ,Δ

Here sLit is a schema variable matching String literals and sLitCL denotes the
CharList representation of the matched String literal sLit. Note that it is un-
necessary for completeness to have pool(sLitCL).content := sLitCL as part of
the update in the rule premise and that it does not interfere with immutabil-
ity of Strings, because for Java-reachable states this follows from the axioms of
pool and we could leave it underspecified for all other states. Adding the up-
date makes, however, first-order reasoning more automatic. In addition, when
running the symbolic execution engine on code snippets, it is not necessary to
specify that one is in a Java-reachable state.

The rule for concatenation of two string literals is similar (cf. the rule for
adding two local variables of type String in Sect. 3.2):

concatenateStringLiteral

Γ, c
.= concat(sLit1CL, sLit2CL) =⇒
{v := pool(c)‖pool(c).content := c}〈π ω〉φ,Δ
Γ =⇒ 〈π v = sLit1 + sLit2; ω〉φ,Δ

Here c is a new constant of type CharList. We can query the pool directly for the
resulting concatenation, because for Java-reachable states the third pool axiom

A Formalisation of Java Strings for Program Specification and Verification 99

guarantees that it is defined. Finally, we give one of the rules for updating the
Java String pool with a new element:3

updatePool

Γ,¬(v .= null) =⇒
{if (pool(v.content) .= null); pool(v.content) := v} 〈π ω〉φ,Δ

Γ,¬(v .= null) =⇒ 〈π v.intern(); ω〉φ,Δ

The conditional update adds v only when the String pool does not already
contain an object with (more precisely: mapped to) the same content.

3.4 Regular Expressions for ��������

We added also support to match elements of type CharList with regular ex-
pression or pattern expressions.4 Pattern expressions (PExp) are represented as
terms of type RegEx. Table 1 lists the PExp constructors. For instance, the pat-

Table 1. Pattern expressions (PExp) with cl: CharList and pe, pe1, pe2: RegEx

constructor (of type RegEx) constructor

regEx(cl) matches exactly cl repeatStar(pe) pe∗

opt(pe) pe? repeatPlus(pe) pe+

alt(pe1, pe2) pe1 + pe2 repeat(pe, n) pen

regConcat(pe1, pe2) pe1 · pe2

tern represented by the term repeatStar(regEx(”ab”CL)) matches a finite but
arbitrarily often repetition of the word “ab”. Match expressions are constructed
using the predicate match(RegEx, CharList). The predicate match takes two ar-
guments: a PExp as first argument and the concrete character sequence to be
matched against the pattern as second argument. The match expression is true
if and only if the provided pattern matches the complete CharList.

Our calculus features a complete axiomatisation of the pattern and matching
language. Further, there is a number of derived rules to reduce and simplify
pattern and match expression terms as far as possible. We give here only a few
typical representatives of these axioms and rules:

altAxiom
match(alt(pe1, pe2), cl) �match(pe1, cl) ∨ match(pe2, cl)

regConcatAxiom

match(regConcat(pe1, pe2), cl) �
∃ int i; (i ≥ 0 ∧ i ≤ length(cl) ∧ match(pe1, substring(0, i, cl))∧

match(pe2, substring(i, length(cl), cl)))

3 This rule has been simplified with respect to method resolution to make it more
readable.

4 Remark: Our encoding allows to express patterns beyond regular expressions.

100 R. Bubel, R. Hähnle, and U. Geilmann

The first axiom maps the alternative pattern constructor back to a logical dis-
junction. The second axiom removes the pattern concatenation by guessing the
index where to split the text to be matched into two parts. Each part is then
independently matched against the corresponding subpattern.

A typical reduction rule which reduces the pattern expression complexity is
rule regConcatConcreteStringLeft:

match(regConcat(regEx(s), pe), cl) �
length(s) ≤ length(cl) ∧ match(regEx(s), substring(0, length(s), cl))∧

match(pe, substring(length(s), length(cl), cl))

3.5 Specification of the Java String API

To obtain a complete calculus for Java strings, additional rules have to be created
which translate an integer or the null reference to its String representation. The
formalisation of the necessary translate functions is rather tedious, but otherwise
straightforward. The technical details are described in [7].

Based on the formalisation described in this section, we specified the majority
of the methods declared and implemented in the java.lang.String class. The
CharList ADT functions have been chosen to represent closely the core func-
tionality provided by the String class. The specification of the methods required
then merely to consider the border cases of most of the methods. Border cases
are typically those cases where the ADT has been left underspecified and that
cause an exception in Java.

4 Case Studies

We present three small, but non-trivial case studies to illustrate the practical
applicability of the presented approach.

4.1 String Distance Measure

The static method distance(String,String) shown in Fig. 4 computes the
distance between two strings. The applied distance measure is based on the
content of the compared String instances.

For this case-study we are interested in the verification of two properties:
(i) the distance measure is commutative and (ii) distance(String,String)
returns 0 if and only if both strings have the same content, i.e. the equals-
method of class String returns true. The first property can be expressed in
dynamic logic as

iRS→ ∀java.lang.String s, t;(
s.created

.= TRUE∧ t.created .= TRUE→ distance(s, t) .= distance(t, s)
)

To prove the validity of the formula, the two queries on the right side of the
implication are first replaced by their definition, i.e., the implementation given

A Formalisation of Java Strings for Program Specification and Verification 101

������ ��	��� �
� distance (String s1, String s2) {

�� (s1 ==
��� || s2 ==
���) ����
 -1;

�
� d = 0; �
� m = s1.length();

�� (s1.length() > s2.length()) m = s2.length();

��� (�
� i = 0; i < m; ++i) {

�
� f = s1.charAt(i) - s2.charAt(i);

�� (f >= 0) { d += f; } �� { d += -f; }

}

m = s1.length() - s2.length();

�� (m < 0) { d -= m; } �� { d += m; }

����
 d;

}

Fig. 4. The distance method

in Fig. 4. The actual verification work is then to provide a suitable loop invariant
for the 	
� loop. The proof is closed after 11423 nodes on 200 branches and
required 21 interactive rule applications.

To verify that the computed distance is 0 if and only if both Strings have the
same content, the following dynamic logic formula has to be proven:

iRS→ ∀java.lang.String s, t;
(
(s.created .= TRUE ∧ t.created .= TRUE ∧

s �= null ∧ t �= null) → (distance(s, t) .= 0 ↔ s.equals(t) .= TRUE)
)

The formula can be proven valid and the closed proof consists of 4642 nodes on
102 branches requiring 23 steps of user interaction. The reason for the consid-
erable smaller proof tree compared to the previous one, is that we only need to
symbolically execute the distance() method once compared to the two times
when verifying the commutativity.

4.2 Hash Set

For the second case study we implemented, specified and verified a hashset for
Strings called StringSet shown in Fig. 5. The hashset allows constant time inser-
tion (insert(String)) and lookup (contains(String)). The class StringSet
stores all elements inside the array elements. To keep things simple, no colli-
sion treatment is performed and the capacity of the set is fixed. Thus insertion
of a String may fail, which is indicated by insert returning false. The array
index where a String instance s is kept or looked up is its hash value modulo
the maximal size of the hashset, namely s.hashCode() % size.

The class StringSet has been specified completely using the Java Modeling
Language (JML) [9]. The specification consists of several contracts for both
methods and an instance invariant. The KeY tool provides a JML front-end
which allows to translate JML specifications into dynamic logic and then to select
from a number of proof-obligations those to be proven. We proved that both
methods establish their postconditions and that they respect their assignable

102 R. Bubel, R. Hähnle, and U. Geilmann

������ ��	�� StringSet {

����	� /*@ ���������� nullable @*/ String[] elements;

����	� /*@ ���������� @*/ �
� size;

/*@ ������ �
��	
� �
�	��	
� size > 0 && elements !=
��� &&

elements.length==size && ������(elements)==����(String[]); @*/

/*@ ������
���	����	����

������ s !=
��� && elements[(s.hashCode() % size)] ==
���;

	����
	�� elements[(s.hashCode() % size)];

���� elements[(s.hashCode() % size)] == s && ������ == ���;

	��� ... @*/

������ ����	
 insert (String /*@ nullable @*/ s) { ... }

... // spec. and implementation of contains(String)

}

Fig. 5. JML specification of method insert of class StringSet

clauses. All properties could be proven fully automatically. The smallest proof
consisted of 65 nodes on a single brach, while the largest one had 8810 nodes
on 99 branches. Nodes and branches together measure the proof complexity.
The number of nodes is (basically) equal to the number of applied rules. The
proof branches are an additional indication on the number of case distinction
considered. Branching is an expensive operation and a high degree usually refers
to a complex proof situation.

4.3 String Sanitization

For privacy reasons it is no longer allowed to publish exam results as a list pinned
at the blackboard in front of the teachers office. Instead a webform is provided
which allows students to query their result by entering their exam number. On
the server side the software constructs an SQL query as follows:

userEnteredId = textField.getText();

query = "SELECT�*�FROM�examDB�WHERE�examNr�=�" + userEnteredID;

The problem with the above solution is that an interested person can gain
access to the complete list of exam results by entering ’*’ as exam identification
number. A more malicious minded person might even enter the SQL command
for dropping tables and delete the complete database.

This fictional scenario is typical for injection attacks. A way out is to sanitize
(e.g., delete) not allowed characters from user provided input. Applying string
sanitization successfully requires to ensure that (i) each untrusted string is sani-
tized before being processed any further, and (ii), that the sanitization function
actually removes all not allowed characters.

The security community focuses mostly on the first issue developing different
techniques for taint analyses [10,11]. We were interested in the second issue
ensuring that a given sanitization function is implemented correctly.

A Formalisation of Java Strings for Program Specification and Verification 103

/*@ ������
���	����	����

@
���� (����	�� �
� i;i>=0 && i<������.length();

@ (������ �
� j;j>=0 && j<whitelist.length;

@ whitelist[j]==������.charAt(i)));

@*/

������ String whitelist(String input, ��	�[] whitelist) {

String stripped =
� String();

�
� len = input.length();

/*@ ������
�	��	
� stripped!=
��� && stripped.length()<=i &&

@ i>=0 && i<=len && (����	�� �
� k; k>=0 && k<stripped.length();

@ (������ �
� j; j>=0 && j<whitelist.length;

@ whitelist[j]==stripped.charAt(k)));

@ 	����
	�� �
����
�;

@ ���	��
� len - i; @*/

��� (�
� i = 0; i < len; i++) {

��	� c = input.charAt(i);

�� (contains(whitelist, c)) { stripped = stripped + c; }

}

����
 stripped;

}

Fig. 6. Implementation and specification of the whitelist sanitization method of class
BaseRuleValidation. The method has been slightly altered to avoid unboxing of char-
acters and the usage of class StringBuilder both are not yet supported by KeY.

The OWASP-ESAPI security framework5 provides several sanitization meth-
ods. We specified and verified the method whitelist of class BasicValidat-
ionRule which is used by the provided sanitization functions. Fig. 6 shows the
implementation and JML method specification. The verification was not com-
pletely automatic due to the universal quantification used in the loop invariant
which our prover could not resolve automatically. We were able to establish the
correctness of the sanitization function in 7677 steps with 191 interactive steps.

5 Related Work

In [12] the authors present a solver for string constraints. They represent strings
as bitvectors and utilise a bitvector logic to solve the expressed constraints.
String constraints are expressed in an input language which allows to specify
these constraints in form of a context-free grammar or a regular expression.
Their approach is related to our CharList theory, but not directly related to
Java (or C# strings). It would be interesting to add their solver as additional
back-end to KeY to speed-up the verification process; similar to how KeY can
already use external SMT provers.

In [13] an Isabelle formalisation of a string library for C0 is presented. The
formalisation uses the internal representation of strings in C0 and focuses on
5 http://code.google.com/p/owasp-esapi-java

http://code.google.com/p/owasp-esapi-java

104 R. Bubel, R. Hähnle, and U. Geilmann

the specification and verification of the String library itself. The thesis does not
elaborate on the achieved automation. Due to the different type of programming
languages the addressed problems are not directly comparable.

Closest related to our approach is the KIV [2] system which uses also a dy-
namic logic to verify Java programs, but differs fundamentally in its formal-
isation of the Java programming language. There is some support for String
literals. Literals, where used as reference, are replaced by a reference term
taking care to reuse the same reference for same literals. Otherwise String
literals remain literals specified in terms of an algebraic data type. A“hard
coded” output stream is provided and allows to treat example programs like
System.out.println("Hello"). The intention is to specify and verify e.g. the
order of static (class) initialization by injecting print statements at various
places in the source code. The class java.lang.String is not part of the KIV
core classes and thus not supported. Adding support would require to add a
specification based on an actual implementation of the String class using 16-bit
character arrays in contrast to using the string literal datatype. To the best of
our understanding the String pool is not (or only limited) modelled explicitly
and thus support for the intern() method would require additional effort.

The string model of the programming language Spec# [1] is similar to Java.
On the logical side, the string formalisation of Spec# specifies no knowledge
about the content of string literals and almost no knowledge about the string
contents of “regular” string instances. The specification of the equals method
expresses meta-properties like reflexivity, commutativity and transitivity, but
not content equality. But Spec# supports the length property of strings and the
verifier is aware of the length of String literals. Special attention was given to an
efficient specification of the immutability of Strings [14]. Spec# provides limited
support for the String pool to allow treatment of the switch construct. The
specification of the String pool expresses that the pool is a function on the con-
tent of the string and not on the references, but no other properties are specified.
The function is also specified as heap independent which is only correct under
the assumption that the String pool does not change. The languages Boogie [15],
Dafny [16] and Chalice [17] do not feature a string type, but Chalice and Dafny
provide support for sequences which are value types.

6 Conclusion and Future Work

We presented a sound and complete content-aware specification of the Java
String model including a modifiable String pool. The chosen formalisation allows
to express conveniently properties involving the content of strings without the
need to resort to a low level encoding using character arrays. We evaluated its ap-
plicability on three case-studies one of which a security relevant implementation
of a string sanitization function.

As immediate next milestone we intend to specify Java’s regular expression
package. This will enable us to verify more complex validation rules of the
OWASP-ESAPI framework. In this context it is tempting to provide a taint
analysis—building on ideas of dynamic taint analyses—is tempting future work.

A Formalisation of Java Strings for Program Specification and Verification 105

References

1. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# Programming System: an
Overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005)

2. Stenzel, K.: Verification of Java Card Programs. PhD thesis, Fakultät für ange-
wandte Informatik, University of Augsburg (2005)

3. Beckert, B., Hähnle, R., Schmitt, P. (eds.): Verification of Object-Oriented Soft-
ware. The KeY Approach. LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007)

4. Filliâtre, J.-C., Marché, C.: The Why/Krakatoa/Caduceus platform for deduc-
tive program verification. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS,
vol. 4590, pp. 173–177. Springer, Heidelberg (2007)

5. Gosling, J., Joy, B., Steele, G., Bracha, G.: Java Language Specification, 3rd edn.
The Java Series. Addison-Wesley, Boston (2005)

6. Rümmer, P.: Sequential, parallel, and quantified updates of first-order structures.
In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp.
422–436. Springer, Heidelberg (2006)

7. Geilmann, U.: Formal verification using Java’s String class. Studienarbeit,
Chalmers University of Technology and Universität Karlsruhe (November 2009),
http://www.key-project.org/doc/2009/sta_geilmann.pdf

8. Gries, D., Schneider, F.B.: Avoiding the undefined by underspecification. In: van
Leeuwen, J. (ed.) Computer Science Today. LNCS, vol. 1000, pp. 366–373. Springer,
Heidelberg (1995)

9. Leavens, G.T., Poll, E., Clifton, C., Cheon, Y., Ruby, C., Cok, D., Müller, P.,
Kiniry, J., Chalin, P.: JML Reference Manual. Draft rev. 1.200 (February 2007)

10. Conti, J.J., Russo, A.: A taint mode for python via a library. In: OWASP AppSec
Research 2010 (2010)

11. Chang, W., Streiff, B., Lin, C.: Efficient and extensible security enforcement using
dynamic data flow analysis. In: Proc. of CCS 2008, pp. 39–50. ACM, New York
(2008)

12. Kiezun, A., Ganesh, V., Guo, P.J., Hooimeijer, P., Ernst, M.D.: Hampi: A solver
for string constraints. In: Proc. of ISSTA 2009. ACM, New York (2009)

13. Starostin, A.: Formal verification of a c-library for strings. Master’s thesis, Saarland
University (2006)

14. Leino, K.R.M., Müller, P., Wallenburg, A.: Flexible immutability with frozen ob-
jects. In: Shankar, N., Woodcock, J. (eds.) VSTTE 2008. LNCS, vol. 5295, pp.
192–208. Springer, Heidelberg (2008)

15. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A
modular reusable verifier for object-oriented programs. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp.
364–387. Springer, Heidelberg (2006)

16. Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness. In:
Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 348–370.
Springer, Heidelberg (2010)

17. Leino, K.R., Müller, P.: A basis for verifying multi-threaded programs. In:
Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 378–393. Springer, Heidelberg
(2009)

http://www.key-project.org/doc/2009/sta_geilmann.pdf

dCTL: A Branching Time Temporal Logic

for Fault-Tolerant System Verification

Pablo F. Castro1,3, Cecilia Kilmurray1,
Araceli Acosta2,3, and Nazareno Aguirre1,3

1 Departamento de Computación, FCEFQyN, Universidad Nacional de Ŕıo Cuarto,
Ŕıo Cuarto, Córdoba, Argentina

{pcastro,ckilmurray,naguirre}@dc.exa.unrc.edu.ar
2 Facultad de Matemática, Astronomı́a y F́ısica, Universidad Nacional de Córdoba,

Córdoba, Argentina
aacosta@famaf.unc.edu.ar

3 Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET), Argentina

Abstract. With the increasing demand for highly dependable and
constantly available systems, being able to reason about faults and their
impact on systems is gaining considerable attention. In this paper, we are
concerned with the provision of a logic especially tailored for describing
fault tolerance properties, and supporting automated verification. This
logic, which we refer to as dCTL, employs temporal deontic operators in
order to distinguish “good” (normal) from “bad” (faulty) behaviors, us-
ing deontic permission, prohibition and obligation combined in a novel
way with temporal operators. These formulas are interpreted over tran-
sition systems, in which normal executions are distinguished from faulty
ones. Furthermore, we show that this logic is sufficiently expressive to
describe various common properties of interest in fault tolerant systems,
and show that it features some desirable characteristics that make it
suitable for analysis. Indeed, even though we show that the logic is more
expressive than CTL, we prove that it maintains the time complexity of
the model checking problem for CTL. The logic, its expressiveness and
its use to express properties of fault tolerant systems, are illustrated via
some case studies.

Keywords: Formal Methods, Fault Tolerance, Temporal Logic, Model
Checking.

1 Introduction

With the increasing demand for highly dependable and constantly available sys-
tems, being able to reason about computer systems behavior in order to provide
strong guarantees for software correctness, has gained considerable attention,
especially for safety critical systems. In this context, a problem that deserves at-
tention is that of capturing faults, understood as unexpected events that affect
a system, as well as expressing and reasoning about the properties of systems in
the presence of these faults.

G. Barthe, A. Pardo, and G. Schneider (Eds.): SEFM 2011, LNCS 7041, pp. 106–121, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

dCTL: A Branch. Time Temp. Logic for Fault Tolerant Syst. Verification 107

Various researchers have been concerned with formally expressing fault toler-
ant behavior, and some formalisms and tools associated with this problem have
been proposed [6]. Some recent approaches include the use of model checking for
analyzing fault tolerant systems [11], and the employment of synthesis mecha-
nisms for systematically producing controllers that help to achieve fault tolerance
[8]. A particular trend in formal methods for fault tolerance, that we take as a
starting point in this paper, is based on the observation that normal vs. abnor-
mal behaviors can be treated as behaviors “obeying” and “violating” the rules of
correct system conduct, respectively. This leads to a straightforward application
of deontic operators (operators to express permission, obligation and prohibi-
tion) for separating normal from abnormal behaviors, and thus for expressing
fault tolerant systems and their properties [7]. This idea has been exploited by
various researchers in different ways, e.g., for extending a Hoare logic with the
possibility of expressing properties of programs in the presence of exceptions
[7], for specifying normal behavior of components in distributed systems [13],
for specifying fault tolerant systems and their intended properties [3], and the
extension of temporal logics with obligation so that robustness can be expressed
[10], amongst others.

The work we present in this paper is related to the above mentioned deontic
logic approaches to fault tolerance specification and reasoning. We propose a
logic especially tailored for describing fault tolerance properties based on the
use of deontic operators, with an emphasis on expressing intended (temporal)
properties of fault tolerant systems, rather than (axiomatically) prescribing com-
ponent/system behavior. We then share the motivation of related works such as
[13,3], but components will be described using behavioral models such as tran-
sition systems, and the logic will be reserved for expressing properties regarding
these systems. We maintain a strong concern on automated verification of these
properties. Indeed, this logic, which we refer to as dCTL, is composed of CTL and
deontic operators for distinguishing “good” (normal) from “bad” (faulty) behav-
iors, as other deontic approaches, but the way in which temporal and deontic
operators are combined makes the logic suitable for analysis. Our proposed dCTL
logic is more expressive than CTL, which as we will argue makes it useful for
describing common properties of interest in the context of fault tolerant systems,
but it preserves the complexity of the model checking problem for CTL, as we
show in this paper. Thus, it constitutes a good candidate for describing temporal
properties of fault tolerant systems, when the intention is to use model checking
for their analysis. This is so especially compared to related temporal-deontic ap-
proaches such as RoCTL* [10,14], for which model checking is currently reduced
to CTL* model checking, and thus is significantly less efficient.

We provide a number of case studies which enable us to illustrate the use of the
logic, and its expressive power. These case studies, though small, represent simple
models of common situations in fault tolerance, and are useful for assessing the
expressiveness of the logic. They are presented simply as transition systems in
which normal states (those resulting from a normal transition), are distinguished
from abnormal ones (those resulting from a fault).

108 P.F. Castro et al.

2 Preliminaries

In this section, we reproduce some basic definitions and facts regarding Kripke
structures and CTL, which are necessary in the presentation of our logic.

2.1 Kripke Structures

Kripke structures are a standard vehicle for interpreting modal or temporal logic
formulas as well as for characterizing the operational behavior of reactive systems
[6]. Let AP be a set of atomic propositions. A Kripke structure over AP is a 4-
tuple 〈S, I,R, L〉, where S is a set of elements called states, I ⊆ S is a set of
initial states, R ⊆ S×S is a transition relation between states, and L : S → 2AP

is an interpretation function, which indicates the set of atomic propositions that
hold in each state.

Given a Kripke structure M = 〈S, I,R, L〉, the interpretation of logical con-
nectives and modal operators in a modal logic can typically be defined by re-
sorting to L and the structure of R. For temporal logics, it is usually necessary
to employ the notion of trace to define the semantics of some operators. A trace
is simply a maximal sequence of states, adjacent with respect to R. When a
trace starts in an initial state, it is called an execution ofM , with partial execu-
tions corresponding to non-maximal sequence of adjacent states. Given a trace
σ = s0, s1, s2, s3, . . ., the ith state of σ is denoted by σ[i], and the final segment
of σ starting in position i is denoted by σ[i..]. Finally, we will denote by UM the
set of all traces, i.e., maximal sequences of adjacent states, of M .

Without loss of generality, it can be assumed that every state has a successor,
as is customary in various temporal logics [2].

Colored Kripke Structures. We define a colored Kripke structure as a 5-
tuple 〈S, I,R, L,N〉, where 〈S, I,R, L〉 is a Kripke structure and N ⊆ S is a set
of normal states. Arcs leading to abnormal states can be thought of as faulty
transitions, our representation of faults (similar approaches to formally model
faults can be found in the literature, e.g., [12]). Then, normal executions will
be those transiting only through normal states. The set of normal executions
will be denoted by NT . In this paper, we assume that in every colored Kripke
structure, and for every normal state, there exists at least one successor state
that is also normal, and that at least one initial state is normal. This guarantees
that every system has at least one normal execution, i.e., that NT �= ∅.

2.2 Computation Tree Logic

Computation Tree Logic (CTL) is a branching time temporal logic with impor-
tant applications in model checking [5]. This logic allows for the description of
properties over Kripke structures, by complementing propositional connectives
with path quantifiers and temporal operators, combined in a certain restricted
way. It is a logic of “computation trees” since it allows one to express properties

dCTL: A Branch. Time Temp. Logic for Fault Tolerant Syst. Verification 109

referring to the tree that is constructed from a Kripke structure, starting from
an initial state, and unfolding the structure to form a (typically infinite) tree.

Let us describe the syntax of the logic. Let AP be a set {p0, p1, . . .} of atomic
propositions; the set Φ of CTL well formed formulas is recursively defined as:

Φ ::= � | pi | ¬Φ | Φ→ Φ | EXΦ | AXΦ | E(Φ U Φ) | A(Φ U Φ)

CTL formulas are interpreted on states over a Kripke structure. Given a Kripke
structure M = 〈S, I,R, L〉, and a state s ∈ S, the semantics of CTL formulas is
defined as follows:

– M, s |= �
– M, s |= pi ⇔ pi ∈ L(s), where pi ∈ AP.
– M, s |= ¬ϕ⇔ not M, s |= ϕ.
– M, s |= ϕ→ ϕ′ ⇔ (M, s |= ¬ϕ) or (M, s |= ϕ′).
– M, s |= EXϕ⇔ for some traces σ such that σ[0] = s, M,σ[1] |= ϕ.
– M, s |= AXϕ⇔ for all traces σ such that σ[0] = s, M,σ[1] |= ϕ.
– M, s |= E(ϕ U ϕ′) ⇔ for some traces σ such that σ[0] = s, there exists a
j ≥ 0 such that M,σ[j] |= ϕ′, and for every 0 ≤ k < j, M,σ[k] |= ϕ.

– M, s |= A(ϕ U ϕ′) ⇔ for all traces σ such that σ[0] = s, there exists a j ≥ 0
such that M,σ[j] |= ϕ′, and for every 0 ≤ k < j satisfies M,σ[k] |= ϕ.

Some model checkers, particularly SMV, employ CTL as a language for expressing
temporal properties of systems. The model checking problem for this logic is
known to be linear on the size of the system and the formula being verified, as
opposed to the case of CTL*, a more expressive computation tree logic for which
the model checking problem is exponential on the size of the verified formula [6].

3 A Deontic Computation Tree Logic: dCTL

In this section we introduce dCTL, the logic that will be employed in order to
specify, and later on verify, properties of fault tolerant systems. Formulas in this
logic refer to properties of behaviors of colored Kripke structures, as defined
in the previous section, in which a distinction between normal and abnormal
states (and therefore also a distinction between normal and abnormal traces) is
made. The logic dCTL is defined over CTL, with its novel part being the deontic
operators O(ψ) (obligation), P(ψ) (permission), and R(ψ) (repair or recovery),
which apply on a certain kind of path formula ψ. The intention of these operators
is to capture the corresponding notion of obligation, permission and repair over
traces. Intuitively, these operators have the following meaning:

– O(ψ): property ψ is obliged in every future state reachable via non-faulty
transitions.

– P(ψ): there exists a normal execution, i.e., not involving any faults, starting
from the current state and along which ψ holds.

– R(ψ): property ψ holds in every future faulty state, i.e., resulting from the
immediate occurrence of a fault.

110 P.F. Castro et al.

Clearly, obligation and permission will enable us to express intended properties
which should hold in all normal behaviors and some normal behaviors, respec-
tively. Repair, on the other hand, will enable us to express properties that should
hold when faults occur; they will mainly serve the purpose of imposing restric-
tions on what should happen when faults occur, so that certain properties can
be guaranteed.

These deontic operators have an implicit temporal character, since ψ is a path
formula. As it will be made clearer later on, these operators, in combination with
path formulas of the form ψ � ψ′ (operator � is an implication between trace
properties), provide some additional expressiveness with respect to CTL, without
augmenting the expressiveness of the standard CTL operators A and E. As we
will argue in the next section, these operators, used in a combined way, will be
useful to state some fault tolerance properties straightforwardly.

Let us present the syntax of our logic. Let AP be a set {p0, p1, . . .} of atomic
propositions; the sets Φ and Ψ of state and path formulas, respectively, are
mutually recursively defined as follows:

Φ ::= � | pi | ¬Φ | Φ→ Φ | A(Ψ � Ψ) | E(Ψ � Ψ) | O(Ψ � Ψ) | P(Ψ � Ψ)
| R(Ψ � Ψ ′)

Ψ ::= XΦ | Φ U Φ | ΦW Φ

Other boolean connectives (here, state operators), such as ∧, ∨, etc., can be
defined as usual. Also, traditional temporal operators G and F can be expressed,
as G(φ) ≡ φW ⊥, and F(φ) ≡ � U φ. The standard boolean operators and the
CTL quantifiers A and E have the usual semantics. Notice however that both
CTL quantifiers and deontic operators apply to formulas involving the operator
�. This operator relates two path formulas, and it represents a conditional. For
instance, O(ψ � ψ′) indicates that, for every normal trace σ starting in the
current state, if σ satisfies ψ then it also satisfies ψ′. From a more technical
perspective, which will be made clearer in later sections, the operator � enables
us to restrict the way in which path formulas can be combined in the scope of a
state operator (a mechanism also exploited in other logics, particularly CTL2).
This will be essential for extending the expressiveness of CTL while retaining its
model checking complexity.

Let us formally state the semantics of our logic. We start by defining the
relationship �, formalizing the satisfaction of dCTL state formulas in colored
Kripke structures:

– M, s � �.
– M, s � pi ⇔ pi ∈ L(s), where pi ∈ AP .
– M, s � ¬ϕ⇔ not M, s � ϕ.
– M, s � ϕ→ ϕ′ ⇔ (M, s � ¬ϕ) or (M, s � ϕ′).
– M, s � A(ψ � ψ′) ⇔ M,σ � ψ implies M,σ � ψ′, for all traces σ such that
σ[0] = s.

– M, s � E(ψ � ψ′) ⇔ M,σ � ψ implies M,σ � ψ′, for some traces σ such
that σ[0] = s.

dCTL: A Branch. Time Temp. Logic for Fault Tolerant Syst. Verification 111

– M, s � O(ψ � ψ′) ⇔ for every σ ∈ NT such that σ[0] = s we have that for
every i ≥ 0, M,σ[i..] � ψ implies M,σ[i..] � ψ′.

– M, s � P(ψ � ψ′) ⇔ for some σ ∈ NT such that σ[0] = s we have that for
every i ≥ 0, M,σ[i..] � ψ implies M,σ[i..] � ψ′.

– M, s � R(ψ � ψ′) ⇔ for every trace σ such that σ[0] = s we have that for
every i ≥ 0: if s[i] /∈ N , then M,σ[i..] � ψ implies M,σ[i..] � ψ′.

The above satisfaction relation makes use of dCTL satisfaction for path formulas,
whose definition is standard:

– M,σ � Xϕ⇔M,σ[1] � ϕ.
– M,σ � ϕ U ϕ′ ⇔ there exists j ≥ 0 such that M,σ[j] � ϕ′ and for every

0 ≤ k < j, it holds that M,σ[j] � ϕ.
– M,σ � ϕ W ϕ′ ⇔ either there exists j ≥ 0 such that M,σ[j] � ϕ′ and for

every 0 ≤ k < j it holds that M,σ[j] � ϕ, or for every j ≥ 0 we have that
M,σ[j] � ϕ.

As usual, we will denote by M � ϕ the fact that M, s � ϕ holds for every state s
ofM , and by � ϕ the fact thatM � ϕ, for every colored Kripke structureM . We
will often employ the shorthand O(ψ), meaning O(� � ψ) (similarly for other
operators and quantifiers). We also apply path operators to state formulas (we
just used � in O(� � ψ) as a path formula). This can be done thanks to the
fact that every state formula ϕ can be expressed as a path formula, by ⊥ U ϕ.

The above introduced deontic operators enjoy some useful properties, some
of which we enumerate below. In the following properties, we use ϕ and ϕ′ for
state formulas and ψ for path formulas:

1. O(⊥) ≡ O(ψ)∧O(¬ψ), where ¬ψ denotes the negation of ψ, obtained using
the dual temporal operators of ψ and pushing the negation inwards.

2. O(�) ≡ �
3. P(⊥) ≡ ⊥
4. R(⊥) � AGϕ↔ O(ϕ)
5. R(⊥) � EGϕ↔ P(ϕ)
6. R(�) ≡ �
7. R(⊥) → P(�)
8. O(ϕ) ∧O(ϕ′) → O(ϕ ∧ ϕ′)
9. O(ϕ) ∨O(ϕ′) → O(ϕ ∨ ϕ′)

10. P(ϕ ∧ ϕ′) → P(ϕ) ∧P(ϕ′)
11. P(ϕ) ∨P(ϕ′) → P(ϕ ∨ ϕ′)
12. R(ϕ) ∧R(ϕ′) → R(ϕ ∧ ϕ′)
13. R(ϕ) ∨R(ϕ′) → R(ϕ ∨ ϕ′)

Let us briefly explain these properties. Property 1 states that expressing that
false is obliged (which is equivalent to saying that there will eventually be a fault)
is the same as having contradicting obligations. Property 2 expresses that saying
that true is obliged is equivalent to true. Similar properties hold for the permis-
sion operator. Property 3 indicates that false cannot be allowed. The deduction
rules state that, in the absence of faults, the deontic operators can be expressed

112 P.F. Castro et al.

start

��
�������	p, q
��

�������	p, q�� ��

���
�

�
�

�

������p
��

�
� �

�
�
�� �t ��
������s ��
������r

�����������

Fig. 1. A simple colored Kripke structure

using standard CTL. The properties of the operator R state that true always
holds after a fault, while R(⊥) expresses that there will be no further faults in
the future; this last expression implies P(�), i.e., that there exist some good
executions. Properties 8-13 relate the deontic operators to the standard boolean
connectives. Due to space restrictions, we are unable to include the proofs of
these properties in this paper; most of them can be proved straightforwardly
resorting to the semantics of the involved operators.

In order to illustrate the semantics of the deontic operators, consider the
colored Kripke structure in Figure 1, where the set of involved propositional
variables is {p, q, r, s, t}, and each state is labeled by the set of propositional
variables that hold in it. Also, the states that are the target of dashed arcs are
abnormal states, also dashed, while the remaining ones are normal (i.e., dashed
arcs are used for denoting transitions to faulty states, and the only faulty state
in this model is the one labeled with t). It is obvious then that in every state
of normal paths from the state indicated with start, p holds, which in dCTL is
expressed as O(p). Also, there exist normal executions for which p ∧ q always
holds, expressed in dCTL as P(p ∧ q). On the other hand, the repair operator
enables us to express properties regarding faulty states, and therefore also faulty
executions. For instance, we can express that, immediately after every reachable
fault, t holds, and a state in which r holds can be reached. In dCTL, these
properties can be expressed as R(t) and R(Fr), respectively.

Finally, notice that other deontic operators, especially the prohibition, can be
expressed using the above introduced ones. Prohibition can be characterized as
F(ψ) = ¬P(ψ). Intuitively, a (trace) property is forbidden when it cannot be
true in a normal behavior. In other words, if such a property is continuously true
in a trace, this trace contains some faults.

4 Fault Tolerance Reasoning in dCTL

Now that we have introduced our logic, let us start describing its use for express-
ing properties of systems in which faults might occur. We will illustrate the use
of the logic using a few examples of typical fault tolerance situations.

dCTL: A Branch. Time Temp. Logic for Fault Tolerant Syst. Verification 113

��������w0

m0

��
		��������w1

m1

��

Fig. 2. A simple model of a memory cell, without faults

4.1 A Memory Cell

Let us consider a system composed of a simple memory cell, which stores a
bit of information and supports reading and writing operations. Such a simple
system can be characterized as the Kripke structure shown in Figure 2, where
each state maintains the current value of the memory cell (mi, for i = 0, 1) and
the last write operation that was performed (wi, for i = 0, 1). Obviously, in this
system the result of a reading depends on the value stored in the cell. Thus, a
property that one might associate with this model, is that the value read from
the cell coincides with that of the last writing performed in the system. This
property can straightforwardly be expressed using CTL, as follows: AG((m0 →
w0)∧ (m1 → w1)). This can be considered part of the requirements specification
that the implementation described in Fig. 2 is expected to satisfy. Of course, this
system expresses ideal behavior and does not take into account faults of any kind,
making the use of the deontic operators unnecessary. So let us consider some
faults in this scenario. Suppose that, when a bit’s value is 1, it can unexpectedly
lose its charge and turn into a 0. In this case, the above implementation cannot
guarantee the specification is satisfied, since it is obvious that, if after writing
1 in the cell the described fault occurs and a reading is performed, a 0 will be
read instead of the last written value 1.

So, the above model must be altered in order to cope with the possibility of the
described fault occurring. A typical mechanism for dealing with this situation in
fault tolerance is via redundancy. For instance, one might decide to implement
the same system now using three memory bits instead of one. Writing operations
are performed simultaneously in the three bits, whereas reading operations will
return the value that is repeated at least twice in the memory bits (known as
voting), and write it back in all three of them. The resulting system is depicted in
Figure 3. Each state in this model is described by a variable wi which records the
last writing operation performed, together with three bits, described by boolean
variables c0, c1 and c2. The occurrence of a fault, which changes a bit with
value 1 to hold a 0, is represented by a dashed line. Faulty states (indicated by
dashed circles) are those resulting from a fault occurrence. Standard continuous
lines denote normal transitions between states, representing reading or writing
operations.

Notice that the reading operation is defined in a different way, in the presence
of redundancy; the read value is the one that is repeated the most, so reading
a 1 can be logically expressed as r1 = (c0 ∧ c1) ∨ (c0 ∧ c2) ∨ (c1 ∧ c2). That is,
the value read is a 1 if there are at least two “one bits” in the memory cell with
redundancy. With r1 defined, r0 is defined simply as its negation.

114 P.F. Castro et al.

��������w1

111

��

���
�
�

� � � � � � � � �

��	
								

��
��������������������

��																		

��
��

��������������������������

�

 �

�
�
�

�

w1

011

���
�
�

��	
								

���
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

�

 �

�
�
�

�

w1

101

� � � � � � � � �

��	
								

��

�

 �

�
�
�

�

w1

110

���
�
�

� � � � � � � � �

����
��
��
��
��
��
��
��
��
��
��
�

�

 �

�
�
�

�

w1

001

���
�

�
�

�
�

�

���
��

��
��

��
��

��
��

��
��

��

������
����

���
���

���
����

���
���

��

�

 �

�
�
�

�

w1

010

���
�
�
�
�
�
�

�� ���
��

��
��

��
��

��
�

�

 �

�
�
�

�

w1

100

��� � � � � � � � � � � � � � �

����
��

��
��

��
��

��
��

��
��

�

����
��
��
��
��
��
��

�

 �

�
�
�

�

w1

000

��

��
����������w1

000
��

��

����������w0

000

 ��������������������������������� ���
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

!!

Fig. 3. A model of a memory cell, augmented with redundancy to deal with faults

Now let us discuss the properties one might expect of this augmented memory
cell model. The original requirements of our model need to be updated to refer to
our new implementation for reading a value (mi is replaced by the above defined
ri): AG((r0 → w0) ∧ (r1 → w1)). Of course, this property does not hold in the
model, if faults occur. Still, this property is useful, since its verification, e.g. via
model checking, would produce counterexamples that help us understand the
situations in which our requirements are violated, in scenarios involving faults.

Besides the previous property, one of the most obvious properties one might
be interested in is that, as long as no faults occur, the specification is guaranteed
to hold. This can be thought of as a verification that the fault tolerance mecha-
nism incorporated into to original system does not affect the satisfaction of the
requirements specification when no faults occur. This first example of a fault
tolerance property can be expressed naturally using obligation, in the following
way:

O((r0 → w0) ∧ (r1 → w1))

Let us start expressing properties of faulty scenarios. The motivation for intro-
ducing fault tolerance mechanisms is to be able to maintain the system behaving
correctly even in the presence of faults. Of course, not every faulty scenario will
maintain correct system behavior, so the general invariant property that we orig-
inally had becomes a conditional invariant, asserting that it will hold as long as
fault occurrence is constrained. For example, for our memory cell with redun-
dancy, we could say that the read value will coincide with the last written value

dCTL: A Branch. Time Temp. Logic for Fault Tolerant Syst. Verification 115

even in the presence of faults, but as long as, whenever a fault occurs, no further
faults happen before a read or write operation is performed. In dCTL, this is
expressed as follows as follows:

R((not-too-broken U bits-coincide) � (ri → wi))

where not-too-broken = P(�) ∨ r1 (at most one fault has occurred since last
read/write), and bits-coincide = (c0 ↔ c1) ∧ (c0 ↔ c2) (capturing that the
three bits coincide, always a consequence of a read or write). Notice that the
subformula to the right of � is not restricted to normal behaviors, since it
neither uses obligation nor permission operators. But the subformula to the left
of � restricts what must happen when faults occur, as we wanted: whenever
a fault occurs the system must transit nonfaulty transitions, until a read or
write operation is performed. This formula is an example of the use of the repair
operation. It also employs P(�), which expresses that the current state is a
normal one (recall the restriction of colored Kripke structures that says that
normal states must have at least a normal successor).

The pattern R(ψ � φ) is a useful one in fault tolerance settings: it expresses
that the state property φ is guaranteed to hold even in the presence of faults,
as long as whenever a fault occurs, the system behaves as ψ indicates. Various
interesting engineering questions arise in relation to this pattern (which we do
not deal with in this paper); for instance, given a state formula φ, one might be
interested in synthesizing the weakest formula ψ such that the previous pattern
formula holds.

Another interesting property that dCTL enables us to express is that, regard-
less of how many consecutive faults occur, if the system is in a faulty state, i.e.,
a fault has just occurred (maybe immediately after another fault), the system
always has the chance to behave in a way that the requirements of the system
are reestablished. This is naturally expressed using permission, as follows:

AG(¬P(�) ∧ EXP(�) � EGφ)

Since our model does not have unrecoverable faulty states, the formula ¬P(�)∧
EXP(�) captures the property of a state being faulty (it is very easy to capture
faulty states even in the presence of unrecoverable ones). Notice that the above
“error avoidance” property holds in our model, since write operations always take
us back to a state in which the requirements of the system are reestablished.

4.2 A Token Ring Protocol

Let us now consider another example. Suppose that we have a simple system
composed of three connected nodes, whose activities are regulated via a token
ring protocol. In an original system, the three nodes are connected in a ring
topology, and a token is passed through by the nodes so that the node that
has it in a particular time is the one with access to a particular resource, e.g.,
permission to send information across the network. It is not difficult to think
of a few examples of properties that might be thought of as the requirements

116 P.F. Castro et al.

������n0
""

##

�

�
�

�
� � �

������n1

$$

�

�

�

%%
������n2

&&

''

�
�

�

������nt

((

�
 �

!
�
!� lt))

ni: Node i has the token
lt: Lost token
nt: New token created

Fig. 4. A model of a token ring of nodes, where tokens can be lost

of the system, such as there is always exactly one node who has the token, and
whenever a node has a token, it eventually passes it to the next one in the ring.

A simple fault that can be conceived in this context is one in which, due to the
unreliability of the medium, the token might be lost when being transmitted from
a node to the next one. If the period that each node has the token is fixed, then a
fault detection mechanism can be easily implemented using a timeout (if a node
have not seen the token for more than the time limit for each node, times the
number of nodes). An abstraction of this situation, including the fault detection
and a recovery approach, is depicted in Figure 4. The states ni correspond to
the token being held by node i; when the token is lost, no node has it, and when
the detection of the missing token is established, a new token is created, and
given to node 0.

The requirements on this system can be straightforwardly specified using CTL,
as follows:

AG((n0 ∧ ¬n1 ∧ ¬n2) ∨ (¬n0 ∧ n1 ∧ ¬n2) ∨ (¬n0 ∧ ¬n1 ∧ n2))
AG(ni → AX(ni⊕1))

where ⊕ is addition modulo three. Notice that, for the sake of simplicity, we
assume that each node has the token for exactly one instant of time (in the next
step, the token has to belong to the next node). If one wants to check that these
properties hold when no faults occur in the system, that can be expressed (and
later on verified) using dCTL, in a similar way as for our previous example, i.e.,
by using obligation:

O((n0 ∧ ¬n1 ∧ ¬n2) ∨ (¬n0 ∧ n1 ∧ ¬n2) ∨ (¬n0 ∧ ¬n1 ∧ n2))
O(ni � AX(ni⊕1))

The second of the above original requirements, though guaranteed when no faults
occur, fails in any scenario in which at least a fault occurs. This is a case in
which a desirable property needs to be relaxed, rather than given up, due to
faults: the requirement that the token must be passed to the next node in the
next instant is transformed into the token being passed at some future moment
to the next node. That is, the second of our requirements is relaxed into the
following: AG(ni → AF(ni⊕1)). This is a progress property that holds for the
system, provided it behaves in a strongly fair fashion. Notice that, even though
strong fairness in not expressible in CTL, this constraint is typically incorporated

dCTL: A Branch. Time Temp. Logic for Fault Tolerant Syst. Verification 117

by various model checkers for the verification of liveness properties, and our
property is a progress one, a particular case of liveness.

Another interesting fault tolerance property is one that expresses that faults
are the only responsible of the token being lost. In other words, if the token is
held by a particular node ni, the token will be passed to the next node, or a
fault will occur. This is expressed in dCTL in the following way:

AG(ni → X(¬P(�) ∨ ni⊕1))

With the two simple case studies presented in this section, we tried to show ex-
amples of common properties of interest in the context of fault tolerant systems
that can be, in our opinion, naturally expressed in dCTL. Other more general
properties of fault tolerant systems, such as the concepts of closure and conver-
gence, as described in [1], can also be expressed in a direct way. Closure serves
the purpose of expressing that, given a state formula φ characterizing a required
property of a system, ϕ is (inductively) preserved by the system by non-faulty
transitions. In dCTL, this is expressed as O(φ � AX(ϕ)). Convergence, on the
other hand, allows one to express that, from any state satisfying certain prop-
erty φ′ (e.g., indicating that the system might be “‘mildy” broken), if no further
faults occur then the system always comes back to a state satisfying ϕ (i.e.,
it eventually recovers from the fault). This can be expressed separated in two
parts. First, we express that from any normal state satisfying ϕ′, if we move
through nonfaulty transitions, we can eventually reach a state in which ϕ holds:
O(ϕ′ � AF(ϕ)). Second, we say that whenever a fault occurs, if we move through
states that are normal or satisfy ϕ′, then we can eventually reach a state in which
ϕ holds: R(G(ϕ′ ∨P(�)) � Fϕ). Some of the properties we dealt with in our
examples can be thought of as variants of these two concepts.

5 Expressivity and Complexity of dCTL

In this section we show some results regarding the expressiveness and complexity
of our logic dCTL. The complexity results enable us to show not only that the
above properties of fault tolerant systems can be automatically checked, but
also that checking them can be done in polynomial time with respect to the
sizes of the model and the verified formula. We start by showing that dCTL
formulas can be model checked, by providing a characterization of our logic
into the more expressive logic CTL∗. This characterization, which is not difficult
to devise, introduces a fresh propositional letter n in the encoding, to “mark”
normal behaviors. This translation is formalized in the following definition.

Definition 1. The translation τ from dCTL formulas over an alphabet AP, to
CTL∗ formulas over the alphabet AP ∪ {n}, for some symbol n /∈ AP, is defined
as follows:

– τ(�) = �.
– τ(pi) = pi.
– τ(¬ϕ) = ¬τ(ϕ).

118 P.F. Castro et al.

– τ(ϕ→ ϕ′) = τ(ϕ) → τ(ϕ′).
– τ(A(ψ � ψ′)) = A(τ(ψ) → τ(ψ′))).
– τ(E(ψ � ψ′)) = E(τ(ψ) → τ(ψ′)).
– τ(O(ψ � ψ′)) = A(Gn→ G(τ(ψ) → τ(ψ′)))
– τ(P(ψ � ψ′)) = E(Gn ∧ G(τ(ψ) → τ(ψ′)))
– τ(R(ψ � ψ′)) = A(G(¬n→ (τ(ψ) → τ(ψ′))))
– τ(Xϕ) = X(τ(ϕ)).
– τ(ϕ U ϕ′) = τ(ϕ) U τ(ϕ′).
– τ(ϕW ϕ′) = τ(ϕ) W τ(ϕ′).

The above translation from dCTL to CTL∗ is semantics preserving. The following
mapping between Kripke structures and colored Kripke structures enables us to
argue about the semantics preservation.

Definition 2. Let M = 〈S,R,L〉 be a Kripke structure defined over an alphabet
AP ∪ {n}. From M , we define the colored Kripke structure M∗ = 〈S,R,L′,N〉
over the alphabet AP, in the following way:

– L′ is L restricted to AP.
– s ∈ N ⇔M, s � n.

The following theorem shows that our embedding of dCTL in CTL∗ is semantics
preserving.

Theorem 1. For every M = 〈S,R,L〉 defined over an alphabet AP ∪ {n}, and
every dCTL formula ϕ over AP, the following holds:

M∗ �dCTL ϕ⇔M �CTL∗ τ(ϕ).

Proof. By induction on the structure of formulas.

It is worth noting that our translation of dCTL deontic operators to CTL∗ in-
volves some CTL∗ formulas which are not expressible in CTL. In particular, the
formula ¬P(p� Xp), which is translated to A(F¬n∨F(p∧X¬p)) in CTL∗, is not
expressible in CTL, nor in none of its extensions CTL+, ECTL and ECTL+. This
expressiveness result, which follows from properties given in [9], is summarized
in the following theorem.

Theorem 2. The expressive powers of logics CTL, dCTL, CTL+, ECTL, ECTL+

and CTL∗, are related by the following diagram of inclusions:

dCTL

**"""""""""""""""""""

CTL

++#
##

##
##

##

,,$$$$$$$$$
�� CTL+ �� ECTL+ �� CTL∗

ECTL

--%%%%%%%%%

..&&&&&&&&&&&&&&&&&&

dCTL: A Branch. Time Temp. Logic for Fault Tolerant Syst. Verification 119

Proof. A proof of AF(p ∧ X¬p) not being expressible in ECTL+ can be found
in [9] (cf. Theorem 5 therein). We can use a similar argument to prove that
A(F(¬n)∨F(p∧X¬p)) is not expressible in ECTL+ either. Consider the sequence
of models N1, N2, N3, . . . andM1,M2,M3, . . . used in Theorem 5 of [9], and set n
to true in every state of these models. Since we have that Mi, ai � AF(p∧X¬p),
we also have that Mi, ai � A(F(¬n) ∨ F(p ∧ X¬p)). Since it is also the case
that Ni, ai � AF(p ∧ X¬p), for every i, then it must be the case that Ni, ai �
A(F(¬n) ∨ F(p ∧ X¬p)). Taking into account that these structures cannot be
distinguished by ECTL+ formulas, it is straightforward the fact that ¬P(p→ Xp)
is not expressible in ECTL+. Moreover, this formula is not expressible in any of
the logics CTL, ECTL or CTL+, which are sublogics of ECTL+.

This same theorem can also be extended to prove that some dCTL formulas are
not expressible in other related logics, particularly CTL2. The argument for the
proof is essentially the same used in the above proof.

The model checking problem for CTL, ECTL, CTL+ and CTL2 is in P, while
for ECTL+ and CTL∗ this problem is PSPACE-complete. Our logic is more ex-
pressive than CTL and is able to express formulas not expressible in ECTL+,
so a natural concern is whether the model checking problem for our logic is
PSPACE-complete, which would be an unwanted, but reasonable, price paid for
its expressiveness. As we show below, the model checking problem for dCTL
maintains a polynomial complexity. This, combined with the fact that dCTL
is able to express properties not expressible in other known “efficient” (in the
sense that their model checking is in P) sublogics of CTL∗, make our logic a
novel fragment of CTL∗.

Theorem 3. The model checking problem for dCTL is in P.

Proof. The main idea behind the proof is the adaptation of the algorithm de-
scribed in [2] for CTL model checking, to support also checking deontic formulas.
These additional processes can be done in polynomial time, using reachability
algorithms.

Temporal models are implemented as graphs, so our set N of colored Kripke
structures can be captured simply by adding a boolean variable n, set to true in
exactly those states that belong to N (recall that, according to our restriction
on colored Kripke structures, if n is true in some state s, then n is true in
some successor of s). In order to check M � ϕ, we start by calculating the
sets Sat(ψ) = {s | M, s � ψ}, for every subformula ψ of ϕ, starting from the
subformulas at the bottom in the syntax tree of ϕ. The main technical difficulty
is avoiding the exponential blow up in the translation of formulas of the form
A(ψ � φ) and E(ψ � φ), etc. This blow up is avoided since these quantifiers
always apply to a boolean combination of at most two path formulas. These
formulas can then be checked using the process for the equivalent formulas in
CTL.

It remains to show how to check formulas of the form O(ψ � ψ′) and P(ψ �
ψ′). For the sake of simplicity, and without loss of generality, we can restrict
the analysis to deontic operators applied to a single path formula (it is known

120 P.F. Castro et al.

that implications of path formulas in the scope of a path quantifier can be
translated to a state formula of a fixed length). Consider the formula O(ψ),
which is equivalent to A(Gn → G(ψ)). In order to build the set Sat(O(ψ)), we
can restrict the building process to states where n is true, and calculate that
this set of states satisfies A(ψ). This can simply be checked using the model
checking algorithm for CTL. Now consider P(ψ). This formula is equivalent to
the CTL∗ formula E(Gn ∧ Gψ). In order to build the set Sat(P(ψ)), we check
that there exists some path of states satisfying n where Gψ is true; this is done
by checking Eψ for the nodes satisfying n (this can be done in polynomial time,
inductively). Then, s ∈ Sat(P(ψ)) if there is some successor of these states which
satisfies both n and Eψ. Finally, checking R(ψ) demands a similar technique.
In summary, these processes can be performed using a depth-first search, and
the algorithms for checking CTL formulas. Our extra checking processes are
polynomial, therefore the final model checking algorithm is also polynomial with
respect to the size of the model and the length of the formula.

6 Conclusions and Future Work

We have proposed a computation tree logic especially tailored for describing
temporal properties of fault tolerant systems, and employing temporal deon-
tic operators for this purpose. The deontic operators, which help in making a
distinction between normal and abnormal states and behaviors, provide an ex-
pressiveness that is sufficiently rich for describing various properties of interest in
the context of fault tolerance. We showed that some formulas expressible in our
logic cannot be expressed in other known fragments of CTL∗, including ECTL+

and its sub-logics. However, and as opposed to the case for ECTL∗ and CTL∗,
for which the model checking problem is PSPACE-complete, model checking our
logic dCTL is in P.

These results, together with our arguments regarding the usefulness of the
logic for fault tolerance system specification, make it an interesting fragment
of CTL∗. In order to argue about its usefulness, we have developed two small
case studies of fault tolerance situations, which despite their simplicity enabled
us to illustrate the expressivity of the logic. Expressing temporal properties
regarding fault tolerance could alternatively be achieved by a more “low level”
approach, e.g., directly referring to faulty states via some atomic state formula
capturing exactly such states. We believe that our deontic operators provide an
indirect, higher level, way of referring to faults in the expression of fault tolerance
properties, capturing some patterns useful in this context. Moreover, properties
of deontic operators allow one to reason about formal descriptions at a higher
level of abstraction.

We are currently exploring various lines of future work. We are developing
more complex examples, and we are experimenting with the use of a μ-calculus
model checker, Mucke, used as a target to express dCTL formulas. We are also
analyzing alternative deontic operators that would provide an expressive power
equivalent to that of our current version of the logic, but featuring a more intu-
itive reading. Also, we have not been concerned so far about providing an actual

dCTL: A Branch. Time Temp. Logic for Fault Tolerant Syst. Verification 121

formalism in which the system, the associated faults and the fault tolerance
mechanisms are described, in a methodologically sound way. We plan to develop
such a setting, incorporating our logic in it.

Acknowledgements. The authors would like to thank Pedro D’Argenio and
the anonymous referees for their valuable comments. This work was partially
supported by the Argentinian Agency for Scientific and Technological Promo-
tion (ANPCyT), through grant PICT PAE 2007 No. 2772. The fourth author’s
participation was also supported through ANPCyT grant PICT 2006 No. 2484.

References

1. Arora, A., Gouda, M.: Closure and Convergence: A Foundation of Fault-Tolerant
Computing. IEEE Transactions on Software Engineering 19(11) (1999)

2. Baier, C., Katoen, J.-P.: Principles of Model Checking. The MIT Press, Cambridge
(2008)

3. Castro, P., Maibaum, T.: Deontic Action Logic, Atomic Boolean Algebras and
Fault-Tolerance. Journal of Applied Logic 7(4) (2009)

4. Clarke, E., Draghicescu, I.: Expressibility Results for Linear Time and Branching
Time Logic. In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) Linear
Time, Branching Time and Partial Order in Logics and Models for Concurrency.
LNCS, vol. 354, pp. 428–437. Springer, Heidelberg (1989)

5. Clarke, E., Emerson, E., Sistla, A.: Automatic Verification of Finite-State Con-
current Systems using Temporal Logic Specifications. ACM Transactions on Pro-
gramming Languages and Systems 8(2) (1986)

6. Clarke, E., Grumberg, O., Peled, D.: Model Checking. The MIT Press, Cambridge
(1999)

7. Coenen, J.: Specifying Fault Tolerant Programs in Deontic Logic, Computing Sci-
ence Notes 91/34, Dept. of Mathematics and Computing Science, Eindhoven Uni-
versity of Technology, Eindhoven, The Netherlands (1991)

8. D’Ippolito, N., Braberman, V., Piterman, N., Uchitel, S.: Synthesis of Live Be-
haviour Models for Fallible Domains. In: Proc. of International Conference on
Software Engineering ICSE 2011. IEEE Press, Los Alamitos (2011)

9. Emerson, E., Halpern, J.: “Sometimes” and “Not Never” revisited: on branching
versus linear time temporal logic. J. ACM 33(1) (1986)

10. French, T., McCabe-Dansted, J., Reynolds, M.: A Temporal Logic of Robustness.
In: Konev, B., Wolter, F. (eds.) FroCos 2007. LNCS (LNAI), vol. 4720, pp. 193–205.
Springer, Heidelberg (2007)

11. Gnesi, E., Lenzini, G., Martinelli, F.: Logical Specification and Analysis of Fault
Tolerant Systems through Partial Model Checking. Electronic Notes on Theoretical
Computer Science, vol. 118. Elsevier, Amsterdam (2005)

12. Janowski, T.: On Bisimulation, Fault-Monotonicity and Provable Fault-Tolerance.
In: Johnson, M. (ed.) AMAST 1997. LNCS, vol. 1349, pp. 292–306. Springer, Hei-
delberg (1997)

13. Magee, J., Maibaum, T.: Towards Specification, Modelling and Analysis of Fault
Tolerance in Self Managed Systems. In: Proc. of International Workshop on Self-
Adaptation and Self-Managing Systems SEAMS 2006. ACM Press, New York (2006)

14. McCabe-Dansted, J., French, T., Reynolds, M., Pinchinat, S.: On the Expressivity
of RoCTL*. In: Proc. of the 16th International Symposium on Temporal Represen-
tation and Reasoning TIME 2009. IEEE Computer Society, Los Alamitos (2009)

A Machine-Checked Framework
for Relational Separation Logic�

Juan Manuel Crespo1 and César Kunz1,2

1 IMDEA Software Institute, Madrid, Spain
2 Universidad Politécnica de Madrid

Abstract. Relational methods are gaining growing acceptance for specifying and
verifying properties defined in terms of the execution of two programs—notions
such as simulation, observational equivalence, non-interference, and continuity
can be elegantly cast in this setting. In previous work, we have proposed program
product construction as a technique to reduce relational verification to standard
verification. This method hinges on the ability to interpret relational assertions as
traditional predicates, which becomes problematic when considering assertions
from relational separation logic. We report in this article an alternative method
that overcomes this difficulty, defined as a relational weakest precondition calcu-
lus based on separation logic and formalized in the Coq proof assistant. The for-
malization includes an application to the formal verification of the Schorr-Waite
graph marking algorithm. We discuss additional variants of relational separation
logic inspired by the standard notions of partial and total correctness, and exten-
sions of the logic to handle non-structurally equivalent programs.

1 Introduction

Separation logic [15, 23, 24] is a formalism devised to verify pointer programs using
local reasoning; its extensions and variants have been used successfully in a variety of
large scale programs [30] and smaller but challenging examples [17], including lock-
free algorithms [13].

Relational reasoning, on the other hand, provides an effective means to understand
program behavior: in particular, it allows one to establish that the same program be-
haves similarly on two different runs, or that two programs execute in a related fashion.
Relational judgments are often formalized by quadruples {ϕ} c1∼ c2 {ψ}, denoting
that every pair of executions of c1 and c2 with initial states related by ϕ returns with
final states related by ψ. Prime examples of relational properties include notions of sim-
ulation and observational equivalence, and 2-properties, such as non-interference and
continuity.

Syntactic methods [7] have been developed to support relational reasoning. In par-
ticular, relational separation logic [29] is a variant of separation logic that supports

� Partially funded by European Projects FP7-231620 HATS and FP7-256980 NESSoS, Spanish
project TIN2009-14599 DESAFIOS 10, Madrid Regional project S2009TIC-1465 PROMETI-
DOS. César Kunz is funded by a Juan de la Cierva Fellowship, MICINN, Spain.

G. Barthe, A. Pardo, and G. Schneider (Eds.): SEFM 2011, LNCS 7041, pp. 122–137, 2011.
© Springer-Verlag Berlin Heidelberg 2011

A Machine-Checked Framework for Relational Separation Logic 123

reasoning about two pointer programs; it embodies the conventional wisdom that cast-
ing program correctness as an equivalence between two programs is often more benefi-
cial than functional verification. More concretely, relational separation logic is intended
to prove program correctness by showing the equivalence between the program to be
verified and a reference implementation: e.g. Yang [29] provides an elegant proof in
relational separation logic that the Schorr-Waite graph marking algorithm is equivalent
to depth-first search.

However, these syntactic methods suffer from two important caveats: on the one
hand, these logics confine reasoning to structurally equivalent programs with equivalent
guards; on the other hand, tool support is negligible, with the exception of recent work
by Aleks Nanevski et al [22]—which focuses mainly on the specification and proof
of a rich set of security policies and its static enforcement. Although the relational
postconditions used to describe such policies can be arbitrary relations between pairs
of initial, final heaps and results, this tool seems to be specially tailored to reason about
two runs of the same program, rather than about two different programs. To some extent
it is possible to circumvent such restriction by casting two different programs P and P’
as a single program with a guard deciding which program to execute, i.e. if x then
P else P’. However, this approach seems a bit awkward and it is not at all clear
whether doing this can enable reasoning in terms of relational invariants—which is
essential to keep invariants simple.

In recent work [4] we propose a technique—product program construction—that
reduces relational program reasoning to traditional program reasoning—even for non-
structurally equivalent programs. Perhaps more importantly, it enables the use of tradi-
tional verification tools, circumventing two of the main issues of techniques supporting
relational reasoning. However, this method relies on the ability to interpret relational
assertions (predicates on two states) as traditional assertions (predicates on one state),
but this is not straightforward when using assertions from relational separation logic.
More precisely, an issue arises when trying to interpret the relational assertion

R =
(
p
q

)
(two heaps h1 and h2 are related by R if p holds in h1 and q holds in h2) as a predicate
p � q. Note that this interpretation induces a loss of information: predicateR holds for a
fixed partition of the heap while the latter holds for any partition of the heap. This loss
of information renders our method unsound. Indeed, {P � emp}skip; skip{emp � P} is
a valid separation logic judgment for all P , whereas the following relational judgment
is not: (

P
emp

)
skip ∼ skip

(
emp
P

)
We present in this article an alternative approach that overcomes the difficulties of re-
lational verification by product construction, based on a weakest precondition calculus
for relational separation logic. The calculus is complete and formalized in the Coq proof
assistant, and can be regarded as a first step towards providing tool support for relational
methods that enables reasoning about heap manipulating programs.

The formalization provides a framework to reason about a small imperative language
—using a deep embedding—with heap manipulating instructions very similar to the one

124 J.M. Crespo and C. Kunz

described in Yang’s article. We have formalized its semantics and provided a soundness
proof of the relational weakest precondition. Local reasoning is supported by proving
that the calculus is compatible with the frame rule. Also, we have defined an alternative
calculus ensuring total relational correctness relying on variants (or ranking functions)
defining a well-founded order on states.

The Coq formalization has been used to provide a formal proof of the equivalence
of Depth First Search and the Schorr-Waite graph marking algorithm, reproducing the
proof of the Schorr-Waite graph marking algorithm performed by Yang. We have ex-
tended Yang’s proof to the total relational correctness case, hence ensuring that both
programs terminate. The formal proof of the Schorr-Waite algorithm required a slightly
stronger loop invariant, indicating perhaps a small weakness in the original specification
provided in Yang’s article.

We also introduce an extension of the relational calculus beyond structurally equiv-
alent program, preserving relational reasoning over loop invariants, and thus retaining
the aforementioned advantages. We illustrate the application of the calculus with the
validation of a complex program optimization.

Contents. The rest of the paper is structured as follows: Section 2 describes the for-
malization of the relational weakest precondition calculus, instantiated with a simple
programming setting. In this section, we briefly review relational separation logic and
present the main properties of the calculus: soundness and framing. Also, we present
a variant of the calculus that ensures termination of both programs. Section 3 presents
our main case study, the proof of equivalence between the Schorr-Waite graph marking
algorithm w.r.t. depth-first search. Section 4 describes an extension to non-structurally
equivalent code.

2 Formalization of Relational Separation Logic

We start this section by introducing a simple program setting and then we provide an
overview of relational separation logic. Afterwards, we develop our relational calculus
based on weakest precondition computation.

The programming language presented in Figure 1 is a mild extension of the typical
setting used in standard separation logic [23] to include list expressions. List values are
rather uncommon in similar formalizations of imperative languages but are included
here to ease the description of the Depth First Search (DFS) algorithm, which uses a
stack as auxiliary data structure. In the figure, α stands for a list variable. We let BExp
denote the set of boolean expressions and Stmt the set of statements.

State model. We let S denote the set of states. A state comprises two components:
the store and the heap. The store itself comprises two components to accommodate
two types of expressions: natural numbers and lists. Each of the store components is
modeled the usual way, as a finite mapping from scalar variables in VarN to natural
numbers and as a finite mapping from list variables in VarL to lists of natural numbers.
We assume that the sets of variables VarN and VarL are disjoint. We let upd(x, n, s)
stand for the result of updating the variable x to value n in the store s.

A Machine-Checked Framework for Relational Separation Logic 125

(integer expressions) E ::= 0 | 1 | E + E | E × E | E − E | hd(L)
(boolean expressions) B ::= false | B ⇒ B | E = E | E < E | L = L

(list expressions) L ::= α | ε | E::L | tl(L)
(instructions) I ::= x := alloc(E) | x := [E] | [E] := E | free(E) |

x := E | α := L | assert(B)
(statements) C ::= I | C1; C2 | if B then C1 else C2 | while b do c | skip

Fig. 1. Syntax of Programs

The heap is modeled as a finite mapping from locations (natural numbers) to values.
The special location 0 is denoted null and cannot belong to the domain of a heap. Heaps
are equipped with several operations such as look-up, free, fresh, disjoint union and
interact in the expected way:

Expression Meaning
freshn(h, n) base location for a sequence of n consecutive free cells in h;
look(h, n) value of the cell n in the heap h;
mut(n,m, h) result of setting the contents of cell n of heap h tom;
dealloc(h, n) result of freeing cell n from heap h;

Moreover, we let dom(h) stand for the set of allocated locations of heap h, and h1 # h2
denote the disjoint union of heaps h1 and h2. In the actual Coq development, failure is
captured in an error monad, but for simplicity we omit these details here. Much of the
formalization is adapted from Nanevski et al [21].

Semantics of basic instructions. The semantics of an instruction i is modeled as a
relation [[i]] on states; the rules are given in Fig. 2. The denotation of an instruction is
a relation between states. States are noted as tuples (h, si, sl) where h represents the
heap and si and sl denote the stores for integer and list variables, respectively. The
instruction x := alloc(E) evaluates the expression E to a natural number n and then
allocates n free contiguous heap cells, initializes them with value 0 and sets the value
of x to the first allocated cell. The look up instruction x := [E] evaluates expression E
to a location n and if it is allocated it updates the value of variable x to the contents of
the heap cell n. The mutation instruction [E1] := E2 evaluates E1 to a location n and
if n is a valid location in the current heap, this is modified so that it maps n to the result
of evaluating E2. A field access x := E.f is used as a syntactic sugar of x := [E+f],
when the field identifier f represents a known offset. Similarly, we use E1.f := E2 as a
syntax sugar of [E1+f] := E2. The instruction free(E) releases the heap cell allocated
at the location represented by E. The assert instruction has blocking semantics. The
remaining assignments for integer and list variables are completely standard.

Semantics of commands. The semantics [[c]] of a command is defined as a relation on
states (big step style), using as auxiliary definition the semantics of boolean expressions,
modeled as a function from states to booleans. The definitions are standard and omitted.
Also, we denote 〈c, μ〉 � 〈c′, μ′〉 the small-step command semantics and we use ��

for its reflexive transitive closure. Obviously these two semantic styles are sound and

126 J.M. Crespo and C. Kunz

((h, si, sl), (h′, s′i, s
′
l)) ∈ [[x := alloc(E)]]

.
= s′i = upd(x, m, si)

∧ s′l = sl ∧ h′ = h � (
n−1⊎
i=0

(m + i) �→ 0)

∧ m = freshn(h, n) ∧ n ∈ ([[E]] (h, si, sl))
((h, si, sl), (h′, s′i, s

′
l)) ∈ [[x := [E]]]

.
= s′l = sl ∧ h′ = h ∧ s′i = upd(x, look(h, n), si)
∧ n ∈ dom(h) ∧ n ∈ ([[E]] (h, si, sl))

((h, si, sl), (h′, s′i, s
′
l)) ∈ [[[E1] := E2]]

.
= s′i = si ∧ s′l = sl ∧ h′ = mut(n, m, h)
∧ n ∈ dom(h) ∧ n ∈ ([[E1]] (h, si, sl))
∧ m ∈ ([[E2]] (h, si, sl))

((h, si, sl), (h′, s′i, s
′
l)) ∈ [[free(E)]]

.
= s′i = si ∧ s′l = sl ∧ h′ = dealloc(h, n)
∧ n ∈ dom(h) ∧ n ∈ ([[E]] (h, si, sl))

((h, si, sl), (h′, s′i, s
′
l)) ∈ [[x := E]]

.
= h′ = h ∧ s′l = sl ∧ s′i = upd(x,n, si)
∧ n ∈ ([[E]] (h, si, sl))

((h, si, sl), (h′, s′i, s
′
l)) ∈ [[α := L]]

.
= h′ = h ∧ s′i = si ∧ s′l = upd(α, xs, sl)
∧ xs ∈ ([[L]] (h, si, sl))

((h, si, sl), (h′, s′i, s
′
l)) ∈ [[assert(B)]]

.
= [[b]](h, si, sl) ∧ h = h′ ∧ si = s′i ∧ sl = s′l

Fig. 2. Semantics of basic instructions

complete w.r.t. each other, i.e. [[c]]μμ′ if and only if 〈c, μ〉 �� 〈skip, μ′〉. Also, we say
that a command c is ϕ-safe if for any μ such that ϕμ there exists μ′ and c′ such that
〈c, μ〉� 〈c′, μ′〉, i.e., c is not stuck in ϕ-states.

2.1 Relational Calculus

We introduce in this section the relational calculus establishing the validity of rela-
tional specifications. Relational judgments are formalized as quadruples of the form
{ϕ} c1∼ c2 {ψ}, where ϕ and ψ are relations on states and c1 and c2 are programs,
establishing a relation over every pair of executions of c1 and c2, as formalized in the
following definition:

Definition 1 (valid relational judgment). Two commands c1 and c2 satisfy the pre
and post-relation ϕ and ψ, denoted by the judgment � {ϕ} c1∼ c2 {ψ} if for all states
μ1, μ2 s.t. [[ϕ]]μ1 μ2 one of the following holds:

– c1 diverges with initial state μ1 iff c2 diverges with initial state μ2; or
– for all states μ′1 and μ′2 s.t. [[c1]]μ1 μ

′
1 and [[c2]]μ2 μ

′
2 we have [[ψ]]μ′1 μ

′
2.

Assertions. Rather than representing assertions as syntactic objects, we have modeled
them as relations between states. All of the assertions presented in Yang’s work have a
straightforward interpretation as state relations. The definition of some of them is shown
in Figure 3. We let P,Q stand for relational assertions and p, q for standard separation
logic assertions.

Adopting a shallow embedding of assertions provides extra flexibility by not com-
mitting beforehand to a particular logical language, and allows inheriting all the fea-
tures of Coq’s rich higher-order language. This proved to be convenient when defining

A Machine-Checked Framework for Relational Separation Logic 127

Same st1 st2
.
= st1.h = st2.h

emp2 st1 st2
.
= st1.h = empty ∧ st2.h = empty

(P � Q) st1 st2
.
= ∃h11 h12 h21 h22.

st1.h = h11 � h12 ∧ st2.h = h21 � h22

∧ P (h11, st1.si, st1.sl)(h21, st2.si, st2.sl)
∧ Q(h12, st1.si, st1.sl)(h22, st2.si, st2.sl)(

p
q

)
st1 st2

.
= p st1 ∧ q st2

Fig. 3. Definition of some Relational Assertions

wp(x := alloc(E)) ϕ (h, si, sl)
.
= ∀n m. n ∈ ([[E]] (h, si, sl)) ∧m = freshn(h, n)⇒

ϕ(h �
n−1⊎
i=0

(m + i) �→ 0, si, sl)

wp(x := [E]) ϕ (h, si, sl)
.
= ∀n. n ∈ ([[E]] (h, si, sl))⇒

ϕ(h, upd(x, look(h, n), si), sl)
wp([E1] := E2) ϕ (h, si, sl)

.
= ∀n m. n ∈ ([[E1]] (h, si, sl)) ∧m ∈ ([[E2]] (h, si, sl))⇒

n ∈ dom(h) ∧ ϕ(mut(n, m, h), si, sl)
wp(free(E)) ϕ (h, si, sl)

.
= ∀n. n ∈ ([[E]] (h, si, sl))⇒

n ∈ dom(h) ∧ ϕ(dealloc(h, n), si, sl)
wp(x := E) ϕ (h, si, sl)

.
= ∀n. n ∈ ([[E]] (h, si, sl))⇒ ϕ(h, upd(x,n, si), sl)

wp(α := L) ϕ (h, si, sl)
.
= ∀xs. xs ∈ ([[L]] (h, si, sl))⇒ ϕ(h, si, upd(α, xs, sl))

wp(assert(B)) ϕ (h, si.sl))
.
= [[B]](h, si.sl) ∧ ϕ(h, si.sl)

Fig. 4. Weakest Precondition of basic instructions

a weakest precondition calculus ensuring termination, in which a well-founded relation
must be provably decreasing throughout loop iterations—see Subsection 2.2.

Weakest precondition calculus for basic instructions. Most program verification tools
rely on weakest precondition calculi rather than program logics: concretely, the prevail-
ing means to verify programs against a pre-condition and a post-condition is to generate
a set of proof obligations using a weakest precondition calculus, and finally to discharge
the proof obligations using automatic or interactive provers. Our formalization supports
a similar methodology for relational judgments, and provides a weakest precondition
calculus that computes a set of proof obligations from relational judgments. The weak-
est precondition of a basic instruction i w.r.t. to a state predicate φ is again, a state
predicate (a function taking states and returning propositions). Here instead of using
λ-abstractions we write the state on the left side as arguments to the wp function. More-
over, by abuse of notation we use pattern matching, i.e. a state is noted as a tuple. The
definition of the weakest precondition of the basic instructions is provided in figure 4.
Its definition is straightforward and obviously sound w.r.t. the semantics.

Weakest precondition calculus for 2-statements. Our weakest precondition calculus
wp2 operates on 2-statements, which combine two structurally equivalent statements
into a single construction. Formally, the set Stmt2 of 2-statements is defined

128 J.M. Crespo and C. Kunz

wp2 〈i1, i2〉φ = wp i1 (λm1. wp i2 (λm2. φ m1 m2))

wp2 (c1; c2) φ = wp2 c1 (wp2 c2 φ)

wp2 (if 〈b, b′〉 then c1 else c2) φ = Ψb,b′ ∧ (b〈1〉 ⇒ wp2 c1 φ) ∧ (¬b〈1〉 ⇒ wp2 c2 φ)

wp2 (while 〈b, b′〉 do c) φ = ∃ϕ.ϕ ∧ ∀m1, m2. Ψb,b′ m1 m2 ∧ Ψϕ m1 m2 ∧ Ψφ m1 m2

where
Ψb,b′

.
= b〈1〉 ⇔ b′〈2〉 guard equivalence

Ψϕ
.
= ϕ ∧ b〈1〉 ⇒ wp2 c ϕ invariant preservation

Ψφ
.
= ϕ ∧ ¬b〈1〉 ⇒ φ valid postcondition

Fig. 5. Relational weakest precondition calculus

inductively by the clauses: i) if i1 and i2 are instructions, then [i1, i2] is a 2-statement;
ii) if c, c1, c2 are 2-statements and b, b′ are boolean expressions, then c1; c2, and
if 〈b, b′〉 then c1 else c2, and while 〈b, b′〉 do c are 2-statements. Each 2-statement yields
two structurally equivalent statements; we write c � (c1, c2) to denote that c is a 2-
statement whose left and right components are the statements c1 and c2 respectively.
Conversely, any two structurally equivalent statements yield a 2-statement. Intuitively,
a 2-statement encodes the simultaneous execution of its components, restricting the
calculus to structurally similar programs. In Section 4 we explain how to remove this
restriction by the application of a preliminary program transformation.

The weakest precondition calculus wp2 is defined inductively on the structure of 2-
statements; the rules are given in Figure 5, where b〈1〉 and b〈2〉 respectively denote the
interpretation of the expression b in the first and second memories, and the extension of
connectives to relations is defined in the usual way.

Frame rule. The frame rule lies at the very heart of any separation logic based ver-
ification framework, being the cornerstone of so called “local reasoning”. In order to
support modular verification, we have shown that it holds on the framework presented
in this paper. Let P , Q, and R be relational assertions and c a 2-statement. Then, if

1. the proposition ∀st1, st2. P st1 st2 ⇒ wp2 c Q st1 st2 holds; and
2. R is independent of the variables modified by c

then the following proposition holds:

∀st1, st2. (P � R) st1 st2 ⇒ wp2 c (Q � R) st1 st2

Intuitively, the hypothesis 1 and 2 implies that the only part of state that program c is
allowed to inspect or operate on is described by P and any other part R will remain
unchanged after its execution. This simplifying result has been systematically used to
ease the verification of the Schorr-Waite algorithm.

One of the most challenging aspects of characterizing the frame rule in our setting is
the fact that there is no syntax for assertions, so the customary side condition on R is
formulated semantically by defining the modset of c, i.e. the set of modified variables,
and requiring the validity of R to be independent of it.

A Machine-Checked Framework for Relational Separation Logic 129

Soundness. The calculus is sound, i.e. for all statements c1 and c2, and 2-statement c
s.t. c � (c1, c2), and assertions ϕ and ψ,

[[ϕ]] ⊆ [[wp2 c ψ]] =⇒ � {ϕ} c1∼ c2 {ψ}

Moreover, the weakest precondition calculus is sound and complete w.r.t. relational
separation logic, i.e. for all statements c1 and c2, and 2-statement c s.t. c � (c1, c2), and
assertions ϕ and ψ,

[[ϕ]] ⊆ [[wp2 c ψ]] ⇐⇒ �{ϕ} c1∼ c2 {ψ}

where �{ϕ} c1∼ c2 {ψ} is used to denote that the judgment is derivable in relational
separation logic.

2.2 Total Correctness

One can modify the weakest precondition calculus wp2 to enforce total correctness. To
this end, one must provide for each while statement a variant relation between pairs of
initial and final states, and prove that it is a well-founded order (i.e. no infinite descend-
ing chains) and that it decreases with each iteration. The clause for the while statement
is modified accordingly:

wptc
2 (while 〈b, b′〉 do c)φμ1 μ2

.=
∃ϕ, ∃μ, ϕ ∧ ∀m1,m2. (Ψb,b′ m1m2 ∧ Ψϕm1m2 ∧ Ψφm1m2)∧
wellfounded(μ) ∧ ∀m1,m2. (ϕm1m2 ∧ [[b]]m1m2 ⇒
wp2 c (λs1, s2. μ (s1, s2) (m1,m2))m1m2)

where Ψb,b′ , Ψϕ, and Ψφ are defined as in Figure 5 (replacing wp2 by wptc
2), and μ stands

for the variant relation. The predicate wellfounded(μ) requires μ to be well-founded to
establish the termination of the loop. Notice that we use wp2 instead wptc

2 in the last
line of the formulae above, to avoid redundancy on the verification of termination of c,
which is already established by Ψϕ. Then, assuming termination of instructions, we can
prove total correctness, i.e. for all statements c1 and c2, and 2-statement c s.t. c�(c1, c2),
and assertions ϕ and ψ, and memories μ1 and μ2 s.t. ϕ μ1 μ2,

[[ϕ]] ⊆ [[wptc
2 c ψ]] =⇒ ∃μ′1, μ′2. [[c1]] μ1 μ

′
1 ∧ [[c2]] μ2 μ

′
2 ∧ ψ μ′1 μ′2

Note that the shallow embedding of assertions plays a crucial role here, a partial appli-
cation of the variant is used as argument for the wp. This would not be possible if we
had established a syntax for the formulae through a deep embedding.

3 Verification of the Schorr-Waite Algorithm

The Schorr-Waite graph marking algorithm is a widely used case study, see Section 5.
Yang [29] uses relational separation logic to prove the equivalence between the Schorr-
Waite algorithm and depth-first search, and convincingly argues that the proof in re-
lational separation logic is more elegant and more concise than an earlier functional

130 J.M. Crespo and C. Kunz

verification [28] of the SW algorithm in separation logic. In this section we report on a
machine-checked proof of the Schorr-Waite algorithm using the weakest precondition
calculus described in the previous section. The structure of the proof is similar to Yang’s
pen-and-paper proof [29]; one difference is that we prove total correctness rather than
co-termination.

Algorithm and relational specification. DFS traverses a binary tree marking every node
in a depth-first basis. In order to backtrack the tree traversal, it uses a stack as an auxil-
iary storage to keep track of the parent nodes that need to be revisited. The Schorr-Waite
algorithm optimizes the space needed by DFS by removing the stack. The set of nodes
to be revisited are encoded as a transformation on the heap structure: pushing a node
in the stack is implemented as an inversion of the left edge that is traversed, removing
a node from the stack is defined as restoring the original edge. Figure 6 shows a 2-
statement merging the Schorr-Waite algorithm (marked with a gray shadow) with DFS.

Verification. We have used the Coq framework to verify the 2-statement in Figure 6
against the specification:

Pre
.= Same ∧ c=c′ ∧

(
noDangG ∧ c ∈ G∪{nil}
noDangG ∧ c′ ∈ G∪{nil}

)
Post

.= Same

where c and c′ represent the corresponding tree roots and G denotes the set of tree
nodes. The predicate noDangG states that G is a set of non-dangling pointers closed
under heap reachability:

noDangG
.= ∀�x ∈ G. ∃lr. (x $→ l, r,−,−) ∧ l ∈ G∪{nil} ∧ r ∈ G∪{nil}

The additional condition c ∈ G implies that the set of tree nodes reachable from the
root c is a subset of G. The specification states that under initial heaps with the same
tree structure with root c, SW and DFS terminate with the same final states.

The application of the wp2 function to the 2-statement and the postcondition above
returns a verification condition that contains an existential quantification for the loop in-
variant. We have used a slightly modified version of the invariant proposed by Yang [29]:

Same � uniqα ∧ Stack p c α ∧ p=p′ ∧
(

noDangG ∧ p∈G ∧ c ∈ G
noDangG ∧ p′∈G ∧ α ⊆ G∪{nil}

)
Basically, the invariant establishes that no dangling pointers can be introduced during
the algorithms execution, and provides a relation between the auxiliary stack storage
used by DFS and its representation in the Schorr-Waite algorithm. This relation is for-
malized by the predicate Stack:

Stack p c ε
.= c=nil

Stack p c a::α .= ∃n0, x. Stack c n0 α � c=a∧[(
c $→ n0, x,Marked, Left
c $→ p, x,Marked, Left

)
∨
(
c $→ x, n0,Marked,Right
c $→ x, p,Marked,Right

)]

A Machine-Checked Framework for Relational Separation Logic 131

if 〈 c �= nil , c′ �= nil〉 then⎡⎢⎢⎣
p := c.Left;
c.Mark := Marked
c.Current := isLeft;
c.Left := nil

,

p′ := c′.Left;
c′.Mark := Marked;
c′.Current := isLeft;
α := c′::ε

⎤⎥⎥⎦
else[

p := nil ,
p′ := nil;
α := ε

]
fi

while 〈 c �= nil , α �= ε〉 do

if 〈 p �= nil , p′ �= nil〉 then

[m := p.Mark , m′ := p′.Mark]

else

[m := Marked , m′ := Marked]
fi

if 〈 p �= nil ∧m �= Marked , p′ �= nil ∧m′ �= Marked〉 then⎡⎢⎢⎢⎢⎢⎢⎣

t := p.Left;
p.Left := c;
c := p;
p := t;
c.Mark := Marked;
c.Current := isLeft

,

α := p′::α;
p′.Mark := Marked;
p′.Current := isLeft;
p′ := p′.Left

⎤⎥⎥⎥⎥⎥⎥⎦
else

[d := c.Current , d′ := (hd α).Current]

if 〈 d = isLeft , d′ = isLeft〉 then⎡⎢⎢⎢⎢⎣
t := c.Left;
c.Left := p;
p := c.Right;
c.Right := t;
c.Current := isRight

,
(hd α).Current := isRight;
p′ := (hd α).Right

⎤⎥⎥⎥⎥⎦
else⎡⎢⎢⎣

t := p;
p := c;
c := p.Right;
p.Right := t

,
p′ := hd α;
α := tl α

⎤⎥⎥⎦
fi

fi
done

Fig. 6. Schorr-Waite and DFS 2-statement

132 J.M. Crespo and C. Kunz

In particular, when c �= nil, c is the top element in the stack α and p its left or right
child. The remaining stack elements are related inductively. The difference with respect
to Yang’s invariant consists on the predicate uniq α, that states that the list α does
not contain repeated elements. The need for this extra condition became evident when
discharging the verification conditions in the Coq proof assistant.

Total correctness. We have also developed a total correctness argument for the Schorr-
Waite algorithm using the total correctness version of the weakest precondition calculus
presented earlier. Then, we extended the proof with the addition of a variant relation,
a lexicographic order similar to the one used by Giorgino et al [12]: let (st1, st2) and
(st′1, st

′
2) be pairs of states, then var(st1, st2)(st′1, st

′
2) iff one of the following holds:

– the number of unmarked nodes in (st1, st2) is smaller than the number of unmarked
nodes in (st′1, st′2),

– the number of unmarked nodes in (st1, st2) and (st′1, st′2) is the same but the
number of nodes in (st1, st2) with Current field set to isLeft is smaller than
in (st′1, st

′
2), or

– the number of unmarked nodes and the number of nodes of (st1, st2) and (st′1, st′2)
is the same but the size of the stack α in (st1, st2) is smaller than in (st′1, st

′
2).

We showed that this is a well-founded order and proved that it holds for the pre and post
states of the loop body using the wp2 calculus. In particular note that of the three ways
to construct the order, the first one corresponds to a push, the second one to a swing and
the third one to a pop operation.

4 Beyond Structurally Equivalent Programs

A common caveat of syntactic relational methods is the limited support for non struc-
turally equivalent programs. Although this restriction can be circumvented in the setting
of relational separation logic by using the embedding rule, the ability to reason in terms
of relational loop invariants is still not supported.

In this section, we present a different strategy that cleanly extends the weakest pre-
condition based calculus presented in Section 2 to cope with non structurally equivalent
code. We enhance the previous formalism through a preliminary transformation that is
performed on the programs to be verified. This syntactic transformation can yield struc-
turally equivalent programs while retaining some semantic properties that ensure that
the relational validity on the transformed programs also holds on the original programs.

Let us first make precise the notion of refinement we adopt. We say that c is a refine-
ment of c′, noted c� c′ if the following conditions hold for all μ, μ′, μ′′ and σ:

– if [[c′]] μ μ′ then [[c]] μ μ′;
– if [[c′]] μ μ′ and [[c]] μ μ′′ then μ′ = μ′′ and
– if c is σ-safe then c′ is σ-safe.

We know, under this rather weak definition of refinement, that in order to establish a
relational property on two programs c1 and c2, it is sufficient to establish such property
for any two programs c′1 and c′2 s.t. c1 � c′1 and c2 � c′2:

A Machine-Checked Framework for Relational Separation Logic 133

(RO)

 c; d � d; c

if fv(c) ∩ fv(d) = ∅ (SK)

 c; skip � c

(IF1)

 if b then c1 else c2 � assert(b); c1

(IF2)

 if b then c1 else c2 � assert(¬b); c2

(WHU)

 while b do c � assert(b); c; while b do c

(WHS)

 while b do c � assert(b); c; assert(¬b)

(IFM)

 if b then c ; if b′ then c′ � assert(b⇔ b′); if b then c; assert(b′); c

(LRS)

 for i=m to n by k do c � assert(m ≤ n′ ≤ n); for i=m to n′ by k do c;

for j = i to n by k do c[j/i]
(LT)

 for i=0 to n by 1 do c � assert(n mod k = 0);

for i=0 to n by k do (for j =0 to k by 1 do c[i+j/i])
(R-RI)

 for i=m to n by k do c � assert(
⌈n−m

k

⌉
=

⌈
n′ −m′

k

⌉
);

for i=m′ to n′ by k do c[(i−m′+m)/i]

Fig. 7. Syntactic refinement rules (excerpt)

Lemma 1. For all programs c1 and c2, and c′1, c′2 such that c1 � c′1 and c2 � c′2, if
� {ϕ} c′1∼ c′2 {ψ} then � {ϕ} c1∼ c2 {ψ}, provided c′1 and c′2 are ϕ-safe.

Figure 7 provides a set of syntactic rules deriving a refinement relation. For clarity,
we introduce the statement for i =m to n by k do c as a syntax sugar for statement
i:=m; while i<n do c; i:= i+k. As can be seen in the figure, the rules consist of basic
structure transformations. The most complex rules are perhaps (LRS) and (LT), which
perform loop range splitting and loop tiling, respectively. The set of refinement rules in
Figure 7 is sound, i.e., it induces a refinement relation:

Lemma 2. For all statements c and c′, if � c� c′ then c� c′.

Example: vectorization of sum. Figure 8 presents a simple algorithm that computes
the sum of the values of the node elements in a singly linked list. A program vector-
ization consists on relying on special purpose SIMD (single instruction, multiple data)
instructions, taking advantage of the associativity and commutativity of the arithmetic
computation performed in a program loop. Intuitively, for this particular example the
vectorization consists in grouping the loop iterations in chunks of 4 iterations, and per-
forming 4 addition operations simultaneously with the mm add epi32 instruction.
Figure 9 shows the vectorized algorithm. Let n denote the length of the linked list
pointed by head. The first loop iterates n÷ 4 times and computes the summation of the
first 4 × (n ÷ 4) elements of the linked list, storing it in the 128-bits vector sum. The
second loop computes the summation of the remaining n mod 4 elements and stores it
in variable rest. The final value is computed by adding to the variable rest the partial
results stored in the bit vector sum.

134 J.M. Crespo and C. Kunz

sum (list∗ head, int size)

rest:=0;
for i=0 to size by 1 do

rest:= rest+head.val;
head:=head.next;

Fig. 8. Original version of sum algorithm

By applying a sequence of refinement steps over the original program one can obtain
a pair of structurally similar programs. Then, providing a relational invariant becomes
much simpler than verifying each of the programs functionally. Indeed, assume that the
predicate EqList(head, head′, size) holds as precondition, with inductive predicate
EqList is defined by the following clauses:

EqList(l1, l2, 0) .= l1 = l2 =null
EqList(l1, l2, n+1) .= EqList(l′1, l

′
2, n) ∧ ∃v, l′1, l′2. l1 $→ (v, l′1) ∧ l2 $→ (v, l′2)

Then, in order to verify that original and vectorized algorithms compute the same value,
i.e., that rest = rest′ holds as a relational postcondition, it is sufficient to establish the
validity of loop invariants of the form:

sum[0]+sum[1]+sum[2]+sum[3] = rest

and
rest′+sum[0]+sum[1]+sum[2]+sum[3] = rest

Notice that these relational loop invariants are much simpler that those required in a
functional verification of the algorithm.

5 Related Work

Relational methods and program verification techniques have been intimately connected
since their origins. In particular, methods based on program refinement, program equiv-
alence, and logical relations have been used widely to reason about program correct-
ness. In this respect, it is perhaps surprising that relational program logics have only
been introduced recently. Benton [7] develops a relational Hoare logic for a small im-
perative language and shows how program optimizations can be validated using rela-
tional reasoning. Other relational logics include Yang’s relational separation logic [29]
and Barthe, Grégoire and Zanella’s probabilistic relational Hoare logic [5]. More re-
cently, Nanevski, Banerjee and Garg developed a relational separation logic for Hoare
type theory [22]. It extends Yang’s logic to a richer programming and specification lan-
guage, and is tailored for reasoning information flow; the logic is formalized in the Coq
proof assistant; in contrast to our formalization, it uses a shallow embedding of pro-
grams. Independently, Beringer [8] provided a reconstruction of relational separation
logic based on a notion of decomposition that allows reducing relational program log-
ics to standard program logics; the soundness of the logic is formalized in the Isabelle

A Machine-Checked Framework for Relational Separation Logic 135

ssesum (list∗ head′, int size)

sum = mm set1 epi32(0);
for i=0 to size− 3 by 4 do

curr:= mm insert epi32(curr, head′.val, 0);
head′:=head′.next;
curr:= mm insert epi32(curr, head′.val, 1);
head′:=head′.next;
curr:= mm insert epi32(curr, head′.val, 2);
head′:=head′.next;
curr:= mm insert epi32(curr, head′.val, 3);
head′:=head′.next;
sum:= mm add epi32(sum, curr);

rest′:= 0;
for j = i to size by 1 do

rest′:= rest′+head′.val;
head′:=head′.next;

rest′:= rest′+ mm extract epi32(sum, 0)+ mm extract epi32(sum, 1)+
mm extract epi32(sum, 2) + mm extract epi32(sum, 3);

Fig. 9. SSE optimized version of sum algorithm

proof assistant. In addition to these general-purpose logics, specialized relational logics
have been developed for specific properties, and especially information flow [1].

On the formalization side, there have been many machine-checked accounts of sep-
aration logic in proof assistants, e.g. [3, 26], including some frameworks designed to
support automated reasoning in separation logic [2, 11, 18, 20]. Moreover, the Schorr-
Waite algorithm is a classical example in program verification, and has been verified
formally using a variety of tools and techniques. Suzuki [25] provides an early machine-
supported proof of the Schorr-Waite algorithm using an automated verifier for pointer
programs. More recently, Bornat [10] provides a machine-checked proof of the algo-
rithm in the Jape proof assistant. Subsequently, Mehta and Nipkow [19], Hubert and
Marché [14], Bubel [6], Jacobs and Piessens [16] formalize the algorithm in Isabelle,
Caduceus, KeY and VeriFast respectively. More recently, Giorgino et al [12] prove the
correctness and termination of the algorithm in Isabelle, using refinement. All these
formalizations use standard program logics.

6 Conclusion

Relational separation logic is a powerful tool devised for reasoning about the rela-
tion between heap manipulating programs. To the best of our knowledge, we have
formalized in the Coq proof assistant the first certified weakest precondition calculus
for relational separation logic. We illustrated its usefulness and scalability by proving a
challenging case study: the correctness of the Schorr-Waite graph marking algorithm.

The Coq development has been done using ssreflect library which greatly improves
the conciseness of the proofs. For example, the relational weakest precondition,

136 J.M. Crespo and C. Kunz

soundness proofs, the definition and specification and proof of the Schorr-Waite graph
marking algorithm and Depth First Search take 1586 lines of specification and 3538
lines of proofs. We believe that the formalization of the verification setting and the
formal proof of the algorithms poses no significant overhead over hand-written proofs.

In the future, it would be interesting to formalize the modular proof of the algo-
rithm reported in [9] and to prove the equivalence between different implementations of
ADTs; for the latter, we believe that the extensions to non-structurally equivalent code
will prove crucial. Another line of work is to extend our formalization to reason about
concurrent separation logic [27] and verify the correctness of lock-free algorithms [13].

Acknowledgement. The authors would like to thank Aleksander Nanevski for intro-
ducing ssreflect to us and patiently explaining some its main features.

References

1. Amtoft, T., Bandhakavi, S., Banerjee, A.: A logic for information flow in object-oriented
programs. In: Morrisett, G., Peyton Jones, S. (eds.) Principles of Programming Languages,
pp. 91–102. ACM, New York (2006)

2. Appel, A.: Tactics for separation logic (January 2006) (unpublished manuscript),
http://www.cs.princeton.edu/˜appel/papers/septacs.pdf

3. Appel, A.W., Blazy, S.: Separation logic for small-step cminor. In: Schneider, K., Brandt, J.
(eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 5–21. Springer, Heidelberg (2007)

4. Barthe, G., Crespo, J.M., Kunz, C.: Relational verification using product programs. In:
Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 200–214. Springer, Heidelberg
(2011)

5. Barthe, G., Grégoire, B., Zanella Béguelin, S.: Formal certification of code-based crypto-
graphic proofs. In: Shao, Z., Pierce, B.C. (eds.) Principles of Programming Languages, pp.
90–101. ACM Press, New York (2009)

6. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Software. The
KeY Approach. LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007)

7. Benton, N.: Simple relational correctness proofs for static analyses and program transforma-
tions. In: Jones, N.D., Leroy, X. (eds.) Principles of Programming Languages, pp. 14–25.
ACM Press, New York (2004)

8. Beringer, L.: Relational program logics in decomposed style (2010) (submitted)
9. Bodı́k, R., Chandra, S., Galenson, J., Kimelman, D., Tung, N., Barman, S., Rodarmor, C.:

Programming with angelic nondeterminism. In: Principles of Programming Languages, pp.
339–352 (2010)

10. Bornat, R.: Proving pointer programs in hoare logic. In: Backhouse, R.C., Oliveira, J.N.
(eds.) MPC 2000. LNCS, vol. 1837, pp. 102–126. Springer, Heidelberg (2000)

11. Gast, H.: Lightweight separation. In: Mohamed, O., Muñoz, C., Tahar, S. (eds.) TPHOLs
2008. LNCS, vol. 5170, pp. 199–214. Springer, Heidelberg (2008)

12. Giorgino, M., Strecker, M., Matthes, R., Pantel, M.: Verification of the Schorr-Waite algo-
rithm - From trees to graphs (January 2010)

13. Gotsman, A., Cook, B., Parkinson, M.J., Vafeiadis, V.: Proving that non-blocking algorithms
don’t block. In: Shao, Z., Pierce, B.C. (eds.) Principles of Programming Languages, pp. 16–
28. ACM, New York (2009)

14. Hubert, T., Marché, C.: A case study of c source code verification: the schorr-waite algorithm.
In: Aichernig, B., Beckert, B. (eds.) Software Engineering and Formal Methods, pp. 190–
199. IEEE Computer Society, Los Alamitos (2005)

http://www.cs.princeton.edu/~appel/papers/septacs.pdf

A Machine-Checked Framework for Relational Separation Logic 137

15. Ishtiaq, S., O’Hearn, P.: BI as an assertion language for mutable data structures. In: Principles
of Programming Languages, pp. 14–26 (2001)

16. Jacobs, B., Piessens, F.: The VeriFast program verifier. Technical Report CW-520, Katholieke
Universiteit Leuven (2008)

17. Jacobs, B., Smans, J., Piessens, F.: Verifying the composite pattern using separation logic.
In: Workshop on Specification and Verification of Component-Based Systems, Challenge
Problem Track (November 2008)

18. McCreight, A.: Practical tactics for separation logic. In: Berghofer, S., Nipkow, T., Urban,
C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 343–358. Springer, Heidelberg
(2009)

19. Mehta, F., Nipkow, T.: Proving pointer programs in higher-order logic. Inf. Comput. 199(1-
2), 200–227 (2005)

20. Myreen, M.O.: Separation logic adapted for proofs by rewriting. In: Kaufmann, M., Paulson,
L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 485–489. Springer, Heidelberg (2010)

21. Nanevski, A., Vafeiadis, V., Berdine, J.: Structuring the verification of heap-manipulating
programs. In: Hermenegildo, M., Palsberg, J. (eds.) Principles of Programming Languages,
pp. 261–274. ACM, New York (2010)

22. Nanevski, A., Banerjee, A., Garg, D.: Verification of information flow and access control
policies with dependent types. In: 2011 IEEE Symposium on Security and Privacy. IEEE
Computer Society, Los Alamitos (2011)

23. O’Hearn, P.W., Reynolds, J., Yang, H.: Local reasoning about programs that alter data
structures. In: Fribourg, L. (ed.) CSL 2001 and EACSL 2001. LNCS, vol. 2142, pp. 1–19.
Springer, Heidelberg (2001)

24. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In: Logic in
Computer Science, pp. 55–74. IEEE Computer Society, Los Alamitos (2002)

25. Suzuki, N.: Automatic Verification of Programs with Complex Data Structures. PhD thesis,
Stanford University (1976)

26. Tuch, H., Klein, G., Norrish, M.: Types, bytes, and separation logic. In: Hofmann, M.,
Felleisen, M. (eds.) Principles of Programming Languages, pp. 97–108. ACM, New York
(2007)

27. Vafeiadis, V., Parkinson, M.J.: A marriage of rely/guarantee and separation logic. In: Caires,
L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 256–271. Springer, Hei-
delberg (2007)

28. Yang, H.: Local reasoning for stateful programs. PhD thesis, University of Illinois, Urbana,
IL, USA (2001)

29. Yang, H.: Relational separation logic. Theoretical Computer Science 375(1-3), 308–334
(2007)

30. Yang, H., Lee, O., Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P.: Scalable
shape analysis for systems code. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123,
pp. 385–398. Springer, Heidelberg (2008)

A Dataflow Analysis to Improve SAT-Based

Bounded Program Verification

Bruno Cuervo Parrino1, Juan Pablo Galeotti1,2,
Diego Garbervetsky1,2, and Marcelo F. Frias2,3

1 Departmento de Computación, FCEyN, UBA
2 CONICET

3 Department of Software Engineering, ITBA
{bcuervo,jgaleotti,diegog}@dc.uba.ar, mfrias@itba.edu.ar

Abstract. SAT-based bounded verification of programs consists of the
translation of the code and its annotations into a propositional formula.
The formula is then analyzed for specification violations using a SAT-
solver. This technique is capable of proving the absence of errors up to
a given scope. SAT is a well-known NP-complete problem, whose com-
plexity depends on the number of propositional variables occurring in
the formula. Thus, reducing the number of variables in the logical repre-
sentation may have a great impact on the overall analysis. We propose
a dataflow analysis which infers the set of possible values that can be
assigned to each local and instance variable. Unnecessary variables at the
SAT level can then be safely removed by relying on the inferred values.
We implemented this approach in TACO, a SAT-based verification tool.
We present an extensive empirical evaluation and discuss the benefits of
the proposed approach.

1 Introduction

Bounded verification [7] is a technique in which all executions of a procedure are
exhaustively examined within a finite space given by a bound (a) on the domain
sizes and (b) on the number of loop unrollings. The scope of analysis is examined
in order to look for an execution trace that violates the provided specification.

Several bounded verifications tools [7, 10, 12, 24] rely on appropriately trans-
lating the original piece of software, as well as the specification to be verified, to a
propositional formula. The use of a SAT-Solver [3] then allows us to find a valuation
for the propositional variables that encodes a failure. Theoretically, SAT-solving
time grows exponentially w.r.t. the number of propositional variables. However,
modern SAT solvers achieve better results on practical instance problems.

In contrast to other analyses relying on theorem provers such as SMT-solvers
[16], SAT-based analyses cannot be used to prove programs are correct. They
only guarantee the absence of errors within the given scope. Nevertheless, SAT-
based tools are better suited for finding counterexamples. By bounding the scope
of analysis, these tools are able to faithfully represent the program behavior
without loosing precision (i.e., no false warnings).

G. Barthe, A. Pardo, and G. Schneider (Eds.): SEFM 2011, LNCS 7041, pp. 138–154, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Dataflow Analysis to Improve SAT-Based Bounded Program Verification 139

The size of the propositional formula and its number of variables are highly
related to the size and shape of the annotated program, the state representation
(for Java: local, global variables and the heap) and the given scope of analysis.
Therefore, techniques aiming at reducing any of these factors could possibly have
a great impact on the overall verification cost.

Dataflow analysis [15] is a static analysis technique which is widely used for
program understanding and optimization. Roughly speaking, it infers facts about
the program by collecting the data flowing through its control flow graph (usually
an abstraction of the concrete program state). Instances of dataflow analyses
are: live variable analysis, available expressions, reachable definitions, constant
propagation, etc. These analyses enable compilers to eliminate dead code, reduce
unnecessary run-time checks, remove redundant computations, etc.

In this work, we present a novel dataflow analysis for inferring the set of
possible values that can be assigned to local and instance variables, at each
program point. The obtained information is a safe over-approximation of the
actual value each variable may have. We apply this value-propagation analysis
in the context of bounded verification where it is possible to use a fine-grained
abstraction without compromising termination.

We introduced this analysis in TACO [10], a SAT-based tool specially aimed
at verifying JML-annotated [6] Java sequential programs. TACO accurately rep-
resents all Java data types (including primitive types such as double and float)
and supports nearly all JML syntax. TACO does not report false bugs but is not
able to prove the absence of errors above the given scope of analysis. Among its
features, TACO introduces a novel technique for removing unnecessary propo-
sitional variables at the SAT level. This is accomplished by preprocessing class
invariants in order to obtain a good over-approximation of the initial state of
the Java memory heap. This set of initial values can be supplied to our dataflow
analysis, obtaining a more accurate set of possible values for every program vari-
able. In turn, this information leads to a more aggressive removal of unnecessary
propositional variables at the SAT level.

TACO’s previous representation was implemented as a simple sequence of
if statements. This representation introduced at least one join point per loop
unrolling which impacted negatively in the precision of the overall dataflow anal-
ysis. In this work we introduce an alternative representation for loop unrollings
tailored to favor precision of the dataflow analysis.

Our experiments show significant speed-ups in analysis times: about 30 times
reduction in average. Surprisingly, the proposed loop encoding has a significant
impact in the overall verification time.

Contributions: The technical contributions of this article include:

– A formalization of a dataflow analysis for propagating values through a pro-
gram control flow graph, including a proof sketch showing that the outcome
of the analysis is a sound over-approximation of the program behavior.

– A proof of the fact that the propositional formula obtained by TACO relying
in this analysis is equisatisfiable w.r.t. the unoptimized formula.

140 B. Cuervo Parrino et al.

class Node { Node next; }

class List { Node header;

/*@ invariant (\forall Node n ;\reach(this.header,Node,next).has(n);

@ !\reach(n.next,Node,next).has(n));

@*/

}

Fig. 1. A singly linked list declaration

– TACO-Flow: an extension of TACO featuring a general dataflow framework
including proper generation of control flow graphs, the (bounded) value-
propagation analysis and the generation of the optimized SAT-formula.

– An empirical evaluation using benchmarks accepted by the bounded verifi-
cation community [10] showing an important speed-up in verification time.

Related work: There is plenty of work aiming at improving SAT-based program
verification. The most remarkable examples are the approaches implemented in
F-Soft [12], Saturn [24], TACO [10] and JForge [7]. Here we will focus only on
related work concerning the use of dataflow analysis to alleviate the task of the
SAT-solver. For a comprehensive discussion of these tools please refer to [9].

The idea of using dataflow analysis in the context of SAT-based program
verification is not new. F-Soft [12] performs a dataflow analysis to compute
ranges for values of integer-valued variables and pointers, under the hypothesis
that runs have bounded lengths. Saturn [24] compresses formulas using several
optimizations (e.g., program slicing) and provides means for specifying analyses
aimed at producing method summaries. In [22], the authors proposed an analysis
to infer method summaries and enable modular verification. JForge [7] uses a
dataflow analysis to find and eliminate logically infeasible branches. In [18] the
authors propose a technique based on dataflow analysis (variable-definitions) to
split the SAT-problem into several simpler sub-problems.

Outline: §2 introduces the foundations of SAT-based verification and TACO,
then it presents the problem we intend to tackle in the current work. §3 presents
the value-propagation analysis. §4 shows how this technique is applied in the
context of TACO. §5 shows our experimental results and, finally, §6 concludes
and discusses future work.

2 Tight Bounds for Improved SAT-Solving

Fig. 1 shows a JML declaration of a singly linked list data structure. It contains
a header field referring to its first node. Each node links to its next node in
the list by the next field. The List container is annotated with a JML object
invariant which constraints the set of valid linked structures to those who form a
finite acyclic sequence of Node elements. The construct \reach(l,T,f) denotes
the set of objects of type T reachable from a location l using field f .

Method removeLast (shown in Fig. 3a) removes the last element of the list
(if such an element exists). JML allows one to write a partial specification. In

A Dataflow Analysis to Improve SAT-Based Bounded Program Verification 141

JML-Java
+

Analysis scope

Alloy
annotation

DynAlloy
program

DynAlloy
Model

Alloy
Model

KodKod
Model

SAT
Formula

Scope, LU JMLToAlloy
Translation

JavaToDynAlloy
Translation

DynAlloyToAlloy
Translator

AlloyToKodKod
Translator

KodKodToSAT
Translator

Bounds
repository

getInvariant getBoundForInv

Join

Fig. 2. Translating annotated code to SAT

this example, the ensures clause only specifies that the returning Node element
should not be reachable from the receiver list.

As shown in Fig. 2, TACO translates the Java code annotated with the JML [6]
contract into a DynAlloy specification [8]. DynAlloy is a relational specification
language. In other words, every variable in DynAlloy can be seen as a relation
of a fixed arity. For the removeLast method, the resulting DynAlloy program is
shown in Fig. 3b. Signatures List and Node are introduced to model the Java
classes. Also, a singleton signature null is defined to model the Java null value.
Java variables and fields are represented using DynAlloy variables. Java
fields are modelled in DynAlloy as functional binary relations (i.e., S->one T),
and Java variables are modelled as unary non-empty relations (i.e., one S). The
following DynAlloy variables are also introduced to model removeLast’s Java
variables and fields:

header: List -> one (Node+null)
next: Node -> one (Node+null)
this: one List

prev: one Node+null
curr: one Node+null
return: one Node+null

/*@ ensures
@ !\reach(this.header,
@ Node,next).has(\result);
@*/

Node removeLast() {
if (this.header!=null) {
Node prev = null;
Node curr = this.header;
while (curr.next!=null) {

prev = curr;
curr = curr.next;

}
if (prev==null)

this.header = null;
else

prev.next = null;

return curr;
} else
return null;

}

(a) A removeLast() method

(this.header!=null)?;{
prev := null;
curr := this.header;
{

(curr.next!=null)?;
prev = curr;
curr = curr.next

}*;
((curr.next==null)?;
(prev==null)?;

this.header := null
+
(prev!=null)?;

prev.next := null;
);
return := curr;

}+
(this.header==null)?;

return := null

(b) The DynAlloy representation

Fig. 3. Java implementation and its DynAlloy representation

142 B. Cuervo Parrino et al.

If the user wants to perform a bounded verification of removeLast’s contract,
she must limit the object domains and the number of loop iterations. Let us as-
sume that a scope of at most 5 Node objects, 1 List object and 3 loop unrolls is
chosen. The DynAlloy specification is then translated to an Alloy specification as
described in [8]. In order to model state change in Alloy, the DynAlloyToAlloy-
Translator may introduce several Alloy relations to represent different values
(or incarnations) of the same DynAlloy variable in an SSA-like form [5].

In order to translate the Alloy specification into a SAT-problem, the Alloy
Analyzer focuses on translating every Alloy relation into a set of propositional
variables. Each propositional variable is intended to model that a given tuple is
contained in the Alloy relation. In the example, as the Node domain is restricted
to 5 elements, {N1, . . . N5} is the set of 5 available Node atoms. This leads to the
the following propositional variables modeling the binary relation next0 (which,
in turn, models the initial state of the DynAlloy variable next):

Mnext0 N1 N2 N3 N4 N5 null
N1 pN1,N1 pN1,N2 pN1,N3 pN1,N4 pN1,N5 pN1,null

N2 pN2,N1 pN2,N2 pN2,N3 pN2,N4 pN2,N5 pN2,null

N3 pN3,N1 pN3,N2 pN3,N3 pN3,N4 pN3,N5 pN3,null

N4 pN4,N1 pN4,N2 pN4,N3 pN4,N4 pN4,N5 pN4,null

N5 pN5,N1 pN5,N2 pN5,N3 pN5,N4 pN5,N5 pN5,null

Following this representation, propositional variable pN3,N2 is true if and only
if tuple 〈N3, N2〉 is contained in the Alloy relation next0. Given the selected
scope of analysis, if no pre-processing is involved, the resulting SAT-problem
will contain 126 propositional variables. Only 36 (28%) variables model the ini-
tial Java state, that is the representation of the receiver object instances. The
remaining 90 (72%) variables are introduced to represent the intermediate and
final stages for computing the removeLast method. That is, to model the state
evolution during the execution of the method body.

Alloy uses KodKod [21] as an intermediate language, which is then translated
to a CNF propositional formula (Fig. 2 sketches the translations involved). Kod-
Kod allows the prescription of bounds for Alloy relations. For each relation f ,
two relational instances Lf (the lower bound) and Uf (the upper bound) are at-
tached. In any Alloy model I, f (the interpretation of relation f in model I), must
satisfy Lf ⊆ f ⊆ Uf . Therefore, pairs that are in Lf must necessarily belong to
f, and pairs that are not in Uf cannot belong to f. If tuples are removed from
an upper bound, the resulting upper bound is said to be tighter than before.

Tighter upper bounds contribute by removing propositional variables. Given
an Alloy relation f , propositional variables corresponding to tuples that do not
belong to Uf can be directly replaced in the translation process with the truth
value false. This allows us to reduce the number of propositional variables.

TACO preprocesses class invariants and automatically computes a tight upper
bound for the initial state of Java class fields. As shown in Fig. 2, bounds are
stored in a repository. Since bounds are often reused during the analysis of
different methods in a class, the cost of computing the bounds is amortized.

A Dataflow Analysis to Improve SAT-Based Bounded Program Verification 143

This preprocessing allowed TACO to remove (in the presented example) over
70% of the propositional variables representing the initial state.

2.1 Problem Statement

The technique introduced in [10] limits itself to bound those propositional vari-
ables which represent the initial state of the program under analysis. One may
argue that, as the SAT-solver is not able to recognize the order in which the
program control flows, there is no guarantee that the SAT-solving process will
avoid partial valuations from intermediate states that could not lead to a valid
computation trace.

Dataflow analysis allows us to collect facts about the program behaviour at
various points in a program. For instance, we could conclude that (under the
scope of analysis previously chosen) for the following statement: Node curr =
this.header; the set of values that are assignable to curr is {null,N1}.

In this work we propose a dataflow analysis to over-approximate the set of
possible values every Java variable and field may store within the provided scope
of analysis. Using this conservative analysis, we can propagate the upper bounds
from the initial state to the intermediate states. We believe the resulting tighter
upper bounds for the intermediate Alloy relations should contribute by allowing
KodKod to remove propositional variables. For instance, for the presented ex-
ample we are able to remove about 58% of the propositional variables modeling
intermediate stages. As we will see in §5, this technique leads to a potential
improvement in the performance of the SAT-based verification.

3 Propagating Values in DynAlloy Programs

DynAlloy is based on first-order dynamic logic [11]. The aim of this specification
language is to provide a formal characterization of imperative sequential pro-
grams. Fig. 4 shows a relevant fragment of DynAlloy’s grammar. This fragment
corresponds to the DynAlloy programs output by the JavaToDynAlloy transla-
tor in TACO. As shown in Fig. 3b, typical structured programming constructs
can be described using these basic logical constructs. Given a DynAlloy pro-
gram, our dataflow analysis computes an over approximation of all the possible
variable assignments for every program location. We chose DynAlloy as a plat-
form for the dataflow analysis because: 1) it is closer to the SAT-problem than
the Java representation, and 2) it is the last intermediate representation in the
TACO pipeline where a notion of control flow and state change still remains. In
other words, DynAlloy contains the last imperative representation of the code
under analysis.

Concrete Semantics: We begin by defining a concrete semantics for the execu-
tion of this DynAlloy fragment which mimics the execution of Java programs. As
the DynAlloy relational semantics is interpreted in terms of atoms, Atom repre-
sents the set of all atoms in this interpretation. We denote by JV ar#JField the
set of DynAlloy variables. A DynAlloy variable belonging to JV ar corresponds

144 B. Cuervo Parrino et al.

program ::= v := expr “copy”
| v.f := expr “store”
| skip “skip action”
| formula? “test”
| program + program “non-deterministic choice”
| program;program “sequential composition”
| program∗ “iteration”
| 〈program〉(x) “invoke program”

expr ::= null |v | v.f

Fig. 4. Relevant DynAlloy fragment

to the representation of a Java variable and its concrete value is a single atom.
Similarly, a variable belonging to JField models a Java field whose concrete
value is a mapping (functional relation) from atoms to atoms. A concrete state
c ∈ E maps each DynAlloy variable to a concrete value.

E = JV ar # JField→ Atom ∪ P(Atom×Atom)

We denote by M [φ]c the truth value for formula φ at the concrete state c.
Similarly, we denote by X [expr]c the value of expression expr in the concrete
state c. The value of X [expr]c for the DynAlloy expressions that we will consider
could be defined as follows:

X [null]c = {〈null〉}
X [v]c = {c(v)}
X [v.f]c = c(v); c(f)

where the composition of relationsR (arity i) and S (arity j) is defined as follows:

R;S = {〈a1, . . . , ai−1, b2, . . . , bj〉 : ∃b(〈a1, . . . , ai−1, b〉 ∈ R ∧ 〈b, b2, . . . , bj〉 ∈ S)

R → S denotes the Cartesian product between relations R and S. R + +S
denotes the relational overriding defined as follows1:

R+ +S = {〈a1, . . . , an〉 : 〈a1, . . . , an〉 ∈ R ∧ a1 /∈ dom(S)} ∪ S

DynAlloy’s relational semantics is given in [8]. Here we present an alternative
definition based on the collecting semantics [17] which is useful for proving the
correctness of our proposed dataflow technique. A collecting semantics defines
how information flows through a program control flow graph (CFG). Given a
DynAlloy program P it is possible to obtain its CFG. The CFG describes the
structure of the program. In the collecting semantics, every time a new value
traverses a node it is recorded. Therefore, each node keeps track of all values
that passed through it.
1 Given a n-ary relation R, dom(R) denotes the set {a1 : ∃a2, . . . , an such that
〈a1, a2, . . . an〉 ∈ R}.

A Dataflow Analysis to Improve SAT-Based Bounded Program Verification 145

Definition 1. Given a DynAlloy program P and a formula φ representing input
states, the collecting semantics of P starting with state φ is the least fix point
(LFP) of the following equations:

For each node n in the CFG of P :

in(n) =

{{c0|M [φ]c0} n is the entry of CFG(P)⋃
p∈pred(n)

out(p) otherwise

out(n) = Fc(n, in(n))

where in(n), out(n) denote the input and output values of node n and pred(n)
the set of predecessors of n.

The transfer function Fc : DynAlloyProgram × C → C with C ∈ P(E)
models how the concrete state changes as a DynAlloy statement is executed. The
definition is the following:

Fc(skip, cs) = cs
Fc(φ?, cs) = {c|c ∈ cs ∧M [φ]c}
Fc(v := expr, cs) = {c[v $→ X [expr]c]|c ∈ cs}
Fc(v.f := expr, cs) = {c[f $→ c(f) + +(c(v) → X [expr]c)]|c ∈ cs}

Abstract Semantics: We represent an abstract state by mapping each Dy-
nAlloy variable to its corresponding abstract value. The abstract value of a
DynAlloy variable modelling a Java field is a (probably non-functional) binary
relation from atoms to atoms. A DynAlloy variable representing a Java variable
maps to a set of atoms.

A = JV ar # JField→ P(Atom) ∪ P(Atom×Atom)

An abstract value represents the set of all concrete values a DynAlloy variable
may have (i.e., an over-approximation) in a given program location. In order to
operate with this abstraction we need A to be a lattice. Let 〈A,�〉 such that for
all a, a′ ∈ A:

– a � a′ iff ∀x ∈ JV ar # JField(a(x) ⊆ a′(x)),
– a % a′ = a′′ such that ∀x ∈ JV ar # JField(a′′(x) = a(x) ∪ a′(x))

The abstraction function α : E → A formalizes the notion of approximation of
a concrete state by an abstract state. Given a concrete state c ∈ E:

α(c) = a s.t. ∀v ∈ JV ar(a(v) = {c(v)}) ∧ ∀f ∈ JField(a(f) = c(f))

Notice that the chosen abstract domain is indeed very similar to the concrete
domain. The main difference is that an abstract value can represent several
concrete values (i.e., the powerset of Atom). Several concrete values are merged
into a single abstract value after a join point in the CFG.

The concretization function γ : A → C is defined as: γ(a) = {c | α(c) � a}.
LetXα be the abstract evaluation function which is identical toX except that a(v)
directly returns a set. The abstract transfer function F : DynAlloyProgram ×
A→ A is defined by the following set of rules:

146 B. Cuervo Parrino et al.

– F(skip, a) = a
– F(φ?, a) = a
– F(v := expr, a) = a[v $→ Xα[expr]a]
– F(v.f := expr, a) = let from = a(v), to = Xα[expr]a in

if |from| = 1
then a[f $→ a(f) + +(from→ to)] (strong update)
else a[f $→ a(f) ∪ (from→ to)] (weak update)

Notice that the semantics of the store operation distinguishes two cases: 1) the
abstraction is precise enough to perform an update of a unique source, 2) an over-
approximated step must be taken. Due to space limitations we do not include
the dataflow equations for the analysis. It is essentially equal to the collecting
semantics but using the % operator to merge states.

Correctness: Here we show that the abstraction is a sound over-approximation
of the collecting semantics.

Theorem 1. Let cs ∈ C, a ∈ A, n ∈ CFG(P),

α(cs) � a⇒ α(Fc(n, cs)) � F(n, a)

Proof sketch: It can be proved for each statement separately. The proof for skip
and test actions is trivial. The only case that requires some care is the store
operation. It follows directly from the definitions of α, Fc(n, cs), and F(n, α)
(see a complete proof in the companion report [4]).

Corollary 1. For each node n ∈ CFG(P), the LFP of the dataflow analysis
equations is an over approximation of the LFP of the corresponding equations
in the collecting semantics.

Termination: It follows trivially from the fact that a finite Atom set leads to
a finite lattice (both the concrete and abstract domains are finite).

4 Effective Removal of Variables Using Dataflow Analysis

We now present the mechanism to effectively remove propositional variables in
the SAT-formula. As previously mentioned, TACO removes propositional vari-
ables by introducing tighter upper bounds for those Alloy relations representing
the initial Java memory heap. KodKod allows one to prescribe bounds for Alloy
relations of any arity (unary relations included). The DynAlloyToAlloy transla-
tor introduces several versions of the same DynAlloy variable in order to model
state change in Alloy. Our goal is to compute a tighter upper bound for each
Alloy relation modelling different versions of the same DynAlloy variable.

The execution of the DynAlloyToAlloy translator is separated into several
phases. Each phase performs a semantic preserving transformation of the Dy-
nAlloy specification. The following phases are executed in an orderly fashion:

A Dataflow Analysis to Improve SAT-Based Bounded Program Verification 147

1. Unroll: Removes loops by unrolling them up to the provided limit.
2. Inline: Replaces program invocation with the corresponding method bodies.
3. SSA: Applies an SSA-like transformation of the DynAlloy program.
4. NoLocals: Promotes local variables to program parameters.

The resulting DynAlloy specification is then translated into an Alloy represen-
tation following the rules presented in [8]. Once the single static assignment
(SSA) transformation is applied, DynAlloy variables and Alloy relations match.
Therefore, if we perform our value-propagation analysis on this final DynAlloy
representation, we will obtain an over approximation of all possible values an
Alloy relation may have.

By default, Alloy associates a conservative upper bound for each relation
which was not explicitly bounded. If an upper bound is found in the reposi-
tory, TACO instruments the Alloy representation by including the stored upper
bound, refining the initial state. It is worth mentioning that, as the upper bounds
stored in the repository can be seen as an over approximation of the values of
the initial Java memory heap, we use them as a refined entry abstraction for our
dataflow analysis.

The refined entry abstraction is then completed for the remaining variables
depending on the intended meaning of the DynAlloy variable. For those variables
modelling Java parameters, all tuples that satisfy the type definition within the
scope of analysis are associated. For any other DynAlloy variable x, no tuple is
associated (i.e., a(x) = ∅).

In order to properly introduce tighter bounds for all Alloy relations, we in-
spect the abstract value of each DynAlloy variable at the exit location. Given a
DynAlloy variable x ∈ JV ar # JField, the abstract value for x at this location
could be written as an upper bound of (the Alloy relation) x and fed to the
KodKod input, leading to the removal of unnecessary propositional variables.
For cases where x’s abstract value maps to an empty set, a special measure has
to be taken in order to enforce Alloy’s relational constraints.

Definition 2. Let aexit be the computed abstract value for the exit of the CFG.

UDF
x =

{
aexit(x) if aexit(x) �= ∅
defV al(x) otherwise

where defV al(x) returns the default Java values (e.g, 0 for Integer, false for
Bool, etc) in case x models a Java variable, and a total function whose range
contains default values in case x represents a Java field.

We call UTACO
x to the upper bound fed by TACO to KodKod when no dataflow

analysis is performed. The following theorem ensures that the technique is safe
(i.e., it does not miss faults).

