

Lecture Notes in Computer Science 7016
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Yang Xiang Alfredo Cuzzocrea
Michael Hobbs Wanlei Zhou (Eds.)

Algorithms
and Architectures
for Parallel Processing

11th International Conference, ICA3PP 2011
Melbourne, Australia, October 24-26, 2011
Proceedings, Part I

13

Volume Editors

Yang Xiang
Wanlei Zhou
Deakin University, School of Information Technology
Melbourne Burwood Campus, 221 Burwood Highway
Burwood, VIC 3125, Australia
E-mail: {yang, wanlei}@deakin.edu.au

Alfredo Cuzzocrea
ICAR-CNR and University of Calabria
Via P. Bucci 41 C, 87036 Rende (CS), Italy
E-mail: cuzzocrea@si.deis.unical.it

Michael Hobbs
Deakin University, School of Information Technology
Geelong Waurn Ponds Campus, Pigdons Road
Geelong, VIC 3217, Australia
E-mail: mick@deakin.edu.au

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-24649-4 e-ISBN 978-3-642-24650-0
DOI 10.1007/978-3-642-24650-0
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011937820

CR Subject Classification (1998): F.2, H.4, D.2, I.2, G.2, H.3

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Message from the ICA3PP 2011 Program Chairs

A warm welcome to the 11th International Conference on Algorithms and Ar
chitectures for Parallel Processing (ICA3PP 2011) and to Melbourne, Australia.

ICA3PP 2011 is the 11th in this series of conferences that started in 1995 and
is devoted to algorithms and architectures for parallel processing. ICA3PP is now
recognized as the main regular event focusing on the many dimensions of parallel
algorithms and architectures, encompassing fundamental theoretical approaches,
practical experimental results, and commercial components and systems. As ap-
plications of computing systems have permeated every aspects of daily life, the
power of computing systems has become increasingly critical. On top of these
motivations, ICA3PP 2011 provides a widely-known forum for researchers and
practitioners from countries around the world to exchange ideas for improving
the computation power of computing systems.

In response to the ICA3PP 2011 call for papers, we received 85 submissions
from 33 different countries. These papers were evaluated on the basis of their
originality, significance, correctness, relevance, and technical quality. Each paper
was reviewed by at least three members of the Program Committee. Based on
these evaluations, 24 regular papers and 17 short papers were selected for pre-
sentation at the conference, representing an acceptance rate of 28.2% for regular
papers and 20% for short papers.

We would like to thank the Program Committee members and additional
reviewers from all around the world for their efforts in reviewing the large number
of papers. We are grateful to all the associated Conference/Workshop Chairs for
their dedication and professionalism. We would like to extend our sincere thanks
to the ICA3PP Steering Committee Chairs, Prof. Wanlei Zhou and Prof. Yi Pan,
and to the General Chairs, Prof. Andrzej Goscinski and Prof. Peter Brezany.
They provided us with invaluable guidance throughout the process of paper
selection and program organization. We thank Georgi Cahill, the Conference
Secretary, for her professional organization. We also thank Yu Wang and Sheng
Wen for their help on completing the final proceedings.

Last but not least, we would also like to take this opportunity to thank all
the authors for their submissions to ICA3PP 2011 and the associated sympo-
sium/workshops. Many of you have travelled some distance to participate in the
conference.

Welcome to Melbourne and enjoy!

October 2011 Yang Xiang
Alfredo Cuzzocrea

Michael Hobbs

Message from the ICA3PP 2011 General Chairs

Welcome to the beautiful and ‘World’s Most Livable City’ – Melbourne. We are
privileged and delighted to welcome you to the 11th International Conference
on Algorithms and Architectures for Parallel Processing (ICA3PP 2011).

Following the traditions of the previous successful ICA3PP conferences held
in Hangzhou, Brisbane, Singapore, Melbourne, Hong Kong, Beijing, Cyprus,
Taipei and Busan, this year ICA3PP 2011 is held in Melbourne, Australia. The
objective of ICA3PP 2011 is to bring together researchers and practitioners from
academia, industry and government to advance the theories and technologies in
parallel and distributed computing. ICA3PP 2011 focuses on two broad areas of
parallel and distributed computing, i.e., architectures, algorithms and networks,
and systems and applications. The conference of ICA3PP 2011 is organized by
Deakin University, Australia.

In addition to the ICA3PP 2011 main conference, one symposium and three
workshops are being held together with ICA3PP 2011. They are:

1. 2011 International Symposium on Advances of Distributed Computing and
Networking (ADCN 2011)

2. The 4th IEEE International Workshop on Internet and Distributed Com-
puting Systems (IDCS 2011)

3. The 1st IEEE International Workshop on Parallel Architectures for Bioin-
formatics Systems (HardBio 2011)

4. The 3rd International Workshop on Multicore and Multithreaded Architec-
tures and Algorithms (M2A2 2011)

We sincerely thank the many people who have helped in organizing ICA3PP 2011
and the associated symposium/workshops. We would like to thank the Program
Chairs, Yang Xiang, Alfredo Cuzzocrea and Michael Hobbs, for their leadership
in providing the excellent technical program.

We wish you a very enjoyable and rewarding experience at ICA3PP 2011 in
Melbourne!

October 2011 Andrzej Goscinski
Peter Brezany

ICA3PP 2011 Committees

General Chairs

Andrzej Goscinski Deakin University, Australia
Peter Brezany University of Vienna, Austria

Program Chairs

Yang Xiang Deakin University, Australia
Alfredo Cuzzocrea ICAR-CNR and University of Calabria, Italy
Michael Hobbs Deakin University, Australia

Steering Committee Chairs

Wanlei Zhou Deakin University, Australia
Yi Pan Georgia State University, USA

Workshop Chairs

Wen Tao Zhu Chinese Academy of Sciences, China
Muhammad Khurram Khan King Saud University, Saudi Arabia

Publicity Chairs

Ali Shahrabi Glasgow Caledonian University, UK
Haixin Duan Tsinghua University, China

Publication Chairs

Meikang Qiu University of Kentucky, USA

Program Committee

Bechini Alessio University of Pisa, Italy
Giuseppe Amato ISTI-CNR, Italy
Cosimo Anglano Università del Piemonte Orientale, Italy
Novella Bartolini Univ. of Rome La Sapienza, Italy
Ladjel Bellatreche ENSMA, France
Ateet Bhalla NRI Institute of Information Science and

Technology, India
Angelo Brayner University of Fortaleza, Brazil
Massimo Cafaro University of Salento, Italy

X ICA3PP 2011 Committees

Jiannong Cao Hong Kong Polytechnic University, Hong Kong
Andre Carvalho Universidade de Sao Paulo, Brazil
Tania Cerquitelli Politecnico di Torino, Italy
Ruay-Shiung Chang National Dong Hwa University, Taiwan
Yue-Shan Chang National Taipei University, Taiwan
Tzung-Shi Chen National University of Tainan, Taiwan
Zizhong Chen Colorado School of Mines, USA
Carmela Comito University of Calabria, Italy
Raphaël Couturier University of Franche Comté, France
Gennaro Della Vecchia ICAR-CNR, Italy
Der-Rong Din National Changhua University of Education,

Taiwan
Susan Donohue The College of New Jersey, USA
Shantanu Dutt University of Illinois at Chicago, USA
Todd Eavis Concordia University, Canada
Giuditta Franco University of Verona, Italy
Karl Fuerlinger University of California, USA
Jerry Gao San Jose State University, USA
Jinzhu Gao University of the Pacific, USA
Jose Daniel Garcia University Carlos III of Madrid, Spain
Irene Garrigos University of Alicante, Spain
Alex Gerbessiotis New Jersey Institute of Technology, USA
Harald Gjermundrod University of Nicosia, Cyprus
Houcine Hassan Univ. Politécnica de Valencia, Spain
Pilar Herero Univ. Politécnica de Madrid, Spain
Ching-Hsien Hsu Chung Hua University, Taiwan
Tsung-Chuan Huang National Sun Yat-sen University, Taiwan
Yo-Ping Huang National Taipei University of Technology,

Taiwan
George Karypis University of Minnesota, USA
Muhammad Khurram Khan King Saud University, Saudi Arabia
Soo-Kyun Kim PaiChai University, Korea
Changhoon Lee Hanshin University, Korea
Deok-Gyu Lee ETRI, Korea
Laurent Lefevre INRIA, France
Daniele Lezzi Barcelona Supercomputing Center, Spain
Keqin Li State University of New York at New Paltz,

USA
Keqin Li SAP Research, France
Keqiu Li Dalian University of Technology, China
Kai Lin Dalian University of Technology, China
Pangfeng Liu National Taiwan University, Taiwan
Alberto Marchetti-Spaccamela Sapienza U. of Rome, Italy
Tomas Margalef Universitat Autonoma de Barcelona, Spain
Amiya Nayak University of Ottawa, Canada

ICA3PP 2011 Committees XI

Leonardo B. Oliveira Unicamp, Brazil
Marion Oswald Hungarian Academy of Sciences, Hungary
Deng Pan Florida International University, USA
Apostolos Papadopoulos Aristotle Univ. of Thessaloniki, Greece
Dana Petcu West University of Timisoara, Romania
Rubem Pereira Liverpool John Moores University, UK
Kleanthis Psarris The University of Texas at San Antonio, USA
Pedro Pereira Rodrigues University of Porto, Portugal
Casiano Rodriguez-Leon Universidad de La Laguna, Spain
Marcel C. Rosu IBM, USA
Giovanni Maria Sacco Universitá di Torino, Italy
Erich Schikuta University of Vienna, Austria
Martin Schulz Lawrence Livermore National Laboratory, USA
Seetharami Seelam IBM T.J. Watson Research Center, USA
Edwin Sha University of Texas at Dallas, USA
Rahul Shah Louisiana State University, USA
Giandomenico Spezzano ICAR-CNR, Italy
Peter Strazdins The Australian National University, Australia
Domenico Talia Universitá della Calabria, Italy
Uwe Tangen Ruhr-Universität Bochum, Germany
Jichiang Tsai National Chung Hsing University, Taiwan
Chen Wang CSIRO ICT Centre, Australia
Cho-Li Wang The University of Hong Kong, Hong Kong
Xiaofang Wang Villanova University, USA
Qishi Wu University of Memphis, USA
Fatos Xhafa Polytechnic University of Catalonia, Spain
Zheng Yan Nokia Research Center, Finland
Chao-Tung Yang Tunghai University, Taiwan
Zhiwen Yu Northwestern Polytechnical University, China
Eiko Yoneki University of Cambridge Computer Laboratory,

UK
Sotirios G. Ziavras NJIT, USA
Roger Zimmermann National University of Singapore, Singapore

ICA3PP 2011 Additional Reviewers

Atif, Muhammad
Cai, Jie
Canonico, Massimo
Chan, Philip
Ding, Chong
Dionysiou, Ioanna
Eldefrawy, Mohamed
Estévez, José Ignacio
Figueiredo, Thomaz

Gouvea, Conrado P.L.
Guazzone, Marco
Jin, Chao
Khan, Bilal
Macias, Mario
Miranda-Valladares, Gara
Mochetti, Karina
Mou, Duxing
Printista, Marcela

XII ICA3PP 2011 Committees

Rodŕıguez Mart́ınez, Diego
Ruj, Sushmita
Segredo Gonzalez, Eduardo Manuel
Segura, Carlos
Song, Huaguang

Tiskin, Alexander
Tsai, Pei-Wei
Vlad, Ioan
Zhu, Kai
Zola, Matteo

Table of Contents – Part I

ICA3PP 2011 Keynote

Keynote: Assertion Based Parallel Debugging . 1
David Abramson

ICA3PP 2011 Regular Papers

Secure and Energy-Efficient Data Aggregation with Malicious
Aggregator Identification in Wireless Sensor Networks 2

Hongjuan Li, Keqiu Li, Wenyu Qu, and Ivan Stojmenovic

Dynamic Data Race Detection for Correlated Variables 14
Ali Jannesari, Markus Westphal-Furuya, and Walter F. Tichy

Improving the Parallel Schnorr-Euchner LLL Algorithm 27
Werner Backes and Susanne Wetzel

Distributed Mining of Constrained Frequent Sets from Uncertain
Data . 40

Alfredo Cuzzocrea and Carson K. Leung

Set-to-Set Disjoint-Paths Routing in Recursive Dual-Net 54
Yamin Li, Shietung Peng, and Wanming Chu

Redflag: A Framework for Analysis of Kernel-Level Concurrency 66
Justin Seyster, Prabakar Radhakrishnan, Samriti Katoch,
Abhinav Duggal, Scott D. Stoller, and Erez Zadok

Exploiting Parallelism in the H.264 Deblocking Filter by Operation
Reordering . 80

Tsung-Hsi Weng, Yi-Ting Wang, and Chung-Ping Chung

Compiler Support for Concurrency Synchronization 93
Tzong-Yen Lin, Cheng-Yu Lee, Chia-Jung Chen, and
Rong-Guey Chang

Fault-Tolerant Routing Based on Approximate Directed Routable
Probabilities for Hypercubes . 106

Dinh Thuy Duong and Keiichi Kaneko

Finding a Hamiltonian Cycle in a Hierarchical Dual-Net with Base
Network of p -Ary q-Cube . 117

Yamin Li, Shietung Peng, and Wanming Chu

XIV Table of Contents – Part I

Adaptive Resource Remapping through Live Migration of Virtual
Machines . 129

Muhammad Atif and Peter Strazdins

LUTS: A Lightweight User-Level Transaction Scheduler 144
Daniel Nicácio, Alexandro Baldassin, and Guido Araújo

Verification of Partitioning and Allocation Techniques on Teradata
DBMS . 158

Ladjel Bellatreche, Soumia Benkrid, Ahmad Ghazal,
Alain Crolotte, and Alfredo Cuzzocrea

Memory Performance and SPEC OpenMP Scalability on Quad-Socket
x86 64 Systems . 170

Daniel Molka, Robert Schöne, Daniel Hackenberg, and
Matthias S. Müller

Anonymous Communication over Invisible Mix Rings 182
Ming Zheng, Haixin Duan, and Jianping Wu

Game-Based Distributed Resource Allocation in Horizontal Dynamic
Cloud Federation Platform . 194

Mohammad Mehedi Hassan, Biao Song, and Eui-Nam Huh

Stream Management within the CloudMiner . 206
Yuzhang Han, Peter Brezany, and Andrzej Goscinski

Security Architecture for Virtual Machines . 218
Udaya Tupakula, Vijay Varadharajan, and Abhishek Bichhawat

Fast and Accurate Similarity Searching of Biopolymer Sequences with
GPU and CUDA . 230

Robert Paw�lowski, Bożena Ma�lysiak-Mrozek,
Stanis�law Kozielski, and Dariusz Mrozek

Read Invisibility, Virtual World Consistency and Probabilistic
Permissiveness are Compatible . 244

Tyler Crain, Damien Imbs, and Michel Raynal

Parallel Implementations of Gusfield’s Cut Tree Algorithm 258
Jaime Cohen, Luiz A. Rodrigues, Fabiano Silva, Renato Carmo,
André L.P. Guedes, and Elias P. Duarte Jr.

Efficient Parallel Implementations of Controlled Optimization of Traffic
Phases . 270

Sameh Samra, Ahmed El-Mahdy, Walid Gomaa,
Yasutaka Wada, and Amin Shoukry

Table of Contents – Part I XV

Scheduling Concurrent Workflows in HPC Cloud through Exploiting
Schedule Gaps . 282

He-Jhan Jiang, Kuo-Chan Huang, Hsi-Ya Chang,
Di-Syuan Gu, and Po-Jen Shih

Efficient Decoding of QC-LDPC Codes Using GPUs 294
Yue Zhao, Xu Chen, Chiu-Wing Sham, Wai M. Tam, and
Francis C.M. Lau

ICA3PP 2011 Short Papers

A Combined Arithmetic Logic Unit and Memory Element for the
Design of a Parallel Computer . 306

Mohammed Ziaur Rahman

Parallel Implementation of External Sort and Join Operations on a
Multi-core Network-Optimized System on a Chip . 318

Elahe Khorasani, Brent D. Paulovicks, Vadim Sheinin, and
Hangu Yeo

STM with Transparent API Considered Harmful . 326
Fernando Miguel Carvalho and Joao Cachopo

A Global Snapshot Collection Algorithm with Concurrent Initiators
with Non-FIFO Channel . 338

Diganta Goswami and Soumyadip Majumder

An Approach for Code Compression in Run Time for Embedded
Systems – A Preliminary Results . 349

Wanderson Roger Azevedo Dias, Edward David Moreno, and
Raimundo da Silva Barreto

Optimized Two Party Privacy Preserving Association Rule Mining
Using Fully Homomorphic Encryption . 360

Md. Golam Kaosar, Russell Paulet, and Xun Yi

SLA-Based Resource Provisioning for Heterogeneous Workloads in a
Virtualized Cloud Datacenter . 371

Saurabh Kumar Garg, Srinivasa K. Gopalaiyengar, and
Rajkumar Buyya

ΣC: A Programming Model and Language for Embedded Manycores . . . 385
Thierry Goubier, Renaud Sirdey, Stéphane Louise, and
Vincent David

Provisioning Spot Market Cloud Resources to Create Cost-Effective
Virtual Clusters . 395

William Voorsluys, Saurabh Kumar Garg, and Rajkumar Buyya

XVI Table of Contents – Part I

A Principled Approach to Grid Middleware: Status Report on the
Minimum Intrusion Grid . 409

Jost Berthold, Jonas Bardino, and Brian Vinter

Performance Analysis of Preemption-Aware Scheduling in Multi-cluster
Grid Environments . 419

Mohsen Amini Salehi, Bahman Javadi, and Rajkumar Buyya

Performance Evaluation of Open Source Seismic Data Processing
Packages . 433

Izzatdin A. Aziz, Andrzej M. Goscinski, and Michael M. Hobbs

Reputation-Based Resource Allocation in Market-Oriented Distributed
Systems . 443

Masnida Hussin, Young Choon Lee, and Albert Y. Zomaya

Cooperation-Based Trust Model and Its Application in Network
Security Management . 453

Wu Liu, Hai-xin Duan, and Ping Ren

Performance Evaluation of the Three-Dimensional Finite-Difference
Time-Domain(FDTD) Method on Fermi Architecture GPUs 460

Kaixi Hou, Ying Zhao, Jiumei Huang, and Lingjie Zhang

The Probability Model of Peer-to-Peer Botnet Propagation 470
Yini Wang, Sheng Wen, Wei Zhou, Wanlei Zhou, and Yang Xiang

A Parallelism Extended Approach for the Enumeration of Orthogonal
Arrays . 481

Hien Phan, Ben Soh, and Man Nguyen

Author Index . 495

Table of Contents – Part II

ADCN 2011 Papers

Lightweight Transactional Arrays for Read-Dominated Workloads 1
Ivo Anjo and João Cachopo

Massively Parallel Identification of Intersection Points for GPGPU Ray
Tracing . 14

Alexandre Solon Nery, Nadia Nedjah, Felipe M.G. França, and
Lech Jozwiak

Cascading Multi-way Bounded Wait Timer Management for Moody
and Autonomous Systems . 24

Asrar Ul Haque and Javed I. Khan

World-Wide Distributed Multiple Replications in Parallel for
Quantitative Sequential Simulation . 33

Mofassir Haque, Krzysztof Pawlikowski, Don McNickle, and
Gregory Ewing

Comparison of Three Parallel Point-Multiplication Algorithms on
Conic Curves . 43

Yongnan Li, Limin Xiao, Guangjun Qin, Xiuqiao Li, and
Songsong Lei

Extending Synchronization Constructs in OpenMP to Exploit Pipeline
Parallelism on Heterogeneous Multi-core . 54

Shigang Li, Shucai Yao, Haohu He, Lili Sun, Yi Chen, and
Yunfeng Peng

Generic Parallel Genetic Algorithm Framework for Protein
Optimisation . 64

Lukas Folkman, Wayne Pullan, and Bela Stantic

A Survey on Privacy Problems and Solutions for VANET Based on
Network Model . 74

Hun-Jung Lim and Tai-Myoung Chung

Scheduling Tasks and Communications on a Hierarchical System with
Message Contention . 89

Jean-Yves Colin and Moustafa Nakechbandi

Spiking Neural P System Simulations on a High Performance GPU
Platform . 99

Francis George Cabarle, Henry Adorna,
Miguel A. Mart́ınez–del–Amor, and Mario J. Pérez–Jiménez

XVIII Table of Contents – Part II

SpotMPI: A Framework for Auction-Based HPC Computing Using
Amazon Spot Instances . 109

Moussa Taifi, Justin Y. Shi, and Abdallah Khreishah

Investigating the Scalability of OpenFOAM for the Solution of
Transport Equations and Large Eddy Simulations . 121

Orlando Rivera, Karl Fürlinger, and Dieter Kranzlmüller

Shibboleth and Community Authorization Services: Enabling
Role-Based Grid Access . 131

Fan Gao and Jefferson Tan

A Secure Internet Voting Scheme . 141
Md. Abdul Based and Stig Fr. Mjølsnes

A Hybrid Graphical Password Based System . 153
Wazir Zada Khan, Yang Xiang, Mohammed Y. Aalsalem, and
Quratulain Arshad

Privacy Threat Analysis of Social Network Data . 165
Mohd Izuan Hafez Ninggal and Jemal Abawajy

IDCS 2011 Papers

Distributed Mechanism for Protecting Resources in a Newly Emerged
Digital Ecosystem Technology . 175

Ilung Pranata, Geoff Skinner, and Rukshan Athauda

Reservation-Based Charging Service for Electric Vehicles 186
Junghoon Lee, Gyung-Leen Park, and Hye-Jin Kim

Intelligent Ubiquitous Sensor Network for Agricultural and Livestock
Farms . 196

Junghoon Lee, Hye-Jin Kim, Gyung-Leen Park,
Ho-Young Kwak, and Cheol Min Kim

Queue-Based Adaptive Duty Cycle Control for Wireless Sensor
Networks . 205

Heejung Byun and Jungmin So

Experimental Evaluation of a Failure Detection Service Based on a
Gossip Strategy . 215

Leandro P. de Sousa and Elias P. Duarte Jr.

On the Performance of MPI-OpenMP on a 12 Nodes Multi-core
Cluster . 225

Abdelgadir Tageldin Abdelgadir, Al-Sakib Khan Pathan, and
Mohiuddin Ahmed

Table of Contents – Part II XIX

A Protocol for Discovering Content Adaptation Services 235
Mohd Farhan Md Fudzee and Jemal Abawajy

Securing RFID Systems from SQLIA . 245
Harinda Fernando and Jemal Abawajy

Modeling QoS Parameters of VoIP Traffic with Multifractal and
Markov Models . 255

Homero Toral-Cruz, Al-Sakib Khan Pathan, and
Julio C. Ramı́rez-Pacheco

Hybrid Feature Selection for Phishing Email Detection 266
Isredza Rahmi A. Hamid and Jemal Abawajy

M2A2 2011 Papers

On the Use of Multiplanes on a 2D Mesh Network-on-Chip 276
Cruz Izu

A Minimal Average Accessing Time Scheduler for Multicore
Processors . 287

Thomas Canhao Xu, Pasi Liljeberg, and Hannu Tenhunen

Fast Software Implementation of AES-CCM on Multiprocessors 300
Jung Ho Yoo

A TCM-Enabled Access Control Scheme . 312
Gongxuan Zhang, Zhaomeng Zhu, Pingli Wang, and Bin Song

Binary Addition Chain on EREW PRAM . 321
Khaled A. Fathy, Hazem M. Bahig, Hatem M. Bahig, and A.A. Ragb

A Portable Infrastructure Supporting Global Scheduling of Embedded
Real-Time Applications on Asymmetric MPSoCs . 331

Eugenio Faldella and Primiano Tucci

Emotional Contribution Process Implementations on Parallel
Processors . 343

Carlos Domı́nguez, Houcine Hassan, José Albaladejo,
Maria Marco, and Alfons Crespo

A Cluster Computer Performance Predictor for Memory Scheduling 353
Mónica Serrano, Julio Sahuquillo, Houcine Hassan,
Salvador Petit, and José Duato

XX Table of Contents – Part II

HardBio 2011 Papers

Reconfigurable Hardware Computing for Accelerating Protein Folding
Simulations Using the Harmony Search Algorithm and the 3D-HP-Side
Chain Model . 363

César Manuel Vargas Beńıtez, Marlon Scalabrin,
Heitor Silvério Lopes, and Carlos R. Erig Lima

Clustering Nodes in Large-Scale Biological Networks Using External
Memory Algorithms . 375

Ahmed Shamsul Arefin, Mario Inostroza-Ponta, Luke Mathieson,
Regina Berretta, and Pablo Moscato

Reconfigurable Hardware to Radionuclide Identification Using
Subtractive Clustering . 387

Marcos Santana Farias, Nadia Nedjah, and
Luiza de Macedo Mourelle

A Parallel Architecture for DNA Matching . 399
Edgar J. Garcia Neto Segundo, Nadia Nedjah, and
Luiza de Macedo Mourelle

Author Index . 409

Y. Xiang et al. (Eds.): ICA3PP 2011, Part I, LNCS 7016, p. 1, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Keynote: Assertion Based Parallel Debugging

David Abramson

Monash eScience and Grid Engineering Lab, Faculty of Information Technology,
Monash University,

Australia
davida@csse.monash.edu.au

Abstract. Programming languages have advanced tremendously over the years,
but program debuggers have hardly changed. Sequential debuggers do little
more than allow a user to control the flow of a program and examine its state.
Parallel ones support the same operations on multiple processes, which are
adequate with a small number of processors, but become unwieldy and
ineffective on very large machines. Typical scientific codes have enormous
multi-dimensional data structures and it is impractical to expect a user to view
the data using traditional display techniques. In this seminar I will discuss the
use of debug-time assertions, and show that these can be used to debug parallel
programs. The techniques reduce the debugging complexity because they
reason about the state of large arrays without requiring the user to know the
expected value of every element. Assertions can be expensive to evaluate, but
their performance can be improved by running them in parallel. I demonstrate
the system with a case study finding errors in a parallel version of the Shallow
Water Equations, and evaluate the performance of the tool on a 4,096 cores
Cray XE6.

Secure and Energy-Efficient Data Aggregation with
Malicious Aggregator Identification in Wireless Sensor

Networks�

Hongjuan Li1, Keqiu Li1,��, Wenyu Qu2, and Ivan Stojmenovic3

1 School of Computer Science and Technology,
Dalian University of Technology, Dalian, 116024, China

keqiu@dlut.edu.cn
2 School of Information Science and Technology,

Dalian Maritime University, Dalian, 116026, China
3 SITE, University of Ottawa, Ontario K1N 6N5, Canada

Abstract. Data aggregation in wireless sensor networks is employed to reduce
the communication overhead and prolong the network lifetime. However, an ad-
versary may compromise some sensor nodes, and use them to forge false values
as the aggregation result. Previous secure data aggregation schemes have tack-
led this problem from different angles. The goal of those algorithms is to ensure
that the Base Station (BS) does not accept any forged aggregation results. But
none of them have tried to detect the nodes that inject into the network bogus
aggregation results. Moreover, most of them usually have a communication over-
head that is (at best) logarithmic per node. In this paper, we propose a secure and
energy-efficient data aggregation scheme that can detect the malicious nodes with
a constant per node communication overhead. In our solution, all aggregation re-
sults are signed with the private keys of the aggregators so that they cannot be
altered by others. Nodes on each link additionally use their pairwise shared key
for secure communications. Each node receives the aggregation results from its
parent (sent by the parent of its parent) and its siblings (via its parent node), and
verifies the aggregation result of the parent node. Theoretical analysis on energy
consumption and communication overhead accords with our comparison based
simulation study over random data aggregation trees.

1 Introduction

Wireless sensor networks (WSNs) are becoming increasingly popular to provide solu-
tions to many security-critical applications such as wildfire tracking, military surveil-
lance, and homeland security [1]. As thousands of sensor nodes collectively monitor an
area, there is high redundancy in the raw data. Data aggregation [2,3,4,5,6] is an es-
sential paradigm to eliminate data redundancy and reduce energy consumption. During

� This work is supported by National Natural Science Foundation of China under Grant nos.
90718030, 90818002, 60903154, and 60973117, and New Century Excellent Talents in Uni-
versity (NCET) of Ministry of Education of China.

�� Corresponding author.

Y. Xiang et al. (Eds.): ICA3PP 2011, Part I, LNCS 7016, pp. 2–13, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Secure and Energy-Efficient Data Aggregation 3

a typical data aggregation process, sensor nodes are organized into a hierarchical tree
rooted at the base station. However, data aggregation is challengeable in some applica-
tions due to the fact that the sensor nodes are vulnerable to physical tampering, which
may lead to the failure of data aggregation. The sensor nodes are often deployed in
hostile and unattended environments, and are not made tamper-proof due to cost con-
siderations. So they might be captured by an adversary, which may arbitrarily tamper
with the data to achieve its own purpose.

To meet this challenge, some work has been done [9,10,11,12,13,14] in the area of
secure data aggregation. For example, Chan et al. [9] put forward a secure hierarchical
in-network aggregation scheme that provides favorable and impressive security proper-
ties. This scheme can verify whether or not tampering has occurred on the path between
a leaf and the root [9]. Nevertheless, it cannot pinpoint the exact node where the tam-
pering has happened in case of tampering. To the best of our knowledge, none of the
existing work is able to identify the nodes that tamper the intermediate aggregation
results.

To overcome this deficiency, we present a secure and energy-efficient data aggre-
gation scheme termed MAI to effectively locate the malicious aggregators. Each node
verifies its parent’s aggregation by recalculating the aggregation result according to the
results obtained from its siblings. If an inconsistency occurs, the parent node is flagged
as a malicious node; otherwise, it is a normal one. Another characteristic of the scheme
is that the aggregation and verification can be executed interactively. A node’s result
can be further aggregated only after it passes the verification. This can avoid unneces-
sary wrong data transmissions and further reduce the energy consumption. Moreover,
the verification procedure is a localized one, which results in a low communication
overhead.

The rest of the paper is organized as follows: In Section 2, we overview some related
work on secure data aggregation. Section 3 describes our system model. In Section 4,
we give a detailed description on the proposed MAI. Theoretical analysis and discussion
are also presented in this section to further explain our scheme. Section 5 reports the
simulation results. Finally, we summarize our work and conclude the paper in Section 6.

2 Related Work

Data aggregation has the benefit to achieve bandwidth and energy efficiency. There has
been extensive research [17,18,19] on data aggregation in various application scenar-
ios. However, these aggregation schemes have been designed without security in mind.
Recently, secure data aggregation is a hot research problem in some applications. Basi-
cally, there are two types of aggregation models, i.e., the single-aggregator model and
the multiple-aggregator model.

The authors in [10,11] investigated secure data aggregation for the single-aggregator
model. The secure information aggregation (SIA) protocol presented by Przydatek et al.
[10] was the first one to propose the aggregate-commit-prove framework. Du et al. [11]
proposed a scheme using multiple witness nodes as additional aggregators to verify the
integrity of the aggregated result. As for the single-aggregator model, the corresponding
schemes do not provide per-hop aggregation.

4 H. Li et al.

The multiple-aggregator model employs more than one aggregator. Hu et al. [14]
presented a secure aggregation protocol that is resilient to single aggregator compro-
mising. However, this protocol cannot deal with the situation where there exist two
consecutive colluding compromised aggregator nodes. Yang et al. [12] proposed SDAP,
which utilizes a novel probabilistic grouping technique to probe the suspicious groups.
Due to the statistical nature, SDAP may not be able to detect the attacks that slightly
change the intermediate aggregation results.

In the privacy-preservation domain, Castelluccia et al. [15] proposed a new homo-
morphic encryption scheme in which the aggregation is carried out by aggregating the
encrypted data without decrypting them, resulting in a higher level privacy. He et at.
[16] proposed two privacy-preserving data aggregation schemes CPDA and SMART
for additive aggregation functions.

3 System Model

We model a wireless sensor network as a graph consisting of a set of n resource-limited
sensor nodes U = {u1, u2, . . . , un}, each of which has an unique identifier IDui . In
addition, a resource-enhanced BS R is deployed to connect the sensor network to the
outside infrastructure, e.g. the Internet. We assume that a topological tree rooted at R
is constructed to perform the data aggregation. There are three types of nodes in the
sensor network: leaf nodes, intermediate nodes, and the base station. The leaf nodes are
collecting sensor readings. An intermediate node acts as an aggregator, aggregating the
data transmitted from its child nodes and forwarding the aggregation result to its patent
node. The base station is the node where the final result is aggregated. An example of
such an aggregation tree is shown in Figure 1. One method for constructing such an
aggregation tree can be found in TAG [6].

v'v

w 'w

x 'x

R

s 's

R
aggregator
leaf node

base station

Fig. 1. An example aggregation tree

Our scheme assumes that the network utilizes an identity-based public key crypto-
system, which is also used in [8]. Each sensor node u ∈ U is deployed with a pri-
vate key, K−1

u , and other nodes can calculate u’s public key based on its ID, i.e. ,
Ku = f(IDu). Traditionally, it is assumed that public key systems exceed the mem-
ory and computational capacity of the sensor nodes. However, public key cryptography

Secure and Energy-Efficient Data Aggregation 5

on new sensor hardware may not be as prohibitive as that is traditionally assumed [8].
We further assume that the sensor nodes have the ability to perform symmetric-key en-
cryption and decryption as well as to compute a collision-resistant cryptographic hash
function.

In this paper, we focus on defending against the attacks tampering with the interme-
diate aggregation results to make the BS accept a false value. The goal of our design
is to localize the exact aggregator(s) that performs the malicious tampering. In this pa-
per, we do not consider the value changing attack where a compromised node forges a
false reading on its own behalf. As indicated in [12,14], the impact of such an attack is
usually limited. Besides, such a compromised node is more likely a faulty sensor node.
Some other studies have targeted the identification of faulty sensors [7,20,21].

4 Secure and Energy-Efficient Data Aggregation with Malicious
Aggregator Identification

In this section, we present a secure and energy-efficient data aggregation with malicious
aggregator identification (MAI). For simplicity, we describe our scheme for the SUM
aggregation function. However, our design supports various other aggregation functions
such as MAX/MIN, MEAN, COUNT, and so on. We apply our scheme on the aggrega-
tion tree shown in Figure 1.

4.1 Aggregation Commitment

Before describing the details of the proposed scheme, we first introduce the format of
the packets transmitted during the aggregation. The packet has the following format:

< id, count, value, signature >

where id is the node’s ID, count is the number of leaves in the subtree rooted at this
node, value is the aggregation result computed over all the leaves in the subtree, and
signature is a commitment computed by the node using its private key. We call the
signature a proof. If an adversary compromises an aggregator and wants to send an
invalid aggregation result, it has to forge the proof on the invalid result.

The packet for node ui can be inductively expressed as:

< ui, Ci, Vi, Si >

where Si = {H(ui‖Ci‖Vi)}K−1
ui

and H(ui‖Ci‖Vi) is a cryptographic hash function
over the packet value.

If ui is a leaf node, then Ci = 1 and Vi = rui , where rui is the data collected by
node ui. If ui is an intermediate node having child nodes vj (j = 1, 2, ...k) with packets

< vj , Cj , Vj , Sj >, then Ci =
k∑

j=1

Cj , Vi =
k∑

j=1

Vj .

6 H. Li et al.

The pairwise key shared between ui and its parent node is used to encrypt the packet.
This encryption in practice provides not only confidentiality but also authentication.
Using encryption saves the bandwidth that will otherwise be used for an additional
message authentication code (MAC) [12].

Since there exits three types of nodes in the sensor network, we will respectively
introduce the aggregation process executed on each type of the nodes.

1) Leaf node aggregation: Data aggregation starts from the leaf nodes toward the BS.
Since a leaf node does not need to do aggregation, the value in its packet is just the
sensor reading. For example, in the case of Figure 1, the leaf node s sends to its parent
v the following packet:

s→ v :< s, 1, rs, {H(s‖1‖rs)}K−1
s >

where ‖ denotes the stream concatenation and rs is the sensor reading by node s. This
packet is encrypted using the pairwise key shared between s and v.

2) Intermediate node aggregation: When an intermediate node receives an aggre-
gated report from one of its children, it verifies the signature of the report and keeps
a copy locally (used by the aggregation verification phase) before further aggregation
is performed. More specifically, an intermediate node first decrypts the report using its
pairwise key shared with its child node. It then performs some simple checking on the
validity of the report. The value of each item should fall in a certain range, and the
verification signature should be matched with that of the report. The signature of the
report is verifiable because the intermediate node can calculate the public keys of its
child nodes using their IDs. If the report does not pass this checking, the packet will be
discarded; otherwise, the readings of all the reports received from its children will be
aggregated. A new count is calculated as the sum of the count values in all the received
reports. Furthermore, a new signature is calculated and attached to the end. For the ex-
ample shown in Figure 1, node w is the parent of node v. The packet that v sends to w
is shown as follows:

v → w < v, 2, Aggv, {H(v‖2‖Aggv)}K−1
v >

where “2′′ is the count value summed over the count values of s and s′, and Aggv is
the aggregation value over rs and rs′ . Similarly, node w sends a packet to its parent x
in such a format:

w → x :< w, 4, Aggw, {H(w‖4‖Aggw)}K−1
w >

Each of these packets is encrypted with the pairwise key shared between the corre-
sponding sender and its parent.

3) BS aggregation: After the BS receives the aggregated data from all its children,
it decrypts them, verifies their signatures and stores them locally. Then it computes the

Secure and Energy-Efficient Data Aggregation 7

final aggregation result just like a regular intermediate node does. As such, the final
aggregation result in the BS for the example shown in Figure 1 is as follows:

BS :< R, 18, AggR, {H(R‖18‖AggR)}K−1
R >

4.2 Aggregation Verification

Before we present the details of our verification procedure, a high level overview of
the process is introduced as follows. First, each sensor node gets the values of all its
siblings (called sibling values) and the aggregation result of its parent node. Then it
independently verifies whether or not its parent’s aggregation result equals the recal-
culated one based on its own value and the received sibling values. If not, an alarm is
raised (for example, using broadcast) to warn the entire network that the parent node is
malicious, and the malicious node can be evicted from the network through a certain
method. If no alarm is raised, all the aggregation operations are correct, and the final
aggregation result can be accepted by the BS.

In what follows, we will present the detailed design of the proposed scheme.

1) Dissemination of the sibling packets: To enable verification, each sensor node must
get the values of its siblings in order to recalculate the aggregated value of its parent.
Thus, each parent node is required to distribute the copies of the sibling packets to
all child nodes. Upon receiving the sibling packets, each node verifies their signatures,
which are employed to ensure that the parent node cannot tamper with the packets of
its child nodes because it does not know the private keys of its children.

2) Dissemination of parent packets: To determine whether the aggregation operation
is correct or not, the child nodes need to know the original aggregation result obtained
by its parent node. However, a malicious parent node may tamper with the aggregation
result in the aggregation phase, but send a correct result to its child nodes in the verifica-
tion phase so that it can avoid being detected. In our scheme, the grandparent nodes are
involved, which prevent the parent nodes from transmitting different values. Actually,
it is the grandparent nodes that send the parent nodes’ aggregated values to the child
nodes.

As shown in the example (Figure 1), w is the grandparent node, v is the parent node,
and s is the child node. The packet w receives from v is shown as follows:

v → w < v, 2, Aggv, {H(v‖2‖Aggv)}K−1
v >

This packet should be sent to the child node s in the verification phase. First, w encrypts
the signature of v using its own private key. In other words, the signature of w in this
packet is calculated over v′s signature.

w → v < v, 2, Aggv, {{H(v‖2‖Aggv)}K−1
v }K−1

w >

v verifies the signature and then sends the packet to s and s′.
The reason for the second signature involving two private keys is to make sure that

neither the grandparent node nor the parent node can tamper with the packet, so that the
packet must be the original one obtained in the aggregation phase.

8 H. Li et al.

3) Verification of the parent’s aggregation: After each sensor node gets its sibling
values and its parent value, it can verify the parent’s aggregation if all the packets pass
the verifications on their signatures.

As the sibling values provide all the necessary data to perform the aggregation, each
sensor node runs the same aggregation process as its parent to derive the aggregation
result, and compares it against the previously received one from its grandparent. Only
when all the verification succeeds, the BS accepts the aggregation result.

4.3 Theoretical Analysis on Communication Overhead

In this section, we analyze the communication overhead of our scheme and compare
it with the Secure Hierarchical In-network Aggregation scheme (SHIA for short) pro-
posed by Chan et al. [9]. SHIA is selected for comparison because it is the most related
and it represents the state-of-the-art.

Since both schemes perform similar aggregation operations, we only compare the
communication overhead in the verification phase. To accurately measure the overhead,
we use the metric packet ∗ hop, because the communication overhead is proportional
to the transmission distance as each packet needs to travel several hops to arrive at
the destination node. Therefore we sum up all the traveled hops for each packet as the
communication overhead in the whole network.

Before we present our analytical results, we give two definitions defining the com-
munication overhead and the off-path nodes:

Definition 1. Suppose there exist a set of packets {pj |j = 1, 2 . . . z} used for verifica-
tion purpose. If the packet pj needs to travel hj hops, then the communication overhead

is calculated by
z∑

j=1

hj .

Definition 2. [9] The set of off-path nodes for a node u in a tree is the set of all the
siblings of each of the nodes on the path from u to the root of the tree (the path is
inclusive of u).

Figure 2a shows an example of the off-path nodes for node u. The off-path nodes for
node u are highlighted in bold. The path from u to the root is shaded as grey.

u

(a) The off-path nodes of u

1u

1u

1u

2u

2u

t

2u

(b) Off-path packets dis-
semination

Fig. 2. Off-path nodes and off-path packets dissemination

Secure and Energy-Efficient Data Aggregation 9

We assume that the aggregation tree is a complete tree with a height of h and a degree

of d; hence, we have n =
h∑

i=1

di. Note that our aggregation tree is rooted at the BS, and

we assume that the height of the BS is 0.
In SHIA, the communication overhead consists of two parts: the dissemination of

the root value, and the dissemination of the off-path values. The root value will be sent
to the entire sensor network using authenticated broadcasts, which incurs a communi-
cation overhead of n as there are n sensor nodes in the network. Hence, the communi-

cation overhead in this phase can be computed as
h∑

i=1

di.

With the knowledge of the root value, each leaf node must receive all its off-path
values to enable the verification. As described in [9], the process of dissemination of
the off-path values is as follows: Assume that an intermediate node t in the aggregation
tree has two children u1 and u2. To disseminate the off-path values, t sends the packets
aggregated at u1 to u2, and vice-versa. Node t also sends any packet received from its
parent to both children. See Figure 2b for an illustration of the process. Once a node
has received all the packets of its off-path nodes, it can proceed to the verification step.

In SHIA, the packets of every senor node will be sent to its sibling nodes and for-
warded along the trees rooted at the sibling nodes until they reach the leaf nodes. There-

fore the communication overhead can be calculated by
h∑

i=1

(di ·
h−i∑
j=0

dj).

Thus the total communication overhead needed in the verification phase of SHIA is:

h∑
i=1

di +
h∑

i=1

(di ·
h−i∑
j=0

dj) (1)

=
(h + 1)dh+2 − (h + 2)dh+1 − d2 + 2d

(1 − d)2

= Θ(n log n)1

In our scheme MAI, the communication overhead for the verification process also con-
sists of two parts: the dissemination of the sibling values and the dissemination of the
parent value.

To derive the parent aggregation result, each child node needs to get its sibling val-
ues, which indicates that each node needs to receive (d − 1) packets in the phase of
disseminating sibling values. Since there are n nodes in the tree, the communication
overhead for this step can be calculated as n(d− 1).

To compare the derived aggregation result in an intermediate node with the one com-
puted at the aggregation phase, the parent value should be disseminated to its child
nodes. As every intermediate node has d children, and the parent value is sent from
its grandparent, the dissemination of each parent value involves (d + 1) communica-
tion overhead. Since there are (n − dh) parent nodes, the communication overhead of
disseminating the parent values can be computed by (d + 1)(n− dh).

1 h can be approximated by log n.

10 H. Li et al.

Therefore, the total communication overhead for the verification process in our MAI
is calculated as follows:

n(d− 1) + (d + 1)(n− dh) (2)

= 2nd− dh+1 − dh

=
dh+2 + dh − 2d2

d− 1
= Θ(n)

From equations (2) and (1), we can easily see that the overhead of MAI is less than that
of SHIA. This is because the verification procedure in our scheme is a localized one,
while SHIA involves the whole network for verification. Moreover, the advantage of
our scheme will be more obvious with the increase of the tree height.

4.4 Discussion

The verification in our scheme is a localized procedure. We can accurately identify ma-
licious nodes by limiting the commit-and-verify scope to every parent-children connec-
tion. Once there is malicious tampering at any intermediate node, we can immediately
find the inconsistency between the committed aggregate and the reconstructed aggre-
gate.

Our scheme also ensures that all the involved data are the original data. This is be-
cause every report is sent only once from the original source and a signature is attached
to each report. The signature is computed using the private key that is only known to
the source, such that the report cannot be forged when it is kept at other nodes.

MAI consists of two phases: the aggregation commitment phase and the aggregation
verification phase. Actually, the verification phase does not need to wait for the com-
pletion of the aggregation phase. These two phases can be executed interactively. After
each grandparent node receives a packet from its child node, it may not execute the
aggregation immediately. Instead, it asks its grand child nodes to do the verification on
the received packet first. Only if the verification succeeds, the grand parent node will
accept the packet and do further aggregation; otherwise, the aggregation will stop. If the
verification fails, it is an indication that the received packet is forged and the sending
node is malicious. Such a false report, if undetected, would be forwarded to the higher
level, which can cause not only the deviation in the final aggregation result but also the
wastage of energy consumption. In our scheme, we detect such a false report immedi-
ately after it is sent out. In this way, we can decrease the damage of the malicious nodes
and save energy.

MAI assumes that only the leaf nodes collect sensor readings. Extending our scheme
to support the data collection at intermediate nodes results in another problem. The
aggregation result at each intermediate node will be based on the data of its child nodes
and its own data. We need to get the sensor reading collected by an intermediate node
to recalculate the aggregation result in the verification phase. However, the intermediate
node may forge a false reading of its own. Such a node is more likely a faulty sensor,
which can be detected via various existing techniques [7,20,21]. We can employ an
existing scheme to verify whether or not a node forges a false data as its own reading.

Secure and Energy-Efficient Data Aggregation 11

If not, the data aggregation and verification proceed; otherwise, the node is signaled as
malicious.

5 Simulation Evaluation

The previous analytical results are applicable to a balanced tree. To evaluate the perfor-
mance for more general cases, we conduct simulation study using the NS-2 simulator
to compare MAI with SHIA. In our experiments, the nodes are randomly distributed
over an area. The network size n varies from 50 nodes to 250 nodes. For each simulated
topology, we adjust the communication range so that all the sensor nodes are included
in the aggregation tree. In our study, we consider an energy model that sets 0.2818W for
sending or receiving a data packet per unit of time, and 100J of total available battery
power per node. The data rate is 1 Mbps. We compare the communication overhead
and the energy consumption of MAI with those of SHIA and the results are reported in
the following subsection.

(a) Network communication overhead (b) Average communication overhead

Fig. 3. Communication overhead

Figure 3a shows the communication overhead of MAI and that of SHIA under dif-
ferent network scales. We use packet∗hop as the metric. As it can be seen from Figure
3a, the overhead of MAI is much lower than that of SHIA. To further explore the inde-
pendence of the performance on the size of the aggregation tree, we report the average
communication overhead per node in Figure 3b. As shown in this figure, MAI outper-
forms SHIA in terms of the average amount of communications. And MAI exhibits a
little variance when n ranges from 50 to 250. The communication overhead is closely
related to the network topology. In the simulations, the nodes are randomly distributed
in the area. That’s why the overhead increases with the increase of the network size, but
still fluctuates at some points.

Figures 4a and 4b illustrate the energy consumption under different network scales.
The percentage of the residual energy in the network with respect to the network size is
shown in Figure 4a, from which we can conclude that the SHIA scheme consumes en-
ergy at a much faster pace. Figure 4b reports the average energy consumption per node.

12 H. Li et al.

The results indicate that our scheme is more energy-efficient. This is because data trans-
missions contribute the major portion of the power consumption for sensor nodes, and
the communication overhead of SHIA is higher than that of MAI as discussed before.

(a) Network residual energy (b) Average energy consumption

Fig. 4. Energy consumption

In summary, the theoretical and simulation results both indicate that our proposed
MAI is more efficient and effective than SHIA, as it can identify the malicious aggre-
gators with a much less communication overhead.

6 Conclusions

In this paper, we propose a secure and energy-efficient data aggregation scheme with
malicious aggregator identification in wireless sensor networks. The goal of our pro-
posed scheme is to make sure that not only the BS does not accept forged aggregation
results, but also the malicious aggregators tampering with the intermediate results can
be identified. The adversarial aggregators, after detected, can be evicted from the net-
work, hence reducing the damage of malicious aggregators. Theoretical analysis and
extensive simulations have been conducted to evaluate our scheme. The results indicate
that our proposed scheme is more secure and energy-efficient than SHIA, a state-of-the-
art secure hierarchical in-network aggregation scheme proposed in [9].

References

1. Culler, D., Estrin, D., Srivastava, M.: Overview of Sensor Networks. IEEE Computer 37(8),
41–49 (2004)

2. Estrin, D., Govindan, R., Heidemann, J., Kumar, S.: Next century challenges: scalable coor-
dination in sensor networks. In: Proceedings of the ACM International Conference on Mobile
Computing and Networking (MobiCom), pp. 263–270 (1999)

3. Heidemann, J., Silva, F., Intanagonwiwat, C., Govindan, R., Estrin, D., Ganesan, D.: Build-
ing efficient wireless sensor networks with low-level naming. In: Proceedings of the ACM
Symposium on Operating Systems Principles (SOSP), pp. 146–159 (2001)

4. Krishnamachari, B., Estrin, D., Wicker, S.: The impact of data aggregation in wireless sensor
networks. In: Proceedings of the International Conference on Distributed Computing Sys-
tems (ICDCS) Workshops, pp. 575–578 (2002)

Secure and Energy-Efficient Data Aggregation 13

5. Yu, Y., Krishnamachari, B., Prasanna, V.K.: Energy-latency tradeoffs for data gathering in
wireless sensor networks. In: Proceedings of the IEEE Computer and Communications So-
cieties, INFOCOM (2004)

6. Madden, S., Franklin, M.J., Hellerstein, J.M.: TAG: A Tiny AGgregation Service for Ad-
Hoc Sensor Networks. In: Proceedings of the Symposium on Operating Systems Design and
Implementation, OSDI (2002)

7. Ding, M., Chen, D., Xing, K., Cheng, X.: Localized Faulty-Tolerant Event Boundary De-
tection in Sensor Networks. In: Proceedings of the IEEE Computer and Communications
Societies, INFOCOM (2005)

8. Parno, B., Perrig, A., Gligor, V.: Distributed Detection of Node Replication Attacks in Sensor
Networks. In: Proceedings of the IEEE Symposim on Security and Privacy (SP), pp. 49–63
(2005)

9. Chan, H., Perrig, A., Song, D.: Secure hierarchical in-network aggregation in sensor net-
works. In: Proceedings of the ACM Conference on Computer and Communication Security,
CCS (2006)

10. Przydatek, B., Song, D., Perrig, A.: SIA: Secure information aggregation in sensor network.
In: Proceedings of the 1st International Conference on Embedded Networked Sensor Sys-
tems, Sensys (2003)

11. Du, W., Deng, J., Han, Y., Varshney, P.K.: A witness-based approach for data fusion assur-
ance in wireless sensor networks. In: Proceedings of the IEEE Global Telecommunications
Conference, GLOBECOM (2003)

12. Yang, Y., Wang, X., Zhu, S., Cao, G.: SDAP: A Secure Hop-by-Hop Data Aggregation Pro-
tocol for Sensor Networks. In: Proceedings of the ACM International Symposium on Mobile
Ad Hoc Networking and Computing, MobiHoc (2006)

13. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989. LNCS,
vol. 435, pp. 218–238. Springer, Heidelberg (1990)

14. Hu, L., Evans, D.: Secure Aggregation for Wireless Networks. In: Proceedings of the 2003
Symposium on Applications and the Internet Workshops, SAINTW (2003)

15. Castelluccia, C., Mykletun, E., Tsudik, G.: Efficient Aggregation of Encrypted Data in Wire-
less Sensor Networks. In: Proceedings of the International Conference on Mobile and Ubiq-
uitous Systems, Mobiquitous (2005)

16. He, W., Liu, X., Nguyen, H., Nahrstedt, K., Abdelzaher, T.: PDA: Privacy-preserving Data
Aggregation in Wireless Sensor Networks. In: Proceedings of the IEEE Computer and Com-
munications Societies, INFOCOM (2007)

17. Itanagonwiwat, C., Govindan, R., Estrin, D.: Directed diffusion: a scalable and robust com-
munication paradigm for sensor networks. In: Proceedings of the ACM International Con-
ference on Mobile Computing and Networking, MobiCom (2000)

18. Intanagonwiwat, C., Estrin, D., Govindan, R., Heidemann, J.: Impact of Network Density on
Data Aggregation in Wireless Sensor Networks. In: Proceedings of the International Confer-
ence on Distributed Computing Systems, ICDCS (2002)

19. Tang, X., Xu, J.: Extending network lifetime for precision constrained data aggregation in
wireless sensor networks. In: Proceedings of the IEEE Computer and Communications So-
cieties, INFOCOM (2006)

20. Ding, M., Chen, D., Xing, K., Cheng, X.: Localized Fault-Tolerant Event Boundary De-
tection in Sensor Networks. In: Proceedings of the IEEE Computer and Communications
Societies (INFOCOM), March 13-17, pp. 902–913 (2005)

21. Liu, F., Cheng, X., Chen, D.: Insider Attacker Detection in Wireless Sensor Networks. In:
Proceedings of the IEEE Computer and Communications Societies (INFOCOM), May 6-12,
pp. 1937–1945 (2007)

Dynamic Data Race Detection for Correlated

Variables

Ali Jannesari, Markus Westphal-Furuya, and Walter F. Tichy

Institute for Program Structures and Data Organization
Karlsruhe Institute of Technology

76131 Karlsruhe, Germany
{jannesari,westphal,tichy}@kit.edu

http://www.kit.edu

Abstract. In parallel programs concurrency bugs are often caused by
unsynchronized accesses to shared memory locations, which are called
data races. In order to support programmers in writing correct parallel
programs, it is therefore highly desired to have tools on hand that auto-
matically detect such data races. Today, most of these tools only consider
unsynchronized read and write operations on a single memory location.
Concurrency bugs that involve multiple accesses on a set of correlated
variables may be completely missed. Tools may overwhelm programmers
with data races on various memory locations, without noticing that the
locations are correlated. In this paper, we propose a novel approach to
data race detection that automatically infers sets of correlated variables
and logical operations by analyzing data and control dependencies. For
data race detection itself, we combine a modified version of the lockset al-
gorithm with happens-before analysis providing the first hybrid, dynamic
race detector for correlated variables. We implemented our approach on
top of the Valgrind, a framework for dynamic binary instrumentation.
Our evaluation confirmed that we can catch data races missed by existing
detectors and provide additional information for correct bug fixing.

Keywords: data race detection, parallel programs, dynamic analysis,
correlated variables.

1 Introduction

As multi-core processors have become more and more ubiquitous in recent years,
programmers are faced with the challenge of writing parallel programs to lever-
age this computing power. Yet, writing parallel programs is inherently harder
than sequential ones: Among other difficulties, concurrency related bugs, such as
deadlocks, atomicity and order violations [1], tend to appear randomly and are
troublesome to reproduce and fix – especially if several variables are involved.
How can we support programmers in this tedious work and improve existing
tools?

Y. Xiang et al. (Eds.): ICA3PP 2011, Part I, LNCS 7016, pp. 14–26, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.kit.edu

Dynamic Data Race Detection for Correlated Variables 15

1.1 Problem Description

The ’traditional’ definition of data races does not cover concurrency bugs that
involve more than a single memory location or multiple read/write-operations:
Consider the function scaleVector shown in Figure 1, where every access to the
shared tuple (x, y) is protected by lock m. Although scaleVector is clearly in-
tended as an atomic operation on (x, y), another thread could change x or y dur-
ing the computation of max. If the other thread also protects x and y with Lock
m, no data race is detected, yet scaleVector obviously suffers from an atomicity
violation.

Data: shared vector (x, y); local
variables a, b, max; lock m

Function scaleVector
lock(m) ;

(a, b)← (x, y) ;
unlock(m) ;
max← a if a > b else b
lock(m) ;

(x, y)← (x
max

, y
max

) ;
unlock(m) ;

Fig. 1. Function with concurrency bug

An extensive study of concurrency
bugs in [1] has revealed that a signif-
icant number (34%) of the examined
non-deadlock bugs fall into this cate-
gory and are therefore not adequately ad-
dressed by existing tools. In this paper,
we present a new approach to data race
detection that will help close this gap.
Roughly speaking, we adapt the lockset
algorithm and the happens-before analy-
sis to build a dynamic hybrid data race
detector for correlated variables and log-
ical operations. First and foremost, we
must extend the definition of data races
to capture scenarios like the one we just
described. Therefore, two aspects of data races need reconsideration:

Spatial Aspect: Instead of single memory locations, we must monitor sets of
correlated variables that share a semantic consistency property. We call such sets
correlated sets. In the example above s = {x, y} is one such correlated set.
Temporal Aspect: A logical operation on a correlated set that preserves its
consistency property may consist of several elementary reads or writes. We call
such operations computational units. In our example, the computational unit
u = scaleVector operates on s. Using these terms, we come up with the following
new definition of extended data races: Accesses of two parallel computational
units u1 and u2 to the same correlated set s are called extended data race, if s is
modified, and u1 and u2 are not synchronized in a manner that enforces mutual
exclusion or a specific order. Our work will be based on this definition.

2 Related Work

There is a lot of prior work dealing with data race detection for single memory
locations [2,6,4]. However, the problem of dealing with concurrency bugs involv-
ing multiple, correlated variables has only been addressed by few authors. We
briefly describe three such publications: The papers [7,8] are tailored towards
object oriented environments, in particular Java. It is assumed that annotated

16 A. Jannesari, M. Westphal-Furuya, and W.F. Tichy

fields of a class (per instance) form an atomic set, while methods of the same
class are units of work on these sets. MUVI [10] detects correlated variables by
applying data mining techniques during static analysis. Although the authors’
main focus is to detect inconsistent update bugs, a basic variant of the dynamic
lockset algorithm is developed. The Serializability Violation Detector (SVD) [11]
uses dynamically derived control and data dependencies to detect computational
units on the fly. When computational units terminate, information about them
is discarded and correlations are built ”from scratch” – that is, no persistent
information, as with correlated sets or atomic sets, is stored.

Looking at the related works, it seems clear that concepts similar to correlated
sets and computational units are necessary for the detection of multi-variable
concurrency bugs. However, the methods to infer such constructs vary signif-
icantly, as do criteria for actual bug detection. While using serializability can
prevent benign races in some cases [7], it is inherently dependent on a concrete
schedule. Also, order violation bugs may be overlooked: An example is the use
after initialization pattern, when thread t1 writes an initial value to v, while
thread t2 reads v – these operations are obviously serializable, but can still lead
to program crashes when executed in the wrong order, e.g. if v is a pointer
type. Therefore, it is promising and desirable to bring the benefits of hybrid race
detection to the domain of multi-variable concurrency bugs.

3 Race Detection for Correlated Variables

3.1 Inferring Correlated Sets and Computational Units

A prerequisite for detecting extended data races is to dynamically infer correlated
sets and computational units. In related work, we have seen several solutions to
this problem. Since we aim to develop a method without user intervention, we do
not rely on source annotations. Instead, we infer correlated sets and computa-
tional units automatically. Our approach is therefore based on the region hypoth-
esis [11] for computational units: (a) All operations of a computational unit are
related through either true data dependencies (read after write) or control de-
pendencies. (b) Computational units follow the ‘read compute write’ pattern: A
program state is first read from shared memory, the new state is computed using
thread exclusive memory and finally written back to shared memory. Therefore,
there are no true data dependencies on shared memory locations within compu-
tational units. Additionally, we infer correlated sets using the same heuristic: All
memory locations read or written within a computational unit, form a correlated
set. Based on these criteria, both computational units and correlated sets can
be computed fully automatically using the following online algorithm:

1. Initially, each dynamic operation (instruction) forms its own computational
unit and each memory location its own correlated set.

2. When an operation op1 is executed:
– We merge the computational units of all dynamic operations that op1

depends on through a control dependency.

Dynamic Data Race Detection for Correlated Variables 17

– We merge the computational units of all dynamic operations that op1

depends on through a true data dependency1. However, if op1 is true
data dependent on op2 through a shared memory location, op2’s compu-
tational unit is not merged, but instead marked as closed.

– We merge the correlated sets of all memory locations that op1 reads, and
the correlated sets of all memory locations that op1 is control dependent
on. The merged correlated set is also assigned to the variable written by
op1 (eventually overwriting its old correlated set).

y x

max
s

s

a

s

b

2

3

1

a x

b y

max a

u

u

u

1

2

3

Computational Units Correlated Sets

Control Dependency

Local True Dependency

Shared True Dependency

before

after

(a) Merging computational units and cor-
related sets due to control dependency

a x b y

max a

x x/max

y y/max

a x

...

Control Dependency

Local True Dependency

Shared True Dependency

before

aftery x

max

s

ab

3
u3

u4

Computational Units Correlated Sets

(b) Ending a computational unit due to
shared true dependency

Fig. 2. Region hypothesis applied to the
function scaleVector of Figure 1

In Figure 2 this algorithm is applied
to the function scaleVector. Subfigure
(a) shows the situation before and af-
ter executing op = max ← a: First,
the assignments a← x and b← y form
their own computational units u1 and
u2, and two correlated sets s1 = {a, x}
and s2 = {b, y} could be inferred dur-
ing u1 and u2, respectively. After exe-
cuting op, because of op’s control de-
pendencies, all operations are merged
into a single computational unit u3 and
all memory locations to a single corre-
lated set s3. In Subfigure (b), we can
see the situation before and after exe-
cuting scaleVector a second time: All
operations within this function are re-
lated through either control dependen-
cies or true data dependencies; there-
fore scaleVector is recognized as com-
putational unit u3. Furthermore, when
executed a second time, a shared true
dependency on x is observed, ending u3 and starting u4.

As one can see, it is possible for correlated sets and computational units to
contain both shared and exclusive parts alike. While it is mostly the shared parts,
which finally matter for data race detection, we must also track thread exclu-
sive computations and memory locations for two main reasons: First, because
resources that are now considered exclusive may become shared later on. Sec-
ond, because correlations between shared resources are often established through
exclusive intermediate values – as we’ve seen in the example above.

For the scaleVector function, the region hypothesis obviously led to correct re-
sults. However, because of its heuristic nature, this must not always be the case:
In fact, experiments in [11] showed that the region hypothesis holds on the most
common paths of 14 examined atomic regions but fails on some rare paths. One

1 An operation op1 has a true data dependency on an operation op2, if op1 reads a
value that was last written by op2.

18 A. Jannesari, M. Westphal-Furuya, and W.F. Tichy

common source of errors are shared true dependencies within atomic regions.
In these cases, the region hypothesis cuts computational units too early. This
limitation could be mitigated by exploiting information about program structure:

jmp (cond)

jmp

else part

if part

if-else

(a) if-else construct

jmp (cond)

if part if

(b) if construct

Fig. 3. Finding the re-
convergence point (black
filled circle)

Shared true dependencies are allowed within computa-
tional units, if both operations occur within the same
function body (similar to the criterion used for units
of work in [8] and [7]). On the other hand, an ’early
if’ could cause the whole program to be interpreted
as a single computational unit. We therefore limited
the influence of control dependencies on merging to
function scope. In [11] control dependencies were com-
pletely ignored. One final aspect that has yet to be
clarified is how exactly one can detect control depen-
dencies during dynamic analysis. To do so, we use the
idea of reconvergence points introduced in [12]. When
encountering a conditional jump, the jump target is
probed to determine the type of control flow construct:
For example, if the target is preceded by an uncondi-
tional forward jump, we have encountered an if-else
construct; the reconvergence point is the target of the
unconditional jump. On the other hand, if there is
no jump, we have encountered an if construct. Fig-
ure 3 illustrates these two cases. However, in contrast
to [12] and [11] that are limited to if and if-else
constructs, we’re also able to identify loops. This is
possible, because of using our loop detection patterns
introduced in [3,4]. Furthermore we support non-local
jumps caused by break, continue or return.