Theorem 2. Let θ be the Alloy formula output by the DynAlloyToAlloy trans-
lator. Given an Alloy model I such that M [θ ∧

∧
x

(x ⊆ UTACO
x)]I = true

Then, there is an Alloy model I ′ such that M [θ ∧
∧
x

(x ⊆ UDF
x)]I′ = true

148 B. Cuervo Parrino et al.

Proof. Let I be an Alloy model satisfying the hypothesis. We know by defi-
nition that defV al(x) ⊆ UDF

x . Let x be an Alloy relation such that I(x) ⊆
UTACO

x \UDF
x . Due to Corollary 1, x must match a DynAlloy variable which si-

multaneously satisfies that: 1) x represents a local variable, and 2) no assignment
nor access to x occurs within the set of traces codified by I. Therefore, x’s value
has no effect on the set of traces codified by I. This means that this set remains
unchanged if we replace x’s value with any other value (e.g. defV al(x)). Due to
the fact that θ encodes a partial correctness assertion [8], the satisfiability of θ
does not depend on x’s value. Thus,M [θ]I =M [θ]I[x �→defV al(x)] by substitution.
Therefore, we can define I ′ as:

I ′(x) =
{
I(x) if I(x) ⊆ UDF

x

defV al(x) otherwise

where M [θ]I =M [θ]I′ and I ′(x) ⊆ UDF
x �.

4.1 Loop Optimization

TheJavawhile constructwhileBdoP od canbeexpressed inDynAlloyas (B?;P)∗;
(¬B)?. Given a loop limit of k, the Unroll phase transforms the loop into:

((B?;P) + skip); . . . ; ((B?;P) + skip)︸ ︷︷ ︸
k−times

; (¬B)?

Although semantically correct, this representation of the while construct permits
several permutations. For instance: the program trace B?;P ; skip is equivalent
to skip;B?;P . This apparently harmless symmetry has a tremendous impact
since our dataflow analysis is branch insensitive. Due to this, the computed over
approximation becomes too coarse.

This observation led us to modify the Unroll phase. The new nested unrolling
encodes whileB do P od into Tk(B,P); (¬B)?, where T is recursively defined as:

T0(B,P) = skip
Tn(B,P) = (((B?;P);Tn−1(B,P)) + skip)

5 Empirical Evaluation

In this section we present the experimental evaluation we performed in order to
validate our approach. We aim at answering the following two research questions:

RQ1: Is our approach capable of outperforming the current SAT-based analyses?
RQ2: Where do the performance gains come from?

In order to answer these questions we implemented TACO-Flow. TACO-Flow2

is an extension of TACO which implements the approach described in §4. That
is, a new encoding of loop unrolls, a generic dataflow framework for DynAlloy
programs, our value-propagation analysis as an instance of this framework, and
finally, its application as a means to remove propositional variables in the Alloy
intermediate representation.
2 TACO-Flow and the benchmarks are available at http://www.dc.uba.ar/tacoflow

http://www.dc.uba.ar/tacoflow

A Dataflow Analysis to Improve SAT-Based Bounded Program Verification 149

Table 1. Analysis times (in seconds) for TACO and TACO-Flow, speed-up and vari-
ables in the obtained propositional formula

Method
Analysis Times (secs.) Variables
TACO T-Flow Dataflow Speed-up # TACO Reduction

SList.contains.s20 8.25 5.34 0.13 1.54 1743 2.70%
SList.insert.s20 9.91 11.30 0.41 0.88 3892 11%
SList.remove.s20 18.11 8.20 0.12 2.21 3749 15.92%
AList.contains.s20 29.20 8.43 0.19 3.46 3573 34.73
AList.insert.s20 10.66 9.04 0.14 1.18 4732 0.97%
AList.remove.s20 144.35 11.94 0.17 12.09 4580 11.55%
CList.contains.s20 109.7 47.53 0.16 2.31 2530 28.74%
CList.insert.s20 59.9 45.82 0.18 1.31 4512 30.78%
CList.remove.s20 1649.47 353.66 0.33 4.66 5365 11.39%
AvlTree.find s20 25.82 25.28 0.14 1.02 1412 5.95%
AvlTree.findMax.s20 1439.32 119.03 1.96 12.09 2505 2.95%
AvlTree.insert.s17 32018.14 20744.99 98.78 1.54 204799 30.33%
BinHeap.findMin.s20 109.86 10.45 0.85 10.51 2224 9.80%
BinHeap.decK.s18 18216.79 335.42 2.63 54.31 9469 1.16%
BinHeap.insert.s17 25254.66 122.22 8.52 206.63 33477 28.89%
BinHeap.extMin.s20 1149.71 451.19 21.71 2.55 55188 27.55%
TreeSet.find.s20 14475.49 769.64 1.74 18.81 3032 2.51%
TreeSet.insert.s13 26447.76 719.78 35.12 36.74 38822 1.26%
BSTree.contains.s13 28602.33 9190.95 0.19 3.11 648 0.15%
BSTree.insert.s12 7251.39 14322.00 0.44 0.51 2396 13.28%
BSTree.remove.s09 18344.38 1214.49 1.79 15.10 13369 5.42%

We considered the benchmarks presented in [10] and compare the analysis
times of TACO and TACO-Flow. We analized the following case studies: LList:
An implementation of sequences based on singly linked lists; AList: The im-
plementation AbstractLinkedList of interface List from the Apache package
commons.collections, based on circular doubly-linked lists; CList: The imple-
mentation NodeCachingLinkedList of interface List from the Apache pack-
age commons.collections; BSTree: A binary search tree implementation from
Visser et al. [23]; TreeSet: The implementation of class TreeSet from package
java.util, based on red-black trees; AVLTree: An implementation of AVL
trees obtained from the case study used in [2]; BHeap: An implementation of
binomial heaps used as part of a benchmark in [23]; For each class we consider
the most representative set of methods featuring insertion, deletion, and look-up.
All methods are correct with respect to their contracts except for BHeap.extMin
which contains an actual fault discovered in [10].

We analyzed mainly correct implementations since we are interested in mea-
suring the worst case scenario for bounded-verification (i.e., search space exhaus-
tion). The case of BHeap.extMin is included to show the analysis does not miss
bugs that are catchable in the given scope.

Both TACO and TACO-Flow were fed with an initial set of upper-bounds.
These upper-bounds were discovered using a cluster of computers as reported in
our previous work [10]. TACO-Flows used them to produce an entry abstraction
for the value-propagation analysis.

We were interested in assessing the impact of the techniques in terms of anal-
ysis time and in seeing if the overhead introduced by the dataflow analysis can
be compensated by the obtained performance gains.

150 B. Cuervo Parrino et al.

Hardware and Software platform: All experiments were run on an Intel
Core i5-570 processor running at 2.67GHz and 8GB DDR3 total main memory,
on a Debian’s GNU/Linux v6 operating system.

For every case study we checked that their class invariants are preserved and
their method contracts are satisfied. For each method we selected the greatest
scope that TACO could verify within a given time threshold (10 hours). The
maximum scope is restricted to at most 20 node elements for each experiment.
This is due to the fact that this is the greatest scope used for evaluating TACO
in our most recent work. If loops are found, they were unrolled up to 10 times.
Table 1 shows the end-to-end analysis times using both TACO and TACO-Flow,
the cost of the dataflow analysis in TACO-Flow and its speed-up (the ratio
TACO/TACO-Flow). The last two columns show the number of propositional
variables of the SAT-formula produced by TACO and the percentage of reduction
introduced by TACO-Flow.

Notice that the overall speed-up was very significant in almost all cases. More
specifically, it was approximately 20 times faster in average. Only two methods
exhibited a loss in performance. The required time to compute the dataflow
analysis was, in general, negligible and compensated by the speed-up obtained
in the end-to-end execution.

We strongly believe that the exhibited speed-up could also lead to an increase
in scalability. For instance, the maximum scope that TACO successfully ana-
lyzed within the time threshold for method insert in class BinHeap was 17 node
elements. In contrast, TACO-Flow was able to analyze the same scope with a
speed-up of 8.52x and it easily analyzed the same method up to the maximum
scope for which we had initial upper-bounds. More experimental validation is
required in order to justify this claim.

Our research was driven by the hypothesis that verification times were sen-
sitive to a decrease in the number of propositional variables. To validate that
hypothesis, we collected the number of propositional variables generated by both
TACO and TACO-Flow. TACO-Flow indeed reduced the number of proposi-
tional variables and the obtained performance gains appeared to confirm the
hypothesis. As the reduction percentage did not seem to be directly related to
the gain proportion, a further investigation of this matter is necessary.

TACO-Flow differs from TACO in the introduction of a new encoding for loop
unrollings (hereinafter denoted as TACO+) and the removal of propositional
variables based on the dataflow analysis output. We decided to measure each
contribution separately (Tables 2 and 3).

Surprisingly, TACO+ showed an impressive improvement in the analysis time.
We conjecture this is because the new encoding avoids a significant number of
paths in the CFG leading to isomorphic valuations in the SAT-formula. For
instance, for a CFG of only one loop, the application of n loop unrollings in
TACO leads to 2n paths whereas the same application in TACO+ leads to 2(n−1)
potential paths (see Fig. 5). Even tough this result was not initially expected, it
is actually a consequence of the introduction of the dataflow analysis in TACO-
Flow which needs a better encoding of loop unrolls to mitigate precision loss.

A Dataflow Analysis to Improve SAT-Based Bounded Program Verification 151

Table 2. TACO+ speed-up

Method
TACO vs
TACO+

SList.contains 1.64
SList.insert 0.64
SList.remove 1.80
AList.contains 2.86
AList.insert 1.15
AList.remove 14.10
CList.contains 1.47
CList.insert 0.69
CList.remove 3.89
AvlTree.find 0.97
AvlTree.findMax 12.72
AvlTree.insert 1.09
BinHeap.findMin 13.99
BinHeap.decK 76.94
BinHeap.insert 178.49
BinHeap.extMin 2.35
TreeSet.find 13.05
TreeSet.insert 31.24
BSTree.contains 4.12
BSTree.insert 0.60
BSTree.remove 18.26

Table 3. TACO-Flow speed-up

Method
TACO+vs

TACO-Flow
SList.contains 0.94
SList.insert 1.38
SList.remove 1.23
AList.contains 1.21
AList.insert 1.03
AList.remove 0.86
CList.contains 1.57
CList.insert 1.89
CList.remove 1.20
AvlTree.find 1.06
AvlTree.findMax 0.95
AvlTree.insert 1.42
BinHeap.findMin 0.75
BinHeap.decK 1.09
BinHeap.insert 1.15
BinHeap.extMin 1.08
TreeSet.find 1.44
TreeSet.insert 0.90
BSTree.contains 0.76
BSTree.insert 0.84
BSTree.remove 1.33

Now, we focus on Table 3. For every method we took the maximum scope
that TACO+ could analyze and ran TACO-Flow on the same setting. It is worth
noticing that, even when the improvements are less impressive than those shown
in Table 2, this rather simple dataflow analysis is able to obtain significant gains.
For instance, in some cases it is about 90% with approximately 16% on average.

Unfortunately, there are a few cases where some performance loss is reported.
At first glance, these cases contradict our initial hypothesis accounting that a
reduction in the number of propositional variables leads to performance improve-
ment. Tighter upper-bounds are not only used by KodKod to remove proposi-
tional variables. KodKod computes a symmetry breaking predicate (SBP) based
on the provided lower and upper-bounds. This SBP reduces many (but often not
all) isomorphic valuations (i.e., symmetries). Our guess is that the introduction
of our tighter upper bounds for the intermediate states is degrading the SBP
that KodKod produces (this reasoning may also apply to the two benchmarks
with no speed-ups in Table 1). This effect could be avoided by injecting the
tighter upper-bounds directly at the SAT level without affecting KodKod. Al-
though this is a clear research direction to follow, this goes beyond the proposed
scope of this article.

Threats to validity: A first concern is related with the fact that we are em-
pirically comparing the proposed approach only against our own previous work.
Even though this concern is valid, we would like to point out that TACO was
recently compared against several state-of-the-art SAT-based, model checkers
and SMT-based verification tools [10].

A second concern is about how representative the benchmarks are. In this
regard, the benchmarks we have chosen appear recurrently in case studies used by
the bounded verification community [1, 7, 14, 19, 23]. In addition, the algorithms

152 B. Cuervo Parrino et al.

P

P

P

(a) TACO’s loop unroll encoding

P

P

P

(b) New encoding of loop unrollings

Fig. 5. Loop unroll encodings in TACO and TACO-Flow

found in the case studies are commonplace. They recurrently appear in many
applications [20] ranging from container classes to XML parsers. Therefore, even
if it is not possible to perform general claims about all applications, they can be
used as a relative measure of how well the proposed approach performs compared
with other tools aiming at verifying heap manipulating algorithms.

Another threat to validity is the length of these benchmarks. They target code
manipulating rather complex data structures, working at the intraprocedural
level. In the presence of contracts for methods, modular SAT-based analysis
could be applied by replacing method calls by their corresponding contracts and
then analyzing the resulting code. This approach is followed for instance in [7].

Finally, TACO-Flow relies on having a pre-computed set of initial upper-
bounds. The distributed computation cost of this artifact is significant with
respect to the sequential analysis time. Nevertheless, as already mentioned, this
computational cost can be amortized along time.

6 Conclusions and Further Work

In this article we presented a value-propagation analysis aiming at reducing SAT-
solving verification costs. Applying this technique required the implementation
of a dataflow framework in TACO. As a means to mitigate precision loss we
introduced a new encoding for loops. This had an unexpected positive impact
in the overall performance.

In summary, the whole approach led to an important increase of performance
in the whole verification process. More experimentation is required to assess with
confidence whereas the approach is capable of increasing the scope of analysis
beyond the current state-of-the-art.

We strongly believe there is still room for reducing verification cost by re-
lying on dataflow analyses. For instance, an alias analysis can be used to rule-
out infeasible valuations. We are currently implementing this analysis using our
framework. Initial results seems to be promising. We also want to check our
conjecture about KodKod’s symmetry breaking predicate. The current TACO
prototype removes variables at the Alloy level. We plan to develop a new proto-
type that could remove them at the SAT-level. We believe that this will mitigate
the observed performance loss.

A Dataflow Analysis to Improve SAT-Based Bounded Program Verification 153

References

1. Boyapati, C., Khurshid, S., Marinov, D.: Korat: automated testing based on Java
predicates. In: ISSTA 2002, pp. 123–133 (2002)

2. Belt J., Robby, Deng X.: Sireum/Topi LDP: A Lightweight Semi-Decision
Procedure for Optimizing Symbolic Execution-based Analyses. In: FSE 2009, pp.
355–364 (2009)

3. Biere, A., Heule, M., van Maaren, H.: Handbook of Satisfiability. Frontiers in
Artificial Intelligence and Applications, vol. 185 (2009)

4. Cuervo Parrino, B., Galeotti, J.P., Garbervetsky, D., Frias, M.: A dataflow anal-
ysis to improve SAT-based program verification, Technical Report (May 2011),
http://www.dc.uba.ar/tacoflow/techrep.pdf

5. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently
computing static single assignment form and the control dependence graph. ACM
TOPLAS 13(4), 451–490

6. Chalin, P., Kiniry, J.R., Leavens, G.T., Poll, E.: Beyond Assertions: Advanced
Specification and Verification with JML and ESC/Java2. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp.
342–363. Springer, Heidelberg (2006)

7. Dennis, G., Yessenov, K., Jackson, D.: Bounded Verification of Voting Software.
In: Shankar, N., Woodcock, J. (eds.) VSTTE 2008. LNCS, vol. 5295, pp. 130–145.
Springer, Heidelberg (2008)

8. Frias, M.F., Galeotti, J.P., Lopez Pombo, C.G., Aguirre, N.: DynAlloy: Upgrading
Alloy with Actions. In: ICSE 2005, pp. 442–450 (2005)

9. Galeotti, J.: Software Verification Using Alloy. PhD. Thesis, UBA (2011)
10. Galeotti, J.P., Rosner, N., López Pombo, C.G., Frias, M.F.: Analysis of invariants

for efficient bounded verification. In: Proceedings of ISSTA 2010, pp. 25–36 (2010)
11. Harel, D., Kozen, D., Tiuryn, J.: Dynamic logic. Foundations of Computing. MIT

Press, Cambridge (2000)
12. Ivančić, F., Yang, Z., Ganai, M.K., Gupta, A., Shlyakhter, I., Ashar, P.: F-Soft:

Software Verification Platform. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005.
LNCS, vol. 3576, pp. 301–306. Springer, Heidelberg (2005)

13. Jackson, D.: Software Abstractions. MIT Press, Cambridge (2006)
14. Jackson, D., Vaziri, M.: Finding bugs with a constraint solver. In: ISSTA 2000, pp.

14–25 (2000)
15. Kindall, G.A.: A unified approach to global program optimization. In: POPL 1973,

pp. 194–206 (1973)
16. de Moura, L., Bjørner, N.S.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,

Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

17. Nielson, F.: A denotational framework for data flow analysis. Acta Inf. 18, 265–287
(1982)

18. Shao, D., Gopinath, D., Khurshid, S., Perry, D.E.: Optimizing Incremental Scope-
Bounded Checking with Data-Flow Analysis. In: ISSRE 2010, pp. 408–417 (2010)

19. Sharma, R., Gligoric, M., Arcuri, A., Fraser, G., Marinov, D.: Testing Container
Classes: Random or Systematic? In: Giannakopoulou, D., Orejas, F. (eds.) FASE
2011. LNCS, vol. 6603, pp. 262–277. Springer, Heidelberg (2011)

20. Siddiqui, J.H., Khurshid, S.: An Empirical Study of Structural Constraint Solving
Techniques. In: Breitman, K., Cavalcanti, A. (eds.) ICFEM 2009. LNCS, vol. 5885,
pp. 88–106. Springer, Heidelberg (2009)

http://www.dc.uba.ar/tacoflow/techrep.pdf

154 B. Cuervo Parrino et al.

21. Torlak, E., Jackson, D.: Kodkod: A Relational Model Finder. In: Grumberg, O.,
Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 632–647. Springer, Heidelberg
(2007)

22. Taghdiri, M., Seater, R., Jackson, D.: Lightweight extraction of Syntactic Specifi-
cations. In: FSE 2006, pp. 276–286 (2006)

23. Visser, W., Păsăreanu, C.S., Pelánek, R.: Test Input Generation for Java Contain-
ers using State Matching. In: ISSTA 2006, pp. 37–48 (2006)

24. Xie, Y., Aiken, A.: Saturn: A scalable framework for error detection using Boolean
satisfiability. ACM TOPLAS 29(3) (2007)

Reverse Hoare Logic�

Edsko de Vries and Vasileios Koutavas

Trinity College Dublin, Ireland
{Edsko.de.Vries,Vasileios.Koutavas}@cs.tcd.ie

Abstract. We present a novel Hoare-style logic, called Reverse Hoare
Logic, which can be used to reason about state reachability of imperative
programs. This enables us to give natural specifications to randomized
(deterministic or nondeterministic) algorithms. We give a proof system
for the logic and use this to give simple formal proofs for a number of
illustrative examples. We define a weakest postcondition calculus and
use this to show that the proof system is sound and complete.

1 Introduction

Hoare Logic [12] is a popular method for proving properties of imperative pro-
grams. The following specification for sort is a classical example:

{�} sort(a) {sorted(a) ∧ a ∈ Π(old(a))} (1)

The empty precondition of this Hoare triple says that sort makes no assump-
tions about its input; the postcondition says that array a will be sorted and a
permutation (Π(old(a))) of the original (“old”) value of a after sort terminates.

For other algorithms, especially randomized ones, it is not so clear what the
right specification is. For instance, consider an algorithm to shuffle the elements
of an array. Certainly, shuffle should generate a permutation of the array, but

{�} shuffle(a) {a ∈ Π(old(a))} (2)

is an incomplete specification of shuffle at best. In fact, clearly sort satisfies spec-
ification (2) too, but for most purposes sort would be a badly behaved implemen-
tation of shuffle! A better specification would require that shuffle can generate
all permutations. If we allow so-called logic variables in the triples we might give
the Hoare triple (schema)

{α ∈ Π(a)} shuffle(a) {a = α} (3)

Unfortunately, although an abstract implementation of shuffle based on non-
deterministic choice (%) such as ⊔

α∈Π(a)

a := α (4)

satisfies specification (3), real implementations of shuffle that rely on a pseudo-
random number generator do not: the permutation they generate will be dictated
by the state of the random number generator.
� This research was supported by SFI project SFI 06 IN.1 1898.

G. Barthe, A. Pardo, and G. Schneider (Eds.): SEFM 2011, LNCS 7041, pp. 155–171, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

156 E. de Vries and V. Koutavas

We can model a random number generator as a stream of random numbers
available through some global variable r. This suggests a Hoare triple of the
form

{α ∈ Π(a), r = ?} shuffle(a) {a = α} (5)

but it is unclear what we should put at the location of (?). We would like to
state that every permutation can be generated by some (unspecified) choice of
random number stream, but unfortunately we are forced to be more precise
than that. Choose some enumeration of permutations, and let Πι(α) be the ιth
permutation of α. Then we could give the following specification:

{α = Πι(a), r = ρι} shuffle(a) {a = α} (6)

Specification (6) says that if shuffle is executed in an initial state with random
number stream ρι, then it will generate the ιth permutation. This is however
rather unsatisfactory. We cannot define ρ without detailed knowledge of the
algorithm; an alternative shuffling program would require a different mapping
ρ′ and would not satisfy the above specification. In fact, we would prefer not to
have to mention r in the specification at all so that we do not have to adjust
the specification when we refine an abstract, non-deterministic, implementation
of shuffle to a real one that relies on some global state.

The main problem is that Hoare Logic uses a universal quantification over
initial states (“for all initial states satisfying the precondition. . . ”), while shuffle
is more naturally specified using a universal quantification over final states (“for
all permutations. . . ”). This is precisely the purpose of Reverse Hoare Logic, in
which we can give the following specification for shuffle:

〈a = α〉 shuffle(a) 〈a ∈ Π(α)〉 (7)

or, using an operator “new” dual to “old”, without logic variables:

〈new(a) ∈ Π(a)〉 shuffle(a) 〈�〉 (8)

The reverse triple (7) is satisfied when all final states in which a is a permutation
of α are reachable by executing shuffle in some initial state in which a has value α.
It states precisely that shuffle can generate all permutations, exposes none of the
implementation so that we can give this specification without reference to the
algorithm, and can be used for many algorithms, regardless of whether they use
random number streams or non-determinism.

Reverse triples are statements about the reachability of all “good” final states
but say nothing about “bad” states. They are essentially dual to Hoare triples,
which are statements about “bad” states not being reachable but do not guar-
antee that “good” states are reachable. This duality between the logics can also
be observed in certain proof rules, such as the rule for consequence, where im-
plications are reversed, and in the proof of completeness, which requires the
definition of a weakest postcondition, rather than a weakest precondition, calcu-
lus. We believe that the two logics complement each other and their combination
can express a complete specification for shuffle.

Reverse Hoare Logic 157

Since we are interested in reachability, we are interested in the existence of
paths: a triple 〈P 〉 c 〈Q〉 is satisfied when for each final state σ′ satisfyingQ there
is a state σ satisfying P such program c, when started in state σ, can terminate
in state σ′. In this sense, Reverse Hoare Logic is a total logic, although the above
triple does not require that c never diverges.

We make the following contributions in this paper:

1. We define Reverse Hoare Logic, a logic in which we can naturally express
reachability specifications for imperative programs. Equivalent specifications
in Hoare Logic would be less abstract and more difficult to define.

2. We give a proof system (Sect. 3) which can be used to prove the validity of
reverse triples, without appealing to the underlying model of the logic. Some
of the rules are familiar from Hoare Logic but others are different in subtle
and sometimes surprising ways; for instance, the rule for loops requires the
loop variant to increase rather than decrease.

3. We show the usefulness of the proof system by using it to derive admissible
rules for complex commands, and use it to give an elegant proof for the
specification of shuffle (Sect. 4).

4. We show that the proof system is sound and complete (Sect. 6). The com-
pleteness proof is based on a weakest postcondition calculus, which is also
useful in showing the invalidity of reverse triples (Sect. 5).

2 Definitions

We use a standard imperative language with local definitions and choice (%);
its big-step semantics is given in Fig. 1 as a mapping from states to states.
Throughout this paper we will use (σ, x $→ n) to denote the extension of σ with
variable x (i.e., x /∈ domσ) and (σ † x $→ n) to denote the extension or update of
σ. We assume the Barendregt convention: all bound variables are assumed to be
different to all other variables, and we identify programs up to alpha-renaming.

We let e range over arithmetic expressions, n over natural numbers, and let
b range over boolean expressions. We use �e�σ to denote the evaluation of ex-
pression e in state σ; we leave the exact definition of the syntax for arithmetic
expressions and their evaluation relation open.

We use a standard first-order infinitary assertion language based on Lω1,ω

with the satisfaction relation shown in Fig. 1. To make the technical development
smoother we will allow for logic variables, ranged over by ι, in expressions in the
assertion language. We use e to range over these “extended” expressions too, as
the intended meaning will be clear from the context. The value of these variables
is given by an interpretation I, a mapping from logic variables to values. We can
define existentials and universals in the assertion language as syntactic sugar:

∀� ∈ L · P def=
∧
�∈L

P ∃� ∈ L · P def=
∨
�∈L

P (9)

Likewise, we will use P ∧ Q and P ∨ Q to denote binary conjunctions and dis-
junctions, respectively. A formula P is valid iff σ �I P for all states σ and
interpretations I.

158 E. de Vries and V. Koutavas

Operational Semantics

σ
skip−−→ σ σ

x:=e−−−→ σ † x �→ �e�σ

(σ, x �→ �e�σ)
c−→ (σ′, x �→ n′)

σ
local x=e in c−−−−−−−−−→ σ′

σ
c0−→ σ′ σ′ c1−→ σ′′

σ
c0;c1−−−→ σ′′

σ � b σ
c0−→ σ′

σ
if b then c0 else c1−−−−−−−−−−−−→ σ′

σ � ¬b σ
c1−→ σ′

σ
if b then c0 else c1−−−−−−−−−−−−→ σ′

σ � ¬b

σ
while b do c−−−−−−−→ σ

σ � b σ
c−→ σ′ σ′ while b do c−−−−−−−→ σ′′

σ
while b do c−−−−−−−→ σ′′

σ
c0−→ σ′

σ
c0�c1−−−−→ σ′

σ
c1−→ σ′

σ
c0�c1−−−−→ σ′

Satisfaction Relation

σ �I �
σ �I (e0 = e1) if �e0�σ,I = �e1�σ,I

σ �I (e0 ≤ e1) if �e0�σ,I ≤ �e1�σ,I

σ �I ¬P if not σ �I P
σ �I P ⇒ Q if σ �I P implies σ �I Q

σ �I
∧

∈L

P
 if σ �I P
 for all � ∈ L

σ �I
∨

∈L

P
 if σ �I P
 for some � ∈ L

Fig. 1. Operational Semantics and Satisfaction of Assertions

Definition 1 (Reverse Hoare validity). We write �I 〈P 〉 c 〈Q〉 iff

∀σ′ �I Q · ∃σ �I P · σ c−→ σ′

We write � 〈P 〉 c 〈Q〉 iff �I 〈P 〉 c 〈Q〉, for all I.

3 Program Logic

In order to abstract away from states and interpretations, we introduce a pro-
gram logic, shown in Fig. 2, which gives proof rules for each of the constructs in
the language. We will show in Sect. 6 that these rules are sound and complete;
in this section, we explain the rules and give examples.

Rules Skip and Assn are familiar from Hoare Logic. We can think of the
existential ι in the postcondition as the old value of x. Here is a simple example:

Assn〈
x = ι′

〉
x := x + 1

〈
∃ι ∈ Z · ι = ι′ ∧ x = ι + 1

〉
Con〈

x = ι′
〉
x := x + 1

〈
x = ι′ + 1

〉 (10)

We use rule Con to bring the postcondition into the right form; note the direction
of the implications! This is a consequence of the underlying semantics of reverse
Hoare triples.

Reverse Hoare Logic 159

Assn (where L is the type of x)
〈P 〉 x := e 〈∃ι ∈ L · P (ι/x) ∧ x = e(ι/x)〉

〈P ∧ x = e〉 c 〈Q〉 x /∈ fn P
Local (where L is the type of x)

〈P 〉 local x = e in c 〈∃x ∈ L ·Q〉

〈Pι ∧ b〉 c 〈Pι+1〉
While (ι fresh)

〈P0〉 while b do c 〈¬b ∧ ∃ι ∈ N · Pι〉

Skip

〈P 〉 skip 〈P 〉
〈P 〉 c0 〈Q〉 〈Q〉 c1 〈R〉

Seq

〈P 〉 c0; c1 〈R〉

〈P ∧ b〉 c0 〈Q〉
Then

〈P 〉 if b then c0 else c1 〈Q〉

〈P ∧ ¬b〉 c1 〈Q〉
Else

〈P 〉 if b then c0 else c1 〈Q〉

〈P 〉 c0 〈Q〉
Left

〈P 〉 c0 � c1 〈Q〉

〈P 〉 c1 〈Q〉
Right

〈P 〉 c0 � c1 〈Q〉

P ′ ⇒ P
〈
P ′〉 c

〈
Q′〉 Q⇒ Q′

Con

〈P 〉 c 〈Q〉

(
∀� ∈ L · 〈P 〉 c 〈Q
〉

)
Split

〈P 〉 c

〈∨

∈L

Q

〉
〈P 〉 c 〈Q〉

Frame (no variable occurring free in R is modified by c)
〈P ∧R〉 c 〈Q ∧ R〉

Fig. 2. Reverse Hoare Rules

In Hoare Logic, {P (e/x)} x := e {P} is a popular alternative rule for assign-
ment. The naive translation of this rule to 〈P (e/x)〉 x := e 〈P 〉 is neither sound
nor complete; for instance, it allows us to derive 〈�〉 x := 2 〈�〉, which is invalid:
it says that any state at all (including one where x �= 2) is reachable by executing
x := 2, which is clearly not true. On the other hand, 〈�〉 x := y 〈x = 2〉 cannot
be derived using this rule, while this is a valid reverse Hoare triple.

The rule for the introduction of a local variable x hides x from the postcondi-
tion and requires that x must have the specified initial value in the initial state.
Here is an example:

Assn

〈x = y〉 z := x 〈∃ι ∈ Z · x = y ∧ z = x〉
Con

〈x = y〉 z := x 〈x = y ∧ z = y〉
Local

〈�〉 local x = y in z := x 〈∃x ∈ Z · x = y ∧ z = y〉
Con

〈�〉 local x = y in z := x 〈z = y〉

(11)

160 E. de Vries and V. Koutavas

Rule Local is particularly useful in our setting because all global variables
assigned to by the program need to be mentioned in the postcondition. For
example, the triple

〈�〉 x := y; z := x 〈z = y〉 (12)

is not valid, since final states in which x �= y are not reachable by executing
x := y; z := x.

The rule for sequential composition is as expected; the rule for conditions
is more interesting. Rule Then can be used if all states that satisfy the post-
condition can be reached by executing the true-branch of the conditional; rule
Else is the analogous rule for the false-branch of the conditional. Typically, rule
Split will first be used to partition the set of final states into those that can be
reached by the true-branch and those that can be reached by the false-branch.
For example:

...

〈b〉 x := 1 〈x = 1〉
Then

〈�〉 . . . 〈x = 1〉

...

〈¬b〉 x := 2 〈x = 2〉
Else

〈�〉 . . . 〈x = 2〉
Split

〈�〉 if b then x := 1 else x := 2 〈x = 1 ∨ x = 2〉

(13)

The rules for non-deterministic choice are similar to the rules for conditionals. It
remains to explain the rule for the loop construct. Like in standard Hoare logics
for total correctness [1] we have to provide a loop variant P , a predicate over
natural numbers. Unlike in standard Hoare logics, however, we have to show
that P holds for a smaller number before the loop body. Consider the following
example:

〈x = 0〉 while b do x := x + 1 % b := ⊥ 〈¬b〉 (14)

Intuitively, specification (14) is valid: any state which satisfies ¬b, in particular,
any state where x has some value n, can be reached from a state in which x = 0
(pick a state where b = �) by executing x := x+ 1 the first n iterations through
the loop, followed by one iteration executing b := ⊥. We can prove the validity
of this program by picking the loop variant1

φn
def= (x = n ∧ b) ∨ (x = n− 1 ∧ ¬b) (15)

The proof is given in Fig. 3.

4 Case Studies

In this section we prove admissible proof rules for complex commands using the
program logic and use them when we formally prove that shuffle can generate
any permutation of the input array. The proof rules are summarized in Fig. 4.

1 To simplify the example we assume 0− 1 = 0 for natural numbers.

Reverse Hoare Logic 161

...

〈x = ι ∧ b〉 x := x + 1 〈x = ι + 1 ∧ b〉
Left

〈x = ι ∧ b〉 . . . 〈x = ι + 1 ∧ b〉
Con

〈φι ∧ b〉 . . . 〈x = ι + 1 ∧ b〉

...

〈x = ι ∧ b〉 b := ⊥ 〈x = ι ∧ ¬b〉
Right

〈x = ι ∧ b〉 . . . 〈x = ι ∧ ¬b〉
Con

〈φι ∧ b〉 . . . 〈x = ι ∧ ¬b〉
Split

〈φι ∧ b〉 x := x + 1 � b := ⊥ 〈φι+1〉
While

〈φ0〉 . . . 〈¬b ∧ ∃ι ∈ N · φι〉
Con

〈x = 0〉 while b do x := x + 1 � b := ⊥ 〈¬b〉

Fig. 3. Loop Example (φn defined in equation (15))

4.1 Picking Random Numbers

Assuming the availability of a stream of random numbers n1 : n2 : . . . through
global variable r, picking a random number boils down to(

x := rnd[0, e]
)

def=
(
x := head(r); r := tail(r)

)
(16)

The proof that this satisfies the expected specification is an easy exercise. Let
Q be the post-condition ∃ι · P (ι/x) ∧ e ≤ x ≤ e′. Observe that

Assn〈P
∧ ∃ρ, ι · e ≤ ι ≤ e′

∧ r = ι : ρ

〉
. . .

〈∃ι′ · P (ι′/x)
∧ ∃ρ, ι · e ≤ ι ≤ e′

∧ r = ι : ρ
∧ x = head(r)

〉
Con〈

P ∧ ∃ρ, ι · e ≤ ι ≤ e′ ∧ r = ι : ρ
〉

. . . 〈Q ∧ ∃ρ · r = x : ρ〉
Con

〈P 〉 x := head(r) 〈Q ∧ ∃ρ · r = x : ρ〉

(17)

Moreover,

Assn

〈Q ∧ ∃ρ · r = x : ρ〉 r := tail(r)
〈
∃ρ′ ·Q ∧ ∃ρ · ρ′ = x : ρ ∧ r = tail(ρ′)

〉
Con

〈Q ∧ ∃ρ · r = x : ρ〉 r := tail(r) 〈Q ∧ ∃ρ · r = ρ〉
Con

〈Q ∧ ∃ρ · r = x : ρ〉 r := tail(r) 〈Q〉

(18)

The required specification follows by combining (17) and (18) using Seq. We
leave the generalization to x := rnd[e, e′] as an (easy) exercise for the reader.

4.2 Arrays

We deal with arrays by adopting the approach taken in Hoare Logic [13]: we
consider an expression language that contains expressions a[e] and a † e $→ e′
for array indexing and override, respectively.

162 E. de Vries and V. Koutavas

We define two derived commands to update the value of an array at a partic-
ular index and two swap to elements:(

a[e] := e′
)

def=
(
a := a † e $→ e′

)
(
swap a[e, e′]

)
def=
(
local x = a[e] in a[e] := a[e′]; a[e′] := x

)
The associated proof rules Upd and Swap are shown in Fig. 4. As syntactic
conventions, we use a to range over array valued expressions, a for array valued
program variables, and α for array valued logic variables.

4.3 Iteration

We introduce a for loop as syntactic sugar; for simplicity, we fix the lower bound:(
for x in [0, e) do c

)
def=
(
local x = 0 in while x < e do c;x := x+ 1

)
(19)

Rule For is simpler than While, because termination is guaranteed; hence, we
only need to provide a loop invariant P , rather than a loop variant.2

Proving For is a good exercise. Let φn
def= P ∧ x = n ≤ e. We derive the rule

as follows:

〈P 〉 c
〈
P (x+1/x)

〉
Frame

〈P ∧ x = i < e〉 c
〈
P (x+1/x) ∧ x = i < e

〉
∇

Seq

〈P ∧ x = i < e〉 c; x := x + 1 〈P ∧ x = i + 1 ≤ e〉
Con

〈P ∧ x = i ≤ e〉 c; x := x + 1 〈P ∧ x = i + 1 ≤ e〉
While

〈φ0〉 while x < e do . . . 〈¬(x < e) ∧ ∃i · φi〉
Con

〈P ∧ x = 0〉 while x < e do . . . 〈¬(x < e) ∧ x ≤ e ∧ P 〉
Con

〈P ∧ x = 0〉 while x < e do . . . 〈x = e ∧ P 〉
Local〈

P (0/x)
〉
local x = 0 in . . . 〈∃x · x = e ∧ P 〉

Con〈
P (0/x)

〉
for x in [0, e) do c 〈P (e/x)〉

(20)

where ∇ is a derivation with conclusion〈
P (x+1/x) ∧ x = i < e

〉
x := x+ 1 〈P ∧ x = i+ 1 ≤ e〉 (21)

4.4 Shuffle

We are now in a position to prove that shuffle can generate any permutation.
We give the Fisher-Yates implementation of shuffle as follows:

for x in [0, |a|) do local y = 0 in y := rnd[x, |a| − 1]; swap a[x, y] (22)
2 P truly is a loop invariant; although we require P (x+1/x) after c, this means that P

will be true again after x is incremented.

Reverse Hoare Logic 163

〈P 〉 c
〈
P (x+1/x)

〉
For〈

P (0/x)
〉
for x in [0, e) do c 〈P (e/x)〉

(
c cannot change x or any variable
appearing in e

)
x /∈ e, e′

Rnd

〈P 〉 x := rnd[e, e′]
〈
∃ι · P (ι/x) ∧ e ≤ x ≤ e′

〉
a /∈ e

Upd

〈P 〉 a[e] := e′
〈
∃α ∈ [Z] · P (α/a) ∧ a = α † e �→ e′(α/a)

〉
a /∈ e, e′

Swap

〈P 〉 swap a[e, e′]
〈
∃α ∈ [Z] · P (α/a) ∧ a = α † e↔ e′

〉
Fig. 4. Derived Proof Rules

In order to prove shuffle correct, we need a lemma that says that any permutation
of an array α of size |α| can be generated by first swapping the first element with
an element 0 ≤ m < |α|, then the second element with an element 1 ≤ m′ < |α|,
etc. Formally:

Lemma 1 (Permutations). Define an indexed predicate πn as follows.

a′ π0 a iff a′ = a
a′ πn+1 a iff ∃m · a′ πm

n+1 a

where a′ πm
n+1 a = ∃a′′ · n ≤ m < |a| ∧

(
a′ = a′′ † n↔ m

)
∧ a′′ πn a.

Then a′ ∈ Π(a) iff a′ π|a| a.

We can use a πx α as our loop invariant3 and give the following proof:

∇1 ∇2

Seq

〈a πx α ∧ y = 0〉 . . .
〈
a πy

x+1 α
〉

Local

〈a πx α〉 local y = 0 in . . .
〈
∃y · a πy

x+1 α
〉

Con

〈a πx α〉 local y = 0 in . . . 〈a πx+1 α〉
For〈

(a πx α)(0/x)
〉
for x in [0, |a|) do . . .

〈
(a πx α)(|a|/x)

〉
Con (Lem. 1)

〈a = α〉 shuffle(a) 〈a ∈ Π(α)〉

(23)

where ∇1 is a derivation with conclusion

〈a πx α ∧ y = 0〉 y := rnd[x, |a| − 1] 〈a πx α ∧ x ≤ y < |a|〉 (24)

3 Technically the subscript to π must be a natural number; we can regard this loop

invariant as syntactic sugar for
∨
n∈N

a πn α ∧ x = n.

164 E. de Vries and V. Koutavas

which can be proved using Rnd and Con. Derivation ∇2 is given by

Swap〈
a πx α ∧ x ≤ y < |a|

〉
swap a[x, y]

〈∃α′· α′ πx α
∧ (a = α′ † x↔ y)
∧ x ≤ y < |a|

〉
Con

〈a πx α ∧ x ≤ y < |a|〉 swap a[x, y]
〈
a πy

x+1 α
〉 (25)

The difficulty of this proof is on par with the difficulty of proofs of comparable
properties in Hoare Logic, for instance proving that sort is correct. As in Hoare
Logic proofs, the key step in the proof is identifying the loop invariant.

5 Weakest Postcondition Calculus

In Sect. 3 we presented a program logic for deriving reverse Hoare triples. In this
section we present a weakest-postcondition calculus, shown in Fig. 5, which com-
putes wpo(P, c), the weakest postcondition given a precondition P and program
c. We then have that 〈P 〉 c 〈Q〉 is a valid triple if and only if Q ⇒ wpo(P, c).
As we shall see in Sect. 6, the calculus is also an essential ingredient in proving
completeness of the program logic.

Moreover, a weakest postcondition calculus gives us a tool for proving that
triples are not valid. For instance, in Sect. 3 we claimed that triple (12)

〈�〉 x := y; z := x 〈z = y〉

was invalid. Using our calculus we can prove this formally. We compute

wpo(�, x := y; z := x) = wpo(wpo(�, x := y), z := x)
= wpo(x = y, z := x) = (x = y ∧ z = x) = (x = y ∧ z = y)

Since z = y �⇒ x = y ∧ z = y (it is easy to find a counterexample) we can
conclude that this triple is indeed invalid, and the weakest postcondition tells
us precisely what is missing: the condition on x.

6 Soundness and Completeness

We first show that any reverse Hoare triple derivable by the proof system is
valid. We rely on two auxiliary lemmas, which we state without proof. The first
is a standard substitution lemma:

Lemma 2. σ �I P (n/x) iff (σ † x $→ n) �I P .

The second states that predicates are preserved by programs that do not modify
any of the variables mentioned in the predicate:

Lemma 3. If σ′ �I P , σ c−→ σ′ and no variable occurring free in P is modified
by c, then σ �I P .

Reverse Hoare Logic 165

wpo(P, skip) = P

wpo(P, x := e) = ∃� ∈ L · P (
/x) ∧ x = e(
/x)

wpo(P, c0; c1) = wpo(wpo(P, c0), c1)

wpo(P, if b then c0 else c1) = wpo(P∧b, c0) ∨ wpo(P∧¬b, c1)

wpo(P, c0 � c1) = wpo(P, c0) ∨ wpo(P, c1)

wpo(P, local x = e in c) = ∃x ∈ L · wpo(P ∧ x = e, c)

wpo(P, while b do c) = ¬b ∧
∨
n∈N

Υb,c,P (n)

where

Υb,c,P (0) = P

Υb,c,P (n + 1) = wpo(Υb,c,P (n) ∧ b, c)

Fig. 5. Weakest Postcondition Calculus

We can now state and prove soundness.

Theorem 1 (Soundness). If � 〈P 〉 c 〈Q〉 then � 〈P 〉 c 〈Q〉.

Proof. By induction on the derivation of 〈P 〉 c 〈Q〉. The cases for Skip, Seq,
Then, Else, Left, Right, Con and Split are straightforward. We give details
for the other cases.

1. Case Assn

〈P 〉 x := e
〈
∃i · P (i/x) ∧ x = e(i/x)

〉 .

Pick an I, σ′ such that σ′ �I ∃i ·P (i/x)∧x = e(i/x) i.e. ∃n ·σ′ �I P (n/x)∧x =
e(n/x). Choose σ = (σ′ † x $→ n). By Lem. 2 we have σ′ � P (n/x) iff σ′, x $→
n � P . Finally, since σ † x $→ �e�σ = (σ′ † x $→ n) † x $→ �e�σ′†x �→n = σ′ †
x $→ �e�σ′†x �→n = σ′ † x $→ �e(n/x)�σ′ = σ′, we have σ x:=e−−−→ σ′.

2. Case
〈P ∧ x = e〉 c 〈Q〉 x /∈ fnP

Local

〈P 〉 local x = e in c 〈∃x ·Q〉
.

Pick an I, σ′ such that σ′ �I ∃x · Q. We have σ′ �I ∃x · Q i.e. ∃n′ · σ′ �I

Q(n′
/x) i.e. ∃n′ · (σ′, x $→ n′) �I Q. By the induction hypothesis there exist

a σ0 such that σ0
c−→ (σ′, x $→ n′) and σ0 �I P ∧ x = e. Hence, there must

be some σ �I P such that σ0 = σ, x $→ �e�σ0 = σ, x $→ �e�σ (since x /∈ e, P).

The proof is completed by
(σ, x $→ �e�σ) c−→ (σ′, x $→ n′)

σ
local x=e in c−−−−−−−−−→ σ′

.

3. Case
〈Pi ∧ b〉 c 〈Pi+1〉

While

〈P0〉 while b do c 〈¬b ∧ ∃i · Pi〉
.

Pick an interpretation I and a state σ′ such that σ′ �I ¬b∧∃i·Pi i.e. ∃n·σ′ �I

¬b∧Pn. If n = 0 we take σ = σ′ and we’re done. Otherwise we use the premise
to obtain a series of states which satisfy P (n′) ∧ b for a decreasing n′ until
we reach a state that satisfies P (0).

4. Case
〈P 〉 c 〈Q〉

Frame

〈P ∧R〉 c 〈Q ∧R〉
.

166 E. de Vries and V. Koutavas

Pick an interpretation I and a state σ′ �I Q ∧ R. Clearly σ′ �I Q so that
by the premise there exist an σ �I P where σ c−→ σ′; σ �I R follows from
Lem. 3.

We prove relative completeness4 in two steps. We establish that our weakest-
postcondition calculus calculates the largest set of states that can be reached by
a precondition and a program, and then use this result to prove completeness.

Definition 2 (Weakest postcondition). The weakest postcondition of a pre-
condition P and program c, with respect to an interpretation I, is defined by

wpoI�P, c�
def= {σ′ | ∃σ · σ �I P ∧ σ c−→ σ′}

The calculus presented in Sect. 5 characterizes exactly this set. This property is
sometimes referred to as the expressivity of the assertion language. To prove it,
we first give a characterization of Υ :

Lemma 4 (Υ). Given a program c such that

∀σ′, P, I · σ′ ∈ wpoI�P, c� iff σ′ �I wpo(P, c)

and given boolean predicate b and precondition P we have ∀n, σ′·

σ′ �I Υb,c,P (n) iff ∃σ0≤i≤n · σn = σ′ ∧ σ0≤i<n � b ∧ σ0 �I P ∧ σ0≤i<n
c−→ σi+1

Proof. By induction on n.

Proposition 1. ∀σ′ · σ′ ∈ wpoI�P, c� iff σ′ �I wpo(P, c).

Proof. By induction on c, similar to the proof of Theorem 1. The case for loops
relies on Lem. 4.

It remains to show that the weakest postcondition is always derivable in the
program logic; completeness of the logic then follows.

Proposition 2. ∀c, P we have � 〈P 〉 c 〈wpo(P, c)〉.

Proof. By induction on c. The cases for Skip and Assn are immediate. The
other cases are detailed below.

1. Case c = local x = e in c0.

〈P ∧ x = e〉 c0 〈wpo(P ∧ x = e, c)〉
Local

〈P 〉 local x = e in c0 〈∃x · wpo(P ∧ x = e, c)〉

2. Case c = c0; c1.

〈P 〉 c0 〈wpo(P, c0)〉 〈wpo(P, c0)〉 c1 〈wpo(wpo(P, c0), c1)〉
Seq

〈P 〉 c0; c1 〈wpo(wpo(P, c0), c1)〉
4 Also known as completeness in the sense of Cook [1, Sect. 2.8].

Reverse Hoare Logic 167

3. Case c = if b then c0 else c1.

〈P ∧ b〉 c0 〈wpo(P ∧ b, c0)〉
Then

〈P 〉 . . . 〈wpo(P ∧ b, c0)〉
〈P ∧ ¬b〉 c1 〈wpo(P ∧ ¬b, c1)〉

Else

〈P 〉 . . . 〈wpo(P ∧ ¬b, c1)〉
Split

〈P 〉 if b then c0 else c1 〈wpo(P ∧ b, c0) ∨ wpo(P ∧ ¬b, c1)〉

4. Case c = while b do c0.

〈Υb,c0,P (n) ∧ b〉 c0 〈wpo(Υb,c0,P (n) ∧ b, c0)〉
Con

〈Υb,c0,P (n) ∧ b〉 c0 〈Υb,c0,P (n+ 1)〉
While

〈Υb,c0,P (0)〉 while b do c0

〈
¬b ∧

∨
n

Υb,c0,P (n)

〉
Con

〈P 〉 while b do c0 〈¬b ∧ ∃i · Υb,c0,P (i)〉

5. Case c = c0 % c1.

〈P 〉 c0 〈wpo(P, c0)〉
Left

〈P 〉 c0 % c1 〈wpo(P, c0)〉
〈P 〉 c1 〈wpo(P, c0)〉

Right

〈P 〉 c0 % c1 〈wpo(P, c0)〉
Split

〈P 〉 c0 % c1 〈wpo(P, c0) ∨wpo(P, c1)〉

Lemma 5. If � 〈P 〉 c 〈Q〉 then Q⇒ wpo(P, c).

Proof.

� 〈P 〉 c 〈Q〉 iff ∀I, σ′ �I Q · ∃σ �I P ∧ σ
c−→ σ′ iff ∀I, σ′ �I Q · σ′ ∈ wpoI�P, c�

iff ∀I, σ′ �I Q · σ′ �I wpo(P, c) iff Q⇒ wpo(P, c)

Theorem 2 (Completeness). If � 〈P 〉 c 〈Q〉 then � 〈P 〉 c 〈Q〉.

Proof. Follows from rule Con and Prop. 2.

7 Related Work

Hoare Logic was introduced by Hoare in 1969 [12], and has since grown into a
very active research field. Ten years after its invention a survey already spanned
two papers [1,2]. Recent work has introduced the concept of separation into the
logic to deal with aliasing [25], extended it to functional languages [15,16] and
embedded Hoare logic in type theory [22].

As already discussed, however, Hoare logics are not suitable for state reachabil-
ity specifications, with the exception of probabilistic Hoare logics [23,18,10,5,21].
A probabilistic specification for shuffle might say that the probability of the gen-
eration of any permutation is greater than zero; indeed, it might say that every
permutation is equally likely. Although such exact guarantees cannot be proven
using Reverse Hoare Logic, proofs in Reverse Hoare Logic are simpler than proofs

168 E. de Vries and V. Koutavas

in probabilistic Hoare logics. The assertion language in Reverse Hoare Logic is a fa-
miliar first order logic, and reasoning does not involve manipulating probabilities
or state distributions.

The notions of “weakest postcondition” and “strongest precondition” appear
only occasionally in the literature, mostly in the context of incomplete knowl-
edge. For instance, when using dynamic binding in object oriented programming,
the caller can only assume the weakest postcondition, i.e. the postcondition of
the method in the top of the inheritance hierarchy [11]. Similar situations arise
with web services [19] and contracts [24], and in artificial intelligence when omit-
ting information in an attempt to simplify a search domain [3,26]. In UTP these
notions are used to define recursion in the theory of “designs” [27].

Dynamic logic [8,9] is a multi-modal logic; for any program c the formula
〈c〉P is satisfied if c can terminate in a state satisfying P , and the formula [c]P
is satisfied if all states that c terminates in satisfy P (there might not be any).
The Hoare triple {α ∈ Π(a)} shuffle {a = α} can be expressed as

∀α · α ∈ Π(a) → 〈shuffle(a)〉(a = α) (26)

in Dynamic Logic. Like in Hoare Logic, however, an implementation of shuffle
which relies on a global random number stream would not satisfy specification
(26). The more general treatment of qualifiers in Dynamic Logic means that in
Dynamic Logic we do not have to be quite as precise as in Hoare Logic:

∀α, ι · ∃ρ · α = πi(a), r = ρ→ 〈shuffle(a)〉(a = α) (27)

Specification (27) is better than the Hoare triple (6) as we do not have to specify
the precise relation between permutations and random number streams, so that
this specification is satisfied by more implementations of shuffle. Nevertheless,
this specification still exposes an implementation detail (the reliance on r).

One might envision extending Dynamic Logic with a reverse modality to ob-
tain a “Reverse Dynamic Logic”. This would certainly be of interest. Finally,
we remark that a lot of the literature on Dynamic Logic is concerned with the
treatment of “totality” in the presence of non-determinism; this is less relevant
in our setting, since we are interested in reachability.

If we have an inverse operation c−1 on programs such that σ c−1

−−→ σ′ exactly
when σ′ c−→ σ, it is immediate from the definitions of validity of total Hoare
triples (with “for all initial. . . exists final. . . ” semantics) that 〈P 〉 c 〈Q〉 exactly
when {Q} c−1 {P}. Reverse Hoare Logic is thus related to the old idea of pro-
gram inversion [6,28], but we avoid the need for computing program inverses.
From another perspective, Reverse Hoare Logic provides a way to prove Hoare
specifications of inverse programs without having to compute the inverse.

Hoare-style “contracts” (pre- and post-conditions) are often implemented as
runtime checks in programming languages such as Eiffel [20]. It is not obvious
how to check “reverse contracts” at runtime. However, static verification of con-
tracts is slowly becoming a reality through tools such as ESC/Java2 [7] and
Spec# [4]. It should not be too difficult to extend these tools to support verifi-
cation of reverse contracts too, although we have not attempted to do so. Some

Reverse Hoare Logic 169

of these tools do not support logic variables, amplifying the need for a reverse
logic to reason about reachability.5

8 Conclusions

Reverse Hoare Logic can be used to give and prove reachability specifications.
Compared to the alternatives, the specifications can be more abstract than in
Hoare logic, and the corresponding proofs are simpler than when using a proba-
bilistic logic. Reverse Hoare Logic naturally gives rise to the concept of a weakest
postcondition, which we have used to show that the proof system is complete.

It would be worthwhile to attempt to combine standard and reverse Hoare
logic, yielding a logic in which we can express both the reachability of good states
and the non-reachability of bad states. An extension to functional languages,
especially higher-order ones, would also be of interest.

The use of an infinitary logic enabled an elegant definition of the weakest
postcondition calculus and hence made the completeness proof easier. However,
a formulation using a finitary logic would be useful for an implementation of
Reverse Hoare Logic in an automatic theorem prover.

Finally, it would be interesting to look at adaptation in the context of Reverse
Hoare Logic. We believe that a simple adaptation rule such as equation (6) in
[17] is sound for Reverse Hoare Logic (mutatis mutandis), but it is unclear at
present if Reverse Hoare Logic can be made adaptation complete.

Acknowledgements. We would like to thank Colm Bhandal for an insightful
discussion on the expressivity of Hoare triples in the presence of non-determinism,
and to Hugh Gibbons for providing valuable references.

References

1. Apt, K.R.: Ten years of Hoare’s logic: A survey—part I. ACM Trans. Program.
Lang. Syst. 3, 431–483 (1981)

2. Apt, K.R.: Ten years of Hoare’s logic: A survey—part II: Nondeterminism. Theo-
retical Computer Science 28(1-2), 83–109 (1983)

3. Bacchus, F., Yang, Q.: Downward refinement and the efficiency of hierarchical
problem solving. Artificial Intelligence 71(1), 43–100 (1994)

4. Barnett, M., DeLine, R., Fähndrich, M., Jacobs, B., Leino, K.R.M., Schulte,
W., Venter, H.S.: The spec# programming system: Challenges and directions.
In: Meyer, B., Woodcock, J. (eds.) VSTTE 2005. LNCS, vol. 4171, pp. 144–152.
Springer, Heidelberg (2008)

5 In some tools such as ESC/Java2 we can use “ghost variables” (ordinary variables
appearing only in specifications and proofs) to express reachability properties; e.g. for
the nondeterministic shuffle we can write {γ ∈ Π(a)} shuffle {a = γ ∧ γ = old(γ)}.
Again, deterministic implementations of shuffle do not satisfy this specification. Note
that techniques to remove ghost variables (cf. [14]) do not apply here.

170 E. de Vries and V. Koutavas

5. Chadha, R., Cruz-Filipe, L., Mateus, P., Sernadas, A.: Reasoning about probabilis-
tic sequential programs. Theor. Comput. Sci. 379, 142–165 (2007)

6. Chen, W., Udding, J.T.: Program inversion: more than fun! Sci. Comput.
Program. 15, 1–13 (1990)

7. Cok, D., Kiniry, J.: ESC/Java2: Uniting ESC/Java and JML. In: Barthe, G., Burdy,
L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.) CASSIS 2004. LNCS, vol. 3362,
pp. 108–128. Springer, Heidelberg (2005)

8. Goldblatt, R.: Logics of time and computation. Center for the Study of Language
and Information, Stanford, CA, USA (1987)

9. Harel, D.: Logics of programs: Axiomatics and descriptive power. Tech. rep.,
Massachusetts Institute of Technology, Cambridge, MA, USA (1978)

10. den Hartog, J.: Verifying probabilistic programs using a Hoare like logic. In:
Thiagarajan, P., Yap, R. (eds.) ASIAN 1999. LNCS, vol. 1742, pp. 790–790.
Springer, Heidelberg (1999)

11. Heyer, T.: Semantic Inspection of Software Artifacts From Theory to Practice.
Ph.D. thesis, Linköping University (2001)

12. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM 12,
576–580 (1969)

13. Hoare, C.A.R., Wirth, N.: An axiomatic definition of the programming language
PASCAL. Acta Informatica 2, 335–355 (1973)

14. Hofmann, M., Pavlova, M.: Elimination of ghost variables in program logics. In:
Barthe, G., Fournet, C. (eds.) TGC 2007. LNCS, vol. 4912, pp. 1–20. Springer,
Heidelberg (2008)

15. Honda, K., Yoshida, N., Berger, M.: An observationally complete program logic
for imperative higher-order functions. In: LICS, pp. 270–279. IEEE, Los Alamitos
(2005)

16. Kanig, J., Filliâtre, J.C.: Who: a verifier for effectful higher-order programs. In:
ACM SIGPLAN Workshop on ML, pp. 39–48. ACM, New York (2009)

17. Kleymann, T.: Hoare logic and auxiliary variables. Formal Aspects of
Computing 11, 541–566 (1999), http://dx.doi.org/10.1007/s001650050057,
doi:10.1007/s001650050057

18. Kozen, D.: A probabilistic PDL. J. Comp. and Sys. Sc. 30(2), 162–178 (1985)
19. Kumar, A., Srivastava, B., Mittal, S.: Information modeling for end to end com-

position of semantic web services. In: Gil, Y., Motta, E., Benjamins, V.R., Musen,
M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 476–490. Springer, Heidelberg (2005)

20. Meyer, B.: Object-oriented software construction, 2nd edn. Prentice-Hall, Inc., Up-
per Saddle River (1997)

21. Morgan, C., McIver, A., Seidel, K.: Probabilistic predicate transformers. ACM
Trans. Program. Lang. Syst., 325–353 (1996)

22. Nanevski, A., Morrisett, G., Birkedal, L.: Polymorphism and separation in Hoare
Type Theory. SIGPLAN Not. 41, 62–73 (2006)

23. Ramshaw, L.H.: Formalizing the analysis of algorithms. Ph.D. thesis, Stanford
University (1979)

24. Reussner, R., Poernomo, I., Schmidt, H.: Reasoning about software architectures
with contractually specified components. In: Cechich, A., Piattini, M., Vallecillo,
A. (eds.) CBSQ 2003. LNCS, vol. 2693, pp. 287–325. Springer, Heidelberg (2003)

25. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
LICS, pp. 55–74. IEEE Computer Society, Washington, DC, USA (2002)

http://dx.doi.org/10.1007/s001650050057

Reverse Hoare Logic 171

26. ten Teije, A., van Harmelen, F.: Characterising approximate problem solving: by
partially fulfilled pre- and postconditions. In: ECAI 1998. CEUR-WS, vol. 16, pp.
78–82 (1998)

27. Woodcock, J., Cavalcanti, A.: A Tutorial Introduction to Designs in Unifying
Theories of Programming. In: Boiten, E.A., Derrick, J., Smith, G.P. (eds.) IFM
2004. LNCS, vol. 2999, pp. 40–66. Springer, Heidelberg (2004)

28. von Wright, J.: Program inversion in the refinement calculus. Information
Processing Letters 37(2), 95–100 (1991)

Improving SAT Modulo ODE for Hybrid

Systems Analysis by Combining Different
Enclosure Methods�

Andreas Eggers1, Nacim Ramdani2, Nedialko Nedialkov3, and Martin Fränzle1

1 Carl von Ossietzky Universität, Oldenburg, Germany
{eggers,fraenzle}@informatik.uni-oldenburg.de

2 Université d’Orléans, PRISME, 63 av. de Lattre de Tassigny, 18020 Bourges, France
nacim.ramdani@bourges.univ-orleans.fr

3 McMaster University, Hamilton, Ontario, Canada
nedialk@mcmaster.ca

Abstract. Aiming at automatic verification and analysis techniques for
hybrid systems, we present a novel combination of enclosure methods
for ordinary differential equations (ODEs) with the iSAT solver for large
Boolean combinations of arithmetic constraints. Improving on our pre-
vious work, the contribution of this paper lies in combining iSAT with
VNODE-LP, as a state-of-the-art enclosure method for ODEs, and with
bracketing systems which exploit monotonicity properties to find enclo-
sures for problems that VNODE-LP alone cannot enclose tightly. We
apply our method to the analysis of a non-linear hybrid system by solv-
ing predicative encodings of an inductive stability argument and evaluate
the impact of different methods and their combination.

1 Introduction

The formal analysis of hybrid systems usually involves steps of (ideally safely)
approximating their behavior to obtain models that can be handled by avail-
able tools, since practical engineering models often incorporate elements that no
verification tool can handle in combination. Each of these approximations may
cause a loss of precision in the model, e.g. when capturing non-linear behav-
ior by a linear model. At the same time, these approximations often have to be
done manually, and worse, have to be repeated when the original model changes.
We are therefore convinced that it is highly desirable to develop tools that can
handle as rich dynamics as possible, and hence allow model checking of hybrid
systems in a direct way. In this paper, we will not present a comprehensive tool
that achieves this goal, but we show that our improvement of Satisfiability mod-
ulo ODE solving is a promising step into this direction, though still of academic
nature in the size of problems solvable.
� This work has been supported by the German Research Council DFG

within SFB/TR 14 “Automatic Verification and Analysis of Complex Systems”
(www.avacs.org) and by the Natural Sciences and Engineering Research Council
of Canada.

G. Barthe, A. Pardo, and G. Schneider (Eds.): SEFM 2011, LNCS 7041, pp. 172–187, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Improving SAT Modulo ODE for Hybrid Systems 173

The underlying idea of hybrid system analysis by Satisfiability (SAT) modulo
ODE solving is to offer a constraint language, plus the corresponding solvers,
featuring as its atomic constraints exactly the equations and inequalities arising
in hybrid-system models, especially algebraic constraints between variables and
non-linear ODEs. With such an expressive constraint language, predicative en-
coding of hybrid system dynamics becomes straightforward, rendering intricate
encodings and approximations superfluous. Starting from a predicative encoding
of a hybrid system, the task of the solver is to prove the absence of or search for
a satisfying valuation of the variables, which encode snapshots of the system’s
state at points in time, connected by the transition relation that encodes the be-
havior of the system. In the case of bounded model checking (BMC), satisfying
valuations represent trajectories of the modeled system, starting from an initial
state, performing a bounded number of transitions (jumps and flows) and finally
leading to a target state satisfying a property of interest. The basic principle of
SAT modulo ODE solving is to handle directly ODEs as part of a constraint
system by evaluating their consistency under the current partial assignment the
solver is investigating and learning implied facts for future search.

ODE enclosures as propagation mechanisms have been applied previously in
Constraint Programming [6] for conjunctive Constraint Satisfaction Problems as
well as by Ishii et. al. [8] in a traditional Satisfiability Modulo Theories (SMT)
scheme. In contrast to such an integration (i.e., a SAT solver selecting which
theory atoms shall be satisfied, interleaved with theory solvers evaluating this
conjunction of atoms), the iSAT [5] algorithm performs a search by splitting
intervals and hence indirectly ruling out those atoms that become inconsistent
under this valuation, and thus deducing that other arithmetic constraints must
be satisfied for satisfaction of the entire formula. These constraints then partic-
ipate in the search by means of interval constraint propagation (ICP): as they
have to be satisfied, interval valuations for their variables can be narrowed by
pruning off subintervals that cannot contain a solution. Such ICP deductions are
well-known for algebraic constraints and narrow the search space very effectively.

Reasoning about ODEs can be directly integrated into this framework [4] us-
ing methods for safe interval enclosures of solutions of ODEs. These methods
compute an interval cover for the states reachable from an interval box of ini-
tial states. Since their effectiveness in narrowing the overall search space of the
constraint solver depends on the tightness of the enclosures provided by these
methods, we have reconsidered the tools used for generating such enclosures,
now incorporating the ODE solver VNODE-LP [12] and combining it with a
second layer of reasoning about ODEs, which is only applicable under certain
side-conditions, but may yield tighter enclosures. This additional layer generates
bracketing systems [16] for monotonic segments of trajectories, thus reducing the
problem of computing the image of a set of initial states to one of computing
bounding trajectories.

In this paper, we describe the resulting algorithm and evaluate it on a classical
nonlinear hybrid system, thereby comparing different combinations of the ODE
enclosure mechanisms. The evaluation covers deep unwindings of BMC problems,

174 A. Eggers et al.

as traditionally covered by SMT methods, as well as a novel temporal induction
scheme able to prove a form of stability of hybrid systems.

The exposition starts with an overview of the iSAT algorithm and its interplay
with ODE constraints in Section 2. Section 3 describes the VNODE-LP solver,
Section 4 explains the bracketing systems approach, and Section 5 discusses
deducing trajectory directions. Section 6 reports experimental results obtained
on benchmarks, followed by the conclusions presented in Section 7.

2 The iSAT Algorithm for SAT Modulo ODE

In this section, we overview briefly the basic iSAT algorithm (for details cf. [5])
and focus on aspects related to the integration of ODE enclosures.

Problem statement. Let Φ be a quantifier-free Boolean combination of arithmetic
constraints over bounded real-, integer-, and Boolean-valued variables, simple
bounds, and ODE constraints over real variables with the following properties:

– arithmetic constraints over variables x, y, and z are of the form x ∼ ◦(y, z)
or x ∼ ◦(y), where ∼ is a relational operator from {<,≤,=,≥, >}, and ◦ is a
total unary or binary operator from {+,−, ·, sin, cos, powN, exp,min,max};

– simple bounds are of the form x ∼ c with ∼ as above a relational operator,
x a variable, and c a constant; and

– ODE constraints are time invariant and given by ẋi = dxi/dt = f(x1, . . . , xn)
with all occurring variables xi themselves being defined by ODE constraints
and f being a function composed of {+, −, ·, /, pow

N
, exp, ln, √ , sin, cos}.

These ODE constraints must occur only under an even number of negations
in the formula, allowing e.g. m1 → ((ẋ = sin(y))∧ (ẏ = −x)), but forbidding
e.g. (ẋ = sin(y)) → m1to avoid subtleties in the semantics of the formula.

Additionally, Φ and the variables therein have the structure

Φ = decl[0]∧ · · · ∧ decl[k]∧ init[0]∧ trans[0, 1]∧ · · · ∧ trans[(k− 1), k]∧ target[k]

arising from the k-fold unwinding of the transition system, where decl[i] is the
i-th instantiation of the system variables’ domain bounds, init[0] is the predica-
tive encoding of the initial state applied to the 0-th variable instance, i.e. to the
beginning of the trace, trans[i, i+1] is the application of the transition predicate
to the i-th and (i+ 1)-th instances of the variables, e.g. instantiating a′ = a+ 1
to a[3] = a[2] + 1, and target[k] is the application of the target predicate to the
last variable instance. ODE constraints occur only within the transition relation
since they constrain the continuous flow behavior of the system.

Example. To illustrate this input, Figure 1 shows an encoding of a model from [6].
The problem can be stated as follows: find two points A and B on a circle with
radius 1 around (1, 0) and from the box [−1, 1]× [−1, 1], such that a trajectory of
a harmonic oscillator around (0, 0) with fixed temporal length (here, we choose
1), starting in A ends in a point X , forming an equilateral triangle A, B, X .

Improving SAT Modulo ODE for Hybrid Systems 175

DECL
float [−1, 1] ax, ay, bx, by;
float [−10, 10] x, y;
float [0, 10] time;
float [1, 1] delta time;

INIT
−− A and B on circle around (1,0).
(ay − 0)ˆ2 + (ax − 1)ˆ2 = 1ˆ2;
(by − 0)ˆ2 + (bx − 1)ˆ2 = 1ˆ2;
−− A and B must be distinct points.
ax != bx or ay != by;
−− Trajectory must start in A.
x = ax; y = ay; time = 0;

TRANS
−− A and B stay the same.
ax’ = ax; ay’ = ay;
bx’ = bx; by’ = by;
−− Trajectory.
(d.x / d.time = y);
(d.y / d.time = −x);
time’ = time + delta time;

TARGET
−− Equilateral triangle: equal
−− distances between A, B, and X.

(ay − by)ˆ2 + (ax − bx)ˆ2
= (ax − x)ˆ2 + (ay − y)ˆ2;

(ay − by)ˆ2 + (ax − bx)ˆ2
= (bx − x)ˆ2 + (by − y)ˆ2;

−1

−0.5

0

y

−0.5 0 0.5 1

x

A

B

X

Fig. 1. Illustration of the solver input (before being automatically rewritten into the
solver’s internal format by its frontend) and a possible solution found by iSAT

Satisfiability. As usual, a valuation σ, which maps each variable to a point from
its domain, satisfies Φ iff the constraints satisfied under σ satisfy the Boolean
structure of Φ. Satisfiability is straightforward for simple bounds and arithmetic
constraints, but requires some explanation in the case of ODE constraints.

As noted above, ODEs —describing the evolution of variables over continuous
time— occur only in the transition relation, which constrains the pre-post rela-
tion between any two successive instances of variables in a trace. Semantically,
a trace is a sequence of snapshots of a real-time trajectory of the hybrid system.
Hence, ODE constraints describe the behavior of the system between two such
snapshots, i.e. describe trajectories emerging from the pre-valuation, following
the dynamics described by the ODE, and finally reaching the post-valuation.
A valuation σ thus satisfies a definitionally closed system of ODE constraints
(each occurring variable itself being defined by one of the component ODE con-
straints), iff there exists a solution trajectory starting with the pre-valuation and
ending with the post-valuation after a duration equal to the temporal length of
the flow, as provided by the value of a special variable delta time.

More formally, given �x = (x1, . . . , xn)T and ODE constraints defining �x :1

�̇x =
(
f1(�x), . . . , fn(�x)

)T = �f(�x), (1)

for two BMC unwinding depths i and i+ 1, the instantiations of �x are given by
�x[i] and �x[i+ 1], and their valuations σ(�x[i]) and σ(�x[i+ 1])2 together with τ :=
σ(delta time[i]) satisfy (1) iff there exists a solution function �y : [0, τ] → dom(�x)
such that �y(0) = σ(�x[i]), �̇y(t) = �f(�y(t)) for all t ∈ [0, τ], and �y(τ) = σ(�x[i+ 1]).

1 We use explicit vector notation only where confusion with simple variables from a
formula might otherwise occur.

2 For simplicity, the valuation of a vector shall be the vector of its valuations.

176 A. Eggers et al.

Flow invariants. Currently, we do not support direct encoding of mode or flow
invariants, i.e. of constraints on the states traversed during a continuous evolu-
tion. Such invariants can only be formulated within the pre-post relation. If in the
example in Fig. 1, y should stay ≥ c, we could add constraints like y ≥ c∧y′ ≥ c
to the transition system. While for monotonic solutions, no additional behavior
would be allowed by this notation, for the example system, the direction may
change and thus a trajectory may start and end above c, satisfying the added
constraint, but violating the flow invariant at a point of time in between. The
constraint system would thus be an overapproximation of the original system,
allowing spurious trajectories that can not be always removed.

Solving. The task of the solver is to find a valuation satisfying the formula or
proving its unsatisfiability. Starting from an input formula like the one depicted
in Fig. 1, a preprocessing step (see [5] for more details) introduces auxiliary
variables to split complex arithmetic expressions into the format described above
and to simplify the Boolean structure into a conjunction of clauses, which are
themselves disjunctions of arithmetic atoms, simple bounds, and trigger variables
representing ODE constraints. The latter are stored separately and are activated
whenever their respective trigger variable becomes true.

Instead of point-valued valuations, the iSAT algorithm interprets the con-
straints over intervals. Initially, each variable receives its whole domain as an
interval valuation. Akin to DPLL-based SAT solving [2,3], the three main in-
gredients of the solver are deduction, decision, and conflict resolution. However,
constraints cannot only be satisfied or unsatisfied for all valuations from the
interval box, but also contain a mixture of points satisfying or violating a con-
straint. For example, consider constraint C : x = 2 · y under the interval valua-
tion x ∈ [0, 10], y ∈ [3, 6]. No point with x ∈ [0, 6) or y ∈ (5, 6] satisfies C, while
x ∈ [6, 10], y ∈ [3, 5] contains points (x, y) like (6, 3) satisfying and points like
(6.1, 3) violating C.

Clauses (disjunctions of constraints) that contain only one constraint that is
potentially satisfiable under the current valuation are called unit and give rise to
unit propagation: the last satisfiable constraint in a clause else containing only
violated constraints must be propagated to retain a chance for satisfiability of
the conjunction of all clauses. If the above example constraint c were such a last
remaining atom of a clause, then interval constraint propagation would allow
to prune away those ranges above identified as not containing any solutions,
yielding a new valuation x ∈ [6, 10], y ∈ [3, 5] and thus a reduced search space.

When no more propagations are possible or the newly deduced bounds have
negligible progress with respect to the old ones, a decision is performed by se-
lecting heuristically a variable and splitting its interval, i.e. introducing a new
upper or lower bound at its midpoint. This bound may give rise to new deduc-
tions. If all of a clause’s constraints are violated under the current valuation,
e.g. due to a prior propagation step, a conflict is encountered, which is resolved
by analyzing the reasons that caused it and generating a conflict clause that is
a disjunction of the negated reasons. This clause is added to the formula and

Improving SAT Modulo ODE for Hybrid Systems 177

ẋ = sin(x)

pre: x[i]

post: x[i + 1]

0 1 2 3 4 5 6 7 8 9 10

delta time[i]

0

1

2

3
x

Fig. 2. An ODE deduction which allows to propagate tighter bounds for delta time[i]

forces at least one of the offending bounds to be chosen differently in the future,
effectively removing this part of the search space for the remainder of the search.

Termination. If the solver encounters a conflict from which it cannot recover,
because no undoing of decisions would resolve it, it has successfully proven un-
satisfiability. Due to the safe overapproximations used in all propagations (e.g.
outward rounding for arithmetic evaluations) and always pruning non-solutions
only, this unsatisfiability result is safe. The solver terminates with unknown, if it
encounters a box whose maximum width is below a small, user-defined threshold
and for which deduction cannot show inconsistency. This small box is a candidate
solution box, which merits practical attention when encountered as a potential
counter example to the safety of an engineered system. As the reported can-
didate solution boxes are very small, interval Newton methods may be able to
verify that they contain an actual solution. While our algorithm currently does
not contain such a check, Ishii et al. [8] have implemented it.

Deduction for ODE constraints. Having interval valuations for the variable in-
stances occurring in ODEs, again requires lifting their original point-valued in-
terpretation to intervals. For arithmetic constraints, we prune away only parts
not containing any solutions. The very same idea applied to ODEs means that
we may prune away all those points from the post-valuation that are not (for-
ward) reachable when starting a trajectory from any point in the pre-valuation
and staying on it for any duration contained in the interval valuation of the
respective delta time variable. Analogously, we can safely prune away those
parts of the pre-valuation for which no trajectory can reach any point in the
post-valuation with any of the possible durations (backward propagation). In
addition, time points t from delta time can be pruned when no trajectory
starting from the pre-valuation reaches any point from the post-valuation at t
(cf. Figure 2).

The essential ingredient in the deduction for ODE constraints is thus a method
to safely enclose over a temporal interval all trajectories emerging from the pre-
valuation, which is typically an interval box. While our original integration of
such an ODE enclosure mechanism into the iSAT algorithm [4] was confined to
embedding a relatively weak own implementation of a Taylor-series-based safe
integrator, we base our current approach on VNODE-LP [12].

ODE deductions are performed in strict alternation with the other deduction
mechanisms. After completing Boolean and interval constraint propagation as

178 A. Eggers et al.

described above, iSAT’s ODE solving layer uses the current valuation of the trig-
ger variables for each instance of the transition system to select the active ODE
constraints. This signature of activated ODEs and the current interval valuation
for the occurring variables together suffice to generate an enclosure. In contrast
to normal deductions, whose results are stored only temporarily until they may
be undone later by a backjump when recovering from a conflict, the results of
ODE deductions are stored in clauses. This technique, similar to conflict clause
learning, ensures that the same deduction does not have to be repeated since
its results have been added persistently to the formula. Similarly to constraints
replication [19], we add copies of the learned clauses for all isomorphic variable
instances arising from the k-fold unwinding of the transition relation.

Before performing an ODE deduction, the algorithm checks whether the same
query has been encountered before and rejects all duplicate queries. A second
level of caching holds a limited number of intermediate results, which can be
reused when enclosures for a subbox of the original box are requested since in-
terval arithmetic’s monotonicity property w.r.t.. set inclusion guarantees then
that they are still valid (yet coarse) enclosures also for the current valuation.
Using a stored solver run, whenever the currently examined valuation is only
slightly smaller than the original box, partially avoids recomputations. Since the
bounds deduced by the ODE solver are subsequently used in interval propaga-
tions, it is very likely to encounter kind of slightly changed query, providing this
caching layer with a significant role in avoiding wasted computations.

Soundness. The correctness of the core algorithm has been detailed in [5]. Since
our extension to deductions for ODE constraints is restricted to the pruning of
non-solutions and storing all reasons involved in these deductions explicitly in
the learned clauses, the same arguments hold here, too. An essential ingredient
to soundness is the use of validated computations, i.e. outward rounding for inter-
val computations, interval evaluation of remainder terms to capture truncation
errors for the numerical enclosure method detailed in the following section, and
detection of overflows during these computations. Technically, many of these
issues are delegated to libraries, in our case the MPFR and filib++ libraries.3

3 Overview of VNODE-LP

In this section, we present an overview of VNODE-LP, Validated Numerical
ODE through Literate Programming. More details can be found in [12,13].

Consider the initial-value problem, IVP (we omit the�· notation),

ẋ(t) = f(t, x), x(t0) = x0, t ∈ R, x ∈ Rn, (2)

where f : R × Rn is sufficiently smooth (as a consequence, the code list of f
should not contain e.g. branches, abs, or min).

3 http://www.mpfr.org/ and
http://www2.math.uni-wuppertal.de/~xsc/software/filib.html.

http://www.mpfr.org/
http://www2.math.uni-wuppertal.de/~xsc/software/filib.html

Improving SAT Modulo ODE for Hybrid Systems 179

Denote the set of n-dimensional interval vectors by IRn. Given x0 ∈ IRn and
tend
= t0 (tend ∈ R), VNODE-LP tries to compute an xend ∈ IRn at tend that
contains the solution to (2) at tend for all x0 ∈ x0. If VNODE-LP cannot reach
tend, for example the bounds on the solution become too wide, bounds at some
t∗ between t0 and tend are returned.

This solver proceeds in a one-step manner from t0 to tend, where it computes
bounds at (adaptively) selected points tj ∈ (t0, tend]. To explain an integration
step, denote by x(tj ; t0, x0) the solution to (2) with an initial condition x0 at t0,
and denote by xj an enclosure of this solution at tj . That is,

x(tj ; t0, x0) ∈ xj for all x0 ∈ x0.

On a step from tj to tj+1, VNODE-LP computes first a priori bounds x̃j such
that x(t; tj , xj) ∈ x̃j for all t ∈ [tj , tj+1] and all xj ∈ xj . Then it finds tight
bounds xj+1 at tj+1 such that x(tj+1; t0, x0) ∈ xj+1 for all x0 ∈ x0. For an
illustration of a priori and tight bounds, see Fig. 3. To compute these bounds,
we use interval arithmetic, Taylor series expansion of the solution to (2) at each
integration point, and various interval techniques; for more details see [12,14].

VNODE-LP is based on Taylor series and the Hermite-Obreschkoff [14] meth-
ods. It is a fixed-order, variable-stepsize solver. The stepsize is varied such that
an estimate of the local excess per unit step is below a user-specified tolerance.
Typically efficient values for the order can be between 20 (default) and 30 [12].

Generally, VNODE-LP is suitable for computing bounds on the solution of
an IVP ODE with point initial conditions or interval initial conditions with a
sufficiently small width. If the initial condition set is not small enough and/or
long time integration is desired, the COSY package [1] of Berz and Makino can
produce tighter bounds than VNODE-LP. Alternatively, one can subdivide the
initial interval vector (box) y0 into smaller boxes, perform integrations with
them as initial conditions, and build an enclosure of the solution at tend.

The COSY package bounds the solution using Taylor models, which consist
of a high-order Taylor polynomial in the initial conditions plus an enclosure of
the remainder term. On each integration step, such polynomial representations
of the bounds are propagated, thus effectively reducing the wrapping effect. In
contrast, VNODE-LP, expands the solution with respect to initial condition
up to first order, and propagates parallelepipeds enclosing the solution, which
are generally less effective for reducing the wrapping effect. However, COSY is
computationally more expensive than VNODE-LP.

On each step from tj to tj+1, iSAT uses the a priori bounds and also computes
tighter bounds over selected subintervals of [tj , tj+1], in addition to the provided
tight bounds by VNODE-LP at tj+1, by calling VNODE-LP with initial point tj
and the interval to be refined as interval ending tend ⊂ [tj , tj+1]. These bounds
are not computed efficiently by VNODE-LP, as currently it does not provide a
facility for evaluating a representation of the solution between integration points;
that is, a facility similar to having a continuous interpolant in standard ODE
solving. Such a feature is presently being implemented.

180 A. Eggers et al.

direct a priori
upper bracketing a priori
lower bracketing a priori

dense

lower bracketing enclosure
direct enclosure

delta_time

x

upper bracketing enclosure

−30

−20

−10

 0

 10

 20

 30

 0 2 4 6 8 10 12

dense
lower bracketing a priori
upper bracketing a priori

direct a priori

delta_time

direct enclosure

x

lower bracketing enclosure
upper bracketing enclosure

−3

−2

−1

 0

 1

 2

 0 2 4 6 8 10 12

Fig. 3. Comparison of direct and bracketing enclosure. Left: x dimension of a harmonic
oscillator ẋ = y, ẏ = −x, x(0), y(0) ∈ [1, 2]. Right: x dimension of ẋ = −p4x−(p1x)/(1+
p2y)+p3y+0.1), ẏ = p4x−p3y, all ṗi = 0, for x(0) ∈ [1, 1.2], y(0) ∈ [0.8, 1], p1 ∈ [0.8, 1],
p2 ∈ [1.0, 1.2], p3 ∈ [0.3, 0.5], and p4 ∈ [0.20, 0.25]. Dense enclosures have been obtained
by direct application of VNODE-LP with small fixed stepsize.

4 Using Bracketing Systems as Enclosures

When the starting point of the IVP (2) is a wide interval vector, the enclosures
returned by VNODE-LP may diverge after a few computation steps. One way
to address this shortcoming, while deriving guaranteed results, is to use the
bracketing approach introduced in [16,17], which relies on the classical Müller’s
existence theorem [11,10].

Given the IVP (2), the bracketing method analyzes the signs of the partial
derivatives ∂fi/∂xl, evaluated over the enclosure for all t ∈ [tj , tj+1].

(i) Over each time interval [tj , tj+1], where these signs remain constant, the
method builds two dynamical systems that enclose the original uncertain dy-
namical system and thus bound the flow pipe between a minimal solution, i.e.
a flow that is always lower than the solution flow pipe, and a maximal solution
that is always larger. Since this bracketing system involves no more uncertainty,
VNODE-LP can be efficiently used for the guaranteed computation of the min-
imal and maximal solutions, which start as points instead of intervals. Hence,
the solution enclosure of the actual IVP is enclosed between a minimal and a
maximal solution, obtained as the solution of a new system of coupled ODEs.

(ii) Over each time interval [tj , tj+1], where the sign of at least one partial
derivative changes, we merely use VNODE-LP on the original IVP.

In our implementation, the signs of the partial derivatives need not be ana-
lyzed over the enclosure set for all t ∈ [tj , tj+1], but are only analyzed over xj ,
the tight enclosure at tj . Once the bracketing systems are built and the solu-
tion set computed over the whole time interval, these signs are then checked a
posteriori: if they remain constant for all t ∈ [tj , tj+1], then it is proven that

Improving SAT Modulo ODE for Hybrid Systems 181

the bracketing systems are valid [16], if not, then the bracketing systems are
not valid over whole time interval. In this case the solution is enclosed using
VNODE-LP on the original IVP with interval initial conditions.

Furthermore, our implementation of the bracketing approach is novel. Indeed,
the bracketing systems are built automatically on the fly inside iSAT. This is
done through the FADBAD++4 automatic differentiation package, whereas pre-
viously they were built manually or using external symbolic algebra.

Figure 3 compares enclosures obtained using our implementation of the brack-
eting approach and the direct application of VNODE-LP. Clearly, both methods
should be combined as their actual performances depend on the analyzed ODE.
The performance of the bracketing approach, that is how tight are the computed
enclosures when used with a given system, may in fact be known a priori. For
monotone dynamical systems, those whose flows preserve a suitable partial or-
dering on states, hence on initial conditions, the computed bracketing systems
are feasible instantiations of the dynamical system under study, hence exhibit
the same convergence and stability properties as the original system. If the lat-
ter is convergent and stable, then should the bracketing systems. However, when
the dynamical system is not a monotone one, the bracketing systems usually suf-
fer from a hidden wrapping effect that provokes the derived enclosures to blow
up. In spite of that, both experimental and theoretical evaluation show that
when the original system exhibits very strong convergence (stability) proper-
ties, the latter property can overrule the wrapping effect making the bracketing
approach effective. Finally, the bracketing approach performs badly when the
system exhibits stable orbits or oscillatory behaviors. Nevertheless, we expect
our implementation of bracketing systems within iSAT to simplify the thorough
practical assessment of its actual performance in the future.

5 Deducing Trajectory Directions

In the case study shown in the following section, we encounter the problem of
showing that a trajectory cannot stay at the point of its origin when at least an
infinitesimal amount of time (delta time > 0) has been spent. The enclosure
schemes presented so far —powerful as they are— are unable to prove this. One
reason for this is that even for point-valued initial conditions x0, the very first
a priori enclosure for an interval t ∈ (0, t1] must also contain the enclosure x0

itself, since the solution trajectory is a continuous function.
The simple yet effective solution to this problem is to evaluate the ODEs’

right-hand sides over a prefix delta time ∈ [0, tp] of the already calculated
enclosure. If this evaluation yields a strictly positive result, we can safely deduce
delta time ∈ (0, tp] ⇒ x′ > x, i.e. that the post-value is strictly greater than
the pre-value for this prefix. Analogously, we can deduce delta time ∈ (0, tp] ⇒
x′ < x, if the evaluation yields only values strictly less than zero.

A direction deduction performs an interval evaluation of the ODE’s right-hand
side over the first enclosure step and continues this computation for subsequent
4 http://www.fadbad.com

http://www.fadbad.com

182 A. Eggers et al.

x1

k3

x2

k1

·k2

·k4

For x2 > k3:(
ẋ1

ẋ2

)
=

(
k1 − k2

√
x1 − x2 + k3

k2

√
x1 − x2 + k3 − k4

√
x2

)
For x2 ≤ k3:(

ẋ1

ẋ2

)
=

(
k1 − k2

√
x1

k2
√

x1 − k4
√

x2

)
Fig. 4. Structure and dynamics of the two tank hybrid system (from [20])

steps, as long as the calculated intervals do not contain zero. The upper bound
of tp is then at the end of either the entire enclosure or the last enclosure step
for which the evaluation yielded a strictly positive or negative result.

6 Experiments

To evaluate the integrated tool and the influence of the different enclosure meth-
ods, we apply our solver to the two-tank model from [20], which has been fre-
quently used as a case study for verification tools cf. e.g. [7,18]. This system
comprises two tanks connected by a tube. The first tank has an inflow of con-
stantly k1 = 0.75 volume units, and its base is k3 = 0.5 length units above the
base of the second tank. The connecting tube is characterized by a constant
factor k2 = 1, which also characterizes the outflow of the system as k4 = 1.

Figure 4 illustrates this setting and formalizes the dynamic behavior of the
liquid’s height x1 and x2 in the two tanks. The system’s behavior switches be-
tween two dynamics, when x2 reaches the outlet from tank 1 and therefore exerts
a counter pressure against the incoming flow. Note that the model is implicitly
bounded to the case that x2 ≤ x1 + k3, since it does not provide the dynamics
for the inverse direction. To understand better the dynamics of this system and
the proof obligations we encoded, Fig. 5 depicts simulated trajectories.

Similar to the introductory example in Fig. 1, we encode this model predic-
tively using the above description directly as ODE constraints.5

Bounded reachability. To validate the model, we first check bounded reachability
properties. As can be assumed from Fig. 5, there should not be any trajectory
leading from region D = [0.70, 0.80]× [0.45, 0.50] to E = [0.45, 0.50]× [0.60, 0.65].
This property has been verified by Henzinger et. al. using HyperTech [7].

We restrict the global time ≤ 100 and each step duration delta time ≤ 10. To
avoid unnecessary non-determinism in the model, all steps are explicitly enforced
in the transition relation to take the maximum possible duration. They may be
shorter only if they reach the switching surface at x2 = k3, if the time = 100, or if
(x1, x2) reaches E. Our solver can prove unsatisfiability of this bounded property
for up to 300 unwindings of the transition system within 3109.1 seconds.
5
http://www.avacs.org/fileadmin/Benchmarks/Open/iSAT_ODE_SEFM_2011_models.tar.gz

http://www.avacs.org/fileadmin/Benchmarks/Open/iSAT_ODE_SEFM_2011_models.tar.gz

Improving SAT Modulo ODE for Hybrid Systems 183

C B

A

dci

dco

D

E

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

x1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x2

k3

x1 + k3 < x2

Fig. 5. Simulated trajectories for the two tanks system, inner and outer bounds of the
don’t care mode, and regions A - E used in the different verification conditions

Table 1 summarizes the runtimes on a 2.4 GHz AMD Opteron machine, which
has been used for all runtime measurements. The solver is set to continue until
it finds a solution and to keep learned clauses of previous BMC steps in the for-
mula. The runtimes clearly indicate that the bulk of the problem lies in refuting
the possibility of a trajectory with a low number of steps, while adding more
unwindings of the formula does not make this problem harder to solve.

Unbounded trajectory containment. Although the formula structure is a bounded
unwinding of the transition system, inductive arguments may be used to prove
unbounded properties. One can easily see that region A = [0.6, 0.7] × [0.4, 0.6]
contains an equilibrium point. However, the simulation also shows that there are
trajectories leaving this region. We extend our model to show that trajectories
can leave region A only on a bounded prefix, but thereafter stay in A forever.

First, we guess a τ > 0 (supported by looking at some simulated trajectories).
With Ml := {all trajectories of length ≥ l}, from showing that

∀�x ∈ M2τ : [0, 2τ] → R2 : (�x(0) ∈ A⇒ ∀t ∈ [τ, 2τ] : �x(t) ∈ A) (3)

follows by inductive application of (3), as facilitated by time invariance,

⇒∀�x ∈ M∞ : [0,∞) → R2 : (�x(0) ∈ A⇒ ∀t ∈ [τ,∞) : �x(t) ∈ A)

Table 1. CPU time (seconds) for the individual unwinding depths of the bounded
reachability check from region D to E

depth k 1 2 3 4 5 6 7 8 9 10 . . . 100 200 300

time 6.6 183.7 344.3 268.8 167.4 15.7 12.7 16.5 10.3 3.7 3.8 7.9 15.0

total 6.6 190.3 534.5 803.4 970.7 986.4 999.1 1015.6 1025.8 1029.5 1308.9 1955.2 3109.1

184 A. Eggers et al.

Table 2. Column all shows results and CPU times (seconds) for checking unbounded
containment in A using all enclosure methods combined. In the subsequent columns,
one of the methods is disabled

depth all no bracketing no direct no direction

1 unknown, 111.9 unknown, 42.0 unknown, 61.5 unknown, 111.5

2 unknown, 467.5 unknown, 981.0 unknown, 346.3 unknown, 342.0

3 UNSAT, 674.0 UNSAT, 5011.6 UNSAT, 404.2 unknown, 478.8

4 UNSAT, 812.1 UNSAT, 1995.1 UNSAT, 499.1 unknown, 547.5

5 UNSAT, 986.0 UNSAT, 2432.0 UNSAT, 601.1 unknown, 682.4

6 UNSAT, 1126.1 UNSAT, 3303.4 UNSAT, 705.0 unknown, 834.2

7 UNSAT, 1277.2 UNSAT, 2486.8 UNSAT, 803.7 unknown, 982.5

8 UNSAT, 1451.4 UNSAT, 5273.3 UNSAT, 890.8 unknown, 1115.7

9 UNSAT, 1584.6 UNSAT, 4905.2 UNSAT, 966.5 unknown, 1235.8

10 UNSAT, 1706.6 UNSAT, 6396.1 UNSAT, 1053.2 unknown, 1356.0

Intuitively, we show that all trajectories of length 2τ stay in A for delta time ∈
[τ, 2τ] (ignoring their behavior for [0, τ)). All unbounded trajectories must have
these trajectories of length 2τ as prefix. At τ , they are thus (again) in A. Due
to time invariance, we can consider (x1, x2)(τ) as a new starting point. Since it
lies in A, we have already proven that for [τ + τ, τ +2τ], the trajectory will lie in
A again. For the time in between, we already know that it is in A. By repeating
this process ad infinitum, we know that the trajectory can never leave A again.

Note that this proof is related to the idea of region stability [15] and can
be thought of as a stabilization proof for an unknown (and maybe hard to
characterize) sub-region Ainv ⊆ A into which all trajectories from A stabilize,
and which is an invariant region for the system.

Table 2 summarizes runtimes for this proof using iSAT and the different en-
closure methods. Our model encodes the above proof scheme in the following
way: if a trajectory exists that is shorter than 2τ or that reaches a point outside
A in time ∈ [τ, 2τ], this trajectory satisfies the model. The proof is successful
when the solver finds an unwinding depth k of the transition system upon which
the model becomes unsatisfiable. Here, an unwinding depth of 3 suffices to prove
the desired property. Without the direction deduction presented in Sect. 5, the
solver fails to prove unsatisfiability, because it always finds counter examples
that stay on the switching surface, spending there only tiny amounts of time.
These trajectories satisfy the target condition of having time ≤ 2τ and do not
allow proving (3). Direction deduction hence enables proving the property.

The runtimes show that the approach without the direct enclosure (using only
bracketing enclosures and direction deductions) outperforms both, the restriction
to the direct usage of VNODE-LP with direction deduction and the combination
of all enclosure methods together on this benchmark.

Introducing artificial non-determinism and hysteresis. Trying a direct induc-
tive proof for the region B = [0.4, 0.8] × [0.4, 0.7] (i.e. showing that B cannot
be left with one step of the transition system) fails with our tool since B’s
corner at (0.4, 0.4) cannot be represented exactly by floating-point numbers.

Improving SAT Modulo ODE for Hybrid Systems 185

Table 3. Results and CPU times (seconds) for checking unbounded containment in B

depth all no bracketing no direct no direction

1 unknown, 17.7 unknown, 9.4 unknown, 12.9 unknown, 15.4

2 unknown, 163.9 unknown, 57.9 unknown, 81.9 unknown, 157.4

3 unknown, 198.9 unknown, 71.8 unknown, 126.9 unknown, 202.4

4 unknown, 666.6 unknown, 193.6 unknown, 146.7 unknown, 206.9

5 UNSAT, 2334.2 UNSAT, 3270.3 unknown, 183.4 unknown, 283.6

6 UNSAT, 4615.6 UNSAT, 1441.2 unknown, 182.2 unknown, 122.0

7 UNSAT, 2967.1 unknown, 1934.7 unknown, 144.1 unknown, 123.9

8 UNSAT, 2559.0 UNSAT, 2953.0 unknown, 201.6 unknown, 123.6

9 UNSAT, 2184.1 UNSAT, 4121.2 unknown, 135.2 unknown, 127.2

10 UNSAT, 5541.6 UNSAT, 7717.3 unknown, 272.5 unknown, 127.6

To compensate, B is overapproximated to capture rounding errors, hence in-
cludes points that lie slightly outside B. Using the same proof scheme as above
can be expected to work, as the simulated trajectories point inwards from the
border of B. Yet, applying this proof scheme, the solver finds trajectories that
can chatter indefinitely at P = (0.5, 0.5), since ẋ2 = 0 in P . This chattering is
a valid behavior, though irrelevant for the actually intended proof of B’s invari-
ance.

We therefore identify intersections of the switching surface with ẋ2 = 0 (i.e.
solutions to the constraint system k2

√
x1 − k4

√
x2 = 0 ∧ x2 = k3) and, finding

only this one in P , add a don’t-care mode around it —depicted in Fig. 5 as
dci = [0.49, 0.51]× [0.49, 0.51]. Since this region lies well inside B, we allow any
trajectory that reaches it to jump immediately or after an arbitrary positive
amount of time to the outer border of the don’t-care mode, illustrated by dco,
which is ε = 0.0625 away from dci. We also forbid any trajectory to enter dci.
This modification trades in accuracy by introducing non-determinism for the
benefit of an artificial hysteresis: trajectories which could formerly stutter in P
can now jump to any point on the border of dco, but must then move along the
system’s dynamics again, consuming time.

With this modification, we can prove that B is left for less than τ = 0.0625.
Table 3 shows that the proof succeeds for depths k ≥ 5 for all methods combined.
Though bracketing enclosures are computed successfully, the direct method gen-
erates at least one deduction which is essential to prove unsatisfiability.

Further evaluation. We also applied the same proof scheme to region C =
[0.3, 0.4] × [0.6, 0.7] again with unwinding depths 1 to 10. As expected, none of
the resulting formulae was proven unsatisfiable. Runtimes were within 20.3 sec-
onds for unwinding depth 1 without bracketing system usage and 617.6 seconds
for unwinding depth 10 with all methods used in combination.

7 Conclusion

After exploring the feasibility of using ODE enclosures to solve SAT modulo ODE
problems in [4], this paper extends and improves the abilities of the resulting

186 A. Eggers et al.

solver by combining enclosure methods. We have shown that the techniques
presented in this paper have complementary strengths, and that our integrated
approach is capable of handling different types of proof obligations for a nonlinear
hybrid system. Our improvements are orthogonal to the application of interval
Newton contractors in [6,8], and could be extended in the same way to gain the
ability to prove existence of solutions.

One current weakness of our method is its inability to express directly flow
invariants, which constrain variables over the entire duration of a flow. The
resulting formula may thus have solutions that are spurious trajectories in terms
of the original model. Our experiments show that proofs can be successfully
obtained in spite of this overapproximation. However, a direct handling of flow
invariants would remove the need to counteract such spurious trajectories.

Ishii et al. handle this issue in [9] by selecting the “first” intersection of an
enclosure with a guard condition. However, they discard an enclosure if it con-
tains the initial value set under the assumption that this initial point and the
next intersection with the guard are distinct. It is unclear whether this suffices
to guarantee that the first intersection of a trajectory (after its starting point) is
chosen. One focus of our future work will be to handle flow invariants by pruning
the enclosures directly.

To accelerate our tool, we plan on extending VNODE-LP to produce en-
closures over intervals of time by allowing re-evaluations of the Taylor series
between computed steps, which will be significantly faster than the current eval-
uation scheme. Little effort has so far been invested in good decision heuristics
to select likely solutions earlier in the search. We will also explore ways to build
the bracketing systems when off-diagonal Jacobian elements change sign.

Acknowledgment. We would like to thank Stefan Ratschan, Christian Herde,
Tino Teige, Jens Oehlerking, and Corina Mitrohin for discussions on the region-
stability-related proof scheme utilized for the experiments in this paper and our
other colleagues from AVACS H1/2 for the joint development of the iSAT core.
Additionally, we are grateful to the reviewers for their detailed comments.

References

1. Berz, M.: COSY INFINITY version 8 reference manual. Tech. Rep. MSUCL–1088,
National Superconducting Cyclotron Lab., Michigan State University, USA (1997)

2. Davis, M., Logemann, G., Loveland, D.: A Machine Program for Theorem Proving.
Commun. ACM 5, 394–397 (1962)

3. Davis, M., Putnam, H.: A Computing Procedure for Quantification Theory. Journal
of the ACM 7(3), 201–215 (1960)

4. Eggers, A., Fränzle, M., Herde, C.: SAT modulo ODE: A direct SAT approach
to hybrid systems. In: Cha, S(S.), Choi, J.-Y., Kim, M., Lee, I., Viswanathan, M.
(eds.) ATVA 2008. LNCS, vol. 5311, pp. 171–185. Springer, Heidelberg (2008)

5. Fränzle, M., Herde, C., Ratschan, S., Schubert, T., Teige, T.: Efficient solving of
large non-linear arithmetic constraint systems with complex boolean structure.
JSAT Special Issue on Constraint Programming and SAT 1(3-4), 209–236 (2007)

Improving SAT Modulo ODE for Hybrid Systems 187

6. Goldsztejn, A., Mullier, O., Eveillard, D., Hosobe, H.: Including ordinary differ-
ential equations based constraints in the standard CP framework. In: Cohen, D.
(ed.) CP 2010. LNCS, vol. 6308, pp. 221–235. Springer, Heidelberg (2010)

7. Henzinger, T., Horowitz, B., Majumdar, R., Wong-Toi, H.: Beyond HYTECH:
Hybrid systems analysis using interval numerical methods. In: Lynch, N., Krogh,
B. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 130–144. Springer, Heidelberg (2000)

8. Ishii, D., Ueda, K., Hosobe, H.: An interval-based SAT modulo ODE solver for
model checking nonlinear hybrid systems. International Journal on Software Tools
for Technology Transfer (STTT), 1–13 (March 2011)

9. Ishii, D., Ueda, K., Hosobe, H., Goldsztejn, A.: Interval-based solving of hybrid
constraint systems. In: Proceedings of the 3rd IFAC Conference on Analysis and
Design of Hybrid Systems, pp. 144–149 (2009)

10. Kieffer, M., Walter, E., Simeonov, I.: Guaranteed nonlinear parameter estimation
for continuous-time dynamical models. In: Proceedings 14th IFAC Symposium on
System Identification, Newcastle, Aus, pp. 843–848 (2006)

11. Müller, M.: Über das Fundamentaltheorem in der Theorie der gewöhnlichen Dif-
ferentialgleichungen. Mathematische Zeitschrift 26, 619–645 (1927)

12. Nedialkov, N.S.: VNODE-LP — a validated solver for initial value problems in
ordinary differential equations. Tech. Rep. CAS-06-06-NN, Department of Com-
puting and Software, McMaster University, Hamilton, Ontario, L8S 4K1 (2006),
VNODE-LP http://www.cas.mcmaster.ca/~nedialk/vnodelp

13. Nedialkov, N.S.: Implementing a rigorous ODE solver through literate program-
ming. In: Rauh, A., Auer, E. (eds.) Modeling, Design, and Simulation of Systems
with Uncertainties, Mathematical Engineering, vol. 3, pp. 3–19. Springer, Heidel-
berg (2011)

14. Nedialkov, N.S.: Computing Rigorous Bounds on the Solution of an Initial Value
Problem for an Ordinary Differential Equation. Ph.D. thesis, Department of Com-
puter Science, University of Toronto, Toronto, Canada, M5S 3G4 (February 1999)

15. Podelski, A., Wagner, S.: Region stability proofs for hybrid systems. In: Raskin,
J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp. 320–335.
Springer, Heidelberg (2007)

16. Ramdani, N., Meslem, N., Candau, Y.: A hybrid bounding method for comput-
ing an over-approximation for the reachable space of uncertain nonlinear systems.
IEEE Transactions on Automatic Control 54(10), 2352–2364 (2009)

17. Ramdani, N., Meslem, N., Candau, Y.: Computing reachable sets for uncertain
nonlinear monotone systems. Nonlinear Analysis: Hybrid Systems 4(2), 263–278
(2010)

18. Ratschan, S., She, Z.: Safety verification of hybrid systems by constraint propa-
gation based abstraction refinement. ACM Transactions in Embedded Computing
Systems 6(1) (2007)

19. Shtrichman, O.: Tuning SAT checkers for bounded model checking. In: Emerson,
E., Sistla, A. (eds.) CAV 2000. LNCS, vol. 1855, pp. 480–494. Springer, Heidelberg
(2000)

20. Stursberg, O., Kowalewski, S., Hoffmann, I., Preußig, J.: Comparing timed and
hybrid automata as approximations of continuous systems. In: Antsaklis, P., Kohn,
W., Nerode, A., Sastry, S. (eds.) HS 1996. LNCS, vol. 1273, pp. 361–377. Springer,
Heidelberg (1997)

http://www.cas.mcmaster.ca/~nedialk/vnodelp

Verification of B+ Trees:
An Experiment Combining Shape Analysis and

Interactive Theorem Proving

Gidon Ernst, Gerhard Schellhorn, and Wolfgang Reif

University of Augsburg, Germany
{ernst,schellhorn,reif}@informatik.uni-augsburg.de

Abstract. Interactive proofs of correctness of pointer-manipulating programs
tend to be difficult. We propose an approach that integrates shape analysis and
interactive theorem proving, namely TVLA and KIV. The approach uses shape
analysis to automatically discharge proof obligations for various data structure
properties, such as “acyclicity”. We verify the main operations of B+ trees by
decomposition of the problem into three layers. At the top level is an interac-
tive proof of the main recursive procedures. The actual modifications of the data
structure are verified with shape analysis. To this purpose we define a mapping
of typed algebraic heaps to TVLA. TVLA itself relies on various constraints and
lemmas, that were proven in KIV as a foundation for an overall correct analysis.

1 Introduction

Interactive theorem provers are powerful tools for formal verification. However, reason-
ing about pointer structures in the presence of destructive updates can be quite difficult
with them. In contrast, fully automatic tools based on shape analysis, such as TVLA
[14,2], are specifically designed to perform well in these situations, but can not deal
with precise arithmetic and induction, for example.

B+ trees [1] are ordered, balanced trees that are commonly used to implement indices
in databases or file systems. They have several invariants regarding tree shape, sorting,
balance and node sizes.

Verification of B+ trees is a hard problem. We are aware of several efforts to verify
them. Two pen-and-paper proofs are [4] and [15]. The first uses two refinements with
an intermediate level of nested sets. The implementation is given as Pascal code. The
other uses separation logic. Algorithms are given by transitions of an abstract machine
specifically designed for the problem.

The only complete mechanized verification we are aware of is [10]. It uses the sepa-
ration logic framework of the Coq theorem prover and a similar formalization as [15].
Although the authors state that a significant degree of automation was achieved by cus-
tomized proof tactics, the effort is still high: approx. 5000 lines of proof script were
needed. Their verification, however, considers some additional operations (e.g., effi-
cient range queries) we have not verified.

Preliminary work in TVLA is [8]. It verifies some properties of B+ trees, but is
restricted to a statically bounded rank.

G. Barthe, A. Pardo, and G. Schneider (Eds.): SEFM 2011, LNCS 7041, pp. 188–203, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Verification of B+ Trees 189

Our approach uses algebraic specifications and wp-calculus as a convenient frame-
work for verification of the relevant algorithms. Shape analysis is used as a kind of
decision procedure that discharges some of the proof goals automatically. However, the
proposed integration differs from common approaches with similar goals (that use for
example SAT-solvers): shape analysis is parameterized with constraints that are specific
to the problem domain. These constraints are used as unvalidated assumptions to guide
the automatic proof. To ensure a correct analysis they have to be verified interactively.

In this work, we perform a conceptual integration by translating manually between
the two worlds. We evaluate how the rather different high-level specification style used
in algebraic specifications can be mapped to the shape graphs and logic of TVLA.

We use the theorem prover KIV [11], but the approach should be applicable with
other interactive theorem provers, too. By combining KIV and TVLA, we have verified
that our implementation of the insertion and deletion operations on B+ trees maintains
the invariants for tree shape, balance, sorting and node sizes and that they are a refine-
ment of their counterparts on algebraic sets. We ensure correctness of the shape analysis
specifications and – where possible – abstract from B+ trees as the concrete data struc-
ture, so that many generic constraints can be reused for other pointer structures. The
proofs done in KIV as well as the TVLA input files are available online at [3].

This work is organized as follows: Section 2 introduces B+ trees, our verification ap-
proach and an algebraic specification of pointer structures. Section 3 briefly describes
the shape analysis implemented by TVLA. Section 4 formalizes B+ tree invariants and
explains how these can be tracked with shape analysis. Sec. 5 summarizes our experi-
ences, and Sec. 6 draws conclusions.

2 B+ Trees and Approach

B+ trees are ordered, balanced N-ary trees. They are used to implement large sets of
keys (or key-value maps). They maintain several invariants to guarantee logarithmic-
time operations. The main operations on B+ trees are lookup, insertion and deletion.
In a B+ tree of rank N , a node is either a branch, that stores N ≤ k ≤ 2N keys and
k + 1 downward pointers, or it is a leaf, that stores between N and 2N keys (for sets) or
key-value mappings. There is an exception to this rule for the root, which must contain
at least one key instead of N . A total order on keys is required. The actual content of
the B+ tree only consists of the information in the leaves, the keys in the branch nodes
organize efficient access (in contrast to B-trees, that store content in internal nodes, too).
A B+ tree is balanced if all leaves are on the same level, and sorted if in each node the
keys are sorted in increasing order, while subtrees only contain keys between adjacent
keys in the parent.

We use linked lists instead of arrays for the representation of nodes. An encoding
of arrays in TVLA has been developed [5,6], but unfortunately the modified TVLA
versions are not available, so we remain with the core concepts in this case study.

Figure 1 shows an example B+ tree in this model, compared to an equivalent array-
based one. Graphical nodes displayed as boxes serve as representatives of entire B+ tree
nodes (subsequently called heads), while the round nodes (subsequently called entries)
store the keys. The edge labels next and down indicate the names of the corresponding
selectors of the respective objects. This B+ tree represents the set {2, 6, 7, 9}.

190 G. Ernst, G. Schellhorn, and W. Reif

root 4
next

 down

7
next

 down down

2 6 97

(a) pointer-based

root
4 7

2 6 7 9

(b) array-based

Fig. 1. B+ tree representations
2.1 Algorithms

Both the insertion and deletion algorithm on B+ trees essentially follow the same strat-
egy: recursively traverse the tree down to a leaf node that is responsible for holding the
given key k and perform the desired modification locally on that leaf. This may cause
an underflow or overflow with respect to the node size invariant, which is restored by
restructuring the tree. For example, an overfull leaf is split into halves, and an additional
down-pointer and key are added to the parent. Therefore, restructuring may cascade up-
wards along the path the recursive descent has taken, possibly leading to growth and
shrinking at the root.

insert node(k, rn) {
if rn.leaf?
then insert leaf(rn, k)
else if k ≤ rn.next.key

then insert node(rn.down, k)
if overfull(rn.down)
then split node(rn ; rt)

else insert bentry(rn.next, k)
}

insert bentry(k, rbe) {
if rbe.next = null

∨ k ≤ rbe.next.key
then insert node(rbe.down, k)

if overfull(rbe.down)

then split bentry(rbe ; rt)
else insert bentry(rbe.next, k)
}

Fig. 2. Mutually recursive insertion routines

Figure 2 lists two mutually recursive subroutines of the insertion algorithm, given in
the abstract program syntax used in KIV. They receive the current key as a parameter
k and the current node in rn and rbe respectively – insert node descends at a node head
(displayed as boxes in Fig. 1), while insert bentry performs similar actions at branch en-
tries (displayed as circles). The top-level routine insert, which is not shown here, is very
similar to insert node but additionally has to deal with an empty tree as well as growth
and shrinking. The actual modifications of the data structure are hidden inside the func-
tions insert leaf, which stores a key in a leaf, and split node(rn ; rt) and split bentry(rbe ;
rt) that split the overfull down-child of rn resp. rbe at its median elements. The deletion
algorithm is similar but more complicated because balance may be restored either by
merging nodes or by transferring keys between adjacent nodes.

Figure 3 shows the implementation of split node and its effect on the data structure,
rn is the overfull node, its parent is rp and r1 denotes the entry just before the median r2.
The newly allocated node is returned in rt (which is required to specify the contract).

Verification of B+ Trees 191

split node(rp ; rt) {
rn := rp.down
compute r1
r2 := r1.next

r3 := r2.next
r1.next := null
rc := r2.down

rt := new Branch
r2.down := rt
rt.down := rc

rt.next := r3
rq := rp.next
rp.next := r2

r2.next := rq
}

(a) Code

rp

rn

rq

r1

rc

...

r2 r3 ...

rp

rn

r2

r1

rc

rt r3

rq ...

...

(b) Structure before/after modification

Fig. 3. Restructuring routine split node

2.2 Verification Approach

The verification of B+ trees must establish two properties of the implementation: 1)
insertion and deletion retain the B+ tree invariants and 2) the operations correspond to
their set-theoretic counterparts. Invariants are collected in a predicate btree(r) (formal-
ized in Sec. 4) that specifies r as the root of a proper B+ tree. The set of elements that
a B+ tree with root r represents is denoted by elts(r) in the following. Formally,

btree(r) ∧ e = elts(r)→ wp(insert(k; r), btree(r) ∧ elts(r) = e ∪ {k}) (1)

btree(r) ∧ e = elts(r)→ wp(delete(k; r), btree(r) ∧ elts(r) = e \ {k}) (2)

must be proved, where wp(α, ϕ) denotes the weakest precondition of program α with
postcondition ϕ. e denotes the elements of the initial tree. Programs insert and delete are
called with the key k to insert or delete. The root r of the tree is passed by reference as
it may change.

The correctness criteria for the verification of B+ trees can be decomposed into three
layers along the structure of the algorithms. The top level consists of interactive proofs
of the recursive insertion and deletion algorithms. These depend on shape analysis
to verify subroutines that perform actual modifications to the data structure, such as
split node, split bentry and insert leaf, forming the intermediate layer. The basis for the
verification is an algebraic specification of B+ trees as pointer structures. It also serves
for consistency proofs of the constraints and theorems required for shape analysis.

The interactive proofs in KIV are performed by symbolic execution of the program
source code. KIV implements the wp-calculus in the form of Dynamic Logic [7], but
any prover that supports Hoare calculus would be sufficient. Calls to subroutines which
are verified with shape analysis are dispatched via their contracts, so the interactive
verification does not have to deal with the implementation of these subroutines at all.
These contracts form the interface between the top and intermediate layer.

192 G. Ernst, G. Schellhorn, and W. Reif

Subroutines can be classified into restructuring, such as split node, and content mod-
ifications consisting of insert leaf and delete leaf. There are 16 restructuring routines
(split, merge, transfer a key to left and right sibling) for leaf-level and internal opera-
tions that also differ in whether they affect a node head. The contracts of subroutines
of the same class are very similar, concrete examples are given in (3)1 and (4) where r

denotes the root of the tree. In the precondition, lok(rl, k) (“leaf of key”) specifies that
key k actually belongs into the leaf rl which is required to establish sorting in the result.

btree(r) ∧ reachable(r, rp) ∧ e = elts(r) (3)

→ wp(split node(rp; rt), btree(r) ∧ elts(r) = e)

btree(r) ∧ reachable(r, rl) ∧ e = elts(r) ∧ lok(rl, k) (4)

→ wp(insert leaf(k, rl), btree(r) ∧ elts(r) = e ∪ {k})

The main proof for the insert algorithm is concerned with the mutually recursive proce-
dures insert node and insert bentry (see Fig. 2). We combine these into one proof obliga-
tion, so that recursive calls from one function to the other are covered by the induction
hypothesis. The induction is carried out over the number of nodes in (sub)trees. The
critical proof step is to establish lok(r.next, k) resp. lok(r.down, k) given that lok(r, k)

holds for the current node r and key k – which follows from the key comparisons in the
algorithm.

An alternative to this decomposition scheme is to verify the top-level with TVLA as
well, for example with the technique presented in [13], which automatically computes
the contracts of subroutines. However, the interactive proof also shows termination and
the effort for the recursion is reasonably low.

2.3 Algebraic Formalization of Pointer Structures

Pointer structures consist of objects that live inside a heap and are accessed indirectly
via typed references. The heap H is a partial, polymorphic function H : ref[T] →� T

that maps (“dereferences”) allocated references r ∈ dom(H) with r : ref[T] to objects
o = H(r) of corresponding type T . With this scheme, heap access is statically type-
checked within the logic’s type system.

We model objects as instances of free data types. For B+ trees we obtain three sorts:
Node for branch and leaf heads and BEntry, LEntry for their respective entries. Let refn
abbreviate ref[Node] and let rn denote variables of type refn in the following (similar
conventions for refbe, rbe and refle, rle).

data Node = Branch(next: refbe; down: refn) | Leaf(next: refle)
data BEntry = BEntry (key: Key; next: refbe; down: refn)
data LEntry = LEntry (key: Key; next: refle)

Node, for example, is a type freely generated by the constructors Branch and Leaf.
Overloaded selector functions next and down retrieve the respective constructor argu-
ments and are applied in postfix notation similar to Java fields, e.g., if o = Leaf(r)

1 This contract ignores the node sizes, see (22) for the full contract.

Verification of B+ Trees 193

then o.next = r. Additionally, predicates such as o.leaf? are provided to test by which
constructor an object has been built.

To bridge the gap to the untyped logic of TVLA, we define supersorts/sum-types
ref, object and the enumeration of selectors sel

ref = refn + refbe + refle

object = Node + BEntry + LEntry

sel = next | down

We assume a constant null : ref that is never allocated in a Heap. A predicate wt :

object × sel such that wt(o, s) iff o.s is well typed allows us to define heap properties
without referring to concrete types of the case study, for example paths and treeness
(see Sec. 4.1).

As opposed to TVLA, algebraically specified heaps can contain dangling pointers
(references pointing outside the heap). A consistent heap requires that whenever an
object is stored in the heap, all of its reference selectors are either null or point inside
the heap again. In the remainder of this text, we assume that all heaps are consistent.

consistent(H)↔ ∀r ∈ dom(H), s : sel.

wt(H(r), s)→ (H(r).s = null ∨H(r).s ∈ dom(H))

3 Introduction to Parametric Shape Analysis

Parametric shape analysis [14] is an instance of abstract interpretation. The actual com-
putations are performed over an approximation of concrete states. A fully automatic
analysis is achieved by keeping the abstract state space finite, so that it can be explored
exhaustively. The analysis is conservative, i.e., proofs sometimes fail even if the pro-
gram is correct, but not the other way round. Parametric shape analysis is a generic
framework. The user controls abstraction, the encoding of data structure properties and
the program statement semantics. The approach is implemented in the TVLA (Three-
Valued Logic Analyzer) tool.

Parametric shape analysis is based on untyped first-order logic with transitive clo-
sure, but without function symbols (which are encoded as predicate symbols). The logic
is three-valued with the domain of truth values B3 = {0, 1

2 , 1}. The third value 1
2 de-

notes unknown truth (sometimes called “indefinite”) and aggregates contradicting truth
values in abstract states. An abstraction function maps the infinite concrete domain of
possible data structures to finitely many bounded abstract structures.

The key idea is to partition objects allocated in the heap into finitely many equiv-
alence classes, so that all objects in the same class are indistinguishable by a set of
user-definable properties of interest. These properties are given by unary abstraction
predicates. Typically, there are singleton classes for objects pointed to by program vari-
ables. Classes with more than one element are called summary nodes. A single summary
node can represent a whole subtree, for example.

As an example, Fig. 4a shows a shape graph for a heap which contains a singly-
linked list. Node a represents a single object, while all other memory cells are grouped

194 G. Ernst, G. Schellhorn, and W. Reif

x

a b
next

reachable

next, reachable

(a) original structure

b1

b2
next

reachable next, reachable

x

a

next

reachable
reachable

(b) after splitting b into b1 and b2

Fig. 4. Splitting of a summary node

into the (doubly circled) summary node b. The partitioning is according to the fact that
program variable x points to a.

The program signature (program variables and selectors) is encoded as part of the
logical signature. A program variable x becomes an unary predicate symbol x(r) that
is constrained to hold for one node only: the one x points to. Selectors become binary
predicate symbols, for example H [r1].next = r2 is encoded as next(r1, r2) = 1. These
predicates are constrained to be partial functions. The predicate symbols arising from
the program signature are called core predicates.

In Fig. 4a the dotted arrow indicates that next(a, b) = 1
2 , since the next selector of

node a points to some node in class b, but not to all. All nodes summarized by b are
definitely reachable from a, as indicated by the solid arrow.

The program itself is represented by a finite transition system between states, each
state corresponding to a specific value of the program counter. For each state shape
analysis computes the set of shape graphs that approximate all heap structures that are
possible at that program point. This can be done by a fixpoint computation, since the
number of states as well as the number of shape graphs is finite.

To compute the fixpoint, for each transition a precondition (%p in TVLA) and an up-
date formula must be defined. The precondition encodes tests of conditionals or loops,
the update formula must specify the effects of assignments for all core predicates.

As an example x := y is represented by the update formulas ϕx
x := y(r) = y(r) for x and

ϕp
x := y(r) = p(r) for all other predicates p. A transition is executed by evaluating each

update formula in the old state yielding the predicate’s values in the new state. The
statement x.next := y is represented as ϕnext

x.next := y(r1, r2) = next(r1, r2) ∨ x(r1) ∧ y(r2).2

[14] defines preconditions and update formulas for standard statements such as assign-
ments, selector access and case distinctions. All selector assignment statements x.sel :=
y assume, that x.sel = null, so that edges are either added or removed but not both in one
step. Therefore when translating KIV programs to TVLA, these assignments have to be
rewritten into x.sel := null; x.sel := y.

During the run of a program, the abstraction is dynamically adjusted with every
statement. Suppose, the statement x := x.next should be executed in Fig. 4a and recall that
each program variable should point to a singleton node: for x we have to get hold of the
object a.next in this case. Parametric shape analysis splits summary nodes as necessary
with an operation called materialization, as shown in Fig. 4b. Here, b1 = a.next is the

2 For x : refbe, this corresponds to H := H [x �→ BEntry(H(x).key, y, H(x).down)] in KIV.

Verification of B+ Trees 195

direct successor of a and b2 represents the remaining elements of b.3 Technically, the
analysis ensures that a given set of focus formulas yields definitive values for all objects
r. For the assignment x := x.next the focus formulas are x(r) and ∃r1. x(r1) ∧ next(r1, r).
Additional focus formulas can be given to cause extra splits of summary nodes. We will
need these in Sec. 4.3.

Switching to a finite domain cannot preserve all information available in the infinite
domain. To preserve more information, two strategies are possible, the instrumentation
and the guard strategy. The first explicitly defines additional instrumentation predicates.
Predicates reachable and step, defined by

reachable(r1, r2)↔ step∗(r1, r2) and step(r1, r2)↔
∨

s∈sel

s(r1, r2)

are such instrumentation predicates (step* is the reflexive transitive closure of step). The
guard strategy uses global invariants INV that hold at all times during the execution
of an algorithm. Formally, these are defined by consistency rules (%r in TVLA). For
example, the following rule expresses that an algorithm never creates cyclic structures

reachable(r1, r2)→ ¬step(r2, r1)

The value of instrumentation predicates is explicitly stored in shape graphs. By de-
fault, executing a transition reevaluates the defining formula in the new state. However,
this may lose the definite information that an instrumentation predicate stores. For the
structure resulting from the assignment shown in Fig. 4b we have reachable′(b1, b2) =

next′∗(b1, b2) = 1
2 . To prevent this, parametric shape analysis allows explicit update for-

mulas for instrumentation predicates. Assuming that x.sel = null and y �= null the update
formula for reachable and an assignment x.sel := y is

ϕreachable
x.sel:=y (r1, r2) = reachable(r1, r2) ∨ reachable(r1, x) ∧ reachable(y, r2)

This update formula preserves definite reachability of b2 from b1. However, update
formulas that do not comply with the definitions of instrumentation predicates lead
to an unsound analysis. To ensure soundness, we verify in KIV that given an update
formula ϕp

stm for statement stm and predicate p

INV ∧H0 = H → wp
(
stm, τ

(
ϕp

stm

)
(r1, . . . , rn, H0)↔ p(r1, . . . , rn, H)

)
(5)

holds, i.e., the update formula evaluated in the old heap H0 must equal the instrumenta-
tion predicate evaluated in the heap H after stm has been executed. Here, τ (ϕ) denotes
the translation of formula ϕ to KIV’s logic (see appendix A). Note that the proof obliga-
tion may assume the global invariants established by the guard strategy to yield stronger
update formulas. To establish such global invariants, guards (%message in TVLA) are
attached to transitions, that ensure that the invariant is preserved (therefore the name).
TVLA stops the analysis whenever it finds that an input shape graph for a transition
violates its guard. To ensure soundness, we verify in KIV

INV ∧ τ (ψ)→ wp(stm, INV) (6)

for each assignment stm and its guard formula ψ.

3 A second shape graph (not shown) is necessary for the special case where b1 has no successors.

196 G. Ernst, G. Schellhorn, and W. Reif

When defining a global invariant is possible, then checking guards is typically more
efficient than the definition of INV as an additional instrumentation predicate, that has
to be tracked to be valid in all intermediate states. It is also easier to verify guards in
KIV, since update formulas for invariants tend to be rather complex, while guards can
often be simplified by making them stronger than strictly necessary to prove (6), see
(11) for an example.

4 Formalization and Verification of B+ Tree Invariants

In this section, we formalize B+ tree invariants. We start with the intuitive definitions
as used in KIV and adapt them to shape analysis by using instrumentation predicates,
consistency rules, guards and update formulas. We focus on critical aspects, so this
section is not exhaustive – additional instrumentation predicates and constraints are
often required to achieve a precise analysis result.