3.2 Adapting the Lockset Algorithm

As mentioned, the original lockset algorithm checks if every access to a shared
resource obeys a certain locking discipline that ensures mutual exclusion. Let
us briefly review the original algorithm before we discuss our extensions. The
lockset algorithm enforces that every shared memory location v is protected by
a non empty set of locks in the sense that all of these locks are held whenever a
thread accesses v. Since it is at first unclear which memory location is protected
by which locks, we dynamically gather this information during the program’s
execution: For each Thread t we store Lt, the set of all locks currently held by
t. We call Lt the lockset of t. Furthermore, we maintain a candidate set of locks
Cv for each memory location v. Initially, Cv is assumed to consist of all locks
and than successively refined on each access to v.

Obviously, this approach considers neither the spatial nor the temporal as-
pects which we earlier captured in form of correlated sets and computational

Dynamic Data Race Detection for Correlated Variables 19

u

shared(u)excl (u)1 excl (u)2

Fig. 4. Different parts of a computational unit u

units. Therefore, to extend this
algorithm for our needs, we
must somehow substitute Lt

and Cv with equivalents for
computational units and corre-
lated sets. Let us look at how
we can redefine locksets first.
Generally spoken, a computa-
tional unit u consists of three parts (see Figure 4):

– excl1(u): u accesses only exclusive variables
– shared(u): u accesses shared and exclusive variables alike
– excl2(u): u accesses only exclusive variables

Each of these parts can also be empty.
Based on this observation we define:

Lu :=

{
heldu, shared(u) �= ∅
all locks, otherwise

where

heldu := {Lock m | m held throughout shared(u)}

This means: Lu consists of the locks held throughout shared(u), if shared(u) is
not empty (denoted by heldu above); otherwise Lu equals the set of all locks.
However, because of our tool’s intended dynamic nature, we cannot know in
advance exactly when shared(u) starts and ends – actually computing Lu is
therefore a problem itself, which we discuss in section 3.3. For the moment, we
assume that we have all required knowledge available in advance. To complete
the adapted lockset algorithm, we can now simply replace Lt with Lu and Cv

with Cs (Cs denotes the candidate set of a correlated set s and is computed
analogously to Cv).

For the discussion of our locking policy, we assume that a correlated set s is
accessed by u1 and u2 in parallel, with Lu1 ∩ Lu2 �= ∅. Obviously shared(u1)
and shared(u2) cannot overlap, so that only the following two general cases of
interleaving are possible:

excl1(u1)

excl1(u2) shared(u2)

shared(u1) excl2(u1)

excl2(u2)

(a) Either shared(u2) precedes
shared(u1)

excl1(u1) shared(u1)

excl1(u2)

excl2(u1)

shared(u2) excl2(u2)

(b) Or shared(u1) precedes shared(u2)

20 A. Jannesari, M. Westphal-Furuya, and W.F. Tichy

In the diagrams above, arrows denote the temporal ordering between individ-
ual parts (we will get to know this ordering as happens-before relation in section
3.4). Now, since all exclusive parts solely operate on exclusive variables and do
not interfere with parallel computations, the first case is always equivalent to
the left side while the second is always equivalent to the right side:

excl1(u1) shared(u1) excl2(u1)

excl1(u2) shared(u2) excl2(u2)

excl1(u1) shared(u1) excl2(u1)

excl1(u2) shared(u2) excl2(u2)

Therefore, our initial assumption implies that all possible interleavings of u1

and u2 must be equivalent to either u2→u1 or u1→u2 and are thus serializable.
If we generalize this observation for s with Cs �= ∅ and an arbitrary number of
ui accessing s, all ui are serializable. This guarantees that there is no data race
on s.

Note that there are other possibilities to define Lu. In particular, we could
have defined Lu to consist of all locks that are held from the very beginning
to the very end of u. However, this definition would yield many false positives,
since excl1(u) and excl2(u) do not need to be protected by locks.

3.3 Calculating a Computational Unit’s Lockset

In the previous section, we assumed that we are endowed with sufficient a priori
knowledge to compute Lu. That is, knowledge about which memory accesses
constitute shared(u). In dynamic program analysis, however, shared(u) can re-
peatedly change for various reasons:

1. After the last access to a shared memory location, we must assume that all
further exclusive read/write-operations are part of excl2(u). This assumption
must be revised, if another access to a shared memory location follows.

2. Upon merging two computational units u1 and u2 to u, their shared parts
must be combined, yielding shared(u). shared(u) may now contain accesses
that are neither part of shared(u1) nor of shared(u2) (Figure 5 (a)).

3. A variable v that was formerly considered exclusive, may later turn out to
be actually shared. The shared part of the computational unit that accessed
v earlier, must then be extended accordingly (Figure 5 (b)).

shared(u)shared(u)

u

shared(u)

u
1 2

u21

(e) Merging of computational units

shared(u)

u

v accessed

shared'(u)

(f) Exclusive variable becomes shared

Fig. 5. Reasons for shared(u) to change

Dynamic Data Race Detection for Correlated Variables 21

We can solve these problems by introducing a new concept called lock vector,
which is inspired by vector clocks. For a thread t, the lock vector function lt is
defined as follows:

lt : Lock → N× N, m
→ (lt(m)acq, lt(m)rel).

lt maps a lock m to its number of acquisitions lt(m)acq and releases lt(m)rel by
thread t so far. Note that lt(m)acq is in general not equal to the number of calls
to m.lock() by t: For Example, in the case of a recursive lock, lt(m)acq isn’t
further increased, if t already is in possession of m. Furthermore, we store two
local copies of the lock vector lt at the beginning and end of shared(u), called
lfst,u and llst,u. Then, we can compute Lu as follows:

Lu = {Lock m |
m held at the beginning of shared(u)︷ ︸︸ ︷
lfst,u(m)acq − lfst,u(m)rel = 1 ∧ llst,u(m)rel − lfst,u(m)rel = 0︸ ︷︷ ︸

m not released until the end of shard(u)

}

If another shared variable is accessed by u, we can easily update llst,u and Lu;
if two computational units u1 and u2 are merged to u, we set

lfst,u = min(lfst,u1 , lfst,u2) and llst,u = max(llst,u1 , llst,u2)

using element-wise comparison and recompute Lu. The problems caused by the
above points 1) and 2) are therefore solved, yet problem 3) still remains. To solve
it as well, we must store additional copies lfst,v and llst,v of lt for an exclusive
variable v the first and last time it is accessed by u. If v later becomes shared,
u’s lock vectors are then updated as follows:

lfst,u = min(lfst,v , lfst,u) and llst,u = max(llst,v , llst,u)

and Lu is recomputed.
This concludes our description of the adapted lockset algorithm. Before we

continue to explain how to integrate temporal ordering, we will exemplarily
apply it to the function scaleVector in Figure 1. The result is shown in Table
1: Initially, there are neither acquisitions nor releases of lock m, while u is in
excl1 and Lu, therefore, contains all locks by definition. As we encounter the

Table 1. Lockset algorithm applied to scaleVector (new values are marked bold)

statement executed lt(m) part of u lfst,u(m) llst,u(m) Lu Cs

initially (0, 0) excl1 – – all all

lock(m) (1, 0) excl1 – – all all

(a, b)← (x, y) (1, 0) shared (1, 0) (1, 0) {m} {m}
unlock(m) (1, 1) shared (1, 0) (1, 0) {m} {m}
max← a if a > b else b (1, 1) excl2 (1, 0) (1, 0) {m} {m}
lock(m) (2, 1) excl2 (1, 0) (1, 0) {m} {m}

(x, y)← (x
max

, y
max

) (2, 1) shared (1, 0) (2, 1) ∅ ∅

22 A. Jannesari, M. Westphal-Furuya, and W.F. Tichy

first acquisition of m, we increase lt for m to (1, 0). With the assignment in the
third row of Table 1, u accesses the shared resources x and y: u switches to its
shared part and makes local copies of lt. When writing to max, we can assume
that u has reached excl2. However, this assumption must be revised on the next
access to x and y. Since lt(m) has changed to (2, 1) in between, llst,u(m) also
takes this new value, causing Lu and finally Cs to become empty. The detection
of an extended data race will be reported at this point.

3.4 Happens-Before Analysis – Hybrid Race Detector

A pure lockset based race detector fails to recognize synchronizations like sig-
nal/wait, fork/join or barriers, and will therefore produce many false positives.
As a hybrid race detector, our approach therefore combines the lockset algo-
rithm with the happens-before relation →hb that tracks the temporal and causal
ordering of events. For two such events e1 and e2 we define:

e1 →hb e2 :⇔ e1 precedes e2 temporally/causally
e1‖e2 :⇔ e1 �→hb e2 ∧ e2 �→hb e1

The →hb relation itself is implemented by vector clocks : A global timestamp
vector, called v, is tracked using thread local event counters that are exchanged
on synchronization events [14,13]. For two events e1 and e2 that take place
at times v1 and v2, we then have e1 →hb e2 ⇔ v1 < v2 with element-wise
comparison.

To combine the lockset algorithm and →hb, we use a state machine based on
our race detector Helgrind+ [5,4,3]. This state machine can distinguish between
parallel and ordered accesses to a correlated set s as follows: Whenever s is
accessed, a copy of v, called vs, is stored with s. Any subsequent access to s at
time v′ is then parallel to the first one, iff vs �< v′.

4 Evaluation

Our implementation borrows from Helgrind+ [4], which in turn is based on
the Valgrind framework [15,16]. The general principle behind Valgrind is called
disassemble-instrument-resynthesize. Helgrind+, among other things, provides
an implementation of shadow memory. Our implementation uses shadow values
to store references to point the correlated set and a collection of computational
units. In experimental evaluation, we look at complex examples taken from real-
world applications to check if computational units, correlated sets, and extended
data races are detected. We compare our results to our enhanced race detector,
Helgrind+ [3,4], which serves as representative for tools that do not natively
support multi-variable race detection.

4.1 Detecting Extended Data Races

The results of our evaluation focuses on the detection of correlations and ex-
tended data races shown in Table 2. The simplified codes taken from real appli-
cations are indicated as Tests 1 to 8 in the table.

Dynamic Data Race Detection for Correlated Variables 23

Table 2. Detected correlated sets, computational units and data races

Test-No. Description Expected Helgrind+ Our approach

CUs & CSets Race

1 ScaleVector without locks Race Race � Race

2 ScaleVector with interrupted
locks

Race × No race � Race

3 Normalize with consistent lock-
ing

No Race No race � No race

4 Different locks Race × No race � Race

5 AppendBuffer without locks Race × Multiple races � Race

6 Swapping correlated variables
with locks

No race No race � No race

7 Swapping uncorrelated
variables with locks

No race No race × × Race

8 Independent calculations – – × –

Tests 1 and 2 simply represent the function scaleVector from Figure 1. For
test 1, the locks were completely omitted, whereas in test 2 the locks were kept
as in Figure 1. While Helgrind+ is able to detect the locking violation in test 1,
it fails in test 2: In this test, atomicity is violated by releasing and re-acquiring
locks during a logical operation. However, Helgrind+ is not able to detect this
kind of bug, since each single access to a shared variable is properly protected
by locks. The new approach detects the race and passes in test 2.

1 normalize () {

2 lock (&m);

3 f loat len = sqrt (a*a + b*b);

4 a = a/len; b = b/len;

5 unlock(&m);

6 }

Fig. 6. Test 3: Vector normalization

1 append(char *s) {

2 lock (&m1);

3 mCont = f(mCont ,s);

4 unlock(&m1);

5 }

6 reflow(char *s) {

7 lock (&m2);

8 mLen = g(mLen ,s);

9 unlock(&m2);

10 }

Fig. 7. Test 4: Using different locks for
correlated variables

Test 3 represents another arith-
metic function for vector normal-
ization (Figure 6). It has a more
complicated dependency graph, be-
cause it uses the sqrt() function.
Still, all correlations are detected.
The normalization itself is consis-
tently protected by a single lock, so
it is data race free.

A similar scenario is represented
by test 4, shown in Figure 7: The
two shared variables mCont and mLen
are related through the string s, yet
protected by different locks. Again,
a typical race detector cannot de-
tect this data race. In contrast, our
approach correctly infers the corre-
lated set {s, mCont, mLen} and de-
tects its empty lockset. This test
also shows that our method handles
function calls reliably: When f() is
called, s is copied from append()’s
stack frame to f()’s stack frame,

24 A. Jannesari, M. Westphal-Furuya, and W.F. Tichy

making the two copies dependent. When f() ends, the return value is stored
in a machine register that depends on the original s and mCont. This register
value is finally moved to mCont establishing the correlation of mCont and s.
Likewise, mLen is included in this correlated set.

Test 5 is shown in Figure 8; it is part of Apache’s log config module, which
contains a data race (now fixed). outCnt and outBuf implement a buffer for sta-
tus messages. The correlation between those two variables is established through
len, so that bufferAppend() is correctly identified as a single computational
unit. Since there are no locks to protect the shared resources, traditional race
detectors report multiple data races on outBuf and outCnt. In contrast, our
approach reports only a single data race on s = {outCnt, outBuf}. This can
make it easier for the programmer to identify the root cause of the detected race
and to apply a correct bug fix. Just reporting several seemingly unrelated data
races on the other hand may mislead the programmer to wrap every access to
a shared variable in locks, but overlook their correlation. This can be a serious
problem, especially if the static distance between these accesses is bigger than
in our example.

1 void bufferAppend (char *str) {

2 int len = strlen(str);

3 i f (len+outCnt >= BUFSIZE) {

4 // flush buffer!

5 outCnt = 0;

6 }

7 for (int i = 0; i < len; i++) {

8 outBuf[outCnt+i] = str[i];

9 }

10 outCnt = outCnt+len;

11 }

12 int strlen(char *str) {

13 int ctr = 0;

14 while(str[ctr]) { ctr++; }

15 return ctr;

16 }

Fig. 8. Test 5: Appending to a buffer without locks

1 stat ic OBJ *list_head ;

2 OBJ *dequeue_and_fill (int a, int b) {

3 OBJ *head = list_head ;

4 head ->a = a, head ->b = b;

5 list_head = head ->next;

6 return head;

7 }

Fig. 9. Test 8: Independent operations within a
atomic region

Figure 8 also shows a
simple implementation of
the strlen() function. We
include it to demonstrate
how control dependencies
are tracked by our imple-
mentation: The incremen-
tation of ctr depends on
the outcome of the loop
condition str[ctr], lead-
ing to the correlation be-
tween ctr and str.

In tests 6 and 7, two
shared variables a and b are
swapped using a temporary
variable:

tmp = a; a = b; b = tmp;

The outcome depends on
the previous state of the
two variables a and b:
Swapping is correctly iden-
tified as a logical opera-
tion, when a and b were
already correlated. But for
independent values our ap-
proach fails for the same
reason as in test 4 of the

Dynamic Data Race Detection for Correlated Variables 25

previous section: First, tmp inherits a’s correlated set, while a’s own correlated
set is overwritten with the one of b. Then b’s set is overwritten by tmp’s. Ef-
fectively, a and b have now swapped their correlated sets as well. When the
variables are accessed for the next time, protected by the same locks as before
swapping their values, the locksets then become empty and false positives are
reported.

Finally, in test 8 [11], shown in Figure 9, a data structure consisting of seman-
tically correlated variables is initialized, but the initialization values are indepen-
dent. Inferring of correlated sets and computational units fails in such cases. This
special case could be solved by considering address calculations for dependency
analysis: head->a and head->b are computed by adding two fixed offsets to head.
However, tracking address dependencies could cause over-estimation of correlated
sets, since struct-members must not automatically be related: Think, for exam-
ple, of a data structure for counting incoming and outgoing data packets.

5 Conclusion and Future Work

Traditional approaches to data race detection fail in cases where several cor-
related variables are involved. Based on our definitions of extended data races,
computational units, and correlated sets, we have demonstrated how to modify
the lockset algorithm and the happens-before analysis for such cases. For our
implementation, we have opted for inferring correlated sets and computational
units fully automatically. We made use of the region hypothesis and proposed
improvements based on the program structure, i.e. allowing shared true depen-
dencies within function scope and limiting the effect of control dependencies to
function scope.

The evaluation showed that our enhanced race detection approach is able to de-
tect synchronization operations reliably. In contrast to previous approaches, it also
works for the case of correlated variables and logical operations. Even if extended
data races manifest as multiple single variable data races, our approach is still able
to provide further informations that helps identify the problem’s root cause.

Some technical improvements are necessary for the current implementation of
our approach to integrate it into our race detector Helgrind+ and make it more
practical and usable.

We have also seen that in few cases inferring correlated sets and computa-
tional units fails. Note that one of our approach’s feature is its orthogonality
between race detection and finding correlated sets and computational units: We
can switch to other methods for the latter, without the need to alter the former.
This property will make it easier to further improve the region hypothesis or
use completely different ways to infer correlated sets in our implementation. For
example, it can be worthwhile to require the user to specify at least correlated
sets by annotations.

Alternatively, we could exploit new parallel programming paradigms that are
currently gaining focus: i.e. Tasks and Operations that are being dispatched to
execution queues, or Futures naturally encapsulate concepts similar to compu-
tational units. We leave exploring such possibilities for future work.

26 A. Jannesari, M. Westphal-Furuya, and W.F. Tichy

References

1. Lu, S., Park, S., Seo, E., Zhou, Y.: Learning from mistakes: a comprehensive study
on real world concurrency bug characteristics. In: ASPLOS XIII: Proceedings of
the 13th International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, pp. 329–339. ACM, New York (2008)

2. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.: Eraser: a
dynamic data race detector for multithreaded programs. ACM Trans. Comput.
Syst. 15(4), 391–411 (1997)

3. Jannesari, A., Tichy, W.: Identifying ad-hoc synchronization for enhanced race de-
tection. In: 2010 IEEE International Symposium on Parallel Distributed Processing
(IPDPS), pp. 1–10 (19-23, 2010)

4. Jannesari, A., Bao, K., Pankratius, V., Tichy, W.F.: Helgrind+: An efficient dy-
namic race detector. In: International on Parallel and Distributed Processing Sym-
posium, pp. 1–13 (2009)

5. Jannesari, A., Tichy, W.F.: On-the-fly race detection in multi-threaded programs.
In: PADTAD 2008: Proceedings of the 6th Workshop on Parallel and Distributed
Systems, pp. 1–10. ACM, New York (2008)

6. Yu, Y., Rodeheffer, T., Chen, W.: Racetrack: efficient detection of data race con-
ditions via adaptive tracking. SIGOPS Oper. Syst. Rev. 39(5), 221–234 (2005)

7. Hammer, C., Dolby, J., Vaziri, M., Tip, F.: Dynamic detection of atomic-set-
serializability violations. In: ICSE 2008: Proceedings of the 30th International Con-
ference on Software Engineering, pp. 231–240. ACM, New York (2008)

8. Vaziri, M., Tip, F., Dolby, J.: Associating synchronization constraints with data
in an object-oriented language. In: POPL 2006: Conference Record of the 33rd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pp. 334–345. ACM, New York (2006)

9. Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery
in Database Systems. Addison-Wesley, Reading (1987)

10. Lu, S., Park, S., Hu, C., Ma, X., Jiang, W., Li, Z., Popa, R.A., Zhou, Y.: Muvi:
automatically inferring multi-variable access correlations and detecting related se-
mantic and concurrency bugs. In: SOSP 2007: Proceedings of Twenty-First ACM
SIGOPS Symposium on Operating Systems Principles, pp. 103–116. ACM, New
York (2007)

11. Xu, M., Bod́ık, R., Hill, M.D.: A serializability violation detector for shared-
memory server programs. SIGPLAN Not. 40(6), 1–14 (2005)

12. Collins, J.D., Tullsen, D.M., Wang, H.: Control flow optimization via dy-
namic reconvergence prediction. In: MICRO 37: Proceedings of the 37th Annual
IEEE/ACM International Symposium on Microarchitecture, pp. 129–140. IEEE
Computer Society, Washington, DC, USA (2004)

13. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

14. Fidge, J.: Timestamps in Message Passing Systems that Preserve the Partial Or-
dering. In: Proc. 11th Australian Computer Science Conf., pp. 55–66 (1988)

15. Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary
instrumentation. SIGPLAN Not. 42(6), 89–100 (2007)

16. Nethercote, N., Seward, J.: Valgrind: A program supervision framework (2003),
http://valgrind.org/

17. Butenhof, D.R.: Programming with POSIX Threads. ser. Professional Computing
Series. Addison-Wesley, Reading (1997)

http://valgrind.org/

Improving the Parallel Schnorr-Euchner LLL

Algorithm

Werner Backes and Susanne Wetzel

Stevens Institute of Technology
Castle Point on Hudson, Hoboken, NJ 07030 USA

{wbackes,swetzel}@cs.stevens.edu

Abstract. This paper introduces a number of modifications that al-
low for significant improvements of parallel LLL reduction. Experiments
show that these modifications result in an increase of the speed-up by a
factor of more than 1.35 for SVP challenge type lattice bases in compar-
ing the new algorithm with the state-of-the-art parallel LLL algorithm.

1 Introduction

In the course of the last twenty-five years, lattice basis reduction has evolved
as a main tool in modern cryptanalysis [9,10]. At the same time, lattice theory
has gained increased importance in the context of developing new cryptographic
primitives [12,11,4].

The goal of lattice basis reduction is to determine a nearly-orthogonal, short
basis of a lattice. The first polynomial-time lattice basis reduction algorithm for
lattices of arbitrary size was introduced by Lenstra, Lenstra, and Lovász [8]. A
break-through in enabling lattice basis reduction in practice is due to Schnorr
and Euchner [13] who proposed a variant of the original LLL algorithm. In the
past twenty years there were only a few efforts that focused on parallelizing lat-
tice basis reduction. Main results include parallelization efforts for the original
LLL algorithm [7] and work that is tailored for a vector computer architecture [6].
Recently, Backes and Wetzel [2] introduced the first parallelization of the LLL
algorithm that can make efficient use of modern multi-processor, multi-core sys-
tems. The algorithm proposed in [2] builds on an advanced Schnorr-Euchner
algorithm which in practice performs on par with the current implementation of
the L2 algorithm [9].

This paper introduces an improvement to the parallel advanced Schnorr-
Euchner LLL reduction algorithm that significantly advances the state-of-the-art
in parallel LLL reduction [2]. In particular, based on the algorithm in [2], this
paper develops a new approach which dynamically determines the number of
active threads participating in the computation at runtime. These dynamic ad-
justments are geared to reduce the synchronization overhead and waiting times
caused by the frequent—yet necessary—use of barriers and locks to ensure the
correctness of the computations.

In addition, this paper proposes the use of sequences of reduction parameters
instead of a single reduction parameter. This paper shows that this approach

Y. Xiang et al. (Eds.): ICA3PP 2011, Part I, LNCS 7016, pp. 27–39, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

28 W. Backes and S. Wetzel

proves to be beneficial for parallel advanced Schnorr-Euchner LLL reduction,
despite the fact that in a majority of test cases it only has a marginal effect on
the performance of the sequential advanced Schnorr-Euchner algorithm.

Experiments show that the new algorithm performs particularly well for SVP
challenge type lattice bases for which the parallel advanced Schnorr-Euchner LLL
in [2] is experiencing scaling problems. Specifically, the improvements introduced
in this paper result—for the 8-thread version—in an increase of the speed-up by
a factor of more than 1.35 compared to the parallel advanced Schnorr-Euchner
LLL in [2] when reducing SVP challenge type lattice bases. The improvement
of the speed-up is even larger for SVP challenge type lattice bases of smaller
dimension. In addition, the 8-thread version of the newly improved algorithm
achieves a speed-up in reducing knapsack type lattice bases of close to 4.5.

2 Preliminaries

A lattice L =
{∑k

i=1 xibi|xi ∈ Z, 1 ≤ i ≤ k
}
⊂ Rn is an additive discrete sub-

group of Rn. The linear independent vectors b1, . . . , bk ∈ Rn (k ≤ n) form a
basis B = (b1, . . . , bk) ∈ Rn×k of dimension k of the lattice L. The basis of a
lattice is not unique. Specifically, a basis B may be transformed into another
basis B′ of the same lattice L by applying a unimodular transformation U, i.e.,
B′ = BU with U ∈ Zn×k and | detU | = 1. Unimodular transformations include
swaps (exchange of two base vectors) and translations (adding an integral mul-
tiple of one base vector to another one). The Gram-Schmidt orthogonalization
B∗ = (b∗1, . . . , b

∗
k) of a lattice basis B = (b1, . . . , bk) ∈ Rn×k is computed as

b∗1 = b1, b∗i = bi −
∑i−1

j=1 μi,jb
∗
j for 2 ≤ i ≤ k with μi,j =

〈bi,b
∗
j 〉

‖b∗j ‖ for 1 ≤ j < i ≤ k

where 〈., .〉 defines the scalar product of two vectors. It is important to note that
B∗ is not necessarily a basis of the lattice L, nor is a vector b∗i of the orthog-
onalization B∗ necessarily in L. The goal of lattice basis reduction is to find a
lattice basis B′ for the lattice L(B) such that the vectors in B′ are as short and
as orthogonal to each other as possible. The most well-known and most-widely
used lattice basis reduction method is the LLL reduction method [8]:

Definition 1. For a lattice L ⊆ Rn with basis B = (b1, . . . , bk) ∈ Rn×k, corre-
sponding Gram-Schmidt orthogonalization B∗ = (b∗1, . . . , b

∗
k) ∈ Rn×k and coeffi-

cients μi,j (1 ≤ j < i ≤ k), the basis B is LLL-reduced if (1) |μi,j | ≤ 1
2 with 1 ≤

j < i ≤ k and (2) ‖b∗i + μi,i−1b
∗
i−1‖2 ≥ y‖b∗i−1‖2 for 1 < i ≤ k.

The reduction parameter y may be chosen arbitrarily from
(

1
4 , 1

)
. In practice,

an LLL-reduced basis can efficiently be computed using the Schnorr-Euchner
algorithm [13,1].

The original Schnorr-Euchner LLL algorithm [13] has significantly evolved
over time (see Algorithm 1). The advanced Schnorr-Euchner LLL (referred to as
aSE-LLL) was used by Backes and Wetzel in [2] as a starting point for the devel-
opment of the parallel advanced Schnorr-Euchner LLL algorithm (referred to as
parallel aSE-LLL). In contrast to the original LLL algorithm [8], the original and
advanced Schnorr-Euchner algorithms use floating-point approximations of vec-
tors and the basis (APPROX BASISandAPPROX VECTOR inLines (1) and(24))

Improving the Parallel Schnorr-Euchner LLL Algorithm 29

thus making the LLL reduction practical. To increase the stability, the original and
advancedSchnorr-Euchner algorithms include suitablemeasures in the formof cor-
rection steps (see [13] for details). These corrections include the computation of
exact scalar products (Line (6)) as part of the Gram-Schmidt orthogonalization
and a step-back (Line (28)) in case of a large μij used as part of the size-reduction
(Line (19)). The original and advanced Schnorr-Euchner algorithms use an ex-
act data type for the actual operations on the lattice basis (Line (18)). (In Algo-
rithm 1, p denotes the bit precision of the data type used to approximate the
lattice basis.)

Algorithm 1. Advanced Schnorr-Euchner LLL
Input: Lattice basis B = (b1, . . . , bk) ∈ Z

n×k

Output: LLL-reduced lattice basis B

(1) APPROX BASIS(B′, B)
(2) while (i ≤ k) do

/* scalar products */

(3) Rii = ‖b′i‖
(4) for (1 ≤ j < i) do

(5) if (|〈b′i, b′j〉| < 2
− p

2 ‖b′i‖‖b′j‖) then

(6) Rij = APPROX VALUE(〈bi, bj〉)
(7) else

(8) Rij = 〈b′i, b′j〉
/* orthogonalization */

(9) μii = 1, S1 = Rii
(10) for (1 ≤ j < i) do

(11) Rij = Rij − ∑j−1
m=1 Rimμjm

(12) μij =
Rij
Rjj

(13) Rii = Rii − Rijμij
(14) Sj+1 = Rii

/* size-reduction/μ-update */
(15) for (i > j ≥ 1) do

(16) if (|μi,j | > 1
2) then

(17) Fr = true
(18) bi = bi −
μij�bj

(19) if (|μij | > 2
p
2) then

(20) Fc = true
(21) for (1 ≤ m ≤ j) do
(22) μim = μim −
μij�μjm
(23) if (Fr = true) then

(24) APPROX VECTOR(b′
i, bi)

/* recompute orth. */
(25) if (Fc = false ∧ Fr = true) then

(26) RECOMPUTE Rij()
1

(27) Fr = false
/* check LLL condition */

(28) if (Fc = true) then
(29) i = max(i − 1, 2)
(30) Fc = false
(31) else

(32) i′ = i
(33) while ((i > 1) ∧

(yRi−1,i−1 > Si−1)) do

(34) SWAP(bi, bi−1)
(35) SWAP(b′i, b′i−1)
(36) i = i − 1
(37) if (i = i′) then
(38) if (i = 1) then

(39) R11 = ‖b′1‖
(40) i = 2
(41) else
(42) i = i + 1

In contrast to the original Schnorr-Euchner algorithm, aSE-LLL incorporates
a number of improvements—based on the work by Nguyen and Stehle [9], the
NTL implementation of LLL [15], as well as some additional (mostly technical)
optimizations. These improvements increase the stability of the reduction while
significantly decreasing the overall running time. Specifically, the improvements
include modifications to the computation of the Gram-Schmidt orthogonaliza-
tion and coefficients (Algorithm 1, Lines (3) - (14)) in order to increase the
accuracy of the computations. In addition, the improvements include a modified
checking of the so-called LLL condition (Condition (2), Definition 1). Unlike
in the original Schnorr-Euchner algorithm, the aSE-LLL condition check (Algo-
rithm 1, Lines (28) - (42)) allows the algorithm to perform a sequence of vector
swap operations without the need to recompute the Gram-Schmidt orthogonal-
ization in between those swaps.

Figures 1 and 2 compare the performance of aSE-LLL to L2 (using fpLLL ver-
sion 3.1.1) for knapsack and SVP challenge type lattice basis (see Section 6 for
details on these types of lattice bases). fpLLL includes a proved and a heuristic

1 RECOMPUTE Rij in Line (26) of Algorithm 1 performs the same operations as
shown in Lines (3) - (12).

30 W. Backes and S. Wetzel

0 500 1000 1500 2000
0

100

200

300

dimension

ru
nt

im
e

(in
 m

in
)

fplll
aSE−LLL

Fig. 1. aSE-LLL compared to fpLLL for
knapsack type lattice basis

0 500 1000 1500 2000
0

50

100

150

200

dimension

ru
nt

im
e

(in
 m

in
)

fplll
aSE−LLL

Fig. 2. aSE-LLL compared to fpLLL for
SVP challenge type lattice basis

variant of the L2 algorithm. The proved variant automatically determines the
necessary precision for the approximation based on the input whereas the heuris-
tic variant allows the user to set the precision manually. In practice, the heuristic
variant works well with a smaller precision than the one that would have been
determined by the proved variant and as such is generally faster. In order to al-
low for a fair comparison with aSE-LLL, the tests have therefore been performed
based on the heuristic variant of L2. The precision for the approximation of the
lattice bases and the computation of the Gram-Schmidt orthogonalization was
set to p = 128 bit for knapsack type and to p = 256 bit for SVP challenge type
lattice bases (for both aSE-LLL and the heuristic variant of L2). The results
clearly show that in practice the performance of aSE-LLL is on par with the
performance of the L2 algorithm. The parallel LLL algorithm in [2] and the im-
provements in this paper build on aSE-LLL. It is important to note that—with
suitable modifications—it might be possible to adopt the methods of [2] as well
as the improvements introduced in this paper for the fpLLL implementation of
the L2 algorithm—possibly leading to an efficient parallel implementation of L2.

3 Parallel LLL Reduction

In [2], Backes and Wetzel introduced a parallel LLL algorithm that builds on
aSE-LLL (Algorithm 1). Their parallel algorithm relies on a PRAM type model
where all threads have instant access to shared memory. The shared memory
is used to synchronize the parallel computation efforts and to exchange data
in between threads. They were the first to find a solution that deals with the
dependencies in the main while-loop of the aSE-LLL algorithm which up to then
made it impossible to efficiently parallelize the algorithm.

Algorithm 2. Parallel Advanced Schnorr-Euchner LLL Algorithm (simplified)
Input: Lattice basis B = (b1, . . . , bk) ∈ Z

n×k

Output: LLL-reduced lattice basis B

(1) APPROX BASIS(B′, B)
(2) while (i ≤ k) do
(3) SCALARPRODUCTS(R, μ)
(4) ORTHOGONALIZATION(R, μ)
(5) f = μ-UPDATE(μ)
(6) SIZEREDUCTION(B, f)
(7) if (Fc = false ∧ Fr = true) then
(8) RECOMPUTE Rij()
(9) Fr = false

(10) if (Fc = true) then
(11) i = max(i − 1, 2)

(12) Fc = false
(13) else

(14) i′ = i
(15) while ((i > 1) ∧

(yRi−1,i−1 > Si−1)) do

(16) SWAP(bi, bi−1)
(17) SWAP(b′i, b′i−1)
(18) i = i − 1
(19) if (i = i′) then
(20) if (i = 1) then

(21) R11 = ‖b′1‖
(22) i = 2
(23) else
(24) i = i + 1

The structure of the parallel aSE-LLL (see Algorithm 2) is very similar to
the structure of the sequential aSE-LLL (see Algorithm 1). This is due to the

Improving the Parallel Schnorr-Euchner LLL Algorithm 31

fact that so far it has been impossible to exploit parallelism at a higher level,
i.e., the main while-loop of the (advanced) Schnorr-Euchner LLL algorithm.
Backes and Wetzel developed the only viable alternative known to date in effi-
ciently parallelizing all components within the main while-loop of the (advanced)
Schnorr-Euchner LLL.

In their solution, Backes and Wetzel replace the original scalar product, or-
thogonalization, and size-reduction/μ-update components of Algorithm 1 with
especially designed parallel counterparts of these components. Algorithm 2 shows
a simplified version of the parallel aSE-LLL in [2]. In the parallel algorithm, the
update of the μij (which corresponds to Lines (24) - (25) in Algorithm 1) was
taken out of the size reduction part and instead was implemented as separate
routine. In comparison to the sequential algorithm, the work in [2] uses an ad-
ditional vector f to store the factors necessary for the updates of the exact
lattice basis (see Line (16), Algorithm 1). In the parallel reduction algorithm
in [2], the routines SCALARPRODUCTS, ORTHOGONALIZATION, μ-UPDATE,
and SIZEREDUCTION were separated by barriers in order to ensure the correct-
ness of the respective computations.

The results in [2] showed that the speed-up2 that can be achieved with this
parallel aSE-LLL algorithm does not only depend on the type of the lattice
basis to be reduced, but also depends on the architecture of the machine the
algorithm is running on. In particular, the bandwidth and the latency for memory
access has a profound effect on the speed-up that the algorithm can achieve.
The great impact of these factors is due to the fact that all threads of the
algorithm frequently access (read and write) data structures in shared memory. It
is important to note that on modern CPUs (with integrated memory controllers
and fast interconnects in between caches) one can therefore achieve a significantly
larger speed-up than on CPUs lacking these features.

4 Motivation and Approach

The work in [2] showed this new algorithm to be very efficient and well-suited
for knapsack type lattices, random lattices (as defined by Goldstein and Mayer
[5]), and unimodular lattice bases. In further analyzing the algorithm in [2], we
discovered scaling issues with a newly developed class of lattice bases—referred
to as SVP challenge type lattice bases. The speed-up that the parallel algorithm
of [2] achieves for these SVP challenge type bases is significantly lower than
the speed-up achieved for the lattice bases tested in [2]. The SVP challenge
type lattice bases are derived from lattice bases generated by researchers of the
TU Darmstadt as part of their SVP challenge [14]. In order to generate SVP
challenge type lattice bases, the generator program for the original SVP challenge
bases was modified to limit the size of the lattice basis entries.3

2 The speed-up is defined as the quotient of the running times for the sequential and
the parallel version of the algorithm.

3 Smaller entries allow for large-scale experiments in higher dimensions within a rea-
sonable amount of time.

32 W. Backes and S. Wetzel

0 2 4 6 8 10 12

x 10
4

0

500

1000

iterations of main loop

va
lu

e
of

 i

Fig. 3. Value of i for knapsack type lattice
basis

0 1 2 3 4

x 10
5

0

500

1000

iterations of main loop

va
lu

e
of

 i

Fig. 4. Value of i for a SVP challenge type
lattice basis

In analyzing the value of variable i of the main while-loop of the parallel
aSE-LLL (Line (2), Algorithm 2), we found evidence for the cause of the gap
between the speed-up for, e.g., knapsack type and SVP challenge type lattice
bases. Recall that the loop variable i denotes the basis vector on which the aSE-
LLL algorithm is currently working, using the already LLL reduced basis vectors
1 to i− 1. The amount of computation within a particular iteration of the main
while-loop depends on the value of variable i. That is, the larger i, the larger is
the amount of computation performed (e.g., more scalar products and a larger
portion of the orthogonalization is computed). Consequently, a larger i allows
for a significantly larger amount of computations to be parallelized. Thus, in
general a large percentage of iterations with large i results in the parallel aSE-
LLL algorithm to achieve a larger speed-up. Figures 3 and 4 show the value of
i for every iteration of the main loop of Algorithm 2. The value of loop variable
i increases much earlier (for specific iterations) for knapsack type lattice bases
(see Figure 3) than for the SVP challenge type lattice bases (see Figure 4).
Consequently, these figures provide evidence for a correlation between the overall
progression of i and the speed-up of the parallel aSE-LLL algorithm in [2].

The analysis of the loop variable values suggests that one should concentrate
efforts to achieve further improvements on optimizing the parallel computations
for small values of i without sacrificing the superior performance that is already
in place for larger values of i. It is in this context that we introduce a new
approach that allows us to significantly improve the speed-up for lattice bases
which prove to be problematic for the algorithm in [2].

5 Improved Parallel LLL Reduction

Our work includes two main directions: First, we propose improvements to the
main components of the parallel aSE-LLL in [2] (Sections 5.1 – 5.3). These com-
ponents have been modified to take the value of loop variable i into account
and optimize the parallel computations for small i. In particular, our modifica-
tions are tailored to increase the overall efficiency of the parallel algorithm and
minimize the overhead caused by the use of barriers and locks. Even small im-
provements can lead to a significant overall performance improvement since the
main components are executed repeatedly within the main while-loop. Second,
we propose the use of a sequence of reduction parameters instead of a single
reduction parameter (Section 5.4).

Improving the Parallel Schnorr-Euchner LLL Algorithm 33

5.1 Scalar Product Part

In each iteration of the main while-loop, the aSE-LLL has to compute i scalar
products using the approximate representation of the lattice basis. Schnorr and
Euchner introduced a heuristic (see [13] for details) to determine if the accu-
racy of the result is sufficient. This condition might require the algorithm to
recompute the scalar product at a significantly higher cost using the exact rep-
resentations of the lattice basis. It cannot be predicted at what point or how
many exact scalar products have to be computed.

The work in [2] implemented a work stealing approach in which the scalar
product computation is divided into smaller slices of scalar product computa-
tions. This approach allows Backes and Wetzel to balance the overall scalar
product work load recognizing that this not necessarily translates into an equal
number of scalar products computed by each thread. One of the shortcomings
in [2] is the use of a fixed size for the slice of the parallel scalar product com-
putations. We improve on this in that we dynamically (within certain limits)
decide on the size of the distinct slices dependent on the value of loop variable i.
The parameter spmax is used to limit the maximum size of a computation slice.
Each thread participating in the parallel computation executes the following
instructions as part of our improved parallel scalar product computation:4

Scalar Product – Threadt

(1) ssp =
(

 i

n
� > spmax

)
? spmax :
 i

n
�

(2) s = ssp · (t − 1), e = ssp · t
(3) while (s ≤ i) do
(4) e = (e > i) ? i : e

(5) for (s ≤ j < e) do

(6) if (|〈b′i, b′j〉| < 2
p
2 ‖b′i‖‖b′j‖) then

(7) Rij = APPROX VALUE(〈bi, bj〉)

(9) else

(10) Rij = 〈b′i, b′j〉
(11) MUTEX LOCK(l1)
(12) s = sl
(13) sl = sl + ssp
(14) MUTEX UNLOCK(l1)
(15) e = e + ssp

Our small adjustment to the scalar product computation in [2] leads to a
better utilization of all threads which results in an improvement in cases
with small values for loop variable i without sacrificing the performance for
larger values. The lock-protected operations including the MUTEX LOCK and
MUTEX UNLOCK (see Lines (11) - (14)) can be replaced by an atomic fetch-
and-add operation.5

5.2 Orthogonalization Part

The work in [2] resolved the main challenge in parallelizing the computation of
the Gram-Schmidt orthogonalization and coefficients μij by presenting a new
method to compute the helper variables Rij (see Line (9), Algorithm 1) in
parallel. A transformation of the computation of Rij allows for the parallel com-
putation of an introduced helper variable rl (see [2] for details) which is used to
compute the Rij .

4 In outlining our multi-threaded programs, we distinguish between variables that
are local for every thread and variables that are shared among all threads. Local
variables are highlighted by the use of a different font (e.g., local vs. shared).

5 Thanks to Philippas Tsigas, Chalmers University for suggesting this alternative.

34 W. Backes and S. Wetzel

(1) for (1 ≤ j < i) do
(2) for (1 ≤ m < j) do
(3) Rij = Rij − Rimμjm

(4) μij =
Rij
Rjj

(5) Rii = Rii − Rijμij
(6) Sj+1 = Rii

=⇒

(1) for (1 ≤ j < i) do
(2) for (j ≤ l < i) do
(3) rl = rl + Ri,j−1μl,j−1
(4) Rij = Rij − rj

(5) μij =
Rij
Rjj

(6) Rii = Rii − Rijμij
(7) Sj+1 = Rii

Furthermore, [2] introduces a setup utilizing one control thread and several com-
pute threads for the parallel computation of the orthogonalization.6 The control
thread first pre-computes a part of the orthogonalization (see Lines (4) - (13),
Orthogonalization – Thread1) in order to then enable the distribution of the
computations of rl among all threads (control and compute). The function
COMPUTE SPLIT VALUES determines so-called split values that are used to
assign a portion of the parallel computations to each one of the (control and
compute) threads. Using a barrier in Line (16) of the control and Line (9) of
the compute threads ensures that the pre-computations and split values have
been computed. In the remainder of the control thread (Lines (18) - (20)) and
compute threads (Lines (11) - (13)), the values for rl are computed in parallel.
The size of the pre-computations determines the amount of parallel work and
the number of barriers that are necessary to ensure the correctness of the com-
putation. The work in [2] discusses how one can find a balance in maximizing
the parallel work while limiting the use of barriers.

As discussed previously, in experimenting with the parallel algorithm in [2],
we discovered that small values for the loop variable i cause problems for the
parallel computation of the orthogonalization introduced in [2]. Our analysis
revealed that for small i there are few operations that need to be performed
by each one of the threads which causes a significant increase in the waiting
time at the necessary barriers. In contrast to [2], where all threads perform
computations at all times, we modify this approach by limiting the number of
threads that participate in the computation of the orthogonalization. That is,
we dynamically determine the number of active threads based on the current
value of i and parameter tskip using ACTIVE THREAD. In addition, we allow
for a dynamic adjustment of the amount of pre-computations determining so in
INIT SPLIT SIZE and UPDATE SPLIT SIZE.

Orthogonalization – Thread1 (control)
(1) ta = ACTIVE THREAD(i, tskip)

(2) so = INIT SPLIT SIZE(smin
o , smax

o , i)
(3) j = 0
(4) while (j < i) do
(5) s = j, m = 0
(6) while (m < so∧ j < i) do
(7) for (s ≤ l < j) do
(8) rj = rj − Rilμjl
(9) Rij = Rij − rj

(10) μij =
Rij
Rjj

(11) Rii = Rii − Rijμij
(12) Sj+1 = Rii
(13) m = m + 1
(14) j = j + 1
(15) COMPUTE SPLIT VALUES1(split, ta, so)
(16) BARRIER WAIT(b1)

(17) UPDATE SPLIT SIZE(so)
(18) for (j ≤ l < split1) do
(19) for (s ≤ m < j) do
(20) rl = rl − Rimμlm

Orthogonalization – Threadt
(1) ta = ACTIVE THREAD(i, tskip)

(2) so = INIT SPLIT SIZE(smin
o , smax

o , i)
(3) if (ta ≤ t) then
(4) e = 0
(5) while (e < i) do
(6) s = e, e = e + so
(7) if (e > i) then
(8) e = i
(9) BARRIER WAIT(b1)

(10) UPDATE SPLIT SIZE(so)
(11) for (splitt ≤ l < splitt+1) do

(12) for (s ≤ m < e) do
(13) rl = rl − Rimμlm

6 In the control/compute thread setup one thread is the dedicated control thread. The
remaining threads execute the instructions intended for compute threads.

Improving the Parallel Schnorr-Euchner LLL Algorithm 35

The amount of parallel computations and number of barriers that have to be
used depend on the actual value of so . The parameters smin

o and smax
o define a

range for the value of so . Our optimizations lead to a reduction in the overall
overhead for small values of loop variable i.

5.3 μ-Update and Size-Reduction Part

The operations that are necessary to update the Gram-Schmidt coefficients
μij after a single size reduction step are similar to the computations per-
formed as part of the orthogonalization. The work in [2] therefore used the
respective techniques to efficiently parallelize the update computations. Specif-
ically, [2] introduced a transformation of the size-reduction in Algorithm 1 (see
Lines (15) - (24)) to allow the treatment of the update of the Gram-Schmidt
coefficients as a separate subroutine.
μ-Update

(1) for (i > j ≥ 1) do
(2) fj = μij
(3) if (|μij | > 1

2) then

(4) Fr = true

(5) if (|μij | > 2
p
2) then

(6) Fc = true
(7) for (1 ≤ m ≤ j) do
(8) μim = μim −
μij�μjm

Size-Reduction
(10) for (i > j ≥ 1) do

(11) if (|fj | > 1
2) then

(12) bi = bi −
fj�bj
(13) od
(14) if (Fr = true) then

(15) APPROX VECTOR(b′
i , bi)

The work in [2] implemented a control and compute threads setup similar to
the one for the orthogonalization. Correspondingly, our improvements developed
for the parallel orthogonalization computation (see Section 5.2) can easily be
adapted to also improve the parallel update of the μij values. The parameters
smin
μ and smax

μ define a range for the size sμ of the pre-computations. The newly
optimized parallel μ-Update looks as follows:

μ-Update – Thread1 (control)

(1) ta = ACTIVE THREAD(i, tskip)

(2) sμ = INIT SPLIT SIZE(smin
μ , smax

μ , i)
(3) j = i − 1, je = 0
(4) while (j ≥ 1) do
(5) js = j, m = 0
(6) while (m < sμ∧ j ≥ je) do
(7) for (js ≥ l > j) do
(8) μij = μij −
fl�μlj
(9) if (|μij | > 1

2) then

(10) fj = μij
(11) Fr = true

(12) if (|μij | > 2
p
2) then

(13) Fc = true
(14) μij = μij −
μij�
(15) m = m + 1
(16) else
(17) fj = 0
(18) j = j − 1
(19) jc = j

(20) COMPUTE SPLIT VALUES2(split, ta, sμ)
(21) BARRIER WAIT(b2)
(22) UPDATE SPLIT SIZE(sμ)
(23) je = splitT
(24) for (js ≥ m > j) do
(25) if (fm = 0) then
(26) for (splitT ≤ l < splitT+1) do

(27) μil = μil −
fm�μml

μ-Update – Threadt
(1) ta = ACTIVE THREAD(i, tskip)

(2) sμ = INIT SPLIT SIZE(smin
μ , smax

μ , i)
(3) if (ta ≤ t) then
(4) j = i − 1
(5) while (j ≥ 1) do
(6) BARRIER WAIT(b2)
(7) UPDATE SPLIT SIZE(sμ)
(8) j = jc
(9) for (js ≥ m > jc) do

(10) if (fm = 0) then
(11) for (splitt ≤ l < splitt+1) do

(12) μil = μil −
fm�μml

Aside from the μ-Update, the size-reduction consists only of vector operations.
The parallel aSE-LLL algorithm in [2] divided the vectors into a number of slices
of similar size. The number of slices in [2] equals the number of threads used.
The amount of work for each one of these vector slices therefore depends on the
bit length of the vector entries that occur in the computation.

36 W. Backes and S. Wetzel

0 2 4 6 8 10 12

x 10
4

0

500

1000

iterations of main loop

va
lu

e
of

 i
y = 0.99
y = 0.875,0.99

Fig. 5. Value of i for knapsack type lattice
basis

0 1 2 3 4

x 10
5

0

500

1000

iterations of main loop

va
lu

e
of

 i

y = 0.99
y = 0.875,0.99

Fig. 6. Value of i for a SVP challenge type
lattice basis

Our analysis showed that an optimal balance cannot be reached by that tech-
nique in cases where the size of the entries is not balanced throughout the lattice
basis. This potential imbalance caused by the size of vector entries is similar to
the effect that the possible computation of the exact scalar products has on the
balance of the overall parallel scalar product computation.7 We therefore use a
similar approach as in the case of the computation of scalar products in that
we choose the size of the vector slices based on the value of the main while-loop
variable i and the parameter maxsr . The modified size-reduction looks as follows:

Size-Reduction – Threadt
(1) if (Fr = true) then
(2) ssr = INIT SPLIT SIZE(i, maxsr)
(3) vs = INIT VECT START(t)
(4) ve = vs + ssr
(5) while (vs < n) do
(6) for (i − 1 ≥ j ≥ 1) do

(7) if (|fj | > 1
2) then

(8) for (vs ≤ l ≤ ve) do
(9) bil = bil −
fj�bjl

(10) for (vs ≤ l ≤ ve) do

(11) b′
il

= APPROX VALUE(bil)
(12) MUTEX LOCK(l1)
(13) vs = sv
(14) sv = sv + ssr
(15) MUTEX UNLOCK(l1)
(16) ve = ve + ssr
(17) od
(18) Fr = false

5.4 Using Sequences of Reduction Parameters

The performance and the quality of the LLL algorithm can be adjusted by
means of the reduction parameter y. While this parameter may be chosen from
the interval (1

4 , 1), most applications use the value y = 0.99. In [1], the use
of sequences of reduction parameters instead of a single reduction parameter
was evaluated for the aSE-LLL algorithm. For the majority of test cases using
the sequence 0.75, 0.875, 0.99 instead of y = 0.99 did not result in a significant
performance improvement.

For the parallel aSE-LLL, the number of iterations and the value of the loop
variable of the main while-loop is of greater importance than in the sequential
algorithm. We therefore revisited the heuristic of using a sequence of reduction
parameters for the newly improved parallel aSE-LLL. Figures 5 and 6 show the
value of the loop variable i for every iteration of the main while-loop for reduc-
tion parameter y = 0.99 in comparison to the sequence of reduction parameters
0.875, 0.99. For SVP challenge type lattice bases (see Figure 6), the value of the
loop variable i in case of using a sequence of reduction parameters is generally
larger than in case of using a single reduction parameter y = 0.99. As motivated
7 In practice, the introduced imbalance is minor compared to the effect of exact scalar

products.

Improving the Parallel Schnorr-Euchner LLL Algorithm 37

earlier, larger values for the loop variable i are beneficial for the parallel aSE-LLL
algorithm as they translate into more work that needs to be performed in each
iteration of the loop which in turn translates into an increased amount of work
that can be parallelized.

It is important to note, that the use of a sequence of reduction parameters
results in a significant decrease in the number of iterations. However, this de-
crease in the total number of iterations does not translate into a significant
performance improvement in the sequential algorithm [1]. The amount of work
performed within a single iteration of the main while-loop is therefore on average
larger than in case of using a single reduction parameter.

For knapsack type lattice bases (see Figure 5), the decrease in the number of
iterations is not as significant as in the case of SVP challenge type lattice bases.
Therefore, it is to be expected that this heuristic has less of an impact on improv-
ing the speed-up for knapsack type than for SVP challenge type lattice bases.

6 Experiments

6.1 Setup

The experiments in this paper were performed using three different types of lat-
tice bases in order to show that our newly improved parallel aSE-LLL reduction
algorithm outperforms the parallel algorithm introduced in [2]. Specifically, we
evaluated the performance of our newly developed algorithm and the algorithm
introduced in [2] for knapsack type lattice bases as well as for two new types of
lattice bases, SVP challenge type8 and cyclic type lattice bases [3].

The experiments were performed on Sun X4150 servers with two quad-
core Intel Xeon processors (2.83 GHz) and 8 GB of main memory running
Debian Linux. It is important to note, that these CPUs do not have a fast in-
terconnect nor do they have an integrated memory controller.9 We compiled all
programs with GCC 4.4.5 using the same optimization flags. For our implemen-
tation of the sequential and parallel aSE-LLL algorithms we used GMP 5.0.1 as
long integer arithmetic and MPRF 3.0.0 as multi-precision floating-point arith-
metic (for the approximation of the lattice basis). The experiments were per-
formed using MPFR with bit precision p = 128 for knapsack and cyclic type
lattice bases and p = 256 for SVP challenge type lattice bases. Based on this
setup, we conducted experiments with the advanced sequential Schnorr-Euchner
algorithm (Algorithm 1) as well as the 4-thread and 8-thread versions of the
parallel aSE-LLL in [2] and our newly improved implementation of the parallel
aSE-LLL algorithm. Based on our hardware setup, the following set of param-
eters (for balancing the parallel computations) was chosen for the experiments
with all types of lattice bases: spmax = 20, smin

o = smin
μ = 20, smax

o = smax
μ = 60,

tskip = 40, and maxsr = 32 (and accordingly for the parallel aSE-LLL in [2]).
8 Refer to [14] for details on SVP challenge lattice bases from which the SVP challenge

type lattice bases are derived.
9 The absolute speed-ups achieved by this type of CPU are therefore lower than the

speed-ups achieved in [2].

38 W. Backes and S. Wetzel

0 500 1000 1500 2000
0

1

2

3

4

5

dimension

sp
ee

d−
up

par LLL of [2] − 4−threads
par LLL of [2] − 8 threads
impr par LLL − 4 threads
impr par LLL − 8 threads

Fig. 7. Speed-up of parallel aSE-LLL for
SVP challenge type lattice bases

0 500 1000 1500 2000
1

1.2

1.4

1.6

1.8

2

2.2

dimension

im
pr

ov
em

en
t f

ac
to

r

4−threads
8−threads

Fig. 8. Improvement factor for SVP chal-
lenge type lattice bases

0 500 1000 1500 2000
0

1

2

3

4

5

dimension

sp
ee

d−
up

par LLL of [2] − 4−threads
par LLL of [2] − 8 threads
impr par LLL − 4 threads
impr par LLL − 8 threads

Fig. 9. Speed-up of parallel aSE-LLL for
knapsack type lattice bases

0 500 1000 1500 2000
0

1

2

3

4

5

dimension

sp
ee

d−
up

par LLL of [2] − 4−threads
par LLL of [2] − 8 threads
impr par LLL − 4 threads
impr par LLL − 8 threads

Fig. 10. Speed-up of parallel aSE-LLL for
cyclic type lattice bases

6.2 Results

Figure 7 shows the speed-up that the parallel aSE-LLL in [2] and our newly
improved parallel aSE-LLL achieve for SVP challenge type lattice bases. As
discussed earlier (Section 4), the parallel aSE-LLL in [2] performs poorly on
SVP challenge type lattice bases. The modifications introduced in Section 5 (as
part of our new parallel aSE-LLL) result in a significant increase in the speed-up.

Figure 8 shows the improvement factor that can be achieved by the new
parallel aSE-LLL for SVP challenge type lattice bases. The improvement factor
is defined as the quotient of the speed-up for the new improved parallel aSE-LLL
and the parallel aSE-LLL of [2]. The improvement factor is larger for smaller
dimensions than for larger dimensions, as the modifications were geared towards
improving the performance for small values of the loop variable i. The 4-thread
version of the algorithm achieves an improvement factor of more than 1.2 and
the 8-thread version achieves an improvement factor of more than 1.35.

For knapsack type lattice bases (see Figure 9) and for cyclic type lattice bases
(see Figure 10) the parallel aSE-LLL of [2] performs better than for the SVP
challenge type lattice bases. However, even for these types of lattice bases our
new parallel aSE-LLL algorithm results in an increase for the speed-up. For
example, it achieves an improvement factor of close to 1.1 for the speed-up when
reducing cyclic type lattice bases.

7 Future Work

Future work includes developing heuristics to automatically determine the pa-
rameters which are responsible for the balancing of the parallel computations

Improving the Parallel Schnorr-Euchner LLL Algorithm 39

(depending both on the hardware used and the type of lattice basis to be re-
duced). Another line of work is to explore new methods for aSE-LLL reduction
that can efficiently utilize a many-core system.

Acknowledgment. This work was supported by NSF Award DUE 1027452.

References

1. Backes, W., Wetzel, S.: Heuristics on Lattice Basis Reduction in Practice. ACM
Journal on Experimental Algorithms, 7 (2002)

2. Backes, W., Wetzel, S.: Parallel Lattice Basis Reduction Using a Multi-threaded
Schnorr-Euchner LLL Algorithm. In: Sips, H., Epema, D., Lin, H.-X. (eds.) Euro-
Par 2009. LNCS, vol. 5704, pp. 960–973. Springer, Heidelberg (2009)

3. Coster, M., Joux, A., LaMacchia, B., Odlyzko, A., Schnorr, C., Stern, J.: Improved
Low-Density Subset Sum Algorithm. Journal of Computational Complexity 2, 111–
128 (1992)

4. Gentry, C.: Toward Basing Fully Homomorphic Encryption on Worst-Case Hard-
ness. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 116–137. Springer,
Heidelberg (2010)

5. Goldstein, A., Mayer, A.: On the Equidistribution of Hecke Points. Forum Math-
ematicum 15, 165–189 (2003)

6. Heckler, C., Thiele, L.: A Parallel Lattice Basis Reduction for Mesh-Connected
Processor Arrays and Parallel Complexity. In: Proceedings of Symposium on Par-
allel and Distributed Processing (SPDP 1993), pp. 400–407. IEEE, Los Alamitos
(1993)

7. Joux, A.: A Fast Parallel Lattice Basis Reduction Algorithm. In: Proceedings of
the Second Gauss Symposium, pp. 1–15. deGruyter, Berlag (1993)

8. Lenstra, A., Lenstra, H., Lovász, L.: Factoring Polynomials with Rational Coeffi-
cients. Math. Ann. 261, 515–534 (1982)

9. Nguyen, P., Stehlé, D.: Floating-Point LLL Revisited. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 215–233. Springer, Heidelberg (2005)

10. Nguyen, P., Stehlé, D.: An LLL Algorithm with Quadratic Complexity. SIAM J.
Comput. 39(3), 874–903 (2009)

11. Peikert, C.: Public-key Cryptosystems from the Worst-Case Shortest Vector Prob-
lem (Extended Abstract). In: Proceedings of the 41st Annual ACM Symposium on
Theory of Computing (STOC 2009), pp. 333–342. ACM, New York (2009)

12. Regev, O.: Lattice-based Cryptography. In: Dwork, C. (ed.) CRYPTO 2006. LNCS,
vol. 4117, pp. 131–141. Springer, Heidelberg (2006)

13. Schnorr, C., Euchner, M.: Lattice Basis Reduction: Improved Practical Algorithms
and Solving Subset Sum Problems. In: Budach, L. (ed.) FCT 1991. LNCS, vol. 529,
pp. 68–85. Springer, Heidelberg (1991)

14. SVP Challenge TU Darmstadt (July 2011),
http://www.latticechallenge.org/svp-challenge/

15. NTL - Homepage (July 2011),
http://www.shoup.net/ntl/

http://www.latticechallenge.org/svp-challenge/
http://www.shoup.net/ntl/

Distributed Mining of Constrained Frequent

Sets from Uncertain Data

Alfredo Cuzzocrea1 and Carson K. Leung2

1 ICAR-CNR and University of Calabria, Italy
cuzzocrea@si.deis.unical.it

2 Department of Computer Science, University of Manitoba, Canada
kleung@cs.umanitoba.ca

Abstract. With the advance in technology, sensor networks have been
widely used in many application areas such as environmental surveil-
lance. Sensors distributed in these networks serve as good sources for
data. This calls for distributed data mining, which searches for implicit,
previously unknown, and potentially useful patterns that might be em-
bedded in the distributed data. Many existing distributed data mining
algorithms do not allow users to express the patterns to be mined ac-
cording to their intention via the use of constraints. Consequently, these
unconstrained mining algorithms can yield numerous patterns that are
not interesting to users. Moreover, due to inherited measurement inac-
curacies and/or network latencies, the data are often riddled with uncer-
tainty. These call for constrained mining and uncertain data mining. In
this paper, we propose a tree-based system for mining frequent sets that
satisfy user-defined constraints from a distributed environment such as
a wireless sensor network of uncertain data. Experimental results show
effectiveness of our proposed system.

1 Introduction

Data mining searches for implicit, previously unknown, and potentially useful
information that is embedded in data. As a common data mining task, frequent
set mining looks for sets of items (also known as itemsets) that are frequently
co-occurring together. The mined frequent sets can be used in the discovery of
correlation or casual relations, analysis of sequences, and formation of association
rules. Since its introduction [4], the research problem of finding frequent sets has
been the subject of numerous studies.

Most algorithms in the early days were Apriori-based [3], which depends on a
generate-and-test paradigm to find all frequent sets by first generating candidates
and then checking their support (i.e., their occurrences) against the traditional
databases containing precise data. To avoid the generate-and-test paradigm, the
FP-growth algorithm [12] was proposed. Such a tree-based algorithm constructs
an extended prefix-tree structure, called Frequent Pattern tree (FP-tree), to
capture the contents of the transaction database. Rather than employing the
generate-and-test strategy of Apriori-based algorithms, FP-growth focuses on

Y. Xiang et al. (Eds.): ICA3PP 2011, Part I, LNCS 7016, pp. 40–53, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Distributed Mining of Constrained Frequent Sets from Uncertain Data 41

frequent pattern growth—which is a restricted test-only approach (i.e., does not
generate candidates, and only tests for support).

In many real-life applications, data are riddled with uncertainty. It is par-
tially due to inherent measurement inaccuracies, sampling and duration errors,
network latencies, and intentional blurring of data to preserve anonymity. As
such, the presence or absence of items in a dataset is uncertain. Hence, mining
uncertain data [1,5,23] is in demand. For example, a physician may highly sus-
pect (but not guarantee) that a patient suffers from asthma. The uncertainty
of such suspicion can be expressed in terms of existential probability of an item
in a probabilistic dataset. To mine frequent sets from these uncertain data, the
U-Apriori [7] and UF-growth [17] algorithms were proposed.

Many frequent set mining algorithms, regardless whether they are Apriori-
based or tree-based, provide little or no support for user focus when mining
precise or uncertain data. However, in many real-life applications, the user may
have some particular phenomena in mind on which to focus the mining (e.g.,
medical analysts may want to find only those lab test records belonging to pa-
tients suspected to suffer from asthma instead of all the patients). Without user
focus, the user often needs to wait for a long period of time for numerous frequent
sets, out of which only a tiny fraction may be interesting to the user. Hence, con-
strained frequent set mining [11,14,15,18], which aims to find those frequent sets
that satisfy the user-specified constraints, is needed. CAP [19], DCF [13], and
FIC [20] are examples of algorithms that mine constrained frequent set mining
from traditional precise data.

With advances in technology, one can easily collect large amounts of data from
not only a single source but multiple sources. For example, in recent years, sensor
networks have been widely used in many application areas such as agricultural,
architectural, environmental, and structural surveillance. Sensors distributed in
these networks serve as good sources of data. However, sensors usually have lim-
ited communication bandwidth, transmission energy, and computational power.
Thus, data are not usually transmitted to a single distant centralized processor
to perform the data mining task. Instead, data are transmitted to their local
(e.g., closest) processors within a distributed environment. This calls for dis-
tributed mining [2,6,8,21,22]—which searches for implicit, previously unknown,
and potentially useful frequent sets that might be embedded in the distributed
data.