The B+ tree invariants are collected in the predicate btree, the set of keys elts(r) that
a B+ tree with root r represents is axiomatized as shown. The predicate root restricts the
heap to contain only the tree pointed to by r. Predicates in this section have an implicit
heap parameter H and H [r].s is abbreviated as r.s.

btree(r, [r1, . . . , rm]) ↔ root(r) ∧ tree(r) (7)

∧ ∀r′. reachable(r, r′)→ balanced(r′) ∧ sorted(r′)
∧ r′ /∈ {r1, . . . , rm} → oksize(r′)

where root(r) ↔ ∀r′. reachable(r, r′)
k ∈ elts(r) ↔ ∃r′. reachable(r, r′) ∧ r′.lentry? ∧ r′.key = k

Predicate btree has an optional list of nodes r1, . . . , rm whose size may be out of bounds,
which is used in contracts of restructuring subroutines.

Quantifiers range over allocated references, and by convention, free variables are uni-
versally quantified. The following subsections specify predicates tree (has tree shape),
balance and sorted (tree is balanced and sorted), elts and oksize, and show the difficulties
of encoding them in TVLA.

4.1 Tree Shape

We characterize trees as follows: a node is the root of a tree if there is at most one path
from the root to every node in that tree. A path starts with some reference r1 and follows
a sequence of applicable selectors xs : list[sel] to another reference r2 ([] denotes the
empty list, + list concatenation).

tree(r)↔ r �= null ∧ ∀x1, x2, r1, r2.

path(r, x1, r1) ∧ path(r, x2, r2)→ (x1 = x2 ↔ r1 = r2)

path(r1, [], r2)↔ r1 �= null ∧ r1 = r2

path(r1, s + xs, r2)↔ r1 �= null ∧ path(r1.s, xs, r2) ∧ wt(H(r1), s)

Verification of B+ Trees 197

These definitions serve as an intuitive formalization and are used in the algebraic speci-
fication for various consistency proofs. For shape analysis though, an alternative charac-
terization is required that does not use recursive definitions or an explicit representation
of paths. We employ the guard strategy, as the algorithms preserve tree shape in all in-
termediate structures. It is sufficient to prohibit cyclic and converging paths in general,
similar to [9]. Converging paths are excluded by consistency rules (8) and (9), cycles
are excluded by (10), forming the global invariant for tree shape. Guard (11) is used for
assignments x.sel := y.

r1.next = r2.down→ r1.next = null (8)

r1.s = r2.s ∧ r1.s �= null→ r1 = r2 for s ∈ {next, down} (9)

r1.s = r2 → ¬reachable(r2, r1) (10)

¬reachable(y, x) ∧ ¬∃r. (reachable(r, y) ∧ r �= y) (11)

We have proven that these constraints are equivalent to ∀r. tree(r) under the assumption
that there is some r with root(r). The latter is an instrumentation predicate that shape
analysis can prove easily to be true in the final states of the subroutines. root(r) cannot
be used as an invariant, since routines like split node have intermediate states where the
tree is split into several parts.

4.2 Balance

We characterize balance as follows: A B+ tree is balanced, if each node fulfills the con-
straint that its down successor is the root of a subtree of height one less than the subtree
of its next successor. The height of a node is determined by the maximum number of
down selectors on a path to a leaf starting at that node.

height(r) =

{
0 if r = null

max [height(r.next), height(r.down) + 1] otherwise
(12)

balanced(r)↔ r.next �= null ∧ r.down �= null (13)

→ height(r.next) = height(r.down) + 1

This as well as the following definitions assume that tree(r) holds for all relevant refer-
ences r. Note that for arbitrary heaps with cyclic structures they would be inconsistent.

These definitions are hard to reproduce in shape analysis as they are based on arith-
metic. Therefore we use different definitions in TVLA based on two binary predicates
eqh (“equal height”) and olh (“one-less height”) defined by (14) and (15) that do a local
comparisons of heights. (16) is a definition of balanced in terms of these predicates that
can be proven to be equivalent to (13).

eqh(r1, r2)↔ height(r1) = height(r2) (14)

olh(r1, r2)↔ height(r1) + 1 = height(r2) (15)

balanced(r)↔ (r.next �= null→ eqh(r.next, r)) (16)

∧ (r.down �= null→ olh(r.down, r))

198 G. Ernst, G. Schellhorn, and W. Reif

As the height function is not available during shape analysis, eqh and olh must be
specified as core predicates. Several constraints compensate the missing definitions
and propagate height comparisons (transitively) between nodes, such as eqh(r1, r2) →
¬olh(r1, r2) and olh(r1, r3) ∧ olh(r2, r3)→ eqh(r1, r2).

Specified as core predicates, eqh and olh do not automatically reflect changes to the
height of nodes arising from modifications, so they must be updated explicitly. The
critical statements are null assignments to selectors.

We demonstrate the strategy for x.next := null. There are two cases: If x.down = null
the height of x is reduced to one, possibly changing the heights of its ancestors, too. We
model this by forgetting the height relations of the affected nodes. If x.down is non-null
and x is balanced, then the height of x remains unchanged. This implies that the height
of all other nodes, in particular its ancestors, is unaffected too. This is expressed by
lemma (17), which implies that relative comparisons eqh are also unaffected (second
case of (18)).

x.next �= null ∧ h = height(r) ∧ ∀r0. tree(r0) ∧ balanced(r0) (17)

→ wp (x.down := null, h = height(r))

Formula (18) shows the update of eqh. We ensure that x is actually balanced with an
appropriate guard.

eqh′(r1, r2)↔

⎧⎪⎪⎨⎪⎪⎩
1
2 if reachable(r1, x) ∨ reachable(r2, x)

and x.down1 = null

eqh(r1, r2) otherwise

(18)

Updates for the first case immediately destroy balance information at ancestors. To
avoid this problem, the statements are rearranged to ensure that no ancestor is affected
at all by first detaching the node in question from its parent. For example, the underlined
statement r1.next := null in Fig. 3 is therefore placed before any heap modification.

Height information is recovered when the first child is attached to a node: the height
of a node with exactly one non-null selector is determined by its (single) child, as ex-
pressed by the following constraints:

r.down = null ∧ r.next �= null→ eqh(r.next, r)

r.down �= null ∧ r.next = null→ olh(r.down, r)

4.3 Sorting

A B+ tree is sorted if all of its nodes obey the constraints graphically given in Fig.
5. Sorting is maintained with the guard strategy. Equation (19) formalizes the sorting
constraint shown in Fig. 5b for branch entries rbe1 that is preserved in all intermediate
states of the algorithm.

∀r. reachable(rbe1.down, r)→ rbe1 <k r ∧ r ≤next rbe1 (19)

where r ≤next rbe1 ↔ rbe1.next �= null→ r ≤k rbe1.next

and r1 ≤k r2 ↔ r1.key ≤ r2.key (<k is defined similarly)

Verification of B+ Trees 199

b rbe

≤ rbe

(a) branches

rbe1 rbe2
<

> rbe1
≤ rbe2

(b) branch entries

rle1 rle2
<

(c) leaf entries

Fig. 5. Sorting Constraints. Branch-nodes are shown as boxes, entries as circles.

The guard for the assignment x.next := y is

x <k y ∧ (∀r. reachable(x.down, r) → r ≤k y) ∧ (20)

∀r1, r2. reachable(r1.down, x) ∧ reachable(y, r2)→ r2 ≤next r1

The first conjunct ensures that keys in the linked list of entries remain ordered. The
second conjunct checks elements in the down subtree of x to conform to y. The third
conjunct checks that nodes in the attached subtree conform to all ancestors r with a
down-pointer towards x, where reachable(r1.down, x) determines these ancestors. The
guard for x.down := y is similar.

The hard problem in TVLA is to ensure that the guard definitely holds when such
statements are executed. Fig. 6 shows the execution of the typical sequence y := z.next;
z.next := null; x.next := y starting with Fig. 6a. The critical relations are depicted as thick
arrows in Fig. 6b, each corresponds to one of the conjuncts. When these relations eval-
uate to definite values, the guard holds, as shown in Fig. 6c.

The first conjunct x <k y follows by transitivity over z and is established in (b). To
derive the other two conjuncts, we focus on nodes r such that reachable(z.next, r) when
executing y := z.next, and we focus on nodes r such that reachable(r.down, x) when ex-
ecuting z.next := null. These have the effect of splitting b and a respectively. b1 now
represents the subtree that must be checked in the second conjunct and a1 gives exactly

root

a

x

z

 ≤next

b

 <k

 ≤k down,next

(a) starting structure

root

a1

a2 x

b1

y

≤k (2)

b2

z

 <k <k (1)

<k, next

≤next (3)

(b) after materializations

root

a1

a2 x

b1

y

≤k b2z

 <k

<k, next

≤next

(c) after modification

Fig. 6. Tracking sorting through modifications

200 G. Ernst, G. Schellhorn, and W. Reif

the ancestors that are covered by the third conjunct. The necessary relations are then de-
rived from the sorting invariant before the statement z.next := null is executed, explicitly
stored in the structure and thus available when the guard is evaluated.

Note that in order to prevent nodes that are materialized from being merged back,
we have to employ several derived abstraction predicates, e.g., reachable-from-x(r) ↔
reachable(x, r) for program variables x. Deriving unary (reachability) predicates from
binary ones with respect to program variables is a common idiom in TVLA.

4.4 Elements

In [12], the set elts of elements a pointer structure represents is tracked by explicitly
labeling objects whose key is in the set in the initial state with an additional (core)
predicate. The final state is then related to this predicate. For our case this formalization
has the drawback that leaf entries must be kept distinct from other objects, so that
rle.key ∈ elts(r) always yields definite values. Instead, we mark a leaf entry when its
keys changes, or when it is allocated or deallocated. For insert leaf we establish that it
allocates at most one leaf entry, and changes no key. This is expressed as postcondition
(21), where H and H ′ are the initial and the final heap. The modifications of elts can be
derived from this condition in KIV. A similar postcondition is proved for delete leaf.

∃ rle. H ′[rle].key = k ∧ dom(H ′) = dom(H) ∪ {rle} (21)

∧ ∀rle1 ∈ dom(H). H [rle1].key = H ′[rle1].key

4.5 Node Sizes

The size of a node rn is determined by the number of its entries r, i.e., those reach-
able by following next selectors only. These entries are collected in a set, extensionally
defined as r ∈ nset(rn)↔ next∗(rn, r). Let N denote the rank of the B+ tree, then

oksize(r)↔ (r.node?→ (if root(r) then 1 else N) ≤ |nset(r)| ≤ 2N)

Node sizes are verified by a strategy similar to [6]. There, the sets of concrete individu-
als represented by summary nodes are tracked, as well as the cardinalities of these sets.
[6] is an extension to TVLA that seems capable to directly verify the node size invari-
ant. However, the prototype implementation is not available, so we imitate the strategy.
As an example, for split node(rp; rt), we prove the following contract with TVLA:

rn = rp.down ∧ btree(r, [rn]) ∧ reachable(r, rp) ∧ e = elts(r) ∧median(rn, r1.next)

→ wp(split node(rp; rt), btree(r, [rp, rn, rt]) ∧ e = elts(r) (22)

∧ nset(rp) = nset0(rp) ∪ {r1.next}
∧ nset0(rn) = nset(rn) ∪ {r1.next} ∪ nset(rt))

where nset0(r) denotes the set of entries of r in the initial state. nset-membership is
encoded as binary predicates in TVLA. From (22) we prove in KIV that if |nset0(rn)| =
2N + 1 then both rn and rt have now size N and satisfy oksize, implying btree(r, [rp]).

Verification of B+ Trees 201

5 Results and Experiences

To make TVLA usable as a decision procedure we had to solve two problems: the
first was to bridge the gap between explicit, typed algebraic heaps specified as partial
functions and the implicit view of heaps encoded as the domain of predicates defined in
untyped logic. The solution caused some overhead in KIV, to support switching between
the generic specification and its instance for B+ trees. It is however a generic solution
that allows us to verify the constraints shape analysis uses for generic predicates such
as tree shape or acyclicity once and for all. The second problem was to determine (5)
and (6) as the right proof obligations for the instrumentation and the guard strategy.

The overall effort of the case study was around six person-months. The first month
was necessary to get familiar with TVLA’s user interface, which is very low level. A
simple script (available on the website) that removes superfluous information from the
output and colorizes the shape graphs was invaluable. Another script was used to gen-
erate TVLA transition systems from code.

The main task then was to translate the natural definitions of the B+ tree invariants
into suitable TVLA constraints. It roughly took three person-months to iteratively figure
out the right instrumentation predicates, update formulas and consistency rules given in
Sec. 4 for the B+ tree invariants by analyzing failed TVLA proofs.

The remaining two months were spent on setting up the KIV specifications (includ-
ing the generic theory), proving correctness of update formulas/guards and the interac-
tive proofs of the main recursion.

The main proofs for the recursive programs were easy using the lemmas established
by shape analysis. The most expensive consistency proofs are for update formulas like
(17) and guards like (20). Some of them still required some dozen interactions. This
agrees with our expectations that interactive reasoning about pointer manipulations is
difficult. However, we have found that these proofs are required, many of the more
complex constraints we used in TVLA were initially wrong.

TVLA proofs for most of the subroutines required run times below one minute on a
2.8 GHz CPU equipped with 8 Gb of main memory running 64 bit Linux. Consumption
of main memory is high, usually between 500 Mb and 1 Gb, supposedly caused by the
high number of predicates (around 30 binary and over 160 unary predicates). A few
subroutines, such as rotations in the middle of the tree, took up to 5 minutes.

From our experience, attempting an analysis of the whole insert and delete algo-
rithms with the final specification with TVLA seems feasible. Initial attempts, however,
indicate that running TVLA on the composed code requires further optimizations. In
particular, the strategy for sorting creates too many structures when traversing the full
tree. We also think that it is not practical to develop the specification using TVLA on
the full program, since the number of shape graphs grows rapidly with the length of the
program, up to several thousands. These would have to be analyzed to find out where
exactly the analysis goes wrong. For the subroutines the number was much lower, typi-
cally around one hundred.

202 G. Ernst, G. Schellhorn, and W. Reif

6 Conclusion

We have verified an implementation of the main algorithms for B+ trees using a com-
bination of interactive theorem proving and automated shape analysis.

Our results indicate that the combination of both techniques is a significant improve-
ment compared to using one approach alone. Automation using Shape Analysis has
been significantly better than if we would have used KIV exclusively. Soundness of
the shape analysis results would have been rather doubtful without proving the more
complex constraints with an interactive theorem prover.

The case study has also shown how to bridge the gap between an abstract, typed
algebraic approach used by almost all interactive theorem provers and the untyped ap-
proach of TVLA in general. Based on these results it is clear now how to implement
an automated translation of KIV programs, predicates and constraints to TVLA (which
remains work to do).

We must however concede that shape analysis is not as easily usable as a decision
procedure would be. There is still a lot of specific knowledge of the internal working of
TVLA required to define the right instrumentation predicates (for example ≤next), and
(even more) to analyze failed proof attempts from TVLA. Getting meaningful coun-
terexamples from failed proof attempts to analyze whether a proof failed since the goal
was wrong or due to overapproximation is still one of the most time-consuming tasks,
and a topic for further work.

Acknowledgments. We thank Alexander Knapp for valuable feedback.

References

1. Bayer, R., McCreight, E.: Organization and maintenance of large ordered indices. Acta In-
formatica 1, 173–189 (1972)

2. Bogudlov, I., Lev-Ami, T., Reps, T., Sagiv, M.: Revamping TVLA: Making Parametric Shape
Analysis Competitive. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp.
221–225. Springer, Heidelberg (2007)

3. Ernst, G.: KIV and TVLA proofs for B+-Trees (2011),
http://www.informatik.uni-augsburg.de/swt/projects/btree.html

4. Fielding, E.: The specification of abstract mappings and their implementation as B+ trees.
Technical report, Oxford University, PRG-18 (1980)

5. Gopan, D., Reps, T., Sagiv, M.: A framework for numeric analysis of array operations. In:
Proc. 32nd ACM SIGPLAN-SIGACT Symp. Principles of Programming Languages, POPL,
pp. 338–350. ACM, New York (2005)

6. Gulwani, S., Lev-Ami, T., Sagiv, M.: A combination framework for tracking partition sizes.
In: Proc. of the 36th ACM SIGPLAN-SIGACT Symp Principles of programming languages,
POPL, pp. 239–251. ACM, New York (2009)

7. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)
8. Herter, J.: Towards shape analysis of B-trees. Master’s thesis, Universität Saarbrücken (2008)
9. Loginov, A., Reps, T., Sagiv, M.: Automated verification of the deutsch-schorr-waite tree-

traversal algorithm. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 261–279. Springer,
Heidelberg (2006)

http://www.informatik.uni-augsburg.de/swt/projects/btree.html

Verification of B+ Trees 203

10. Malecha, G., Morrisett, G., Shinnar, A., Wisnesky, R.: Toward a verified relational database
management system. In: Proc. of the 37th ACM SIGPLAN-SIGACT Symp. Principles of
Programming Languages, POPL, pp. 237–248. ACM, New York (2010)

11. Reif, W., Schellhorn, G., Stenzel, K., Balser, M.: Structured specifications and interactive
proofs with KIV. In: Bibel, W., Schmitt, P. (eds.) Automated Deduction—A Basis for Appli-
cations, pp. 13–39. Kluwer, Dordrecht (1998)

12. Reineke, J.: Shape analysis of sets. In: Workshop “Trustworthy Software”. IBFI (2006)
13. Rinetzky, N., Sagiv, M., Yahav, E.: Interprocedural Shape Analysis for Cutpoint-Free

Programs. In: Hankin, C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 284–302.
Springer, Heidelberg (2005)

14. Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic. ACM Trans.
Program. Lang. Syst. 24, 217–298 (2002)

15. Sexton, A., Thielecke, H.: Reasoning about B+ trees with operational semantics and separa-
tion logic. Electron. Notes Theor. Comput. Sci. 218, 355–369 (2008)

A Translation from KIV to TVLA

This appendix sketches the formal definition of the translation between KIV and TVLA,
which is in essence a standard construction for a homomorphism.

In KIV the semantics of a specification SPEC = (Σ, Ax) with many-sorted signa-
ture Σ = (S, F, P) and Axioms Ax is the class of all algebras A = ((As)s∈S , fA, pA))

with carrier sets As for every sort s ∈ S, functions fA for f ∈ F and predicates pA for
p ∈ P that satisfies the axioms. A valuation v maps variables to appropriate elements of
the carrier sets. In particular v(H) for the heap H is a partial function from references
to objects.

The corresponding signature used in TVLA contains predicate symbols s for every
selector function .s, a unary predicate x for every program variable and predicates q

for heap dependent predicates from KIV (like btree) dropping the heap parameter. All
other arguments of these predicates are of reference type. A pair of an algebra A and a
valuation v can be translated to an untyped model U := ρ(A, v) of TVLA. The carrier
set U of U is defined as the domain of the heap: U := {a : a ∈ dom(v(H))}. Selectors
are interpreted as

sU :=
{

(a, b) : a ∈ dom(v(H)) ∧ b = v(H)(a).sA ∧ b ∈ dom(v(H))
}

and other predicates q are interpreted as

qU (a1, . . . , an) iff qA(a1, . . . , an, v(H))

The semantic translation ρ of algebras corresponds to a syntactic translation τ of TVLA
formulas to KIV formulas. For example,

τ (s(r1, r2)) = (H [r1].s = r2) and τ (q(r1, . . . , rn)) = q(r1, . . . , rn, H)

It is easy to prove (by induction over the formula) that for any TVLA formula ϕ

ρ(A, v) |= ϕ iff A, v |= τ (ϕ)

Therefore to prove that a formula ϕ is valid in TVLA we prove τ (ϕ) in KIV.
Semantically, assignments stm in KIV map a valuation v to a modified valuation v′.

Proof obligation (5) guarantees that for an update formula ϕp
stm

ρ(A, v′) |= p(r1, . . . , rn) iff ρ(A, v) |= ϕp
stm(r1, . . . , rn)

i.e., the semantics of p in the state ρ(A, v′) after the assignment is as predicted by ϕp
stm.

Runtime Verification of Component-Based Systems�

Yliès Falcone1, Mohamad Jaber2, Thanh-Hung Nguyen2,
Marius Bozga2, and Saddek Bensalem2

1 INRIA, Rennes - Bretagne Atlantique, France
2 VERIMAG, Université Grenoble I, France

Firstname.Lastname@inria.fr, Firstname.Lastname@imag.fr

Abstract. Verification of component-based systems still suffers from limitations
such as state space explosion since a large number of different components may
interact in an heterogeneous environment. Those limitations entail the need for
complementary verification methods such as runtime verification based on dy-
namic analysis and prone to scalability. In this paper, we integrate runtime ver-
ification into the BIP (Behavior, Interaction, and Priority) framework. BIP is a
powerful component-based framework for the construction of heterogeneous sys-
tems. Our method augments BIP systems with monitors checking a user-provided
specification. This method has been implemented in RV-BIP, a prototype tool that
we used to validate the whole approach on a robotic application.

1 Introduction

A component-based approach consists in building complex systems by composing com-
ponents (building blocks). This confers numerous advantages (e.g., productivity, in-
cremental construction, compositionality) that allow to deal with complexity in the
construction phase. Component-based systems (CBS) are desirable because they al-
low reuse of sub-systems as well as their incremental modification without requiring
global changes. Their development requires methods and tools supporting a concept of
architecture which characterizes the coordination between components. An architecture
structures a system and involves components and relationships between the externally
visible properties of those components. The global behavior of a system can, in princi-
ple, be inferred from the behavior of its components and its architecture. Component-
based design is based on the separation between coordination and computation. Systems
are built from units processing sequential code insulated from concurrent execution is-
sues. The isolation of coordination mechanisms allows a global treatment and analysis
on coordination constraints between components even if local computations on compo-
nents are not visible (i.e., components are “black boxes”).

BIP (Behavior Interaction Priority). BIP is a general framework supporting rigorous
design. It uses a dedicated language and an associated toolset supporting the design
flow. The BIP language allows building complex systems by coordinating the behavior
of a set of atomic components. Behavior is described with Labelled Transition Systems
(LTS) extended with data and functions written in C. The description of coordination

� This work is partially supported by the FP7 IP ASCENS.

G. Barthe, A. Pardo, and G. Schneider (Eds.): SEFM 2011, LNCS 7041, pp. 204–220, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Runtime Verification of Component-Based Systems 205

between components is layered. The first layer describes the interactions between com-
ponents. The second layer describes dynamic priorities between the interactions and is
used also to express scheduling policies. The combination of interactions and priorities
characterizes the overall architecture of a system. It confers BIP strong expressiveness
that cannot be matched by other existing formalism dedicated to CBS [1]. Moreover,
BIP has a rigorous operational semantics: the behavior of a composite component is
formally described as the composition of the behaviors of its atomic components. This
allows a direct relation between the underlying semantic model and its implementation.

Runtime-verification (RV) [2,3,4] is an effective technique to ensure, at runtime, that a
system meets a desirable behavior. It can be used in numerous application domains, and
more particularly when integrating together unreliable software components. In RV, a
run of the system under scrutiny is analyzed incrementally using a decision procedure:
a monitor. This monitor may be generated from a user-provided high level specifica-
tion (e.g., a temporal formula, an automaton). This monitor aims to detect violation or
satisfaction w.r.t. the given specification. Generally, it is a state machine processing an
execution sequence (step by step) of the monitored program, and producing a sequence
of verdicts (truth-values taken from a truth-domain) indicating specification fulfillment
or violation. Recently [4] a new framework has been introduced for runtime verifica-
tion. This expressive framework, leveraged by a finite-trace semantics and an expressive
truth-domain, allows to monitor all specifications expressing a linear temporal behavior.

The proposed approach (informal overview). We introduce a complementary validation
technique for CBS in general and BIP systems in particular. We leverage the BIP frame-
work by integrating a component-based version of the runtime verification framework
introduced in [4]. Given a specification, our method uniformly integrates a monitor as
an additional component in a BIP system that is able to runtime check the satisfaction
or violation of the specification. The whole method is implemented in a prototype tool,
RV-BIP, that automatically instrument BIP systems with monitors. Thanks to the code
generator of BIP, the generated self-monitoring system can be directly translated into
an actual C module embedded in the global system whose behavior is checked at run-
time against the specification. The whole approach has been evaluated on a real robotic
application and our experiments validate the relevance of our method.

Paper Organization. The paper is structured as follows. In Section 2 we give a minimal
introduction to the BIP framework. Section 3 defines an abstract RV framework for CBS
described in BIP. Section 4 shows how the abstract RV framework is implemented for
BIP systems. Section 5 describes RV-BIP, a prototype implementation of our method,
used to evaluate our method on a robot application. Section 6 is dedicated to related
work. Finally, Section 7 raises some concluding remarks and open perspectives.

Notations. In this paper, we use the following notations. For two domains of elements
E and F , we note [E → F] (resp. [E ⇁ F]) the set of functions (resp. partial functions)
fromE toF . When elements ofE depends on the elements of F , we note {e ∈ E}f∈F ′ ,
where F ′ ⊆ F , for {e ∈ E | f ∈ F ′} or {e}f∈F ′ when clear from context.

206 Y. Falcone et al.

2 BIP - Behavior Interaction Priority

In this section we recall the necessary concepts of the BIP framework [5]. BIP is a
component-based framework for constructing systems by superposing three layers of
modeling: Behavior, Interaction, and Priority. The behavior layer consists of a set of
atomic components represented by transition systems. The interaction layer models the
collaboration between components. Interactions are described using sets of ports and
connectors between them [6]. The priority layer is used to enforce scheduling policies
applied to the interaction layer, given by a strict partial order on interactions.

2.1 Component-Based Construction

BIP offers primitives and constructs for modeling and composing complex behaviors
from atomic components. Atomic components are Labeled Transition Systems (LTS)
extended with C functions and data. Transitions are labeled with sets of communica-
tion ports. Composite components are obtained from atomic components by specifying
connectors and priorities.

Atomic Components. An atomic component is endowed with a set of local variables
X taking values in a domain Data . Atomic components synchronize and exchange data
with other components through the notion of port.

Definition 1 (Port). A port p[X ′], where X ′ ⊆ X , is defined by a port identifier p and
some data variables in a set X ′ (referred as the support set).

Definition 2 (Atomic component). An atomic componentB is defined as a tuple (P,L,
T,X, {gτ}τ∈T , {fτ}τ∈T), where:

– (P,L, T) is an LTS over a set of ports P . L is a set of control locations and T ⊆
L× P × L is a set of transitions.

– X is a set of variables.
– For each transition τ ∈ T :

• gτ is a Boolean condition over X: the guard of τ ,
• fτ ∈ {x := fx(X) | x ∈ X}∗: the computation step of τ , a list of statements.

For τ = (l, p, l′) ∈ T a transition of the internal LTS, l (resp. l′) is referred as the
source (resp. destination) location and p is a port through which an interaction with
another component can take place. Moreover, a transition τ = (l, p, l′) ∈ T in the
internal LTS involves a transition in the atomic component of the form (l, p, gτ , fτ , l′)
which can be executed only if the guard gτ evaluates to true, and fτ is a computation
step: a set of assignments to local variables in X . In the rest of this article, we use the
dot notation to denote the elements of atomic components, e.g., B.P denotes the set of
ports of an atomic componentB.

Example 1 (Atomic component). The figure below shows an example of atomic com-
ponent with two ports p1, p2, a variable x, and two control locations l1, l2.

Runtime Verification of Component-Based Systems 207

print(x)

l1

l2

x

x := rand()

p1

p2

p2

p1

At location l1, the transition labelled by the port p1 is possible
(the guard evaluates to true by default). When an interaction
through p1 takes place, a random value is assigned to the vari-
able x through x := rand(). From the control location l2, the
transition labelled by the port p2 is possible, the variable x is not
modified, the value of x is printed and exported through p2.

Semantics of Atomic Components. The semantics of an atomic component is an LTS
over configurations and ports, formally defined as follows:

Definition 3 (Semantics of Atomic Components). The semantics of the atomic com-
ponent (P,L, T,X, {gτ}τ∈T , {fτ}τ∈T) is an LTS (P,Q, T0) s.t.

– Q = L× [X → Data],
– T0 = {((l, v), p, (l′, v′)) ∈ Q× P ×Q | ∃τ = (l, p, l′) ∈ T : gτ (v) ∧ v′ = fτ (v)}.

A configuration is a pair (l, v) ∈ Q where l ∈ L is a control location, and v ∈ [X →
Data] is a valuation of the variables in X . The evolution of configurations (l1, v)

p(vp)→
(l2, v′), where vp is a valuation of variables attached to port p, is possible if there exists
a transition (l1, p[xp], gτ , fτ , l2), s.t. gτ (v) = true. As a result, the valuation v of
variables is modified to v′ = fτ (v[xp ← vp]).

Creating composite components. Assuming some available atomic components B1,
. . . , Bn, we show how to connect {Bi}i∈I with I ⊆ [1, n] using connectors.

A connector γ is used to specify possible interactions, i.e., the sets of ports that have
to be jointly executed. Two types of ports (synchron, trigger) are defined, in order to
specify the feasible interactions of a connector. A trigger port is active: it can initiate
an interaction without synchronizing with other ports. It is graphically represented by
a triangle. A synchron port is passive: it needs synchronization with other ports for
initiating an interaction. It is graphically represented by a circle. A feasible interaction
of a connector is a subset of its ports s.t. either it contains some trigger, or it is maximal.

� � � �

s r1 r2 r3
� � � �

s r1 r2 r3

Rendezvous Broadcast

The figure on the left shows two connectors: Ren-
dezvous (only the maximal interaction sr1r2r3r4
is possible), Broadcast (all the interactions con-
taining the trigger port s are possible).

Formally, a connector is defined as follows:

Definition 4 (Connector). A connector γ is a tuple (Pγ , t, G, F), where:
– Pγ = {pi[xi] | pi ∈ Bi.P}i∈I s.t. ∀i ∈ I : Pγ ∩Bi.P = {pi},
– t : Pγ → {true, false} s.t. t(p) = true if p is trigger (and false if synchron),
– G is a Boolean expression over the set of variables ∪i∈I xi (the guard),
– F is an update function defined over the set of variables ∪i∈I xi.

Pγ is the set of connected ports called the support set of γ. The ports in Pγ are tagged
with function t indicating whether they are trigger or synchron. Moreover, for each
i ∈ I , xi is a set of variables associated to the port pi.

A communication between the atomic components of {Bi}i∈I through a connector
(Pγ , G, F) is defined using the notion of interaction:

208 Y. Falcone et al.

Definition 5 (Interaction). A set of ports a = {pj}j∈J ⊆ Pγ for some J ⊆ I is an
interaction of γ if one of the following conditions holds: (1) there exists j ∈ J s.t. pj is
trigger; (2) for all j ∈ J , pj is synchron and {pj}j∈J = Pγ .

An interaction a has a guard and two functions Ga, Fa, respectively obtained by pro-
jectingG and F on the variables of the ports involved in a. We denote by I(γ) the set of
interactions of γ. Synchronization through an interaction involves two steps. First, the
guardGa is evaluated, then the update function Fa is applied. If there are several possi-
ble interactions inside a connector, we choose the interaction involving the maximum1

number of ports. One can also add priorities to reduce non-determinism whenever sev-
eral interactions are enabled. Then, the interaction with the highest priority is chosen.

Definition 6 (Composite Component). A composite component is defined from a set
of available atomic components and a set of connectors. The connection of the {Bi}i∈I

using the set Γ of connectors is denoted Γ ({Bi}i∈I).

Note that a composite component obtained by composition of a set of atomic compo-
nents can be composed with other components in a hierarchical and incremental fashion
using the same operational semantics.

Definition 7 (Semantics of Composite Components). A state q of a composite com-
ponent C = Γ (B1, . . . , Bn), where Γ connects the Bi’s for i ∈ I , is an n-tuple
q = (q1, . . . , qn) where qi = (li, vi) is a state of Bi. Thus, the semantics of C is
precisely defined as a transition system (Q,A,−→), where:

– Q = B1.Q× . . .×Bn.Q,
– A = ∪γ∈Γ {a ∈ I(γ)} is the set of all possible interactions,
– −→ is the least set of transitions satisfying the following rule:

∃γ ∈ Γ : γ = (Pγ , G, F) ∃a ∈ I(γ) Ga(v(X))

∀i ∈ I : qi
pi(vi)−→ i q

′
i ∧ vi = Fai(v(X)) ∀i �∈ I : qi = q′i

(q1, . . . , qn) a−→ (q′1, . . . , q
′
n)

where a = {pi}i∈I , X is the set of variables attached to the ports of a, v is the
global valuation of variables, and Fai is the partial function derived from F re-
stricted to the variable associated to pi.

The meaning of the above rule is the following: if there exists an interaction a s.t. all its
ports are enabled in the current state and its guard (Ga(v(X))) evaluates to true, then
we can fire the interaction. When a is fired, not involved components stay in the same
state, and, involved components evolve according to the interaction.

Notice that several distinct interactions can be enabled at the same time, thus intro-
ducing non-determinism in the product behavior, possibly restricted using priorities.

Definition 8 (Priority). Let C = (Q,A,−→) be the behavior of the composite com-
ponent Γ (B1, . . . , Bn). A priority model π is a strict partial order on the set of interac-
tions A. Given a priority model π, we abbreviate (a, a′) ∈ π to a ≺ a′. The component
π(C) is defined by the behavior (Q,A,−→π), where −→π is the least set of transitions
satisfying the following rule:

1 If there are several maximal interactions, the choice between them is at random.

Runtime Verification of Component-Based Systems 209

q
a−→ q′ �a′ ∈ A, �q′′ ∈ Q : a ≺ a′ ∧ q a′

−→ q′′

q
a−→π q

′

An interaction is enabled in π(C) only if it is enabled inC, and, it is maximal according
to π among the active interactions in C.

Finally, we consider systems defined as a parallel composition of components to-
gether with an initial state.

Definition 9 (System). A system S is a pair (B, Init) where B is a component and
Init is the initial state of B.

3 An RV Framework for Component-Based Systems

We adapt classical RV frameworks dedicated to monitoring of sequential monolithic
programs to CBS in general, and, to BIP systems in particular. We consider a composite
component C = Γ (B1, . . . , Bn) and a priority model π, where the runtime semantics
of π(C) is an LTS (Q,A,−→π) as introduced in Definitions 7 and 8.

3.1 Specifications for Component-Based Systems (CBS)

Considered specifications of CBS are state-based specifications expressing some de-
sired behavior. We do not assume any particular specification formalism except that we
require it expresses a subset of the possible linear behaviors of CBS. In order to make
our approach as general as possible, we only describe the events of the possible speci-
fication language. We also assume the existence of a monitor synthesis algorithm from
this specification formalism (see Section 3.2). For this purpose, the existing solutions
(e.g., [7]) provided by the research efforts in RV can be easily adapted.

We follow a classical approach where events are built over a set of atomic proposi-
tions Prop. Intuitively, an atomic proposition is a Boolean expression over the states of
the components (e.g., “in the componentB1, the variable x should be positive if in the
componentB2 the variable y is negative”). More formally, an event of π(C) is defined
as a state formula over the atomic propositions expressed on components involved in
π(C). The set of events is defined with the following grammar:

Σ(π(C)) : Atom ∨ Atom | Atom ∧ Atom | Atom ⇒ Atom | ¬ Atom
Atom : component.var == val | component.var ≥ val

| component.loc == a location | component.port == a port
component.var : ∪i∈[1,n]Bi.X

val : v ∈ Data
a location : s ∈ ∪i∈[1,n]Bi.L

a port : p ∈ ∪i∈[1,n]Bi.P

Let us note Prop(e) the set of atomic propositions used in an event e ∈ π(C). For
ap ∈ Prop(e) we define used(ap) as the set of pairs made of a component and variables
that are used to define ap:

210 Y. Falcone et al.

used(ap) = match (ap) with
component.var == val → (component,var)
component.var ≥ val → (component,var)
component.loc == a location → (component,loc)
component.port == a port → (component,port)

3.2 Verification Monitors [4]

A monitor is a procedure consuming events fed by a BIP system and producing an
appraisal on the sequence of events read so far. We follow a general approach consider-
ing verification monitors as deterministic finite-state machines producing a truth-value
(a verdict) in an expressive 4-valued truth-domain B4

def= {⊥,⊥c,�c,�}, introduced
in [3] and used in [4]. B4 consists of the possible evaluations of a sequence of events
and its possible futures relatively to the specification used to generate the monitor:

– The truth-value �c (resp. ⊥c) denotes “currently true” (resp. “currently false”) and
expresses the satisfaction (resp. violation) of the specification “if the system execu-
tion stops here”.

– The truth-value � (resp. ⊥) is a definitive verdict denoting the satisfaction (resp.
violation) of the specification: the monitor can be stopped.

We define the notion of monitor for a specification defined relatively to a set of events
Σ expressed on a composite component.

Definition 10 (Monitor). A monitor A is a tuple (ΘA, θAinit, Σ,−→A,B4, verA). The
finite set ΘA denotes the control states and θAinit ∈ ΘA is the initial state. The complete
function−→A: ΘA×Σ → ΘA is the transition function. In the following we abbreviate
−→A (θ, a) = θ′ by θ

a−→A θ′. The function verA : ΘA → B4 is an output function,
producing verdicts (i.e., truth-values) in B4 from control states.

Such monitors are independent from any specification formalism used to generate them
and are able to check any specification expressing a linear temporal specification [4].
Intuitively, runtime verification of a specification with such monitors works as follows.
An execution sequence is processed in a lock-step manner. On each received event, the
monitor produces an appraisal on the sequence read so far. For a formal presentation
of the semantics of the monitor and a formal definition of sequence checking, we refer
to [4]. In the remainder, we consider a monitor A = (ΘA, θAinit, Σ,−→A,B4, verA).

3.3 Runs and Traces of BIP Systems
Runs of BIP systems. Each state q ∈ Q in the LTS of a component can be seen as an
environment mapping variables used in the specification over an alphabetΣ to values.

Definition 11 (Environments in a component). The set of possible environments in
π(C) is Env def= ∪i∈[1,n]

(
{statei → Qi} ∪ [Bi.X → Data]

)
. The environment defined

by a state q = (q1, . . . , qn), where qi = (li, vi) for each i ∈ [1, n], is [[q]] ∈ Env s.t.
[[q]] def= ∪i∈[1,n](∪xi∈Bi.var{x �→ vi(x)} ∪ ∪i∈[1,n]{statei �→ li}.

After an interaction bringing the component in a state q, an event e is fired if the state-
formula associated to e holds, noted q � e, i.e., when e evaluates to true in [[q]], i.e.,

Runtime Verification of Component-Based Systems 211

[[q]](e) = true. Let us note that, after reaching a state of the LTS corresponding to the
runtime behaviors of a BIP component, it is always possible to determine whether an
event is fired or not, i.e., whether the corresponding state-formula holds or not.

We present the notion of run of a composite component and how it is monitored.

Definition 12 (Run of a composite component). A run of lengthm of a system (π(C),
Init) is the sequence of environments [[q0]] · [[q1]] · · · [[qm]] s.t.: q0 = Init , and, ∀i ∈
[0,m− 1] : qi ∈ Q ∧ ∃ai ∈ A : qi ai−→π q

i+1.

Definition 13 (Monitoring a run of a system). The verdict [[A]](q0 · q1 · · · qm) stated
by A for a run [[q0]] · [[q1]] · · · [[qm]] is verA(θm) where ∀i ∈ [0,m− 1] : θi

e−→A θi+1

where e is the unique event enabled in θi s.t. qi+1 |= e.
Building a trace from a run. As one of the challenges in RV is to lower the perfor-
mance impact on the target program, we should take care of minimizing the informa-
tion sent to the monitor. Making the monitor processing directly the run of the target
program directly is not a reasonable solution because it would yield prohibiting over-
head. Our proposal is to send a relevant abstraction of the run to the monitor that we
call a trace. Intuitively, given a run, the obtained trace is its minimal abstraction (infor-
mation wise) that permits to evaluate the specification as if the run was not abstracted.
Given Spec(Σ), a specification defined over a vocabulary of events Σ, we design an
abstraction function ↓Σ

α building this minimal abstraction. We thus define a notion of
informativeness of environments built from states. Intuitively, an environment ρ1 is less
informative than an environment ρ2 if it has less variables defined, i.e., ρ1 � ρ2 if
Dom(ρ1) ⊆ Dom(ρ2) and ∀x ∈ Dom(ρ1) : ρ1(x) = ρ2(x). When monitoring a
CBS our aim will be to dynamically build the least informative environment so that the
monitoring activity of the system amounts to monitoring with the global state.

Definition 14 (Abstraction function). The abstraction function ↓Σ
α : Q → Env is the

least function s.t.: ∀q ∈ Q : ↓Σ
α (q) = ρ and ρ is s.t.: ∀x ∈ Dom([[q]]) :

ρ(x) =
{

[[q]](x) if ∃e ∈ Σ, ∃ap ∈ Prop(e) : used(ap) = (Bi, x), with x ∈ Bi.X ;
undef otherwise.

Property 1 (Abstraction preserves event evaluation). The previous abstraction function
adheres to the two following principles:

– soundness: ∀e ∈ Σ, ∀q ∈ Q : ↓Σ
α (q) � e ⇔ q � e,

– completeness: ∀e ∈ Σ, ∀q ∈ Q : ↓Σ
α (q) � e∨ ↓Σ

α (q) � e.

Soundness states that the concrete and abstracted evaluations are the same. Complete-
ness states that evaluation of all specification events remains possible: abstraction does
not erase the needed information from the environment.

Definition 15 (Trace of a composite component). The trace defined from a run [[q0]] ·
[[q1]] · · · [[qm]] through an abstraction function ↓Σ

α is the sequence of environments de-
fined as ↓Σ

α (q0) · ↓Σ
α (q1) · · · ↓Σ

α (qm).

The notion of trace evaluation by a monitor directly follows from the notion of run eval-
uation. Moreover, the following theorem, which is a direct consequence of Property 1,
states that, for runtime verification, there is no difference regarding property evaluation
to process the trace instead of the run.

212 Y. Falcone et al.

BIP Monitor

2

(.XML)

3

Extraction

1

Connections

4

BIP Monitor

Monitor
Building

Components

To Monitor
Variables

Atomic
Transformation

Abstract
Monitor

γ1 > γ3, γ4

γ3 γ4

γ1 pm γ2

pm pintern
pmpmγ2 > γ3, γ4

Fig. 1. Overview of the work-flow

Theorem 1 (Trace evaluation vs run evaluation by a monitor). For A defined onΣ,
the abstraction function ↓Σ

α , and a run [[q0]] · [[q1]] · · · [[qm]], we have:

[[A]]
(
[[q0]] · [[q1]] · · · [[qm]]

)
= [[A]]

(
↓Σ

α (q0) · ↓Σ
α (q1) · · · ↓Σ

α (qm)
)

In the next section, we will instrument BIP systems in such a way that, given a specifi-
cation, the minimal abstraction function (information-wise) is dynamically generated.

4 Verifying the Runtime Behavior of BIP Systems

This section presents how we instrument and integrate an abstract monitor A = (ΘA,
θAinit, Σ,−→A,B4, verA) into a BIP system made of a composite component C =
Γ (B1, . . . , Bn) and priority rules π. The work-flow is as follows (see Fig. 1):

1. From the input abstract monitor we extract the list of components and their corre-
sponding variables used by the monitor (Section 4.1).

2. For each component and its corresponding variables extracted from the monitor we
instrument the selected components so as to observe them (Section 4.2).

3. From the monitor we generate the corresponding atomic component. Then, we add
the generated component (a monitor in BIP) to the input composite component
(Section 4.3).

4. Finally, we add the new connections between the instrumented atomic components
and the monitor in BIP (Section 4.4).

4.1 Extraction of Needed Information

The first step is to retrieve from the monitor the set of components and their correspond-
ing variables that should be monitored. For each selected component, transitions are in-
strumented to observe the just needed set of variables. For a specification expressed over
Σ(π(Γ (B1, . . . , Bn))) and its monitor, comp(Σ) is the subset of ∪i∈[1,n]{Bi} corre-
sponding to the set of components that should be monitored. We also define occur(Σ)

Runtime Verification of Component-Based Systems 213

to be the subset of {Bi.loc | i ∈ [1, n]} ∪ {Bi.port | i ∈ [1, n]} ∪ ∪i∈[1,n]Bi.X de-
noting the set of variables used in the specification. Then from occur(Σ), we sort the
variables according to the component Bi (where Bi ∈ comp(Σ)) they are related to:
c v() = [1, n] → {Bi.loc}i∈[1,n] ∪ {Bi.port}i∈[1,n] ∪ ∪i∈[1,n]Bi.X s.t. c v(i) is the
set of variables related to componentBi.

4.2 Instrumentation of Atomic Component

For a composite component Γ (B1, . . . , Bn), we transform each atomic componentBi,
i ∈ [1, n], so that it is able to interact with the monitor, if necessary.

Definition 16 (Instrumenting atomic components). Given B = (P,L, T,X,
{gτ}τ∈T , {fτ}τ∈T) s.t. B = Bi ∈ {B1, . . . , Bn}, we define a new atomic
component

Bm =
{
B if B /∈ comp(Σ)
(Pm, Lm, Tm, Xm, {gτ}τ∈T m , {fτ}τ∈T m) otherwise

where, (Pm, Lm, Tm, Xm, {gτ}τ∈T m , {fτ}τ∈T m) is defined as follows:
– Xm = X ∪ {loc | Bi .loc ∈ c v(i)} ∪ {port | Bi .port ∈ c v(i)};
– Pm = P ∪ {pm[c v(i)]},
– Lm = L ∪ {lτ}τ∈inst(T), where inst(T) is defined as follows:

inst(T) =

{
T if {Bi.loc, Bi.port} ∩ c v(i) �= ∅
{τ ∈ T | c v(i) ∩ var(fτ) �= ∅} otherwise

– Tm = T \ inst(T) ∪ {in(τ) | τ ∈ inst(T)} ∪ {out(τ) | τ ∈ inst(T)}, where,

• in(τ) = (l, p, fin(τ), gτ , lτ), where

fin(τ) =

⎧⎪⎪⎨⎪⎪⎩
fτ if Bi.loc /∈ c v(i) ∧Bi.port /∈ c v(i)
fτ ; [loc := “l”] if Bi.loc ∈ c v(i) ∧Bi.port /∈ c v(i)
fτ ; [port := “p”] if Bi.loc /∈ c v(i) ∧Bi.port ∈ c v(i)
fτ ; [loc := “l”; port := “p”] if Bi.loc ∈ c v(i) ∧Bi.port ∈ c v(i)

• out(τ) = (lτ , pm, fout(τ), true, l
′), where fout(τ) = [].

We note Bm = Instrum(B). In Xm, loc and port are variables containing a loca-
tion name and a port name respectively. In Pm, pm designates the port created for
interacting with the monitor. Moreover, inst(T) is the set of transitions that should
be instrumented: we instrument atomic components whose variables are needed by the
monitor. Tm designates the transitions in the instrumented atomic component. We in-
strument the transitions in the corresponding atomic component that are modifying a
variable involved with the monitor. If the state or the port of an atomic component is
needed, all transitions are instrumented. For each transition τ ∈ inst(T) that should be
instrumented we add a new transition to interact with the monitor. Transitions are also
instrumented by adding new statements to save the state and the port name, if necessary.

Example 2 (Instrumentation of an atomic component). Figure 2 illustrates the instru-
mentation of the atomic component depicted on the left-hand side into the instrumented
component on the right-hand side. For instance, supposing that the state should be
monitored, from the transition τ0 = (l0, p1, fτ0 , true, l1) with fτ0 = [done := 0],
we create a new state lτ0 and the transitions in(τ0) = (l0, p1, fin, true, lτ0) with
fin = [done := 0; loc := “l0”; port := “p1”], and out(τ0) = (lτ0 , p1, [], true, l1).

214 Y. Falcone et al.

done

locdone
port:="p2"

loc:="l0"

loc:="l0"
done:=1;

done:=0; port:="p1"
done:=0

done:=1
port

p2

l0
lτ1

pm l2
l0

p1

p2

pm
l1

p1

p2

p1
l1

l2

lτ0

p2

p1

Fig. 2. Instrumentation of an atomic component

4.3 Creating an Atomic Component from a Monitor

From an abstract monitor (cf. Definition 10) given as an XML file, we construct the
corresponding atomic component in BIP that interacts with the instrumented atomic
components and produces verdicts following the behavior of the original monitor.

Definition 17 (Building monitors in BIP). From a monitor A = (ΘA, θAinit, Σ,−→A,
B4, verA), we define the corresponding atomic componentMA = (P,L, T,X,{gτ}τ∈T ,
{fτ}τ∈T) as an atomic component implementing its behavior:

– P = {pm[X], pintern[]},
– L = ΘA ∪ {qmi}qi∈ΘA ,
– T = T1 ∪ T2, where

– T1 = {(qi, pm, [], true, qmi) | qi ∈ ΘA},
– T2 = {(qmi, pintern, a, print(verA(q′i)), q

′
i) | qi

a−→A q′i∧(qi, pM , qmi) ∈ T1},
– X = occur(Σ).

We note MA = BuildMon(A) and call MA a BIP monitor. T1 denotes the set of
transitions interacting with the composite component. T2 is the set of transitions used
to display verdicts following the behavior of the original monitorA. The set of variables
of the monitor is the set of variables used in the specification (as in Section 4.1).

Example 3 (Transforming an abstract monitor into a BIP monitor). Fig. 3 illustrates the
transformation of Definition 17. The atomic component in Figure 3(a) is transformed
into the BIP monitor in Figure 3(b).

4.4 Connections
The next step of our transformation is to define the connectors between the transformed
componentsBm and the BIP monitorMA.

Definition 18 (Connections). Given A and π(Γ (B1, . . . , Bn)), the monitored com-
posite component is πm(Γm(Bm

1 , . . . , B
m
n ,M

A)), where:
– Bm

i = Instrum(Bi), for i ∈ [1, n], (see Definition 16);
– MA = BuildMon(A), (see Definition 17);
– Γm = γ ∪ {γ1 = (Pγ1 , true, Fγ1), γ2 = (MA.pintern, true, ∅)}, where,

– Pγ1 = {Bi.p
m[Xm

i]}Bi∈comp(Σ)} ∪ {MA.pm}, where all ports are synchron;
– Fγ1 , the update function, is the identity data transfer from the variables in the ports

of the interacting componentsBi (i ∈ 51, n]) to the corresponding variables in the
monitor port;

– the type of the portMA.pintern in the connector γ2 is synchron (one and only one
interaction is defined by this connector: γ2, see Definition 5);

Runtime Verification of Component-Based Systems 215

<VerificationMonitor>

<State id="s1" initial="true">

<Transition event="e1" nextState="s1" output="currently true"/>

<Transition event="not e1" nextState="s2" output="false"/>

</State>

<State id="s2">

<Transition event="true" nextState="s2" output="false"/>

</State>

</VerificationMonitor>

(a) Abstract Monitor

print("currently true"); print("false");

print(”false”);

pm

comp1 port

pm

[e1]

pintern

pintern

[not e1]
pintern

[true]

pintern

s1 sm1 s2 sm2pm

(b) BIP Monitor

Fig. 3. Transforming an abstract monitor into a BIP Monitor

– πm = π ∪ {a ≺ a′ | a ∈ ∪γ∈ΓI(γ) ∧ a′ ∈ I(γ1) ∪ I(γ2)}.

The interactions defined by γ1 and γ2 have more priority than those defined by Γ (il-
lustrated in Fig. 1). It ensures that, after execution of an interaction by the involved
components, the monitor produces verdict before involving other interactions.

4.5 Summary and Discussion

We propose a 4-stage approach to introduce runtime verification for CBS. Our method
directly integrates an abstract monitor in a CBS. Thanks to the BIP framework, moni-
toring of a specification can be taken into account at design stage. Moreover, the actual
system, automatically generated from the augmented BIP model, is runtime-checked.

The correctness proof is omitted due to the lack of space, and, relies on the follow-
ing informal arguments. Our transformations do not modify the data nor the behavior
induced by the initial interactions. No deadlock is introduced because the synthesized
BIP monitor is always ready to receive events from the instrumented components. Fi-
nally, the priorities introduced when connecting the instrumented components to the
BIP monitor (Section 4.4) guarantee that the monitor always receives fresh data, i.e.,
the latest system state.

5 Implementation and Evaluation
5.1 RV-BIP: A Tool for Runtime Verification of BIP Systems

RV-BIP is a Java implementation (∼ 2500 LOC) of the transformations described in
Section 4, and, is part of the BIP distribution. RV-BIP takes as input a BIP system and
an abstract monitor (an XML file) and then outputs a new BIP system whose behavior
is monitored. It uses the following modules (see Fig. 1):

– Extraction: this module extracts the components and the corresponding variables
used in the monitor. It takes as input an abstract monitor and then outputs a list of
components with their corresponding variables,

– Atomic Transformation: this module instruments the atomic components selected
from the extraction module. It takes as input the output of the Extraction module
and a BIP file containing the original BIP system,

– Building Monitor: this module takes as input an abstract monitor and then outputs
the corresponding atomic component,

– Connections: this module constructs the new composite component whose behav-
ior is monitored. It takes as input the output from the Atomic Transformation and
Building Monitor modules and then outputs a new composite component.

216 Y. Falcone et al.

ProxyInterface

check

l0tick trigger
t = p
t := 0

t < p
t ++

l0 l1

report reportexec

init

tick

trigger

check

l0

l2

l1

l3

l4

trigger
done:=0

start

check

report

finish
done:=1

startexec finish fail

l2l0

l1
start exec

finish

fail

startexec finish fail

doneexec

trigger
report

l0

l2

l1

l3

l4

trigger
done:=0

start

check

report

finish
done:=1

startexec finish fail

l2l0

l1
start exec

finish

fail

startexec finish fail

done

InitService

trigger
trigger

report

report report
report

Controller

Task

Controller

Task

Timer

init
init

exec
exec

Proxy

SetSpeedService

abort

error

fail

exec

abort

error

fail

abort

abort

error error

abort

report abort

Fig. 4. Two services involving the ordering specification

5.2 Case Study: A Robotic Application

We experimented RV-BIP on a robotic application modeled in BIP: Dala robot [8,9].
The Dala robot is a large and realistic interactive system. It is an infinite system (in
terms of states and transitions) that cannot be model-checked.

The functional level of the Dala robot consists of a set of modules. A module is
composed of a set of services corresponding to different tasks and a set of posters where
the produced data is stored and exchanged between different modules. In this section,
due to the lack of space, we present a simplified model of the modules with only the
services related to two properties among those we runtime checked.

Execution order: Figure 4 shows a simplified model of Dala. It consists of 3 compo-
nents: ProxyInterface, InitService and SetSpeedService. ProxyInterface communicates
with the control layer using the mailbox by executing the transition check. InitService is
responsible for the initialization of the module and SetSpeedService performs the main
task of the module. According to the received request, Proxy triggers either InitService
or SetSpeedService. Each service has a status variable done: value 1 means that the cor-
responding task has been successfully executed. A service can be triggered through the
port trigger, then it executes its task by taking the transition start and finally it returns to
the initial location by the transition finish when the task is done. The execution order of
some services are important. In this module, InitService initializes the robot and should
be successfully executed before SetSpeedService sets the speed parameter of the robot.
This requirement is formalized as “ϕ1 and ϕ2”, see Table 1.

Data freshness: In Dala, the modules communicate by a set of posters. Data gener-
ated by a module is written in a poster that can be accessed by another module. The
behavior of the robot might depend on this data, therefore it is necessary that the data
is up to date: the data read by a service of a module (called Reader) must be fresh
enough compared to the moment it has been written (by a service called Writer). If
t1 and t2 respectively are the moments of reading and writing actions, then the dif-
ference between t1 and t2 must be less than a specific duration δ, i.e., |t2 − t1| ≤ δ.

Runtime Verification of Component-Based Systems 217

Table 1. Formalization of the requirements for the Dala robot

ϕ1: (e1)∗ , where,

e1: (SetSpeedService.port==“trigger”∧ProxyInterface.port==“exec”)⇒(InitService.done==1)

ϕ3: (e1)∗ , where,

e1: (Reader.port==“read”∧ poster.port==“read”∧Clock.port==“getTime”)

⇒(Clock.time−poster.wrtime≤2)

ϕ2: (e1e2)∗ , where, ϕ4: (e1(ε+e2+e2e2)e3)∗ , where,

e1: InitService.port==“finish” e1: Writer.port==“write”

e2: SetSpeedService.port==“trigger” e2: Clock.port==“tick”

e3: Reader.read==“read”

This requirement is formalized as “ϕ3 and ϕ4”, see Table. 1. In the model, the time
counter is implemented by a component Clock , and the tick transition occurs every
second.

Experiments: Table 2 reports results on checking the ordering and freshness properties
of the Dala robot. Ordering violated and Ordering guaranteed correspond to the model
presented in Fig. 4: the first one might have the violation of the ordering specification
whereas the second one always guarantees it. Each consists of an InitService, a Set-
SpeedService and ten other services (corresponding to different tasks). It is similar for
Data freshness violated and Data freshness guaranteed: the first might have the viola-
tion of the freshness specification whereas the second always guarantees it. We consider
two modules: the first has a service responsible for writing data and five other services;
the second has a service responsible for reading data produced by the first module and
also five other services. In Table 2, time-no-monitor indicates the execution time with-
out monitoring; specification is the monitored specification; the optimized column re-
ports the execution time and the overhead obtained with the monitor that interacts only
with the two components involved in the specification; and the not-optimized column
reports the execution time and the overhead obtained with a monitor that observes all
components of the system (even the ones that are not involved in the specification).

The results substantiate our claim that if we monitor only components involved in
the specification, using the abstraction technique defined in Section 3 and implemented
in Section 4, the overhead is reduced significantly.

6 Related Work
Static verification of component-based system. With the growing demand of scalabil-
ity and complexity for systems, verification techniques should be used to determine
whether a designed system meets its requirements. Static formal verification [10,11,12]
is based on mathematical techniques to prove or disprove the correctness of a design
w.r.t. a given formal specification. It searches for input patterns which lead to violations
of the desired properties and prove the correctness when such violations do not exist.
Existing formal verification methods for component-based systems are based on either
static analysis or on model-checking [13,14,15].

Approaches based on static analysis consist in computing specific invariants in order
to abstract the state space. Though this kind of approaches is less sensitive to state
explosion, it still suffers from some limitations. First these techniques are rather limited
in terms of the properties they can check: they are mostly limited to safety properties and

218 Y. Falcone et al.

thus some interesting behavioral properties remains out of the scope of these techniques.
Moreover, since these approaches rely on abstraction and over approximation of the
state space, they yield several false positives.

Behavioral approaches such as model-checking are based on an exhaustive explo-
ration of the state space of the model obtained from the operational semantics of the
specification language. For large systems, this exploration leads to a very large number
of states (the well-known state explosion problem). Despite recent advances in model-
checking, the state-explosion problem is far from being solved and refrain the use of
these methods in component-based systems where the state space tends to become huge
due to the number of possible configurations and interactions between components. On
the other hand, techniques based on compositional verification [16,17,18] (less sensi-
tive to state explosion) are not applicable when the behavior of some parts of the system
is unknown - as it can be the case in BIP when using external C functions.

A compositional verification method based on invariants for checking safety proper-
ties in component-based systems is provided in [19,20]. Although the method has been
successfully applied to large-scale and complex systems, the use of invariants can deal
only with safety properties and might produce many false positive counter examples.

Another compositional approach is design-by-contract [21,22] that considers a prop-
erty provided by a component as a contract between this component and its environ-
ment. For instance [23] provides a method that searches an implementation model that
satisfies a given contract. Although the experimental results are promising, it is not al-
ways possible to find an implementation model that satisfies a given property. Moreover,
the composition of contracts in concurrent systems can be very expensive.

Dynamic verification of component-based systems. Specification and verification of
the behavior of CBS have received some research endeavor. A first series of approaches
specify the behavior of components in terms of pre and post-conditions (e.g., with JML)
or assertions (e.g., using Eiffel). More recently and closer to our work is the LIME
specification language [24] that allows runtime monitoring of temporal properties for
component interfaces. Components are seen as black boxes and LIME specifications
describe how components should interact with an external application by describing a
desired behavior on the calls and returns over the interface.

Comparison with our approach. The limitations of static validation techniques lead us
to investigate the use of runtime verification as an alternative and complementary tech-
nique to validate CBS. Compared to previous dynamic techniques, our approach offer
several advantages. First, it uses the latest advances in runtime verification using an ex-
pressive 4-valued truth-domain allowing our monitor to be generated using any monitor
synthesis framework. Note also that the proposed RV framework only uses informa-
tion about the events used in the specification. The monitors presented in this paper are
bounded to regular properties, however, the expressiveness of the BIP language confers
our monitors a potential to be Turing-complete. Moreover, our approach is not limited
to monitoring component interfaces. It is often the case that components come with
an abstract behavioral model, i.e., components are gray boxes instead of black boxes.
Our monitoring framework supports both kinds of approaches. Furthermore, the spec-
ifications considered for BIP systems use locations spanning over several components
allowing the specification of global behaviors of the system in composition.

Runtime Verification of Component-Based Systems 219

Table 2. Results of monitoring the requirements Execution order and Data freshness

time-no-monitor specification optimized not-optimized
time (s) ovhd (%) time (s) ovhd (%)

Ordering violated 1.896
ϕ1 2.045 7.8 9.163 383
ϕ2 1.953 3 9.192 384

Ordering guaranteed 1.836
ϕ1 1.984 8.0 8.9 384
ϕ2 1.889 2.8 8.896 384

Data freshness violated 1.638
ϕ3 1.684 2,8 4.337 164
ϕ4 1.682 2,6 3.773 130

Data freshness guaranteed 1.634
ϕ3 1.678 2,6 4.383 168
ϕ4 1.690 3,4 3.782 131

7 Conclusion and Future Work

This paper introduces runtime verification as a complementary validation technique for
component-based systems written in the BIP framework. Our technique is based on a
general and expressive runtime verification framework. It dynamically builds a minimal
abstraction of the current runtime state of the system so as to lower the performance im-
pact. By generating monitors directly as BIP components, we are able to generate actual
monitored C programs. Our approach has been implemented in RV-BIP that smoothly
integrate in the existing BIP tool-set. Finally, experimental evaluations on a robotic
application substantiate our claims and the feasibility of our approach.

Several research perspectives can be considered. A first direction is to combine the
recent advances in RV that use static analysis (see e.g., [25]). In RV, using static analy-
sis techniques may reduce the overhead induced by a monitor by disabling unnecessary
runtime checks. Also related to overhead reduction, a dynamic instrumentation tech-
nique, enabling the monitor to remove connectors when they are not needed anymore,
would reduce the overhead even more. Another possible direction is to extend the pro-
posed framework for runtime enforcement [26]. Runtime enforcement is an extension
of RV aiming at circumventing property violation and provides better confidence in sys-
tem behaviors. A more practical direction is to connect RV-BIP to the various existing
monitor synthesis tools available within the RV community.

References

1. Bliudze, S., Sifakis, J.: A Notion of Glue Expressiveness for Component-Based Systems.
In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 508–522.
Springer, Heidelberg (2008)

2. Runtime Verification (2001-2010), http://www.runtime-verification.org
3. Bauer, A., Leucker, M., Schallhart, C.: Comparing ltl semantics for runtime verification. J.

Log. Comput. 20, 651–674 (2010)
4. Falcone, Y., Fernandez, J.C., Mounier, L.: Runtime verification of safety-progress properties.

In: [27], pp. 40–59
5. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in BIP. In:

4th IEEE Int. Conf. on Software Engineering and Formal Methods (SEFM 2006), pp. 3–12
(2006)

http://www.runtime-verification.org

220 Y. Falcone et al.

6. Bliudze, S., Sifakis, J.: The algebra of connectors—structuring interaction in BIP. IEEE
Transactions on Computers 57, 1315–1330 (2008)

7. Stolz, V.: Temporal assertions with parametrised propositions. In: Sokolsky, O., Taşıran, S.
(eds.) RV 2007. LNCS, vol. 4839, pp. 176–187. Springer, Heidelberg (2007)

8. Fleury, S., Herrb, M., Chatila, R.: GenoM: A Tool for the Specification and the Implementa-
tion of Operating Modules in a Distributed Robot Architecture. In: Proceedings of Intelligent
Robots and Systems, IROS 1997, pp. 842–848. IEEE, Los Alamitos (1997)

9. Bensalem, S., Gallien, M., Ingrand, F., Kahloul, I., Nguyen, T.H.: Toward a more depend-
able software architecture for autonomous robots. IEEE Robotics and Automaton Magazine,
Special issue on Soft. Engineering for Robotics 16, 67–77 (2008)

10. Umrigar, Z.D., Pitchumani, V.: Formal verification of a real-time hardware design. In: DAC
1983: Proceedings of the 20th Design Automation Conference, pp. 221–227. IEEE Press,
Los Alamitos (1983)

11. Queille, J.P., Sifakis, J.: Specification and verification of concurrent systems in CESAR. In:
Dezani-Ciancaglini, M., Montanari, U. (eds.) Programming 1982. LNCS, vol. 137, pp. 337–
351. Springer, Heidelberg (1982)

12. Clarke, E.M., Emerson, E.A.: Synthesis of synchronisation skeletons for branching time
temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981. LNCS, vol. 131, pp. 52–71.
Springer, Heidelberg (1982)

13. McMillan, K.: Symbolic model checking. Kluwer Academic Publishers, Boston (1993)
14. Burch, J., Clarke, E., McMillan, K., Dill, D., Hwang, L.: Symbolic model checking: 1020

states and beyond. In: Proceedings of the 5th Syposium on Logic in Computer science, pp.
428–439 (1990)

15. Clarke, E., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfiability solv-
ing. Form. Methods Syst. Des. 19, 7–34 (2001)

16. Clarke, E., Long, D., McMillan, K.: Compositional model checking. In: Proceedings of the
4th Annual Symposium on LICS, pp. 353–362. IEEE Computer Society Press, Los Alamitos
(1989)

17. Chang, E., Manna, Z., Pnueli, A.: Compositional verification of real-time systems. In:
Symposium on Logic in Computer Science. IEEE, Los Alamitos (1994)

18. Long, D.E.: Model Checking, Abstraction, and Compositional Reasoning. PhD thesis,
Carnegie Mellon (1993)

19. Bensalem, S., Bozga, M., Sifakis, J., Nguyen, T.H.: Compositional verification for
component-based systems and application. Software Journal, Special Issue on Automated
Compositional Verification 4, 181–193 (2010)

20. Bensalem, S., Bogza, M., Legay, A., Nguyen, T.H., Sifakis, J., Yan, R.: Incremental
component-based construction and verification using invariants. In: FMCAD (2010)

21. Meyer, B.: Applying design by contract. Computer 25, 40–51 (1992)
22. Abadi, M., Lamport, L.: Composing specifications. ACM Transaction on Programming Lan-

guages and Systems 15, 73–132 (1993)
23. Ben-Hafaiedh, I., Graf, S., Quinton, S.: Reasoning about safety and progress using con-

tracts. In: Dong, J.S., Zhu, H. (eds.) ICFEM 2010. LNCS, vol. 6447, pp. 436–451. Springer,
Heidelberg (2010)

24. Kähkönen, K., Lampinen, J., Heljanko, K., Niemelä, I.: The lime interface specification lan-
guage and runtime monitoring tool. In: [27], pp. 93–100

25. Bodden, E., Lam, P., Hendren, L.J.: Clara: A framework for partially evaluating finite-state
runtime monitors ahead of time. In: [28], pp. 183–197

26. Falcone, Y.: You should better enforce than verify. In: [28], pp. 89–105
27. Bensalem, S., Peled, D. (eds.): RV 2009. LNCS, vol. 5779. Springer, Heidelberg (2009)
28. Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace, G.J., Rosu, G.,

Sokolsky, O., Tillmann, N. (eds.): RV 2010. LNCS, vol. 6418. Springer, Heidelberg (2010)

Translating Alloy Specifications

to UML Class Diagrams Annotated with OCL

Ana Garis1, Alcino Cunha2, and Daniel Riesco1

1 Universidad Nacional de San Luis, San Luis, Argentina
{agaris,driesco}@unsl.edu.ar

2 DI-CCTC, Universidade do Minho, Braga, Portugal
alcino@di.uminho.pt

Abstract. Model-Driven Engineering (MDE) is a Software Engineering
approach based on model transformations at different abstraction levels.
It prescribes the development of software by successively transforming
models from abstract (specifications) to more concrete ones (code). Alloy
is an increasingly popular lightweight formal specification language that
supports automatic verification. Unfortunately, its widespread industrial
adoption is hampered by the lack of an ecosystem of MDE tools, namely
code generators. This paper presents a model transformation between
Alloy and UML Class Diagrams annotated with OCL. The proposed
transformation enables current UML-based tools to also be applied to
Alloy specifications, thus unleashing its potential for MDE.

Keywords: MDE, Alloy, UML, OCL.

1 Introduction

Model-Driven Engineering (MDE) is a promising Software Engineering approach
using models at different abstraction levels. Software is developed by successively
transforming models from abstract to more concrete ones.

UML and OCL have been successfully adopted in the MDE context through
the Model-Driven Architecture (MDA) initiative [15]. In order to support UML
and OCL in MDE, different tools have been developed such as code generators
and reverse engineering tools. Due to the informality and ambiguity of UML
semantics it also has been combined with formal methods to increase the confi-
dence in the software development process. Formal methods use mathematics for
specification and design of models helping to discover inconsistencies in informal
requirements. The main disadvantage of formal languages is that they require a
learning effort and thus are frequently avoided by software engineers responding
to time and cost constraints.

Alloy [12] is a lightweight formal language with a simple notation, easy to
learn, easy to use, that includes a friendly Validation and Verification (V&V)
tool. Its denotational language is based on first-order relational logic, with an
object-oriented notation similar to UML and OCL [16]. The automatic Alloy

G. Barthe, A. Pardo, and G. Schneider (Eds.): SEFM 2011, LNCS 7041, pp. 221–236, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

222 A. Garis, A. Cunha, and D. Riesco

Analyzer allows the generation of snapshots showing instances of the model as
well as the execution of operations and assertion checking.

Although very few UML software developers are familiar with formal meth-
ods, Alloy could be easily adopted by UML practitioners due to its simplicity
and its resemblance with UML. Both Alloy and UML can benefit if two-way
transformations are developed between them. On the one hand, from the UML
practitioners point of view, Alloy Analyzer could be exploited as a model verifi-
cation tool in a MDE context. On the other hand, from the Alloy practitioners
point of view, a myriad of UML tools could be used in order to unleash Alloy
potential for MDE. Specifically, there exist multiple code generators to different
platforms and programming languages, such as JEE, CORBA, Java, C, C++,
C# and Python, that could be used to refine Alloy specifications.

Further benefits could be achieved by developers familiarized with both Alloy
and UML. They could be combined in the software development process: start
by using UML Class Diagrams to specify requirements at high abstraction level,
then translate them to Alloy and formally specify invariants and operations, per-
form model validation and verification using Alloy Analyzer, and finally translate
back to UML+OCL in order to use the aforementioned code generation tools.

This paper presents a model transformation from Alloy specifications to UML
Class Diagrams annotated with OCL. Although the semantic correspondence
between elements of UML and Alloy was already analyzed in [1], the translation
from Alloy to UML+OCL has not been considered yet. This translation opens
new challenges since several Alloy expressions do not have a direct equivalent in
UML or OCL. Additionally, it requires us to explore the different Alloy idioms
in order to identify a specification style compatible with UML+OCL models.
Therefore, we define a subset of the Alloy language which includes UML+OCL
compatible expressions, and we study the semantics of the syntactic elements of
Alloy, UML Class Diagrams and OCL. We redefine the EBNF of Alloy grammar
to recognize expressions in this subset and specify the transformation rules. Our
approach is illustrated with a case study.

The rest of the document is structured as follows. Next section introduces
preliminary concepts related to Alloy. After discussing some related work, the
transformation from Alloy to UML+OCL is presented. Last section presents the
conclusions and future work.

2 Alloy

Alloy is a formal language based on first-order relational logic [12]. It is supported
by a SAT solver that enables model V&V. Alloy Analyzer is inspired by model
checkers, but it is implemented as a solver. An Alloy module consists of a module
header, a set of imports and zero or more paragraphs. The module header is a
name of the module where signatures, constraints, assertions and commands
are defined. An import allows to include additional modules. Furthermore, a
paragraph can either be a signature declaration, a constraint, an assertion or a
command.

Translating Alloy Specifications to UML Class Diagrams and OCL 223

A signature declaration represents a set of atoms. An atom is a unity with
three fundamental properties: it is indivisible, immutable and uninterpreted.
Optionally, a signature declaration can introduce fields. Fields represent sets of
tuples of atoms and are interpreted as relations between signatures. Constraints
are defined by facts, predicates and functions. Facts are invariants; i.e, their as-
sociated constraints always hold. Predicates are named constraints, which can
be used in diverse contexts. The difference between a fact and a predicate is
that the first one always holds while the second one only holds when invoked.
Finally, functions describe named expressions, which can be also reused in di-
verse contexts. Assertions allow the expression of properties that are expected
to hold as consequence of the stated facts. Commands are instructions to per-
form particular analysis. Alloy provides two commands for analysis: run and
check. Command run gives instructions to analyzer to search for an instance
of a given predicate, and command check to search for a counterexample of a
given assertion.

Alloy’s logic is quite generic and does not commit to a particular specification
style. For example, since atoms are immutable there is no standard way to model
the dynamic behavior of operations, and several idioms have been proposed to
address this issue. One of the most popular is to introduce a signature denoting
the overall state of the system, and model operations as predicates that specify
the relationship between pre- and post-states. Two variants of this idiom are
possible, known respectively as global state and local state. In the former all
mutable fields are defined in the global state signature. In the later, the state
signature is added locally as an extra column at the end of each mutable field.
The local state idiom is more modular, since fields are still declared in the
signature they naturally belong to. On the other hand, the global state idiom
forces all dynamic fields to be artificially grouped together. The designation local
state can be misleading, since the state is also global - the “local” concerns only
the location it appears in field declarations.

In this paper we will assume the local state idiom to specify operations. Note
that Alloy models conforming to the global state idiom can be easily converted
to the local one using a simple refactoring [9]. Without loss of generality, we
will also assume the distinguished state signature to be denoted as Time and all
fields to be dynamic. An operation op will be specified using a predicate pred
op[...,t,t’:Time] {...} with two special parameters t and t’ denoting, re-
spectively, the pre- and post-state. Functions will be used to model queries that
do not change the state. As such, only one of those special parameters is needed.

Figure 1 presents an example of an Alloy model conforming to the local state
idiom. It is a variant of the address book model first presented in [12]. The addr
field is a mutable relation that maps names to targets. A target is either an
address or another name. Names are either groups or aliases. For each book, the
first fact forces all names in the addr relation to be registered in the respective
names relation.

In Alloy everything is a relation. For example, variables are just unary sin-
gleton relations. As such, the relational composition operator can be used for

224 A. Garis, A. Cunha, and D. Riesco

module addressBook

sig Time {}

abstract sig Target { }

sig Addr extends Target { }

abstract sig Name extends Target { }

sig Alias, Group extends Name { }

sig Book {

names: Name set -> Time,

addr: Name -> some Target -> Time }

fact { all t:Time | all b:Book | b.addr.t.Target in b.names.t }

fact { all t:Time | all b:Book | no n: Name | n in n.^(b.(addr.t)) }

fact { all t:Time | all b:Book | all a: Alias | lone a.(b.addr.t) }

pred add [b: Book, n: Name, a: Target, t,t’: Time] {

n in b.names.t

b.addr.t’ in b.addr.t + n->a }

fun lookup [b: Book, n: Name, t: Time] : set Addr {

n.^(b.(addr.t)) & Addr }

Fig. 1. Address book example

various purposes. In particular, b.addr.t denotes the value of the relation addr
of book b at instant t. Note that the relation b.addr.t has type Name -> some
Target. If we compose it with the Target set, we get all names in the domain
of that relation. The second fact uses the transitive closure operator to ensure
that the addr relation is acyclic. The last fact limits the addresses of aliases to
at most one target.

In the body of operations, constraints that do not refer to t’ can be seen as
pre-conditions. For example, n in b.names.t requires names to be registered
before adding or removing new targets. Otherwise we have post-conditions. For
example, expression b.addr.t’ = b.addr.t + n->a states that, after executing
operation add, relation b.addr should have at least one additional tuple. lookup
models a query that returns the set of addresses of a given name. Again, tran-
sitive closure is used to recursively traverse relation addr. A desirable assertion
in this model could be:

assert lookupYields {
all t:Time, b:Book, n:b.names.t | some lookup[b,n,t]

}
check lookupYields for 4 but 1 Book

Unfortunately it does not hold, and the check command will produce a counter-
example.

Translating Alloy Specifications to UML Class Diagrams and OCL 225

3 Alloy and UML+OCL Integration in MDE

The translation from Alloy to UML could foster the usage of Alloy in the MDE
context. As mentioned before, a lot of UML tools have been developed to support
MDA. However, even though OCL tools have improved in the last years, they
still have several limitations regarding model V&V. Formal methods have been
proposed as a valuable alternative to improve these limitations. In fact, they
have been successfully integrated in the MDA, as shown in HOL-OCL [3], USE
[11] or UML2Alloy [1].

Due to its suitability for V&V, Alloy is a better candidate for the early mod-
eling phase of the software development process. After the validation process
with Alloy, models can be translated to UML Class Diagrams and OCL in order
to enable MDA-UML tools as well as MDA-OCL tools. Most of the UML tools
allow transformations from UML Class Diagrams to different platforms and pro-
gramming languages, such as JEE, CORBA, Java, C, C++, C# and Python.
Additionally, there exist OCL tools for code generation, such as OCLtoSQL [4]
and DresdenOCL [5].

3.1 Related Work

The relationship between UML and OCL with Alloy has been extensively stud-
ied by Anastaskis et al. [1], resulting in a prototype named UML2Alloy. This
translation considers only the basic elements of UML Class Diagrams: classes,
attributes and associations; and excludes interfaces, dependencies and signals.

Massoni et al. also propose a UML+OCL to Alloy translation in [13]. For
classes, attributes and associations, they propose the same approach as Anas-
taskis et al. [1], but they also consider the translation of UML interfaces. The
semantics of UML cannot be fully preserved since Alloy cannot represent some
UML Class Diagram features such as visibility of attribute’s properties.

UML has also been mapped to Alloy for model V&V of particular case-
studies. We present three examples: the first one uses the Alloy Analyzer for
formal security evaluation in a methodology called Aspect-Oriented Risk-Driven
Development (AORDD) [7]; the second one describes a proposal for Alloy spec-
ification from Aspect-UML models, a UML Profile for extending UML with
Aspect-oriented concepts [14]; the third one explains an approach to translate
UML models, specified with OntoUML, for model validation using Alloy [2].
These examples make evident Alloy potential to V&V, but like in [13,1]; they
consider the translation from UML+OCL to Alloy, not from Alloy to UML.

Shah et al. present a model transformation from Alloy to UML [18]. Specifi-
cally, they convert instances generated by Alloy Analyzer to a UML Object Di-
agram. This approach is possible in case UML2Alloy tool has been used before
to generate an Alloy specification. The transformation is based on the original
UML Class Diagram so it assumes that Alloy specifications must not change.
Even though Shah et al. have exposed a way to translate from Alloy to UML,
they only map model instances to UML Object Diagrams. Namely, they do not
consider the translation from Alloy to OCL either.

226 A. Garis, A. Cunha, and D. Riesco

4 Model Transformation from Alloy to UML+OCL

Although model transformations from UML to Alloy have already been defined
[1,13], the opposite translation has not. Moreover it is characterized by new chal-
lenges, not addressed previously. An important issue to solve is the characteri-
zation of source models, namely identifying a subset of Alloy that can faithfully
be translated to UML+OCL. We will first define this subset formally, and then
present the translation of both model declarations and constraints. The address
book example presented in Figure 1 will be used to illustrate our proposal.

4.1 Characterizing Source Models

The Alloy subset accepted by our model transformation is defined in Figure 2.
This subset restricts models to conform to the local state idiom, informally
introduced in Section 2. In particular, the model must declare a distinguished
signature denoted Time, the last column of field declarations must be Time, all
predicates must have t and t’ as parameters, and all functions must have t
as parameter. Note that Time, t, and t’ are reserved keywords not allowed
in sigId and varId, respectively. To simplify the presentation, we are assuming
all relations to be mutable. Immutable relations (not including Time in their
declaration) could also be handled by adding frame conditions to all method
post-conditions in OCL, stating that their value remains constant. Besides these
structural restrictions, the syntax of formulas is further restricted to ensure a
sound operational semantics [10]:

– Facts must be of the form all t:Time | φ, with t the only time variable
that occurs in formula φ. This ensures that they act as invariants, instead
of arbitrary temporal formulas, and can thus be represented in OCL.

– Every relational expression occurring in a formula must be state-bound, in
the sense that each mutable relation identifier is within scope of a time
variable. To simplify the translation, we ensure this restriction by forcing
relation identifiers to be composed with either t or t’. However, a more
relaxed syntax can be defined, where each occurrence of a relation identifier is
required to be a subterm of either Φ.t or Φ.t’, where Φ denotes a relational
expression.

Besides conforming to the local state idiom, an Alloy model must satisfy some
additional restrictions due to the limitations of UML+OCL, as described in the
UML Class Diagram metamodel [17] and the OCL metamodel [16]:

– Signature declarations can only be top-level or extend other signatures. Sig-
nature inclusion, where in is used instead of extends, is not allowed since
it is not possible to specify using UML class diagrams that a class is a non-
disjoint subset of another class.

– Field declarations must refer signature identifiers instead of arbitrary rela-
tional expressions. This ensures that the type of each column corresponds
to a single signature, instead of an arbitrary disjunction of signatures, as

Translating Alloy Specifications to UML Class Diagrams and OCL 227

module ::� module moduleId sig Time {} sigDecl� paragraph�

paragraph ::� factDecl � funDecl � predDecl

sigDecl ::� �abstract� sig sigId �extends sigId� sigBody

sigBody ::� { �fieldDecl �, fieldDecl��� }
fieldDecl ::� setDecl � relDecl

setDecl ::� relId : set Time

relDecl ::� relId : sigId �mult� -> Time � relId : �sigId ->���mult� sigId -> Time

mult ::� lone � one � some � set

factDecl ::� fact {all t:Time | all varId:sigId | form}
funDecl ::� fun funId[�varId:sigId,��t:Time] : set sigId { expr }

predDecl ::� pred predId[�varId:sigId,��t,t’:Time] { form� }
form ::� expr compOp expr � form logicOp form � form => form �, form� �

!form � intExpr intCompOp intExpr � quant varId:sigId | form

logicOp ::� && � || � <=>

compOp ::� = � in

intCompOp ::� = � < � > � =< � >=

quant ::� all � no � lone � one � some

expr ::� varId � sigId � relId.t � relId.t’ � none � univ � iden � expr relOp expr �

~expr � ^(�varId.��(relId.t)� � ^(�varId.��(relId.t’)� �

*(�varId.��(relId.t)) � *(�varId.��(relId.t’)) � funId[�varId,��t] �

funId[�varId,��t’] � {varId:sigId�,varId:sigId�� | form}
relOp ::� . � + � - � & � <: � :> � -> � ++

intExpr ::� integer � #expr � int[expr] � intExpr intOp intExpr

intOp ::� + � -

Fig. 2. Subset of Alloy translated to UML+OCL

prescribed in the Alloy type system [6]. Since fields will be represented by
attributes or associations in UML, without this restriction we might not be
able to determine the type of attributes or association ends.

– Multiplicity constraints can only occur in the last column (not counting
Time) of a field declaration. A field relating more than two signatures will
be represented by a qualified association in UML, and those only support
multiplicities in the association end.

– OCL requires a context (a class) for all invariants and methods. As such,
Alloy facts must be further restricted to include at least one additional uni-
versally quantified variable besides the special time variable. The type of
this variable will determine the OCL context. Moreover, functions and pred-
icates are required to have at least one parameter besides the special time
parameters. The type of the first parameter will determine the context of
the target method.

228 A. Garis, A. Cunha, and D. Riesco

– OCL does not natively support transitive closure. So far, we only managed to
translate the transitive closure of a concrete relation, instead of an arbitrary
relational expression. The syntax is restricted accordingly.

– Predicate call is not supported, since OCL constraints can only invoke side-
effect free queries.

– Assertions and commands will not be considered, since they do not have
a counterpart in OCL. In general they only make sense for model V&V,
for which OCL is currently not well suited. We prescribe that model V&V
should be performed using the Alloy Analyzer, so those constructs can safely
be ignored when translating to OCL.

The grammar of Figure 2 also includes some additional minor restrictions, that
do not limit the expressivity of the language. For example, we do not allow
signature facts, neither atomic formulas of the form mult expr. These restrictions
simplify the presentation of the translation, and can easily be lifted by means of
trivial refactorings. For instance, the formula lone a.(b.addr.t) in Figure 1
can be refactored to #(a.(b.addr.t))=<1.

4.2 From Alloy to UML Class Diagrams

The relationship between UML class diagrams and Alloy declarations is
straightforward, as noticed in [19,13,1]: in general, classes correspond to signa-
tures (preserving the inheritance relation), associations and attributes to fields,
and methods to predicates and functions. These relationships are essentially the
same when translating from Alloy to UML class diagrams, but with the novelty
that some fields may lead to non-binary associations.

As seen in Figure 2, excluding the mandatory Time column, fields can be of
two kinds:

– Sets with type A, to be translated as attributes of class A with type Boolean.
– Relations with type A1 -> . . . -> m An, to be translated as qualified asso-

ciations between A1 and An, with A2, . . . , An�1 as qualifiers. The multiplicity
at the end of the association depends on m: 0..* for set; 1..* for some;
0..1 for lone; and 1..1 for one. If m is absent, the default is set.

If the relation is binary, with type A1 -> m A2, and m is either lone or one it
is more natural to encode it as attribute of A1 with type A2.

The UML class diagram corresponding to the address book example of Fig-
ure 1 is presented in Figure 3.

4.3 From Alloy to OCL

The model transformation from the Alloy subset described in Section 4.1 to OCL
will be encoded using an embedding function ���. To simplify the presentation,
this function will accept and produce concrete syntax. The following convention
will be followed for naming variables denoting the various grammar elements:

Translating Alloy Specifications to UML Class Diagrams and OCL 229

Fig. 3. UML class diagram corresponding to address book example

x, y, z for variable identifiers; A, B, C for signature identifiers and types in gen-
eral; R, S, T for relation identifiers; φ, ψ, ϕ for formulas; Φ, Ψ, Υ for relational
expressions; and α, β, γ for integer expressions.

We will assume the input model to be well-typed, according to the typing
system described in [6]. This type system is very relaxed: an error occurs when
a expression can be shown to always be empty at static time. For example, the
composition Φ.Ψ is well-defined for any relational expressions Φ: A -> B and
Ψ: C -> D, if the intersection of types B and C is non-empty. The type of
a relational expression is itself a relation: a set of tuples of atomic signatures
(i.e. signatures that are not further extended, such as Book, Addr, Alias, and
Group in our running example). The type inference rules ensure that all the
tuples in the type relation have the same length. Given a relational expression
Φ of arity �Φ�, we will denote the type of the n-th column as Φn (assuming
0 � n � �Φ�). The type of a column is guaranteed to be a set of atomic signatures,
each corresponding to a concrete class in UML. In the translation we sometimes
need to quantify over such types. To simplify the presentation, notation

�A1, . . . , An�.allInstances->forAll(x|φ)

�A1, . . . , An�.allInstances->exists(x|φ)

where �A1, . . . , An� is an Alloy type, will be used as a shorthand for, respectively

A1.allInstances->forAll(x|φ) and . . . and An.allInstances->forAll(x|φ)

A1.allInstances->exists(x|φ) or . . . or An.allInstances->exists(x|φ)

The translation of an Alloy module is triggered by the following rule:

�module id sig Time {} s1 . . . sn p1 . . . pm� 	

package m �p1� . . . �pm� endpackage

Fact, Function and Predicate Declarations. Figure 4 details the transfor-
mations of fact, function and predicate declarations. Signature declarations are

230 A. Garis, A. Cunha, and D. Riesco

	fact {all t:Time | all x:A | φ}
 �
context A inv: 	φ
x

	fun f[x1:A1, . . . ,xn:An,t:Time] : set B { Φ }
 �
context A1::f(x2:A2, . . . ,xn:An):Set(B)

post: B.allInstances->select(y|	�y � Φ
x1)

	pred f[x1:A1, . . . ,xn:An,t,t’:Time] { φ1 . . . φm }
 �
context A1::f(x2:A2, . . . ,xn:An)

pre: 	φ1
x1 if t’ does not occur in φ1

post: 	φ1

�
x1 otherwise

. . .

pre: 	φm
x1 if t’ does not occur in φm

post: 	φm
�x1 otherwise

Fig. 4. Translation of fact, function and predicate declarations

ignored in the OCL generation, and are only used in the UML class diagram
generation detailed in the previous section.

In OCL, all invariants and method specifications must be defined in the con-
text of a class. For Alloy facts, the type of the first universally quantified variable
(appart from the mandatory Time one) will determine the context of the gener-
ated invariant. The translation of formulas must then be parametrized with the
name of the variable that will denote the self object. For functions and predi-
cates, the context is determined by the type of the first parameter. In a predicate,
all formulas where t’ does not occur will be translated as pre-conditions. Oth-
erwise, they are translated as post-conditions.

Two slightly different formula translations will be defined, due to different
meanings that variable t assumes in different contexts. In a post-condition, an
association R.t should be translated as R@pre, since t denotes the pre-state.
In invariants, functions and pre-states it denotes the only visible state, and thus
the translation just outputs R. As such, we will use �φ� to translate a formula
φ that occurs in an invariant, function, or pre-condition; and �φ�� to translate a
formula φ that occurs in a post-condition.

Formulas. The translation of formulas is presented in Figure 5. We omit the
definition of ���� because for formulas it is identical - it will only diverge when
applied to relational expressions. Most logic operators have a direct counter-
part in OCL and can thus be trivially translated. OCL does not support the
non-standard quantifiers no and one, but they can be simulated by testing the
cardinality of the subset of the type satisfying the quantified formula.

The trickiest part of the translation concerns the atomic formulas Φ in Ψ ,
where Φ and Ψ are arbitrary relational expressions. This formula cannot be
encoded using set inclusion because �Φ� can be greater than 1, and, unlike Al-
loy, OCL does not support the construction of arbitrary relations as normal

Translating Alloy Specifications to UML Class Diagrams and OCL 231

	Φ in Ψ
x � Φ1
.allInstances->forAll(y1| . . .

Φ�Φ�
.allInstances->forAll(y�Φ�|

	�y1, . . . , y�Φ� � Φ
x implies 	�y1, . . . , y�Φ� � Ψ
x) . . .)

	Φ = Ψ
x � 	Φ in Ψ
x and 	Ψ in Φ
x

	φ && ψ
x � 	φ
x and 	ψ
x

	φ || ψ
x � 	φ
x or 	ψ
x

	φ <=> ψ
x � 	φ => ψ
x and 	ψ => φ
x

	φ => ψ
x � 	φ
x implies 	ψ
x

	φ => ψ,ϕ
x � if 	φ
x then 	ψ
x else 	ϕ
x endif

	!φ
x � not 	φ
x

	α = β
x � 	α
x = 	β
x

. . .

	α >= β
x � 	α
x >= 	β
x

	all y:A | φ
x � A.allInstances->forAll(y|	φ
x)

	some y:A | φ
x � A.allInstances->exists(y|	φ
x)

	no y:A | φ
x � A.allInstances->select(y|	φ
x)->isEmpty()

	one y:A | φ
x � A.allInstances->select(y|	φ
x)->size() = 1

Fig. 5. Translation of formulas

first-order values. As such, relational expressions will be translated by building
their standard first-order denotational semantics: a relational expression Φ will
be translated by a formula that checks if a tuple
y1, . . . , y�Φ�� belongs to the de-
noted relation. The inclusion Φ in Ψ can thus be translated by a formula that
checks if all tuples of the appropriate type that belong to Φ also belong to Ψ .
Note that the type system ensures that the arity of Φ and Ψ are the same. Using
the first-order semantics of relational logic to embed Alloy in other logical frame-
works is kind of folklore. For example, a similar strategy was used recently to
develop a tool for unbounded verification of Alloy models using SMT solvers [8].

Relational Expressions. The translation of relational expressions is presented
in Figure 6. As explained above, this translation basically encodes the standard
first-order semantics of relational operators. A brief explanation of the most
interesting rules follows:

– Testing if a unary tuple is a member of a variable can be done with a simple
equality test. Note that, as mentioned before, Alloy variables are singleton
unary relations. If the variable denotes the self object then this identifier
is used instead.

– Translation of field R.t membership depends on the arity of R: if it is a
set we just check the value of the generated boolean attribute; otherwise we
navigate the qualified association R.

232 A. Garis, A. Cunha, and D. Riesco

– Translation of field membership requires an additional type checking since
Alloy allows access to a field from any signature that includes the owner of
the field. A reference like this could generate an undefined value in OCL.
As such, we translate to false when the type of each variable yi is not a
sub-type of Ri. Translation of variables and signature membership assumes
similar considerations. To simplify the presentation, these type-checkings are
not included in Figure 6.

– The semantics of the relational composition Φ.Ψ leads to a new existential
quantifier over the mediating type. We quantify over Φ�Φ� � Ψ1 because the
composition only succeeds for values belonging to the intersection of both
types. This optimization reduces the number of quantifiers in the outputted
formula.

– Testing if
y1, . . . , yn� is included in the relational overriding Φ ++ Ψ is
reduced to a membership test over Ψ if
y1, . . . , yn�1� belongs to its domain;
otherwise a membership test over Φ is generated.

– In a relation defined by the comprehension {z1:A1,. . .,zn:An | φ}, the
membership test is translated by just applying the predicate φ to the tuple
variables y1, . . . , yn instead of z1, . . . , zn.

The translation of closures is not straightforward since they are not finitely ax-
iomatizable in first order logic, and OCL also does not support them natively.
Fortunately, there are many ways to encode the transitive closure using recur-
sive definitions. Given an arbitrary relation R: A1 -> . . . -> An, the transitive
closure of the respective (partially applied) qualified association can be imple-
mented as follows:

context A1

def: RClosureAux(y2:A2,. . .,yn�1:An�1,s:Set(An)):Set(An) =

let s’:Set(An) = s->collect(x:A1 | yn�1.R[yn�2,. . .,y2,x] in

if s->includesAll(s’) then s

else RClosureAux(y2,. . .,yn�1,s->union(s’))

endif

def: RClosure(y2:A2,. . .,yn�1:An�1):Set(An) =

RClosureAux(y2,. . .,yn�1,yn�1.R[yn�2,. . .,y2,self]))

The translation of relational expressions occurring in post-conditions is almost
identical, with the exception of the rules presented in Figure 7, where relation
identifiers within scope t are evaluated in the pre-state. RClosurePre is an
auxiliar definition similar to the one presented above, but with all occurrences
of R replaced by R@pre.

The blind application of these translation rules usually results in obfuscated
OCL specifications, mainly due to the introduction of quantifiers in the trans-
lation of the relational inclusion and composition. Fortunately, some first-order
equivalences can be applied to the resulting order to simplify it, namely:

Translating Alloy Specifications to UML Class Diagrams and OCL 233

	�y � z
x �
y=self if z � x
y=z otherwise

	�y � A
x � A.allInstances->includes(y)

	�y1, . . . , yn � R.t
x �
y1.R[y2, . . . ,yn�1]->includes(yn) if n � 1
y1.R() otherwise

	�y � none
x � false

	�y � univ
x � true

	�y1, y2 � iden
x � y1=y2

	�y1, . . . , yn � Φ.Ψ
x � �Φ�Φ� � Ψ1�.allInstances->exists(y|

	�y1, . . . , y�Φ��1, y � Φ
x and 	�y, y�Φ�, . . . , yn � Ψ
x)

	�y1, . . . , yn � Φ + Ψ
x � 	�y1, . . . , yn � Φ
x or 	�y1, . . . , yn � Ψ
x

	�y1, . . . , yn � Φ - Ψ
x � 	�y1, . . . , yn � Φ
x and (not 	�y1, . . . , yn � Ψ
x)

	�y1, . . . , yn � Φ & Ψ
x � 	�y1, . . . , yn � Φ
x and 	�y1, . . . , yn � Ψ
x

	�y1, . . . , yn � Φ <: Ψ
x � 	�y1 � Φ
x and 	�y1, . . . , yn � Ψ
x

	�y1, . . . , yn � Φ :> Ψ
x � 	�y1, . . . , yn � Φ
x and 	�yn � Ψ
x

	�y1, . . . , yn � Φ -> Ψ
x � 	�y1, . . . , y�Φ� � Φ
x and 	�y�Φ��1, . . . , yn � Ψ
x

	�y1, . . . , yn � Φ ++ Ψ
x � if 	�y1, . . . , yn�1 � Ψ.Ψn
x then 	�y1, . . . , yn � Ψ
x

else 	�y1, . . . , yn � Φ
x endif

	�y1, . . . , yn � ~Φ
x � 	�yn, . . . , y1 � Φ
x

	�y1, yn � ^(y2.yn�1.R.t)
x � y1.RClosure(y2, . . . ,yn�1)->includes(yn)

	�y1, yn � *(y2.yn�1.R.t)
x � y1=yn or 	�y1, yn � ^(y2.yn�1.R.t)
x

	�y � f[y1, . . . ,yn,t]
x � y1.f(y2, . . . ,yn)->includes(y)

	�y1, . . . , yn � {z1:A1, . . . ,zn:An | φ}
x � 	φ�y1�z1, . . . , yn�zn�
x

Fig. 6. Translation of relational expressions

A.allInstances->exists(y | y=z and φ) 	 φz�y�

A.allInstances->forAll(y | y=z implies φ) 	 φz�y�

Integer expressions. Figure 8 presents the translation of Alloy integer expres-
sions to OCL. Alloy expression #Φ computes the size of a relational expression
Φ of arbitrary arity. The presented rule only works for unary expressions. Using
tuples it is trivial to generalize it to arbitrary relational expressions.

The Address Book Case Study. An excerpt of the OCL model obtained from
the address book example is presented in Figure 9. It includes the first two invari-
ants and the specification of operation add. Both simplification rules where ap-
plied to the result, which was then manually rendered for better
comprehension.

234 A. Garis, A. Cunha, and D. Riesco

	�y1, . . . , yn � R.t
�x �
y1.R@pre[y2, . . . ,yn�1]->includes(yn) if n � 1
y1.R@pre() otherwise

	�y1, . . . , yn � R.t’
�x �
y1.R[y2, . . . ,yn�1]->includes(yn) if n � 1
y1.R() otherwise

	�y1, yn � ^(y2.yn�1.R.t)
�x � y1.RClosurePre(y2, . . . ,yn�1)->includes(yn)

	�y1, yn � ^(y2.yn�1.R.t’)
�x � y1.RClosure(y2, . . . ,yn�1)->includes(yn)

	�y1, yn � *(y2.yn�1.R.t)
�x � y1=yn or 	�y1, yn � ^(y2.yn�1.R.t)
�x

	�y1, yn � *(y2.yn�1.R.t’)
�x � y1=yn or 	�y1, yn � ^(y2.yn�1.R.t’)
�x

	�y � f[y1, . . . ,yn,t’]

�
x � y1.f(y2, . . . ,yn)->includes(y)

Fig. 7. Translation of relational expressions in post-conditions

	n
x � n

	#Φ
x � Φ1
.allInstances->select(y|	�y � Φ
x)->size()

	int[Φ]
x � Φ1
.allInstances->select(y|	�y � Φ
x)->sum()

	α + β
x � 	α
x + 	β
x

	α - β
x � 	α
x - 	β
x

Fig. 8. Translation of integer expressions

context Book inv:

Name.allInstances->forAll(v0 |

Target.allInstances->exists(v1 | self.addr[v0]->includes(v1)

and Target.allInstances ->includes(v1)) implies

self.names->includes(v0))

context Book inv:

Name.allInstances->select(n |

n.addrClosure(self)->includes(n))->isEmpty()

context Book::add(n:Name,a:Target)

pre: self.names->includes(n)

post: Name.allInstances->forAll(v0 | Target.allInstances->forAll(v1 |

self.addr[v0]->includes(v1) implies

self.addr@pre[v0]->includes(v1) or (v0=n and v1=a)))

Fig. 9. OCL specifications of the address book example

5 Concluding Remarks and Future Work

We have presented a model transformation from Alloy to UML class diagrams
annotated with OCL. We have formally characterized the Alloy local state idiom
accepted by the transformation. This idiom is sufficiently broad to encompass

Translating Alloy Specifications to UML Class Diagrams and OCL 235

most specifications. When compared to the previously developed transformations
from UML+OCL to Alloy [1,13], this model transformation raised interesting
new challenges, namely: the translation of relational expressions of arbitrary
arity; dealing with the idiosyncrasies of Alloy’s type-system; and the encoding
of closures.

The transformation still has some limitations, most notably not allowing sig-
nature inclusion in the source Alloy model. Signature inclusion is mostly used in
Alloy to overcome the single-inheritance limitation. We intend to extend our
idiom to include such usages, and then translate it directly using multiple-
inheritance. We also intend to extend it to other Alloy idioms that allow the
specification of state-transition systems, in order to also generate UML state-
chart diagrams.

We have implemented the proposed transformation in Haskell, generating syn-
tax compatible with popular UML+OCL modeling applications. The tool is
available for download at http://sourceforge.net/projects/alloy2ocl. It
includes a couple of additional case-studies, but we intend to extend this set to
further validate the transformation.

Acknowledgments. This research was partially supported by QREN (the
Portuguese National Strategy Reference Chart) project 1621 – Evolve.

References

1. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: On challenges of model transfor-
mation from UML to Alloy. Software and Systems Modeling 9(1), 69–86 (2008)

2. Braga, B.F.B., Almeida, J.P.A., Guizzardi, G., Benevides, A.B.: Transforming On-
toUML into Alloy: towards conceptual model validation using a lightweight formal
method. Innovations in Systems and Software Engineering 6(1-2), 55–63 (2010)

3. Brucker, A.D., Wolff, B.: HOL-OCL: a formal proof environment for UML/OCL.
In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE 2008. LNCS, vol. 4961, pp. 97–100.
Springer, Heidelberg (2008)

4. Demuth, B., Hussmann, H., Loecher, S.: OCL as a specification language for busi-
ness rules in database applications. In: Gogolla, M., Kobryn, C. (eds.) UML 2001.
LNCS, vol. 2185, pp. 104–117. Springer, Heidelberg (2001)

5. DresdenOCL website, http://www.dresden-ocl.org/index.php/DresdenOCL

6. Edwards, J., Jackson, D., Torlak, E.: A type system for object models. In:
Proceedings of the 12th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, pp. 189–199. ACM, New York (2004)

7. Georg, G., Anastasakis, K., Bordbar, B., Houmb, S.H., Toahchoodee, I.R.M.:
Verification and trade-off analysis of security properties in UML system models.
IEEE Transactions on Software Engineering 36(3), 338–356 (2010)

8. El Ghazi, A.A., Taghdiri, M.: Relational reasoning via SMT solving. In: Butler, M.,
Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 133–148. Springer, Heidelberg
(2011)

9. Gheyi, R., Massoni, T., Borba, P.: Formally introducing Alloy idioms. In:
Proceedings of the Brazilian Symposium on Formal Methods, pp. 22–37 (2007)

http://sourceforge.net/projects/alloy2ocl
http://www.dresden-ocl.org/index.php/DresdenOCL

236 A. Garis, A. Cunha, and D. Riesco

10. Giannakopoulos, T., Dougherty, D.J., Fisler, K., Krishnamurthi, S.: Towards an
operational semantics for alloy. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009.
LNCS, vol. 5850, pp. 483–498. Springer, Heidelberg (2009)

11. Gogolla, M., Bohling, J., Richters, M.: Validating UML and OCL models in USE
by automatic snapshot generation. Software and Systems Modeling 4(4), 386–398
(2005)

12. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press,
Cambridge (2006)

13. Massoni, T., Gheyi, R., Borba, P.: Formal refactoring for UML Class Diagrams.
In: Proceedings of the 19th Brazilian Symposium on Software Engineering, pp.
152–167 (2005)

14. Mostefaoui, F., Vachon, J.: Verification of Aspect-UML models using Alloy. In:
Proceedings of the 10th International Workshop on Aspect-Oriented Modeling,
pp. 41–48. ACM, New York (2007)

15. OMG: MDA Guide version 1.0.1 (2003)
16. OMG: Object Constraint Language, Version 2.2 (2010)
17. OMG: UML Superstructure, Version 2.3 (2010)
18. Shah, S.M.A., Anastasakis, K., Bordbar, B.: From UML to Alloy and back again.

In: Proceedings of the 6th International Workshop on Model-Driven Engineering,
Verification and Validation. ACM, New York (2009)

19. Vaziri, M., Jackson, D.: Some shortcomings of OCL, the Object Constraint Lan-
guage of UML. In: Proceedings of the 34th International Conference on Technol-
ogy of Object-Oriented Languages and Systems, pp. 555–562. IEEE, Los Alamitos
(2000)

Safe Distribution of Declarative Processes

Thomas Hildebrandt1, Raghava Rao Mukkamala1, and Tijs Slaats1,2 �

1 IT University of Copenhagen,
Rued Langgaardsvej 7, 2300 Copenhagen, Denmark

{hilde,rao,tslaats}@itu.dk
http://www.itu.dk

2 Exformatics A/S, 2100 Copenhagen, Denmark

Abstract. We give a general technique for safe distribution of a declarative
(global) process as a network of (local) synchronously communicating declar-
ative processes. Both the global and local processes are given as Dynamic Con-
dition Response (DCR) Graphs. DCR Graphs is a recently introduced declarative
process model generalizing labelled prime event structures to a systems model
able to finitely represent ω-regular languages. An operational semantics given as
a transition semantics between markings of the graph allows DCR Graphs to be
conveniently used as both specification and execution model. The technique for
distribution is based on a new general notion of projection of DCR Graphs rel-
ative to a subset of labels and events identifying the set of external events that
must be communicated from the other processes in the network in order for the
distribution to be safe. We prove that for any vector of projections that covers
a DCR Graph that the network of synchronously communicating DCR Graphs
given by the projections is bisimilar to the original global process graph. We ex-
emplify the distribution technique on a process identified in a case study of an
cross-organizational case management system carried out jointly with Exformat-
ics A/S.

Keywords: formal specification, distributed synthesis, cross-organizational
workflow, declarative processes, process composition.

1 Introduction

A model-driven software engineering approach to distributed information systems typ-
ically include both global models describing the collective behavior of the system
being developed and local models describing the behavior of the individual peers or
components.

The global and local descriptions should be consistent. If the modeling languages
have formal semantics and the local model language support composition of individual
processes, the consistency can be formally established, which we will refer to as the

� Authors listed alphabetically. This research is supported by the Danish Research
Agency through a Knowledge Voucher granted to Exformatics (grant #10-087067,
www.exformatics.com), the Trustworthy Pervasive Healthcare Services project (grant #2106-
07-0019, www.trustcare.eu) and the Computer Supported Mobile Adaptive Business Processes
project (grant #274-06-0415, www.cosmobiz.dk).

G. Barthe, A. Pardo, and G. Schneider (Eds.): SEFM 2011, LNCS 7041, pp. 237–252, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.itu.dk

238 T. Hildebrandt, R.R. Mukkamala, and T. Slaats

consistency problem: Given a global model and a set of local models, is the behavior of
the composition of the local models consistent with the global model? In order to sup-
port ”top-down” model-driven engineering starting from the global model, one should
address the more challenging distributed synthesis problem: Given a global model and
some formal description of how the model should be distributed, can we synthesize a
set of local processes with respect to this distribution which are consistent to the the
global model?

In past work, briefly surveyed below, the result of the distributed synthesis have been
a network of local processes described in an imperative process model, e.g. as a network
of typed pi-calculus processes or a product automaton. The global process description
has either been given declaratively, e.g. in some temporal logic, or imperatively, e.g. as
a choreography or more generally a transition system.

In the present paper we address the distributed synthesis problem in a setting where
both the global and the local processes are described declaratively as Dynamic Condition
Response Graphs (DCR Graphs). DCR Graphs is a declarative workflow model intro-
duced previously in [14, 15] as a generalization of the classical event structure model [47]
allowing finite specification of infinite or iterative behavior (by allowing events to be exe-
cuted more than once and replacing the symmetric conflict relation by asymmetric exclu-
sion and (re-)inclusion relations) and specification of progress conditions (by replacing
the causal order relation of event structures with two relations, respectively defining the
conditions for and required responses to the execution of an event).

The motivation for introducing the DCR Graph model is to give, as part of the Trust-
worthy Pervasive Healthcare Services [13] project, a declarative model that can be used
both as specification language and execution language for flexible workflow and busi-
ness process. Indeed, the DCR Graphs model is inspired by and formalizes the core
primitives of the process model employed by the industrial partner (Resultmaker) in the
TrustCare project and is now being implemented in the workflow engine developed at
Exformatics. As identified in e.g. [6, 43] declarative process languages make it easier to
specify loosely constrained systems. Also, we believe the declarative approach is more
promising when it comes to composition, and (dynamic) changes of processes which is
one of the main objectives of the TrustCare project.

To safely distribute a DCR Graph we first define (Def. 3, Sec. 3.1) a new general
notion of projection of DCR Graphs relative to a subset of labels and events. The key
point is to identify the set of events that must be communicated from other processes
in the network in order for the state of the local process to stay consistent with the
global specification (Prop. 1, Sec. 3). To also enable the reverse operation, building
global graphs from local graphs, we then define the composition of two DCR Graphs,
essentially by gluing joint events. As a sanity check we prove (Prop. 2, Sec. 3.2) that if
we have a collection of projections of a DCR Graph that cover the original graph (Def. 7,
Sec. 3.2) then the composition yields back the same graph. We then finally proceed to
the main technical result, defining networks of synchronously communicating DCR
Graphs and stating (in Thm. 1, Sec. 3.3) the correspondence between a global process
and a network of communicating DCR Graphs obtained from a covering projection
(relying on Prop. 1). Throughout the paper we exemplify the distribution technique on
a simple cross-organizational process identified within a case study carried out jointly

Safe Distribution of Declarative Processes 239

with Exformatics A/S using DCR Graphs for model-driven design and engineering of
an inter-organizational case management system. We conclude in Sec. 4 and provide
pointers to future work.

1.1 Related Work

There are many researchers [1, 20, 21, 40–42, 46] who have explicitly focussed on
the problem of verifying the correctness of inter-organizational workflows in the do-
main of petri nets. In [41], message sequence charts are used to model the interaction
between the participant workflows that are modeled using petri nets and the overall
workflow is checked for consistency against an interaction structure specified in mes-
sage sequence charts. In [20] Kindler et. al. followed a similar but more formal and
concrete approach, where the interaction of different workflows is specified using a
set of scenarios given as sequence diagrams and using criteria of local soundness and
composition theorem, guaranteed the global soundness of an inter-organizational work-
flow. The authors in [40] proposed Query Nets based on predicate/transition petri nets
to guarantee global termination, without the need for having the global specification.
The work on workflow nets [1, 46] use a P2P (Public-To-Private) approach to par-
tition a shared public view of an inter-organizational workflow over its participating
entities and projection inheritance is used to generate a private view that is a subclass
to the relevant public view, to guarantee the deadlock and livelock freedom. Further a
more liberal and a weaker notion than projection inheritance, accordance has been used
in [42] to guarantee the weak termination in the multiparty contracts based on open nets.

Fig. 1. Key problems studied in related
work

Modeling global behavior as a set of con-
versations among participating services has
been studied by many researchers [2, 3, 11,
35, 48, 49] in the area business processes.
An approach based on guarded automata
studied in [11], for the realizability analy-
sis of conversation protocols, whereas the
authors in [49] used colored petri nets
to capture the complex conversations. A
framework for calculating and controlled
propagation of changes to the process
choreographies based on the modifications
to partner’s private processes has been
studied in [35]. Similarly, but using process
calculus to model service contracts, Bravetti-Zavattaro proposed conformance notion
for service composition in [2] and further enhanced their correctness criteria in [3] by
the notion of strong service compliance.

Researchers [9, 19, 23, 29] in the web services community have been working on
web service composition and decentralized process execution using BPEL [30] and
other related technologies to model the web services. A technique to partition a
composite web service using program analysis was studied in [29] and on the similar
approach, [19] explored decomposition of a business process modeled in BPEL, pri-
marily focussing on P2P interactions . Using a formal approach based on I/O automata

240 T. Hildebrandt, R.R. Mukkamala, and T. Slaats

representing the services, the authors in [23] have studied the problem of synthesiz-
ing a decentralized choreography strategy, that will have optimal overhead of service
composition in terms of costs associated with each interaction.

The derivation of descriptions of local components from a global model has been
researched for the imperative choreography language WS-CDL in the work on struc-
tured communication-centred programming for web services by Carbone, Honda and
Yoshida [4]. To put it briefly, the work formalizes the core of WS-CDL as the global
process calculus and defines a formal theory of end-point projections projecting the
global process calculus to abstract descriptions of the behavior of each of the local
”end-points” given as pi-calculus processes typed with session types.

A methodology for deriving process descriptions from a business contract formal-
ized in a formal contract language was studied in [22], while [36] proposes an approach
to extract a distributed process model from collaborative business process. In[9, 10],
the authors have proposed a technique for the flexible decentralization of a process
specification with necessary synchronization between the processing entities using de-
pendency tables.

In [5, 12, 27] foundational work has been made on synthesizing distributed
transition systems from global specification for the models of synchronous product
and asynchronous automata[50]. In [27] Mukund categorized structural and behavioral
characterizations of the synthesis problem for synchronous and loosely cooperating
communication systems based on three different notions of equivalence: state space,
language and bisimulation equivalence. Further Castellani et. al. [5] characterized when
an an arbitrary transition system is isomorphic to its product transition systems with a
specified distribution of actions and they have shown that for finite state specifications,
a finite state distributed implementation can be synthesized. Complexity results for dis-
tributed synthesis problems for the three notions of equivalences were studied in [12].

Many commercial and research workflow management systems also support dis-
tributed workflow execution and some of them even support ad-hoc changes as well.
ADEPT [34], Exotica [24], ORBWork [7], Rainman [31] and Newcastle-Nortel [39]
are some of the distributed workflow management systems. A good overview and dis-
cussion about distributed workflow management systems can be found in [32, 33].

So far the formalisms discussed above are more or less confined to imperative mod-
eling languages such as Petri nets, workflow/open nets and automata based languages.
To the best of our knowledge, there exists very few works [8, 25] that have studied the
synthesis problem in declarative modeling languages and none where both the global
and local processes are given declaratively. In [8], Fahland has studied synthesizing
declarative workflows expressed in DecSerFlow [45] by translating to Petri nets. Only
a predefined set of DecSerFlow constraints are used in the mapping to the Petri nets
patterns, so this approach has a limitation with regards to the extensibility of the Dec-
SerFlow language. On the other hand, in [25] Montali has studied the composition of
ConDec [44] models with respect to conformance with a given choreography, based on
the compatibility of the local ConDec models. But his study was limited to only com-
position, whereas the problem of synthesizing local models from a global model has
not been studied.

Safe Distribution of Declarative Processes 241

2 Dynamic Condition Response Graphs

Dynamic Condition Response (DCR) Graphs has recently been introduced [15] as a
declarative process model generalizing labelled event structures [47] to allow finite rep-
resentations of infinite behavior (i.e. a systems model [37, 38]) and representation of
progress properties.

A DCR Graph consists of a set of labelled events, a marking defining the executed
events, pending response events and included events, and four binary relations between
the events, defining the temporal constraints between events and dynamic inclusion and
exclusion of events.

We employ the following notations in the rest of the paper.

Notation: For a set A we write P(A) for the power set of A. For a binary relation
→⊆ A × A and a subset ξ ⊆ A of A we write → ξ and ξ → for the set {a ∈ A |
(∃a′ ∈ ξ | a → a′)} and the set {a ∈ A | (∃a′ ∈ ξ | a′ → a)} respectively. Also, we
write →−1 for the inverse relation. Finally, for a natural number k we write [k] for the
set {1, 2, . . . , k}.

We then formally define a DCR Graph as follows.

Definition 1. A Dynamic Condition Response Graph G is a tuple (EG, MG,→•, •→,±,
LG, lG), where

(i) EG is the set of events
(ii) MG = (ExG, ReG, InG) ∈ P(EG) × P(EG) × P(EG) is the marking,

(iii) →•⊆ EG × EG is the condition relation
(iv) •→⊆ EG × EG is the response relation
(v) ± : EG × EG ⇀ {+, %} is a partial function defining the dynamic inclusion and

exclusion relations by e →+ e′ if ±(e, e′) = + and e →% e′ if ±(e, e′) = %
(vi) LG is the set of labels

(vii) lG : EG → P(LG) is a labeling function mapping events to sets of labels.

We write M(G) for the set P(EG) × P(EG) × P(EG) of markings of G.

The marking MG = (ExG, ReG, InG) is a tuple of three sets defining respectively the
previously executed events (ExG), the set of required responses (ReG), and the currently
included events (InG). The set of required responses are the events that must eventu-
ally be executed (or excluded) in order to accept the execution, also referred to as the
pending responses. The set of included events are the events that currently are relevant
for conditions and may be executed (if their conditions are met). The condition relation
→• defines which (of the currently included) events must have been executed before an
event can be executed. That is, for an event e to be executed, it must be included, i.e.
e ∈ InG and the included conditions must be executed: (→• e) ∩ InG ⊆ ExG. The re-
sponse relation •→ defines which responses are required after executing an event. That
is, if the event e is executed, the events e •→ are added to the set of required responses
in the marking. The dynamic inclusion and exclusion relations define how the set of
included events changes by executing an event: If the event e is executed, the events
e →+ are added to the set of included events in the marking and the events e →%
are removed. Finally, an event is labelled by zero or more labels. (This is slightly more

242 T. Hildebrandt, R.R. Mukkamala, and T. Slaats

general than previous work, where labels of events were sets of triples consisting of an
action, a role and a principal.)

Fig. 2 below shows an example DCR Graph identified during the development by
Exformatics of a cross-organizational case management system for the umbrella orga-
nization of unions in Denmark, named LO.

Fig. 2. Cross-organizational case management example

The graph has 7 events, drawn as boxes with ”ears”, and captures a process of cre-
ating a case, agreeing on meeting dates and holding meetings. The names of the events
are written inside the box and the set of actions for each event, representing the roles
that can execute the event, is written inside the ”ear”. That is, the event Create Case
in the upper left has label U and represents the creation of a case by a case manager at
a union (role U). The rightmost event, Hold meeting has two different labels, LO and
DA, representing a meeting held by LO and DA (the umbrella organization of employ-
ers) respectively.

The semantics for DCR Graphs has been given in [14, 15] as a labelled transition
system with acceptance condition for infinite computations. The set of accepted runs of
DCR Graphs was characterized by a mapping to Büchi-automata in [26].

Definition 2. For a DCR Graph G = (EG, MG,→•, •→,±, LG, lG), we define the cor-
responding labelled transition system TS(G) to be the tuple (M(G), MG, EL(G),→)
where EL(G) = EG × LG is the set of labels of the transition system, MG = (ExG, InG,
ReG) ∈ M(G) is the initial marking, and →⊆ M(G) × EL(G) ×M(G) is the tran-

sition relation defined by MG
′ (e,a)−−−→ MG

′′ if

(i) MG
′ = (ExG

′, InG
′, ReG

′) is the marking before transition
(ii) MG

′′ = (ExG
′′, InG

′′, ReG
′′) is the marking after transition

(iii) e ∈ InG
′, a ∈ lG(e)

(iv) →•e ∩InG
′ ⊆ ExG

′,
(v) ExG

′′ = ExG
′ ∪ {e}

(vi) InG
′′ = (InG

′ ∪ e→+) \ e→%,
(vii) ReG

′′ = (ReG
′ \ {e}) ∪ e•→,

We define a run a0, a1, . . . of the transition system to be a sequence of labels of a

sequence of transitions MGi
(ei,ai)−−−−→ MGi+1 starting from the initial marking. We define

Safe Distribution of Declarative Processes 243

a run to be accepting if for the underlying sequence of transitions it holds that ∀i ≥
0, e ∈ ReGi.∃j ≥ i.(e = ej ∨ e �∈ InGj+1). In words, a run is accepting if every
response event either happen at some later state or become excluded.

Condition (iii) in the above definition expresses that, only events that are currently in-
cluded and mapped to the labels in LG can be executed, Condition (iv) requires that
all condition events to e which are currently included should have been executed previ-
ously. Condition (v), (vi) and (vii) are the updates to the sets of executed, included events
and required responses respectively. Note that an event e′ can not be both included and
excluded by the same event e, but an event may trigger itself as a response.

To ease keeping track of transition systems of different DCR Graphs we extend the

transition system to transitions between graphs in the obvious way, writing G
(e,a)−−−→ G′

if G = (EG, MG,→•, •→,±, LG, lG), MG
(e,a)−−−→ MG

′ in TS(G) and G′ = (EG, MG
′,

→•, •→,±, LG, lG).

3 Projection and Composition

In this section we define projections and compositions of dynamic condition response
graphs.

3.1 Projection

First we define how to project a DCR Graph G with respect to a projection parameter
δ = (Eδ, Lδ), where Eδ ⊆ EG is a subset of the events of G and Lδ ⊆ LG is a subset of
the labels.

Intuitivly, the projection G|δ contains only those events and relations that are relevant
for the execution of events in Eδ and the labeling is restricted to the set Lδ . This includes
both the events in Eδ and any other event that can affect the marking, or ability to
execute of an event in Eδ through one or more relations.

Definition 3. If G = (EG, MG,→•, •→,±, LG, l) then G|δ = (EG|δ, MG|δ,→•|δ,
•→|δ,±|δ, Lδ, l|δ) is the projection of G with respect to δ ⊆ EG where:

(i) EG|δ =→Eδ , for →=
⋃
c∈C

c, and C = {id,→•, •→,→+,→%,→+→•,→%→•}

(ii) l|δ(e) =

{
lG(e) ∩ Lδ if e ∈ Eδ

∅ if e ∈ EG|δ\Eδ

(iii) MG|δ = (ExG|δ, ReG|δ, InG|δ) where:
(a) ExG|δ = ExG ∩ EG|δ
(b) ReG|δ = ReG ∩ Eδ

(c) InG|δ = (InG ∩ ((id∪ →•)Eδ)) ∪ (EG|δ \ ((id∪ →•)Eδ))
(iv) →•|δ=→• ∩((→• Eδ) × Eδ)
(v) •→|δ=•→ ∩((•→ Eδ) × Eδ)

(vi) →+|δ=→+ ∩(((→+→• Eδ) × (→• Eδ)) ∪ ((→+ Eδ) × Eδ))
(vii) →%|δ=→% ∩(((→%→• Eδ) × (→• Eδ)) ∪ ((→% Eδ) × Eδ))

244 T. Hildebrandt, R.R. Mukkamala, and T. Slaats

(a) Projection Over
Role U

(b) Projection Over Role DA

(c) Projection Over Role LO

Fig. 3. Projecting of Arrange Meeting Example Over Roles

(i) defines the set of events as the union of the set Eδ of events that we project over,
any event that has a direct relation towards an event in Eδ and events that exclude or
include an event which is a condition for an event in Eδ. The additional events will be
included in the projection without labels, as can be seen from the definition of the la-
beling function in (ii). This means that the events can not be executed locally. However,
when composed in a network containing other processes that can execute these events,
their execution will be communicated to the process. For this reason we refer to these
events as the (additional) external events of the projection. As proven in Prop. 1 the
communication of the execution of this set of external events in addition to the local
events shared by others ensure that the local state of the projection stay consistent with
the global state. (iii) defines the projection of the marking: The executed events remain
the same, but are limited to the events in EG|δ. The responses are limited to events in Eδ

because these are the only responses that will affect the local execution of the projected
graph. The set of included events remains the same for events in Eδ or Eδ

→•, because
these can affect which events are enabled in the projected graph. All other external
events of the projected graph are included regardless of their state in the marking of the

Safe Distribution of Declarative Processes 245

global graph. This is because in the local process is only notified of the execution of
these events, not their in- or exclusion. Finally, (iv), (v), (vi) and (vii) state which rela-
tions should be included in the projection. For the events in Eδ all incoming relations
should be included. Additionally inclusion and exclusion relations to events that are a
condition for an event in Eδ are included as well.

To define networks of communicating DCR Graphs and their semantics we use the
following extension of a DCR Graph allowing any event to be executed with a special
input label. These transitions will only be used for the communication in a network and
thus not be visible as user events.

Definition 4. For a DCR Graph G = (EG, MG,→•, •→,±, LG, l) define G� = (EG,
MG,→•, •→,±, LG ∪ {�}, l�), where l� = l(e) ∪ {�} (assuming that � �∈ LG).

We are now ready to state the key correspondence between global execution of events
and the local execution of events in a projection.

Proposition 1. Let G = (EG, MG,→•, •→,±, LG, l) be a DCR Graph and G|δ its pro-
jection with respect to a projection parameter δ = (Eδ, Lδ). Then

1. for e ∈ Eδ it holds that G
(e,a)−−−→ G′ if and only if G|δ

(e,a)−−−→ G′
|δ ,

2. for e �∈ EG|δ it holds that G
(e,a)−−−→ G′ implies G|δ = G′

|δ,

3. for e ∈ EG|δ it holds that G
(e,a)−−−→ G′ implies (G|δ)� (e,�)−−−→ (G′

|δ)�,

3.2 Composition

Now we define the binary composition of two DCR Graphs. Intuitively, the composition
of G1 and G2 glues together the events that are both in G1 and G2.

Definition 5. Formally, the composite G1 ⊕ G2 = (EG, MG,→•, •→,±, LG, l), where
Gi = (EGi, MGi,→•i, •→i,±i, LGi, li), MGi = (ExGi, ReGi, InGi) and:

(i) EG = (EG1 ∪ EG2)
(ii) MG = (ExG, ReG, InG), where:

(a) ExG = ExG1 ∪ ExG2

(b) InG = (InG1 ∪ InG2) \ (((EG
i
1∪ →•EG

i
1) \ InG1) ∪ ((EG

i
2∪ →•EG

i
2) \ InG2))

(c) ReG = ReG1 ∪ ReG2

for EG
i
j = {e ∈ EGj | lj(e) �= ∅}

(iii) →=→1 ∪ →2 for each →∈ {→•, •→,→+,→%}
(iv) l(e) = l1(e) ∪ l2(e)
(v) LG = LG1 ∪ LG2

(iib) states that events are included, if they’re either included in G1 or G2, unless they
are events that are either internal or have a condition towards an internal event and
are excluded in G1 or G2. The intuition here is that if an event is internal or has a
condition towards an internal event, then it affects the enabled events of the graph, so
it’s inclusion status should be the same in the composed graph. The inclusion/exclusion

246 T. Hildebrandt, R.R. Mukkamala, and T. Slaats

status of other external events however may simply not have been updated because the
graph is not aware of all relations towards these events. This is not unsafe because
the inclusion of these events does not affect the execution of the graph. Therefor the
definition states that if an event is internal or has a condition towards an internal event
in G1 or G2, then it’s inclusion status should be the same in the composed graph, and
in any other case the event is included if it was included in G1 or G2. (iic) states that
the events with pending responses are those events that have a pending response in G1

or G2.

Definition 6. The composition G1 ⊕ G2 is well-defined when:

(i) ∀(e ∈ EG1 ∩ EG2 | (e ∈ ExG1 ⇔ e ∈ ExG2)
(ii) ∀(e ∈ (EG

i
1∪ →•EG

i
1) ∩ (EG

i
2∪ →•EG

i
2) | (e ∈ InG1 ⇔ e ∈ InG2)

(iii) ∀(e ∈ EG
i
1 ∩ EG

i
2 | (e ∈ ReG1 ⇔ e ∈ ReG2)

(iv) ∀(e, e′ ∈ EG1 ∩ EG2 | ¬((e →+1 e′ ∧ e →%2 e′) ∨ (e →%1 e′ ∧ e →+2 e′)))

(i) ensures that those events that will be glued together have the same execution mark-
ing. (ii) ensures that events that will be glued together and in both DCR Graphs be-
long to either the set of internal events or the set of events that have a conditional
relation towards an internal event, have the same inclusion marking. (iii) ensures that
events that will be glued together and in both DCR Graphs belong to the set of internal
events have the same pending response marking. (iv) ensures that by composing the
two DCR Graphs no event both includes and excludes the same event. If G1 ⊕ G2 is
well-defined, then we also say that G1 and G2 are composable with respect to eachother.

Lemma 1. The composition operator ⊕ is commutative and associative.

Definition 7. We call a vector Δ = δ1 . . . δk of projection parameters covering for
some DCR Graph G = (EG, MG,→•, •→,±, LG, lG) if:

1.
⋃

i∈[k]

Eδi = EG and

2. (∀a ∈ LG.∀e ∈ EG.a ∈ lG(e) ⇒ (∃i ∈ [k].e ∈ Eδi ∧ a ∈ Lδi)

Proposition 2. If some vector Δ = δ1 . . . δk of projection parameters is covering for
some DCR Graph G then:

⊕
i∈[k]

G|δi
= G

3.3 Safe Distributed Synchronous Execution

In this section we define networks of synchronously communicating DCR Graphs and
prove the main technical theorem of the paper stating that a network of synchronously
communicating DCR Graphs obtained by projecting a DCR Graph G with respect to a
covering set of projection parameters has the same behavior as the original graph G.

Definition 8. We define a network of synchronously communicating DCR Graphs N
by the grammar

N := G | N‖N
and let NE×L be the set of all networks with events in E and labels in L.

Safe Distribution of Declarative Processes 247

We write Πi∈[n]Gi for G1‖G2‖ . . . ‖Gn. We define the set of events of a network
of graphs inductively by E(G) = EG and E(N1‖N2) = E(N1) ∪ E(N2). Similarly,
we define the set of labels of a network of graphs inductively by L(G) = LG and
L(N1‖N2) = L(N1) ∪ L(N2).

Definition 9. The semantics of networks of buffered DCR Graphs are given by the fol-
lowing inference rules:

input
G�

1

(e,�)−−−→ G�
2

G1
�e� G2

sync input
N1

�e� N ′
1 N2

�e� N ′
2

N1‖N2
�e� N ′

1‖N ′
2

local input
Ni

�e� N ′
i e /∈ E(N1−i)

N0‖N1
�e� N ′

0‖N1

N1−i = N ′
1−i, i ∈ {0, 1}

sync step
Ni

(e,a)−−−→ N ′
i N1−i

�e� N ′
1−i

N0‖N1
(e,a)−−−→ N ′

0‖N ′
1

i ∈ {0, 1}

local step
Ni

(e,a)−−−→ N ′
i e /∈ E(Ni−1)

N0‖N1
(e,a)−−−→ N ′

0‖N1

N1−i = N ′
1−i, i ∈ {0, 1}

For a network of synchronously communicating DCR Graphs N we define the corre-
sponding transition system TS(N) by (NEL(N), N, EL(N),→⊆ NEL(N) ×EL(N)×
NEL(N)) where EL(N) = E(N) × L(N) and the transition relation →⊆ NEL(N) ×
EL(N) ×NEL(N) is defined by the inference rules above.

We define a run a0, a1, . . . of the transition system to be a sequence of labels of a

sequence of transitions Ni
(ei,ai)−−−−→ Ni+1 starting from the initial network. We define

a run for a network N = Πi∈[n]Gi to be accepting if for the underlying sequence of
transitions it holds that ∀j ∈ [n], ∀i ≥ 0, e ∈ ReGj,i.∃k ≥ i.(e = ek ∨ e �∈ InGj,k+1),
where ReGj,i is the set of required responses in the jth DCR Graph in the network in
the ith step of the run. In words, a run is accepting if every response event in a local
DCR Graph in the network either happen at some later state or become excluded.

We are now ready to give the main theorem of the paper, stating the correspondence
between a global DCR Graph and the network of synchronously communicating DCR
Graph obtained from a covering projection.

Theorem 1. For a Dynamic Condition Response Graph G and a covering vector of
projection parameters Δ = δ1 . . . δn it holds that TS(G) is bisimilar to TS(GΔ),
where GΔ = Πi∈[n]G|δi

. Moreover, a run is accepting in TS(G) if and only if the
bisimilar run is accepting in TS(GΔ).

248 T. Hildebrandt, R.R. Mukkamala, and T. Slaats

3.4 Example

In this section, we will use the arrange meeting example from Sec. 1 and show how
events are executed in distributed setting. We assume the arrange meeting example is
projected to a network G1

u || G1
da || G1

lo of three DCR Graphs as shown in the Fig. 3
and described in Sec. 3 and abbreviate the names for the events.

1. Using sync step, local input, and input we get the transition G1
u || G1

da || G1
lo

(Cc,U)−−−−→
G2

u || G1
da || G2

lo capturing the local execution of the event Cc labelled with U in
G1

u which is communicated synchronously to G1
lo. This updates the markings by

adding the event Cc to the set of executed events in both G1
u and G1

lo. But since
Cc has an exclude relation to itself in both G1

u and G1
lo (see Fig. 3(a) and 3(c)), the

event is also excluded from the set of included events in both markings. Finally,
because of the response relation to the event PdLO in G1

lo (see Fig. 3(c)), the event
PdLO is added to the set of required responses in the resulting marking G2

lo.
2. We can now execute the event PdLO in the DCR graph G2

lo concurrently with the
event Uc in DCR graph G2

u.
As the event Uc is only local to G2

u we get by using local step the transition

G2
u || G1

da || G2
lo

(Uc,U)−−−−→ G3
u || G1

da || G2
lo that only updates the marking of G2

u.
In addition to being local to G2

lo, the event PdLO is also external event in graph
G1

da, so as in the first step by using sync step local input, and input we get the

transition G3
u || G1

da || G2
lo

(PdLO,LO)−−−−−−→ G3
u || G2

da || G3
lo, where the event PdLO has

been added to the executed event set of both the marking of G1
da and G2

lo. Again,
because of the self-exclusion relations, the event PdLO is also excluded from the
sets of included events in the two markings, and because of the response relations,
the events ADA and Hm are added to the set of pending responses in G1

da and the
event Hm is added to the set of pending responses in G2

lo.
3. In response to the dates proposed by LO, the DA may choose to propose new dates

by executing the event PdDA in the graph graph G2
da.

G3
u || G2

da || G3
lo

(PdDA,DA)−−−−−−→ G3
u || G3

da || G4
lo This triggers the exclusion of

the events PdDA and ADA and the inclusion of the events PdLO and ALO in the
markings of both G2

da and G3
lo. It will also include the event ALO in the required

response set in the resulting marking G4
lo.

4. Now LOmay choose to accept the new dates proposed by DA by executing the event
ALO in the graph graph G4

lo, giving the transition

G3
u || G3

da || G4
lo

(ALO,LO))−−−−−−→ G3
u || G4

da || G5
lo. This records the event ALO as

executed in markings of both G4
da and G5

lo and excludes PdLO in both markings
(i.e. it is not possible to propose new dates after acceptance).

5. Since the event ALO is recorded as executed in markings of both G4
da and G5

lo

and the event ADA is excluded, the hold meeting event Hm will be enabled in both
graphs G5

lo and G4
da. The LO may choose to hold the meeting, giving the transition

G3
u | �G4

da || G5
lo

(Hm,LO)−−−−→ G3
u || G5

da || G6
lo

Note that this event is also communicated to DA, added to the set of executed
events and removed from the set of pending responses. Since there are no pending
responses in any of the local graphs the finite run is in an accepting state.

Safe Distribution of Declarative Processes 249

4 Conclusion

We have given a general technique for distributing a declarative (global) process as a
network of synchronously communicating (local) declarative processes and proven the
global and distributed execution to be equivalent.

The global and local processes are given as Dynamic Condition Response (DCR)
Graphs, a recently introduced declarative process model generalizing labelled prime
event structures to a systems model able to finitely represent ω-regular languages. The
DCR Graph model has the advantage that it is on the one hand declarative and compo-
sitional, and on the other hand it has a simple and intuitive operational semantics given
as a transition semantics between markings of the graph. This allows the model to be
used both as specification and execution model.

As briefly surveyed in Sec. 1.1 there have been a lot of related work on synthesis of
distributed systems and proving consistency with respect to a global model or property.
We believe this is the first treatment where both the local and global models are given
declaratively in the same model. This maintains the flexibility of a declarative model
for the local processes, and allows local processes to be further distributed if necessary.

We exemplified the safe distribution technique on a process identified in a case study
of an inter-organizational case management system carried out jointly with Exformatics
A/S.

We leave for future work to study the harder problem of asynchronously commu-
nicating distributed processes. This may benefit from researching the true concurrency
semantics inherent in the model and extend the transition semantics to include con-
currency, e.g. like in [18, 28]. We also plan to study behavioral types describing the
interfaces between communicating DCR Graphs, extending the work on session types
in [4] to a declarative setting. Moreover, we intend to address extension of the DCR
Graph model with time, data and dynamic instantiation of sub processes (also referred
to multiple instances) to be able to model more realistic workflow processes. A first
step is taken in [17] extending DCR Graphs to allow nested sub graphs. This exten-
sion introduced an additional relation between events, the milestone relation, making
it possible to express the acceptance of a sub graph succinctly. We believe the results
in the present paper can be extended to nested DCR Graphs and the milestone relation,
although it will complicate the definition of projections.

Finally, we plan to continue the ongoing implementation of tools for DCR Graphs,
and in particular to implement the safe distribution technique in the current prototype
design and simulation tools briefly described in [16].

References

1. van der Aalst, W.M.P., Weske, M.: The P2P Approach to Interorganizational Workflows.
In: Dittrich, K.R., Geppert, A., Norrie, M.C. (eds.) CAiSE 2001. LNCS, vol. 2068, pp.
140–156. Springer, Heidelberg (2001)

2. Bravetti, M., Tennenholtz, M.: Contract Based Multi-party Service Composition. In: Arbab,
F., Sirjani, M. (eds.) FSEN 2007. LNCS, vol. 4767, pp. 207–222. Springer, Heidelberg
(2007)

250 T. Hildebrandt, R.R. Mukkamala, and T. Slaats

3. Bravetti, M., Zavattaro, G.: A theory of contracts for strong service compliance. Mathemat-
ical. Structures in Comp. Sci. 19, 601–638 (2009)

4. Carbone, M., Honda, K., Yoshida, N.: Structured Communication-Centred Programming
for Web Services. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 2–17. Springer,
Heidelberg (2007)

5. Castellani, I., Mukund, M., Thiagarajan, P.: Synthesizing Distributed Transition Systems
from Global Specifications. In: Pandu Rangan, C., Raman, V., Sarukkai, S. (eds.) FST TCS
1999. LNCS, vol. 1738, pp. 219–231. Springer, Heidelberg (1999)

6. Cohn, D., Hull, R.: Business artifacts: A data-centric approach to modeling business oper-
ations and processes. IEEE Data Eng. Bull. 32(3), 3–9 (2009)

7. Das, S., Kochut, K., Miller, J., Sheth, A., Worah, D.: Orbwork: A reliable distributed corba-
based workflow enactment system for meteor2. Technical report, The University of Georgia
(1996)

8. Fahland, D.: Towards analyzing declarative workflows. In: Autonomous and Adaptive Web
Services (2007)

9. Fdhila, W., Godart, C.: Toward synchronization between decentralized orchestrations of
composite web services. In: CollaborateCom 2009, pp. 1–10 (2009)

10. Fdhila, W., Yildiz, U., Godart, C.: A flexible approach for automatic process decentraliza-
tion using dependency tables. In: International Conference on Web Services (2009)

11. Fu, X., Bultan, T., Su, J.: Realizability of conversation protocols with message contents.
In: Proceedings of the IEEE International Conference on Web Services, ICWS 2004, p. 96.
IEEE Computer Society, Washington, DC, USA (2004)

12. Heljanko, K., Stefanescu, A.: Complexity results for checking distributed implementability.
In: Proceedings of the Fifth International Conference on Application of Concurrency to
System Design, pp. 78–87 (2005)

13. Hildebrandt, T.: Trustworthy pervasive healthcare processes (TrustCare) research project.
Webpage (2008), http://www.trustcare.dk/

14. Hildebrandt, T., Mukkamala, R.R.: Declarative event-based workflow as distributed dy-
namic condition response graphs. In: Post-proceedings of PLACES 2010 (2010)

15. Hildebrandt, T., Mukkamala, R.R.: Distributed dynamic condition response structures. In:
Pre-proceedings of International Workshop on Programming Language Approaches to Con-
currency and Communication-cEntric Software (PLACES 2010) (March 2010)

16. Hildebrandt, T., Mukkamala, R.R., Slaats, T.: Designing a cross-organizational case
management system using dynamic condition response graphs. In: Proceedings of IEEE
International EDOC Conference (to appear, 2011),
http://www.itu.dk/people/rao/pubs accepted/
dcrscasestudy-edoc11.pdf

17. Hildebrandt, T., Mukkamala, R.R., Slaats, T.: Nested dynamic condition response graphs.
In: Proceedings of Fundamentals of Software Engineering (FSEN) (to appear, April 2011)

18. Hildebrandt, T., Sassone, V.: Comparing transition systems with independence and asyn-
chronous transition systems. In: Montanari, U., Sassone, V. (eds.) CONCUR 1996. LNCS,
vol. 1119, pp. 84–97. Springer, Heidelberg (1996)

19. Khalaf, R., Leymann, F.: Role-based decomposition of business processes using BPEL. In:
International Conference on Web Services, ICWS 2006, pp. 770–780 (September 2006)

20. Kindler, E., Martens, A., Reisig, W.: Inter-operability of Workflow Applications: Local
Criteria for Global Soundness. In: van der Aalst, W.M.P., Desel, J., Oberweis, A. (eds.)
BPM. LNCS, vol. 1806, pp. 235–253. Springer, Heidelberg (2000)

21. Martens, A.: Analyzing Web Service Based Business Processes. In: Cerioli, M. (ed.) FASE
2005. LNCS, vol. 3442, pp. 19–33. Springer, Heidelberg (2005)

http://www.trustcare.dk/
http://www.itu.dk/people/rao/pubs_accepted/dcrscasestudy-edoc11.pdf
http://www.itu.dk/people/rao/pubs_accepted/dcrscasestudy-edoc11.pdf

Safe Distribution of Declarative Processes 251

22. Milosevic, Z., Sadiq, S., Orlowska, M.: Towards a Methodology for Deriving Contract-
Compliant Business Processes. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006.
LNCS, vol. 4102, pp. 395–400. Springer, Heidelberg (2006)

23. Mitra, S., Kumar, R., Basu, S.: Optimum decentralized choreography for web services com-
position. In: Proceedings of the 2008 IEEE International Conference on Services Comput-
ing, vol. 2 (2008)

24. Mohan, C., Agrawal, D., Alonso, G., El Abbadi, A., Guenthoer, R., Kamath, M.: Exotica:
a project on advanced transaction management and workflow systems. SIGOIS Bull. 16,
45–50 (1995)

25. Montali, M.: Specification and Verification of Declarative Open Interaction Models. LNBIP,
vol. 56. Springer, Heidelberg (2010)

26. Mukkamala, R.R., Hildebrandt, T.: From dynamic condition response structures to büchi
automata. In: Proceedings of 4th IEEE International Symposium on Theoretical Aspects of
Software Engineering (TASE 2010) (August 2010)

27. Mukund, M.: From global specifications to distributed implementations. In: Synthesis and
Control of Discrete Event Systems. Springer, Heidelberg (2002)

28. Mukund, M., Nielsen, M.: Ccs, locations and asynchronous transition systems. In: Shyama-
sundar, R. (ed.) FSTTCS 1992. LNCS, vol. 652, pp. 328–341. Springer, Heidelberg (1992)

29. Nanda, M.G., Chandra, S., Sarkar, V.: Decentralizing execution of composite web services.
SIGPLAN Not. 39, 170–187 (2004)

30. OASIS WSBPEL Technical Committee. Web Services Business Process Execution Lan-
guage, version 2.0 (2007),
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf

31. Paul, S., Park, E., Chaar, J.: Rainman: a workflow system for the internet. In: Proceedings of
the USENIX Symposium on Internet Technologies and Systems on USENIX Symposium
on Internet Technologies and Systems (1997)

32. Ranno, F., Shrivastava, S.K.: A review of distributed workflow management systems. In:
Proceedings of the International Joint Conference on Work Activities Coordination and
Collaboration (1999)

33. Reichert, M.U., Bauer, T., Dadam, P.: Flexibility for distributed workflows. In: Handbook
of Research on Complex Dynamic Process Management: Techniques for Adaptability in
Turbulent Environments, pp. 137–171. IGI Global, Hershey (2009)

34. Reichert, M., Bauer, T.: Supporting Ad-Hoc Changes in Distributed Workflow Management
Systems. In: Meersman, R., Tari, Z. (eds.) OTM 2007, Part I. LNCS, vol. 4803, pp. 150–
168. Springer, Heidelberg (2007)

35. Rinderle, S., Wombacher, A., Reichert, M.: Evolution of Process Choreographies in
DYCHOR. In: Meersman, R., Tari, Z. (eds.) OTM 2006. LNCS, vol. 4275, pp. 273–290.
Springer, Heidelberg (2006)

36. Sadiq, W., Sadiq, S., Schulz, K.: Model driven distribution of collaborative business pro-
cesses. In: IEEE International Conference on Services Computing, 2006. SCC 2006, pp.
281–284 (September 2006)

37. Sassone, V., Nielsen, M., Winskel, G.: A classification of models for concurrency. In: Best,
E. (ed.) CONCUR 1993. LNCS, vol. 715, pp. 82–96. Springer, Heidelberg (1993)

38. Sassone, V., Nielsen, M., Winskel, G.: Models for concurrency: Towards a classification.
Theoretical Computer Science 170, 297–348 (1996)

39. Wheater, S.M., Shrivastava, S.K., Ranno, F.: A corba compliant transactional workflow
system for internet applications. In: Proc. of IFIP Intl. Conference on Distributed Systems
Platforms and Open Distributed Processing, Middleware 1998, pp. 1–85233. Springer, Hei-
delberg (1998)

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf

252 T. Hildebrandt, R.R. Mukkamala, and T. Slaats

40. ter Hofstede, A., van Glabbeek, R., Stork, D.: Query Nets: Interacting Workflow Modules
That Ensure Global Termination. In: van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske,
M. (eds.) BPM 2003. LNCS, vol. 2678, pp. 184–199. Springer, Heidelberg (2003)

41. van der Aalst, W.M.P.: Interorganizational workflows: An approach based on message se-
quence charts and petri nets. Systems Analysis - Modelling - Simulation 34(3), 335–367
(1999)

42. van der Aalst, W.M.P., Lohmann, N., Massuthe, P., Stahl, C., Wolf, K.: Multiparty Con-
tracts: Agreeing and Implementing Interorganizational Processes. The Computer Jour-
nal 53(1), 90–106 (2010)

43. van der Aalst, W.M.P., Pesic, M., Schonenberg, H.: Declarative workflows: Balancing be-
tween flexibility and support. Computer Science - R&D 23(2), 99–113 (2009)

44. van der Aalst, W.M.P., Pesic, M.: A declarative approach for flexible business processes
management. In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006. LNCS, vol. 4103, pp.
169–180. Springer, Heidelberg (2006)

45. van der Aalst, W.M.P., Pesic, M.: DecSerFlow: Towards a Truly Declarative Service Flow
Language. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184,
pp. 1–23. Springer, Heidelberg (2006)

46. van der Aalst, W.M.P.: Inheritance of interorganizational workflows: How to agree to
disagree without loosing control? Information Technology and Management 4, 345–389
(2003)

47. Winskel, G.: Event structures. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) APN 1986.
LNCS, vol. 255, pp. 325–392. Springer, Heidelberg (1987)

48. Wodtke, D., Weikum, G.: A formal foundation for distributed workflow execution based on
state charts. In: Afrati, F.N., Kolaitis, P.G. (eds.) ICDT 1997. LNCS, vol. 1186, pp. 230–
246. Springer, Heidelberg (1996)

49. Yi, X., Kochut, K.J.: Process composition of web services with complex conversation pro-
tocols. In: Design, Analysis, and Simulation of Distributed Systems Symposium at Ada-
vanced Simulation Technology (2004)

50. Zielonka, W.: Notes on finite asynchronous automata. Informatique Théorique et Applica-
tions 21(2), 99–135 (1987)

Verifying B Proof Rules Using Deep Embedding
and Automated Theorem Proving

Mélanie Jacquel1, Karim Berkani1, David Delahaye2, and Catherine Dubois3

1 Siemens SAS I MO, Châtillon, France
{Melanie.Jacquel,Karim.Berkani}@siemens.com

2 CEDRIC/CNAM, Paris, France
David.Delahaye@cnam.fr

3 CEDRIC/ENSIIE, Évry, France
dubois@ensiie.fr

Abstract. We propose a formal and mechanized framework which
consists in verifying proof rules of the B method, which cannot be au-
tomatically proved by the elementary prover of Atelier B and using
an external automated theorem prover called Zenon. This framework
contains in particular a set of tools, named BCARe and developed by
Siemens SAS I MO, which relies on a deep embedding of the B theory
within the logic of the Coq proof assistant and allows us to automat-
ically generate the required properties to be checked for a given proof
rule. Currently, this tool chain is able to automatically verify a part of
the derived rules of the B-Book, as well as some added rules coming from
Atelier B and the rule database maintained by Siemens SAS I MO.

Keywords: B Method, Proof Rules, Verification, Deep Embedding,
Automated Theorem Proving, Coq, Zenon.

1 Introduction

The B method [1], or B for short, allows engineers to develop software with high
guarantees of confidence; more precisely it allows them to build correct by design
software. B is a formal method based on theorem proving and emphasizing a
refinement-based development process. A typical scenario consists in first writing
high-level formal specifications as abstract machines, and then refining them
step by step into low-level sequential pseudo-code that can be automatically
translated into C or Ada programs. Proof is required to verify the correctness
of abstract machines (mainly ensuring the preservation of user-written invariant
properties) and the correctness of the refinement steps (roughly speaking, the
behavior is preserved by the refinement steps that introduce algorithmic decisions
or data representation choices). In practice, it means that the user must discharge
proof obligations. The Atelier B environment [8] is a platform that supports B
and offers, among other tools, both automated and interactive provers.

A famous and significant use of B and Atelier B has concerned the control
system of the driverless Meteor line 14 metro in Paris (opened 13 years ago).

G. Barthe, A. Pardo, and G. Schneider (Eds.): SEFM 2011, LNCS 7041, pp. 253–268, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

254 M. Jacquel et al.

Since Meteor, Siemens SAS I MO has generalized its use of B for building other
critical systems, e.g. the communication-based train control systems of the New
York City Canarsie line. On both cases, a huge number of proof obligations
(27,800 obligations for Meteor) had to be handled manually (using the interactive
prover). In fact, most of them were proved by adding new proof rules (1,400 rules
for Meteor) that the automated provers can exploit. Even today, many projects
developed at Siemens SAS I MO still require to add new proof rules.

These new proof rules must of course be proved correct, otherwise the proof
process is invalid. The proof of these proof rules is done by the elementary prover
provided by Atelier B, which does not use any of them. Some of the added rules
(900 rules in the Meteor case) can be proved by the Atelier B elementary prover,
some of them cannot and are then proved manually by experts.

The main point in this approach is to prove the proof rules, basic or added
ones. Currently, the proof rule database of Atelier B used at Siemens SAS I MO
contains about 5,300 proof rules, 2,900 of which can be proved automatically by
the elementary prover. The problem raised here is not to question the confidence
into the Atelier B elementary prover, but to prove the proof rules that are not
automatically proved and that must be proved manually. The latter process
is tedious, long, and error-prone. We propose to replace it by a mechanized
verification with the help of a more powerful Automated Theorem Prover (ATP),
a first order one, e.g. Zenon [5]. In order to increase confidence in this external
verification, it is important to be able to check the proofs done automatically, and
furthermore to be able to connect them with the inference rules of the underlying
B logic [1]. Thus, our approach is not only to use an external prover, but also to
rely on a proof assistant which checks the generated proofs, i.e. Coq [15].

However, as Coq is not fully automated and may require human interaction,
we propose to use Coq only to describe the B underlying logic and to serve
as a proof verifier for the proofs delegated to the ATP. The expected results
for a B proof rule will be, in case of success, a proof in the B logic (or, more
technically, a Coq proof term encoding it). Some years ago, a first experiment
using Coq has been conducted at Siemens SAS I MO to verify the Atelier B
proof rules (see [3]), but it required human interaction and all the proofs done
in Coq were done manually. However, this first manual attempt allowed us to
handle 274 proof rules proved manually by experts and considered by the authors
as representative ones. The methodology consisted in playing the manual proofs
within Coq: 7 valid proof rules had incorrect proofs but the proofs could be given
properly within Coq, and 13 rules were not valid because of lack of hypotheses
about variable non-freeness. This discovery were important for the design of the
verification platform presented in this paper, namely BCARe.

BCARe is a set of tools developed by Siemens SAS I MO to verify added proof
rules. It contains tools to check if a proof rule is correctly protected by non-
freeness assumptions, to typecheck a rule, and to prove a rule (by using Coq and
Zenon). One of the main objectives of BCARe is to assist the experts to find proofs
of proof rules, but the development standards used at Siemens SAS I MO expect
these experts to give their final assessment. BCARe contains a deep embedding

Verifying Added B Rules 255

of the B logic within Coq, that is an encoding of the B formulas and inference
rules into the Coq logic, namely the calculus of inductive constructions. Other
embeddings [4,6,7,12] of B have been implemented with different purposes in
related work. For example, BiCoq [12] is a deep embedding of B in Coq. Like
BCARe, BiCoq follows scrupulously the B-Book [1]; however, the former uses
names whereas the latter uses De Bruijn indexes.

Some experiments like [9,14,10] concern automated verification of B proof
obligations with ATPs or SMT solvers. We are interested in proof rules and not
in proof obligations. Furthermore, as we do want the best degree of confidence
in our mechanical proofs, it is essential to rely on an ATP able to provide proof
traces checkable by a proof checker, e.g. Coq. Zenon is one of the ATPs able to
provide several output proof formats, one of which is a Coq script that will be
adapted to give us a proof using the B logic.

The paper is organized as follows: in Section 2, we first present the several
steps required to verify B proof rules; we then introduce, in Section 3, the BCARe
environment, which is a mechanized support for the verification of proof rules;
finally, in Section 4, we describe our experiments for automating the verification
proofs and provide some benchmarks concerning derived rules and added rules
coming from Atelier B and the rule database maintained by Siemens SAS I MO.

2 Rule Verification in Atelier B

In this section, we present the notion of proof rules of Atelier B, together with the
several steps required to ensure their verification, i.e. the steps which guarantee
that the application of such rules does not introduce inconsistencies.

2.1 The B Set Theory

The B method [1] aims to assist experts to develop certified software. The initial
step is defined with abstract properties of a model. Several steps of property
refinement are then applied until the release of the complete software. A re-
finement step is characterized by adding details on the software behavior under
construction. For each step, generated proof obligations must be demonstrated.

The B method is based on a typed set theory. There are two rule systems:
one for demonstrating that a sentence is well-typed, and one for demonstrating
that a sentence is a logical consequence of a set of axioms. The main aim of
the type system is to avoid inconsistent sentences, such as Russell’s paradox for
example. The B proof system is based on a sequent calculus with equality. Six
axiom schemes define the basic operators and the extensionality which, in turn,
defines the equality of two sets. In addition, the other operators (∪, ∩, etc) are
defined using the previous basic ones.

2.2 The Atelier B Proof Assistant

Proofs. Atelier B [8] is a tool, developed by ClearSy, that implements the B
method. Once a model is specified, its correctness is ensured by several mecha-
nisms. The first one is typechecking, which is fully automated. If no error occurs

256 M. Jacquel et al.

during typechecking, then the proof obligations can be generated. They repre-
sent the properties that must be proved to verify the mathematical correctness
of the model compared with its properties. A proof system helps the developer
make the corresponding demonstrations.

These proof obligations can be demonstrated automatically with a tactic of
the Atelier B proof assistant. When this tactic fails, an interactive proof mode
can be used. In this proof mode, the user can apply tactics on the goal and/or on
the hypotheses to complete his/her proof. A tactic is an ordered list of theories
(a theory is basically a container of rules), that determines the traversal of a rule
base to determine if one or several rules can be applied.

Rules. We distinguish two kinds of rules in Atelier B: deduction and rewrite
rules. The former is of the form A1 ∧ . . . ∧ An ⇒ B, where the Ai are the
antecedents (guards or predicates) and B the consequent (predicate). Guards
are used to add some conditions to the use of the rule. A deduction rule can
be used in both backward and forward ways. A rewrite rule is of the form
A1 ∧ . . . ∧ An ⇒ B == C, where the Ai are the antecedents (guards or pred-
icates) and where B and C are either expressions or predicates. The binary
symbol “==” is the syntactic replacement: if B matches a subterm of the goal,
then it is replaced by the corresponding instance of C. More precisely, the syntax
of rules is defined as follows:

V := I | V �→ V
E := V | [V := E]E | E �→ E | choice(S) | S
S := S × S | P(S) | {V |P} | BIG | I
P := P ∧ P | P ⇒ P | ¬P | ∀V.P | [V := E]P | E = E | E ∈ S | I
A := P | I \ P | I \ E | binhyp(P) | blvar(I) | A ∧ A
C := P | E == E | P == P
R := C | A ⇒ C

where V represents the variables (in which I denotes the identifiers), E the
expressions, S the sets, P the predicates, A the antecedents, C the consequents,
and R the rules. Regarding guards, we only consider the non-freeness predicates
(I \P and I \E), as well as the binhyp and blvar guards, where binhyp(P) checks
the presence of P in the proof context and blvar(I) instantiates I with the bound
variables at the rewrite point. We are also able to deal with more complicated
guards that we will not present in this paper. Furthermore, free variables may
occur in E, S, and P ; these variables are considered as metavariables (for pattern-
matching). As for the other logical connectives (such as ⇔, ∨, and ∃) and set
operators (e.g. ∪, ∩, etc), they are defined from those given above.

Let us illustrate the two previous kinds of rules with some examples of added
rules coming from Atelier B.

Example 1 (Deduction Rule). ForAllX.3: (a \ A) ∧ A = ∅ ⇒ ∀a.a /∈ A
If used in a backward way, this rule can be applied on a goal if a is non-free in A
and if the current goal matches the consequent ∀a.a /∈ A. It therefore generates
the goal A = ∅ to be proved.

Verifying Added B Rules 257

Example 2 (Rewrite Rule). SimplifyRelDorXY.2:
binhyp(f ∈ u+→ v) ∧ binhyp(a ∈ dom(f)) ∧ blvar(Q) ∧ (Q \ (f ∈ u+→ v)) ∧
(Q \ (a ∈ dom(f))) ⇒ {a} � f == {(a �→ f(a))}
This rule can be applied on a goal if there are some hypotheses of the context
matching f ∈ u+→ v and a ∈ dom(f), a term of the goal matching {a} � f , and
if the quantified variables at the rewrite point do not appear in u, v, a, and f .

Rule Verification. The verification of a rule is carried out in four steps:

1. The first step only deals with rewrite rules and consists in verifying that
rewrite rules are correctly protected against variable capture. This is due
to the fact that Atelier B does not verify the context of application when
applying a rewrite rule and applies it in a purely syntactical way. As a
consequence, when a rewrite rule is applied under binders and involves bound
variables, variable capture may occur and lead to inconsistencies.

2. The second step aims to verify that the rule is well-formed, which amounts
to typechecking the rule according to the B typing rules (see [1]). However, a
rule may contain metavariables whose type may be left implicit. Therefore, a
preliminary step is required to first infer the types of all metavariables such
that the rule enriched with these type constraints can be typechecked.

3. The third step consists in verifying that the rule is well-defined. In [2], it
is pointed out that conditional definitions may lead to some ill-defined ex-
pressions, such as division by zero or the application of a function to an
argument lying outside its domain. A syntactical filter to be applied to the
rule is proposed and contains all the well-definedness proof obligations.

4. The last step must verify that the rule can be derived using the B proof rules
(see [1]). It is possible to do so over a rule, after applying another syntactical
filter, defined in [2] in particular, in order to remove the proof obligations
related to well-definedness.

3 The BCARe Environment

In this section, we present the BCARe environment, which is developed by
Siemens SAS I MO, and which proposes a formal and mechanized framework
for verifying B proof rules.

3.1 Rationale for Designing BCARe

Currently, an automated tool is used at Siemens SAS I MO for verifying the
rules developed with Atelier B. However, when a proof fails, the rule is verified
manually without the help of any proof assistant. The first aim of the BCARe
environment, developed by Siemens SAS I MO, is to overcome this problem.
For example, in the rule ForAllX.3, a \ A must be verified before the applica-
tion of the rule. It is possible to check that the previous condition is necessary
with BCARe, while it is impossible to do so with the other available tools. Thus,

258 M. Jacquel et al.

the BCARe environment has been essentially developed to deal with the rules
whose correctness cannot be automatically established. The scope of this envi-
ronment is currently a subset of the B set theory (propositional and first order
logics, basic set theory operators, functions, generalized and quantified intersec-
tions and unions). Some other features, such as induction, are being integrated.

The different steps of a rule verification with BCARe follows the several steps
defined in Section 2. If the rule is a rewrite rule then a tool checks that its
guards correctly protect the free variables (see Subsection 3.3). Another tool
then infers types for the rule using a type inference algorithm which has been
defined regarding the B typing rules (see [1]), after which the typing lemma
can be generated (see Subsection 3.4). Finally, this tool also generates the well-
definedness lemma, as well as the lemma corresponding to the rule itself (See
Subsections 3.5 and 3.6). Once these three lemmas are generated, their proofs
must be completed. The generation of these lemmas and the corresponding proofs
are realized using the Coq proof assistant [15]. In particular, this relies on an
environment, called BCoq, which is an embedding of the B set theory in Coq
(see Subsection 3.2). The proofs of these lemmas can be partially automated,
and Section 4 describes our approaches regarding the automation of these proofs.

3.2 The BCoq Embedding

The generation of the previous lemmas is realized within the BCoq environment,
which is a deep embedding of the B set theory in Coq, and where the B operators,
as well as the deduction systems for types and proofs, are specified inductively
(see [3]). Compared to a shallow embedding, the advantage of such an approach
is that the correctness of a type or proof derivation is provided by construction.

The BCoq syntax is defined in Coq as follows (we do not provide the Coq
concrete syntax, but only an abstraction of this syntax written with “ .”):

.

V :=
.

I |
.

V
.�→

.

V
.

E :=
.

V | [
.

V : .=
.

E]
.

E |
.

E
.�→

.

E |
.

choice (
.

S) |
.

S
.

S :=
.

S
.
×

.

S |
.

P (
.

S) | {
.

V
.

|
.

P} |
.

BIG |
.

I
.

P :=
.

P
.
∧

.

P |
.

P
.⇒

.

P |
.¬

.

P |
.

∀
.

V .
.

P | [
.

V : .=
.

E]
.

P |
.

E
.=

.

E |
.

E
.
∈

.

S |
.

I

where
.

I,
.

V ,
.

E,
.

S, and
.

P respectively represent the reified versions of the several
sets of terms I, V , E, S, and P , defined in Section 2.

In this grammar, there is no syntax for rules, as they are intended to be reified
into predicates. However, there are still metavariables (free variables occurring in
.

E,
.

S, and
.

P). The reification process is performed by using the set of functions
� · �X , where X ∈ {V, E, S, P, A, C, R}, and which are defined in Figure 1. In this
process, the sets of metavariables are computed, and these metavariables are then
bound by means of shallow binders. The names of binders are managed using
shallow binders as well, in order to deal with α-conversion and skolemization
in particular (see Subsection 3.4). In the same way, the non-freeness guards are
reified and kept in the term using shallow non-dependent products.

Verifying Added B Rules 259

�I1�V = (I2, {(I1, I2)}), where I2 /∈ V ∪ B, and B ← B ∪ {I2}
�V1 �→ V2�V = (V ′

1
.�→ V ′

2 , {B1 ∪B2}), where (V ′
1 , B1) = �V1�V and (V ′

2 , B2) = �V2�V

�I1�
b
V =

{
I2, if (I1, I2) ∈ b

I1, otherwise and ME ←ME ∪ {I1}
�V1 �→ V2�

b
V = �V1�

b
V

.�→ �V2�
b
V

�V1�
b
E = �V1�

b
V �[V1 := E1]E2�

b
E = [V2 :

.
= �E1�

b
E]�E2�

b∪B
E , where (V2, B) = �V1�V

�E1 �→ E2�
b
E = �E1�

b
E

.�→ �E2�
b
E �S1�

b
E = �S1�

b
S

�S1 × S2�
b
S = �S1�

b
S

.
× �S2�

b
S �P(S1)�b

S =
.

P (�S1�
b
S)

�{V1|P1}�b
S = {V2

.

| �P1�
b∪B
P }, where (V2, B) = �V1�V

�I1�
b
S = I1, andMS ←MS ∪ {I1} if I1 /∈ b

�P1 ∧ P2�
b
P = �P1�

b
P

.
∧ �P2�

b
P �P1 ⇒ P2�

b
P = �P1�

b
P

.⇒ �P2�
b
P

�¬P1�
b
P =

.¬ �P1�
b
P �∀V1.P1�

b
P =

.

∀ V2.�P1�
b∪B
P , where (V2, B) = �V1�V

�[V1 := E1]P1�
b
P = [V2 :

.
= �E1�

b
E]�P1�

b∪B
P , where (V2, B) = �V1�V

�E1 = E2�
b
P = �E1�

b
P

.
= �E2�

b
P

�E1 ∈ S1�
b
P = �E1�

b
E

.
∈ �S1�

b
P �I1�

b
P = I1, and MP ←MP ∪ {I1} if I1 /∈ b

�P1�A = �P1�
∅
P �I1 \ P1�A = �, and N ← N ∪ �I1�

∅
V

.

\ �P1�
∅
P if I1 /∈ R

�I1 \ E1�A = �, and N ← N ∪ �I1�
∅
V

.

\ �E1�
∅
E if I1 /∈ R

�binhyp(P1)�A = �P1�
∅
P �blvar(I1)�A = � with R ← R∪ {I1}

�A1 ∧ A2�A =

⎧⎪⎨⎪⎩
�Ai�A, if �Aj�A = � with (i, j) = (1, 2) or (2, 1)

�, if �Ai�A = � with i = 1, 2

�A1�A

.
∧ �A2�A, otherwise

�P1�C = �P1�
∅
P �E1 == E2�C = �E1 = E2�

∅
P �P1 == P2�C = �P1�

∅
P

.⇔ �P2�
∅
P

�A1 ⇒ C1�R =

{
∀x ∈M,B,N .�C1�

∅
C , if �A1�A = �

∀x ∈M,B,N .�A1�A
.⇒ �C1�

∅
C , otherwise

�C1�R = ∀x ∈M,B,N .�C1�
∅
C

V is the set of variables of the initial rule.
ME/S/P is the set of metavariables of expressions, sets, and predicates.
M is the set of metavariables ME ∪MS ∪MP .
B is the set of bound variables.
N is the set of non-freeness hypotheses of the initial rule.
R is the set of variables bounded by the guard blvar.
∀x ∈M,B,N .T ≡
∀x∈MEx ∈

.

E.∀x∈MS x ∈
.

S.∀x∈MP x ∈
.

P .∀x∈Bx ∈
.

I.N1 → . . . → Nn → T ,
where N = {N1, . . . , Nn} and T is a reified term.

Fig. 1. Reification of the Atelier B Rules

260 M. Jacquel et al.

The BCoq environment also provides the reified relations “
.

�” and “
.

�τ ”, re-
spectively for proof and typing judgments (see [1]).

3.3 Rewrite Rule Verification

As said in Section 2, Atelier B does not verify the context of application when
applying a rewrite rule and applies it in a purely syntactical way. Therefore, when
a rewrite rule is applied under binders and involves bound variables, variable
capture may occur and lead to inconsistencies. For instance, let us consider the
rewrite rule binhyp(x = a) ⇒ x == a and the goal n = 0 � ∀n.n ∈ � ⇒ n = 0.
This goal is trivially false, but the rewrite rule can be applied, which leads to
the goals n = 0 � ∀n.n ∈ � ⇒ 0 = 0 and n = 0 � n = 0. These two goals
can be completed and an inconsistency is then introduced (due to the capture
of variable n in hypothesis by the binder of the conclusion).

To avoid variable capture, a first solution is to prevent us from performing
rewriting under binders when bound variables are involved. Considering a rewrite
rule of the form G ∧ A ⇒ E == F , where G is the conjunction of the guards,
A the conjunction of the antecedents (other than guards), and E and F two
expressions, this corresponds to the following criterion:

blvar(Q) ∧ Q \ (E = F) (1)

Using this criterion, the previous rewrite rule binhyp(x = a) ⇒ x == a is then
rejected as the variables x and a are not protected. To be correct, this rule must
be of the form binhyp(x = a) ∧ blvar(Q) ∧ Q \ x = a ⇒ x == a.

However, this criterion is a little too restrictive as it prevents us from defining
some useful rewrite rules. For instance, the rewrite rule s∩ t == t∩ s is rejected
by this criterion whereas this rule cannot generate variable capture.

To accept this kind of rewrite rules, a second solution consists in allowing
rewriting to be performed under binders only if the bound variables involved do
not occur in the antecedents. More precisely, this criterion is defined as follows:

blvar(Q) ∧ Q \ (G ∧ A) (2)

With this criterion, the corrected rule and the other rule are both accepted.
However, criteria (1) and (2) are complementary, and we use both of them as it
allows us to accept more rules. Both criteria have been formally verified in [13].

3.4 Rule Typechecking

As seen in Section 2, it is required to verify that a rule is well-formed, which
amounts to typechecking the rule according to the B typing rules (see [1]). How-
ever, a rule may contain metavariables whose type may be left implicit. For
example, in the rule a ∪ b = b ∪ a, the types of a and b are unknown. The B
type system does not allow us to infer types for metavariables occurring in rules.
It only allows us to check that a predicate is well-typed when all the types are
explicit. Therefore, we have to first infer a type for all metavariables.

Verifying Added B Rules 261

To do so, we define a type inference system, which is described in Figure 2.
The different rules correspond to the core language described in Subsection 3.2
and deal with reified rules. There are also some dedicated rules for other logical
connectives and set operators, but they are not presented in this paper due to
space restrictions. This type inference system is aimed to find types for variables
of expressions (bound or not) and metavariables of sets, but not for metavari-
ables of predicates which cannot be typechecked using the B typing rules. This
is possible if metavariables of sets are not distinguished from variables of expres-
sions, and in the following, a variable will denote either a variable of expression
(bound or not), or a metavariable of set.

First, the algorithm assigns a unique type variable to each variable and all
these variables with their types are gathered in a typing context Γ . The type in-
ference tree is then built according to the rules of Figure 2. Some constraints may
appear during this step due to some non-linearity constraints (for instance, see
the rule “ .=”). Once the tree is closed, the algorithm tries to solve the constraints.
If it succeeds, the types of variables of Γ are updated with their instantiations.

Before generating the corresponding typing lemma, it is necessary to generate
new hypotheses of non-freeness without which this lemma cannot be proved in
general, as skolemization cannot be performed when eliminating binding terms.
This is realized by means of the following operator:

SU,V (T) = N1 → . . . → Nn → T

where T is a reified term, and for all u ∈ U , for all v ∈ V such that u �= v and
u

.

\ v /∈ N , then there exists i ∈ 1 . . . n such that Ni = u
.

\ v.
Finally, for a reified rule of the form ∀x.M,B.N ⇒ P and from the resulting

typing context Γ , the typing lemma can be generated as follows:

∀x.x ∈ M,B,N .SB,B∪MΓ (G, H
.

�τ

.

check (P))

where: M ← M′
E ∪ M′

S ∪ MP with M′
E ← ME ∪ MS and M′

S ← MΓ ,
where MΓ is the set of type variables of Γ ; G is the reification of the types of Γ

such that for all (v, t) ∈ Γ and v /∈ B,
.

given (t) ∈ G (in which
.

given (t) means
that t is the super-set of itself); H is the reification of the typing context Γ such
that for all (v, t) ∈ Γ and v /∈ B, �v ∈ t�P ∈ H .

3.5 Well-Definedness Verification

As said in Section 2, it is pointed out in [2] that conditional definitions may
lead to some ill-defined expressions, such as the application of a function to an
argument lying outside its domain. Thus, a syntactical filter to be applied to the
rule to prove is proposed in [2], and contains all the proof obligations related to
well-definedness. The filter is called L and is defined as a function over reified
rules. The computation rules of this function are split into two sets of rules:
decomposition and atomic rules. The decomposition rules are the following:

262 M. Jacquel et al.

Rules for V

x : s, Γ
 x : s
var

Γ
 x : s Γ
 y : t

Γ
 x
.�→ y : s

.
× t

.�→V

Rules for E

Γ
 x : t Γ
 E : t
Γ
 x :

.
= E : Sτ

:
.
=

Γ
 x :
.
= E : Sτ Γ
 F : t

Γ
 [x :
.
= E]F : t

substE

Γ
 x : s Γ
 y : t

Γ
 x
.�→ y : s

.
× t

.�→ E

Γ
 s :
.

P (t)

Γ

.

choice (s) : t

.

choice

where Sτ is the type of substitutions.

Rules for S

Γ
 S :
.

P (s) Γ
 T :
.

P (t)

Γ
 S
.
× T :

.

P (s
.
× t)

.
×

Γ
 E :
.

P (s)

Γ

.

P (E) :
.

P (
.

P (s))

.

P

x : s, Γ
 P : Pτ

Γ
 {x
.

| P} :
.

P (s)
{

.

|}
Γ

.

BIG :
.

P (
.

BIG)

.

BIG

Rules for P

Γ
 P : Pτ Γ
 Q : Pτ

Γ
 P
.
∧ Q : Pτ

.
∧

Γ
 P : Pτ Γ
 Q : Pτ

Γ
 P
.⇒ Q : Pτ

.⇒

Γ
 P : Pτ

Γ
 .¬ P : Pτ

.¬
Γ
 x : t Γ
 P : Pτ

Γ

.

∀ x.P : Pτ

.

∀

Γ
 x :
.
= E : Sτ Γ
 P : Pτ

Γ
 [x :
.
= E]P : Pτ

substP
Γ
 E : t Γ
 F : t

Γ
 E
.
= F : Pτ

.
=

Γ
 E : t Γ
 S :
.

P (t)

Γ
 E
.
∈ S : Pτ

.
∈

where Pτ is the type of predicates.

Fig. 2. Type Inference Rules

Verifying Added B Rules 263

L(∀x ∈ M,B,N .P) = ∀x ∈ M,B,N .L(P)
L(P

.
∧ Q) = L(P)

.
∧ (P .⇒ L(Q)) L(P .⇒ Q) = L(P)

.
∧ (P .⇒ L(Q))

L(
.¬ P) = L(P) L(

.

∀x.P) =
.

∀x.L(P)

The atomic rules essentially aim to deal with applications of functions and han-
dle atomic predicates, i.e. every predicate other than those considered above.
The atomic rules are defined as follows:

L(A) =
.

true
L(Af(E)) =

.

∃(s .�→ t).(f
.
∈ s

.
+→ t

.
∧ E

.
∈

.

dom(f))
.
∧

.

∀y.(y .= f(E) .⇒ L(Ay))

where y /∈ M∪ B, and B ← B ∪ {y}
L(A{x

.

|x .∈S
.∧P}) =

.

∀x.(L(x
.
∈ S)

.
∧ (x

.
∈ S

.⇒ L(P)))
.
∧

.

∀y.(y .= {x
.

| x
.
∈ S

.
∧ P} .⇒ L(Ay))

where x, y /∈ M∪B, and B ← B ∪ {x, y}

in which an atomic predicate may be of the following form:

1. A, where f(E), {x
.

| x
.
∈ S

.
∧ P} /∈ A;

2. Af(E), where f(E) ∈ Af(E), but g(F), {x
.

| x
.
∈ S

.
∧ P} /∈ f, E;

3. A{x
.

|x .∈S
.∧P}, where {x

.

| x
.
∈ S

.
∧ P} ∈ A{x

.

|x .∈S
.∧P}.

The binding rules, i.e. the rules for atomic predicates of the form (3) must be
applied first, before the rule for atomic predicates of the form (2), in order to
avoid to eliminate applications of functions under binders.

Compared to [2], our approach relaxes the restrictions over the super-set S in
the atomic predicate for comprehension sets, which implies to add the recursive
call L(x

.
∈ S) in the corresponding rule. In addition, we are also able to deal with

substitutions (for expressions and predicates), as well as lambda-expressions (we
do not provide the corresponding rules here in order to simplify our presentation).

Once this filter has been applied to a reified rule of the form ∀x ∈ M,B,N .P ,
the well-definedness lemma to be proved is generated as follows:

∀x ∈ M,B,N .SB,B∪MΓ (H
.

� L(P))

where MS ← MS ∪MΓ .

3.6 Rule Verification

Once the proof obligations related to well-definedness have been extracted from
the rule by means of a first syntactical filter, it is possible to apply another filter
to the rule, which eliminates the conditional definitions unconditionally and pro-
duces an equivalent rule simpler to prove. This new filter, which is introduced
in [2], is called E , and is defined as a function over reified rules, which uncon-
ditionally eliminates all the applications of functions. Considering the L filter

264 M. Jacquel et al.

seen previously, it can be shown that L(P) .⇒ (P .⇔ E(P)). In the same way
as for the L filter, the computation rules of E are split into two sets of rules:
decomposition and atomic rules. The decomposition rules are the following:

E(∀x ∈ M,B,N .P) = ∀x ∈ M,B,N .E(P) E(P
.
∧ Q) = E(P)

.
∧ E(Q)

E(P .⇒ Q) = E(P) .⇒ E(Q) E(
.¬ P) =

.¬ E(P) E(
.

∀x.P) =
.

∀x.E(P)

The atomic rules are defined as follows:

E(A) = A

E(Af(E)) =
.

∀y.((E, y)
.
∈ f

.⇒ E(Ay)) where y /∈ M∪ B, and B ← B ∪ {y}
E(A{x

.

|x .∈S
.∧P}) =

.

∀y.(y = {x
.

| x
.
∈ S

.
∧ E(P)} .⇒ E(Ay))

where y /∈ M∪ B, and B ← B ∪ {y}

Once this filter has been applied to a reified rule of the form ∀x ∈ M,B,N .P ,
the rule lemma to be proved is generated in the following way:

∀x.M,B,N .SB,B∪MΓ (H
.

� E(P))

where MS ← MS ∪MΓ with MΓ the set of the type variables of the typing
context Γ , and where H is the reification of Γ .

3.7 Examples

In the following, we describe two examples of rule verification using BCARe.

Example 3 (Verification of ForAllX.3). This rule is a deduction rule, and there
is no need to verify that there is no variable capture. As there is no application
function, only the typing and rule lemmas are generated as follows:

Lemma type_ForAllX3 : f o ra l l t :
.

S , f o ra l l A a :
.

V ,

a
.

\ (A, t)→
.

given (t), A
.

⊆ t
.

τ

.

check (A
.

=
.

∅ .⇒
.

∀ a.a
.

/∈ A) .

Lemma rule_ForAllX3 : f o ra l l A t :
.

S , f o ra l l a :
.

V ,

a
.

\ (A, t)→ A
.

⊆ t
.

 (A
.

=
.

∅ .⇒
.

∀ a.a
.

/∈ A) .

Example 4 (Verification of SimplifyRelDorXY.2). This rule is a rewrite rule,
and we must verify that the guards correctly protect the free variables. As the
elements of Q do not belong to {f, u, v, a}, the criterion (2) is verified. The three
lemmas are then generated in the following way:

Lemma type_SimplifyRelDorXY_2 :
f o ra l l t1 t2 :

.

S , f o ra l l a f u v :
.

V ,
.

given (t1),
.

given (t2), u
.
∈

.

P (t2), v
.
∈

.

P (t1), f
.
∈

.

P (t2
.
× t1), a

.
∈ t2

.

τ
.

check (f
.
∈ u

.
+→ v

.
∧ a

.
∈

.

dom(f)
.⇒ {a}

.
� f

.
= {a .�→ f(a)}) .

Verifying Added B Rules 265

Lemma wdef_SimplifyRelDorXY_2 :
f o ra l l f t1 t2 u v :

.

S , f o ra l l a :
.

E , f o ra l l s t :
.

V ,

s
.

\ (t, f, u, v, a, t1, t2)→ t
.

\ (s, f, u, v, a, t1, t2)→
u

.
∈

.

P (t2), v
.
∈

.

P (t1), f
.
∈

.

P (t2
.
× t1), a

.
∈ t2

.

f

.
∈ u

.
+→ v

.
∧ a

.
∈

.

dom(f)
.⇒

.

∃(s .�→ t).(f
.
∈ s

.
+→ t

.
∧ a ∈

.

dom(f)) .

Lemma rule_SimplifyRelDorXY_2 :
f o ra l l f t1 t2 u v :

.

S , f o ra l l a :
.

E , f o ra l l y :
.

V ,

y
.

\ (f, u, v, t1, t2, a)→ u
.
∈

.

P (t2), v
.
∈

.

P (t1), f
.
∈

.

P (t2
.
× t1), a

.
∈ t2

.

f

.
∈ u

.
+→ v

.
∧ a

.
∈

.

dom(f)
.⇒

.

∀y.((a, y)
.
∈ f

.⇒ {a}
.
� f

.
= {a .�→ y}) .

4 Automated Verification of Proof Rules

In this section, we discuss some solutions that we have provided to automate
the verification of proof rules in the framework of the BCARe environment. In
particular, the several solutions aim to automatically prove the different lemmas
generated in Coq from proof rules by BCARe. To do so, we have developed a set of
tactics using the Ltac tactic language of Coq [11]. In the specific case of the rule
lemma, we have also considered an alternative approach based on an external
ATP called Zenon [5]. Both approaches are able to deal with rules involving
all the set operators defined before the functional abstraction (introduction of
anonymous functions) in the B-Book [1].

4.1 Verification Using Ltac

To deal with the different lemmas generated in Coq from proof rules by the
BCARe environment (see Section 3), a set of tactics has been developed using
the Ltac tactic language of Coq [11]. Regarding the proof of the typing lemma,
we have designed a correct and complete tactic (the B typechecking is decidable),
which essentially performs pattern-matching over the goal in order to select the
appropriate B typing rules. As for the proof of well-definedness lemma, we have
written another tactic, which is able to manage only specific cases. This tactic
mostly looks for instantiations which allow us to complete the proof using a
direct propositional combination of the current hypotheses. Finally, the proof
of the rule lemma is handled by means of a tactic which relies on a naive and
incomplete heuristic, even though it succeeds in proving about 200 derived rules
of the B-Book. This heuristic mainly consists in only considering Skolem symbols
when instantiating (no unification is performed), while right contraction is never
used. In addition, this tactic has also some efficiency issues in some cases that
can be observed in Subsection 4.3. To palliate these several drawbacks, we have
developed an alternative approach based on the use of an external ATP, able
to provide a more powerful and efficient proof search procedure, and able to be
easily interfaced with Coq (i.e. producing proof traces that can be exploited).

266 M. Jacquel et al.

4.2 Verification Using Zenon

As an alternative approach to Ltac tactics, we have developed an interface with
the Zenon ATP [5], in order to prove the rule lemmas in particular. One of the
main difficulties when using an external ATP is to bring together the B set theory
and the ATP logic. As seen previously, the B set theory [1] is actually based on
a simplification of classical set theory. As for Zenon, it relies on the classical
first order logic with equality (using the tableau method as proof search), and
does not deal explicitly with the set theory. The idea consists in normalizing
the formula to be proved (unfolding definitions), in order to obtain a first order
logic formula containing only the “

.
∈” (reified) set operator. This formula is then

syntactically interpreted within the ATP logic, in which the “
.
∈” operator is

considered as a regular uninterpreted predicate symbol.
Another difficulty is to ensure the correctness of the external deduction. We

have adopted a skeptical approach by building B proofs from the proofs produced
by the ATP. In this way, it is possible to check the validity of these proofs that
have been automatically found. However, this requires the ATP proof traces
to be comprehensible enough so as to allow us to reconstruct proofs. This is
the case of Zenon, which produces several proof traces at different levels. In
particular, it produces Coq proofs, which can be used to build proofs within the
BCoq embedding of BCARe (see Section 3). To do so, the Coq proofs generated
by Zenon have to be (re)reified. This translation is syntactical and relies on an
embedding of each tactic occurring in the Coq proofs produced by Zenon.

4.3 Benchmarks

In the following, we present the results of our implementation using Zenon on
several examples of proof rules. This implementation actually consists of a Coq
tactic written in OCaml. We also compare these results to those obtained using
the corresponding Ltac tactic. To realize these benchmarks, we have tested both
tactics on derived rules of the B-Book, as well as on several added rules coming
from Atelier B and the database maintained by Siemens SAS I MO.

Regarding derived rules, we have considered about 200 rules and the results of
the tests (run on an Intel Pentium D 3.40GHz/4GB computer) are summarized
in the graph of Figure 3, where a point represents the test of a proof rule and
where the x-axis and y-axis respectively correspond to the Ltac and Zenon proof
times (expressed in seconds). In this graph, we only consider derived rules for
which the proof times for Ltac and Zenon are less than 30s (this corresponds
to about 66% of the tested rules). We can see that Zenon is faster than the
Ltac tactic for the most part of the tested rules (for 71% of these rules, more
precisely). Furthermore, over the 200 rules for which Zenon succeeds in finding a
proof, 15 rules cannot be proved using the Ltac tactic. For the sake of scalability,
we have also tested our tactics on added rules coming from Atelier B and the
database maintained by Siemens SAS I MO. We have selected 1279 rules (over a
total of 5039 rules) within the scope of both tactics. For these rules, Zenon can
prove 813 rules (64%), whereas the Ltac tactic manages to prove 498 rules (39%).

Verifying Added B Rules 267

0

5

10

15

20

25

30

0 5 10 15 20 25 30

Ltac

Z
en

o
n

0

5

10

15

20

25

30
0 5 10 15 20 25 30

Fig. 3. Proof Times of Rule Lemmas using Zenon and Ltac

In addition, the larger the Ltac proof time is, the larger is the number of rules
for which Zenon is faster than Ltac. These several experimental results tend to
show that the use of Zenon is an approach which is not only more satisfactory
than that of Ltac, but also very promising in terms of scalability.

5 Conclusion

We have proposed a formal and mechanized framework which allows us to verify
proof rules of the B method, and which is able to use an external automated
theorem prover called Zenon. This framework relies on the BCARe set of tools,
developed by Siemens SAS I MO, which provides a deep embedding of the B
theory within the logic of the Coq proof assistant and allows us to automatically
generate the required properties to be checked for a given proof rule. Currently,
this tool chain is able to automatically verify about 200 derived rules of the
B-Book, as well as 800 added rules coming from Atelier B and the rule database
maintained by Siemens SAS I MO.

As future work, we first aim to completely verify the derived rules of the B-
Book. The BCARe environment is already able to deal with all these derived
rules, but the automated verification part (using Zenon) has to be adapted. In
particular, this part has to be extended to manage proofs of properties involving
applications of functions, substitutions, arithmetics, induction, and sequences.
It seems clear that all the proofs will not be able to be automated, and our goal
consists in automating at least a large part of them and characterizing the lack
of automation for the other proofs. To palliate this potential lack of automation,
we could consider alternative ATPs (other than Zenon) or SMT solvers, which
might be more appropriate for some specific properties. In this case, we should

268 M. Jacquel et al.

develop a verification platform able to use several provers and solvers. Once these
derived rules have been verified, we plan to deal with the rest of the added rules
of Atelier B (about 1,400 rules), and thereafter the rest of those of the database
developed by Siemens SAS I MO (about 3,100 rules). If the latter focuses on the
development of applications, the former consists in certifying Atelier B as a tool
used in a safety-critical and high-integrity chain of production.

References

1. Abrial, J.-R.: The B-Book, Assigning Programs to Meanings. Cambridge University
Press, Cambridge, UK (1996) ISBN 0521496195

2. Abrial, J.-R., Mussat, L.: On Using Conditional Definitions in Formal Theories. In:
Bert, D., et al. (eds.) B 2002 and ZB 2002. LNCS, vol. 2272, pp. 242–269. Springer,
Heidelberg (2002)

3. Berkani, K., Dubois, C., Faivre, A., Falampin, J.: Validation des règles de base de
l’Atelier B. Technique et Science Informatiques (TSI) 23(7), 855–878 (2004)

4. Bodeveix, J.-P., Filali, M., Muñoz, C.: A Formalization of the B-Method in Coq
and PVS. B Users Group Meeting, Toulouse, France (September 1999)

5. Bonichon, R., Delahaye, D., Doligez, D.: Zenon: An Extensible Automated Theorem
Prover Producing Checkable Proofs. In: Dershowitz, N., Voronkov, A. (eds.) LPAR
2007. LNCS (LNAI), vol. 4790, pp. 151–165. Springer, Heidelberg (2007)

6. Chartier, P.: Formalisation of B in Isabelle/HOL. In: Bert, D. (ed.) B 1998. LNCS,
vol. 1393, pp. 66–82. Springer, Heidelberg (1998)

7. Cirstea, H., Kirchner, C.: Using Rewriting and Strategies for Describing the B
Predicate Prover. In: Strategies in Automated Deduction, Lindau, Germany, pp.
25–36 (July 1998)

8. ClearSy. Atelier B 4.0 (February 2009), http://www.atelierb.eu/
9. Couchot, J.-F., Dadeau, F., Déharbe, D., Giorgetti, A., Ranise, S.: Proving and

Debugging Set-Based Specifications. In: Workshop on Formal Methods, Campina
Grande, Brazil. ENTCS, vol. 95, pp. 189–208. Elsevier (October 2003)

10. Déharbe, D.: Automatic Verification for a Class of Proof Obligations with SMT-
Solvers. In: Frappier, M., Glässer, U., Khurshid, S., Laleau, R., Reeves, S. (eds.)
ABZ 2010. LNCS, vol. 5977, pp. 217–230. Springer, Heidelberg (2010)

11. Delahaye, D.: A Tactic Language for the System Coq. In: Parigot, M., Voronkov,
A. (eds.) LPAR 2000. LNCS (LNAI), vol. 1955, pp. 85–95. Springer, Heidelberg
(2000)

12. Jaeger, É., Dubois, C.: Why would you trust B? In: Dershowitz, N., Voronkov,
A. (eds.) LPAR 2007. LNCS (LNAI), vol. 4790, pp. 288–302. Springer, Heidelberg
(2007)

13. Le Lay, É.: Automatiser la validation des règles. Master’s thesis, INSA (Rennes),
Siemens SAS I MO (September 2008)

14. Mikhailov, L., Butler, M.: An Approach to Combining B and Alloy. In: Bert, D.,
Bowen, J.P., Henson, M.C., Robinson, K. (eds.) B 2002 and ZB 2002. LNCS,
vol. 2272, pp. 140–161. Springer, Heidelberg (2002)

15. The Coq Development Team. Coq, version 8.3. INRIA (October 2010),
http://coq.inria.fr/

http://www.atelierb.eu/
http://coq.inria.fr/

Hybrid Specification of Reactive Systems:

An Institutional Approach�

Alexandre Madeira1,2,3, José M. Faria1,
Manuel A. Martins3, and Lúıs S. Barbosa2

1 Critical Software S.A., Portugal
2 Department of Informatics, Minho University

3 Department of Mathematics, University of Aveiro

Abstract. This paper introduces a rigorous methodology for require-
ments specification of systems that react to external stimulus by evolving
through different operational modes. In each mode different function-
alities are provided. Starting from a classical state-machine specification,
the envisaged methodology interprets each state as a different mode of
operation endowed with an algebraic specification of the corresponding
functionality. Specifications are given in an expressive variant of hybrid
logic which is, at a later stage, translated into first-order logic to bring
into scene suitable tool support. The paper’s main contribution is to pro-
vide rigorous foundations for the method, framing specification logics as
institutions and the translation process as a comorphism between them.

1 Introduction

Motivation. The successful development and deployment of safety-critical, re-
active systems, from the early concept and system definition phases, down to
implementation and validation, poses a number of challenges that engineers must
overcome. From the outset, there are two basic approaches to formally capture
requirements for this sort of software: one emphasizes behaviour and its evolu-
tion; the other focus on data and their transformations.

Within the first paradigm, reactive systems are typically specified through
(some variant of) state-machines. Such models capture system’s evolution in
terms of event occurrence and its impact in the system internal state configu-
ration. Automata theory, and its more recent, abstract rendering in coalgebraic
terms, provide a suitable formalism for both specification and analysis. Crucial
notions of bisimulation, minimization and invariant, among others, play a fun-
damental, long established role in this framework. In the dual, data-oriented
� This research was partially supported by FCT (the Portuguese Foundation for Sci-

ence and Technology) under contract PTDC/EIA-CCO/ 108302/2008 (the Mondrian

project) and CIDMA at University of Aveiro. A. Madeira and J. M. Faria worked
under contracts SFRH/BDE/ 33650/2009 and SFRH / BDE / 51049 / 2010, two PhD
grants jointly supported by FCT and Critical Software S.A., Portugal. M. Martins
was further supported by the project Nociones de Completud, reference FFI2009-
09345 (Spain).

G. Barthe, A. Pardo, and G. Schneider (Eds.): SEFM 2011, LNCS 7041, pp. 269–285, 2011.
� Springer-Verlag Berlin Heidelberg 2011

270 A. Madeira et al.

approach the system’s functionality is given in terms of input-output relations
modeling operations on data. A specification is a theory in a suitable logic, ex-
pressed over a signature, which captures its syntactic interface. Its semantics is
a class of concrete algebras acting as models for the specified theory [5,18].

In practice, however, both approaches are interconnected: the functionality
offered by the system, at each moment, may depend on the stage of its evolution.
Such is typically the case of complex, reactive, reconfigurable software.

This paper explores such a interconnection. Starting from a classical state-
machine specification, the methodology illustrated in the sequel goes a step fur-
ther: different states are interpreted as different modes of operation and each
of them is equipped with an algebraic specification (over the system’s interface)
of the corresponding functionality. Technically, specifications become structured
state-machines, states denoting algebras, rather than sets.

The following paragraph sums up the envisaged approach. It should be re-
marked this has been developed in a concrete, industrial context — that of a
leading, portuguese IT company, whose mission includes the production of for-
mally certified software for critical systems. Such a context makes effective, but
sound tool support a must. As discussed in the sequel, rigorous foundations also
(may) lead to fulfill this objective.

Approach and paper outline. The approach proposed in the paper is sketched
in Figure 1. The upper plane sums up the envisaged methodology. The block
on the left hand side represents the specification framework, structured in two
stages, as explained below. The annotation on top — Hybrid logic — states the
underlying logic. The block on the right concerns verification and analysis of hy-
brid specifications suitably translated to first order logic (FOL). The translation
itself is depicted as a comorphism between the two logic systems in presence:
hybrid logic, chosen for its expressive power, first order, to benefit from exis-
tent verification support. Hybrid logic [2] plays a fundamental role here given
its ability to make explicit references, through special symbols called nominals,
to specific states within a model.

The lower plane of Figure 1 refers to the methodology foundations. Actually,
a basic property to require from a specification formalism is its ability to be
framed as an institution [7,4]. This is not a formal idiosyncrasy: institutions, as
abstract, general representations of logical systems, provide modular structuring
and parameterization mechanisms which are defined ‘once and for all’ abstracting
from the concrete particularities of the each specification logic [24]. Moreover,
several current specification formalisms, notably, CafeOBJ [5], Casl [18] and
Hets [20] were designed to take advantage of such a general framework.

Moreover institutions provide a systematic way to relate logics and transport
results from one to another [17], which means that a theorem prover for the
latter can be used to reason about specifications written in the former. This
is achieved through a special class of maps between institutions, referred to as
comorphisms, as depicted in Figure 1.

The rest of the paper is organized around two main sections: one on the
methodology (sections 2) and another on foundations (section 3). Section 4

Hybrid Specification of Reactive Systems: An Institutional Approach 271

standard
states-

machine
M1

M2

states-as-
algebras
machine

Translation

Hibrid Logics
First-order

Logic
refinement/minimization

using
automata

theory

aplication of
provers and

model cheking
for HPL

interfa
ce

 defi
nitio

n

sp
ecifi

ca
tio

n of lo
ca

l/ g
lobal

propertie
s f

or th
e m

odes

aplication of
 FOL

provers

algebraic
specification

techiques

??

HPL

H

≤ FOLComorphism

Methodology

Foundations

Fig. 1. The approach

discusses current work on suitable tool support based on Hets [20]. Section
5 concludes and provides a few pointers for future work. The reader may found
the detailed proofs of all formal claims of the paper on the technical report [13].

2 A Specification Methodology

As stated above, the paper proposes a methodology to the specification and anal-
ysis of reactive systems which is intended to be effectively used in an industrial
context. The methodology has the following stages, which will be detailed later
in the paper:

I (I.1) Express the requirements in hybrid propositinal logic (HPL), identifying states
and transitions to build a first state-machine; (I.2) Specify local properties as
propositions; At this stage, traditional technics of state machine analysis/refine-
ment may be applied, and available reasoning tools for HPL used (see Section
2.1).

II (II.1)Define the actual system’s interface through the set of (external) services of-
fered. Technically, this is supported by the definition of a (multi-sorted) first-order
signature. (II.2) Express, whenever possible, the attributes of the first machine as
functional properties over this signature.

III Translate both specifications into FOL, providing a common ground for testing
and verification.

In the sequel the methodology is illustrated in a number of specification frag-
ments of an automatic cruise control (ACC) system. The example, small but

272 A. Madeira et al.

self-contained, is taken from [9], where the overall requirements are summarized
as follows:

“The mode class CruiseControl contains four modes, Off, Inactive, Cruise, and
Override. At any given time, the system must be in one of these modes. Turning the
ignition on causes the system to leave Off mode and enter Inactive mode, while turning
the cruise control level to const when the brake is off and the engine running causes
the system to enter Cruise mode. (...) Once cruise control has been invoked, the system
uses the automobile’s actual speed to determine whether to set the throttle to accelerate
or decelerate the automobile, or to maintain the current speed (...)To override cruise
control (i.e., enter Override), the driver turns the lever to off or applies the brake”.

2.1 Hybrid Specifications (Stage I)

The requirements for the cruise control system example can be captured by
the state machine depicted in Figure 2. This section introduces its specification
in propositional hybrid logic (HPL). Such a presentation has the advantage of
being compact, unambiguous and closer to the input format of typical verification
engines.

off

inactive

cruise

overrride

IgnOn

LeverCons ∧
EnRunning ∧

¬Brake

Brake

¬EngRunning

∨LeverOff

¬IgnOn

¬IgnOn

¬IgnOn

¬IgnOn

LeverCons ∧
EnRunning ∧

¬Brake

LeverOff

Fig. 2. State-machine of the system

The set of HPL formulas is defined by the following grammar:

ϕ, ψ ::= p | i | ¬ϕ|[λ]ϕ |@iϕ |ϕ ∧ ψ |ϕ ∨ ψ |ϕ⇒ ψ (1)

where λ ranges over a set Λ of modal operators. Models of this logic are state-
machines with an additional function state : Nom → S which assigns to each
nominal a state. This allows explicit reference to particular states in a specifi-
cation. Thus, models are tuples P = 〈S, state, (Rλ)λ∈Λ, (Ps)s∈S〉 where S is a
set of states, Rλ ⊆ S × S is the accessibility relation associated to the modality
λ and Ps : Prop → {�,⊥} is the function that assigns the propositions on the
state s ∈ S. The satisfaction relation is defined as in standard modal logic (e.g.
P |=s p iff Ps(p) = �; P |=s [λ]ϕ iff P |=s′

ϕ for any s′ such that (s, s′) ∈ Rλ)
adding the following cases related to nominals:

– P |=s @iϕ iff P |=state(i) ϕ;
– P |=s i iff state(i) = s.

Moreover, we abbreviate formulas ¬[λ]¬ϕ and 〈λ〉ϕ ∧ [λ]ϕ to 〈λ〉 and 〈λ〉◦ϕ,
respectively.

Hybrid Specification of Reactive Systems: An Institutional Approach 273

For the running example, a modality {next} is introduced to denote the state-
machine accessibility relation. Nominals in {off, inactive, override, cruise} cor-
respond to the operation modes mentioned in the requirements. Finally, a set of
propositions is considered — one for each label in Figure 2. With such signature,
transitions are specified as follows:

• (T1)@off (IgnOn ⇒ 〈next〉◦inactive)
• (T2)¬ IgnOn ⇒ 〈next〉◦off
• (T3)@inactive(LeverCons ∧ IgnOn ∧ ¬ Brake ⇒ 〈next〉◦cruise)
• (T4)@cruise(¬ EngRunning ∨LeverOff ⇒ 〈next〉◦inactive)
• (T5)@cruise(Brake ⇒ 〈next〉◦override)
• (T6)@override(LeverCons ∧ IgnOn) ∧ EngRunning ∧ ¬ Brake ⇒ 〈next〉◦cruise)

Local properties can also be expressed resorting to the satisfaction operator
@i, for each nominal i, to reference the corresponding state. For instance, the
requirement that the engine controls speed decelerating the car if the speed is
high and maintaining it when it is considered adequate is modelled by

• (L1
cruise)@cruise(IgnOn ∧ EngRunning ∧ HighSpeed ⇒ decel)

• (L2
cruise)@cruise(IgnOn ∧ EngRunning ∧ AdmissibleSpeed⇒ mantain)

Finally, admissibility properties, concerning propositions, are also captured. For
instance, the fact that the lever cannot be switched in more than one position at
each time, and similarly for the acceleration and speed modes, is expressed as

• (A1)LeverOff ⇔ ¬ LeverCons
• . . .
• (A4)HighSpeed ⇒ ¬ CruiseSpeed ∧ ¬ LowSpeed

2.2 States-as-Algebras Models (Stage II)

The logic. The second stage in the methodology equips each state of the un-
derlying state-machine with an algebra, more precisely a first-order structure,
to model its local functionality. Therefore, hybrid structures are enriched with
a family of first-order structures indexed by the set of states, i.e., they become
structures

M = 〈S, state, (Rλ)λ∈Λ, (Ps)s∈S , (As)s∈S〉

where first-order structures in the family (As)s∈S are defined over the same
signature and universe, say A. Each As models the system’s behaviour at state
s ∈ S.

Definition 1. Let Σ a first-order signature and X a set of variables for it,
Nom, Prop and Λ three disjoint sets of nominals, propositions and modalities
respectively. The set of hybrid equational formulas is defined by the following
grammar:

ϕ, ψ ::= p | i| t ≈ t′|P (t̄) | ¬ϕ|ϕ � ψ| [λ]ϕ |@iϕ | ∀xϕ (2)

where � ∈ {∨,∧,⇒}, p is a proposition, i is a nominal, t ≈ t′ is a Σ-equation
over X, x ∈ X, P is a Σ-predicate of type s1, . . . , sn where t̄ := t1, . . . , tn and
ti ∈ (TΣ(X))si .

274 A. Madeira et al.

An assignment for M = 〈S, state, (Rλ)λ∈Λ, (Ps)s∈S , (As)s∈S〉 consists of a
(sorted-set) function g : X → A, where A is the carrier set of the first-order
structures of M and X is a set of variables. We write g ∼x g′ if for any variable
y �= x, g(y) = g′(y). Note that the assignment g : X → A induces an S-family
of assignments gs : TΣ(X) → A defined, for any x ∈ X , by gs(x) = g(x) and,
for each term f(t1, . . . , tn), by gs(f(t1, . . . , tn)) = fAs(gs(t1), . . . , gs(tn)).

Definition 2. Let M = 〈S, state, (Rλ)λ∈Λ, (Ps)s∈S , (As)s∈S〉 be an hybrid struc-
ture. For any assignment g : X → A, the satisfaction relation is recursively
defined as follows:

– M, g |=s i if state(i) = s;
– M, g |=s p if Ps(p) = �;
– M, g |=s t ≈ t′ if As |= t ≈ t′[g] i.e., if gs(t) = gs(t′);
– M, g |=s Q(t1, . . . , tn) if As |= Q(t1, . . . , tn)[g], i.e., if

QAs(gs(t1), . . . , gs(tn));
– M, g |=s ρ ∨ ρ′ if M |=s ρ or M |=s ρ′; and similarly for the remaining boolean

connectives;
– M, g |=s ∀xρ if, for any assignment g′ : X → A, if g ∼x g′, one has M, g′ |=s ρ;

– M, g |=s [λ]ρ if, for any s′ ∈ S such that (s, s′) ∈ Rλ, one has M |=s′ ρ.

We write M |=s ρ when for any assignment g : X → A, M, g |=s ρ and
M, g |= ρ when for any s ∈ S, M, g |=s ρ.

In order to model the system’s functionality, as provided by the car artifact, we
resort to a classical algebraic specification. This entails the need for introducing
data types able to support the envisaged notions of time, speed and accelera-
tion. In the running example integer numbers, with the usual operations and
predicates {+,≤,≥, <, >}, can do the job.

spec TimeSort =Int with sort Int �→ time, ops 0 �→ init, suc �→ after end
spec SpeedSort =Int with sort Int �→ speed end
spec AcellSort =Int with sort Int �→ accel end

Thus, the operation Pedal models the accelerations applied by the driver at
each moment. On the other hand, Automatic captures accelerations applied on
the engine by the ACC, and CurrentSpeed records the current speed. Finally,
constant MaxCruiseSpeed represents the maximum speed allowed on the ACC
mode:

spec ACCSign =
TimeSort and SpeedSort and AcellSort

then ops Pedal : time → accel;
Automatic : time → accel;
Speed : speed × accel → speed;
CurrentSpeed : time → speed;
MaxCruiseSpeed : speed

There are properties that globally hold, in all the configurations of the system.
For instance,

Hybrid Specification of Reactive Systems: An Institutional Approach 275

∀ s : speed; a : accel; t : time
• (G1)Speed(s, a) ≥ 0
• (G2)CurrentSpeed(t) = 0 ∧ Pedal(t) ≥ 0 ⇒ CurrentSpeed(after(t)) ≥ 0
• (G3)Pedal(t) ≥ 0 ⇔ CurrentSpeed(t) <CurrentSpeed(after(t))
• (G4)Speed(s, a) = s ⇔ a = 0
• (G5)CurrentSpeed(after(t)) =Speed(CurrentSpeed(t),Pedal(t))

Local properties. Differently from the properties above, local requirements
hold only at particular configurations. Let us explore some of them. First, in state
off , it is required that speed and acceleration are null and no other operations
in the interface react:
∀ t : time; s : speed; a : accel
• (L1

off)@offCurrentSpeed(t) = 0

• (L2
off)@offSpeed(s, a) = 0

In state inactive, the speed and acceleration depend on the accelerations auto-
matically introduced in the system, i.e,
∀ s : speed; a : accel
• (L1

inactive)@inactiveSpeed(s, a) = s + a

∀ t: time; s : speed; a : accel

• (L1′
cruise) @cruise[CurrentSpeed(t) > MaxCruiseSpeed ⇒Automatic(after(t)) < 0]

• (L2′
cruise) @cruise[CurrentSpeed(t) ≤ MaxCruiseSpeed ⇔ Automatic(after(t)) = 0]

• (L3
cruise)@cruiseSpeed(s, a) = s + a

• (L4
cruise)@cruisePedal(t) ≥ 0 ⇒ Pedal(t) = Automatic(t)

An interesting feature in this example is that properties local to states override
and off do coincide. The system’s behaviour on both states only differs in what
concerns the definition of the allowed transitions. The latter are dealt as follows.

Transitions specification. To specify state transitions we simply resort to
the state-machine built in Stage I, through axioms (T1), . . . , (Tn) from Section
2.1. However, some propositions may now be expressed by means of algebraic
properties of local states. For instance, we may replace (T4) by
∀ t: time;
• (T4′)@cruise[CurrentSpeed(t) = 0 ⇒ 〈next〉◦(inactive ∧ CurrentSpeed(after(t)) = 0)]
• (T4′′)@cruise[LeverOff⇒ 〈next〉◦inactive].

Furthermore, the fact that when ACC is activated by transition T6, the speed
should to be maintained, is captured by
∀ t: time; ∀ s: speed
• (T6′)@override [(LeverCons∧ CurrentSpeed(t) = s ∧ s ≥ 0) ⇒

〈next〉◦(cruise∧CurrentSpeed(after(t)) = s)].

3 Foundations

3.1 Going “institutional”

Dealing with the sort of specifications produced in Stages I and II above, entails
the need for a uniform specification framework in which both equational proper-
ties of data types, modal properties of transitions and local properties of states

276 A. Madeira et al.

can be expressed and verified. The canonical way to do it is through the notion
of an institution [7,4], as an abstract representation of a logical system, encom-
passing syntax, semantics and satisfaction. Let us recall the formal definition:

Definition 3 (Institution). An institution
(
SignI , SenI , ModI , (|=I

Σ)Σ∈|SignI |
)

consists of

– a category SignI whose objects are called signatures.
– a functor SenI : SignI → Set giving for each signature a set whose elements

are called sentences over that signature.
– a functor ModI : (SignI)op → CAT, giving for each signature Σ a cate-

gory whose objects are Σ-models, and whose arrows the corresponding Σ-
morphisms, and

– a satisfaction relation |=I
Σ⊆ |ModI(Σ)| × SenI(Σ)

such that for each morphism ϕ : Σ → Σ′ ∈ SignI , the satisfaction condition

M ′ |=I
Σ′ SenI(ϕ)(ρ) iff ModI(ϕ)(M ′) |=I

Σ ρ (3)

holds for each M ′ ∈ |ModI(Σ′)| and ρ ∈ SenI(Σ).

A well known example of institution is the institution of first order logic, de-
noted in the sequel by FOL (see [4] for a detailed account). Institutions provide
a suitable setting to do abstract specification theory [24], structuring any kind
of specifications through combinators which are institution-independent, i.e. not
tied to a specific logic system. In Casl [18], for example, such combinators al-
low the construction of basic specifications, by defining a signature and a set
of sentences, the union of specifications, and the derivation and translation of
specifications along signature morphisms. The use of this set of (abstract) com-
binators, makes possible to approach, in a uniform way and trough the same
theory, systems expressed in completely different logics.

Therefore, our first aim concerning foundations is to prove that the proposed
specification formalism may be framed on this big picture of institution theory.
Let start by collecting the necessary ingredients to define a suitable institution H.

Category SIGNH: Signatures are tuples 〈(Σ, X), Nom, Prop, Λ〉 where Σ is a
first-order logic signature, X is a set of first-order variables and Nom, Prop
and Λ are (disjoint) sets of symbols of nominals, propositions and modalities.
Signature morphisms

〈(Σ, X), Nom, Prop, Λ〉 ϕ �� 〈(Σ′, X ′), Nom′, Prop′, Λ′〉

are tuples ϕ = (ϕSig, ϕNom, ϕProp, ϕMS) where ϕNom : Nom → Nom′, ϕProp :
Prop → Prop′ and ϕMS : Λ → Λ′ are functions and ϕSig : (Σ, X) → (Σ′, X ′)
is a morphism in FOL, i.e., a tuple ϕSig = (ϕsort

Sig , ϕop
Sig, ϕ

pred
Sig , ϕvar

Sig)

• for any operation f ∈ Σs1...sn,s, ϕop
Sig(f) ∈ Σ′

ϕsort
Sig (s1)...ϕsort

Sig (sn),ϕsort
Sig (s);

Hybrid Specification of Reactive Systems: An Institutional Approach 277

• for any predicate Q ∈ Σs1...sn , ϕpred
Sig (Q) ∈ Σ′

ϕsort
Sig (s1)...ϕsort

Sig (sn);

• for any variable x ∈ Xs, ϕvar
Sig (x) ∈ X ′

ϕsort
Sig (s).

Functor SENH: This functor maps a signature Δ = 〈(Σ, X), Nom, Prop, Λ〉
into the set of hybrid sentences, i.e., on the subset of bonded-variables for-
mulas of Definition 1, and a morphism

〈(Σ, X), Nom, Prop, Λ〉 ϕ �� 〈(Σ′, X ′), Nom′, Prop′, Λ′〉

into the sentence translation

SenH(〈(Σ, X), Nom, Prop, Λ〉)
SenH(ϕ)�� SenH(〈(Σ′, X ′), Nom′, Prop′, Λ′〉)

recursively defined as follows

• SenH(ϕ)(ρ) = SenFOL(ϕSig)(ρ) for any ρ ∈ SenFOL(Σ);
• SenH(ϕ)(i) = ϕNom(i), i ∈ Nom;
• SenH(ϕ)(p) = ϕProp(p), p ∈ Prop;
• SenH(ϕ)(t ≈ t′) = ϕterm(t) ≈ ϕterm(t), where ϕterm : TΣ(X) → TΣ′(X ′) is a

function recursively defined as follows
� ϕterm(x) = ϕvar

Sig (x) for x ∈ X;
� ϕterm(f(t1, . . . , tn)) = ϕop

Sig(f)(ϕterm(t1), . . . , ϕterm(tn)), for any f ∈
Σs1...sn,s, ti ∈ (TΣ(X))si .

• SenH(ϕ)(Q(t1, . . . , tn)) = ϕpred
Sig (Q)(ϕterm(t1), . . . , ϕterm(tn));

• SenH(ϕ)(¬ρ) = ¬SenH(ϕ)(ρ);
• SenH(ϕ)(ρ% ρ′) = SenH(ϕ)(ρ)% SenH(ϕ)(ρ′), % ∈ {∨,∧,→};
• SenH(ϕ)(@iρ) = @ϕNom(i)SenH(ϕ)(ρ);
• SenH(ϕ)([λ]ρ) = [ϕMS(λ)]SenH(ϕ)(ρ);
• SenH(ϕ)(∀xρ) = ∀ϕvar

Sig (x)SenH(ϕ)(ρ).

Functor ModH: This functor maps each signature 〈(Σ, X), Nom, Prop, Λ〉
to a category whose models are the hybrid structures M =
〈S, state, (Rλ)λ∈Λ, (Ps)s∈S , (As)s∈S〉 defined above. Morphisms between
models 〈S, state, (Rλ)λ∈Λ, (Ps)s∈S , (As)s∈S〉 and 〈S′, state′, (R′

λ)λ∈Λ,
(P ′

s)s∈S′ , (A′
s)s∈S′〉 consists of pairs (hst, hmod) such that

• hmod is an S-family
(
hmods : As → A′

hst(s)

)
s∈S

of first-order structures mor-
phisms;

• Ps(p) = P ′
hst(s)

(ϕProp(p));
• hst : S → S′ is a function such that

� (s, s′) ∈ Rλ implies that (hst(s), hst(s
′)) ∈ R′

λ,
� state′(n) = hst(state(n)),

Functor ModH maps each morphism

〈(Σ, X), Nom, Prop, Λ〉 ϕ �� 〈(Σ′, X ′), Nom′, Prop′, Λ′〉

into the reduct functor

ModH(〈(Σ, X), Nom, Prop, Λ〉) ModH(〈(Σ′, X ′), Nom′, Prop′, Λ′〉)
ModH(ϕ)��

278 A. Madeira et al.

that maps each 〈(Σ′, X ′), Nom′, Prop′, Λ′〉-model
〈S′, state′, (R′

λ)λ∈Λ′ , (P ′
s)s∈S′ , (A′

s)s∈S′〉 into the 〈Σ, Nom, Prop, Λ〉-model
〈S, state, (Rλ)λ∈Λ, (Ps)s∈S , (As)s∈S〉 such that

• S = S′;
• state(n) = state′(ϕNom(n)) for any n ∈ Nom;
• Rλ = R′

ϕMS(λ) for any λ ∈ Λ;

• As = ModFOL(ϕSig)(A′
s) for any s ∈ S, where ModFOL(ϕSig), the reduct

notion on the institution of first-order logic, consists of the classical reduct
notion on first-order structures;

• Ps(p) = P ′
s(ϕProp(p)) for any p ∈ Prop

Satisfaction |=H: Satisfaction is the restriction of Definition 2 to sentences.

Theorem 1. Let Δ = ((Σ, X), Nom, Prop, Λ) and Δ′ two H-signatures and
ϕ : Δ → Δ′ a morphism of signatures. For any ρ ∈ SenH(Δ),
M′ = 〈S′, state′, RΛ′ , (P ′

s)s∈S′ , (A′
s)s∈S′〉 ∈ |ModH(Δ′)|, and s ∈ S,

ModH(ϕ)(M′), g |=s ρ iff M′, g′ |=s SenH(ϕ)(ρ).
where, for any x ∈ X, g(x) = g′(ϕvar

Sig (x)).

Proof. The proof is done by induction on the structures of sentences.

The satisfaction condition for H follows from a well known fact, which states
that satisfaction of a formula only depends on assignment of free variables.
Actually,

Corollary 1 (Satisfaction condition). Let Δ = ((Σ, X), Nom, Prop, Λ)
and Δ′ be two H-signatures and ϕ : Δ → Δ′ a morphism of signatures. For
any ρ ∈ SenH(Δ), M′ = 〈S′, state′, RΛ′ , (P ′

s)s∈S′ , (A′
s)s∈S′〉 ∈ |ModH(Δ′)|,

ModH(ϕ)(M′) |= ρ iff M′ |= SenH(ϕ)(ρ).

Therefore,
Corollary 2. (SignH, SenH, ModH, |=H) is an institution.

Finally, observe that models, language and satisfaction presented on Section 2.1
also constitute an institution. This institution is similarly defined, by forgetting
the first-order signature from hybrid signatures, the state-family of first-order
structures from models and the equations and quantifications from sentences.
By obvious reasons, we call this the institution of propositional hybrid logic and
write HPL.

3.2 Translating to FOL (Stage III)

Stage III in the envisaged methodology was not discussed in section 2. Actually,
from a methodological point of view it is rather straightforward: a translation
of specifications to a well-known first order setting. Technically, however, this
can be stated in a very precise way as a comorphism. Comorphims play, at the
institutional level, the role of logical translations, lifting specifications expressed
within different institutions to a common level [17]. Therefore, any tools, namely
proof assistants, available at the target institution, can be borrowed by the source
one. Formaly,

Hybrid Specification of Reactive Systems: An Institutional Approach 279

Definition 4 (Comorphism). Given institutions I = (Sign, Sen, Mod, |=) and
I ′ = (Sign′, Sen′, Mod′, |=′) a comorphism (Φ, α, β) : I → I′ consists of

1. a functor Φ : Sign → Sign′,
2. a natural transformation α : Sen ⇒ Φ; Sen′, and
3. a natural transformation β : Φop; Mod′ ⇒ Mod

such that the following satisfaction condition holds

M ′ |=′
Φ(Σ) αΣ(ρ) iff βΣ(M ′) |=Σ ρ

for each signature Σ ∈ |Sign|, Φ(Σ)-model M ′, and Σ-sentence ρ.
The comorphism is conservative whenever, for each Σ-model M in I, there

exists a Φ(Σ)-model M ′ in I ′ such that M = βΣ(M ′).

Note that the comorfism conservativeness is necessary to borrow institutions
proof support since it entails that Γ |=Σ ρ iff αΣ(Γ) |=′

Φ(Σ) α(ρ), when we just
have the left-right implication on its absence.

In this sub-section, we establish a comorphism from H into FOL. The trans-
lation procedure is based on the addition of a special sort to represent states.
Hence, in order to ‘collapse’ every local state algebra in a unique structure, the
signature of all operations and predicates is enriched with an argument of this
sort. Moreover, nominals are regarded as constants over ST, modalities as usual
first-order relations and propositions as unary predicates over ST. For that we
have a functor

Φ : SignH −→ SignFOL

〈(Σ,X), Nom, Prop, Λ〉 �−→
(
〈SΣ + {ST}, F Σ + Nom, P Σ + Prop + Λ〉, X̄

)
,

where Σ = (SΣ, FΣ , PΣ) and

– FΣ =

{
(FΣ)STw→s = (FΣ)w→s, for any s ∈ SΣ, w ∈ S∗

Σ

∅, for the other cases
;

– PΣ =

{
(PΣ)STw = (PΣ)w, for any w ∈ S∗

Σ ;
∅, for the other cases

– Nom = {ci : → ST | i ∈ Nom};
– Prop = {p̄ : ST | p ∈ Prop};
– Λ = {λ : STn | λ ∈ Λn}.

– X =

{
Xsort = Xsort, for any sort ∈ SΣ ;
XST = {w, v}

Natural transformation β : Φop; ModFOL ⇒ ModH maps each first-order struc-
ture (M ; MF̄ + MNom; MP̄ + MProp + MΛ̄) ∈ Mod(〈SΣ + {ST}, FΣ + Nom, PΣ +
Prop + Λ〉) into

〈S, state,RΛ, (Ps)s∈S, (As)s∈S〉 〈M ; MF̄ + MNom; MP̄ + MProp + MΛ̄〉�βb〈F,Nom,Prop,Λ〉�� ,

280 A. Madeira et al.

where for any i ∈ Nom, state(i) = cM
i , for any λ ∈ Λ, Rλ = RM

λ . Moreover,
As, s ∈ S is a first-order structure whose carrier set is ASΣ ; functions f ∈
FΣ

s1...sn,s and predicates Q ∈ PΣ
s1,...,sn

are defined for each ui ∈ U , i ≤ n, by
fAs(u1, . . . , un) = f̄M (s, u1, . . . , un) and QAs(u1, . . . , un) = P̄M (s, u1, . . . , un)
respectively. The family (Ps)s∈S , is defined, for each s as Ps(p) = � iff p̄M (s).

Natural transformation α : SenH ⇒ Φ; SenFOL is defined for each
(F, Nom, Λ)-sentence by α(ρ) = (∀w)αw(ρ), where w is a variable of ST and
αw is recursively defined as follows:

αw(t ≈ t′) = Tw(t) ≈ Tw(t′) t, t′ ∈ (TΣ(x))s, s ∈ SΣ

αw(Q(t1, . . . , tn)) = Q̄(w, Tw(t1), . . . , Tw(tn)) Q ∈ P Σ
s1,...,sn

, ti ∈ (TΣ(X))si

αw(i) = ci ≈ w, i ∈ Nom
αw(p) = p̄(w), p ∈ Prop

αw(@iρ) = αci(ρ),
αw([λ]ρ) = (∀v)[(w, v) ∈ Rλ → αv(ρ)], λ ∈ Λ
αw(¬ρ) = ¬αw(ρ)

αw(ρ% ρ′) = αw(ρ)% αw(ρ′), % ∈ {∨,∧,→}
αw(∀xρ) = ∀x αw(ρ) x ∈ X

where Tw : TΣ(X) → TΣ̄(X), for Σ = (SΣ , FΣ , PΣ), defined for each variable
x ∈ X , Tw(x) = x and for each f(t1, . . . , tn) ∈ TΣ(X) by Tw(f(t1, . . . , tn)) =
f̄(w, Tw(t1), . . . , Tw(tn)).

Theorem 2. Let Δ ∈ |SIGNH|, ρ ∈ SENH and M ′ ∈ ModFOL(Φ(Δ)). Then,
for α and β defined as above, for any s ∈ S and any assignment g : X̄ → A such
that whenever g(w) = s, we have that

βΔ(M ′), g�X |=s
H ρ iff M ′, g |=FOL

Φ(Δ) αw(ρ). (4)

Proof. The proof is done by induction on the structures of sentences.

As direct consequence we have the general satisfaction condition for comor-
phisms:

Corollary 3 (Comorphism satisfaction condition). Let Δ ∈ |SIGNH|, ρ ∈
SENH and M ′ ∈ ModFOL(Φ(Δ)). Then, for α and β defined as above we have
that,

βΔ(M ′) |=H
Δ ρ iff M ′ |=FOL

Φ(Δ) αΔ(ρ). (5)

Moreover it is conservative: this is directly entailed by the assumption that
states have constant domains. It is straitforward to see that, we may define
a comorphism from HPL into FOL from the presented one. This is achieved
by forgetting the first-order components of the signatures and models and by
restricting α to the hybrid propositional formulas.

Recalling our running example, we end up with the signature
ops

Speed∗ : st∗ × speed × accel → speed; Pedal∗ : st∗ × time → accel;. . .
pred

next : st∗ × st∗; IgnOn∗ : st∗; . . .

Hybrid Specification of Reactive Systems: An Institutional Approach 281

Note that, now, global properties are universally quantified, and local proper-
ties take as state argument the respective nominal. For instance, global properties
(G1) and (G2) are translated into

∀ s : speed; w : st∗; a : accel;t : time
• (G1∗) ≥∗(w ,Speed* (w, s, a), 0∗(w))
• (G2∗) CurrentSpeed∗(w,t) = 0∗(w) ∧ ≥∗(w, Pedal* (w,t), 0∗(w)).

and local properties (L1
off) and (L4

cruise), into
∀ t : time

• (L1∗
off)CurrentSpeed* (off ,t) = 0∗(off)

• (L4∗
cruise)≥∗(cruise,Pedal* (cruise,t),0∗(cruise))⇒Pedal(cruise,t) = Automatic* (cruise,t).

For instance, transition (T1) is expressed by
•(T1∗) IgnOn(off)⇒
[(∀w : st∗) (off, w) ∈ next ⇒ inactive = w ∧ (∃w′ : st∗) (off, w′) ∈ next ⇒ inactive = w′],

i.e.,
•IgnOn(off)⇒(off, inactive) ∈ next.

4 Tool Support

A central ingredient for the successful integration of a formal method in the
industrial practice is the existence of effective tool support.

Certainly hybrid specifications produces in Stage I of our methodology can be
anchored on recent implementations of logical calculus for HPL (see e.g. HTab

[11], HyLoTab [25] and Spartacus [8]). Moreover, model checking for HPL
models is also an active research issue (e.g. [12,10]).

Our focus is, however, a different, somehow more standard, one: hybrid spec-
ifications are translated to FOL through a suitable comorphism. This solution
provides a uniform first order logical framework for analysis and verification sup-
porting the whole methodology. Moreover, to the best of our knowledge, richer
versions of hybrid logic, as required at Stage II, lack effective tool support, which
makes our approach by translation the only option available. Beyond the concep-
tual support of institutions theory and the structured specification methodology
offered by CASL, we have effective computational tools, to support our sort of
specification. On this perspective HETS-heterogeneous tools set [20] deserves a
special attention.

Using a metaphor of [19], HETS may be seen as a “motherboard” where
different “expansion cards” can be plugged. These pieces are individual logics
(with their particular analyzers and proof tools) as well as logic translations.
To make them compatible, logics have to be formalized as institutions and, the
corresponding translations, as comorphisms. Therefore, the integration of the
hybrid specifications on the HETS framework is legitimate, since all formal re-
quirements (e.g., that institutions exist, that a comorphism can be defined, etc.)
are provided in the present work. HETS already integrates parsers, static ana-
lyzers and provers for a wide set of individual logics, and manages heterogeneous
proofs resorting to the so-called graphs of logics, i.e., graphs whose nodes are
logics and, whose edges, are comorphisms between them.

282 A. Madeira et al.

Furthermore, and directly relevant to our methodology, HETS provides a
rich support for FOL, and consequently, for H and HPL. For instance, provers
SoftFOL, Spass, MathServe Broker, among others, are already “pluged”
into HETS [19], and therefore, all of them provide effective to our specification
methodology (see Figure 3). Moreover, we are also able to take advantage of
a number of “borrowed” provers from other institutions through comorphisms
with source in FOL.

Fig. 3. HETS session

An open issue at this level concerns verification. So far model checking of hy-
brid structures is restricted to propositional hybrid logic [6,12]. The combination
of traditional algebraic specification tools, like first-order provers and rewriting
engines (e.g. CafeObj [5]), together with provers and model checkers for hybrid
logics (e.g. [1,6]) may broaden the scope of application.

5 Conclusions

The paper introduced a rigorous methodology for requirements specification of
reactive systems, flexible enough to capture the existence of different opera-
tional modes at each stage of evolution. Variants of hybrid logic provided the
right conceptual framework to develop such specifications. At a later stage, such
specifications are translated into first-order logic to bring into scene suitable tool
support. The paper’s main contribution was to provide rigorous foundations for
the method, framing specification logics as institutions and the translation pro-
cess as a comorphism between them.

Hybrid Specification of Reactive Systems: An Institutional Approach 283

A lot of work remains to be done. From an experimental point of view, we
are conducting case studies with different size and complexity to assess the
methodology.

Another line of research is concerned with establishing a precise comparison
with approaches to specification with a similar purpose. For instance, many (vari-
ations) of state machines may be represented as hybrid models. Moreover, some
structured state-machines, such as ASM (Abstract State Machines) [3] can also
be represented as our states-as-algebras models. An interesting aspect to explore,
is whether the institutions constructed here may provide an uniform platform
to reason, in a property-oriented perspective, about these model-oriented spec-
ifications. Moreover, recent theoretical developments from the authors justifies
to look to the presented methodology in a more broad sense: it proofs in [16]
that the hybridization idea presented above can be extended to arbitrary institu-
tions. Trough this result it would be worth to consider, on place of the first-order
structures, other kind of semantical models such algebras, temporal frames or
even Haskel modules, since all of these structures are objects of some particular
institution.

Last but not least, refinement. At stage III FOL is used as a common language
to support reasoning and verification on models built on stages I and II. It is,
therefore, expectable to find a way to use this common platform to formally
relate these models. In particular, it would be important to formally assure that
requirements specified on the first stage are not violated on the second one. This
entails the need for a rigorous formalization of the intuitive arrow “?” of figure
1. A natural candidate to do this job, is the classical concept of refinement from
algebraic specifications (e.g. [23]). Throughout this notion, a specification SP
refines a specification SP0 over the same signature, if all the properties satisfied
by SP0 are also satisfied by SP . More generally, when specification signatures
are related by a morphism, a translation of properties is in order wrt to the
signature morphism.

In general, however, this refinement relation is not adequate. For instance, as
suggested on stage II, it is expectable to map a proposition of the state-machine
into an equation on the respective states-as-algebras model. These formulas are
represented in FOL by a predicate and an equation, respectively, which cannot
be related through signature morphisms (which only relate predicates with pred-
icates and equations with equations). Less conventional approaches to refinement
may help to overcome this sort of situations. A possibility we are currently inves-
tigating is to resort to logical interpretations, instead of signature morphisms,
to direct refinement as studied by the authors in [15,14,22]. Interpretations are
multi-functions between the specifications formulas which preserve and reflect
logical consequence.

There are others specification frameworks also based on modal versions of
first-order logic. For instance, in [21] it is defined a logic (for hybrid systems)
based on a dynamical version of first-order logic (over R) with nominals. It is
important to note that the semantical paradigm of those approaches is quite
different for the proposed here; namely, as usual, they deal with states as values

284 A. Madeira et al.

of system variables on of given moment of execution, evaluated in an unique
first-order structure. In our work, it corresponds not to a set of values, but to
state-families of first-order structures, modeling the behaviour of all the system
functionalities.

References

1. Areces, C., Heguiabehere, J.: Hylores: A hybrid logic prover based on direct reso-
lution. In: Proceedings of Advances in Modal Logic, AiML 2002 (2002)

2. Blackburn, P.: Representation, reasoning, and relational structures: a hybrid logic
manifesto. Logic Journal of IGPL 8(3), 339–365 (2000)

3. Börger, E., Stärk, R.: Abstract state machines: A method for high-level system
design and analysis. Springer, Heidelberg (2003)

4. Diaconescu, R.: Institution-independent Model Theory. Birkhäuser, Basel (2008)
5. Diaconescu, R., Futatsugi, K.: Logical foundations of CafeOBJ. Theor. Comput.

Sci. 285(2), 289–318 (2002)
6. Franceschet, M., de Rijke, M.: Model checking for hybrid logics (with an application

to semistructured data). Journal of Applied Logic 4(3), 279–304 (2006)
7. Goguen, J.A., Burstall, R.M.: Institutions: abstract model theory for specification

and programming. J. ACM 39, 95–146 (1992)
8. Götzmann, D., Kaminski, M., Smolka, G.: Spartacus: A tableau prover for hybrid

logic. Electr. Notes Theor. Comput. Sci. 262, 127–139 (2010)
9. Heitmeyer, C.L., Kirby, J., Labaw, B.G.: The SCR Method for Formally Specify-

ing, Verifying, and Validating Requirements: Tool Support. In: ICSE, pp. 610–611
(1997)

10. Hoareau, C., Satoh, I.: Hybrid logics and model checking: A recipe for query pro-
cessing in location-aware environments. In: AINA, pp. 130–137. IEEE Computer
Society, Los Alamitos (2008)

11. Hoffmann, G., Areces, C.: Htab: a terminating tableaux system for hybrid logic.
Electr. Notes Theor. Comput. Sci. 231, 3–19 (2009)

12. Lange, M.: Model checking for hybrid logic. J. of Logic, Lang. and Inf. 18(4),
465–491 (2009)

13. Madeira, A., Faria, J.M., Martins, M.A., Barbosa, L.S.: Hybrid specification of
reactive systems: An institutional approach (extended version). Technical Report
CCTC-11-03, University of Minho (July 2011)

14. Martins, M.A., Madeira, A., Barbosa, L.S.: Refinement by interpretation in a gen-
eral setting. Electron. Notes Theor. Comput. Sci. 259, 105–121 (2009)

15. Martins, M.A., Madeira, A., Barbosa, L.S.: Refinement via interpretation. In:
Hung, D.V., Krishnan, P. (eds.) SEFM, pp. 250–259. IEEE Computer Society
(2009)

16. Martins, M.A., Madeira, A., Diaconescu, R., Barbosa, L.S.: Hybridization of in-
stitutions. In: Corradini, A., Klin, B., Ĉırstea, C. (eds.) CALCO 2011. LNCS,
vol. 6859, pp. 283–297. Springer, Heidelberg (2011)

17. Mossakowski, T.: Foundations of heterogeneous specification. In: Wirsing, M.,
Pattinson, D., Hennicker, R. (eds.) WADT 2003. LNCS, vol. 2755, pp. 359–375.
Springer, Heidelberg (2003)

18. Mossakowski, T., Haxthausen, A., Sannella, D., Tarlecki, A.: CASL: The com-
mon algebraic specification language: Semantics and proof theory. Computing and
Informatics 22, 285–321 (2003)

Hybrid Specification of Reactive Systems: An Institutional Approach 285

19. Mossakowski, T., Maeder, C., Codescu, M., Lucke, D.: Hets user guide - version
0.97. Technical report, DFKI Lab Bremen (March 2011),
http://www.informatik.uni-bremen.de/agbkb/forschung/formal methods/

CoFI/hets/index e.htm

20. Mossakowski, T., Maeder, C., Lüttich, K.: The heterogeneous tool set, hets. In:
Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 519–522.
Springer, Heidelberg (2007)

21. Platzer, A.: Towards a hybrid dynamic logic for hybrid dynamic systems. Electron.
Notes Theor. Comput. Sci. 174, 63–77 (2007)

22. Rodrigues, C.J., Martins, M.A., Madeira, A., Barbosa, L.S.: Refinement by inter-
pretation in π-institutions. EPTCS 55, 53–64 (2011)

23. Sannella, D.: Algebraic specification and program development by stepwise refine-
ment (Extended abstract). In: Bossi, A. (ed.) LOPSTR 1999. LNCS, vol. 1817, pp.
1–9. Springer, Heidelberg (2000)

24. Tarlecki, A.: Abstract specification theory: An overview. In: Broy, M., Pizka, M.
(eds.) Models, Algebras, and Logics of Engineering Software. NATO Science Series,
Computer and Systems Sciences, vol. 191, pp. 43–79. IOS Press, Amsterdam (2003)

25. van Eijck, J.: Hylotab-tableau-based theorem proving for hybrid logics. Technical
report, CWI (2002), http://homepages.cwi.nl/~jve/#Publications

http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/CoFI/hets/index_e.htm
http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/CoFI/hets/index_e.htm
http://homepages.cwi.nl/~jve/#Publications

Leveraging State-Based User Preferences

in Context-Aware Reconfigurations
for Self-Adaptive Systems

Marco Mori1, Fei Li2, Christoph Dorn3,
Paola Inverardi4, and Schahram Dustdar2

1 IMT Institute for Advanced Studies Lucca
marco.mori@imtlucca.it

2 Distributed System Group, Vienna University of Technology
{li,dustdar}@infosys.tuwien.ac

3 Institute for Software Research, University of California, Irvine
cdorn@uci.edu

4 Dip. di Informatica, Università dell’Aquila
paola.inverardi@di.univaq.it

Abstract. Applications in ubiquitous environments need to adapt to a
range of fluid factors, like user preferences, context, and various system
configurations. In this paper, we address the problem of system adap-
tation in order to continuously achieve high user benefit while keeping
reconfiguration costs low. To this end, the presented approach leverages
not only the immediate context but also future transitions. In contrast
to existing approaches that either maximize benefit or minimize recon-
figuration costs, our proposed decision support mechanism achieves a
trade-off between those factors. Considering user preferences, deploy-
ment constraints, and probabilistic context state transitions, we propose
a multi-objective utility function to determine the best reconfiguration
choices. Experimental results show that the proposed approach achieves
high user benefit while keeping reconfigurations costs low.

1 Introduction

As ubiquitous computing is becoming more and more widespread, software en-
gineers have to deal with different variability dimensions including the system
context, users, and the system configuration itself. Changes are not always pre-
dictable since they are beyond the control of the system and they may require
human intervention. To reduce maintenance cost it is desirable to achieve au-
tomatic self-adaptations in response to various kinds of changes. Adaptations
should meet the desired quality requirements according to user preferences and
they should be performed at reasonable cost and in a timely manner.

Self-adaptive systems are able to adjust their run-time behavior in face of
changing external circumstances [17,4,1]. Software engineers define a set of al-
ternative behaviors at design time while the actual adaptation decisions are post-
poned to run-time. Context plays a key role for adaptation since it determines

G. Barthe, A. Pardo, and G. Schneider (Eds.): SEFM 2011, LNCS 7041, pp. 286–301, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Leveraging State-Based User Preferences in Context-Aware Reconfigurations 287

the variation of user preferences and the space for the admissible adaptation al-
ternatives. Context, thus, needs to be explicitly modeled in order to account for
the run-time adaptation as proposed in research of context-aware systems [3,10].

This paper addresses the problem of how to achieve simultaneous adapta-
tion to system execution context and user preferences. The execution environ-
ment determines the space of admissible system configurations whereas the user
determines the benefit of each available configuration. Switching between dif-
ferent configurations comes at some cost. Consequently, predictive information
promises a significant cost saving potential by making adaptation decisions aware
of probable future context changes and thereby anticipates upcoming reconfig-
uration needs. When determining system configurations, the challenge lies in
finding a suitable trade-off between two opposite objective functions: maximize
user benefit while minimize reconfiguration costs. Pure user benefit-driven se-
lection comes with high costs due to frequent reconfigurations. In contrast, pure
cost-driven adaption neglects user preferences and invariably prefers the current
configuration, thus it changes the system configuration only when absolutely nec-
essary. For balancing the two factors, we define our solution as a multi-criteria
selection problem among different system alternatives and we evaluate each of
them through an aggregating objective function that combines cost and user
benefit. Experiments based on a case study and simulation demonstrate that
our approach successfully determines Pareto-optimal configurations of high user
benefit and low reconfiguration costs. Our contributions in this paper are:

– a concrete methodology to characterize system resources and configuration
eligibility while

– defining user preferences on non-functional properties specific to distinct user
contexts (situations).

– applying probabilistic information on future context states to predict up-
coming context changes

– defining the configuration selection as a multi-criteria optimization problem.

The remainder of this paper is structured as follows: Section 2 presents a moti-
vating scenario followed by a description of our approach in Section 3. Section 4
introduces the optimization framework in terms of their main components, while
Section 5 formalizes the optimization problem. Section 6 provides evaluation and
validation results based on our case study and a simulation. Section 7 discusses
related work before conclusions and future work round up our paper in Section 8.

2 Motivating Scenario

An e-Health application supports doctors’ activities by providing the most rele-
vant services to visualize per-patient case history. Patient information is available
at three levels of granularity: (i) a complete case history that includes textual
reports and medical images, (ii) a compact version with only the recent history
of reports and images, and (iii) only a textual case history. In addition images
are displayed either as black and white images, in low color (256 colors), or as
fully colored images (4096 colors).

288 M. Mori et al.

Doctors need to receive aggregated per-patient information to support their
activities at different locations. These activities include patient consulting, check-
up, and medical procedures such as operations. Moreover they may be involved in
emergency situations. These activities are performed at different locations such
as common visiting rooms, surgery rooms, patient home or outside the hospital
when an emergency arises. The doctor is able to visualize per-patient informa-
tion through an accessible device inside or outside the hospital. Devices differ
in their hardware resources such as bandwidth availability (netB), number of
screen colors (SC), CPU speed (CPUClockRate) and available memory (Mem).
Hardware has an impact on the available services: e.g., low bandwidth and 8 bit
colors restrict the responsiveness to retrieve the patient’s medical history and
available image quality.

Fig. 1. User Preferences Example

Activity and location influence the doctor’s preference for displaying the
case history and image quality, see Fig. 1. The doctor might prefer a respon-
sive system in case of an emergency activity. In another case, immediate re-
trieval of per-patient information is not as important as a detailed history for
consulting activities. Upon context changes, the e-Health application needs re-
configuration based on the underlying hardware resources and the doctor’s
(context-dependent) preferences.

3 Approach

From a feature engineering perspective, features are the basic unit of behavior
[6]. Breaking the system logic into feature components enables us to reduce the
impact that any change might have on the system. Thus, we represent each alter-
native system variant as a distinct configuration of features. In [9] we defined a
methodology to create the space of admissible configurations for a self-adaptive
application starting from the set of basic features. In this paper we are going to
define a decision making mechanism that is suitable for feature-based systems
having the cost of deploying a feature independent from the running configura-
tion. Figure 2 visualizes the conceptual aspects of our work. We consider for each

Leveraging State-Based User Preferences in Context-Aware Reconfigurations 289

configuration a set of deployment constraints to assess the configuration admis-
sibility. These constraints are evaluated against the current underlying context
(resources) to establish whether the environment can support the execution of
that particular configuration. On the other hand, we map a feature configuration
to non-functional properties to represent the configuration’s quality. This qual-
ity becomes a configuration utility (i.e., user benefit) when matched with user
preferences. For each user, we assume the availability of historical transitions
between the various context states. We also assume the time required for system
adaptation upon a state transition to be negligible compared to the frequency
of user context changes.

Fig. 2. Conceptual Model

4 Basic Models

In this section we introduce the basic definitions and models we use to formu-
late the context-aware reconfiguration problem. System reconfiguration aims at
satisfying two objectives: user benefit and cost which arise due to system recon-
figuration. We represent each system variant in terms of a deployment constraint
and the provided non functional properties. We propose a definition of transi-
tion cost to penalize reconfigurations. In our framework, there are two types of
context models. On one hand, features express their deployment constraint as
conditions on the operative context model. In contrast, user preferences are not
static but depend on the underlying user context entities instances. Thus, the
user context model provides mean to map particular user preferences (over the
non-functional properties) to specific context instances. We exploit the operative
context model to evaluate which alternatives are admissible at a given point in
time, and the user context model to deal with the current and probable future
user preferences.

4.1 Operative Context Model

The system variants describe which resources they require for execution and
thus need to be represented in the operative context model. Each system context
entity is identified through a tag within the set TagId = {TagId1, ..., T agIdn}
and it can assume one among its admissible values contained in the corresponding

290 M. Mori et al.

finite domain D1, ..., Dn. We adopt the modeling approach proposed in [13] to
represent our definition of operative context space and operative context scope.

The operative context space for the system context entities is defined as the
Cartesian product of their admissible values: O =

⊗
Di s.t. i = 1, ..., n. Each

element in O is a vector r expressing a different assignment of values, e.g. r =
(netB(100Kbps), Mem(10MB), SC(256colors), CPUClockRate(100Mhz)).

An operative context scope os is a subset of the operative context space O,
os ∈ 2O, e.g. os = (netB(100−200Kbps), Mem(10−50MB), SC(10−20colors),
CPUClockRate(100 − 150Mhz)).

4.2 System and System Variants

We have adopted the feature engineering perspective to express the system vari-
ants. Each basic unit of behavior is expressed as a feature, that is the smallest
unit of behavior that can be perceived by the user [11]. System variants are
expressed as configurations; each one obtained by combining subsets of features.
We define each configuration in terms of deployment constraints and the fitness
values for the non-functional properties.

Deployment Constraints. It is a predicate which expresses the demand to the
operative context entities for a configuration c, e.g. netB(5kbps)∧Mem(0, 1MB)
is true only with a sufficient level of bandwidth and memory. An operative
context scope osc entails the elements in O that make the predicate true. Then,
we evaluate if a configuration c is eligible in a context scope os with the function
fc which is equal to 1 only if os ⊆ osc and 0 otherwise. In our problem we also
exploit the function Eligible(r) to evaluate which configurations are eligible with
the context values in r.

Non-functional Properties. Each configuration for an adaptive application
provides different qualities to the user. These non-functional properties NFP =
{nfp1, nfp2, ..., nfps} can be quantitatively measured to drive the adaptation
and to guarantee the user benefit. We map the properties values (defined over
finite domains) to normalized fitness values in the real range [0,1]. For each
configuration c, the vector fvc contains the fitness values.

Transition Cost. An important factor to consider during the reconfiguration
process is the penalty of switching from the source configuration to the tar-
get configuration. Since in our approach system configurations are made by
features, we characterize this penalty based on the distance between the two
configurations as Disty,z = [NToDeploy NToUnDeploy] expressing the num-
ber of features to deploy and un-deploy switching from y to z. The vector
FCost = [CDeployingf CUnDeployingf] contains the same cost of deploying
and un-deploying a feature. Based on the two vectors we define the transition
cost of switching from y to z as:

TC(y, z) = (Disty,z · FCostT)/MaxCost (1)

Leveraging State-Based User Preferences in Context-Aware Reconfigurations 291

This cost is normalized to the maximum theoretical cost, which depends by the
maximum number of features to deploy and un-deploy:

MaxCost = [MaxToDeploy MaxToUnDeploy] · FCostT (2)

This simplified cost model is sufficient for our purpose since we do not address the
problem of executing the actual system reconfiguration at the implementation
level.

4.3 User Context Model

User context entities characterize the user’s situation. As they are beyond the
control of the application, they play a key role in the adaptation process. As
mentioned in Section 2, the user’s preferences change when switching from one
user context state to another. Note that our approach is independent from the
actual user context entities and how they change as long as there is a mapping
of the various observable user context states to user preferences.

We define a mapping between the user context state UC — as defined by a set
of user context entities — and the associated user preferences. User preferences
express the importance (i.e., weight) of the various non-functional properties
in a given context state. Higher weights express higher importance applied in
the mapping functions w : NFP → [0, 1]. Furthermore, we introduce a proba-
bilistic automaton to represent the changing user preferences as induced by the
underlying transitions between context states.

This automaton is defined as A = (UC, P, E) where:

– UC = {UC0, ..., UCt} is the set of states expressing the space of the user pref-
erences. Each state is represented as a different combination of weights upon
the non-functional parameters: UCj = [w1(nfp1)...ws(nfps)] j = 1, .., t;
at each state the weights are defined as:

∑s
i=1 wi(nfpi) = 1

– P is the set of transition probabilities
– E : UC × P → UC is the probabilistic transition function

This probabilistic state-based model shows how the preferences reflect the
changes of user context entities. Historical data collected during system exe-
cution allows us to determine the actual transition probabilities between user
context states. We continuously sample user context data at fixed intervals of
time so that the probability to have two or more preference changes (i.e., context
changes) within one interval is negligibly low. This process, however, is beyond
the scope of this paper. Nevertheless techniques like [12] show the possibility to
get preferences from user context, whereas methodologies like [14] define how
to build a probabilistic model and maintain it updated with current system
execution.

We expect that the various user context states come with changes in the oper-
ative context space. For example, bandwidth will not be the same in every loca-
tion. Consequently, we consider also if a particular system variant is admissible
in the observed user context state, independent from user preferences. We define

292 M. Mori et al.

Fig. 3. Probabilistic automaton excerpt

a mapping function to associate each state in UC with an operative context
scope within the set OS (UCR : UC → OS). This models the correspondence
between the user preferences and the observed system context entities. Fig. 3
provides an excerpt of a probabilistic automaton, detailing the mapping of user
preferences and operative context scopes to a user context state.

5 Problem Formalization

Two events trigger the optimization problem and subsequent reconfiguration.
Either the user moves into a new user context state characterized by a changing
preference or the operative context cannot support the execution of the cur-
rent system variant anymore. The best configuration to deploy depends on the
achievable user benefit and the associated costs for reconfiguring the system. A
strategy that maximizes the user benefit after each transition possibly requires
many system reconfigurations. On the other hand choosing a fixed configuration
which is always eligible throughout all states may result in possibly sub-optimal
user benefit or may not exist at all. As a consequence we have to consider a
trade-off analysis between two conflicting criteria, i.e. user benefit and reconfig-
uration costs. In the following we formalize the user benefit, the reconfiguration
cost, and describe their combination in a single utility function.

As shown in Eq.3 the component Bcurr evaluates how well a certain configu-
ration c fits the current user context state. The user benefit at each state is the
product of the corresponding user preferences vector with the quality attribute
fvc offered by the configuration.

Bcurr = UCcurr · fvT
c (3)

A configuration that gives optimal user benefit for a certain state may be sub-
optimal if we consider the probable future states. Therefore we introduce an
equation component that evaluates the expected user benefit in the future as
given by the probabilistic context transitions. The cost component BF shown
in Eq.4 computes the future benefit of a configuration. We limit the calculation
of future benefit to a single hop in the transition graph. Considering additional
states (i.e., multiple hops) is expected to yield little additional benefit as each of
the reachable states will have very small probability and thus hardly any impact.

BF =
#OutLink(UCcurr)∑

j=1

p(UCcurr, UCj) ·
[
UCj · fvT

c

]
· fc(osj) (4)

Leveraging State-Based User Preferences in Context-Aware Reconfigurations 293

BF aggregates the user benefit for each subsequent user context state weighted ac-
cording to the respective transition probability. A configuration yields user benefit
only if it is eligible in the corresponding operative context scope (fc(osj) = 1).
Ultimately, the overall user benefit equation is obtained by combining the current
and future user benefits as follows:

BAgg = h · Bcurr + (1 − h) · BF (5)

The horizon h regulates the importance of the current user benefit compared
to the future user benefit. The horizon close to 1 expresses a preference for the
current state, whereas for h close to 0 we deem the future more relevant. Thus
for environments where the user is expected to rapidly switch between states,
the horizon configuration parameter should be closer to 0 as he/she will leave
the current state soon.

The reconfiguration cost TC represents the cost of switching from the current
deployed configuration to the configuration c (Eq. 1). The problem of selecting
the best configuration in a operative context model state r, given a predefined
user context model, is formalized as a max optimization problem combining the
expressions defined in Eq. 3, 4, 1:

max
c∈Eligible(r)

α · [h · Bcurr + (1 − h) · BF] − (1 − α) · TC(ccurr, c) (6)

The parameter α regulates the trade-off between user benefit and reconfigura-
tion cost. Setting α closer to 1 makes the optimization more likely to meet the
user benefit in spite of a high cost of reconfiguration. When setting this param-
eter closer to 0, we reduce the reconfiguration cost by selecting general purpose
system variants that may be sub-optimal on the user benefit. The parameter h
enables to tune the interest between the current user preferences and the prob-
able future user preferences as explained above.

By introducing the variables α and h we make our optimization process
customizable to various environments. The horizon h enables tuning to self-
transitions in the context automata. If the resulting self-transitions are very
high but still we are interested in optimizing future preferences we need to de-
crease the value of h. On the other hand if we end up with low self-transitions
but we want to better match current preferences we have to increase the value
of h. In addition, by setting h = 1 we enable comparison to existing approaches
that are future-unaware.

6 Evaluation

This section presents two ways to evaluate our contribution. Firstly, we model
the motivating scenario in Section 2, and apply our approach to find an opti-
mal solution to the scenario. Secondly, we simulate the reconfiguration process
at large scale in order to provide general guidelines of parameter settings to
extensive application scenarios.

294 M. Mori et al.

6.1 Case Study

Applying the feature engineering perspective the e-Health scenario yields follow-
ing alternative features to view the per-patient case history: S = {fviewAllIm,
fviewLastIm, fviewAllRep, fviewLastRep, fviewSum, fpaintBW , fpaintCol, fpaintFCol}.