Count Distribution, Data Distribution and Candidate Distribution [2], as well
as FDM [6] are some examples of Apriori-based distributed algorithms that find
frequent sets in a distributed environment. Parallel-HFP-Leap [10] is a tree-based
algorithm for mining in a distributed environment. However, they all do not han-
dle constraints nor do they mine uncertain data. On the other hand, CAP, DCF
and FIC all find constrained frequent sets, but they mine a centralized database
of precise data. Similarly, the U-Apriori and UF-growth algorithms both mine
a centralized database of uncertain data for all (unconstrained) frequent sets
instead of only those constrained ones. In other words, these existing frequent
set mining algorithms fall short in different aspects. Hence, a natural question

42 A. Cuzzocrea and C.K. Leung

to ask is: Is it possible to mine uncertain data for only those frequent sets that
satisfy user constraints in a distributed environment? In response to this ques-
tion, we propose in this paper a tree-based system for mining uncertain data in a
distributed environment for frequent sets that satisfy user-specified constraints.
Here, our key contribution is the non-trivial integration of (i) constrained min-
ing, (ii) distributed mining, (iii) uncertain data mining, with (iv) tree-based
frequent set mining. The resulting tree-based system efficiently mines from dis-
tributed uncertain data for only those constrained frequent sets. It avoids the
candidate generate-and-test paradigm, handles with uncertain data, pushes user
constraints inside the mining process, avoids unnecessary computation, and finds
only those sets satisfying the constraints in a distributed environment.

This paper is organized as follows. The next section gives some background
information on constrained frequent set mining from uncertain data. In Sec-
tion 3, we propose our non-trivial integration of tree-based frequent set mining,
constrained mining, distributed mining, together with uncertain mining. Experi-
mental results are shown in Section 4. Finally, Section 5 presents the conclusions.

2 Background

2.1 Mining Frequent Sets from Uncertain Data

When the problem of frequent set mining was first introduced [4], the correspond-
ing algorithm—namely, Apriori—mined all frequent itemsets from a transaction
database (TDB) consisting of precise data, in which the contents of each trans-
action are precisely known. Specifically, if a transaction ti contains an item x
(i.e., x ∈ ti), then x is precisely known to be present in ti. On the other hand, if a
transaction ti does not contain an item y (i.e., y �∈ ti), then y is precisely known
to be absent from ti. However, this is not the case for probabilistic databases con-
sisting of uncertain data. A key difference between precise and uncertain data is
that each transaction of the latter contains items and their existential probabili-
ties. The existential probability P (x, ti) of an item x in a transaction ti indicates
the likelihood of x being present in ti. For a real-life example, each transaction ti
represents a patient’s visit to a physician’s office. Each item x within ti represents
a potential disease, and is associated with P (x, ti) expressing the likelihood of a
patient having that disease x in ti (say, in t1, the patient has a 60% likelihood
of having asthma, and a 90% likelihood of catching a cold regardless of having
asthma or not). With this notion, each item in a transaction ti in datasets of
precise data can be viewed as an item with a 100% likelihood of being present
in ti.

Given an item x and a transaction ti, there are two possible worlds when using
the “possible world” interpretation of uncertain data [7,9,16,17]: (i) the possible
world W1 where x ∈ ti and (ii) the possible world W2 where x �∈ ti. Although it
is uncertain which of these two worlds is the true world, the probability of W1

being the true world is P (x, ti) and that of W2 is 1− P (x, ti).
In real-life applications, there are generally many independent items in each

of the n transactions in a TDB (where |TDB| = n). Hence, the expected support

Distributed Mining of Constrained Frequent Sets from Uncertain Data 43

of an itemset X in the TDB can be computed by summing the support of X in
possible world Wj (while taking in account the probability of Wj to be the true
world) over all possible worlds. Such a sum can be simplified to become the sum
of product of existence probabilities of x ∈ X , as follows [9]:

expSup(X) =
n∑

i=1

(∏
x∈X

P (x, ti)

)
. (1)

An itemset X is frequent if its expected support meets or exceeds the user-
specified threshold minsup.

2.2 Mining Frequent Sets That Satisfy User Constraints

An existing constrained frequent set mining framework [13,19] allows the user
to use a rich set of SQL-style constraints to specify his interest for guiding the
mining process so that only those frequently occurring sets of market basket
items that satisfy the user constraints are found. This avoids unnecessary com-
putation for mining those uninteresting frequent sets. Besides market basket
items, the set of constraints can also be imposed on items, events or objects
in other domains. The following are some examples of user constraints. Con-
straint C1 ≡ max(X.Price) ≤ $25 expresses the user interest in finding every
frequent set X such that the maximum price of all market basket items in each
X is at most $25. Similarly, C2 ≡ min(X.Price) ≤ $30 says that the minimum
price of all items in an itemset X is at most $30. For domains other than the
market basket, constraint C3 ≡ X .Location = Canada expresses the user inter-
est in finding every frequent set X such that all events in X are held in Canada;
C4 ≡ X .Symptom ⊇ {dry throat, sneezing} says that each individual in X suf-
fers from at least dry throat and sneezing; C5 ≡ X .Weight ≥ 32kg says that
the weight of each object in X is at least 32kg; and C6 ≡ avg(X .Rainfall) ≤
10mm says that the average rainfall of all meteorological records in X is at most
10mm.

The above constraints can be categorized into several overlapping classes ac-
cording to the properties that they possess. One of these properties is succinct-
ness. A constraint is succinct if one can directly generate precisely all and only
those itemsets satisfying the constraints without generating and excluding item-
sets not satisfying the constraints. In the above examples, all constraints ex-
cept C6 are succinct because one can use member generating functions [13,19] to
precisely generate constrained itemsets. For example, itemsets satisfying C1 ≡
max(X.Price) ≤ $25 can be precisely generated by combining any market bas-
ket items having price ≤ $25, thereby avoiding the substantial overhead of the
generation and exclusion of invalid itemsets. Similarly, itemsets satisfying C2 ≡
min(X.Price) ≤ $30 can be precisely generated by combining at least one mar-
ket basket item having price ≤ $30 with some optional items (of any price val-
ues). It is important to note that (i) a majority of constraints are succinct and
(ii) many non-succinct constraints can be induced into weaker constraints that
are succinct (e.g., non-succinct constraint C6 ≡ avg(X .Rainfall) ≤ 10mm can

44 A. Cuzzocrea and C.K. Leung

be induced into a succinct constraint C′
6 ≡ min(X .Rainfall) ≤ 10mm as all

frequent sets satisfying C6 must satisfy C′
6).

Besides succinctness, there are some other properties. One of them is anti-
monotonicity. A constraint is anti-monotone if all subsets of an itemset satisfying
the constraint also satisfy the constraint. With this additional property, succinct
constraints can be further divided into two subclasses:

– succinct anti-monotone (SAM) constraints, and
– succinct non-anti-monotone (SUC) constraints.

Among the five succinct constraints C1–C5 above, C1, C3 and C5 are SAM con-
straints. Note that supersets of any itemset violating the SAM constraints also
violate the constraints (e.g., if an itemset X contains an item having price >
$25, then X violates C1 and so does every superset of X). In contrast, C2 and
C4 are SUC constraints because they do not possess such an anti-monotonicity
property. For instance, if the minimum price of all items contained within X is
higher than $30, then X violates C2 but there is no guarantee that all supersets
of X would violate C2. As an example, let y.Price be $50 and z.Price be $10.
Then, X ∪ {y} and X ∪ {z} are both supersets of X . Among them, the former
still violates C2 but the latter satisfies C2.

3 Our Proposed Distributed Mining System

Without loss of generality, we assume to have p sites/processors and m =
m1 + m2 + ... + mp sensors in a distibuted network such that m1 wireless sen-
sors transmit data to their closest or designated site/processor P1, m2 sensors
transmit data to the site/processor P2, and so on. With this setting, we show in
this section how our proposed system finds (i) constrained sets that are locally
frequent w.r.t. site/processor Pi and (ii) those that are globally frequent w.r.t.
all sites/processors in the entire wireless sensor network.

3.1 Finding Constrained Locally Frequent Sets

Given mi sensors transmitting data to the processor Pi, a local database TDBi

of uncertain data can be created for Pi. We aim to find sets that are both
(i) frequent to Pi and (ii) satisfying a succinct (SAM or SUC) constraint C. For
uncertain data, we use the “possible world” interpretation of uncertain data. We
find constrained locally frequent itemsets from uncertain data in the following
steps.

Identification of Items Satisfying the Constraints. Let ItemM be the col-
lection of mandatory items—i.e., the collection of domain items that individually
satisfy the SAM or SUC constraint C; let ItemO be the collection of optional
items—i.e., the collection of domain items that individually violate C.

Then, for any SAM constraint CSAM , an itemset X satisfying CSAM cannot
contain any item from ItemO due to the anti-monotonicity property. So, any

Distributed Mining of Constrained Frequent Sets from Uncertain Data 45

itemset X satisfying CSAM must consist of only items that individually satisfy
CSAM . In other words, any itemset X satisfying CSAM must be generated by
combining items from ItemM (i.e., X ⊆ ItemM). Due to the succinctness property,
items in ItemM can be efficiently enumerated (from the list of domain items) by
selecting only those items that individually satisfy CSAM . See the following
example.

Example 1. Consider the following transaction database TDB consisting of un-
certain data:

Transactions Contents
t1 {a:0.7, b:0.8, d:1.0, e:0.1, f :0.4}
t2 {a:0.7, b:0.8, c:0.8, d:1.0, e:0.2}
t3 {a:0.8, c:0.5, e:0.3, f :0.4}
t4 {b:0.8, c:0.8, d:1.0}
t5 {c:0.8, d:1.0}

with the following auxiliary information:

Items a b c d e f
Price $10 $20 $100 $50 $75 $25

In the above TDB of uncertain data, each transaction contains items and their
corresponding existential probabilities. For example, there are five domain items
a, b, d, e and f in the first transaction t1, where the existential probabilities of
these items are 0.7, 0.8, 1.0, 0.1 and 0.4 respectively. Note that (i) different items
may have the same existential probabilities (e.g., the existential probabilities of
items b and c in t2 are the same—with a value of 0.8) but (ii) the existential
probabilities of the same item may vary from one transaction to another (e.g.,
the existential probability of item a in transaction t2 is 0.7 whereas that in t3 is
0.8). Let constraint CSAM be the SAM constraint C1 ≡ max(X.Price) ≤ $25.
Our proposed system checks each of the six domain items against the constraint
CSAM . It first enumerates the valid items a, b and f (i.e., items with individual
price ≤ $25). So, ItemM = {a, b, f}. Once we identified the domain items that
satisfy the succinct anti-monotone constraint CSAM , these items would serve as
building blocks of all constrained frequent itemsets satisfying CSAM because all
constrained frequent itemsets must comprise only those ItemM items.

Next, for any SUC constraint CSUC , any itemset X satisfying CSUC is com-
posed of mandatory items (i.e., items that individually satisfy CSUC) and pos-
sibly some optional items (regardless whether or not they satisfy CSUC). Note
that, although CSUC possesses the succinctness property (i.e., one can easily
enumerate all and only those itemsets that are guaranteed to satisfy CSUC), it
does not possess the anti-monotonicity property. So, if an itemset violates CSUC ,
there is no guarantee that all or any of its supersets would violate CSUC . Hence,
not all itemsets satisfying CSUC are composed of only domain items that indi-
vidually satisfy the constraints (as for SAM constraints). Instead, any itemset
X satisfying CSUC must be generated by combining at least one ItemM item and

46 A. Cuzzocrea and C.K. Leung

possibly some ItemO items. Due to succinctness, items in ItemM and in ItemO

can be efficiently enumerated. See the following example.

Example 2. Consider the same TDB and auxiliary information in Example 1.
Let constraint CSUC be the SUC constraint C2 ≡ min(X.Price) ≤ $30. Our
proposed system checks each of the six domain items against CSUC . It first enu-
merates the valid items a, b and f (i.e., items with individual price ≤ $30), giving
ItemM = {a, b, f}. The remaining domain items then belong to ItemO (i.e., items
with individual price > $30). Once we classified the domain items into (i) the
ItemM items (which satisfy CSUC) and (ii) the ItemO items (which violate CSUC),
all these items serve as building blocks of all constrained frequent itemsets satis-
fying CSUC because all constrained frequent itemsets must comprise at least one
ItemM item and may contain some additional ItemM or ItemO items.

Construction of an UF-tree. Once the domain items are classified into ItemM

and ItemO items (no ItemO items for CSAM), our system then constructs an UF-
tree, which is built in preparation for mining constrained frequent sets from
uncertain data. It does so by first scanning the TDB of uncertain data once. It
accumulates the expected support of each of the items in order to find all frequent
domain items. Among these items, the system discards those infrequent ones
and only captures those frequent ones in the UF-tree. Note that any infrequent
ItemM or ItemO items can be safely discarded because any itemset containing an
infrequent item is also infrequent.

Once the frequent ItemM and ItemO items are found, our system arranges
these two kinds of items in such a way that ItemM items appear below ItemO

items (i.e., ItemM items are closer to the leaves, and ItemO items are closer to
the root). Among all the items in ItemM, they are sorted in non-ascending order
of accumulated expected support. Similarly, among all the items in ItemO, they
are also sorted in non-ascending order of accumulated expected support. The
system then scans the TDB the second time and inserts each transaction of the
TDB into the UF-tree. Here, the new transaction is merged with a child (or
descendant) node of the root of the UF-tree (at the highest support level) only
if the same item and the same expected support exist in both the transaction and
the child (or descendant) nodes.

For SAM constraints, the corresponding UF-tree captures only those frequent
ItemM items; for SUC constraints, the corresponding UF-tree captures both the
frequent ItemM items and the frequent ItemO items. With such a tree construction
process, the UF-tree possesses the property that the occurrence count of a node
is at least the sum of occurrence counts of all its children nodes. See Example 3.

Example 3. Let us revisit Examples 1 and 2, and let the user-specified support
threshold minsup be set to 1.0. Our system builds the UF-tree that captures the
frequent items satisfying the SUC constraint C2 as follows. First, the system
scans the TDB once and accumulates the expected support of each ItemM item as
well as each ItemO item. Hence, it finds all frequent ItemM items and sorts them
in descending order of (accumulated) expected support. It also finds all frequent

Distributed Mining of Constrained Frequent Sets from Uncertain Data 47

ItemO items and sorts them in descending order of (accumulated) expected sup-
port. Among the two kinds of items, ItemO are arranged on top (near the root) of
ItemM items (which are near the leaves). Specifically, our system obtains ItemO

items d, c and e (with their corresponding accumulated expected support values of
4.0, 2.9 and 0.6), which are sorted in descending order of their expected support
values. Among these ItemO items, e (having accumulated expected support of 0.6
< minsup) is removed. Then, the system represents the frequent ItemO items
and their expected support as d:4.0 and c:2.9. The expected support of each of
these frequent ItemO items ≥ minsup. Similarly, the system also obtains ItemM

items b, a and f (with their corresponding accumulated expected support values of
2.4, 2.2 and 0.8), which are also sorted in descending order of their expected sup-
port values. Among these ItemM items, f (having accumulated expected support
of 0.8 < minsup) is removed. Then, the system represents the frequent ItemM

items and their expected support as b:2.4 and a:2.2. The expected support of each
of these frequent ItemM items ≥ minsup.

Then, our system scans the TDB the second time and inserts each transaction
into the UF-tree. The system first inserts frequent items from the first transac-
tion t1 into the tree. It then inserts the frequent items from the second transac-
tion t2 into the UF-tree. Since the expected support of a and b in t2 is the same as
those in an existing branch (i.e., the branch for t1), this node can be shared. So,
the system increments the occurrence count for the tree nodes (a:0.7) and (b:0.8)
to 2, and adds the remainder of t2—namely, 〈(c:0.8):1, (d:1.0), (e:0.2):1〉—as
a child of the node (b:0.8):2. Afterwards, our system inserts the frequent items
from the remaining transactions. At the end of the tree construction process,
we get the UF-tree shown in Figure 1(a) capturing the contents of the TDB of
uncertain data.

Mining of Constrained Frequent Itemsets from the UF-tree. Once the
UF-tree is constructed with the item-ordering scheme where ItemO items are
above ItemM items, our proposed system extracts appropriate paths to form
a projected database for each x ∈ ItemM. The system does not need to form
projected databases for any y ∈ ItemO because all itemsets satisfying CSUC

must be “extensions” of an item from ItemM (i.e., all valid itemsets must be
grown from ItemM items) and no ItemO items are kept in the UF-tree for CSAM .

When forming each {x}-projected database and constructing its UF-tree, our
system does not need to distinguish those ItemM items from ItemO items in the
UF-tree for {x}-projected database. Such a distinction between two kinds of
items is only needed for the UF-tree for the TDB (for SUC constraints only) but
not projected UF-trees once we found at least one valid item x ∈ ItemM because
for any v satisfying CSUC ,

v = {x} ∪Others

where (i) x ∈ ItemM

(ii) Others ⊆ (ItemM ∪ ItemO − {x}).

48 A. Cuzzocrea and C.K. Leung

(c:0.5):1

(a:0.8):1 (b:0.8):1 (c:0.8):3

(a:0.7):1 (b:0.8):2

(a:0.7):1

(d:1.0):4d:4.0

c:2.9

b:2.4

a:2.2

(d:1.0):2

b:1.12

d:1.4

(b:0.8):2

0.7

(d:1.0):2d:1.12

0.56

(d:1.0):3

c:1.28

d:2.4

(c:0.8):2

0.8

(d:1.0):2d:1.28

0.64

(a) TDB (b) {a}-proj. DB (c) {a, b}-proj. DB (d) {b}-proj. DB (e) {b, c}-proj. DB

Fig. 1. The UF-trees used in our proposed system

After constructing these projected UF-tree for each x ∈ ItemM, our proposed
system mines all frequent sets that satisfy CSUC in the same manner as it mines
those satisfying CSAM . See Example 4.

Example 4. Once again, we revisit Example 3. Once the UF-tree is constructed,
our proposed system recursively mines constrained locally frequent itemsets from
this tree with minsup = 1.0 as follows. From the header table (from top to bottom)
containing two ItemO items d:4.0 = (4 ×1.0) and c:2.9 = (1 ×0.5) + (3 ×0.8)
as well as two ItemM items b:2.4 = (1 ×0.8) + (2 ×0.8) and a:2.2 = (1 ×0.8)
+ (1 ×0.7) + (1 ×0.7), the system first finds two constrained frequent sets {b}
and {a} with expected support values of 2.4 and 2.2 respectively.

Then, our system recursively mines constrained frequent sets from this UF-tree
with minsup = 1.0 as follows. From the UF-tree shown in Figure 1(a), our system
starts with a ∈ ItemM and constructs an UF-tree for the {a}-projected database.
The resulting tree, as shown in Figure 1(b), consists of a single path—namely,
〈(d:1.0):2, (b:0.8):2〉 with the expected support of {a} equal to 0.7 (implying that
d or b occurs together with a twice in the original database). The expected support
values of {a, b} = 2 × 0.7 × 0.8 = 1.12 and of {a, d} = 2 × 0.7 × 1.0 = 1.4.
Thus, both {a, b} and {a, d} are frequent.

The system then extracts from this single-path tree to form an UF-tree for the
{a, b}-projected database. The resulting tree, as shown in Figure 1(c), consists
of a single node (d:1.0):2 with the expected support of {a, b} equal to 0.56 =
0.7 × 0.8 (implying that {d} occurs together with {a, b} twice in the original
database). Itemset {a, b, d}, with its expected support equals 2 × 0.56 × 1.0 =
1.12, is frequent. This marks the end of the extensions of {a}.

Then, the system considers the next item in ItemM (i.e., b) and constructs
an UF-tree for the {b}-projected database. The resulting tree, as shown in Fig-
ure 1(d), consists of a single path—namely, 〈(d:1.0):3, (c:0.8):2〉 with the ex-
pected support of b equal to 0.8 (implying that {b, d} occurs three times and {b, c}
occurs twice in the original database). The expected support values of {b, c} =
2 × 0.8 × 0.8 = 1.28 and of {b, d} = 3 × 0.8 × 1.0 = 2.4. So, they are both
frequent.

The system then extracts from this single-path tree to form an UF-tree for the
{b, c}-projected database. The resulting tree, as shown in Figure 1(e), consists

Distributed Mining of Constrained Frequent Sets from Uncertain Data 49

of a single node (d:1.0):2 with expected support of {b, c} equal to 0.64 = 0.8 ×
0.8 (implying that d occurs together with {b, c} twice in the original database).
Itemset {b, c, d}, with its expected support equals 2 × 0.64 × 1.0 = 1.28, is
frequent.

Since no more item belongs to ItemM, this marks the end of the mining process.
Our proposed system recursively finds the following eight locally frequent sets
that satisfy the SUC constraint C2 from uncertain data: {a}:2.2, {a, b}:1.12,
{a, b, d}:1.12, {a, d}:1.4, {b}:2.4, {b, c}:1.28, {b, c, d}:1.28 and {b, d}:2.4.

3.2 Finding Constrained Globally Frequent Sets

Once the constrained locally frequent sets are found from distributed uncertain
data, the next step is to find the constrained globally frequent sets among those
contrained locally frequent sets. Note that it is not a good idea to transmit
all data TDBi from each site/processor Pi to a centralized site/processor Q,
where all data are merged to form a global database TDB =

⋃
i TDBi from

which constrained globally frequent sets are found. The problem with such an
approach is that it requires lots of communication for transmitting data from
each site. This problem is worsen when TDBi’s are huge; wireless sensors can
generate huge amount of data. Moreover, such an approach does not make use
of constrained locally frequent sets in finding constrained globally frequent sets.

Similarly, it is also not a good idea to ask each site to transmit all its con-
strained locally frequent sets to a centralized site, where the itemsets are merged.
The merge result is a collection of global candidate sets. The problem is that if a
constrained set X is locally frequent at a site P1 but not at another site P2, then
we do not have the frequency of X at P2. Lacking this frequency information,
one may not be able to determine whether X is globally frequent or not.

Instead, our proposed system does the following. Each site/processor Pi (for
1 ≤ i ≤ p) applies constraint checking and frequency checking to find locally fre-
quent ItemMi items (and ItemOi items for CSUC), which are then transmitted to
a centralized site/processor Q. It takes the union of these items, and broadcasts
the union to all Pi’s. Each Pi then extracts these items (potentially globally
frequent items) from transactions in TDBi and puts into an UF-tree. Note that
all globally frequent sets must be composed of only the items from this union be-
cause: (i) if an item A is globally frequent, A must be locally frequent in at least
one of Pi’s; (ii) if an item B is locally infrequent in all the Pi’s, B is guaranteed
to be globally infrequent.) At each site Pi, the UF-tree contains (i) items that
are locally frequent w.r.t. Pi and (ii) items that are potentially globally frequent
but locally infrequent items w.r.t Pi. Then, our system recursively applies the
usual tree-based mining process (e.g., UF-growth) to each α-projected database
(where locally frequent α ⊆ ItemMi) of the UF-tree at Pi to find constrained locally
frequent sets (with local frequency information). These sets are then sent to Q,
where the local frequencies are summed. As a result, constrained globally frequent

50 A. Cuzzocrea and C.K. Leung

sets can be found. If the sum of available local frequencies of a constrained set X
meets the minimum support threshold, then X is globally frequent. For the case
where a constrained set is locally frequent at a site P1 but not at another site
P2, then Q sends a request to P2 for finding its local frequency. It is guaranteed
that such frequency information can be found by traversing appropriate paths
in the UF-tree at P2 (because the UP-tree keeps all potential globally frequent
items).

To summarize, given p sites/processors in a distributed environment (e.g., a
wireless sensor network), our system makes use of (i) the constrained locally fre-
quent sets and (ii) the UF-trees that keep all potentially global frequent items
to efficiently find constrained globally frequent sets (w.r.t. the entire distributed
environment). Again, constraints are pushed inside the mining process; the com-
putation is proportional to the selectivity of constraints. Moreover, our proposed
system does not require lots of communication among processors (e.g., it does
not need to transmit TDBi).

4 Experimental Results

For experimental evaluation, we used many different datasets including IBM
synthetic data, real-life databases from the UC Irvine Machine Learning Depos-
itory (e.g., mushroom data) as well as those from the Frequent Itemset Mining
Implementation (FIMI) Dataset Repository. We cite below those experimental
results based on a dataset generated by the program developed at IBM Almaden
Research Center [3]. The dataset contains 10M records with an average transac-
tion length of 10 items, and a domain of 1,000 items. Unless otherwise specified,
we used minsup = 0.01%. We assigned to each item an existential probability in
the range of (0,1]. All experiments were run in a time-sharing environment in a
2.4 GHz machine. The reported figures are based on the average of multiple runs.
Runtime includes CPU and I/Os for constraint checking, UF-tree construction,
and frequent set mining steps.

In the first experiment, we evaluated the functionality of our proposed system,
which was implemented in C. For instance, we used (i) a dataset of uncertain
data and (ii) a constraint with 100% selectivity (so that every item is selected).
With this setting, we compared our system (which mines constrained frequent
sets from uncertain data) with U-Apriori [7] and UF-growth [17] (which mine
unconstrained frequent sets from uncertain data). Experimental results showed
that (i) our system returned the same collection of frequent sets as those re-
turned by U-Apriori and UF-growth, and (ii) both U-Apriori and UF-growth
are confined to finding frequent sets from a centralized dataset of uncertain data
when the user-specified constraints are of 100% selectivity, whereas our proposed
system is capable of finding frequent sets from distributed uncertain data with
constraints of any selectivity.

Distributed Mining of Constrained Frequent Sets from Uncertain Data 51

Next, we used (i) a constraint and (ii) a dataset of uncertain data consist-
ing of items all with existential probability of 1 (indicating that all items are
definitely present in the database). With this setting, we compared our system
(which mines constrained frequent sets from uncertain data) with some exist-
ing algorithms that mine constrained frequent sets from precise data (e.g., CAP
[19]). From the experimental results, we observed that (i) our system returned
the same collection of frequent sets as those returned by CAP. Note that CAP
is confined to finding frequent sets from a centralized dataset of uncertain data
when existential probability of all items is of 1. In contrast, our proposed system
is capable of finding frequent sets from distributed uncertain data containing
items with various existential probability values ranging from 0 to 1.

In the third experiment, we measured the amount of communication/data
transmitted between the distributed sites Pi’s and their centralized site Q.
Figure 2(d) shows that the amount of transmitted data decreased when the
selectivity of constraints decreased. Figure 2(a) shows the corresponding run-
times. Specifically, runtimes decreased when the selectivity of constraints de-
creased. Both graphs demonstrate the effectiveness of constrained mining in a
distributed environment.

In the fourth experiment, we evaluated the effects of varying the number of
distributed sites. When more sites were in the distributed network, our system
transmitted more data because an addition of a site implies transmission of an

0

50

100

150

200

250

10 20 30 40 50 60 70 80 90

R
un

tim
e

(in
 s

ec
on

ds
)

Selectivity (i.e., percentage of items selected)

Runtime vs. constraint selectivity

SUC constraint
SAM constraint

0

5

10

15

20

25

30

35

0 0.05 0.1 0.15 0.2 0.25 0.3

R
un

tim
e

(in
 s

ec
on

ds
)

Minimum support threshold (in percentage)

Runtime vs. minimum support threshold

Items take on many different existential probability values
Items take on an average number of existential probability values

Items take on a few unique existential probability values

(a) Runtime vs. selectivity (b) Runtime vs. minsup

0

20

40

60

80

100

120

140

10 20 30 40 50 60 70 80 90

R
un

tim
e

(in
 s

ec
on

ds
)

Minimum support threshold (in percentage)

Runtime vs. existential probability

Items take on many different existential probability values
Items take on an average number of existential probability values

Items take on a few unique existential probability values

0

200

400

600

800

1000

1200

10 20 30 40 50 60 70 80 90

T
ra

ns
m

itt
ed

 d
at

a
(in

 M
B

)

Selectivity (i.e., percentage of items selected)

Amount of transmitted data vs. constraint selectivity

SUC constraint
SAM constraint

(c) Runtime vs. existential probability (d) Amt of transmitted data vs. selectivity

Fig. 2. Experimental results of our proposed system

52 A. Cuzzocrea and C.K. Leung

additional set of locally frequent items and locally frequent itemsets. In terms
of runtime, when more sites were in the network, the runtime of our system
increased slightly. This is because the extra communication time (due to extra
sites) was offset by the savings in building and mining from a smaller UF-tree at
each site. For example, when we doubled the number of sites (from 4 to 8 sites),
the amount of communication/data transmitted was almost double (because
each site produced a similar set of locally frequent items and itemsets—especially
when TDBi’s were similar); but, the runtime just increased slightly (1.07 times;
i.e., not doubled) because we built and mined from smaller FP-trees at 8 sites
(rather than from bigger trees at 4 sites).

In addition, we conducted a few more sets of experiments. For example, we
tested the effect of distribution of existential probabilities of items. When items
took on a few unique existential probability values, UF-trees became smaller
and thus took shorter runtimes. See Figure 2(c). Regarding the evaluation on
the scalability of our proposed system, experimental results showed that mining
with our system had linear scalability with respect to the number of transactions.
We also tested the effect of minsup. When minsup increased, fewer itemsets had
expected support ≥ minsup, and thus shorter runtimes were required for the
experiments. See Figure 2(b).

All these experimental results showed the importance and the benefits of
using our proposed system in mining probabilistic datasets of uncertain data for
frequent sets.

5 Conclusions

In this paper, we proposed a tree-based system for mining frequent sets that
satisfy user-defined constraints from a distributed environment such as a wireless
sensor network of uncertain data. Experimental results show effectiveness of our
proposed system.

Acknowledgments. This project is partially supported by NSERC (Canada)
in the form of research grants.

References

1. Aggarwal, C.C., et al.: Frequent pattern mining with uncertain data. In: Proc.
KDD 2009, pp. 29–37 (2009)

2. Agrawal, R., Shafer, J.: Parallel mining of association rules. IEEE TKDE 8(6),
962–969 (1996)

3. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proc.
VLDB 1994, pp. 487–499 (1994)

4. Agrawal, R., et al.: Mining association rules between sets of items in large
databases. In: Proc. ACM SIGMOD 1993, pp. 207–216 (1993)

5. Bernecker, T., et al.: Probabilistic frequent itemset mining in uncertain databases.
In: Proc. KDD 2009, pp. 119–127 (2009)

Distributed Mining of Constrained Frequent Sets from Uncertain Data 53

6. Cheung, D.W., et al.: A fast distributed algorithm for mining association rules. In:
Proc. PDIS 1996, pp. 31–42 (1996)

7. Chui, C.-K., et al.: Mining frequent itemsets from uncertain data. In: Zhou, Z.-H.,
Li, H., Yang, Q. (eds.) PAKDD 2007. LNCS (LNAI), vol. 4426, pp. 47–58. Springer,
Heidelberg (2007)

8. Coenen, F., et al.: T-trees, vertical partitioning and distributed association rule
mining. In: Proc. IEEE ICDM 2003, pp. 513–516 (2003)

9. Dai, X., et al.: Probabilistic spatial queries on existentially uncertain data. In:
Medeiros, C.B., Egenhofer, M.J., Bertino, E. (eds.) SSTD 2005. LNCS, vol. 3633,
pp. 400–417. Springer, Heidelberg (2005)

10. El-Hajj, M., Zäıane, O.R.: Parallel leap: large-scale maximal pattern mining in a
distributed environment. In: Proc. ICPADS 2006, pp. 135–142 (2006)

11. Grahne, G., et al.: Efficient mining of constrained correlated sets. In: Proc. IEEE
ICDE 2000, pp. 512–521 (2000)

12. Han, J., et al.: Mining frequent patterns without candidate generation: a frequent-
pattern tree approach. Data Mining and Knowledge Discovery 8(1), 53–87 (2004)

13. Lakshmanan, L.V.S., Leung, C.K.-S., Ng, R.: Efficient dynamic mining of con-
strained frequent sets. ACM TODS 28(4), 337–389 (2003)

14. Leung, C.K.-S.: Frequent itemset mining with constraints. In: Encyclopedia of
Database Systems, pp. 1179–1183 (2009)

15. Leung, C.K.-S., Brajczuk, D.A.: Efficient algorithms for the mining of constrained
frequent patterns from uncertain data. ACM SIGKDD Explorations 11(2), 123–130
(2009)

16. Leung, C.K.-S., Hao, B.: Mining of frequent itemsets from streams of uncertain
data. In: Proc. IEEE ICDE 2009, pp. 1663–1670 (2009)

17. Leung, C.K.-S., et al.: A tree-based approach for frequent pattern mining from
uncertain data. In: Washio, T., Suzuki, E., Ting, K.M., Inokuchi, A. (eds.) PAKDD
2008. LNCS (LNAI), vol. 5012, pp. 653–661. Springer, Heidelberg (2008)

18. Leung, C.K.-S., et al.: Mining uncertain data for frequent itemsets that satisfy
aggregate constraints. In: Proc. ACM SAC 2010, pp. 1034–1038 (2010)

19. Ng, R.T., et al.: Exploratory mining and pruning optimizations of constrained
associations rules. In: Proc. ACM SIGMOD 1998, pp. 13–24 (1998)

20. Pei, J., et al.: Pushing convertible constraints in frequent itemset mining. Data
Mining and Knowledge Discovery 8(3), 227–252 (2004)

21. Schuster, A., et al.: A high-performance distributed algorithm for mining associa-
tion rules. KAIS 7(4), 458–475 (2005)

22. Zaki, M.J.: Parallel and distributed association mining: a survey. IEEE Concur-
rency 7(4), 14–25 (1999)

23. Zhang, Q., et al.: Finding frequent items in probabilistic data. In: Proc. ACM
SIGMOD 2008, pp. 819–832 (2008)

Set-to-Set Disjoint-Paths Routing in Recursive
Dual-Net

Yamin Li1, Shietung Peng1, and Wanming Chu2

1 Department of Computer Science Hosei University
Tokyo 184-8584 Japan

{yamin,speng}@hosei.ac.jp
2 Department of Computer Hardware University of Aizu

Aizu-Wakamatsu 965-8580 Japan
w-chu@u-aizu.ac.jp

Abstract. Recursive dual-net (RDN) is a newly proposed intercon-
nection network for massive parallel computers. The RDN is based on
recursive dual-construction of a symmetric base-network. A k-level dual-
construction for k > 0 creates a network containing (2n0)

2k

/2 nodes with
node-degree d0 + k, where n0 and d0 are the number of nodes and the
node-degree of the base network, respectively. The RDN is a symmetric
graph and can contain huge number of nodes with small node-degree
and short diameter. Node-to-set disjoint-paths routing is fundamental
and has many applications for fault-tolerant and secure communications
in a network. In this paper, we propose an efficient algorithm for set-to-
set disjoint-paths routing in RDN. We show that, given two sets of d0 + k
nodes, S and T in RDNk(B), d0 + k disjoint paths, each connecting a
node in S to a node in T , can be found in O(lglgN ∗ lgN) time, where N
is the number of nodes in RDNk(B). The length of the paths is at most
3(D0/2 + 1)(lgN + 1)/(lgn0 + 1), where D0 and n0 are the diameter and
the number of nodes of base-network B, respectively.

Keywords: Interconnection network; disjoint paths; set-to-set routing.

1 Introduction

Nowadays, parallel computer systems with large number of processors achieved
petaflops computing performance and are opening the door to exaflops. In the
last decade, because of the advance in computer technology, computer makers
such as IBM and Cray have risen up competition to build supercomputers with
hundreds of thousands of processors. It has been predicted that, in the near
future, the number of processors will reach millions [3].

Interconnection networks play a critical role for those supercomputers to gain
high-performance. It is possible to combine cheap and efficient products to pro-
vide almost all components of a parallel computer except for the interconnection
network [7]. Therefore, many topologies have been proposed for the interconnec-
tion networks and studied eagerly [2,5,14,15].

Y. Xiang et al. (Eds.): ICA3PP 2011, Part I, LNCS 7016, pp. 54–65, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Set-to-Set Disjoint-Paths Routing in Recursive Dual-Net 55

The recursive dual-net (RDN), a newly proposed interconnection network, is
based on recursive dual-construction of a symmetric base-network [17]. The dual-
construction extends a network with n nodes and node-degree d to a network
with 2n2 nodes and node-degree d+1. The k-level RDN is obtained by recursively
applying dual-construction k times starting from the symmetric base network
B. The RDN has many merits as long as topological properties are concerned.
For example, an RDN can connect a huge number of nodes with just a small
number of links per node. It is not difficult to construct an RDN connecting
3-millions nodes with 6 links per node and its diameter equals 22. Therefore, it
is an interesting candidate as an interconnection network for massively parallel
computers of next generations.

In the research on interconnection networks, it is very important to design and
develop efficient routing algorithms. The algorithms include those for solving
disjoint-paths problems in node-to-node, node-to-set, and set-to-set routings.
These problems are fundamental and essential for fault tolerance and security
in parallel computation and communication.

The problem of disjoint-paths routing has been investigated in many topolo-
gies. There are several algorithms in star graphs for the node-to-node disjoint
paths problem in O(n2) time [6,11,13]. Gu and Peng gave algorithms for the
node-to-set and the set-to-set disjoint-paths problems in hypercubes in O(n2)
and O(n2 log n) time, respectively [10]. Gu and Peng gave algorithms for the
node-to-set and the set-to-set disjoint-paths problems in star graphs in O(n2)
time [8,9]. In pancake graphs, there are algorithms for the node-to-node and
the node-to-set disjoint-paths problems in O(n2) time [12,19]. Bossard, Kaneko
and Peng gave an algorithm for node-to-set disjoint-paths problem in metacube
[4]. Li, Peng and Chu gave algorithms for node-to-set disjoint-paths and fault-
tolerant routing problem in RDN [18,16].

In parallel programming, collective communication is generally implemented
in a way that routing messages from a set of nodes to another set of nodes
so they don’t interfere with each other. Therefore, it is important to design
efficient algorithms for set-to-set, disjoint-paths, routing problem. In this paper,
we propose an efficient algorithm that finds disjoint paths for set-to-set routing
in recursive dual-nets. For a k-level recursive dual-net with base-network B,
RDNk(B), given two sets of nodes, S and T with |T | = |S| = m ≤ d0 + k, the
algorithm can find m disjoint paths that connect nodes in S to nodes in T in
O(m ∗ lg N) time, where N is the number of nodes in RDNk(B). The length of
the paths is at most 3(D0/2 + 1)(lgN + 1)/(lgn0 + 1), where d0 and D0 are the
node-degree and the diameter of the base-network, respectively.

The rest of the paper is organized as follows. Section 2 introduces some ter-
minologies, definitions, and basic properties of recursive dual-nets. Section 3
gives the proposed algorithms for the set-to-set disjoint-paths problem in RDN.
Finally, Section 4 concludes this paper with some possible future works.

56 Y. Li, S. Peng, and W. Chu

2 Recursive Dual-Net

Let G be an undirected graph. The size of G, denoted as |G|, is the number of
vertices. A path from node s to node t in G is denoted by s→ t. The length of
the path is the number of edges in the path. For any two nodes s and t in G, we
denote D(s, t) as the length of a shortest path connecting s and t. The diameter
of G is defined as D(G) = max{D(s, t)|s, t ∈ G}. For any two nodes s and t in
G, if there is a path connecting s and t, we say G is connected. If every node in
G looks alike, we say G is symmetric.

Given a symmetric connected graph B with n0 nodes and the node degree d0,
a Recursive Dual-Net of level k, denoted as RDNk(B) or RDNk(B(n0)), can
be recursively defined as follows:

1. RDN0(B) = B is a symmetric connected graph with n0 nodes, called base-
network;

2. For k > 0, an RDNk(B) is constructed from RDNk−1(B) by a dual-
construction as explained below (also see Figure 1).

RDNk−1(B) RDNk(B)

type
0

type
1

0 1 nk−1 − 1

0 1 nk−1 − 1

Cluster

Fig. 1. Build an RDNk(B) from RDNk−1(B)

Dual-Construction: Let RDNk−1(B) be referred to as a cluster of level k
and the number of nodes nk−1 = |RDNk−1(B)|. An RDNk(B) is a graph that
contains 2nk−1 clusters of level k as subgraphs. These clusters are divided into
two sets with each set containing nk−1 clusters. Each cluster in one set is said
to be of type 0, denoted as C0

i , where 0 ≤ i ≤ nk−1 − 1 is the cluster ID. Each
cluster in the other set is of type 1, denoted as C1

j , where 0 ≤ j ≤ nk−1 − 1 is
the cluster ID. In the dual-construction at level k, each node has a new link to a
node in a distinct cluster of the other type. We call this link cross-edge of level
k. That is, for each pair of clusters C0

i and C1
j , there is a unique edge connecting

Set-to-Set Disjoint-Paths Routing in Recursive Dual-Net 57

a node in C0
i and a node in C1

j , 0 ≤ i, j ≤ nk−1 − 1. In Figure 1, there are nk−1

nodes within each cluster RDNk−1(B).
Figure 2 shows the RDN2(B(3)) constructed from a ring with 3 nodea by

appying dual-construction twice. The number of nodes in RDN2(B(3)) is 2×182,
or 648.

Fig. 2. A Recursive Dual-Net RDN2(B(3))

Similarly, we can construct an RDN3(B(3)) containing 2 × 6482, or 839,808
nodes with node-degree 5 and the diameter equals to 22. In contrast, the 839808-
node 3D torus machine (adopt by IBM Blue Gene/L [1]) can be configured as
108×108×72 nodes with node-degree 6 and the diameter of 54+54+36 = 144.

A node presentation for RDNk(B) that provides a unique ID to each node
in RDNk(B) is described as follows. Let the set of IDs of nodes in B, denoted
as ID0, be i, 0 ≤ i ≤ n0 − 1. The IDk of node u in RDNk(B) for k > 0 is a
triple (u0, u1, u2), where u0 is a 0 or 1, u1 and u2 belong to IDk−1. We call u0,
u1, and u2 typeID, clusterID, and nodeID of u, respectively.

More specifically, IDi, 1 ≤ i ≤ k, can be defined recursively as follows:
IDi = (b, IDi−1, IDi−1), where b = 0 or 1, and ID0 is the set of IDs of nodes
in B. With this ID presentation, (u, v) is a cross-edge of level k in RDNk(B)
iff u0 �= v0, u1 = v2, and u2 = v1. The ID of a node u in RDNk(B) can
also be presented by an unique integer i, 0 ≤ i ≤ (2n0)2

k

/2 − 1, where i is
the lexicographical order of the triple (u0, u1, u2). For example, the ID of node
(1, 1, 2) in RDN1(B) is 1 ∗ 32 + 1 ∗ 3 + 2 = 14.

The basic topological properties has been explored in [17]. The following
lemma is from [17].

Lemma 1. Assume that the base-network B is a symmetric graph with size n0,
node-degree d0, and diameter D0. Then, the size, the node-degree, the diameter,
and the bisection bandwidth of RDNk(B) are (2n0)2

k

/2, d0+k, 2kD0+2k+1−2,
and �(2n0)2

k

/8�, respectively.

58 Y. Li, S. Peng, and W. Chu

3 Set-to-Set Disjoint-Path Routing in RDN

In a graph G, given two disjoint sets of n nodes, S and T , the set-to-set disjoint-
paths problem is to find n disjoint paths, each connecting a node in S to a node
in T . In this section, we will propose an efficient algorithm for the set-to-set
disjoint-paths problem in RDN.

Given two nodes u and v in RDNk(B), there exists a simple routing algorithm
that finds a shortest path from u to v [17]. The routing algorithm is described
formally as Algorithm 1.

Algorithm 1. RDN_routing(RDNk(B), u, v)
begin

if k = 0 then RDN_routing(B,u, v)
else

Case 1: u0 = v0 and u1 = v1

RDN_routing(RDNk−1
u (B), u2, v2);

/* RDNk−1
u (B) is the cluster where u belongs to. */

Case 2: u0 �= v0

RDN_routing(RDNk−1
u (B), u2, v1);

RDN_routing(RDNk−1
v (B), v2, u1);

u′ ← (u0, u1, v1);
v′ ← (v0, v1, u1);
connect u′ and v′ via a cross-edge of level k;

Case 3: u0 = v0 and u1 �= v1

route u to w via the cross-edge of level k;
route node w to node v as in Case 2;

endif
end

Lemma 2. In RDNk(B) with k > 0, a path from source s to destination t can
be found in O(lg N) time and the length of the path is at most (D0 + 2)(lg N +
1)/(lg n0 +1)−2, where N is the number of nodes in RDNk(B), D0 and n0 are
the diameter and the number of nodes in B, respectively.

Let the d0 +k neighbors of node u be u(i), 1 ≤ i ≤ d0 +k, where u(i), 1 ≤ i ≤ d0,
are the neighbors of u in B, and edge (u, u(i)), d0 + 1 ≤ i ≤ d0 + k, is the cross-
edge of level i − d0. Let u(i,j) = (u(i))(j) for 1 ≤ i, j ≤ d0 + k, and so on. For
simplicity, we denote N(u) = {u(i), 1 ≤ i ≤ d0 + k). C denotes a cluster (of
level k). Cu denotes the cluster C with node u ∈ C. type(C) denotes the type of
cluster C.

The following lemma is basic and will be used frequently in our algorithms.

Lemma 3. In RDNk(B), for any node u, there exist d0 + k disjoint paths u→
ui, 1 ≤ i ≤ d0 + k, of length at most 2, u→ u(i) → u(i,d0+k), 1 ≤ i ≤ d0 + k, and
u→ u(d0+k), such that ui �∈ Cu and Cui �= Cuj if i �= j.

Set-to-Set Disjoint-Paths Routing in Recursive Dual-Net 59

The idea of the proposed algorithm is to try to connect each pair of nodes in
S and T in different cluster. If a cluster contains multiple nodes in S or T , all
nodes except a pair of nodes in S and T , if any, should be distributed to other
clusters by paths of length at most 2 for further connection.

While distributing nodes to other clusters, there are certain conditions that
should be satisfied. First, these paths of length at most 2 should be disjoint with
the path connecting the single pair of nodes inside the cluster. Second, the paths
for distributing the nodes in S or T should be disjoint with other distributing
paths for the nodes in the same set, and the destination clusters they are routed
to should all distinct and does not include any other nodes in the same set.
However, it does not matter the paths for distributing nodes in different sets are
disjoint or not. If they meet then the connection for this pair of nodes is done.

If the cluster C contains only nodes in one of the two sets S and T and the
number of nodes in S (or T) is at least 2, we simply route all the nodes in C ∩S
(or C ∩ T) to distinct clusters that do not contain any node or distributed node
in S (or T) by disjoint paths of length at most 2. However, we need to handle the
case when a node in S (or T) is distributed to a cluster that contains multiple
nodes in T (or S) which are distributed to other clusters already.

After the routing described above, all clusters that are not processed yet have
at most one node or one distributed node in the two sets S and T . If there exists
two clusters of distinct types such that each contains a node in distinct sets then
they can be connected by the basic routing subroutine (Algorithm 1). Otherwise
(a pair of nodes are in two clusters of the same type), we should connect them
via a cluster (third party) that is of distinct type. The third party should not
contain any other nodes or distributed nodes of the two sets.

To describe the algorithmthatwepropose for the set-to-set, disjoint-paths, rout-
ing in RDN, we need the following subroutines, namely, RDN_modified_route,
RDN_one_path, and RDN_modified_one_path.

The subroutine RDN_modified_routing has three input parameters: nodes
u and v, and a cluster C with Cu �= Cv, type(Cu) = type(Cv), and type(C) �=
type(Cu). It will be called to connect nodes u and v such that the path passes
through clusters Cu, C, and Cv only.

The subroutine RDN_one_path has a cluster C and four sets of nodes, U ,
V , W1, and W2 as input. Sets U and V are the sets of the unconnected nodes or
distributed nodes of sets S and T , respectively. Sets W1 and W2 are the sets of
all nodes and distributed nodes of S and T , respectively. It will be called when
C ∩ U and C ∩ V are nonempty. It will connect a pair of nodes in C ∩ U and
C ∩ V and distribute all other nodes in C ∩U or C ∩ V , if any, to other distinct
clusters not containing any node in W1 or W2, respectively.

The subroutine RDN_modified_one_path has a cluster C, a node v ∈ C,
a set U such that C ∩ U = {u1, . . . , ur} with r > 1, and r disjoint paths of
length at most 2, ui → u′

i, 1 ≤ i ≤ r with Cu′
i
�= C. It will connect v with

a node ua ∈ C ∩ U in C such that path v → ua is disjoint with r − 1 paths
ui → u′

i, 1 ≤ i �= a ≤ r, and remove path ua → u′
a.

60 Y. Li, S. Peng, and W. Chu

The three subroutines are described formally as Algorithms 2, 3, and 4. The
correctness of these algorithms, the upper bounds of their time complexities, and
the maximum lengths of the paths found will be shown in the next subsection
after the proposed algorithm being introduced.

Algorithm 2. RDN_modified_routing(RDNk(B), u, v, C)
Input: a cluster C and two nodes u and v in RDNk(B) such that Cu �= Cv and
type(Cu) = type(Cv) �= type(C)
Output: a path u→ v that passes through C
begin

RDN_routing(Cu, u, u′), where (u′)(d0+k) ∈ C;
RDN_routing(Cv, v, v′), where (u′)(d0+k) ∈ C;
RDN_routing(C, (u′)(d0+k), (v′)(d0+k));
return path u→ u′ → (u′)(d0+k) → (v′)(d0+k) → v′ → v;

end

The proposed algorithm is based on a dynamic routing strategy which con-
nects pairs of nodes in S and T via different clusters. If a cluster contains multiple
nodes of S or T or both we should connect at most one pair of nodes inside the
cluster and all other nodes of S and T should be routed to other clusters for
further routing. It uses four sets of nodes (U , V , W1, and W2) for bookkeeping
and condition identification. Initially, we set U = W1 = S and V = W2 = T .
Once a pair of nodes is connected, they are removed from U and V . In the case,
a node in U ∩C (or V ∩C) is distributed to other cluster C′, it is removed from
U (or V) and the distributed node in C′ is added to U and W1 (or V and W2).
In the end, when the algorithm terminates, U = V = ∅ and W1 and W2 contain
all nodes in S and T and their distributed nodes, respectively.

The algorithm is divided into three stages to handle the routing in different
situations. In the first stage, we handle the clusters C with C ∩ U �= ∅ and
C ∩ V �= ∅. We call RDN_one_path to generate path ua → vb for a pair of
nodes ua and vb, and route all other nodes in C ∩ (U ∪ V) to other distinct
clusters that do not contain the nodes in W1 or W2 (depending on whether the
node is in U or V) by disjoint paths of length at most 2. This process is done by
calling to subroutine RDN_one_path. If a destination cluster C′ of a node in
U (or V) contains some nodes in V (or U) then we call RDN_one_path again
on C′ until the destination cluster do not contain any other node in U ∪ V .

In the second stage, we handle the clusters C with either (|C ∩ U | > 1 and
|C ∩ V | = 0) or (|C ∩ V | > 1 and |C ∩ U | = 0). We handle the case |C ∩ U | > 1
and |C ∩ V | = 0 first. We route all nodes in C ∩ U to other distinct clusters
that do not contain nodes in W1 by disjoint paths of length at most 2. If a node
in C ∩ U is routed to a cluster C′ with |C′ ∩ V | �= 0, we call RDN_one_path
again on C′. After the first case is done, we handle the second case |C ∩ V | > 1

Set-to-Set Disjoint-Paths Routing in Recursive Dual-Net 61

Algorithm 3. RDN_one_path(RDNk(B), C, U, V, W1, W2)
Input: A cluster C and four sets of nodes, U , V , W1 and W2, in RDNk(B) such that
C ∩ U = {u1, . . . , up} and C ∩ V = {v1, . . . , vq}, where p, q ≥ 1.
Output: Path ua ∈ U → vb ∈ V , p − 1 disjoint paths ui → u′

i �∈ C, 1 ≤ i �= a ≤ p, of
length at most 2 such that Cu′

i
∩W1 = ∅ for all i, 1 ≤ i �= a ≤ p, and

Cv′
i
�= Cv′

j
if i �= j, and q − 1 disjoint paths vi → v′

i �∈ C, 1 ≤ i �= b ≤ q, of length at
most 2 such that Cv′

i
∩W2 = ∅ for all j, 1 ≤ j �= b ≤ q, and Cv′

i
�= Cv′

j
if i �= j

begin
pick up ua ∈ U ∩ C and vb ∈ V ∩ C randomly;
find p− 1 disjoint paths of length at most 2, ui → u′

i, 1 ≤ i �= a ≤ p such that
Cu′

i
∩W1 = ∅ for all i, 1 ≤ i �= a ≤ p, and Cu′

i
�= Cu′

j
if i �= j;

find q − 1 disjoint paths of length at most 2, vi → v′
i, 1 ≤ i �= b ≤ q such that

Cv′
i
∩W2 = ∅ for all i, 1 ≤ i �= b ≤ q, and Cv′

i
�= Cv′

j
if i �= j;

RDN_basic_route(C,ua, vb);
if ∃i �= a such that {ui → u′

i}∩{ua → vb} �= ∅ or ∃j �= b such that {vj → v′
j}∩{ua →

vb} �= ∅
then find ua′ and vb′ such that ua′ → vb′ is disjoint with the other paths of length

at most 2;
remove paths ua′ → u′

a′ and vb′ → v′
b′ ;

replace path ua → vb by path ua′ → vb′ ;
find a path of length at most 2, ua → u′

a such that it is disjoint with paths
ui → u′

i, i �= a, Cu′
a
∩W1 = ∅ and Cu′

a
�= Cu′

j
for all j �= a;

find a path of length at most 2, vb → v′
b such that it is disjoint with paths

vj → v′
j , j �= b, Cv′

b
∩W2 = ∅ and Cv′

b
�= Cv′

j
for all j �= b;

endif
end

and |C ∩ U | = 0. We route all nodes in C ∩ V to other distinct clusters that
do not contain nodes in W2 by disjoint paths of length at most 2. However, if

Algorithm 4. RDN_modified_one_path(RDNk(B), C, v, U)
Input: A cluster C, a node v ∈ C and a set of nodes U in RDNk(B) such that C∩U =
{u1, . . . , ur}, where r > 1, and r disjoint paths of length at most 2, ui → u′

i, 1 ≤ i ≤ r.
Output: Path ua → v that is disjoint with paths ui → u′

i, 1 ≤ i �= a ≤ r, and path
ua → u′

a is removed.
begin

pick up ua ∈ C ∩ U randomly;
RDN_routing(C,ua, v);
if ∃j �= a such that {uj → u′

j} ∩ {ua → v} �= ∅
then find va′ such that ua′ → v is disjoint with any of the other r − 1 paths of

length at most 2;
replace path ua → v by path ua′ → v;
remove path ua′ → u′

a′
else remove path ua → u′

a;
endif

end

62 Y. Li, S. Peng, and W. Chu

a node in C ∩ V is routed to a cluster C′ with |C′ ∩W1| > 1, we cannot call
RDN_one_path on C′ since the nodes in C′ ∩ W1 had been routed to other
clusters. We call RDN_modified_one_path on C′ instead.

In the third stage, since every cluster contains at most one node in U ∪ V ,
we can connect them pairwise by RDN_routing if the pair of nodes are in the
clusters of different types by RDN_modified_routing otherwise.

The results of the paper are stated in Lemmas 4 - 6 and Theorem 1. The proofs
for the corectness and the time complexities of Algorithms 2 - 5 are omitted due
to the page limit. The interested reader can find the proofs in the full paper.

Lemma 4. Algorithm 2 is correct. The time complexity of Algorithm 2 is O(lg N).
The length of the paths is at most 3(D0/2 + 1)(lg N + 1)/(lg n0 + 1) − 4, where
N is the number of nodes in RDNk(B) and D0 and n0 are the diameter and the
number of nodes in B, respectively.

Lemma 5. Algorithm 3 is correct for the sets U ,V , W1 and W2 defined in Algo-
rithm 5. The time complexity of Algorithm 3 is O(lg N). The length of the path
connects u to a node in V is at most (D0/2 + 1) ∗ (lg N + 1)/(lg n0 + 1)− 2.

Lemma 6. Algorithm 4 is correct. The time complexity of Algorithm 4 is O(lg N).
The length of the paths is at most (D0/2 + 1) ∗ (lg N + 1)/(lg n0 + 1)− 2.

Theorem 1. Assume that d0 and D0 are the node-degree and the diameter of
the base network B, respectively. Assume that d0 disjoint paths exist in B be-
tween two sets of d0 nodes in B. Let S and T be two sets of d0 + k nodes in
RDNk(B), k > 0. Then d0 + k disjoint paths, each connecting a node in S to a
node in T can be found in O(lg lg N ∗ lg N) time, where N is the number of nodes
in RDNk(B). The length of the paths is at most 3(D0/2+1)(lgN+1)/(lgn0+1),
where D0 and n0 are the diameter and the number of nodes in B.

We give an example of set-to-set disjoint-paths routing in RDN2(B) that follows
the proposed algorithm step-by-step.

Example 1: In RDN2(B), where B is a ring with 3 nodes, let s1 = (0, (0, 1, 1),
(1, 0, 2)); s2 =(1, (1, 0, 0), (0, 2, 0)); s3 =(1, (1, 1, 1), (0, 0, 0)); and s4 =(1, (1, 1, 1),
(0, 1, 1)), and let t1 = (0, (0, 1, 0), (1, 0, 1)); t2 = (0, (0, 1, 0), (0, 1, 2)); t3 =
(1, (1, 0, 1), (1, 2, 0)); and t4 = (1, (1, 1, 1), (1, 0, 2)).

For simplicity, we do not include the updating of set W1 and W2. Basically, any
nodes generated from a distributing path of length at most 2 from a node in S
(or T) should be added to W1 (or W2). The clusters contain any node in W1 (or
W2) cannot be selected as destination clusters while distributing the nodes in a
cluster that contains more than one node in S (or T). Initially U and V are set
to S and T , respectively

• Stage 1-1: Since cluster C = (1, (1, 1, 1), (∗, ∗, ∗)) contains both nodes in S
and T , we call RDN_one_path to connect s3 to t4 and route s4 to cluster
(0, (0, 1, 0), (∗, ∗, ∗) by a path of length 2 as follows. Notice that the path of length
1 cannot be used since the destination cluster (0, (0, 1, 1), (∗, ∗, ∗)) contains s1.

Set-to-Set Disjoint-Paths Routing in Recursive Dual-Net 63

Algorithm 5. RDN_S2S_disjoint_paths(RDNk(B), S, T)
Input: Two disjoint sets S and T of m ≤ d0 + k nodes in RDNk(B), k > 0
Output: m disjoint paths connecting nodes in S and nodes in T
begin

U = W1 ← S; V = W2 ← T ;
while ∃ cluster C with |C ∩ U | = p > 0 ∧ |Cs ∩ V | = q > 0 do /* Stage 1 */

RDN_one_path(RDNk(B), C, U, V, W1, W2);
U ← U ∪ {u′

i, 1 ≤ i �= a ≤ p} \ (C ∩ U);
V ← V ∪ {v′

i, 1 ≤ i �= b ≤ q} \ (C ∩ V);;
W1 ←W1 ∪ {u′

i, 1 ≤ i �= a ≤ p};
W2 ←W2 ∪ {v′

i, 1 ≤ i �= b ≤ q};
while ∃ cluster C with |C ∩ U | = p > 1 and |C ∩ V | = 0 do /* Stage 2 */
find p disjoint paths ui → u′

i, 1 ≤ i ≤ p of length at most 2 s.t. clusters Cu′
i

are all
distinct and do not contain any node in W1;

U ← U ∪ {u′
i, 1 ≤ i ≤ p} \ (C ∩ U);

W1 ←W1 ∪ {u′
i, 1 ≤ i ≤ p}

while ∃ cluster C with C ∩ U = {u} and |C ∩ V | > 0 do
RDN_one_path(RDNk(B), {u}, V, W1, W2);
U ← U \ {u};
V ← V ∪ {v′

i, 1 ≤ i �= b ≤ q} \ (C ∩ V);
W2 ←W2 ∪ {v′

i, 1 ≤ i �= b ≤ q};
while ∃ cluster C with |C ∩ V | = q > 1 and |C ∩ U | = 0 do

find q disjoint paths vi → v′
i, 1 ≤ i ≤ q of length at most 2 s.t. clusters Cv′

i
are all

distinct and do not contain any node in W2;
V ← V ∪ {v′

i, 1 ≤ i ≤ q} \ (C ∩ V);;
W2 ←W2 ∪ {v′

i, 1 ≤ i ≤ q};
while ∃ cluster C with |C ∩ V | = {v} and |C ∩W1| > 0 do

if |C ∩W1| = {u} /* C ∩W1 = C ∩ U in this case. */
then

RDN_routing(RDNk(B), u, v)
U ← U \ {u};
V ← V \ {v};

else
RDN_modified_one_path(RDNk(B), C, v, W1);
U ← U \ {u′

a};
V ← V \ {v};

while ∃ C and C′ with type(C) �= type(C′) ∧ C ∩ U = {u} ∧ C′ ∩ V = {v} do
/* Stage 3 */

RDN_routing(RDNk(B), u, v);
U ← U \ {u};
V ← V \ {v};

while ∃ C and C′ with type(C) = type(C′) ∧ C ∩ U = {u} ∧ C′ ∩ V = {v} do
find a cluster C′′ s.t. type(C′′) �= type(C) and C ∩ (W1 ∪W2) = ∅;
RDN_modified_routing(RDNk(B), u, v, C′′);
U ← U \ {u};
V ← V \ {v};

end

64 Y. Li, S. Peng, and W. Chu

Path #1: s3 = (1, (1, 1, 1), (0, 0, 0))→ (1, (1, 1, 1), (1, 0, 0))→ t4 = (1, (1, 1, 1),
(1, 0, 2)) s4 → (1, (1, 1, 1), (0, 1, 0))→ (0, (0, 1, 0), (1, 1, 1)) = s′4
The nodes in U and V are updated: U = {s1, s2, s

′
4}, V = {t1, t2, t3}.

• Stage 1-2: Since cluster (0, (0, 1, 0), (∗, ∗, ∗)) contain t1, t2, and s′4, we call
RDN_one_path again for cluster (0, (0, 1, 0), (∗, ∗, ∗)).
Path #2: s′1 → t1(0, (0, 1, 0), (0, 1, 1)→ (0, (0, 1, 0), (0, 1, 0)→ (0, (0, 1, 0),
(1, 0, 1) = t1
t1 → (0, (0, 1, 0), (1, 0, 0))→ (1, (1, 0, 0), (0, 1, 0) = t′1
The nodes in U and V are updated: U = {s1, s2}, V = {t′2, t3}.
• Stage 3: Since all the nodes in U∪V are in distinct clusters, we connect the pair
of nodes (s1 and t3) that are in the clusters of distinct types by RDN_routing.
Finally, we pick up cluster C = (0, (0, 0, 0), (∗, ∗, ∗)) of type 0 that does not
contain any node in W1 ∪W2 and call RDN_Modified_Routing to connect the
last pair of nodes (s2 and t′2) via cluster C.
Path #3: s1 ⇒ (0, (0, 1, 1), (1, 0, 1))→ (1, (1, 0, 1), (0, 1, 1))⇒ t3
Path #4: s2 ⇒ (1, (1, 0, 0), (0, 0, 0))→ (0, (0, 0, 0), (1, 0, 0))⇒ (0, (0, 0, 0),
(0, 1, 2))→ (1, (0, 1, 2), (0, 0, 0))⇒ t′2

4 Concluding Remarks

Recursive dual-net is a potential interconnection network for supercomputers of
next generations because of its low node degree and short diameter for the ex-
tremely large parallel computer systems. Its symmetric and recursive structure,
and simple routing algorithms are also attractive. In this paper, we proposed an
efficient algorithm for the set-to-set disjoint-paths routing on recursive dual-net.
There are many other interesting collective communication and computational
problems on recursive dual-net that are worth further research.