Table 1. System Configurations

Configuration Deployment Constraint Non-Functional Properties

c1 = {fviewSum}
netB(5kbps) ∧Mem(0, 1MB) displayModel = summary

responsiveness = high

c2 = {fviewLastIm, fviewLastRep, fpaintBW }
netB(20kbps) ∧Mem(2, 5MB)∧ displayModel = lastHistory
CPUClockRate(40Mhz) responsiveness = mediumHigh

c3 = {fviewLastIm, fviewLastRep, fpaintCol}
netB(20kbps) ∧Mem(2, 5MB)∧ displayModel = lastHistory
CPUClockRate(50Mhz) responsiveness = mediumHigh

c4 = {fviewLastIm, fviewLastRep, fpaintF Col}
netB(200kbps) ∧Mem(40MB)∧ displayModel = lastHistory
CPUClockRate(10Mhz) ∧ SC(4096colors) responsiveness = mediumLow

c5 = {fviewAllIm, fviewAllRep, fpaintBW } netB(40kbps) ∧Mem(10MB)∧ displayModel = completeHistory
CPUClockRate(40Mhz) responsiveness = medium

c6 = {fviewAllIm, fviewAllRep, fpaintCol}
netB(40kbps) ∧Mem(10MB)∧ displayModel = completeHistory
CPUClockRate(50Mhz) ∧ SC(256colors) responsiveness = medium

c7 = {fviewAllIm, fviewAllRep, fpaintF Col}
netB(800kbps) ∧Mem(160MB)∧ displayModel = completeHistory
CPUClockRate(100Mhz) ∧ SC(4096colors) responsiveness = low

Table 1 lists the 7 configurations built from these proposed features. Config-
urations c1 provides only a textual representation of the patient’s case history
(summary). The next three configurations display only the very recent case en-
tries (lastHistory) by means of textual reports and medical images which may be
colored following the three different modes (BW , Fullycolored, Colored). The
last three configurations display the complete case history (completeHistory)
with a different coloring modality. The feature combination in each configura-
tion determines the responsiveness level (ranging from Low to High). In the
following we describe how the reconfiguration process takes place whenever the
user switches context. We potentially observe a change of the user preferences
when the doctor moves to a different location or engages in a different task.
If this is the case, we then have to evaluate which configuration maximizes
Eq. 6. We select the best configuration starting from the following inputs: the
set of eligible configurations in the current operative context, the user context
automata and the reconfiguration costs. In this case study, we obtain a user
context automaton with the transitions probabilities shown in Fig.4 by ana-
lyzing historical user data detailing the movements and the doctor’s working
timetable. Each state is characterized by different weights for each quality at-
tribute (UC0 = [0.3 0.7], UC1 = [0.6 0.4], UC2 = [0.7 0.3], UC3 = [0.5 0.5],
UC4 = [0.45 0.55], UC5 = [0.9 0.1]). The first component of each vector indi-
cates how important the displayModel property is, while the second expresses
the weight for responsiveness. In addition each user context state is associated
to a different operative context scope OS0, .., OS5.

Suppose the doctor changes from an emergency activity to a check-up activity
within the hospital visiting room. As a consequence the user context switches
from UC0 to UC3 and the reconfiguration process commences. Note that the user
is free to switch between context states which exhibit no corresponding transition
in the automaton. Let us suppose that the running configuration is c2 and the

Leveraging State-Based User Preferences in Context-Aware Reconfigurations 295

Fig. 4. User Context Automata

operative context state is rcurr = (netB(50Kbps), CPUClockRate(100Mhz),
Mem(20MB), SC(256colors)). We check the deployment constraints for the
configurations in Table 1 against the state rcurr. Thus we compute the set of eligi-
ble configuration as Eligible(rcurr) = {c1, c2, c3, c5, c6}. Each configuration pro-
vides two non-functional properties NFP = {displayModel, responsiveness}.
The first assumes one value among summary, lastHistory and completeHistory
whereas the second assumes one value among low, mediumLow, mediumHigh,
medium and high. Starting from the qualities offered by each configuration we
evaluate the parallel fitness vectors exploiting a possible normalization:

c1 : [summary high] ⇒ fvc1 = [0.1 0.8]
c2 : [lastHistory mediumHigh] ⇒ fvc2 = [0.5 0.65]
c3 : [lastHistory mediumHigh] ⇒ fvc3 = [0.5 0.65]
c5 : [completeHistory medium] ⇒ fvc5 = [0.9 0.5]
c6 : [completeHistory medium] ⇒ fvc6 = [0.9 0.5]

For purpose of demonstrating, we assume the cost of deploying and un-
deploying any feature is FCost = [2 1]. The distance between each admissible
configuration and the current one (c2 = {fviewLastIm,fviewLastRep,fpaintBW }) in
terms of features to deploy and un-deploy is given in Table 2. The normalized
costs of switching from the current configuration to each possible target one are:
TC(c2, c1) = 0.555, TC(c2, c2) = 0, TC(c2, c3) = 0.333, TC(c2, c5) = 0.667,
TC(c2, c6) = 1. The maximum theoretical cost we exploit for the normalization
is evaluated as MaxCost = [3 3] · [1 1]T = 6 (Eq. 2). We solve the optimization
problem at Eq.6 considering the new user context state UC3, the set of eligible
configurations at the operative state rcurr, and the costs. For demonstrating our
approach we set α to 0.7 to express that the user benefit is more important than

Table 2. Distance evaluation

Dist./Conf. c1 c2 c3 c5 c6

ToDeploy 1 0 1 2 3

ToUnDeploy 3 0 1 2 3

296 M. Mori et al.

costs. We also set the variable h to 0.5 to consider equally current and future
user preferences.

Our proposed methodology enables selecting the configuration which fits bet-
ter the current preferences while considering the future user preferences. Future
preferences are determined by the probable future task and location in which
the doctor will be involved. In addition also the costs of switching configuration
are taken into account.

At the current user context state (UC3, the one where the user just arrived),
the doctor is performing a check-up activity at the visiting room where the
responsiveness and displayModel properties are equally ranked (Figure 1). By
looking at the automata in Fig.4 we reason that with very high probability the
doctor will thereafter switch to another state (UC1). This probable subsequent
state comes with different weights for responsiveness and displayModel (UC1).
As a consequence we anticipate this future transition by selecting a system con-
figuration which provides already better display modality now, even if it does
not strictly meet the current user preferences. Nevertheless, in this example the
top ranked configuration maximizes also the current preferences.

Table 3 presents the overall utility value for the eligible configurations ob-
tained by combining the user benefit component (Eq.5) and the cost (Eq. 1).
User benefit components do not need normalization since they are evaluated
exploiting normalized user preferences and normalized quality vector. In this il-
lustrative example the best configuration is c6 since it corresponds to the best
trade-off between user benefit and costs with given h and α.

Table 3. Configurations evaluation

Configuration Bcurr BF Cost Overall utility

c1 = {fviewSum} 0.45 0.38 0.555 0,457

c2 = {fviewLastIm , fviewLastRep, fpaintBW } 0.575 0.56 0 0,397

c3 = {fviewLastIm , fviewLastRep, fpaintCol} 0.575 0.56 0.333 0,497

c5 = {fviewAllIm , fviewAllRep , fpaintBW } 0.7 0,662 0.667 0,6767

c6 = {fviewAllIm , fviewAllRep , fpaintCol} 0.7 0,662 1 0,7767

6.2 Experiment

Besides a case study, we validate our approach by simulating context changes
and the resulting reconfigurations for various parameter settings. The results
demonstrate that a predictive approach considerably improves the reconfigura-
tion process. The simulation process takes the user context automata, costs, and
a set of system variants as input. During the simulation we measure two metrics:
the achieved user benefit and the incurred reconfiguration costs.

We run the same experiment with different values for the parameters α and
h to analyze the effect on the two metrics. For each experiment we construct a
set of 200 paths of 100 hops generated according to the probabilities of a fixed
user context automata (Sec. 6). We then generate a fixed number of alternatives
system variants. For each variant we define randomly the eligible context states
and the values of non functional properties. Each experiment consists of iterat-
ing through the context automaton according to the 200 predefined paths. At

Leveraging State-Based User Preferences in Context-Aware Reconfigurations 297

each state, we select the variant that maximizes Eq. 6. For each chosen variant,
we log the current user benefit and reconfiguration cost. Finally, we evaluate the
averages of the two metrics over all paths within a single experiment configura-
tion. Then we repeat the experiment with the same paths sequences but varying
α and h values. We then compare the results for different combinations of α
and h. Setting the horizon h to 1 we simulate a future unaware reconfiguration
strategy. There was no difference in the resulting cost and benefit trends for cost
vectors FCost = [2 1] and FCost = [10 1]; thus we report only the results for
the former.

(a) (b)

Fig. 5. Normalized average user benefit (a) and normalized average reconfiguration
cost (b) with h = 1.0, h = 0.5 and h = 0.2 depending on utility objectives weights α.

Figure 5(a) and 5(b) show the normalized user benefit and reconfiguration
across 33 experiment configurations. Figure 5(b) compares reconfiguration cost
with three different values of h. Here we observe higher reconfiguration cost if
we consider only the current user context state (h = 1). On the other hand
configurations are likely to change less frequently whenever we consider future
user preferences. This holds if we consider current and future preferences equally
(h = 0.5) as well as if we give more relevance to the future state (h = 0.2). We
can conclude that looking into the future lowers the cost. As shown in the Figure
we can reduce the reconfiguration cost by regulating h independent from α. Since
α represents the weight for the aggregated user benefit (Eq. 5), it increases the
significance of user benefit over the cost when it is close to 1.

Although we can reduce the reconfiguration cost by exploiting future user
preferences, we potentially lower user benefit at the same time. A configuration
that optimizes both current and future preferences does not necessarily max-
imize current user benefit. Figure 5(a) presents the difference of user benefit
considering the static and predictive approach with value of h. We get the best
average user benefit if we consider only the current user context state (h = 1)
while we get lower values if we consider the future user preferences (h = 0.2 and
h = 0.5).

Figure 5(a) and 5(b) suggest that if we consider the current and future user
preferences the relative decrease in user benefit is smaller than the reduction
of reconfiguration cost. As shown in the figures there is potential user benefit
without raising the cost. In addition, Figure 5(a) and 5(b) also suggest that

298 M. Mori et al.

within the user benefit component the parameter h regulates the benefit and
cost objectives. In fact setting h closer to 1 increases the cost of reconfiguration
in order to increment the benefit, whereas by setting h closer to 0 we partially
alleviate the cost of reconfiguration by accepting lower user benefit configura-
tions. The difference between α and h is that the horizon has a lower impact on
the objectives compared to α.

Fig. 6. Pareto-optimal and sub-optimal Configurations

Finally, we analyze the set of Pareto optimal configurations for h = [0; 0.1; 0.2;
. . . 1] and α = [0; 0.1; 0.2; . . .1] for a total of 121 compared configurations. Pareto
optimal points are roughly evenly distributed across h thus making it possible to
select desirable values according to the specific application. We have discovered
which range of α could be exploited to get most of the optimal points. In Figure
6, the Pareto optimal configurations are displayed following three different series;
red squares stand for points in the range of α = [0.5; 0.7], crosses for optimal
points for α = [0; 0.5] and triangles for α = [0.7; 1]. Sub-optimal configurations
are given in blue circles. As the configuration values are averaged over multi-
ple transitions (as outlined above) also sub-optimal configurations close to the
Pareto-optimal ones might me candidates. As shown in the Figure we have noted
that around 50% of optimal configurations lie in the range of α = [0.5; 0.7]. We
can thus conclude that too low α values put too much weight on costs and there-
fore waste a lot of potential to improve user benefit. Hence, our approach is able
to realize considerable user benefit even in very cost-constrained environments.
Pareto optimal configurations as shown in the Figure help to decide how to set α
while leaving to the designers the choice of h for specific ubiquitous applications.

The results demonstrate that predictive approaches (h < 1) allow the reduc-
tion of reconfiguration cost while providing an acceptable level of benefit to the
user. We can conclude that our predictive approach is as good as non predictive
approaches (h = 1) whenever we want to maximize the user benefit without
focusing too much on cost. For cost-sensitive environments, a non-predictive ap-
proach fails to produce Pareto optimal points. Indeed, Pareto optimal points
with h = 1 have high α values (α = [0.7; 1]).

Leveraging State-Based User Preferences in Context-Aware Reconfigurations 299

7 Related Work

Self-adaptive systems need automatic reconfiguration at run-time considering
the characteristics of execution environments and the user preferences. Since it
is important to make adaptation resilient to changes, it is necessary to support
the decision-making process with predictive information.

In the literature there are a number of decision making mechanisms exploit-
ing user preference to support the adaptation. Sykes et al. [18] evaluate the
utility of each system component primarily by the user preferences upon each
non functional property. Then the overall utility degree for each system variant
is obtained as the average of each component utility. The authors define the
space of adaptation strategies without considering the environment condition
explicitly. The PLASTIC approach [2] considers how to exploit user preferences
in performing service based adaptation. The approach performs a non-functional
selection among the system variants that can be deployed in the current exe-
cution environment based on the required resources. The approach proposes a
resource model that is similar to our operative context scope since it supports
the definition of eligible configurations. However no predictive information is in-
cluded to drive their adaptation process. In the field of service discovery, Li et
al. [13] exploit a user preference model to support the service recommendation
to the user. At run-time, services are checked with respect to their precondition
and then they are ranked based on the user preferences upon their possible out-
comes. The approach considers only a simple context model without considering
future changes. Dorn and Dustdar [7] observe the behavior of multiple users to
adapt the available software capabilities (i.e. features) to the preferences of the
whole group. Their approach, however, does not take into account operative con-
text constraints, neither do they apply predictive knowledge on potential future
context changes.

All the mentioned approaches neither consider predictive information about
the context resources nor about the user preferences. Adaptations are performed
only by exploiting information on the current context.

Cheng et al. [5] extend the Rainbow evolution framework [8] in order to ex-
ploit the predictive availability of context resources to enable the adaptations.
However they lack the notion of user preferences. Poladian et al. [15,16] face the
problem of selecting a sequence of system variants for a predefined sequence of
fixed time slots, each of which is characterized by a prediction of resource avail-
abilities. The sequence which better fits the fixed user preferences at each time
slot is selected. Also a factor of cost is introduced in order to give an increased
utility to components which are already running. In addition to this work, which
is heavily focused on resource prediction, we also consider the predictive context
states and corresponding user preferences because of our intention to address
ubiquitous environments. To the best of our knowledge there are no approaches
that support system adaptation by considering run-time user preference changes,
operative context changes and cost factors coherently in one formal framework.
We claim that considering all these factors together promote better performance
of the adaptation process.

300 M. Mori et al.

8 Conclusions

In this paper we proposed a reconfiguration scheme for ubiquitous applications.
In our approach we considered several factors including user preferences, non-
functional properties, and reconfiguration cost, which may affect adaptation de-
cisions in response to changing context. By applying feature engineering and
context-awareness techniques, we quantified these factors and their aggregated
effects in order to provide decision support in the face of multiple adaptation
options. We conducted a series of experiments to evaluate the effectiveness of
our approach with different configuration parameters. As the analysis of Pareto
optimal solutions showed, our mechanism is able to maintain high user benefit
while significantly reducing reconfiguration costs. Results further demonstrated
that even a trade-off favoring reconfiguration costs over user benefits proves
more effective than simply focusing on reducing costs alone. Based on these re-
sults, we provided guidelines to users on how to apply different parameters in
order to weigh between user benefits and reconfiguration costs. The complete
methodology was illustrated by means of a case study in the e-Health domain.

In the future, we will measure actual reconfiguration costs coming from the
implemented case study. We also plan to integrate support for directly deter-
mining Pareto optimal solutions, thus relieving users of having to select suitable
values for α and h. Furthermore, we will conduct theoretical analysis of the con-
text state topology such as number of states, average connectivity between the
states, and transition frequency, by which we expect to open up more intelligent
and effective reconfiguration strategies.

Acknowledgments. This work has been partially supported by the EU IST
CONNECT (http://connect-forever.eu/) No 231167 of the FET - FP7 program,
the EU IST CHOReOS (http://www.choreos.eu/) No 257178 of the FP7 pro-
gram, and the Austrian Science Fund (FWF) J3068-N23.

References

1. Andersson, J., de Lemos, R., Malek, S., Weyns, D.: Modeling dimensions of self-
adaptive software systems. In: SEAMS, pp. 27–47 (2009)

2. Autili, M., Di Benedetto, P., Inverardi, P.: Context-aware adaptive services: The
PLASTIC approach. In: Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS,
vol. 5503, pp. 124–139. Springer, Heidelberg (2009)

3. Baldauf, M., Dustdar, S., Rosenberg, F.: A survey on context-aware systems.
IJAHUC 2(4), 263–277 (2007)

4. Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.):
Software Engineering for Self-Adaptive Systems. LNCS, vol. 5525. Springer, Hei-
delberg (2009)

5. Cheng, S.-W., Poladian, V., Garlan, D., Schmerl, B.R.: Improving architecture-
based self-adaptation through resource prediction. In: SEAMS, pp. 71–88 (2009)

6. Classen, A., Heymans, P., Schobbens, P.-Y.: What’s in a feature: A requirements
engineering perspective. In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE 2008. LNCS,
vol. 4961, pp. 16–30. Springer, Heidelberg (2008)

Leveraging State-Based User Preferences in Context-Aware Reconfigurations 301

7. Dorn, C., Dustdar, S.: Interaction-driven self-adaptation of service ensembles. In:
Pernici, B. (ed.) CAiSE 2010. LNCS, vol. 6051, pp. 393–408. Springer, Heidelberg
(2010)

8. Garlan, D., Cheng, S.-W., Huang, A.-C., Schmerl, B.R., Steenkiste, P.:
Rainbow: Architecture-based self-adaptation with reusable infrastructure. IEEE
Computer 37(10), 46–54 (2004)

9. Inverardi, P., Mori, M.: Feature oriented evolutions for context-aware adaptive
systems. In: EVOL/IWPSE, pp. 93–97 (2010)

10. Kapitsaki, G.M., Prezerakos, G.N., Tselikas, N.D., Venieris, I.S.: Context-aware
service engineering: A survey. JSS 82(8) (2009)

11. Keck, D., Kuehn, P.: The feature and service interaction problem in telecommuni-
cations systems: a survey. In: IEEE TSE (1998)

12. Krause, A., Smailagic, A., Siewiorek, D.P.: Context-aware mobile computing:
Learning context-dependent personal preferences from a wearable sensor array.
IEEE Trans. Mob. Comput. 5(2), 113–127 (2006)

13. Li, F., Rasch, K., Truong, H., Ayani, R., Dustdar, S.: Proactive service discovery
in pervasive environments. In: ICPS, pp. 126–133 (2010)

14. Maia, P.H.M., Kramer, J., Uchitel, S., Mendonça, N.C.: Towards accurate proba-
bilistic models using state refinement. In: ESEC/FSE, pp. 281–284 (2009)

15. Poladian, V., Garlan, D., Shaw, M., Satyanarayanan, M., Schmerl, B.R., Sousa,
J.P.: Leveraging resource prediction for anticipatory dynamic configuration. In:
SASO, pp. 214–223 (2007)

16. Poladian, V., Sousa, J.P., Garlan, D., Shaw, M.: Dynamic configuration of resource-
aware services. In: ICSE, pp. 604–613 (2004)

17. Salehie, M., Tahvildari, L.: Self-adaptive software: Landscape and research chal-
lenges. TAAS 4(2) (2009)

18. Sykes, D., Heaven, W., Magee, J., Kramer, J.: Exploiting non-functional prefer-
ences in architectural adaptation for self-managed systems. In: SAC, pp. 431–438
(2010)

Context-Bounded Model Checking

of LTL Properties for ANSI-C Software

Jeremy Morse1, Lucas Cordeiro2, Denis Nicole1, and Bernd Fischer1

1 Electronics and Computer Science, University of Southampton, UK
{jcmm106,dan,bf}@ecs.soton.ac.uk

2 Electronic and Information Research Center,
Federal University of Amazonas, Brazil

lucascordeiro@ufam.edu.br

Abstract. Context-bounded model checking has successfully been used
to verify safety properties in multi-threaded systems automatically, even
if they are implemented in low-level programming languages like ANSI-
C. In this paper, we describe and experiment with an approach to ex-
tend context-bounded model checking to liveness properties expressed in
linear-time temporal logic (LTL). Our approach converts the LTL for-
mulae into Büchi-automata and then further into C monitor threads,
which are interleaved with the execution of the program under test.
This combined system is then checked using the ESBMC model checker.
Since this approach explores a larger number of interleavings than nor-
mal context-bounded model checking, we use a state hashing technique
which substantially reduces the number of redundant interleavings that
are explored and so mitigates state space explosion. Our experimental
results show that we can verify non-trivial properties in the firmware of
a medical device.

1 Introduction

Model checking has been used successfully to verify actual software (as opposed
to abstract system designs) [26, 2, 5, 1, 6], including multi-threaded applications
written in low-level languages such as ANSI-C [9, 24, 18]. In context-bounded
model checking, the state spaces of such applications are bounded by limiting the
size of the program’s data structures (e.g., arrays) as well as the number of loop
iterations and context switches between the different threads that are explored
by the model checker. This approach is typically used for the verification of
safety properties expressed as assertions in the code, but it can also be used to
verify properties such as the absence of global or local deadlock.

Many important requirements on the software behaviour can, however, be
expressed more naturally as liveness properties in a temporal logic, for example
“whenever the start button is pressed the charge eventually exceeds a minimum
level”. Such requirements are difficult to check directly as safety properties; it is
typically necessary to add additional executable code to the program under test
to retain the past state information. This amounts to the ad hoc introduction of
a hand-coded state machine capturing (past-time) temporal formulae.

G. Barthe, A. Pardo, and G. Schneider (Eds.): SEFM 2011, LNCS 7041, pp. 302–317, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

{jcmm106,dan,bf}@ecs.soton.ac.uk
lucascordeiro@ufam.edu.br

Context-Bounded Model Checking of LTL Properties for ANSI-C Software 303

Here, we instead use context-bounded model checking to validate multithreaded
C programs directly against (future-time) temporal formulas over the variables
and expressions of the C program under test. Thus, if the C variables pressed,
charge, and min represent the state of the button, and the current and minimum
charge levels, respectively, then we can capture the requirement above with the
linear-time temporal logic (LTL) formula G({pressed} -> F {charge > min}). We
check these formulas following the usual approach [7, 14], albeit with a twist: we
convert the negated LTL formula (the so-called never claim [13]) into a Büchi au-
tomaton (BA), which is composed with the program under test; if the composed
system admits an accepting run, the program violates the specified requirement.
We check the actual C program, however, rather than its corresponding BA. We
thus convert the LTL’s BA further into a separate C monitor thread and check
all interleavings between this monitor and the program using ESBMC [9], an off-
the-shelf, efficient bounded model checker for ANSI-C. We bound the execution
of the monitor thread in such a way that it still searches for loops through ac-
cepting states after the program has reached its own bound. We thus consider the
bounded program as the finite prefix of an infinite trace where state changes are
limited to this finite prefix; this gives us a method to check both safety and liveness
uniformly within the framework of bounded model checking.

Our approach avoids any imprecision from translating the C program into
a BA, but the monitor has to capture transient behaviour internal to the pro-
gram under test. The monitor and the program communicate via auxiliary vari-
ables reporting the truth values of the LTL formula’s embedded expressions.
Our tool automatically inserts and maintains these and also uses them to guide
ESBMC’s thread exploration. Nevertheless, our approach requires that the un-
derlying bounded model checker must be able to accommodate deep interleavings
of the monitor thread with the program threads. We have thus implemented a
state hashing strategy which eliminates multiple examinations of identical parts
of the state space and improves ESBMC’s performance.

Our paper makes three main contributions. First, it describes the first mecha-
nism, to the best of our knowledge, to verify LTL properties against an unmodi-
fied C code base. Second, since ESBMC is a symbolic model checker based on the
satisfiability modulo theory approach, it also describes the first symbolic LTL
model checker that does not use binary decision diagrams (BDDs). Third, it is
the first application of the concept of state hashing to symbolic model checking.

2 From LTL to Monitor Threads

2.1 Linear-Time Temporal Logic

Linear-time temporal logic (LTL) is a commonly used specification logic in model
checking [3, 15, 16], which extends propositional logic by including temporal
operators. The primitive propositions of our LTL are side-effect-free boolean C
expressions over the global variables of the C program.

Definition 1. Our LTL syntax is defined over primitive propositions, logical
operators and temporal operators as follows:

304 J. Morse et al.

φ ::= true | false | {p} | !φ | φ1 && φ2

| φ1 || φ2 | φ1 -> φ2 | (φ)
| Fφ | Gφ | φ1Uφ2 | φ1Rφ2

The logical operators include negation (!), conjunction (&&), disjunction (||)
and implication (->). The temporal operators are “in some future state (even-
tually)” (F), “in all future states (globally)” (G), “until” (U) and “release” (R).
Here, p is a side-effect-free boolean C expression, and φ1Uφ2 means that φ1 must
hold continuously until φ2 holds; φ2 must become true before termination. The
other temporal operators can be defined in terms of U, as shown below.

We are only interested in temporal formulae which are closed under stuttering;
following Lamport [20], we thus do not provide an explicit “next state” operator
X. Our LTL expressions are thus insensitive to refinements of the timestep to in-
tervals less than those required to capture the ordering of changes in the global
state. The timesteps only need to be sufficiently fine to resolve any potentially
dangerous interleavings of the program. For efficiency reasons we assume inter-
leavings only at statement boundaries and assume sequential consistency [19],
but options to ESBMC allow us also to use a finer-grained analysis to detect
data races arising from interleavings within statements.

We use a linear-time rather than a branching-time approach and thus there
are no explicit path quantifications (i.e., CTL∗-style operators A and E). There
is, however, an implicit universal quantification over all possible interleavings
and program executions. In this formulation we have the following identities:1

φ = false U φ
F φ = true U φ
G φ = !F !φ

φ1 R φ2 = ! (! φ1 U ! φ2)

We interpret a possibly multi-threaded C program as a Kripke structure whose
state transitions are derived from the possibly interleaved execution sequence of
C statements and whose valuations are the possible values of the program’s global
variables. Since we have implemented a bounded model checker, all (bounded)
programs will either deadlock or terminate in finite time. We use a separate run
of ESBMC to assure deadlock freedom and formally extend the behaviour of
deadlock-free programs with an infinite sequence of timesteps which leave all
global variables unchanged. Thus every program that is scheduled generates an
infinite sequence of states. We finally describe the desired liveness property φ as
an LTL expression in the above syntax and then check that there are no possible
infinite sequences of program states for which ! φ holds.

2.2 Büchi Automata

Büchi automata (BA) are finite-state automata over infinite words first described
by Büchi [4]. We follow Holzmann’s presentation [14] and define a BA as a tuple
1 This differs from the notation of [21], which has X φ = false U φ

Context-Bounded Model Checking of LTL Properties for ANSI-C Software 305

B = (S, s0, L, T, F) where S is a finite set of states, s0 ∈ S the initial state of
the BA, L a finite set of labels, T ⊆ (S × L × S) a set of state transitions and
F ⊆ S a set of final states. B may be deterministic or non-deterministic. A run
is a sequence of state transitions taken by B as it operates over some input. A
run is accepted if B passes through an accepting state s ∈ F infinitely often
along the run.

A number of algorithms exist for converting an LTL formula to a BA accepting
a program trace [11, 25, 12]. We use the ltl2ba [11] algorithm and tool, which
produces smaller automata than some other algorithms. Figure 1 illustrates the
BA produced from the LTL formula in the introduction. Input symbols are
propositions composed from the primitive C-expressions.

init

T0_2

init

2

Fig. 1. The left BA accepts the example from the introduction, G({pressed} -> F

{charge > min}). The right BA is its negation, used for the never claim in our monitor.

2.3 Monitor Threads

In our context, a monitor is some portion of code that inspects a program state
and verifies that it satisfies a given property, failing an assertion if this is not
the case. A monitor thread is a monitor that is interleaved with the execution
of the program under test. This allows it to verify that the property holds at
each particular interleaving of the program, detecting any transient violations
between program interleavings.

Monitor threads have been employed in SPIN to verify LTL properties against
the execution of a program [14]. A non-deterministic BA representing the nega-
tion of the LTL property, the so-called never claim, is implemented in a Promela
process which will accept a program trace that violates the original LTL prop-
erty. SPIN then generates execution traces of interleavings of the program being
verified, and for each step in each trace runs the Promela BA. This is called a
synchronous interleaving. In this work we employ a similar mechanism to verify
LTL properties by interleaving the program under verification with a monitor
thread, detailed in Section 3.2.

3 Model-Checking LTL Properties with ESBMC

3.1 ESBMC

ESBMC is a context-bounded model checker for embedded ANSI-C software
based on SMT solvers, which allows the verification of single- and multi-threaded

306 J. Morse et al.

software with shared variables and locks [10, 9]. ESBMC supports full ANSI-C,
and can verify programs that make use of bit-level, arrays, pointers, structs,
unions, memory allocation and fixed-point arithmetic. It can reason about arith-
metic under- and overflows, pointer safety, memory leaks, array bounds viola-
tions, atomicity and order violations, local and global deadlocks, data races, and
user-specified assertions.

In ESBMC, the program to be analyzed is modelled as a state transition
system M = (S, R, S0), which is extracted from the control-flow graph (CFG).
S represents the set of states, R ⊆ S × S represents the set of transitions (i.e.,
pairs of states specifying how the system can move from state to state) and
S0 ⊆ S represents the set of initial states. A state s ∈ S consists of the value
of the program counter pc and the values of all program variables. An initial
state s0 assigns the initial program location of the CFG to pc. We identify each
transition γ = (si, si+1) ∈ R between two states si and si+1 with a logical
formula γ(si, si+1) that captures the constraints on the corresponding values of
the program counter and the program variables.

Given the transition system M, a safety property φ, a context bound C and
a bound k, ESBMC builds a reachability tree (RT) that represents the program
unfolding for C, k and φ. We then derive a verification condition(VC) ψπ

k for
each given interleaving (or computation path) π = {ν1, . . . , νk} such that ψπ

k is
satisfiable if and only if φ has a counterexample of depth k that is exhibited by
π. ψπ

k is given by the following logical formula:

ψπ
k = I(s0) ∧

k∨
i=0

i−1∧
j=0

γ(sj, sj+1) ∧ ¬φ(si) (1)

Here, I characterizes the set of initial states (i.e. I(s0) ↔ s0 ∈ S0) of M and
γ(sj , sj+1) is the transition relation of M between time steps j and j +1. Hence,
I(s0) ∧

∧i−1
j=0 γ(sj , sj+1) represents executions of M of length i and ψπ

k can be
satisfied if and only if for some i ≤ k there exists a reachable state along π at
time step i in which φ is violated. ψπ

k is a quantifier-free formula in a decidable
subset of first-order logic, which is checked for satisfiability by an SMT solver.
If ψπ

k is satisfiable, then φ is violated along π and the SMT solver provides
a satisfying assignment, from which we can extract the values of the program
variables to construct a counter-example. A counter-example for a property φ
is a sequence of states s0, s1, . . . , si with s0 ∈ S0, si ∈ S, and γ (sj , sj+1) for
0 ≤ j < i. If ψπ

k is unsatisfiable, we can conclude that no error state is reachable
in k steps or less along π. Finally, we can define ψk =

∧
π ψπ

k and use this to check
all paths. ESBMC combines symbolic model checking with explicit state space
exploration; in particular, it explicitly explores the possible interleavings (up to
the given context bound) while it treats each interleaving itself symbolically.

3.2 Checking LTL Properties against a C Program

As discussed in Section 2.3, an LTL property can be verified against a program by
interpreting the corresponding BA over the program states along the execution

Context-Bounded Model Checking of LTL Properties for ANSI-C Software 307

path. We apply this approach to a C code base by implementing the BA in C
which is then executed as a monitor thread, interleaved with the execution of
the program. This involves three technical aspects: the conversion of the BA to
C, the interaction of the monitor thread with the program under test, and the
control of the interleavings.

The monitor thread itself is not interleaved with the program in a special
manner as in SPIN, but instead is treated as any other program thread. We use a
counting mechanism to ensure that the BA thread operates on the program states
in the right sequential order. This approach can be slower than a synchronous
composition, but it requires no fundamental changes to the way that ESBMC
operates as it uses only existing features.

Implementing a Büchi Automata in C. We follow the SPIN approach of
inverting the LTL formula being verified so that the BA accepts execution traces
which violate the original formula. We then modified the ltl2ba tool to convert
its usual Promela output to C, which uses some ESBMC built-ins.

The C implementation of the BA (see Figure 2 for the code corresponding to
the BA in Figure 1) consists of an infinite loop (unrolled an appropriate num-
ber of times, see below) around a switch statement on the state variable that
branches to code which atomically (lines 18, 46) evaluates the target state of the
transition. Non-deterministic behaviour is simulated by attempting all transi-
tions from a state non-deterministically (lines 24, 27, 36), after which guards on
each transition evaluate whether the transition can be taken (lines 25, 28, 37).
These guards use ESBMC’s assume statements, which ensure that transitions
not permitted by the current state of the program under test are not explored.

To determine when the BA has accepted a program trace, we first await a time
where the program has terminated — given that we operate in the context of
bounded model checking this is guaranteed as any infinite loop is unrolled only
to the length of the bound. Detection of thread deadlock is already performed by
ESBMC. The BA loop is run a second time with the final program state as input,
recording the number of times it passes through each state (lines 44-45). If a loop
through an accepting state exists it will be visited more than once, triggering an as-
sertion showing that the BA accepted the trace. This technique places a constraint
on the unwinding bound of the BA loop, that it is sufficient for any such loop to be
detected. Setting this bound to twice the number of states in the BA permits it to
pass through every state twice on the largest possible loop.

This acceptance criteria operates on the principle that, should some program
state need to be reached for the LTL formula to hold, then it needs to have
happened by the time that the program bound has been reached. This can be an
overapproximation of the program being verified, as there can be circumstances
where that program state could be reached if the program bound were higher.

We strictly control where interleavings may occur in the BA to ensure its
soundness. The evaluation of the next state to transition to is executed atomi-
cally, ensuring that the BA always perceives a consistent view of program state.
We also yield execution (line 17) before the BA inputs a program state to force
new interleavings to be explored. Certain utility functions are provided to allow

308 J. Morse et al.

a program test harness to start the BA and check for acceptance at the end of
execution (not shown).

Interacting with the Existing Code Base. LTL formulas allow verification
engineers to describe program behaviour with propositions about program state.
To describe the state of a C program, we support the use of C expressions as
propositions within LTL formulas. Any characters in the formula enclosed in
braces are interpreted as a C expression and as a single proposition within LTL.
The expression itself may use any global variables that exist within the program
under test as well as constants and side-effect free operators. The expression
must also evaluate to a value that can be interpreted as a boolean under normal
C semantics. For example, the following liveness property verifies that a certain
input condition results in a timer increasing:

!G(({pressed key == 4} && {mstate == 1}) -> F{stime > ref stime})

and the following safety property checks a buffer bound condition:

!G({buffer size != 0} -> {next < buffer size})

Within the BA (Figure 2) these expressions are required for use in the guards
preventing invalid transitions from being explored. We avoid using the expres-
sions directly in the BA; instead ESBMC searches the program under verification
for assignments to global variables used in a C expression, then inserts code to
update a Boolean variable corresponding to the truth of the expression (lines 2,
4) immediately after the symbol is assigned to. If multiple propositions update
on the same variable, re-evaluations are executed atomically. All modifications
are performed on ESBMC’s internal representation of the program and do not
alter the code base.

Synchronous Interleaving. An impediment of operating the monitor thread
containing the BA as a normal program thread is that it is not always guaranteed
to receive a consistent series of input states—that is, it is entirely possible for
the BA not to be scheduled to run after an event of interest, and thus not
perform a state transition it should have. This is clearly an invalid action when
one considers it in terms of a BA skipping an input symbol. The full exploration
of state space also guarantees we will explore the interleavings where this is not
the case.

To handle this the BA discards interleavings where the propositions have
changed more than once but the BA has not had opportunity to run and interpret
them (lines 19–21 in Figure 2). We maintain a global variable (line 10) counting
the number of times that the C expressions forming propositions in the LTL
formula have been re-evaluated, keep a corresponding counter (line 9, 21) within
the BA, and use an assume statement to only consider traces where the global
counter has changed at most once since the last time the BA ran.

Context-Bounded Model Checking of LTL Properties for ANSI-C Software 309

1 char __ESBMC_property___cexpr_0 [] = "pressed ";

2 bool __cexpr_0_status;

3 char __ESBMC_property___cexpr_1 [] = "charge > min ";

4 bool __cexpr_1_status;

5

6 typedef enum {T0_init , accept_S2 } ltl2ba_state;

7 ltl2ba_state state = T0_init ;

8 unsigned int __visited_states [2];

9 unsigned int __transitions_seen;

10 extern unsigned int __transitions_count;

11

12 void ltl2ba_fsm (bool state_stats) {

13 unsigned int choice ;

14 while (1) {

15 choice = nondet_uint ();

16 /* Force a context switch */

17 __ESBMC_yield();

18 __ESBMC_atomic_begin ();

19 __ESBMC_assume(__transition_count <=

20 __transitions_seen + 1);

21 __transitions_seen = __transition_count;

22 switch (state) {

23 case T0_init :

24 if (choice == 0) {

25 __ESBMC_assume ((1));

26 state = T0_init ;

27 } else if (choice == 1) {

28 __ESBMC_assume((! __cexpr_1_status &&

29 __cexpr_0_status));

30 state = accept_S2 ;

31 } else {

32 __ESBMC_assume(0);

33 }

34 break ;

35 case accept_S2 :

36 if (choice == 0) {

37 __ESBMC_assume((! __cexpr_1_status));

38 state = accept_S2 ;

39 } else {

40 __ESBMC_assume(0);

41 }

42 break ;

43 }

44 if (state_stats)

45 __visited_states[state]++;

46 __ESBMC_atomic_end ();

47 }

48 }

49 return ;

Fig. 2. C implementation of the Büchi automaton for the formula !G({pressed} -> F

{charge > min})

310 J. Morse et al.

4 Optimizing State Space Exploration

The context-bounded approach has proven to be effective for model checking
multi-threaded software, with a small number of context switches allowing us
to explore much of the system behaviour. Our approach to verifying programs
against LTL properties requires frequent context-switching between monitor and
program threads, which makes a greater context bound necessary. We thus im-
plemented state hashing in ESBMC to reduce the number of redundant inter-
leavings and thus the state space to be explored. This is also the first work to
our knowledge where state hashing has been used in conjunction with symbolic
model checking.

The driving force behind our approach to state hashing is that during the ex-
ploration of the RT of multi-threaded software many interleavings pass through
identical RT nodes, i.e., nodes that represent the same global and thread-local
program states, respectively, and differ only in the currently active thread.
Only one of these nodes need be explored, as the reachability subtrees of all
other nodes will be identical. As an example, consider a simple multithreaded
C program shown in Figure 3 and its corresponding RT shown in Figure 4.
The RT consists of the nodes ν0 to ν16, where each node is defined as a tuple
ν = (Ai, Ci, si, 〈lji , G

j
i 〉nj=1)i for a given time step i. Here, Ai represents the cur-

rently active thread, Ci the context switch number, and si the current (global
and local) state. Further, for each of the n threads, lji represents the current
location of thread j and Gj

i represents the control flow guards accumulated in
thread j along the path from lj0 to lji (although these are not shown in Figure 4).
Notice how the transitions originating from node ν1 as those originating from ν7,
produce the same program states. When we explore the node ν7, we can simply
eliminate the transitions that originate from it — provided that we realise that
we have already explored another identical RT node. We thus maintain a set of
hashes representing the states of RT nodes that we have already explored.

1 #include <pthread .h>

2 int x=0, y=0;

3 void t1(void* arg) { x++; }

4 void t2(void* arg) { x++; }

5 void t3(void* arg) { y++; }

6 int main(void) {

7 pthread_t id1 , id2 , id3;

8 pthread_create(&id1 ,NULL ,t1 ,NULL);

9 pthread_create(&id2 ,NULL ,t2 ,NULL);

10 pthread_create(&id3 ,NULL ,t3 ,NULL);

11 return 0;

12 }

Fig. 3. A simple multi-threaded C program

Context-Bounded Model Checking of LTL Properties for ANSI-C Software 311

ν0 : t0,0,x=0,y=0
(L3, L6, L9)

ν1 : t1,1,x=1,y=0
(L5, L6,L9)

ν2 : t2,2,x=2,y=0
(L5, L8, L9)

ν5 : t3,2,x=1,y=1
(L5, L6, L11)

ν7: t2,1,x=1,y=0
(L3, L8,L9)

ν8 : t1,2,x=2,y=0
(L5, L8, L9)

ν10 : t3,2,x=1,y=1
(L3, L8, L11)

ν12: t3,1,x=0,y=1
(L3, L6,L11)

ν13: t1,2,x=1,y=1
(L5, L6, L11)

ν15: t2,2,x=1,y=1
(L3, L8, L11)

ν3: t3,3,x=2,y=1
(L5, L8, L11)

ν6 : t2,3,x=2,y=1
(L5, L8, L11)

ν9: t3,3,x=2,y=1
(L5, L8, L11)

ν11: t2,3,x=2,y=1
(L5, L8, L11)

ν14: t3,3,x=2,y=1
(L5, L8, L11)

ν16: t1,3,x=2,y=1
(L5, L8, L11)

Fig. 4. Reachability tree for the program in Figure 3. Dashed edges represent transi-
tions that can be eliminated by the state hashing technique.

4.1 Hashing Symbolic States

In explicit-state model checking, state hashing takes a state vector containing the
current values of all program variables, and applies a hash function to compute
a value that can then be stored to indicate a particular state has been explored.

State hashing, unfortunately, is not so simple for symbolic model checking,
as the state vector does not simply contain values but is defined symbolically
by the calculations and constraints that make up the variable assignments in
the underlying static single assignment (SSA) form of the program. We thus
implement a two-level hashing scheme: we use a node-level hash that represents
a particular RT node, and a variable level hash that represents the constraints
affecting a particular assignment to a variable. Since each new RT node can
only change the (symbolic) value of at most one variable, the two-level hashing
scheme reduces the computational effort, as it allows us to retain the hash values
of the unchanged variables.

The node-level hash is created by taking the variable-level hashes of all vari-
ables in the current node and concatenating them, together with the program
counter values of all existing threads, into a single data vector. This vector is
then fed to a hashing function. Variable-level hashes are more complex. For each
assignment encountered in the RT exploration we calculate a hash of the right
hand side expression and record it with the left hand side variable name. This
hash is created by serialising each operator and value in the expression to a data
representation (i.e., a series of bytes) into a vector, which is then hashed.

For example, Figure 3 contains several assignments to the global variable x us-
ing the ++-operator (converted to an addition internally). ESBMC automatically
performs constant propagation and effectively converts the example to an explicit
state check. We represent the first serialised increment expression as the text:
“(+,(constant(0)),(constant(1)))” This demonstrates one of the simplest encod-
ings of data possible with this method. Any set of operations on constant values

312 J. Morse et al.

can also be expressed in this manner. Such expressions are, however, not yet
symbolic—to support this we represent nondeterminstic values with a prefix and
unique identifier. We also represent the use of existing variables in expressions
with its current variable hash. To demonstrate this, reconsider Figure 3 and as-
sume x is initialised to a nondeterministic value. The expressions representing the
two increments of the x variable then become: “(+,(nondet(1)),(constant(1)))”
and “(+,(hash(#1)),(constant(1)))” where #1 represents the hash value of the
first expression. Significantly, no thread specific data is encoded in this represen-
tation, meaning that the same serialised representation is produced for whichever
order of threads increments x. Thus the hash of any assignment is a direct prod-
uct of all nondeterministic inputs, constant values and operators that represent
the constraints on the assignment.

This method is limited, however, by the ordering of assignments—if the orig-
inal example in Figure 3 had instead a thread that increased the x variable by
2, and another that increased x by 3, then at the end of execution the variable
hash of x would be different depending on the thread ordering, even though the
effective constraints on x for every interleaving are identical. This also affects
arrays (including the heap, which is modelled as an array) and unions.

4.2 Selection of Hash Function

As hashing is a lossy abstraction of a tree node, we risk computing two identical
hashes for two distinct nodes. Should this occur one node will be successfully
explored and its hash stored; when the other is explored we will discover its hash
in the visited states set, and incorrectly assume it has already been visited. This
would cause an unexplored portion of the state space to be discarded.

We require a hash function that takes a stream of characters as input (seri-
alised expressions) and produces a small output. We simply chose SHA256 [23]
hashes due to its relatively large output bitwidth (compared to other hash func-
tions) and its certification for use in cryptographic applications, aspects that
assure us the likelihood of collisions is extremely low.

4.3 Comparison with Partial Order Reductions

Kahlon et al. [17] have developed a partial order reduction technique which, at
the expense of additional constraints, permits the optimal elimination of un-
necessary interleaves. They demonstrate their technique by testing the (unsatis-
fied) property at some time all philosophers are eating in a dining philosophers
model. They present two versions of their technique, PPOR which is optimal
for two threads and MPOR which, at the expense of further complexity, is op-
timal for any number of threads. Our state hashing (SHASH) technique, on the
other hand, avoids complicating the SMT inputs, but at the expense of evaluat-
ing some redundant interleaves. We compare the speedups achieved by PPOR,
MPOR and our state hashing in table 1. Note that our results are achieved with
a dining philosophers implementation in C on our own implementation of ES-
BMC and the absolute times are thus not comparable with the Kahlon et al.
model.

Context-Bounded Model Checking of LTL Properties for ANSI-C Software 313

Table 1. Speedup of each optimization technique over unoptimized performance

Speedup

Philosophers MPOR PPOR SHASH

2 1 2 0.8

3 20 16 4.4

4 9.3 1.1 9.5

5 Experimental Evaluation

We have tested the work described here against a series of properties defining
the behaviour of a pulse oximeter firmware, which is a piece of sequential soft-
ware that is responsible for measuring the oxygen saturation (SpO2) and heart
rate (HR) in the blood system using a non-invasive method [8]. The firmware of
the pulse oximeter device is composed of device drivers (i.e., display, keyboard,
serial, sensor, and timer) that contain hardware-dependent code, a system log
component that allows the developer to debug the code through data stored on
RAM memory, and an API that enables the application layer to call the ser-
vices provided by the platform. The final version of the pulse oximeter firmware
consists of approximately 3500 lines of ANSI-C code and 80 functions.

Here we report the results of verifying the pulse oximeter code against five
liveness properties of the general form G(p -> F q) i.e., whenever an enabling
condition p has become true, then eventually the property q is enabled. We for-
mulated a test harness for each portion of the firmware being tested to simulate
the activity that the LTL property checks. We then invoked ESBMC with a
variety of loop unwind and context switch bounds to determine the effectiveness
of state hashing. We also ran these tests against versions of the firmware delib-
erately altered to not match the LTL formula to verify that failing execution
traces are identified.

All tests were run on the Iridis 3 compute cluster2 with a memory limit of 4Gb
and time limit of 4 hours to execute. The results are summarized in Table 2.
Here, #L column contains the line count of the source file for the portion of
firmware being tested, P/F records whether the test is expected to Pass or Fail,
k the loop unwinding bound and C the context-bound specified for the test.

We then report the results for the original version of ESBMC 3 and the version
with state hashing, respectively. For each version, we report the verification
time in seconds, the number #I and #FI of generated and failing interleavings,
respectively, and the result. Here, + indicates that ESBMC’s result is as expected
(i.e. all its interleavings were verified successfully if the test is expected to pass,
and at least one interleaving is found to violate the LTL property if the test is
expected to fail), while − indicates a false negative (i.e., ESBMC fails to find an

2 1008 Intel Nehalem compute nodes, each with two 4-core processors, up to 45Gb of
RAM, and InfiniBand communications. Each test used only one core of one node.

3 v1.16, available from www.esbmc.org

314 J. Morse et al.

Table 2. Results from testing LTL properties against pulse oximeter firmware

Original run With state hashing

Test name #L P/F k C Time (s) #I / #FI Result Time (s) #FI / #I Result

start btn 856

Pass 1 20 207 7764/0 + 67 2245/0 +
Pass 1 40 199 7764/0 + 71 2245/0 +
Pass 2 20 2740 55203/0 + 479 11409/0 +
Pass 2 40 14400 0/0 TO 14400 0/0 TO
Fail 1 20 236 6719/231 + 81 1919/91 +
Fail 1 40 244 6719/231 + 94 1919/91 +
Fail 2 20 1344 29840/0 − 299 6911/0 −
Fail 2 40 N/A0 0/0 MO N/A 0/0 MO

up btn 856

Pass 1 20 78 3775/0 + 32 1385/0 +
Pass 1 40 83 3775/0 + 37 1385/0 +
Pass 2 20 2777 102566/0 + 898 41389/0 +
Pass 2 40 14400 0/0 TO 6012 111335/0 +
Fail 1 20 90 3775/0 − 35 1385/0 −
Fail 1 40 82 3775/0 − 33 1385/0 −
Fail 2 20 2743 102564/0 − 914 40938/0 −
Fail 2 40 14400 0/0 TO 4832 69275/3422 +

keyb start 50

Pass 1 20 9668 92795/0 + 4385 49017/0 +
Pass 1 40 9767 92795/0 + 4489 49017/0 +
Pass 2 20 14400 0/0 TO 14400 0/0 TO
Pass 2 40 14400 0/0 TO 14400 0/0 TO
Fail 1 20 9795 92795/321 + 4836 49017/321 +
Fail 1 40 9924 92795/321 + 4914 49017/321 +
Fail 2 20 14400 0/0 TO 14400 0/0 TO
Fail 2 40 14400 0/0 TO 14400 0/0 TO

baud conf 178

Pass 1 20 18 485/0 + 16 419/0 +
Pass 1 40 17 485/0 + 16 419/0 +
Pass 2 20 2440 39910/0 + 971 17500/0 +
Pass 2 40 2635 39910/0 + 1078 17500/0 +
Fail 1 20 18 485/56 + 17 419/56 +
Fail 1 40 18 485/56 + 16 419/56 +
Fail 2 20 2583 39910/2002 + 1010 17500/880 +
Fail 2 40 2851 39910/2002 + 1139 17500/880 +

serial rx 584

Pass 1 20 334 5454/0 + 194 3108/0 +
Pass 1 40 324 5454/0 + 212 3108/0 +
Pass 2 20 10959 62332/0 + 4494 29257/0 +
Pass 2 40 14400 0/0 TO 70 627/0 +
Fail 1 20 215 3286/273 + 137 2030/257 +
Fail 1 40 211 3286/273 + 135 2030/257 +
Fail 2 20 3768 20917/0 − 1846 11388/0 −
Fail 2 40 14400 0/0 TO 14400 0/0 TO

Context-Bounded Model Checking of LTL Properties for ANSI-C Software 315

existing violation of the LTL property). TO indicates the check ran out of time
and MO indicates it ran out of memory.

We first observe that ESBMC is generally able to verify all positive test cases,
although it sometimes times out with increasing bounds. The situation is less
clear for the tests designed to fail. Here, smaller unrolling and context switch
bounds allow to correctly identify failing interleavings, but are sometimes not
sufficient to expose the error (e.g., up btn), and small increases in the unrolling
bound generally require larger increases in the context bounds to expose the
error, leading to time-outs or memory-outs in most cases. State hashing, however,
improves the situation, and allows us to find even deeply nested errors.

Comparing the figures between tests performed with state hashing and those
without, we see the total number of interleavings generated is often significantly
reduced by state hashing. Out of all tests that completed the median reduction
was 56%, the maximum 80% and minimum 13%. In all cases the use of state
hashing reduced the amount of time required to explore all reachable states.

6 Related Work

SPIN [13] is a well known software model checker that operates on concurrent
program models written in the Promela modelling language. It operates with
explicit state and uses state hashing to reduce the fraction of state space it
explores. SPIN also allows users to specify a LTL formula to verify against the
execution of a model by using BA in a similar manner to this work. While SPIN
is well established as a model checker the requirement to re-model codebases in
Promela can be time consuming.

Java PathFinder is a Java Virtual Machine (JVM) that performs model check-
ing on Java bytecode. It also operates with explicit state and uses state matching
to reduce the search space, but can also operate symbolically for the purpose of
test generation and coverage testing. Verification of LTL formula can be achieved
with the JPF-LTL extension which also uses BA in a similar manner to this work,
but “listens” to the execution of Java bytecode traces within the JVM rather
than interleaving the BA with the program under test, resulting in a synchronous
interleaving.

Partial order reductions (examined in section 4.3) improve the efficiency of
software model checking significantly by identifying redundant interleavings of
threads that need not be explored, although typically at the expense of a complex
static analysis. Recent work [17] reduces this overhead and delivers a demonstra-
bly optimal number of interleavings.

7 Conclusions and Future Work

Context-bounded model checking has been used successfully to verify multi-
threaded applications written in low-level languages such as ANSI-C. The ap-
proach has, however, largely been confined to the verification of safety proper-
ties. In this paper, we have extended the approach to the verification of liveness

316 J. Morse et al.

properties given as LTL formulas against an unmodified code base. We follow
the usual approach of composing the BA for the never claim with the program,
but work at the actual code level. We thus convert the BA further into a sep-
arate C monitor thread and check all interleavings between this monitor and
the program using ESBMC. We use a state hashing scheme to handle the large
number of interleavings and counter state space explosion.

The initial results are encouraging, and we were able to verify a number of
liveness properties on the firmware of a medical device; in future work, we plan to
extend the evaluation to a larger code base and wider variety of properties. The
state hashing proved to be very useful, cutting verification times by about 50%
on average. We expect that an improved hashing implementation (e.g., removing
serialisation) will yield even better results. Our approach does still have some
limitations. The (indiscriminate) composition of the monitor thread with the
program under test leads to a very large number of interleavings that need to be
explored, despite the improvements that the state space hashing provides. We
thus plan to implement a special thread scheduling algorithm in ESBMC that
schedules the monitor after changes to the observed variables and so achieves
the effect of synchronous composition.

Acknowledgments. The second author would like to thank the support
received from the Nokia Institute of Technology (INdT).

References

[1] Barnett, M., DeLine, R., Fähndrich, M., Jacobs, B., Leino, K.R.M., Schulte, W.,
Venter, H.: The spec# programming system: Challenges and directions. In: Meyer,
B., Woodcock, J. (eds.) VSTTE 2005. LNCS, vol. 4171, pp. 144–152. Springer,
Heidelberg (2008)

[2] Beyer, D., Henzinger, T., Jhala, R., Majumdar, R.: The software model checker
BLAST. STTT 9(5-6), 505–525 (2007)

[3] Biere, A., Heljanko, K., Junttila, T., Latvala, T., Schuppan, V.: Linear encodings
of bounded LTL model checking. Logical Methods in Computer Science 2(5), 1–64
(2006)

[4] Büchi, J.: On a Decision Method in Restricted Second Order Arithmetic. Studies
in Logic and the Foundations of Mathematics, vol. 44, pp. 1–11 (1966)

[5] Clarke, E., Kröning, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004)

[6] Clarke, E., Kroening, D., Sharygina, N., Yorav, K.: Predicate abstraction of
ANSI–C programs using SAT. FMSD 25, 105–127 (2004)

[7] Clarke, E., Lerda, F.: Model Checking: Software and Beyond. J. Universal Com-
puter Science 13(5), 639–649 (2007)

[8] Cordeiro, L., et al.: Agile development methodology for embedded systems: A
platform-based design approach. In: ECBS, pp. 195–202 (2007)

[9] Cordeiro, L., Fischer, B.: Verifying Multi-threaded Software using SMT-based
Context-Bounded Model Checking. To appear in ICSE (2011)

Context-Bounded Model Checking of LTL Properties for ANSI-C Software 317

[10] Cordeiro, L., Fischer, B., Marques-Silva, J.: SMT-based bounded model checking
for embedded ANSI-C software. In: ASE, pp. 137–148 (2009)

[11] Gastin, P., Oddoux, D.: Fast LTL to Büchi Automata Translation. In: Berry, G.,
Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer,
Heidelberg (2001)

[12] He, A., Wu, J., Li, L.: An Efficient Algorithm for Transforming LTL Formula to
Büchi Automaton. In: ICICTA, pp. 1215–1219 (2008)

[13] Holzmann, G.: The model checker SPIN. IEEE Transactions on Software Engi-
neering 23(5), 279–295 (1997)

[14] Holzmann, G.: The SPIN Model Checker - primer and reference manual. Addison-
Wesley, Reading (2004)

[15] Huth, M., Ryan, M.: Logic in Computer Science: modelling and reasoning about
systems. Cambridge University Press, Cambridge (2004)

[16] Jonsson, B., Tsay, Y.: Assumption/guarantee specifications in linear-time tempo-
ral logic. Theor. Comput. Sci 167(1&2), 47–72 (1996)

[17] Kahlon, V., Wang, C., Gupta, A.: Monotonic Partial Order Reduction: An Op-
timal Symbolic Partial Order Reduction Technique. In: Bouajjani, A., Maler, O.
(eds.) CAV 2009. LNCS, vol. 5643, pp. 398–413. Springer, Heidelberg (2009)

[18] Lahiri, S., Qadeer, S., Rakamaric, Z.: Static and precise detection of concurrency
errors in systems code using SMT solvers. In: Bouajjani, A., Maler, O. (eds.) CAV
2009. LNCS, vol. 5643, pp. 509–524. Springer, Heidelberg (2009)

[19] Lamport, L.: A new approach to proving the correctness of multiprocess programs.
TOPLAS 1(1), 84–97 (1979)

[20] Lamport, L.: What Good is Temporal Logic? Information Processing 83, 657–668
(1983)

[21] McMillan, K.: Symbolic Model Checking, vol. 1003, p. 15. Kluwer, Dordrecht
(1993)

[22] Muchnick, S.: Advanced compiler design and implementation. Morgan Kaufmann,
San Francisco (1997)

[23] Secure Hash Standard. National Institute of Standards and Technology. Federal
Information Processing Standard 180-2 (2002)

[24] Rabinovitz, I., Grumberg, O.: Bounded model checking of concurrent programs.
In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 82–97.
Springer, Heidelberg (2005)

[25] Rozier, K., Vardi, M.: LTL Satisfiability Checking. STTE 12, 123–137 (2010)
[26] Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model checking programs.

Autom. Softw. Eng. 10(2), 203–232 (2003)

Modular Modelling of Software Product Lines

with Feature Nets�

Radu Muschevici, José Proença, and Dave Clarke

DistriNet & IBBT, Dept. Computer Science, Katholieke Universiteit Leuven, Belgium
{radu.muschevici,jose.proenca,dave.clarke}@cs.kuleuven.be

Abstract. Formal modelling and verification are critical for managing
the inherent complexity of systems with a high degree of variability, such
as those designed following the software product line (SPL) paradigm.
SPL models tend to be large—the number of products in an SPL can
be exponential in the number of features. Modelling these systems poses
two main challenges. Firstly, a modular modelling formalism that scales
well is required. Secondly, the ability to analyse and verify complex mod-
els efficiently is key in order to ensure that all products behave correctly.
The choice of a system modelling formalism that is both expressive and
well-established is therefore crucial. In this paper we show how SPLs can
be modelled in an incremental, modular fashion using a formal method
based on Petri nets. We continue our work on Feature Petri Nets, a
lightweight extension to Petri nets, by presenting a framework for mod-
ularly constructing Feature Petri Nets to model SPLs.

1 Introduction

The need to tailor software applications to varying requirements, such as spe-
cific hardware, markets or customer demands, is growing. If each application
variant is maintained individually, the overhead of managing all the variants
quickly becomes infeasible [20]. Software Produce Line Engineering (SPLE) is
seen as a solution to this problem. A Software Product Line (SPL) is a set of
software products that share a number of core properties but also differ in cer-
tain, well-defined aspects. The products of an SPL are defined and implemented
in terms of features, which are subsequently combined to obtain the final soft-
ware products. The key advantage hereby over traditional approaches is that all
products can be developed and maintained together. A challenge for SPLE is to
ensure that all products meet their specifications without having to check each
product individually, by checking the product line itself. This raises the need for
novel SPL-specific formalisms to model SPLs and reason about and verify their
properties.

� This research is partly funded by the EU project FP7-231620 HATS: Highly
Adaptable and Trustworthy Software using Formal Methods (http://www.hats-
project.eu), and the K.U.Leuven BOF-START project STRT1/09/031 Designer-
TypeLab.

G. Barthe, A. Pardo, and G. Schneider (Eds.): SEFM 2011, LNCS 7041, pp. 318–333, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.hats-
project.eu

Modular Modelling of Software Product Lines with Feature Nets 319

The main contribution of this paper is a modular modelling framework for
specifying the behaviour of software product lines. We use Feature Petri Nets [18],
or feature nets (FN) for short, as the modelling formalism. Feature nets are a
Petri net extension that enables the specification of the behaviour of an entire
software product line (a set of systems) in one single model. The behaviour of an
FN is conditional on the features appearing in the product line. The paper makes
three contributions. Firstly, it presents a variant of feature nets that improves
upon their original definition [18]. Secondly, it gives a technique for constructing
larger feature nets from smaller ones to model the addition of new features to
an SPL. Thirdly, it provides correctness criteria for ensuring that the resulting
composition preserves the behaviour of the original model(s).

Organisation: The next section motivates the need for feature nets. Section 3
formally introduces feature nets. Section 4 details an approach at modular mod-
elling with FN, and Section 5 discusses behaviour preservation. Section 6 dis-
cusses related work. Section 7 presents our conclusions and future work.

2 Software Product Line Modelling Challenge

We illustrate the modelling challenge in software product line engineering (SPLE)
using an example of a software product line of coffee vending machines. A man-
ufacturer of coffee machines offers products to match different demands, from
the basic black coffee dispenser to more sophisticated machines, such as ones
that can add milk or sugar, or charge a payment for each serving. Each machine
variant needs to run software adapted to the selected set of hardware features.
Such a family of different software products that share functionality is typically
developed using an SPLE approach, as one piece of software structured along
distinct features. This has major advantages in terms of code reuse, mainte-
nance overhead, and so forth. The challenge is ensuring that the software works
appropriately in all product configurations.

Petri nets [17] are used to specify how systems behave. Fig. 1 presents an
example of a Petri net for a coffee machine. This has a capacity for n coffee
servings; it can brew and dispense coffee, and refill the machine with new coffee
supplies. If we now add an optional Milk feature, so that the machine can also

wait ready

coffee

refillable

n

coffee

full

brew coffee

serve

refill coffee

Fig. 1. Petri net model of a basic coffee machine that can only dispense coffee

320 R. Muschevici, J. Proença, and D. Clarke

add milk to a coffee serving, we need to adapt the Petri net, not only to include
the functionality of adding milk, but also to be able to control whether or not
this feature is present in the resulting software product.

To address the challenge of modelling a software product line with multiple
features, which may or may not be included in any given product, we introduced
Feature Petri Nets [18]. Feature Petri Net transitions are annotated with appli-
cation conditions [21], which are propositional formula over features that reflect
when the transition is enabled. In this paper we use a variation of Feature Petri
Nets in which application conditions are placed on arcs, rather than transitions,
called arc-labelled Feature Petri Nets, though we shall just call them feature
nets. One advantage of feature nets is that they enable the superposition of the
behaviour of the various products (given by different feature selections) in the
same model.

Fig. 2 exemplifies a feature net of a coffee machine with a milk reservoir. It con-
siders a product line whose products are over the set of features {Coffee,Milk},
where Coffee is compulsory and Milk is optional. The application condition
above each arc reflects that the arc is present only when the condition evaluates
to true. Only then does the arc affect behaviour. If the condition is false, the arc
has no effect on behaviour. Consequently, the three transitions on the left-hand
side can only fire when the Coffee feature is present; the two transitions on the
right-hand side can be taken only when the feature Milk is present. Observe that
the restriction of this example net to the transitions that can fire for feature se-
lection {Coffee} is exactly the Petri net in Fig. 1, after removing unreachable
places.

3 Feature Nets

A feature net (FN) [18] is a Petri net variant used to model the behaviour of
an entire software product line. For this purpose feature nets have application
conditions [21] attached to their arcs. An application condition is a propositional
logical formula over a set of features, describing the feature combinations to

wait ready

coffee

refillable

n

coffee

full

brew coffee

Coffee

Coffee

Coffee

Coffee

serve

CoffeeCoffee

refill coffee

CoffeeCoffee

m

milk

full

milk

refillable

add milk

Milk

Milk

Milk

Milk

refill milk

MilkMilk

Fig. 2. Feature net of the product line {{Coffee}, {Coffee, Milk}}. Each arc has an
application condition attached.

Modular Modelling of Software Product Lines with Feature Nets 321

which the arc applies. If the application condition is false, it is as if the arc were
not present.

We define feature nets and give their semantics. We adapt the definition of
feature nets described in previous work [18], where application conditions apply
to transitions instead of arcs. In that paper two semantic definitions of feature
nets were presented. The first semantics directly models the FN for a given
feature selection. The second semantics, which we use and adapt here, is given
by projecting the FN for a given feature selection onto a Petri net by removing
arcs with unsatisfied application conditions. These two notions have been shown
to coincide [18]. We start with some necessary preliminaries, first by defining
multisets and basic operations over multisets, then by defining feature nets and
their behaviour. Our terminology is standard for Petri nets [8].

Definition 1 (Multiset). A multiset over a set S is a mapping M : S → N.

We view a set S as a multiset in the natural way, that is, S(x) = 1 if x ∈ S,
and S(x) = 0 otherwise. We also lift arithmetic operators to multisets as follows.
For any function � : N × N → N and multisets M1, M2, define M1 � M2 as
(M1 � M2)(x) = M1(x) � M2(x).

Definition 2 (Application condition [21]). An application condition ϕ is a
propositional formula over a set of features F , defined by the following grammar:

ϕ ::= a | ϕ ∧ ϕ | ¬ϕ,

where a ∈ F . Write ΦF to denote the set of all application conditions over F .

Definition 3 (Satisfaction of application conditions). Given an applica-
tion condition ϕ ∈ ΦF and a set of features FS ⊆ F , called a feature selection,
we say that FS satisfies ϕ, written as FS |= ϕ, defined as follows:

FS |= a iff a ∈ FS
FS |= ϕ1 ∧ ϕ2 iff FS |= ϕ1 and FS |= ϕ2

FS |= ¬ϕ iff FS��|= ϕ.

Definition 4 (Feature Net). A feature net is a tuple N = (S, T, R, M0, F, f),
where S and T are two disjoint finite sets, R is a relation on S ∪ T (the flow
relation) such that R∩ (S × S) = R∩ (T ×T) = ∅, and M0 is a multiset over S,
called the initial marking. The elements of S are called places and the elements
of T are called transitions. Places and transitions are called nodes. The elements
of R are called arcs. Finally, F is set of features and f : R → ΦF is a function
associating each arc with an application condition from ΦF .

Without f and F , a feature net is just a Petri net. Sometimes we omit the initial
marking M0. The function f determines a node’s pre- and post-set, defined
below.

Definition 5 (Marking of a feature net). A marking M of a feature net
(S, T, R, F, f) is a multiset over S. A place s ∈ S is marked iff M(s) > 0.

322 R. Muschevici, J. Proença, and D. Clarke

Definition 6 (Pre-sets and post-sets). Given a node x of a feature net and a
feature selection FS, the set (FS)x = {y | (y, x) ∈ R,FS |= f(y, x)} is the pre-set of
x and the set x(FS) = {y | (x, y) ∈ R,FS |= f(x, y)} is the post-set of x.

Definition 7 (Enabling). Given a feature selection FS, a marking M enables
a transition t ∈ T if it marks every place in (FS)t, that is, if M ≥ (FS)t.

We now define the behaviour of feature nets for a given feature selection.

Definition 8 (Transition occurrence). Let N = (S, T, R, M0, F, f) be a fea-
ture net and FS ⊆ F a feature selection. A transition t ∈ T occurs, leading from
a state with marking Mi to a state with marking Mi+1, denoted Mi

t,FS−−−→ Mi+1,
iff the following two conditions are met:

Mi ≥ (FS)t (enabling)

Mi+1 = (Mi − (FS)t) + t(FS) (computing)

The transition rule for FN is used to define traces that describe the FN’s be-
haviour. We now define the semantics of a feature net by projecting it onto a
Petri net for a given feature selection.

Definition 9 (Projection). Given a feature net N = (S, T, R, M0, F, f) and
a feature selection FS ⊆ F , the projection of N onto FS, denoted N ↓FS, is a
Petri net (S, T, R′, M0), with R′ = {(x, y) | (x, y) ∈ R,FS |= f(x, y)}.

One projects N onto a feature selection FS by evaluating all application condi-
tions f(x, y) with respect to FS for all arcs (x, y) ∈ R. If FS does not satisfy
f(x, y), then (x, y) is removed from the Petri net.

The behaviour of a feature net is the union of the behaviour of the Petri
nets obtained by projecting all possible feature selections. The behaviour of a
Petri net N = (S, T, R, M0) is given by the set of all of its traces [12], written
Beh(N) = {M0

t1−→ · · · ts−→ Mn | Mi ⊆ S, i ∈ 1..n, Mi−1
ti−→ Mi}, and does not

include application conditions nor feature selections.

Definition 10 (FN Behaviour). Given an FN N = (S, T, R, M0, F, f), we
define Beh(N) as follows:

Beh(N) =
⋃

FS⊆F

Beh(N ↓FS).

A feature net combines the behaviour of a set of Petri nets in a single model.
Feature nets do not exceed the expressive power of Petri nets. This is indicated
by the fact that a feature net can be encoded as a set of Petri nets. Such an
encoding involves two steps: first encoding a FN as a transition-labelled Feature
Petri Net [18], and secondly describing the behaviour of the Feature Petri Net
using a set of regular Petri nets. The first encoding replaces each transition
attached to n arcs in R by 2n transitions, one for each possible combination of

Modular Modelling of Software Product Lines with Feature Nets 323

the possible arcs. The second encoding step into Petri nets can be achieved by
encoding the satisfaction condition of FN transition occurrences by considering
for each feature f two places, f on and f off, marked in mutual exclusion
depending on whether the feature is selected or not. The details of this encoding
are in a previous paper [18].

Given that feature nets are as expressive as Petri nets, analysis techniques
for Petri nets still apply to feature nets. At the same time, feature nets offer a
concise way to describe the systems in an SPL.

4 Modular Modelling

For a modelling formalism to be useful in practice, it needs to facilitate modu-
lar development techniques. This is especially important for modelling software
product lines: a single SPL model combines the behaviour of a set of different
systems, which are often too complex to develop simultaneously.

Modular approaches include top-down techniques, where initially an abstract
model is sketched and more details are added incrementally, and bottom-up ap-
proaches, where subsystems are modelled separately and later plugged together
to a global model. Petri nets support both approaches [12]. In the following we
propose a bottom-up composition technique for feature nets. It is based on the
idea of modelling features of the system individually and then combining them
to obtain a model of the entire SPL. Our approach starts by building a model
of the core system that is the behaviour which is common to all products of the
SPL. Optional features are modelled as separate nets, which also specify how
they interact with the core through an interface. Core and additional features
are then composed stepwise, by incrementally applying each feature to the core.
We show how this technique can be applied to modularly specify a coffee machine
product line from the three features Coffee, Payment and Milk .

4.1 Feature Net Composition

We devise a modular modelling approach in which features are first expressed
as separate FNs. A feature’s interaction with the rest of the system (the core) is
modelled using an interface. Features are modelled separately in such a way that
they can be attached to the core, in order to incrementally build a larger model.
The interface simulates the behaviour of the core that the features are designed to
be plugged into. A feature modelled using this technique can be seen as a partially
specified model of the entire SPL, where the feature’s behaviour is fully specified,
whereas everything else is underspecified. Composition then entails connecting
the interface to the core to obtain a specification of the combined system.

The three features of our example coffee machine are modelled as separate
FNs (Fig. 3). Apart from when a feature’s behaviour is self-contained (such as
the Coffee net in Fig. 3a) it will typically interact with other features that are
part of the larger system. To faithfully model such interactions we include an
interface. The aim of the interface is to abstract part of the larger system’s

324 R. Muschevici, J. Proença, and D. Clarke

wait ready

coffee

refillable

n

coffee

full

brew coffee

Coffee

Coffee

Coffee

Coffee

serve

CoffeeCoffee

refill coffee

CoffeeCoffee

(a) Coffee feature (core)

i-wait ready

i-serve

i-brew

coffee

m

milk

full

milk

refillable

add milk

M
ilk

Milk

M
ilk

Milk

refill milk

MilkMilk

(b) Milk feature

unpaid hold

paid

insert coin

Paym
ent Payment

reject coin

Paym
entPayment

accept coin

P
ay
m
en

t

Payment

i-readyi-wait

serve

Payment

brew coffee

Payment

(c) Payment feature

Fig. 3. Individual feature nets modelling the features Coffee , Milk and Payment of a
product line of coffee machines. Interfaces are highlighted in orange.

behaviour. The interface will also be used to show that the net exposes the same
behaviour as it does when it is part of the combined system. For example, the
model of Milk in Fig. 3b reflects the fact that adding milk depends on a state
of the system in which a cup of fresh coffee is available. The larger system is
represented abstractly by the highlighted interface, which models the availability
of coffee in the place ready; a token in this place would denote a state in which
a freshly brewed cup of coffee is available. Similarly, Fig. 3c models the fact that
after a payment has been accepted, the overall system is able to brew coffee,
and after serving the coffee, the system goes back to an unpaid state.

Constructing a model of the whole SPL is done by stepwise applying the delta
nets of each feature to a core model. The intuition behind delta net application is
that each interface is replaced with a more complex feature net. In our example,
the first step could be to refine Payment ’s interface by replacing it with the
feature net for Coffee. In a second step, the feature Milk is refined by replacing
its interface with the net obtained in the previous step.

Modular Modelling of Software Product Lines with Feature Nets 325

unpaid hold

paid

insert coin

Paym
ent Payment

reject coin

Paym
entPayment

accept coin

P
ay
m
en

t

Payment

readywait

coffee

refillable

n

coffee

full

brew coffee

Coffee

Coffee

Coffee

Coffee
Payment

serve

CoffeeCoffee
Payment

refill coffee

CoffeeCoffee

Fig. 4. A software product line over feature set {Coffee ,Payment} obtained by apply-
ing the delta net Payment (Fig. 3c) to the core net modelling Coffee (Fig. 3a)

We now formally introduce the application of a delta net to a core net.

Definition 11 (Delta Feature Net). A delta feature net N is a FN with a
designated interface, denoted N = (S, T, R, F, f, SI , TI), where SI ⊆ S, TI ⊆ T .

Delta feature nets specify the behaviour of features designed to be added to
a larger system. A set of delta FN is combined with a stand-alone FN, the
core, by sequentially applying each delta net to the core. Delta nets include an
interface, which models interactions with the core. Such interactions are modelled
by transitions or places common to both core and delta net.

Definition 12 (Delta Net Application). Let N = (S, T, R, F, f) be a feature
net and D = (Sd, Td, Rd, Fd, fd, SI , TI) a delta feature net with S ∩ Sd �= ∅. The
application of D to N results in a net N ′ = (S′, T ′, R′, F ′, f ′), written as N ⊕D,
where S′= (Sd \ SI) ∪ S F ′= F ∪ Fd

T ′= (Td \ TI) ∪ T f ′= (f ∪ fd) � R′

R′= {(s, t) ∈ (R ∪ Rd) | s ∈ S′, t ∈ T ′}
∪ {(t, s) ∈ (R ∪ Rd) | t ∈ T ′, s ∈ S′}.

When applying a delta net to a core, the interface is dropped and the two nets are
“fused” along their common nodes. The arcs that previously connected the delta
net interface now connect the core. The applicability of a delta net is limited to
certain cores. Let SB and TB represent the border of the interface, that is, SB =
{s ∈ SI | ∃t ∈ Td \TI : (s, t) ∈ R′} and TB = {t ∈ TI | ∃s ∈ Sd \SI : (t, s) ∈ R′}.
A delta net is applicable to a core net if the border of the interface is preserved,
that is, if S ∩ Sd = SB and T ∩ Td = TB.

We show how delta net application is used to build a model of the example
coffee machines SPL. Starting with the separate sub-models in Fig. 3, delta nets
are applied stepwise to a growing core. First, a model with the two features
Coffee and Payment is composed by applying the delta net from Fig. 3c to the
core shown in Fig. 3a. These nets have the two transitions serve and brew

coffee in common. The result after applying the delta feature net is the new
core feature net shown in Fig. 4. In a second step, we add the Milk behaviour
by applying the feature net in Fig. 3b to the core obtained in the previous step.

326 R. Muschevici, J. Proença, and D. Clarke

unpaid hold

paid

insert coin

Paym
ent Payment

reject coin

Paym
entPayment

accept coin

P
ay
m
en

t

Payment

readywait

coffee

refillable

n

coffee

full

brew coffee

Coffee

Coffee

Coffee

Coffee
Payment

serve

CoffeeCoffee
Payment

refill coffee

CoffeeCoffee

milk

refillable

m

milk

full

add milk

M
il
k

Milk

M
il
k

Milk

refill milk

MilkMilk

Fig. 5. FN model of an SPL over the feature set {Coffee ,Payment ,Milk} obtained by
sequential application of the delta nets for the features Payment (Fig. 3c) and Milk
(Fig. 3b)

These two nets have the place ready in common. The result after delta net
application is the model shown in Fig. 5. Note that the order in which we apply
the two delta nets does not matter in this case, because neither feature (Milk
or Payment) depends on the other. In general, features can depend on other
features. This would be reflected by the design of their interfaces, effectively
restricting the applicability and ensuring that the delta nets can only be applied
in a valid order. As a consequence, delta net application is not commutative.

5 Correctness

When is the application of a delta net D to a core net N correct? We consider
this application correct if the traces of N and D are in some way the same as the
traces of N⊕D, introduced in Definition 12, after projecting onto the transitions
of N and D. However, there are various ways to compare these traces. We can
focus only on the features used by the original nets or on the features used by the
combined net. Also checking correctness of the core net can be different from
checking correctness of the delta net. Finally, it might be enough to consider
only trace inclusion between the original nets and the combined net. The three
dimensions are summarised as:

– Original vs. combined features. When comparing the behaviour of one of
the original nets with the combined net, we can either consider the combined
features in the final net or just the features in one of the original nets.

– Core vs. delta. We can evaluate the correctness of the core or delta net
behaviour, always in comparison to the combined net’s behaviour.

– Liveness, safety, or both. Liveness states that a net cannot inhibit be-
haviour in the other net, while safety states that a net cannot introduce new

Modular Modelling of Software Product Lines with Feature Nets 327

behaviour to the other net. For example, we say a delta application is safe
with respect to the core net N if the traces of the combined net are included
in the traces of N , when considering the common transitions.

By choosing different parameters along these dimensions we obtain different
notions of correctness. We formulate a parametrised notion of correctness for
the application of delta net D to a core net N as follows:

∀FS ⊆ Θ1 : Beh(Θ2 ↓FS) Θ3 Beh((N ⊕ D)↓FS) (parametrised correctness)

where Θ1 can be either the full set of features or the features of the net Θ2, Θ2 can
be either the core or the delta net, and Θ3 is an inclusion or equivalence relation
between the two sets of traces, with respect to a set of relevant transitions.
When Θ3 is a superset relation, it represents safety, since no new traces can
be introduced by combining the two nets. On the other hand, a subset relation
represents liveness, since all traces in the original net are still valid traces in the
combined net. When we have both safety and liveness assurances, we say that
the behaviour is preserved, and instantiate Θ3 to be the equality of the traces
with respect to the common transitions.

Not all combinations of these dimensions are desirable in all cases. For ex-
ample, sometimes we might want to inhibit or extend the behaviour of a core
net with respect to the combined set of features, breaking the liveness or safety
criteria. However, it seems desirable to preserve this behaviour with respect to
the features of the core net. In fact, it is open to debate which combination
of these dimensions are ideal. In this paper, we provide sufficient conditions to
guarantee:

1. Preservation of the behaviour of N with respect to the original features.
2. Preservation of the behaviour of D with respect to the combined features.
3. Safety of the behaviour of N with respect to the combined features.

5.1 Mathematical Preliminaries

We defined liveness and safety as inclusion of traces with respect to a relevant
set of traces. We formalise this concept below.

Definition 13 (Behaviour inclusion ⊆Ts). Let Ni = (Si, Ti, Ri) be a pair
of Petri nets, for i ∈ 1..2, and Ts be a set of transitions. We say that the
behaviour of N1 is included by the behaviour of N2 with respect to Ts, written
Beh(N1) ⊆Ts Beh(N2), if Beh(N1) � Ts ⊆ Beh(N2) � Ts, where Beh(N) � Ts =
{tr � Ts | tr ∈ Beh(N)} and:

M � Ts = ε (M t−→ tr) � Ts =
{

t · (tr � Ts) if t ∈ Ts
tr � Ts otherwise.

Similarly, we write ⊇Ts and =Ts to represent superset inclusion and equality for
the transitions in Ts.

We now define weak bisimulation between two feature nets, which we will use
to relate the interface of a delta net with the net to which the delta is applied to,
based on the notion of bisimulation described by Schnoebelen and Sidorova [22].

328 R. Muschevici, J. Proença, and D. Clarke

Definition 14 (Weak bisimulation). Let Ni = (Si, Ti, Ri, M0i, Fi, fi) be two
feature nets, for i ∈ 1..2, Mi the set of markings of Ni, and B ⊆ (M1 ×
M2)∪ (T1 ×T2) a relation over markings and transitions. Recall also the notion
of occurrence of transitions introduced in Definition 8. In the following we write
t ∈ B to denote that t is in the domain or codomain of B. B is a weak bisimulation
if, for any feature selection FS:

1. M01 B M02

2. ∀(M1, M2) ∈ B, if M1
t1,FS−−−→ M ′

1 and t1 /∈ B, then M ′
1 B M2;

3. ∀(M1, M2) ∈ B, if M1
t1,FS−−−→ M ′

1 and t1 ∈ B, then there exists t2 ∈ T2 and

M ′
2 such that M2

t2,FS−−−→B M ′
2, M ′

1 B M ′
2, and t1 B t2;

4. conditions (2) and (3) also hold for B−1;

where M
t,FS−−−→B M ′ denotes that there are n transitions t1 . . . tn such that

M
t1,FS−−−→ · · · tn,FS−−−→ Mn

t,FS−−−→ M ′ and ∀j ∈ 1..n : tj /∈ B.
If a weak bisimulation exists between N1 and N2 we say that they are weakly
bisimilar, written N1 ≈ N2.

Let C be the feature net for the Coffee feature (Fig. 3a), and P the delta net
dealing with Payment (Fig. 3c). The interface of P can be seen as a feature
net PI . It holds that C ≈ PI . Furthermore, there exists a bisimulation B that
relates the transitions with the same name of the two nets, namely serve and
brew coffee. More specifically, the relation B below is a bisimulation, where
we write MC and MPI to denote all the markings of C and PI , respectively.

{(M, M ′) | M ∈ MC , M ′ ∈ MPi , M(wait) = 1, M ′(wait) = 1} ∪
{(M, M ′) | M ∈ MC , M ′ ∈ MPi , M(wait) = 0, M ′(wait) = 0} ∪
{(serve, serve), (brew coffee,brew coffee)}

5.2 Preservation of the Core Behaviour for the Original Features

Our first criterion compares the core net with the combined net, considering only
the features originally present in the core net. We require the behaviour of the
core net to be preserved in the combined net, that is, their traces must coincide
with respect to the transitions in the core net. We formalise this criterion as
follows.

Criterion 1 (preservation/core/original). Let N = (S, T, R, F, M0, f) be a
core net and D a delta net. We say that N ⊕D preserves the behaviour of N for
the features in F iff

∀FS ⊆ F : Beh(N ↓FS) =T Beh(N ⊕ D↓FS).

To verify that a delta net application obeys the above correctness criteria, it is
sufficient (although not necessary) to verify the following condition. Check that

Modular Modelling of Software Product Lines with Feature Nets 329

the arcs between the interface and the non-interface nodes of D require at least
one ‘new’ feature to be present. By new feature we mean a feature that is not in
F . This syntactic check ensures that, when considering only the features from
the core net, the arcs connecting it to the delta net will never be active.

Theorem 1. Let D = (Sd, Td, Rd, M0d, Fd, fd, SI , TI) be a delta net, N = (S, T,
R, M0, F, f) a feature net, and RI ⊆ Rd be the set of arcs connecting interface
nodes (SI∪TI) to non-interface nodes. The behaviour of N is preserved by N⊕D
for the features in F (Criterion 1) if:

∀(x, y) ∈ RI : ∀FS ∈ Fd ∪ F : FS |= f(x, y) → FS ∩ (Fd\F) �= ∅. (1)

A proof for this theorem can be found in the accompanying technical report [19].
In both our examples of delta applications, that is, adding payment to a coffee
machine and adding milk to the resulting net, the condition in Equation (1) holds.
The intuition is that, for example, when the Payment feature is not available,
the Coffee feature net is detached from the Payment feature net in the combined
net. Hence its behaviour is not affected by the Payment net and is preserved.

5.3 Preservation of the Delta Behaviour for the Combined Features

We now define the second correctness criterion.

Criterion 2 (preservation/delta/combined). Let N = (S, T, R, M0, F, f)
be a core net and D = (Sd, Td, Rd, M0d, Fd, fd, SI , TI) a delta net. We say that
N ⊕ D preserves the behaviour of D with respect to features from the combined
net iff

∀FS ⊆ F ∪ Fd : Beh(D↓FS) =Td\TI
Beh(N ⊕ D↓FS).

As with the correctness Criterion 1, we present a sufficient condition that guar-
antees the preservation of the Criterion 2. However, as opposed to the previous
case, this condition is based on a semantic property of the the interface and the
core net.

Theorem 2. Let D = (Sd, Td, Rd, M0d, Fd, fd, SI , TI) be a delta net, NI =
(SI , TI , RI , M0D, Fd, fd) be the interface of D, N = (S, T, R, F, f) a (core) fea-
ture net, and RB ⊆ Rd denote the arcs connecting interface to non-interface
nodes. The behaviour of D is preserved by N ⊕ D (Criterion 2) if N ≈ NI and
there is a weak bisimulation B ⊆ (M1 ×M2) ∪ (T1 × T2) such that:

{(t, t) | t ∈ T ∩ TI} ⊆ B, (2)
∀s ∈ S ∩ SI , (M, M ′) ∈ B : M(s) = M ′(s), (3)

∀(s, t) ∈ RB, s ∈ SI , (M, M ′) ∈ B : (M − {s �→ 1}) B (M ′ − {s �→ 1}) (4)
∀(t, s) ∈ RB, s ∈ SI , (M, M ′) ∈ B : (M + {s �→ 1}) B (M ′ + {s �→ 1}) (5)

For Equation (4) we assume that, if M(s) = M ′(s) = 0, then subtracting {s �→ 1}
does not change the markings.

330 R. Muschevici, J. Proença, and D. Clarke

The proof for Theorem 2 can be found in the accompanying technical report [19].
Recall our running examples. As explained in the end of Section 5.1, there is a
weak bisimulation between the interface of the delta net for payment P and the
core net for coffee C. This simulation obeys Equation (2) because the shared
transitions are related by B, Equation (3) because there places of C and P are
disjoint, and Equation (4) because, in this case, dom(R) ∩ SI = ∅. Hence the
composition CP = C ⊕ P is correct with respect to Criterion 2. Consider now
the application of the delta net for milk M to the previously obtained core CP .
A possible weak bisimulation between CP and the interface of M relates equal
markings of the places ready in CP and ready in M , as well as of the places
wait and i-wait. Note that, in order to use Theorem 2, we need to include
markings for any number of tokens in ready, because of Equations (4) and (5).
Hence, Equation (2) trivially holds, and our specific bisimulation relation also
captures Equation (3). We conclude that the composition CP⊕M is also correct
with respect to Criterion 2.

5.4 Safety of the Core Behaviour for the Combined Features

Our last correctness criterion compares the core net with the combined net with
respect to all features, as opposed to the first criterion that only considered the
features of the core net. When including the features in the delta net, we consider
it safe to inhibit traces that were initially possible, provided that no new traces
are introduced. We formalise safety using trace inclusion.

Criterion 3 (safety/core/combined). Let N = (S, T, R, M0, F, f) be a core
net and D = (Sd, Td, Rd, M0d, Fd, fd, SI , TI) a delta net. We say that N ⊕ D is
safe with respect to D and to the combined features iff

∀FS ⊆ F ∪ Fd : Beh(N ↓FS) ⊇T Beh(N ⊕ D↓FS).

We claim that, when applying a delta net connecting only places from the inter-
face to the rest of the delta, the delta net application is safe with respect to D
and the combined features.

Theorem 3. When applying a delta net D = (Sd, Td, Rd, M0D, Fd, fd, SI , TI) to
a core net N , we guarantee that N⊕D is safe with respect to D and the combined
features if:

∀s ∈ SI , t ∈ Td\TI : (s, t) /∈ RD. (6)

The theorem is easily justified by the fact that the core net will only be connected
to the rest of the delta net through transitions. When the application of a delta
net respects Equation (6), we are increasing the pre- and post-sets of these
transitions, thereby further restricting when they can be fired.

We exemplify the application of two delta nets in this paper: the Payment and
the Milk nets (Fig. 3c and 3b). The first net obeys the condition in Theorem 3,
hence the correctness Criterion 3 holds. The second delta net has arcs connecting
places from the interface to a non-interface transition, invalidating Equation (6).
However, in this case the safety criterion is preserved, because a token that exits
the core when firing add milk is transported back to its origin in the same step.

Modular Modelling of Software Product Lines with Feature Nets 331

6 Related Work

Our research relates to Petri net based formalisms, and to the behavioural speci-
fication of software product lines. We highlight the most relevant works in these
areas. Petri net composition and decomposition strategies that preserve some
properties of the initial net(s) have been studied thoroughly [4,23,22,12]. In Open
Petri Nets [2], places designated as open represent an interface towards the en-
vironment. Open nets are composed by fusing common open places, and the
composition operation is shown to preserve behaviour with respect to an inverse
decomposition operation. Our Petri net model uses a similar notion of interface,
which includes an abstraction of the net that will be matched during application.
We use an incremental approach using application of deltas instead of a symmet-
ric composition operation, guided by the intuition that larger systems are build
by extending more fundamental systems. The main focus of open Petri nets is
the study of properties in a category of nets, while we have a more practical focus
on the incremental development of nets. Various formalisms have been adopted
for specifying the behaviour of software product lines, with the aim of providing
a basis for analysis and verification of such models. A survey of formal methods
for software product lines has recently been published [5]. UML activity diagrams
have been used to model the behaviour of SPL by superimposing several such
diagrams in a single model [7]. Attached to the activity diagram’s elements are
“presence expressions,” which are similar to application conditions. Compared
to activity diagrams, Petri nets have a stronger formal foundation, with a larger
spectrum of analysis and verification techniques, although, several studies have
expressed the semantics of UML diagram using Petri nets (e.g. [10]). Gruler et
al. extended Milner’s CCS with a product line variant operator that allows an
alternative choice between two processes [14]. The PL-CCS calculus includes in-
formation about variability: by defining dependencies between features, one can
control the set of valid configurations [13]. Variability is often modelled using
transition systems enhanced with product-related information. Modal transition
systems (MTS) [15] allow optional transitions, lending themselves as a tool for
modelling a set of behaviours at once [11]. Generalised extended MTS [9] intro-
duce cardinality-based variability operators and propose to use temporal logic
formulas to associate related variation points. Asirelli et al. encode MTS us-
ing propositional deontic logic formulas and provide a framework for reasoning
about behavioural aspects [1]. Modal I/O automata [16] are a behavioural for-
malism for describing the variability of components based on MTS and I/O
automata. Mechanisms for component composition are provided to support a
product line theory. These approaches do not relate behaviour to elements of
a structural variability model. Featured transition systems (FTS) [6] are an ex-
tension of labeled transition systems. Similar to feature nets, transitions are
explicitly labeled with respect to a feature model, and a feature selection deter-
mines the subset of active transitions. In FTS, transitions are mapped to single
features. Transition priorities are used to deal with undesired non-determinism
when selecting from transitions associated to different features. With application

332 R. Muschevici, J. Proença, and D. Clarke

conditions, priorities are no longer required because we can negate the features
in other transitions to obtain the same effect.

7 Conclusion and Future Work

This paper introduces a modular framework for modelling systems with a high
degree of variability, addressing an important challenge in software product line
engineering. The modelling formalism used is feature nets, a lightweight Petri net
extension in which the presence of arcs is conditional on the presence of certain
features through application conditions. We present an approach to composing
behavioural models from separately engineered models of individual features.
Three correctness criteria for such compositions are also presented.

Feature nets capture the behaviour of entire product lines in a single, concise
model, opening the way for efficient analysis and verification. We will follow this
direction in future work, applying model checking techniques to our models and
studying the question of verification. The practical applicability of our proposed
approach will be examined in a future study, which will also determine how well
the approach scales, considering that features are not always independent.

References

1. Asirelli, P., ter Beek, M.H., Gnesi, S., Fantechi, A.: A deontic logical framework
for modelling product families. In: Benavides et al. [3], pp. 37–44

2. Baldan, P., Corradini, A., Ehrig, H., Heckel, R.: Compositional semantics for open
Petri nets based on deterministic processes. Mathematical Structures in Computer
Science 15(01), 1–35 (2005)

3. Benavides, D., Batory, D.S., Grünbacher, P. (eds.): International Workshop on
Variability Modelling of Software-Intensive Systems (VaMoS), vol. 37. Universität
Duisburg-Essen (2010)

4. Berthelot, G.: Transformations and decompositions of nets. In: Brauer, W., Reisig,
W., Rozenberg, G. (eds.) APN 1986, Part 1. LNCS, vol. 254, pp. 359–376. Springer,
Heidelberg (1987)

5. Clarke, D.: Quality Assurance for Diverse Systems, ch. 5, pp. 27–37. Deliv-
erable 1.2 of the EternalS Coordination Action (FP7-247758), supported by
the 7th Framework Programme of the EC within the FET scheme (2011),
https://www.eternals.eu/sites/default/file/D1_2_TF1_stateOfTheArt.pdf

6. Classen, A., Heymans, P., Schobbens, P.Y., Legay, A., Raskin, J.F.: Model checking
lots of systems: Efficient verification of temporal properties in software product
lines. In: International Conference on Software Engineering, pp. 335–344. IEEE
Press, Los Alamitos (2010)

7. Czarnecki, K., Antkiewicz, M.: Mapping features to models: A template approach
based on superimposed variants. In: Glück, R., Lowry, M. (eds.) GPCE 2005. LNCS,
vol. 3676, pp. 422–437. Springer, Heidelberg (2005)

8. Desel, J., Esparza, J.: Free choice Petri nets. Cambridge University Press, New
York (1995)

9. Fantechi, A., Gnesi, S.: Formal modeling for product families engineering. In:
International Software Product Line Conference, pp. 193–202. IEEE Press, Los
Alamitos (2008)

https://www.eternals.eu/sites/default/file/D1_2_TF1_stateOfTheArt.pdf

Modular Modelling of Software Product Lines with Feature Nets 333

10. Farooq, U., Lam, C.P., Li, H.: Transformation methodology for UML 2.0 activity
diagram into colored Petri nets. In: Advances in Computer Science and Technology,
pp. 128–133. ACTA Press (2007)

11. Fischbein, D., Uchitel, S., Braberman, V.: A foundation for behavioural confor-
mance in software product line architectures. In: International Workshop on the
Role of Software Architecture in Analysis and Testing, pp. 39–48. ACM Press, New
York (2006)

12. Girault, C., Valk, R.: Petri Nets for System Engineering: A Guide to Modeling,
Verification, and Applications. Springer, Secaucus (2001)

13. Gruler, A., Leucker, M., Scheidemann, K.: Calculating and modeling common parts
of software product lines. In: International Software Product Line Conference, pp.
203–212. IEEE Press, Los Alamitos (2008)

14. Gruler, A., Leucker, M., Scheidemann, K.: Modeling and model checking software
product lines. In: Barthe, G., de Boer, F.S. (eds.) FMOODS 2008. LNCS, vol. 5051,
pp. 113–131. Springer, Heidelberg (2008)

15. Larsen, K., Thomsen, B.: A modal process logic. In: Third Annual Symposium on
Logic in Computer Science, pp. 203–210. IEEE Press, Los Alamitos (1988)

16. Larsen, K., Nyman, U., Wa̧sowski, A.: Modal I/O automata for interface and
product line theories. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
64–79. Springer, Heidelberg (2007)

17. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the
IEEE 77(4), 541–580 (1989)

18. Muschevici, R., Clarke, D., Proença, J.: Feature Petri Nets. In: International Soft-
ware Product Line Conference, vol. 2, pp. 99–106. Lancaster University (2010)

19. Muschevici, R., Proença, J., Clarke, D.: Modular modelling of software prod-
uct lines with feature nets. Tech. Rep. CW 609, KU Leuven, Belgium (2011),
http://www.cs.kuleuven.be/publicaties/rapporten/cw/CW609.abs.html

20. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering.
Springer, Heidelberg (2005)

21. Schaefer, I.: Variability modelling for model-driven development of software prod-
uct lines. In: Benavides, et al. [3], pp. 85–92

22. Schnoebelen, P., Sidorova, N.: Bisimulation and the reduction of Petri nets. In:
Nielsen, M., Simpson, D. (eds.) ICATPN 2000. LNCS, vol. 1825, pp. 409–423.
Springer, Heidelberg (2000)

23. Souissi, Y., Memmi, G.: Composition of nets via a communication medium. In:
Rozenberg, G. (ed.) APN 1990. LNCS, vol. 483, pp. 457–470. Springer, Heidelberg
(1991)

http://www.cs.kuleuven.be/publicaties/rapporten/cw/CW609.abs.html

Synchronizing Asynchronous Conformance Testing

Neda Noroozi1,2, Ramtin Khosravi3,
Mohammad Reza Mousavi1, and Tim A.C. Willemse1

1 Eindhoven University of Technology, Eindhoven, The Netherlands
2 Fanap Corporation (IT Subsidiary of Pasargad Bank), Tehran, Iran

3 University of Tehran, Tehran, Iran

Abstract. We present several theorems and their proofs which enable using
synchronous testing techniques such as input output conformance testing (ioco)
in order to test implementations only accessible through asynchronous commu-
nication channels. These theorems define when the synchronous test-cases are
sufficient for checking all aspects of conformance that are observable by asyn-
chronous interaction with the implementation under test.

1 Introduction

Due to the ubiquitous presence of distributed systems (ranging from distributed em-
bedded systems to the Internet), it becomes increasingly important to establish rigor-
ous model-based testing techniques with an asynchronous model of communication in
mind. This fact has been noted by the pioneering pieces work in the area of formal
conformance testing, e.g., see [7, Chapter 5], [10] and [11], and has been addressed
extensively by several researchers in this field ever since [2,4,5,6,12,13].

We stumbled upon this problem in our attempt to apply input-output conformance
testing (ioco) [8,9] to an industrial embedded system from the banking domain [1]. A
schematic view of the implementation under test (IUT) and its environment is given in
Figure 1.(a). The IUT is an Electronic Funds Transfer (EFT) switch, which provides a
communication mechanism among different components of a card-based financial sys-
tem. On one side of the IUT, there are components that the end-user deals with, such as
Automated Teller Machines (ATMs), Point-of-Sale (POS) devices and e-Payment appli-
cations. On the other side, there are Core-Banking systems and the inter-bank network
connecting EFT switches of different financial institutions.

To test the EFT switch, an automated on-line test-case generator is connected to
it; the tester communicates (using an adapter) via a network with the IUT. This com-
munication is inherently asynchronous and hence subtleties concerning asynchronous
testing arise naturally in our context. A simplified specification of the switch in which
these subtleties appear is depicted in Figure 1.(b). In this figure, the EFT switch sends
a purchase request to the core banking system and either receives a response or after
an internal step (e.g., an internal time-out, denoted by τ) sends a reversal request to
the POS. In the synchronous setting, after sending a purchase request and receiving
a response, observing a reversal request will lead to the fail verdict. This is justified
by the fact that receiving a response should force the system to take the left-hand-side

G. Barthe, A. Pardo, and G. Schneider (Eds.): SEFM 2011, LNCS 7041, pp. 334–349, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Synchronizing Asynchronous Conformance Testing 335

POS

ATM

E-Payment

Core Banking

Inter-bank Netw.

EFT

Switch

(IUT)
p rq!

p rs?

τ

r rq!

(a) (b)

Fig. 1. EFT Switch and a simplified specification

transition at the moment of choice in the depicted specification. However, in the asyn-
chronous setting, a response is put on a channel and is yet to be communicated to the
IUT. It is unclear to the remote observer when the response is actually consumed by the
IUT. Hence, even when a response is sent to the system the observer should still expect
to receive a reversal request.

The problems encountered in our practical case study have been encountered by
other researchers. It is well-known that not all systems are amenable to asynchronous
testing since they may feature phenomena (e.g., a choice between accepting input and
generating output) that cannot be reliably observed in the asynchronous setting (e.g.,
due to unknown delays). In other words, to make sure that test-cases generated from the
specification can test the IUT by asynchronous interactions and reach verdicts that are
meaningful for the original IUT, either the class of IUTs, or the class of specifications,
or the test-case generation algorithm (or a combination thereof) has to be adapted.

Related work. In [12, Chapter 8] and [13], both the class of IUTs has been restricted (to
the so-called internal choice specifications) and further the test-case generation algo-
rithm is adapted to generate a restricted set of test-cases. Then, it is argued (with a proof
sketch) that in this setting, the verdict obtained through asynchronous interaction with
the system coincides with the verdict (using the same set of restricted test-cases) in the
synchronous setting. We give a full proof of this result in Section 3 and report a slight
adjustment to it, without which a counter-example is shown to violate the property. It
remains to be investigated what notion of conformance testing is induced by the class
of test-cases proposed in [12,13].

In [6] a method is presented for generating test-cases from the synchronous specifi-
cation that are sound for the asynchronous implementation. The main idea is to saturate
a test-case with observation delays caused by asynchronous interactions. In this paper,
we adopt a restriction imposed on the implementation inspired by [6, Theorem 1] and
prove that in the setting of ioco testing this is sufficient for using synchronous test-case
for the asynchronous implementation (dating back to [7]).

In [4,5] the asynchronous test framework is extended to the setting where separate
test-processes can observe input and output events and relative distinguishing power
of these settings are compared. Although this framework may be natural in practice,
we avoid following the framework of [4,5] since our ultimate goal is to compare asyn-
chronous testing with the standard ioco framework and the framework of [4,5] is no-
tationally very different. For the same reason, we do not consider the approach of [2],
which uses a stamping mechanism attached to the IUT, thus observing the actual order
input and output before being distorted by the queues.

336 N. Noroozi et al.

To summarize, the present paper re-visits the much studied issue of asynchronous
testing and formulates and proves some theorems that show when it is (im)possible to
synchronize asynchronous testing, i.e., interaction with an IUT through asynchronous
channels and still obtain verdicts that coincide with that of testing the IUT using the
synchronous interaction mechanisms.

Structure of the paper. After presenting some preliminaries in Section 2, we give a
full proof of the main result of [12, Chapter 8] and [13] (with a slight modification) in
Section 3. Then, in Section 4, we re-formulate the same results in the pure ioco setting.
Finally, in Section 5, we show that the restrictions imposed on the implementation in
Section 4 are not only sufficient to obtain the results but also necessary and hence
characterize the implementations for which asynchronous testing can be reduced to
synchronous testing. The paper is concluded in Section 6.

2 Preliminaries

In this section, we review some common formal definitions from the literature of labeled
transition systems and ioco testing [9].

Specifications, actions and traces. In our model-based testing approach, systems are
typically formalized using variations of a labeled transition system (LTS). Let τ be a
constant representing an unobservable action.

Definition 1 (LTS). A labeled transition system (LTS) is a 4-tuple 〈S, L,→, s0〉, where
S is a set of states, L is a finite alphabet that does not contain τ , →⊆ S×(L∪{τ})×S
is the transition relation, and s0 ∈ S is the initial state.

Fix an arbitrary LTS 〈S, L,→, s0〉. We shall often refer to the LTS by referring to its ini-
tial state s0. Let s, s′ ∈ S and x ∈ L∪{τ}. We write s

x−→ s′ rather than (s, x, s′) ∈→;
moreover, we write s

x−→ when s
x−→ s′ for some s′, and s

x
�−→ when not s

x−→. The
transition relation is generalized to (weak) traces by the following deduction rules:

s
ε=⇒ s

s
σ=⇒ s′′ s′′ x−→ s′ x �= τ

s
σx=⇒ s′

s
σ=⇒ s′′ s′′ τ−→ s′

s
σ=⇒ s′

In line with our notation for transitions, we write s
σ=⇒ if there is a s′ such that s

σ=⇒ s′,
and s

σ
�=⇒ when no s′ exists such that s

σ=⇒ s′.

Definition 2 (Traces and Enabled Actions). Let s ∈ S and S′ ⊆ S. We define:

1. traces(s) =def {σ ∈ L∗ | s σ=⇒}, and we define traces(S′) =def

⋃
s∈S′ traces(s)

2. init(s) =def {a ∈ L∪ {τ} | s a−→}, and we define init(S′) =def

⋃
s∈S′ init(s),

3. Sinit(s) =def {a ∈ L | s a=⇒}, and we define Sinit(S′) =def

⋃
s∈S′ Sinit(s).

A state in an LTS is said to diverge if it is the source of an infinite sequence of τ -labeled
transitions. An LTS is divergent if one of its reachable states diverges.

Synchronizing Asynchronous Conformance Testing 337

Inputs, Outputs and Quiescence. In LTSs labels are treated uniformly. When engaging
in an interaction with an actual implementation, the initiative to communicate is often
not fully symmetric: the implementation is stimulated and observed. We therefore refine
the LTS model to incorporate this distinction.

Definition 3 (IOLTS). An input-output labeled transition system (IOLTS) is an LTS
〈S, L,→, s0〉, where the alphabet L is partitioned into a set LI of inputs and a set LU

of outputs.

Throughout this paper, whenever we are dealing with an IOLTS (or one of its refine-
ments), we tacitly assume that the given alphabet L for the IOLTS is partitioned in sets
LI and LU . In our examples we distinguish inputs from outputs by annotating them
with question- (?) and exclamation-mark (!), respectively. Note that these annotations
are not part of action names.

Quiescence, defined below, is an essential ingredient in the more advanced confor-
mance testing theories. In its traditional phrasing, it characterizes system states that do
not produce outputs and which are stable, i.e., those that cannot evolve to another state
by performing a silent action.

Definition 4 (Quiescence). State s ∈ S is called quiescent, denoted by δ(s), iff
init(s) ⊆ LI . We say s is weakly quiescent, denoted by δq(s), iff Sinit(s) ⊆ LI .

The notion of weak quiescence is appropriate in the asynchronous setting, where the
lags in the communication media interfere with the observation of quiescence: an ob-
server cannot tell whether a system is engaged in some internal transitions or has come
to a standstill. By the same token, in an asynchronous setting it becomes impossible to
distinguish divergence from quiescence; we re-visit this issue in our proofs of synchro-
nizing asynchronous conformance testing.

Testing hypotheses. Several formal testing theories build on the assumption that the
implementations can be modeled by a particular IOLTS; this assumption is part of the
so-called testing hypothesis underlying the testing theory. Not all theories rely on the
same assumptions. We introduce two models, viz., the input output transition systems,
used in Tretmans’ testing theory [9] and the internal choice input output transition
systems, introduced by Weiglhofer and Wotawa [12,13].

Tretmans’ input-output transition systems are basically plain IOLTSs with the addi-
tional assumption that inputs can always be accepted.

Definition 5 (IOTS). A state s ∈ S in an IOLTS M = 〈S, L,→, s0〉 is input-enabled
iff LI ⊆ Sinit(s). The IOLTS M is an input output transition system (IOTS) iff every
state s ∈ S is input-enabled.

From hereon, we denote the class of input output transition systems ranging over LI and
LU by IOTS(LI , LU). Weiglhofer and Wotawa’s internal choice input output transition
systems relax Tretmans’ input-enabledness requirement; at the same time, however,
they impose an additional restriction on the presence of inputs.

Definition 6 (Internal choice IOTS). An IOLTS 〈S, L,→, s0〉 is an internal choice
input output transition system (IOTS�) if:

338 N. Noroozi et al.

c0

c1

c2 c3

c4

m?

r! b?

c!

e0

e1

e2 e3

e4 e5

m?

τ b?

r! c!

o0

o1

o2 o3

o4

o5 o6

m?

b?

r! τ

b?,m?

m?

b?

τ c!

τ b?,m?

Fig. 2. IOLTS with different moments of choice (m:money,
r:refund, b:button, c:coffee)

t0

fail
t1

fail
t2

failpass
t4

fail
t5

failpass

θ
r?,c?

m!
r?,c?

r? c?
θ

b!
c?,r?

c? r?,θ

Fig. 3. A test case

1. quiescent states are input-enabled, i.e., for all s ∈ S, if δ(s), then LI ⊆ Sinit(s)
2. only quiescent states may accept inputs, i.e., for all s ∈ S, if init(s)∩LI �= ∅ then

δ(s).

We denote the class of IOTS� models ranging over LI and LU by IOTS�(LI , LU).
The following Venn-diagram visualizes the relation between the two different testing
hypotheses.

IOTS�(LI , LU) IOTS(LI , LU) IOLTS(LI , LU)

We note that the intersection between IOTS�(LI , LU) and IOTS(LI , LU) is in a
sense only fulfilled by the most superficial models, viz., those IOLTSs that never
provide proper outputs. If requirement 2 is dropped from Definition 6, then clearly
IOTS�(LI , LU) subsumes IOTS(LI , LU).

Example 1. The two labeled transition systems c0 and e0 in Figure 2 model a coffee
machine which after receiving money, either refunds or accepts it, lets the coffee button
be pressed and delivers coffee consequently. IOLTS o0 in Figure 2 models a disordered
coffee machine which after pressing coffee button may or may not deliver coffee. In
IOLTS c0, after doing the first transition, inserting money, there is a choice between
input and output. Although IOLTS e0 does not feature an immediate race between input
and output actions, the possibility of output r ! can be ruled out by providing input b?.
In the IOLTS o0, however, there is a moment of time after which no output can be
observed, i.e., after taking the unobservable transition the system reaches the quiescent
state and the input b? is accepted by the system.

IOLTSs c0 and e0 are not internal choice IOTSs while o0 is. None the aforementioned
IOLTSs are IOTSs; they can be made IOTSs by adding self-loops for all absent input
transitions at each and every state.

Testing. We next define the notion of a test case. We assume that it can, in the most
general case, be described by a tree-shaped IOLTS. Such a test case prescribes when

Synchronizing Asynchronous Conformance Testing 339

an input should be fed to the implementation-under-test and when its possible outputs
should be observed. In a test case, the observation of quiescence is modeled using a
special θ symbol.

Definition 7 (Test case). A test case is an IOLTS 〈S, L,→, s0〉, where S is a finite set
of states reachable from s0 ∈ S, the terminal states pass and fail are part of S, and
we have θ ∈ LI . In addition, the transition relation → is acyclic and deterministic such
that:

1. pass and fail states appear only as targets of transitions labeled by an element of
LI , and

2. for all s ∈ S \ {pass, fail}, we require that init(s) = (LI \ {θ}) ∪ {x} for some
x ∈ LU ∪ {θ}.

We denote the class of test cases ranging over inputs LI and outputs LU by
TTS(LU , LI).

Notice that the observation θ is an input to a test case; this is in line with the view
that outputs produced by an implementation are inputs to a test case. Moreover, we note
that a test case has no transitions labeled with the silent action τ .

We formalize the way a test case communicates with an actual implementation, mod-
eled by an IOLTS.

Definition 8 (Synchronous execution). Let M = 〈S, L,→, s0〉 be an IOLTS, and let
〈T, L′,→, t0〉 be a test case, such that LI = L′

U and LU = L′
I \ {θ}. Let s, s′ ∈ S and

t, t′ ∈ T . Then the synchronous execution of the test case and M is defined through the
following inference rules:

s
τ−→ s′

(R1)

t�|s τ−→ t�|s′
t

x−→ t′ s
x−→ s′

(R2)

t�|s x−→ t′�|s′
t

θ−→ t′ δ(s)
(R3)

t�|s θ−→ t′�|s

Finally, we state what it means for an implementation to pass a test case.

Definition 9 (Verdict). Let implementation M be given by IOLTS 〈S, L,→, s0〉, and
let 〈T, L ∪ {θ},→, t0〉 be a test case. We say that state s ∈ S passes the test case,
denoted s passes t0 iff there is no σ ∈ (L ∪ {θ})∗ and no state s′ ∈ S, such that
t0�|s σ=⇒ fail�|s′.

3 Adapting IOCO to Asynchronous Setting

In order to perform conformance testing in the asynchronous setting in [12] and [13]
both the class of implementations and test cases are restricted. Then, it is argued (with a
proof sketch) that in this setting, the verdict obtained through asynchronous interaction
with the system coincides with the verdict (using the same set of restricted test-cases)
in the synchronous setting. In this section, we re-visit the approach of [12] and [13],
give full proof of their main result and point out a slight imprecision in it.

340 N. Noroozi et al.

3.1 Test Cases for Internal Choice Implementations

Asynchronous communication delays obscure the observation of the tester; for exam-
ple, the tester cannot precisely establish when the input sent to the system is actually
consumed by it.

Internal choice test-cases, formally defined below, only allow for providing an input
if quiescence has been observed beforehand.

Definition 10 (Internal choice test case). A test case 〈S, L,→, s0〉 is an internal
choice test case (abbreviated to TTS�) if for all s ∈ S, all x ∈ LU and all σ ∈ L∗, if
σx ∈ traces(s) then σ = σ′ · θ.

We denote the class of internal choice test cases ranging over inputs LI and outputs LU

by TTS�(LU , LI).

Example 2. Figure 3 shows an internal choice test case for o0 in Figure 2. In this test
case, inputs for the implementation are enabled only in states reached by a θ-transition.

The property given below illustrates that, indeed, the interaction between an internal
choice test case and an IOLTS proceed in an orchestrated fashion: the IOLTS is only
provided stimuli whenever it has reached a stable situation.

Property 1. Let 〈S, L,→, s0〉 be an arbitrary IOLTS and 〈T, L′,→, t0〉 be an internal
choice test case. Let x ∈ L′

U \ {θ} (= LI), σ ∈ L′∗, s, s′ ∈ S and t, t′ ∈ T . We have
the following property:

t�|s σ·x=⇒ t′�|s′ implies ∃σ′ ∈ L′∗ : σ = σ′ · θ

3.2 Asynchronous Communication

Asynchronous communication, as described in [7, Chapter 5], can be simulated by mod-
elling the communications with the implementation through two dedicated FIFO chan-
nels. One is used for sending the inputs to the implementation, whereas the other is used
to queue the outputs produced by the implementation. We assume that the channels are
unbounded. By adding channels to an implementation, its visible behavior changes.
This is formalized below.

Definition 11 (Queue operator). Let 〈S, L,→, s0〉 be an arbitrary IOLTS, σi ∈ L∗
I ,

σu ∈ L∗
U and s, s′ ∈ S. The unary queue operator [σu� �σi] is then defined by the

following axioms and inference rules:

[σu�s�σi]
a−→ [σu�s�σi·a], a ∈ LI (A1)

[x·σu�s�σi]
x−→ [σu�s�σi], x ∈ LU (A2)

s
τ−→ s′

(I1)

[σu�s�σi]
τ−→ [σu�s′�σi]

s
a−→ s′ a ∈ LI

(I2)

[σu�s�a·σi]
τ−→ [σu�s′�σi]

Synchronizing Asynchronous Conformance Testing 341

s
x−→ s′ x ∈ LU

(I3)

[σu�s�σi]
τ−→ [σu·x�s′�σi]

We abbreviate [〈〉�s�〈〉] to Q(s). Given an initial state s0 of an IOLTS M , the initial
state of M in queue context is given by Q(s0).

Observe that for an arbitrary IOLTS M with initial state s0, Q(s0) is again an IOLTS.
We have the following property, relating the traces of an IOLTS to the traces it has in
the queued context.

Property 2. Let 〈S, L,→, s0〉 be an arbitrary IOLTS. Then for all s, s′ ∈ S, we have
s

σ=⇒ s′ implies Q(s) σ=⇒ Q(s′).

The possibility of internal transitions is not observable to the remote asynchronous
observer and hence, in [12,13], weak quiescence is adopted to denote quiescence in the
queue context.

Definition 12 (Synchronous execution in the queue context). Let M = 〈S, L,→, s0〉
be an IOLTS, and let 〈T, L′,→, t0〉 be a test case, such that LI = L′

U and LU =
L′

I \ {θ}. Let s, s′ ∈ S and t, t′ ∈ T . Then the synchronous execution of the test case
and Q(M) is defined through the following inference rules:

[σu�s�σi]
τ−→ [σ′

u�s′�σ′
i]

(R1’)

t�|[σu�s�σi]
τ−→ t�|[σ′

u�s′�σ′
i]

t
x−→ t′ [σu�s�σi]

x−→ [σ′
u�s′�σ′

i]
(R2’)

t�|[σu�s�σi]
x−→ t′�|[σ′

u�s′�σ′
i]

t
θ−→ t′ δq([σu�s�σi])

(R3’)

t�|[σu�s�σi]
θ−→ t′�|[σu�s�σi]

The property below characterizes the relation between the test runs obtained by execut-
ing an internal choice test case in the synchronous setting and by executing a test case
in the queued setting.

Property 3. Let 〈S, L,→, s0〉 be an IOLTS and let 〈T, L′,→, t0〉 be a TTS�. Consider
arbitrary states s, s′ ∈ S and t, t′ ∈ T and an arbitrary test run σ ∈ L′∗. We have the
following properties:

1. t�|s σ=⇒ t′�|s′ implies t�|Q(s) σ=⇒ t′�|Q(s′)
2. Sinit(t�|s) = Sinit(t�|Q(s)).

The proposition below proves to be essential in establishing the correctness of our main
results in the remainder of Section 3. It essentially establishes the links between the
internal behaviors of an implementation in the synchronous and the asynchronous set-
tings.

342 N. Noroozi et al.

Proposition 1. Let 〈S, L,→, s0〉 be an IOLTS and let 〈T, L′,→, t0〉 be a TTS�. For all
states t ∈ T , s, s′ ∈ S, all σi ∈ L∗

I and σu ∈ L∗
U , we have:

1. s
ε=⇒ s′ iff t�|s ε=⇒ t�|s′ (R1∗)

2. [σu�s�σi]
ε=⇒ [σu�s′�σi] iff s

ε=⇒ s′(I1∗).

3.3 Sound Verdicts of Internal Choice Test Cases

In [13,6], it is argued that providing inputs to an IUT only after observing quiescence
(i.e., in a stable state), eliminates the distortions in observable behavior, introduced
by communicating to the IUT using queues. Hence, a subset of synchronous test-
cases, namely those which only provide an input after observing quiescence, are safe
for testing asynchronous systems. This is summarized in the following (non)theorem
from [13,12] (and paraphrased in [6]):

Claim (Theorem 1 in [13]). Let M be an arbitrary IOTS� with initial state s0, and let
〈T, L,→, t0〉 be a TTS�. Then s0 passes t0 iff Q(s0) passes t0.

In [6], the claim is taken for granted, and, unfortunately, in [13,12] only a proof sketch
is provided for the above claim; the proof sketch is rather informal and leaves some
room for interpretation, as illustrated by the following excerpt:

“...An implementation guarantees that it will not send any output before receiv-
ing an input after quiescence is observed...”

As it turns out, the above result does not hold in its full generality, as illustrated by the
following example.

Example 3. Consider the internal choice test case with initial state t0 in Figure 3.
Consider the implementation modeled by the IOTS� depicted in Figure 2, starting
in state o0. Clearly, we find that o0 passes t0; however, in the asynchronous setting,
Q(oo) passes t0 does not hold. This is due to the divergence in the implementation,
which gives rise to an observation of quiescence in the queued context, but not so in the
synchronous setting.

The claim does hold for non-divergent internal choice implementations. Note that di-
vergence is traditionally also excluded from testing theories such as ioco. In this sense,
assuming non-divergence is no restriction. Apart from the following theorem, we tac-
itly assume in all our formal results to follow that the implementation IOLTSs are non-
divergent.

Theorem 1. Let M = 〈S, L,→, s0〉 be an arbitrary IOTS� and let 〈T, L′∪{τ},→, t0〉
be a TTS�. If M is non-divergent, then s0 passes t0 iff Q(s0) passes t0.

Given the pervasiveness of the original (non-)theorem, a formal correctness proof of our
corrections to this theorem (i.e., our Theorem 1) is highly desirable. In the remainder
of this section, we therefore give the main ingredients for establishing a full proof for
Theorem 1. We start by establishing a formal correspondence between observations
of quiescence in the synchronous setting and observations of weak quiescence in the
asynchronous setting. (Due to space limit, some proofs are omitted here, but can be
found in the technical report [3].)

Synchronizing Asynchronous Conformance Testing 343

Lemma 1. Let 〈S, L,→, s0〉 be an IOTS�. Let s ∈ S be an arbitrary state. Then
δq(Q(s)) implies δ(s′) for some s′ ∈ S satisfying s

ε=⇒ s′.

The above lemma results that all inputs a TTS� gives as stimuli to an implementation,
modeled as an IOTS�, can be consumed. Note that this is a non-trivial statement, given
that an IOTS� is not input-enabled in all states. The proposition below as a consequence
of the given property, states that every test execution can lead to a state in which both
communication queues are empty.

Proposition 2. Let 〈S, L,→, s0〉 be an IOTS�, and let 〈T, L′,→, t0〉 be a TTS�. As-
sume arbitrary states t′ ∈ T and s, s′ ∈ S, and an arbitrary test run σ ∈ L′∗. Then for
all σi ∈ L∗

I and σu ∈ L∗
U :

t0�|Q(s) σ=⇒ t′�|[σu�s′�σi] implies ∃s′′ ∈ S • t0�|Q(s) σ=⇒ t′�|Q(s′′)

As a consequence of the above proposition, we find the following corollary. It states
that each asynchronous test execution can be chopped into individual observations such
that before and after each observation the communication queue is empty.

Corollary 1. Let 〈S, L,→, s0〉 be an IOTS�, and let 〈T, L′,→, t0〉 be a TTS�. Assume
arbitrary states t′ ∈ T and s, s′ ∈ S, and an arbitrary test run σ ∈ L′∗ and x ∈ L′.
Then t0�|Q(s) σ·x=⇒ t′�|Q(s′) implies ∃t′′ ∈ T, s′′ ∈ S • t0�|Q(s) σ=⇒ t′′�|Q(s′′) x=⇒
t′�|Q(s′). Moreover, if x = θ then δq(Q(s′)).

The lemma below establishes a correspondence between the test runs that can be exe-
cuted in the asynchronous setting and those runs one would obtain in the synchronous
setting. The lemma is basic to the correctness of our main results in this section.

Lemma 2. Let 〈S, L,→, s0〉 be an IOTS�, and let 〈T, L′,→, t0〉 be a TTS�. Let
s, s′ ∈ S and t′ ∈ T be arbitrary states. Then, for all σ ∈ L′∗, such that t0�|Q(s) σ=⇒
t′�|Q(s′), there is a non-empty set S ⊆ {s′′ ∈ S | s′ ε=⇒ s′′} such that

1. {s′′ ∈ S | δ(s′′) ∧ s′ ε=⇒ s′′} ⊆ S if ∃σ′ ∈ L′∗ • σ = σ′ · θ
2. s′ ∈ S if �σ′ ∈ L′∗ • σ = σ′ · θ
3. ∀s′′ ∈ S • t0�|s σ=⇒ t′�|s′′.

Proof. We prove this lemma by induction on the length of σ ∈ L′∗.

– Induction basis. Assume that the length of σ is 0, i.e., σ = ε. Assume that
t0�|Q(s) ε=⇒ t0�|Q(s′). By Proposition 1(2) we have s

ε=⇒ s′. Set S =
{s′′ | s′ ε=⇒ s′′}. Let s′′ ∈ S be an arbitrary state. Proposition 1(1) leads
to t0�|s

ε=⇒ t0�|s′ and t0�|s′
ε=⇒ t0�|s′′; by transitivity, we have the desired

t0�|s ε=⇒ t0�|s′′. It is also clear that s′ ∈ S. We thus find that S meets the de-
sired conditions.

– Inductive step. Assume that the statement holds for all σ′ of length at most n − 1.
Suppose that the length of σ is n. Assume that t0�|Q(s) σ=⇒ t′�|Q(s′). By Corol-
lary 1, there is some sn−1 ∈ S, a tn−1 ∈ T and σn−1 ∈ L′∗ and x ∈ L′, such that

σ = σn−1 · x and t0�|Q(s)
σn−1=⇒ tn−1�|Q(sn−1) x=⇒ t′�|Q(s′).

By induction, there must be a set Sn−1 ⊆ {s′′ ∈ S | sn−1
ε=⇒ s′′}, such that

344 N. Noroozi et al.

1. {s′′ ∈ S | δ(s′′) ∧ sn−1
ε=⇒ s′′} ⊆ Sn−1 if ∃σ′ ∈ L′∗ • σ = σ′ · θ

2. sn−1 ∈ Sn−1 if �σ′ ∈ L′∗ • σ = σ′ · θ
3. ∀s′′ ∈ Sn−1 • t0�|s

σn−1=⇒ tn−1�|s′′.
We next distinguish three cases: x ∈ LI , x ∈ LU and x /∈ LI ∪ LU .

1. Case x = θ. We thus find that tn−1�|Q(sn−1) θ=⇒ tn�|Q(s′). As a result of
Corollary 1, we have δq(s′). We then find as a result of Lemma 1, there must
be some state s′′ ∈ S such that sn−1

ε=⇒ s′ ε=⇒ s′′ and δ(s′′). Consider the
set Sn = {s′′ ∈ S | δ(s′′) ∧ s′ ε=⇒ s′′}.
Let s′′ be an arbitrary state in Sn. Distinguish between cases sn−1 /∈ Sn−1 and
sn−1 ∈ Sn−1. In the case, sn−1 /∈ Sn−1, we know from the construction of
Sn−1 that s′′ ∈ Sn−1 and s′′ ε=⇒ s′′ always holds. In the case sn−1 ∈ Sn−1,
we have that sn−1

ε=⇒ s′ ε=⇒ s′′. We thus find that ∀s′′ ∈ Sn ∃s̄ ∈ Sn−1 •
t0�|s

σn−1=⇒ tn−1�|s̄ ε=⇒ tn−1�|s′′ θ−→ t′�|s′′.
Thus Sn has the desired requirement that t0�|s

σn−1·x=⇒ t′�|s′′ for all s′′ ∈ Sn.
Also, {s′′ ∈ S | δ(s′′) ∧ s′ ε=⇒ s′′} ⊆ Sn is concluded from construction of
Sn. Hence, Sn satisfies all desired conditions.

2. Case x ∈ LI . By Property 1, we find that the last step in σn−1 must be θ. It
follows from corollary 1 that Q(sn−1) is weakly quiescent and consequently
δq(sn−1). By induction we have that {s′′ ∈ S | δ(s′′)∧sn−1

ε=⇒ s′′} ⊆ Sn−1.
Consider the set Sn = {s′′ ∈ S | s′ ε=⇒ s′′}.
Transition tn−1�|Q(sn−1) x=⇒ t′�|Q(s′) implies that sn−1

x=⇒ s′. By Lemma
1 and Definition 6, we know that ∃s̄ ∈ S such that sn−1

ε=⇒ s̄
x=⇒ s′ and

δ(s̄). From construction of Sn−1, we know that s̄ is in Sn−1. We thus have

∀s′′ ∈ Sn ∃s̄ ∈ Sn−1 • t0�|s
σn−1=⇒ tn−1�|s̄ x=⇒ t′�|s′′.

It is clear form construction of Sn that s′ ∈ Sn as the required condition that
s′ ∈ Sn if the last step of σ is not θ-labeled transition. We thus find that Sn

fulfills all desired requirements.
3. Case x ∈ LU . Analogous to the previous case.

We are now in a position to establish the correctness of Theorem 1. We provide the
proof below:

Proof (Theorem 1). We prove the theorem by contraposition.

1. Case ⇒. Suppose not Q(s) passes t0. By Definition 9 and Proposition 2,

t0�|Q(s) σ′
=⇒ fail�|Q(s′), for some σ′ ∈ L′∗ and s′ ∈ S. As a result of Lemma

2, there is a non-empty set S ⊆ {s′′ ∈ S | s′ ε=⇒ s′′} such that for all s′′ ∈ S,

t0�|s σ′
=⇒ fail�|s′′, which was what we needed to prove.

2. Case ⇐. Assume, that not s passes t0. Then there are σ′ ∈ L′∗ and s′′ ∈ S,

t0�|s σ′
=⇒ fail�|s′′. Using Property 3 leads to t0�|Q(s) σ′

=⇒ fail�|Q(s′′).

4 Adapting Asynchronous Setting to IOCO

In this section, we re-cast the results of the previous section to the setting with ioco
test-cases. We first define ioco and then show that the results of the previous section

Synchronizing Asynchronous Conformance Testing 345

cannot be trivially generalized to the ioco-setting. Then using an approach inspired by
[7, Chapter 5] and [6], we show how to re-formulate Theorem 1 in this setting.

4.1 Input Output Conformance

The ioco testing theory formalizes the conformance of an implementation to its specifi-
cation. In this theory, implementations are assumed to behave according to an (unkown)
IOTS; as a consequence, implementations are assumed to be input enabled. Contrary
to implementations, specifications are not required to be input enabled; this facilitates
under-specifying the behavior of a system. Informally, the ioco conformance relation
captures whether the observable behaviors of the implementation are valid observable
behaviors, given a specification. The observable behaviors are essentially augmented
traces, called suspension traces, consisting of inputs, outputs and quiescence.

For a given set of states S of an arbitrary IOLTS with transition relation →⊆ S ×
(L ∪ {τ}) × S, suspension traces are defined through an auxiliary transition relation
=⇒δ⊆ S × (L ∪ {δ})∗ × S, specified by the following deduction rules:

s
ε=⇒δ s

s
σ=⇒δ s′ δ(s′)

s
σδ=⇒δ s′

s
σ=⇒δ s′′ s′′ x=⇒ s′

s
σx=⇒δ s′

Henceforth, given an alphabet L, we write Lδ to denote the set L ∪ {δ}.

Definition 13 (Suspension traces, Out and After). Let 〈S, L,→, s0) be an IOLTS.
Let s ∈ S be an arbitrary state, S′ ⊆ S and σ ∈ L∗

δ .

1. The set of suspension traces of s, denoted Straces(s) is the set {σ ∈ L∗
δ | s σ=⇒δ};

we set Straces(S′) =
⋃

s′∈S′ Straces(s′)
2. The outputs of s, denoted out(s) is the set {x ∈ LU | s

x−→} ∪ {δ | δ(s)}; we set
out(S′) =

⋃
s′∈S′ out(s′)

3. The σ-reachable states of s, denoted s afterσ is the set {s′ ∈ S | s
σ=⇒δ s′}; we

set S′ afterσ =
⋃

s′∈S′ s′ afterσ.

The above abbreviations are used in the intensional characterization of the ioco testing
relation, given below.

Definition 14 (ioco). Let 〈I, L,→, i0〉 be an IOTS, and let IOLTS 〈S, L,→, s0〉 be a
specification. We say that implementation i0 is input-output conform specification s0,
denoted i0 ioco s0, iff

∀σ ∈ Straces(s0) • out(i0 afterσ) ⊆ out(s0 afterσ)

The ioco testing relation has been shown to admit a sound and complete test case gen-
eration algorithm, see, e.g., [9]. Soundness means, intuitively, that the algorithm will
never generate a test case that, when executed on an implementation, leads to a fail
verdict if the test runs are in accordance with the specification. Completeness is more
esoteric: if the implementation has a behavior that is not in line with the specification,
then there is a test case that, in theory, has the capacity to detect that non-conformance.

346 N. Noroozi et al.

t′0

t′1
fail

pass fail
t′2

failpass

m!
c?,r?

r? c?
b!

r?,θ
c?

Fig. 4. An ioco test case

s0

s1

s2

s3
s4

s5

s6

s7

p rq!

p rq!p rs?

p rs?
p rs?

τ

p rs?

p rs?
p rs?

r rq!

p rs?

r rq!

p rs?
p rs?

Fig. 5. A delay right-closed IOTS

As the exact workings of the algorithm are impertinent to our main results in this sec-
tion, we will forego an explanation of it.

In the following example, we motivate that the definitions and the constraints used
in the previous section cannot be used for the ioco setting.

Example 4. Figure 4 shows a test case for IOLTS o0 in Figure 2, which is an internal
choice IOTS. Assume that at the same time o0 is also used as the implementation;
o0 is not input-enabled in all states, and making it input-enabled violates the internal
choice assumption. In fact, as observed in Section 2, the intersection of IOTSs and
internal choice IOTSs only include pathological IOTSs that do not produce any output.
For the purpose of this example, we use the theory of ioco on internal choice IOTSs
nevertheless.

For o0 as specification and implementation, we have that o0 ioco o0. However, we
can reach a fail verdict for o0 under the queue context when using the test case t′0.

Consider the sequence m?b?r !; in the queue context, the execution t′0�|Q(o0) m?−→
t′1�|[ε�o0�m?]

ε=⇒ t′1�|Q(o1) ε=⇒ t′1�|[r !�o2�ε]
b?−→ t′2�|[r !�o2�b?]

r !−→
fail�|[ε�o2�b?] is possible, which leads to the fail state. Note that the fail verdict is
reached even if we omit divergence from the implementation o0. This shows that The-
orem 1 cannot be trivially generalized to the ioco setting (even when excluding diver-
gence and allowing for non-input-enabled states).

4.2 Synchronizing Theorem for ioco

In this section, we investigate implementations for which ioco test cases cannot distin-
guish between synchronous and asynchronous modes of testing. To this end, we con-
sider the relation between traces of a system and those of the system in queue context.

Definition 15 (Delay relation). Let L be a finite alphabet partitioned in LI and LU .
The delay relation @⊆ L∗

δ × L∗
δ is defined by the following deduction rules:

σ @ σ
REF

ρi, σi ∈ L∗
I σu ∈ L∗

U

ρi · σu · σi @ ρi · σi · σu
PUSH

σ @ σ′ ρ@ρ′

σ · ρ @ σ′ · ρ′ COM

Proposition 3. Let 〈S, L,→, s0〉 be an IOTS. Let s ∈ S and σ ∈ L∗
δ . Then σ ∈

Straces(Q(s)) implies there is a σ′ ∈ Straces(s) such that σ′ @ σ.

Synchronizing Asynchronous Conformance Testing 347

Definition 16 (Delay right-closed IOTS). Let M = 〈S, L,→, s0〉 be an IOTS. A set
L′ ⊆ L∗

δ is delay right-closed iff for all σ ∈ L′ and σ′ ∈ L∗
δ , if σ @ σ′ then σ′ ∈ L′.

The IOTS M is delay right-closed iff Straces(s0) is delay right-closed.

We denote the class of delay right-closed IOTSs ranging over LI and LU by
IOTS@(LI , LU). The property below gives an alternative characterisation of delay
right-closed IOTSs.

Property 4. Let M = 〈I, L,→, i0〉 be an IOTS. The IOTS M is delay right-closed if
for all σ ∈ L∗

δ , all x ∈ LU and a ∈ LI , we have:

σ · x · a ∈ Straces(i0) then σ · a · x ∈ Straces(i0)

Example 5. Consider the IOTS s0 given in Figure 5. It is not hard to check that s0 is
delay right-closed.

As stated in the following theorem, the verdicts obtained by executing an arbitrary test
case on a delay right-closed IOTS do not depend on the execution context. That is, the
verdict does not change when the communication between the implementation and the
test case is synchronous or asynchronous.

Theorem 2. Let 〈I, L,→, i0〉 be a delay right-closed IOTS and let 〈T, L′,→, t0〉 be an
arbitrary test case. Then i0 passes t0 iff Q(i0) passes t0.

Before we address the proof of the above theorem, we first establish the correctness
of the lemma below, stating that the suspension traces of a delay right-closed IOTS, as
observed in an asynchronous setting are indistinguishable from the set of suspension
traces observable in the synchronous setting.

Lemma 3. Let 〈S, L,→, s0〉 be a delay right-closed IOTS. Then Straces(Q(s0)) =
Straces(s0).

Proof. We divide the proof obligation into two parts: Straces(Q(s0)) ⊆ Straces(s0)
and Straces(s0) ⊆ Straces(Q(s0)). It is not hard to verify that the latter holds vacu-
ously, even for arbitrary IOTSs.

It therefore remains to show that Straces(Q(s0)) ⊆ Straces(s0). Consider a σ ∈
Straces(Q(s0)); by Proposition 3, ∃σ′ ∈ Straces(s0) • σ′ @ σ. As s0 is delay right-
closed, we obtain the required σ ∈ Straces(s0).

The above lemma is at the basis of the correctness of Theorem 2.

Proof (Theorem 2). Using the lemma given above, the proof of the theorem follows
from the observation that for all test cases 〈T, L′,→, t0〉 and all σ ∈ L′∗:

∃i′ ∈ I•t0�|i0 σ=⇒ fail�|i′ iff ∃i′ ∈ I, σi ∈ L∗
I ,σu ∈ L∗

U•t0�|Q(i0) σ=⇒ fail�|[σu�i′�σi]

Theorem 3. Let 〈I, L,→, i0〉 be a delay right-closed IOTS and let IOLTS 〈S, L,→, s0〉
be a specification. Then i0 ioco s0 iff Q(i0) ioco s0.

Proof. Follows from the existence of a sound and complete test suite that can test for
ioco, and the proof of Theorem 2.

348 N. Noroozi et al.

5 Necessary and Sufficient Conditions

In the previous section, we presented a class of implementation, called delay right-
closed, whose synchronous and asynchronous test executions lead to the same verdict.
We now show that delayed right-closedness of implementations is also a necessary
condition to ensure the same verdict in the synchronous and the asynchronous setting.

Theorem 4. Let M = 〈I, L,→, i0〉 be an IOTS. If for every test case 〈T, L′,→, t0〉,
we have i0 passes t0 ⇔ Q(i0) passes t0, then M is a delay right-closed IOTS.

Proof. We prove the theorem by contraposition, i.e., we show that if we test a non-delay
right-closed IOTS, there is a test case that can detect this by giving a pass verdict in the
synchronous setting but a fail verdict in the asynchronous setting.

Let 〈I, L,→, i0〉 be an IOTS that is not delay right-closed. Thus, there is some x ∈
LU , a ∈ LI such that σ · x · a ∈ Straces(i0), but not σ · a · x ∈ Straces(i0). Let
〈T, L′,→, t0〉 be a test case such that there is a t′ ∈ T satisfying:

1. t0
σ=⇒ t′,

2. t′ a−→ t′′, and t′′ x−→ fail.
3. for all σ′ such that t0

σ′
=⇒ fail we have σ′ = σ · a · x.

Observe that the existence of such a test case is immediate. Then there are σi ∈ L∗
I ,

σu ∈ L∗
U and a state i ∈ (i0 afterσ) such that t0�|Q(i0) σ·a·x=⇒ fail�|[σu�i�σi·a], i.e.,

not Q(i0) passes t0. However, we do not have t0�|i0 σ·a·x=⇒ fail�|i. By construction of
the test case, we find that i0 passes t0.

6 Conclusions

In this paper, we presented theorems which allow for using test-cases generated from
ordinary specifications in order to test asynchronous systems. These theorems establish
sufficient conditions when the verdict reached by testing the asynchronous system (re-
motely, through FIFO channels) corresponds with the local testing through synchronous
interaction. In the case of ioco testing theory, we show that the presented sufficient con-
ditions are also necessary.

It remains to find an intensional characterization of the notion of conformance in-
duced by the class of test-cases generated in the approach of [13]. The presented condi-
tions for synchronizing ioco are semantic in nature and we intend to formulate syntactic
conditions that imply the semantic conditions presented in this paper. For example, it is
interesting to find out which composition of programming constructs and / or patterns
of interaction satisfy the constraints established in this paper. The research reported in
this paper is inspired by our practical experience with testing asynchronous systems
reported in [1]. We plan to apply the insights obtained from this theoretical study to
our practical cases and find out to what extent the constraints of this paper apply to the
implementation of our case studies.

Acknowledgments. We would like to thank Sjoerd Cranen (TU/e) and Maciej Gazda
(TU/e) for their useful comments and suggestions.

Synchronizing Asynchronous Conformance Testing 349

References

1. Asadi, H.R., Khosravi, R., Mousavi, M.R., Noroozi, N.: Towards model-based testing of elec-
tronic funds transfer systems. In: Proc. of FSEN 2011. LNCS. Springer, Heidelberg (2011)

2. Jard, C., Jéron, T., Tanguy, L., Viho, C.: Remote testing can be as powerful as local testing.
In: Proc. of FORTE XII. IFIP Proc., vol. 156, pp. 25–40. Kluwer, Dordrecht (1999)

3. Noroozi, N., Khosravi, R., Mousavi, M.R., Willemse, T.A.C.: Synchronizing Asynchronous
Conformance Testing. Computer Science Report, no. 11-10, 16 pp. Technische Universiteit
Eindhoven, Eindhoven (2011)

4. Petrenko, A., Yevtushenko, N.: Queued testing of transition systems with inputs and outputs.
In: Proc. of FATES 2002, pp. 79–93 (2002)

5. Petrenko, A., Yevtushenko, N., Huo, J.: Testing transition systems with input and output
testers. In: Hogrefe, D., Wiles, A. (eds.) TestCom 2003. LNCS, vol. 2644, pp. 129–145.
Springer, Heidelberg (2003)

6. Simao, A., Petrenko, A.: From test purposes to asynchronous test cases. In: Proc. of ICSTW
2010, pp. 1–10. IEEE CS, Los Alamitos (2010)

7. Tretmans, J.: A formal Approach to conformance testing. PhD thesis, Univ. of Twente, The
Netherlands (1992)

8. Tretmans, J.: Test generation with inputs, outputs and repetitive quiescence. Software—
Concepts and Tools 3, 103–120 (1996)

9. Tretmans, J.: Model based testing with labelled transition systems. In: Hierons, R.M., Bowen,
J.P., Harman, M. (eds.) FORTEST. LNCS, vol. 4949, pp. 1–38. Springer, Heidelberg (2008)

10. Tretmans, J., Verhaard, L.: A queue model relating synchronous and asynchronous communi-
cation. In: Proc. of PSTV 1992. IFIP Tr., vol. C-8, pp. 131–145. North-Holland, Amsterdam
(1992)

11. Verhaard, L., Tretmans, J., Kars, P., Brinksma, E.: On asynchronous testing. In: Proc. of
IWPTS 1993. IFIP Tr., vol. C-11, pp. 55–66. North-Holland, Amsterdam (1993)

12. Weiglhofer, M.: Automated Software Conformance Testing. PhD thesis, TU Graz (2009)
13. Weiglhofer, M., Wotawa, F.: Asynchronous input-output conformance testing. In: Proc. of

COMPSAC 2009, pp. 154–159. IEEE CS, Los Alamitos (2009)

Using Coq in Specification and Program

Extraction of Hadoop MapReduce Applications

Kosuke Ono1, Yoichi Hirai1, Yoshinori Tanabe2,
Natsuko Noda3, and Masami Hagiya1

1 University of Tokyo
2 National Institute of Informatics, Japan

3 NEC Corporation

Abstract. Hadoop MapReduce is a framework for distributed
computation on key-value pairs. The goal of this research is to verify
actual running code of MapReduce applications. We first constructed
an abstract model of MapReduce computation with the proof assistant
Coq. In the model, mappers and reducers in MapReduce computation
are modeled as functions in Coq, and a specification of a MapReduce
application is expressed in terms of invariants among functions involv-
ing its mapper and reducer. The model also provides modular proofs
of lemmas that do not depend on applications. To achieve the goal, we
investigated the feasibility of two approaches. In one approach, we trans-
formed verified mapper and reducer functions into Haskell programs and
executed them under Hadoop Streaming. In the other approach, we veri-
fied JML annotations on Java programs of the mapper and reducer using
Krakatoa, translated them into Coq axioms, and proved Coq specifica-
tions from them. In either approach, we were able to verify correctness
of MapReduce applications that actually run on the Hadoop MapReduce
framework.

1 Formalizing MapReduce Applications

As a method for treating a large amount of data, the MapReduce programming
paradigm [4] has obtained much attention. One reason for its popularity is the
Apache Hadoop project1, which releases an open-source MapReduce framework.

The purpose of this research is to develop methods to guarantee that an ap-
plication on the MapReduce framework satisfies a specification, using formal
methods from software engineering. Unlike related work, our goal is to verify
actual, running code of a MapReduce application. To achieve the goal, we inves-
tigated the feasibility of two approaches. In one approach, we transform verified
mapper and reducer functions into Haskell programs and executed them under
Hadoop Streaming. In the other approach, we write specifications of the mapper
and reducer functions as annotations in Java Modeling Language (JML) [10] on
hand-written Java programs of those functions, and use Krakatoa [11] to verify
that the annotated programs satisfy the specifications.
1 http://hadoop.apache.org/

G. Barthe, A. Pardo, and G. Schneider (Eds.): SEFM 2011, LNCS 7041, pp. 350–365, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://hadoop.apache.org/

Using Coq in Specification and Program Extraction 351

Both approaches are based on an abstract model of Hadoop MapReduce com-
putation and specifications of Hadoop libraries formalized with the proof assis-
tant system Coq [1]. In either approach, we were able to verify correctness of
a MapReduce application that runs under the Hadoop MapReduce framework.
The Hadoop libraries provide their features with some informal specifications,
for example what is given to mappers, combiners, and reducers as input, and
how their output is processed. In this research, we formalized the informal speci-
fications in Coq. In addition, specifications of the mapper, combiner and reducer
of an application are also given in Coq. Using these specifications of the Hadoop
libraries and the application specific functions, we can prove the desired specifi-
cation of the application, also formalized in Coq. In such proofs, we often need
to write lemmas in some specific patterns such as handling invariants and lifting
properties from lower level functions to integrated functions. To ease the burden,
we developed a Coq library based on the module system of Coq [3]. In the next
section, we describe details of the formal proof in Coq. For simplicity, we only
treat cases where the combiner and reducer functions are identical. In the next
section and later, the combiner does not appear explicitly.

The contributions of this research are summarized as follows.

– We constructed a Coq model of the Hadoop MapReduce framework by for-
malizing the informal specifications of the Hadoop libraries.

– Based on the model, we formally described correctness of MapReduce ap-
plications, and verified typical applications, WordCount and InvertedIndex.
The verification is modular in that it consists of common parametrized proofs
and instantiations of parameters for each application.

– We took two approaches for verifying actual application code in accordance
with its specification.

To our knowledge, it is the first attempt to formally verify actual running code
of MapReduce applications.

The rest of the paper is organized as follows. The next section formalizes
MapReduce applications in Coq, including WordCount and InvertedIndex, after
presenting the abstract model of Hadoop MapReduce computation. Section 3
explains the first approach in which Haskell programs are extracted from Coq
proofs and executed under Haskell Hadoop and Hadoop Streaming. In Section 4,
verification of Java programs by Krakatoa in the second approach is described
in detail. Section 6 discusses related work.

2 Formalizing MapReduce Applications in Coq

MapReduce [4,9] is a framework for distributed computation involving the map-
per function that transforms input key-value pairs to intermediate key-value
pairs, and the reducer function that takes a number of pairs sharing the same
key and produces the final result of the computation. There is an open-source
implementation called Hadoop MapReduce [14]. We made an abstract model of
Hadoop MapReduce computation, and verified applications called WordCount
and InvertedIndex. They are the most typical MapReduce applications [8].

352 K. Ono et al.

������

����

������

����

������

����

	
�

����� ����� �����

����� �����

����������

������

����

�����

����

���

������������

Fig. 1. MapReduce computation

Figure 1 shows MapReduce computation on the Hadoop platform in general.
In our functional view of MapReduce computation, input data in DFS (Dis-
tributed File System) are split by the function named inputSplitter and fed to
the mapper function as key-value pairs. The key-value pairs produced by the
mapper function are then sorted and combined by the function named shuffle-
Sort which aggregates the values having the same key and sends the key and the
list of the values to the reducer. The final result of the reducer is stored in DFS.

The type of the mapper function is K1*V1->list (K2*V2), where K1, V1, K2
and V2 are type parameters that depend on applications. K1*V1 denotes the type
of a pair that consists of an element from K1 and one from V1, and list (K2*V2)
denotes the type of a list consisting of pairs in K2*V2. The type of shuffleSort
is list (K2*V2) -> list (K2*(list V2)). Each element in a list produced
by shuffleSort is fed to the reducer function whose type is K2*(list V2) -
> list (K3*V3).

For verifying such applications, we developed an abstract model of Hadoop
MapReduce computation in Coq. The model consists of specifications of the
Hadoop libraries and lemmas independent of applications, which do not depend
on applications, with their proofs. The proofs are parametrized in the sense
that they contain parameters that depend on applications, including the type
parameters mentioned above, the mapper and reducer functions themselves, and
proofs of the assumptions on which the parametrized proofs depend.

In the rest of this section, we briefly explain the parametrization and the
proofs of the two applications WordCount and InvertedIndex.

2.1 Abstract Model of Hadoop MapReduce Computation

Figure 2(a) illustrates our model of the MapReduce computation under the
Hadoop framework. We define an entire MapReduce application as the func-
tion totalFn which depends on the mapper and reducer functions given for
the application. The other functions in the figure model the internal structure

Using Coq in Specification and Program Extraction 353

Input

list (K1*V1)

list (K2*V2)

K1*V1

list K2*(list V2)

list (K3*V3)

K2*(list V2)

inputSplitter

mapperintegMapper

shuffleSort

reducerintegReducer

totalFn
(a) Abstract model

������

�����	
�����������

�����	����������

����������

������������	��������

�����	����������

�������	��������

���
���������

���������������

��
��������

���
�����������
���

������

(b) Concretized model for WordCount

Fig. 2. Coq model of MapReduce computation

of the Hadoop library, and they are common to all applications. The function
inputSplitter splits its input into many parts, and constructs a list of key-
value pairs. The list is passed to a function integMapper, which invokes the
mapper function for each key-value pair. The output of integMapper is the con-
catenation of the output lists from the invoked mapper function. It is then given
to shuffleSort, which, for each key, gathers all the values and makes a pair of
the key and the list of gathered values, and produces the list of all such pairs
as its output, as mentioned previously. Then the output is given to a function
called integReducer. Similar to integMapper, it invokes the reducer function
for each pair, and concatenates the output from the reducer as its own output.

The specification of the MapReduce application is formalized in terms of in-
variants expressed as functions to the type Inv, which also depends on the ap-
plication. In Figure 3, there are four functions to Inv. The function sifInput
is given the input to the whole MapReduce computation and return Inv. The
function sifKV3 is given a pair of K3*V3 and returns Inv. It is lifted to the func-
tion from list (K3*V3) to Inv. Here, lifting means defining a function from
list (K3*V3) to Inv as a fold operation using sifKV3. And the lifted function
is combined with the function totalFn. Correctness of the application is defined
as the equality between two functions, sifInput and the function thus obtained
from totalFn and sifKV3. The other functions, sifKV1 and sifKV2, are defined
for interpolated the gap between the two functions, i.e., the correctness is proven
step by step by setting appropriate lemmas and proving those lemmas.

The following code fragment is taken from the parametrized proofs. The first
lemma says that ifLKV1 is equal to the composition of ifLKV2 and integMapper,
where ifLKV1 is the result of lifting sifKV1 to lists.

Definition ifInput :Input -> Inv := sifInput.
Definition ifLKV1 :list (Key1 * Value1) -> Inv := lift sifKV1.
Definition ifLKV2 :list (Key2 * Value2) -> Inv := lift sifKV2.
Definition ifLK2LV2 :list (Key2 * list (Value2)) -> Inv
:= lift (valAgg sifKV2).

354 K. Ono et al.

�����

����	
�����

����	
�����

����

����	��
����	���

����	
�����

��
����	���

�������������

�����������������

�����������

�������������������

�������

��

��������

������

������

������

����

����

Fig. 3. Handling invariants

Definition ifLKV3 :list (Key3 * Value3) -> Inv := lift sifKV3.

Lemma corIntegMapper: forall lkv: list (Key1 * Value1),
ifLKV1 lkv = ifLKV2 (integMapper lkv).

Proof.
intros; unfold ifLKV1, ifLKV2, integMapper.
rewrite <- (lift_comm sifKV1); auto.
apply sCorMapper.

Qed.

Lemma corIntegReducer: forall lklv: list (Key2 * (list Value2)),
ifLK2LV2 lklv = ifLKV3 (integReducer lklv).

Proof.
intros; unfold ifLK2LV2, ifLKV3, integReducer.
rewrite <- (lift_comm (valAgg sifKV2)); auto.
apply sCorReducer.

Qed.

In order to lift an operation on elements to an operation on lists, we need a
monoid structure that depends on applications. As shown in the following code,
MonoidParam is defined as the module type of monoids. For each application, a
concrete monoid is to be defined as a module of type MonoidParam.

Module Type MonoidParam.
Parameter M: Set.
Parameter zero: M.
Parameter mnplus: M -> M -> M.
Axiom assoc: forall a b c: M,
mnplus (mnplus a b) c = mnplus a (mnplus b c).

Axiom comm: forall a b: M, mnplus a b = mnplus b a.
Axiom mnplus_zero_l: forall a: M, mnplus zero a = a.

End MonoidParam.

In the rest of this section, we explain how we verified two concrete applications:
WordCount and InvertedIndex.

Using Coq in Specification and Program Extraction 355

2.2 Proving WordCount Specifications

WordCount is an application that counts the occurrences of words in a given
input file. Since a file is represented as a string, the actual type of Input for
WordCount is string. We define K1 as unit and V1 as string because the key
to the mapper function of WordCount is not used. Since the mapper function
produces a list of pairs of a string and a natural number, we define K2 as string
and V2 as nat. The reducer function produces a list of a pair (i.e. a singleton)
of a string and a natural number. We define K3 as string and V3 as nat. Please
refer to Figure 2(b).

In order to verify an application in Coq, we prepare implementation of the
mapper and reducer functions, and a specification of the application, i.e., the Inv
type and appropriate functions to Inv. We then prove that the implementation
satisfies the specification step by step. In the case of WordCount, the actual
types of Inv is string -> nat and that of sifInput is wordCountStr, which is
defined as follows:

Definition wordCountStr : string -> string -> nat :=
fun input => wordCountList (tokenizer input).

where tokenizer is a function that divides the input string into a list of “words.”
This property could be expressed as a specification of the function tokenizer
with a suitable definition of words, but we do not take this approach because the
definition may vary on the environment, such as the operating system and the lo-
cale. Rather, we consider that tokenizer implicitly defines what a word is. This
is convenient because standard tokenizers are provided in many environments.

In this case study, we need to express a fact that inputSplitter does not
split the input in the middle of a word. Using tokenizer, it can be expressed
by the following axiom.

Axiom tokenizer_inputSplitter: forall (s: string),
tokenizer s = fold_right (@app string) nil
(map (fun us => tokenizer (snd us)) (inputSplitter s)).

It means that “the return value of tokenizer for the input is identical to the
concatenation of the return values of tokenizer for each chunk of the input
divided by inputSplitter.

Definition natMulPlus (ln:list nat): nat := fold_right plus 0 ln.
Definition wordCountList: list string -> string -> nat :=

fun lw => fun word =>
natMulPlus (map (fun w => if string_dec w word then 1 else 0) lw).

The function wordCountStr takes an input value of the string type representing
a file and another string value representing a word, and returns a value of the
nat type. The function divides an input string into a list of words, and then
counts up if each element of the word list is equal to the given string.

The mapper and reducer functions are defined as follows.

356 K. Ono et al.

d1

foo, foo,

bar

d2

foo, bar

(foo,(d1,1))

(foo,(d1,1))

(bar,(d1,1))

(foo,(d2,1))

(bar,(d2,1))

reducer

reducer

(foo, [(d1,2),(d2,1)])

(bar,[(d1,1),(d2,1)])

mapper

mapper

Fig. 4. Application InvertedIndex

Definition mapper (input: unit*string): list (string*nat):=
match input with (u,s) => map (fun w => (w,1)) (tokenizer s) end.

Definition reducer (red_input: string*(list nat)): list (string*nat):=
match red_input with (w,ln) => (w,fold_right plus 0 ln)::nil end.

The mapper function takes an input key-value pair, divides the string data into
words, and emits a list of intermediate key-value pairs. Each word serves as a
key and the constant one serves as a value. The reducer function sums up the
numbers in a given list associated with a given string and emits a result list of
key-value pairs.

The following three lemmas are used to prove the following theorem, which
guarantees that the WordCount application meets its specification. The lemmas
sCorMapper and sCorReducer are referred to in the lemmas corIntegMapper
and corIntegReducer in the previous section, respectively. The theorem is de-
rived from these lemmas. Here, some symbols like WCBasis.mapper consist of a
module name and a module-local name.

Lemma sCorInputSplitter: forall i: string,
sifInput i = lift sifKV1 (TextInput.inputSplitter i).

Lemma sCorMapper: forall kv: unit * string,
sifKV1 kv = mulPlus (map sifKV2 (WCBasis.mapper kv)).

Lemma sCorReducer: forall klv: string * list nat,
(valAgg sifKV2) klv = mulPlus (map sifKV3 (WCBasis.reducer klv)).

Theorem correct: forall (s w: string) (n: nat),
n > 0 -> (n = wordCountStr s w <-> In (w, n) (WCMRSystem.totalFn s)).

2.3 Proving InvertedIndex Specifications

InvertedIndex is an application similar to WordCount. InvertedIndex counts how
many times each word occurs in each file, while WordCount counts how many
times each word occurs in all files. (Figure 4)

First, we prepared the specification of the InvertedIndex application as follows.
The Input type for this application is list (string*string). The Inv type
is string -> string -> nat, and the actual function for sifInput is called
InvertedIndex, which takes a list of string pairs as input, and returns a function

Using Coq in Specification and Program Extraction 357

of the Inv type. The first element of each pair in the list represents a file ID, and
the second element represents the contents of the file. The function returned by
InvertedIndex takes a word and a file ID, and returns the number of occurrences
of the word in the file.

Definition IICountList (lfw:list (string*string))
(word’ file’:string) : nat :=

natMulPlus (map (fun fw => if (string_dec (snd fw) word’)
then (if (string_dec (fst fw) file’)

then 1 else 0)
else 0) lfw).

Definition InvertedIndex (input: list (string*string)) (word file:string): nat:=
IICountList (flat_map (fun fs => map (fun w:string => (fst fs,w))

(tokenizer (snd fs))) input) word file.

The mapper and reducer functions are defined as follows.

Definition mapper (input: string*string): list (string*(string*nat)) :=
match input with (f,s) => map (fun w => (w,(f,1))) (tokenizer s) end.

Definition reducer (red_input:string*(list (string*nat))) :
list (string*(list (string*nat))):=

match red_input with (w,lsn) => (w, group_snd lsn) :: nil end.

where group_snd is a function that receives a list of pairs of a string key and a
natural number value, calculates the sum of the corresponding values for each
key, and returns the list of pairs of the key and the sum.

The following are the lemmas and the theorem correspond to those of Word-
Count at the end of the previous section. The strategy for proving them is almost
identical with that for the WordCount application.

Lemma sCorInputSplitter: forall i: list (string*string),
sifInput i = lift sifKV1 (TextInput.inputSplitter i).

Lemma sCorMapper: forall kv: string * string,
sifKV1 kv = mulPlus (map sifKV2 (IIBasis.mapper kv)).

Lemma sCorReducer: forall klv: string * (list (string*nat)),
(valAgg sifKV2) klv = mulPlus (map sifKV3 (IIBasis.reducer klv)).

Theorem correct: forall (input:list (prod string string))
(f: string) (n: nat)
(wlfn:prod string (list (prod string nat))),

(sif_str_nat’ wlfn (fst wlfn) f = InvertedIndex input (fst wlfn) f
-> sif_str_nat’ wlfn (fst wlfn) f > 0
-> In (fst wlfn, snd wlfn) (IIMRSystem.totalFn input))
/\ (In (fst wlfn,snd wlfn) (IIMRSystem.totalFn input)

-> sif_str_nat’ wlfn (fst wlfn) f
= InvertedIndex input (fst wlfn) f).

3 Extracting Haskell Programs from Coq Proofs

Coq officially supports extraction of OCaml, Scheme and Haskell programs
from Coq proofs. Using this extraction functionality, we can execute function

358 K. Ono et al.

Extraction Language Haskell.
Extract Constant Word => "String"
Extract Constant Weq => "(Prelude.==)".
Extract Inductive nat => Int {"0" "succ"}
Extract Inductive list => "([])" ["[]" "(:)"].

Extract Inductive prod => "(,)" ["(,)"].
Extract Inductive unit => "()" ["()"].
Extract Inductive string => "String" ["String" "String"].
Extract Constant string_dec => "Prelude.==".
Extract Constant tokenizer => "words".

Fig. 5. Directives for extraction

definitions verified by Coq under the real MapReduce framework. Our first ap-
proach uses this functionality.

We chose Haskell [12] as the target language of program extraction from Coq
proofs because the lazy evaluation order supported by Haskell makes the auto-
matically extracted mapper and reducer functions comparable in performance
with their ordinary implementation in Java. If we used OCaml or Scheme, which
do not support lazy evaluation, the extracted code can unnecessarily consume a
huge amount of memory for storing the whole input and output in the memory.
Of course, careful programmers can avoid such a wrong style of programming
writing. However this time, the programs are generated automatically without
intervention of resource conscious programmers.

Extraction of Haskell programs. In order to extract Haskell programs from Coq
proofs, it is necessary to specify some directives to the extractor of Coq. In the
case of WordCount, we used the directives shown in Figure 5. Haskell provides
a tokenizer function called words.

Since the Coq extractor does not allow to convert user-defined function, we
further replace the plus function with the + operator in Haskell.

Hadoop Streaming and Haskell Hadoop. Hadoop Streaming [14] is an interface
library distributed with Hadoop. It enables programming languages other than
Java to describe a MapReduce application. In Hadoop Streaming, both the map-
per and reducer functions are supposed to receive data from the standard input
and produce data to the standard output. Haskell Hadoop2 is a library that
allows Haskell programs to run on Hadoop Streaming. In Haskell Hadoop, the
type Map of the mapper function and the type Reduce of the reducer function
are defined as String -> [String] and String -> [String] -> [String],
respectively. Their definitions had to be modified as follows to make the ex-
tracted programs work:

type Map = (WcK1, WcV1) -> [(WcK2, WcV2)]
type Reduce = (WcK2, [WcV2]) -> [(WcK3, WcV3)]

In the case of WordCount, WcK1, WcV1, WcK2, WcV2, WcK3 and WcK3 are defined
as unit, string, string, int, string and int, respectively. We have prepared
conversion functions for input and output of the mapper and reducer functions.

2 https://github.com/paulgb/haskell_hadoop

https://github.com/paulgb/haskell_hadoop

Using Coq in Specification and Program Extraction 359

4 Verification of Java Programs by Krakatoa

In this section, we explain the second approach: application code written in Java
is formally verified. Under the Hadoop framework, mappers and reducers (and
combiners) are typically written in Java as methods of interfaces defined in the
Hadoop libraries. In this approach, we should verify that the methods of the
mapper and the reducer implemented in Java satisfy the properties formalized
in Coq. We take the following steps.

1. Describe the properties the Java methods should satisfy in the Java Modeling
Language (JML) [10].

2. Apply static analysis to the Java methods and obtain the proof obligations
(the sufficient conditions for the methods to satisfy the properties described
in JML).

3. Try proving the obligations automatically using the Krakatoa interface to
different theorem provers.

4. Prove the remaining obligations by hand.
5. Transform the properties described in JML into Coq formulas.
6. Prove the properties given in Coq from the above formulas.

Details of each step are explained below.
JML has been widely used for describing specifications of Java programs ex-

pressed as pre-conditions and post-conditions for methods. A number of tools
that support JML have been developed, such as ESC/Java2 [2] and Kraka-
toa [11]. They generate proof obligations for verifying that a method in question
obeys the contract, i.e., if the pre-conditions are satisfied when the method is
called, then the post-conditions should be satisfied when the execution of the
method is completed. In this research, we use Krakatoa, because it not only sup-
ports JML in the above-mentioned aspects, but also generates proof obligations
as lemmas in Coq, which is suitable for our approach.

Although our approach is considered applicable to a wide range of MapReduce
applications, we concentrate on the WordCount application in this paper so that
the reader easily understands the concepts from the example.

Java Code and JML specification. The map and reduce methods for the Word-
Count application are shown in Figure 6. There are differences between the
above Java implementation and the Coq model described in Section 2. In the
Coq model, we assume that key-value pairs are given to the mapper_ext and
reducer_ext functions in the form of a list, while an iterator is given to the
methods map and reduce in Java. Moreover, the mapper_ext and reducer_ext
functions in the Coq model return a list, while the Java code produces key-value
pairs one by one by calling the method collect.

To fill the gap, we have added a virtual field, whose value is a list, to the
iterators handled in the Java code. For example, the input to the reducer is given
as an argument named values, which is an iterator of the type IteratorLw and
iterates on LongWritable. The iterator has two main methods. One is hasNext,

360 K. Ono et al.

public void map(Object key, Text line,
OutputCollector output,
Reporter reporter) throws IOException {

LongWritable one = new LongWritable(1);
Text word = new Text();
String str = line.toString();
StringTokenizer tnz

= new StringTokenizer(str);
while (tnz.hasMoreTokens()) {

word.set(tnz.nextToken());
output.collect(word, one);

}
}

public void reduce(Text key,
IteratorLw values,
OutputCollectorTextLw output,
Reporter reporter) throws IOException {

long sum = 0;
while (values.hasNext() == true) {

LongWritable v = values.next();
sum += v.get();

}
output.collect(key, new LongWritable(sum));

}

Fig. 6. The map and reduce methods

type list;

logic list nil();
logic LongWritable headLw(list ls);
logic list tail(list ls);

logic integer totalLw(list ls);

axiom ax1: totalLw(nil()) == 0;

predicate sp1{L}(list l);
axiom sp1_def{L}: \forall list l;

sp1{L}(l) <==>
(totalLw(l) == headLw(l).value

+ totalLw(tail(l)));
axiom ax2{L}: \forall list l; sp1{L}(l);

Fig. 7. List Type for JML

which returns true if and only if the iterator has not yet visited all members.
The method next returns the current member, whose type is LongWritable,
and visits the next member. For this iterator, we have introduced a virtual field
that holds the list of members that have not yet been visited. Krakatoa (or
rather JML) supports such virtual fields, but does not have built-in list types.
We therefore have defined our own version of a list type and its basic operations
as in Figure 7. It also defines a function called totalLw, which computes the
sum of the integers (the values of LongWritable objects) in a list.

Using the list type thus defined, we can naturally describe the specification
of the iterator as shown in Figure 8. The virtual field is declared as a model
field with the name lst, using the keyword model. In the JML specifications
for methods next and hasNext, the keywords requires and ensures specify
the pre-conditions and post-conditions of the method, respectively. The keyword
assigns describes which fields in the class are modified by the method. The
keyword \result refers to the value returned by the method, and \old denotes
the corresponding value at the time the method is called. It is easy to see that
the pre- and post-conditions added to the next and hasNext methods in the
following code express the above-mentioned properties.

For the mapper and reducer specifications, we further defined predicates shown
in Table 1. Using the predicates, the mapper and reducer specifications are de-
scribed as in Table 2.

Generation of proof obligations. In order to show that the implementation of the
map and reduce methods satisfies the specifications described in the previous
section, we need to prove proof obligations generated by Krakatoa. Verification
of the methods is completed by giving formal proofs to proof obligations.

Using Coq in Specification and Program Extraction 361

public class IteratorLw {
//@ model list lst;

/*@ requires lst != nil();
@ assigns lst;
@ ensures tail(\old(lst)) == lst
@ && \result == headLw(\old(lst));
@*/

public LongWritable next();

/*@ assigns \nothing;
@ ensures \result <==> (lst != nil());
@*/

public boolean hasNext();
}

Fig. 8. Specifications for an iterator class. JML specifications for other classes are
defined in a similar manner and their details are omitted here.

In general, generating proof obligations for a Java method requires a loop
invariant for each loop in the method. Since Krakatoa does not provide support
for generating loop invariants automatically, they should be given by hand. In
the case of our map and reduce methods, it is relatively easy to find appropriate
loop invariants by examining their post-conditions. The details are omitted here
because they are not necessary for the following discussions.

The generated proof obligations are classified into two kinds:

(A) Those directly related to the post-conditions and the loop invariants.
(B) Those related to safety of Java code. They guarantee that execution of the

code does not lead to operations that are not allowed in the Java language,
such as field access on the null object, array access beyond boundary, etc.

In this case study, Krakatoa generated 40 obligations in total. The breakdown
is: 14 in (A) and 10 in (B) for map, and 8 in both (A) and (B) for reduce.

Proving proof obligations. The next step is to prove the proof obligations. As
much automation as possible is desirable. A theorem prover Alt-Ergo can be
used for this purpose. Among the 40 proof obligations in the previous section,
Alt-Ergo succeeded in proving 35 obligations, but could not prove the remaining
five obligations; four in (A) for map and one in (B) for reduce.

Krakatoa can also use other theorem provers like Simplify [5] and Z3 [13], but
none was able to solve a proof obligation that Alt-Ergo failed to solve.

As a last resort, Krakatoa can translate proof obligations into Coq. We applied
this translation to the proof obligations that the theorem prover failed to solve,
and finally proved all the translated obligations in Coq by hand.

Table 1. Auxiliary functions and predicates

Name Kind Meaning
numAppear1(s,w) function The number of occurrences of word w in string s.
numAppear2(l,w,c) function The number of occurrences of the pair (w,c) in l, which is a list of

string-integer pairs.
nonNullList(l) predicate List l does not contain null as an element.
headTLText(l) function The string part of the first string-integer pair in l, which is a list of

string-integer pairs.
headTLLw(l) function The integer part of the first string-integer pair in l, which is a list

of string-integer pairs.

362 K. Ono et al.

From JML to Coq. In order to locate the above verification result in the whole
process of verifying a MapReduce application, it is necessary to translate the
JML specifications of the map and reduce method into axioms in Coq. In this
example on the WordCount application, we can proceed as follows.

Let us first examine the pre-conditions of map. There are four conditions.
The first three require that the parameters key, line and output not be null.
These conditions are necessary in JML simply because the Hadoop framework
is realized in Java, and the framework itself guarantees the conditions. They do
not appear in our Coq model. The fourth condition is about the initial value
of the virtual field, and it is also unrelated to the Coq model. Similarly, the
pre-conditions of reduce are all unrelated to the Coq model. In summary, it is
unnecessary to translate the pre-conditions into Coq.

However, the post-conditions should be translated into axioms in Coq. As
for the reduce method, they are translated as in Table 3. Human intervention
was needed here because Krakatoa does not know which variable of JML should
correspond the return value of mapper_ext and reduce_ext functions in Coq.

For example, the first post-condition asserts that the list produced by the
reduce method is not empty. Since the output of the reducemethod corresponds
to the value of the reducer function in the Coq model, we can naturally write an
axiom which says that the value of reducer is not empty. Other post-conditions
and those of the map method are translated similarly.

We anticipate that translation of post-conditions can be automatically done
in general. We plan to write an automatic translator after examining a number
of applications and gaining experiences in translation by hand.

Proof of theorems. The last step is to prove the properties that the mapper_ext
and reducer_ext functions should satisfy. For this purpose, it is sufficient that
the mapper_ext and reducer_ext functions here are the same as those defined
in Section 2. In fact, we can prove the following theorems using the axioms
obtained by translating the post-conditions.

Theorem mapper_coq: forall (u: unit)(s: string),
mapper (u, s) = mappper_ext (u, s).

Theorem reducer_coq: forall (w: string) (ln: list nat),
reducer (w, ln) = reducer_ext (w, ln).

Table 2. Pre- and post-conditions of map and reduce

pre-condition post-condition
map – key != null

– line != null
– output != null
– output.lst == nil()

– \forall String w; numAppear1(\old(line.value), w)
== numAppear2(output.lst, w, 1)

– \forall String w; \forall int i;
numAppear2(output.lst, w, i) > 0 ==> i == 1

reduce – key != null
– values != null
– output != null
– output.lst == nil()
– nonNullList(values.lst)

– output.lst != nil()
– tail(output.lst) == nil()
– headTLText(output.lst).value == key.value
– headTLLw(output.lst).value

== totalLw(\old(values.lst))

Using Coq in Specification and Program Extraction 363

Table 3. Translation of post-conditions

JML post-condition Coq axiom

output.lst != nil() Axiom wcReducerJML_1: forall (k: string) (vs: list nat),
reducer (k, vs) <> nil.

tail(output.lst) == nil() Axiom wcReducerJML_2: forall (k: string) (vs: list nat),
tail (reducer (k, vs)) = nil.

headTLText(output.lst).value
== key.value

Axiom wcReducerJML_3: forall (k: string) (vs: list nat),
fst (headKV3 (reducer (k, vs))) = k.

headTLLw(output.lst).value
== totalLw(\old(values.lst))

Axiom wcReducerJML_4: forall (k: string) (vs: list nat),
snd (headKV3 (reducer (k, vs))) = totalLw vs.

5 Experiments

We compared the time consumption and outputs of the two approaches by ex-
ecuting word count solvers by both approaches. Time consumption is shown in
Table 4. Both approaches gave the same outputs except the order of tuples.

Table 4. Execution time for both approaches. All experiments were conducted on
four machines running CentOS 5.6 (x86 64) on Xeon 2.4GHz (2 cores) with 6GB
Memory and 10GB Disk. Java environment was SUN JDK 6 Update 24. Hadoop was
version 0.20.203.0. The Haskell enviroment consisted of GHC 6.12.3, Haskell Plat-
form 2010.2.0.0. One machine was used as the master node, where the name node, the
secondary name node and job tracker node were executed each assigned 1GB memory.
The other machines were used as slave nodes. In each machine, we deployed a data
node, a task tracker, and six children. We assigned 1GB memory for each data node
and task tracker and 200 MB memory for each child.

input files language execution time

2 MB× 4 java 33s
2 MB× 4 streaming with haskell 1m35s
2 MB× 10 java 41s
2 MB× 10 streaming with haskell 3m47s

6 Related Work

Yang et al. [15] models the MapReduce framework using CSP. However, they
do not provide a method for specifying or proving properties of applications
using the MapReduce framework. Dörre, Apel and Lengauer [6] employs the
type checker of Java 5 compiler in order to ensure that no type error occurs
during execution of a MapReduce application. However, the types cannot express
specifications involving values of the computation result. Lämmel [9] models
the MapReduce framework as a higher-order function in Haskell. In his model,
the MapReduce framework takes a mapper function and a reducer function as
arguments. He also tries to capture the formal specification of the MapReduce
framework in a equation between programs. However, he “contend[s] that the

364 K. Ono et al.

formal property is (too) complicated,” and he does not show how to use the
formal property to show correctness of MapReduce applications.

Hübel [7] has implemented a variant of MapReduce in the strongly typed
language Haskell. Although he does not show how to specify and prove properties
of MapReduce applications, it is probable that our program extraction approach
can be adapted to his framework so that we can produce verified application
under his framework from a Coq proof script.

7 Conclusion and Future Work

We took two approaches to formally verify actual running code of a Hadoop
MapReduce application. In the first approach, the mapper and reducer functions
in Coq were transformed into Haskell programs and executed under
Haskell Hadoop and Hadoop Streaming. In the second approach, JML anno-
tations of Java programs were verified with Krakatoa and translated into Coq
axioms, which were used to prove Coq specifications. Both approaches are based
on a Coq model of Hadoop MapReduce computation.

The Coq model was constructed in a modular fashion. We expressed a specifi-
cation of a MapReduce application in terms of invariants among functions from
key-value pairs to an application-specific type. A proof of a specification in the
model can be constructed by providing a monoid structure, functions expressing
the invariants, and lemmas related to those functions. As concrete applications,
we verified WordCount and InvertedIndex and briefly described their proofs.

This research was conducted as a joint-work of a university team with a pri-
vate company, which aims at applying formal verification techniques in actual,
profitable software developments. The future work follows:

– We plan to verify more MapReduce applications, in particular, applications
such as page ranking that require iteration of MapReduce computation.

– While verifying more applications, we will evaluate the feasibility of our
modular proofs. In particular, we will investigate the range of MapReduce
applications that can be specified in terms of invariants among functions.

– Translation from JML annotations to Coq axioms should be automated.
– Showing the correctness of inputSplitter and tokenizer is not a part of the

verification of an MapReduce application but part of the verification of the
Hadoop libraries. It is a challenging research issue to analyze and verify the
Hadoop framework itself.

References

1. Bertot, Y., Casteran, P.: Interactive Theorem Proving and Program Development.
Springer, Heidelberg (2004)

2. Chalin, P., Kiniry, J., Leavens, G., Poll, E.: Beyond assertions: Advanced speci-
fication and verification with JML and ESC/Java2. In: de Boer, F., Bonsangue,
M., Graf, S., de Roever, W.P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 342–363.
Springer, Heidelberg (2006)

Using Coq in Specification and Program Extraction 365

3. Chrz ↪aszcz, J.: Implementing modules in the Coq system. In: Basin, D., Wolff, B.
(eds.) TPHOLs 2003. LNCS, vol. 2758, pp. 270–286. Springer, Heidelberg (2003)

4. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
Commun. ACM 51, 107–113 (2008)

5. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program checking.
J. ACM 52, 365–473 (2005)

6. Dörre, J., Apel, S., Lengauer, C.: Static type checking of Hadoop MapReduce. In:
MapReduce 2011. ACM, New York (to appear, 2011)

7. Hübel, T.: The Holumbus Framework. Master’s thesis, Wedel University of Applied
Sciences (2008)

8. Jimmy Lin, C.D.: Data-Intensive Text Processing with MapReduce. Morgan and
Claypool (2010)

9. Lämmel, R.: Google’s MapReduce programming model – revisited. Science of Com-
puter Programming 70(1), 1–30 (2008)

10. Leavens, G.T., Poll, E., Clifton, C., Cheon, Y., Ruby, C., Cok, D., Muller,
P., Kiniry, J., Chalin, P., Zimmerman, D.M.: JML reference manual (2011),
http://www.eecs.ucf.edu/~leavens/JML/documentation.shtml

11. Marché, C., Paulin-Mohring, C., Urbain, X.: The KRAKATOA tool for certifi-
cationof JAVA/JAVACARD programs annotated in JML. Journal of Logic and
Algebraic Programming 58(1-2), 89–106 (2004)

12. Marlow, S.: Haskell 2010 language report (2010),
http://www.haskell.org/onlinereport/haskell2010/

13. de Moura, L., Bjøner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C., Rehof,
J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)

14. White, T.: Hadoop: The Definitive Guide. O’Reilly Media, Inc., Sebastopol (2009)
15. Yang, F., Su, W., Zhu, H., Li, Q.: Formalizing MapReduce with CSP. In: Pro-

ceedings of the 2010 17th IEEE International Conference and Workshops on the
Engineering of Computer-Based Systems, ECBS 2010, pp. 358–367. IEEE, Los
Alamitos (2010)

http://www.eecs.ucf.edu/~leavens/JML/documentation.shtml
http://www.haskell.org/onlinereport/haskell2010/

ProMoVer: Modular Verification

of Temporal Safety Properties�

Siavash Soleimanifard1, Dilian Gurov1, and Marieke Huisman2

1 Royal Institute of Technology, Stockholm, Sweden
2 University of Twente, Enschede, Netherlands

Abstract. This paper describes ProMoVer, a tool for fully automated
procedure–modular verification of Java programs equipped with method–
local and global assertions that specify safety properties of sequences of
method invocations. Modularity at the procedure–level is a natural in-
stantiation of the modular verification paradigm, where correctness of
global properties is relativized on the local properties of the methods
rather than on their implementations, and is based here on the construc-
tion of maximal models for a program model that abstracts away from
program data. This approach allows global properties to be verified in the
presence of code evolution, multiple method implementations (as arising
from software product lines), or even unknown method implementations
(as in mobile code for open platforms). ProMoVer automates a typical
verification scenario for a previously developed tool set for compositional
verification of control flow safety properties, and provides appropriate
pre– and post–processing. Modularity is exploited by a mechanism for
proof reuse that detects and minimizes the verification tasks resulting
from changes in the code and the specifications. The verification task is
relatively light–weight due to support for abstraction from private meth-
ods and automatic extraction of candidate specifications from method
implementations. We evaluate the tool on a number of applications from
the smart card domain.

1 Introduction

In modern computing systems, code changes frequently. Modules (or compo-
nents) evolve rapidly or exist in multiple versions customized for various users,
and in mobile contexts, a system may even automatically reconfigure itself. As a
result, systems are no longer developed as monolithic applications; instead they
are composed of ready–made off–the–shelf components, and each component
may be dynamically replaced by a new one that provides improved or additional
functionality. This static and dynamic variability makes it more important to
provide formal correctness guarantees for the behaviour of such systems, but at
the same time also more difficult. Modularity of verification is a key to providing
such guarantees in the presence of variability.
� Soleimanifard’s work is funded by the ContraST project of the Swedish Research

Council VR, and Gurov’s work by the EU FET project FP7–ICT–2009–3 HATS.

G. Barthe, A. Pardo, and G. Schneider (Eds.): SEFM 2011, LNCS 7041, pp. 366–381, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

ProMoVer: Modular Verification of Temporal Safety Properties 367

In modular verification, correctness of the software components is specified
and verified independently (locally) for each module, while correctness of the
whole system is specified through a global property, the correctness of which is
verified relative to the local specifications rather than relative to the actual im-
plementations of the modules. It is this relativization that enables verification of
global properties in the presence of static and dynamic variability. In particular,
it allows an independent evolution of the implementations of individual modules,
only requiring the re–establishment of their local correctness.

Hoare logic provides a popular framework for modular specification and ver-
ification of software, where it is natural to take the individual procedures as
modules, in order to achieve scalability, see e.g., [18]. While Hoare logic allows
the local effect of invoking a given procedure to be specified, temporal logic is bet-
ter suited for capturing its interaction with the environment, such as the allowed
sequences of procedure invocations. This paper shows that procedure–modular
verification is also appropriate for safety temporal logic: for each procedure the
local property specifies its legal call sequences, while the system’s global prop-
erty specifies the allowed interactions of the system as a whole. Thus, temporal
specifications provide a meaningful abstraction for procedures.

To support our approach, we have developed a fully automated verification
tool, ProMoVer, which can be tried via a web–based interface [20]. It takes as
input a Java program annotated with global and method–local correctness as-
sertions written in temporal logic and it automatically invokes a number of tools
from cvpp, a previously developed tool set for compositional verification [13],
to perform the individual local and global correctness checks. Essentially, Pro-

MoVer is a wrapper that performs a standard verification scenario in the gen-
eral tool set, to demonstrate that procedure–modular verification of temporal
safety properties can be applied automatically. Importantly, ProMoVer only
requires the public procedures to be annotated; the private ones are being con-
sidered merely as an implementation means. In addition, ProMoVer provides
a facility to extract a method’s legal call sequences by means of static analysis,
given a concrete procedure implementation. A user thus does not have to write
annotations explicitly; it suffices to inspect the extracted specifications and re-
move superfluous constraints that might hinder possible evolution of the code.
Finally, ProMoVer also practically supports modularity by providing proof
storage and reuse: only the properties that are affected by a change (either in
implementation or in specification) are reverified, all other results are reused.

We show validity of the approach on some typical Java Card e-commerce ap-
plications. Such security–relevant applications are an important target for for-
mal verification techniques. Here, we verify the absence of calls to non–atomic
methods within transactions. Such properties, specifying legal call sequences for
security–related methods, are an important class of platform–specific security
properties. The ProMoVer web interface allows the user to verify such prop-
erties, for which a ready–made formalization is provided.

To allow efficient algorithmic modular verification, the tool set currently ab-
stracts away from all data, thus considering safety properties of the control flow;

368 S. Soleimanifard, D. Gurov, and M. Huisman

in particular, method calls in Java programs are over–approximated by non–
deterministic choice on possible method implementations that the virtual call
resolution might resolve to. This rather severe restriction on the program model
is imposed by the maximal model construction that is the core of our modu-
lar verification technique (see [9] for a proof of soundness and completeness for
this program model). Still, many useful properties can be expressed at this level
of abstraction. These include platform–specific security properties as discussed
above, and application–specific properties such as: (i) a method that changes
sensitive data is only called from within a dedicated authentication method,
i.e., unauthorized access is not possible; or (ii) in a voting system, candidate
selection has to be finished, before the vote can be confirmed. Extending the
technique with data, either over finite domains or over pointer structures, will
allow for a wider range of properties and possible applications, but requires a
non–trivial generalisation of the maximal model construction, and needs to be
combined with abstraction techniques to control the complexity of verification
and of model extraction from a program. We are currently investigating this.

Control flow safety properties can be expressed in various formalisms, e.g.,
automata–based or process–algebraic notations, as well as in temporal logics
such as LTL [22] and the safety fragment of the modal μ-calculus [15]. Internally,
cvpp uses the latter, but ProMoVer allows the user to write the specifications
in LTL, which is usually considered more intuitive. It is future work to extend
ProMoVer also with other notations, in particular graphical ones.

ProMoVer currently handles procedure–modular verification of control–flow
properties for sequential programs. The restriction to modularity at procedure
level is not fundamental, and will be relaxed in future versions. As mentioned
above, we are working on extending the method with data. The underlying the-
ory for modelling multi–threaded programs has been developed earlier (see [12]),
but the model checking problem is not decidable in general and has to be ap-
proximated suitably.

From a more practical point of view, the two main limitations are performance
and the effort needed to write specifications. With respect to the first one, known
theoretical bottlenecks are the maximal model construction and model checking
of global properties (both are exponential in the size of the formula), as well
as the efficient extraction of precise program models (in particular concerning
virtual call resolution and exception propagation). The support for proof reuse is
our main means of addressing these bottlenecks. As to the second limitation, to
reduce the effort needed to write specifications, ProMoVer provides a library
of common platform-specific global properties, and can extract specifications
from a given implementation, as explained above.

The work in this paper is closely related to the development of cvpp [13].
As already pointed out, ProMoVer is essentially a wrapper that automates
a typical verification scenario for cvpp, where modularity is applied at the
procedure–level. In addition, ProMoVer provides support for proof reuse, and
specification extraction, a collection of ready–formalised properties, and trans-
lates between the different intermediate formats and formalisms. Preliminary

ProMoVer: Modular Verification of Temporal Safety Properties 369

results on an earlier version of ProMoVer were reported at a workshop [21].
The present paper extends and completes this work. In particular, we have added
several facilities to improve the usability of the tool, in the form of automated
support for proof reuse, specification extraction, and private method abstrac-
tion (see Section 4). Furthermore, we have adapted and extended significantly
the experimental evaluation of the tool (see Section 5).

Related Work. A non–compositional verification method based on a program
model closely related to ours is presented by Alur et al. [3]. It proposes a tem-
poral logic CaRet for nested calls and returns (generalized to a logic for nested
words in [1]) that can be used to specify regular properties of local paths within
a procedure that skips over calls to other procedures. esp is another exam-
ple of a successful system for non–compositional verification of temporal safety
properties, applied to C programs [5]. It combines a number of scalable pro-
gram analyses to achieve precise tracking (simulation) of a given property on
multiple stateful values (such as file handles), identified through user–defined
source code patterns. Maven is a modular verification tool addressing tempo-
ral properties of procedural languages, but in the context of aspects [7]. Recent
work by Alur and Chauhuri proposes a unification of Hoare–style and Manna–
Pnueli–style temporal reasoning for procedural programs, presenting proof rules
for procedure–modular temporal reasoning [2].

Overview. The rest of this paper is organized as follows. Section 2 presents
the use of ProMoVer from a user’s point–of–view. Section 3 recapitulates the
verification framework, describing the underlying program model and logic, and
the compositional verification method based on constructing maximal models.
Then, Section 4 describes the ProMoVer tool, while Section 5 describes three
small but realistic case studies using the tool. Finally, the last section draws
conclusions and suggests directions for future research.

2 ProMoVer: A User’s View

We start by illustrating how ProMoVer is used on a small example. Both local
method and global program properties are provided as assertions in the form
of program annotations. We use a JML–like syntax for annotations (cf. [17]).
ProMoVer is procedure–modular in the sense that correctness of the global
program property is relativized on the local properties of the individual methods.
Thus, the overall verification task divides into two independent subtasks:

(i) a check that each method implementation satisfies its local property, and
(ii) a check that the composition of local properties entails the global property.

Notice that the second subtask only relies on the local properties and does not
require the implementations of the individual methods. Thus, changing a method
implementation does not require the global property to be reverified, only the lo-
cal property. If the second subtask fails, ProMoVer provides a counter example
in the form of a program behaviour that violates the respective property.

370 S. Soleimanifard, D. Gurov, and M. Huisman

// @global_ltl_prop: even -> X ((even && !entry) W odd)
publ i c c l a s s EvenOdd {

/** @local_interface: required odd
* @local_ltl_prop: G (X (! even || !entry) && (odd -> X G even)) */

publ i c boolean even (i n t n) {
i f (n == 0) return true ; e l s e return odd (n−1) ; }

/** @local_interface: required even
* @local_ltl_prop: G (X (!odd || !entry) && (even -> X G odd)) */

publ i c boolean odd (i n t n) {
i f (n == 0) return f a l s e ; e l s e return even (n−1) ; }

}

Fig. 1. A simple annotated Java program

In addition to the properties, the technique also requires global and local
interfaces. A global interface consists of a list of the methods provided (i.e.,
implemented) and required (i.e., used) by the program. The local interface of
method m contains a list of the methods required by the method (as the provided
method is obvious). ProMoVer can extract both global and local interfaces
from method implementations.

Example 1. Consider the annotated Java program in Figure 1. It consists of two
methods, even and odd. The program is annotated with a global control flow
safety property, and every method is annotated with a local property and an
interface specifying the required methods. As mentioned above, the interfaces can
be extracted from the method implementations. The local method specifications
also can be extracted by ProMoVer, see Section 4.

Here we give an intuitive description of the properties specified in the example;
a formal definition of the temporal logic LTL is given below in Definition 4. The
global property expresses that “in every program execution starting in method
even, the first call is not to method even itself”. The local property of method
even expresses that “method even can only call method odd, and after returning
from the call, no other method can be called”. The local property of method odd
is symmetric.

As explained above, the annotated program is correct if (i) methods even
and odd meet their respective local properties, and (ii) the composition of local
properties entails the global one. In fact, the annotated program is correct and
our tool therefore returns an affirmative result.

Example 2. If we change the global property of the previous example to “in every
program execution starting in method even, no call to method odd is made”,
the tool detects this and rechecks the global property for the already computed
composition of local properties. The local properties do not have to be reverified.
The verification of the global property fails. As a counter example, ProMoVer

returns the following program execution that is allowed by the local properties,
but violates the global one:

(even, ε) even call odd−−−−−−−→(odd, even) odd ret even−−−−−−−→(even, ε)

ProMoVer: Modular Verification of Temporal Safety Properties 371

adapted for user understandability by replacing program points with the names
of the methods they belong to (cf. Definition 3).

3 Framework for Modular Specification and Verification

Next, we briefly present the formal framework underlying the ProMoVer tool
that supports this style of procedure–modular verification. It is heavily based on
our earlier work on compositional verification [9,8].

3.1 Program Model and Logic

First, we formally define the program model and property specification logic.

Definition 1 (Model). A model is a (Kripke) structure M = (S, L,→, A, λ)
where S is a set of states, L a set of labels, →⊆ S × L × S a labeled transition
relation, A a set of atomic propositions, and λ : S → P(A) a valuation, assigning
to each state s the set of atomic propositions that hold in s. An initialized model
is a pair (M, E) with M a model and E ⊆ S a set of initial states.

Our program model is based on the notion of flow graph, abstracting away from
all data in the original program. It is essentially a collection of method graphs, one
for each method of the program. Let Meth be a countably infinite set of methods
names. A method graph is an instance of the general notion of initialized model.

Definition 2 (Method graph). A method graph for method m ∈ Meth over
a set M ⊆ Meth of method names is an initialized model (Mm, Em) where
Mm = (Vm, Lm,→m, Am, λm) is a finite model and Em ⊆ Vm is a non-empty
set of entry nodes of m. Vm is the set of control nodes of m, Lm = M ∪ {ε},
Am = {m, r}, and λm : Vm → P(Am) so that m ∈ λm(v) for all v ∈ Vm (i.e.,
each node is tagged with its method name). The nodes v ∈ Vm with r ∈ λm(v)
are return points.

Notice that methods can have multiple entry points. Flow graphs that are ex-
tracted from program source have single entry points, but the maximal models
that we generate for compositional verification may have several.

Every flow graph G is equipped with an interface I = (I+, I−), denoted G : I,
where I+, I− ⊆ Meth are the provided and externally required methods, respec-
tively. These are needed to construct maximal flow graphs (see Section 3.2).

A flow graph is closed if its interface does not require any methods, and it
is open otherwise. Flow graph composition is defined as the disjoint union � of
their method graphs.

Example 3. Figure 2 shows the flow graph of the program from Figure 1. Its
interface is ({even, odd}, ∅), thus the flow graph is closed. It consists of two
method graphs, for method even and method odd, respectively. Entry nodes are
depicted as usual by incoming edges without source.

372 S. Soleimanifard, D. Gurov, and M. Huisman

even,r reven,

v5

v6

v7

ε

ε
ε ε

even

even

even

v0

v1

v2

v3

even

v4

odd

odd

r

odd

odd, odd,r
v8 v9

ε

ε
odd

Fig. 2. Flow graph of
EvenOdd

Flow graph behavior is also defined as an instance
of an initialized model, induced through the flow
graph structure. We use transition label τ for in-
ternal transfer of control, m1 call m2 for the invoca-
tion of method m2 by method m1 when method m2

is provided by the program and m1 call! m2 when
method m2 is external, and m2 ret m1 respectively
m2 ret? m1 for the corresponding return from the
call.

Definition 3 (Behavior). Let G = (M, E) : (I+, I−) be a flow graph such that
M = (V, L,→, A, λ). The behaviour of G is defined as initialized model b(G) =
(Mb, Eb), where Mb = (Sb, Lb,→b, Ab, λb), such that Sb = (V ∪ I−) × V ∗, i.e.,
states are pairs of control points v or required method names m, and stacks σ,
Lb = {m1 k m2 | k ∈ {call, ret}, m1, m2 ∈ I+} ∪ {m1 call! m2 | m1 ∈ I+, m2 ∈
I−} ∪ {m2 ret? m1 | m1 ∈ I+, m2 ∈ I−} ∪ {τ}, Ab = A, λb((v, σ)) = λ(v) and
λb((m, σ)) = m, and →b⊆ Sb × Lb × Sb is defined by the following rules:

[transfer] (v, σ) τ−→(v′, σ) if m ∈ I+, v
ε−→mv′, v |= ¬r

[call] (v1, σ) m1 call m2−−−−−−→(v2, v
′
1 · σ) if m1, m2 ∈ I+, v1

m2−−→m1v
′
1, v1 |= ¬r,

v2 |= m2, v2 ∈ E

[ret] (v2, v1 · σ) m2 ret m1−−−−−−→(v1, σ) if m1, m2 ∈ I+, v2 |= m2 ∧ r, v1 |= m1

[call!] (v1, σ) m1 call! m2−−−−−−−→(m2, v
′
1 · σ) if m1 ∈ I+, m2 ∈ I−, v1

m2−−→m1v
′
1, v1 |= ¬r

[ret?] (m2, v1 · σ) m2 ret? m1−−−−−−−→(v1, σ) if m1 ∈ I+, m2 ∈ I−, v1 |= m1

The set of initial states is defined by Eb = E×{ε}, where ε denotes the empty
sequence over V ∪ I−.

Notice that return transitions always hand back control to the caller of the
method. Calls to external methods are modeled with intermediate state, from
which only an immediate return is possible. In this way possible callbacks from
external methods are not captured in the behaviour. This simplification is jus-
tified, since we abstract away from data in the model and the behaviour is thus
context–free, but has to be kept in mind when writing specifications; in partic-
ular one cannot specify that callbacks are not allowed.

Example 4. Consider the flow graph from Example 3. An example run through
its (branching, infinite–state) behaviour, from an initial to a final state, is:

(v0, ε) τ−→(v1, ε) τ−→(v2, ε) even call odd−−−−−−−→(v5, v3) τ−→(v6, v3) τ−→(v8, v3) odd ret even−−−−−−−→(v3, ε)

Now, consider just the method graph of method even as an open flow graph,
having interface ({even}, {odd}). The local contribution of method even to the
above global behaviour is the following run:

(v0, ε) τ−→(v1, ε) τ−→(v2, ε) even call! odd−−−−−−−→(odd, v3) odd ret? even−−−−−−−→(v3, ε)

ProMoVer: Modular Verification of Temporal Safety Properties 373

Pushdown systems. (PDS) are an alternative way to express flow graph be-
haviour. We exploit this by using PDS model checking, concretely the tool
Moped [14], for verifying program behaviour against temporal formulas.

As mentioned above, safety properties can be expressed in many different for-
malisms. In this paper, we use safety LTL which consists of the safety–fragment
of Linear Temporal Logic (LTL), using the weak until–operator. Internally, how-
ever, the whole machinery is based on the safety fragment of the modal μ-
calculus. Safety LTL is somewhat less expressive than the latter and can be uni-
formly encoded in it. This translation is implemented as part of ProMoVer.
In our LTL formulas, we use an additional atomic proposition entry that holds
for entry nodes. It is removed by the translation into the modal μ-calculus.

Definition 4 (Safety LTL). Let p ∈ Ab ∪ {entry} and m ∈ M . The formulae
of Safety LTL are inductively defined by:

φ ::= p | ¬p | φ1 ∧ φ2 | φ1 ∨ φ2 | X φ | G φ | φ1 W φ2

Satisfaction on states (Mb, s) |= φ for LTL is defined in the standard fashion [22]:
formula X φ holds of state s in model Mb if φ holds in the next state of every
run starting in s; G φ holds if for every run starting in s, φ holds in all states of
the run; and φ W ψ holds in s if for every run starting in s, either φ holds in all
states of the run, or ψ holds in some state and φ holds in all previous states.

Example 5. Consider the global property of class EvenOdd in Figure 1 (where
&& is ASCII notation for ∧) and its intuitive meaning in Example 1. Flow graph
extraction and construction ensures that entry nodes are only accessible via calls;
hence, if control starts and remains in method even, execution can be at an entry
node only as the result of a self–call. The formula thus states that “if program
execution starts in method even, method even is not called until method odd is
reached”, which coincides with the interpretation given in Example 1.

3.2 Compositional Verification

Our method for algorithmic compositional verification is based on the construc-
tion of maximal flow graphs from component properties. For a given property ψ
and interface I, consider the set of all flow graphs with interface I satisfying ψ.
A maximal flow graph for ψ and I, denoted Max(ψ, I), satisfies exactly those
properties that hold for all members of the set. Thus, the maximal flow graph
can be used as a representative of the set for the purpose of property verification.
For details the reader is referred to [9].

For a system with k components, our principle of compositional verification
based on maximal flow graphs can be presented as a proof rule with k + 1
premises, that states that the composition of components G1 : I1, ...,Gk : Ik

satisfies a global property φ if there are local properties ψi such that (i) each
component Gi satisfies its local property ψi, and (ii) the composition of the k
maximal flow graphs Max(ψI , Ii) satisfies φ.

374 S. Soleimanifard, D. Gurov, and M. Huisman

⊎
i=1,...,k

Gi |= φ

G1 |= ψ1 · · · Gk |= ψk

⊎
i=1,...,k

Max(ψi, Ii) |= φ

As mentioned above, in the context of ProMoVer, we consider individual pro-
gram methods as components. If we instantiate the above compositional veri-
fication principle to procedure–modular verification, we obtain the verification
tasks stated informally in Section 2 (where M is the set of program methods,
with k = |M |, and ψi and Ci are the specification and the implementation of
method mi, respectively):

(i) Checking Ci |= ψi for i = 1, ..., k: For each method mi ∈ M , (a) extract
the method flow graph Gi from Ci, and (b) model check Gi against ψi. For
the latter, we exploit the fact that flow graphs are Kripke structures, and
apply standard finite–state model checking.

(ii) Checking
⊎

i=1,...,k Max(ψi, Ii) |= φ: (a) Construct maximal flow graphs
Max(ψi, Ii) for all method specifications ψi and interfaces Ii, then (b) com-
pose the graphs, resulting in flow graph GMax, and finally (c) model check
GMax against global property φ. For the latter, represent the behaviour of
GMax as a PDS and use a standard PDS model checker.

Example 6. Consider again the annotated Java program from Example 1. Pro-

MoVer first extracts the method flow graphs of methods even and odd, de-
noted Geven and Godd, respectively. Next, ProMoVer checks Geven |= ψeven and
Godd |= ψodd by standard finite state model checking. Independently, it constructs
the maximal flow graphs of methods even and odd, denoted Max(ψeven, Ieven)
and Max(ψodd, Iodd), respectively, and composes the graphs to obtain GMax =
Max(ψeven, Ieven) �Max(ψodd, Iodd). Finally, ProMoVer translates GMax to
a PDS and model checks the latter against the global property.

4 The ProMoVer Tool

Next we describe the internals of ProMoVer. As mentioned above, Pro-

MoVer essentially is a wrapper for cvpp [13], with extra features such as
specification extraction, private method abstraction, a property specification
library and support for proof reuse. All features are implemented in Python.
ProMoVer can be tested via a web interface [20].

CVPP Wrapper. Figure 3 shows schematically how ProMoVer combines the
individual cvpp tools. An annotated Java program, as exemplified in Section 2, is
given as input. The pre–processor parses the annotations, using the Java Doclet
API [6], and then passes properties and interfaces on to the different cvpp tools.

Task (i) first invokes the Analyzer to extract the method graphs of the pro-
gram. This builds on Sawja [11] to extract flow graphs from Java bytecode. Then

ProMoVer: Modular Verification of Temporal Safety Properties 375

Pre−Processor

Store(i)

Method name

Graph Tool

CWB

YES/NO+

L
oc

al
 P

ro
pe

rt
ie

s

ProMoVer

Analyzer
(ii)

Counter example
YES/NO+

Modal equation

StoreStore

Store

Retrieve Retrieve

YES/NO+Method name or
Modal equation system

Annotated Java Program

G
lo

ba
l P

ro
pe

rt
ie

s

system

YES/NO+Counter ex. or

Spec. Extractor

Max. Model

Graph Tool

Moped

Storage
Graph & Proof

Post−Processor

Fig. 3. Overview of ProMoVer and its underlying tool set

the Graph Tool is used. This implements several algorithms on flow graphs, in-
cluding flow graph composition � and translations of flow graphs into different
formats. Here the Graph Tool is used to translate the flow graph of each method
into a CCS model. These are then model checked against the respective local
method specifications using the Concurrency Workbench (cwb) [4].

Task (ii) first constructs a maximal flow graph for every method using the
Maximal Model Tool. Then the Graph Tool composes the generated flow
graphs and converts the result into a PDS. Finally Moped [14] is used to model
check the PDS against the global property.

The post–processor collects all model checking results and converts these into
a user–understandable format. It only returns a positive result if all collected
model checking tasks succeed. If one of the local model checking tasks fails, the
name of the method that violates its specification is returned. If the global model
checking task fails, the counter example provided by Moped, transformed into
a program execution, is returned.

Specification Extraction. To reduce the effort needed to write specifications,
ProMoVer provides support to extract a specification from a given method
implementation, resulting in the (over–approximated) order of method invoca-
tions for this method. The user might then want to remove some superfluous
dependencies, in order not to be overly restrictive on possible evolution of the
code. ProMoVer extracts specifications in the form of modal equation systems
(as defined by Larsen [16]). These are equivalent to formulae in modal μ-calculus
with boxes and greatest fixed points only, and have the advantage that in cvpp

they can serve directly as input for the construction of maximal flow graphs. It
is future work to also extract to other specification languages, such as LTL.

Consider again Figure 1. Specification extraction for method even results in
(where eps is ASCII notation for ε, and ff denotes false):

@local_eq_prop: (X0){ X0 = [odd](X1) /\ [even]ff /\ [eps]X0;
X1 = [odd] ff /\ [even]ff /\ [eps]X1;}

376 S. Soleimanifard, D. Gurov, and M. Huisman

This specifies that method odd may be called at most once: initially X0 holds,
and method odd may be called or an internal step (labelled eps) may be made.
After calling odd, X1 should hold and only internal steps are allowed.

As a more involved example, consider method m and its extracted specification:

@local_eq_prop:

(X0){ X0 = [m4]ff /\ [m1](X1) /\ [m3]ff /\ [m2]ff /\ [m]ff /\ [eps]X0;

X1 = [m4]ff /\ [m1]ff /\ [m3]ff /\ [m2](X2) /\ [m]ff /\ [eps]X1;

X2 = [m4](X3) /\ [m1]ff /\ [m3](X4) /\ [m2]ff /\ [m]ff /\ [eps]X2;

X3 = [m4]ff /\ [m1]ff /\ [m3]ff /\ [m2]ff /\ [m]ff /\ [eps]X3;

X4 = [m4]ff /\ [m1]ff /\ [m3]ff /\ [m2]ff /\ [m]ff /\ [eps]X4; }

public void m() { int i = m1(); int j = m2();

if (i < j) {m3(); } else { m4(); } }

The formula captures that first only m1 can be called, then only m2, and then
either m3 or m4, and no further calls can be made. Actually, the order of invoking
m1 and m2 is immaterial for this program, so a designer may choose to change
the equations defining X0 and X1 to allow the two methods to be called in any
order (whereas the defining equations for X2 to X4 remain unchanged):

X0 = [m4]ff /\ [m1](X10) /\ [m3]ff /\ [m2](X11) /\ [m]ff /\ [eps]X0;

X10 = [m4]ff /\ [m1]ff /\ [m3]ff /\ [m2](X2) /\ [m]ff /\ [eps]X10;

X11 = [m4]ff /\ [m1](X2) /\ [m3]ff /\ [m2]ff /\ [m]ff /\ [eps]X11;

Private Method Abstraction. Since private methods are used as means of im-
plementation for public methods, at the flow graph level, all calls to private
methods can be inlined into the flow graph of the public methods. The resulting
method flow graphs thus only describe the public behaviour, and users only have
to specify the public methods. For details the reader is referred to [9].

Property Specification Library. ProMoVer’s web interface provides a collec-
tion of pre–formalised global properties. These describe platform–specific secu-
rity properties, restricting calls to API methods. Currently, the library contains
several Java Card and voting system properties.

Proof Storage and Reuse. All extracted method flow graphs and constructed
maximal flow graphs are stored when a program is verified by ProMoVer. If
later the implementation of method m changes, a new method flow graph is ex-
tracted and checked against m’s local specification. If m’s local specification φm

changes, the existing flow graph of method m is model checked against φm. In
addition a new maximal flow graph for m is constructed from φm. This is com-
posed with the other maximal flow graphs (recovered from storage), and the
composed flow graph is model checked against the global property.

5 Experimental Results with ProMoVer

We use ProMoVer to verify a standard control flow safety property on a num-
ber of Java Card applications. Java Card is one of the leading interoperable
platforms for smart cards. Many smart card applications are security–critical.

ProMoVer: Modular Verification of Temporal Safety Properties 377

Table 1. Applications details

Application #LoC #Methods (Public) #Calls (Relevant)

AccountAccessor 190 9 (7) 38 (4)
TransitApplet 918 18 (5) 106 (5)

JavaPurse 884 19 (9) 190 (25)

As mentioned above, for platforms such as Java Card, collections of control
flow safety properties exist that programs should adhere to in order to provide
minimal security requirements. We focus on such a property of the Java Card
transaction mechanism. This mechanism ensures that data remains consistent
upon power loss. Safe use of it demands that certain methods are not called
within a transaction. We show how this global safety property can be expressed in
our setting, and be verified with ProMoVer for several applications, where we
apply specification extraction to annotate the public methods of the applications.

The Java Card Transaction Mechanism. Smart cards have two types of writable
memory, persistent memory (EEPROM or Flash) and transient memory (RAM).
Transient memory needs constant power supply to store information, while per-
sistent memory can store data without power. Smart cards do not have their
own power supply; they depend on the external source that comes from the card
reader device. Therefore, a problem known as card tear may occur: a power loss
when the card is suddenly disconnected from the card reader. If a card tear
occurs in the middle of updating data from transient to persistent memory, the
data stored in transient memory is lost and may cause the smart card to be in
an inconsistent state.

To prevent this, the transaction mechanism is provided. It can be used to en-
sure that several updates are executed as a single atomic operation, i.e., either
all updates are performed or none. The mechanism is provided through methods
beginTransaction for beginning a transaction, commitTransaction for end-
ing a transaction with performed updates, and abortTransaction for ending a
transaction with discarded updates [10] – all declared in class JCSystem of the
Java Card API.

However, the Java Card API also contains some non–atomic methods that are
better not used when a transaction is in progress. Notably, the class javacard.
framework.Util that provides functionality to store and update byte arrays,
contains methods arrayCopyNonAtomic and arrayFillNonAtomic. Typical Java
Card programming standards, such as the Global Platform specification, state
that these methods may not be used within a transaction. We use ProMoVer

to verify that applications comply with this Safe Transaction Policy.

The Applications. For this experiment we use several public examples of Java
Card applications. All are realistic e-commerce applications developed by Sun
Microsystems to demonstrate the use of the Java Card environment for develop-
ing e-commerce applications. AccountAccessor is an application to keep track
of account information. It is to be used by a wireless device connected via a

378 S. Soleimanifard, D. Gurov, and M. Huisman

Table 2. Verification Results

Application PPT GE #NEF LMC MFC #NMF GMC TT

AccountAccessor 1.4 3.8 435 0.5 0.7 20 0.9 8.7
TransitApplet 1.4 4.7 897 0.5 0.9 30 0.9 13.2
JavaPurse 1.5 6.5 1543 0.5 13.0 48 1.1 22.5

network service. It contains methods to look up and to modify the account bal-
ance. TransitApplet implements the on-card part of a system that connects to
an authenticated terminal and provides account information and operations to
modify the account balance. JavaPurse is a smart card electronic purse appli-
cation providing secure money transfers. It contains a balance record denoting
the user’s current and maximum credits, and methods to initialize, perform and
complete a secure transaction. Further, it also contains methods to update in-
formation related to a loyalty program, and to validate and update the values
of transactions, balance and PIN code.

Table 1 shows information about the size, number of methods (total and
public), and number of method invocations (total and relevant for the global
property) of these applications.

Specification of Safe Transaction Policy. As discussed above, we want to ensure
formally that the non-atomic methods arrayCopyNonAtomic and arrayFill-
NonAtomic are not invoked within a transaction. Hence, applications have to
adhere to the following global control flow safety property:

In every program execution, after a transaction begins, methods array-
CopyNonAtomic and arrayFillNonAtomic are not called until the trans-
action ends.

This safety property can be expressed formally with the following LTL formula:

G (beginTransaction →
((¬arrayCopyNonAtomic ∧ ¬arrayFillNonAtomic) W commitTransaction))

Extracting Local Method Specifications. The specification extractor is used to
obtain local specifications for every public method. Basically, these describe the
order of method invocations. We inspected those for immaterial orderings, and
translated the adjusted representations into safety LTL. The intention is that
local method specifications capture the allowed sequences of method calls made
from within the specified method, but in an abstract way, allowing for possible
evolution of the method implementations.

Verification Results. After annotating the applications, they are passed to Pro-

MoVer. The tool extracts the flow graph of the applications, and partitions
them into the individual method graphs to verify adherence to the local proper-
ties. Further, for each local property a maximal flow graph is constructed, and

ProMoVer: Modular Verification of Temporal Safety Properties 379

Table 3. Proof Reuse Results

Code Change Local Specification Change

Application New TT % TT MFC New TT % TT

AccountAccessor 6.0 68 0.1 4.6 52
TransitApplet 7.2 54 0.1 5.0 37
JavaPurse 9.0 40 0.1 5.4 24

their composition is verified w.r.t. the global property above. The statistics for
these verifications are given summarized in Table 2. The table shows: the time
spent by the pre–processor (PPT) and the graph extractor (GE), the number
of nodes in the extracted flow graphs (#NEF), the time spent for local model
checking (LMC) and for constructing maximal flow graphs (MFC), the number
of nodes in the maximal flow graph composition (#NMF), the time spent for
global model checking (GMC), and the total time spent for the whole verifica-
tion task including conversions between formats and post–processing (TT). All
times are in seconds, and were obtained on a SUN SPARC machine.

We also experimentally evaluated the advantages of exploiting the proof stor-
age and reuse mechanism. After the first verification, when method and maximal
flow graphs are stored, for each application, we once changed the source code
and once the local specification of a public method, and used ProMoVer to
reverify the application. The result of proof reuse are shown in Table 3. The
numbers show that proof reuse can reduce significantly the verification time for
larger applications.

6 Conclusion

This paper describes ProMoVer, a tool that supports automatic procedure–
modular verification of control flow safety properties of sequences of method
invocations. ProMoVer takes as input a Java program annotated with tem-
poral correctness assertions. It essentially implements a particular verification
scenario for the cvpp tool set that supports compositional verification of pro-
grams with procedures [9].

Modularity is understood here as the relativization of global program correct-
ness properties on the correctness of its components, and is seen as the key to
program verification in the presence of static and or dynamic variability due to
code evolution, code customization for many users, or as yet unknown or unavail-
able code such as mobile code. We illustrate two important points: (i) temporal
safety properties provide a meaningful abstraction for individual methods; and
(ii) procedure–modular verification of temporal safety properties can be per-
formed automatically. Moreover, ProMoVer implements a mechanism for proof
storage and reuse, so that only relevant parts have to be reverified after a system
change. This makes the verification method advocated by ProMoVer suitable
to be used in a context where systems evolve frequently, as is the case e.g., for
software product lines or mobile code. The modularity of the verification allows

380 S. Soleimanifard, D. Gurov, and M. Huisman

an independent evolution of the implementations of the individual methods, only
requiring the re–establishment of their local correctness.

We believe that writing properties at the procedure–level is intuitive for a
programmer. Still, to decrease the effort of annotating programs, we provide
support for specification extraction in the case of post–hoc specification of al-
ready implemented methods, an inlining–based private method abstraction that
requires only public methods to be specified, and a library of standard global
safety properties.

Experiments with realistic Java Card applications show that useful safety
properties of such programs can be conveniently expressed in a light–weight
notation and verified automatically with ProMoVer.

Still, some issues remain to be resolved in order to increase the utility of
ProMoVer. Both for pre– and post–hoc method specification, notations based
on automata or process algebra may prove more convenient than LTL, and may
also allow more efficient maximal flow graph construction. Ultimately, our goal is
that all specifications (local and global) can be written in various temporal logics
and notations, or to use patterns to abbreviate common specification idioms.
The tool set will provide translations into the underlying uniform logic, which
is currently the safety fragment of the modal μ-calculus. However, because of
limitations on the currently available PDS model checkers, global properties have
at present to be written in LTL.

Many important safety properties require program data to be taken into ac-
count. As a first step towards handling data, work has begun on extending our
verification framework and tool set to Boolean programs. We are also currently
investigating how to generalize our method for the program model of Rot et al.
that models object references in the presence of unbounded object creation [19].

Finally, to investigate the scalability of the approach, we plan to perform a
significantly larger case study.

Acknowledgments. We are indebted to Wojciech Mostowski and Erik Poll
for their help in finding a suitable case study, to Afshin Amighi and Pedro de
Carvalho Gomes for helping with the implementation of cvpp and ProMoVer,
and to Stefan Schwoon for adapting the input language of Moped to our needs.

References

1. Alur, R., Arenas, M., Barcelo, P., Etessami, K., Immerman, N., Libkin, L.: First-
order and temporal logics for nested words. In: Logic in Computer Science (LICS
2007), pp. 151–160. IEEE Computer Society, Washington, DC, USA (2007)

2. Alur, R., Chaudhuri, S.: Temporal reasoning for procedural programs. In: Barthe,
G., Hermenegildo, M. (eds.) VMCAI 2010. LNCS, vol. 5944, pp. 45–60. Springer,
Heidelberg (2010)

3. Alur, R., Etessami, K., Madhusudan, P.: A temporal logic of nested calls and
returns. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp.
467–481. Springer, Heidelberg (2004)

ProMoVer: Modular Verification of Temporal Safety Properties 381

4. Cleaveland, R., Parrow, J., Steffen, B.: A semantics based verification tool for finite
state systems. In: International Symposium on Protocol Specification, Testing and
Verification, pp. 287–302. North-Holland Publishing Co., Amsterdam (1990)

5. Das, M., Lerner, S., Seigle, M.: ESP: Path–sensitive program verification in poly-
nomial time. In: Programming Language Design and Implementation (PLDI 2002),
pp. 57–68. ACM, New York (2002)

6. Doclet overview,
http://java.sun.com/j2se/1.3/docs/tooldocs/javadoc/overview.html

7. Goldman, M., Katz, S.: MAVEN: Modular aspect verification. In: Grumberg, O.,
Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 308–322. Springer, Heidelberg
(2007)

8. Gurov, D., Huisman, M.: Reducing behavioural to structural properties of programs
with procedures. In: Jones, N.D., Müller-Olm, M. (eds.) VMCAI 2009. LNCS,
vol. 5403, pp. 136–150. Springer, Heidelberg (2009)

9. Gurov, D., Huisman, M., Sprenger, C.: Compositional verification of sequential
programs with procedures. Information and Computation 206(7), 840–868 (2008)

10. Hubbers, E., Poll, E.: Transactions and non-atomic API methods in Java Card:
specification ambiguity and strange implementation behaviours. Technical Report
NIII-R0438, Radboud University Nijmegen (2004)

11. Hubert, L., Barré, N., Besson, F., Demange, D., Jensen, T., Monfort, V., Pichardie,
D., Turpin, T.: Sawja: Static Analysis Workshop for Java. In: Beckert, B., Marché,
C. (eds.) FoVeOOS 2010. LNCS, vol. 6528, pp. 92–106. Springer, Heidelberg (2011)

12. Huisman, M., Aktug, I., Gurov, D.: Program models for compositional verification.
In: Liu, S., Araki, K. (eds.) ICFEM 2008. LNCS, vol. 5256, pp. 147–166. Springer,
Heidelberg (2008)

13. Huisman, M., Gurov, D.: CVPP: A tool set for compositional verification of
control–flow safety properties. In: Beckert, B., Marché, C. (eds.) FoVeOOS 2010.
LNCS, vol. 6528, pp. 107–121. Springer, Heidelberg (2011)

14. Kiefer, S., Schwoon, S., Suwimonteerabuth, D.: Moped - a model-checker for push-
down systems,
http://www.informatik.uni-stuttgart.de/fmi/szs/tools/moped/

15. Kozen, D.: Results on the propositional μ-calculus. Theoretical Computer Sci-
ence 27, 333–354 (1983)

16. Larsen, K.: Modal specifications. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407,
pp. 232–246. Springer, Heidelberg (1990)

17. Leavens, G., Poll, E., Clifton, C., Cheon, Y., Ruby, C., Cok, D., Müller, P., Kiniry,
J., Chalin, P.: JML Reference Manual, Department of Computer Science, Iowa
State University (February 2007), http://www.jmlspecs.org

18. Müller, P.: Modular Specification and Verification of Object-Oriented Programs.
LNCS, vol. 2262. Springer, Heidelberg (2002)

19. Rot, J., de Boer, F., Bonsangue, M.: A pushdown system representation for un-
bounded object creation. In: Informal pre-proceedings of Formal Verification of
Object–Oriented Software (FoVeOOS 2010) (2010)

20. Soleimanifard, S., Gurov, D., Huisman, M.: ProMoVer web interface,
http://www.csc.kth.se/~siavashs/ProMoVer

21. Soleimanifard, S., Gurov, D., Huisman, M.: Procedure–modular verification of con-
trol flow safety properties. In: Workshop on Formal Techniques for Java Programs,
FTfJP 2010 (2010)

22. Stirling, C.: Modal and Temporal Logics of Processes. Springer, Heidelberg (2001)

http://java.sun.com/j2se/1.3/docs/tooldocs/javadoc/overview.html
http://www.informatik.uni-stuttgart.de/fmi/szs/tools/mo\discretionary {-}{}{}ped/
http://www.jmlspecs.org
http://www.csc.kth.se/~siavashs/ProMoVer

Usable Verification of Object-Oriented Programs
by Combining Static and Dynamic Techniques

Julian Tschannen, Carlo A. Furia, Martin Nordio, and Bertrand Meyer

Chair of Software Engineering, ETH Zurich, Switzerland
firstname.lastname@inf.ethz.ch

Abstract. With formal techniques becoming more and more powerful, the next
big challenge is making software verification practical and usable. The Eve ver-
ification environment contributes to this goal by seamlessly integrating a static
prover and an automatic testing tool into a development environment. The paper
discusses the general principles behind the integration of heterogeneous verifi-
cation tools; the peculiar challenges involved in combining static proofs and dy-
namic testing techniques; and how the combination, implemented in Eve through
a blackboard architecture, can improve the user experience with little overhead
over usual development practices. Eve is freely available for download.

1 Verification as a Matter of Course

Even long-standing skeptics must acknowledge the substantial progress of formal meth-
ods in the last decades. Established verification techniques, such as those based on ax-
iomatic semantics or abstract interpretation, have matured from the status of merely
interesting scientific ideas to being applicable in practice to realistic programs and
systems. Novel approaches have extended their domain of applicability beyond their
original scope, providing new angles from which to attack the hardest verification chal-
lenges; for example, model checking techniques, initially confined to digital hardware
verification, are now applied to software or real-time systems. Other techniques, such
as testing, have long been part of the standard development process, but only recently
have they become first-class citizens of the verification realm, evolving in the case of
random-based testing into rigorous, formal, and automatable approaches. Verification
requires accurate specifications, and progress in this area has been no less conspicuous,
with the development of understandable notations, such as those based on Design by
Contract, which integrate seamlessly with the programming language and are amenable
to static as well as dynamic analysis techniques. Finally, tool support has tremendously
improved in terms of both reliability and performance, as a result of cutting-edge en-
gineering of every component in the verification tool-chain as well as the increased
availability of computing power.

With the consolidation of these outstanding achievements [14], the new frontier is to
make verification really usable by practitioners [28]: the quest for high reliability to be-
come a standard part of the software development process—“verification as a matter of
course”. The present paper is a step towards this ambitious goal with two contributions,
one general and one specific.

G. Barthe, A. Pardo, and G. Schneider (Eds.): SEFM 2011, LNCS 7041, pp. 382–398, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Usable Verification by Combining Static and Dynamic Techniques 383

The general contribution is a development environment that seamlessly integrates
formal verification with the standard tools offered by programming environments for
object-oriented development (editor, compiler, debugger, . . .). The integrated environ-
ment is called Eve, built on top of EiffelStudio—the main IDE for Eiffel developers.
Section 6 describes the engineering of Eve, showing how it takes into account sev-
eral of the heterogeneous concerns originating from the goal of improving the usability
of formal verification, such as user interaction and management of computational re-
sources.

The implementation of Eve, freely available for download [11], continues to evolve
as a result of ongoing efforts to integrate more verification techniques and new veri-
fication tools. The currently available implementation, illustrated through an example
session in Section 2, focuses on the integration of two well-known techniques: static
verification based on Hoare-style proofs, currently implemented in Eve through the
AutoProof tool [27,20], and dynamic analysis based on random testing, implemented
through AutoTest [19]. Section 4 describes these tools. After a review of the state of
the art in Section 3, Sections 5 and 7 illustrate the specific contribution of the paper
by discussing the challenges of integrating two very different verification techniques,
tests and proofs, and how Eve combines them to improve each one’s effectiveness and
usability. Section 9 concludes with an analysis of limitations and our current work to
overcome them.

2 An Example Session with Eve

Consider the perspective of a user—henceforth called Adam—who is using Eve to de-
velop a collection of data structure implementations. Table 1 shows portions of Adam’s
code; the code shown is simplified for presentation purposes, but it reflects real features
found in versions of EiffelBase, a standard library used in most Eiffel programs.

The ancestor class COLLECTION models generic containers with a well-defined in-
terface including, in addition to other features not shown, routines (methods) extend that
adds its argument to the collection and is equal which tests for object equality. extend
is annotated with a precondition (require) and postcondition (ensure) which refer to
other features of the class (such as has) not shown. extend is deferred (abstract) as it
lacks an implementation; is equal’s body, instead, calls a pre-compiled implementation
written in C through the external keyword. This encapsulation mechanism prevents
correctness proofs of the routine’s implementation (whose source is not accessible); in
addition, COLLECTION cannot be instantiated and tested because it includes deferred
routines. This seems an unfortunate situation for verification, but verification with Eve
becomes effective in the two descendants of COLLECTION shown in Table 1: ARRAY
and ARRAYED LIST.

Class ARRAY redefines the attribute extendible to False because an array is a con-
tainer of statically-defined size and cannot accommodate new elements ad lib. Corre-
spondingly, the precondition of the inherited feature extend becomes unsatisfiable in
ARRAY. This way of “deactivating” a routine is inconvenient for automatic testing tools
such as AutoTest, which tries, in a vain effort, to generate instances of ARRAY where the
precondition of extend holds in order to test it. AutoProof, the static proof component of

384 J. Tschannen et al.

Table 1. Classes CONTAINER, ARRAY, and ARRAYED LIST

1 deferred class COLLECTION [G]
2 · · ·
3
4 extendible: BOOLEAN
5
6 extend (v: G)
7 −− Ensure that structure contains ‘v’.
8 require
9 extendible

10 v �=Void
11 deferred
12 ensure has (v) end
13
14 has (v: G): BOOLEAN
15 −− Does structure contain ‘v’?
16 deferred
17 end
18
19 is equal (other: COLLECTION [G]): BOOLEAN
20 −− Is ‘other’ attached to an object equal to ‘

Current’?
21 require other �=Void
22 external built in
23 ensure Result = other.is equal (Current) end
24
25 end −− CONTAINER
26
27 class ARRAY [G]
28 inherit COLLECTION [G]
29 redefine extendible end
30
31 extendible: BOOLEAN = False
32
33 · · ·
34 end −− ARRAY

35 class ARRAYED LIST [G]
36 inherit ARRAY [G]
37 redefine extendible end
38
39 extendible: BOOLEAN = True
40
41 extend (v: G) do . . . end
42
43 make default (n: INTEGER)
44 −− Allocate list with ‘n’ slots items
45 −− and fill it with default values.
46 require n ≥ 0
47 local l v: G
48 do
49 Precursor (n)
50 across [1..n] as i loop extend (l v) end
51 end
52
53 remove left cursor (c: CURSOR)
54 −− Remove item to left of ‘c’ position.
55 require
56 not is empty
57 c �=Void and valid (c)
58 not c.before and not c.is first
59 do
60 remove (c.index − 1)
61 ensure
62 count = old count − 1
63 c.index = old c.index − 1
64 end
65 end −− ARRAYED LIST

Eve, comes to the rescue in this case: it easily figures out that the precondition of extend
is unsatisfiable in ARRAY (line 10 in Table 1), and hence that extend is trivially correct
and requires no further analysis. Adam checks that ARRAY.extend receives a green light
and requires no further attention (Figure 1).

Class ARRAYED LIST switches extendible to True and provides a working imple-
mentation of extend available to clients. When Eve tries to test the class, it quickly
discovers a fault in the creation procedure (constructor) make default: after the instruc-
tion Precursor (n) calls the creation procedure in the ancestor of ARRAY, the loop
(across...loop...end) tries to call extend with the local l v as argument; this violates
extend’s precondition clause v �=Void because l v is not initialized and hence equals the
default value Void (null in Java or C). Adam sees there is something wrong in Eve’s
report (Figure 1); he expands the description of the error and understands how to fix the
bug by adding an instruction create l v before the loop on line 47.

While Adam is busy fixing the error, testing cannot proceed on the same class. Even
if the creation procedure were correct, routine remove left cursor would remain ardu-
ous for automated testing techniques because its precondition is relatively complex; a
random-based approach to the generation of test cases requires specialized techniques
and a long running time to select objects satisfying the clauses in lines 53–55 [30].
Eve circumvents these limitations by running a static proof, which analyzes individual

Usable Verification by Combining Static and Dynamic Techniques 385

Fig. 1. Example report of Eve, showing scores of classes and routines. The third column displays
the lowest negative score among the routines of each class.

routines and does not need a correct creation procedure. The proof succeeds in estab-
lishing that the invocation of remove (line 57) is correct and ensures the postcondition
of remove left cursor: the routine is correct and no testing is needed (Figure 1).

Later, as soon as the constructor of ARRAYED LIST is fixed, Eve continues its work
and exhaustively tests the implementation of is equal finding no postcondition viola-
tions. This is not as good as a correctness proof, but it comforts Adam’s confidence in
the reliability of is equal, and it is the best result possible for a routine whose imple-
mentation can be analyzed only as black-box.

Although it only uses some of Eve’s features, this scenario illustrates how Eve can
help develop correct applications with little overhead over standard practices:

– Eve is completely automatic and integrated in a full-fledged IDE.
– It supports verification of functional correctness specifications embedded as con-

tracts (pre and postconditions, class invariants, intermediate assertions).
– It transparently manages different verification engines to complement their strengths,

supports the full programming language Eiffel, and provides fast feedback to users.
– It only displays such feedback when needed, to encourage focus on the most egre-

gious errors, and to increase the users’ confidence in the correctness of an imple-
mentation based on the available evidence.

3 Related Work

The following sections explains the Eve machinery that makes usage scenarios such as
the above possible. To set these solutions in context, we first examine briefly a few state-
of-the-art tools for static and dynamic verification (proofs and tests), with a summary of
their distinctive features and a summary of the relatively few approaches that combine
both techniques. A broader review of formal techniques is available elsewhere [14,28].

Static Verification. Projects such as ESC/Java [12] and Spec# [2] have made Hoare-
style correctness proofs more practical and automatic, at least for simple programs.
The Spec# language extends C# with preconditions, postconditions, object invariants,
and non-null types; the Spec# environment verifies Spec# programs by translating them
into Boogie, also developed within the Spec# project. The success of this approach has
shown the importance of using an intermediate language for verification. Spec# works

386 J. Tschannen et al.

on interesting examples; however, it is still not applicable to every feature of C# (for ex-
ample, exceptions and function objects). A design choice that distinguishes Spec# from
AutoProof for Eiffel is the approach to deal with some delicate issues, namely the fram-
ing problem and managing class invariants. Spec# introduces specialized annotations,
which make proofs easier but at the price of a significant additional annotational burden
for developers. AutoProof, on the contrary, does not introduce ad hoc annotations and
correspondingly may fail to verify programs where Spec# is successful. Some of these
limitations are mitigated in Eve by supplementing AutoProof with testing.

Separation logic is an extension of Hoare logic designed to handle frame properties;
verification environments based on separation logic (e.g., jStar [8] for Java and Very-
Fast [16] for C and Java) can verify sophisticated features such as usages of the visitor,
observer, and factory patterns. Writing separation logic annotations requires consider-
ably more expertise than using contracts embedded in the programming language; this
makes separation-logic tools more challenging to use by practitioners.

Other static verification techniques, such as software model-checking [3] and ab-
stract interpretation [6], approximate the semantics of programming languages to make
their analysis scalable and to require little annotations. These techniques are currently
unsupported in Eve, but they may become as part of future work.

Dynamic Verification. Only recently have dynamic techniques, such as testing, become
applicable fully automatically to large programs (e.g., [13,17,4]). In this line of work,
DART [13] introduced the concept of dynamic symbolic execution, a combination of
dynamic verification with lightweight static techniques. CUTE [23] and EXE [4] follow
similar approaches but they are applicable to more complex features (such as pointers
and complex data structures) and scale massively. The main high-level difference of
AutoTest is that it relies on contracts to verify functional properties; the aforementioned
testing tools, instead, work on languages without contracts and therefore are limited in
the kinds of errors that they can detect.

In recent years, dynamic techniques have extended their domain of applicability to
problems such as contract inference [9,30] and specification mining [1,7] which have
traditionally been approachable only by static means. Future versions of Eve will in-
tegrate dynamic contract inference as implemented in our AutoInfer tool (sketched in
Section 6).

Combined Static/Dynamic Verification. Recently, a few authoritative researchers have
pointed out the potential of combining static and dynamic techniques [22,10,24] to
make verification more usable; the present paper concurs in this vision.

Some of the aforementioned testing tools [13,23,4] already leverage lightweight
static analyses to boost the performance of automated testing. Pex [25] is another scal-
able automatic testing framework, which relies more heavily on static methods: it ex-
ploits a variant of dynamic symbolic execution where an automated theorem prover
(Z3) analyzes the symbolic executions to improve code coverage. Pex uses parameter-
ized unit tests [26] as specifications. This makes it possible to test fairly sophisticated
properties, but it also requires users to produce specifications in this customized form;
contract specifications, however, seem more palatable to practitioners [5].

Usable Verification by Combining Static and Dynamic Techniques 387

DASH [22] combines static and dynamic verification with an approach extending
the software model-checking paradigm [3]: DASH’s algorithm to generate exhaustive
tests maintains a sound abstraction of the program, which can be used to construct
automatically a correctness argument.

The few recent attempts at combining static and dynamic techniques tend to be spe-
cific conservative extensions of basic methods; the approach described in the present
paper tries integration at a higher level to avail the complementarity of static and dy-
namic techniques to a larger extent.

4 The Tools of Eve

The integrated verification techniques currently available in Eve and illustrated in the
preceding example session rely on two fundamental tools: AutoProof and AutoTest,
which are now presented.

AutoTest. AutoTest [19]—now a standard component of commercial EiffelStudio—is
a fully automatic contract-based testing tool. AutoTest generates objects by random
calls to creation procedures. Preconditions select valid inputs and postconditions serve
as oracles: every test case consists of the execution of a routine on objects satisfying its
precondition; if executing the routine violate its postcondition or calls another routine
without satisfying its precondition, the routine tested has a fault. A failing test case
provides a concrete error report which is useful for debugging.

Like any dynamic technique based on execution, AutoTest handles every feature of
the source language (Eiffel). Among its limitations, instead, is that random testing can
take several hours to find the most subtle faults, and that complex specifications can
exacerbate this problem.

AutoProof. AutoProof [20]—a more recent member of the Eiffel tool-set—is an au-
tomatic verification tool that translates Eiffel programs (with contracts) into annotated
Boogie programs. AutoProof then uses the Boogie verifier [2] to check whether the
Eiffel implementation satisfies its specification.

AutoProof improves on similar environments for static verification (e.g., Spec# [2])
by supporting some advanced language constructs such as function objects (agents in
Eiffel terminology). Nonetheless, some features of Eiffel—most notably exceptions and
floating point arithmetic—are still unsupported and routines using them are not ade-
quately translated to Boogie. The performance of AutoProof depends on the quality of
contracts available; accurate contracts improve the modularity of the analysis which can
then also verify partial implementations.

5 The Advantages of Being Static and Dynamic

From a user’s perspective, Eve’s integration of static and dynamic tools can make veri-
fication more effective and agile in a variety of scenarios.

– Static verification is more modular and scales better to large systems made of sev-
eral classes. It can also verify routines of deferred (abstract) classes which cannot

388 J. Tschannen et al.

be tested because they cannot be instantiated. This indirectly improves the perfor-
mance of testing as well, because the testing effort can focus on routines or classes
not proved correct.
Conversely, whenever testing uncovers a faulty routine, the static tool stops trying
to verify that routine. This policy may be broken down to individual clauses: for
example, if testing finds a run of remove left cursor (Table 1) violating the post-
condition clause count = old count − 1, it may still be worthwhile to try to prove
the other clause, c.index = old c.index + 1.

– Dynamic analysis provides concrete reports of errors, which make debugging eas-
ier. For example, the following trace documents the error in the creation procedure
make default of Table 1:

create {ARRAYED LIST} l.make default (1)
−− Inside make default:
l v := Void ; Precursor (1) ; extend (l v) −− l v is Void

– Classes that have a faulty creation procedure or are deferred cannot be instantiated;
testing cannot proceed in this case unless the constructor is fixed or an implemen-
tation of every routine is available. Static techniques do not incur these limitations:
as illustrated in the example of Section 2, they can verify individual implemented
routines even if others in the same class are deferred.

– Many core libraries rely on routines implemented through calls to low-level exter-
nal routines (typically, in the Eiffel case, C functions); an example was is equal
in Table 1. Such routines are inaccessible to static analysis but are still testable.
The integrated results of static and dynamic analysis on classes with such external
routines reinforce the confidence in the correctness of the overall system.

– The combination of static and dynamic analysis can help detect discrepancies be-
tween the runtime behavior of a program and its idealized model. Examples are
overflows and out-of-memory errors, which are often not accounted for in an ab-
stract specification assuming perfect arithmetic and infinite memory. Consider, for
example, a routine that updates the balance of a bank account as a result of a deposit
operation:

deposit (amount: INTEGER)
require amount > 0
do balance := balance + amount
ensure balance > old balance

end

balance: INTEGER

AutoProof, which models the type INTEGER as mathematical integers, verifies
that the routine is correct. AutoTest, however, still finds a bug which occurs when
old balance + amount is greater than the largest integer value representable and
balance overflows. It is then a matter of general policy whether one should change
the postcondition or the implementation. In any case, the comparison of the results
of static and dynamic analysis clearly highlights the problem and facilitates the de-
sign of the best solution. With default settings, Eve gives a null correctness score

Usable Verification by Combining Static and Dynamic Techniques 389

(Section 7) in such situations, which reflects the uncertainty and the need for further
analysis.

– Complex contracts considerably slow down automatic testing, both because their
runtime evaluation incurs a significant overhead and because random generation
takes a long time to build objects that satisfy complex preconditions. Contracts
may even in some cases be non-executable because they involve predicates over
infinite sets; for example, the invariant of a class modeling a hash function requires
that the hash code of every possible object (an infinite set) be a nonnegative inte-
ger. Static techniques can help in all such scenarios: it may be easier to prove the
correctness of a routine if the precondition is complex, and hence also stronger;
complex postconditions boost modular verification.

These observations highlight the usefulness of treating proofs and tests as comple-
mentary and convergent techniques (even though they have often been pursued, in the
past, by separate research sub-communities in software engineering). There is indeed
no contradiction; in particular, with the purpose of tests being entirely defined as at-
tempting to make programs fail [18], a useful (that is, failed) test is a proof that the
program is not correct. The approach illustrated by Eve is then to combine tools that
can prove a program correct (such as AutoProof) and tools that can prove a program
incorrect (AutoTest); as soon as a user has written a new program element, the two will
start in parallel, each with its own specific goal, prove or disprove; in favorable situ-
ations, one of them will reach its goal fast, providing the user with a fast response of
correctness or incorrectness.

6 The Design of an Integrated Verification Environment

The Eve integrated verification environment is built on top of the EiffelStudio IDE and
supplements it with functionalities for verification.

Contracts. The choice of Eiffel as programming language ensures that we rely on
formal specification elements embedded in the program text as contracts (pre and post-
conditions, class invariants, and other annotations). Since correctness is a relative notion
(being dependent on a specification), every verification activity requires some form of
specification. Empirical evidence suggests that formal specifications in the form of con-
tracts are a good compromise between the rigor required by formal techniques and the
kind of effort that practitioners are able, or willing, to provide [5,21].

Not all contracts must be written by programmers: the architecture of Eve can ac-
commodate components for specification inference (see Section 3) to help users write
better and stronger contracts. This particular property, however, is not emphasized in the
present paper, which focuses on the integration of static and dynamic analysis assuming
some contracts are available.

Automation. A defining characteristic of the verification tools in Eve is that they are
automatic and can do most of the work without any explicit input from the user, assum-
ing the presence of contracts which Eiffel programmers are already used to provide [5].
In order to decouple the machinery of the individual verification tools and to filter out
their output, Eve relies on a blackboard architecture [15] shown in Figure 2.

390 J. Tschannen et al.

Fig. 2. Eve’s blackboard architecture (shadeless boxes currently not implemented)

A controller is responsible for triggering the various tools when appropriate, invisi-
bly to the users. The controller bases its decisions on what the user is currently doing,
which resources are available, and the results of previous verification attempts. The lat-
ter are collected in a data pool where every verification tool stores the results of its
runs. Users do not directly read the output of individual tools in the data pool. Instead,
the controller summarizes the output data and displays individual tool results only upon
explicit user request.

A major design decision of Eve was to make the verification mechanisms as un-
obtrusive as possible. Users can continue using the IDE and their preferred software
development process as before; the verification techniques are an additional benefit,
available on demand and compatible with the rest of the IDE’s tools. In the same way
that type checking adds a new level of help on top of the more elementary mechanisms
of syntax error checking, Eve provides reports from proofs and tests on top of the simple
verification techniques provided by type checking.

Interaction with the User. Users only have a coarse-grained, binary form of control
over the verification: enable or disable. Typically, they will enable verification as soon
as some code and a few contracts have been written. Even when enabled, verification
never interferes with the more traditional development activities: Eve works in the back-
ground on the latest compiled version of the system, and displays a summary of the
verification results through an interface similar to that used to signal syntax or type er-
rors in standard IDEs (Figure 1). At any time, the user can browse through the result
list, which links back to the parts of the program relevant for each message, and de-
cide to revise parts of the implementation or specification according to the suggestions
provided by Eve.

Every entry in the result list has a score: a quantitative estimate of the correctness or
incorrectness of the associated entry, based on the evidence gathered so far by running
the various tools. The score varies over the real interval [−1, 1] (In the user interface
the scale is, for more readability, −100 to +100, with rounding to the closest integer).
A positive score indicates that the evidence in favor of correctness prevails, whereas

Usable Verification by Combining Static and Dynamic Techniques 391

a negative score characterizes evidence against correctness. The absolute value of the
score indicates the level confidence: 1 is conclusive evidence of correctness (for ex-
ample a successful correctness proof), −1 is conclusive evidence of incorrectness (for
example a failing test case), and 0 denotes lack of evidence either way. Figure 1 shows
an example of report with scores and stripes colored accordingly. Section 7 discusses
how the score is computed for the verification tools currently integrated in Eve.

Modularity and Granularity. Object-oriented design emphasizes modularity, from
which verification can also benefit. While the level of granularity achievable by an inte-
grated verification environment ultimately depends on the level of granularity provided
by the tools it integrates, Eve orients verification at the two basic levels of encapsu-
lation provided by the object-oriented model: classes and routines within a class. Eve
associates correctness scores with items at both levels. Additional information may be
attached to a correctness score, such as the line where a contract violation occurs in
a test run, or the abstract domain used in an abstract interpretation analysis. For large
systems, it is also useful to have scores for highest levels of abstraction, such as groups
of classes or entire libraries, but in the present discussion we limit ourselves to routine
and class levels.

The scores from multiple sources of data at the same level are combined with weighted
averages, and define the correctness scores at coarser levels. For example, every tool t
tries to verify a routine r in class C and reports a correctness score sC

r (t) ∈ [−1, 1]. The
cumulative score for the routine r is then computed as the normalized weighted average:

sC
r =

1∑
t∈T wC

r (t)
·
∑
t∈T

wC
r (t)sC

r (t) (1)

where wC
r (t) ∈ �≥0 denotes the weight of the tool t on routine r. A similar expression

computes the cumulative score sC for a class C from the scores sC
r of its routines and

their weights wC
r :

sC =
1∑

r∈R wC
r
·
∑
r∈R

wC
r sC

r (2)

The weights take various peculiarities into account:

– A tool may not be able to handle certain constructs: its confidence should be scaled
accordingly. For example, a tool unable to handle exceptions appropriately has its
score reduced whenever it analyzes a routine which may raise exceptions.

– The results of a tool may be critical for the correctness of a certain routine. For
example, a quality standard may require that every public routine be tested for at
least one hour without hitting a bug; correspondingly, the weight wC

r (t) for public
routines r would be high for testing tools and low (possibly even zero) for every
other tool.

– The correctness of a routine may be critical for a class; then the routine score should
have a higher weight in determining the class cumulative score.

– More generally, the weight may reflect suitable metrics that estimate the critical-
ity of a routine according to factors such as the complexity of its implementation
or specification, whether it is part of the interface of public, and the number of
references to it in clients or within the containing class.

392 J. Tschannen et al.

– Similar metrics are applicable at other levels of granularity, for example to weigh
the criticality of a class within the system.

Eve provides default values for all the weights (Section 7), but users can override them
to take relevant domain knowledge into account.

Resource usage. The verification layer must not impede more traditional development
activities. This requires in particular a careful usage of the resources to guarantee that
the responsiveness of the IDE when verification is enabled does not cause a significant
overhead. In Eve, the controller activates the various verification tools only when there
are resources to spare. It also takes into account the peculiarities of the various tools:
those with short running times are usually run first and re-run often, while those requir-
ing longer sessions are activated later, only if the faster tools did not give conclusive
results, and when enough resources are available.

When verification is first activated for a project, all the scores are null, as the system
does not have any evidence to assess correctness or incorrectness. Then, the controller
runs the least demanding tools first, to provide the user with some feedback as soon as
possible. The same approach is applied modularly, whenever some part of the system
changes (and is recompiled). More detailed analysis is postponed to when more time is
available, the system is sufficiently stable, or conclusive evidence is still lacking about
the correctness of some routines or classes.

Extensibility. The architecture of Eve is extensible to include more tools of heteroge-
neous nature. The user interface will stay the same, with the blackboard controller being
responsible for managing the tools optimally and only reporting the results through the
summary scores described above. It is our plan to integrate more verification tools, cur-
rently available only through explicit invocation.

The architecture can also accommodate tools that, while not targeted to verifica-
tion in a strict sense, enhance the user experience. For example, tools for assertion
inference—such as our own AutoInfer [29]—can complement user-provided contracts
and improve the performance of approaches that depend on contracts. The controller
can activate assertion inference when the verification machinery performs poorly and
when metrics suggest that the code is lacking sufficient specifications. The assertion
inference tools themselves may sometimes re-use the results of other tools; for exam-
ple AutoInfer relies on the test cases generated by AutoTest. Finally, Eve can show the
inferred assertions in the form of suggestions, in connection with the results of other
verification activities. For example, it could display an inferred loop invariant with the
report of a failed proof attempt, and suggest that the invariant can make the correctness
proof succeed if added to the specification. The current implementation of Eve does not
integrate such suggestions mechanisms yet, but the architecture is designed with these
extensions in mind.

7 Correctness Scores for Proofs and Testing

Equation 1 on page 391 gives the correctness score for a routine r of class C; now,
consider a set of tools T = {p, t}, where p denotes AutoProof and t denotes AutoTest.

Usable Verification by Combining Static and Dynamic Techniques 393

General principles for scores. We noted earlier that an interesting test, that is to say
a failed test, is a proof of incorrectness. This is of course another form of Dijkstra’s
famous observation about testing—but restated as an argument for tests rather than a
criticism of the notion of testing. This observation has two direct consequences on the
principles for computing correctness scores.

First, it is relatively straightforward to assign scores to the result of a testing tool
when it reports errors: assign a score of −1, denoting certain incorrectness, to every
routine where testing found an error. In certain special circumstances, the score might
be differentiated according to the severity of the fault; for example a bug that occurs
only if the program runs for several hours may be less critical than one that occurs
earlier, if the system is such that it is reset every 45 minutes. In most circumstances,
however, it is better to include such domain information in the specification itself and
to treat every reported fault as a routine error. Then, different routines may still receive
a different weight in the computation of the score of a class (Equation 2 on page 391)—
for example, a higher weight to public routines with many clients.

The second consequence is that it is harder to assign a positive score sensibly to rou-
tines passing tests without errors. It is customary to assume that many successful tests
increase the confidence of correctness; hence, this could determine a positive correct-
ness score, which increases with the number of tests passed, the diversity of input values
selected, or the coverage achieved according to some coverage criteria such as branch
or instruction coverage. In any case, the positive score should be normalized so that it
never exceeds an upper limit strictly less than 1, which denotes certain correctness and
is hence unattainable by testing.

Since static verification tools are typically sound, a successful proof should gener-
ally give a score of 1. Certain aspects of the runtime behavior, such as arithmetic and
memory overflows as discussed above, may still leak in some unsoundness if the static
verifier does not model them explicitly; in such cases the score for a successful proof
may be scaled down in routines with a specification that depends on such aspects.

Which score to assign to a static verifier reporting a failed proof attempt depends
on the technique’s associated guarantee of completeness. For a complete tool, a failed
proof denotes a certain fault, hence a score of−1. If the tool is incomplete, a failed proof
simply means “I don’t know”; whether and how this should affect the score depends on
the details of the technique. For example, partial proofs may still increase the evidence
for correctness and yield a positive score.

Score and weight for AutoTest. If AutoTest reports a fault in a routine r of class C, the
correctness score sC

r (t) becomes −1. This score receives a high weight wC
r (t) = 100 by

default; the user can adjust this value to reflect specific knowledge about the criticality
of certain routines over others with respect to testing.

When AutoTest tests a routine r of class C without uncovering any fault, the score
sC

r (t) increases proportionally to the length of the testing session and the number of
test cases executed, but with an upper limit of 0.9. With the default settings, this maxi-
mum is reached after 24 hours of testing and 104 test cases executed without revealing
any error in r. Users can change these parameters; the default settings try to reflect the
specificities of random testing shown in repeated experiments [31]. We decided against
using specific coverage criteria such as branch coverage in the calculation of the rou-

394 J. Tschannen et al.

tine score, as the experiments suggest that for example the correlation between branch
coverage and the number of uncovered faults is weak.

Score and weight for AutoProof. AutoProof implements a sound but incomplete proof
technique. The score sC

r (p) for a routine r of class C is set accordingly: a successful
proof yields a score of 1; an out-of-memory error or a timeout are inconclusive and
yield a 0; a failed proof with abstract trace may be a faint indication of incorrectness:
the abstract trace may not correspond to any concrete trace (showing an actual fault),
but it often suggests that a proof might be possible with more accurate assertions. The
score is then −0.2 to reflect this heuristic observation.

The weight wC
r (p) takes into account the few language features that are currently

unsupported (floating point numbers and exceptions, see Section 3): if r’s body contains
such features, wC

r (p) is conservatively set to zero. In all other cases, wC
r (p) is 1 by

default, but the user can adjust this value.

Routine Weights. Equation 2 (page 391) combines the scores sC
r of every routine r

of class C with weights wC
r to determine the cumulative score of C. The weights wC

r
should quantify the relevance of routine r for the correctness of class C. This depends in
general on the overall system design, which only developers can express appropriately,
but which often depends on the visibility of a routine.

Eve supports a simple way to enter this piece of information: every routine has an
optional importance flag which takes the values low and high. wC

r is then

wC
r = vC

r · iCr

The visibility of r determines vC
r , which is 2 if r is public and 1 otherwise. The im-

portance of r determines iCr , which is 2 if r has high importance, 1/2 if it has low
importance, and 1 it the developer did not set the importance flag.

8 Usage Scenarios

How serviceable is Eve’s score which combines the results of different verification
tools, as opposed to considering the tools’ outputs individually? This section outlines a
few straightforward scenarios that compare the output given by AutoProof or AutoTest
in isolation against Eve’s combined output; they show the greater confidence supplied
by Eve, and the straightforward interpretability of its output. The example1 models at-
tributes of an individual with a class PERSON. Table 2 lists 5 routines of the class to
be verified; for each routine, the table reports the score and weight of AutoProof and
AutoTest within Eve, and the corresponding combined score.

Routine set age demonstrates a favorable scenario, where each tool can provide
strong positive evidence indicating correctness. The overall score is, correspondingly,
quite high, but it still falls short of the maximum because testing can never prove the
absence of errors with 100% confidence.

1 The complete source code of the example is available at:
http://se.ethz.ch/people/tschannen/sefm2011_example.zip.

http://se.ethz.ch/people/tschannen/sefm2011_example.zip

Usable Verification by Combining Static and Dynamic Techniques 395

Table 2. Individual and combined results for class PERSON

Item Tool Result Weight Score
set age AutoProof Verified successfully 1.0 1.00

AutoTest No errors found 1.0 0.90
Routine score 0.95

increase age AutoProof Verified successfully 0.5 1.00
AutoTest Overflow detected 100.0 -1.00
Routine score -0.99

age difference AutoProof Verified successfully 0.5 1.00
AutoTest No errors found 1.0 0.90
Routine score 0.93

set name AutoProof Proof failed 0.5 -0.10
AutoTest No errors found 1.0 0.90
Routine score 0.57

body mass index AutoProof Inapplicable 0.0 0.00
AutoTest No errors found 1.0 0.90
Routine score 0.90

apply command AutoProof Verified successfully 1.0 1.00
AutoTest Inapplicable 0.0 0.00
Routine score 1.00

PERSON Class score 0.56

Routine increase age includes integer arithmetic, which might produce overflow.
AutoProof can verify the routine, but Eve is aware that the proof scheme models inte-
gers as mathematical integers, hence it weights down the value of the successful proof
because the abstraction may overlook overflow errors. Indeed, AutoTest reveals an over-
flow when executing the routine with the maximum integer value. The combined score
indicates that there is an error, which AutoTest discovered beyond the limitations of
AutoProof. Another routine age difference also uses integer arithmetic but it is correct.
Eve still scales down AutoProof’s score accordingly; in this case, however, AutoTest
does not find any error, hence the overall score grows high: the uncertainties of the two
tools compensate each other and the cumulative score indicates confidence.