References

1. Adiga, N.R., Blumrich, M.A., Chen, D., Coteus, P., Gara, A., Giampapa, M.E., Hei-
delberger, P., Singh, S., Steinmacher-Burow, B.D., Takken, T., Tsao, M., Vranas,
P.: Blue gene/l torus interconnection network. IBM Journal of Research and De-
velopment 49(2/3), 265–276 (2005)

2. Akers, S.B., Krishnamurthy, B.: A group-theoretic model for symmetric intercon-
nection networks. IEEE Transactions on Computers 38(4), 555–566 (1989)

3. Beckman, P.: Looking toward exascale computing. In: Proceedings of the 2008
International Conference on Parallel and Distributed Computing, Applications and
Technologies (December 2008) keynote speaker

4. Bossard, A., Kaneko, K., Peng, S.: Node-to-set disjoint-paths routing in metacube.
In: Proceedings of the International Conference on Parallel and Distributed Com-
puting, Applications and Technologies, pp. 8–11. IEEE Computer Society Press,
Hiroshima (2009)

5. Corbett, P.F.: Rotator graphs: An efficient topology for point-to-point multiproces-
sor networks. IEEE Transactions on Parallel and Distributed Systems 3(5), 622–626
(1992)

Set-to-Set Disjoint-Paths Routing in Recursive Dual-Net 65

6. Day, K., Tripathi, A.: A comparative study of topological properties of hypercubes
and star graphs. IEEE Transactions on Parallel and Distributed Systems 5(1),
31–38 (1994)

7. Duato, J., Yalamanchili, S., Ni, L.: Interconnection Networks: An Engineering Ap-
proach. IEEE Computer Society Press, Los Alamitos (1997)

8. Gu, Q.P., Peng, S.: Set-to-set fault tolerant routing in star graphs. IEICE Trans.
on Information and Systems E79-D(4), 282–289 (1996)

9. Gu, Q.P., Peng, S.: Node-to-set disjoint paths problem in star graphs. Information
Processing Letters 62(4), 201–207 (1997)

10. Gu, Q.P., Peng, S.: Node-to-set and set-to-set cluster fault tolerant routing in
hypercubes. Parallel Computing 24(9), 1245–1261 (1998)

11. Jovanovic, Z., Misic, J.V.: Fault tolerance of the star graph interconnection net-
work. Information Processing Letters 49(3), 145–150 (1994)

12. Kaneko, K., Suzuki, Y.: Node-to-set disjoint paths problem in pancake graphs.
IEICE Transactions on Information and Systems E86-D(9), 1628–1633 (2003)

13. Latifi, S.: On the fault-diameter of the star graph. Information Processing Let-
ters 46(3), 143–150 (1993)

14. Li, Y., Peng, S.: Dual-cubes: a new interconnection network for high-performance
computer clusters. In: Proceedings of the 2000 International Computer Symposium,
Workshop on Computer Architecture, ChiaYi, Taiwan, pp. 51–57 (December 2000)

15. Li, Y., Peng, S., Chu, W.: Metacube - a new interconnection network for large
scale parallel systems. Australian Computer Science Communications 24(3), 29–36
(2002)

16. Li, Y., Peng, S., Chu, W.: Disjoint-paths and fault-tolerant routing on recursive
dual-net. In: Proceedings of the International Conference on Parallel and Dis-
tributed Computing, Applications and Technologies, pp. 48–56. IEEE Computer
Society Press, Hiroshima (2009)

17. Li, Y., Peng, S., Chu, W.: Recursive dual-net: A new versatile network for su-
percomputers of the next generation. Journal of Chinese Institute of Engineer 32,
931–938 (2009)

18. Li, Y., Peng, S., Chu, W.: Node-to-set disjoint-paths routing in recursive dual-net.
In: Proceedings of the First International Conference on Networking and Comput-
ing, Higashi Hiroshima, Japan, pp. 9–14 (November 2010)

19. Suzuki, Y., Kaneko, K.: An algorithm for node-disjoint paths in pancake graphs.
IEICE Transactions on Information and Systems E86-D(3), 610–615 (2003)

Redflag: A Framework for Analysis of Kernel-Level
Concurrency

Justin Seyster, Prabakar Radhakrishnan, Samriti Katoch, Abhinav Duggal,
Scott D. Stoller, and Erez Zadok

Department of Computer Science, Stony Brook University

Abstract. Although sophisticated runtime bug detection tools exist to root out
several kinds of concurrency errors, they cannot easily be used at the kernel level.
Our Redflag framework and system seeks to bring these essential techniques to
the Linux kernel by addressing issues faced by other tools. First, other tools typi-
cally examine every potentially concurrent memory access, which is infeasible in
the kernel because of the overhead it would introduce. Redflag minimizes over-
head by using offline analysis together with an efficient in-line logging system
and by supporting targeted configurable logging of specific kernel components
and data structures. Targeted analysis reduces overhead and avoids presenting de-
velopers with error reports for components they are not responsible for. Second,
other tools do not take into account some of the synchronization patterns found
in the kernel, resulting in false positives. We explore two algorithms for detecting
concurrency errors: one for race conditions and another for atomicity violations;
we enhanced them to take into account some specifics of synchronization in the
kernel. In particular, we introduce Lexical Object Availability (LOA) analysis to
deal with multi-stage escape and other complex order-enforcing synchronization.
We evaluate the effectiveness and performance of Redflag on two file systems
and a video driver.

1 Introduction

As the kernel underlies all of a system’s concurrency, it is the most important front for
eliminating concurrency errors. In order to design a highly reliable operating system,
developers need tools to find concurrency errors before they cause real problems in
production systems. Understanding concurrency in the kernel is difficult. Unlike many
user-level applications, almost the entire kernel runs in a multi-threaded context, and
much of it is written by experts who rely on intricate synchronization techniques.

Runtime analysis is a powerful and flexible approach to detection of concurrency
errors. We designed the Redflag framework and system with the goal of airlifting this
approach to the kernel front lines. Redflag takes its name from stock car and formula
racing, where officials signal with a red flag to end a race. It has two main parts:

1. Fast Kernel Logging uses compiler plug-ins to provide modular instrumentation
that targets specific data structures in specific kernel subsystems for logging. It
reserves an in-memory buffer to log operations on the targeted data structures with
the best possible performance.

Y. Xiang et al. (Eds.): ICA3PP 2011, Part I, LNCS 7016, pp. 66–79, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Redflag: A Framework for Analysis of Kernel-Level Concurrency 67

2. The offline Redflag analysis tool performs post-mortem analyses on the resulting
logs. Offline analysis reduces runtime overhead and allows any number of analysis
algorithms to be applied to the logs.

Currently, Redflag implements two kinds of concurrency analyses: Lockset [15] analy-
sis for data races and block-based [19] analysis for atomicity violations. We developed
several enhancements to improve the accuracy of these algorithms, including Lexical
Object Availability (LOA) analysis, which eliminates false positives caused by com-
plicated initialization code. We also augmented Lockset to support Read-Copy-Update
(RCU) [12] synchronization, a synchronization tool new to the Linux kernel.

The paper is organized as follows. Section 2 describes our system. Section 3 presents
experimental results. Section 4 discusses related work. Section 5 concludes and dis-
cusses future work.

2 Design

2.1 Instrumentation and Logging

Redflag inserts targeted instrumentation using a suite of GCC compiler plug-ins that
we developed specifically for Redflag. Plug-ins are a recent GCC feature that we con-
tributed to the development of. Compiler plug-ins execute during compilation and have
direct access to GCC’s intermediate representation of the code [2]. Redflag’s GCC plug-
ins search for relevant operations and instrument them with function calls that serve as
hooks into Redflag’s logging system.

Redflag currently logs four types of operations: (1) Field access: read from or write
to a field in a struct; (2) Synchronization: acquire/release operation on a lock or
wait/signal operation on a condition variable; (3) Memory allocation: creation of a ker-
nel object, necessary for tracking memory reuse (Redflag can also track deallocations,
if desired); (4) System call (syscall) boundary: syscall entrance/exit (used for atomicity
checking).

When compiling the kernel with the Redflag plug-ins, the developer provides a list
of structs to target for instrumentation. Field accesses and lock acquire/release opera-
tions are instrumented only if they operate on a targeted struct. A lock acquire/release
operation is considered to operate on a struct if the lock it accesses is a field within
that struct. Some locks in the kernel are not members of any struct: these global
locks can be directly targeted by name.

To minimize runtime overhead, and to allow logging in contexts where potentially
blocking I/O operations are not permitted (e.g., in interrupt handlers or while holding
a spinlock), Redflag stores logged information in a lock-free in-memory buffer. I/O is
deferred until logging is complete.

When logging is finished, a backend thread empties the buffer and writes the records
to disk. With 1GB of memory allocated for the buffer, it is possible to log 7 million
events, which was enough to provide useful results for all our analyses.

2.2 Lockset Algorithm

Lockset is a well known algorithm for detecting data races that result from variable
accesses that are not correctly protected by locks. Our Lockset implementation is based

68 J. Seyster et al.

on Eraser [15]. A data race occurs when two accesses to the same variable, at least one
of them a write, can execute together without intervening synchronization. Not all data
races are bugs. A data race is benign when it does not affect the program’s correctness.

Lockset maintains a candidate set of locks for each monitored variable. The candi-
date lockset represents the locks that have consistently protected the variable. A variable
with an empty candidate lockset is potentially involved in a race. Before the first access
to a variable, its candidate lockset is the set of all possible locks. The algorithm tracks
the current lockset for each thread. Each lock-acquire event adds a lock to its thread’s
lockset. The corresponding release removes the lock.

When an access to a variable is processed, the variable’s candidate lockset is refined
by intersecting it with the thread’s current lockset. In other words, the algorithm sets
the variable’s candidate lockset to be the set of locks that were held for every access
to the variable. When a candidate lockset becomes empty, the algorithm revisits every
previous access to the same variable, and if no common locks protected both the current
access and that previous one, we report the pair as a potential data race.

Redflag produces at most one report for each pair of lines in the source code, so
the developer does not need to examine multiple reports for the same race. Each report
contains every stack trace that led to the race for both lines of code and the list of locks
that were held at each access.

Beyond the basic algorithm described above, there are several common refinements
that eliminate false positives (false alarms) due to pairs of accesses that do not share
locks but cannot occur concurrently for other reasons.

Variable initialization. When a thread allocates a new object, no other thread has ac-
cess to that object. until the thread stores the new object’s address in globally accessible
memory. Most initialization routines in the kernel exploit this to avoid the cost of lock-
ing during initialization. As a result, most accesses during initialization appear to be
data races to the basic Lockset algorithm.

The Eraser algorithm solves this problem by tracking which threads access variables
to determine when each variable become shared by multiple threads [15]. We implement
a variant of this idea: when a variable is accessed by more than one thread or accessed
while holding a lock, it is considered shared. Accesses to a variable before its first
shared access are marked as thread local, and Lockset ignores them.

Memory reuse. When a region of memory is freed, allocating new data structures in
the same memory can cause false positives in Lockset, because variables are identified
by their location in memory. Eraser solves this problem by reinitializing the candidate
lockset for every memory location in a newly allocated region [15]. Redflag also logs
calls to allocation functions, so that it can similarly account for reuse.

2.3 Block-Based Algorithms

Redflag includes two variants of Wang and Stoller’s block-based algorithm [18,19].
These algorithms check for atomicity, which is similar to serializability of database
transactions and provides a stronger guarantee than freedom from data races. Two
atomic functions executing in parallel always produce the same result as if they exe-
cuted in sequence, one after the other.

Redflag: A Framework for Analysis of Kernel-Level Concurrency 69

When checking atomicity for the kernel, system calls provide a natural unit of atom-
icity. By default, we check atomicity for each syscall execution. Not all syscalls need to
be atomic, so Redflag provides a simple mechanism to specify smaller atomic regions
(see Section 2.5).

We implemented two variants of the block-based algorithm: a single-variable variant
that detects violations involving just one variable and a two-variable variant that detects
violations involving more than one variable.

The single-variable block-based algorithm decomposes each syscall execution into
a set of blocks, which represent sequential accesses to a variable. Each block includes
two accesses to the same variable in the same thread, as well as the list of locks that
were held for the duration of the block (i.e., all locks acquired before the first access
and not released until after the second access). The algorithm then checks each block,
searching all other threads for any access to the block’s variable that might interleave
with the block in an unserializable way. An access can interleave a block if it is made
without holding any of the block’s locks, and the interleaving is unserializable if it
matches any of the patterns in Figure 1(a).

tid-1 tid-2

read(var)

read(var)
write(var)

write(var)

write(var)
read(var)

write(var)

read(var)
write(var)

read(var)

write(var)
final-write(var)

tid-1 tid-2

1:

2:

3:

4:

(a) Single variable

write(v1)

write(v2)

write(v1)
write(v2)

read(v1)

write(v2)

write(v2)
write(v1)

tid-1 tid-2

write(v1)

write(v2)
write(v2)

write(v1)

write(v1)

write(v2)
read(v2)

write(v1)

tid-1 tid-2

read(v1)

write(v2)

write(v1)
read(v2)

read(v1)

read(v2)

write(v2)
write(v1)

tid-1 tid-2

1:

2:

3:

4:

5:

6:

(b) Double variable

Fig. 1. The illegal interleavings in the single- and double-variable block-based algorithms [19].
Note that a final write is the last write to a variable during the execution of an atomic region.

The two-variable block-based algorithm also begins by decomposing each syscall
execution into blocks. A two-variable block comprises two accesses to different vari-
ables in the same thread and syscall execution. The algorithm searches for pairs of
blocks in different threads that can interleave illegally. Each block includes enough in-
formation about which locks were held, acquired, or released during its execution to
determine which interleavings are possible. Figure 1(b) shows the six illegal interleav-
ings for the two-variable block-based algorithm; Wang and Stoller give details of the
locking information saved for each block [19].

Together, these two variants are sufficient to determine whether any two syscalls in a
trace can violate each other’s atomicity [19]. In other words, these algorithms can detect
atomicity violations involving any number of variables.

Analogues of the Lockset refinements in Section 2.2 are used in the block-based
algorithm to eliminate false positives due to variable initialization and memory re-use.

2.4 Algorithm Enhancements

The kernel is a highly concurrent environment and uses several different styles of syn-
chronization. Among these, we found some that were not addressed by previous work

70 J. Seyster et al.

on detecting concurrency violations. This section discusses two new synchronization
methods that Redflag handles: multi-stage escape and RCU.

Multi-stage escape. As explained in Section 2.2, objects within their initialization
phases are effectively protected against concurrent access, because other threads do
not have access to them. However, an object’s accessibility to other threads is not nec-
essarily binary. An object may be available to a limited set of functions during a sec-
ondary initialization phase and then become available to a wider set of functions when
that phase completes. During the secondary initialization, some concurrent accesses
are possible, but the initialization code is still protected against interleaving with many
functions. We call this phenomenon multi-stage escape. As an example, inode objects
go through two stages of escape. First, after a short first-stage initialization, the inode
gets placed on a master inode list in the file system’s superblock. File-system–specific
code performs a second initialization and then assigns the inode to a dentry.

The block-based algorithm reported illegal interleavings between accesses in the
second-stage initialization and syscalls that operate on files, like read() and write().
These interleavings are not possible, however, because file syscalls always access in-
odes through a dentry. Before an object is assigned to a dentry—its second escape—the
second-stage initialization code is protected against concurrent accesses from any file
syscalls. Interleavings are possible with functions that traverse the superblock’s inode
list, such as the writeback thread, but they do not result in atomicity violations, because
they were designed to interleave correctly with second-stage initialization.

To avoid reporting these kinds of false interleavings, we introduce Lexical Object
Availability (LOA) analysis, which produces a relation on field accesses for each tar-
geted struct. Intuitively, the LOA relation encodes observed ordering among lines of
code. We use these orderings to infer when an object becomes unavailable to a region
of code, marking the end of an initialization phase.

In the inode example, any access from a file syscall serves as evidence that first-
and second-stage initialization are finished, meaning that accesses from those initial-
ization routines are no longer possible. Accesses from the writeback thread are weaker
evidence, showing that first-stage initialization is finished.

The LOA algorithm first divides the log file into sub-traces. Each sub-trace contains
all accesses to one particular instance o of a targeted struct S. For each sub-trace,
which is for some instance of some struct S, the algorithm adds an entry for a pair
of statements in the LOA relation for S when it observes that one of the statements
occurred after the other in a different thread in that sub-trace. Specifically, for a struct
S and read/write statements a and b, (a, b) is included in LOAS iff there exists a sub-
trace for an instance of struct S containing events ea and eb such that:

1. ea is performed by statement a, and eb is performed by statement b, and
2. ea occurs before eb in the sub-trace, and
3. ea and eb occur in different threads.

We modified the block-based algorithm to report an atomicity violation only if the in-
terleaving statements that caused the violation are allowed to interleave by their LOA
relation. For an event produced by statement b to interleave a block produced by state-
ments a and c, the LOA relation must contain the pairs (a, b) and (b, c). Otherwise, the
algorithm considers the interleaving impossible.

Redflag: A Framework for Analysis of Kernel-Level Concurrency 71

Returning to the inode example, consider a and c to be statements from the secondary
initialization stage and b to be a statement in a function called by the read syscall.
Because statement b cannot access the inode until after secondary initialization is done,
(b, c) cannot be in LOAinode, the LOA relation for inodes.

We also added LOA analysis to the Lockset algorithm: it reports that two statements
a and b can race only if both (a, b) and (b, a) are in the LOA relation for the struct
that a and b access.

Although we designed LOA analysis specifically for multi-stage escape, it can also
infer other kinds of order-enforcing synchronization. For example, we found that the
kernel sometimes uses condition variables to protect against certain operations to in-
odes that are in a startup state, which lasts longer than its initialization. We constructed
the happened-before relation [8] to determine which potential interleavings were pre-
cluded by condition variables, but all such interleavings were already filtered by LOA.
LOA analysis can also infer destruction phases, when objects typically return to being
exclusive to one thread.

Because LOA filters interleavings based on the observed order of events, it can cause
false negatives (i.e., it can eliminate warnings corresponding to actual errors). The com-
mon technique of filtering based on when variables become shared (see Section 2.2)
has the same problem: if a variable becomes globally accessible but is not promptly
accessed by another thread, neither technique recognizes that such an access is possi-
ble. Dynamic escape analysis addresses this problem by determining precisely when an
object becomes globally accessible [19], but it accounts for only one level of escape.

Syscall interleavings. Engler and Ashcraft observed that dependencies on data prevent
some kinds of syscalls from interleaving [4]. For example, a write operation on a file
never executes in parallel with an open operation on the same file, because userspace
programs have no way to call write before open finishes.

These dependencies are actually a kind of multi-stage escape. The return from open

is an escape for the file object, which then becomes available to other syscalls, such as
write. For functions that are called only from one syscall, our LOA analysis already
rules out impossible interleavings between syscalls with this kind of dependency.

However, when a function is reused in several syscalls, the LOA relation, as de-
scribed above, cannot distinguish executions of the same statement that were executed
in different syscalls. As a result, if LOA analysis sees that an interleaving in a shared
function is possible between one pair of syscalls, it will believe that the interleaving is
possible between any pair of syscalls.

To overcome this problem, we augment the LOA relation to contain entries of the
form ((syscall, statement), (syscall, statement)). As a result, LOA analysis treats
a function called from different syscalls as separate functions. Statements that do not
execute in a syscall are instead paired with the name of the kernel thread they execute
in. The augmented LOA relations can express dependencies caused by both multi-stage
escape during initialization and dependencies among syscalls.

RCU. Read-Copy Update (RCU) synchronization is a recent addition to the Linux ker-
nel that allows very efficient read access to shared variables [12]. A typical RCU-write
first copies the protected data structure, modifies the local copy, and then replaces the

72 J. Seyster et al.

pointer to the original copy with a pointer to the updated copy. RCU synchroniza-
tion does not protect against lost updates, so writers must use their own locking. A
reader needs only to surround read-side critical sections with rcu read lock() and
rcu read unlock(), which ensure that the shared data structure does not get freed
during the critical section.

We extended Lockset to test for correctness of RCU use. When a thread enters a read-
side critical section by calling rcu read lock(), our implementation adds a virtual
RCU lock to the thread’s lockset. We do not report a data race between a read and a
write if the read access has the virtual RCU lock in its lockset. However, conflicting
writes to an RCU-protected variable will still produce a data race report.

2.5 Filtering False Positives and Benign Warnings

Bit-level granularity. We found that many false positives in the block-based algorithms
were caused by flag variables, like the i state field in Figure 2, which group several
boolean values into one integer variable. Because several flags are stored in the same
variable, an access to any individual flag appears to access all flags in the variable.
Erickson et al. observed this same pattern in the Windows 7 kernel and account for it in
their DataCollider race detector [5].

Figure 2 shows an example of an interleaving that the single-variable block-based al-
gorithm would report as a violation. The two bitwise assignments in thread 1 both write
to the i state field. These two writes form a block between which the conditional in
thread 2 can interleave; this is one of the illegal patterns shown in Figure 1(a). However,
there is no atomicity problem, because thread 1 writes only the I SYNC bit, and thread 2
reads only the I CLEAR bit.

We eliminate such false positives by modifying the block-based algorithms to treat
any variable that is sometimes accessed using bitwise operators as 64 individual vari-
ables (on 64-bit systems). Our analysis still detects interleavings between bitwise ac-
cesses to individual flags and accesses that involve the whole variable.

/* [Thread 1] */ /* [Thread 2] */
spin_lock(inode->lock);
inode->i_state |= I_SYNC;
spin_unlock(inode->lock);

spin_lock(inode->lock);
if (inode->i_state & I_CLEAR) {

/* ... */
}
spin_unlock(inode->lock);

spin_lock(inode->lock);
inode->i_state &= ˜I_SYNC;
spin_unlock(inode->lock);

Fig. 2. An interleaving that appears to violate the atomicity of the i state field. However, this
is a false alarm, because the two threads access different bits of the field.

Redflag: A Framework for Analysis of Kernel-Level Concurrency 73

Idempotent operations. An operation is idempotent if, when it is executed multiple
times on the same variable, only the first execution changes the variable’s value. For
example, setting a bit in a flag variable is an idempotent operation. When two threads
execute an idempotent operation, the order of these operations does not matter, so atom-
icity violations involving them are false positives. The user can annotate lines that per-
form idempotent operations. Our algorithms filter out warnings that involve only these
lines.

Choosing atomic regions. We found that many atomicity violations initially reported
by the block-based algorithms are benign: the syscalls involved are not atomic, but are
not required to be atomic. For example, the btrfs file write() function in the Btrfs
file system loops through each page that it needs to write. The body of the loop, which
writes one page, should be atomic, but the entire function does not need to be.

Redflag lets the user break up atomic regions by marking lines of code as fenceposts.
A fencepost ends the current atomic region and starts a new one. For example, placing
a fencepost at the beginning of the page-write loop in btrfs file write() prevents
Redflag from reporting atomicity violations spanning two iterations of the loop. Fence-
posts provide a simple way for developers to express expectations about atomicity.

To facilitate fencepost placement, Redflag determines which lines of code, if marked
as fenceposts, would filter the most atomicity violations. Any line of code that executes
in the same thread as a block between the first and last operations of the block (see
Section 2.3 for a description of blocks) can serve as a fencepost that filters all violations
involving that block. After the block-based analysis produces a list of atomicity viola-
tions with corresponding blocks, fencepost inference proceeds by greedily choosing the
fencepost that will filter the most violations, removing these violations from its list, and
repeating until no violations remain. The result is a list of potential fenceposts sorted by
the number of violations they filter. The user can examine these candidate fenceposts to
see whether they lie on the boundaries of logical atomic regions in the code.

3 Evaluation

To evaluate Redflag’s accuracy and performance, we exercised it on three kernel com-
ponents: Btrfs, Wrapfs, and Noveau. Btrfs is a complex in-development on-disk file
system. Wrapfs is a pass-through stackable file system that serves as a stackable file
system template. Because of the interdependencies between stackable file systems and
the underlying virtual file system (VFS), we instrumented all VFS data structures along
with Wrapfs’s data structures. We exercised Btrfs and Wrapfs with Racer [16], a work-
load designed to test a variety of file-system system calls concurrently. Nouveau is a
video driver for Nvidia video cards. We exercised Nouveau by playing a video and
running several instances of glxgears, a simple 3D OpenGL example.

Lockset results. Lockset revealed two confirmed locking bugs in Wrapfs. The first bug
results from an unprotected access to a field in the file struct, which is a VFS data
structure instrumented in our Wrapfs tests. A Lockset report shows that parallel calls
to the write syscall can access the pos field simultaneously. Investigating this race,
we found an article describing a bug resulting from it: parallel writes to a file may

74 J. Seyster et al.

Table 1. Summary of results of block-based algorithms. From left to right, the columns show: re-
ports caused by wrapfs setattr, reports caused by touch atime, reports caused by reads
with no effect, reports involving counting variables, reports caused by coarse-grained reporting
of struct accesses, and reports that do not fall into the preceding categories. Each column has
two sub-columns, with results for the single-variable and two-variable algorithms, respectively.
Empty cells represent zero.

useless struct untraced
setattr stat atime read counting granularity lock other

Btrfs 5 61 6 2 40
Wrapfs 34 6 14 43 2
Nouveau 1 21 2 1

write their data to the same location in a file, in violation of POSIX requirements [3].
Proposed fixes carry an undesirable performance cost, so this bug remains.

The second bug is in Wrapfs itself. The wrapfs setattr function copies a data
structure from the wrapped file system (the lower inode) to a Wrapfs data structure
(the upper inode) but does not lock either inode, resulting in several Lockset reports.
We discovered that file truncate operations call the wrapfs setattr function after
modifying the lower inode. If a truncate operation’s call to wrapfs setattr races with
another call to wrapfs setattr, the updates to the lower inode from the truncate can
sometimes be lost in the upper inode. We confirmed this bug with Wrapfs developers.

Lockset detected numerous benign races: 8 in Btrfs, and 45 in Wrapfs. In addition, it
detected benign races involving the stat syscall in Wrapfs, which copies file metadata
from an inode to a user process without locking the inode. The unprotected copy can
race with operations that update the inode, causing stat to return inconsistent (partially
updated) results. This behavior is well known to Linux developers, who consider it
preferable to the cost of locking [1], so we filter out the 29 reports involving stat.

Lockset produced some false positives due to untraced locks: 2 for Wrapfs, and 11
for Noveau. These false positives are due to variable accesses protected by locks exter-
nal to the traced structs. These reports can be eliminated by telling Redflag to trace
those locks.

Block-based algorithms results. Table 1 summarizes the results of the block-based algo-
rithms. We omitted four structs in Btrfs from the analysis, because they are modified
frequently and are not expected to update atomically for an entire syscall. The two-
variable block-based algorithm is compute- and memory-intensive, so we applied it to
only part of the Btrfs and Wrapfs logs.

For Wrapfs, the wrapfs setattr bug described above causes atomicity violations
as well as races; these are counted in the “setattr” column. The results for Wrapfs do
not count 86 reports for the file system that Wrapfs was stacked on top of (Btrfs in our
test). These reports were produced because we told Redflag to instrument all accesses
to targeted VFS structures, but they are not relevant to Wrapfs development.

For Wrapfs, the unprotected reads by stat described above cause two-variable
atomicity violations, which are counted in the “stat” column. These reads do not cause

Redflag: A Framework for Analysis of Kernel-Level Concurrency 75

Table 2. Number of false positives filtered out by various techniques

Fenceposts Bit-level granularity LOA Unfiltered
Btrfs 44 0 159 108
Wrapfs 81 6 215 79
Nouveau - 2 70 22

single-variable atomicity violations, because inconsistent results from stat involve
multiple inode fields, some read before an update by a concurrent operation on the
file, and some read afterwards.

For Noveau, the report in the “Untraced lock” column involves variables protected
by the Big Kernel Lock (BKL), which we track.

The “counting” column counts reports whose write accesses are increments or decre-
ments (e.g., accesses to reference count variables). Typically, these reports can be ig-
nored, because the order in which increments and decrements execute does not matter—
the result is the same. Our plug-ins mark counting operations in the log, so Redflag can
automatically classify reports of this type.

The “struct granularity” column counts reports involving structs whose fields are
grouped together by Redflag’s logging. Accesses to a struct that is not targeted get
logged when the non-targeted struct is a field of some struct that is targeted and the
access is made through the targeted struct. However, all the fields in the non-targeted
struct are labeled as accesses to the field in the targeted struct, so they are treated
as accesses to a single variable. This can cause false positives, in the same way that bit-
level operations can (cf. Section 2.5). These false positives can be eliminated by adding
the non-targeted struct to the list of targeted structs.

Filtering. Table 2 shows how many reports were filtered from the results of the single-
variable block-based algorithm (which produced the most reports) by manually chosen
fenceposts, bit-level granularity, and LOA analysis. The “unfiltered” column shows the
number of reports not filtered by any of these techniques. We used fewer than ten manu-
ally chosen fenceposts each for Btrfs and Wrapfs. Choosing these fenceposts took only
a few hours of work. We did not use fenceposts for our analysis of Nouveau because
we found that entire Nouveau syscalls are atomic.

LOA analysis is the most effective among these filters. Only a few structs in each
of the modules we tested go through a multi-stage escape, but those structs are widely
accessed. It is clear from the number of false positives removed that a technique like
LOA analysis is necessary to cope with the complicated initialization procedures in
systems code.

Some reports filtered by LOA analysis may be actual atomicity violations, as dis-
cussed in Section 2.4. This happened with a bug in Btrfs’ inode initialization that we
discovered during our experiments. The Btrfs file creation function initializes the new
inode’s file operations vector just after the inode is linked to a dentry. This linking is the
inode’s second stage of escape, as discussed Section 2.4. When the dentry link makes
the new inode globally available, there is a very narrow window during which another
thread can open the inode while the inode’s file operations vector is still empty. This

76 J. Seyster et al.

bug is detected by the single-variable block-based algorithm, but the report is filtered
out by LOA analysis. LOA analysis will determine that the empty operations vector is
available to the open syscall only if an open occurs during this window in the logged
execution, which is unlikely. Dynamic escape analysis correctly recognizes the possible
interleaving in any execution, but has other drawbacks, because it accounts for only one
level of escape. In particular, the bug can be fixed by moving the file operations vector
initialization earlier in the function: before the inode is linked to a dentry, but still after
the inode’s first escape. Dynamic escape analysis would still consider the interleaving
possible, resulting in a false positive.

We tested the fencepost inference algorithm in Section 2.5 on Btrfs. We limited it
to placing fenceposts in Btrfs functions (not, e.g., library functions called from Btrfs
functions). The algorithm produced a useful list of candidate fenceposts. For example,
the first fencepost on the list is just before the function that serializes an inode, which
is reasonable because operations that flush multiple inodes to disk are not generally
designed to provide an atomicity guarantee across all their inode operations.

Performance. To evaluate the performance of our instrumentation and logging, we mea-
sured overhead with a micro-benchmark that stresses the logging system by constantly
writing to a targeted file system. For this experiment, we stored the file system on a
RAM disk to ensure that I/O costs did not hide overhead. This experiment was run on
a computer with two 2.8GHz single-core Intel Xeon processors. The instrumentation
targeted Btrfs running as part of the 2.6.36-rc3 Linux kernel. We measured an overhead
of 2.44× for an instrumented kernel without logging, and 2.65× with logging turned
on. The additional overhead from logging includes storing event data, copying the call
stack, and reserving buffer space using atomic memory operations.

Schedule sensitivity of LOA. Although LOA is very effective at removing false pos-
itives, it is sensitive to the observed ordering of events, potentially resulting in false
negatives, as discussed in Section 2.4. We evaluated LOA’s sensitivity to event or-
derings by repeating a workload under different configurations: single-core, dual-core,
quad-core, and single-core with kernel preemption disabled. We then analyzed the logs
with the single-variable block-based algorithm. The analysis results were quite stable
across these different configurations, even though they generate different schedules.
The biggest difference is that the non-preemptible log misses 13 of the 201 violations
found in the quad-core log. There were only three violations unique to just one log.

4 Related Work

A number of techniques, both runtime and static, exist for tracking down difficult con-
currency errors. This section discusses tools from several categories: runtime race de-
tectors, static analyzers, model checkers, and runtime atomicity checkers.

Runtime race detection. Our Lockset algorithm is based on the Eraser algorithm [15].
Several other variants of Lockset exist, implemented for a variety of languages. LOA
analysis is the main distinguishing feature of our version. Some features of other race

Redflag: A Framework for Analysis of Kernel-Level Concurrency 77

detectors could be integrated into Redflag, for example, the use of sampling to reduce
overhead, at the cost of possibly missing some errors, as in LiteRace [11].

Microsoft Research’s DataCollider [5] is the only other runtime data race detector
that has been applied to an OS kernel, to the best of our knowledge. Specifically, it has
been applied to several modules in the Windows kernel and detected numerous races.
It detects actual data races when they occur, in contrast to Lockset-based algorithms
that analyze synchronization to detect possible races. At runtime, DataCollider pauses
a thread about to perform a memory access and then uses hardware watchpoints to inter-
cept conflicting accesses that occur within the pause interval. This approach produces
no false positives but may take longer to find races and may miss races that happen only
rarely. DataCollider uses sampling to reduce overhead.

Static analysis. Static analysis tools, typically based on the Lockset approach of finding
variables that lack a consistent locking discipline, have uncovered races even in some
large systems. For example, RacerX [4] and RELAY [17] found data races in the Linux
kernel. Static race detection tools generally produce many false positives, due to the
well-known difficulties of analyzing aliasing, function pointers, calling context, etc.

Static analysis of atomicity has been studied (e.g., [7,14]) but not applied to large
systems software. Generally, these analyses check whether the code follows certain
safe synchronization patterns.

Runtime atomicity checking. To the best of our knowledge, we are the first to apply a
runtime atomicity checker to components of an OS kernel. Although we used the block-
based algorithms, other runtime techniques for checking atomicity and similar proper-
ties could be adapted to work on Redflag’s logs. Atomicity checkers based on Lipton’s
reduction theorem [9,6,19] are computationally much cheaper than the block-based al-
gorithms, because they check a simpler condition that is sufficient but not necessary for
ensuring atomicity. As a result, however, they usually produce more false positives.

AVIO [10] and CTrigger [13] use heuristics to infer programmers’ expectations about
atomicity, and then check for violations thereof (i.e., atomicity violations). An impor-
tant difference from our work is that the block-based algorithm reports potential and
actual atomicity violations, while AVIO and CTrigger report only actual atomicity vi-
olations (i.e., atomicity violations that manifest in the monitored run). They actively
perturb the schedule to increase the likelihood that atomicity bugs will manifest during
testing. Also, they do not detect atomicity violations involving multiple variables. As
a result, they are computationally cheaper and produce fewer false positives, but they
are more schedule-sensitive and may miss bugs that the block-based algorithms would
report. Their implementations use binary instrumentation and are not integrated with
the compiler, so it would be difficult to target their analysis to specific data structures.

5 Conclusions

We have described the design of Redflag and shown that it can successfully detect data
races and atomicity violations in components of the Linux kernel. To the best of our
knowledge, Redflag is the first runtime race detector applied to the Linux kernel, and
the first runtime atomicity detector for any OS kernel.

78 J. Seyster et al.

Redflag’s runtime analyses are designed to detect potential concurrency problems
even if actual errors occur only in rare schedules not seen during testing. The analyses
are based on well-known algorithms but contain a number of extensions that signifi-
cantly improve accuracy, such as LOA analysis. Although the cost of thorough logging
can be high, we have shown that Redflag’s performance is sufficient to capture traces
that exercise many system calls and execution paths.

Future work. We plan to extend Redflag with dynamic escape analysis and active anal-
ysis (i.e., schedule perturbation) and experiment with the interaction between these
techniques and LOA analysis. We also plan to extend Redflag with an analysis that iden-
tifies where memory barriers are needed. Memory barriers, which are usually necessary
only in low-level systems code, prevent memory operation reorderings that would oth-
erwise be allowed by the weak (not sequentially consistent) memory models used in
modern compilers and processors. Another direction for future work is to apply Red-
flag for performance improvement of concurrent code. By examining locking and ac-
cess patterns in execution logs, Redflag could identify critical sections that can employ
double-checked locking and data structures that would benefit from RCU use. We plan
to release the entire Redflag framework and tools publicly under an open source license.

Acknowledgements. Research supported in part by NFS grants CNS-0509230 and
CNS-0831298, AFOSR grant FA0550-09-1-0481, and ONR grant N00014-07-1-0928.

References

1. Bacik, J.: Possible race in btrfs (2010),
http://article.gmane.org/gmane.comp.file-systems.btrfs/5243/

2. Callanan, S., Dean, D.J., Zadok, E.: Extending GCC with modular GIMPLE optimizations.
In: Proceedings of the 2007 GCC Developers’ Summit, Ottawa, Canada (July 2007)

3. Corbet, J. write(), thread safety, and POSIX, http://lwn.net/Articles/180387/
4. Engler, D., Ashcraft, K.: RacerX: effective, static detection of race conditions and deadlocks.

In: Proceedings of the 19th ACM Symposium on Operating Systems Principles, pp. 237–252.
ACM Press, New York (2003)

5. Erickson, J., Musuvathi, M., Burckhardt, S., Olynyk, K.: Effective data-race detection for
the kernel. In: 9th USENIX Symposium on Operating Systems Design and Implementation
(OSDI). USENIX Association, Berkeley (2010)

6. Flanagan, C., Freund, S.N.: Atomizer: A dynamic atomicity checker for multithreaded pro-
grams. In: POPL 2004: Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pp. 256–267. ACM, New York (2004)

7. Flanagan, C., Qadeer, S.: A type and effect system for atomicity. In: Proc. ACM SIGPLAN
Conference on Programming Language Design and IMPLEMENTATION (PLDI), pp. 338–
349. ACM Press, New York (2003)

8. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Communica-
tions of the ACM 21(7), 558–565 (1978)

9. Lipton, R.J.: Reduction: A method of proving properties of parallel programs. Commun.
ACM 18(12), 717–721 (1975)

10. Lu, S., Tucek, J., Qin, F., Zhou, Y.: AVIO: Detecting atomicity violations via access in-
terleaving invariants. In: ASPLOS-XII: Proceedings of the 12th International Conference
on Architectural Support for Programming Languages and Operating Systems, pp. 37–48.
ACM, New York (2006)

http://article.gmane.org/gmane.comp.file-systems.btrfs/5243/
http://lwn.net/Articles/180387/

Redflag: A Framework for Analysis of Kernel-Level Concurrency 79

11. Marino, D., Musuvathi, M., Narayanasamy, S.: LiteRace: Effective sampling for lightweight
data-race detection. In: PLDI 2009: Proceedings of the 2009 ACM SIGPLAN Conference on
Programming Language Design and Implementation, pp. 134–143. ACM, New York (2009)

12. McKenney, P.E.: What is RCU? (2005),
http://git.kernel.org/?p=linux/kernel/git/stable/
linux-2.6.33.y.git;a=blob;f=Documentation/RCU/whatisRCU.txt.

13. Park, S., Lu, S., Zhou, Y.: Ctrigger: exposing atomicity violation bugs from their hiding
places. In: Proc. 14th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pp. 25–36. ACM, New York (2009)

14. Sasturkar, A., Agarwal, R., Wang, L., Stoller, S.D.: Automated type-based analaysis of data
races and atomicity. In: Proceedings of the Tenth ACM/SIGPLAN Symposium on Principles
and Practice of Parallel Programming (June 2005)

15. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.: ERASER: A Dynamic
Data Race Detector for Multithreaded Programs. ACM Transactions on Computer Sys-
tems 15(4), 391–411 (1997)

16. Modak, S.: Linux Test Project, LTP (2009), http://ltp.sourceforge.net/
17. Voung, J.W., Jhala, R., Lerner, S.: RELAY: static race detection on millions of lines of code.

In: FSE 2007: Proceedings of the 6th ESEC/SIGSOFT International Symposium on Founda-
tions of Software Engineering, pp. 205–214. ACM, New York (2007)

18. Wang, L., Stoller, S.D.: Run-time analysis for atomicity. In: Proceedings of the Third Work-
shop on Runtime Verification (RV). Electronic Notes in Theoretical Computer Science,
vol. 89(2), Elsevier, Amsterdam (2003)

19. Wang, L., Stoller, S.D.: Runtime analysis of atomicity for multithreaded programs. IEEE
Trans. Softw. Eng. 32(2), 93–110 (2006)

http://git.kernel.org/?p=linux/kernel/git/stable/linux-2.6.33.y.git;a=blob;f=Documentation/RCU/whatisRCU.txt
http://git.kernel.org/?p=linux/kernel/git/stable/linux-2.6.33.y.git;a=blob;f=Documentation/RCU/whatisRCU.txt
http://ltp.sourceforge.net/

Y. Xiang et al. (Eds.): ICA3PP 2011, Part I, LNCS 7016, pp. 80–92, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Exploiting Parallelism in the H.264 Deblocking
Filter by Operation Reordering

Tsung-Hsi Weng, Yi-Ting Wang, and Chung-Ping Chung

Department of Computer Science, National Chiao-Tung University,
1001 University Road, Hsinchu, Taiwan, ROC

{chwong,yitwang,cpchung}@cs.nctu.edu.tw

Abstract. In the H.264 video compression standard, the deblocking filter
contributes about one-third of all computation in the decoder. With multi-
processor architectures becoming the future trend of system design,
computation time reduction can be achieved if the deblocking filter well
apportions its operations to multiple processing elements. In this paper, we
apply a 16 pixel long boundary, the basic unit for deblocking in the H.264
standard, as the basis for analyzing and exploiting possible parallelism in
deblocking filtering. Compared with existing approaches using a macroblock as
a basic unit for analysis, a 16 pixel long boundary by having a finer granularity
can improve the chances of increasing the degree of parallelism. Moreover, a
possible compromise to fully utilize limited hardware resources and hardware
architectural requirements for deblocking are also proposed in this paper.
Compared with the 2D wave-front method order for deblocking both
1920*1080 and 1080*1920 pixel sized frames, the proposed design gains
speedups of 1.57 and 2.15 times given an un-limited number of processing
elements respectively. Using this approach, the execution time of the
deblocking filter is proportional to the square root of the growth of the frame
size (keeping the same width/height ratio), pushing the boundary of practical
real-time deblocking of increasingly larger video sizes.

Keywords: deblocking, parallelization, multi-core.

1 Introduction

The H.264 standard provides acceptable image quality combined with a reduction in
bit-rate compared with existing video compression standards. Besides this, it can also
provide higher adaptability and better error resilience for a wider range of
applications. With regards to the compression rate, the bit rate of H.264 is almost 50%
lower than that of the MPEG-2, H.263v2 and MPEG-4 Advanced Simple Profile
video compression standards for the same picture quality [7].

Deblocking is intended to smooth block-edge artifacts caused by the decoding
process and enhance picture quality. In the encoding process, the H.264 encoder uses
the macroblock (MB, 16x16 pixel square) as the basic coding unit. Quantization of
the macroblocks causes visual discontinuities between the edges of decoded
macroblocks. Pixels located on macroblock boundaries with a similar value may for

 Exploiting Parallelism in the H.264 Deblocking Filter by Operation Reordering 81

the above reason be decoded with a larger difference in values, resulting in a decline
in picture quality. Therefore, the purpose of deblocking is to smooth block artifacts
caused by the decoding process to enhance picture quality. Another advantage of
deblocking is to increase coding efficiency. Decoded and deblocked images will be
referenced later, and because the picture is of higher quality, there will be a reduction
in the encoded bit rate.

Deblocking filtering accounts for one-third of all computation in the decoder [1].
With multi-core becoming the trend, if deblocking can be processed using a multi-
core parallel processing architecture, the processing can be distributed to different
computing processing elements (PEs) to address and reduce execution time. Currently
parallel processing of deblocking focuses on parallelization at the MB-level. We
found that parallelizing deblocking at a finer granularity can be developed according
to our presented design.

We analyze the deblocking order to obtain the dependency between the various
boundaries, and then propose an execution order, with execution of deblocking in this
order giving higher parallelism.

The rest of this paper is organized as follow. Section 2 introduces the background
of the deblocking filter and related work for deblocking filter parallelization. Section
3 shows our parallelized design. Section 4 analyzes the proposed method and
compares it with related works. Section 5 shows our proposed hardware architectural
requirements. Finally, the conclusion is given along with further work.

2 Background

2.1 H.264 Deblocking Filter

The deblocking filter is used in order to smooth block-edge artifacts. Figure 1 shows
the idea.

Fig. 1. (a) Affected pixels in deblocking (b) The pixel values before deblocking filtering; the
P0~P3 and Q0~Q3 pixel value gap causes a visual discontinuity. (c) After deblocking filtering;
the pixel values are now smooth.

Pixel
value

P0

Boundary

P1P2
P3

Q0
Q1 Q2

Q3

P0

P1
P2

P3

Q0
Q1

Q2

Q3

Pixel
value

Boundary

(a)

(b)

(c)

82 T.-H. Weng, Y.-T. Wang, and C.-P. Chung

Figure 1(b) shows a block-edge artifact caused by a large difference in luma
values. The pixels P0~P3 and Q0 ~Q3 in Fig. 1(b) can be located either vertically or
horizon-tally as shown in Fig. 1(a). A deblocking filter is applied on the P0~P3 and
Q0~Q3 pixel luma values to make these eight values visually smooth. The pixel luma
value distribution after applying the deblocking filter is shown in Fig. 1(c).

Deblocking is needed for both MB boundaries and 4*4 block boundaries. As the
MB is the basic coding unit in H.264, block-edge artifacts occur easily at MB
boundaries. In addition, there are some coding modes using 4*4 blocks for inter
prediction and intra prediction. For these cases deblocking is needed to smooth the
block-edge artifacts.

The MB deblocking internal (intra MB) execution order as defined by the H.264
standard is shown in Fig. 2(a). Execution starts by deblocking a column of pixels
moving horizontally left to right, and then a row of pixels moving vertically top to
bottom. The inter MB execution order is shown in Fig. 2(b), and moves from left to
right, top to bottom.

Fig. 2. (a) Intra MB order. (b) Inter MB order.

Although the H.264 standard defines the deblocking order as shown above, as long
as the final decoding results in the correct output, the above order can be changed.
Changing the order in which the calculation is performed is an opportunity for
parallelizing deblocking filtering. We propose a conceptual design to improve the
parallelizability of the deblocking filter.

2.2 Related Work

The 2D wave-front method is based on using the MB as a unit for parallelization [2].

Fig. 3. (a) Data dependencies in inter MB deblocking. (b) MBs that can be processed
simultaneously.

(a) (b)
1 2 3 4

6

7

8

5

16

16

Upper
MB

Upper
right
MB

Current
MB

Left
MB

16

1 2 3 4 5 6

3 4 5 6 7 8

5 6 7 8 9 10

7 8 9 10 11 12

16

(a) (b)

 Exploiting Parallelism in the H.264 Deblocking Filter by Operation Reordering 83

In Fig. 3(a), according to the deblocking order, we find the current MB has a data
dependency on the Upper, Upper-Right and Left MBs. So using an MB as the
parallelization unit, the Upper, Upper-Right and Left MB must be deblocked before
the Current MB. In Fig. 3(b), MBs that can be processed simultaneously are
numbered together.

According to observation, this method does not have a fixed degree of parallelism.
The degree of parallelism initially steadily increases. Some startup time is needed
before reaching maximum parallelism. After maintaining maximum parallelism for
some time, the degree of parallelism will begin to steadily decrease. In Fig. 4, the
units of time are in terms of the time to deblock one MB, and the frame size is
1920*1080.

Fig. 4. Time and parallelism relationship. The vertical axis is the number of MBs processed in
parallel, the horizontal axis is time. The time unit here is time required for deblocking a MB.

The 2D wave-front method’s maximum parallelism and required startup time and
ending time can be expressed by the equation: Maximum parallelism P Min 12 M , M

Startup time and Ending time 2 P 1

Where the MW is the number of columns of MBs in frame and MH is the number of
rows of MBs in frame.

The 3D wave-front method [3] is based on the 2D wave-front method, but also
uses inter frame parallelism, meaning more MBs can be processed in parallel. This
method can significantly enhance the parallelism. In Fig. 5 [4], the dark gray MBs can
be processed in parallel.

Fig. 5. The dark gray MBs can be processed in parallel [4]

MBs processed

MBs to be processed

MBs in flight

84 T.-H. Weng, Y.-T. Wang, and C.-P. Chung

3 Algorithm

Analyzing applications at a finer granularity usually opens extra opportunities for
parallelization. In H.264, the standard defines the order for deblocking using a 16
pixel long boundary as its basic unit. As a result, in this section we analyze the data
dependencies within the deblocking filter, and then propose our deblocking order and
design.

3.1 Analysis of Data Dependencies

We separate the data dependencies when using a 16 pixel long boundary for
deblocking into 3 cases:

Case 1: Intra MB 16 Pixel Long Boundary Data Dependencies. In Fig. 6(a), the
result after deblocking MBb1 (boundary b1) is input into the deblocking filter for
MBb2, with that result then becoming the input into the deblocking filter for MBb3 and
so on. Through this analysis the data dependency chain is MBb1 MBb2 MBb3

MBb4 and MBb5 MBb6 MBb7 MBb8. Moreover, the deblocking result of MBb4 is
input to MBb5, so the data dependency chain for intra MB deblocking is
MBb1 MBb2 MBb3 MBb4 MBb5 MBb6 MBb7 MBb8 as shown in Fig. 6(b).

Fig. 6. (a) Intra MB deblocking execution order, the gray blocks are data dependencies from
boundary 4 to boundary 5. (b) The data dependency chain for intra MB deblocking.

Case 2: Same Row Inter-MB 16 Pixel Long Boundary Data Dependencies. In Fig.
7, part of the deblocking result of Current MBb8 (the gray blocks) is the deblocking
input to Right MBb1, so Right MBb1 depends on Current MBb8. In other words, Right
MBb1 can begin execution after the Current MBb8 has completed execution. This
shows that using 16 pixel long boundaries, MBs within the same row cannot be
deblocked at the same time.

Fig. 7. The deblocking data dependency chain for MBs in the same row

b1 b2 b3 b4
b6

b7

b8

b5

(a) (b)

16 16

Current MB Right MB

 Exploiting Parallelism in the H.264 Deblocking Filter by Operation Reordering 85

Case 3: Adjacent Row Inter-MB 16 Pixel Long Boundary Data Dependencies. In
Fig. 8, the deblocking input of Current MBb5 needs 4 4x4 blocks from Upper MB
(gray blocks). According to Case 2, we find that the dark gray block is the last to be
modified. The dark gray block is modified by deblocking Upper-right MBb1 after
which it is able to become the deblocking input to Current MBb5. Therefore, Current
MBb5 depends on Upper-right MBb1, with the data dependency chain shown as a black
arrow in Fig. 8.

Fig. 8. The data dependency chain between adjacent rows of MBs

3.2 Proposed Deblocking Order

According to the above 3 cases, we propose a new execution order. This order fulfills
the required data dependencies whilst providing an extra degree of deblocking
parallelism. The time that deblocking is performed on each 16 pixel long boundary is
shown in Fig. 9(a). If the time of execution for deblocking Current MBb1 is t, by the
above Case 2 the execution time of Right MBb2 is t+9, by Case 3 the execution time
of Lower MBb5 is also t+9, and by Case 1 the execution time of Lower MBb1 is t+5.

If the time of execution of Current MBb1 is t, it shows in Fig. 9(b) the execution
time of Lower MBb1 is t+5 in our proposed order, and the execution time of Lower
MBb1 is t+16 in the 2D wave-front method.

Fig. 9. Comparison of (a) Proposed execution order, (b) 2D wave-front order

Current MB

Upper MB Upper-right
MBMB Rowx

MB Rowx+1

frame

Lower MB

Current MB Right MB

t+6 t+7 t+8
t+9

t+10

t+11

t+12

t+13

t+14

t+15

t+3t+2t+1 t+8 t+9 t+10t+11
t+12t+4

t+5

t+6

t+7

t+5

t

16

(b) 2D wave-front order

Current MB

Lower MB

t t+1 t+2 t+3
t+4

t+5

t+6

t+7

t+19t+18t+17

t+23

t+22

t+21

t+20
t+16

16

(a) Proposed order

86 T.-H. Weng, Y.-T. Wang, and C.-P. Chung

According to Case 2 mentioned above, when deblocking on 16 pixel long
boundaries within the same MB row, MBs cannot be deblocked at the same time. As a
result, we can assign one PE to each row of MBs. Due to the relationship between the
number of PEs and the aspect of the frame to be deblocked, there are two cases that
can occur:

Case I: Degree of Parallelism Depends on Frame Aspect. Assuming there are more
PEs than needed, the degree of parallelism will be limited only by the frame aspect.
While processing 16 pixels horizontally (the width of one MB) takes 8 stages,
processing 16 pixels vertically takes only 5 stages in the proposed order. As a result,
deblocking of the first row of MBs will finish before starting the last row of MBs, if
the number of rows of MBs is less than (8/5) × the number of columns of MBs in a
frame. We categorize the effects of frame aspect ratio into the following two
situations:

Situation 1. # rows of MBs in frame ≤ 8/5 * # columns of MBs in frame (Degree of
parallelism limited by # rows of MBs in frame). In this situation, the maximum
parallelism is equal to the number of rows of MBs in the frame. Our method has a
startup and ending time similar to the 2D wave-front method. A diagram is shown in
Fig. 10(a) to help explain. The upper-left gray region is the starting up of the
deblocking filter, and the lower-right gray region is the finishing of the deblocking
filter. In these regions, the deblocking filter is not able to reach maximum parallelism.
The white region is where the deblocking filter is able to reach maximum parallelism.
The degree of parallelism and timing relationship diagram is shown in Fig. 10(b).

Fig. 10. (a) Zones of startup and ending of deblocking order and (b) the corresponding degree
of parallelism and time relationship diagram. The time unit is the time required for deblocking a
16 pixel long boundary.

Situation 2. # rows of MBs in frame > 8/5 * # columns of MBs in frame (Degree of
parallelism limited by # rows of MBs in frame). In this situation shown in Fig. 11(a),
the degree of parallelism is equal to the number of rows of MBs that can start their
deblocking before the deblocking has completed for the first row of MBs. As
explained in the beginning of case I, if the ratio of the height to width is larger than
8/5, the degree of parallelism will be limited by the frame width. The degree of
parallelism and timing relationship diagram is shown in Fig. 11(b).

D
eg

re
e

of
 p

ar
al

le
lis

m

Time

MH

MH: # of rows of MBs in frame

startup ending

…

startup

ending

16

(a) (b)

 Exploiting Parallelism in the H.264 Deblocking Filter by Operation Reordering 87

Fig. 11. (a) The degree of parallelism is limited when the frame height is larger than 8/5 times
of the frame width. (b) The degree of parallelism and timing relationship diagram.

Case II: # of PEs Not Enough for Maximum Parallelism. In this case, the frame
has to be split into multiple pieces for deblocking. Here we first show a naive
approach, and then propose an improved one.

Naive Approach. In Fig. 12(a), assume the number of PEs is K, and then divide the
frame into pieces where each piece contains K rows of MBs. The execution order of
the pieces is from top to bottom. We find that each piece has a startup and ending
time, meaning PEs remaining idle often occurs. The degree of parallelism and timing
diagram is shown in Fig. 12(b).

Fig. 12. When # of PEs is not enough for maximum parallelism, (a) frame is split into multiple
pieces for deblocking, and (b) PEs idle often occurs

Improved Approach. In the naive approach, PEs are frequently idle between the
deblocking of pieces. But after analyzing the details, we find that the execution of the
ending of one piece and the startup of the next piece can be overlapped to fully utilize
the PEs. They are able to be overlapped because there are no direct data dependencies
between the ending of this piece and the startup of the next piece. Fig. 13 shows a
reduction in the idle time of PEs after this overlapping.

startup

MW

8
5

MW

8
5

MW

Degree of
parallelism
(row of MB)

ending time

Degree of parallelism

0

8
5

MW

MW: # of columns of MBs in frame

(a) (b)

…

startup

ending

startup

ending

K rows of MBs

K rows of MBs
time

Degree of parallelism

K

0

(a) (b)

88 T.-H. Weng, Y.-T. Wang, and C.-P. Chung

Fig. 13. The degree of parallelism and timing relationship after overlapping

4 Analysis

The proposed order has been shown in the previous section, so the focus of this
section is on determining the degree to which parallelism and execution time can be
improved from this design. In this section, we first model the parallelism and time of
deblocking a frame for both the proposed order and 2D wave-front method order.
Then the time required will be compared using both 1920*1080 and 1080*1920 pixel
sized frames as examples. After that, we construct figures to show the effects of the
number of PEs and the benefits from overlapping the deblocking of adjacent rows of
MBs. In the end, we explain that our design is also complementary to the 3D wave-
front method.

The proposed execution order’s maximum parallelism and required start-up time,
ending time and execution time can be expressed by the equations:

Maximum parallelism of a frame (PF)
= Maximum # of rows of MBs that can be deblocked in parallel

Maximum parallelism (P)
= Min (Maximum parallelism of a frame, # of available PEs)

P = , , #

Startup time
= Time to reach the row of maximum parallelism
= (delay between processing rows) (maximum parallelism - 1)

Ending time Time after inishing the last Pth row of MBs. , if enough PEsTime after inishing 1st row of MBs in last piece. , if limited PEs delay between processing rows Max. parallelism 1 , if #of PEs Pdelay between processing rows # rows in last piece 1 , if #of PEs P

time

Degree of parallelism

K

0

Time
reduction

PF = ,

Startup time = 5 P 1

 Exploiting Parallelism in the H.264 Deblocking Filter by Operation Reordering 89

Above time unit is the time required for deblocking a 16 pixel long boundary. In order
to compare the proposed method with the 2D wave-front method, we have to modify
the original equations using following rules. First, taking the number of PEs into
consideration; and second, adjusting the time unit. Deblocking one macroblock is
equivalent to deblocking eight 16 pixel long boundaries, so assuming the computation
power of all PEs are the same, we multiply the time by 8.

For the case of degree of parallelism depends on frame aspect, the proposed
method’s execution time, startup time, ending time and degree of parallelism is shown
in comparison with the 2D wave-front method for both (a) 1920*1080 and (b)
1080*1920 pixel sized frames in Fig. 14.

Fig. 14. Proposed method compared with the 2D wave-front method in degree of parallelism
and time for deblocking when frame size is (a) 1920*1080 and (b) 1080*1920. The time unit is
the time required for deblocking a 16 pixel long boundary.

Observing Fig. 14, we find the proposed method has a faster startup time and
ending time than the 2D wave-front method, which means a faster execution time.
The reason for the higher degree of parallelism than the 2D wave-front is the frame
aspect ratio. In the proposed method, while the first row of MBs is being processed,
the last row of MBs begins to be processed, so the theoretical maximum degree of
parallelism is achieved. For both 1920*1080 and 1080*1920 pixel sized frames, the
proposed design is 1.57 and 2.15 times faster than the 2D wave-front method given an
un-limited number of processing elements respectively.

To show the effects of the number of PEs and the benefits from overlapping the
deblocking of adjacent rows of MBs, two figures have been constructed. Figure 15(a)

0

10

20

30

40

50

60

70

80

0 500 1000 1500 2000 2500

D
eg

re
e

of
 p

ar
al

le
lis

m

Time

proposed design

2D wave-front

0

20

40

60

80

100

120

0 500 1000 1500 2000 2500

D
eg

re
e

of
 p

ar
al

le
lis

m

Time

proposed design

2D wave-front

(a) (b)

Ending time
5 P 1 , if #of PEs P or # rows in last piece P5 M mod P 1 , otherwise

5 M 1 8 M , if #of PEs P 8 M MP 5 P 1 , if #of PEs P # rows in last piece P8 M MP 5 M mod P 1 , if #of PEs P # rows in last piece P

Total Execution time

90 T.-H. Weng, Y.-T. Wang, and C.-P. Chung

shows the total execution time for the following 4 configurations for a 1920*1080
frame size, and Fig. 15(b) is similar but for a 1080*1920 frame size:

 2D wave-front method without deblocking overlapping,
 2D wave-front method with deblocking overlapping,
 Proposed method without deblocking overlapping,
 Proposed method with deblocking overlapping.

Fig. 15. Proposed method compared with the 2D wave-front method in time for deblocking and
number of PEs when frame sizes are (a) 1920*1080 and (b) 1080*1920

We find that for both the 2D wave-front method and proposed method, the greater
the number of PEs, the greater the benefit to the time to deblock a frame. However,
our proposed method gains more benefit than the 2D wave-front method which comes
from the shorter startup and ending time requirement, especially for the vertically
shaped frame. Figure 15(b) shows the evidence that while the speedup of the 2D
wave-front method stops at 34 PEs, the speedup of our proposed method keeps
improving until 109 PEs.

In Fig. 15, we find the total execution time curves have a step-like pattern. This
characteristic comes from the splitting of frames. When the number of PEs passes a
threshold in which the number of PEs can divide evenly into the total number of MB
rows, the total execution time is greatly reduced, thus forming the curves.

Moreover, we find that whilst overlapping benefits both designs, it is actually more
useful for the 2D wave-front method because it has a longer startup and ending time.

Last but not least, when considering if our design is complementary with the 3D
wave-front method as the 2D wave-front is, the answer is yes. Due to the deblocking
filter having no inter-frame data dependencies, our approach is definitely comple-
mentary with the 3D wave-front method.

5 Architectural Requirements

In order to deblock a video frame in the proposed order, some hardware support may be
necessary. In this section, we list some major hardware requirements such as dedicated

1000

10000

100000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67

Lo
g(

To
ta

l E
xe

cu
ti

o
n

 T
im

e)

of PEs

2D w/o overlapping
2D w/ overlapping
16 w/o overlapping
16 w/ overlapping

1000

10000

100000

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 10
3

10
9

11
5

Lo
g(

To
ta

l E
xe

cu
ti

o
n

 T
im

e)

of PEs

2D w/o overlapping

2D w/ overlapping

16 w/o overlapping

16 w/ overlapping

(a) (b)

 Exploiting Parallelism in the H.264 Deblocking Filter by Operation Reordering 91

buses between PEs, data loop-backs, and internal buffers. Any hardware that fulfills
these requirements should be capable of gaining the benefits from proposed order.

The following are the requirements for the hardware design:

1. As mentioned in case 1 and 2 of section III, 16 pixel long boundaries a row of
MBs are required to be deblocked in sequential order, so we can assign one PE
for each row of MBs. While deblocking a row of MBs, some intermediate pixel
values should be looped back to the PE itself or be kept in internal buffers for
further use later.

2. As mentioned in case 3 of section III, we know that the deblocking of every
MBb5 requires the pixel values that come from its Upper and Upper-right MB.
Since we assign a PE to the deblocking of a row of MBs, we need a dedicated
bus for data bypassing between PEs dealing with adjacent rows of MBs. This
bus can be unidirectional from the upper PE to its adjacent lower PE.

A schematic of the hardware architectural requirements is shown in Fig. 16. The Input
Buffer stores pixels that are not yet deblocked, the Output Buffer stores pixels that
have been deblocked, and the Internal Buffer stores pixels whose value is needed
later. Moreover, PEs will use a shared bus to access memory.

Fig. 16. Schematic of hardware architectural requirements

6 Conclusion and Future Work

As shown in our proposed order, examining the deblocking algorithm at a finer
granularity did bring additional opportunities for exploiting parallelism, and thus

Input
Buffer 1

Output
Buffer 1

PE 1 Internal Buffer 1

memory

Input
Buffer 2

Output
Buffer 2

PE 2 Internal Buffer 2

Input
Buffer n

Output
Buffer n

PE n Internal Buffer n

92 T.-H. Weng, Y.-T. Wang, and C.-P. Chung

speed up the execution time of the deblocking filter. Compared with the 2D wave-
front method order in deblocking both 1920*1080 and 1080*1920 pixel sized frames,
we gain a speedup of 1.57 and 2.15 times given an un-limited number of PEs
respectively. Besides this, we also provided hardware architectural requirements to
arrange our PEs in an efficient way to fulfill the requirements of the proposed order.
For an environment with limited hardware resources, we also provide an algorithm
able to fully utilize available resources for the deblocking filter.

Considering the trend of digital video codecs, larger frame sizes and reduced coded
video size are both essential. In order to achieve this goal, the deblocking filter plays
an important role because dealing with larger frames takes time proportional to the
frame size. The proposed design can limit the growth in time spent deblocking by the
maximum of the frame width and height, which are often proportional to the square
root of the frame size. Thus it brings the opportunity for practical real-time
deblocking of larger sized videos in the future.

Can finer granularity always bring more parallelism for the deblocking filter? This
may be true. We can still further analyze the deblocking algorithm using a 4 pixel
long boundary or one pixel long boundary to see if there are any opportunities using a
similar approach to that in this paper.