Routine set name relies on the object comparison semantics, which AutoProof over-
approximates. In this case, a failed proof does not necessarily indicate an error in the
routine, hence it only accounts for a mildly negative score. When AutoTest does not find
any error after thorough testing, the combined score becomes visibly positive, while still
leaving a margin of uncertainty given the lack of conclusive evidence either way.

Routines body mass index and apply command demonstrate how Eve’s combination
of tools expands the applicability of verification: body mass index uses floating point
arithmetic, unsupported by AutoProof, whereas apply command uses agents, unsup-
ported by AutoTest. Eve relies entirely on the only applicable tool in each case.

The overall class score (last line of Table 2) uses a uniform weight for the routines;
the score concisely indicates that considerable effort has been successfully invested in
the class’s verification, but some non-trivial issues are open.

9 Conclusions

Eve improves the usability of the individual verification tools by integrating them into
an environment which features: automation and minimal direct user interaction; mod-
ularity at class and routine level; and extensibility with new tools. The current imple-
mentation of Eve [11] combines a static verifier for Hoare-style proofs and a dynamic

396 J. Tschannen et al.

contract-based testing framework. The present paper has shown how these two tech-
niques can be used in combination to improve the overall productiveness of verification.

Limitations and Future Work. In some situations, the integration of proofs and tests
is still ineffective and provides an unsatisfactory user experience:

– When testing is the only technique applicable, it may be difficult to provide users
with fast feedback. Automated random testing is very effective at finding delicate
and unexpected bugs, but may require long sessions.

– The analysis of correct routines that use certain sophisticated language features—
beyond those currently supported by AutoProof—may be inconclusive: testing does
not find any error, but this is no substitute for a correctness proof.

– The completeness of contracts strongly affects the performance of verification.
Weak contracts are easier to write and to reason about; strong contracts boost mod-
ular verification and expose subtler defects.

– Eve integrates multiple verification tools to complement their strengths and weak-
nesses. Different tools, however, may introduce discrepant models of the same im-
plementation, such as for the class INTEGER discussed above. As the number of
integrated tools grows, reconciling several contradictory semantics may become a
delicate issue.

Future work will address these limitations to perfect the integration of testing and
proofs; in particular, the following directions deserve further investigation.

– If AutoProof successfully verifies an assertion clause, the runtime checking of that
specific clause can be disabled; this would contribute to speeding up the testing
process. This improvement is currently unsupported because it requires a change in
the Eiffel runtime to enable and disable the checking of individual assertion clauses.

– Integrating contract inference tools, such as our own AutoInfer [29], will assuage
the problem of weak contracts that hold back the full potential of static provers.
Another related synergy between static and dynamic techniques is the static verifi-
cation of dynamically guessed contracts.

– A failed proof attempt usually comes with an abstract counterexample trace, which
is, in general, not directly executable. The abstract trace may, however, provide
enough information to suggest a concrete trace that is executable and show a real
bug, or to conclude that the abstract trace is spurious. A spurious trace can help
refine the proof model and sharpen the proof attempt, in a way similar to what done
in the CEGAR (Counter-Example Guided Abstraction Refinement) paradigm [3].

The integration of more tools into Eve will improve the overall effectiveness of the
various techniques and advance the quest towards the goal of Verification As A Matter
Of Course.

Acknowledgements. The authors thank Nadia Polikarpova and Yi Wei for suggesting
examples discussed in the paper. This work has been partially funded by the SNF grant
SATS (200021-117995/1) and by the Hasler foundation on related projects.

Usable Verification by Combining Static and Dynamic Techniques 397

References

1. Ammons, G., Bodı́k, R., Larus, J.R.: Mining specifications. In: POPL, pp. 4–16 (2002)
2. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# Programming System: An Overview. In:

Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.) CASSIS 2004. LNCS,
vol. 3362, pp. 49–69. Springer, Heidelberg (2005)

3. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker Blast.
STTT 9(5-6), 505–525 (2007)

4. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: EXE: Automatically gen-
erating inputs of death. ACM Trans. Inf. Syst. Secur. 12 (2008)

5. Chalin, P.: Are practitioners writing contracts? In: Butler, M., Jones, C.B., Romanovsky,
A., Troubitsyna, E. (eds.) Fault-Tolerant Systems. LNCS, vol. 4157, pp. 100–113. Springer,
Heidelberg (2006)

6. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In: POPL, pp. 238–252 (1977)

7. Dallmeier, V., Knopp, N., Mallon, C., Hack, S., Zeller, A.: Generating test cases for specifi-
cation mining. In: ISSTA (July 2010)

8. Distefano, D., Parkinson, M.J.: jStar: Towards practical verification for Java. In: Proceedings
of OOPSLA, pp. 213–226 (2008)

9. Ernst, M.: Dynamically Discovering Likely Program Invariants. PhD thesis, University of
Washington, US (2000)

10. Ernst, M.D.: How tests and proofs impede one another: The need for always-on static and
dynamic feedback. In: Fraser, G., Gargantini, A. (eds.) TAP 2010. LNCS, vol. 6143, pp. 1–2.
Springer, Heidelberg (2010)

11. Eve: Eiffel verification environment, http://se.inf.ethz.ch/research/eve/
12. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.: Extended

static checking for Java. In: PLDI, pp. 234–245. ACM, New York (2002)
13. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing. In: Proceed-

ings of PLDI, pp. 213–223. ACM, New York (2005)
14. Hoare, C.A.R., Misra, J.: Preface to special issue on software verification. ACM Comput.

Surv. 41(4) (2009)
15. Hunt, J.: Blackboard architectures, JayDee Technology Ltd. 27 (2002)
16. Jacobs, B., Smans, J., Piessens, F.: A quick tour of the VeriFast program verifier. In: Ueda,

K. (ed.) APLAS 2010. LNCS, vol. 6461, pp. 304–311. Springer, Heidelberg (2010)
17. Korel, B.: Automated test data generation for programs with procedures. In: Proceedings of

ISSTA, pp. 209–215. ACM, New York (1996)
18. Meyer, B.: Seven principles of software testing. Computer 41, 99–101 (2008)
19. Meyer, B., Fiva, A., Ciupa, I., Leitner, A., Wei, Y., Stapf, E.: Programs that test themselves.

IEEE Software 42, 46–55 (2009)
20. Nordio, M., Calcagno, C., Meyer, B., Müller, P., Tschannen, J.: Reasoning about Function

Objects. In: Vitek, J. (ed.) TOOLS 2010. LNCS, vol. 6141, pp. 79–96. Springer, Heidelberg
(2010)

21. Polikarpova, N., Ciupa, I., Meyer, B.: A comparative study of programmer-written and auto-
matically inferred contracts. In: ISSTA, pp. 93–104 (2009)

22. Rajamani, S.K.: Verification, testing and statistics. In: Cavalcanti, A., Dams, D.R. (eds.) FM
2009. LNCS, vol. 5850, pp. 33–40. Springer, Heidelberg (2009)

23. Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit testing engine for C. In: Proceedings
of ESEC/FSE, pp. 263–272. ACM, New York (2005)

24. International conference on tests and proofs. LNCS. Springer, Heidelberg (2007-2010)

http://se.inf.ethz.ch/research/eve/

398 J. Tschannen et al.

25. Tillmann, N., de Halleux, J.: Pex–white box test generation for .NET. In: Beckert, B., Hähnle,
R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 134–153. Springer, Heidelberg (2008)

26. Tillmann, N., Schulte, W.: Parameterized unit tests. In: Proceedings of ESEC/FSE, pp. 253–
262. ACM, New York (2005)

27. Tschannen, J., Furia, C.A., Nordio, M., Meyer, B.: Verifying Eiffel programs with Boogie.
In: BOOGIE workshop (2011), http://arxiv.org/abs/1106.4700

28. Usable verification workshop (November 2010), http://fm.csl.sri.com/UV10/,
29. Wei, Y., Furia, C.A., Kazmin, N., Meyer, B.: Inferring better contracts. In: Proceedings of

ICSE 2011, pp. 191–200 (2011)
30. Wei, Y., Gebhardt, S., Oriol, M., Meyer, B.: Satisfying test preconditions through guided

object selection. In: Proceedings of ICST 2010, pp. 303–312 (2010)
31. Wei, Y., Oriol, M., Meyer, B.: Is coverage a good measure of testing effectiveness? Technical

Report 674, ETH Zurich (2010)

http://arxiv.org/abs/1106.4700
http://fm.csl.sri.com/UV10/

Efficient Computation of Dominance

in Component Systems (Short Paper)�

Jaap Boender

Univ Paris Diderot, Sorbonne Paris Cité, PPS, UMR 7126 CNRS,
F-75205 Paris, France

Abstract. To deal with the complexity of modern systems, they are
split up into components. These components use metadata to specify
whether they need other components to function correctly (dependen-
cies) or whether they cannot function with other components (conflicts).

In previous work, we have presented component relationships that
are more useful for analysis than those specified in the metadata: strong
dependencies that identify components that are absolutely necessary, and
dominance that allows us to gain insight in the structure of a component
system by identifying clusters of related packages.

In this paper, we present an efficient way of computing this dominance
relationship, by exploiting its similarity to the concept of dominance
already known in the field of control flow graphs.

1 Introduction

The use of component-based systems has become a standard way of structuring
large collections of software; not only programs, but also software distributions
such as the different variations of free and open source (F/OSS) operating sys-
tems, or development environments such as Eclipse.

The components in component-based systems do not exist in isolation: one
of the most useful properties of most component-based systems is their ability
to specify relations between their components, such as dependency or conflict
requirements.

Such inter-component relationships can be very complex. In the more com-
plicated systems, relationships are expressed as formulae in conjunctive nor-
mal form, which makes their resolution equivalent to the problem of boolean
satisfiability.

However, these relationships do not tell the whole story. If we look at the
dependencies as they are specified in the component, the simple fact that a
component is mentioned as a dependency of another only tells us that it might
be needed: if the dependency is disjunctive, another component might be used
to satisfy the dependency. There might also be a conflict that precludes the
component from being installed altogether.
� Partially supported by the European Community’s 7th Framework Programme

(FP7/2007-2013), grant agreement n◦214898, “Mancoosi” project. Work developed
at IRILL.

G. Barthe, A. Pardo, and G. Schneider (Eds.): SEFM 2011, LNCS 7041, pp. 399–406, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

400 J. Boender

quebec romeo

(a) Coincidence

quebec

romeo

(b) Order

quebec

romeo

(c) Equivalence

Fig. 1. Examples of strong dependency configurations

For this reason, it is interesting to look at the semantic relationships (as
opposed to the syntactic relationships as mentioned in the component metadata).
In [1], we have introduced strong dependencies. A component strongly depends
on another if it is absolutely impossible to install without also installing the
other components. In this way, we get a relationship that is based on both
dependency and conflict information, and has a single meaning (as opposed to
a simple dependency, which can either be conjunctive or disjunctive).

We can take this concept even further. Consider the diagrams from figure 1,
which show some possible configurations of strong dependencies. In diagram 1a,
the components that strongly depend on quebec and romeo are exactly the same,
but there is no visible reason for this occurrence.

However, in diagrams 1b and 1c, the fact that the same components strongly
depend on quebec and romeo is caused by the strong dependency of quebec on
romeo (or vice versa). In a way, the strong dependencies of quebec explain the
strong dependencies of romeo. We will refer to this concept as dominance: in
diagram 1b, quebec dominates romeo, and in diagram 1c, quebec and romeo
dominate each other.

This dominator relationship can be used to identify clusters of related com-
ponents in a system. As an example, the dominator graph of a typical Linux
distribution consists of a large number of independent clusters. This can help
in gaining insight in the structure of a component-based systems, as well as in
targeting maintenance efforts.

In this paper, we present an efficient method to compute the dominator graph
of a distribution. We provide a conversion of the strong dependency graph to
a control flow graph, and prove that the notion of dominance in the strong
dependency graph is equivalent to the well-known notion of dominance in this
control flow graph. In this way, we can use the well-known Lengauer-Tarjan
algorithm to compute dominance.

2 Strong Dependencies and Dominators

In this section, we will start with briefly recapitulating some definitions from [1].
We start with the notion of strong dependency. Intuitively, a package p strongly

depends on another package q if and only if it is absolutely impossible to install
p without also installing q. Since installability is always defined with respect to a

Efficient Computation of Dominance in Component Systems 401

repository, the strong dependency relation is defined with respect to a repository
as well.

Definition 1 (Strong dependency). Given a repository R, a package p
strongly depends on a package q (p ⇒R q) if and only if:

– p is installable w.r.t. R
– every installation of p w.r.t. R includes q

For this definition and the ones that follow, if it is clear from the context which
repository R is used, we will omit it for the sake of brevity (and, in the case of
strong dependencies, simply note p ⇒ q).

We insist upon the fact that p must be installable, otherwise a non-installable
package would trivially strongly depend on every other package in the
distribution.

Note that the strong dependency relation is reflexive and transitive.
We shall note the set of strong dependencies of a package p (i.e. {q ∈ R | p ⇒R

q}) as Scons(p, R).
This allows us to define the impact set of a package:

Definition 2 (Impact set). Given a repository R, the impact set Is(p, R) of
a package p is the set {q ∈ R | q ⇒R p}.
As noted in the introduction, it is possible that the impact set of one package is
explained by the impact set of another. In other words, the fact that a package
p has a large impact set is caused by the fact that it is a dependency of another
package q, which has itself a large impact set.

Formally, we shall express this notion (which we call dominance, inspired by
the notion of dominance in control flow graphs) as follows:

Definition 3 (Dominance). Given a repository R, a package p dominates an-
other package q (p �R q) if and only if:

– p ⇒R q
– Is(p, R) ⊇ (Is(q, R) \ Scons(p))

Here, we capture the notion that the impact set of q contains only elements from
the impact set of p (hence the impact set of q is explained by the impact set of
p). We need to remove the strong dependencies of p, because it is possible that
there are packages x such that p ⇒ x and x ⇒ p.

With these definitions, a naive algorithm for the computation of the domi-
nators in a distribution is easy to find: simply compute the strong dependency
graph of a distribution (as shown in [1]), and for every two packages p and q
such that p ⇒ q, see if the impact sets satisfy the condition for dominance.

There is, however, a very efficient algorithm, proposed by Lengauer and Tarjan
in [6], to compute dominance in control flow graphs. In the next section, we
will propose a method for converting the graph of strong dependencies of a
distribution into a control flow graph, and prove that our notion of dominance
is equivalent to dominance in this control flow graph.

In this way, we can use the Lengauer-Tarjan algorithm to compute the dom-
inance graph in a distribution, which only takes a few minutes.

402 J. Boender

3 Dominance in Strong Dependency Graphs and Flow
Control Graphs

In this section, we will present the notion of strong dependency graphs, a method
for converting them into control flow graphs and finally a proof that they are
equivalent with respect to dominance (as presented in the previous section for
strong dependency graphs; for control flow graphs we use the classical notion of
dominance).

This will allow us to use the Lengauer-Tarjan algorithm to efficiently compute
dominance on open source distributions.

Definition 4 (Strong dependency graph). The strong dependency graph
SG(R) of a distribution is the directed graph with all packages of R as its ver-
tices, and as edges all pairs (p, q) such that p ⇒R q.

Since the strong dependency relationship is transitive, SG(R) is a transitive
graph as well. This allows us to prove the following lemma:

Lemma 1. If there is a cycle v1 → v2 → . . . → vn → v1 in SG(R), then
{v1, v2, . . . , vn} is a clique in SG(R).

Proof. For any 1 ≤ i, j ≤ n, there must be a path from vi to vj (both are part
of a cycle). Because SG(R) is transitive, there must therefore also be an edge
vi → vj .

If there is a clique C in SG(R), when considering installability, all the members of
C are equivalent. They all strongly depend on each other, and therefore either all
members of C will be installed, or none of the members of C will be installed. We
will not lose any information (when it comes to installability) by amalgamating
all members of C into one vertex.

Definition 5 (Collapse). Given a directed graph G, we define its collapse G ↓
as the graph obtained by the following procedure:

– Let G ↓ be equal to G.
– For all maximal cliques C = {v1, v2, . . . , vn} in G, do:

• Add a vertex vC to G ↓.
• Replace all edges v → vi (1 ≤ i ≤ n) in G ↓ with v → vC , and all edges

vi → v with vC → v.
• Remove all edges vC → vC from G ↓.
• Remove all vertices in C from G ↓.

– Perform a transitive reduction on G ↓.

The function ϕG is defined to map a vertex in G to its equivalent in G ↓.
We can show that collapsing a transitive graph (such as the strong dependency

graph) results in a graph without cycles:

Lemma 2. If G is a transitive graph, then G ↓ is acyclic.

Efficient Computation of Dominance in Component Systems 403

Proof. By lemma 1, every cycle in G is a clique.
Every clique in G is either a maximal clique itself, or completely contained

within a maximal clique.
It is not possible for a clique C to be only partially contained within a maximal

clique M : in this case, there is at least one vertex v that is within both M and
C. Therefore, v is connected to every vertex of M and C. Since G is transitive,
every vertex in M is connected to every vertex and C and vice versa. Hence,
M ∪C is a clique, which contradicts the assumption that M is a maximal clique.

Hence, if we replace all maximal cliques in G by single vertices in G ↓, we
remove all cliques. Since every cycle is a clique, we also remove all cycles.

We can now construct the flow graph equivalent of the strong dependency graph.

Definition 6 (Flow graph). Given a strong dependency graph SG(R), the
corresponding flow graph is obtained by taking SG(R) ↓, and adding to it an
extra vertex start, and edges (start, p) to every vertex p in SG(R) ↓ that does
not have any predecessors.

An example of the flow graph transformation is given in figure 2: first, the cycle
between bravo and charlie is removed, and then the transitive reduction is
performed (removing the edge from bravo/charlie to foxtrot and the edges
from alpha and delta to foxtrot). Finally, a start vertex is added with edges
to alpha, bravo/charlie and delta, all of which have no predecessors.

Every vertex in the flow graph is reachable from the start vertex:

Lemma 3. For every vertex v ∈ FG(R), there is a path from start to v.

Proof. Any vertex v ∈ SG(R) ↓ must either have no predecessors (and therefore
be directly reachable in FG(R) from start), or have at least one predecessor.
Since SG(R) ↓ is finite and acyclic, it is impossible to have an infinite path of
predecessors; at some point we must reach a vertex that has no predecessors,
and that therefore in FG(R) is reachable directly from start.

We can prove that the flow graph retains the strong dependency relationship,
modulo transitivity:

Lemma 4. A vertex ϕ(w) is reachable from a vertex ϕ(v) in FG(R) if and only
if v ⇒ w.

alpha deltabravo charlie

echo

foxtrot ⇒

alpha delta

echo

foxtrot

bravo
charlie

⇒

alpha delta

echo

foxtrot

bravo
charlie

START

Fig. 2. Example of flow graph transformation

404 J. Boender

Proof.

(⇐) We assume that v ⇒ w. To be proven is that ϕ(w) is reachable from ϕ(v).
Since v ⇒ w, there is an edge (v, w) in SG(R). When constructing

SG(R) ↓, either v and w end up in the same clique, which means that
ϕ(v) = ϕ(w) and reachability is trivial; or v and w are in different cliques,
and the edge (v, w) becomes (through transitive reduction) a path from
ϕ(v) to ϕ(w) in SG(R) ↓ and therefore in FG(R).

(⇒) We assume that ϕ(w) is reachable from ϕ(v). To be proven is that v ⇒ w.
Every vertex in FG(R) represents a clique in SG(R) ↓, and therefore

there is a list of cliques C1, C2, . . . , Cn such that v ∈ C1, w ∈ Cn and there
are xi ∈ ci such that v ⇒ x1, x1 ⇒ x2, . . ., xn ⇒ w. Thus, v → x1 →
x2 → . . . → xn → w is a path from v to w in the transitive reduction of
SG(R), which means that there is an edge (v, w) in SG(R), and therefore
v ⇒ w.

Now we can establish the equivalence between the concept of dominance from
definition 3 and the concept of dominance from flow graphs.

Theorem 1. Given a repository R, v �R w if and only if every path from start
to ϕ(w) in FG(R) passes through ϕ(v).

Proof.

(⇐) We assume that every path from start to ϕ(w) in FG(R) passes through
ϕ(v). To be proven is that v �R w, in other words v ⇒ w and Is(v) ⊇
(Is(w) \ Scons(v)).
• By lemma 3, there is at least one path from start to ϕ(w). This path, by

the hypothesis, passes through ϕ(v). Therefore, ϕ(w) is reachable from
ϕ(v) and by lemma 4, v ⇒ w.

• Let x be a package in Is(w, R) \ Scons(v). There must be a path from
start to ϕ(x) (lemma 3) and a path from ϕ(x) to ϕ(w) (x ∈ Is(w, R),
therefore x ⇒ w and lemma 4). The concatenation of these two paths
is a path from start to ϕ(w) and therefore must contain ϕ(v). Since
x �∈ Scons(v), there is no path from ϕ(v) to ϕ(x), so ϕ(v) must be on
the path from ϕ(x) to ϕ(w). Therefore, there is a path from ϕ(x) to
ϕ(v), which means that x ⇒ v and therefore x ∈ Is(v, R).

(⇒) We assume that v �R w. To be proven is that every path from start to
ϕ(w) in FG(R) passes through ϕ(v).

In any path p from start to ϕ(w) in FG(R), we can find the first
vertex ϕ(x) such that x ∈ Scons(v). This vertex exists, since ϕ(w) ∈ p
and w ∈ Scons(v).

If ϕ(x) is the direct successor of start, then x = v, since x ∈ Scons(v),
but x has no predecessors in SG(R) ↓. Hence, the path from start to ϕ(w)
passes through ϕ(v) (since this is the same vertex as ϕ(x)).

Otherwise, there is a vertex ϕ(x′) directly preceding ϕ(x) in p, such
that x′ �∈ Scons(v). However, there is a path from ϕ(x′) to ϕ(w), so that

Efficient Computation of Dominance in Component Systems 405

(by lemma 4) x′ ∈ Is(w). Therefore, x′ ∈ Is(w) \ Scons(v), and by the
hypothesis, this means that x′ ∈ Is(v) and therefore there must be a path
from ϕ(x′) to ϕ(v) in FG(R). Now there is a path from ϕ(x′) to ϕ(x)
through ϕ(v) (since x ∈ Scons(v)), but there is also a direct edge from
ϕ(x′) to ϕ(x), which is in contradiction with the fact that FG(R) is a
transitive reduction.

4 Discussion

In the previous section, we have introduced a new method of computing the
dominator graph of component-based systems, which is much faster than the
naive method. We have proven that this method produces an equivalent result.

With this equivalence, we can use the Lengauer-Tarjan algorithm to com-
pute the dominator graph of a distribution. This results in a significant gain in
speed. The naive algorithm runs in O(mn) time, with m the number of edges in
the strong dependency graph and n the number of vertices (i.e. the number of
packages in the distribution), whereas the most efficient implementation of the
Lengauer-Tarjan algorithm runs in O(mα(m, n)) time, with α the functional
inverse of the Ackermann function. This is almost linear in time.

Here is a comparison of the run times of both algorithms on the latest Debian
GNU/Linux distribution. We can see that the Lengauer-Tarjan algorithm is
much faster. We do have to spend some time on doing the cycle reduction and the
transitive reduction, but this is insignificant compared to the speed-up achieved
by using the Lengauer-Tarjan algorithm for the generation of the dominator
graph.

Activity Naive Lengauer-Tarjan

Generation of strong dependency graph 246s 247s

Cycle reduction — 221s
Transitive reduction — 35s

Generation of dominator graph 24415s 74s

The run time of the Lengauer-Tarjan algorithm being only a few minutes on a
typical distribution, it is possible to run the algorithm daily on the development
version of the distribution, to keep track of changes in its structure. It should
even be possible to re-generate the dominance graph every time a new package
is submitted, to easily note the impact of the changes on the package structure.

Related Work. There is extensive literature on the formal study of component-
based systems. In this section, we will discuss some papers that discuss similar
subjects to our own.

In [2], the concept of predictable assembly is presented, defined as the proper-
ties of assemblies of components. This is similar to our study of component-based
systems, most notably F/OSS distributions.

406 J. Boender

The method presented above could also be adapted to software product lines,
expressed as feature diagrams [8]. It has been shown that a significant subset of
feature diagrams can be encoded as component problems [3].

We have tested our method on F/OSS distributions, most notably the Debian
and Mandriva distributions. It could also be adapted to other component-based
systems, such as Eclipse plugins [5] or the OSGi component model.

Some work has been done on the exploration of the structure of F/OSS dis-
tributions, as an instance of small-world networks [4,7]. These studies also show
that F/OSS distributions are highly clusterised.

Acknowledgements. The author would like to thank Roberto Di Cosmo, Pietro
Abate, Yacine Boufkhad, Ralf Treinen and Stefano Zacchiroli for many fruitful
discussions.

References

1. Abate, P., Di Cosmo, R., Boender, J., Zacchiroli, S.: Strong dependencies between
software components. In: ESEM 2009: Proceedings of the 2009 3rd International
Symposium on Empirical Software Engineering and Measurement, pp. 89–99. IEEE
Computer Society, Washington, DC, USA (2009)

2. Crnkovic, I., Schmidt, H., Stafford, J., Wallnau, K.: Anatomy of a research project
in predictable assembly. In: Proceedings of the 5th ICSE Workshop on Component-
Based Software Engineering (2002), White paper

3. Di Cosmo, R., Zacchiroli, S.: Feature diagrams as package dependencies. In: Bosch,
J., Lee, J. (eds.) SPLC 2010. LNCS, vol. 6287, pp. 476–480. Springer, Heidelberg
(2010)

4. LaBelle, N., Wallingford, E.: Inter-package dependency networks in open-source
software. CoRR, cs.SE/0411096 (2004)

5. Le Berre, D., Rapicault, P.: Dependency management for the eclipse ecosystem:
An update. In: 3rd International Workshop on Logic and Search (Lash 2010) (July
2010)

6. Lengauer, T., Tarjan, R.E.: A fast algorithm for finding dominators in a flowgraph.
ACM Trans. Program. Lang. Syst. 1(1), 121–141 (1979)

7. Maillart, T., Sornette, D., Spaeth, S., von Krogh, G.: Empirical Tests of Zipf’s Law
Mechanism in Open Source Linux Distribution. Phys. Rev. Lett. 101(21), 218701
(2008)

8. Schobbens, P.-Y., Heymans, P., Trigaux, J.-C.: Feature diagrams: A survey and a
formal semantics. In: RE 2006, pp. 136–145. IEEE, Los Alamitos (2006)

The Boogie Verification Debugger (Tool Paper)

Claire Le Goues0 , K. Rustan M. Leino1 , and Michał Moskal1

0 University of Virginia, Charlottesville, VA, USA
legoues@cs.virginia.edu

1 Microsoft Research, Redmond, WA, USA
{leino,micmo}@microsoft.com

Abstract. The Boogie Verification Debugger (BVD) is a tool that lets users
explore the potential program errors reported by a deductive program verifier.
The user interface is like that of a dynamic debugger, but the debugging hap-
pens statically without executing the program. BVD integrates with the program-
verification engine Boogie. Just as Boogie supports multiple language front-ends,
BVD can work with those front-ends through a plug-in architecture. BVD plug-
ins have been implemented for two state-of-the-art verifiers, VCC and Dafny.

0 Introduction

Deductive software verification technology is sufficiently mature that tools can formally
verify non-trivial programs written in semantically intricate modern languages. How-
ever, these tools remain difficult to use. They require considerable expertise, patience,
and trial-and-error, especially to decipher error conditions and verification failures. In
sum: our tools can understand our programs, but we cannot understand our tools.

In this paper, we present a verification debugger, called BVD (Boogie Verification
Debugger), to help users understand the output of a program verifier. Our tool advances
the state-of-the-art in program verification by increasing the communication bandwidth
between the verifier and the user. Much as a dynamic debugger allows a programmer to
explore a failing run-time state, the verification debugger allows her to explore—and,
by extension, understand—a failing verification state. For example, a user can inspect
the assumed values of local and heap-allocated variables. Constructing such a debugger
is challenging because of the disconnect between the theorem prover counterexample
model and the programmer’s mental model of program execution.

Verification tools vary in their automation levels. At one extreme lies fully automatic
verifiers. This class of verifier includes many abstract interpreters or model checkers;
to obtain full automation, such tools typically limit their reasoning to certain domains.
At the other extreme lies verifiers that accept user input at all proof steps. This class of
verifier describes many mechanical proof assistants; to obtain this flexibility, these tools
typically expose the user to the internal representation of proof obligations. In this pa-
per, we consider a family of verifiers between the automatic and interactive extremes,
which we refer to as auto-active verification. An auto-active verifier has two major
characteristics: the user can define assertions for the verifier to prove, and all user in-
teraction is done at the level of the program source language. For example, a user may
help the verifier along by declaring a precondition or loop invariant in the program, but

G. Barthe, A. Pardo, and G. Schneider (Eds.): SEFM 2011, LNCS 7041, pp. 407–414, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

408 C. Le Goues, K.R.M. Leino, and M. Moskal

so
ur

ce
 in

pu
t

.dfy

. c

Boogie

Language
frontend

Verification
condition

Boogie

Counterexample
model

Reasoning
engine UI

BVD

Plug-ins Plug insg
VCC

Dafny

Fig. 0. BVD in the context of a failed verification in the Boogie system. Input source is compiled
to Boogie, which Boogie translates into a verification condition (VC). When the reasoning engine
cannot discharge the VC, it produces a counterexample model. BVD interacts with a language-
specific plug-in to interpret and display the counterexample model to the user.

never interacts directly with the underlying reasoning engine. Examples of auto-active
verifiers include extended static checkers [4] and program verifiers like Dafny [8] and
VCC [2].

A prevalent implementation technique for auto-active verifiers is to translate the
source program and its user annotations into an intermediate verification language,
like Boogie [1] or Why [5]. This intermediate program is used to generate a verification
condition; this condition is passed to a reasoning engine, for example a Satisfiability
Modulo Theories (SMT) solver like Z3 [3]. Intermediate verification languages like
Boogie confer similar benefits to verification as intermediate program representations
do to compilation. In particular, they allow different source-language front-ends to share
a verifier back-end. BVD, presented in this paper, works with Boogie and provides a
plug-in architecture to support different front-ends. We have built BVD plug-ins for
VCC [2] and Dafny [8].0

The rest of this short paper is organized as follows. Section 1 situates BVD in the
context of the architecture of the Boogie pipeline. Section 2 describes the features,
implementation, and use of BVD on indicative examples, and provides screenshots.
Section 3 presents related work, while Sect. 4 discusses future work and concludes.

1 High-Level architecture

Fig. 0 provides a high-level overview of the architecture of BVD as it fits in the pipeline
of a failed verification in Boogie. The Boogie verification system supports multiple lan-
guage front-ends. Input source code is transformed by a language-specific front-end
into the Boogie intermediate verification language. The Boogie tool then transforms the
intermediate program to generate a verification condition (VC) to pass to a reasoning
engine. When verification fails, the underlying reasoning engine produces a counterex-
ample model under which the postcondition does not hold. Unfortunately, this coun-
terexample model, consisting of a list of elements and interpretations of functions used
in the language encoding, does not map transparently back to the source code. BVD

0 Boogie, BVD, and Dafny are available as open-source projects at http://boogie.
codeplex.com/. VCC is available with source at http://vcc.codeplex.com/.

http://boogie.
codeplex.com/
http://vcc.codeplex.com/

The Boogie Verification Debugger 409

interacts with a language plug-in to interpret the counterexample model and display it
in a way meaningful to the end-user, and not only the verifier author.

This paper is primarily concerned with the boxed region of the diagram, which cor-
responds to the BVD tool. BVD support requires minor modification to the front-end
compiler, described below; such modifications are typically negligible in practice.

2 BVD

BVD is geared towards the debugging of failed verifications of imperative languages,
characterized by sequential execution states. Typically, regular debuggers display one
execution state at a time, through which one may step forward, and in some cases back-
ward (e.g., the OCaml debugger or IntelliTrace in VS2010). Similarly, an SMT coun-
terexample model consists of states leading to a failed assertion. Each state ultimately
corresponds to a location in the source code, and encodes relevant memory contents at
those source locations. BVD translates the SMT state sequences into “execution” states
and memory values that the user can understand, and displays them in an informative
way. This section is concerned with the details of this translation process.

2.0 Insert example

To make the discussion more concrete, consider the following Dafny program imple-
menting a linked list with insertion. The programmer has annotated the method to pro-
vide information to the verifier (line 2) and to tell the verifier what it should prove (line
4, which asserts that n has been successfully inserted):

0 class ListNode { var data : int; var next : ListNode; }
1 static method Insert(hd : ListNode, n : ListNode)
2 requires hd != null ∧ n != null;
3 modifies hd, n;
4 ensures n.next == old(hd.next);
5 { n.next := hd.next; hd.next := n; }

This method fails to verify because it is possible for hd and n to be aliases on entrance
to Insert, leading both hd->next and n->next to point to n after line 5. This violates
the postcondition. This can be addressed by adding a precondition asserting hd != n

on method entrance.
However, the verifier provides very little information to help the programmer under-

stand this failure. Its error message states that the postcondition is violated, and that line
5 is implicated. The underlying reasoning engine’s counterexample model is similarly
unhelpful. A Z3 error model, for example, represents program states as named model
elements, such as *0 -> true, *37 null and functions interpretations on elements,
such as MapType1Select -> *40 *41 *17 -> *56; else -> #unspecified

We will use this example to clarify the discussion of our tool, and will demonstrate
the tool on it and other examples.

410 C. Le Goues, K.R.M. Leino, and M. Moskal

2.1 Computing Memory Contents

The model produced by the reasoning engine contains values for a number of memory
locations in a number of states. Regular debuggers allow the user to inspect values of
variables as well as the values of fields of objects pointed to by the variables. BVD fol-
lows this model by translating the SMT’s model of memory contents into more familiar
object trees that the user can explore.

BVD names memory locations using access paths—usually source-level expressions
that access a given memory location. Example access paths in the Insert example in-
clude hd, n.next, and hd.next.data. After the execution of Insert(), n.data and
hd.next.data name the same memory location. In addition to local variables, BVD
can use Skolem constants as roots, allowing the user to explore verification-specific
states as necessary.

Values of memory locations are expanded recursively via communication between
BVD and the language plug-in. BVD supplies the program points corresponding to
counterexample states to the language-specific BVD plug-in. The latter returns a list of
root paths—typically local and global variables—available at the static program points.
BVD then supplies values of these root paths according to the model, which the plug-
in “expands” to yield additional interesting access paths. The expansion may contain
source-level fields (when the value is a pointer to an object), indexes into arrays, maps,
sets, or applications of functions. The process repeats recursively, in breadth-first order,
stopping whenever an already visited node is reached.

2.2 Displaying States and Access-Path Values

Canonical names. Some values, like integers, Booleans, or the special null pointer,
are easy to display. In contrast, regular pointers in the SMT model do not have user-
meaningful values; they are assigned place-holder values. BVD asks the language plug-
in to provide canonical (i.e., state-independent) names for them. The VCC and Dafny
plug-ins use the type of the object and a sequential number (e.g., ListNode’0).

Stable tree view. BVD displays values for both the currently and previously selected
execution states, in blue and red respectively, allowing side-by-side comparison. Some
paths may be available only in some states, e.g., hd.next.next is unavailable in state
1 because hd.next is null, but is available in state 2. To avoid abrupt changes to the
access-path tree while browsing the states, the left pane shows the union of path trees
for all states. A path’s name is greyed out if its value is unavailable in the selected state.

Fig. 1 shows BVD on the counterexample produced by Dafny on the Insert pro-
gram. Paths hd and n are roots; hd.next was generated by the Dafny BVD plug-in as
the expansion of hd. The screenshot displays hd and n in state 1 (Value) as compared to
state 2 (Previous). The right-hand pane displays the value of hd.next in all states. The
use of canonical names illustrates that hd and n are aliased: they have the same value
(ListNode’0). The current state shows the value of old(hd.next): (null). If we
advance to the final state (corresponding to the execution of the last source code line)
we will see that n.next points to ListNode’0, not null.

The Boogie Verification Debugger 411

Fig. 1. BVD on the Dafny Insert example. The right pane provides navigation through execu-
tion states, and shows the value of the currently selected access path throughout execution. For
example, hd.next is null in the first two states, and ListNode’0 in the third. The left pane
allows browsing the access path tree and inspecting values in the current (in red) and previously
selected (in blue) state, allowing for comparison. Canonical names are provided by the language
plug-in for model values that are not otherwise user-meaningful (such as ListNode’0).

2.3 Complex Data Types and Search

Skolem constants. The screen shots in Figs. 2 and 3 are of a failed VCC verification of
a recursive red-black tree implementation. Fig. 2 illustrates the use of canonical names
to display complex data type values. The m@Red..(79,15) is a Skolem constant (m)
for which a quantified invariant at line 79 column 15 fails to hold.

Sparse data structures. Fig. 2 also shows a ghost field t->owns<Tree>, introduced
by the VCC verification methodology and containing the set of objects owned by t. The
set is displayed using canonical names: it contains Node’0, does not contain Node’9,
and so on. The set representation in the SMT model is sparse—it does not say anything
about possible Node’42, because it does not need to: the value of Node’42 is irrelevant
to the verification failure. We use a similar display format for maps, arrays, and speci-
fication functions (either methodology-supplied like $inv2(...), or user-defined).

Search. Canonical names are useful for spotting aliases and understanding changes of
variables across states. The user may search for aliases or uses of a given access path
value. In a given state, a value is used by an access path if either the location pointed to
by the access path contains the value, or the access path itself mentions the value. Fig. 3
shows screenshots of some of BVD’s search capabilities. To determine correspondence
between canonical names and variables in the current state, the user right-clicks on an
access path (left screen shot) or uses the search facility (right screen shot).

Both these features are desirable and possible due to the size of the models: the
models are in the range of hundreds (up to a few thousands) of elements—too large for
the human being to look at as a whole, but much smaller than the gigabytes of heap that
a dynamic debugger may need to consider to provide such features.

412 C. Le Goues, K.R.M. Leino, and M. Moskal

Fig. 2. BVD on a failed VCC verification of a recursive red-black tree implementation. Skolem
constants receive canonical names (such as m@Red..(79,15)) as with regular variables. This
example demonstrates BVD’s treatment of sparse data structures: only values relevant to the
counterexample—those with values in the model—are displayed. Node’42, for example, is not
displayed in the ghost field t->owns<Tree>, because it is not relevant to the failure.

2.4 Plug-in Programmer Interface

The translator from source language to Boogie needs to insert special assumption state-
ments at program points that capture source code locations and variable values, which
are included in the counter-example model and can then be used to decode states dis-
played in BVD. The source-language BVD plug-in is responsible for enumerating ac-
cess paths. BVD provides the plug-in with a mapping from Boogie variables to model
elements in each marked program point, as well as complete enumeration of model
elements and associated function interpretations.

Fig. 3. Search on the red-black tree example. Right-clicking a node produces commands to jump
to other access paths containing the current value (aliases). The pop-up menu at the bottom shows
three locations containing Node’0 in the current state; the menu above it shows two other loca-
tions besides x (currently selected). The menu also allows populating the full-text search box.

The Boogie Verification Debugger 413

Writing language plug-ins is not difficult. The VCC plug-in is about 1000 lines of
C# code, while Dafny is only about 400 (mostly due to Dafny being a leaner language).
The modifications needed in the C and Dafny to Boogie translators are negligible.

3 Related Work

The idea of adding instrumentation to verification conditions for the purpose of generat-
ing usable error messages is old. For example, ESC/Modula-3 labeled sub-formulas in
verification conditions and used the labels returned by the SMT solver to determine the
source location of the potential program error [4]. ESC/Java extended the mechanism to
allow the reconstruction of an execution trace leading to the error [9]. The Spec# veri-
fier extended Boogie with a mechanism to retrieve the values of certain pre-determined
expressions in the error state; for example, this lets the verifier report the value used as
an index in an array bounds error.1

The forerunner to our work was the VCC Model Viewer2, which provides a debugger-
like, interactive user interface to explore the verification state [2]. BVD integrates into
Boogie rather than building on top of it, permitting a simpler encoding. In addition,
BVD’s architecture supports plug-ins for multiple languages, and through its use of
canonical names, permits more advanced features like stable tree views and search.

Müller and Ruskiewicz have implemented a Visual Studio dynamic debugger plug-in
for Spec#, with the same purpose [10] as our tool. The debugged program is a variation
of the original program that uses values from the SMT model to construct concrete
data structures; these are used according to the verification semantics of the program.
For example, instead of iterating a loop, the verification semantics immediately jumps
to the final loop iteration, where the values of variables are constrained only by the
loop invariant, which is how the program verifier views the execution. Their tool can
identify some spurious error reports. Our approach is simpler, in that it avoids the many
problems associated with constructing concrete data structures from a mathematical
model. Furthermore, our approach makes explicit the partial information considered by
the SMT solver, which lets us sparsely represent arrays and maps and show functions.

There has also been work to improve the user experience with software model check-
ers. The typical output of a model checker is a full execution trace leading to an error.
There has been work to prune these enormous traces by comparing successful execu-
tions with failing executions, seeking to determine the cause of the error [0,6].

The auto-active verifier VeriFast is based on symbolic execution and works with
both C and Java programs [7]. Its IDE displays, at each program point, both the heap
structure and the constraints on the values of variables and heap locations. It does not
currently display concrete values for variables, though it could in principle.

4 Conclusions and Future Work

We have presented BVD, a multi-language verification debugger that helps program-
mers decipher and diagnose program verifier output. We have built BVD plug-ins for

1 This -enhancedErrorMessagesmode was implemented by Ralf Sasse.
2 Developed by Markus Dahlweid and Lieven Desmet.

414 C. Le Goues, K.R.M. Leino, and M. Moskal

VCC and Dafny and found the verification debugger to be useful in practice. For exam-
ple, it has elucidated why, in the SiftUp and SiftDown methods of a priority-queue
heap data structure, it is necessary to include a loop invariant that establishes a connec-
tion between the parent and children of the node being updated.3 We believe that tools
like BVD are necessary to move verification into the hands of non-experts.

As future work, we wish to conduct user experiments with verification non-experts,
perhaps in a teaching setting. We wish to add features that further help narrow the cause
of an error (not just debug the symptoms) or identify spurious error reports (see Sect. 3).
Adding to the textual tree views provided in BVD, we would like to see complemen-
tary visualization (e.g., nodes and arrows) of the data structures in error states. Finally,
we would like to see an even tighter integration of aids like a verification debugger
into IDEs, so that it can become standard practice to have verification and diagnostic
information available to the programmer immediately as code is being designed.

References

0. Ball, T., Naik, M., Rajamani, S.K.: From symptom to cause: Localizing errors in counterex-
ample traces. In: POPL 2003, pp. 97–105. ACM, New York (2003)

1. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A modular
reusable verifier for object-oriented programs. In: de Boer, F.S., Bonsangue, M.M., Graf, S.,
de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 364–387. Springer, Heidelberg
(2006)

2. Cohen, E., Dahlweid, M., Hillebrand, M.A., Leinenbach, D., Moskal, M., Santen, T., Schulte,
W., Tobies, S.: VCC: A practical system for verifying concurrent C. In: Berghofer, S.,
Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 23–42.
Springer, Heidelberg (2009)

3. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R., Rehof, J.
(eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)

4. Detlefs, D.L., Leino, K.R.M., Nelson, G., Saxe, J.B.: Extended static checking. Research
Report 159, Compaq Systems Research Center (December 1998)

5. Filliâtre, J.-C., Marché, C.: The Why/Krakatoa/Caduceus Platform for Deductive Program
Verification. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 173–177.
Springer, Heidelberg (2007)

6. Groce, A., Kröning, D., Lerda, F.: Understanding Counterexamples with explain.
In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 453–456. Springer,
Heidelberg (2004)

7. Jacobs, B., Smans, J., Piessens, F.: A Quick Tour of the VeriFast Program Verifier. In: Ueda,
K. (ed.) APLAS 2010. LNCS, vol. 6461, pp. 304–311. Springer, Heidelberg (2010)

8. Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness. In: Clarke,
E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 348–370. Springer,
Heidelberg (2010)

9. Leino, K.R.M., Millstein, T.D., Saxe, J.B.: Generating error traces from verification-
condition counterexamples. Sci. Comput. Program. 55(1-3), 209–226 (2005)

10. Müller, P., Ruskiewicz, J.N.: Using debuggers to understand failed verification attempts. In:
Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 73–87. Springer, Heidelberg
(2011)

3 See Test/dafny1/PriorityQueue.dfy at boogie.codeplex.com.

boogie.codeplex.com

Object-Oriented Formal Modeling and Analysis

of Interacting Hybrid Systems in HI-Maude

Muhammad Fadlisyah1, Peter Csaba Ölveczky1, and Erika Ábrahám2

1 Department of Informatics, University of Oslo, Norway
2 Computer Science Department, RWTH Aachen University, Germany

Abstract. This paper introduces the HI-Maude tool that supports the
formal modeling, simulation, and model checking of interacting hybrid
systems in rewriting logic. Interacting hybrid systems exhibit both dis-
crete and continuous behaviors, and are composed of components that
influence each other’s continuous dynamics. HI-Maude supports the com-
positional modeling of such systems, where the user only needs to de-
scribe the dynamics of single components and interactions, instead of
having to explicitly define the continuous dynamics of the entire system.
HI-Maude provides an intuitive, expressive, object-oriented, and alge-
braic modeling language, as well as simulation and LTL model checking
with reasonably precise approximations of continuous behaviors for in-
teracting hybrid systems. We introduce the tool and its formal analysis
features, define its formal semantics in Real-Time Maude, and exemplify
its use on the human thermoregulatory system.

1 Introduction

Modelers typically have to choose between simulation tools that provide intu-
itive and expressive modeling languages but only support system simulation,
and model checking tools that can do powerful formal analyses but only provide
quite restrictive modeling formalisms to ensure that key properties are decid-
able. For real-time systems, the rewriting-logic-based Real-Time Maude tool [14]
tries to bridge this gap by providing an intuitive and expressive object-oriented
modeling formalism as well as both simulation, reachability, and LTL and TCTL
model checking. Although the price of this expressiveness is that properties are
in general undecidable, useful formal analyses can often be performed on very
complex systems; furthermore, Real-Time Maude model checking is sound and
complete model checking for many systems encountered in practice [13]. Real-
Time Maude has proved to be useful for analyzing a wide range of advanced
applications that are beyond the scope of timed automata (see, e.g., [15]).

This paper introduces the HI-Maude tool that extends Real-Time Maude to
support the modeling, simulation, and model checking of hybrid systems with
combined discrete and continuous behaviors. We target complex hybrid systems
in which multiple physical entities interact and influence each other’s continuous
behavior. For example, a hot cup of coffee in a room interacts with the room

G. Barthe, A. Pardo, and G. Schneider (Eds.): SEFM 2011, LNCS 7041, pp. 415–430, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

416 M. Fadlisyah, P.C. Ölveczky, and E. Ábrahám

through different kinds of heat transfer, leading to a decrease of the coffee’s tem-
perature and to a slight increase of the room’s temperature. One distinguishing
feature of HI-Maude is the modularity and compositionality of the specification of
the system’s continuous dynamics. Non-compositional specification of the whole
system is very hard, as it involves combining the ordinary differential equations
(ODEs) that specify the dynamics of its components; it also requires redefin-
ing the system’s continuous dynamics for each new configuration of interacting
physical components. To achieve the desired modularity and compositionality,
HI-Maude offers an object-oriented modeling methodology [5], based on the ef-
fort/flow approach [18], that allows us to specify the continuous dynamics of
single physical entities (such as the cup of coffee and the room) and of single
physical interactions (such as thermal conduction and convection). To analyze
the system, HI-Maude uses adaptations of different numerical methods (the Eu-
ler method and the Runge-Kutta method of different orders) to give fairly precise
approximate solutions to coupled ordinary differential equations.

Several simulation tools for hybrid systems, such as MATLAB/Simulink [17],
HyVisual [12], and CHARON [4], are based on numerical methods. In con-
trast to these tools, HI-Maude also supports reachability analysis and temporal
logic model checking. Of course, the results of such model checking must be
seen in light of the approximation inaccuracies of the continuous behaviors. Our
approach also differs from model checkers for hybrid systems, such as Check-
Mate [1], PHAVer [8], d/dt [3], and HYPERTECH [10], in that we do not
use abstraction or over-approximation. Whereas other formal tools use hybrid
automata, chart or block models, or formulas for modeling, a main advantage
of HI-Maude is that it is based on the intuitive yet expressive rewriting logic
formalism as the underlying modeling formalism.

To summarize, HI-Maude provides:

1. a modeling framework for hybrid systems that is (i) intuitive and expressive,
(ii) object-oriented, with support for features such as inheritance and dy-
namic creation and deletion of objects, (iii) algebraic, and that (iv) makes it
easy to specify the continuous dynamics in a simple and compositional way;

2. simulation, reachability analysis, and LTL model checking for such models
based on fairly precise approximations of the system’s continuous behavior.

We exemplify the use of HI-Maude with a small example of the coffee in the
room, as well as with the formal modeling and analysis of the human ther-
moregulatory system. Both these systems are outside the decidable fragment of
hybrid automata, in part due to their complex non-linear continuous dynamics.

The paper is structured as follows: Section 2 gives an overview of Real-Time
Maude. Section 3 briefly explains our effort/flow-based method proposed in [5]
for modeling hybrid systems in rewriting logic. Section 5 describes the HI-Maude
tool, Section 6 briefly outlines its semantics, and Section 7 gives an overview of
the modeling and analysis of the human thermoregulatory system in HI-Maude.
Finally, some concluding remarks are given in Section 8.

The HI-Maude tool, together with some examples and a longer technical re-
port, is available at http://folk.uio.no/mohamf/HI-Maude.

http://folk.uio.no/mohamf/HI-Maude

Object-Oriented Formal Modeling and Analysis 417

2 Real-Time Maude

A Real-Time Maude [14] timed module specifies a real-time rewrite theory of the
form (Σ, E, IR,TR), where:

– (Σ, E) is a membership equational logic [2] theory with Σ a signature1 and
E a set of confluent and terminating conditional equations. (Σ, E) speci-
fies the system’s state space as an algebraic data type, and must contain a
specification of a sort Time modeling the (discrete or dense) time domain.

– IR is a set of (possibly conditional) labeled instantaneous rewrite rules spec-
ifying the system’s instantaneous (i.e., zero-time) local transitions, written
with syntax rl [l] : t => t′, where l is a label. Such a rule specifies a one-
step transition from an instance of t to the corresponding instance of t′. The
rules are applied modulo the equations E.2

– TR is a set of (usually conditional) tick rewrite rules, written with syntax
crl [l] : {u} => {v} in time τ if cond, that model time elapse. {_}
encloses the global state, and the term τ denotes the duration of the rewrite.

The Real-Time Maude syntax is fairly intuitive. A function symbol f is declared
with the syntax op f : s1 . . . sn -> s, where s1 . . . sn are the sorts of its
arguments, and s is its (value) sort. Equations are written with syntax eq t =
t′, and ceq t = t′ if cond for conditional equations. The mathematical variables
in such statements are declared with the keywords var and vars. An equation
f(t1, . . . , tn) = t with the owise (for “otherwise”) attribute can be applied to a
subterm f(. . .) only if no other equation with left-hand side f(u1, . . . , un) can
be applied. We refer to [2] for more details on the syntax of Real-Time Maude.

In object-oriented Real-Time Maude modules, a class declaration

class C | att1 : s1, ... , attn : sn .

declares a class C with attributes att1 to attn of sorts s1 to sn. An object of class
C in a state is represented as a term <O : C | att1 : val1, ..., attn : valn > of sort
Object, where O, of sort Oid, is the object’s identifier, and where val1 to valn are
the current values of the attributes att1 to attn. In a concurrent object-oriented
system, the state is a term of sort Configuration. It has the structure of a
multiset of objects and messages. Multiset union for configurations is denoted
by a juxtaposition operator that is declared associative and commutative, so
that rewriting is multiset rewriting supported in Real-Time Maude.

The dynamic behavior of concurrent object systems is axiomatized by speci-
fying each of its transition patterns by a rewrite rule. For example, the rule

rl [l] : < O : C | a1 : 0, a2 : y, a3 : w, a4 : z > =>

< O : C | a1 : T, a2 : y, a3 : y + w, a4 : z >

1 i.e., Σ is a set of declarations of sorts, subsorts, and function symbols
2 E is a union E′∪A, where A is a set of equational axioms such as associativity, com-

mutativity, and identity, so that deduction is performed modulo A. Operationally, a
term is reduced to its E′-normal form modulo A before any rewrite rule is applied.

418 M. Fadlisyah, P.C. Ölveczky, and E. Ábrahám

defines a parametrized family of transitions which can be applied whenever the
attribute a1 of an object O of class C has the value 0, with the effect of altering the
attributes a1 and a3 of the object. “Irrelevant” attributes (such as a4, and the
right-hand side occurrence of a2) need not be mentioned in a rule (or equation).

A subclass inherits all the attributes and rules of its superclasses.

Formal Analysis. A Real-Time Maude specification is executable, and the tool
offers a range of formal analysis methods. The rewrite command simulates one
behavior of the system up to a certain duration. The search command uses a
breadth-first strategy to analyze all possible behaviors of the system, by checking
whether states matching a pattern and satisfying a condition can be reached from
the initial state. The command searching for n such states reachable within time
τ has syntax (tsearch [n] t =>* pattern such that cond in time <= τ .).

Real-Time Maude also extends Maude’s linear temporal logic model checker
to check whether each behavior, possibly up to a certain time bound, satisfies a
temporal logic formula. State propositions, possibly parametrized, can be predi-
cates characterizing properties of the state and/or properties of the global time
of the system. A temporal logic formula is constructed by state propositions and
temporal logic operators such as True, False, ~ (negation), /\, \/, -> (implica-
tion), [] (“always”), <> (“eventually”), U (“until”), and W (“weak until”).

3 Effort/Flow Modeling of Interacting Hybrid Systems

Our tool is based on the modeling methodology in [5], which adapts the ef-
fort/flow method [18] to model a physical system as a network of physical entities
and physical interactions between the entities.3 This makes the models modu-
lar and compositional, in the sense that it is sufficient to define the continuous
dynamics for each component to define the dynamics of the entire system.

As shown in Fig. 1, a physical entity is described by a real-valued effort, a set
of attribute values, and the entity’s continuous dynamics. The attribute values
describe discrete properties, e.g., the mass or the phase of a material, that can
only be changed by discrete events. The effort variable represents a dynamic
physical quantity, such as temperature, that evolves over time as given by the
continuous dynamics in the form of an ordinary differential equation (ODE).

A physical interaction between two physical entities is described by a real-
valued flow, a set of attribute values, and a continuous dynamics. The flow value
describes the dynamic interaction between two entities, whose evolution over
time is specified by the continuous dynamics. The values of the effort variables
of the two physical entities are used in the definition of the continuous dynamics
of the interaction. In a flow source we abstract from one of the entities and
model a constant flow to a single entity.
3 The approach using effort/flow variables is applicable to different areas of physical

systems. In mechanical translation systems, the pair of effort and flow variables are
force and velocity; in mechanical rotation systems, torque and angular velocity; in
electrical systems, voltage and current; in fluidic systems, pressure and volume flow
rate; in thermal systems, temperature and heat flow rate.

Object-Oriented Formal Modeling and Analysis 419

CoffeeRoom

Conduction
through the cup

Convection through
the surface

solid evaporatingliquidmelting on off

Heater

C
on

tin
uo

us
 b

eh
av

io
rs

H
yb

rid
 b

eh
av

io
rs

flow

Physical
Interaction

Physical
Entity

effort

attributes

continuous
dynamics

attributes

continuous
dynamics

Fig. 1. Physical system components and their interaction in a simple thermal system

Finally, the system may also exhibit discrete transitions, because of phase
changes, explicit control, communication, or other factors.

Figure 1 illustrates our modeling methodology on a thermal system consisting
of a cup of coffee in a room. Heat flows from a hot cup of coffee to the room
through both heat convection and heat conduction, where the flow variable (Q̇)
denotes the heat flow rate of the physical interaction. The effort variables of the
two physical entities (coffee and room) are the temperature Tr of the room and
the temperature Tc of the coffee. The values of the other attributes are parame-
ters such as the mass and surface area of the cup. We also have a (flow-source)
heater that adds a constant flow of heat to the cup of coffee. Finally, we have dis-
crete behaviors, since the phase of the coffee could change instantaneously from,
e.g., liquid to evaporating, and since the heater could be automatically turned
off and on to keep the temperature of the coffee between 70 and 80 degrees.

4 Executing Interacting Hybrid Systems

The continuous dynamics of a physical entity is typically defined as an ordinary
differential equation (ODE), where the time derivative of its effort is a function
of both the entity’s attribute values and the flows of connected interactions.
The continuous dynamics of a physical interaction is an equation with the flow
variable on the left-hand side and an expression possibly referring to the interac-
tion’s attributes and the efforts of the connected entities on the right-hand side.
This way the direct coupling of the ODEs of physical entities can be avoided.

As we do not require linear ODEs, the continuous dynamics of a system is
in general not analytically solvable. We therefore use numerical techniques to
approximate the continuous behaviors by advancing time in small discrete time
increments, and approximating the values of the continuous variables at each
“visited” point in time. We have adapted the following numerical methods to

420 M. Fadlisyah, P.C. Ölveczky, and E. Ábrahám

our effort/flow framework: the Euler [5], the Runge-Kutta 2nd order (RK2), and
the Runge-Kutta 4th order (RK4) methods [7] for fixed time increments. The
papers [5,7] explain in detail how we have adapted these numerical methods, and
how they have been defined in Real-Time Maude. Furthermore, those papers
also show the execution times and the relative errors for the different numerical
methods on an example that does have an analytical solution.

5 The HI-Maude Tool

The HI-Maude tool integrates the modeling techniques in Section 3 and the
Real-Time Maude implementations of the numerical approximation algorithms
Euler, RK2, and RK4 to support the rewriting-logic-based object-oriented for-
mal modeling and simulation, reachability, and LTL model checking analysis of
hybrid systems containing interacting physical components. In particular, the
HI-Maude tool makes it easy to define the continuous dynamics of the effort and
flow variables of single physical entities and physical interactions, respectively.
Once the dynamics of the single physical components have been defined, the tool

1. automatically defines the continuous dynamics of the entire systems, and
2. provides the usual Real-Time Maude formal analysis commands, but where

the desired built-in approximation algorithm and the desired time increments
used by the approximations are additional parameters of the commands.

Furthermore, the tool provides infrastructure to define that instantaneous tran-
sitions (modeled as instantaneous rewrite rules) are applied in a timely manner.

HI-Maude is implemented in Maude as an extension of the Real-Time Maude
tool, and is available at http://folk.uio.no/mohamf/HI-Maude/.

5.1 Representing Continuous Values

Maude provides a built-in data type for the unbounded rational numbers, and
we first used these rationals for the effort and flow values. However, it quickly
became apparent that it is inconvenient to use the rationals, because: (i) it is
hard to read large rational numbers; and (ii) the size of the rational numbers
gets very large (both the numerator and the denominator are large numbers),
which slows down the execution. HI-Maude therefore uses the Maude’s built-in
IEEE-754 floating-point numbers to represent the effort and flow values.

5.2 Modeling

This section explains how hybrid systems can be specified in HI-Maude as a
multiset of objects representing physical entities, physical interactions, other
flow components, as well as other objects, representing, e.g., controllers. We first
show how the physical entities and interactions and their continuous dynamics
should be defined, and then discuss instantaneous discrete transitions.

http://folk.uio.no/mohamf/HI-Maude/

Object-Oriented Formal Modeling and Analysis 421

Modeling Physical Entities and Interactions. HI-Maude provides the fol-
lowing built-in classes for specifying physical entities and interactions, as well as
flow-source components. Concrete physical entities (interactions, . . .) must then
be defined as object instances of user-defined subclasses of these built-in classes:

class PhysicalEntity | effort : Float .

class PhysicalInteraction | flow : Float, entity1 : Oid, entity2 : Oid .

class FlowSource | flow : Float, entity : Oid .

The effort attribute denotes the effort value of the entity. The flow attribute
of a PhysicalInteraction denotes the flow between the physical entities given
by the entity1 and the entity2 attributes. In case of FlowSource, the entity
attribute denotes the name of physical entity which receives the given flow.

For example, to define thermal systems such as the simple coffee example in
Fig. 1, we can define a new class ThermalEntity (with attributes denoting the
heat capacity and the mass of the entity), whose objects model thermal physical
entities, such as the cup of coffee and the room, as a subclass of PhysicalEntity:

class ThermalEntity | heatCap : Float, mass : Float .

subclass ThermalEntity < PhysicalEntity .

The effort attribute of the superclass denotes the temperature of the entity.
Likewise, as shown in Fig. 1, the heat flow by convection through the surface of
the coffee is characterized by the temperatures of the entities as well as of the
area of the surface (A) and the convection coefficient h:

class Convection | area : Float, convCoeff : Float .

subclass Convection < PhysicalInteraction .

Thermal conduction and radiation can be defined similarly (see [5]). Finally, we
can define a heater as a constant heat flow source (where this flow is 0 when the
status of the heater is off and is 1500 when the status is on; we also monitor
the temperature of the coffee, but abstract from the details of that sensing):

class Heater | status : OnOff, monitoredTemp : Float .

subclass Heater < FlowSource .

An initial state (in which the system has not yet computed the first values of
the flows) of the coffee system could then be

{< coffee : ThermalEntity | effort : 70.0, heatCap : 4.2, mass : 0.4 >

< room : ThermalEntity | effort : 20.0, heatCap : 10.5, mass : 80.0 >

< c-rCond : Conduction | flow : 0.0, entity1 : coffee, entity2 : room, ... >

< c-rConv : Convection | flow : 0.0, entity1 : coffee, entity2 : room,

convCoeff : 0.02, area : 0.05 >

< heater : Heater | flow : 1500.0, entity : coffee, status : on, monitoredTemp : 70.0 >}

Modeling the Continuous Dynamics. HI-Maude provides infrastructure
that only requires the user to define the continuous dynamics of single physical
components. As indicated in Fig. 1, the time derivative of the effort of an entity is

422 M. Fadlisyah, P.C. Ölveczky, and E. Ábrahám

a function of the sum of the flows to/from the entity as well as of other attribute
values of the entity (e.g., Ṫr =

∑
Q̇

mr ·cr
). Likewise, the flow of an interaction is a

function of the (previous) values of the efforts of the connecting entities and other
attribute values of the interaction (e.g., Q̇cnv = h ·A · (Tc−Tr)). The flows of the
FlowSource components may depend on attribute (and effort) values of both the
component and the connecting entity/entities (although in the coffee example
this flow is simply defined as Q̇ht = if status == on then 1500.0 else 0.0).

For each such physical component, the user must define the corresponding of
the following functions:

op effortDyn : Float Object -> Float .

op flowDyn : Float Float Object -> Float .

op flowSourceDyn : Configuration -> Float .

The first argument of effortDyn is the sum of the values of the flows to/from the
entity; the other argument is the entity object itself. effortDyn(

∑
Q̇, entity)

therefore defines the time derivative of the effort variable of the entity object. In
our coffee example, this is defined in the same way for both the coffee and the
room (Ṫr =

∑
Q̇

mr ·cr
and Ṫc =

∑
Q̇

mc·cc
, for the different

∑
Q̇s) and hence the user

must define effortDyn as follows:

eq effortDyn(X, < O : ThermalEntity | mass : M, heatCap : C >) = X / (M * C) .

We follow here the convention that variables are written with (only) capital
letters, and do not show the variable declarations.

To define the flow of an interaction, we define flowDyn(E1,E2,interaction),
where Ei denotes the (previous) value of the effort of the object referred to by the
entityi attribute of the interaction object. For example, to define the heat flow
through convection between the room and the coffee, a HI-Maude user defines

eq flowDyn(E1, E2, < O : Convection | convCoeff : CC, area : A >) = CC * A * (E1 - E2) .

The function flowSourceDyn defines the flow of the flow-source components,
and its argument is the entire multiset of objects in the system. In our coffee
example, the heat flow from the heater only depends on the state of the heater:

eq flowSourceDyn(< O : Heater | status : S > REST) = if S == on then 1500.0 else 0.0 fi.

Discrete Transitions. Discrete transitions are modeled as instantaneous re-
write rules. In general, a rule may be applied whenever it is enabled, but nothing
forces a rule to be taken in a timely manner. For example, a discrete transition
that turns off the heater when it perceives that the temperature of the coffee has
reached 80 degrees can be modeled by the following conditional rewrite rule:

crl [turnOffHeater] :

< H : Heater | status : on, monitoredTemp : T >

=>

< H : Heater | status : off > if T >= 80.0 .

Object-Oriented Formal Modeling and Analysis 423

To force the application of this rule as soon as the temperature has reached
80 degrees, the user can define the function timeCanAdvance on heater objects.
When timeCanAdvance of an object is false, time advance in a system stops,
forcing the application of a suitable instantaneous rule. In the coffee example,
the only discrete transitions that must be performed in a timely manner are
those turning on and off the heater. Therefore, the user can achieve this by only
letting time advance when the heater can stay in a given state:

eq timeCanAdvance(< H : Heater | status : S, monitoredTemp : T >)

= if S == on then T < 80.0 else T > 70.0 fi .

5.3 Formal Analysis in HI-Maude

HI-Maude extends Real-Time Maude’s analysis commands by allowing the user
to select (i) the numerical approximation technique used to approximate the
continuous behaviors, and (ii) the time increment used in the approximation.

For example, HI-Maude’s hybrid rewrite command is used to simulate one be-
havior of system from a given initial state up to a certain duration and, possibly,
up to a certain number of rewrites. Its syntax is:

(hrew [[n]] initState in time ∼ timeLimit using numMethod stepsize stepSize .)

where the ‘[n]’ part is optional. The number n denotes the upper bound on
the number of rewrite steps to perform; initState is the initial state; ∼ is either
‘<=’ or ‘<’; timeLimit denotes an upper bound on the total duration of the
rewrite sequence; numMethod ∈ {euler, rk2, rk4} is the numerical method used
to approximate the continuous behaviors; and stepSize is the time increment used
in the approximation of the continuous behaviors.

Real-Time Maude’s timed search command—which searches for states that
are matched by a search pattern with a substitution that satisfies an (optional)
condition and that can be reached from an initial state within a given time
interval—has been extended to the hybrid setting in the same way:

(hsearch [[n]] initState =>* searchPattern [such that cond] in time ∼ timeLimit

using numMethod stepsize stepSize .)

where ∼∈ {<, <=, >, >=}, and cond is a condition on the variables appearing in
the search pattern. The arrow ‘=>!’ is used to search for states which cannot be
further rewritten. We can also search without time bounds by writing ‘with no
time limit’ instead of ‘in time ∼ timeLimit ’.

The following command finds the shortest time needed to reach a state:

(hfind earliest init =>* pattern [such that cond] using numMethod stepsize sSize .)

Finally, HI-Maude’s model checker extends Real-Time Maude’s explicit-state
time-bounded linear temporal logic model checker in the same way. The time-
bounded hybrid model checking command is written with syntax

(hmc initState |=t formula in time ∼ timeLimit using numMethod stepsize sSize .)

where formula is an LTL formula and ∼ is either ‘<’ or ‘<=’. The model checker
returns ‘true’ if the property holds, and returns a counterexample otherwise.

424 M. Fadlisyah, P.C. Ölveczky, and E. Ábrahám

5.4 Soundness and Completeness of HI-Maude Analyses

There is a trade-off between expressiveness and analytic power for hybrid sys-
tems. Model checkers and reachability analysis tools deal with very restricted
fragments of hybrid systems, such as initialized rectangular hybrid automata
(see [9] for a survey on decidable fragments of hybrid automata), to ensure that
key properties are decidable. On the other hand, simulation tools have much
more expressive modeling languages, but only provide simulation capabilities.

HI-Maude is as expressive as simulation tools, yet provides reachability and
LTL model checking analysis in addition to simulation. The price to pay is that
reachability and satisfaction of LTL properties are in general no longer decidable.

HI-Maude only analyzes those behaviors that are possible with the selected
time increment and numerical method used to approximate the continuous be-
haviors. Therefore, the results of search and model checking in HI-Maude may
not be correct. If a counterexample is found in LTL model checking, or a de-
sired state is found in a search, these are indeed valid counterexamples up to the
approximation errors due to the use of numerical approximations and round-off
errors due to the use of floating-point numbers. However, since only a subset of
all possible behaviors are analyzed, the fact that a state is not found during a
search or that LTL model checking returns true does not necessarily imply that
the state cannot be reached or that the LTL property holds.

6 The Real-Time Maude Semantics of HI-Maude

This section gives an overview of the Real-Time Maude semantics of HI-Maude.
A HI-Maude hybrid module automatically imports a library of numerical ap-

proximations methods, the built-in classes described above, other functions, etc.
For any HI-Maude command, the tool adds a system manager object

< sysMan : SysMan | numMethod : numerical method, stepSize : step size >

to the initial state and transforms a HI-Maude analysis command to the corre-
sponding Real-Time Maude command. For example, the hybrid search command

(hsearch {init } =>* pattern in time <= 100 using rk4 stepsize 2 .)

is executed by executing the Real-Time Maude timed search command

(tsearch {init < sysMan : SysMan | numMethod : rk4, stepSize : 2 > } =>* pattern

in time <= 100 .)

The following tick rule is added to any hybrid module. It advances time by the
time increment given in the HI-Maude command, and updates the continuous
effort and flow variables according to the numerical method used:

crl [tick] :

{< SM : SysMan | stepSize : SS > REST}

=>

{computeEF(< SM : SysMan | > REST)} in time SS if timeCanAdvance(REST) .

Object-Oriented Formal Modeling and Analysis 425

The function timeCanAdvance is used to allow the user to specify that time
cannot advance in certain states, to ensure timeliness of discrete transitions. It
distributes over each object in the state, and an ‘owise’ equation ensures that
time advance is not impeded by those objects for which the user has not defined
a timeCanAdvance-equation. The function computeEF computes the new values
of the effort and flow values. We refer to the executable specification of HI-Maude
for its precise definition, and to [5,7] for an explanation of how to implement the
numerical approximation algorithms in Real-Time Maude.

7 Case Study: The Human Thermoregulatory System

We have also used HI-Maude and its effort/flow-based modeling methodology on
a more ambitious case study modeling and analyzing the human thermoregula-
tory system. Since the model is fairly large, we can only present a brief overview
of our modeling and analysis efforts in this paper, and refer to our longer tech-
nical report at http://folk.uio.no/mohamf/HI-Maude/ for a thorough exposition.

7.1 The Human Thermoregulatory System

Human thermoregulation regulates the heat production within the body and the
heat exchange between the body and the environment in order to maintain an
internal body temperature of around 37◦C. Heat is produced within the body by
the metabolism process, while the interaction with the environment causes heat
loss or gain through physical processes such as radiation, evaporation, and con-
vection [11]. Hyperthermia and hypothermia occur when the body temperature
increases, respectively decreases, significantly beyond normal [16].

The thermoregulatory system is controlled by the hypothalamus, which en-
ables the following mechanisms to support heat loss from the body when the
body temperature is increasing above normal: increasing the diameter of blood
vessels to let more blood flow underneath the skin (vasodilation), which pro-
motes heat loss by radiation, convection, and conduction; and increasing sweat
production, which promotes heat loss by evaporation. When the body tempera-
ture is decreasing, the hypothalamus enables the following mechanisms to reduce
heat loss and increase heat production: decreasing the diameter of blood vessels
to let less blood flow underneath the skin (vasoconstriction), and stimulating
the skeletal muscles to cause shivering, which increases heat production.

7.2 Effort/Flow Modeling of the Human Thermoregulatory System

To reason about the thermoregulatory system, we can think of a person in a
room as a thermal system, where the body core, the body skin, and the room are
thermal entities, and where the heat flow between the body core and the skin and
between the skin and the room are thermal interactions, as shown in Fig. 2. Heat
flows between the body core and the skin through blood vessels, and between
the skin and the room through radiation and convection. The effort variable of

http://folk.uio.no/mohamf/HI-Maude/

426 M. Fadlisyah, P.C. Ölveczky, and E. Ábrahám

Core RoomSkin

Radiation

Convection

Shivering

Basal
Metabolism

Blood Flow

Sweating

Hypothalamus

Internal
Receptor

External
Receptor

A A

C

S SdoShivering
stopShivering

doSweating
stopSweating

A

doVasodilation
doVasoconstriction
doNormal

Fig. 2. Effort/flow model of the human thermoregulatory system

a thermal entity denotes its temperature, and the flow variable of the thermal
interaction is the heat flow rate. The heat production inside the body through
basal metabolism and shivering are represented as flow-source components. The
heat loss from the skin by sweating is represented as a physical interaction, since
the consequence of this process is heat gain in the room.

Modeling Human Thermal Entities. A thermal entity is defined by exten-
ding the built-in class PhysicalEntitywith the entity’s heat capacity and mass:

class ThermalEntity | mass : Float, heatCap : Float .

subclass ThermalEntity < PhysicalEntity .

The body core, the skin, and the room share the same thermal dynamics, where
the temperature change ΔT is derived from ΔQ = m · c · ΔT , where ΔQ is
the amount of heat transferred per time unit. We therefore define effortDyn,
specifying the dynamics of an entity’s effort value as in the coffee example:

eq effortDyn(SF, < TE : ThermalEntity | mass : MASS, heatCap : HC >) = SF / (MASS * HC) .

where the sum SF of the heat flows of the entity is computed by the tool.
To model the temperature-related states of the body core (normal, moderate

and severe hyperthermia, moderate and severe hypothermia, and dead), we define
a new subclass of ThermalEntity with a new attribute coreState:

sort CoreStateType .

ops normal modHyperthermia sevHyperthermia modHypothermia sevHypothermia

dead : -> CoreStateType [ctor] .

class CoreHumanBody | coreState : CoreStateType .

subclass CoreHumanBody < ThermalEntity .

Object-Oriented Formal Modeling and Analysis 427

For example, the following rewrite rule models the body core state change from
normal to moderate hyperthermia when the temperature exceeds 38◦C:

crl [normal-to-modhyperthermia] :

< CORE : CoreHumanBody | effort : TEMP, coreState : normal >

=>

< CORE : CoreHumanBody | coreState : modHyperthermia > if TEMP > 38.0 .

To ensure that the above rules are applied as soon as they are enabled, we use
the built-in timeCanAdvance function to define, for each core state, when time
can advance without a rule having to be taken, e.g.:

eq timeCanAdvance(< CORE : CoreHumanBody | effort : TEMP, coreState : normal >)

= TEMP > moderateHypothermiaPoint and TEMP <= moderateHyperthermiaPoint .

Modeling Human Thermal Interactions. The thermal interactions are ra-
diation, convection, and blood flow. We show how to define radiation, whose
dynamics represents the rate of heat radiation given by Q̇ = ε · σ ·A · (T 4

1 −T 4
2),

where ε is the emissivity of the surface, σ is the Stefan-Boltzmann constant, and
A is the surface area through which radiation takes place. The class defining
radiation interactions therefore adds attributes for emissivity and area to the
built-in class PhysicalInteraction, and its continuous dynamics is specified
using the built-in function flowDyn:

class Radiation | area : Float, emissiv : Float .

subclass Radiation < PhysicalInteraction .

eq flowDyn(TEMP1, TEMP2, < TI : Radiation | area : AREA, emissiv : EMISSIV >)

= EMISSIV * stefBoltzConst * AREA * ((TEMP1 ^ 4.0) - (TEMP2 ^ 4.0)) .

Modeling the heat flow between the body core and the skin through the blood
flow is more challenging, since the heat flow rate depends on the blood flow rate,
which again depends on the diameter of the blood vessels, which can be changed
by vasodilation and vasoconstriction (see our technical report for details).

Modeling the Hypothalamus. In our model, the hypothalamus is modeled by
an object that senses the core and skin temperatures, and manages the activation
and deactivation of the shivering, the sweating, and the blood flow.

7.3 Formal Analysis

We model the human body as a vertical tube with height 1.7m, diameter 0.3m,
body mass 63.5kg , and body heat capacity 3.47kJ/kg◦C . The person is resting,
with basal metabolic rate 0.08kW . The room is 5m long, 5m wide, and 3m high,
and is filled with air with heat capacity 1.005kJ/kg◦C and density 1.2kg/m3.
Moderate hyperthermia starts at the core temperature 38◦C, the severe hyper-
thermia at 41◦C, and death occurs when the core temperature exceeds 45◦C.

We consider three persons: a healthy person, a person with high fever, and a
person with brain damage in the hypothalamus. We analyze the effect of these

428 M. Fadlisyah, P.C. Ölveczky, and E. Ábrahám

0 1000 2000 3000 4000 5000 6000 7000
30

35

40

45

50

55

60

65

70

75

80

85
Healthy Person: Core, Skin, and Room Temperatures

Time (s)

T
e

m
p

e
ra

tu
re

 (
C

)

 Core
 Skin
Room

0 1000 2000 3000 4000 5000 6000 7000
30

35

40

45

50

55

60

65

70

75

80

85
Person with Fever: Core, Skin, and Room Temperatures

Time (s)

T
e

m
p

e
ra

tu
re

 (
C

)

 Core
 Skin
 Room

moderate
hyperthermia

severe
hyperthermia

sweating and vasodilation
sweating and vasodilation

dead
moderate

hyperthermia
severe

hyperthermia

Fig. 3. The simulation results for the healthy and fever persons

conditions to survive an extreme condition, and set the initial temperature of
the body, the skin, and the room at 37◦C, 33◦C, and 80◦C, respectively. The
experiments are performed on an Intel Pentium 4 CPU 3.00GHz with 3GB RAM.

The following initial state cs1 defines a system with a healthy person:

op cs1 : -> GlobalSystem

eq cs1 =

{< core : CoreHumanBody| effort: 37.0,mass: 0.85* 63.5, heatCap: 0.85 * 3.47, coreState: normal>

< skin : SkinHumanBody | effort : 33.0, mass : 0.15 * 63.5, heatCap: 0.85 * 3.47 >

< room : ThermalEntity | effort: 80.0, mass: 90.0,heatCap : 1.005>

< bloodf : BloodFlow | flow : 0.0, entity1: core, entity2: skin, area: bodyArea,

skinBloodFlowRate: 0.0315, bloodHeatCap: 3.85, thermalCond: 0.00021,

controller: hypothal, state: normal,...>

< rad : Radiation | flow : 0.0, entity1: skin,entity2 : room, area : bodyArea,emissiv : 0.97>

< convec: Convection | flow : 0.0, entity1: skin,entity2 : room, area : bodyArea,coeff : 0.0026 >

< metabol : BasalMetabol | entity : core, flow : bodyMet,status: on >

< shivering : Shivering | entity: core, flow : 0.0, status: off, controller: hypothal >

< sweating : Sweating | entity1: skin, entity2: room,flow : 0.0, status: off, ... >

< hypothal : Hypothalamus | status : idle, hotSetPointCore: 37.5 , coldSetPointCore: 36.5,

hotSetPointSkin: 34.5, coldSetPointSkin: 12.0, ... >

< intrecept : InternalReceptor | entity : core, controller: hypothal,...>

< extrecept : ExternalReceptor | entity : skin, controller: hypothal,...>} .

The state cs2 adds an object which records key values in each step of the sim-
ulatio to cs1. We use hybrid rewriting to simulate the system for two hours:

Maude> (hrew cs2 in time 7200 using euler stepsize 1.0 .)

Fig. 3 shows the simulation results—the temperature of the body core, the skin,
and the room temperatures as time advances—for a healthy person and for a
person with fever. For the person with fever the sweating starts later since the
shifting of the set point in the hypothalamus causing it sense the danger late.

We next use the find earliest command to analyze how long a person can stay
in the sauna before he dies:

Maude> (hfind earliest

cs1 =>* {C:Configuration < personCore : CoreHumanBody | coreState : dead >}

using euler stepsize 1.0 .)

Object-Oriented Formal Modeling and Analysis 429

The following table shows how it long takes for each person to reach the various
stages of discomfort (as well as the CPU time of the command execution):

moderate hyperthermia severe hyperthermia death
healthy 912 sec 4802 sec 8051 sec

CPU: 14 sec CPU: 87 sec CPU: 251 sec
fever 803 sec 3906 sec 7197 sec

CPU: 13 sec CPU: 90 sec CPU: 356 sec
brain damage 703 sec 2880 sec 6214 sec

CPU: 2 sec CPU: 17 sec CPU: 83 sec

Many complex properties cannot be formulated as reachability problems, but
may instead be defined as linear temporal logic (LTL) model checking problems.
The following command checks whether a moderately hyperthermic person will
sweat and experience vasodilation until (s)he becomes severely hyperthermic:

Maude> (hmc cs1 |=t [] (modHyper -> ((sweating /\ vasodilation-active) W sevHyper))

in time <= 7200 using euler stepsize 1.0 .)

where modHyper, sweating, vasodilation-active, and sevHyper are atomic propo-
sitions. For each person, the model checking returned the expected result (in 110
seconds of CPU time).

8 Concluding Remarks

We have introduced the HI-Maude tool that supports the formal modeling, sim-
ulation, and model checking of complex interacting hybrid systems in rewriting
logic. The tool supports the compositional modeling of a complex system based
our adaptation of the effort/flow approach developed in [5], and integrates the
numerical approximation methods formalized in Real-Time Maude in [5,7]. We
have illustrated the use of the tool on the challenging human thermoregula-
tory system that features a set of interacting physical subsystems with complex
continuous dynamics. Being based on rewriting logic, HI-Maude provides an in-
tuitive yet expressive modeling language with support for concurrent objects,
user-definable data types, different communication models, etc.

As usual much work remains. We should integrate techniques that dynamically
adjust the step size used in the approximations to (i) make the analysis more
precise by making the time step smaller when needed either to come close to a
time instant when a discrete transition must be taken or to maintain a desired
precision of the approximation, and (ii) make the analysis more efficient by
increasing the step size whenever possible. In particular, adaptive step sizes
gives the user to possibility to define his/her own error tolerance to balance
between desired precision and computational efficiency. These features have been
formalized in Real-Time Maude [6,7] and must be integrated into HI-Maude.

Acknowledgments. This work was supported by The Research Council of Nor-
way (RCN) through the Rhytm project, and by RCN and The German Academic
Exchange Service through the DAADppp project HySmart.

430 M. Fadlisyah, P.C. Ölveczky, and E. Ábrahám

References

1. Clarke, E., Fehnker, A., Han, Z., Krogh, B., Stursberg, O., Theobald, M.: Verifi-
cation of hybrid systems based on counterexample-guided abstraction refinement.
In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 192–207.
Springer, Heidelberg (2003)

2. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Bevilacqua, V., Tal-
cott, C.: All About Maude - A High-Performance Logical Framework. LNCS,
vol. 4350. Springer, Heidelberg (2007)

3. Dang, T.: Verification and Synthesis of Hybrid Systems. Ph.D. thesis, INPG (2000)
4. Esposito, J., Kumar, V., Pappas, G.: Accurate event detection for simulating hybrid

systems. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001.
LNCS, vol. 2034, pp. 204–217. Springer, Heidelberg (2001)

5. Fadlisyah, M., Ábrahám, E., Lepri, D., Ölveczky, P.C.: A rewriting-logic-based
technique for modeling thermal systems. In: Proc. RTRTS 2010. Electronic Pro-
ceedings in Theoretical Computer Science, vol. 36 (2010)

6. Fadlisyah, M., Ábrahám, E., Ölveczky, P.C.: Adaptive-step-size numerical methods
in rewriting-logic-based formal analysis of interacting hybrid systems. In: Proc.
TTSS 2010 (2010), to appear in ENTCS

7. Fadlisyah, M., Ölveczky, P.C., Ábrahám, E.: Formal modeling and analysis of hy-
brid systems in rewriting logic using higher order numerical methods and discrete-
event detection. In: Proc. CSSE 2011. IEEE, Los Alamitos (2011)

8. Frehse, G.: PHAVer: Algorithmic verification of hybrid systems past HyTech. In:
Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 258–273. Springer,
Heidelberg (2005)

9. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid
automata? J. Comput. Syst. Sci. 57(1), 94–124 (1998)

10. Henzinger, T.A., Horowitz, B., Majumdar, R., Wong-toi, H.: Beyond HyTech: Hy-
brid systems analysis using interval numerical methods. In: Lynch, N.A., Krogh,
B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 130–144. Springer, Heidelberg (2000)

11. Herman, I.: Physics of the Human Body. Springer, Heidelberg (2007)
12. Lee, E., Zheng, H.: HyVisual: A hybrid system modeling framework based on

Ptolemy II. In: IFAC Conference on Analysis and Design of Hybrid Systems (2006)
13. Ölveczky, P.C., Meseguer, J.: Abstraction and completeness for Real-Time Maude.

ENTCS 176(4), 5–27 (2007)
14. Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of Real-Time Maude.

Higher-Order and Symbolic Computation 20(1-2), 161–196 (2007)
15. Ölveczky, P.C., Bevilacqua, V.: The Real-Time Maude tool. In: Ramakrishnan,

C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 332–336. Springer, Hei-
delberg (2008)

16. Plantadosi, C.: The Biology of Human Survival: Life and Death in Extreme Envi-
ronments. Oxford University Press, Oxford (2003)

17. Simulink home page, http://www.mathworks.com/products/simulink
18. Wellstead, P.E.: Introduction to physical system modelling. Academic Press,

London (1979)

http://www.mathworks.com/products/simulink

G. Barthe, A. Pardo, and G. Schneider (Eds.): SEFM 2011, LNCS 7041, pp. 431–446, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Towards an Agent-Based Methodology
for Developing Agro-Ecosystem Simulations

Jorge Corral and Daniel Calegari

Instituto de Computación, Facultad de Ingeniería, Universidad de la República,
J. Herrera y Reissig 565, Montevideo, Uruguay
{corral,dcalegar}@fing.edu.uy

Abstract. Agro-ecosystems are ecological systems subject to human interaction
whose simulation is of interest to several disciplines (e.g. agronomy, ecology
and sociology). The agent-based modeling approach appears as a suitable tool
for modeling this kind of complex system, along with a corresponding agent-
oriented software engineering (AOSE) methodology for the construction of the
simulation. Nevertheless, existing AOSE methodologies are general-purpose,
have not yet accomplished widespread use, and clear examples of applications
to agro-ecosystems are hard to find. This article sets the ground for an AOSE
methodology devised specifically for developing agro-ecosystem simulations.
The methodology framework is based upon other general-purpose AOSE me-
thodologies, and it relies on the Unified Modeling Language for an easy uptake
from interdisciplinary teams. As a first proof of concept, it is applied to a real
case study: the evolution of the strategies followed by cattle producers of the
basalt-region of north Uruguay against severe draughts.

Keywords: Agro-Ecosystem, Agent-Based Modeling, Simulation, Agent-
Oriented Software Engineering, Unified Modeling Language.

1 Introduction

Many of the current challenges and opportunities (e.g. globalization, sustainability,
epidemics or climate change) can be seen as complex systems [13]. Understanding the
components, behavior and interactions in these systems is the first step to whatever
analysis is needed about them. Models, as simplifications of certain reality or problems,
are fundamental tools to this aim. Moreover, the possibility of direct experimentation
over these systems is rare if not impossible, so the need for simulation becomes impera-
tive. Even though not at global scale, agro-ecosystems are complex systems [5]. An
agro-ecosystem is the human manipulation and alteration of ecosystems for the purpose
of establishing agricultural production [8]. In this context, modeling and simulation
allow for understanding the system as well as for exploring future scenarios.

Several approaches can be used for modeling an agro-ecosystem, like system dy-
namics or mathematical approaches. In particular, the agent-based modeling (ABM)
approach appears as a specially suitable tool for this aim [13] since it enables the
simulation of heterogeneous populations of interacting individuals (called agents)
within an environment, along with passive objects (a.k.a. resources) and including

432 J. Corral and D. Calegari

human decision-making, all of these in a constructive way and using representations
and metaphors that are meaningful for the stakeholders. On the other hand, the other
approaches use more formal representations (e.g. equations) that fall short when
trying to capture human and natural diversity; they do not appear as intuitive for non-
technical stakeholders (so they are hard to validate); they do not scale well to me-
dium-size problems because their mathematical complexity becomes overwhelming;
and they do not explicitly model the environment.

Simulating generally means the development of a software system representing the
ABM, which requires the use of some agent-oriented software engineering (AOSE)
methodology.

Several AOSE methodologies are currently available for guiding a programmer in
order to develop software following the ABM approach [9]. However, they are gener-
al-purpose agent-oriented methodologies, not focused on simulation, so we are faced
with a trade-off between using an already existing one and not leveraging the specific-
ities of agro-ecosystems, or to follow an ad-hoc methodology that pays detail to those
features. Up to our knowledge, there are no specific AOSE methodologies for this
purpose. Nevertheless, there are some related work [12] that address the simulation of
agro-ecosystems using an ABM approach, but without a methodological framework.
We have used this proposal in several projects [3, 14] from which an ad-hoc metho-
dology has emerged. In particular, this ad-hoc methodology addresses an important
issue which is the need to facilitate the communication between farmers, agronomists,
and programmers.

In this article, we propose an AOSE methodological framework for simulating
agro-ecosystems that is based upon other general-purpose AOSE methodologies [9],
in the already-mentioned proposal [12], and in our own experience on developing
agro-ecosystem simulations. It also relies on the Unified Modeling Language (UML,
[16]) with the purpose of an easy uptake from both, the interdisciplinary team which
models the agro-ecosystem, and the programmers who will develop the simulation.
The methodological framework is not a methodology itself. It focuses on identifying
relatively general steps and artifacts (produced by the steps) that could be ensemble
for developing such a simulation, whilst other methodological aspects, as defining a
strict order among steps and identifying roles for that steps, are not yet considered.

The paper is structured as follows. In Section 2 we briefly present the background
of agent-based simulation of agro-ecosystems. In Section 3 we describe the methodo-
logical framework for the development of agro-ecosystem simulations, whilst in
Section 4 we describe how agro-ecosystem features are supported in the proposed
methodological framework. Then, in Section 5 we present a case study which stands
as a proof of concepts. Finally, in Section 6 we present the conclusions and an outline
for further work.

2 Agent-Based Simulations of Agro-Ecosystems

Agro-ecosystems result from the interplay between endogenous biological and envi-
ronmental features of the agricultural fields and exogenous social and economic fac-
tors, and it is delimited by arbitrarily chosen boundaries, as schematized in Figure 1.
Concerning the resources commonly found in agro-ecosystems, Norman [15] suggests

 Towards an Agent-Based Methodology for Developing Agro-Ecosystem Simulations 433

the following classification: 1) Natural resources: the given elements of land, water,
climate and natural vegetation that are exploited by the farmer; 2) Human resources:
the people who live and work within the farm and use its resources for agricultural
production; 3) Capital resources: the goods and services created, purchased, or bor-
rowed by the people associated with the farm to facilitate their exploitation of natural
resources for agricultural production; and 4) Production resources: the agricultural
output of the farm such as crops and livestock.

Fig. 1. Schematic representation of relevant agro-ecosystem features

Any ecosystem can be considered as a case of complex adaptive system [5]: sys-
tems composed of a large number of interacting elements such that some behavior
could not be anticipated from the knowledge of the parts of the system alone (this
process is called “emergent”), and there is no external controller or planner engineer-
ing the appearance of the emergent features; they appear spontaneously (as “self-
organized”). The interactions between the social and natural subsystems inside an
agro-ecosystem, such as farmers’ practices affecting natural resources, are examples
of interactions at a small scale which may produce feedbacks affecting in turn the
decision-making of social actors. Repeating these interactions on a daily basis can
produce emergent properties and new organizations across the agro-ecosystem in the
long-term. Since these coupled human-natural systems cannot be manipulated and
tested as other systems, due to scale and resource difficulties, the possibility of simu-
lating them is crucial. One of the main objectives of simulating this kind of systems is
to prospect scenarios were the interest is not in the ‘fortune-teller’ features of the
simulation but on discovering possible outcomes under certain conditions and explor-
ing the consequences of manipulating certain system.

434 J. Corral and D. Calegari

In this context, ABM approach appears as a suitable tool for the simulation of
agro-ecosystems [13]. The ABM approach enables the simulation of heterogeneous
populations of interacting individuals (called agents) within an environment, which
can also contain passive objects (a.k.a. resources). A well-known definition of an
agent that supports the computer science focus presented in this article is proposed by
Wooldridge [19]: “An agent is a computer system that is capable of independent ac-
tion on behalf of its user or owner, figuring out what needs to be done to satisfy de-
sign objectives, rather than constantly being told [what to do]”. In order to let agents
react (or take the initiative) according to changes in the environment, agents must
perceive their environment and have some way to act upon it, after reasoning what to
do. This leads agent to the so called Perceive/Reason/Act cycle. Since there are mul-
tiple ways to achieve this cycle, there are accordingly different agent architectures
that represent and implement this concept in different ways and to different degrees,
from reactive architectures where the agent has no previous knowledge and simply
reacts based on a set of rules, to deliberative ones that manage explicit representations
of beliefs, desires, and intentions to make decisions [17].

There are numerous arguments that support that the ABM approach is suitable for
modeling agro-ecosystems, like those presented in [13], but nevertheless it is worth
analyzing how the ABM approach specifically addresses the following issues, which
characterize an agro-ecosystem: a) Emergence: ABMs allow to define the low-level
behavior of each individual agent in order to let them interact to see whether some
emergent property arises or not, and if it does, under which circumstances; b) Self-
Organization: ABMs do not have any kind of central intelligence that governs all
agents. On the contrary, the sole interaction among agents along with their feedbacks
is what ultimately ‘controls’ the system; c) Human-Natural Systems: ABMs allow
considering together both, social organizations with their human decision-making and
social communications, and biophysical processes and natural resources. This con-
junction of subsystems enables ABMs to explore the interrelations between them,
allowing analyzing the consequences of one over the other; and d) Spatially Explicit:
the feature of ABMs of being able to spatially represent an agent or a resource is of
particular interest when communications and interactions among neighbors is a key
issue. This feature is of special interest in the case of agro-ecosystems.

The simulation can be performed by a multi-agent system (MAS). According to
Wooldridge [20] “A Multi-Agent System consists of a number of agents which interact
with one-another. […] To successfully interact, they will require the ability to coope-
rate, coordinate, and negotiate with each other.” In MAS there is no central control
and all information and control is distributed among the various agents.

In order to analyze, design, implement and every other step involved in developing
such systems, certain agent-oriented software engineering (AOSE) methodology must
be used. There are several methodologies for developing agent-oriented software
systems, most of them presented in [9], e.g. GAIA, Tropos, MAS-Common CADS,
Prometheus, Passi, Adelfe, Mase, Rap, Message, and Ingenias. From these ten AOSE
methodologies, Tran and Low [18] summarize 16 general steps, going from the
identification of systems functionality to the deployment of agent instances. It is rea-
sonable to think that any AOSE methodology will be strongly related with these 16
general AOSE steps. Nevertheless, these steps are not tailored for MAS simulations,
neither for developing agro-ecosystem simulations. Up to our knowledge there are no

 Towards an Agent-Based Methodology for Developing Agro-Ecosystem Simulations 435

methodologies for these purposes. However, Le Page and Bommel [12] present in a
very general way how some UML diagrams could be used to implement a CORMAS
[2] simulation, without providing further methodological aspects on how a software
methodology could be followed (e.g. steps and artifacts). There is also no mapping
given on how the most relevant features present in agro-ecosystems could be success-
fully represented using those diagrams, and no details on how to model the simulation
aspects (such as initial configuration, input and output parameters or visualization).

These 16 general AOSE steps and the proposal of Le Page and Bommel [12] are
indeed the drivers of the methodological framework which is proposed in the next
section.

3 The Methodological Framework

In what follows we propose an AOSE methodological framework for modeling and
simulating agro-ecosystems. We based this methodological framework upon other
general-purpose AOSE methodologies, in the proposal of Le Page and Bommel, and
in our own experience on developing agro-ecosystem simulations. Moreover, we
assume that the simulation will be finally developed within an existing simulation
framework software package (like CORMAS). However, we will not make any as-
sumption about what simulation paradigm it uses, i.e. continuous, time-step or dis-
crete-events. This will be indeed matter of discussion.

We present next the methodological framework by identifying relatively general
steps and artifacts (produced by the steps) that could be ensemble for modeling and
simulating agro-ecosystems. Further methodological aspects needed in the whole
methodology are not yet considered.

Each one of the 16 general AOSE steps summarized by Tran and Low [18] has
been analyzed in order to determine its convenience for the methodological frame-
work, and a thorough study has been conducted for each step [4]. Table 1 summarizes
the results.

Since the steps are not tailored for dealing with a simulation, they do not specifi-
cally cover simulation capabilities. For this reason, three more steps were added:

• The Simulation Configuration step aims at defining those fundamental ele-
ments that will enable the simulation to be run (Initial Configuration, Time De-
finition, Task Scheduling, Input Parameters, Output and Visualization).

• The Implementation step involves coding the agent-based simulation using an
already existing simulation platform. The programmer should have enough ele-
ments (as well as enough understanding of the problem) to start coding. In this
sense, the programmer should be based on the information provided by the arti-
facts developed in the previous steps.

• The Simulation Run & Sensitivity Analysis step involves gathering all the
necessary real-world data (including possible historical data) for allowing the
simulation to be run and to perform explorations about how the output of the si-
mulation is affected when certain elements are changed.

436 J. Corral and D. Calegari

Table 1. Summary of the steps selected from the 16 general AOSE steps of [18]

 AOSE Step Selected?

P
ro

bl
em

do

m
ai

n
an

al
ys

is

st
ep

s

Identify system functionality Yes: Identify System Purpose

Identify roles Yes: Identify Roles
and Agent Types Identify agent classes

Model domain concepts Yes: Model Domain Concepts

A
ge

nt
 in

t.
de

si
gn

 s
te

ps
 Specify acquaintances between agent

classes
No, either included in Identify Roles
and Agent Types or in Model Do-
main Conceptualization

Define interaction protocols Yes: Define Agent Interaction

Content of ex-changed messages

A
ge

nt
 in

te
r-

na
l d

es
ig

n
st

ep
s

Specify agent architecture Yes: Agent Architecture and Design

Define agent mental attitudes No, included in step Agent Architec-
ture and Design

Define agent behavioural interface No

O
ve

ra
ll

sy
st

em
 d

es
ig

n
st

ep
s

Specify system architecture No

Specify org. structure/inter-agent social
relationships

No

Model MAS environment Yes: Model Env. & Resources

Specify agent-env. interaction mechanism No

Instantiate agent classes No

Specify agent deployment No

As we stated before, we rely on a standard graphical modeling language in order to
support the development process by facilitating the interchange between domain ex-
perts and programmers. For now we use plain UML [16]. However, the methodology
will be best supported by a more specific language for representing software systems
based on software agent concepts, e.g. AML [1] and those diagrams promoted by the
Foundation for Intelligent Physical Agents (FIPA, [6]). Since these languages are not
tailored for agro-ecosystems nor for simulations, it must also be further adapted to our
methodological framework. Table 2 summarizes the steps of the proposed methodo-
logical framework, including its aim and artifacts.

Regarding the proposal of Le Page and Bommel [12], our methodological frame-
work shares several aspects with it, like the use of UML and particularly the use of
Class Diagrams for representing structural aspects and Activity, Sequence and State-
Transition Diagrams for representing behavioral aspects.

Nevertheless, our methodological framework adds numerous elements, like defin-
ing concrete and easy-to-follow steps and artifacts for developing such simulations,
separating the representation of agents, resources and environment, considering simu-
lation features like time, initial configuration, scheduling, visualization and in-
put/output parameters, and finally, by especially tackling those features that character-
ize an agro-ecosystem, as Table 3 shows.

 Towards an Agent-Based Methodology for Developing Agro-Ecosystem Simulations 437

Table 2. Summary of proposed steps that compose the methodological framework

Prop. Step Aim of the Step Artifacts

Id. System
 Purpose

Define the purpose of the
simulation, including its
objective and questions to
be answered.

Text Document including the purpose of the simu-
lation, an overview of the context in which it will
be developed, including why it will be developed
and what will be expected from it.

Model
Domain
Concepts

Depict the structure of the
problem, including entities
and relationships.

UML Class Diagram for modeling main concepts,
including those in Identify Roles & Agent Types
and Model Environment & Resources.

Id. Roles &
Agent
Types

Identify agent types and
roles, especially agent
behavior.

Text Documents for role’s identification and
description and for identifying agent types and
their relation to roles; UML Activity Diagrams for
agent type’s behavior specification.

Define
Agent
Interaction

Determine when, how and
what the different agents
will communicate.

UML Sequence Diagrams for modeling interac-
tions.

Agent Ar-
chitecture
 and Design

Define internal agent
design (structure and
behavior) in order to fulfill
its perceive/reason/act
cycle, within a simulation
platform.

UML Class Diagram for designing the internal
structure of each agent type, as well as any other
UML Structure Diagram (like Package and Com-
ponent Diagram); and UML Communication
Diagrams for designing the internal behavior of
each agent type, as well as other UML Behavioral
Diagrams (like Activity and State-Transition
Diagrams).

Model Env.
& Re-
sources

Determine behavioral
aspects (evolution) of
resources and environ-
ment, and completing
structural aspects.

Text Document for complementing other dia-
grams; UML Structure Diagrams for further mod-
eling structural aspects of the environment and
resources; and UML Behavioral Diagrams for
modeling functional (behavioral) aspects of the
environment and resources.

Simulation
Conf.

Define those fundamental
elements that will enable a
simulation to be run.

Text Documents for documenting the configura-
tion; UML Object Diagram for the initial configu-
ration; and UML Sequence Diagram for tasks
scheduling.

Implem. Codify the simulation. Code.

Sim. Run &
Sensit.
Anal.

Answer the simulation’s
objectives and questions.

Text Documents with graphics and statistics, and
the conclusions.

438 J. Corral and D. Calegari

Table 3. Representation of agro-ecosystem’s features within the methodological framework

Feature Representation

Land Plots Plots can be thought of as land components of the environment, giving more
flexibility by decomposing the land in several elements.

Water As a special kind of land plot or as a resource within a land plot.

Climate As a parameters of the simulation.

Vegetation As an attribute of the land plot or a resource within a land plot.

Farmers’
Types

As agent types. Since the behavior of a farmer can evolve over time, different
agent roles can be defined.

Organization
of Farmers

As a new agent type that is related to its members (which are other agent
types). If belonging to an organization implies certain behavior in its members,
then new roles can be defined for them and agents should be able to change
their behavior when playing this new role.

Goods &
Services

These are generally of two kinds: those which are used as inputs for production
and those which are used as family consumption. The former has to do with
resources (and in some cases represented as an attribute of a farmer) while the
latter with farmers’ livelihood, needs and expectations (considered within the
behavior of farmers).

Money, Sav-
ings & Loans

The concepts here involved may be divided in two: the activities that led to an
increase/decrease (e.g. buying or selling) and the quantities (e.g. current
amount of money the farmer has or how much debt he/she owes). The former
can be modeled in the behavior of the farmer, and the latter as an attribute of it.

Crops &
Livestock

As resources which can either be associated to a certain land plot (as in the case
of crops) or not (livestock). If a resource presents certain dynamics, these may
be expressed, much like the behavior of agents, but applied to resources.

Natural
Processes

Since natural processes are not resources themselves, but are closely related to
them, it is useful to conceive both at the same time within the environment. As
the Crops & Livestock feature, resources may present certain dynamics to be
run during the simulation, so it should be clearly defined whether these dynam-
ics actually represent natural processes or if they are only concerned with the
resource itself. This implies that natural processes may be explicitly modeled as
another feature of the agro-ecosystem, or implicitly considered when modeling
resources.

Landscape As an aggregation of land plots. The initial landscape can be determined by the
modeler in the initial configuration, e.g. by determining how many plots are
used for agriculture, and may also be instantiated by a GIS map.

Market Prices
and Evolution

Since it is generally the case that the price over which production resources are
sold is not controlled nor determined by the system under study, prices are
considered as an external input to the simulation, and therefore it is considered
as an input parameter.

Government
Policies

This feature is not directly modeled into the simulation since the government is
outside the boundaries of the system. The interest is to compare the evolution
of the simulation with and without the introduction of certain government
policies. This requires modifying the simulation in order to take them into
account.

 Towards an Agent-Based Methodology for Developing Agro-Ecosystem Simulations 439

4 Case Study

The aim of this section is to give an overview of how the methodological framework
was successfully applied to a real-world case study, serving as a first on-field validation.
Details on the exact application of the methodological framework to this case study,
along with all detailed artifacts omitted here for space reasons, can be found in [4].

As discussed, the steps of the methodological framework does not need to be fol-
lowed in the order in which they were presented. Nevertheless, this section shows a
specific and simple order in which the steps were followed for the case study along
with which artifacts were considered for each step. This is presented in Figure 2.
However, not all artifacts need to be used for successfully implementing this particu-
lar case study.

The case study presented in this section is a simplified version of the simulation
developed for a research project entitled “Development, validation and evaluation of
a modeling and simulation participatory methodology that contributes in the under-
standing and communication of the draught phenomena, and improves the adaptation
capacity of livestock farmers in the basalt” [7] (basalt soils are much more affected by
draught than other types of soils). This was a two-year project financed by Instituto
Nacional de Investigación Agropecuaria [10] (governmental institution that develops
and fosters agricultural research nation-wide) and executed by Instituto Plan Agrope-
cuario [11] (institution focused on agricultural extension mainly to small and mid-
sized livestock farmers).

The research project was motivated due to severe draughts that affected the region
(North Uruguay) in the last century, namely in 1916/17, 1942/43, 1964/65, 1988/89,
2005/06, among others.

Fig. 2. Steps and artifacts as followed for this case study

440 J. Corral and D. Calegari

The severity of these jeopardizes farm sustainability in all of its three dimensions:
economically (because of the loss of income and competitiveness), ecologically (be-
cause of cattle mortality and possible loss of grass variety), and socially (because of
bankruptcy, emigration to cities and even suicides).

Even though the Instituto Plan Agropecuario (IPA) team knew that there was cer-
tain knowledge among farmers on adaptation strategies to these extreme situations, it
was unclear about how they worked exactly, and which strategy was better in the
long-run. This also evidenced the need for new methodological tools for the team to
work with, which would also facilitate the communication of these strategies among
farmers and also between agronomists (and extensionists) and farmers.

The purpose of the simulation, as stated in step “Identify System Purpose”, was to
simulate the evolution of farmers (e.g. by looking their income over time) under dif-
ferent draught strategies, and to build prospective scenarios, under the assumption that
future conditions (climate, prices) will be similar to previous ones (since the input
data that was used for those prospections corresponded to the 2000-2009 decade).
This purpose was defined by the IPA team before the project started, and even though
represents a first approximation to the problem, it helps defining the most relevant
elements and concepts that should be taken into account throughout the simulation
development. Nevertheless, the purpose does not necessarily define all the concepts
that are to be used, but it should give guidance for finding these.

From now on, all steps except the implementation were based on several work-
shops within the interdisciplinary research project team, including producers.

The second step was the “Model Domain Concepts” which detected the main con-
cepts of the problem related to agents, resources and environment (see Figure 3).
While the purpose referred to producers, this step concluded that two kinds of pro-
ducers were to be considered. These two kinds of producers (or agent types), each
with its corresponding draught strategy are: Reactive Producers (those who focus on
cattle health or corporal condition score in order to make draught-related decisions)
and Proactive Producers (those who focus on grass availability and climate in order to
make draught-related decisions).

Reactive Proactive

Income

Producer

NumAnimals

Herd

ConditionScore

Cattle Sheep

Area

Plot

Height

Grass

1 11

1

ea
ts

 >

ow
ns

 >

re
nt

s
>

1

< has

< has

< has1

Fig. 3. Domain model (simplified) for the case study

 Towards an Agent-Based Methodology for Developing Agro-Ecosystem Simulations 441

Their behaviors were modeled as stated in step “Identify Roles and Agent Types”,
and Figure 4 shows the UML Activity Diagram that models the Proactive Producer’s
behavior in winter. It is worth noting that the time-step definition should be defined
here since agent’s behaviors depend on it (the actions and decisions are not the same
if an agent is to be called once a year than if it is every day). Moreover, the time-step
could even be defined or suggested in the purpose (e.g. study certain evolution per
season would imply to define –at least- a seasonal time-step).

Graze
[grass<3cm] [grazing<$30]

Extraordinary
sale

[stocking rate > 0.5
and
good prices]

Supplement

Pay farm costs
[balance<0]

Pay interests

[grass>5cm or
grazing>$30]

Return from graze

[else]

Adjust stocking rate to 0.7

Sell empty cows

[else]

[else]

[else]

[grass>=3cm]

Fig. 4. Winter strategy for a Proactive Producer (CS stands for Condition Score)

For the purpose of the case study, the step “Define Agent Interaction” was not con-
sidered since there is no interaction between producers in the research project.

Regarding the step “Define Agent Architecture and Design”, a reactive architecture
was chosen for both types of agents, so there will be no explicit representations of
beliefs, desires or intentions, but rather each agent will act upon a set of predefined
rules, which were captured in the UML Activity Diagrams. The decision of what
agent architecture to use heavily depends on whether the simulation platform that will
be used (in this case CORMAS) supports other kinds of architectures or not, and also
on the purpose of the simulation. Even though it is a technical decision, it impacts the
information that needs to be gathered during the modeling. For the design part of this
step, a new UML Class Diagram was constructed based upon the concepts of the
Domain Model but extending certain CORMAS classes in order to inherit their beha-
vior, which is shown in Figure 5.

The next step was “Model Environment and Resources” whose aim was to define
behavioral aspects of the environment and resources as well as complete structural
ones if needed. For this case study, the former involved defining the cattle lifecycle
(see Figure 6) showing each possible cattle state and its transitions, and the latter
involved completing the structural aspects of the environment. The same as for
agents, the discovery of these new dynamics came from the simulation purpose and
the domain model. Therefore, this step can be viewed as a refinement of the domain
model, at least from a structural point of view.

442 J. Corral and D. Calegari

Reactive Proactive

Producer

Herd

Cattle Sheep

Plot

Cohort

BornCalf

WeanedCalf

Steer

Heifer

Empty Pregnant

Cow

State

Lactating

Grass

AgentLocation

SpatialEntity
Element

PassiveObject

11

1

1

*

owns

rents

stock

*< has

1

< feeds

1

*

eats

1

Fig. 5. UML Class Diagram for the case study showing extended CORMAS classes (shown in
color) and omitting attributes and operations

Cow

Alive

BornedCalf

Heifer

Steer

Sold
(pseudo-state)

Lactating Empty

WeanedCalf

Pregnant

increase age by
0.25years (one season)

ap
pl

y
m

or
ta

lit
y

ra
te

s

wean

1 year-old males
and good grass and
good balance

1 year-old
females

1 year-old
males and bad
grass or bad
balance

1,5 years-old
or bad grass
or bad
balance

weight
>280kg

ef
fe

ct
iv

e
m

at
in

g

wean

effective
mating

delivery

8 years-
old

extraordinary
sale

Fig. 6. UML Sate-Transition Diagram representing cattle lifecycle

Up to this point, all steps except “Define Agent Architecture and Design” do not
require technical (computer science) knowledge, apart from being able to interpret
and understand UML diagrams. This allowed for a truly interdisciplinary work and
for a white-box approach to modeling and simulation.

The “Simulation Configuration” step involved defining the initial configuration of
the simulation (i.e. assigning initial values for the previously defined agents, re-
sources and environment), its time-step (for this case study a seasonal time step was
defined when identifying agent’s behavior), task scheduling order (i.e. in which order
the behaviors of agents and resources are called upon at every time step, see Figure 7)
and input parameters (e.g. climate data and international prices).

 Towards an Agent-Based Methodology for Developing Agro-Ecosystem Simulations 443

:Scheduler :Environment :Producer :Cattle

update weather and prices

grow

:Grass

perform seasonal activities

evolve

:Sheep

evolve

eat

eat

reproduce

Fig. 7. UML Sequence Diagram representing task scheduling

Particularly, input parameters should be defined earlier in the process since they
depend on where the system boundaries are defined. For example, if international
markets and prices are not considered within the system at hand but outside its boun-
daries (as it was the case here) but they affect in some way the system (e.g. by allow-
ing producers to sell their cows when prices rise) then this situation should be early
identified and consider these elements as input parameters.

Concerning the output of the simulation, several output parameters were defined,
like producer’s income and cattle condition score, along with the way in which these
should be visualized (mainly in graphs). These outputs, which were already depicted
in the domain model, should be consistent with the simulation purpose since they
allow users to see the system evolution and analyze their result, which is the aim of
the last step: “Simulation Run and Sensitivity Analysis”.

The “Implementation” step for this case study was done in three versions or itera-
tions: first a “grass only model” was implemented that had the objective of validating
the grass growth depending on climate; the second “wild model” introduced cattle and
aimed at the grass-animal interaction; and finally the “final model” was done which
included producers and their different behaviors (draught strategies).

It is worth noting that implementation is straightforward from all the previous
models, and especially using such a simulation platform as CORMAS that provides
native constructions for such elements as agents, resources and environment.

4.1 Case Study Conclusions

Overall, the methodological framework successfully supported the development of
the case study. Knowing what steps should be taken and what artifacts should be
constructed provides confidence, saves time, and keeps people focused. Having a
mapping between the most common features found in an agro-ecosystem and how
they can be represented using the methodological framework was shown to be of high
value.

Although the steps were presented in a sequential order, an iterative & incremental
approach may well be adopted, benefiting from early user’s feedback, in the same
way current mainstream software development methodologies do. This would also

444 J. Corral and D. Calegari

imply that a single step would be visited more than once during the development
process. Also some of the steps may change if other type of simulation is used, like
event-based simulation.

In a truly interdisciplinary team, like the one that developed the case study, to share
a basic vocabulary and to have a common understanding of the basic concepts is cru-
cial. To this end, the Domain Model served as a glossary of the most important con-
cepts and provided this common understanding.

Another interesting conclusion was reached in the use of UML diagrams. At the
beginning of the project, all team members were convinced that they all shared the
same knowledge about basalt producers. However, the use of UML, particularly the
Activity Diagrams in this case, demanded experts to explicit their knowledge and
assumptions in order to unambiguously build the diagrams. From this process, several
contradictory opinions emerged between the different experts, so several discussions
took place to arrive at the final versions of these diagrams.

Regarding the producers, along the several workshops of the research project, they
felt they were being accurately represented by the UML Activity Diagrams, and even
when other variants were proposed (e.g. like considering a third kind of producer as
the result of a mix of the other two) the great majority did coincide that the two types
of agents (Reactive and Proactive) indeed represented them. This enforces the value
of UML as a formal but also intuitive tool for modeling the problem, discussing the
domain with experts as well as producers, and afterwards starts the software devel-
opment bases upon these diagrams.

5 Conclusions

This article introduced a new methodological framework for developing agent-based
simulations. The framework is based on already existing general purpose AOSE me-
thodologies, but unlike these, it is tailored to tackle specific agro-ecosystem features.
It also relies on the UML with the purpose of an easy uptake from both, the interdis-
ciplinary team which models the agro-ecosystem, and the programmers which will
develop the simulation. The methodological framework is not a methodology itself. It
focuses on identifying relatively general steps and artifacts (produced by the steps)
that could be ensemble for developing such a simulation, whilst other methodological
aspects, as defining a strict order among steps and identifying roles for that steps, are
not yet considered.

Even though it is not (yet) a complete and fully comprehensive software develop-
ment methodology, it has already been successfully applied by our team in some
research projects.

This methodological framework sets apart from other related work since: a) al-
ready-existing AOSE methodologies are general purpose agent-methodologies, not
focusing on simulation or in agro-ecosystems, both with its own specificities; b) even
though there are previous related-work like [12] they do not place attention in trying
to define a software methodology with its steps and artifacts; and c) because this me-
thodological framework summarizes the experience of our group in participating in
several research projects and following ad-hoc procedures that are now started to
formalized.

 Towards an Agent-Based Methodology for Developing Agro-Ecosystem Simulations 445

Further work is ongoing in different topics with the overall aim of achieving a me-
thodology that is of easy uptake for programmers. From our experience we believe
this is a very important issue since human resources for the programming tasks are
usually (very) scarce, and the more specific knowledge we require the programmers
to have, the more scarce the resources becomes. This is why it is important to keep
the methodology simple, using tools and techniques already familiar to programmers
(like object-oriented programming, UML and iterative and incremental development).

This further work includes: a) the completeness of the methodology, including as-
pects such as which roles (in the development process) do what, when and how; b)
evaluate the use of specific graphical modeling languages such as AML and particu-
larly analyze the benefits of including it against the need for programmers to know it;
c) develop the necessary software tools to assist in the development process (like
plug-ins to certain integrated development environment); d) propose a semi-automatic
construction process from models to simulation code, supported by the model-driven
approach of the methodology; e) continue to use and refine the methodology and get
programmer’s feedback about its chances to get real uptake.

The main contributions of this methodological framework are: a) the only metho-
dological framework for developing agro-ecosystem simulations using the agent-
based modeling approach. Up to our knowledge, there is no other methodology (nor
methodological framework) that copes with this problem; b) the only case in which
the ABM approach was applied to a Uruguayan agro-ecosystem problem, in this case
the draught phenomena in the basalt region and a study on how it affects cattle breed-
ers and their draught strategies; c) the possibility to get regular OOP+UML software
developers to quickly start writing agro-ecosystem simulation software, without pre-
vious knowledge of MAS. This becomes increasingly important because it reduces
the time and skills required to get into a multidisciplinary team, especially when soft-
ware developers are hard to find; and d) the possibility to formalize a methodology
that allows developers (as stated above) as well as experts (e.g. agronomists) and
producers to jointly participate in the development of a simulation, achieving a truly
interdisciplinary work.

References

1. Cervenka, R., Trencansky, I.: The Agent Modeling Language - AML: A Comprehensive
Approach to Modeling Multi-Agent Systems, 1st edn. (2007)

2. CORMAS (n.d.), http://cormas.cirad.fr
3. Corral, J., Arbeletche, P., Morales, H., Burges, J., Continanza, G., Courdin, V.: Multi-

Agent Systems applied to land use and social changes in Rio de la Plata basin (South
America). In: 8th European International Farming Systems Association, France (2008)

4. Corral, J.: Agent-based methodology for developing agroecosystem simulations. MSc the-
sis. Centro de Posgrados y Actualización Profesional, Facultad de Ingeniería, Universidad
de la República, Montevideo, Uruguay (2011),
http://www.fing.edu.uy/inco/pedeciba/bibliote/cpap/tesis-
corral.pdf

5. CSIRO. Complex or just complicated: what is a complex system? CSIRO fact sheet
(2008), http://www.csiro.au/resources/AboutComplexSystems.html

6. FIPA, http://www.fipa.org

446 J. Corral and D. Calegari

7. FPTA Project, http://www.inia.org.uy/busqueda/proy_detalle.phtml?
id=186&origen=1

8. Gliessman, S.R.: Agroecology: ecological processes in sustainable agriculture, Ann Arbor
Press (1997)

9. Henderson-Sellers, B., Giorgini, P. (eds.): Agent-oriented Methodologies. Idea Group,
Hershey (2005)

10. INIA, http://www.inia.org.uy
11. IPA, http://www.planagropecuario.com.uy
12. Le Page, C., Bommel, P.: A methodology for building agent-based simulations of com-

mon-pool resources management: from a conceptual model designed with UML to its im-
plementation in CORMAS. In: Bousquet, F., Trébuil, G., Hardy, B. (eds.) Companion
Modeling and Multi-Agent Systems for Integrated Natural Resource Management in Asia,
pp. 327–349. IRRI, Metro Manila (2005)

13. Miller, J.H., Page, S.E.: Complex adaptive systems: an introduction to computational
models of social life. Princeton University Press, Princeton (2007)

14. Morales, H., Arbeletche, P., Bommel, P., Burges, J.C., Champredonde, M., Corral, J.,
Tourrand, J.F.: Modéliser le changement dans la gestion des terres de parcours en Uru-
guay. Cahiers Agricultures 19(2), 112–117 (2010)

15. Norman, M.: Annual Cropping Systems in the Tropics. University Press of Florida, Gain-
nesville (1979)

16. OMG. The Unified Modeling Language Specification v2.0 (2005),
http://www.uml.org

17. Rao, A., Georgeff, M.: Modeling Rational Agents within a BDI-Architecture. In: Allen, J.,
Fikes, R., Sandewall, E. (eds.) Proceedings of the Second International Conference on
Principles of Knowledge Representation and Reasoning (KR 1991), pp. 473–484. Morgan
Kaufmann, San Francisco (1991)

18. Tran, Q.N., Low, G.: MOBMAS: A methodology for ontology-based multi-agent systems
development. Information and Software Technology 50, 697–722 (2008)

19. Wooldridge, M.: Lecture Notes on Introduction to Multiagent Systems Course (2008),
http://www.csc.liv.ac.uk/~mjw/pubs/imas/teaching.html

20. Wooldridge, M.: An Introduction to Multiagent Systems. Wiley & Sons, Chichester
(2002)

G. Barthe, A. Pardo, and G. Schneider (Eds.): SEFM 2011, LNCS 7041, pp. 447–463, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Development Policy Analysis in Mali:
Sustainable Growth Prospects*

Matteo Pedercini

Millennium Institute
Washington D.C., U.S.A.

mp@millennium-institute.org

Abstract. In the context of the implementation of the second-generation
poverty reduction strategy (CSLP II) in Mali, we investigate the country's
development potential, within existing resource constraints. We apply an
integrated, resource-based approach to growth, implemented through a
system-dynamics-based national development planning model. Scenario analy-
sis indicates that the policy orientation of the CSLP II might foster growth in
the long run, but, even in our most optimistic scenario, the government's stated
growth and development goals are unlikely to be achieved. Our results highlight
the importance of endogenous growth mechanisms for sustainable development,
and the significance for economic performance of the major delays involved in
the accumulation of the resources that are necessary for growth. We believe that
our approach contributes to the most commonly used tools for medium-long
term planning by providing a dynamic perspective on the key resources for
growth and on the constraints to the country’s development.

Keywords: Growth potential, sustainable development, system dynamics,
resource constraints, Mali.

1 Introduction

Economic statistics about Mali give a rather clear picture of one of the poorest coun-
tries in the world. Most of the 12 millions Malians live below the official poverty line
(59.2% in 2005) [1]. Despite the good economic growth observed over the last decade
(on the average about 5% per year) the resources available to the Government are
insufficient to provide the growing population with broad access to basic social ser-
vices. In terms of Human Development Index1 (HDI), Mali ranks 175 of 177 [2]. In
addition, Mali development is complicated by structural constraints in terms of natu-
ral resources, among others: water is scarce in large parts of the country; forest cover
is limited to 10% of the country and rapidly diminishing; mineral resources are li-
mited and heavily exploited.

* An earlier version of this paper was presented as part of the Doctoral Thesis “Modeling Re-

source-Based Growth for Development Policy Analysis”, Matteo Pedercini, University of
Bergen, Norway, 2009.

1 The Human Development Index is a composite index including literacy, life expectancy and
income.

448 M. Pedercini

As several other countries in Africa, Mali developed a first medium-term strategic
plan for poverty reduction in the early 2000 (the so called “Poverty Reduction Strate-
gy Paper”, PRSP, or CSLP in French). The CSLP-I set very ambitious goals for the
country – above all a target economic growth rate of 6.7% per year. While setting an
ambitious goals can encourage development [3], when goals are set at unachievable
levels, performances are invariably perceived as a failure and disillusion arises. Mali
is not an exception to the general tendency observed for Sub/Saharan African coun-
tries [4] of stating overoptimistic goals [5]. The projections of growth contained in the
country’s first CSLP, were unrealistic and have not been fulfilled [6]. This failure
highlighted the need for strengthening the CSLP process, and for implementing a
more realistic and effective second generation CSLP (CSLP-II).

In this context, we address two fundamental issues: (1) Under current policy re-
gime, existing resource constraints, and external conditions, would Mali be able to
achieve its stated development goals? (2) Under a policy regime reflecting CSLP II
indications and positive external conditions, would Mali be able to achieve its stated
development goals?

The analysis of strategies for sustainable development, intended as “development
which meets the needs of the present without compromising the ability of future gen-
erations to meet their own needs”2, requires studying the dynamic interrelations be-
tween development and the country's own fundamental resources. In order to fulfill
such requirementwe develop a quantitative planning model based on the Threshold-21
framework [7], and use it to elaborate sustainable development scenarios in the con-
text of the implementation of the CSLP-II. These scenarios are developed involving a
broad range of stakeholders, to increase participation in the planning process, as well
as optimism and proactive behavior towards the future [8].

The following section describes our approach and method, while Section 3 de-
scribes the validation process the model underwent and describes the base run of the
model. Section 4 illustrates the results from a set of alternative scenarios. Finally,
Section 5 summarizes the results of the study and provides reflections on the useful-
ness of the approach to support the development of poverty reduction strategies.

2 An Integrated Resource-Based Approach

2.1 Approach and Method

In order to provide an integrated and dynamic perspective on growth, we adopt a re-
source-based approach [9-12] to development policy analysis. Although the relevance
of the allocation of resources for economic growth is intrinsic in the definition of eco-
nomics itself [13], the resource-based approach has hardly diffused into growth re-
search. Recently, Warren has introduced a quantitative and dynamic framework for
resource-based analysis, focusing in particular on accumulation and feedback
processes [14], which is suitable to support growth research for policy analysis.

Over the last two decades, a variety of quantitative modeling methods have been
developed to support national policy analysis. The most popular of such methods

2 According to the definition of the UN “Report of the World Commission on Environment and

Development: Our Common Future”, also known as Brundtland Report, 1987.

 Development Policy Analysis in Mali: Sustainable Growth Prospects 449

include Computable General Equilibrium (CGE) modeling [15], Macro-Econometric
(ME) modeling, Disaggregated Consistency (DC) modeling [16], and System
Dynamics. The first three methods have proven useful for various kinds of policy
analyses, but are only to a limited extent applicable to medium-long term planning,
since they do not support the analysis of environmental dynamics and can only par-
tially represent development of social factors. We thus chose to implement our
approach by way of the System Dynamics method.

System Dynamics has recently stood out as a technique to analyze a variety of de-
velopment issues [17-19], including national policy analysis [20]. The SD method has
been developed to analyze the relationship between structure and behavior of com-
plex, dynamic systems [21]. In SD models, causal relationships are formalized into
models of differential equations, and their behavior is simulated and analyzed via si-
mulation software. Regular simulations are performed through a recursive computa-
tional sequence, while the most powerful software also allow for optimization and
sensitivity analysis (through Montecarlo simulation)3. With respect to visualization of
the model's structure, the method uses a stock and flow representation of systems that
allows to maintain a certain degree of transparency. The flexibility, the capability to
represent dynamic complexity, and the transparency that characterize SD make it well
suited to implement an integrated, dynamic resource-based approach to development
policy analysis.

2.2 The Model

In order to develop our model, we used as starting framework the Threshold21 (T21)
model developed by the Millennium Institute [7]. T21 is an integrated scenario-
analysis tool designed to support national development planning, and it has been ap-
plied in various countries [20, 22]. We chose T21 as starting framework since this is
the most widely used model that integrates into one framework the most essential
social, economic and environmental aspects of development, allowing for a compre-
hensive long term policy analysis. T21's structure is appropriate for this type of analy-
sis, and adopting such framework is cost-effective: rebuilding from scratch a similar
framework would require several months. T21 offers a solid and well validated basis
upon which we developed a T21-Mali model, embedding an integrated resource-
based approach to development policy analysis.

The T21-Mali model, while keeping the broad and integrated approach that charac-
terizes the generic T21 framework, is specifically developed with an emphasis on
representing and analyzing the dynamics of the resources that are central in growth.
With respect to the T21 framework initially used, the model includes several addi-
tional sectors, and a variety of relationships have been reformulated to better match
reality in the country. The model has been conceived, in particular, with two functions
in mind: to provide exploratory strategic and external scenarios [23] for the CSLP-II;
and to project these scenarios way beyond the time horizon of the CSLP-II (5 years)
to analyze their long-term implications. Based on these objectives, and on the limited
availability of historical data, we set the time horizon for the analysis to the period
1990-2025.

3 The most broadly used SD software inlcude Vensim, Powersim, and Ithink: www.vensim.

com, www.powersim.com, www.iseesystems.com

450 M. Pedercini

The development of T21-Mali has been carried out in close collaboration with Ma-
lian Committee for Planning and Forecasting (CPM)4. Specifically, identification of
central resources for development and estimation of key relationships, that were in-
itially based on existing literature, have been improved and validated by CPM. Such
collaborative model development process led not only to a better specified model
structure, but also to building confidence of final users in the model and underlying
data sets.

Figure 1 provides a high level representation of the structure of the T21-Mali mod-
el5. The structure is composed of three spheres (economy, society, and environment),
each including six sectors. All sectors are dynamically interacting with each other,
within the same sphere, as well as across different spheres. Social resources, natural
resources, and economic resources, all contribute to economic production and are
affected by it, providing an endogenous perspective on growth and development.

Fig. 1. High level representation of the T21-Mali model

The key sector in the economy is production, where resources of various kinds –
economic, social, and environmental – converge to give rise to economic production.
We adopt a Cobb-Douglas production function [24] with an endogenous treatment
of total factor productivity. We identified physical capital, human capital, and infra-
structure as the key resources for the country’s development [25, 26]. In addition to
these, we also consider the effect of environmental resources, such as agriculture land
and gold reserves in the analysis [27]. The resources generated through economic

4 The CPM is composed of a panel of technicians and policy makers from various Ministries,

with a preponderant participation of officials form the Ministry of Planning, and provides ad-
vices to other governmental institutions for the preparation of mid and long-term plans, in-
cluding the CSLP.

5 The T21Mali model and its complete documentation (English and French) are available at
www.millennium-institute.org/projects/africa/mali.html

 Development Policy Analysis in Mali: Sustainable Growth Prospects 451

production are allocated between consumption and investment. Investment in physical
capital mostly takes place in the private sector, enhanced by foreign direct investment
and remittances from abroad. Investment in human capital, via better education and
health, fundamentally takes place as public spending in infrastructure and staff in the
education and health sectors. Key public infrastructure (such as transportation and
telecommunication infrastructure) also develops as a result of public investment.

In the society, the population sector represents the key mechanisms underlying
demographic development. Fertility is determined based on income and education
[28], and mortality based on income and access to health care [29, 30]. The labor sec-
tor accounts for labor supply/demand balances, distinguishing between skilled and
unskilled labor. The health and education sectors determine respectively the level of
access to basic health care and the adult literacy rate, based on the level of public ser-
vice offered. The poverty sector determines the level of monetary poverty using a
Lorenz curve approach [31, 32], and the infrastructure sector represents specifically
roads and irrigation infrastructure.

In the environment, land, water, minerals and other natural resources are used to
sustain production and to cover basic needs, and are regenerated based on their natu-
ral cycles. Some of these resources, such as gold, are not renewable; others such as
water are renewable, but available only in limited quantity and locations [33]; and
others, such as land are fixed, but can be shifted to a limited extent among different
uses. Energy is generated using both internal resources (i.e. hydropower) and external
resources (imported fossil fuels) [34]. Long term sustainability is assessed using the
ecological footprint [35].

3 Base Run

3.1 Data and Validation

As a mean of validation, we simulate the model starting in 1990 and compare the si-
mulation results with the historical data available for a set of relevant indicators. In
order to do so, we developed a comprehensive data base, including records for more
than 200 variables, over the period 1990-20056. The data base is based on data from
Mali’s National Statistical Office (DNSI) [36], supplemented with data from interna-
tionally accredited sources [1, 34, 37-41].

The set of indicators reported in this study have been selected in order to cover the
most relevant aspects of the country’s broad socio-economic development. The list
covers the key aspects of the Millennium Development Goals (MDG) [42] and of the
Human Development Index, including indicators for poverty, education, health and
environmental sustainability. The same list of indicators is used to present the results
of the reference scenario in section 3.2 and of the alternative scenarios in section 4.

The results obtained for the major indicators for the period 1990 to 2005 are well
in line with historical data as summarized in Table 1. Table 1 reports the root mean
square percent error (RMSPE), the Theil’s inequality statistics, and the coefficient of
determination (R2) resulting from the comparison of the base run with historical data
for the selected indicators. The RMSPE is an appropriate indicator of the goodness of

6 At the time the analysis was completed, latest year for which data was available was 2005.

452 M. Pedercini

fit of system dynamics models [43], and its decomposition through Theil’s inequality
statistics indicate the nature of the discrepancy between model results and data. In
particular, Theil’s inequality statistics decompose the RMSPE into three components:
its bias component (UM); its unequal variation component (US); and its unequal covar-
iation component (UC).

Table 1. Summary statistics for key indicators (comparison period: 1990-2005)

Variable
RMSP

E

Inequality Statistics

R2

Data
Points

UM US UC

real Gross Domestic Product (GDP) 0.018 0.348 0.028 0.623 0.996 16
agriculture production 0.045 0.156 0.001 0.842 0.934 16
industry production 0.038 0.009 0.001 0.990 0.991 16
services production 0.024 0.296 0.002 0.702 0.988 16
public deficit as share of GDP 0.172 0.006 0.002 0.992 0.862 16
total population 0.009 0.731 0.108 0.161 0.998 16
average life expectancy 0.044 0.911 0.004 0.085 0.871 4
average adult literacy rate 0.012 0.492 0.000 0.508 0.992 10
proportion of population within 5 km from health center 0.052 0.367 0.148 0.485 0.975 8
road km per 1000 people 0.028 0.546 0.155 0.298 0.814 10
proportion of population connected to electricity network 0.040 0.001 0.076 0.923 0.958 5
proportion of population connected to water network 0.032 0.667 0.238 0.096 0.997 5
proportion of population below poverty line 0.049 0.262 0.460 0.278 0.816 4
Human Development Index 0.077 0.641 0.318 0.041 0.983 4

The high R2 values obtained for the selected indicators highlight that the model can

explain a large portion of the recorded historical data. Although in some cases, e.g.
total population, life expectancy or HDI, most of the error is of systematic nature (i.e.
either bias or unequal covariation), the size of the error itself is relatively small, and
does not diminish our confidence in the model’s ability to capture the long-term trend
in the data. Of major concern, however, is the limited amount of data available for a
few of the variables. Data on poverty and life expectancy in particular, are limited to
four data points: Although we regard this as the most reliable data available, a longer
data series would have provided a more solid basis upon which we could test our
model. Data scarcity partially affects also our estimation of the HDI, which is a com-
posite index including life expectancy, literacy rate, and income. In addition, we have
a limited number of data points for indicators related to infrastructure (health centers,
roads, electricity and water distribution). Nevertheless, the nature of these variables is
such that they can be more directly estimated, and thus such data tends to have small-
er measurement errors. Overall, we consider the model’s ability to replicate historical
data acceptable for the purpose of this analysis.

In the process of model development, behavioral validation of the model was
coupled with a structural validation process [44] which included, in particular, a veri-
fication of the assumptions and parameters’ values – initially estimated based on
available data and information – with local experts from the various sectors portrayed
in the model.

 Development Policy Analysis in Mali: Sustainable Growth Prospects 453

3.2 Business as Usual Scenario

In order to establish a foundation for the development of alternative scenarios for the
CSLP-II analysis, we first generate a reference scenario, which we call “Business as
Usual Scenario” (BAU). In this scenario, we simulate the model until 2025 assuming
that the future policy orientations and external conditions correspond to those that
characterize the CSLP-I period. In the following paragraphs, we provide a summary
of the results obtained in this scenario. The results for the period 2005 – 2025 for the
selected indicators are reported in Table 2.

Table 2. Summary results for the Business As Usual scenario

Time (Year) 2005 2010 2015 2020 2025

real Gross Domestic Product (GDP) growth rate 5.3% 3.4% 3.2% 3.2% 3.5%
agriculture production growth rate 5.1% 2.5% 1.8% 1.6% 1.7%
industry production growth rate 4.8% 3.5% 3.4% 3.6% 3.8%
services production growth rate 4.5% 4.9% 4.6% 4.6% 4.7%
public deficit as share of GDP 4.8% 3.8% 3.3% 2.7% 2.0%
total population growth rate 2.5% 2.5% 2.4% 2.3% 2.2%
average life expectancy 52.2 55.5 58.8 61.5 63.9
average adult literacy rate 30.5% 36.3% 42.0% 47.2% 51.6%
proportion of population within 5 km from health center 48.7% 54.1% 59.8% 65.8% 70.6%
road km per 1000 people 1.61 1.70 1.78 1.85 1.93
proportion of population with access to electricity 15.6% 21.5% 30.4% 36.3% 40.3%
proportion of population with access to potable water 63.5% 68.4% 74.4% 80.3% 86.0%
proportion of population below poverty line 64.7% 62.4% 60.3% 58.2% 55.6%
HDI 38.5% 43.5% 47.9% 51.4% 54.5%

This scenario portrays a discouraging picture of Mali’s development over the next

two decades. While the population is growing at sustained rates, the GDP growth rate
is decreasing and then flattening out at about 3.5%, and the resulting growth in per
capita GDP is small. As a consequence of the modest economic growth, poverty rates
(defined here as the proportion of population below the official poverty line) are de-
clining of less than 10 percentage points over 20 years, from 64.7% to 55.6%. This
performance can be considered insufficient by any national or international standard:
The internationally agreed MDG indicate a target poverty level in Mali of about 22%
by 2015. Education is also progressing slowly, resulting in a literacy rate of only
about 50% of in 2025. Life expectancy increases modestly up to about 64 years in
2025. The combination of these results, leads to an HDI growing slowly from 38.9%
to 54.5%, which would bring Mali in 2025 at about the level of today’s Pakistan.

The results obtained in this scenario are incompatible with the MDG and with the
basic targets for the CSLP-II [3]. The goals for the CSLP-II, in particular, include
achieving and sustaining an average 7% GDP growth rate per year over the next five
years. The reason of such poor performance, in spite of the country’s efforts and plans
for poverty reduction, is deeply-rooted in the nature of the mechanisms that drive
growth in the country.

454 M. Pedercini

Fig. 2. High level representation of the mechanisms underlying the socio-economic
development of Mali

The Causal Loop Diagram (CLD) in Figure 2 provides a high-level interpretation
of these mechanisms. CLD are qualitative representations of the causal relationships
in a system of interest, and are used to highlight feedback loops relevant to the issues
being analyzed [45]. In CLD, arrows with positive polarity indicate a unidirectional
relationship between two variables (i.e. an increase in the independent variable causes
the dependent variable to take on a value over and above what the value would other-
wise be). All the arrows in Figure 2 have positive polarity, and they describe three
positive, or reinforcing, feedback loops [46].

The reinforcing feedback loops in Figure 2 are all sources of economic growth: An
increase in production leads to an increase in the government budget and households’
income, which leads to a larger investment in physical capital, infrastructure, and ba-
sic social services, such as education and health care. Capital, infrastructure and a
healthy and educated labor force are essential resources for development in Mali [3].
As these resources are built over time via private and public investment, productivity
and production further increase, thus closing the loop.

The three reinforcing mechanisms described above are at the heart of Mali’s devel-
opment. However, these mechanisms might work only slowly, for two principal rea-
sons: First, major delays are involved in the accumulation of human resources and in
the creation of proper infrastructure (indicated by the vertical bars on the arrows in
Figure 2); second, when the initial base of resources is small, the resulting low in-
come level allows for limited saving and thus little accumulation of resources.

Rapid accumulation of physical capital is a first prerequisite for growth (see
feedback loop R1 in Figure 2). However, over the last decades (going back as far as
economic data has been collected in Mali) per capita disposable income has been es-
pecially low in Mali, even compared to the average for Sub-Saharan countries [1].
This low level of income implies a high propensity to consume, and thus little funds
are allocated to saving and investment. Such a dysfunctional capital accumulation

 Development Policy Analysis in Mali: Sustainable Growth Prospects 455

mechanism is well known in many developing countries, and is often labeled a “po-
verty trap” [47].

A second mechanism of great importance for development in Mali is represented
by the R2 loop in Figure 2. A low level of production implies little resources available
for the government to invest in the provision of basic social services that are indis-
pensable to the population. Social services such as education and health care are vital
to the social development of the country, and a healthy and educated labor force is
also a key factor in the increase and maintenance of labor productivity [48, 49], pro-
duction, and eventually government revenues. Unfortunately, the government does
not have large amounts of resources to invest in education and health, and, even in the
case financial resources were readily available, accumulation of human resources
would require a long time.

The Government of Mali also plays a fundamental role in the country as provider
of basic infrastructure, in particular for transportation and agriculture (R3 in Figure
2). Historically, as the resources available to the government have been limited,
investment in these sectors has been scarce. Creating efficient infrastructure is also
particularly time and resources consuming. It takes a long time to establish effective
infrastructure, and that infrastructure is often exposed to natural depletion, and re-
quires a continuous maintenance effort. The low level of infrastructure implies high
production and delivery costs for goods and services, and thus harms productivity [26,
50]. This, in turn, implies a slow development of the economy and little growth in
government revenues.

For the reasons discussed above, the three positive feedback loops illustrated in
Figure 2 are not sufficiently effective in Mali. Given the initial low level of resources
available, and the long delays involved in their accumulation processes, it would have
been difficult for the country to perform better than it did over the last 10 years (GDP
growth rate oscillating around 5%). Undoubtedly, over the past decades several de-
veloping countries have experienced two-digit growth rates for extended periods. This
is fostering new hopes for developing economies. However, growth accelerations in
these countries seemed to be triggered by idiosyncratic small scale events [51], indi-
cating that the fundamental resources for production were readily available: As a few
crucial bottlenecks were removed, growth spurred. This is not the case of Mali

The economic development of Mali is in addition harmed by the limited possibili-
ties for improvement in the exploitation of two key environmental resources. Gold
mining, an important part of industrial production, has shown signs of decline over
the last few years. Due to the depletion of reserves, the growth in gold extraction over
the last five years is close to zero, and it is not expected to change substantially in the
near future [52]. Moreover, the limited water availability is an important environmen-
tal constraint to Mali’s development. Water supply is concentrated in the southern
region, and only a limited share of Mali’s surface can thus be used for agriculture
[53]. The possibility for growth in agriculture production through an increase in the
irrigated area exists therefore only in some areas of the country.

These environmental factors that constrain growth in Mali are structural characte-
ristics of the country. Even if improvements can be made in the management of these
resources, little can be done to sustainably increase their amount. Our investigation
focuses mostly on the mechanisms that can bring about further development through

456 M. Pedercini

the expansion of human resources, physical capital and infrastructure, within the lim-
its posed by the scarce availability of natural resources.

4 Alternative Scenarios

In order to assess whether under a new policy regime the country can accelerate its
development and achieve its growth targets, we simulate four alternative scenarios,
developed with experts from CPM. The first alternative scenario includes four policy
changes directed at increasing productivity in the private sector, this being the first
major objective of the strategy developed in the CSLP-II. The other three scenarios
gradually introduce a number of realistic – albeit highly optimistic – assumptions with
regard to external conditions.

The major changes in policies and external conditions introduced in the four alter-
native scenarios with respect to the BAU scenario are described in Table 3. Changes
to the model indicated as policies (P) reflect actual interventions that the government
could implement (e.g. an increase in public expenditure for transport and equipment);
changes indicated as assumptions (A) reflect developments in relevant variables over
which the government has no direct control. Changes are implemented cumulatively,
so that each new scenario contains the same changes introduced in the previous one,
plus one or more additional changes. The column to the right-hand side of the table
indicates in which alternative scenario a specific policy or assumption is used.

Table 3. Summary of changes in policy and assumptions for the alternative scenarios

Type Description Scenario

P Increase of 33% in expenditure for transport and equipment by 2025 1,2,3,4

P Increase of 25% in expenditure for rural economic activities by 2025 1,2,3,4

P Tripling of expenditure for industry, mining and water as share of govt. budget by 2025 1,2,3,4

P Lower fiscal pressure in the first 5 years, and subsequent compensating increase 1,2,3,4

A More than doubling of foreign direct investment as share of GDP by 2025 2,3,4

A Increase of gold discoveries by 20% by 2025 3,4

A Rapid increase in gold extraction by 30% by 2011 3,4

A Shift of land use from pasture to crops (average increase of 20% in arable land) 4

A Gradual increase in value added per unit in the cotton sector (75% increase by 2025) 4

A Reallocation of agriculture land among crops to increase efficiency in the sector 4

A Improvements in the weather conditions for agriculture production (from a minimum of
10% improvement for rice, to a maximum of 100% for maize)

4

A Increase of fish industry production by 60% in 2025 4

A Increase in tons of meat produced per head by 50% in 2025 4

A Decrease in Gini7 coefficient from .525 to .45 4

7 The Gini coefficient is an aggregate index of inequality in income distribution. A Gini coeffi-

cient of 1 indicates that the entire national income is earned by one only individual (or house-
hold), while a Gini coefficient of 0 indicates a perfectly uniform distribution.

 Development Policy Analysis in Mali: Sustainable Growth Prospects 457

The first alternative scenario analyzed, only includes the four policy changes listed
at the beginning of Table 3. These policies aim mainly at fostering the development of
essential infrastructure, while lowering fiscal pressure and thus facilitating private
investment in physical capital. The result is a gradual, steady increase in GDP growth
rate compared to the BAU scenario, reaching about 4.4% in 2025. Figure 3 illustrates
the GDP growth rate obtained in this first alternative scenario (line 1) compared to the
BAU scenario (line 0), and to the other scenarios that are discussed in the following
paragraphs. The primary reason of the slow response of GDP growth to the
implemented policies is to be found in the significant delays involved in infrastructure
development: Only towards 2010 a significant part of the new infrastructure is com-
pleted and starts positively affecting productivity. In addition, although the reduction
in fiscal pressure allows for more savings, these are absorbed by the government bor-
rowing on the domestic market, which is necessary to pay for the new infrastructure.
In other words, the government borrowing is crowding out private investment. Over-
all, therefore, in this first alternative scenario the government shifts more of the coun-
try’s financial resources towards the construction of infrastructure, with a positive
impact on growth in the long run. These policy interventions alone are not sufficient
to rapidly increase the growth rate and bring it close to the CSLP II target.

In the second alternative scenario, we assume a gradual increase in foreign direct
investment (FDI), which reaches up to 8% of GDP in 2025. This substantial increase
in FDI leads to a steeper increase in GDP growth rate (line 2 in Figure 3) than in the
previous scenario. Eventually, the growth rate reaches about 6.5% in 2025. These
results are achieved through a more rapid accumulation of physical capital, that is,
through stimulating the R1 loop in Figure 2. This stimulus is fundamentally driven by
an exogenous inflow of financial resources, although in the long run, as income in the
country increases, domestic investment also takes off. This scenario highlights how
the action of the R1 loop, now stronger, brings about a growth rate close to the target
of 7% only in the long run.

The first and second alternative scenarios illustrated above highlight how economic
growth can be accelerated more directly by stimulating private investment and thus
strengthening the action of the R1 loop than by investing in infrastructure. Improve-
ments in productivity and performance through the loop R2 require longer time, and
even longer delays are involved in the loop R3. The faster response of the system that
we obtain when strengthening the action of the R1 loop should not lead to the conclu-
sion that an optimal policy for sustained growth should focus primarily on stimulating
the accumulation of physical capital. Growth through the development of proper hu-
man resources and infrastructure is desirable, not only for the intrinsic benefits that it
brings in terms of human development, but also for its essential role to sustain growth
in the long run. For example, among the assumptions introduced in the second scena-
rio, we included a strong increase in foreign direct investment (FDI): It is more likely
that such growth in FDI takes place if human resources and infrastructure are in ab-
undance in the country [54, 55]. Moreover, resources that take the longer time to ac-
cumulate are also those that bring about the larger and more sustainable competitive
advantage [56]. Human resources and infrastructure are thus aspects of development
that should thus not be neglected for growth to be sustainable, although they might
exhibit important dynamics only in the long run.

458 M. Pedercini

Fig. 3. Mali real GDP growth rate: model projection for the “Business as Usual” scenario (line
0), and the alternative scenarios (lines 1-4)

Under the assumptions and policy framework discussed so far, the reinforcing
loops illustrated in Figure 2 cannot bring about a growth rate close to 7% in the short
run. In our third scenario, we assume an increase of gold discovery and extraction, as
illustrated in Table 3. Such assumptions cause an immediate increase in GDP growth
rate, as new gold reserves are discovered and exploited (line 3 in Figure 3). GDP
growth rate in the period 2007-2011 is on average about half a percentage point high-
er than in the previous scenario. The impact of the growth in the gold sector is how-
ever short-lived, as the eventual depletion of gold reserves makes extraction more
expensive and thus reduces productivity. In the long run, GDP growth rate is in line
with that obtained in the previous scenario.

In our fourth and last scenario, we introduce a set of optimistic assumptions regard-
ing the agriculture sector. More specifically, we assume higher productivity for crops,
animal husbandry, and fish production, deriving both from an improvement in climat-
ic conditions, and from exogenous increases in firms’ efficiency, as illustrated in Ta-
ble 3. In addition, we assume a significant shift in agriculture land use, form pasture
to arable land, leading to an average increase of about 20% in arable land. The com-
bined effect of these optimistic assumptions leads, within 2-3 years from their intro-
duction, to an increase in GDP growth rate above of 6% (line 4 in Figure 3).

The set of policies and assumptions introduced in our fourth scenario results not
only in faster economic growth, but also in better performance for nearly all relevant
socio-economic indicators, as illustrated in Table 4. The picture of Mali’s develop-
ment over the next two decades that this scenario portrays is more in line with the

 Development Policy Analysis in Mali: Sustainable Growth Prospects 459

country’s targets than the one derived from the BAU scenario. Although the popula-
tion is growing at nearly the same rate as those observed in the BAU scenario, the
GDP growth rate is substantially higher, averaging 6.3% for the period 2007 – 2011.

Table 4. Summary results for the fourth, most optimistic scenario

Time (Year) 2005 2010 2015 2020 2025

real GDP growth rate 5.3% 6.5% 5.9% 5.8% 6.2%

agriculture production growth rate 5.0% 7.7% 4.3% 3.8% 4.7%

industry production growth rate 4.8% 5.3% 5.6% 6.0% 6.4%

services production growth rate 4.5% 6.3% 8.2% 7.9% 7.3%

Public deficit as share of GDP 4.9% 3.9% 3.1% 3.2% 3.3%

total population growth rate 2.5% 2.5% 2.5% 2.5% 2.4%

average life expectancy 52.2 56.6 63.0 68.6 72.1

average adult literacy rate 30.5% 36.3% 42.1% 47.5% 52.3%

fraction of population within 5 km from health center 48.7% 54.2% 61.6% 70.3% 73.3%

road km per 1000 people 1.6 1.7 1.9 2.2 2.5

proportion of population with access to electricity 15.6% 23.1% 41.3% 58.9% 63.9%

proportion of population with access to potable water 63.5% 70.8% 90.3% 100% 100%

average share of population below poverty line 64.6% 58.2% 50.5% 42.1% 33.9%

HDI 38.5% 44.2% 50.8% 56.6% 61.1%

The higher growth in GDP brings about a related growth in per capita GDP. Due to

the growth in per capita GDP and the assumed reduction in inequality, the proportion
of population living below the poverty line is projected to decrease by 2025 to 33.9%,
nearly half the level observed in 2005 (64.6%). Education is progressing slightly fast-
er than in the BAU case, resulting in a literacy rate of about 53.2% in 2025. Life ex-
pectancy shows a significant increase up to about 72 years in 2025. The combination
of these results leads to an HDI growing slowly from 38.9% to about 61.1% in 2025,
about the level of today’s India.

5 Conclusions

This paper illustrates how an integrated resource-based approach is applied to analyze
alternative sustainable development scenarios in the context of the preparation of the
second-generation five-year strategic plan in Mali. Results from our “Business as
Usual” scenario indicate that a continuation of the strategy implemented during the
period of the first CSLP would lead to a performance well below the stated targets for
poverty reduction and development. The results from our most optimistic scenario
illustrates that, when introducing policies directed at increasing productivity in line
with the strategic indications of the CSLP-II and under optimistic assumptions, better
results are achieved overall. But the target GDP growth rate of 7% still cannot be
achieved. Although some increase in productivity can be obtained in the short run, the

460 M. Pedercini

building up of key resources for growth – infrastructure and human resources in par-
ticular – within the existing environmental constraints, requires a few decades.

Our results stress the importance of properly considering the time lags involved in
improving productivity through the accumulation of human resources and infrastruc-
ture. Awareness of these delays is important when formulating adequate development
goals, and to prevent discarding valid development strategies in view of sluggish ini-
tial performance. Instead, the focus should not be turned away from the resources that
take longer to accumulate, as they represent a potential solid foundation for sustaina-
ble development. Also, once the major delays in the growth mechanisms have been
identified, strategies and technologies to reduce them can be developed, assessed, and
implemented.

Another outcome of the study is that the resource-based approach allowed us to
identify a clear set of policies and assumptions that should drive the country towards
its goals. This helps to monitor and evaluate policies over time, a key success factor
for the implementation of poverty reduction strategies [57]. The differences between
actual and expected results can be traced back to specific assumptions, and corrective
actions can be taken. At the moment this document is going to press, growth estima-
tions for Mali are available for the years 2006-2009: the average growth rate for the
last four years averaged 4.7%, indicating an encouraging acceleration towards the
country's development goals with respect to the Business as Usual scenario.

In summary, we believe that our approach complements well the existing ap-
proaches to sustainable development policy analysis, enhancing the awareness of pol-
icy makers of the constraints to the country’s development, and supporting them in
defining better strategies and realistic goals within those constraints. Further research
is required in Mali and other countries in the region to improve this approach and test
it in other settings.

Acknowledgements. We would like to thank the Carter Center, and in particular
Elaine Geyer Allely for providing financial and technical support to this study. We
also would like to thank the technical team of the CPM team in Bamako, and in par-
ticular Siaka Sanogo and Karounga Camara, for their collaboration.

References

1. WB, World Development Indicators 2007. World Bank: Washington D.C. (2007)
2. UNDP, Human Development Report 2006. United Nations Development Program, New

York (2006)
3. Senge, P.: The Fifth Discipline: The art and practice of the learning organization. Double-

day, New York (1990)
4. WB-IMF, Poverty Reduction Strategy Papers—Progress in Implementation. In: Nankani,

G., Allen, M. (eds.) World Bank and International Monetary Fund, Washington D.C.
(2004)

5. GoM, Cadre Stratégique pour la Croissance et la Réduction de la Pauvreté. Government of
Mali, Ministère de l’Economie et des Finances (2006)

6. GoM, Poverty Reduction Strategy Paper. Government of Mali, Ministry of Economy and
Finance (2002)

 Development Policy Analysis in Mali: Sustainable Growth Prospects 461

7. Barney, G.O.: The Global 2000 Report to the President and the Threshold 21 model:
influences of Dana Meadows and system dynamics. System Dynamics Review 18(2),
123–136 (2002)

8. Tonn, B., Hemrick, A., Conrad, F.: Cognitive representations of the future: Survey results.
Futures 38, 810–829 (2006)

9. Penrose, E.: The Theory of the Growth of the Firm. Oxford University Press, Oxford
(1959)

10. Wernerfelt, B.: A Resource-Based View of the Firm. Strategic Management Journal 5(2),
171–180 (1984)

11. Barney, J.: Firm Resources and Sustained Competitive Advantage. Journal of Manage-
ment 17(1), 99–120 (1991)

12. Peteraf, M.A.: The Cornerstones of Competitive Advantage: A Resource-Based View.
Strategic Management Journal 14(3), 179–191 (1993)

13. Warren, K.: Competitive Strategy Dynamics. John Wiley & Sons Ltd., Chichester (2002)
14. Black, J.: A Dictionary of Economics. Oxford University Press, Oxford (2002)
15. Robinson, S., Yunez-Naude, A., Hinojosa-Ojeda, R.: From stylized to applied models:

Building multisector CGE models for policy analysis. The North American Journal of
Economics and Finance 10(1), 5–38 (1999)

16. Pedercini, M.: Potential Contribution of Existing Computer-Based Models to Comparative
Assessment of Development Options. Working papers in System Dynamics. University of
Bergen, Bergen (2003)

17. Arango, S.: Simulation of alternative regulations in the Colombian electricity markets. So-
cio-Economic Planning Sciences 41(4), 305–319 (2007)

18. Parayno, P.P., Saeed, K.: The Dynamics of Indebtedness in the Developing Countries: The
Case of the Philippines. Socio-Economic Planning Sciences 27(4), 239–255 (1993)

19. Saeed, K.: A Re-evaluation of the Effort to Alleviate Poverty and Hunger. Socio Econom-
ic Planning Sciences 21(5), 291–304 (1987)

20. Qureshi, M.A.: Challenging Trickle-down Approach: Modelling and Simulation of Public
Expenditure and Human Development - The Case of Pakistan. International Journal of So-
cial Economics 35(4), 269–282 (2008)

21. Forrester, J.W.: Industrial Dynamics. Productivity Press, Cambridge (1961)
22. Pedercini, M., Barney, G.O.: Dynamic Analysis of Millennium Development Goals

(MDG) Interventions: The Ghana Case Study (forthcoming)
23. Börjeson, L., et al.: Scenario types and techniques: Towards a user’s guide. Futures 38,

723–739 (2006)
24. Cobb, C.W., Douglas, P.H.: A Theory of Production. The American Economic Re-

view 18(1), 139–165 (1928)
25. Sacerdoti, E., Brunschwig, S., Tang, J.: The Impact of Human Capital on Growth: Evi-

dence from West Africa. IMF Working Paper. International Monetary Fund, Washington
D.C. (1998)

26. Calderón, C., Servén, L.: The Effects of Infrastructure Development on Growth and In-
come Distribution. World Bank Working Paper. World Bank, Washington D.C. (2004)

27. Jul-Larsen, E., et al.: Socio-Economic Effects of Gold Mining in Mali: A Study of the Sa-
diola and Morila Mining Operations. CMI Report, Chr. Michelsen Institute (2006)

28. Birdsall, N.: Economic Approaches to Population Growth. In: Chenery, T.N.S.H. (ed.)
Handbook of Development Economics, pp. 478–542. Elsevier Science Publishers B.V.,
Amsterdam (1988)

29. Rodgers, G.B.: Income and Inequality as Determinants of Mortality: An International
Cross-Section Analysis. Population Studies 33(2), 343–351 (1979)

462 M. Pedercini

30. Coale, A.J., Demeny, P.: Regional Model Life Tables and Stable Population, 2nd edn.
Academic Press, New York (1983)

31. Essama-Nssah, B.: The Poverty and Distributional Impact of Macroeconomic Shocks and
Policies: A Review of Modeling Approaches. World Bank Policy Research Working Pa-
per. World Bank, Washington D.C. (2005)

32. Qu, W., Barney, G.O.: A Model for Evaluating the Policy Impact on Poverty. In:
Proceedings of the 20th International Conference of the System Dynamics Society. The
System Dynamics Society, Palermo (2002)

33. FAO, AQUASTAT, Food and Agriculture Organization of the United Nations
34. EIA, Energy Information Administration
35. Monfreda, C., Wackernagel, M., Deumling, D.: Establishing national natural capital ac-

counts based on detailed Ecological Footprint and biological capacity assessments. Land
Use Policy 21, 231–246 (2004)

36. DNSI-DNPD, Rapport sur la Situation Economique et Sociale du Mali en 2005 et Perspec-
tives pour 2006. Direction Nationale de la Statistique et de l’Informatique - Direction Na-
tionale de la Planification du Developpement, Government of Mali (2005)

37. IMF, International Financial Statistics Yearbook 2004. International Monetary Fund,
Washington D.C. (2004)

38. IMF, Government Finance Statistics Yearbook 2004. International Monetary Fund, Wash-
ington D.C. (2004)

39. IMF, Balance of Payments Statistics Yearbook 2004. International Monetary Fund, Wash-
ington D.C. (2004)

40. UN, World Population Prospects: The 2002 Revision. United Nations Population Divi-
sion, New York (2003)

41. FAO, FAOSTAT. Food and Agriculture Organization of the United Nations, Rome (2004)
42. UNDG, Indicators for monitoring the Millennium Development Goals. United Nations

Development Group, New York (2003)
43. Sterman, J.D.: Appropriate summary statistics for evaluating the historical fit of system

dynamics models. Dynamica 10(2), 51–66 (1984)
44. Barlas, Y.: Formal Aspects of Model Validity and Validation in System Dynamics. Sys-

tem Dynamics Review 12(3), 183–210 (1996)
45. Richardson, G.P.: Problems with Causal-Loop Diagrams. System Dynamics Review 2(2),

158–170 (1986)
46. Richardson, G.P.: Loop polarity, loop dominance, and the concept of dominant polarity.

System Dynamics Review 11(1), 67–88 (1995)
47. Sachs, J.D., et al.: Ending Africa’s Poverty Trap. Brookings Papers on Economic Activi-

ty 35(1), 117–240 (2004)
48. Ranis, G., Stewart, F., Ramirez, A.: Frances Stewart, Alejandro Ramirez, Economic

Growth and Human Development. World Development 28(2), 197–219 (2000)
49. Bloom, D.E., Canning, D., Sevilla, J.: The Effect of Health on Economic Growth: Theory

and Evidence. NBER Working Paper Series. National Bureau of Economic Research,
Cambridge (2001)

50. Stifel, D., Minten, B., Dorosh, P.: Transaction Costs and Agricultural Productivity: Impli-
cations of Isolation for Rural Poverty in Madagascar. MSSD Discussion Paper 2003.
International Food Policy Research Institute, Washington D.C. (2003)

51. Hausmann, R., Pritchett, L., Rodrik, D.: Growth Accelerations. NBER Working Paper.
National Bureau of Economic Research, Cambridge (2004)

 Development Policy Analysis in Mali: Sustainable Growth Prospects 463

52. IMF, Mali: Fourth Review Under the Three-Year Arrangement Under the Poverty Reduc-
tion and Growth Facility and Request for Waiver of Performance Criteria. International
Monetary Fund: Washington D.C. (2006)

53. N’Djim, H., Doumbia, B.: Case study: Mali Population and water issues. In: Sherbinin,
A.B., Dompka, V. (eds.) Water and Population Dynamics: Case Studies and Policy Impli-
cations. American Association for the Advancement of Science, New York (1998)

54. WB, World Development Report 2005: A Better Investment Climate for Everyone. World
Bank, Washington D.C. (2005)

55. Dollar, D., Hallward-Driemeier, M., Mengistae, T.: Investment climate and firm perfor-
mance in developing economies. Economic Development and Cultural Change 54(1), 1–
31 (2005)

56. Warren, K.: Strategic Management Dynamics. John Wiley and Sons, Chichester (2008)
57. WB-IMF, Review of the PRS Approach: Balancing Accountabilities and Scaling Up Re-

sults. World Bank and International Monetary Fund, Washington D.C. (2005)

G. Barthe, A. Pardo, and G. Schneider (Eds.): SEFM 2011, LNCS 7041, pp. 464–475, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Using System Dynamics to Assess the Role
of Socio-economic Status in Tuberculosis Incidence

Marisa Analía Sánchez

Dpto. de Ciencias de la Administración, Universidad Nacional del Sur,
Bahía Blanca, Argentina
mas@uns.edu.ar

Abstract. Tuberculosis is one of the diseases that generate more mortality in
recent years. Recent research on the impact of DOTS programs for tuberculosis
control suggest that, after several years of successful implementation, the inci-
dence is not decreasing as expected. Globally and in most regions, the preva-
lence and mortality decay, but not quickly enough to achieve the Millennium
goals set by the WHO. Many socio-economic determinants and the exposure of
the population to risk factors have a major impact on the incidence of tubercu-
losis. The aim of this paper is to develop a conceptual model based on the dy-
namics of the tuberculosis epidemiology and its relationship to socio-economic
determinants and risk factors. The model will aid in understanding the causes of
undesired behavior and designing new policies to eliminate or mitigate them.
The work includes results of simulations and projections for Jujuy region of
Argentina.

Keywords: tuberculosis, social determinants, risk factors, system dynamics,
simulation.

1 Introduction

Health policies do not always achieve their results because of the complexity of both
the environment and the policy making process. To solve problems in the area of
public health it is necessary to gain an understanding of the systems involved and to
adopt a transdisciplinary perspective. Leischow (2008) stresses that the increasing
emphasis on a transdisciplinary, translational, and network based science reflects the
recognition that most of the causes of disease is multifactorial, dynamics and nonli-
near [1]. Transdisciplinary research is defined as the process by which a team of
stakeholders from different fields work together for extensive periods of time to de-
velop a conceptual and methodological framework that integrates and transcends their
respective disciplinary perspectives [2].

Systems Dynamics modeling is a tool to analyze the dynamic complexity of long-
term public health policies. Dynamic problems require a continuous management and
monitoring. In the specific context of the management and development of policies,
dynamic problems are those of persistent, chronic and recurring nature [3]. When
management actions are taken, the results are observed, evaluated and new actions
are taken, producing new results, observations and actions. In this way, most of the

 Using System Dynamics to Assess the Role of Socio-economic Status 465

problems of dynamic management are problems of feedback. The feedback cycle
occurs between control activities, the system, and between the components of the
system. System dynamics emerged in the mid-1950s as a proposal to consider com-
plex dynamic systems. The fundamental ideas were developed by Jay Forrester at
MIT and it postulates that the behavior of such systems results from the underlying
structure of flows, delays, and feedback loops [4]. This view is consistent with the
systemic thinking Senge calls the "fifth discipline" and considers the dynamics of
systems as part of the learning organization [5].

The prevention and control of tuberculosis (TB) fit within the problems requiring a
systemic treatment. It's one of the diseases that generate more mortality in recent
years. The international standard for tuberculosis control is the World Health
Organization’s DOT (Direct Observation of Therapy) strategy that aims to reduce the
transmission of the infection through prompt diagnosis and effective treatment of
symptomatic tuberculosis patients who present at health care facilities. The treatment
is based on the strict supervision of medicines intake. Recent research on the impact
of DOTS programs for tuberculosis control suggest that, after several years of suc-
cessful implementation, the incidence is not decreasing as expected. Globally and in
most regions, the prevalence and mortality decay, but not quickly enough to achieve
the Millennium goals set by the WHO. From the estimated annual incidence of 9.1
million cases of tuberculosis, only 5.27 million have been notified. This means that
approximately 40 per cent was not detected or notified to DOTS programs [6]. In this
context the WHO stresses the urgent need to accelerate efforts in the early detection
and to provide a health service of high quality.

Many socio-economic determinants (such as poverty, education, or access to health
services) and the exposure of the population to risk factors (e.g., tobacco, HIV, di-
abetes) have a major impact on the incidence of tuberculosis. It is therefore necessary
to determine causal relationships and key areas in which policymakers should focus
resources. Lönnroth [7] observes that one avenue for improved TB prevention is
through actions to address the social determinants of TB, as well as the more
proximate risk factors (the physical and biomedical factors that directly influence the
mechanisms that govern exposure to tuberculosis, risk of acquiring tuberculosis infec-
tion, and risk of progression from tuberculosis infection to active tuberculosis dis-
ease). The aim of this paper is to develop a conceptual model based on the dynamics
of the tuberculosis epidemiology and its relationship to socio-economic determinants
and risk factors. The model will aid in understanding the causes of undesired behavior
and designing new policies to eliminate or mitigate them. The work includes results
of simulations and projections for Jujuy region of Argentina.

The rest of this work is structured as follows: Section 2 introduces the use of Sys-
tem Dynamics in public health; provides a brief overview of the proposals to model
the dynamics of tuberculosis and a discussion about their limitations to quantify the
effect of socio-economic status and risk factors. Section 3 presents and explains the
proposed model. Then, Section 4 shows simulation results. Finally, Section 5 presents
conclusions.

466 M.A. Sánchez

2 System Dynamics Modeling in Public Health

System Dynamics modeling was developed by Jay W. Forrester and has gained relev-
ance in recent years because of the need to model complex systems. System Dynam-
ics is a methodology to model the forces of change in a complex system so that their
influences can be better understood. There is a tradition in the use of dynamic simula-
tion to study problems in the social sciences. Currently, it is used in public health [8],
[9], social welfare [10], sustainable development [11], security [12], among many
others. The methodology is iterative, allows various stakeholders to combine their
knowledge of a problem in a dynamic hypothesis and then, using computer simula-
tion, formally compare various scenarios on how to lead change [13]. The emphasis
of system dynamics is not to forecast the future, but in learning how the actions in the
present can trigger reactions in the future [5]. Even though it is not possible to deter-
mine with some degree of certainty the value of constants or change rates, the model
is used as a learning tool to determine causal paths and relevant factors.

Simulation and system dynamics introduce laboratory conditions in the social
sciences research. Ghaffarzadegan [14] emphasizes that the problems associated with
the formulation of public policies have features that prevent its resolution with tradi-
tional techniques different to simulation, namely resistance of environmental policy;
need to experiment and the cost of experience; need to persuade different stakehold-
ers; extreme confidence of policymakers; and need to analyze from an endogenous
perspective. Policy resistance occurs when policy actions trigger feedback from the
environment that undermines the policy and at times even exacerbates the original
problem. This situation is common when there are long delays between the actions
and the outcomes. The topic of extreme confidence in management has been treated
by numerous investigations. Briefly, it can be noted that too much confidence com-
bined with the complexity of public policy, where many times the benefits are not
perceived through intuition, can be a serious obstacle in the formulation of policies.
The need to have an endogenous perspective refers to the ability to recognize (both at
individual and organizational levels) which events are the results of internal factors.
Senge refers to this problem in terms of organizational learning [5].

A central aspect of system dynamics is that complex behavior of organizations and
social systems are the result of the accumulation - of people, materials, or financial
assets - and balance and feedback mechanisms. The first step to develop a dynamic
model is to develop a hypothesis explaining the cause of a problem and define a
Causal Loop Diagram. The diagram is a tool to analyze the problem, to then define a
formal model using a set of differential equations that can be analyzed mathematically
to determine conditions of convergence. In addition, the model is used to develop
simulations that allow numerical experiments and analyze scenarios.

Numerous authors highlight the contribution of mathematical modeling in epide-
miology [15]. In the case of tuberculosis there are mathematical models to study the
dynamics of tuberculosis, the spread of HIV, the appearance of multi-drug-resistance
tuberculosis, among others. In [16] the authors group models by their structure: SEIR-
type models, age-structured and delayed models, and spatially structured models. In
SEIR-type models the population is categorized in one of the states of susceptible,
exposed, infectious or recovered. One of the main attributes of these models is that

 Using System Dynamics to Assess the Role of Socio-economic Status 467

the infection rate is a function of the number of infectious individuals at an instant t,
and then is a non-linear term. Some proposals differ in the way they represent pro-
gression of a latent infection to active disease [17], [18], [19], [20] [21], [22]. Another
issue among TB models is whether, and how, they choose to represent re-infection.
Age-structured models have been developed to explore TB control under DOTS strat-
egy [23], or vaccination strategies analysis [24], [25]. Several TB models focus on the
burden of multi-drug-resistance TB [26], [27], [28]. In [29] the authors explore the
impact of HIV on TB epidemics which is a topic of great importance in Africa.

In the majority of these models there is a threshold behavior to determine under
what conditions an equilibrium state is achieved which indicates that an epidemic is
controlled. However, with the aim of making these models tractable, simplifications
and somewhat unrealistic assumptions are made, that greatly affect the determination
of the equilibrium point of the system.

In the works previously mentioned the impact of risk factors and socio-economic
status is not incorporated explicitly. The impact is incorporated implicitly when giv-
ing values to the rate of infection, the number of contacts, the length of treatment, etc.
Thus, while it is possible to use the model to make projections, it is not possible to
analyze and quantify the impact of risks. To the best of our knowledge, only [8] pro-
poses a holistic view of health care. The work examines the interactions between
prevalence, adverse living conditions, and the ability of the community to act. It is not
developed to any disease in particular; in any case, sensitivity analysis shows the
effect of different health care actions in the short and long term.

3 Model Proposal

In the DOTS Expansion Working Group report [30], the WHO includes a conceptual
framework for a better early detection of cases of tuberculosis. The model describes
processes from infection to notification and explicit delays and other obstacles to the
health system. The model puts in context the role of the components of the Stop TB
strategy. Unlike early models of the strategy, this proposal makes explicit the factors
that interfere with the implementation of the strategy.

This model is one of our sources of inspiration to define an epidemiological model
of the dynamics of tuberculosis that allows analyzing the impact of risk factors and
social determinants in the incidence of the disease. Our proposal allows studying the
impact of different health strategies from a holistic perspective. In what follows, we
describe some risk factors and social determinants included in our model.

3.1 Social Determinants and Risk Factors

In [31] the authors analyze the major risk factors related to tuberculosis and provide
an estimate of the relative risk of developing tuberculosis (see Table 1).

The impact of risk factors changes for different regions. For example, HIV and mal-
nutrition are very important in Africa; while diabetes has more relevance in Europe or
United States. Projections indicate that the prevalence of diabetes will increase.

468 M.A. Sánchez

Table 1. Relative risks of active tuberculosis

 Relative risk for active TB
HIV 26.7
Malnutrition 3.2
Diabetes 3.1
Alcohol 2.9
Active smoker 2.6
Indoor air pollution 1.5

In [31] the authors quantify the risk of death for patients of tuberculosis associated

with demographic and clinical factors in fifteen European countries. One of the main
findings is that the elderly and resistance to isoniazid and rifampicin were the main
determinants of death. The authors conclude that given the high risk of death with
multi-drug-resistance TB (MDR-TB), a strict adherence to prescribed treatment regi-
mens, the early testing for susceptibility to drugs, and the proper use of medication
are crucial to prevent the growth and spread of drug resistance.

Other risk factor addressed in the literature is alcohol. In [31] the authors highlight
the presence of a social pattern that includes a high exposure to alcohol and to envi-
ronments with high risk of infection; and the increased risk to the activation of the
disease due to direct and indirect effect of alcohol on the immune system. The indirect
effects are manifested with disorders introduced by alcohol such as poor nutrition,
chronic diseases, etc.

In [32] the authors provide a detailed analysis of the various factors interplaying to
affect the health-seeking behavior and timely treatment. The study was conducted in
seven countries of the WHO Eastern Mediterranean Region. They categorize the
factors as either patient or health systems delays. The main determinants of delay
were socio-demographic (illiteracy, suburban residence); economic; stigma; time to
reach the health facility; seeking care from non-specialized individuals; and visiting
more than one health care provider before diagnosis. Delay in diagnosis results in
increased infectivity in the community and may also lead to a more advanced disease
state at presentation, which contributes to late sequel and overall mortality [32].

Below, we present a model that includes all these issues to understand how they
combine to define an undesired state of the evolution of the disease.

3.2 Model Components

Fig. 1 presents the model using a Causal Loop diagram. It shows the interactions
between the states of patients with tuberculosis, overcrowding, illiteracy, stigma, and
the obstacles to access the health system, the impact of strategies such as DOTS, and
risk factors such as diabetes or HIV. The model consists of causal relationships. The
causal relationship means that the input variable has some causal influence
on the output variable . A positive influence means "a change in x, being the rest of
variables unchanged, causes to change in the same direction". The symbol + indi-
cates a positive causality. On the other hand, a negative influence means "a change in

 Using System Dynamics to Assess the Role of Socio-economic Status 469

, being the rest of variables unchanged, causes to change in the opposite
direction".

The system is dominated by a cycle of positive feedback that can be avoided de-
creasing adverse conditions and increasing primary prevention. In this way, the popu-
lation is less exposed to the disease. Then, once in the "circle of disease", it is not feed
improving screening (search for the disease), access delay, health education, or DOTS
coverage.

Based on this conceptual framework we defined a model using a system of diffe-
rential equations. The population is divided into the following epidemiological classes
or subgroups: susceptible to infection (Susceptible); exposed to drug-sensitive TB
(Latent DSTB); exposed to multi-drug-resistant TB (Latent MDRTB); exposed to TB
after treatment (Latent after Treatment); infectious population (Infectious DSTB,
Infectious Clinical DSTB, Infectious Detected DSTB, Infectious First Line Treat-
ment, Infectious MDRTB, Infectious Second Line Treatment MDRTB, Infectious
MDRTB after Treatment, and Persistent MDRTB); and cured. We allow re-infection
to move individuals from the cured class to the latent classes. The most significant
difference of this model with respect to others is the distinction among different sub-
groups for the active tuberculosis class. This allows representing the effect of delays
since the individual is infectious until he starts treatment.

We assume that an individual can become infected through contact with other in-
fectious individuals. is the average number of susceptible and treated individu-
als, infected by an infectious individual per contact per unit of time; Contacts is the
contact rate per-capita; K is the rate by which an individual leaves the latent class and
becomes infectious; and p represents the re-infection level. To incorporate the impact
of HIV (or diabetes mellitus) we proceed in the following way. Given the relative
risk for active TB, (), and the percentage of population with HIV,

 (), let define the rate of activation as: · · · _ · _ ⁄ _ · _ · _ · _ · 1 _ · . (1)

The model makes explicit the main contributors to delays: illiteracy, suburban resi-
dence, stigma, time to reach health facility, and adherence to DOTS. In [32] the authors
use multivariate logistic regression analysis to adjust for the confounding effect of sev-
eral identified determinants of diagnostic and treatment delay of tuberculosis patients.
Cases with longer delays were categorized as “cases” while with shorter delays were
considered as “controls”. The cut-off point for “longer” delay was defined according to
the median value obtained for each country. For example, one of the significant risk
factors for total delay in Egypt was being illiterate (AOR 2.76). This means that in the
model the odds for a longer delay is 2.76 times higher than a shorter delay. The authors
provide data for the minimum and maximum delays (in days) and a confidence interval
for the adjusted odds ratio (AOR). Then, given the AOR value for a particular risk fac-
tor, we estimate the delay variation with respect to the mean. Finally, the delay rates in
the model are adjusted using the estimated variation.

470 M.A. Sánchez

Fig. 1. Global model of the dynamics of tuberculosis

Tuberculosis is curable in most instances. Using combinations of first-line drugs
around 90% of people with drug-susceptible TB can be cured in six months. Treat-
ment of multidrug-resistant TB requires use of second-line drugs that are more costly
and cause more severe side-effects, and recommended regimens must be taken for up
to two years. Cure rates for MDR-TB are lower, ranging from around 50% to 70%.
The WHO distinguishes between two types of resistance: acquired resistance (resis-
tance among previously treated patients) and primary resistance (resistance among
new cases). We formulate a quite basic transmission sub-model to study the dynamics
of multi-drug resistant tuberculosis. However, it allows analyzing the effect (a) to
scale up access to testing for resistance to first-line anti-TB drugs among TB patients;
and (b) to scale up access to effective treatment for drug-resistant TB. The variable
Fraction test MDRTB models the proportion of people who have been previously
treated for TB that is tested for MDR-TB. The variable Treatment success rate
MDRTB models the proportion of people who are successfully treated.

This model was translated into the continuous simulation language Stella™. Sever-
al simulation experiments were conducted to analyze scenarios and determine which
factors are of greater impact on the prevalence of tuberculosis. Fig. 2 includes part of
the interface of the simulator tool that was designed to facilitate the updating of para-
meters. The tool allows using the simulator for different populations and settings by
modifying the values of parameters from the interface, and hence it becomes an expe-
rimental laboratory. In what follows, we present some results of the simulation.

 Using System Dynamics to Assess the Role of Socio-economic Status 471

Fig. 2. Interface of the simulator tool

4 Simulation Results

The model is initialized with population data, and people with TB notified during the
period 1985-2005 [33] for the Jujuy region of Argentina. Jujuy is a province of Ar-
gentina, located in the extreme northwest of the country, at the border with Chile and
Bolivia. The pulmonary tuberculosis incidence rate is 154.15 (each 100.000 inhabi-
tants) in 1985 and 63.01 in 2006 (the estimated national incidence is 24.11 in 2006).

We validated the model with data published by the National Institute of Respirato-
ry Diseases of Argentina [33]. The main obstacle to calibrate the simulation model is
the lack of statistical data to evaluate the relative risk of different socio-economic
determinants. Therefore, we estimated values using regional data and values pub-
lished in [32]. We simulated 20 years to calibrate the model parameters (0.837).
Then, different scenarios are analyzed for the next 10 years. We initialize the va-
riables that represent different classes with the resulting final values resulting from
the model calibration. The integration method is Runge-Kutta 4 with a weekly step.

The results of the simulation showed that the prevalence of tuberculosis is very
sensitive to delays that occur since an individual becomes infectious until the disease
is diagnosed and he begins treatment. Delays contribute to increase the infectious
population, which increases the likelihood of infectious contacts and reinforces the
cycle of the disease. Hence, a slight increase in relative risk factors such as illiteracy,
stigma, time to reach facility, or suburban residence may threaten the targets for 2015.

472 M.A. Sánchez

In what follows, we see the effect certain variables have in the model while hold-
ing other assumptions to their baseline value. Fig. 3 shows results for the relative risk
of time to reach facility assuming values of 1 (the delay is equal to the mean delay), 2
or 3 (the delay is 2 or 3 times the mean delay). Observe that in 30 years the total in-
fectious population maybe 225.76; 293.07.88; or 377.88.

Fig. 3. Sensitivity analysis to assess the impact of the Relative Risk of Time to reach facility
(RRTF) on the infectious population (1:RRTF=1; 2:RRTF=2; 3:RRTF=3)

The need to scale-up the diagnosis and effective treatment of MDR-TB was clearly
recognized in the Global Plan to Stop TB 2006-2015. The target is that the incidence
of MDR-TB should be declining by 2015. To achieve this goal, there are six major
objectives. For the purpose of showing the simulator performance, we consider two of
these objectives.

The first objective we consider is to scale up access to testing for resistance to first-
line anti-TB drugs among TB patients. We include simulation results for the variable
Fraction test MDRTB assuming 7% (baseline 2009) and a gradual increment towards
100% (target 2015) [34]. However, the total infectious population shows a very slight
decrement by 2015. Only by 2025 the infectious pool decreases in 4%. In this case,
this is due because there are few MDRTB individuals.

Another WHO objective is to scale up access to effective treatment for drug-
resistant TB. The treatment success rate among patients with confirmed MDR-TB
should increase from the 2009 baseline of 60% to up to 75% by 2015. Simulation
results show a decrease in the total number of infectious people of 3%.

The increase in the incidence of diabetes, is supposed to increase the risk of acti-
vating the disease, therefore, increases the value for the factor k (rate that an individu-
al leaves the latent class and becomes infectious). The evolution of tuberculosis is
very sensitive to these parameters.

 Using System Dynamics to Assess the Role of Socio-economic Status 473

5 Conclusions

This work describes the complexity of both the environment and the health policy
making process. The tuberculosis prevention and control problem highlights the im-
portance of considering causal relationships, and adopt an endogenous perspective to
understand behavior. The paper relates results of various investigations, since the
ideas of Jay Forrester, Senge until the latest proposals as transdisciplinary research. A
brief overview of the proposals to model the dynamics of tuberculosis is given and a
discussion about their limitations to quantify the effect of socio-economic determi-
nants and risk factors.

The main contribution of this paper is the development of an epidemiological mod-
el of the dynamics of tuberculosis that allows analyzing the impact of risk factors and
socio-economic status in the incidence of the disease. In particular, the model distin-
guishes among different subgroups for the active tuberculosis class. This allows to
focus on the effects of delays, on quantifying the contributors of the delay, and on
simulating the impact of reducing such delays on mitigating the TB incidence. Given
the importance of these aspects on the success of the DOTS strategy, we propose a
more realistic model of the evolution of the disease. In this way, the proposal is less
reductionist and expected to be more effective to achieve robust solutions. Based on
the model we developed a simulation tool that can be used for different populations
and settings by modifying the values of parameters from the interface.

References

1. Leischow, S., Best, A., Trochim, W., Clark, P., Gallagher, R., Marcus, S., Matthews, E.:
Systems Thinking to Improve the Public’s Health. American Journal of Preventive Medi-
cine 35(2S), 196–203 (2008)

2. Stokols, D., Hall, K., Taylor, B., Moser, R.: The science of team science: overview of the
field and introduction to the supplement. American Journal of Preventive Medi-
cine 35(2S), 77–89 (2008)

3. Barlas, Y.: System dynamics: Systemic Feedback Moeling for Policy Analysis. In:
Knowledge for Sustainable Development - An Insight into the Encyclopedia of Life Sup-
port Systems, pp. 1131–1175. UNESCO-Eolss Publishers, Paris (2002)

4. Forrester, J.: Industrial Dynamics. Pegasus Communications, Massachutses (1961)
5. Senge, P.: The fifth discipline: the art and practice of the learning organization. Double-

day/Curency, New York (1990)
6. World Health Organization: Report of the Meeting of the DOTS Expansion Working

Group. Engaging professional Associations in TB Control., Geneve (2009)
7. Lönnroth, K., Jaramillo, E., Williams, B., Dye, C., Raviglione, M.: Drivers of tuberculosis

epidemics: The role of risk factors and social determinants. Social Science & Medicine 68,
2240–2246 (2009)

8. Horner, J., Hirsch, G.: American Journal of Public Health (96), 452–458 (March 2006)
9. Thompson, K., Duintjer Tebbens, R.: Using system dynamics to develop policies that mat-

ter: global management of poliomyelitis and beyond. System Dynamics Review 24(4),
433–449 (2008)

474 M.A. Sánchez

10. Zagonel, A., Rohrbaugh, J., Andersen, D.: Using simulation models to address “What if”
questions about welfare reform. Journal of Policy Analysis and Management 23(4), 890–
901 (2004)

11. Dudley, R.: A basis for understanding fishery management dynamics. System Dynamics
Review 24(1), 1–29 (2008)

12. Bontkes, T.: Dynamics of rural development in southern Sudan. System Dynamics Re-
view 9(1), 1–21 (1993)

13. Andersen, D., Richardson, G., Vennix, J.: Group model building: adding more science to
the craft. System Dynamics Review 13(2), 187–201 (1997)

14. Ghaffarzadegan, N., Lyneis, J., Richardson, G.: Why and How Small Systems Dynamics
Models Can Help Plicymakers: A Review of Two Public Policy Models. In: 26th Interna-
tional Conference of the System Dynamics Society, Athens (2008)

15. Chubb, M., Jacobsen, K.: Mathematical modeling and the epidemiological research
process. European Journal Epidemiology 25, 13–19 (2010)

16. Colijn, C., Cohen, T., Murray, M.: Mathematical models of tuberculosis: accomplishments
and future challenges. In: International Symposium on Mathematical and Computational
Biology (2006)

17. Dye, C., Garnett, G., Sleeman, K., Williams, B.: Prospects for worldwide tuberculosis
control under the WHO DOTS strategy Directly Observed Shortcourse therapy. The Lan-
cet 367(9514), 938–940 (2006)

18. Blower, S., McLean, A., Porco, T., Small, P., Hopewell, P., Sanchez, M., Ross, A.: The
intrinsic transmission dynamics of tuberculosis epidemics. Nat. Med. 1(8), 815–821
(1995)

19. Vynnycky, E., Fine, P.: Lifetime risks, incubation period, and serial interval of tuberculo-
sis. Am. J. Epidemiol. 152(3), 247–263 (2000)

20. Cohen, T., Colijn, C., Finklea, B., Murray, M.: Exogenous Re-Infection and the Dynamics
of Tuberculosis Epidemics: Local Effects in a Network Model of Transmission. J. R. Soc.
Interface 4(14), 523–531 (2007)

21. Feng, Z., Castillo, C., Capurro, A.: A Model for Tuberculosis with Exogenous Reinfec-
tion. Theoretical Population Biology (57), 235–247 (2000)

22. Blower, S., Small, P., Hopewell, P.: Control Strategies for Tuberculosis Epidemics: New
Models for Old Problems. Science 273(5274), 497–500 (1996)

23. Castillo-Chavez, C., Feng, Z.: Global stability of an age-structure model for tuberculosis
and its applications to optimal vaccination strategies. Math. Biosci. 151(2), 135–154
(1998)

24. Gomes, M., Franco, A., Medley, G.: The Reinfection Threshold Promotes Variability in
tuberculosis Epidemiology and Vaccine Efficacy. Proc. Biol. Sci., 617–623 (2004)

25. Vinnicky, E., Fine, P.: The Natural History of Tuberculosis: The Implications of Age-
dependent Risks of Disease and The Role of Infection. Epidemiol. Infect. (119), 183–201
(1997)

26. Cohen, T., Sommers, B., Murray, M.: The effect of drug resistance on the fitness of my-
cobacterium tuberculosis. Lancet Infect. Dis. 3(1), 13–21 (2003)

27. Cohen, T., Murray, M.: Modeling Epidemics of Multidrug-resistant Tuberculosis of Hete-
rogeneous Fitness. Nat. Med. 10(10), 1117–1121 (2004)

28. Blower, S., Chou, T.: Modeling the emergence of the “hot zones”: tuberculosis and the
amplification dynamics of drug resistance. Nat. Med. 10(10), 1111–1116 (2004)

29. Currie, C., Williams, B., Cheng, R., Dye, C.: Tuberculosis epidemics driven by HIV: is
prevention better than cure? AIDS 17(17), 2501–2508 (2003)

 Using System Dynamics to Assess the Role of Socio-economic Status 475

30. World Health Organization: Report of the Meeting of the DOTS Expansion Working
Group. Engaging professional Associations in TB Control., Geneve (2009)

31. Lönnroth, K., Raviglione, M.: Global Epidemiology of Tuberculosis: Prospects for Con-
trol. Semin. Respir. Crit. Care Med. (29), 481–491 (2008)

32. World Health Organization. Regional Office for the Eastern Mediterranean: Diagnostic
and treatment delay in tuberculosis, Cairo (2006)

33. Instituto Nacional de Enfermedades Respiratorias: Notificación de Casos de Tuberculosis
en la República Argentina. Período 1980-2006. PRO.TB.Doc.Tec. 07/07 (2007)

34. World Health Organization: The Global Plan to Stop TB 2011-2015, Geneve (2010)

G. Barthe, A. Pardo, and G. Schneider (Eds.): SEFM 2011, LNCS 7041, pp. 476–485, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Energy Consumption and CO2 Emissions of Beijing
Heating System: Based on a System Dynamics Model

Hefeng Tong and Weishuang Qu

Institute of Scientific & Technical Information of China, Beijing, China
2111 Wilson Blvd. Suite 700, Arlington VA 22201, USA

thf2003@istic.ac.cn, wq@millennium-institute.org

Abstract. Beijing is a typical North China city, and it uses about 15–18% of its
total energy consumption for heating. The building construction industry is also
a key source of CO2 emissions. This article, based on a system dynamics model,
aims to simulate and forecast Beijing’s energy consumption and CO2 emissions
under different scenarios. Under the baseline scenario, the energy consumption
of Beijing’s heating system in 2030 will be 15.44 MTce and the corresponding
CO2 emissions will be 9.71 MT. Gas is the major energy source for heating sys-
tems, accounting for more than 60% of the energy used. In the less building
scenario, the energy used for heating in 2030 is projected to be 13.91 MTce,
9.88% less than baseline scenario. The cumulative saving in energy used for
heating will be 19.39 MTce, with CO2 reductions of 12.38 MT. In the energy
efficiency scenario, the energy consumed for heating in 2030 is projected to be
13.16 MTce, 14.73% less than baseline scenario. The cumulative saving in
energy used for heating is projected to be 21.02 MTce, with a CO2 reduction of
12.13 MT. Thus, to achieve greater energy savings, a combination of policy
measures, from both the demand side (smaller residential properties) and the
technology side is needed.

Keywords: Heating System, Energy Consumption, CO2 Emissions, System
Dynamics.

1 Introduction

The building sector is a key area for energy consumption and CO2 emissions, accord-
ing to estimates by the United Nations Intergovernmental Panel on Climate Change’s
Fourth Assessment Report [1]. In 2004, the global construction industry’s direct emis-
sions of greenhouse gases (excluding emissions from electricity) were about 5 billion
ton. Heating for buildings is a major part of the energy consumption and CO2 emis-
sions in this sector.

China is one of the largest construction markets in the world. In 2004, the total con-
struction area of buildings in China was 38.9 billion m2, and the energy consumption in
buildings was about 510 MTce (Million ton coal equivalent), accounting for 25.5% of
the total energy consumption of the entire country. CO2 emissions from the building
sector were about 1.25 billion ton. Heating is necessary in winter in northern China.

 Energy Consumption and CO2 Emissions of Beijing Heating System 477

The energy consumed to heat urban buildings accounts for nearly 40% of the total ener-
gy consumption in these northern cities. In north China’s urban buildings an area of
approximately 6.4 billion m2 is heated, and the energy consumed for heating is equiva-
lent to about 130 MTce per year. The average amount of energy needed for heating per
square meter per year is about 20 kgce (kilogram coal equivalent) [2]. There is consi-
derable potential for savings in the amount of energy used for heating in China. As
Beijing is a typical northern city in China, we chose it for our case study [3].

System dynamics (SD) is a feedback-based, object-oriented modeling paradigm
which originated in work done by Forrester [4]. SD is used to model complex systems
which are often nonlinear and are governed by feedbacks. It mainly focuses on the
interrelationships rather than individual objects. In the feedback loops of a SD model,
a change in one variable affects other variables in the system over time, which in turn
affects the original variable. Establishing all these relationships correctly and explicit-
ly is helpful for understanding complex systems and improves the understanding of
the behavior of the system. The SD model can simulate the short- and long-term con-
sequences of alternative policies and permits easy comparison with the reference
scenarios. It also supports advanced analytical methods, such as sensitivity analysis
and optimization. SD has been applied to many different complex industrial, econom-
ic, social, and environmental systems, to simulate situations related to policy analysis,
economics, biology, energy policy, medicine, industrial engineering, urban planning,
climate change, water resources systems, and the air travel industry [5-9]. An urban
heating system is a typical complex system, so we chose SD as our methodology.

2 Case study of Beijing City

Beijing is located in the North China Plain and has a typical continental climate. In
2008, the average temperature in Beijing was 13.4 ℃. Heating is used in Beijing from
November 15 to March 15, a period of about 4 months. With the improvement in
living standards, the period during which heating is used has been extended, and in
some areas in Beijing, it has reached 5–6 months. Key factors determining the energy
consumption for urban heating and CO2 emissions include: population size, per capita
living area, temperature setting, energy price, and energy type.

In 2000, the total population in Beijing was 13.63 million, and in 2007 it reached
16.33 million, an increase of 19.76% in seven years. According to the Beijing Statis-
tical Yearbook 2010, 8.9 MTce, about 17.3% of Beijing’s total consumption of ener-
gy, was consumed to heat buildings in 2004. At the end of 2004, the total area of
Beijing being heated was 428.5 million m2, including 134.39 million m2 heated by
gas, 180.3 million m2 heated by coal, and 84.87 million m2 heated by central heating
(using heat from power plants), and some other sources of energy (electricity and oil).
In Beijing, coal and natural gas are the main sources of heating energy, the other
sources are electricity, its byproduct (heat), and oil. There is a very small amount of
heating from geothermal, solar, and other renewable energy sources.

478 H. Tong and W. Qu

3 Model Structure

3.1 Major Assumptions

Models are only valid under certain assumptions. For the sake of simplicity, we have
made the following assumptions for this particular model:

1. Heating in the model refers to the heating of rooms. Domestic hot water and
cooking are not included.

2. In the model, the building area only covers urban residential and public build-
ings. Rural residential and office buildings are not included.

3. In the model, there are five types of heating: the central heating network, coal-
fired heating, gas heating, oil-fired heating and electrical heating. There are four
types of heating energy resource: coal, gas, oil, and electricity. It should be
noted that the central heating network has two energy sources: coal and gas.

3.2 Construction of the Model

We chose Vensim as our modeling tool. It is an integrated framework for conceptua-
lizing, building, simulating, analyzing, optimizing, and applying models of complex
dynamic systems. Vensim supports users in creating stock and flow diagrams to
represent systems in greater structural detail. Stocks and flows can be imbedded in
causal loops to clearly show the different components of the system. The simulation
period used for the model was 2000–2030. For the period 2000–2007 we can compare
the simulation results with the actual historical data.

As mentioned earlier, population size, living area per person, temperature setting,
energy price and type of heating energy are the key factors in the urban consumption
of energy for heating and CO2 emissions. The plus or minus signs in Figure 1 indicate
a positive or negative causal effect of the independent variable on the dependent vari-
able. The loop between living area per person, total built-up area, total area being
heated, and the consumption of heating energy is a negative feedback loop.

Fig. 1. Main causal relations of the model

population

per person living
area total building area

total heating area

public building
area

+

+
+

+

heating rate

+
heating energy
consumption

heating CO2

emissions
+

+

-

energy price

-

 Energy Consumption and CO2 Emissions of Beijing Heating System 479

The model includes four major subsystems: population, area of buildings, the ener-
gy consumption per meter squared, and heating. Variables in angle brackets, such as
<PB>, <PPLA>, <TP> and <PSMCC> (known as shadow variables in Vensim) indi-
cate that they are calculated in other modules and are then used in this module. The
relationships between the variables are modeled by mathematical functions. Some of
the influencing factors, such as temperature setting and energy price, were modeled
exogenously, which makes the handling of the model less complex. The main equa-
tions of the heating subsystem and explanations of variables are given below:

1. UP = TP UR

Where UP is the urban population, TP is the total population, and UR is the
urbanization rate.

2. URB = UP PPLA

Where URB denotes urban buildings, and PPLA is the per person living area.

3. TBA = URB + PB

Where TBA is the total building area, and PB denotes public buildings.

4. THA = TBA RBH

Where THA is the total heating area, and RBH is the ratio of buildings heated.

5. BACC = THA ROCHS + THA RCHS ROCCICHS

Where BACC is the building areas of coal consumption, ROCHS is the ratio of coal
heating system, RCHS is the ratio of central heating system, and ROCCICHS is the
ratio of coal consumption in central heating system.

6. HCC = BACC PSMCC

Where HCC denotes heating coal consumption, and PSMCC is the per m2 coal
consumption.

7. THEC = HCC + HGC + HOC + HEC

Where THEC is the total heating energy consumption, HGC is the heating gas
consumption, HOC is the heating oil consumption, and HEC is the heating electricity
consumption.

8. TCE = THEC CEF

Where TCE is the total CO2 emissions, and CEF is the carbon emission factor (see
Figure 2).

480 H. Tong and W. Qu

Fig. 2. Causal diagram for heating subsystem

3.3 Check on Model

First, the model generated a good fit to the historical data for the period 2000–2007.
The variables selected for historical comparison are: total population, total consump-
tion of primary energy, and total area of urban buildings. As shown in Table 1, most
deviations between the historical data and simulation results are under 5%.

Table 1. Historical check of main variables

 Total population (M) Total primary energy (M) Total area of urban buildings (M)

 H B D H B D H B D

2000 13.64 13.57 0.49% 42.02 40.90 −2.66% 291.09 291.09 0.00%

2001 13.85 13.91 0.44% 42.29 44.34 4.85% 377.17 379.24 0.55%

2002 14.23 14.24 0.07% 44.36 45.57 2.71% 404.83 428.88 5.94%

2003 14.56 14.58 0.11% 46.48 49.40 6.27% 431.22 462.34 7.22%

2004 14.93 14.94 0.11% 51.40 52.91 2.95% 465.23 489.40 5.20%

2005 15.38 15.35 −0.18% 55.22 56.23 1.83% 505.07 524.04 3.76%

2006 15.81 15.80 −0.08% 59.04 60.70 2.81% 542.82 567.14 4.48%

2007 16.33 16.26 −0.46% 62.85 63.55 1.12% 573.61 604.30 5.35%

H signifies historical data, B signifies baseline of simulation results, and D signifies the dev-
iation between the first two. M signifies million.

UP

URB
<PPLA>

<PB>

TBA

UR

RBH

THA

BACC

BAGC

BAOC

BAEC

RCHS

ROCHS

ROGHS

ROOHS

ROEHS

ROCGICHS
ROCCICHS

HCC

HGC

HOC

HEC

THEC

<TP>
<PSMCC>

<PSMGC>

<PSMEC>

<PSMOC>

CEF

TCE

 Energy Consumption and CO2 Emissions of Beijing Heating System 481

After the historical test, we developed a sensitivity test (see Figure 3) to see how
sensitive the model is to different assumptions. While it is easy to test for sensitivity
by comparing a number of different simulations, this is often impractical when many
parameters need to be tested together. Vensim has a sensitivity capability that makes
it easy to run multivariate sensitivity simulations (Monte Carlo) and Latin hypercube
simulations. You can simply select the parameters that you want to test, and the re-
sulting variables that you want to see, and Vensim’s sensitivity graph then will then
show either the simulation traces or confidence bounds, as required.

Fig. 3. Sensitivity testing of total energy used for heating

4 Scenario Analysis

In the model, all input variables can be changed to complete a simulation (or run a
scenario). In order to have a clear picture of future heating energy consumption and
CO2 emissions, we selected several optimistic values to build our scenarios to assess
future policy.

4.1 Baseline Scenario

The baseline scenario is based on the existing trends and policies for future develop-
ment. In the baseline scenario (see Table 2), it is assumed that in the period 2008–2030,
Beijing will continue its energy efficiency and conservation policies. In 2030, the total
population of Beijing is projected to be 22.63 million, increasing by 66.78% over the
2000 figure. The total consumption of energy for heating is projected to be 15.44 MTce,
increasing by 166.22% over the 2000 figure. The total emissions of CO2 from heating
are projected to be 9.71 MT, increasing 158.88% over the 2000 value. The rate of
growth of CO2 emissions is projected to be slower than that of energy consumption, as

sensitivity
50% 75% 95% 100%

total heat energy use
40

30

20

10

0
2000 2008 2015 2023 2030

Time (Year)

482 H. Tong and W. Qu

in the future gas will have a larger share in the energy source while coal will have a
lesser share, and the emission factor of gas is lower than that of coal. The proportion of
Beijing’s total consumption of energy that will be used for heating is projected to be
11.67% in 2030. The proportion of Beijing’s CO2 emissions in 2030 which will be due
to heating is projected to be 5.67% of Beijing’s total CO2 emissions.

Table 2. Simulation results for baseline scenario

Variable 2010 2015 2020 2025 2030

TP (M) 17.63 19.70 21.28 22.28 22.63

THA (M) 704.00 904.23 1102.43 1293.89 1471.14

THEC (M) 12.23 13.87 14.90 15.42 15.44

TCE (M) 8.08 9.03 9.54 9.79 9.71

4.2 Less Building Scenario

In the period 2000–2007, Beijing’s urban per capita floor space used for housing
increased from 22.3 m2 to 27.03 m2, and the rural per capita living space increased
from 28.91 m2 to 39.54 m2. Larger houses needs more energy for heating. Based on
past trends, the urban and rural per capita housing floor space is projected to be 45 m2
in 2030 in the base scenario. In the less building scenario, the urban and rural floor
space for housing per capita in 2030 is projected to be 40 m2.

In the less building scenario in 2030, the total population will not change. The total
area being heated, energy consumption, and CO2 emissions will be reduced (see Table
3). The total consumption of energy for heating is projected to be 13.91 MTce, 9.88%
less than the baseline scenario. The total CO2 emissions from heating are projected to
be 8.75 MT, 9.88% less than the baseline scenario. The cumulative saving in energy
consumption will be 19.39 MTce, and the cumulative reduction in CO2 emissions will
be 12.38 MT.

Table 3. Simulation results for less building scenario

Variable 2010 2015 2020 2025 2030

THA (M) 693.62 865.77 1031.10 1186.28 1325.74

THEC (M) 12.05 13.28 13.94 14.14 13.91

TCE (M) 7.96 8.65 8.93 8.98 8.75

 Energy Consumption and CO2 Emissions of Beijing Heating System 483

4.3 Energy Efficiency Scenario

In the ‘Eleventh Five Year Plan’ (2006–2010) for energy efficiency in Beijing’s
buildings, the actual average energy consumption in 2010 is projected to be 10%
lower than that in 2006, so the model set the yearly increase in energy efficiency at
2% for gas and coal. In the energy efficiency scenario, we set a more ambitious goal
for energy efficiency: a 3% yearly increase in energy efficiency for gas and coal.

In the energy efficiency scenario, the total population and total area being heated
are not projected to change in 2030. The total consumption of energy for heating and
CO2 emissions are projected to be reduced. The total consumption of energy for heat-
ing will be 13.16 MTce, 14.73% less than the baseline scenario. Total CO2 emissions
from heating are projected to be 8.43 MT, 13.23% less than the baseline scenario. The
cumulative saving in energy consumption is projected to be 21.02 MTce, and the
cumulative reduction in CO2 emissions is projected to be 12.13 MT.

Table 4. Simulation results for energy efficiency scenario

Variable 2010 2015 2020 2025 2030

THEC (M) 12.19 13.55 13.99 13.80 13.16

TCE (M) 8.05 8.84 9.01 8.86 8.43

5 Conclusions

In the above analysis we have selected two optimistic scenarios to achieving lower
energy consumption and CO2 emissions than the baseline scenario, as shown in
Figures 4 and 5, respectively.

During the first period (2010–2020), the less building scenario produces better re-
ductions than the energy efficiency scenario, but during the second period (2020–
2030), the energy efficiency scenario shows a stronger reduction. For the entire pe-
riod, the technology scenario performs more efficiently.

Some other factors not included in this paper could have a substantial impact on
energy and carbon reduction. Such factors include: population, energy price, and
employment. Each of these factors includes multiple sub-factors. For instance, popu-
lation is influenced by many factors, including: urban population size, total fertility
rate, and life expectancy at birth. The model includes these factors endogenously so
that the policy analysis can be expanded when necessary.

It seems that the following three points may be especially helpful for Beijing to
achieve the goal of energy and carbon reduction:

• Adopt a combination of policy measures, on both the demand side (such as
residential areas) and the technology side.

• Improve the building code to require higher energy efficiency and a longer li-
fespan for buildings. More expensive and valuable buildings could also en-
courage sustainable living, maintaining the quality with a smaller living area.

• Raise the public awareness of sustainable living, including slower growth in
the number of living spaces.

484 H. Tong and W. Qu

Fig. 4. Comparison of scenarios for total amount of energy used for heating

Fig. 5. Sensitivity testing of total energy used for heating

 Energy Consumption and CO2 Emissions of Beijing Heating System 485

References

1. IPCC (Intergovernmental Panel on Climate Change): Climate Change 2007: Mitigation of
Climate Change. United Kingdom: Cambridge University Press (2007)

2. THUBERC: Development of China Building Energy Efficiency Annual Report 2008.
China Building Industry Press, Beijing (2009)

3. Zhao, J., Zhu, N., Wu, Y.: Technology line and case analysis of heat metering and energy
efficiency retrofit of existing residential buildings in northern heating areas of China. Ener-
gy Policy 37(6), 2106–2112 (2009)

4. Forrester, J.W.: Industrial Dynamics. MIT Press, Cambridge (1961)
5. Naill, R.F.: A System Dynamics Model for National Energy Policy Planning. System

Dynamics Review 8(1), 1–19 (1992)
6. Ahmad, S., Simonovic, S.P.: Dynamic modeling of flood management policies. In:

Proceedings of the 18th International Conference of the System Dynamics Society: Sustai-
nability in the Third Millennium, Bergen, Norway, pp. 6–10 (2000)

7. Rodriguez-Ulloa, R., Paucar-Caceres, A.: Soft system dynamics methodology (SSDM):
combining soft system methodology (SSM) and system dynamics (SD). Systemic Practice
and Action Research 18(3), 303–334 (2005)

8. Duran, Encalada, J., Paucar-Caceres, A.: System Dynamics Urban Sustainability Model for
Puerto Aura in Puebla, Mexico. System Practice and Action Research 22(2), 77–99 (2009)

9. Fong, W.K., Matsumoto, H., Lun, Y.F.: Application of System Dynamics model as deci-
sion making tool in urban planning process toward stabilizing carbon dioxide emissions
from cities. Building and Environment 44(7), 1528–1537 (2009)

A Formal Approach to Analysing Knowledge

Transfer Processes in Developing Countries

Jin Tong, Siraj A. Shaikh, and Anne E. James

Department of Computing, Faculty of Engineering and Computing,
Coventry University, Coventry, CV1 5FB, United Kingdom

{tongj3,s.shaikh,a.james}@coventry.ac.uk

Abstract. An organisation’s competitive advantage depends on its abil-
ity to transfer knowledge effectively. Research suggests that knowledge
transfer (KT) remains a problem for many organisations, particularly
those in developing countries with emerging knowledge economies. Anal-
ysis of organisational KT problems in this context could be helpful in
diagnosing particular challenges for sustainable development. In this pa-
per, we apply a formal modelling approach to represent the KT pro-
cesses within organisations. Communicating Sequential Processes (CSP)
are used to model human interactions during the transfer and model-
checking techniques are used to analyse obstacles to effective KT. The
application of CSP in analysing KT models in such a way is a novel idea.
To demonstrate our approach we present a case study of a Chinese com-
pany and show how cultural attitudes in organisations, widely prevalent
in some developing countries, could lead to problems in effective KT.

Keywords: Knowledge transfer, Formal modelling, Communicating Se-
quential Processes (CSP), Model-checking, Emerging economies.

1 Introduction

It is widely agreed that knowledge transfer (KT) contributes to organisational
performance [3]. Although increasingly organisations are keen to improve their
KT ability, it remains a challenge for many of them, particularly in the de-
veloping world. Current research of knowledge management (KM) is mostly
based on experience in developed countries that are already becoming knowl-
edge economies [5]. Applications of their KM models and frameworks might not
yield the expected results in developing countries however. It is therefore im-
perative to help organisations in developing countries to understand the issues
of KM in their local context. Towards this goal, this paper uses a case study of
current KM practice in China through a recently created Chinese mobile phone
company (referred to as Lotus) [9] to model the KT processes. While studied here
in the Chinese context, this model is more applicable in the wider developing
countries context.

Tong and Ayres present a model [8] to analyse low-level details of KT pro-
cesses. The model allows specific transactions that take place in the process of

G. Barthe, A. Pardo, and G. Schneider (Eds.): SEFM 2011, LNCS 7041, pp. 486–501, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Analysing Knowledge Transfer in Developing Countries 487

transferring knowledge to be analysed. We strengthen this model by introducing
a formal approach to represent the KT processes. The process algebra Com-
municating Sequential Processes (CSP) [4,6] is used to model interactions that
take place between various actors in KT; earlier work has successfully applied
CSP [10].

The rest of the paper is organised as follows. Section 2 reviews the context of
this research. Section 3 focuses on describing the transfer model formally defined
using CSP building blocks. An initial model analysis is then reported in Section
4. In this section, we also demonstrate the diagnosis value of this model using a
case study in a Chinese company. The paper concludes with an observation of
the implication of this formal model in Section 5.

2 Related Work

We review current understanding of KT in the related literature in Section 2.1.
The choice of CSP in our study is briefly justified in Section 2.2.

2.1 Current Understanding of Knowledge Transfer

Effective knowledge transfer strategies have gained attentions from organisa-
tions from both developed and developing countries. The available literature on
this subject often focuses on two aspects. One perspective is looking at various
strategies or mechanisms that can facilitate and accelerate KT, such as setting
communities of practice and implementing knowledge maps. Another perspec-
tive is focusing on key factors affecting peoples decisions and behaviours in the
transfer process, such as trust and cultural issues. However, these discussions are
loosely associated and often decoupled from the context of transfer processes.
Consequently, very few of these existing studies can be used directly to diag-
nose any transfer problems and identify appropriate strategies in practice. This
situation could be improved if we relate these studies to a low-level transfer
model.

Tong and Ayres’ model [8] is one of few available frameworks investigating
KT at a lower level and view it as the overall process by which knowledge is
transferred between people. This model provides sufficient details of the trans-
fer process and is used directly as the basis to investigate the formal modelling
approach presented in this paper. Their model is presented as Figure 1 below.
In this model, KT involves a sequence of specific steps (actions taken and de-
cisions made) and transactions (interactions between people or between people
and knowledge repositories). An individual can take more than one role at the
same time in different transfer processes. Detailed steps and transactions followed
by each role are described in this model. These roles are presented individually
rather than in an integrative framework because the model is designed to repre-
sent a variety of KT processes and these individual roles are used as the basic
structural elements to form dialogues between different parties involved in the
transfer process.

488 J. Tong, S.A. Shaikh, and A.E. James

F
ig

.
1
.

T
o
n

g
a
n

d
A

y
re

s
lo

w
-l

ev
el

K
T

m
o
d

el
(A

d
a
p
te

d
fr
o
m

[8
]:

p
.1

7
1

)

Analysing Knowledge Transfer in Developing Countries 489

2.2 A Formal Approach for Knowledge Transfer

Although Tong and Ayres’ model [8] has several benefits, their model presenta-
tion is very informal. Their model is presented in a graphical form and a potential
problem is that people may misinterpret the graphical sequence of the captured
transfer details of the model.

A KT process is normally complicated and involves interactions between sev-
eral parties. These parties often execute in parallel and the process complexity
arises from the combinations of ways in which they choose to behave. The con-
currency theory in process algebras provides a way of understanding and thereby
representing the dynamics and complexity in the process of KT. The choice of
CSP is therefore very suitable. It has already been used to model and analyse
human-machine interactions [1,2,7] very effectively.

The level of analysis for concurrency required for modelling KT processes is
well supported in CSP in terms of nondeterminism, communication, recursion,
abstraction, divergence and deadlock. Communications of events can be modelled
sequentially and concurrently along with introducing choice, composition and
synchronisation. CSP also provides a mature framework for analysis including
model checking, which allows us to check for refinement, deadlocks, livelocks and
determinism, all of which are relevant here. The tool support for CSP in terms
of ProBE and FDR is also helpful.

3 A Formal Model for Knowledge Transfer

We introduce the basic building blocks of CSP describing the notation and
features of the language relevant to our usage in Section 3.1. In section 3.2, we
set out several simple criteria for formalising Tong and Ayres’ model [8]. Each of
the individual tranfer processes from their model is then formalised using CSP
in Sections 3.3-3.8. Finally, Section 3.9 presents the entire KT model showing
critical synchronisations between individual processes.

3.1 CSP

A CSP system is modelled in terms of processes and events that these processes
can perform, where events may be atomic in structure or may consist of dis-
tinct components. The CSP expression a → P describes a process that initially
performs event a and then behaves as process P . An external choice operator
� provides the option of running either of the two processes P or Q when put
together as (P � Q)

where the choice between these two processes is determined by the first event
that is performed, which can be chosen by the environment. The parallel operator
|[A]| is used to force P and Q to run in parallel and synchronise on events in the
set of events A, whereas any of their events that are not in A are performed
independently. This is written as (P |[A]| Q)

490 J. Tong, S.A. Shaikh, and A.E. James

We briefly introduce the failures model in CSP , which is used for the purpose
of analysis in this paper. The failures model allows us to reason about events
that a process is ready to perform. It is not possible to judge whether a certain
event will always be performed by a process as its environment may not allow
it to do so. The approach taken in this model is to reason about processes in
terms of events that they are not able to (or fail to) perform. A failure (tr ,X)
of a process P is the set of all events X which P would refuse after performing
the events in the sequence tr . The set of all possible failures of P is written as
failures [[P]]. For example, for a → P there are two possibilities. First, if a has
not occurred then it has performed an empty trace 〈〉 and is able to refuse any
event other than a. Second, event a has occurred in which case the rest of the
failures are those of P . More formally,

failures [[a → P]] = {(〈〉,X) | a /∈ X }
∪ {(〈a〉 � tr ,X) | (tr ,X) ∈ failures [[P]]}

where x � y denotes appending x with y. P is said to be failure refined by Q
which is written as P �F Q if all failures of P are also all the failures of Q

failures [[Q]] ⊆ failures [[P]]

3.2 Formalising Interactions

In Tong and Ayres’ model [8], transfer roles are defined according to the nature
of the actions taken by people but not the sequential logic of peoples behaviours.
Since the purpose of introducing CSP in this research is to capture detailed se-
quences of peoples behaviours, the original transfer roles need to be redefined in
order to have a consistency with the CSP notations. This does not change the
captured details in the original model, as it is just represented from a different
perspective. People’s transfer actions are treated as events . Individual trans-
fer roles in the model are seen as separate processes . Similar to a CSP system
formed by processes and events, KT in the model needs to be seen as a system.
Six separate processes are defined in our formal KT model, including Knowl-
edge Seeker, Knowledge Recipient, Knowledge Provider, Needs Recipient, Needs
Transmitter, and Knowledge Repository.

3.3 Knowledge Seeker Process

Process SEEKER is activated when a person starts to search for required knowl-
edge (SEEK). In subprocess SEEK , a seeker can either use a REPOSITORY ,
or request knowledge from other people. If he succeeds in searching the repos-
itory and discovers new knowledge, he then becomes a knowledge recipient
(K RECIPIENT). But if he does not find anything, he then returns to the
starting point of the entire process and be ready for another seeker attempt.

Analysing Knowledge Transfer in Developing Countries 491

On the other hand, if the seeker had decided to send request to others for help,
he would interact with a N Recipient and wait for responses.

SEEKER can also be a consequent process triggered by other processes. For
example, a needs recipient (N RECIPIENT) becomes a SEEKER when a new
knowledge need is raised (r raised → SEEK).

Knowledge Seeker
process

SEEKER = SEEK � n raised → SEEK
process

SEEK = search repository →
(s succeed → k retrieved → SEEKER
� s failed → SEEKER)

� r sent → (r responded → k provided → SEEKER
� SEEKER)

3.4 Knowledge Recipient Process

A person becomes a k recipient if he previously acted as a seeker and
succeeded in seeking knowledge through a repository (k retrieved). Then in
ABSORB he has to assess the received knowledge and decide how to deal with
it. If it corresponds to his earlier request, he will assess its quality and choose
either to apply or discard it. If he finds it irrelevant to his earlier request, he then
has to check if his knowledge needs remain the same or the received knowledge

Knowledge Recipient
process

K RECIPIENT = k retrieved → ABSORB
� k provided → ABSORB
� k offered → ABSORB

process
ABSORB = k relevant → (k applied → K RECIPIENT

� k discarded → K RECIPIENT)
� k irrelevant → (same need

→ (k applied
→ K RECIPIENT

� k discarded
→ K RECIPIENT)

� new need
→ (k applied

→ K RECIPIENT
� k discarded

→ K RECIPIENT)
)

492 J. Tong, S.A. Shaikh, and A.E. James

has helped reveal a new need. In either of the these two cases, he then decides
if he will apply the received knowledge or discard it.

He can also become a k recipient if a provider (PROVIDER) has provided him
knowledge either upon his earlier request (k provided → ABSORB) or without
him asking for it (k offered → ABSORB).

3.5 Knowledge Provider Process

A person may provide knowledge upon others’ requests (provide upon request
→ PROVIDER). He can also choose to share his knowledge without people
asking for it in two ways, either providing it to them directly (k offered →
PROVIDER) or contributing to knowledge repositories where people can access
when they need (add to repository → PROVIDER).

Knowledge Provider
process

PROVIDER = k offered → PROVIDER
� provide upon request → PROVIDER
� add to repository → PROVIDER

3.6 Needs Recipient Process

A person becomes a needs recipient once received a knowledge request from either
a seeker (r sent → ASSESS) or a transmitter (n transferred → ASSESS). He
then has to ASSESS the request and decide how to respond. If he does not
have the requested knowledge and receiving this request helps him raise a new
knowledge need (r raised), he may start to search for knowledge for himself. On
the other hand, if he decides to help the knowledge requester, he can either reply
to this person by acting as a PROVIDER or pass on the request to someone else
more capable as TRANSMITTER. Otherwise, he may just ignore the request.

Needs Recipient
process

N RECIPIENT = r sent → ASSESS
� n transferred → ASSESS
� r retained → ASSESS

process
ASSESS = n raised → N RECIPIENT

�

r noted → (r responded → provide upon request
→ N RECIPIENT

� passon request → n transferred
→ N RECIPIENT)

� r ignored → N RECIPIENT

Analysing Knowledge Transfer in Developing Countries 493

A person also becomes a n recipient if he acted as a needs transmitter previously
and decided to retain the request, so that he can reassess the same request and
help the original seeker again.

3.7 Needs Transmitter Process

The process TRANSMITTER is activated when a n recipient decides to pass on
the knowledge request (that was received earlier) to another person. Then the
transmitter can either discard the request or retain it. If he retains the request,
he may prefer to reassess it later and decide whether or not to provide further
help to the requester (r retained → ASSESS). Otherwise if he chooses to discard
the request, he then returns to the starting point of the process.

Needs Transmitter
process

TRANSMITTER = passon request → n transferred
→ (r discarded → TRANSMITTER

� r retained → TRANSMITTER)

3.8 Knowledge Repository Process

Without exploring too many details of how a knowledge repository operates,
we only define the events representing the interactions between REPOSITORY
and other processes including SEEKER (s succeed) and PROVIDER (add to
repository). We treat all operations within a repository as internal events that

are not visible to external parts of the system.

Knowledge Repository
process

REPOSITORY = s succeed → REPOSITORY
� add to repository → REPOSITORY

3.9 Formal KT Model

The above six processes are executed in parallel. Several events allow these
processes to relate to others and also to form a system representing the for-
mal KT model. This system consists of several sub-systems. NESYS repre-
sents a knowledge needs exchange system emphasising the synchronised events
(passon request , n transferred and n retained) between TRANSMITTER and
N RECIPIENT . KSSYS is a knowledge supply system where PROVIDER syn-
chronises with REPOSITORY on the event add to repository. This system cap-
tures behaviours of providers adding knowledge into repository. KPSYS allows
systems NESYS and KSSYS to be synchronised on event provide upon request .
KRSYS represents a knowledge retrieval system, which captures people’s be-
haviours in seeking / retrieving knowledge from others. Within this system,

494 J. Tong, S.A. Shaikh, and A.E. James

SEEKER synchronises with K RECIPIENT on k retrieved and k provided .
KTMODEL is formed when KPSYS is in parallel with NESYS . They need to
synchronise on events r sent , n raised and r responded , s succeed , and s failed .
This can be viewed as the overall KT system KTMODEL.

Knowledge Transfer Model
process

NESYS = N RECIPIENT |[{passon request ,n transferred ,
n retained}]| TRANSMITTEER

KSSYS = REPOSITORY |[{add to repository}]| PROVIDER
KPSYS = KSSYS |[{provided upon request}]| NESYS
KRSYS = K RECIPIENT |[{k retrieved , k provided}]| SEEKER
KTMODEL = KPSYS |[{r responded , s succeed , k offered ,

r sent ,n raised}]| KRSYS

4 Analysing the Knoweldge Transfer Model

The model introduced in this paper captures people’s behaviours in a general KT
situation. It can be seen as an ideal KT system. In reality, KT systems vary and
often have deficiencies in many organisations, pariticularly those in developing
countries [9]. Their transfer problems can be diagnosed and represented through
model refinement checks against our KT model. We can use the model-checker
FDR to analyse our KT model and specify the desired property of the system
using a simple CSP process. Once this simple CSP specification process is fail-
ure refined by the KTMODEL, we can use it to check KT systems in different
situations, particularly those with transfer problems.

The property we are concerned with are people’s options when they decide to
participate in a KT and allow the KT system to be activated. We specify the
SPEC process to model a person’s available choices in this situation. He can
choose to perform one of the four events r sent , search repository, k offered or
add to repository.

Specification
process

SPEC = r sent → SPEC � search repository → SPEC
� k offered → SPEC � add to repository → SPEC

Checking a seeker and a provider ′s transfer options
assert

SPEC �F KTMODEL \ {s succeed , s failed , provide upon request ,
k retrieved , k provided , k relevant , k irrelevant , same need ,
new need , k applied , k discarded , passon request ,n raised , r noted ,
r ignored , r responded ,n transferred , r discarded , r retained}

Analysing Knowledge Transfer in Developing Countries 495

The FDR tool allows us to check whether a system always provides the use
with a choice of the four inital events. A refinement check on the respective
transfer system can be performed using FDR with respect to SPEC . Events in
a system process that do not appear in SPEC are explicitly hidden allowing the
model checker to observe only events common to both processes.

The system KTMODEL satisfies the refinement check. This means that ev-
ery time a person is given a choice of event among r sent , search reposiotory,
k offered , and add to repository. Their action here activates the whole KT sys-
tem. Formally, the KTMODEL never refuses any of the above four events. Thus
SPEC is failure refined by KTMODEL, where

failures [[KTMODEL]] ⊆ failures [[SPEC]]

4.1 A Case Study at Lotus

We now use three transfer problems observed in a Chinese company named
Lotus to demonstrate the diagnosis value of our KT model. Lotus is a recently
created mobile phone manufacturing company. Established by a group of 15 ac-
tive professionals from the mobile phone industry, who decided to come together
in 2005 to form Lotus , it designs and manufactures tailor-made mobile phones
and other wireless terminal products for markets in China, South America and
Europe. Their clients are brand manufactures, mobile phone distributors and
small-medium sized wireless product operators. Lotus is very representative of a
typical small organisation in China and KM practices observed in this company
reflect on the wider sector in the county. Due to several cultural barriers (such as
fear of loosing face, a sense of modesty, hierarchy consciousness, competitiveness
and a preference for face-to-face communication) unveiled within Lotus , KT was
not as effective as expected.

First, some people were too shy to request knowledge from others directly
in several occasions. For instance, some senior Lotus employees were too em-
barrassed to ask for help from juniors, potentially restricting their knowledge
seeking because of the fear of loosing face. A shy knowledge seeker normally
prefer to use external knowledge repositories to search for answers, such as using
a web-based search engine. In some cases, external repositories were the only
sources of knowledge. A shy knowledge seeker often failed to access the required
knowledge because of their limited resources. Their work efficiency could also be
seriously affected as repository search is time consuming and, at times, the same
piece of knowledge could be accessed more easily if they chose to request it from
others directly. We describe a shy knowledge seeker accordingly.

AShy Knowledge Seeker
process

S SEEKER = search repository →
(s succeed → k retrieved → S SEEKER
� s failed → S SEEKER)

496 J. Tong, S.A. Shaikh, and A.E. James

Secondly, some people were unwilling to offer others knowledge if it was not
requested by them first. Some Lotus employees never offer their knowledge to
others spontaneously. They only share what they know when such knowledge
is requested by others or as part of their job responsibilities (i.e. mentoring a
new employee). A strong sense of competitiveness was not the only cause of
this kind of behaviours. A sense of modesty and the hierarchy consciousness
were also the contributors. An unwilling knowledge provider can critically slow
down the KT processes within an organiation, as knowledge is only flowed after
work problems have already arisen (normally when people are already in needs
of certain knowledge). Since an unwilling provider does not offer knowledge to
others directly or contribute to the knoweldge repository by themselves, it can
be defined as:

An unwilling Knowledge Provider
process

U PROVIDER = provide upon request → U PROVIDER

Third, it was also discovered that people prefer to keep their knowledge implicit
and share it informally. Many Lotus employees believed that through face-to-
face communications you are showing more respect to people who actually shared
knowledge with you, so that you are building a trustworthy relationship with
them and your future requests for help are more likely to be responded. Because
of people’s preference for face-to-face communications, the effort of establishing
an organisational knowledge repository within Lotus has failed. The KT system
in this situation does not include a knowledge repository. Without a repository
available, both knowledge seekers and providers’ transfer options are restricted.
Thus this transfer system is certainly less effective.

ASeeker and a Provider without a Repository
process

SEEKER R = r sent →
(r responded → k provided → SEEKER R
� SEEKER R)

PROVIDER R = provide upon request → PROVIDER R
� k offered → PROVIDER R

Since process SPEC is failure refined by KTMODEL, we can use it to check the
transfer system in the above three conditions. Thus the problematic part of the
transfer systems within Lotus can be demonstrated formally.

4.2 A KT System with a Shy Seeker

The KT system with a shy knowledge seeker can be defined as below.

Analysing Knowledge Transfer in Developing Countries 497

KT Model with a Shy Knowledge Seeker
process

NESYS = N RECIPIENT |[{passon request ,n transferred ,
n retained}]| TRANSMITTEER

KSSYS = REPOSITORY |[{add to repository}]| PROVIDER
KPSYS = KSSYS |[{provided upon request}]| NESYS
FKRSYS = K RECIPIENT |[{k retrieved , k provided}]|

S SEEKER
FKTMODEL1 = KPSYS |[{r responded , s succeed , k offered ,

r sent ,n raised}]| FKRSYS

Now we check this system with the key property SPEC in our general KT model.

Checking a shy knowledge seeker ′s options
assert

SPEC �F FKTMODEL1 \ {s succeed , s failed , r responded ,
k retrieved , k provided , k relevant , k irrelevant , same need ,
new need , k applied , k discarded ,n raised , r noted , r ignored ,
n transferred , provide upon request , passon request ,
r discarded , r retained}

The system FKTMODEL1 does not satisfy the refinement check. The FDR tool
demonstrates that the process FKTMODEL1 allows the possibility of the events
k offered , add to repository and search reposiotory, but refuses the event
r sent . More formally,

(〈〉, {r sent}) ∈ failures [[FKYMODEL1]]

whereas
(〈〉, {r sent}) /∈ failures [[SPEC]]

hence SPEC is not failure refined by FKTMODEL1

failures [[FKTMODEL1]] � failures [[SPEC]]

4.3 A KT System with an Unwilling Provider

We analyse the system FKTMODEL2 where there is an unwilling knowledge
provider as described earlier. This system can be defined as follows.

498 J. Tong, S.A. Shaikh, and A.E. James

KT Model with an unwilling Knowledge Provider
process

NESYS = N RECIPIENT |[{passon request ,n transferred ,
n retained}]| TRANSMITTEER

FKSSYS = REPOSITORY |[{add to repository}]|
U PROVIDER

KPSYS = FKSSYS |[{provided upon request}]| NESYS
KRSYS = K RECIPIENT |[{k retrieved , k provided}]| SEEKER
FKTMODEL2 = KPSYS |[{r responded , s succeed , k offered ,

r sent ,n raised}]| KRSYS

Now we check this system with the process SPEC .

Checking an unwilling knowledge provider ′s options
assert

SPEC �F FKTMODEL2 \ {s succeed , s failed , r responded ,
k retrieved , k provided , k relevant , k irrelevant , same need ,
new need , k applied , k discarded ,n raised , r noted , r ignored ,
n transferred , provide upon request , passon request ,
r discarded , r retained}

The system FKTMODEL2 does not satisfy the refinement check. The FDR tool
demonstrates that the process FKTMODEL2 allows the possibility of the events
r sent and search reposiotory, but refuses the events add to repository and
k offered . More formally,

(〈〉, {add to repository, k offered}) ∈ failures [[FKYMODEL2]]

whereas
(〈〉, {add to repository, k offered}) /∈ failures [[SPEC]]

hence SPEC is not failure refined by FKTMODEL2

failures [[FKTMODEL2]] � failures [[SPEC]]

4.4 A KT System without a Repository

A KT system without a knowledge repository is defined as follows.

Analysing Knowledge Transfer in Developing Countries 499

KT Model without a Knowledge Repository
process

NESYS = N RECIPIENT |[{passon request ,n transferred ,
n retained}]| TRANSMITTEER

FKPSYS = PROVIDER R |[{provided upon request}]| NESYS
FKRSYS = K RECIPIENT |[{k provided}]| SEEKER R
FKTMODEL3 = FKPSYS |[{r responded , k offered , r sent ,

n raised}]| FKRSYS

Now we check this system with the process SPEC .

Checking people ′s options when the repository is unavailable
assert

SPEC �F FKTMODEL3 \ {s succeed , s failed , r responded ,
k retrieved , k provided , k relevant , k irrelevant , same need ,
new need , k applied , k discarded ,n raised , r noted , r ignored ,
n transferred , provide upon request ,
passon request , r discarded , r retained}

The system FKTMODEL3 does not satisfy the refinement check. The FDR
tool demonstrates that the process FKTMODEL3 allows the possibility of the
events k offered and r sent , but refuses to perform the events add to repository
and search reposiotory. More formally,

(〈〉, {add to repository, search reposiotory}) ∈ failures [[FKYMODEL3]]

whereas

(〈〉, {add to repository, search reposiotory}) /∈ failures [[SPEC]]

hence SPEC is not failure refined by FKTMODEL3

failures [[FKTMODEL3]] � failures [[SPEC]]

4.5 Analysing Transfer Deadlocks and Livelocks

We also use FDR to check the system for deadlocks and livelocks. Deadlocks
arise when certain processes within a system are awaiting an interaction with
other processes before they can continue their own events. This means that
some of their events will never take place if related processes are not activated.
Such a situation is undesirable as it ultimately halts the execution of a system.
Livelocks arises when processes descend into an endless sequence of interaction
among themselves, excluding any other processes and the external environment.
This is particularly undesirable as it means the system gets into an endless cycle
of execution with no further progress and possibly an unnecessary consumption

500 J. Tong, S.A. Shaikh, and A.E. James

of resources. Both problems arise not due to the design of individual processes
but due to the way they are combined [6].

The KT model introduced in this paper has been successfully checked for
deadlock and livelock freedom. This means all processes can be activated in
our model and people’s KT attempts can always have definite results. This re-
flects on the feasibility of such a system where all processes will complete no
matter what knowledge search results these processes bring (be it successful or
failed). However in reality a knowledge seeker may send a knowledge request
and never get a response. This could be a deadlock in the transfer system. Or
as we described in the Lotus case, a livelock problem could appear when a shy
knoweldge seeker and an unwilling knowledge provider both exist in the same
knoweldge transfer system. A seeker may use search knowledge repositories as
his only seeking option. If his search through repository always fails because the
providers never contribute to the repository, he may need to repeat the SEEKER
process endlessly. We propose to analyse for such conditions further, essentially
highlighting a minimal set of true conditions necessary to guarantee progress of
knowledge search queries.

5 Conclusion and Future Work

As the major contribution, a formal approach using CSP is proposed to analyse
the process of KT in this paper. Such an approach provides a framework for a
rigorous and detailed analysis of KT processes in organisations. The formal KT
model presented here is used in the Lotus case study to demonstrate the organ-
isation’s transfer disfunctions through CSP failures analysis. This model also
allows us to diagnose where problems in KT lie within an organisation, so that
they could be addressed. We plan to report further on using our formal model as
a key property (another SPEC process) to identify the problematic parts of KT
systems within organisations. Based on a formal analysis using our approach,
organisations would be able to identify specific challenges in better business
performance, propose corresponding transfer strategies to change organisational
behaviours, recommend further training to facilitate a more efficent knoweldge
transfer environment. In future studies we plan to demonstrate how to help an
organisation overcome its transfer barriers by introducing agent processes to
compliment its current KT system. This could particularly benefit organisations
in developing countries where KT mechanisms are often ineffective.

The application of a process algebra in analysing KT models is a novel idea.
It explores a new direction of studying human knowledge related processes in
the field of knowledge management. CSP is particularly suited as it allows us to
model individual behaviour to meticulous detail, so that specific organisational
work patterns can be represented formally. This is particularly useful for organ-
isations in developing countries to speed up necessary organisational changes
and enhance their competitiveness. Similar formal analysis using CSP can also
be applied in studying other knowledge management processes, such as knowl-
edge innovation process and knowledge exploitation process. We hope our effort

Analysing Knowledge Transfer in Developing Countries 501

serves to inspire new ideas and approaches to the wider knowledge management
community.

References

1. Cerone, A., Connelly, S., Lindsay, P.: Formal analysis of human operator be-
havioural patterns in interactive surveillance systems. Software and System Mod-
eling 7, 273–286 (2008)

2. Cerone, A., Shaikh, S.A.: Formal Analysis of Security in Interactive Systems. In:
Handbook of Research on Social and Organizational Liabilities in Information Se-
curity, ch. 25, pp. 415–432. Information Science Reference (2008)

3. Davenport, T., Prusak, L.: Working Knowledge: How Organizations Manage What
They Know. Harvard Business School Press, Boston (1998)

4. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall International,
Englewood Cliffs (1986)

5. Okunoye, A.: Towards a framework for sustainable knowledge management in or-
ganisations in developing countries. In: Brunnstein, K., Berleur, J. (eds.) Human
Choice and Computers: Issues of Choice and Quality of Life in Developing Coun-
tries, pp. 225–237. Springer, Heidelberg (2002)

6. Schneider, S.: Concurrent and Real-time Systems: The CSP Approach. John Wiley
and Sons, Ltd., Chichester (2000)

7. Shaikh, S., Krishnan, P., Cerone, A.: Formal approach to human error recovery.
In: The Pre-proceedings of the 2nd International Workshop on Formal Methods
for Interactive Systems (FMIS 2007), pp. 101–135 (2007)

8. Tong, J., Ayres, R.: A low-level model for knowledge transfer. In: Proceeding of
the IADIS International Conference on Information Systems, Barcelona, Spain, pp.
169–176 (2009)

9. Tong, J., Shaikh, S.: ICT driven knowledge management in developing countries:
A case study in a chinese organisation. In: Pont, A., Pujolle, G., Raghavan, S.V.
(eds.) WCITD 2010. IFIP AICT, vol. 327, pp. 60–71. Springer, Heidelberg (2010)

10. Tong, J., Shaikh, S., James, A.: A formal approach to modelling knowledge transfer
processes. In: Tome, E. (ed.) Proceedings of the 11th European Conference on
Knowledge Management, Famalicao, Portugal, pp. 1012–1021 (2010)

Author Index

Ábrahám, Erika 415
Acosta, Araceli 106
Aguirre, Nazareno 106
Åman Pohjola, Johannes 74

Barbosa, Lúıs S. 269
Ben-Hafaiedh, Imene 38
Bensalem, Saddek 204
Berkani, Karim 253
Blech, Jan Olaf 58
Boender, Jaap 399
Borgström, Johannes 74
Bozga, Marius 204
Bubel, Richard 90

Calegari, Daniel 431
Castro, Pablo F. 106
Clarke, Dave 318
Cordeiro, Lucas 302
Corral, Jorge 431
Crespo, Juan Manuel 122
Cuervo Parrino, Bruno 138
Cunha, Alcino 221

Delahaye, David 253
de Vries, Edsko 155
Dorn, Christoph 286
Dubois, Catherine 253
Dustdar, Schahram 286

Eggers, Andreas 172
Ernst, Gidon 188

Fadlisyah, Muhammad 415
Falcone, Yliès 204
Faria, José M. 269
Fischer, Bernd 302
Fränzle, Martin 172
Frias, Marcelo F. 138
Furia, Carlo A. 382

Galeotti, Juan Pablo 138
Garbervetsky, Diego 138
Garis, Ana 221
Geilmann, Ulrich 90

Graf, Susanne 38
Gurov, Dilian 366

Hagiya, Masami 350
Hähnle, Reiner 90
Hermanns, Holger 1
Hildebrandt, Thomas 237
Hinchey, Mike 19
Hirai, Yoichi 350
Huang, Shuqin 74
Huisman, Marieke 366

Inverardi, Paola 286

Jaber, Mohamad 204
Jacquel, Mélanie 253
James, Anne E. 486
Johansson, Magnus 74

Khosravi, Ramtin 334
Kilmurray, Cecilia 106
Koutavas, Vasileios 155
Kunz, César 122

Le Goues, Claire 407
Leino, K. Rustan M. 407
Le Métayer, Daniel 3
Li, Fei 286

Madeira, Alexandre 269
Martins, Manuel A. 269
Mazouz, Nejla 38
Meyer, Bertrand 382
Mori, Marco 286
Morse, Jeremy 302
Moskal, Micha�l 407
Mousavi, Mohammad Reza 334
Mukkamala, Raghava Rao 237
Muschevici, Radu 318

Nedialkov, Nedialko 172
Nguyen, Thanh-Hung 204
Nicole, Denis 302
Noda, Natsuko 350
Nordio, Martin 382
Noroozi, Neda 334

504 Author Index

Ölveczky, Peter Csaba 415
Ono, Kosuke 350
Ould Biha, Sidi 58

Parrow, Joachim 74
Pedercini, Matteo 35, 447
Proença, José 318

Qu, Weishuang 476

Raabjerg, Palle 74
Ramdani, Nacim 172
Reif, Wolfgang 188
Riesco, Daniel 221

Sánchez, Marisa Anaĺıa 464
Schellhorn, Gerhard 188
Shaikh, Siraj A. 486
Slaats, Tijs 237
Soleimanifard, Siavash 366

Tanabe, Yoshinori 350
Tong, Hefeng 476
Tong, Jin 486
Tschannen, Julian 382

Vassev, Emil 19
Victor, Björn 74

Willemse, Tim A.C. 334

	Title
	Preface
	Conference Organization
	Table of Contents
	Keynote Talks
	Formal Methods in Energy Informatics
	Reference

	Formal Methods as a Link between Software Code and Legal Rules
	Motivation
	Formal Methods as a Link between ICT and Law
	Liability Issues in Software Engineering
	Privacy
	Compliance
	Further Challenges
	Conclusion: Interdisciplinarity in Practice
	References

	Developing Model-Checking Mechanisms for ASSL: An Experience Report
	Introduction
	ASSL
	Model Checking with ASSL
	Consistency Checking
	Built-in Model Checker
	External Model Checker
	Post-Implementation Model Checker

	Case Study: Checking Liveness Properties with ASSL
	Conclusion and Future Work
	References

	Models and Communication in the Policy Process
	References

	Regular Papers
	Distributed Implementation of Systems with Multiparty Interactions and Priorities
	Introduction
	Distributed System with Priorities
	Protocol Description
	Correctness
	Experimental Results
	Sensitivity to the Choice of Negotiators
	Example with Priorities: Jukebox System

	Related Work
	Conclusion
	References

	Verification of PLC Properties Based on Formal Semantics in Coq
	Introduction
	Programmable Logic Controller
	Instruction Lists
	Syntax
	Semantics
	Formalization

	Sequential Function Charts
	Syntax
	Semantics

	Tool Support for PLC Verification and Proving Principles
	The CertPLC Tool
	Proof Structure for Inductive Properties

	Case Study
	Related Work
	Conclusions and Future Works
	References

	Broadcast Psi-calculi with an Application to Wireless Protocols
	Introduction
	Psi-calculi
	Broadcast Semantics
	Modelling Network Topology Changes
	The LUNAR Protocol in Psi
	Related Work
	Conclusion
	References

	A Formalisation of Java Strings for Program Specification and Verification
	Introduction
	Background
	Java Strings
	Dynamic Logic for Sequential Java

	Specification of Java Strings
	The Abstract Datatype CharList
	Connecting String and CharList
	String Literals and the String Pool
	Regular Expressions for CharList
	Specification of the Java String API

	Case Studies
	String Distance Measure
	Hash Set
	String Sanitization

	Related Work
	Conclusion and Future Work
	References

	dCTL: A Branching Time Temporal Logic for Fault-Tolerant System Verification
	Introduction
	Preliminaries
	Kripke Structures
	Computation Tree Logic

	A Deontic Computation Tree Logic: dCTL
	Fault Tolerance Reasoning in dCTL
	A Memory Cell
	A Token Ring Protocol

	Expressivity and Complexity of dCTL
	Conclusions and Future Work
	References

	A Machine-Checked Framework for Relational Separation Logic
	Introduction
	Formalization of Relational Separation Logic
	Relational Calculus
	Total Correctness

	Verification of the Schorr-Waite Algorithm
	Beyond Structurally Equivalent Programs
	Related Work
	Conclusion
	References

	A Dataflow Analysis to Improve SAT-Based Bounded Program Verification
	Introduction
	Tight Bounds for Improved SAT-Solving
	Problem Statement

	Propagating Values in DynAlloy Programs
	Effective Removal of Variables Using Dataflow Analysis
	Loop Optimization

	Empirical Evaluation
	Conclusions and Further Work
	References

	Reverse Hoare Logic
	Introduction
	Definitions
	Program Logic
	Case Studies
	Picking Random Numbers
	Arrays
	Iteration
	Shuffle

	Weakest Postcondition Calculus
	Soundness and Completeness
	Related Work
	Conclusions
	References

	Improving SAT Modulo ODE for Hybrid Systems Analysis by Combining Different Enclosure Methods
	Introduction
	The iSAT Algorithm for SAT Modulo ODE
	Overview of VNODE-LP
	Using Bracketing Systems as Enclosures
	Deducing Trajectory Directions
	Experiments
	Conclusion
	References

	Verification of B+ Trees: An Experiment Combining Shape Analysis and Interactive Theorem Proving
	Introduction
	B+ Trees and Approach
	Algorithms
	Verification Approach
	Algebraic Formalization of Pointer Structures

	Introduction to Parametric Shape Analysis
	Formalization and Verification of B+ Tree Invariants
	Tree Shape
	Balance
	Sorting
	Elements
	Node Sizes

	Results and Experiences
	Conclusion
	References

	Runtime Verification of Component-Based Systems
	Introduction
	BIP - Behavior Interaction Priority
	Component-Based Construction

	An RV Framework for Component-Based Systems
	Specifications for Component-Based Systems (CBS)
	Verification Monitors DBLP:conf/rv/FalconeFM09
	Runs and Traces of BIP Systems

	Verifying the Runtime Behavior of BIP Systems
	Extraction of Needed Information
	Instrumentation of Atomic Component
	Creating an Atomic Component from a Monitor
	Connections
	Summary and Discussion

	Implementation and Evaluation
	RV-BIP: A Tool for Runtime Verification of BIP Systems
	Case Study: A Robotic Application

	Related Work
	Conclusion and Future Work
	References

	Translating Alloy Specifications to UML Class Diagrams Annotated with OCL
	Introduction
	Alloy
	Alloy and UML+OCL Integration in MDE
	Related Work

	Model Transformation from Alloy to UML+OCL
	Characterizing Source Models
	From Alloy to UML Class Diagrams
	From Alloy to OCL

	Concluding Remarks and Future Work
	References

	Safe Distribution of Declarative Processes
	Introduction
	Related Work

	Dynamic Condition Response Graphs
	Projection and Composition
	Projection
	Composition
	Safe Distributed Synchronous Execution
	Example

	Conclusion
	References

	Verifying B Proof Rules Using Deep Embedding and Automated Theorem Proving
	Introduction
	Rule Verification in Atelier B
	The B Set Theory
	The Atelier B Proof Assistant

	The BCARe Environment
	Rationale for Designing BCARe
	The BCoq Embedding
	Rewrite Rule Verification
	Rule Typechecking
	Well-Definedness Verification
	Rule Verification
	Examples

	Automated Verification of Proof Rules
	Verification Using Ltac
	Verification Using Zenon
	Benchmarks

	Conclusion
	References

	Hybrid Specification of Reactive Systems: An Institutional Approach
	Introduction
	A Specification Methodology
	Hybrid Specifications (Stage I)
	States-as-Algebras Models (Stage II)

	Foundations
	Going ``institutional"
	Translating to FOL (Stage III)

	Tool Support
	Conclusions
	References

	Leveraging State-Based User Preferences in Context-Aware Reconfigurations for Self-Adaptive Systems
	Introduction
	Motivating Scenario
	Approach
	Basic Models
	Operative Context Model
	System and System Variants
	User Context Model

	Problem Formalization
	Evaluation
	Case Study
	Experiment

	Related Work
	Conclusions
	References

	Context-Bounded Model Checking of LTL Properties for ANSI-C Software
	Introduction
	From LTL to Monitor Threads
	Linear-Time Temporal Logic
	Büchi Automata
	Monitor Threads

	Model-Checking LTL Properties with ESBMC
	ESBMC
	Checking LTL Properties against a C Program

	Optimizing State Space Exploration
	Hashing Symbolic States
	Selection of Hash Function
	Comparison with Partial Order Reductions

	Experimental Evaluation
	Related Work
	Conclusions and Future Work
	References

	Modular Modelling of Software Product Lines with Feature Nets
	Introduction
	Software Product Line Modelling Challenge
	Feature Nets
	Modular Modelling
	Feature Net Composition

	Correctness
	Mathematical Preliminaries
	Preservation of the Core Behaviour for the Original Features
	Preservation of the Delta Behaviour for the Combined Features
	Safety of the Core Behaviour for the Combined Features

	Related Work
	Conclusion and Future Work
	References

	Synchronizing Asynchronous Conformance Testing
	Introduction
	Preliminaries
	Adapting IOCO to Asynchronous Setting
	Test Cases for Internal Choice Implementations
	Asynchronous Communication
	Sound Verdicts of Internal Choice Test Cases

	Adapting Asynchronous Setting to IOCO
	Input Output Conformance
	Synchronizing Theorem for ioco

	Necessary and Sufficient Conditions
	Conclusions
	References

	Using Coq in Specification and Program Extraction of Hadoop MapReduce Applications
	Formalizing MapReduce Applications
	Formalizing MapReduce Applications in Coq
	Abstract Model of Hadoop MapReduce Computation
	Proving WordCount Specifications
	Proving InvertedIndex Specifications

	Extracting Haskell Programs from Coq Proofs
	Verification of Java Programs by Krakatoa
	Experiments
	Related Work
	Conclusion and Future Work
	References

	ProMoVer: Modular Verification of Temporal Safety Properties
	Introduction
	ProMoVer: A User's View
	Framework for Modular Specification and Verification
	Program Model and Logic
	Compositional Verification

	The ProMoVer Tool
	Experimental Results with ProMoVer
	Conclusion
	References

	Usable Verification of Object-Oriented Programs by Combining Static and Dynamic Techniques
	Verification as a Matter of Course
	An Example Session with Eve
	Related Work
	The Tools of Eve
	The Advantages of Being Static and Dynamic
	The Design of an Integrated Verification Environment
	Correctness Scores for Proofs and Testing
	Usage Scenarios
	Conclusions
	References

	Short Papers
	Efficient Computation of Dominance in Component Systems (Short Paper)�
	Introduction
	Strong Dependencies and Dominators
	Dominance in Strong Dependency Graphs and Flow Control Graphs
	Discussion
	References

	Tool Papers
	The Boogie Verification Debugger (Tool Paper)
	High-Level architecture
	BVD
	Insert example
	Computing Memory Contents
	Displaying States and Access-Path Values
	Complex Data Types and Search
	Plug-in Programmer Interface

	Related Work
	Conclusions and Future Work
	References

	Object-Oriented Formal Modeling and Analysis of Interacting Hybrid Systems in HI-Maude
	Introduction
	Real-Time Maude
	Effort/Flow Modeling of Interacting Hybrid Systems
	Executing Interacting Hybrid Systems
	The HI-Maude Tool
	Representing Continuous Values
	Modeling
	Formal Analysis in HI-Maude
	Soundness and Completeness of HI-Maude Analyses

	The Real-Time Maude Semantics of HI-Maude
	Case Study: The Human Thermoregulatory System
	The Human Thermoregulatory System
	Effort/Flow Modeling of the Human Thermoregulatory System
	Formal Analysis

	Concluding Remarks
	References

	Special Track: “Modelling for Sustainable Development”
	Towards an Agent-Based Methodology for Developing Agro-Ecosystem Simulations
	Introduction
	Agent-Based Simulations of Agro-Ecosystems
	The Methodological Framework
	Case Study
	Case Study Conclusions

	Conclusions
	References

	Development Policy Analysis in Mali: Sustainable Growth Prospects
	Introduction
	An Integrated Resource-Based Approach
	Approach and Method
	The Model

	Base Run
	Data and Validation
	Business as Usual Scenario

	Alternative Scenarios
	Conclusions
	References

	Using System Dynamics to Assess the Role of Socio-economic Status in Tuberculosis Incidence
	Introduction
	System Dynamics Modeling in Public Health
	Model Proposal
	Social Determinants and Risk Factors
	Model Components

	Simulation Results
	Conclusions
	References

	Energy Consumption and CO2 Emissions of Beijing Heating System: Based on a System Dynamics Model
	Introduction
	Case study of Beijing City
	Model Structure
	Major Assumptions
	Construction of the Model
	Check on Model

	Scenario Analysis
	Baseline Scenario
	Less Building Scenario
	Energy Efficiency Scenario

	Conclusions
	References

	A Formal Approach to Analysing Knowledge Transfer Processes in Developing Countries
	Introduction
	Related Work
	Current Understanding of Knowledge Transfer
	A Formal Approach for Knowledge Transfer

	A Formal Model for Knowledge Transfer
	CSP
	Formalising Interactions
	Knowledge Seeker Process
	Knowledge Recipient Process
	Knowledge Provider Process
	Needs Recipient Process
	Needs Transmitter Process
	Knowledge Repository Process
	Formal KT Model

	Analysing the Knoweldge Transfer Model
	A Case Study at Lotus
	A KT System with a Shy Seeker
	A KT System with an Unwilling Provider
	A KT System without a Repository
	Analysing Transfer Deadlocks and Livelocks

	Conclusion and Future Work
	References

	Author Index