References

1. List, P., Joch, A., Lainema, J., Bjontegaard, G., Karczewicz, M.: Adaptive deblocking filter.
IEEE Transactions on Circuits and Systems for Video Technology 13(7), 614–619 (2003)

2. Van der Tol, E., Jasper, E., Gelderblom, R.H.: Mapping of H.264 Decoding on a
Multiprocessor Architecture. In: Proceeding of SPIE Conference on Image and Video
Communications 2003, pp. 707–709 (2003)

3. Meenderinck, C., Azevedo, A., Alvarez, M., Juurlink, B., Ramirez, A.: Parallel Scalability
of H.264. In: Proc. First Workshop on Programmability Issues for Multi-Core Computers
(January 2008)

4. Zhao, Z., Liang, P.: Data partition for wavefront parallelization of H.264 video encoder. In:
IEEE International Symposium on Circuits and Systems (2006)

5. Final Draft International Standard of Joint Video Specification (ITU-T Rec. H.264/ISO/IEC
14496-10 AVC) (March 2003)

6. Xu, K., Choy, C.-S.: A Five-Stage Pipeline, 204 Cycles/MB, Single-Port SRAM-Based
Deblocking Filter for H.264/AVC. IEEE Transactions on Circuits and Systems for Video
Technology 18(3), 363–374 (2008)

7. Chang, Y.-S.: Improvements of H.264 De-blocking filter and DST Implementation of H.264
Decoder. A Thesis Submitted to Institute of Electrical Engineering National Yunlin
University of Science & Technology in Partial Fulfillment of the Requirements for the
Degree of Master of Science in Electrical Engineering (July 2007)

Compiler Support for Concurrency

Synchronization

Tzong-Yen Lin, Cheng-Yu Lee, Chia-Jung Chen, and Rong-Guey Chang

Department of Computer Science, National Chung Cheng University
{lty93,lcyu95m,ccj98p,rgchang}@cs.ccu.edu.tw

Abstract. How to write a parallel program is a critical issue for Chip
multi-processors (CMPs). To overcome the communication and synchro-
nization obstacles of CMPs, transactional memory (TM) has been
proposed as an alternative for controlling concurrency mechanism. Un-
fortunately, TM has led to seven performance pathologies: DuelingUp-
grades, FutileStall, StarvingWriter, StarvingElder, SerializedCommit,
RestartConvoy, and FriendlyFire. Such pathologies degrade performance
during the interaction between workload and system. Although this per-
formance issue can be solved by hardware, the software solution remains
elusive. This paper proposes a priority scheduling algorithm to remedy
these performance pathologies. By contrast, the proposed approach can
not only solve this issue, but also achieve higher performance than hard-
ware transactional memory (HTM) systems on some benchmarks.

1 Introduction

Using lock synchronization to write a parallel program on chip multi-processors
(CMPs) is difficult and error-prone. Thus TM has been proposed as an alter-
native way to control concurrency mechanism [11]. For lock-based synchroniza-
tion, programmers must lock and unlock the shared data carefully in a parallel
program to avoid significant performance degradation, deadlock, and livelock.
Conversely, TM prevents deadlock and livelock entirely by employing priority
mechanism. High priority transactions can abort the conflicting transactions
with lower priority, and the mechanism can also prevent priority inversion.

There are three major manageable mechanisms in TM: version management
(VM), conflict detection (CD), and conflict resolution (CR). In HTM, there are
read-sets and write-sets to control the concurrency mechanism. The selection of
storing the new data in memory or a log is managed using a VM mechanism.
Determining whether the data version in the read-sets and write-sets is conflict
or not is called CD. When conflict occurs, we must achieve a CR to abort one
of the transactions and allow the program proceed to execute.

Based on VM, CD, and CR, we can specify these design points as LL (Lazy
CD/Lazy VM/Committer Wins) systems, EL (Eager CD/Lazy VM/Requester
Wins) systems, and EE (Eager CD / Eager VM / Requester Stalls) systems.
Specifically, there is currently no Lazy CD/Eager VM system on hardware trans-
actional memory.

Y. Xiang et al. (Eds.): ICA3PP 2011, Part I, LNCS 7016, pp. 93–105, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

94 T.-Y. Lin et al.

Jayaram Bobba et al. [4] reported that TM spends more time on useless
execution behaviors including abort, commit, stall, and backoff. They also in-
dicated the performance pathologies that harm performance of TM programs
and presented a hardware solution to solve these pathologies. Most previous
research has accelerated programs using hardware to improve TM program per-
formance, and only few software transactional memory (STM) approached was
presented. Scherer and Scott [12] indicated that conflict resolution is the criti-
cal goal in STMs to avoid many pathologies to degrade performance. Although
HTM achieves high performance, modifying hardware architecture is costly. In
this paper, we endeavor to propose another way to accelerate TM programs via
parsing transactions in advance using software, and apply a priority scheduling
scheme to resolve conflict for TM. Using software costs less than using hardware
and our approach can achieve the same, even higher performance by comparing
our work with the work presented in [4].

Section2 is the related research. We describe the performance pathologies
of HTM and a brief introduction of hardware solution [4] in Section3. Section
4 presents the proposed priority scheduling approach. Finally, we describe the
implementation details and show the result.

2 Related Work

HTM systems may have to modify processors, cache and bus protocol, to control
transactions such as LogTM variants [15,18], LTM [2], TCC [8], and Bulk [6].
The Log-based TM is based on EE systems and uses MOESI directory protocol.
It is fast for commit and can detect conflicts quickly. However, when transac-
tions abort, they must roll back the old values. Furthermore, the LL system is
similar to both the work presented in Bulk[6] and TM coherence and consis-
tency (TCC)[8]. TM coherence and consistency (TCC) stores the new values in
the processor’s L1 cache. If transactions commit, TCC overwrites the L2 cache
and memory. When transactions commit, TCC detects any conflicts. The EL
system’s sample is LTM [2], which allows the old value to remain in the main
memory and stores the new value in the cache. LTM detects conflict for each
memory reference. STM provides transactional memory semantics in a runtime
library or the programming language [5], and requires some hardware support
such as an atomic compare and swap operation.

Some research has examined TM with priority. First, Justin and Daniel [9]
extended a TM contention manager for user-defined priority-based transactions.
Their system focused on real systems or some strict systems that require more
restrictions. Our method does not restrict systems based on type. In addition,
Karma [12,13] has tracked the cumulative number of blocks opened by a trans-
action as its priority. When a transaction commits, it resets the priority values
to zero. When the transaction opens the block, it increases their priority val-
ues. The contention manager compares the transactions’ priority and aborts
the smaller one when transactions conflict. When transaction retries, it will in-
crease the transaction’s priority value. The most noteworthy difference with this

Compiler Support for Concurrency Synchronization 95

manager and our approach is that their manager does not analyze the trans-
actions in advance. We analyze the transactions to obtain more information to
modify the priority values.

3 Background

The seven performance pathologies simplify the interaction of TM system design
and program transactions, leading to interesting patterns of execution that can
affect performance. Pathologies degrade performance by preventing a transaction
from making progress or by performing useless work that is discarded when a
transaction aborts. They are described as follows.

DuelingUpgrades: When two concurrent transactions read and later attempt
to modify the same cache block, this pathology arises. Because both transactions
add the block to their read-sets, the conflict is detected when they write the same
data, causing one of the transactions to abort. This behavior is pathologic only
for EE systems because of their slower aborts.

FutileStall: Eager conflict detection may cause a transaction that ultimately
aborted to stall for another transaction. In this case, the stall is not needed, be-
cause it did not resolve a conflict with a transaction that performed useful work.
Eager version management exacerbates this pathology because the HTM system
must restores the old values to maintain isolation on its write-set. Thus, a trans-
action could stall on another transaction that ultimately aborts and continues to
stall while the system restores the old values from the log. StarvingWriter: This
pathology occurs when a transactional writer conflicts with a set of concurrent
transactional readers. The writer stalls waiting for the readers to finish their
transactions and release isolation. The writer may starve if new readers arrive
before existing readers commit [7]. The writer is blocked by a series of com-
mitting readers. In a more favorable case, the readers make progress and only
the writer starves. In the least favorable case, none of the transactions make
progress, because the readers encounter a cyclic dependence with the writer
after reading the block, abort (releasing isolation), but then retry before the
writer acquires access. StarvingElder: A lazy conflict detection system and a
”committer-wins” policy may cause the pathology. That is because the system
allows small transactions to starve longer transactions [10]. Small transactions
naturally reach their commit phase faster and the committer-wins policy allows
repeated small transactions to always abort the longer transaction. The resulting
load imbalance may have broad performance repercussions. SerializedCommit:
Lazy conflict detection HTM systems serialize transactions during commit to
ensure a global serial order. Thus, committing transactions may stall while wait-
ing for other transactions to commit. The case is generated in a program with
many small transactions. RestartConvoy: This pathology happens in HTM sys-
tems with a lazy conflict detection. When one committing transaction conflicts
with (and aborts) multiple instances of the same static transaction, the aborted
transactions restart simultaneously, compete for system resources, and, due to
their similarity, finish together. The crowd of transactions competes to commit,

96 T.-Y. Lin et al.

and the winner aborts the others. Convoys can persist indefinitely if a thread
that commits a transaction rejoins the competition before all other transactions
have had a chance to commit [3]. FriendlyFire: This pathology arises when one
transaction conflicts with and aborts another, which then subsequently aborts
before committing any useful work. In the least favorable case, this pathology
repeats indefinitely with concurrent transactions continually aborting each other,
resulting in livelock.

4 The Proposed Priority Scheduling Algorithm

In this section, we present our priority scheduling algorithm to resolve the seven
performance pathologies and show how to set the priority.

4.1 Algorithm

The symbols used in the algorithm are defined as follows. For a transaction T ,

TRi is the ith transaction,
P (T) is the priority of thread T ,
PS(T) is the static priority of thread T ,
PD(T) is the dynamic priority of thread T ,
C(T) is the total clock cycles to execute thread T ,
TC is the total clock cycles of the whole program,
S(T) is different store address counts of thread T ,
LS(T) is the number of all loads and stores address counts of thread T ,
CE(T) is the current execution time (cycles) of thread T ,
NR(T) is the number of RETRY times of thread T ,
BO(T)1 : backoff time (cycles) of thread T , and
BObase(T) is the original backoff time (cycles) of thread T .

Figure 1 presents our priority scheduling algorithm. First, we must obtain the
static priority of each thread, which is owned by each transaction. The static
priority consists of the execution time of each transaction and the different store
addresses of each transaction. If we know the execution steps of transactions,
including its memory reference and execution time in advance, we can use the
information to set the priority. The information is defined before execution and
does not change upon run time; therefore, we call them “static priority”. Next,
we set the “dynamic priority” which is changed by the current execution time
and the number of retries at run time. Dynamic priority records the cycles of
each transaction that has been executed. If a transaction has been executed for
a while, it should not be aborted by the other one. Thus, the larger transaction
does not waste the retry time. However, if a small transaction is always aborted
by larger transactions, we should consider this case. Therefore, the number of
retry times is of considerable concern to this study. Furthermore, the priority
values influence the backoff time. If a transaction has higher priority, it has a
smaller backoff time (that is, the transaction restarts faster). In our algorithm,

Compiler Support for Concurrency Synchronization 97

the additional step involves the transaction needing to compete with priorities.
The transaction having the highest priority can abort others and is not inter-
rupted by other transactions. When a transaction is aborted, we need to update
the ‘dynamic priority” and backoff time.

Let i = 1
For TRi in all transactions

Assign PS(Ti) to Ti

Begin
Let j = 1
For Tj in all transactions

Assign PD(Tj) to Tj based on according CE(Tj) and NR(Tj)
if(”Data Conflict” appears between Ti and Tj

if (P (Ti) > P (Tj))
Aborting Tj

Update PD(Tj) and BO(Tj)
else
Aborting Ti

Update PD(Ti) and BO(Ti)
End

Fig. 1. The proposed priority scheduling algorithm

4.2 Priority Assignment

This section present the priority setting in details. Initially, each transaction
is assigned a priority value. The priority values vary despite different proces-
sors executing the same transaction, due to the priority value being composed
of static priority and dynamic priority. Even transactions executed by different
processors have the same static priority; the dynamic priority is determined by
the current execution time and number of retry times. Thus, this approach can
prevent the transaction executed by different processors that cannot compete
with each other. Our purpose of priority is to change traditional TM conflict
resolution. The traditional TM conflict resolutions are inflexible and do not con-
sider all aspects. Therefore, this paper contributes a method that can consider
all aspects and improve the original TM conflict resolution. Most importantly,
PS mitigates the performance pathologies as well as improves TM program per-
formance. The following is the priority scheme.

P (T) = PS(T) + PD(T)
PS(T) = C(T)/TC × α + S(T)/LS(T)× β
PD(T) = CE(T)/TC × γ + NR(T)× δ
BO(T) = (1/P (T))×BObase

Notice that α, β, γ, δ are the initial weights. The static priority is defined accord-
ing to the previous execution tracks of threads. We monitor the execution time
of each transaction and store different address counts to determine the static

98 T.-Y. Lin et al.

priority. To determine whether the transaction is large or not, we record the
execution time of each transaction. If the transaction often modifies the values
of memory, we assume it spends more time. In this case, we assign it a higher
priority. Notably, static priority must be defined before invoking our priority
scheduler. We exemplify how to calculate the static priority as follows.

Example:
Cycles Instruction

100 begin transaction(id)
101 LOAD A
102 STORE B
103 STORE A
104 STORE B
105 STORE C
106 LOAD B
107 commit transaction(id)

TC is 107-100 = 7
The transaction store A,B,C, so Istw is 3
Based on the priority scheme,
PS(T) = C(T)/TC × α + S(T)/LS(T)× β
= 7/TC × α + 3/LS(T) × β

4.3 PS on TM Pathologies

In this section, we exemplify the seven pathologies with our priority scheduling
algorithm and we identify the priority relationships among transactions.

load A

store A

load A

store A

T1 T2

P(T1) < P(T2)

Fig. 2. PS : DUELINGUPGRADES

Figure 2 illustrates DuelingUpgrades as solved by our approach. We assume
P (T 2) > P (T 1), because T2’s execution time is longer than that of T1’s, while
the original conflict resolution stalls the requester and aborts the requester on
possible deadlock. Here, we stall the requester but abort the transaction having
the smaller priority. T1 makes a request to store A the first time; hence, T1 is
stalled by T2. After that, T2 requests to store A. If we also stall the requester,
it causes a deadlock. Therefore, we must abort one of the transactions. Based
on priority values, we abort the smaller one of the two. A hardware solution
EEP can decrease the pathology ratio. The EEP system uses a small write-set
predictor to predict the deadlock [15]. We hope our algorithm can combine with
EEP to achieve the most favorable result having the smallest pathology ratio.

Compiler Support for Concurrency Synchronization 99

load A
store A

T1 T2

P(T1) < P(T2)

(a)

load A
store A

load A

load A

load A

load A

load A

T1 T2 T3 T4

P(T1) > P(T2) > P(T3) > P(T4)

(b)

Fig. 3. The proposed priority scheduling for (a) FUTILESTALL and (b) STARVING-
WRITER

FutileStall: EE system stalls the requester and aborts the requester on pos-
sible deadlock. Figure 3(a) illustrates FutileStall as solved by our algorithm.
FutileStall is similar to DuelingUpgrades, but the situation in T2 is aborted by
transactions other than T1. We also assume P (T 2) > P (T 1). The original T2 is
aborted by the other transaction; but in our assumption, T2 has a higher priority
and can continue executing without wasting the execution time. Hardware does
not target this pathology, but we can resolve this pathology in this example. We
have an advantageous position regarding this pathology.

StarvingWriter: This is also on the EE system; therefore, it has the same
conflict resolution as DuelingUpgrades and FutileStall. This case occurs when
readers stall writer successively and writer may be starvation. The hardware
solution EEHP extends EEP in an attempt to also reduce STARVINGWRITER,
by allowing an older writer to simultaneously abort a number of younger readers.
Our approach is similar to EEHP by giving the writer higher priority than
readers; hence, the writer does not starve and does not waste the stall time.
Figure 3(b) illustrates StarvingWriter as solved by PS. This is the reason that
we consider the store address times to set a priority value.

StarvingElder: This problem is on the LL system. If the small transactions ap-
pear many times as well as the conflict resolution is committer wins, it prevents
the larger transaction from having a chance to commit. The larger transaction
may be a starvation. Figure 4(a) illustrates StarvingElder as solved by the pro-
posed priority scheduling. Our approach gives P (T 2) = P (T 3) > P (T 1) at the
initial time. To avoid low-priority transaction starves, we also consider the num-
ber of retry times. When T1 restarts the transaction, our approach raises the
dynamic priority immediately. In our dynamic priority, T1 retries more times,
and obtains a higher priority. In Figure 4(a), T1 may retry three times and owns
the highest priority, causing P (T 1) > P (T 2) = P (T 3). When T1 can abort other
transactions, it does not starve because we account for retry times in dynamic
priority. The hardware solution LLB addresses RestartConvoy and also can mit-
igate StarvingElder and SerializedCommit. Like LL system, LLB is based on the
committer-wins policy. However, restarting transactions use randomized linear
backoff to delay the restart of an aborted transaction. By staggering the restart

100 T.-Y. Lin et al.

store A

load A

load A

load A

store A

store A

T1 T2 T3

P(T1) < P(T2) = P(T3)

P(T1) > P(T2)

(a)

load Astore A

load A

load A

load A

load A load A

load A

store A

load A

T1 T2 T3 T4

P(T4) > P(T1) > P(T3) > P(T2)

(b)

store A

load A

load A

load A

store A

load A

store A

T1 T2 T3

P(T2) > P(T3) > P(T1)

load A

(c)

Fig. 4. The proposed priority scheduling for (a) STARVINGELDER, (b) RESTART-
CONVOY and (c) FRIENDLYFIRE

of each transaction in the group of transactions aborted by a given commit, LLB

mitigates convoy formation. But in our speculation, we think that randomized
linear backoff can not ensure the same case will not happen again. We assign
the backoff time based on priority value. If the priority value is large, it means
that the transaction should have a higher priority to execute. Thus, we give the
high-priority transaction smaller backoff time. In Figure 4(a) is different in the
backoff time every time the transaction restarts.

SerializedCommit: This problem arises from the hardware restriction with
only one write buffer. Hhardware solution uses backoff time to stagger the trans-
actions. We also use backoff to stagger the transactions’ commit time based on
priority. The high-priority transaction should execute first, we seek to improve
the hardware solution to achieve higher performance. However, we do not illus-
trate with this pathology because there is no fixed solution of execution sequence
in the previous example. We can only ensure that using backoff time does not
allow transactions to commit simultaneously.

RestartConvoy: Figure 4(b) illustrates RestartConvoy as solved by PS. This
problem affects resource contention and serialized execution. If transactions
restart simultaneously, it causes many transactions to restart simultaneously.
This result lets these transactions cause the same problem again. The solution
involves setting the backoff time to stagger the restart time. The hardware solu-
tion LLB also involves setting the backoff time. The difference between hardware
and our approach is that we use priority value to decide the backoff time. If the
transaction has a higher priority, we assign it a shorter backoff time and let it
restart immediately. Higher priority transactions mean they must finish earlier
than others; therefore, we use priority value to decide backoff time. The higher
priority transactions can commit earlier. Conversely the hardware solution can-
not ensure that the same case will not happen again.

FriendlyFire: The EL system detects conflicts on each memory reference and
writes the new value to the writer buffer. FriendlyFire causes livelock on TM
programs. The hardware solution ELT behaves the same as EL, but instead
of always aborting in favor of the requester, transaction conflicts are resolved

Compiler Support for Concurrency Synchronization 101

according to the logical age of the transaction, as has been done before for
implicit transactions [16] and eager alternative [6]. Our approach is similar to
ELT system, as shown in Figure 4(c). Our approach can solve the problem in
advance because the higher-priority transaction such as T2 can abort others no
matter if T2 commits or not. In this figure, it is not important that setting which
one of transactions be the highest transaction, and it will avoid livelock.

5 Experimental Results

5.1 Setup

We simulate a full-system infrastructure using Simics [1] and a customized mem-
ory model built with the Wisconsin GEMS toolset [14]. The HTM interface is
implemented using “magic” instructions: special no-ops that are caught by Sim-
ics and passed onto the memory model. The software components of the TM
systems are implemented using hand-coded assembly routines and C functions.

We model a 32-core CMP system, which is an in-order, single-issue cores. Each
core has 32KB private writeback L1 I and D caches. All cores share a multi-
banked 8 MB L2 cache consisting of 32 banks interleaved by a block address.
On-chip cache coherence is maintained via an on-chip directory, which maintains
a bit vector of shares and implements the MESI protocol.

Figure 5 is the flow, which is divided into three parts. The first is the original
TM execution. According to the traditional program execution process, we input
the codes and compile them. After compiling, we attain the executable file and ex-
ecute it. Because we run TM programs,we can obtain the information of the trans-
actions. Based on the information, we profile the transactions’ execution states.

C Codes Compile
Executable

File

Parser
Parse the

transactions

C Codes

Compile

(Modified

Compiler)

Static

Priority

New

Executable

File

Transaction

data
Execute

Original Execution

Parser

PS execution

Fig. 5. Experimental Flow

Table 1. Workloads Parameters

BENCHMARK Input Work Units

Cholesky tk14.O Factorization 1
Btree Uniform random BTree operation 100000
Deque Uniform random Deque operation 100000

102 T.-Y. Lin et al.

Table 2. Pathologies on EE system: Base VS HW VS PS(% Execution Time)

Base HW PS
DU FS SW DU FS SW DU FS SW

deque 5.1 0.2 3.0 < 0.1 < 0.1 < 0.1 0.3 0.3 0.5
cholesky 0.9 < 0.1 0.4 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 0.2
btree 1.1 < 0.1 0.8 0.9 12.1 0.3 0.2 0.2 0.2
barnes 0.2 < 0.1 0.6 < 0.1 < 0.1 < 0.1 < 0.1 0.2 0.4
radiosity 1.1 < 0.1 0.5 < 0.1 < 0.1 < 0.1 0.1 < 0.1 0.2

Table 3. Pathologies on EL system: Base VS HW VS PS(% Execution Time)

Base HW PS
FF FF FF

deque 3.2 < 0.1 < 0.1
cholesky < 0.1 < 0.1 NA
btree 0.8 < 0.1 1.1
barnes < 0.1 < 0.1 < 0.1
radiosity < 0.1 < 0.1 < 0.1

Here, we know each transaction’s execution cycles as they store different address
times. Further using these information and weights do multiplication can get the
“static priority”. Finally, we use the modified compiler to combine the static pri-
ority into the source codes. Therefore, the new executable file contains the static
priority. We run the new executable file and integrate the priority scheduling in the
simulator. Following the above steps, we can compare the performance pathologies
ratio in Section 5.2. In the next section, we describe the workload implementation,
which is analyzed and regarded as our standard in this paper.

We select the SPLASH [17] suite benchmark and two microbenchmarks.
Stanford Parallel Applications for Shared Memory (SPLASH) is a suite of mul-
tiprocessor applications. For Barnes, Cholesky, and Radiosity, these scientific
programs were taken from the SPLASH benchmark suite and were selected be-
cause they demonstrate significant critical section based synchronization. We
replace the critical sections with transactions while retaining barriers and other
synchronization mechanisms. To reduce simulation times, we do not measure the
entire parallel segment of the program. Instead, we take representative sections
of the program and measure performance in terms of well-defined units of work.
For Btree and Deque, these microbenchmarks present different data structures.
Btree performs a lookup (with 80% probability) or an insert (20%). Deque is
a benchmark such that each transaction first enqueues (dequeues) a value on
the left (or right) of a global deque. It then performs a local job and finally
increments the global counter.

5.2 Results

In this section, we present the results of pathologies ratio and the performance for
the workloads introduced previously. Tables 2, 3,4, and 5 show the comparison

Compiler Support for Concurrency Synchronization 103

Table 4. Pathologies on LL system: Base VS HW VS PS(% Execution Time)

Base HW PS
SE SC RC SE SC RC SE SC RC

deque < 0.1 < 0.1 < 0.1 0.1 0.6 < 0.1 0.2 < 0.1 < 0.1
cholesky < 0.1 < 0.1 0.6 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
btree 0.2 2.3 < 0.1 0.2 2.1 < 0.1 < 0.1 < 0.1 < 0.1
barnes < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
radiosity < 0.1 < 0.1 < 0.1 NA NA NA < 0.1 < 0.1 < 0.1

Table 5. Pathologies : PS and write-set predictor (% Execution Time)

PS + Write-set Predictor
DU FS SW

deque < 0.1 < 0.1 < 0.1
btree 0.7 9.1 < 0.1
cholesky < 0.1 < 0.1 < 0.1

among the base result and three types of methods. ”BASE” represents the orig-
inal TM process, HW is the hardware solution, and PS is our proposed priority
scheduling. Here, we also use PS with a write-set predictor present in Mix. We list
seven pathologies: DuelingUpgrades(DU), FutileStall(FS), StarvingWriter(SW),
StarvingElder(SE), SerializedCommit(SC), RestartConvoy(RC), and Friendly-
Fire(FF), as well as the percent of total cycles for each workload in these tables.

We discovered that the hardware solution can eliminate these pathologies.
While we compared the base results and PS results, PS mitigates most of these
pathologies. FutileStall arises in Btree because there are numerous reads in this
benchmark. Although the pathology ratio arises, the speedup for Btree with
PS is 1.5. Therefore, we can improve the entire performance. Occasionally, PS
cannot achieve the highest performance, but if we use PS with write-set predictor
in Table 5, it achieves the highest performance. The write-set predictor can
decrease the percentage of wrong cases.

6 Conclusion

To improve transactional memory performance, we cite the seven performance
pathologies of Jayaram Bobba et al.’s [4], as well as their hardware solution.
Scherer and Scott [12] indicated that, in STMs, conflict resolution is critical in
avoiding numerous pathologies. In this paper, we add a new conflict resolution to
resolve conflict. We use software to assist TM to achieve a high performance base
on HTM systems. Our approach uses a profiling mechanism with the previous
hardware solutions’ idea, to propose a priority scheduling algorithm. We use
static priority via profiling and dynamic priority to adjust the mechanism to
remedy these pathologies. Using software to achieve some effects that HTM can
not accomplish is our major goal. Our contribution is to propose another way to

104 T.-Y. Lin et al.

accelerate TM program via parsing transactions in advance, using software to
add a priority scheduling scheme to HTM. We also explain how research [4] has
used HTM to mitigate these pathologies, while comparing our method with HTM
solutions. Although hardware solutions achieve high performance, modifying the
hardware architecture is costly. Using software costs less than using hardware
and can achieve higher performance. In the experimental results, we found that
our proposed solution, priority scheduling (PS), can mitigate these pathologies
and improve the entire performance.

References

1. Magnusson, P.S., et al.: Simics: A full system simulation platform. IEEE Computer,
50–58 (February 2002)

2. Ananian, C.S., Asanovic, K., Kuszmaul, B.C., Leiserson, C.E., Lie, S.: Unbounded
transactional memory. In: Proceedings of the 11th International Symposium on
High-Performance Computer Architecture, pp. 316–327 (January 2005)

3. Blasgen, M., Gray, J., Mitoma, M., Price, T.: The convoy phenomenon. SIGOPS
Oper. Syst. Rev. 20–25 (1979)

4. Bobba, J., Moore, K.E., Volos, H., Yen, L., Hill, M.D., Swiftand, M.M., Wood,
D.A.: Performance pathologies in hardware transactional memory. In: Proceedings
of the 34th Annual International Symposium on Computer Architecture, pp. 387–
394 (June 2007)

5. Carlstrom, B.D., McDonald, A., Chafi, H., Chung, J., Minh, C.C., Kozyrakis, C.,
Olukotun, K.: The atomoσ transactional programming language. In: Proceedings
of the 2006 ACM SIGPLAN Conference on Programming Language Design and
Implementation (June 2006)

6. Ceze, L., Tuck, J., Cascaval, C., Torrellas, J.: Bulk disambiguation of specula-
tive threads in multiprocessors. In: Proceedings of the 33rd Annual International
Symposium on Computer Architecture (June 2006)

7. Courtois, P.J., Heymans, F., Parnas, D.L.: Concurrent control with readers and
writers. Communications of the ACM, 667–668 (1971)

8. Damron, P., Fedorova, A., Lev, Y., Luchango, V., Moir, M., Nussbaum, D.: Hybrid
transactional memory. In: Proceedings of the 12th International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems (October
2006)

9. Gottschlich, J., Connors, D.A.: Extending contention managers for user-defined
priority-based transactions. In: Proceedings of the 2008 Workshop on Exploiting
Parallelism with Transactional Memory and other Hardware Assisted Methods
(April 2008)

10. Hammond, L., Wong, V., Chen, M., Carlstrom, B.D., Davis, J.D., Hertzberg, B.,
Prabhu, M.K., Wijaya, H., Kozyrakis, C., Olukotun, K.: Transactional memory
coherence and consistencys. In: Proceedings of the 31st Annual International Sym-
posium on Computer Architecture (June 2004)

11. Herlihy, M., Moss, J.E.B.: Transactional memory: Architectural support for lock-
free data structures. In: Proceedings of the 20th Annual International Symposium
on Computer Architecture, pp. 289–300 (May 1993)

12. Scherer III, W.N., Scott, M.L.: Advanced contention management for dynamic soft-
ware transactional memory. In: 24th ACM Symposium on Principles of Distributed
Computing (July 2005)

Compiler Support for Concurrency Synchronization 105

13. Scherer III, W.N., Scott, M.L.: Randomization in stm contention management. In:
Proceedings of the 24th ACM Symposium on Principles of Distributed Computing
(July 2005)

14. Martin, M.M., Sorin, D.J., Beckmann, B.M., Marty, M.R., Min Xu, A.R.A., Moore,
K.E., Hill, M.D., Wood, D.A.: Multifacet’s general execution-driven multiprocessor
simulator toolset. In: Computer Architecture News, pp. 92–99 (September 2005)

15. Moore, K.E., Bobba, J., Moravan, M.J., Hill, M.D., Wood, D.A.: Log-based
transactional memory. In: Proceedings of the 12th IEEE Symposium on High-
Performance Computer Architecture, pp. 258–269 (February 2006)

16. Rajwar, R., Goodman, J.R.: Transactional lock-free execution of lock-based pro-
grams. In: Proceedings of the 10th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (October 2002)

17. Woo, S.C., Ohara, M., Torrie, E., Singh, J.P., Gupta, A.: The splash-2 programs:
Characterization and methodological considerations. In: Proceedings of the 22nd
Annual International Symposium on Computer Architecture, pp. 24–37 (June
1995)

18. Yen, L., Bobba, J., Marty, M.R., Moore, K.E., Volos, H., Hill, M.D., Swift, M.M.,
Wood, D.A.: Logtm-se: Decoupling hardware transactional memory from caches.
In: Proceedings of the 13th IEEE Symposium on High-Performance Computer
Architecture, pp. 261–272 (February 2007)

Fault-Tolerant Routing Based on Approximate

Directed Routable Probabilities for Hypercubes

Thuy Dinh Duong and Keiichi Kaneko

Department of Computer and Information Sciences
Graduate School of Engineering

Tokyo University of Agriculture and Technology
Koganei-shi, Tokyo, Japan

{50010646150@st,k1kaneko@cc}.tuat.ac.jp

Abstract. Recently, parallel processing systems have been studied very
actively, and many topologies have been proposed. A hypercube is one of
the most popular topologies for interconnection networks. In this paper,
we propose two new fault-tolerant routing algorithms for hypercubes
based on approximate directed routable probabilities. The probability
represents ability of routing to any node at a specific distance and also
taking account of from which direction the message was received. Each
node chooses one of its neighbor nodes to send a message by comparing
the approximate directed routable probabilities. We also conducted a
computer experiment to verify the effectiveness of our algorithms.

Keywords: multicomputer, interconnection network, parallel process-
ing, fault-tolerant routing, hypercube, performance evaluation.

1 Introduction

The hypercube topology has been one of the most popular network topologies
used for interconnection multicomputer networks especially in the parallel pro-
cessing field. The properties of regular and recursive structure and low diameter
[7] have attracted a considerable attention. As a results, there are several com-
mercial and experimental systems that have been adopted this topology. Figure
1 shows an example of a 4-dimensional hypercube Q4.

In a parallel processing system, many nodes process tasks together. Hence,
efficiency of message passing has a high influence on the completion of task
processing since communications between the nodes are accomplished by passing
messages. The role of a routing algorithm is to specify a path to send a message
from a source node to a destination node. Therefore, efficient message routing is
one of the most vital problems in parallel processing systems.

Since the sizes of tasks to be processed are increasing, larger networks are
required. However, the more the number of nodes in a network becomes, the
higher the possibility of occurrences of faulty elements becomes. Hence, even in
the presence of faulty nodes in a parallel processing system, finding a path which
is fault-free and as short as possible between a source node and a destination node

Y. Xiang et al. (Eds.): ICA3PP 2011, Part I, LNCS 7016, pp. 106–116, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Fault-Tolerant Routing 107

0000 0001

0100 0101

0010 0011

0110 0111

1000 1001

1100 1101

1010 1011

1110 1111

Fig. 1. An example of 4-dimensional hypercube Q4

has become an emerged problem. Though there are several approaches to address
the problem. But an efficient fault-tolerant routing algorithm must satisfy the
following conditions. First, given a pair of a source node and destination node,
the algorithm should find out a possible fault-free path between them. Second, if
a node has the knowledge of the status of all other nodes in a network, it can be
possible to calculate an optimized path. Because of the limitation in resources,
that is, time and space complexities, information stored in each node should be
so small that each node cannot identify all of faulty nodes. Therefore, in this
paper we propose two fault-tolerant routing algorithms that find a fault-free path
between non-faulty nodes. Also, in our proposed algorithms, we assume that in
an n-dimensional hypercube Qn with faulty nodes, information stored in each
node must be of polynomial time and space complexities of n.

The rest of this paper is structured as follows. We survey related works in
Section 2. In Section 3, we define terminology and notations that are necessary
for discussion. Then, we introduce the directed routable probabilities, their ap-
proximate values, and a simplified calculation method for them in Section 4.
Furthermore, we proposed two fault-tolerant routing algorithms in Section 5,
and evaluate their performance by a computer experiment in Section 6. Finally,
we give a conclusion and future works in Section 7.

2 Related Works

Recently, the research on fault-tolerant routing in hypercubes has gained atten-
tion and there are many attempts in research for this problem. By recursively
classifying non-faulty nodes into safe, ordinary unsafe, and strongly unsafe nodes
depending on the classification of neighbor nodes, Chiu and Wu have proposed
an efficient fault-tolerant routing algorithm [4]. To improve the algorithm, Chiu
and Chen introduced the routing capabilities that are obtained by classifying
the safety nodes with respect to the Hamming distance to the destination nodes
[3]. Wu has also proposed a similar fault-tolerant routing algorithm indepen-
dently by introducing the safety vectors [8]. In addition, Kaneko and Ito have
proposed a fault-tolerant routing algorithm based on classification of ordinary

108 T.D. Duong and K. Kaneko

and strongly unsafe nodes with respect to the Hamming distance as well as an
efficient method to obtain classification of them [6].

All of the above attempts are based on information if a message is surely
routed to the destination node or not. On the other hand, Al-Sadi et al. and
Duong and Kaneko have proposed fault-tolerant routing algorithms based on
probabilities that a message is sent from the source node to the destination node
with a path of length of Hamming distance between them [1,2,5]. Though these
algorithms take different approaches, the results are very similar. In this study,
we extend the approach by Duong and Kaneko [5] by introducing a new con-
cept of approximate directed routable probabilities and a simplified calculation
method for them. Then, we propose two fault-tolerant routing algorithms based
on them. Moreover, we carry out a computer experiment to evaluate performance
of the algorithms.

3 Preliminaries

In this section, we define a hypercube network and introduce requisite nota-
tions. Hamming distance H(a, b) between 2 nodes a = (a1, a2, . . . , an) and
b = (b1, b2, . . . , bn) is defined by the number of different bits between ai and
bi (1 ≤ i ≤ n).

Definition 1. An n-dimensional hypercube Qn is an undirected graph, which
consists of 2n nodes. Each node a is an n-bit sequence (a1, a2, . . . , an) where
ai ∈ {0, 1} (1 ≤ i ≤ n), and ai is called the bit of i-th dimension. For two nodes
a and b in Qn, there is an edge (a, b) between them if and only if the Hamming
distance between them H(a, b) is equal to 1. The neighbor node of a along the
dimension j is a⊕ 2j .

In general, a path in a graph is represented by an alternate sequence of nodes
and edges a1, (a1, a2), a2, . . ., ak−1, (ak−1, ak), ak. The length of the path P
is the number of edges included in the path, and it is denoted by L(P). If Qn is
fault-free, the length of the shortest path between a and b is equal to H(a, b).

Definition 2. For a node a in Qn, a set of nodes N(a) defined by

N(a) = {n | H(a, n) = 1}.
is called a set of neighbor nodes of a.

In a hypercube Qn with a set of faulty nodes F , for a source node s and a
destination node d that are both non-faulty, a fault-tolerant routing algorithm
finds a fault-free path between s and d.

Definition 3. In Qn, for two nodes a and b, the set of preferred neighbor nodes
of a for b is denoted by N0(a, b), and is defined by N0(a, b) = {n | n ∈
N(a), H(n, b) = H(a, b)−1}. In addition, the set of spare neighbor nodes of a for
b is denoted by N1(a, b), and is defined by N1(a, b) = {n | n ∈ N(a), H(n, b) =
H(a, b) + 1}. It is easy to see that N(a) = N0(a, b) �N1(a, b).

Fault-Tolerant Routing 109

Note that, in Qn, the number of nodes that are apart from a node a by Hamming
distance h is equal to nCh. Also note that, for two nodes a and b in Qn, if
H(a, b) = h, then |N0(a, b)| = h holds.

4 Directed Routable Probabilities

In this section, we give the idea of directed routable probabilities. In an n-
dimensional hypercube Qn with a set of faulty nodes F , let us consider a situation
where a non-faulty node a received a message from its non-faulty neighbor node
a ⊕ 2j along the dimension j. Then, the directed routable probability �P ∗j

h (a)
of a with respect to a Hamming distance h and a dimension j represents the
probability that, for an arbitrary non-faulty node b with h = H(a, b) and h+1 =
H(a⊕ 2j, b), there is a fault-free path of length h between a and b.

Since it is difficult to calculate the directed routable probabilities precisely,
we use the following approximate values.

Definition 4. For a node a in an n-dimensional hypercube Qn with a set of
faulty nodes F , approximate directed routable probabilities �P j

h(a) of a with
respect to Hamming distance h and the dimension j is defined as follows:

�P j
h(a)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 (h = 0)
0 (1 ≤ h ≤ n, a ∈ F)∑
I⊂N(a)\{a⊕2j}

|I|=h

max
n∈I
{ �P log2(a⊕n)

h−1 (n)}
/

n−1Ch (1 ≤ h ≤ n, a �∈ F)

Definition 4 for �P j
h(a) has the following meaning. First, an arbitrary node in-

cluding a faulty node can send a message to itself with probability 1. Next, if a
node a is faulty, it cannot send a message to any node other than itself. Hence,
for any positive Hamming distance h, �P j

h(a) = 0 holds. Otherwise, by taking all
the combinations of h nodes from the set of neighbor nodes N(a) \ {a⊕ 2j} of
a, the expectation value of the maximum routable probabilities of the combina-
tions of h nodes with respect to the Hamming distance h− 1 and the dimension
which is used to send a message from a is calculated.

The approximate directed routable probabilities with respect to the Hamming
distance 0 and an arbitrary dimension j is defined to be 1 for all the nodes
including faulty nodes. Therefore, for any non-faulty node a, �P j

1 (a) = 1 holds.
To calculate the approximate directed routable probabilities easily, we intro-

duce the following theorems.

Theorem 1. In an n-dimensional hypercube Qn with a set of faulty nodes F ,
for a non-faulty node a and two natural numbers h (1 ≤ h ≤ n) and j (0 ≤ j ≤
n− 1),

�P j
h(a) =

⎛⎝φ(j)−1∑
k=1

k−1Ch−1pk +
n∑

k=φ(j)+1

k−2Ch−1pk

⎞⎠/
n−1Ch

110 T.D. Duong and K. Kaneko

where p1 ≤ p2 ≤ . . . ≤ pn are obtained by sorting �P 0
h−1(a ⊕ 20), �P 1

h−1(a ⊕ 21),
. . ., �Pn−1

h−1 (a ⊕ 2n−1).
(Proof) Let φ(·) is a bijection that satisfies the condition �P j

h−1(a
⊕2j) = pφ(j).

Then, from Definition 4, pk = maxn∈I{ �P log2(a⊕n)
h−1 (n)} holds if and only if pk ∈

∪n∈I{ �P log2(a⊕n)
h−1 (n)} and ∪n∈I{ �P log2(a⊕n)

h−1 (n)} ⊂ {p1, p2, . . . , pk}\{pφ(j)} hold.
Therefore, the number of occurrences such that pk becomes the maximum value
is equal to k−1Ch−1 if k < φ(j) and to k−2Ch−1 if k > φ(j). Hence, the theorem
holds.

Theorem 2. In Qn with a set of faulty nodes F , for a node a(�∈ F), h (1 ≤ h ≤
n) and l (1 ≤ l ≤ n− 1), �P

φ−1(l+1)
h (a) = �P

φ−1(l)
h (a)+ l−1Ch−1(pl− pl+1)/n−1Ch

holds.
(Proof) It is trivial from Theorem 1.

Theorem 3. In Qn with a set of faulty nodes F , for a node a(�∈ F) and h

(1 ≤ h ≤ n), �P
φ−1(1)
h (a) = �P

φ−1(2)
h (a) = · · · = �P

φ−1(h)
h (a)

(Proof) From Theorem 2, if l < h, l−1Ch−1 = 0 and �P
φ−1(l+1)
h (a) = �P

φ−1(l)
h (a)

holds.

From Theorems 1 to 3, we can obtain a function ADRP to calculate the approxi-
mate directed routable probabilities. It is shown in Figure 2.

function ADRP(a, h, j, F)

begin

if h = 0 then �P j
h(a) := 1

else if a ∈ F then �P j
h(a) := 0

else begin

collect {�P log2(a⊕n)
h−1 (n) | n ∈ N(a)};

sort {�P log2(a⊕n)
h−1 (n) | n ∈ N(a)} to obtain p1 ≤ p2 ≤ . . . ≤ pn;

define φ(·) s.t. �P j
h−1(a ⊕ 2j) = pφ(j);

�P
φ−1(1)
h (a) :=

n∑
k=h+1

k−2Ch−1pk

/
n−1Ch;

for l := 1 to n - 1 do
�P

φ−1(l+1)
h (a) := �P

φ−1(l)
h (a) + l−1Ch−1 × (pl − pl+1)/n−1Ch

end;

return �P j
h(a)

end

Fig. 2. Function to calculate approximate values of directed routable probabilities

In fault-tolerant routing based on approximate directed routable probabilities,
the following theorem is very helpful.

Theorem 4. In an n-dimensional hypercube Qn with a set of faulty nodes F ,
for any two nodes s and d with h = H(s, d), if there is a fault-free path between

Fault-Tolerant Routing 111

s and d, then there is a node a in the set of preferred neighbor nodes of s for d,
N0(s, d), that satisfies �P

log2(a⊕s)
h−1 (a) > 0 or there is a node b in the set of spare

neighbor nodes of s for d, N1(s, d), that satisfies �P
log2(b⊕s)
h+1 (b) > 0.

(Proof) Let c0 → c1 → · · · → cl be the fault-free path between s and d where
c0 = s, cl = d, ci �= ci+1 (0 ≤ i ≤ l− 1), ci−1 �= ci+1 (1 ≤ i ≤ l− 1), and l ≥ h.
If c1 ∈ N0(s, d), let us consider a sub path c0 → c1 → · · · → ch. Then, from
Definition 4, �P

log2(ch⊕ch−1)
0 (ch) > 0. In addition, for any r (0 ≤ r ≤ h − 1), if

�P
log2(cr+1⊕cr)
h−r−1 (cr+1) > 0, then

�P
log2(cr⊕cr−1)
h−r (cr) =

∑
I⊂N(cr)\{cr−1}

|I|=h

max
n∈I
{ �P log2(cr⊕n)

h−r−1 (n)}/n−1Ch

> �P
log2(cr+1⊕cr)
h−r−1 (cr+1)

/
n−1Ch > 0.

Hence, �P
log2(c1⊕c0)
h−1 (c1) > 0 holds. If c1 ∈ N1(s, d), let us consider a sub path

a sub path c0 → c1 → · · · → ch+2. Then, from a similar discussion to the case
that c1 ∈ N0(s, d), �P

log2(c1⊕c0)
h+1 (c1) > 0 holds.

From Theorem 4, for any two non-faulty nodes s and d with h = H(s, d), if
there is not a node a (∈ N0(s, d)) such that �P

log2(a⊕s)
h−1 (a) > 0 nor a node b

(∈ N1(s, d)) such that �P
log2(b⊕s)
h+1 (b) > 0, then there is not any fault-free path

between s and d.

5 Fault-Tolerant Routing Algorithms

In this section, we show how to find a path in a hypercube with faulty nodes by
using approximate directed routable probabilities. The routing strategy is based
on the approximate directed routable probabilities of neighbor nodes stored in
each node.

In an n-dimensional hypercube with a set of faulty nodes F , we assume that
each node a stores the approximate directed routable probabilities for all of the
neighbor nodes n (∈ N(a)) with respect to all Hamming distances h (0 ≤ h ≤ n).
Then, for a non-faulty source node s and a non-faulty destination node d, we
propose two fault-tolerant routing algorithms which establish fault-free paths
between them.

5.1 Naive Algorithm ADRP0

First, we propose a simple fault-tolerant routing algorithm ADRP0. It takes the
current node c and the destination node d as its arguments. Initially it is called
with the source node and the destination node.

In the algorithm, the Hamming distance h = H(c, d) is calculated first. If it
is equal to 0, the algorithm delivers the message to c and terminates. Otherwise,
that is, if h > 0, Algorithm ADRP0 selects the node n∗

0 among the preferred

112 T.D. Duong and K. Kaneko

neighbor nodes of the current node for the destination node that has the largest
positive approximate directed routable probability with respect to H(c, d)− 1,
and sends the message to the selected neighbor node. If the approximate directed
routable probabilities of the preferred nodes are all zero, then the node n∗

1 with
the largest approximate probability with respect to H(c, d)+1 is selected among
the spare neighbor nodes, and the message is sent to it.

Figure 3 shows the pseudo code for the algorithm where exception han-
dling for the case h = n is omitted. From Theorem 4, �P

log2(c⊕n∗
0)

h−1 (n∗
0) > 0

or �P
log2(c⊕n∗

1)
h+1 (n∗

1) > 0 holds. Hence, the routing always fails by an infinite loop.

procedure ADRP0(c, d)
begin

h := H(c,d);

n∗
0 := argmaxn∈N0(c,d){�P log2(c⊕n)

h−1 (n)};
n∗

1 := argmaxn∈N1(c,d){�P log2(c⊕n)
h+1 (n)};

if h = 0 then deliver the message to c

else if �P
log2(c⊕n∗

0)

h−1 (n∗
0) > 0 then ARDP0(n∗

0, d)
else ARDP0(n∗

1, d)
end

Fig. 3. Routing algorithm ADRP0

5.2 Improved Algorithm ARDP1

Next, we propose an alternate fault-tolerant routing algorithm ARDP1. It takes
the previous node p, the current node c, and the destination node d as its input.
From the previous node, the message is sent to the current node. Initially, it is
called with the source and destination nodes.

In the algorithm, the Hamming distance h = H(c, d) is calculated firt. If it is
equal to 0, the algorithm delivers the message to c and terminates. Otherwise,
that is, if h > 0, among the preferred neighbor nodes except for the previous
node N0(c, d) \ {p}, Algorithm ARDP1 first tries to select the node n∗

0 that has
the largest positive approximate directed routable probability with respect to
H(c, d) − 1, and send the message to the selected neighbor node if it exists. If
the approximate directed routable probabilities of the preferred nodes are all
zero, then the node n∗

1 with the largest approximate probability with respect to
H(c, d) + 1 is selected among the spare neighbor nodes except for the previous
node N1(c, d) \ {p}, and the message is sent to it. Note that Algorithm ARDP1
excludes the previous node p from the candidate nodes for message sending.
This exclusion avoids a simple loop of message sending between two adjacent
nodes.

Figure 4 shows the pseudo code for the algorithm where exception handling
for the case h = n is omitted. Note that Algorithm ADRP1 may explicitly fail to
send a message.

Fault-Tolerant Routing 113

procedure ADRP1(p, c, d)
begin

h := H(c,d);

n∗
0 := argmaxn∈N0(c,d)\{p}{�P log2(c⊕n)

h−1 (n)};
n∗

1 := argmaxn∈N1(c,d)\{p}{�P log2(c⊕n)
h+1 (n)};

if h = 0 then deliver the message to c

else if �P
log2(c⊕n∗

0)

h−1 (n∗
0) > 0 then ADRP1(c, n∗

0, d)

else if �P
log2(c⊕n∗

1)

h+1 (n∗
1) > 0 then ADRP1(c, n∗

1, d)
else error(’unable to deliver’)

end

Fig. 4. Routing algorithm ADRP1

6 Performance Evaluation

In this section, we first analyze the time complexity of calculation of approximate
directed routable probabilities, which is the first step of our algorithms. Next,
we compare our algorithms with the algorithm by Al-Sadi et al. [1,2] and the
algorithm by Duong and Kaneko [5] by a computer experiment.

6.1 Time Complexity

Time complexity for calculation of approximate directed routable probabili-
ties in each node depends on the expression �P j

h(a) = (
∑φ(j)−1

k=1 k−1Ch−1pk +∑n
k=φ(j)+1 k−2Ch−1pk)/n−1Ch. Combinations of k−1Ch−1, k−2Ch−1 and nCh are

calculated at first, and stored in an array. It takes O(n2) time complexity by mak-
ing use of the relation nCk = n−1Ck−1 + n−1Ck with the boundary condition
nC0 = nCn = 1. For a Hamming distance h, sorting of pk (1 ≤ k ≤ n) takes
O(n log n) time complexity, and calculation of �P j

h(a) takes O(n) time complex-
ity. Therefore, for all h (1 ≤ h ≤ n), sorting pk’s and calculation of �P j

h(a) require
O(n2 log n) time complexity. From the above discussion, calculation of �P j

h(a) is
dominant, and it takes O(n2 log n) time complexity in total. Each node has to
exchange information n times with each of its neighbor nodes.

6.2 Computer Experiment

In this section, we give the detail of the results of a computer experiment con-
ducted to compare Algorithms ADRP0 and ADRP1 we proposed with Algorithms
ADO0 and ADO1 by Al-Sadi et al. and Algorithms DK0 and DK1 by Duong and
Kaneko.

Algorithms ADO0 and DK0 do not make use of the information from which
the message is sent to the current node while Algorithms ADO1 and DK1 are
obtained by restricting the candidate nodes to suppress infinite loops between
two adjacent nodes as similar to Algorithm ADRP0.

A computer experiment was carried out for n-dimensional hypercubes where
5 ≤ n ≤ 10 changing the ratio of faulty nodes ρ from 10% to 80%. Concretely,

114 T.D. Duong and K. Kaneko

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
at

io
 o

f
su

cc
es

sf
ul

 r
ou

tin
gs

Ratio of faulty nodes

n = 5
n = 6
n = 7
n = 8
n = 9
n = 10

Fig. 5. Ratio of successful routings by
Algorithm ADO0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
at

io
 o

f
su

cc
es

sf
ul

 r
ou

tin
gs

Ratio of faulty nodes

n = 5
n = 6
n = 7
n = 8
n = 9
n = 10

Fig. 6. Ratio of successful routings by
Algorithm DK0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
at

io
 o

f
su

cc
es

sf
ul

 r
ou

tin
gs

Ratio of faulty nodes

n = 5
n = 6
n = 7
n = 8
n = 9
n = 10

Fig. 7. Ratio of successful routings by
Algorithm ADRP0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
at

io
 o

f
su

cc
es

sf
ul

 r
ou

tin
gs

Ratio of faulty nodes

n = 5
n = 6
n = 7
n = 8
n = 9
n = 10

Fig. 8. Ratio of successful routings by
Algorithm ADO1

first, in Qn (5 ≤ n ≤ 10), we selected faulty nodes randomly with the ratio
ρ. Next, we selected the source node s and the destination node d from non-
faulty nodes. Finally, after checking the connectivity of s and d, we applied the
six fault-tolerant routing algorithms, ADO0, DK0, ADRP0, ADO1, DK1, and ADRP1,
to measure the ratio of successful routings. If s and d are not connected, that
is, there is no fault-free path between them, we start over from the selection
of faulty nodes. For each pair of a dimension and a ratio of faulty nodes, we
executed at least 1,000 trials.

Figures 5, 6, 7, 8, 9, 10 show the results by Algorithms ADO0, DK0, ADRP0,
ADO1, DK1 and ADRP1, respectively.

As a result, we can see that performance of ADO0 and ADO1 is almost equivalent
to that of DK0 and DK1, respectively. In addition, performance of ADRP0 is a bit
better than that of ADO0 and DK0. For example, the ratio of successful routings
of ADRP0 is 0.302 with n = 10 and ρ = 0.8 while those of ADO0 and DK0 are 0.280
and 0.287, respectively. Moreover, performance of ADRP1 is significantly better
than that of ADO0 and DK0. For example, the ratio of successful routings of ADRP1
is 0.571 with n = 10 and ρ = 0.8 while those of ADO0 and DK0 are 0.444 and
0.453, respectively.

Fault-Tolerant Routing 115

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
at

io
 o

f
su

cc
es

sf
ul

 r
ou

tin
gs

Ratio of faulty nodes

n = 5
n = 6
n = 7
n = 8
n = 9
n = 10

Fig. 9. Ratio of successful routings by
Algorithm DK1

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
at

io
 o

f
su

cc
es

sf
ul

 r
ou

tin
gs

Ratio of faulty nodes

n = 5
n = 6
n = 7
n = 8
n = 9
n = 10

Fig. 10. Ratio of successful routings by
Algorithm ADRP1

6.3 Discussion

The computer experiment shows that with high ratios of faulty nodes (ρ =
0.7 or ρ = 0.8), the successful routing ratios are increased by 0.1 to 0.2 by
algorithms ADRP0 and ADRP1. Hence, we give a small discussion about the effects
of approximate directed routable probabilities.

Let us consider a situation where the current node is c, and there is a non-
faulty neighbor node a (∈ N(c)) whose neighbor nodes are all faulty except for
c. Then, it is easy to see that if a is selected as the next node, it would lead to
a routing failure since there is no available node in N(a) \ {c}. See Figure 11.

c

a

Fig. 11. A typical example of routing failure

In the proposed algorithms, the approximate directed routable probabilities
�P j

h(c) with h ≥ 2 are calculated to be 0 by taking the direction j = log2(c⊕ a)
into consideration. Therefore, a cannot be selected by the algorithms. On the
other hand, in the other algorithms ADO0, ADO1, DK0, and DK1, the corresponding
probabilities are not 0, and it may happen that a is selected for message sending.

This is the main reason that the proposed algorithms based on approximate
directed routable probabilites show the better performance than others. When
the faulty ratio is getting higher, such situations occur more frequently.

116 T.D. Duong and K. Kaneko

7 Conclusion

In this paper, we have proposed two new fault-tolerant routing algorithms for
hypercubes based on approximate directed routable probabilities, which repre-
sent ability of routing to any node at a specific distance considering from which
direction the message is received. Each node selects one of its neighbor nodes to
send a message by taking the approximate directed routable probabilities into
consideration.

We also conducted a computer experiment to verify the effectiveness of our
algorithms. As a result, we proved that our algorithms have better performance
than the algorithms proposed by Al-Sadi et al. and the algorithms proposed by
Duong and Kaneko.

Our next step is to extend the concept of the approximate directed routable
probabilities to apply other topologies for parallel processing systems. The path
lengths are also an important problem. Therefore, we also intend to improve
the routing algorithm so it can find the shorter fault-free paths between any
fault-free nodes in a hypercube.

Acknowledgement. This study was partly supported by a Grant-in-Aid for
Scientific Research (C) of the Japan Society for the Promotion of Science under
Grant No. 22500041.

References

1. Al-Sadi, J., Day, K., Ould-Khaoua, M.: Fault-tolerant routing in hypercubes using
probablity vectors. Parallel Computing 27(10), 1381–1399 (2001)

2. Al-Sadi, J., Day, K., Ould-Khaoua, M.: Probability-based fault-tolerant routing in
hypercubes. The Computer Journal 44(5), 368–373 (2001)

3. Chiu, G.M., Chen, K.S.: Use of routing capability for fault-tolerant routing in hy-
percube multicomputers. IEEE Transactions on Computers 46(8), 953–958 (1997)

4. Chiu, G.M., Wu, S.P.: A fault-tolerant routing strategy in hypercube multicomput-
ers. IEEE Transactions on Computers 45(2), 143–155 (1996)

5. Duong, D.T., Kaneko, K.: Fault-tolerant routing algorithms based on approximate
routable probabilities for hypercube networks. In: Proceedings of the 2011 Interna-
tional Conference on Parallel and Distributed Processing Techniques and Applica-
tions (July 2011)

6. Kaneko, K., Ito, H.: Fault-tolerant routing algorithms for hypercube interconnec-
tion networks. IEICE Transactions on Information and Systems E84-D(1), 121–128
(2001)

7. Seitz, C.L.: The cosmic cube. Communications of the ACM 28(1), 22–33 (1985)
8. Wu, J.: Adaptive fault-tolerant routing in cube-based multicomputers using safety

vectors. IEEE Transactions on Parallel and Distributed Systems 9(4), 322–334
(1998)

Finding a Hamiltonian Cycle in a Hierarchical
Dual-Net with Base Network of p -Ary q -Cube

Yamin Li1, Shietung Peng1, and Wanming Chu2

1 Department of Computer Science
Hosei University

Tokyo 184-8584 Japan
{yamin,speng}@hosei.ac.jp

2 Department of Computer Hardware
University of Aizu

Aizu-Wakamatsu 965-8580 Japan
w-chu@u-aizu.ac.jp

Abstract. We first introduce a flexible interconnection network, called
the hierarchical dual-net (HDN), with low node degree and short di-
ameter for constructing a large-scale supercomputer. The HDN is con-
structed based on a symmetric product graph (base network). A k-level
hierarchical dual-net, HDN(B,k, S), contains (2N0)

2k

/(2
∏k

i=1 si) nodes,
where S = {si|1 ≤ i ≤ k} is the set of integers with each si representing
the number of nodes in a super-node at the level i for 1 ≤ i ≤ k, and
N0 is the number of nodes in the base network B. The node degree of
HDN(B,k, S) is d0 + k, where d0 is the node degree of the base network.
The benefit of the HDN is that we can select suitable si to control the
growing speed of the number of nodes for constructing a supercomputer
of the desired scale. Then we show that an HDN with the base network
of p-ary q-cube is Hamiltonian and give an efficient algorithm for finding
a Hamiltonian cycle in such hierarchical dual-nets.

Keywords: Interconnection networks, Hamiltonian cycle embedding.

1 Introduction

Recently, because of the advances in computer technology and competition
among computer makers, supercomputers containing hundreds of thousands of
nodes have been built [13]. It was predicted that the parallel systems of the next
decade will contain 10 to 100 millions of nodes [2]. The interconnection network
plays an important role for achieving high-performance in such parallel systems.
The performance of a large-scale parallel computers depends largely on the time
complexities of communication schemes, and in turn depends on the diameter of
the interconnection network.

An interconnection network consists of switches with multiple communica-
tion ports and cables that connect switch ports by following certain topologies.
Most of the supercomputers listed in Top500 [13] use Infiniband or Gigabit
Ethernet as their switches. For an Ultra-scale parallel computer, the traditional

Y. Xiang et al. (Eds.): ICA3PP 2011, Part I, LNCS 7016, pp. 117–128, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

118 Y. Li, S. Peng, and W. Chu

interconnection networks may no longer satisfy the requirements for
high-performance computing or efficient communication. For such an Ultra-scale
parallel computer, the node degree and the diameter will be the critical mea-
sures for the effectiveness of the interconnection networks. The node degree is
limited by the hardware technologies and the diameter affects all kinds of com-
munication schemes directly. Other important measures include symmetricity,
scalability, and efficient routing algorithms.

The following two categories of interconnection networks have attracted a
great research attention. One is the networks of hypercube-like family that has
the advantage of short diameters for high-performance computing and efficient
communication. Some typical are hierarchical cubic networks [3], dual-cube [6,8],
and cube-connected cycles [12]. The other is the family of 2D/3D meshes or tori
that has the advantage of small and fixed node degrees and easy implementa-
tions. Most supercomputers including those built by CRAY [4], IBM [1], SGI,
and Intel use 3D tori or hypercubes.

In this paper, we first introduce a flexible interconnection network, called the
hierarchical dual-net (HDN). The HDN can connect a large number of nodes
with a small node degree, meanwhile keeping the diameter short. The HDN was
motivated by recursive dual-net (RDN) [11]. The RDN was proposed recently as
a candidate of high-performance interconnection networks for supercomputers
of next generations. The problem of the RDN is that it grows too fast in size,
and there is no mechanism to control the rate of its growth. Different from
the RDN, the scale of the HDN can be controlled by setting a set of suitable
parameters while generating an expanded network through dual-construction.
We investigate the topological properties of the HDN and show some examples
of HDNs with simple base networks of small size.

Linear array and ring are two fundamental networks and many algorithms
were designed based on linear array and ring [5]. Thus embedding linear array
or ring in networks is important for emulating those algorithms. A Hamiltonian
cycle of an undirected graph G is a simple cycle that contains every vertex of
G exactly once. A Hamiltonian path in a graph is a simple path that visits
every node exactly once. A graph that contains a Hamiltonian cycle is said
to be Hamiltonian. A graph is said to be Hamiltonian connected if there is a
Hamiltonian path between any two distinct nodes in the graph. Two algorithms
for embedding a Hamiltonian cycle in Dual-Cube and Metacube were given in [7]
and [9], respectively. The RDN was proved to be Hamiltonian connected in [10].
In this paper, we show that the hierarchical dual-net is Hamiltonian if the base
network is p-ary q-cube and give an efficient algorithm for the cycle construction.

2 The Hierarchical Dual-Net

Since the hierarchical dual-net was motivated by the recursive dual-net, we begin
with a brief introduction to RDN [11]. The RDN is constructed recursively by a
dual-construction. The dual-construction is a way to expand a given symmetric
graph G of size n to a new symmetric graph G′ of size 2n2. It generates 2n copies

Finding a Hamiltonian Cycle 119

of G as subgraphs (denoted as clusters) of G′. Half of them are of class 0 and the
others are of class 1. In G′, each node in a cluster has a new link that connects
the node to a node in a distinct cluster of the other class.

If G is symmetric then the expanded graph G′ is unique and symmetric.
Therefore, the dual-construction can be applied recursively from a symmetric
network (the base network). RDN(m, k) denotes an RDN generated from a
base network of size m by applying dual-construction k times.

The problem of an RDN is that its growth rate in size is super-exponential
(O((2m)2

k

)). There is very little space for selection of the size of an RDN. For
example, let B be a 3-cube, then the sizes of RDN(8, k) will be 27, 215, and 231

for k = 1, 2, and 3, respectively. In HDN, we provide a mechanism to control the
growth rate through its expansion from a base network. This new interconnection
network has a very flexible way for adjusting its size.

The hierarchical dual-net, HDN(B, k, S), has three sets of parameters: B is a
symmetric product graph, we call it base network; k is an integer that indicates the
level of the HDN (the times of dual-construction applied); and S = {s1, s2, . . . , sk},
where si is the number of nodes in a super-node at the level i for 1 ≤ i ≤ k. All of
these terminologies will be defined in the following paragraphs.

Given r graphs Gi = (Vi, Ei), 1 ≤ i ≤ r, their product graph G = G1 ×G2 ×
. . .×Gr is defined as the graph G = (V, E), where V = {(v1, v2, . . . , vr)|vi ∈ Vi,
1 ≤ i ≤ r} and E = {[(u1, u2, . . . , ur), (v1, v2, . . . , vr)]| for some j, (uj , vj) ∈ Ej

and for i �= j, ui = vi}. In other words, the nodes of the product graph G are
labeled with r-tuples, where the ith element of the r-tuples is chosen from the
node set of the ith component graph. The edges of the product graph connect
pairs of nodes whose labels are identical in all but the jth element, and the
two nodes corresponding to the jth elements in the jth component graph are
connected by an edge.

Meshes, tori, and hypercubes are typical examples of product graphs. The 2D
p×q torus is Cp×Cq, where Cp and Cq are rings with p and q nodes, respectively.
Any node in the torus can be presented by an ordered pair (u, v), where u ∈ Cp

and v ∈ Cq. Note that the product graph G = G1 ×G2 can be viewed as being
constructed from |V1| copies of G2 or |V2| copies of G1. Similarly, an r-cube is a
product of r numbers of K2 (complete graph of two nodes represented by 0 and
1). So nodes in r-cube can be represented by an r-bit binary number which is an
r-tuple of 0 and 1, and two nodes are connected iff they differ in exactly 1 bit.

Given a product graph G = G1×G2× . . .×Gr, 1 ≤ i ≤ r, we define a quotient
graph Q as Q = G/G′ where G′ is a sub-product graph of G such that G = G′×Q.
We can consider a quotient graph Q as a reduced graph of G with G′ mapped into
a single node. A graph G is symmetric (node-symmetric) if all its nodes looks alike.
A product graph is symmetric if all its component graphs are symmetric.

We use the symmetric product graph as the base network for generating a
hierarchical dual-net through dual-constructions. We denote the base network
as B = B1 × B2 × . . . × Br where all of the Bi, 1 ≤ i ≤ r, are symmetric.
We define a super-node SN of B as a sub-product graph of B. That is, SN =
Bi1 ×Bi2 × . . .×Biq , where ij, 1 ≤ j ≤ q, are distinct and q ≤ r.

120 Y. Li, S. Peng, and W. Chu

Let |Bi| = bi be the number of nodes in Bi for 1 ≤ i ≤ r. The HDN(B, 0, S) =
B (S = ∅) is the base network. For i > 0, the HDN(B, i, S), S = {sj |1 ≤ j ≤ i},
is generated from HDN(B, i−1, S) by a construction to be explained below. First,
we define a super-node of level i, denoted as SN i, to be a sub-product graph
of size si in B. Then, we define graph Qi as the quotient graph HDN(B, i −
1, S)/SN i. Suppose that there are Ni−1 nodes in the HDN(B, i − 1, S), then
the number of nodes ni in Qi is Ni−1/si. The si can be 1 or

∏q
j=1 |Bij |, where

1 ≤ ij ≤ r and q ≤ r. That is, si can be a product of any number of integers in
{b1, b2. . . . , br}. For example, if r = 3, b1 = 2, b2 = 3, and b3 = 5, the possible si

can be 1, 2, 3, 5, 2× 3, 2× 5, 3× 5, or 2× 3× 5.
The construction of HDN(B, i, S), 1 ≤ i ≤ k, can be defined by a two-steps

process: First, we perform a dual-construction on the quotient graph Qi−1 =
HDN(B, i− 1, S)/SN i. Let the graph generated by the dual-construction be Qi,
and the subgraph of two nodes that is connected by a cross-edge of level i be
K2. Then HDN(B, i, S) is the graph which replaces every K2 in Qi by a product
graph K2 × SN . We call HDN(B, i− 1, S) cluster of HDN(B, i, S).

Referring to Fig. 1, suppose that there are ni super-nodes in an HDN(B, i−
1, S), an HDN(B, i, S) consists of 2ni clusters which are divided into two classes:
class 0 and class 1 with each class containing ni clusters. That is, the number
of clusters in each class is equal to the number of super-nodes in a cluster. At
level i, each super-node in a cluster has si new links to a super-node in a distinct
cluster of the other class. Because there are si nodes in a super-node, one node
contributes a new link.

HDN(B, i− 1, S) HDN(B, i, S)

0 1 ni − 1

0 1 ni − 1

si links
Cluster

Class 0

Class 1

ni

super-nodes
ni

super-nodes
ni

super-nodes

ni

super-nodes
ni

super-nodes
ni

super-nodes

Fig. 1. Building an HDN(B, i, S) from HDN(B, i− 1, S)

The indexes of the nodes in HDN(B, k, S) can be defined as follows. Let SNk
id

be a super-node_id in a cluster of HDN(B, k, S) and Nk
id be a node_id in a super-

node, then a node in the HDN(B, k, S) can be represented by (Ck, Uk
id, SNk

id, N
k
id)

where Ck is the class_id (0 or 1) and Uk
id is the cluster_id. A cross-edge at level

k connects node (Ck, Uk
id, SNk

id, N
k
id) and node (Ck, SNk

id, U
k
id, N

k
id).

Finding a Hamiltonian Cycle 121

We show two small HDN examples in Fig. 2 and Fig. 3, where the base network
is a 2-cube. Fig. 2 shows an HDN(B, 1, S) with s1 = 2. There are 2 super-nodes
(SN 0 and SN 1) in a cluster and each contains 2 nodes: node 0 and node 1. Each
class has 2 clusters (the number of clusters in a class is equal to the number of
super-nodes in a cluster). Fig. 3 shows an HDN(B, 2, S) with s2 = 4 based on
HDN(B, 1, S) with s1 = 2.

Cluster 1

0 1

Class 1

Cluster 0

0 1

Cluster 1

0 1

Cluster 0

Class 0
0 1

SN

SN

SN

SN

SN

SN

SN

SN

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

Fig. 2. An HDN(B, 1, S) with s1 = 2

0
0

3
2

1

3
0

3
2

1

2
0

3
2

1

1
0

3
2

1

0

0
3
2

1

3

0
3
2

1

2

0
3
2

1

1

0
3
2

1

Fig. 3. An HDN(B, 2, S) with s1 = 2 and s2 = 4

We can use a conventional 3D torus as the base network and implement it on
silicon or even on printed circuit boards (PCB). The HDN can be implemented by
wiring the node boards or the computer racks with cables. It will be interesting to
investigate the possibility and scaling behavior of the opposite solution, having
HDN at the PCB or at least rack level, and connecting the racks via conventional
3D torus topology.

3 Topological Properties of HDN

Suppose that the node degree of the base network B is d0, the node degree of the
HDN(B, k, S) is d0+k. Let Ni−1 be the number of nodes in the HDN(B, i−1, S).
there are Ni = 2 × Ni−1/si × Ni−1 = 2N2

i−1/si nodes in the HDN(B, i, S) for
1 ≤ i ≤ k, where Ni−1/si is the number of clusters in each class. That is, the

122 Y. Li, S. Peng, and W. Chu

number of nodes in the HDN(B, k, S) is (2N0)2
k

/(2
∏k

i=1 si), where N0 is the
number of nodes in the base network.

The diameter of an interconnection network is the maximum of the shortest
distances between any two nodes. Let the diameter of the HDN(B, i − 1, S) be
Di−1 and the diameter of the super-node be D(SN i). Then, if we map a super-
node into a single node, the diameter of the quotient graph Qi−1 is D(Qi−1) =
Di−1 −D(SN i). To route a node u in a cluster of class 0 (or 1) to a node v in a
different cluster of the same class, we can route u along with a direct link of level
i to a node u′ in a cluster of class 1 (or 0). This takes one step. Then, we route
u′ inside the cluster to a node w′ which can reach a node w in the same cluster
of node v along with direct link of level i. The longest distance between nodes
u′ and w′ is D(Qi−1). Similarly, we can route node w′ to a node w by one step
and then to a node v′ which is in the same super-node of v by D(Qi−1) steps.
Finally, we route v′ to node v, this takes D(SN i) steps. Therefore, we have the
following recurrence:

Di = 2× (1 + D(Qi−1)) + D(SN i) = 2Di−1 −D(SN i) + 2 (1)

Solving the above recurrence, we get the diameter Dk of HDN(B, k, S):

Dk = 2kD(B)−
k−1∑
j=0

2jD(SNk−j) + 2k+1 − 2 (2)

where D(B) and D(SN i), 1 ≤ i ≤ k, are the diameters of the base network
and the super-nodes, respectively. The results of the analysis in this section are
summarized in the following theorem.

Theorem 1. Assume that the base network B is a symmetric product graph and
SN i, 1 ≤ i ≤ k, are sub-product graphs of B with |SN i| = si. Let the number of
nodes, the node-degree, and the diameter of B be N0, d0, and D0, respectively.
Let the diameters of SN i, 1 ≤ i ≤ k, be D(SN i). Then, the number of nodes,
the node-degree, and the diameter of HDN(B, k, S), where S = {s1, . . . , sk}, are
(2N0)2

k

/(2
∏k

i=1 si), d0 +k, and Dk = 2kD(B)−∑k−1
j=0 2jD (SNk−j)+2k+1−2,

respectively.

4 Hamiltonian Cycle Embedding

This section shows how to construct a Hamiltonian cycle in HDN(B, k, S) with
the base network of p-ary q-cube. A p-ary q-cube connects pq nodes. The term
p refers to the number of nodes per dimension and the term q represents the
network dimension. Each node can be identified by a q-digit radix-p address
(a0, a1, . . . , ai, . . . , aq−1), where the ith digit ai represents the node position in
the ith dimension. There is a link connecting node A with address (a0, a1, . . . ,
aq−1) and node B with address (b0, b1, . . . , bq−1) if and only if there exists i
(0 ≤ i ≤ q − 1) such that ai = (bi + 1)% p and aj = bj for 0 ≤ j ≤ q − 1
and i �= j, where % is a modular operation. For examples, a 4-ary 2-cube is a

Finding a Hamiltonian Cycle 123

0
1
2
3
4

(a) 5-ary 2-cube

0
1
2
3
4

(b) Super-nodes

0
1
2
3
4

(c) A cycle

Fig. 4. A Hamiltonian cycle in a 5-ary 2-cube

4 × 4 torus and a 2-ary 4-cube is a 4-cube. A p-ary q-cube is a product graph
G0 ×G2 × . . .×Gq−1 with every Gi (0 ≤ i ≤ q − 1) is a p-node ring.

Fig. 4(a) shows a 5-ary 2-cube. Suppose that a super-node contains 5 nodes
in a same row in the 5-ary 2-cube, then there are 5 super-nodes that form a ring
as shown in Fig. 4(b), the id of each super-node is given in the left side. When
we construct an HDN(B, k, S), we connect node (Ck, Uk

id, SNk
id, N

k
id) and node

(Ck, SNk
id, U

k
id, N

k
id) with a link of level k. The super-node_id SNk

id is assigned
as below: Supposing that there are nk super-nodes, super-nodes i and (i+1)% nk

are neighbors. Fig. 4(c) shows a cycle that contains all nodes in the 5-ary 2-cube,
starting from a node in super-node 0 to a node in super-node 1.

Lemma 1. There is a Hamiltonian cycle in a p-ary q-cube.

Proof. Consider a p-ary 2-cube (2D torus). Suppose that (x, y), for 0 ≤ x, y ≤
p− 1, is a node address where x is the row number and y is the column number
in the 2D torus. We can build a cycle (0, 0) − (1, 0) − (1, 1) − (2, 1) − (2, 2) −
(3, 2) − (3, 3) − . . . − (p− 1, p− 2) − (p− 1, p− 1) − (0, p− 1) − (0, 0), then
replace every horizontal edge with a path that contains all nodes in a row, see
the example in Fig. 4(c). For q > 2, we can treat the p-ary (q−1)-cube as a ring
and do the similar work above. ��
We first consider building an HDN(B, 1, S) from base network. There are 2n1

clusters and each cluster contains n1 super-nodes. A virtual Hamiltonian cycle
that connects all 2n1 clusters can be build easily. From the definition of the HDN,
we know that there is a cross-edge at level k between node (Ck, Uk

id, SNk
id, N

k
id)

and node (Ck, SNk
id, U

k
id, N

k
id). By ignoring the node_id Nk

id, we can select some
super-nodes (two super-nodes per cluster) and links to connect all of the clusters
as below.

(0,0,0)− (0,0,1)− (1,1,0)− (1,1,1)− (0,1,1)− (0,1,2)− (1,2,1)− (1,2,2)−
(0,2,2)− (0,2,3)− (1,3,2)− (1,3,3)− · · · −
(0,n1−1,n1−1) − (0,n1−1,0) − (1,0,n1−1) − (1,0,0).

All super-nodes can be inserted to the cycle by replacing the two super-nodes
with the Hamiltonian path in each cluster. For example, in the cluster 0 of type
0, two super-nodes 0 and 1 will be replaced with 0 − (n1−1) − · · · − 2 − 1, i.e.,

124 Y. Li, S. Peng, and W. Chu

(0,0,0) − (0,0,1) =⇒
(0,0,0) − (0,0,n1−1) − · · · − (0,0,2) − (0,0,1).

After all super-nodes in clusters were included, we perform super-node renam-
ing, by which the renamed super-nodes 0, 1, . . ., nk − 1 form a cycle, where
super-nodes i and (i + 1)%nk are neighbors. We assign an id to each super-node
increasingly, starting from 0 for super-node (0,0,0).

A Hamiltonian cycle that contains all nodes can be obtained by expand-
ing from super-node level to node level. Fig. 5 shows the Hamiltonian cycle in
HDN(B, 1, S) with base network of 4-ary 2-cube and s1 = 4. All super-nodes in
the figure were renamed.

27
26
25
24

0
3
2
1

4
7
6
5

9
8

11
10

18
17
16
19

22
21
20
23

13
12
15
14

31
30
29
28

Fig. 5. A Hamiltonian cycle in HDN(B, 1, S) with s1 = 4

To find a Hamiltonian cycle in HDN(B, 2, S), we can use the cycle built in
level 1 to

1. build a virtual Hamiltonian cycle connecting all clusters at level 2,
2. insert all super-nodes to the cycle, and
3. expand super-nodes to nodes.

But in the last step, there is a problem: some nodes in a super-node can not be
included in the cycle. Super-nodes i and (i+1)%n are in the virtual Hamiltonian
cycle. When we use the cycle built in level 1, only one node in super-node i can
be included.

To solve this problem, we re-construct the Hamiltonian path of level 1. The
idea is described below. For any node u in super-node i, there is a path (u→ w)
that contains all nodes in the super-node. Then, starting from node w, we can
build a path connecting all nodes in super-nodes (i− 1)%n, (i− 2)%n, . . ., 1, 0,
n− 1, . . ., (i + 2)%n, and reach a node in super-node (i + 1)%n. In super-node
(i + 1)%n, we can have a path containing all nodes in the super-node. Suppose
that this path ended at node v, then we can use the level-2 cross-edge of node v
to reach a node in the next cluster of level 2.

Lemma 2. For an HDN with the base network of p-ary q-cube, given any node
u ∈ renamed super-node i in a cluster, for i = 0, 1, . . . , n−1, there is a path u→ v
containing all of the nodes in the cluster with v ∈ renamed super-node (i + 1)%n.

Finding a Hamiltonian Cycle 125

Proof. Only considering the super-nodes, the renamed super-nodes form a Hamil-
tonian cycle in the cluster. Within the super-node i, there is a path u → w con-
necting all of the nodes in the super-node. Because every node in the super-node i
has a link to the corresponding node in the super-node (i−1)%n, from node w, we
can go to the super-node (i−1)%n. Then we can add all of the nodes in the super-
node (i−1)%n. By repeat this procedure, finaly, we can reach the last super-node
(i + 1)%n and add all of the nodes in the super-node, ended with node v. ��
By using this idea, we can find Hamiltonian cycle in HDN(B, 2, S) for s1 = s2 =
4. There are 32 clusters (0, 1, . . ., 31) in each class, 32 super-nodes (0, 1, . . ., 31)
in each cluster, and 4 nodes in each super-nodes.

For the case of s2 < s1, the Hamiltonian cycle can be constructed easily in the
same algorithm described above. Compared to the case of s1 = s2, the number
of nodes is reduced.

If s2 > s1, a super-node of level 2 will contain s2/s1 super-nodes of level 1. For
example, if s1 = 4 and s2 = 16, the super-node 0 of level 2 contains super-nodes
0, 1, 2, and 3 of level 1, the super-node 1 of level 2 contains super-nodes 4, 5, 6,
and 7 of level 1, and so on.

To build a Hamiltonian cycle in an HDN(B, 2, S) with s2 > s1, we can use
the same algorithm described above, and note that when super-node i and super-
node (i + 1) are used for building a virtual Hamiltonian cycle at level 2, all nodes
in super-node i (containing s2/s1 super-nodes of level 1) must be included in the
path u → w before going to super-node i−1 (see Fig. 6). This can be done also
by applying Lemma 2. In order to go to super-node (i− 1), nodes u and w must
be in the same super-node of level 1. Other super-nodes, including the super-node
(i + 1), can be normally included by following the Hamiltonian cycle of level 1.

Cluster 0

Class 0

27
26
25
24

0
3
2
1

4
7
6
5

9
8

11
10

18
17
16
19

22
21
20
23

13
12
15
14

31
30
29
28

0 2 4 6

7 1 3 5

Level 1 super-node id

Level 2 super-node id

wu

Fig. 6. Part of Hamiltonian cycle at level 2 (cluster 0 of class 0)

In Fig. 6, there are 8 super-nodes in cluster 0 of class 0 (s2 = 16). Super-
nodes 0 and 1 are used for constructing a virtual Hamiltonian cycle at level 2.
To include all of the super-nodes within the cluster, we construct a super-node
path (0−7−6−5−4−3−2−1). The super-node 7 of level 2 contains super-nodes

126 Y. Li, S. Peng, and W. Chu

28, 29, 30, and 31 of level 1. We construct a Hamiltonian path that contains
all of the nodes in the cluster based on the Hamiltonian cycle of level 1, but all
of the nodes in the super-node 0 of level 2 (containing super-nodes 0, 1, 2, and
3 of level 1) must be routed before going to super-node 7 of level 2 (actually
to a node in super-node 31 of level 1). Then the rest part of the path can be
constructed as 31−30−· · ·−6−5−4 (super-node id of level 1), terminated at a
node in super-node 1 of level 2.

By using this algorithm, a Hamiltonian cycle in an HDN(B, 2, S) with s1 = 4
and s2 = 16 can be built. In each cluster, the Hamiltonian path is terminated
at two solid nodes. The number in the left side of each super-node is the super-
node id of level 1; the number in the bottom/up side of each super-node is the
super-node id of level 2. We can see from the figure that all of the nodes in a
super-node are included before going to the next super-node.

As a summary, no matter of the si, a Hamiltonian cycle in HDN(B, i, S) can
be found by following the Hamiltonian cycle in HDN(B, i− 1, S) and routing all
nodes in a super-nodes before going to the next super-node. We formally give
the algorithm for finding a Hamiltonian cycle in HDN(B, k, S) in Algorithm 1.

Algorithm 1: HDN_HC(HDN(B,k, S))
begin

pc0 = Hamiltonian cycle of base network;
for j ← 1 to k do /* k levels */

group nodes to super-nodes based on sj ;
nj = the number of super-nodes in HDN(B,k − 1, S);
based on the cycle build at level j − 1,
rename the super-node_id in HDN(B, j − 1, S) such
that super-nodes i and (i + 1)%nj are neighbors;
u = 0; /* starting node_id in a super-node */
for i← 0 to nj − 1 do /* nj clusters of each class */

/* build a Hamiltonian path in cluster i of class 0 */
/* based on j − 1 level Hamiltonian cycle pcj−1 */
hp0

i = (0, i, i, u)→ (0, i, (i + 1)%nj , v);
/* build a Hamiltonian path in cluster (i+1)%nj of class 1 */
/* based on j − 1 level Hamiltonian cycle pcj−1 */
hp1

i = (1, (i + 1)%nj , i, v)→ (0, i, (i + 1)%nj , w);
u = w; /* end node_id → starting node_id of next cluster */

endfor
/* we get the j level Hamiltonian cycle pcj */
pcj = ∅;
for i← 0 to nj − 1 do /* nj clusters of each class */

pcj = pcj ∪ hp0
i ∪ hp1

i ;
endfor

endfor
end

Finding a Hamiltonian Cycle 127

Theorem 2. If the base network B is a p-ary q-cube, then HDN(B, k, S) is
Hamiltonian for any k > 0.

Proof. By following the Algorithm 1, a Hamiltonian path can be constructed. To
prove the correctness of the theorem, we need to show that the two terminate
nodes of the path are neighbors. From Algorithm 1, we know that the two super-
nodes that contain the terminate nodes of the path are neighbors, so we just prove
that these two terminators’ node_ids are the same. This means that there is a
link between the two nodes.

For the case of si ≤ si−1, without loss of generality, we select node (0,0,0,0)
as the starting node to construct the Hamiltonian path. First, by including all of
the nodes inside the super-node (0,0,0), we reach a node with the node_id si−1
(a super-node has si nodes). Then, from node (0,0,0,si − 1), we can add all of
the nodes in the rest super-nodes of the cluster (0,0) to a path p0,0, terminated
at node (0,0,1,0). We show this path in detail as below (the symbol “→” denotes
a path, “−” is a link, and there are ni nodes in the cluster): p0,0 = (0,0,0,0) →
(0,0,0,si−1) − (0,0,ni−1,si−1) − (0,0,ni−1,0) − (0,0,ni−1,1)→ (0,0,ni−1,si−
2) − (0,0,ni − 2,si − 2) − (0,0,ni − 2,si−1) − (0,0,ni − 2,0) − (0,0,ni − 2,1)
− · · · − (0,0,si−1,si−1) − (0,0,si−1,0) − (0,0,si−1,1) → (0,0,si−1,si − 2) −
(0,0,si − 2,si − 2) − · · · − (0,0,1,si−1) − (0,0,1,0).

From node (0,0,1,0), we can go to node (1,1,0,0) via the cross-edge. Similarly,
we can construct a path p1,1 containing all of the nodes in the cluster (1,1) and
terminated at node (1,1,1,0). To include all of the nodes in all clusters, we got
a cycle (0,0,0,0) → (0,0,1,0) → (1,1,0,0) → (1,1,1,0) → (0,1,1,0) → (0,1,2,0) →
(1,2,1,0) → (1,2,2,0) → · · · → (0,ni−1,ni−1,0) → (0,ni−1,0,0) → (1,0,ni−1,0)
→ (1,0,0,0) − (0,0,0,0).

For the case of si > si−1, we route all nodes inside the super-nodes of level
i. Suppose that we also select node (0,0,0,0) as the starting node to construct
the Hamiltonian path. First, by including all of the nodes inside the super-
node (0,0,0), we reach a node with the node_id si−1 − 1 which has the same
super-node_id 0 of the level i − 1. Then, from node (0,0,0,si−1 − 1), we can
have a path p0,0 containing all of the nodes in the cluster (0,0), terminated at
node (0,0,1,si−1 − 1). Next, we go to the node (1,1,0,si−1 − 1) along with a
cross-edge of level i. To include all of the nodes in all clusters, we got a cycle
(0,0,0,0) → (0,0,1,si−1−1) − (1,1,0,si−1−1) → (1,1,1,si−1−2) − (0,1,1,si−1−2)
→ (0,1,2,si−1−3) − · · · → (0,ni−1,ni−1,2) → (0,ni−1,0,1) − (1,0,ni−1,1) →
(1,0,0,0) − (0,0,0,0). ��

5 Concluding Remarks

The hierarchical dual-net can connect a large number of nodes with a small node-
degree and a short diameter. It is a potential candidate for the interconnection
network of the supercomputers of the next generation that may have more than
one million of nodes. We can select a popular network of small size that is a
product graph as the base network and then connect multiple base modules
with cross links (cables) to construct a very large-scale hierarchical dual-net. We

128 Y. Li, S. Peng, and W. Chu

can also select a suitable set of integers based on the base network to control the
number of nodes in the supercomputer. The base networks can be implemented in
a NoC VLSI and high-speed line cables may be used as the cross links to connect
PCB modules in cabinets. We presented an algorithm for finding a Hamiltonian
cycle in HDN with the base network of p-ary q-cube. There still remain a lot
of open issues in the study of the HDN. The future work might include the
design of algorithms for collective communication in HDN, the design of fault-
tolerant routing algorithms in HDN, and the fault-tolerant cycle embedding in
the hierarchical dual-net.

References

1. Adiga, N.R., Blumrich, M.A., Chen, D., Coteus, P., Gara, A., Giampapa, M.E., Hei-
delberger, P., Singh, S., Steinmacher-Burow, B.D., Takken, T., Tsao, M., Vranas,
P.: Blue gene/l torus interconnection network. IBM Journal of Research and De-
velopment 49(2/3), 265–276 (2005)

2. Beckman, P.: Looking toward exascale computing, keynote speaker. In: Interna-
tional Conference on Parallel and Distributed Computing, Applications and Tech-
nologies (PDCAT 2008), University of Otago, Dunedin, New Zealand (December
2008)

3. Ghose, K., Desai, K.R.: Hierarchical cubic networks. IEEE Transactions on Parallel
and Distributed Systems 6(4), 427–435 (1995)

4. Cray xt3 supercomputer (2004), http://www.cray.com/products/xt3/index.html
5. Leighton, F.T.: Introduction to Parallel Algorithms and Architectures: Arrays,

Trees and Hypercubes. Morgan Kaufmann Pub., San Francisco (1992)
6. Li, Y., Peng, S.: Dual-cubes: a new interconnection network for high-performance

computer clusters. In: Proceedings of the 2000 International Computer Symposium,
Workshop on Computer Architecture, ChiaYi, Taiwan, pp. 51–57 (December 2000)

7. Li, Y., Peng, S., Chu, W.: Hamiltonian cycle embedding for fault tolerance in
dual-cube. In: Proceedings of the IASTED International Conference on Networks,
Parallel and Distributed Processing, and Applications (NPDPA 2002), Tsukuba,
Japan, pp. 1–6 (October 2002)

8. Li, Y., Peng, S., Chu, W.: Efficient collective communications in dual-cube. The
Journal of Supercomputing 28(1), 71–90 (2004)

9. Li, Y., Peng, S., Chu, W.: An algorithm for constructing hamiltonian cycle in
metacube networks. In: Proceedings of the International Conference on Parallel
and Distributed Computing, Applications and Technologies (PDCAT 2007), pp.
285–292. IEEE Press, Adelaide (2007)

10. Li, Y., Peng, S., Chu, W.: Hamiltonian connectedness of recursive dual-net. In:
Proceedings of the 9th International Conference on Computer and Information
Technology, Xiamen, China, pp. 203–208 (October 2009)

11. Li, Y., Peng, S., Chu, W.: Recursive dual-net: A new universal network for super-
computers of the next generation. In: Hua, A., Chang, S.-L. (eds.) ICA3PP 2009.
LNCS, vol. 5574, pp. 809–820. Springer, Heidelberg (2009)

12. Preparata, F.P., Vuillemin, J.: The cube-connected cycles: a versatile network for
parallel computation. Commun. ACM 24, 300–309 (1981)

13. TOP500: Supercomputer Sites (June 2011), http://top500.org/

http://www.cray.com/products/xt3/index.html
http://top500.org/

Adaptive Resource Remapping through Live

Migration of Virtual Machines

Muhammad Atif1 and Peter Strazdins2

1 ANU Supercomputer Facility
2 Research School of Computer Science

The Australian National University, Canberra, ACT, 0200, Australia
{Muhammad.Atif,Peter.Strazdins}@anu.edu.au

Abstract. In this paper we present ARRIVE-F, a novel open source
framework which addresses the issue of heterogeneity in compute farms.
Unlike the previous attempts, our framework is not based on linear fre-
quency models and does not require source code modifications or off-line
profiling. The heterogeneous compute farm is first divided into a number
of virtualized homogeneous sub-clusters. The framework then carries out
a lightweight ‘online’ profiling of the CPU, communication and memory
subsystems of all the active jobs in the compute farm. From this, it con-
structs a performance model to predict the execution times of each job
on all the distinct sub-clusters in the compute farm. Based upon the pre-
dicted execution times, the framework is able to relocate the compute jobs
to the best suited hardware platforms such that the overall throughput of
the compute farm is increased. We utilize the live migration feature of vir-
tual machine monitors to migrate the job from one sub-cluster to another.

The prediction accuracy of our performance estimation model is over
80%. The implementation of ARRIVE-F is lightweight, with an overhead
of 3%. Experiments on a synthetic workload of scientific benchmarks show
that we are able to improve the throughput of a moderately heterogeneous
compute farm by up to 25%, with a time saving of up to 33%.

1 Introduction

Compute farms, whether for research department clusters, data centers or su-
percomputing facilities tend to become heterogeneous over time. This is due
to incremental extension over a period of time and/or particular nodes being
purchased for users with particular needs and the relatively small price differ-
ences between these various options. After couple of upgrade cycles, the compute
farm becomes a heterogeneous compute farm (HC) constituted of a federation
of homogeneous sub-clusters.

Parallel applications have varied computation and communication require-
ments depending on the domain and the nature of their algorithms. For instance,
some applications are floating point intensive while others can be memory or
communication intensive. This diverse nature of applications results in varied
execution time in the compute farm due to heterogeneity of the nodes.

The issue of effective mapping (or scheduling) of parallel applications onto
such heterogeneous system is therefore of great interest to researchers. Two

Y. Xiang et al. (Eds.): ICA3PP 2011, Part I, LNCS 7016, pp. 129–143, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

130 M. Atif and P. Strazdins

distinct methodologies have evolved overtime for effective resource allocation
in an HC. One is to develop a heterogeneity-aware scheduler [8,6] and the other
is to write heterogeneity-aware applications [7,11]. In both cases, the allocation
of nodes to a parallel job in an HC requires some sort of performance model-
ing techniques. In performance modeling, an application is profiled to gain an
understanding of its performance characteristics. The performance models are
evaluated on the different compute nodes and sub-networks to determine the
expected speedups (or slowdowns) on various hardware architectures/nodes.

Fine grained performance modeling is capable of reasonably accurate predic-
tion but the associated cost of profiling can be very high in terms of the wall-clock
time of the job [11,15]. Due to these costs, these techniques must be applied to
applications in an ‘offline’ mode. The application or some of its iterations are
profiled on a set of hardware and scheduling decisions are based on the resul-
tant profile metrics. In the case of a workload change, the application behavior
changes and the application needs to be profiled again.

In this paper, we present the design and results of our resource remapping
framework, which is able to exploit the heterogeneity in a compute farm to
improve throughput. We deal with this issue of heterogeneity by breaking the
heterogeneous compute farm into a number of homogeneous sub-clusters. The
runtime characteristics of applications are determined with the combination of
hardware performance counters/units (PMUs) and the profiling interface to MPI
(PMPI). This enables us to predict the performance of the running MPI appli-
cations on all the other sub-clusters present in our heterogeneous compute farm.
All this is done without the need of changing the application binary or requiring
off-line profiling and analysis. We then propose the best-suited sub-cluster for
the compute job on the compute farm and migrate the job to this sub-cluster to
improve the overall throughput and the average waiting time. For the job migra-
tion (or remapping), we make use of the live migration facility provided by most
virtual machine monitors. As concluded in [3,17], the benefits of virtualization in
HPC environments outweigh the potential overheads, namely potentially slower
communication and CPU overhead due to virtualization.

The rest of the paper is organized as follows: We briefly discuss the related
work in Section 2. We then present our theoretical framework in Section 3.
Implementation details are provided in Section 4. Sections 5 and 6 detail our
experiments and results. Conclusions and future work are given in Section 7.

2 Related Work

There is a significant amount of work related to this paper which can be broadly
divided into two categories: heterogeneity-aware schedulers and heterogeneity-
aware applications.

2.1 Heterogeneity-Aware Schedulers

A number of ‘static’ heterogeneous cluster scheduling solutions have been pro-
posed which try to map the application processes on the available compute nodes

Adaptive Resource Remapping through Live Migration of Virtual Machines 131

to improve the application’s runtime. The general problem of optimally mapping
parallel programs or tasks to machines in a heterogeneous compute farm has been
shown to be NP-complete [8], and hence requires heuristics. Braun et al. [6] have
presented a detailed comparison of a number of heuristics proposed earlier1.
However these heuristics have a hard requirement of the estimated execution
times of the application on all the possible distinct compute nodes (processors).
This either requires the complete execution of the application on all the possible
compute nodes before scheduling or ‘offline’ performance estimation to predict
the runtime of the application. All of the subsequent work in the area is static
in nature and dynamic load balancing of the HC is missing in these frameworks.

2.2 Heterogeneity-Aware Applications

One approach proposed by several researchers [7,10] to address the computation
and communication imbalance of the nodes in an HC is to adapt the parallel
application according to the heterogeneity of the compute farm. Here, the parallel
application is required to distribute computations unevenly to account for the
varied speed and architecture of processors [7]. These techniques require source-
code modifications. Charm++ [10] , Prophet [16] and EasyGrid [5] are examples
of similar attempts that require source code modifications to build scheduling
and load balancing capabilities inside an application.

2.3 Comparison with ARRIVE-F

The approaches for dealing with heterogeneity mentioned above are either based
on linear CPU frequency models, require off-line profiling, source code modifica-
tion or combinations thereof. Our framework is different in that it has all of the
following desirable properties: (i) It does not require source code changes or even
recompilation of the parallel application. (ii) The applications are profiled and
analyzed only during runtime. (iii) The execution time estimates are based on
real hardware metrics like floating point operations and L2 misses. Our frame-
work uses the live migration facility of Xen hypervisor to dynamically relocate
applications, a feature missing in any job scheduling/estimation framework.

3 Framework

The objective of our framework is to increase the overall throughput of the
computer cluster by reducing the average wait time of the submitted jobs. The
live migration facility provided by Xen is utilized to move the compute job to
the best suitable hardware.

3.1 Assumptions

Our scheduling and profiling framework is targeted towards iterative scientific
applications with runtimes in the order of minutes or larger. We need applications
1 Details and original citations of these heuristics can be found in the paper.

132 M. Atif and P. Strazdins

to run for such periods of time in order to recover the time lost during migration.
As most scientific applications are iterative in nature [15] and typically run for
hours, these assumptions are realistic in most real-world scenarios. We do not
cater for the disk I/O intensive jobs, as this introduces complexities beyond the
scope of our current work

The heterogeneous compute farm is divided into a number of homogeneous
sub-clusters on the basis of similar hardware specifications. No job may be dis-
patched across two or more of these sub-clusters. Each virtual machine (VM) is
provided with exactly one CPU, The one VM per CPU requirement enables us
to keep the minimum grain of migration to one process.

We also assume that the approximate wallclock time is provided at the time
of submission. It should be noted that the approximate wallclock time is a basic
requirement of the widely used backfill algorithm. In Section 3.3, we discuss how
this assumption can be relaxed.

3.2 Performance Modeling

We divide our performance model into three sub-models: the computational
model, the communication model and the memory utilization model, as will be
described below.

The model is built on an execution profile gathered a specific time period of
‘τ ’ seconds. The value of τ can be any positive value large enough to cover at
least a single iteration of the parallel application.

Computational Model. The computation model is responsible for generating
the CPU profile of the application. We profile all processes on the compute cluster
for the characteristics which are exposed through the hardware performance
counters. We take an average of the hardware performance counter events for all
processes, as there is no significant variation in these events between processes
for the scientific applications that we have studied. The events include (but are
not limited to) the floating point operation and the L1/L2 cache miss counts.

Once the hardware performance counter (Pctr) event counts over the profiling
period is obtained, we use a standard approach to model the computational time
by weighing them with their associated penalties. The time for a process belonging
to a parallel application ‘j’, executing on a distinct cluster ‘A’, is given by:

tPA,j =
∑

i

PctrA,j,i ×
CyclesA,i

fA
(1)

where PctrA,j,i is the count of a specific performance counter event ‘i’ (e.g. L2 cache
misses) performedby job j. CyclesA,i is the total number of theCPUcycles required
to perform the task identified by the PctrA,i,j . E.g. in the case of floating point
operations CyclesA,i represents the average number of cycles required to perform
a single floating point operation. fA denotes the CPU frequency of sub-cluster ‘A’.
The fraction CyclesA,i

fA
is a hardware dependent constant for the sub-cluster ‘A’.

In order to predict the computation time (t̃PB,j) for the job j on a different
cluster ‘B’ , we simply substitute the hardware dependent fraction in Equation 1.

Adaptive Resource Remapping through Live Migration of Virtual Machines 133

we assume that the event counts will remain approximately the same on cluster
‘B’ (i.e. PctrB,j,i ≈ PctrA,j,i). This may not necessarily hold for events such as
cache misses, and may introduce some inaccuracy into the prediction.

Communication Model. To determine the communication characteristics of
a process belonging to a parallel job, we use the MPI profile wrappers known as
PMPI, present in most of the MPI-2 compliant implementations [2].

In order to determine the time spent by the process in blocking communica-
tion, we log the frequency of distinct messages according to the message size. Let
‘nB

j (s)’ be the total number of distinct messages of size ‘s’ in a time period ‘τ ’.
The total time spent by the process j executing on sub-cluster ‘A’ in blocking
communications, tBA,j, is given by:

tBA,j =
∑

s

nB
j (s)× lA(s) (2)

where lA(s) is the communication network’s latency for a message size of ‘s’
on sub-cluster ‘A’. The latency is determined through micro-benchmarks. To
predict the time spent in blocking communication for the target cluster ‘B’, we
simply use Equation 2 to evaluate the expression tBB,j.

Predicting accurate communication times for non-blocking communication is
more difficult because of the potential overlap of communication and computa-
tion [15]. A non-blocking communication is usually followed by an MPI Wait().
Here, the time that an application has to wait for the communication to com-
plete is more relevant than the network latency as it can capture the degree
of overlap. We have devised a lightweight approximation for the non-blocking
communication. This is done by logging the MPI Request object in each non-
blocking message and comparing it against the corresponding MPI Wait() call.

The time a process waits for all the non-blocking communication to finish
during the time period τ can be given as:

tNA,j =
∑

s

nN
j (s)× wA(s) (3)

where nN
j (s) represents the number of non-blocking messages of distinct size ‘s’.

wA(s) is the average waiting time for all messages of size ‘s’. wA(s) is calculated
by logging each non-blocking send or receive and calculating the corresponding
time a process had to wait for that particular message to complete.

In order to predict the waiting time for cluster ‘B’ with a different intercon-
nect, we assume that the degree of overlap will be approximately preserved.
Thus, we simply multiply the term nN

j × wA(s) in Equation 3 with the ratio of
latencies of cluster ‘B’ to cluster ‘A’. The approximate time on cluster ‘B’ that
will be spent in non-blocking communication can then be given by:

t̃NB,j =
∑

s

nN
j (s)× wA(s)× lB(s)

lA(s)
(4)

Memory Utilization. The swap partition utilization by any process belonging
to an HPC application has a time penalty in the order of minutes even for the

134 M. Atif and P. Strazdins

application with a wall clock time in seconds. Our framework does not predict
the performance of such a case; however, it is able to detect take appropriate
actions so that the application can avoid thrashing. The implementation details
of memory utilization are given in Section 4.

Predicted Execution Time on Another Cluster. The time gained or lost
by the job if it was executed on cluster ‘B’ can be obtained by subtracting the
predicted computation and communication times for sub-cluster ‘B’ from the
profiled times of sub-cluster ‘A’:

tA→B,j = (tPA,j − t̃PB,j) + (tBA,j − tBB,j) + (tNA,j − t̃NB,j) (5)

where tA→B,j is the predicted time saved or lost by the job j on sub-cluster ‘B’
for every τ seconds. Here a negative value means that the application will run
slower on sub-cluster ‘B’.

Equation 5 forms the basis of the migration prediction model as discussed
in Section 3.3. In order to determine the execution time TA→B,j of job j on
sub-cluster ‘B’ based on the profile data on sub-cluster ‘A’, tA→B,j is multiplied
with the total number of τ blocks in the actual runtime of the application on
sub-cluster ‘A’, T act

A,j :

TA→B,j = tA→B,j ×
T act

A,j

τ
(6)

The accuracy of the model is discussed in Section 5.3.

3.3 Migration Prediction

As discussed, the main objective of the framework is to increase the through-
put of the compute farm by migrating jobs to the best suited sub-cluster. This
requires the framework to compute the predicted execution time of each active
job on all sub-clusters. As the sub-clusters in the compute farm might be busy
entertaining a number of other parallel jobs (e.g. k, l, m), the framework inspects
all jobs and treats all sub-clusters as ‘potential targets’. If the potential target
cluster is free, then the job is migrated from the source cluster to the target
cluster. However, if the potential target cluster is busy servicing another job,
the impact of job migration on both sub-clusters is calculated, i.e. the time lost
of by both jobs during the migration.

The total time saved by the compute farm T A↔B
j,k if two jobs j and k swap

their respective sub-clusters can be given by:

T A↔B
j,k = ηjtA→B,j ×

T rem
j

τ
+ ηktB→A,k × T rem

k

τ
− T M

j,k (7)

where ηj and ηk are the number of processes of the respective jobs. The terms
T rem

j

τ and T rem
k

τ give the remaining time blocks for the applications j and k re-
spectively. The remaining time T rem is calculated by subtracting the elapsed
time from the users’ runtime estimate. The term tB→A,k is the predicted time
for the job k on sub-cluster ‘A’ and is derived in the similar way as tA→B,j .

Adaptive Resource Remapping through Live Migration of Virtual Machines 135

The term T M
j,k is the average time stretch introduced in the wall clock time of

jobs j and k by the migration, weighted by the number of processes involved.
The value of T M

j,k depends on the network bandwidth and CPU frequency of the
involved sub-clusters, as well as the network utilization and memory dirtying
rate of the involved jobs [3]. T M

j,k can be determined through the profile data but,
for simplicity, we use an approximation T M

j,k = T m(ηj + ηk), where T m is the
average wall clock time stretch introduced by a single process migration. This
approximation assumes that the migration of multiple processes is effectively
overlapped. A negative value of T A↔B

j,k means that the proposed migration will
result in reduced throughput of the compute farm.

The job j should at least run for T m

tA→B,j
profile time blocks (τ) to recover the

cost of migration, i.e.
T rem

j

τ
>

T m

tA→B,j
(8)

Only if the above condition correspondingly holds on job k as well is the pair
further considered for migration.

To remove any further dependence on the users’ runtime estimates (in par-
ticular the tendency to over-estimate the application run-time to avoid getting
their jobs killed [14]), we introduce a parameter β. We assume that the candidate
processes will run for at least another βτ time, and only proceed with the migra-
tion if there is sufficient benefit over this restricted interval. β is a configurable
parameter and its value can be adjusted according the migration overheads and
the average job length in the compute cluster such that βτ > T m.

The total time saved by the compute farm if the migration proceeds over this
period can then be calculated as:

T̄ A↔B
j,k = (ηjtA→B,j + ηktB→A,k)× β − T M

j,k (9)

Equation 9 suggests that, for T̄ A↔B
j,k > 0, the compute farm will post an improved

throughput.
To take into account possible inaccuracies in our performance model, we intro-

duce a further threshold value TThresh, which is the minimum expected benefit
required for the migration sequence to proceed. The value of TThresh is a config-
urable parameter, and can be a percentage of βτ(ηj +ηk). For example a value of
TThresh = 0.1βτ(ηj +ηk) suggests that the jobs j and k should only be migrated
if the expected gain in time from the proposed migration is at least 10% in the
next time interval τβ.

T̄ A↔B
j,k > TThresh (10)

Equations 8 and 10 form the basis of the migration decisions.

3.4 Migration Decisions

At any given time, a compute farm may have a number of sub-clusters with a
number of active jobs. In order to make migration decisions that improve the
throughput of the compute farm, we compare the active jobs against each other;

136 M. Atif and P. Strazdins

except for the ones which are on the same sub-cluster. The left hand side of
Equation 10 is used to develop a comprehensive list in descending order. We
then traverse through the list in order and migrate the jobs if they qualify for
final migration check, i.e. enough resources are available on both the sub-clusters
to entertain the swapped jobs.

We have identified a number of possible migration scenarios. An extended
description of these scenarios may be found in our technical report [4]. To ensure
that the framework benefits from the migration decisions, a migrated job has to
wait for βτ seconds to be considered for another migration.

4 Implementation

The framework requires a runtime engine to generate the computation and com-
munication profiles of the active jobs. A high level diagram of the scheduling
and profiling framework is presented in the Figure 1(a).

(a) Block view of the framework. (b) Overheads of the framework.

Fig. 1.

The user submits the job through the ‘job submit’ routine. The job queue is
continuously analyzed and jobs are dispatched to based on the easy backfill algo-
rithm [14]. The scheduler ensures that no job is dispatched among two different
sub-clusters. The scheduler also tries to ‘co-locate’ the application processes if
possible.

Each compute node has a local resource manager daemon (LRM) responsible
for updating the node statistics like memory utilization and the communication
network utilization. The memory profile of each process is obtained through
the /proc filesystem, whereas the communication network profile is obtained
through the PMPI layer. In order to achieve a lightweight MPI message pro-
file, the LRM shares memory with the PMPI layer. The PMPI layer logs the
frequency of every distinct message in terms of message size, communication
destination, and message type. The LRM periodically updates the summary of
these statistics to the global data store, which is a MySQL database.

Adaptive Resource Remapping through Live Migration of Virtual Machines 137

The CPU profiles are generated through passive domain profiling provided by
the Xenoprofile [13]. The CPU profiles are read by the VMM daemon (VMMD)
which resides in domain-0. Like the LRM, the VMMD periodically sends the
data to the global data store. To minimize profile overhead, the event counter
threshold is kept at 500K and the sample directory is kept in a RAMFS.

The profile analyzer is responsible for predicting the job completion times
and is based on the CPU and communication models explained in Sections 3.2
and 3.2. The profile analyzer reads the profile information from the global data
store and does not contribute to the profiling overhead. The migration assistant
performs the live migration of compute nodes if required.

We have named our framework as ARRIVE-F (Adaptive Resource Relocation
in Virtualized Environments). ARRIVE-F is licensed under GPL version 3, and
its source code can be downloaded from http://cs.anu.edu.au/~Muhammad.
Atif/opensource/arrivef.

5 Experimental Results

In this section, we present initial results of the profiling and resource relocation
framework. We use simple scenarios to show that our framework is capable of
improving the throughput of the compute cluster and reduce the average wait
time of the submitted jobs.

5.1 Experimental Platform

For the experiments we use Xen 3.3.0 compiled from source using GCC 4.2.4.
Xen 3.3.0 is patched with our live migration optimization, which is able to reduce
the migration overhead by 50% [3]. The domain-0 kernel is Xeno-linux 2.6.31.12.

Table 1. Heterogeneous Compute Farm

Cluster CPU Type Memory Total
Machines

A 4 × Opteron 2.2 Ghz 4 GB 2
B 4 × Phenom II 3.0 Ghz 4 GB 2
C 4 × Phenom II 3.0 Ghz 4 GB 2
D 2 × Athlon 2.0 Ghz 1.2 GB 4

The experimental cluster consists of a number of sub-clusters as given in
Table 1. Each VM is provided with one CPU and two Gigabit Ethernet network
interfaces, with the exception of sub-cluster ‘C’ which utilizes Fast Ethernet for
MPI communication for added heterogeneity. Both the network interfaces use
the Xen bridge architecture to allow VM migration. The RAM of each VM is set
to 512 MB initially. The VMs are mounted through NFS to enable migration.

5.2 Applications

We utilize a selection of the NAS Parallel Benchmarks (NPB) [1] and High Per-
formance Linpack (HPL) [9] to validate the framework. For these applications,

http://cs.anu.edu.au/~Muhammad.Atif/opensource/arrivef
http://cs.anu.edu.au/~Muhammad.Atif/opensource/arrivef

138 M. Atif and P. Strazdins

we have found it sufficient to limit the performance counter set used for profiling
to floating point operations and L1/L2 cache misses.

All the benchmarks were compiled with GCC 4.3.2 with amdfam10 optimiza-
tion. In Section 6, we have modified the NPB by increasing the number of iter-
ations. This is done to make the benchmark run for a longer period of time as
required by the framework. Where applicable, the total number of iterations is
shown along with the benchmark name, class and number of processes.

For the experiments in the Section 6, the value of τ is 50 seconds and β is 20
time blocks. Jobs with an approximate remaining runtime of βτ or more seconds
were considered for migration. TThresh = 0.1βτη is utilized. where η is the total
number of processes of all the jobs involved in the migration sequence.

5.3 Comparison of Predicted and Actual Execution Times

In this section, we present the comparison of the actual execution times with
the predicted times as generated by the framework. For the ease of comparison,
we present two tables: one for the computational model accuracy and the other
for the communication model accuracy. We have used NPB class ‘B’ for these
experiments as their wall clock times are higher than those for class ‘A’.

For the CPU model, we utilize sub-clusters ‘A’ and ‘B’, which have similar
network but different CPU architectures. We execute the benchmark on cluster
‘A’ and the framework predicts the wall clock time for the cluster ‘B’.

Table 2. CPU Model Accuracy

Benchmark Tact
A Tact

B Tact
A→B % Acc % Acc

CPU Prof
CG.B.8 104.5 57.9 71.2 75.5 81.3
FT.B.8 98.2 81.6 77.2 88.6 94.6
LU.B.8 240.7 81.3 103.4 46.0 78.6
HPL.N15K 150.7 62.2 68.5 56.2 90.8

Table 3. Comm. Model Accuracy

Benchmark Tact
C Tact

B Tact
C→B % Acc

Prof
CG.B.8 141.0 57.9 66.2 88.8
FT.B.8 375.1 81.6 79.3 97.2
LU.B.8 106.8 81.3 61.8 76.0
HPL.N15K 150.7 62.2 80.2 71.1

The columns Tact
A and Tact

B give the time taken by the benchmark on the
respective sub-clusters. The column Tact

A→B gives the wall clock time predicted
by the framework for the cluster ‘B’ based on the data collected from the cluster
‘A’ and is calculated from Equation 6 . The column ‘% Acc CPU’ shows the
percentage accuracy of the execution time projection based on linear CPU fre-
quency scaling, which forms the basis of the research works presented in Section
2. The CPU frequency speedup ratio is calculated by fB/fA. The column ‘%
Acc Prof’ gives the execution time percentage accuracy of our framework. It is
clear that our framework consistently outperforms the CPU frequency method.

For the communication profile, we utilized clusters ‘B’ and ‘C’. The only
difference between these two clusters is the communication link.

It can be seen from Table 3 that the accuracy of the communication model
decreases for the application which sends or receives a high frequency of mes-
sages. This is due to the fact that Xen uses a split driver interface which is highly
CPU intensive For applications like LU, which sends a high number of messages

Adaptive Resource Remapping through Live Migration of Virtual Machines 139

of small size, the CPU load due to processing on domain-0 is high, and this
skews the projections. We plan to introduce domain-0 profiles in the framework
to overcome this issue.

5.4 Framework Overheads

Figure 1(b) gives the comparison of the relative wall clock times for a set of
NPB class ‘B’ and HPL benchmarks with and without the prediction frame-
work. Approximately 1.2% of the profile overhead is due to Xenoprofile. The
communication profiles have an overhead of 0.3% to 0.7%, depending upon the
communication rate of the benchmark. An exception is the MG benchmark,
which uses non-blocking messages and the overhead is due to the retrieval of the
corresponding non-blocking requests, as discussed in Section 3.2.

6 Compute Farm Throughput

To determine the throughput of the compute farm with the resource relocation
framework, the scheduler is supplied with workloads which are representative
of real-world data. We then compare it against the ‘base-run’ using the same
scheduler but without the profiling framework active. The scheduler is based on
FCFS easy backfill algorithm, as discussed in Section 4. In both the experimental
runs, the scheduler is supplied with the same stream of jobs with the approximate
expected runtime given for each job. The Lublin-Feitelson model [12] was used
to generate the job queue.

The list of jobs generated by the model was randomly allocated to one of
the NPB kernels. The number of iterations of these benchmarks were changed
to match the approximate expected runtime provided by the Lublin-Feitelson
model. This was done by calculating an iteration size of each benchmark on
cluster ‘A’. We have conducted several experiments with different job streams.
Due to space limitation we are presenting the results of only one scenario. The
complete list, with the expected and actual runtimes and detailed analysis of the
migration decisions, can be found in our technical report [4].

6.1 Experiment 1

In this experiment a stream of 330 jobs was given to the scheduler. The number
of jobs was arbitrarily chosen to keep the experiment runtime to approximately
3 hours. The inter-arrival-time of the jobs was selected to represent a normal
rush hour.

The scenario was tested three times and results of each run are presented in
Table 4. The columns ‘Base-run’ and ‘Migration Run’ give the statistics of the
respective runs. The columns ‘W.Time’ and ‘TA.Time’ represent the average
wait time and the average turnaround time of jobs respectively. The column
‘Total time’ gives the total time taken by the respective base-run or the migration
run to complete the execution of all the 330 jobs supplied to the scheduler. The

140 M. Atif and P. Strazdins

column ‘jobs @ mig.run’ gives the total number of jobs completed by the base-
run in the time that took migration run to complete the execution of all the 330
jobs.

The average throughput improvement achieved for this particular case is 27%.
The average time saved by the framework is 3104 seconds, which reflects an
impressive time saving of 32%. Compared to the base-run, the migration run
reduced the average wait time for jobs by 55% and the average turnaround time
of the jobs was improved by 54%.

As a single second difference in the execution of any job can result in different
sub-cluster allocations to subsequent jobs, the total times are different for each
experimental run.

Table 4. Base-run vs migration run

Sr. No
Base-run Migration Run

W.Time TA.Time Total Time Jobs@mig.run W.Time TA.Time Total Time
1 4493 4654 12434 255 2747 2913 9740
2 4469 4684 12782 267 2961 3129 9380
3 4531 4749 12837 258 2982 3119 9619

Avg. 4498 4696 12684 260 2896 3053 9580

For the experiment run with the migration framework, three distinct migra-
tion decisions were made and are detailed in Table 5.

Table 5. Job Migration Details

Migration Number Job Name Sub-cluster Test Tact Base Tact
A↔B Mig.

Migration 1
FT.B.4.20 D 92 1148 (D) 415
FT.A.4.156 C 230 95 (C) 108

Migration 2
MG.B.8.5132 A 2697 2332 (A) 1769
FT.B.8.506 B 2174 2226 (B) 2222

Migration 3

CG.B.4.2286 A 3268 3408 (D) 2043
LU.A.1.7385 A 5869 5870 (A) 4161
LU.A.8.12334 C 1850 1058 (B) 1838
LU.B.1.455 A 1500 1850 (A) 1447

1- Like the base-run, in the migration run, FT.B.4.20 was allocated to Cluster ‘D’
which has 1.2 GB of physical memory per physical machine. FT.B.4 benchmark
requires a minimum of 800 MB of physical memory to avoid thrashing and takes
approximately 90 seconds to complete. As each VM on cluster ‘D’ can have a
maximum of 512 MB of memory, the job used the swap partition. This resulted
in the job taking 1148 seconds to complete. The migration framework was able
to detect the case and the job was swapped with the job (FT.A.4.156) running
on cluster ‘C’. The column ‘Test’ shows the estimated time generated by the
Lublin-Feitelson model. ‘Tact Base’ gives the actual time taken by the job to
complete in the base run. The brackets contain the sub-cluster on which the job
executed in the base-run. The column ‘Tact

C↔D Mig.’ gives the time taken by the
jobs in the migration run.
2- The second migration performed by the framework was the sub-cluster swap
between MG.B.8.5132 and FT.B.8.506. FT.B.8 is bandwidth bound and does

Adaptive Resource Remapping through Live Migration of Virtual Machines 141

not benefit from the faster CPU clock. The framework was able to determine
that the compute farm will benefit from the migration swap of these two jobs
and proceeded accordingly.
3- The last migration was in fact a sequence of migrations and represents the
complex migration scenario presented in Section 3.4. Here, the framework mi-
grated LU.A.8.12334 from sub-cluster ‘C’ to sub-cluster ‘A’. As seen from the
previous experiments, LU.A.8 has less penalty on cluster ‘C’ compared to the
other NPB kernels. However, the framework was able to co-locate all the pro-
cesses of CG.B.4.2286, eliminating the inter-node communication through slower
network interface. This resulted in CG.B.4 benefiting from the faster CPUs. Sim-
ilarly LU.A.1 and LU.B.1 benefited from the higher flop rate of sub-cluster ‘C’.
LU.A.8.12334 lost CPU time which was made up by the faster communication
network of cluster ‘A’.

The migration decisions enabled the HC to save a total of 3,984 seconds.
However, the actual time difference from the base run by the HC was somewhat
less than this (see Table 4), due to the fact that, once migration occurs, different
scheduling decisions were made for subsequently introduced jobs.

6.2 Further Experiments

In a second experiment, we removed the FT.B.4.* benchmark from the workload
generation to ensure that no benchmark thrashes the swap partition. A list of 212
jobs was generated. The average total time of the base run was 7792s; a single
migration of FT.B.8.1093 and LU.B.8.3088 between clusters A and B in each of
the three trials resulted in an averaged total time of 7262s, an improvement of
7%. The average waiting and turnaround times improved by less than 1%.

In a third experiment, we removed the sub-cluster ‘C’ (Fast Ethernet) and
the Lublin-Feitelson model generated a workload reflecting a longer arrival time
between the jobs (i.e. a lesser load). This saw ARRIVE-F making three migra-
tion decisions, all based on computational requirements. The overall throughput
was improved by 13% and total time saved was 3360 seconds, representing an
improvement of 33%. The average waiting time was reduced by a very impressive
298% and the average turnaround time was improved by 230%.

Further details of experiments may be found in our technical report [4].

7 Conclusions and Future Work

In this paper, we have demonstrated that the issue of heterogeneity in compute
farms can be successfully addressed by using the live migration facility provided
by virtual machine monitors. We show that the benefits of virtualization go far
beyond its traditional use in the data center environments. We have presented
a framework which can measure application performance and potential bottle-
necks by leveraging hardware performance counters and the PMPI layer. We
have shown that the models based on the CPU frequency do not make accurate
predictions and incorporating hardware performance counter data leads to an
improved prediction.

142 M. Atif and P. Strazdins

By implementing a lightweight profile engine with overheads of less than 3%,
we are able to predict the execution times for all the jobs on every distinct
hardware platform (sub-cluster) with sufficient accuracy to make appropriate
migration decisions. In two of our experiments, these improved the throughput
of an HC by 25% and the total time saved by over 30%.

We also believe that this paper contributes towards the understanding of how
the system level measurements can be used to characterize an application and
estimate its execution times in a heterogeneous compute farms.

We envision that such ‘online profiling and migration frameworks’ will become
an essential part of any cloud deployment. For this we are working to extend
the framework to the high performance cloud and grid infrastructures. Our main
focus is a balance of the throughput of an HC with power savings. In the future
we also plan to run real life workloads and test the framework on a larger compute
farm.

Acknowledgments. We thank Alexander Technology and Platform Comput-
ing for donating us the hardware. We especially thank Richard Alexander for
his vision that enabled this research work.

References

1. NAS Parallel Benchmarks (September 2010),
http://www.nas.nasa.gov/Software/NPB

2. OpenMPI (June 2010), http://www.open-mpi.org/
3. Atif, M., Strazdins, P.: Optimizing live migration of virtual machines in smp clus-

ters for hpc applications. In: IFIP International Conference on Network and Parallel
Computing Workshops, pp. 51–58 (2009)

4. Atif, M., Strazdins, P.: Adaptive Resource Remappin In Virtualized Environments
- Framework. Computer Science Technical Report TR-CS-11-01, Australian Na-
tional University (May 2011), http://cs.anu.edu.au/techreports/

5. Boeres, C., Rebello, V.E.F.: Easygrid: towards a framework for the automatic grid
enabling of legacy mpi applications: Research articles. Concurr. Comput.: Pract.
Exper. 16, 425–432 (2004)

6. Braun, T.D., Siegel, H.J., Beck, N., Boloni, L.L., Maheswaran, M., Reuther, A.I.,
Robertson, J.P., Theys, M.D., Yao, B., Hensgen, D., Freund, R.F.: A comparison of
eleven static heuristics for mapping a class of independent tasks onto heterogeneous
distributed computing systems. Journal of Parallel and Distributed Computing 61,
810–837 (2001)

7. Dongarra, J., Lastovetsky, A.: An overview of heterogeneous high performance and
grid computing. In: Di Martino, B., Dongarra, J., Hoisie, A., Yang, L., Zima, H.
(eds.) Engineering the Grid: Status and Perspective (2006)

8. Ibarra, O.H., Kim, C.E.: Heuristic algorithms for scheduling independent tasks on
nonidentical processors. J. ACM 24(2), 280–289 (1977)

9. University of Tennesse Innovative Computing Laboratory. High performance lin-
pack benchmark (March 2009), http://www.netlib.org/benchmark/hpl/

10. Kale, L.V., Kale, L.V.: Charm++ and ampi: Adaptive runtime strategies via mi-
gratable objects. In: Advanced Computational Infrastructures for Parallel and
Distributed Adaptive Applications, no. 9780470558027. John Wiley & Sons, Inc.,
Chichester (2009)

http://www.nas.nasa.gov/Software/NPB
http://www.open-mpi.org/
http://cs.anu.edu.au/techreports/
http://www.netlib.org/benchmark/hpl/

Adaptive Resource Remapping through Live Migration of Virtual Machines 143

11. Katramatos, D., Chaplin, S.J.: A cost/benefit estimating service for mapping par-
allel applications on heterogeneous clusters. In: IEEE International Conference on
Cluster Computing, Cluster 2005 (2005)

12. Lublin, U., Feitelson, D.G.: The workload on parallel supercomputers: Modeling
the characteristics of rigid jobs. Journal of Parallel and Distributed Computing,
1105–1122 (November 2003)

13. Menon, A., Santos, J.R., Yoshio, T.: Diagnosing performance overheads in the xen
virtual machine environment. In: VEE 2005: Proceedings of the 1st ACM/USENIX
International Conference on Virtual Execution Environments, pp. 13–23 (2005)

14. Mu’alem, A.W., Feitelson, D.G.: Utilization, predictability, workloads, and user
runtime estimates in scheduling the ibm sp2 with backfilling. IEEE Trans. Parallel
Distrib. Syst. 12, 529–543 (2001)

15. Nakazawa, M., Lowenthal, D.K., Zhou, W.: The mheta execution model for het-
erogeneous clusters. In: SC 2005: Proceedings of the 2005 ACM/IEEE Conference
on Supercomputing. IEEE Computer Society, Washington, DC, USA (2005)

16. Weissman, J., Zhao, X.: Scheduling parallel applications in distributed networks.
Cluster Computing 1, 109–118 (1998) 10.1023/A:1019073113216

17. Youseff, L., Wolski, R., Gorda, B., Krintz, C.: Paravirtualization for HPC sys-
tems. In: Min, G., Di Martino, B., Yang, L.T., Guo, M., Rünger, G. (eds.) ISPA
Workshops 2006. LNCS, vol. 4331, pp. 474–486. Springer, Heidelberg (2006)

LUTS: A Lightweight User-Level Transaction

Scheduler

Daniel Nicácio1, Alexandro Baldassin2, and Guido Araújo1

1 IC-UNICAMP
{dnicacio,guido}@ic.unicamp.br

2 UNESP - Univ Estadual Paulista, Rio Claro, Brazil
alex@rc.unesp.br

Abstract. Software Transactional Memory (STM) systems have poor
performance under high contention scenarios. Since many transactions
compete for the same data, most of them are aborted, wasting proces-
sor runtime. Contention management policies are typically used to avoid
that, but they are passive approaches as they wait for an abort to hap-
pen so they can take action. More proactive approaches have emerged,
trying to predict when a transaction is likely to abort so its execution
can be delayed. Such techniques are limited, as they do not replace the
doomed transaction by another or, when they do, they rely on the op-
erating system for that, having little or no control on which transaction
should run. In this paper we propose LUTS, a Lightweight User-Level
Transaction Scheduler, which is based on an execution context record
mechanism. Unlike other techniques, LUTS provides the means for se-
lecting another transaction to run in parallel, thus improving system
throughput. Moreover, it avoids most of the issues caused by pseudo par-
allelism, as it only launches as many system-level threads as the num-
ber of available processor cores. We discuss LUTS design and present
three conflict-avoidance heuristics built around LUTS scheduling capa-
bilities. Experimental results, conducted with STMBench7 and STAMP
benchmark suites, show LUTS efficiency when running high contention
applications and how conflict-avoidance heuristics can improve STM per-
formance even more. In fact, our transaction scheduling techniques are
capable of improving program performance even in overloaded scenarios.

1 Introduction

The recent advent of multicore processors has renewed the interest in concurrent
programming and effectively moved it into mainstream. During the last few
years, extensive research has been carried out into new programming models and
abstractions, of which transactions (or atomic blocks) is certainly a promising
one [1]. A transaction can be viewed as an atomic block of code that is executed
in isolation from the rest of the system, offering a convenient synchronization
mechanism. One of the major advantages of transactions relies on the fact that
it moves most of the burden from programmers to the underlying transactional
memory (TM) subsystem.

Y. Xiang et al. (Eds.): ICA3PP 2011, Part I, LNCS 7016, pp. 144–157, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

LUTS: A Lightweight User-Level Transaction Scheduler 145

While transactions perform well on workloads with reasonable amounts of
parallelism, they may substantially degrade performance on those which exhibit
higher data contention. In such cases, two or more transactions tend to compete
for the same data and, since at least one of the accesses is an update, a conflict
occurs. Deciding what to do when a conflict arises is the responsibility of the so
called contention manager [2], an important component of any TM system. Usu-
ally, a conflicting transaction is aborted and restarted after some time. Although
certain contention policies may provide good performance for some workloads,
it can also considerably downgrade performance for others.

Contention management is a central issue when the system is characterized
by pseudo parallelism [3]. Pseudo parallelism occurs when the total number of
system-level threads is greater than the available number of processor cores,
forcing several threads to share the same core. In such scenario, performance
is greatly degraded as: (i) more transactions running simultaneously naturally
increase the likelihood of conflicts; (ii) same-core transactions are more likely
to conflict to each other, specially when they are longer than the scheduler
quantum; and (iii) more threads sharing the same core tend to cause more cache
misses and page faults. Dealing with the pseudo parallelism is a central problem
in the design of efficient contention managers.

In this letter we propose LUTS, a Lightweight User-level Transaction Sched-
uler. LUTS implements a fully cooperative scheduler, and does not rely on the
system-level scheduler for context switching the transaction threads. LUTS novel
user-level cooperative approach presents two main advantages when compared
to state-of-the-art TM schedulers. First, it deals with the pseudo parallelism
issue in an elegant way, by only spawning as many system-level threads as the
number of available processor cores and handling the exceeding threads inter-
nally. Second, LUTS allows the TM subsystem to efficiently access the runnable
transaction queue and switch the execution to any of them. This allows the de-
sign of more precise proactive scheduling schemes, not possible with the current
approaches, which are restricted to either serialization or yielding.

We discuss in this letter LUTS implementation along with two proactive
conflict-avoidance heuristics. To evaluate LUTS feasibility, we make use of the
STMBench7 [4] and STAMP [5] benchmarks. Overall, we notice that LUTS per-
forms better than existing techniques on STAMP and STMBench7 benchmarks.

More precisely, the contributions of this paper are as follows:

– A cooperative scheduler (Section 3), designed with the goal of eliminating
pseudo parallelism. It creates at most as many system-level threads as avail-
able processor cores, transparently handling the exceeding threads.

– Three novel proactive conflict-avoidance heuristics (Section 4) that uses
LUTS scheduling capabilities to avoid starting transactions that are likely
to conflict. When a transaction is about to start, we check the probability of
conflict among executing transactions. If this probability is high, we choose
a transaction that is less likely to abort from LUTS runnable queue.

– An evaluation of LUTS approach (Section 5) to contention management
through STMBench7 [4] and STAMP 0.9.10 [5] benchmarks. In general, the

146 D. Nicácio, A. Baldassin, and G. Araújo

experimental results show LUTS efficiency in dealing with pseudo parallelism
issues. When compared to earlier approaches such as [6] and [7], LUTS pre-
sented the best overall performance.

2 Related Work

STM contention management has been primarily researched in the context of
modular contention managers, introduced by Herlihy et al. [8] for obstruction-
free STM implementations. Due to its modular nature, a plethora of contention
policies [2, 9, 10, 11] have been devised with the purpose of decreasing the num-
ber of conflicts and enabling system progress. Lock-based implementations have
usually employed simpler heuristics, such as aborting the conflicting transaction
and delaying the restart by using an exponential backoff mechanism. Despite the
progress on contention managers, STM systems have not been able to anticipate
conflicts and increase system throughput [6, 12]. On the contrary, traditional
contention managers use a reactive (damage-control) strategy, instead of focus-
ing on avoiding conflicts in the first place.

Recently, the research focus has shifted to scheduling-based contention man-
agement [3, 6, 7, 12, 13, 14]. In the scheduling approach, questions such as when
to start a transaction or whether two transactions should run concurrently are
taken into account. Ideally, we would like to avoid starting two transactions that
will conflict in the future.

Earlier works [3, 6, 13] have proposed serialization as the main contention
management mechanism: they keep track of the likelihood of a transaction to
abort and, when its conflict probability reaches a given threshold, they seri-
alize such transaction. Hence, in a high contention scenario, transactions with
repeated aborts will be serialized one after another, thus reducing the total num-
ber of conflicts and wasted work.

Later proposals [7, 14] have suggested a proactive approach, wherein the deci-
sion of whether to start a given transaction is taken before the transaction starts
executing. Most of the scheduling-based contention management proposals are
implemented at the user-level and rely on costly synchronization primitives such
as locks and condition variables, which usually involve system calls. A recent
work [12] have proposed kernel-level scheduling support in order to reduce the
overhead presented in the previous user-level approaches, at the cost of changing
the OS scheduler.

3 Overview

The design of LUTS is based on two main assumptions: (1) the number of system-
level threads (henceforth referred to as SLTs) should not exceed the number of
available cores, and (2) a STM system would benefit from advanced scheduling
capabilities. Assumption (1) aims at reducing pseudo parallelism issues, while
assumption (2) is guided by the idea that more robust conflict-avoidance mech-
anisms can be created if scheduling details are exposed to the STM system.

LUTS: A Lightweight User-Level Transaction Scheduler 147

hardware

operating system (OS)

LUTS
(threading and

scheduling
interface)

STM

application

runnable queue
head tail

Dispatcher

Execution Context Records (ECRs)LUTS

OS

LUTS system-level threads (as many as available cores)

...

...

(a) (b)

Fig. 1. LUTS overview: (a) application and STM interface; (b) mapping between ECRs
and SLTs

Figure 1a shows a general overview of a LUTS-based system. The applica-
tion and the software transactional memory (STM) library use LUTS interface
for managing threading and scheduling operations. A key distinction of LUTS
approach is that it does not automatically create as many system-level threads
as required by the application. Instead, it creates a number of execution context
records (ECRs), which encapsulate the state of a thread. Each ECR is inserted
into the scheduler runnable queue and is eligible for later execution. LUTS only
creates as many system-level threads as the number of available cores. The dis-
patcher is responsible for taking an ECR from the runnable queue and mapping
it to a system-level thread (see Figure 1b).

The main reason to adopt LUTS threading design is to overcome the potential
shortcomings caused by pseudo parallelism. In a conventional system, multiple
transactions may run on the same processor core: the OS scheduler can preempt
a thread that is running a transaction at any time and switch to another thread
running a different transaction. LUTS design aims at executing at most one
transaction thread per core. This is enforced by: (i) creating at most as many
system-level threads as the number of available cores, and (ii) setting the thread
affinity to a specific core. This practically avoids having the same core executing
more than one transaction thread.

3.1 Scheduling Transactions

After an ECR is mapped and starts executing, there are only two ways for the
corresponding SLT to become free again: either the work is finished or the ECR
voluntarily relinquishes control. Hence, LUTS employs a cooperative approach
to scheduling.

There are two main advantages in adopting a cooperative over a preemptive
scheduler in the context of this paper. First, it is very simple to implement
and efficient. Second, coordination avoids the risks caused by pseudo parallelism
and preemption as discussed previously. Therefore, we avoid blocking a thread
that is running a transaction and potentially decrease the probability of inter-
transaction conflicts.

148 D. Nicácio, A. Baldassin, and G. Araújo

The basic interface to our scheduler is luts yield, with a similar semantic to
the sched yield routine provided by UNIX-like operating systems. This routine
forces the current context to relinquish the SLT. The context is inserted into the
tail of the scheduler runnable queue, and another one is taken from the head
and executed by the dispatcher. Most importantly, LUTS also allows the STM
to switch to another transaction by calling one of two methods:

– luts switch : takes as argument the ID of a transaction and forces, when
possible, the execution to switch to a transaction that has a different ID.

– luts switch to id : takes as argument the ID of a transaction and forces,
when possible, the execution to switch to a transaction with the specified
ID.

With luts switch and luts switch to id interface, STMs can provide differ-
ent conflict-avoidance heuristics in the hope of decreasing system contention. In
a more general scenario, it is possible for the STM library to provide a callback
routine that is invoked for every transaction in the runnable queue. Using this
approach, an STM could implement any scheduling strategy as it sees fit, at the
cost of the extra overhead.

At the current state LUTS does not implement automatic progress guaratees.
However, the programmer can achieve this using synchronization barriers. LUTS
provide methods to access such barriers in its interface (i.e. luts barrier wait),
in which case the execution only proceeds after all threads reach that barrier.

It should be noticed that the main contribution of this paper is not in the
scheduler itself, but in its application to the domain of memory transactions and
the corresponding ability to develop new proactive conflict-avoidance heuristics.
The LUTS design can also be seen as a simplication of scheduler activations [15].
LUTS also has similarities with McRT [16], since both implement a run-time
thread package. However, LUTS also provides means to schedule transactions
and build conflict-avoidance heuristics using its compabilities.

4 LUTS-Based Heuristics

This section presents three heuristics built around LUTS scheduling capabilities:
CILUTS, CTLUTS and HASHLUTS. Common to all the heuristics is the fact that we
first determine proactively the conflict probability of starting a transaction and
invoke LUTS to switch the execution to a different transaction when possible,
thus avoiding serializing the execution.

4.1 CILUTS

In the first approach, CILUTS, each transaction maintains internally a variable
describing its conflict probability. To quantify this variable we use the concept of
contention intensity (CI), firstly described by Yoo and Lee [6] in their Adaptive
Transaction Scheduling (ATS) proposal. Our technique differs from ATS when we
find that a transaction is likely to abort. Instead of serializing the transaction, like

LUTS: A Lightweight User-Level Transaction Scheduler 149

Listing 1.1. CTLUTS

1 double conflictTable[][];
2 int activeTx[];
3

4 upon stm_init
5 for each transaction pair (t1, t2)
6 resetCT(t1, t2);
7 for each core i
8 activeTx[i] = INVALID;
9

10 upon start
11 for each core i {
12 int other_id = activeTx[i];
13 i f (other_id == INVALID) continue;
14 i f (ProbCT(tx_id, other_id) > threshold) {
15 luts_switch(tx_id);
16 break; } }
17 activeTx[thisCore] = tx_id;
18

19 upon abort
20 activeTx[thisCore] = INVALID;
21 for each core i {
22 int other_id = activeTx[i];
23 i f (other_id == INVALID) continue;
24 increaseProbCT(tx_id, other_id); }
25

26 upon commit
27 activeTx[thisCore] = INVALID;
28 for each core i {
29 int other_id = activeTx[i];
30 i f (other_id == INVALID) continue;
31 decreaseProbCT(tx_id, other_id); }

ATS does, we use LUTS to find a more appropriate transaction to take its place,
by using the interface method luts switch to switch the current transaction
to another one with a different ID. By doing so, we can reduce the number of
conflicts and do not waste processor time waiting for a transaction to commit.

4.2 CTLUTS

CTLUTS uses a conflict table to keep track of the conflict probabilities among
transactions. The pseudo code for the heuristic is presented in Listing 1.1. Besides
the conflict table itself (line 1), we also maintain a vector of active transactions
(line 2). For each processor core we keep in this vector the ID of the transaction
it is currently executing. The conflict table is made as large as the number of
different transactions in the application. Transactions are differentiated by the
address of their first instruction. When the transactional system is initialized,
we reset the conflict table (lines 5 and 6) and set all entries in the active vector
to invalid (lines 7 and 8).

Since CTLUTS adopts a proactive approach, the most important part of the
heuristic takes place upon transaction start (lines 10-17). For each valid trans-
action ID in the active vector, we check the conflict probability between the
transaction pair and, if above a certain threshold (line 14), we invoke LUTS
switch routine (line 15) to choose another transaction. The main idea of the

150 D. Nicácio, A. Baldassin, and G. Araújo

heuristic is to avoid starting a transaction that is doomed to abort and reduce
system contention. Ideally, a transaction with better chances to commit will be
chosen from the runnable queue by LUTS. If there is no such transaction then
the current transaction is started anyway. Therefore, the worst case scenario for
the heuristic happens when no transaction from the runnable queue is eligible
to execute (its ID is the same of the current one). When the transaction is
successfully initiated, it sets the corresponding entry in the active vector to its
ID (line 17).

The conflict table is updated when a transaction fails (lines 19-24) or commits
(lines 26-31). Both cases present a similar behavior: the ID of the transaction
executing in each concurrent thread is retrieved from the active vector and, if it is
different from invalid, the conflict probability of the transaction pair is increased
in case of an abort (line 24), or decreased in case of success (line 31). It is worth
noticing that the accesses to the active vector and the conflict table are not
explicitly synchronized, therefore allowing data races. For instance, when we scan
the active vector to update the conflict table, a read access can yield stale values.
We consider these data races benign: they add an imprecision to the heuristic
prediction but they cannot cause any execution fault. For CTLUTS, it is preferable
to incur some imprecision than paying the high cost of synchronization. The same
approach was adopted by Blake et al. [14] in a similar context.

4.3 HASHLUTS

HASHLUTS uses a different approach to schedule transactions. While CILUTS and
CTLUTS checks if a starting transaction is likely to abort and then replace it
with any other transaction, HASHLUTS tries to choose the best transaction to
start based on the current set of active transactions. The pseudo code for the
heuristic is presented in Listing 1.2. We keep an array (activeTx) that contains
what are the currently executing transactions on each core, these transactions
form a group of active transactions. For example, in a 4-core machine, we may
have activeTx = {tx1, tx3, tx5, tx1} and we distinguish this group from {tx1,
tx5, tx3, tx1}, in other words, we take in account which core is executing each
transaction (line 1). We also keep a conflict table to store the probability of
a transaction to abort when it executes in parallel with each group of active
transactions (line 2), and another array with the best transaction choice (less
likely to abort) for each group of active transactions (line 3). When the system
initiates we reset those structures (lines 5-9).

Every time a thread is going to start executing a transaction, it first check
which group of active transactions is currently executing, a hash function is
applied on this information and the result is an index for the bestTx array
(line 12). This way the thread knows which transaction is less likely to abort
when executing in parallel with the current group of active transactions (line 13).
Then, if the thread was about to start a different transaction, it calls the method
luts switch to id from LUTS interface to switch its context and execute (when
possible) the best transaction (line 14). At the end it updates activeTx to reflect
the new group of active transactions (line 15).

LUTS: A Lightweight User-Level Transaction Scheduler 151

Listing 1.2. HASHLUTS

1 int activeTx[];
2 double conflictTable[][];
3 int bestTx[];
4

5 upon stm_init
6 resetBestTx();
7 resetCT();
8 for each core i
9 activeTx[i] = INVALID;

10

11 upon start
12 int index = hash(activeTx);
13 int tx_id = bestTx[index];
14 luts_switch_to_id(tx_id);
15 updateActiveTx(thisCore, tx_id);
16

17 upon abort
18 updateActiveTx(thisCore, INVALID);
19 int index = hash(activeTx);
20 increaseProbCT(index, tx_id);
21 i f (bestTx[index] == tx_id){
22 for each transaction tx {
23 i f(conflictTable[index][tx] <
24 conflictTable[index][tx_id])
25 {
26 bestTx[index] = tx;
27 }
28 }
29 }
30

31 upon commit
32 updateActiveTx(thisCore, INVALID);
33 int index = hash(activeTx);
34 decreaseProbCT(index, tx_id);
35 i f (conflictTable[index][tx_id] <
36 conflictTable[index][bestTx[index]])
37 {
38 bestTx[index] = tx_id;
39 }

Upon abort, activeTx is updated, the hash function is applied to activeTx
and the hash function result is used as an index for the conflict table. Then
the conflict table entry for the pair (index, abortedTx) has its abort probability
increased (lines 18-20). If the aborted transaction was the best transaction for
this group of active transaction, we must check if it still is the best choice, if it is
not, we update the bestTx for this activeTx (21-29). The commit operation has
a similar behavior, but it decreases the abort probability on the conflict table
and then only check if the new probability is lower than the current bestTx
probability, if that is the case, bestTx is updated (lines 31-39).

HASHLUTS adds more overhead to system, since it calls a context switch more
often than the other two heuristics, but it is more accurate since it is able to tell
which transaction is less likely to abort at the moment.

152 D. Nicácio, A. Baldassin, and G. Araújo

5 Experimental Results

In this section we investigate the performance of our prototype implementation
of LUTS and the three proposed heuristics using tinySTM 1.0.0 as the base
STM system. We conducted the experiments on a single node with four Intel
Xeon X7560 processors (32 cores in total), 24MB L3 cache, and 256GB of RAM.
The machine runs a typical Linux distribution with kernel version 2.6.18-194.
All applications were compiled using gcc version 4.5.1. The evaluation was done
using programs from the STMBench7 [4] and STAMP 0.9.10 benchmarks [5].

We report results for 7 different configurations. All configurations use the
same base code, providing fair comparisons. More specifically, the following con-
figurations were used:

– Original: the baseline tinySTM implementation (version 1.0.0). For the ex-
periments we configured tinySTM with the write-back and encounter-time
locking (ETL) strategy. For comparison, we adopted the CM SUICIDE con-
tention policy, which immediately restarts a transaction on abort.

– ATS: An implementation of Yoo and Lee adaptive transaction scheduling
technique [6]. We use a single global queue for all transactions, as suggested
by the authors. Before running the experiments reported here, we conducted
a sensibility study on α with values 0.3, 0.5 and 0.75, and on threshold with
values 0.3, 0.5 and 0.7. We found out that the combination of 0.75 for α and
0.5 for threshold resulted in best overall performance, and thus was adopted
in the experiments.

– Shrink: An implementation of the Shrink scheduler proposed by Dragoje-
vic et al. [7] and also integrated with SwissTM [17]. The code was taken
from the authors’ website1 for tinySTM version 0.9.5, and adapted to the
current version (1.0.0) by us. We did not change the parameters in the code:
succ threshold = 0.5, locality window = 4, confidence threshold = 3, c1 =
3, c2 = 2, c3 = 1.

– LUTS: The scheduler with a fixed circular order scheduling policy (round-
robin). The scheduling interface is not used by the STM code in this configu-
ration, allowing us to measure the gains of our approach in pseudo parallelism
scenarios.

– CILUTS: The heuristic using contention intensity and LUTS scheduling
interface as discussed in Section 4.1. Similarly to ATS, we adopted α = 0.75
and threshold = 0.5 in the experiments.

– CTLUTS: The heuristic using the conflict table to track conflict prob-
abilities and LUTS switching feature, as explained in Section 4.2. In the
experiments we use a threshold value of 0.5.

– HASHLUTS: The heuristic using a hash table to track conflict probabilities
and LUTS switching feature to select the best transaction for execution, as
explained in Section 4.2.

1 http://lpd.epfl.ch/site/research/tmeval

LUTS: A Lightweight User-Level Transaction Scheduler 153

For every application we report the average over 10 runs in order to reduce the
variance in the results. Even so, we noticed a high variance for the Bayes appli-
cation and omitted it. We also omitted the results for SSCA2 since it presented
a livelock scenario in all configurations.

5.1 Speedup

We show speedup results for the 6 configurations discussed with respect to the
baseline tinySTM with a single thread. Figure 2 shows the speedup comparison
for 8 STAMP programs and 4 STMBench7 configurations when the number of
threads is varied from 1 to 128.

If we consider LUTS performance when the number of threads does not exceed
32, no important overhead can be noticed relative to the base STM. From 64 to
128 threads, LUTS achieves the same performance as running 32 threads and,
unlike the original implementation, it sustains this performance as the number
of threads increases; this behavior is consistently maintained for every STAMP
program. With 128 concurrent threads we can notice a speedup of 20x for Va-
cationLow, whereas ATS and Shrink reached about 6x and 5x, respectively.

Besides the gains achieved with LUTS alone, we also notice a performance
boost in some applications due to the heuristics CILUTS, CTLUTS and HASHLUTS.
Programs Labyrinth, Yada and all STMBench7 configurations had their perfor-
mance improved even further. While LUTS achieved speedups of 8x in program
Small (128 threads), our LUTS-based heuristics managed to speed it up by
10x. In fact, CTLUTS, CILUTS and HASHLUTS are the first transaction scheduling
techniques to improve performance in overloaded scenarios even further. With 32
threads, the best speedup of configuration Medium was 8.1x, CILUTS achieved
11.3x speedup with 128 threads.

5.2 Overhead

This section presents the overhead added by each configuration discussed in this
paper. Figure 3 shows an average of how many processor cycles are spent per
transaction on four different programs: Intruder, Labyrinth, Small, and Huge.
We noticed that all other programs have a very similar behavior to at least
one of those programs, making those four programs enough to represent both
benchmarks. Each bar of the graph is composed by four segments: (1) cycles
spent on the transaction itself, (2) cycles spent on heuristic code, (3) cycles
spent on the LUTS scheduler, and (4) cycles spent on transaction aborts.

Intruder has small transactions, so the scheduler overhead was dominant
on techniques CTLUTS and HASHLUTS for this application. Labyrinth has longer
transactions and spends many cycles on aborted transactions; therefore, the over-
head introduced by all techniques was proportionally smaller. Heuristic HASHLUTS
was able to slightly reduce the number of cycles on aborts by adding just a small
scheduler overhead. On programs Small and Huge, techniques ATS and Shrink
eliminate most of abort cycles, but its overhead does not make it worthwhile.

154 D. Nicácio, A. Baldassin, and G. Araújo

2

4

6

8

10

12

14

sp
ee

du
p

Genome

0

2

4

6

8

10

12

14

1 2 4 8 16 32 64 128

sp
ee

du
p

threads

Genome

0 5

1

1.5

2

2.5

3

sp
ee

du
p

Intruder

0

0.5

1

1.5

2

2.5

3

1 2 4 8 16 32 64 128

sp
ee

du
p

threads

Intruder

1

2

3

4

5

6

sp
ee

du
p

kmeans High

0

1

2

3

4

5

6

1 2 4 8 16 32 64 128

sp
ee

du
p

threads

kmeans High

2

4

6

8

10

12

sp
ee
du

p

Kmeans Low

0

2

4

6

8

10

12

1 2 4 8 16 32 64 128

sp
ee
du

p
threads

Kmeans Low

2

4

6

8

10

sp
ee

du
p

Labyrinth

0

2

4

6

8

10

1 2 4 8 16 32 64 128

sp
ee

du
p

threads

Labyrinth

1

2

3

4

5

sp
ee

du
p

Yada

0

1

2

3

4

5

1 2 4 8 16 32 64 128

sp
ee

du
p

threads

Yada

5

10

15

20

25

sp
ee
du

p

Vacation High

0

5

10

15

20

25

1 2 4 8 16 32 64 128

sp
ee
du

p

threads

Vacation High

5

10

15

20

25

sp
ee

du
p

Vacation Low

0

5

10

15

20

25

1 2 4 8 16 32 64 128

sp
ee

du
p

threads

Vacation Low

Small

8

10

12
Small

4

6

8

10

12

sp
ee
du

p

Small

0

2

4

6

8

10

12

1 2 4 8 16 32 64 128

sp
ee
du

p

threads

Small

0

2

4

6

8

10

12

1 2 4 8 16 32 64 128

sp
ee
du

p

threads

Small

0

2

4

6

8

10

12

1 2 4 8 16 32 64 128

sp
ee
du

p

threads

Small

2

4

6

8

10

12

sp
ee
du

p

Medium

0

2

4

6

8

10

12

1 2 4 8 16 32 64 128

sp
ee
du

p

threads

Medium

2

4

6

8

10

12

14

sp
ee

du
p

Big

0

2

4

6

8

10

12

14

1 2 4 8 16 32 64 128

sp
ee

du
p

threads

Big

2

4

6

8

10

12

sp
ee

du
p

Huge

0

2

4

6

8

10

12

1 2 4 8 16 32 64 128

sp
ee

du
p

threads

Huge

LUTSLUTSLUTSLUTSLUTS CTLUTSCTLUTSCTLUTSCTLUTS CILUTSCILUTSCILUTSCILUTS HASHLUTSHASHLUTS ATSATSATSATS SHRINKSHRINKSHRINK ORIGINALORIGINALORIGINAL

Fig. 2. Speedup achieved on benchmarks STAMP and STMBench7

LUTS: A Lightweight User-Level Transaction Scheduler 155

 0

 100,000

 200,000

 300,000

 400,000

 500,000

 600,000

 700,000

 800,000

2 4 8 16 32 64 12
8 2 4 8 16 32 64 12
8 2 4 8 16 32 64 12
8 2 4 8 16 32 64 12
8 2 4 8 16 32 64 12
8 2 4 8 16 32 64 12
8

C
PU

 C
yc

le
s

LUTS CTLUTS CILUTS HASHLUTS ATS SHRINK

Intruder

 0

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

2 4 8 16 32 64 12
8 2 4 8 16 32 64 12
8 2 4 8 16 32 64 12
8 2 4 8 16 32 64 12
8 2 4 8 16 32 64 12
8 2 4 8 16 32 64 12
8

C
PU

 C
yc

le
s

LUTS CTLUTS CILUTS HASHLUTS ATS SHRINK

Labyrinth

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 4e+07

 4.5e+07

 5e+07

2 4 8 16 32 64 12
8 2 4 8 16 32 64 12
8 2 4 8 16 32 64 12
8 2 4 8 16 32 64 12
8 2 4 8 16 32 64 12
8 2 4 8 16 32 64 12
8

C
PU

 C
yc

le
s

LUTS CTLUTS CILUTS HASHLUTS ATS SHRINK

Small

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

2 4 8 16 32 64 12
8 2 4 8 16 32 64 12
8 2 4 8 16 32 64 12
8 2 4 8 16 32 64 12
8 2 4 8 16 32 64 12
8 2 4 8 16 32 64 12
8

C
PU

 C
yc

le
s

LUTS CTLUTS CILUTS HASHLUTS ATS SHRINK

Huge

Transaction Heuristic Scheduler Abort

Fig. 3. Overhead of six scheduling techniques

On the other hand, LUTS-based heuristics were capable of avoid such aborts
with an acceptable overhead.

5.3 Discussion

Results show that LUTS-based heuristics perform better in programs with longer
transactions, like Labyrinth, Yada and the STMBench7 benchmark. This be-
havior is made clearer with the STMBench7 programs. The only parameter
difference between these programs is the data structure size used, increasing
the structure size used by STMBench7 programs also increases the length of its
transactions. As shown in Figure 2, the performance of LUTS-based heuristics
increases as the data structure size increases. Configurations Big and Huge do
not scale well with 16+ threads, but LUTS-based heuristics manage to keep
those configurations improving until 32 threads and sustain this performance
with 64+ threads.

In programs with short transactions and few different transactions, like In-
truder, KmeansHigh and KmeansLow, LUTS-based heuristics generated a slight
overhead and did not improve LUTS performance. Especially for Kmeans, they
were surpassed by ATS and Shrink.

The overhead source for LUTS-based heuristics comes from the extra actions
performed during the transaction start, commit, and abort operations. There-
fore, the overhead is proportionally larger in programs with short transactions,
making programs with large transaction better candidates for those heuristics.

156 D. Nicácio, A. Baldassin, and G. Araújo

Moreover, avoiding the abort of a large transaction is more effective than avoid-
ing the abort of a short one.

All STMBench7 configurations have 48 different transactions, while STAMP
programs have only 3-6 transactions. A high number of different transactions
brings more scheduling possibilities for LUTS-based heuristics, improving its
performance. This is another reason why STMBench7 programs achieved better
results with LUTS-based heuristics.

In general, we can conclude that LUTS delivers good performance on over-
loaded scenarios no matter how many threads are launched at the application
startup, effectively dealing with pseudo parallelism issues. Moreover, the ability
to switch to another transaction instead of applying serialization also can pay
off, as we observed in the applications with large transactions.

6 Conclusion

We have introduced in this paper LUTS, a Lightweight User-level Transaction
Scheduler, and three proactive conflict-avoidance heuristics. LUTS effectively
controls the contention level in pseudo parallelism scenarios, and provides the
means to increase system performance by avoiding starting transactions that are
likely to abort in the near future. In order to accomplish its goal, LUTS relies
on two key factors: (i) the number of spawned threads is limited to the number
of available processor cores, and (ii) STM libraries can exert influence on the
scheduling policy and devise new proactive conflict-avoidance heuristics. LUTS
scheduling capabilities is in sharp contrast with prior works, which primarily
resorted to serialization.

Experimental results show that LUTS and the proposed conflict-avoidance
heuristics provide better performance than existing techniques on some applica-
tions taken from the STAMP and STMBench7 benchmarks, reaching speedups
up to 23x.

References

1. Harris, T., Larus, J., Rajwar, R.: Transactional Memory, 2nd edn. Morgan & Clay-
pool Publishers (June 2010)

2. Guerraoui, R., Herlihy, M., Pochon, B.: Toward a theory of transactional contention
managers. In: PODC 2005, pp. 258–264 (July 2005)

3. Dolev, S., Hendler, D., Suissa, A.: CAR-STM: Scheduling-based collision avoidance
and resolution for software transactional memory. In: PODC 2008, pp. 125–134
(August 2008)

4. Guerraoui, R., Kapalka, M., Vitek, J.: STMBench7: A benchmark for software
transactional memory. In: EUROSYS 2007, pp. 315–324 (March 2007)

5. Minh, C.C., Chung, J., Kozyrakis, C., Olukotun, K.: STAMP: Stanford transac-
tional applications for multi-processing. In: IISWC, pp. 35–46 (September 2008)

6. Yoo, R.M., Lee, H.H.S.: Adaptive transaction scheduling for transactional memory
systems. In: SPAA 2008, pp. 169–178 (June 2008)

LUTS: A Lightweight User-Level Transaction Scheduler 157

7. Dragojevic, A., Guerraoui, R., Singh, A.V., Singh, V.: Preventing versus curing:
Avoiding conflicts in transactional memories. In: PODC 2009, pp. 7–16 (August
2009)

8. Herlihy, M., Luchangco, V., Moir, M., Scherer, W.N.: Software transactional mem-
ory for dynamic-sized data structures. In: PODC 2003, pp. 92–101 (July 2003)

9. Scherer, W.N., Scott, M.L.: Advanced contention management for dynamic soft-
ware transactional memory. In: PODC 2005, pp. 240–248 (July 2005)

10. Guerraoui, R., Herlihy, M., Pochon, B.: Polymorphic contention management. In:
Fraigniaud, P. (ed.) DISC 2005. LNCS, vol. 3724, pp. 303–323. Springer, Heidelberg
(2005)

11. Spear, M.F., Dalessandro, L., Marathe, V.J., Scott, M.L.: A comprehensive strat-
egy for contention management in software transactional memory. In: PPoPP 2009,
pp. 141–150 (February 2009)

12. Maldonado, W., Marlier, P., Felber, P., Suissa, A., Hendler, D., Fedorova, A.,
Lawall, J.L., Muller, G.: Scheduling support for transactional memory contention
management. In: PPOPP 2010, pp. 79–90 (January 2010)

13. Ansari, M., Luján, M., Kotselidis, C., Jarvis, K., Kirkham, C., Watson, I.: Steal-on-
Abort: Improving transactional memory performance through dynamic transaction
reordering. In: Seznec, A., Emer, J., O’Boyle, M., Martonosi, M., Ungerer, T. (eds.)
HiPEAC 2009. LNCS, vol. 5409, pp. 4–18. Springer, Heidelberg (2009)

14. Blake, G., Dreslinski, R.G., Mudge, T.: Proactive transaction scheduling for con-
tention management. In: MICRO 2009, pp. 156–167 (December 2009)

15. Anderson, T.E., Bershad, B.N., Lazowska, E.D., Levy, H.M.: Scheduler activations:
effective kernel support for the user-level management of parallelism. SIGOPS
Oper. Syst. Rev. 25, 95–109 (1991)

16. Saha, B., Adl-Tabatabai, A.R., Hudson, R.L., Minh, C.C., Hertzberg, B.: Mcrt-
stm: a high performance software transactional memory system for a multi-core
runtime. In: PPoPP 2006, pp. 187–197. ACM, New York (2006)

17. Dragojevic, A., Guerraoui, R., Kapalka, M.: Stretching transactional memory. In:
PLDI 2009, pp. 155–165 (June 2009)

Verification of Partitioning and Allocation

Techniques on Teradata DBMS

Ladjel Bellatreche1, Soumia Benkrid2, Ahmad Ghazal3,
Alain Crolotte3, and Alfredo Cuzzocrea4

1 LISI/ENSMA Poitiers University
Futuroscope, France

bellatreche@ensma.fr
2 National High School for Computer Science (ESI)

Algiers, Algeria
s benkrid@esi.dz

3 Teradata Corporation
San Diego, CA, U.S.A.

(Ahmad.Ghazal,Alain.Crolotte)@teradata.com
4 ICAR-CNR and University of Calabria, Italy

cuzzocrea@si.deis.unical.it

Abstract. Data fragmentation and allocation in distributed and paral-
lel Database Management Systems (DBMS) have been extensively stud-
ied in the past. Previous work tackled these two problems separately
even though they are dependent on each other. We recently developed
a combined algorithm that handles the dependency issue between frag-
mentation and allocation. A novel genetic solution was developed for
this problem. The main issue of this solution and previous solutions is
the lack of real life verifications of these models. This paper addresses
this gap by verifying the effectiveness of our previous genetic solution on
the Teradata DBMS. Teradata is a shared nothing DBMS with proven
scalability and robustness in real life user environments as big as 10’s of
petabytes of relational data. Experiments are conducted for the genetic
solution and previous work using the SSB benchmark (TPC-H like) on
a Teradata appliance running TD 13.10. Results show that the genetic
solution is faster than previous work by a 38%.

1 Introduction

Data warehousing is becoming more complex in terms of applications, data size
and queries, including joins and aggregations. Data warehouse projects always
stress performance and scalability because of the data volumes and the query
complexity. For instance, eBay’s data warehouse include 2 petabytes of user
data and Millions of queries per day1. The parallelism technology is one of the
relevant solutions to deal with these mountains and complex queries. More and
more organizations are relying on parallel processing technologies to achieve the
1 http://www.dbms2.com/2009/04/30/ebays-two-enormous-data-warehouses/

Y. Xiang et al. (Eds.): ICA3PP 2011, Part I, LNCS 7016, pp. 158–169, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Verification of Partitioning and Allocation Techniques on Teradata DBMS 159

performance, scalability, and reliability they need. Most of the major commercial
database systems support parallelism (Teradata, Oracle, IBM, Microsoft SQL
Server 2008 R2 Parallel Data Warehouse, Sybase, etc.). Rather than relying on
a single monolithic processor, parallel systems exploit fast and inexpensive micro
processors to achieve high performance.

Designing parallel databases was widely studied in the contexts of OLTP (On-
Line Transaction Processing) [1,9,13,7,15,16,18,20] and OLAP (On-Line Analyt-
ical Processing) [2,4,12,14,22,23,21]. Most of these studies are usually performed
from theoretical point of view. On the other words, none deployment on a real
parallel database machine is given.

The main important steps that designers need to perform to construct parallel
data warehouses are: (i) the choice of the hardware platform, (ii) the partitioning
of data warehouse schema, (iii) the allocation of the generated fragments, (iv)
the load balancing over the nodes of the chosen parallel machine, (v) the query
processing and (vi) the deployment of solutions of the previous phases. All these
steps got a lot of attention of data warehouse research community, since most
of them are inherited from traditional parallel database design, except the last
one.

(i) There are three widely used architectures for parallelizing work: (a) shared
memory (b) shared disk and (c) shared nothing. In a shared-memory approach,
all of the CPUs share a single memory and a single collection of disks. This
approach is relatively easy to implement, since the lock manager and buffer pool
are both stored in the memory system where they can be easily accessed by all
the processors. Unfortunately, it has fundamental scalability limitations, as all
I/O and memory requests have to be transferred over the same bus that all of the
processors share, causing the bandwidth of this bus to rapidly become a bottle-
neck [10,7]. In shared-disk platform, there are a number of independent processor
nodes, each with its own memory. These nodes all access a single collection of
disks. This architecture has been used to design parallel data warehouse by [25].
It has a number of drawbacks that severely limit scalability. First, the intercon-
nection network that connects each of the CPUs to the shared-disk subsystem
can become an I/O bottleneck. Second, since there is no pool of memory that is
shared by all the processors, there is no obvious place for the lock table or buffer
pool to reside. In a shared-nothing approach, each processor has its own set
of disks. This architecture is used by Teradata. Data is horizontally partitioned
across nodes, such that each node has a subset of the rows from each table in the
database. Each node is then responsible for processing only the rows on its own
disks. Such architectures are especially well suited to the star queries running on
data warehouses modelled using a star schema, as only a very limited amount
of communication bandwidth is required to join one or more (typically small)
dimension tables with the (typically much larger) fact table [10].
(ii) Once the architecture is chosen, data warehouse designer partitions its
schema. Fragmentation2 is a pre condition of parallel data warehouse design. It

2 In this paper, we use fragmentation and partitioning interchangeably.

160 L. Bellatreche et al.

may be horizontal, where table instances are decomposed into disjoint partitions
or vertical, where tables are split in disjoint sets of attributes. The horizontal
partitioning is mainly used for designing parallel data warehouses [25,26,12,14,2].
Two main types of horizontal partitioning exist [5]: mono table partitioning and
table-dependent partitioning. In the mono table partitioning, a table is parti-
tioned using its own attributes. It is quite similar to the primary horizontal
partitioning proposed in traditional databases [18]. Several modes exist to sup-
port mono table partitioning: Range, List, Hash, Round Robin (supported by
Sybase), Composite (Range-Range, Range-List, List-List, etc.), Virtual Column
partitioning recently proposed by Oracle11G. In table-dependent partitioning, a
table inherits the partitioning characteristics from other table. For instance a
fact table may be partition based on the fragmentation schemes of dimension
tables. This partitioning is feasible if a parent-child relationship among these
tables exists [8,11]. Two main implementations of this partitioning are possible:
native referential partitioning and simulated referential partitioning. The native
referential partitioning is recently supported by Oracle11G to equi-partition ta-
bles connected by a parent child referential constraint. A native DDL is given to
perform this partitioning [11] (Create Table ... Partition by Reference ...). This
diversity of existing modes poses problem of deploying existing research studies
on parallel data warehouse design, since a direct deployment is hard to perform.
To summarize, we can notice that fragmentation schemes obtained by some par-
titioning algorithms can be directly implemented in a priori known DBMS (this
situation is called a turnkey solutions). Others need to be adapted according the
target DBMS (non turnkey solutions). [2] is an example of turnkey solutions,
where algorithms were proposed to referential partition a data warehouse. This
partitioning was initially supported by Oracle [11]. [12] is an example of non
turnkey solutions, where referential partitioning is implemented manually in the
context of parallel database machine as follows: (i) a dimension table is first
horizontally partitioned using its primary key, then the fact table is decomposed
based on its foreign key referencing that dimension table.
(iii) The data allocation is the process that places generated fragments over
nodes of parallel machine. This allocation may be either redundant (with repli-
cation) or non redundant (without replication). (iv) Once fragments are placed,
global queries are then rewritten over fragments and executed on the parallel
machine. During their execution phase, (v) the load balancing should be ver-
ified. Load balancing refers to workload allocation over nodes [20]. (vi) The
deployment is usually done in simulated environments or using mathematical
cost models quantifying the quality of parallel design.

In [2], we propose a parallel data warehouse design approach, where frag-
mentation and allocation are done in joint way in order to capture the interde-
pendency between these two steps. The decision of allocation fragments in done
during the fragmentation process. The quality of this method is measured by the
means of a cost model estimating the query processing cost in terms of inputs
outputs required for executing a set of queries. The main objective of this paper
is to verify our results on a real life parallel DBMS. Based on our collaboration

Verification of Partitioning and Allocation Techniques on Teradata DBMS 161

with the Teradata labs, we managed to run our results on a Teradata appli-
ance running TD 13.10. Teradata is a known MPP DBMS and have been in the
Gartner’s ”Data Warehouse DBMS Magic Quadrant” for many years.

The paper is organized as follows. Section 2 summarizes existing approaches
for designing parallel data warehouses. In Section 3, we give background related
to the joint design methodology for parallel data warehouse. Section 4 describes
the validation of our joint approach on Teradata machine using star schema
benchmark data set [17]. Finally, Section 5 concludes the paper summarizing
the main findings of our research, and proposing directions for future work.

2 Related Work

This section reviews the most important studies on parallel data warehouse
design from academic [2,4,6,12,14,22,23] and industrial perspective [21].

Academic studies were essentially focused on proposing solutions for designing
data warehouses for a given parallel machine architecture. Furtado [12] discusses
partitioning strategies for node-partitioned data warehouses. The main sugges-
tion coming from [12] can be synthesized in a ”best-practice” recommendation
stating to partition the fact table on the basis of the larger dimension tables
(given a ranking threshold). In more detail, each larger dimension table is first
partitioned by means of the Hash mode approach via its primary key. Then,
the fact table is again partitioned by means of the Hash mode approach via
foreign keys referencing the larger dimension tables. Finally, the so-generated
fragments are allocated according to two alternative strategies, namely round
robin and random. Smaller dimension tables are instead fully-replicated across
the nodes of the target data warehouse. In [14], Lima et al. focus the attention
on data allocation issues for database clusters. Authors recognize that how to
place data/fragments on the different PC of a database cluster in the depen-
dence of a given criterion/goal (e.g., query performance) plays a critical role,
hence the following two straightforward approaches can be advocated: (i) full
replication of the target database on all the PC, or (ii) meaningful partition of
data/fragments across the PC. Starting from this main intuition, authors propose
an approach that combines partition and replication for OLAP-style workloads
against database clusters. In more detail, the fact table is partitioned and repli-
cated across nodes using the so-called chained de-clustering, while dimension
tables are fully-replicated across nodes. This comprehensive approach enables
the middleware layer to perform load balancing tasks among replicas, with the
goal of improving query response time. Furthermore, the usage of chained de-
clustering for replicating fact table partitions across nodes allows the designer
not to detail the way of selecting the number of replicas to be used during the
replication phase. In [22], the allocation of relational data warehouses based on
a star schema and utilizing bitmap index structures in a shared disk architecture
is proposed. The fragments are generated by the means of multi-dimensional
hierarchical data fragmentation of the fact table. The proposal is validated by

162 L. Bellatreche et al.

a simulation model [23]. In these studies, fragmentation and allocation are done
in sequential way. In [2,4], another trend of parallel data warehouse design was
proposed in which partitioning and allocation processes are done simultaneously.
These works were done in a shared nothing architecture [2] and heterogeneous
database cluster [4].

To summarize, we figure out that the academic studies are validated either
by the means of simple cost models estimating the number of inputs outputs
required for executing a set of queries or by simulators. None deployment in a
real machine is given.

From industrial perspective, DB2 DBMS [21] proposed a solution for data par-
titioning in shared nothing architecture. Based on this work, data partitioning
advisor is developed to recommend user the number of partitions of each frag-
ments. As academic studies, this work considers fragmentation and allocation
are done sequentially.

3 Background

In this section, we review the joint methodology for designing parallel data ware-
houses, where fragmentation and allocation are done simultaneously. To facilitate
the understanding of our methodology, we give a formalization of the parallel
data warehouse design problem [2]:

– a data warehouse schema composed by d dimension tables D = {D0, . . . ,
Dd−1} and one fact table F – as in [12,14]. Figure 1 shows an example of a
star schema of a relational data warehouse used by Star Schema Benchmark
[17];

– a shared nothing architecture with M nodes N = {N0, N1, . . . , NM−1};
– a set of star queries Q = {Q1, Q2, . . . , QL−1} to be executed over the ware-

house schema, being each query Ql, with 0 ≤ l ≤ L− 1;
– a maintenance constraint W : W > M representing the number of fragments

W that the designer considers relevant for his/her target allocation process,
called fragmentation threshold ;

The problem of designing a parallel data warehouse consists in fragmenting the
fact table F into NF fragments and allocating them over different nodes such that
the total cost of executing all the queries in Q can be minimized while processing
constraints are satisfied across nodes, under the maintenance constraint W .

Based on the formal statement above, it follows that our investigated problem
is composed by two sub-problems, namely data partitioning and fragment alloca-
tion. Each one of these problems is known to be NP-complete [3,24,13]. In order
to deal with the parallel design problem, two main classes of methodologies are
possible: sequential design and joint design. Sequential design methodology has
been proposed in the context of traditional distributed and parallel database
design research. The basic idea underlying this methodology consists in first
fragmenting the data warehouse using any partitioning algorithm, and then al-
locating the so-generated fragments by means of any allocation algorithm. In

Verification of Partitioning and Allocation Techniques on Teradata DBMS 163

Fig. 1. An Example of a Star Schema

the most general case, each partitioning and allocation algorithm has its own
cost model. The main advantage coming from these traditional methodologies
is represented by the fact that they are straightforwardly applicable to a large
number of even-heterogeneous parallel and distributed environments. Contrary
to this, their main limitation is represented by the fact that they neglect the inter-
dependency between the data partitioning and the fragment allocation phase,
respectively. Another limitation of this approach is the fact that it uses two
different cost models: one for fragmentation process and another for allocation
process.

To take into account de inter-dependency between and partitioning and frag-
ments allocation, the joint approach is proposed. During the fragmentation
phase, each potential solution is tested for allocation process. At the end, the
solution with minimum cost is chosen. Only one integrated cost model is used
for both processes: fragmentation and allocation. Figure 2 summarizes the steps
of joint design methodology [2].

4 Validation on Teradata

Empirical results in previous work [2] were based on custom simulation for a
distributed system using a single CPU machine. These simulations lacked the
real life aspect to demonstrate the efficacy of the new results. In collaboration
with Teradata Labs, we verified our results on a Teradata system running TD
13.10 software.

In this section we provide a high level description of the Teradata DBMS and
the SSB benchmark [17] and how customized it. Finally, we present the results
of the SSB benchmark on both the joint and sequential methods.

164 L. Bellatreche et al.

Fig. 2. Joint Design Methodology

4.1 Teradata Description

Teradata is a massively parallel processing system running shared nothing archi-
tecture. The Teradata DBMS is linearly and predictably scalable in all dimen-
sions of a database system workload (data volume, breadth, number of users,
complexity of queries). The basic unit of parallelism in Teradata is a virtual
processor (called Access Module Processor or AMP) which is assigned a data
portion. Each AMP executes DBMS functions on its own data. This allows locks
and buffers do not have to be shared which ensures scalability. Figure 3 illus-
trates the Teradata architecture by a two node system. A node is a multi-core
system with disks and memory. It provides a pool of resources (disk, memory,
etc) for the AMPS in that node. BYNET is the network used to link different
AMPs within a node and across different nodes as well.

Data entering a Teradata Database are processed through a sophisticated
hashing algorithm and automatically distributed across all AMPs in the system.
In addition to being a distribution technique, this hash approach serves as an
indexing strategy. This significantly reduces the amount of DBA work normally
required to set up direct access. To define a Teradata Database, the DBA simply
chooses a column or set of columns as the primary index for each table. The
value contained in these indexed columns is used to determine the AMP, which
owns the data, as well as a logical storage location within the AMP ’s associated
disk space, all without performing a separate CREATE INDEX operation. To
retrieve a row, the primary index value is again passed to the hash algorithm,
which generates the two hash values, AMP and Hash-ID. These values are used
to immediately determine which AMP owns the row and where the data are
stored.

Verification of Partitioning and Allocation Techniques on Teradata DBMS 165

Fig. 3. Teradata Internal Architecture (MPP)

4.2 Experiments

The experiments were designed around the SSB benchmark [17]. This benchmark
is based on a star schema derived from the TPC-H schema [19]. Like TPC-H the
SSB benchmark comes with a data generation utility (dbgen) which is scalable.
For our experiments we used 10 scale factor (10GB). The SSB benchmark is
built around a fact table called lineorder and 4 dimension tables: part, supplier,
customer and date. All tables are derived from the TPC-H database except the
date dimension which is new. The main table is the fact table lineorder with the
following DDL:

CREATE TABLE dbo10_sq.LINEORDER(
LO_ORDERKEY int NOT NULL,
LO_LINENUMBER int NOT NULL,
LO_CUSTKEY int NOT NULL, -> FK to CUSTOMER
LO_PARTKEY int NOT NULL, -> FK to PART
LO_SUPPKEY int NOT NULL, -> FK to SUPPLIER
LO_ORDERDATE int NOT NULL,
LO_ORDERPRIORITY char(15) NOT NULL,
LO_SHIPPRIORITY char(1) NOT NULL,
LO_QUANTITY int NOT NULL,
LO_EXTENDEDPRICE int NOT NULL,
LO_ORDTOTALPRICE int NOT NULL,
LO_DISCOUNT int NOT NULL,
LO_REVENUE int NOT NULL,

166 L. Bellatreche et al.

LO_SUPPLYCOST int NOT NULL,
LO_TAX int NOT NULL,
LO_COMMITDATE int NOT NULL,
LO_SHIPMODE char(10) NOT NULL);

At scale factor 10 the row counts are given in Table 1. More details on the SSB

Table 1. Scale Factor

lineorder 59986052
part 800000
customer 300000
supplier 20000
ddate 2556

benchmark can be found at [17].

4.3 Implementation and Testing Joint and Sequential Approaches

To implement the Joint and Sequential fragmentation/allocation schemes and
assess their respective effects in Teradata we proceeded as follows:

1. The joint and sequential algorithms is applied to the SSB workload (query
descriptions shown later). We used a cost model that is focused on the I/O
factor. For more details on these algorithms refer to [2]. Sequential approach
starts by partitioning the SSB benchmark schema using a genetic algorithm
[2]. The obtained fragmentation schema is then allocated over various nodes.

2. The obtained theoretical results from our algorithms are implemented to
Teradata as follows:
– The dimension tables are hash distributed using their primary key field.
– The fact table is partitioned using the results of each of the sequential

and joint algorithms. Each fragment is represented as a separate table.
These fragments were then allocated to particular AMPs based on the
hash function that reflect the allocation scheme.

– Finally, the fact table lineorder is defined as a view with UNION of these
fragments

For experiments in this section, we have considered a query workload of 22
queries. They are based on the original 13 queries (except Q1.2, Q1.3) but with
varied predicates. We have used 50 selection predicates defined on 11 differ-
ent attributes: (d.d year, p.p category, d.d yearmonth, s.s region, p.p brand ,
c.c region, c.c nation, s.s nation, c.c city, s.s city, p.p mfgr). The domains of
these attributes are split into: 7, 2, 2, 7, 3, 5, 2, 6, 3, 3 and 3 sub domains, re-
spectively to perform the genetic algorithms for joint and sequential approaches
[2]. Note that each selection predicate has a selectivity factor computed using
SQL queries executed on the data set of SSB benchmark (these queries are avail-
able at: http://www.lisi.ensma.fr/ftp/pub/documents/reports/2011/2011-LISI-.pdf).

Verification of Partitioning and Allocation Techniques on Teradata DBMS 167

Table 2. Results (Time in Seconds)

Queries Joint Sequential

Q01.1 0.12 0.59
Q01.2 0.11 0.11
Q01.3 0.12 0.11
Q04.1 0.60 0.58
Q04.2 0.54 0.53
Q04.3 1.08 1.13
Q05.0 0.36 0.15
Q06.0 0.53 0.13
Q07.0 0.46 0.58
Q08.0 0.14 2.15
Q09.0 0.08 0.14
Q10.0 0.07 0.16
Q11.0 0.32 0.62
Q12.0 0.34 0.72
Q13.0 0.18 0.63
Q14.0 0.18 0.24
Q15.0 0.18 0.57
Q16.0 0.18 0.51
Q17.0 0.19 0.24
Q18.0 0.29 0.64
Q19.0 0.56 0.66
Q20.0 0.49 0.33
total time 7.12 11.52

This technique was applied for both Joint and Sequential approaches. Table 2
shows the run time (in seconds) of the queries for both joint and sequential
methods. Each method performed better in certain queries. However, the joint
method performed 38% better for the overall workload which validates the results
since the workload performance is the objective of both algorithms.

5 Conclusion

This work is the fruit of collaboration between academician and industrial rep-
resenting by Teradata Labs established during the Conference on Data Ware-
housing and Knowledge Discovery (DAWAK) that hold in Bilbao Spain in 2010,
where we presented our paper on joint parallel data warehouse design. In our
previous studies, the verification of the joint method is based on a single CPU
system simulating parallel and distributed systems. In this paper, we verified
the superiority of our joint method over sequential method using the Teradata
DBMS running the SSB benchmark. Overall, the joint method performed 38%
better than the sequential method. Based on this collaboration, a deployment
methodology of parallel databases design is identified that can be generalized on
other parallel DBMS.

168 L. Bellatreche et al.

Future extensions include incorporating the Teradata cost model in the joint
solution. This will insure that the actual cost of CPU, I/O and network cost are
reflected. Also, other models beyond star schema like the TPC-H model can be
benchmarked.

References

1. Apers, P.M.G.: Data allocation in distributed database systems. ACM Transactions
on Database Systems 13(3), 263–304 (1988)

2. Bellatreche, L., Benkrid, S.: A joint design approach of partitioning and allocation
in parallel data warehouses. In: Pedersen, T.B., Mohania, M.K., Tjoa, A.M. (eds.)
DaWaK 2009. LNCS, vol. 5691, pp. 99–110. Springer, Heidelberg (2009)

3. Bellatreche, L., Boukhalfa, K., Richard, P.: Data partitioning in data warehouses:
Hardness study, heuristics and ORACLE validation. In: Song, I.-Y., Eder, J.,
Nguyen, T.M. (eds.) DaWaK 2008. LNCS, vol. 5182, pp. 87–96. Springer, Hei-
delberg (2008)

4. Bellatreche, L., Cuzzocrea, A., Benkrid, S.: F &a: A methodology for effectively and
efficiently designing parallel relational data warehouses on heterogeneous database
clusters. In: Bach Pedersen, T., Mohania, M.K., Tjoa, A.M. (eds.) DAWAK 2010.
LNCS, vol. 6263, pp. 89–104. Springer, Heidelberg (2010)

5. Bellatreche, L., Woameno, K.Y.: Dimension table driven approach to referential
partition relational data warehouses. In: ACM 12th International Workshop on
Data Warehousing and OLAP (DOLAP), pp. 9–16 (2009)

6. Bernardino, J., Madeira, H.: Experimental evaluation of a new distributed parti-
tioning technique for data warehouses. In: International Database Engineering &
Applications Symposium, IDEAS, pp. 312–321 (2001)

7. Bouganim, L., Florescu, D., Valduriez, P.: Dynamic load balancing in hierarchical
parallel database systems. In: Proceedings of the International Conference on Very
Large Databases, pp. 436–447 (1996)

8. Ceri, S., Negri, M., Pelagatti, G.: Horizontal data partitioning in database design.
In: Proceedings of the ACM SIGMOD International Conference on Management
of Data. SIGPLAN Notices, pp. 128–136 (1982)

9. DeWitt, D.J., Gray, J.: Parallel database systems: The future of high performance
database systems. Communnications ofthe ACM 35(6), 85–98 (1992)

10. DeWitt, D.J., Madden, S., Stonebraker, M.: How to build a high-performance data
warehouse, http://db.lcs.mit.edu/madden/high_perf.pdf

11. Eadon, G., Chong, E.I., Shankar, S., Raghavan, A., Srinivasan, J., Das, S.: Sup-
porting table partitioning by reference in oracle. In: SIGMOD 2008 (2008)

12. Furtado, P.: Experimental evidence on partitioning in parallel data warehouses. In:
DOLAP, pp. 23–30 (2004)

13. Karlapalem, K., Pun, N.M.: Query driven data allocation algorithms for distributed
database systems. In: Tjoa, A.M. (ed.) DEXA 1997. LNCS, vol. 1308, pp. 347–356.
Springer, Heidelberg (1997)

14. Lima, A.B., Furtado, C., Valduriez, P., Mattoso, M.: Parallel olap query processing
in database clusters with data replication. Distributed and Parallel Databases 25(1-
2), 97–123 (2009)

15. Mehta, M., DeWitt, D.J.: Data placement in shared-nothing parallel database sys-
tems. VLDB Journal 6(1), 53–72 (1997)

http://db.lcs.mit.edu/madden/high_perf.pdf

Verification of Partitioning and Allocation Techniques on Teradata DBMS 169

16. Menon, S.: Allocating fragments in distributed databases. IEEE Transactions on
Parallel and Distributed Systems 16(7), 577–585 (2005)

17. O’Neil, P., O’Neil, E.B., Chen, X.: The star schema benchmark (2007),
http://www.cs.umb.edu/~poneil/starschemab.pdf

18. Özsu, M.T., Valduriez, P.: Principles of Distributed Database Systems, 2nd edn.
Prentice Hall, Englewood Cliffs (1999)

19. TPC Home Page. Tpc benchmarkTMd (decision support), http://www.tpc.org
20. Rahm, E., Marek, R.: Analysis of dynamic load balancing strategies for parallel

shared nothing database systems. In: Proceedings of the International Conference
on Very Large Databases, pp. 182–193 (1993)

21. Rao, J., Zhang, C., Megiddo, N., Lohman, G.M.: Automating physical database
design in a parallel database. In: Proceedings of the ACM SIGMOD International
Conference on Management of Data, pp. 558–569 (2002)

22. Röhm, U., Böhm, K., Schek, H.: Olap query routing and physical design in a
database cluster. In: Zaniolo, C., Grust, T., Scholl, M.H., Lockemann, P.C. (eds.)
EDBT 2000. LNCS, vol. 1777, pp. 254–268. Springer, Heidelberg (2000)

23. Röhm, U., Böhm, K., Schek, H.: Cache-aware query routing in a cluster of
databases. In: Proceedings of the International Conference on Data Engineering
(ICDE), pp. 641–650 (2001)

24. Saccà, D., Wiederhold, G.: Database partitioning in a cluster of processors. ACM
Transactions on Database Systems 10(1), 29–56 (1985)

25. Stöhr, T., Märtens, H., Rahm, E.: Multi-dimensional database allocation for paral-
lel data warehouses. In: Proceedings of the International Conference on Very Large
Databases, pp. 273–284 (2000)

26. Stöhr, T., Rahm, E.: Warlock: A data allocation tool for parallel warehouses. In:
Proceedings of the International Conference on Very Large Databases, pp. 721–722
(2001)

http://www.cs.umb.edu/~poneil/starschemab.pdf
http://www.tpc.org

Memory Performance and SPEC OpenMP

Scalability on Quad-Socket x86 64 Systems

Daniel Molka, Robert Schöne, Daniel Hackenberg, and Matthias S. Müller

Center for Information Services and High Performance Computing (ZIH)
Technische Universität Dresden, 01062 Dresden, Germany
{daniel.molka,robert.schoene,daniel.hackenberg,

matthias.mueller}@tu-dresden.de

Abstract. Because of the continuous trend towards higher core counts,
parallelization is mandatory for many application domains beyond the
traditional HPC sector. Current commodity servers comprise up to 48
processor cores in configurations with only four sockets. Those shared
memory systems have distinct NUMA characteristics. The exact loca-
tion of data within the memory system significantly affects both access
latency and bandwidth. Therefore, NUMA aware memory allocation and
scheduling are highly performance relevant issues. In this paper we use
low-level microbenchmarks to compare two state-of-the-art quad-socket
systems with x86 64 processors from AMD and Intel. We then investi-
gate the performance of the application based OpenMP benchmark suite
SPEC OMPM2001. Our analysis shows how these benchmarks scale on
shared memory systems with up to 48 cores and how scalability correlates
with the previously determined characteristics of the memory hierarchy.
Furthermore, we demonstrate how the processor interconnects influence
the benchmark results.

1 Introduction

The performance demands of applications continuously grow and to face this
challenge, increasing core counts have become the dominant factor in micro-
processor development. For server and HPC workloads with high degrees of
parallelism, it is common to use multiple processors to further improve perfor-
mance. Such multi-socket, multi-core systems are usually implemented as cache
coherent shared memory systems. They provide a global view on the available
memory, allowing multiple threads to share a single address space and exchange
data via the jointly used memory. Based on cache coherent shared memory, the
language extension OpenMP enables developers to easily parallelize applications
written in C/C++ or Fortran. OpenMP provides an API that allows program-
mers for example to define parallel regions and to parallelize loops. Within a
parallel region, multiple threads are executed concurrently and the workload
can be distributed among them. The number of threads is determined at run-
time. Therefore, one executable can be flexibly used on systems of different scale
and still utilize all available cores. However, this simple programming model

Y. Xiang et al. (Eds.): ICA3PP 2011, Part I, LNCS 7016, pp. 170–181, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Memory Performance and SPEC OpenMP Scalability 171

does not consider any hardware specifics. The shared memory can be physically
distributed among the sockets in the system. The non-uniform memory access
(NUMA) results in different memory latencies and bandwidths depending on the
location of the data in the system. Therefore, NUMA optimized memory alloca-
tion and the placement of threads that access the data are strongly performance
relevant issues. Additionally, data can be cached at different locations and re-
sources are shared by multiple cores what increases the complexity even further.
In this paper we therefore use sophisticated low-level memory benchmarks to
characterize the performance of memory accesses and data transfers between
caches on two quad-socket NUMA systems using multi-core x86 64 processors
from AMD and Intel. Furthermore, we use SPEC OMPM2001 to investigate
how these performance characteristics influence the performance and scalability
of typical shared memory high performance computing application.

2 Related Work

The microbenchmarks we use to examine the latencies and bandwidths between
the different memory components were first introduced in [6]. They have been
further adapted to support additional coherence states and to collect fundamen-
tal performance data of two socket x86 64 servers in [4]. SPEC OMP2001 is a
well-established shared memory benchmark suite. Saito et al. introduce these
benchmarks and present a scalability analysis for up to 128 threads running
SPEC OMP benchmarks on medium and large datasets [8]. Aslot et al. use a
quad-processor UltraSPARC II system to gather performance related informa-
tion for specific code sections of the SPEC OMP benchmark applications [1].
They list the most time consuming code regions and discuss scalability issues.
Moreover, Müller et al. present scalability and performance results for SPEC
OMPL2001 and SPEC HPC2002 benchmarks [7]. Fürlinger et al. analyze the
scalability of SPEC OMPM2001/OMPL2001 benchmarks on a 32 processor Ita-
nium system and use the profiling tool ompP to break scalability issues down to
reasons like thread management, imbalances, and synchronization [3]. All these
analyses have been performed on systems with single-core processors and there-
fore do not provide performance insights for systems consisting of multi-core
processors with shared L3 cache and integrated memory controllers.

3 Test Systems

We analyze two quad-socket cache coherent NUMA systems with processors from
Intel and AMD. Table 1 summarizes the hardware configuration.

The 8-core Intel Xeon 7500 series processors consist of a monolithic die and
feature 24 MiB of shared L3 cache. The two integrated memory controllers each
provide two scalable memory interface (SMI) channels. Connected to each SMI
channel is a scalable memory buffer (SMB) that controls the DDR3 memory.
Each processor features 4 QuickPath Interconnect (QPI) links. One link is used

172 D. Molka et al.

Table 1. Hardware configuration of test systems

System Nehalem-EX Magny Cours

Processors 4x Intel Xeon X7560 4x AMD Opteron 6172

Cores 32 (SMT disabled) 48

Core clock 2.266 GHz (w/o Turbo Boost) 2.100 GHz

Cache
2x 32 KiB L1, 256 KiB L2 per core 2x 64 KiB L1, 512 KiB L2 per core
24 MiB L3 per processor 2x 6 MiB L3 per processor

Interconnect 6.4 GT/s QPI (25.6 GB/s) 6.4 GT/s HT 3.0 (25.6 GB/s)

Memory 256 GiB DDR3-1066 64 GiB DDR3-1333
configuration 4x SMI per socket 4x DDR3 per socket

OS Red Hat EL6 2.6.32-71.el6.x86 64 Ubuntu 10.10 2.6.35-22-server

Compiler gcc 4.4.4, icc 11.1 (20091130) gcc 4.4.5, icc 11.1 (20091130)

to connect to the chipset, three links can be used to connect to other proces-
sors. The 12-core AMD Opteron 6100 series processors are multi-chip-modules
(MCM). They consist of two six-core dies that are internally connected via Hy-
perTransport (HT) links. Each die includes 6 MiB shared L3 cache and a dual-
channel DDR3 controller for a total of 12 MiB L3 and four DDR3 channels per
processor. Each socket supports four 16-Bit HT 3.0 links, one for communication
with the chipset and three to connect to other sockets.

The topologies of the test systems are depicted in Figure 1. The four sockets in
the Intel system are fully connected via QPI links. Each link provides 25.6 GB/s
of raw bandwidth (12.8 GB/s per direction). Data is transferred in 64 Byte
packages each with an 8 Byte header [5,10]. This protocol overhead limits the
achievable bandwidth to 11.37 GB/s per direction. The AMD system has four
sockets as well, however it consists of eight NUMA nodes. The three 16-Bit links
per socket that connect the processors are actually used as six 8-Bit links that
provide 12.8 GB/s (6.4 GB/s per direction) each. The dies within a MCM are

Node 0 Node 1

Node 2 Node 3

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

I/O I/O

I/O I/O

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

(a) four socket Xeon 7500

Node 1

Node 0

Node 3

Node 2

Node 5

Node 4

Node 7

Node 6

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

I/O I/O

I/O I/O

(b) four socket Opteron 6100

Fig. 1. System topology comparison

Memory Performance and SPEC OpenMP Scalability 173

connected via one 16-Bit and one 8-Bit link [2]. Every die is directly connected
to three dies in other sockets. There are two sets of four fully connected nodes:
{0,2,4,6} and {1,3,5,7}. Data transfers between those groups require two HT
hops if the nodes are not in the same MCM.

Both systems use snooping based protocols to maintain cache coherence. The
additional messages reduce the effective bandwidth. AMD implements a probe
filter, called HT Assist, that uses a portion of the L3 cache as directory in order
to filter unnecessary messages [2]. However, that reduces the L3 capacity and the
L3 bandwidth has to be shared between data accesses and probe filter accesses.
Furthermore, only 16 MiB of a node’s memory can be cached somewhere in the
system as the directory size is limited.

4 Benchmarks

4.1 Microbenchmarks

We use a set of open source microbenchmarks [6,4] to perform a low-level analysis
of each system’s memory performance. Highly optimized assembler routines and
time stamp counter based timers enable precise performance measurements of
data accesses in cache coherent NUMA systems with a 64 Bit x86 processors. The
benchmarks are parallelized using pthreads and individual threads are pinned
to single cores using sched setaffinity(). Coordinated data access sequences
are performed in consideration of the coherence protocol to transfer data into
a selected cache in a well-defined coherence state. Latencies and bandwidths
of accesses to any core’s caches and any socket’s memory can be measured as
well as the aggregated bandwidth of shared caches and memory controllers. The
benchmarks support different data allocation schemes: localalloc results in all
threads using memory local to their NUMA node while globalalloc forces all
memory to be allocated at the first NUMA node.

4.2 SPEC OMPM2001

To show the impact of the different hardware characteristic of the two platforms
on application performance we use the SPEC OMP Benchmark suite V3.2. The
11 codes from SPEC OMPM2001 cover a wide range of applications and use
different OpenMP constructs for the parallelization. The philosophy to use real
applications results in relatively complex performance properties. More details
about the benchmark and its performance properties can be found in [8,1,7,3].
We use the Intel Compiler Suite in version 11.1 on both systems to create the
benchmark executables. The same optimization flags are used for all bench-
marks, namely -O3 -ipo -openmp. To consider the different SIMD extensions
we additionally use -msse3 on the AMD and -xSSE4.2 on the Intel system.
Likwid-pin [9] is used to avoid thread migration.

174 D. Molka et al.

(a) Opteron 6172 (b) Xeon X7560

Fig. 2. Access latencies: Thread on core 0 accesses local or other core’s memory

5 Results

5.1 Memory Latency

The microbenchmark results of cache and memory latencies are depicted in Fig-
ure 2 and summarized in Table 2.

Figure 2a depicts the latencies in the quad-socket Opteron 6172 system. Ac-
cesses to local caches require 1.4 ns (3 cycles) for the L1, 7.1 ns (15 cycles) for
the L2, and 19 ns (40 cycles) for the L3 cache. Reading data from the L1 or L2
cache of another core on the same die requires 70 ns. This is significantly higher
than measured on older Opteron models without HT Assist [4] as probing other
cores is delayed until the HT Assist directory has been checked. With 109 ns the
latency between the two dies within a MCM is only marginally lower than the
113 ns for accessing directly connected dies in other sockets. A second HT hop
adds another 40 ns to the latency. Memory requests have a latency of 65 ns for
local memory, 113-119 ns for memory that can be reached with one HT hop, and
159 ns if two hops are necessary. Without HT Assist, responses from memory
would be delayed until the farthest nodes reply to the probe message. This would
require approximately 133 ns (152 ns for 2-hop L3 accesses includes HT Assist
lookup of about 19 ns). Thus, the HT Assist reduces the local memory latency
by more than 50%.

Table 2. Access latencies in ns, cache lines in state modified

Processor Opteron 6172 Xeon X7560

Source local
within socket other socket

local within socket other socket
on-die 2nd die 1 hop 2 hops

L1 1.4 70.4 109.5 113.3 153.3 1.8 48.2 126.0

L2 7.1 70.4 109.5 113.3 153.3 4.4 46.4 128.2

L3 19.0 19.0 107.6 111.9 152.4 20.3 20.3 103.0

RAM 65.7 65.7 114.3 119.0 159.0 130.4 130.4 192.8

Memory Performance and SPEC OpenMP Scalability 175

Figure 2b shows the latencies on the quad-socket Xeon X7560 system. With
1.8 ns (4 cycles), the L1 cache is slightly slower than the AMD implementation.
The L2 is faster (4.4 ns; 10 cycles) and the L3 has almost the same latency
(around 20 ns). With around 47 ns on-die transfers from other L1 and L2 caches
are notably faster. As can be expected from a fully connected system, the laten-
cies for all other sockets are almost identical. However, the single QPI hop adds
about 62 ns to the latency compared to 40 ns per HT hop. Memory latencies
are 130 ns for the local memory and 192 ns for memory at other sockets which
is much more than on the AMD system. It is also significantly more than the
103 ns latency of remote L3 cache accesses that provide an estimate for the snoop
responses. The high latency is therefore not a problem of the coherence mecha-
nism but can be attributed to the SMBs that translate from the processor’s SMI
interface to DDR3.

5.2 Memory Bandwidth

Figure 3 depicts the read bandwidths that we measured for a single thread. A
summary that also includes write bandwidths can be found in Table 3. While
the Opteron’s L1 caches have two 128-Bit read ports (32 Byte per cycle), the
Xeon’s L1 has only one 128-Bit read port. The L1 write bandwidth is 16 Byte
per cycle on both systems. On the Intel system, the L2 and L3 caches provide
more bandwidth. Data exchanges between cores on a single die achieve higher
bandwidths as well. The single threaded bandwidth from/to main memory is
relatively low on both systems. Remote accesses again show the more complex
topology of the AMD system. Data can only be read with about 3.8 GB/s from
caches or memory of the processor’s second die. The bandwidth drops further
down to 2.1 GB/s for reading from other sockets. On the Intel system, data
can be read with 6.3 GB/s from caches in other processors and 3.9 GB/s from
remote memory. These transfer rates are limited by the interconnect as well as
by the outstanding requests supported by a single core.

(a) Opteron 6172 (b) Xeon X7560

Fig. 3. Memory read bandwidth: Thread on core 0 accesses other core’s memory

176 D. Molka et al.

Table 3. Single thread read (write) bandwidth in GB/s. Write bandwidth listed only
for local caches and memory as it cannot be written into other cores’ caches.

Processor Opteron 6172 Xeon X7560

Source local
within socket other socket

local
within other

on-die 2nd die 1 hop 2 hops socket socket

L1 62.9 (31.8) 5.4 3.7 2.1 2.1 35.2 (35.2) 14.3 6.3

L2 16.7 (10.0) 5.4 3.7 2.1 2.1 24.1 (22.3) 14.3 6.3

L3 7.8 (7.0) 9.0 3.9 2.1 2.1 19.2 (12.7) 14.3 6.3

RAM
6.1 6.1 3.8 2.1 2.1 5.5 5.5 3.9
(4.4) (4.4) (3.2) (2.0) (2.0) (4.9) (4.9) (3.5)

By using eight concurrent threads , 11.0 GB/s can be transferred over one
QPI link. This is very close to the expected peak performance of 11.37 GB/s (see
Section 3). Six cores on one die of the Opteron 6172 processor can read data with
5.3 GB/s from the second die in the MCM which is much lower than expected.
However, no more than 2.1 GB/s can be read from dies in other sockets via the
8-Bit links even with multiple cores reading in parallel. Thus, the bandwidth
limit is not caused by too few outstanding requests per core but by the width
of the HT links. The low performance indicates that only one link is used to
exchange data between two dies in different sockets, even though two links are
available between the sockets.

The scaling behavior of the L3 and main memory read bandwidth is depicted
in Figure 4 for single NUMA nodes. The results as well as the corresponding
write bandwidths are summarized in Table 4. On the AMD system the six cores
of one die share an aggregate L3 bandwidth of 30.9 GB/s which is identical
for reading and writing. Each dual-channel memory controller delivers a read
and write bandwidth of 13.2 GB/s and 7.1 GB/s, respectively. On the Intel
system, L3 read and write bandwidths scale linearly with the number of cores
and reach a total of 152 and 101 GB/s, respectively. Thus, the Xeon’s shared

(a) Opteron 6172 (b) Xeon X7560

Fig. 4. Memory read bandwidth scaling for concurrent accesses of multiple cores

Memory Performance and SPEC OpenMP Scalability 177

Table 4. Aggregate read (write) bandwidth per socket in GB/s

Source 1 core 2 cores 4 cores 6 cores 8 cores 12 cores

Opteron L3 7.8 (7.1) 15.2 (14.1) 24.1 (24.5) 30.8 (30.9) n/a 63.7 (61.8)
6172 RAM 6.1 (5.1) 10.7 (6.6) 13.2 (7.1) 13.2 (7.1) n/a 26.2 (14.0)

Xeon L3 19.2 (12.7) 38.3 (25.4) 76.6 (50.8) 114 (76.0) 152 (101) n/a
X7560 RAM 5.5 (4.9) 11.4 (8.5) 20.6 (10.8) 24.5 (10.9) 25.7 (10.9) n/a

L3 cache provides significantly more bandwidth than both of the Opteron’s L3
partitions combined while being larger and shared by all cores. The memory read
bandwidth per socket is almost identical on the two systems (AMD: 26.2 GB/s,
Intel: 25,7 GB/s) while the AMD system provides higher write bandwidth (AMD:
14.0 GB/s, Intel: 10,9 GB/s).

The L3 and memory bandwidths scale linearly with the number of sockets on
both systems if memory is allocated by each thread (localalloc). However, if all
memory is allocated and initialized by the master thread (globalalloc), memory
bandwidth is reduced significantly. In this case performance is limited as only the
memory controllers of the first NUMA node are used. The bandwidth limitations
of the processor interconnects affect the performance as well. The Intel system
provides 17.7 GB/s memory bandwidth if all four sockets use memory from
node0. On the AMD system, the single socket bandwidth is already reduced to
7.5 GB/s as two of the processor’s four memory channels remain unused and half
the cores access memory of the second die via the intra-socket HT connection.
If all sockets are used, the 8-Bit links that connect the individual dies become
the limiting factor resulting in an even lower bandwidths of 6.6 GB/s for this
worst-case scenario. Furthermore, the limited coverage of the HT Assist directory
causes invalidations of cache lines if more than 16 MiB of node0’s memory are
cached somewhere in the system. The 48 L2 caches (24 MiB) already exceed that
capacity, thus the effective L3 size is reduced to zero. While both systems require
NUMA optimized memory allocation to achieve optimal memory performance,
the low-level benchmarks strongly indicate that the AMD memory subsystem is
much more sensitive to non-optimal memory allocation.

5.3 SPEC OMPM2001 Scaling with Multiple Cores

For our OpenMP scalability analysis we first examine the parallel efficiency of
SPEC OMPM2001 applications running on a single socket of our quad-socket test
systems (see Figure 5). Also depicted in Figure 5 are the L3 bandwidth as well
as main memory read and write bandwidth. On the Intel system, the L3 cache
design is remarkably powerful, allowing the L3 bandwidth to scale linearly. The
L3 cache of the AMD processor does not scale linearly, neither does the main
memory bandwidth of both systems. Especially the memory write bandwidth
scales poorly with a growing number of cores. The limited scaling of shared
resources (see Table 4) has a strong influence on the benchmark results, which
results in significantly different scaling behavior on multi-core processors than

178 D. Molka et al.

(a) Xeon X7560

(b) Opteron 6172

Fig. 5. SPEC OMPM2001 scaling with multiple cores of a single socket. A parallel
efficiency of 1 indicates linear speedup.

reported in [3] for single-core multi-socket systems. Based on the results shown
in Figure 5 the benchmarks can be divided into three groups:

– Group 1 includes mainly compute bound benchmarks. 324.apsi, 330.art, and
332.ammp show marginal memory influence on the Intel system as well as a
minor L3 cache dependence.

– Group 2 consists of 310.wupwise, 314.mgrid, 326.gafort, and 328.fma3d that
are subject to a higher influence of L3 cache and main memory bandwidths.

– Group 3 contains the strongly memory bound benchmarks 312.swim, 316.ap-
plu, 318.galgel, and 320.equake.

Figure 5b also shows the scalability effects on the Opteron 6172 processor when
both dies (2x 6 cores) are being used. 310.wupwise, 312.swim, and 314.mgrid
scale almost linearly. They are not affected by the limited interconnect band-
widths and increased access latencies. The remaining benchmarks show signif-
icantly reduced parallel efficiency if both NUMA nodes of a single socket are
being used.

5.4 SPEC OMPM2001 Scaling with Multiple Sockets or NUMA
Nodes

Application scaling on multiple sockets is additionally influenced by the inter-
socket connectivity via HT or QPI links. Higher latencies and lower bandwidths
compared to the intra-socket case worsen multi-socket scalability. In addition to
the coherence traffic, the links are stressed by accesses to distant memory due
to NUMA unaware memory allocation. These considerations need to be taken
into account for the evaluation of all performance results depicted in Figure 6.
Unfortunately, the grouping with respect to memory boundedness does not apply
here as the interconnect influence is different for the individual benchmarks. We

Memory Performance and SPEC OpenMP Scalability 179

(a) Xeon X7560 (8 cores per socket)

(b) Opteron 6172 (12 cores per socket)

Fig. 6. SPEC OMPM2001 scaling with multiple sockets. A parallel efficiency of 1
indicates linear speedup.

observe good multi-socket scaling of 310.wupwise, 312.swim, and 314.mgrid on
both systems. 316.applu shows strong super-linear speed-up on the Intel system
in accordance to the findings of [8] and [3]. The data set of this benchmark
apparently exceeds the available cache size of two AMD sockets and fits well
into the caches of three or more sockets. However, the cache effect is alleviated
by other effects that hinder multi-socket scalability. This behavior likely results
from non-local memory usage, as e.g. the array initialization in ssor.f:49 ff
can provoke non-local memory accesses. The parallelized loop iterates over j
from jst to jend to initialize eight arrays that are later used for calculations in
disregard of the locality information (e.g. in subroutine blts). 318.galgel and
320.equake scale poorly on both systems in accordance to [3]. A non-optimal
memory allocation is likely a contributor to that behavior as single-socket scaling
appears to be similar to memory bound benchmarks such as 312.swim. The
remaining benchmarks scale significantly better on the Intel system, most likely
due to the higher intra-socket bandwidths. This is particularly noticeable for
326.gafort, that accesses random indices of a computation matrix in one of the
main loops (shuffle-do#10). This access pattern as well as the surrounding
OMP locks lead to high inter-socket traffic.

5.5 SPEC OMPM2001 Performance Comparison

For a comparison of the overall performance of our test systems, it is important
to note that the AMD system has an approx. 40% higher peak computing per-
formance. This potentially benefits applications that are computationally bound.
On the other hand, the Intel Xeon processor strongly benefits from its large
L3 cache as well as the high L3 bandwidth, potentially improving the per-
formance of memory bound applications. Figure 7 depicts the relative perfor-
mance (AMD/Intel) of the two test systems. Note that the ’half socket’ main

180 D. Molka et al.

Fig. 7. SPEC OMPM2001 application performance of Opteron 6172 relative to Xeon
X7560. Bars > 1 indicate a performance advantage for the Opteron.

memory bandwidth is much lower on AMD compared to Intel, as only two of the
Opteron’s four memory channels are used in this case. 312.swim and 318.galgel
are particularly sensitive to this. The Intel system generally scales better over
multiple sockets as illustrated by the decreasing relative performance of 318.gal-
gel, 326.gafort, 328.fma3d, 330.art, and 332.ammp. One outlier is 316.applu,
which shows super-linear speedup as stated in Section 5.4 and should therefore
not be analyzed in detail at this point. As pointed out in Section 5.3, 310.wup-
wise, 312.swim, and 314.mgrid are not sensitive to inter-socket communication
performance. The scaling behavior of these benchmarks is therefore competitive
on the AMD system, with 310.wupwise and 312.swim showing superior overall
performance. On average the scaling is worse on the Opteron system, despite
AMD’s HT Assist feature. This indicates that the unexpectedly low Hyper-
Transport bandwidths (see Table 3) are significantly limiting the performance
for benchmarks that perform remote cache or memory accesses. Therefore, the
total SPEC OMPM2001 result is significantly higher on the Intel system while
single-socket performance is almost identical.

6 Conclusions

Today’s shared memory x86 systems are complex cache coherent NUMA architec-
tures. Multiple processors are connected via point-to-point interconnects and each
processor features multiple cores. This results in different performance levels for
data transfers depending on the exact location of the data source. Sophisticated
low-level microbenchmarks that are tailored to investigate the performance of
data transfers within shared memory systems are used to present precise results
for latencies and bandwidth for on-die and off-die data transfers in two state-of-
the-art quad-socket x86 64 systems. Considerable limitations of the inter-socket
communication bandwidths are identified. We also provide detailed data for the
scaling behavior of shared resources such as last level caches and main memory.

In our scalability analysis of SPEC OMPM2001 applications, both test sys-
tems show severe deficiencies in terms of overall parallel efficiency. Scaling is
limited by shared resources within each NUMA node that do not scale linearly
with the number of cores as well as non-linear scaling with the number of NUMA
nodes. This shows that the bottlenecks identified by the microbenchmarks also
limit the performance and scalability of real applications. For the majority of

Memory Performance and SPEC OpenMP Scalability 181

applications, the Intel test system performs better regarding both aspects. While
the superior scaling for one processor is expected due to the single-die solution
and the extremely well-performing L3 cache, the lower performance of the AMD
system in multi-socket configurations is surprising. With respect to the tested
workloads, the HT Assist feature does not prove to be sufficient to compen-
sate for the disadvantages that come with the more complex topology and the
comparatively low HyperTransport bandwidth.

Acknowledgment. The authors would like to thank Intel Germany for provid-
ing us with the Intel Nehalem-EX test system. We also thank NEC Deutschland
GmbH for granting us access to the AMD Magny Cours test system.

References

1. Aslot, V., Eigenmann, R.: Quantitative performance analysis of the SPEC
OMPM2001 benchmarks. Sci. Program. 11, 105–124 (2003)

2. Conway, P., Kalyanasundharam, N., Donley, G., Lepak, K., Hughes, B.: Cache
hierarchy and memory subsystem of the AMD Opteron processor. IEEE Micro 30,
16–29 (2010)

3. Fürlinger, K., Gerndt, M., Dongarra, J.: Scalability analysis of the SPEC OpenMP
benchmarks on large-scale shared memory multiprocessors. In: Shi, Y., van Al-
bada, G., Dongarra, J., Sloot, P. (eds.) ICCS 2007. LNCS, vol. 4488, pp. 815–822.
Springer, Heidelberg (2007)

4. Hackenberg, D., Molka, D., Nagel, W.E.: Comparing cache architectures and co-
herency protocols on x86-64 multicore SMP systems. In: MICRO 42: Proceedings
of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture,
pp. 413–422. ACM, New York (2009)

5. Intel. An Introduction to the Intel QuickPath Interconnect (January 2009)
6. Molka, D., Hackenberg, D., Schöne, R., Müller, M.S.: Memory performance and

cache coherency effects on an Intel Nehalem multiprocessor system. In: PACT 2009:
Proceedings of the 2009 18th International Conference on Parallel Architectures
and Compilation Techniques, pp. 261–270. IEEE Computer Society, Washington,
DC, USA (2009)

7. Muller, M.S., Kalyanasundaram, K., Gaertner, G., Jones, W., Eigenmann, R.,
Lieberman, R., Van Waveren, M., Whitney, B.: SPEC HPG benchmarks for high
performance systems. Int. J. High Perform. Comput. Netw. 1, 162–170 (2004)

8. Saito, H., Gaertner, G., Jones, W., Eigenmann, R., Iwashita, H., Lieberman, R., van
Waveren, M., Whitney, B.: Large system performance of SPEC OMP benchmark
suites. International Journal of Parallel Programming 31, 197–209 (2003)

9. Treibig, J., Hager, G., Wellein, G.: Likwid: A lightweight performance-oriented
tool suite for x86 multicore environments. In: International Conference on Parallel
Processing Workshops, pp. 207–216 (2010)

10. Ziakas, D., Baum, A., Maddox, R.A., Safranek, R.J.: Intel R© quickpath interconnect
architectural features supporting scalable system architectures. In: 2010 IEEE 18th
Annual Symposium on High Performance Interconnects (HOTI), pp. 1–6 (2010)

Y. Xiang et al. (Eds.): ICA3PP 2011, Part I, LNCS 7016, pp. 182–193, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Anonymous Communication over Invisible Mix Rings

Ming Zheng1,2, Haixin Duan1, and Jianping Wu1

1 Department of Computer Science and Technology, Tsinghua University,
100084 Beijing, P.R. China

2 College of Humanities and Social Sciences, National University of Defense Technology，
410073 Changsha, Hunan, P.R. China

Zhengm09@gmail.com, duanhx@tsinghua.edu.cn,
jianping@cernet.edu.cn

Abstract. Protect the identity of participants may be advantageous or essential
and even critical for many internet applications. Mix rings architecture give
better performance than mix-nets while maintaining anonymity that is stronger
than onion routing. This paper presents an enhancement of mix rings, which is a
hybrid P2P system and is designed to provide anonymity under a strong
adversarial model in terms of identification, anonymity and resilience to
collusion, along with low latency of data delivery and the link utilization. We
use a double-layer overlay network, composed of nodes that are interested in
anonymity and trusted index nodes and introduce several cluster escape and
random extend mechanisms into mix rings. We present a description of the
protocol, an analysis of common attack defense, and evaluate the degree of
anonymity using MATLAB simulations.

Keywords: anonymous communication, mix rings, hybrid P2P, cluster escape.

1 Introduction

The Internet grows rapidly and is public acceptable as a means of communication.
And anonymity has become an essential requirement for many Internet applications.
There is an awkward situation now lot of anonymous communication systems and
protocols are proposed for protecting the user’s privacy. However, even if Internet
users adopt these anonymous mechanisms, such as Crowds [1] or Onion Router [2], ,
when the users use static IP addresses for a long time the adversary can still collect
the related data to figure out the real addresses and user identities behind the systems.
To avoid the static address problem, Jia Zhang et al. suggests using DHCPv6 to get
the “seed IP address”, and generating changeable addresses during the
communications[3]. Because of the limited capability of DHCPv4 protocol and the
crisis of IPv4 address space, the proposed method is not feasible in the IPv4 world.

Matthew Burnside and Angelos D. Keromytis presents mix rings[4], which is
stronger at terms of anonymity than onion routing while we performance than mix-
nets. They show that mix rings provide anonymity that is stronger than Onion Router,
and comparable to mix-nets. We present an enhancement of mix rings which provides
sender anonymity described above, specifically, supports unlinkability anonymous

 Anonymous Communication over Invisible Mix Rings 183

communication against stronger adversary. Our system is built on top of hybrid peer-
to-peer network which is completely distributed, semi-self-organized, and scalable
with thousands of active participants who may communicate simultaneously. Our
system can provide high level of anonymity while reducing the latency of data
delivery and the link utilization. We achieve the anonymity and reductions by making
use of mix rings and cluster escape. A number of peers joined to different mix rings
dynamically change communication port and they only know little information about
the ring. These properties make them anonymous. Also, our system is designed
against passive and active attacks from outsider nodes and insider peers.

In our system, the sender anonymity is achieved by making everyone mix and
directed relay messages on the ring, for example, when Alice sends a message to the
ring and no one knows whether Alice is the originator or the relaying person. There
may be a collusion attack, that if Alice relays messages from Bob to Carol as well as
originates messages and sends to Carol, then if Bob and Carol collude they can
identify messages originated by Alice. We want a higher degree of protection against
collusion.

Unlinkability anonymity is also important. When Alice sends an anonymous
message, no one would know she is using an anonymous communication services.
But using Internet, sometimes the link information may be known by the receiver or
adversary. In case of Internet connection-based applications, the sender is anonymous
to the receiver but the adversary knows the link. A. Serjantov and P. Sewell’s research
[16] shows that all of the connection-based anonymity systems are still susceptive to
the threat of passive attacks. We try to make our anonymity guaranties stricter – no
entity must know anything about the senders or the link, even if collusion should
reveal very little information.

The basic approach is that we first initialize the system by building an efficient
trusted index nodes overlay in a decentralized manner, and then the messages which
sender as a node of ring send flow through the variable-length mix ring . Any peer
sets up its own forwarding table to forward messages it received. In that way, sender
anonymity is achieved. Also the structure of trusted index nodes has a high degree of
ring node distribution,, and making sender anonymity “collusion-free” that neighbors
of the sender will not enter its ring. That is at least 2 neighbor nodes could not collude
because they belong to different rings.

In Section 2, we overview related work. And then describe our protocol in details
in section 3. In section 4, we present various attacks and analyze the anonymity
provided by our system. Section 5 shows the evaluation of our system’s anonymity
degree. In section 6, we analyze the performance of our system. At last we offer
concluding remarks in Section 7.

2 Related Work

In 1981 Chaum first proposed the concept of anonymous communication[5], through
the store-mix-forward policy, encryption, digital pseudonyms and other technical
methods, to hide the identities of the email senders. In the following 30 years,
anonymous communication technology has been tremendous developed. As very
representatives of the anonymous communication routing protocols, Crowds, Tarzan

184 M. Zheng, H. Duan, and J. Wu

[6] and Onion Routing greatly promoted the development of anonymous
communication. DC-net[7], Xor-trees[8], P5 [9]are another category of anonymous
communication which based on broadcast or multicast. In 2004, R. Dingledine N.
Mathewson and P. Syverson presented Tor [10]. Tor has a good user experience, and
also does better in the actual deployment of the system, attracting a large number of
users and relay nodes. The relay nodes need to spontaneously even voluntarily
contribute their bandwidth and system resources, it becomes scale on the Internet's
largest users of anonymous communication systems.

Anonymous communication protocol currently proposes most typical feature-based
connections, that the communication path by a number of anonymous proxies, usually
a serial connection. The communication process is divided into two stages: first, the
path establishment phase, that the intermediate nodes on the path connect to its
successor, predecessor to build the forwarding path; Second, in the data transmission
phase, that the data is transferred to the recipient along the forwarding path which
sender has built. Path construction throughout the protocol by ensuring the safety and
traceability of information transmission is not for achieving communication
anonymity. And it’s generally based on a key infrastructure, which needs to trust the
key of the central node or the key parameters of the prior distribution. Between such
anonymous communications, the nodes usually rely on pre-construction phase of the
existing road or shared key encryption, public key transmission path information and
consultation successor shared session key. In the data transmission phase, nodes rely
on shared session key which has been negotiated on the information received
decryption operations, thereby it leads to that the entry and exit information could not
be associated.

3 Our Solution

Matthew Burnside and Angelos D. Keromytis propose an anonymous solution by mix
rings. We enhance the solution against stronger adversary while keep low latency.

3.1 Structure

The core idea in our approach is a participant group, structured as mix rings. The use
of ring is reminiscent of the Metro Link, which only passengers know where to get
off. Mix rings provide sender anonymity and unlinkability.

In mix rings, every message received on a peer from predecessor peer is checked.
If the peer checks successfully, it will view the content, else forwarded to the
successor node. A generated message is repackaged and sent to successor. We follow
a simple technique that the nodes only store the successor’s address instead of the
predecessor’s.

The set of participants is formed by each node joining a mix ring and is likely to
subway systems. When a message is received by a node, the node knows the message
is from a node of group but don’t know which one in the group exactly. Hence, the
larger the group is, the higher the anonymity could be. But the ring length should be
restricted.

 Anonymous Communication over Invisible Mix Rings 185

3.2 Topology

In our system, we organize the participating peers into one or another directed ring,
and each peer may connect to multiple rings. For a specific ring, each peer has a
predecessor and a successor. As shown in Figure 1, all the peers are form different
mix rings, and a peer could connect to two or more rings.

Fig. 1. Client peers construct different mix rings

In order to improve the network efficiency and reduce system communication cost,
as shown in Figure 2, we adapt an ideas of building a manage overlay based on the
network condition which is including distribution, latency, and bandwidth. And the
goal of managing overlay is to control the physical network connections, so that the
link usage and the latency could be minimized. The reason, for which we choose
peers, is to keep each ring consist of at least n peers to provide a desired level of
anonymity and performance balance. The larger number of nodes each ring consisted
of, the higher level of anonymity.

Fig. 2. Hybrid P2P structure/Big node is Local index peer & small node is Client peer

Initialization. In our solution, we assume that each client peer knows a index peer
from bootstrap, and the peer is called global index peer. We achieve the overlay
building by the following three steps. First, the client peer sends out local-
registration-message to the global index peer. Second, global index peer receives the
local-registration-message will forward the local-registration-message to a local index
peer. Third, local index peer receives local-registration-message will register the

186 M. Zheng, H. Duan, and J. Wu

request and response to the client peer. If the client peer has received the response in
fixed time, it start register process, otherwise, it will try to connect another global
index peer, and keep connecting, until success. Client peers can always join/rejoin the
overlay at any time from any global index peer in the overlay.

To register successfully, client peers are required to give a list of information what
they know about the local index peer, so that their local index peer could add the list
to their list. And then they can randomly pick peer from lists to construct the ring
when request returns. A client peer checks its network condition by sending out start-
test-request. Local index peers, who receive a start-test-request, could start a network
condition test to check network transparency and source address validation rule. The
results are stored to database of local index peers.

Maintenance. To maintain the system topology, we use two heartbeat timers at each
client peer in the overlay. One timer is used to send out heartbeat message
periodically and the other is for replacing communication ports to its successor. If it
does not receive its local index peer’s heartbeat on time, it will start selecting new
local index peer. If local index peer does not receive its client peers’ heartbeat, it will
delete the client from its on-use ring client nodes list and re-select a client peer for the
on-use ring. If a client peer receives a replace-port-message, it will change its service
port immediately.

Balance. In the process of balance, the overlay topology mimics the real physical
network connections so that the difference between them is minimized. The local
index peers execute the balance algorithm periodically to adjust their client peers
choice in the ring dynamically for achieving better system performance and
scalability. The heartbeat messages contain the client peers list of the index, the
successor of the ring client and communication port, etc. The local index peer follows
the balance algorithm to find better ring latency upon receiving the heartbeat message
from its clients.

The basic idea of the balance algorithm is that: first, if there is a ring for the peer to
get the message from its predecessor, there is the physical path from the predecessor
to the client peer which goes through the ring, the ring is seen as the client peer’s
load, and we can reduce the load stress between the client peers, which means we
balance clients resources. Second, if one client peer fails, the local index peer sends
replay-successor-message to its predecessor. The method that predecessor peer
receives replay-successor-message from local index peers will follow balance
algorithm.

3.3 Anonymous Communications

Anonymous communications are achieved through the cooperation of all participant
peers. Each peer provides four basic functions. Based on these basic functions, the
system provides four system functions, and then any peer can use the system for
anonymous communications as they desire.

 Anonymous Communication over Invisible Mix Rings 187

Basic Functions

Send. Any peer can be the originator of a message. Before each message is sent, the
message should first be encrypted and packaged as common packet structure. A
section random number and a message sequence number are used for the receivers to
re-construct the messages.

Receive. In our system, all the messages are sent to ring. Each peer sets a filter to get
the interested messages, so no one knows which peers get which kind of messages.

Relay. All peers in the system are responsible for message relay. For any message
coming to, the peers should check it. If it is not the receiver of the message, the peer
will send the message to its successor until the receiver received the message.

Pass. Pass is the function preformed by peers which could not forge source address
only. As shown in Figure 2, any spoof-limited peers, which gets messages from its
predecessor, makes a random choice that is either passing the message to another
client peer or sending the message to successor. There is a local wide parameter called
the forward probability, which indicates the probability according to which a peer will
choose to pass. This is cluster escape mechanism 1.

Fig. 3. Limited client peer random choose neighbor for helping pass the message

System Functions

Message repackage. Message repackage is used to repackage a message to another
common packet structure. We use a lot of application packet structure such as http,
ftp, e-mail packet structure and so on to repackage the message. If the nodes have
capability to forge source address, we will use spoofed source address to replace real
source address. This is cluster escape mechanism 2.

Key exchange. Key exchange is used for the client peers to send messages without
expose their identity. If the client peer send message by sending plaintext to its
receiver, it will be exposed. To overcome this shortcoming, the client peer sends the
encrypted messages through mix ring channel to receiver and that receiver will send
the encrypted response message to ring again. To exchange the key, the initiator client
peer sends a random key to its local index peer, and the local index peer randomly
chooses a public key to encrypt the random key and sends it to the target local index

188 M. Zheng, H. Duan, and J. Wu

peer. After that the target local index peer decrypts the random key with private key
and sends it to responder client peer.

Mix traffic. To provide anonymity against a global eavesdropper, we use mix traffic to
maintain peers’ traffic patterns, i.e. the traffic pattern should be statistically
independent of its originating data traffic. In our system, all peers in the same ring
send messages to the ring at a system pre-defined rate. When a peer wants to send a
message, it exchanges the random dummy message with the signal message, and a
fixed bit indicates whether it’s a dummy message or not. The messages are encrypted
with the random key which exchanges between sender and receiver through local
index peers, so it’s not possible for the outsiders to know which messages are dummy
messages. For all signal messages coming in, peers first try to decrypt and check the
integrity. If the messages are decrypt successfully, peers will re-encrypt and re-
package the messages, else they put them to outgoing buffer. At last the peers re-order
the messages in the outgoing buffer and send them one by one. This is cluster escape
mechanism 3.

Ring Adjustment. The ring is build to mimic the physical connections; the ring
structure will remain relative stable once the structure is settled down. The attackers
could figure out the client peers of a specific ring and compromise all its client peers,
which will result in the expose of message from the specific peer. Besides the
instability of the peers which goes on and off constantly, we design a protocol to let
the ring adjust itself periodically, so that the ring structure is not predictable at the
degree and the attacker could not compromise all peers of a ring within that
adjustment period. We also change the send port and receive port periodically and
randomly pass the message to another client under the same local index peer control.
This is cluster escape mechanism 4.

Anonymous Communications

Sender-receiver anonymous communication. Sender-receiver anonymous
communication is achieved by ring transfer. If the sender is a ring client, it will send
the message to its successor, since the forming peers of the ring are randomly chosen
by multiple local index peers; any peer in it except the sender could not know who the
sender is. Once the message is sending to the ring, the intermediate node could not
know who the send is either. It could be any client in the ring, and the anonymous set
for random pass is even larger. Hence, the communication is sender anonymous.
Since every client receives all the messages, and they filter out everything they want
by themselves, it is receiver anonymous.

Sender anonymous communication. In this case, the sender makes a random key and
sends it to local index peer. The local index peers exchange random keys for sender
and randomly selected receiver. The sender encrypts the message using the random
key, and then sends out the message. The receiver filters all messages on the key
field, thus could receive the correct reply. For further anonymity the key can be
changed periodically.

 Anonymous Communication over Invisible Mix Rings 189

4 Attacks and Defense

Anyone outside the peer-to-peer system can monitor all the traffic going through the
network. Since all messages are encrypted, the attackers could not know the content
of the messages. Since the traffic through the system maintains a stable traffic pattern,
each peer maintains in multiple ring. So there is no way to figure out who is the
sender or the receiver even the hacker can monitor all the traffic. Because all the
messages are mixed at each hop, and the messages are re-ordered before passing on,
the hackers could not correlate the incoming and outgoing messages. Alteration at the
network layer is prevented by integrity check at each hop, and altered messages will
be dropped. A replay attack will re-send an incoming packet and watch for an
outgoing packet. A duplicate will correlate the incoming and outgoing packet. In our
system, messages are sent to successor in the ring through an unstable topology,
replay could not expose the receiver, or the sender. Also, each peer passing messages
have a threshold rate, so the DoS attack won’t work.

The internal adversary can monitor all the communication between peers and in
addition it is also trying to compromise the internal peers of the network. An
adversary agent at such a compromised peer can gather information about messages
that traverse the peer. The attack that is most likely to compromise the anonymity is
the collusion attack. We categorize the major passive attacks [11] which a P2P
anonymity protocol should be able to defend against, and also discuss why our system
is invulnerable. At last we use Table 1 to show which cluster escape mechanisms are
introduced to against passive attacks.

• Message coding attack[12]: An attacker can trace messages that do not change
their coding during the session. We use common packet structure to repack the
each anonymous packet passed by. Every packet will change its coding when it is
rerouted.

• Local collaborating attack[13]: When local index peers create a mix ring, each peer
on the ring will belong to different AS. Local collaboration attack could not gain
anything.

• Timing attack[14]: We used spoofed source address, dynamic source and target
port. No two continued packet can be judge to one data flow. Adversary could not
make sure which packets belong to one data flow, so timing attack will be immune.

• Predecessor attack [15]: Because of ring structure, no node is the first responder. A
malicious node could not gain the real address of its predecessor while spoofed
source addresses are used.

• Traffic analysis attack[16] : As timing attack, adversary could not make sure which
packets belong to one data flow. Hence, they could not analyze the traffic.

• Trace back attack[17]: The malicious node could not gain the real address of its
predecessor while spoofed source addresses are used. There is no path to trace
back.

190 M. Zheng, H. Duan, and J. Wu

Table 1. Common Passive Attack and Our Defense Method

Common Passive Attack Defense Method

Message Coding Attack Message repackage

Local Collaborating Attack Topology

Timing Attack Pass, Message repackage, Mix traffic, Ring Adjustment

Predecessor Attack Topology, Pass, Message repackage, Ring Adjustment

Traffic Analysis Attack Pass, Message repackage, Mix traffic, Ring Adjustment

Trace Back Attack Topology, Pass, Message repackage, Ring Adjustment

5 Anonymity Evaluation

Suppose there are N peer nodes in system. The communication behavior of all the N
peers looks alike under the ideal circumstance, so each node has a possibility of 1/N
to be identified as the sender. The entropy can be calculated as:

() NppXH i

N

i
i 22

1

loglog =−= ∑
=

(1)

However, it is unavoidable in a P2P system that malicious nodes exist. Suppose, M
nodes of N are malicious. If we do not consider other special attack strategies, the
entropy can be calculated as H(X) = log2(N - M). And the anonymity degree of the
system with M malicious nodes is:

() () () () Nlog/log 22 MNXHXHXD Max −== (2)

Because of the specificity of system, suppose one unlimited node can spoof or pass R
addresses and Section 4 show we can immune above passive attack. If a malicious
peer joined the ring, it can gain the real address of its successor. The anonymity
degree of system with M malicious nodes is:

() () () ()()()
M)M)-(R(Nlog

/log

2

2

+
+−−== NMRMRNMN

XHXHXD Max

 (3)

Fig. 4. Anonymity degree of system in different malicious nodes rate

 Anonymous Communication over Invisible Mix Rings 191

We use MATLAB to evaluate four malicious nodes rate scenes while R is 255. The
comparison result between these four malicious nodes rate is shown in Fig. 3. At the
beginning, the anonymity degree rises rapidly with the number of nodes increasing,
but when the number exceeds 100, the anonymity degree will keep rising, but rise
slowly. The malicious node rate will directly affect the anonymity degree of our
system, but the anonymity degree is still on high level.

6 Performance Analysis

As we approach, all messages sent to the ring of all participating peers, the
performance could be a big problem. However, in order to defend against various
attacks, including traffic analysis, message correlation and collaboration, more and
more anonymous communication solutions use cover traffic, which means each
participating node sends out noisy messages at a fixed rate. Comparing to the systems
using cover traffic at the same transition rate, our system does not show any
performance degrading, because in both kind systems, each node sends out mixed
messages to its successor. Comparing to other P2P solutions, our topology is built to
mimic the physical network connections and the local index peer will balance their
clients’ load, so the link usage and the latency in our system will be better than those
systems which use the application layer topology directly. From the security point of
view, at the same transfer rate, we send messages to the rings to enhance the
anonymity, which could show better anonymity than the systems that only send
messages to dedicated receivers, the rate of signal message over noisy message will
be higher in our system.

Most current solutions only support sender anonymous communications. There are
two solutions supporting sender- receiver anonymous: DC net requires a bus for all
the participating nodes, which is not realistic, and Xor-tree requires nodes knowing all
the other nodes. Our system adapts their ideas of bus messages to all the participants
on the same ring to achieve anonymity. However, we apply the mix ring imitation and
re-routing of the physical connection, it provides an inexpensive, scalable and
efficient way of anonymity.

Encryption overhead in anonymous communication systems comprises a large
proportion of the total cost. Mix in the anonymity of the best system for anonymous
communication system, each node will be a mix public and private key encryption
and decryption. Consider of balance between performance and anonymity, Tor’s OP
constructs circuits incrementally, negotiating a symmetric key with each OR on the
circuit, one hop at a time. Our system only needs to use the asymmetric key
encryption and decryption once during the key exchange period. In the
communication process, sender or receiver use symmetric key encryption or
decryption once while the relay nodes just decode the packets. Our system also can be
fixed to meet the requirement of anonymous level by adjust the length of mix ring, the
lower anonymous applications can gain lower latency.

192 M. Zheng, H. Duan, and J. Wu

7 Conclusion

In this paper, we present a enhance mix rings solution which provides sender- and
sender-receiver anonymity. Our system is built on top of hybrid peer-to-peer network
which is completely distributed, semi-self-organized, and scalable with thousands of
active participants who may communicate simultaneously.

From our analysis on anonymity, we show that our system provides high level of
anonymity while reducing the latency of data delivery and the link utilization. In
performance side, we use asymmetric encryption in key exchange period and
symmetric encryption in send and receive period. In relay period, we only repackage
the packet without encryption. These will decrease the overhead compare with Tor. It
means that our system not only resilient to various passive and active attacks from
outsider nodes and insider peers, but also achieve high level anonymity in a cheap,
scalable and efficient way.

References

1. Reiter, M.K., Rubin, A.D.: Anonymous Web transactions with crowds. Commun. Acm 42,
32–38 (1999)

2. Reed, M.G., Syverson, P.F., Goldschlag, D.M.: Anonymous connections and onion
routing. IEEE J. Sel. Area Comm. 16, 482–494 (1998)

3. Jia, Z., Haixin, D., Wu, L., Jianping, W.: A light-weighted extension of anonymous
communications in IPv6 Network. In: International Conference Green Circuits and
Systems (ICGCS), pp. 404–408 (2010)

4. Burnside, M., Keromytis, A.D.: Low latency anonymity with mix rings. Information
Security. In: Katsikas, S.K., López, J., Backes, M., Gritzalis, S., Preneel, B. (eds.) ISC
2006. LNCS, vol. 4176, pp. 32–45. Springer, Heidelberg (2006)

5. Chaum, D.L.: Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms.
Commun. Acm 24, 84–88 (1981)

6. Freedman, M.J., Sit, E., Cates, J., Morris, R.: Introducing Tarzan, a peer-to-peer
anonymizing network layer. In: Druschel, P., Kaashoek, M.F., Rowstron, A. (eds.) IPTPS
2002. LNCS, vol. 2429, pp. 121–129. Springer, Heidelberg (2002)

7. Chaum, D.: The dining cryptographers problem: Unconditional sender and recipient
untraceability. J. Cryptol, 1, 65–75 (1988)

8. Dolev, S., Ostrobsky, R.: Xor-trees for efficient anonymous multicast and reception. ACM
Transactions on Information and System Security (TISSEC) 3, 63–84 (2000)

9. Sherwood, R., Bhattacharjee, B., Srinivasan, A.: P5: A Protocol for Scalable Anonymous
Communication. In: Proceedings of the 2002 IEEE Symposium on Security and Privacy,
p. 58. IEEE Computer Society, Los Alamitos (2002)

10. Dingledine, R., Mathewson, N., Syverson, P.: Tor: the second-generation onion router. In:
Proceedings of the 13th conference on USENIX Security Symposium, vol. 13, p. 21.
USENIX Association, San Diego (2004)

11. Serjantov, A., Sewell, P.: Passive attack analysis for connection-based anonymity systems.
In: Snekkenes, E., Gollmann, D. (eds.) ESORICS 2003. LNCS, vol. 2808, pp. 116–131.
Springer, Heidelberg (2003)

 Anonymous Communication over Invisible Mix Rings 193

12. Berthold, O., Federrath, H., Köhntopp, M.: Project "anonymity and unobservability in the
Internet. In: Proceedings of the tenth conference on Computers, freedom and privacy:
challenging the assumptions, pp. 57–65. ACM, Toronto (2000)

13. Han, J., Liu, Y.: Rumor Riding: Anonymizing Unstructured Peer-to-Peer Systems. In:
Proceedings of the 2006 IEEE International Conference on Network Protocols, pp. 22–31.
IEEE Computer Society, Los Alamitos (2006)

14. Levine, B., Reiter, M., Wang, C., Wright, M.: Timing Attacks in Low-Latency Mix
Systems. In: Juels, A. (ed.) FC 2004. LNCS, vol. 3110, pp. 251–265. Springer, Heidelberg
(2004)

15. Wright, M.K., Adler, M., Levine, B.N., Shields, C.: The predecessor attack: An analysis of
a threat to anonymous communications systems. ACM Transactions on Information and
System Security (TISSEC) 7, 489–522 (2004)

16. Back, A., Möller, U., Stiglic, A.: Traffic Analysis Attacks and Trade-Offs in Anonymity
Providing Systems. In: Moskowitz, I.S. (ed.) IH 2001. LNCS, vol. 2137, pp. 245–257.
Springer, Heidelberg (2001)

17. Shields, C., Levine, B.N.: A protocol for anonymous communication over the Internet. In:
Proceedings of the 7th ACM conference on Computer and communications security, pp.
33–42. ACM, Athens (2000)

Game-Based Distributed Resource Allocation in

Horizontal Dynamic Cloud Federation Platform

Mohammad Mehedi Hassan, Biao Song, and Eui-Nam Huh

Dept. of Computer Engineering, Kyung Hee University
Global Campus, South Korea

{hassan,bsong,johnhuh}@khu.ac.kr

http://khu.ac.kr

Abstract. In this paper, we propose a game-theoretic solution to the
problem of distributed resource allocation in emerging horizontal dy-
namic cloud federation (HDCF) platform. It differs from the existing
vertical supply chain federation (VSCF) models in terms of establish-
ing federation and dynamic pricing. We study two resource allocation
games - non cooperative and cooperative games to analyze interaction
among CPs in a HDCF environment. We use price-based resource alloca-
tion strategies and present both centralized and distributed algorithms
to find optimal solutions which have low overhead and robust perfor-
mance. Various simulations were carried out to validate and verify the
effectiveness of the proposed resource allocation games. The simulation
results demonstrate that a cost effective resource allocation with robust
performance is achieved in the cooperative scheme.

Keywords: Horizontal dynamic cloud federation, vertical supply chain
federation, distributed resource allocation, non-cooperative game, coop-
erative game.

1 Introduction

In recent years, horizontal dynamic cloud federation (HDCF) models are emerg-
ing [1][2][3] where various CPs (smaller, medium, and large) collaborate them-
selves dynamically to gain economies of scale and an enlargement of their virtual
machine (VM) infrastructure capabilities (e.g. enlargement of Infrastructure-as-
a-Service (IaaS) capability) to meet quality of service (QoS) targets of heteroge-
neous cloud service requirements without individually increasing the amount of
virtual resources. It differs from existing vertical supply chain federation (VSCF)
model [4][5][6], in which CPs leverage cloud services from other CPs for seamless
provisioning and a priori agreements among the parties are needed to establish
the federation [2].

In a HDCF environment, there are two types of participants: a buyer CP called
primary CP (pCP) and a seller or cooperating CP called cCP. We consider the
scenario for IaaS CPs. A IaaS CP could be at the same time both pCP and/or
cCP. The pCPs initiate a HDCF platform and can pay cCPs for VM resource

Y. Xiang et al. (Eds.): ICA3PP 2011, Part I, LNCS 7016, pp. 194–205, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://khu.ac.kr

Game-Based Distributed Resource Allocation in HDCF Platform 195

consumption to complete jobs. The Fig. 1 shows a formed horizontal dynamic
cloud federation platform. The HDCF platform may dissolve as soon as the
demand has been completed. We assume that all the CPs (pCPs and cCPS) are
rational (self-interested and welfare maximizing) and they will refuse to offer
their VM resources to each other unless they can recover their costs. So there
is a need to define an effective VM resource allocation mechanism among IaaS
CPs (pCPs and cCPs) having heterogeneous cost functions that motivates them
to form the platform. Such a mechanism needs to be fair and ensures mutual
benefits which is unexplored in previous works [1][2][3].

End User

VM Resources

Primary Cloud
Provider (pCP)

Serv 1 Serv 2 Serv R

VM Resources

Collaborator CP1 Collaborator CP2

VM Resources

Horizontal
Cloud

Federation
Platform

Enterprise User

Cloud

pCP services
(IaaS, PaaS)

Vertical Supply Chain
Federaton

VM resources
rent to pCP

VM resources
rent to pCP

Fig. 1. A formed horizontal dynamic cloud federation Platform

Recently, game-theory based distributed resource allocation mechanisms have
received a considerable amount of attention in different areas like grid computing
[7][8][9], and also in cloud computing area [10][11]. However, most of these works
in cloud computing area mainly focus on optimal resource allocation using game
theory in a single provider scenario except [12] where the authors focus on using
a coalition game theory to find the profit share and the notion of diversity in a
existing static cloud federation (PlanetLab) scenario. Besides, in computational
grids environment, game theory is also used for resource allocation [7][8][9]. For
example, L. He et al [7] proposed a coalition formation-based resource alloca-
tion mechanism using game theory. They used automated multi-party explicit
negotiation for resource allocation. However, they did not evaluate the social
welfare among the agents. Other approaches [8],[9] also have high computational
complexity and difficult to implement. Hence, there is still need of a practicable

196 M.M. Hassan, B. Song, and E.-N. Huh

solution for resource allocation which effectively encourages CPs to participate
in a HDCF platform.

In this paper, we analyze game theory based distributed resource allocation
mechanisms for self-interested IaaS CPs that motivate them to participate in
a HDCF platform. The objective of a distributed resource allocation game in
HDCF platform is to maximize the utility of the system, defined as the sum of the
buyer pCPs’ utilities, without exceeding the resource capacity and expense price.
We propose two resource allocation games - non-cooperative and cooperative
games to analyze the utility of a pCP in a HDCF platform. We used price-
based resource allocation strategies and develop both centralized and distributed
algorithms for the games to achieve optimal solutions. These algorithms have low
overhead and robust performance against dynamic pricing and stability. Various
simulations were conducted to measure the effectiveness of these algorithms.

The paper is organized as follows: In section 2, we present the mathematical
problem formulation. In Section 3, we describe the two resource allocation games
in detail. In Section 4, we evaluate the effectiveness of the proposed resource
allocation games in a HDCF environment and finally Section 5 concludes the
paper.

2 Mathematical Problem Formulation

The notations used in the paper are summarized in Table 1. Consider a pCP
requires VM resources with specific QoS requirements during a certain period t
to continue providing services to its clients. A set of cCPs P = {P t

i |i = 1...m}
is available during that period which can form a HDCF platform with pCP by
providing VM resources with required QoS. Let Rt

V M be the total VM resources
supplied in a HDCF platform in period t, rt

i be the units of VM resource supplied
by a CP i in period t, and C̃t

i be its maximum capacity in that period. The sum

of the VM resources supplied to any pCP should be
m∑

i=1

rt
i = Rt

V M . We know

that the pCP can buy these VMs cheaper than the revenue it obtains for selling
them to clients [13]. Now, we present various definitions used for the mathematic
model formulation.

Definition 1 (Profit): The expected profit of a pCP obtained from executing
tasks on Rt

V M resources from cCPs is defined as follows:

ProfittpCP (Rt
V M) = Revt

cCP (Rt
V M)− Rt

V M ·
t

Pr
cCP

(Rt
V M) (1)

As shown in eq. (1), the total profit is determined by the total VM resource Rt
V M

supplied in the HDCF platform and a pCP can only influence the value of Rt
V M

by setting a proper price function Prt
cCP (Rt

V M). So the pCP can strategically
define the price function Prt

cCP (Rt
V M) such a way that it can motivate available

cCPs for contributing resources in a HDCF platform as well as get profit.

Game-Based Distributed Resource Allocation in HDCF Platform 197

Table 1. Summary of Notations

Parameters Description

Rt
V M Total VM resources supplied in a HDCF platform in pe-

riod t
P = {P t

i |i = 1...m} Total Number of Cloud providers present in period t
rt

i VM resource supplied by provider i in period t

C̃t
i Total VM capacity of provider i in period t

Cost(rt
i) Cost of supplying rt

i unit of VM resource by provider i
in period t

M t
i Cost of the first unit of VM resource by provider i in

period t
αi Learning factor of provider i where 0.75 < αi < 0.9
ω Parameter defining the rate of revenue in a HDCF plat-

form
Revt

cCP (R
t
V M) Revenue function estimated by a pCP for cCPs in period

t
PrtcCP (R

t
V M) Price per hour given to cCPs by a pCP for each unit of

VM resource supplied in period t
Util(rt

i) Utility of any cCP i by providing rt
i unit of VM resources

in period t

Definition 2 (Cost Function): In order to supply rt
i units of VM resource, any

cCP i has to pay Cost(ri
t), which is defined as follows [14]:

Cost(rt
i) =

M t
i · rt1+log2αi

i

1 + log2αi
, 0 ≤ rt

i ≤ C̃t
i (2)

The cost function can be heterogeneous for different cCPs based on α and M .
The higher the value of α and M , the higher the production cost for a provider.

Definition 3 (Revenue Function): Let ω be the increasing rate of revenue. Now,
a pCP can estimate the revenue function of the HDCF platform as follows :

Revt
cCP (Rt

V M) =
M ·

(
1− e−Rt

V M ·ω
)

ω
(3)

The function Revt
cCP (Rt

V M) is a non-decreasing and concave function which
means that the more resources supplied by cCPs, the higher the revenue. How-
ever, the marginal revenue is decreasing as the resource increased.

Definition 4 (Price Function): Based on the revenue function of eq. (3), the
price per hour given to cCPs by a pCP for each unit of VM resource supplied in
period t is defined as follows :

t

Pr
cCP

(Rt
V M) = M · e−Rt

V M ·ω (4)

198 M.M. Hassan, B. Song, and E.-N. Huh

s.t. Rt
V M > 0 (5)

The function Prt
cCP (Rt

V M) is the marginal gain of the HDCF platform. When the
amount of VM resource increase, the price per hour of each unit of VM resource
decrease. Also this function represents the proportionalfairness of contributing
resources by cCPs.

3 Resource Allocation Games in a HDCF Platform

In this section, we study two resource allocation games in a HDCF platform.
These games are repeated and asynchronous games. In one game, cCPs can
supply Rt

V M resources to a pCP in non cooperative manner and in the other
game they supply VM resources in cooperative manner. In both games, a pCP
strategically define a price function Prt

cCP (Rt
V M) and publicizes it along with the

total amount of VM resources supplied. Each cCP only knows these information
and can update its own strategy in each move so to maximize its utility.

3.1 Non-cooperative Resource Allocation Game

In the non-cooperative game of resource allocation, the cCPs make decision to
maximize their own utilities regardless of other cCPs. They choose rt

i based on
the public information: the aggregated VM resource Rt

V M and the price function
Prt

cCP (Rt
V M). Formally, cCP i needs to perform:

Max Util(rt
i) = rt

i ·
t

Pr
cCP

(Rt
V M)− Cost(rt

i) (6)

s. t. 0 ≤ rt
i ≤ C̃t

i (7)

If the net utility of a cCP is less than or equal to zero, it will not participate
in the game, and it will be removed from the list of cCPs. Note that Rt

V M

implicitly depends on rt
i . If the value of rt

i is changed, the value of Rt
V M , as

well as Prt
cCP (Rt

V M), will be changed accordingly. Thus, in the optimization,
the value of Rt

V M would be better presented in terms of rt
i . Let rt

−i be the
amount of VM resource collectively supplied by the cCPs except cCP i, then
rt
−i = Rt

′

V M − rt
′

i , where Rt
′

V M and rt
′

i are the total amount of VM resource and
the amount of VM resource supplied by cCP i respectively in the previous round.
The equivalent optimization problem of eq. (6) can be re-written by using eqs.
(4) and (2) as follows:

Max Util(rt
i) = rt

i ·M · e−(rt
i+rt

−i)·ω − M t
i · rt1+log2αi

i

1 + log2αi
(8)

s. t. 0 ≤ rt
i ≤ C̃t

i (9)

Now to obtain the optimal value of rt
i) of the game, we take the derivative of eq.

(8) with respect to rt
i as follows:

Util′(rt
i) = M · e−(rt

i+rt
−i)·ω − rt

i ·M · ω · e−(rt
i+rt

−i)·ω −M t
i · rtlog2αi

i = 0 (10)

Game-Based Distributed Resource Allocation in HDCF Platform 199

Now from eq. (10), it is difficult to find the close form solution of optimal rt
i . We

can use direct search method with linear constraint like pattern search method
[15] with multiple initial guesses to the optimal VM quantity rt

i .
However, for a defined price function, the Nash equilibrium of this non-

cooperative game may not be unique as the order of move will influence the
equilibrium point. The game may converge to different equilibrium, depending
on the sequence of move of the cCPs. So the non-cooperative game is not de-
sired in maximizing a pCP’s profit because it does not lead to a unique Nash
equilibrium.

3.2 Cooperative Resource Allocation Game

In the cooperative game of resource allocation, we jointly consider the benefits
of both the pCP and cCPs. Being a pCP, the objective is to maximize its total
profit in the HDCF platform. However, for a defined price function PrtcCP (Rt

V M),
the system may converge to different equilibrium, depending on the sequence of
move of the cCPs. There is no guarantee for the pCP to set a particular marginal
pricing function that leads to a desirable outcome which maximizes its total
profit. So a pCP can set a initial constant price and can choose a proper price
Prt

cCP to maximize its total profit.
For cCPs, they try to maximize their benefits based on rt

i and the initial
constant price Prt

cCP . So the objective of any cCP i is defined as follows:

Max Util(rt
i) = rt

i · Prt
cCP − Cost(rt

i) (11)

s.t. 0 ≤ rt
i ≤ C̃t

i (12)

Since there is a boundary constraint for the variable rt
i , that is, 0 ≤ rt

i ≤ C̃t
i ,

the problem in eq. (11) can be formulated as a constrained optimization, which
can be solved by the method of Lagrangian Multiplier.

L = Util(rt
i)−

m∑
i=1

γrt
i +

m∑
i=1

ϕ(rt
i − C̃t

i) (13)

where γ and ϕ are the Lagrangian constant. The Karush Kuhn Tucker (KKT)
condition is as follows:

∂L

∂rt
i

= Util′(rt
i)− γ + ϕ = 0, i = 1,, m (14)

Util′(rt
i) = M t

i · rtlog2αi

i = Prt
cCP (15)

rt
i =

[
M t

i

Prt
cCP

]− 1
log2αi

(16)

200 M.M. Hassan, B. Song, and E.-N. Huh

By solving rt
i of eq. (15), we can obtain the solution of a cCP’s optimization

problem of choosing rt∗
i as follows:

rt∗
i =

⎧⎨⎩
rt
i , 0 ≤ rt

i ≤ C̃t
i ,

C̃t
i , rt

i > C̃t
i ,

0, rt
i ≤ 0

(17)

Thus, given the value of proper price Prt
cCP , a pCP can predict the total VM

resource RV M contributed to the system, that is

Rt∗
V M =

m∑
i=1

rt∗
i (18)

Now, let’s consider the optimization problem of a pCP. If the pCP knows the
parameters M and α of all the cCPs, it can formulate its own maximization,
which aims at maximizing the total profit with respect to Rt∗

V M

Max ProfittpCP (Rt∗
V M) = Revt

cCP (Rt∗
V M)−Rt∗

V M ·
t

Pr
cCP

(19)

s.t.
t

Pr
cCP
≥ 0, 0 ≤ rt

i ≤ C̃t
i (20)

Since the total amount of VM resource Rt
V M solely depends on the value of

price Prt
cCP through eqs. (17 and (18), one can rewrite the objective function

by substituting Rt
V M in terms of Prt

cCP as follows:

Max Pr ofittpCP (
t

Pr
cCP

)

= Revt
cCP

⎛⎝ m∑
i=1

[
M t

i

Prt
cCP

]− 1
log2αi

⎞⎠−
⎛⎝ m∑

i=1

[
M t

i

Prt
cCP

]− 1
log2αi

⎞⎠ · t

Pr
cCP

(21)

=

M ·
⎛⎝1− e

−
m∑

i=1

[
Mt

i
Prt

cCP

]− 1
log2αi ·ω

⎞⎠
ω

−
⎛⎝ m∑

i=1

[
M t

i

Prt
cCP

]− 1
log2αi

⎞⎠ · t

Pr
cCP

(22)

s.t. 0 ≤ rt
i ≤ C̃t

i (23)

Although it is difficult to find the close-form solution of Prt∗
cCP for eq. (22), we

can solve this optimization efficiently using direct search method, for example,
pattern search method is applied to solve the value of the optimal price Prt∗

cCP .
Once the pCP finds the optimal price, it can calculate the value of all rt∗

i using
eq. (17). However, it may happen that the boundary constraints in eq. (23)
may violate and in that case the problem becomes more complicated. Still we
can find the solution mathematically using Lagrangian multiplier. Without the

Game-Based Distributed Resource Allocation in HDCF Platform 201

constraints it can be shown that the objective function in eq. (22) is a concave
function. So there exists a unique solution that satisfies the KKT-conditions of
eq. (22) as follows:

L = Pr ofittpCP (
t

Pr
cCP

)−
m∑

i=1

γrt
i +

m∑
i=1

ϕ(rt
i − C̃t

i) (24)

∂L

∂ Prt
cCP

=
∂
[
Pr ofittpCP (Prt

cCP)
]

∂ Prt
cCP

−
∂

[
m∑

i=1

γrt
i

]
∂ Prt

cCP

+
∂

[
m∑

i=1

ϕ(rt
i − C̃t

i)
]

∂ Prt
cCP

= 0 (25)

γ � 0, ϕ � 0, γrt
i = 0, ϕ(rt

i − C̃t
i) = 0, 0 � rt

i � C̃t
i , i = 1,, m (26)

From the KKT conditions, if γ = 0, and ϕ = 0, then all the rt
i lie between

[0, C̃t
i]. When the boundary constraints are violated (γ �= 0, or ϕ �= 0), the

value of rt
i are forced to be the boundary value [either 0 or C̃t

i]. If rt
i is less than

or equal to zero for certain cCP i, we are sure that the cCP is not eligible for
contributing as the cost of supplying the VM is comparatively high. Similarly, if
rt
i is greater than C̃t

i , we are sure that the cCP has optimal value of rt
i . This cCP

should provide as much VM resource as possible since the cost is comparatively
low. Thus, we can eliminate some cCPs, whose value of rt

i is known already, from
the problem formulation and resolve the rt

i for the remaining cCPs.
Until now, we assume the pCP knows the characteristic of the cost function

of each cCP such that it can determine the behavior of the cCPs, and it can
construct its own objective function. However, in distributed environment, the
pCP can only observe the action of each cCP by setting a probing price. The cCPs
choose the best rt

i to maximize their net utility. The pCP keeps adjusting the
price gradually until a desirable profit is obtained. Now we present a distributed
algorithm to find the optimal value of Prt

cCP .
The algorithm is described step by step as follows:

Step 1: Initialize the probing price Prt
cCP = 0.1 and {rt

i}Pi=1 = 0.

Step 2: Send Prt
cCP = 0.1 to all cCPs and receive corresponding Rt

V M =
P∑

i=1

rt
i .

Step 3: if ProfittpCP (Rt∗
V M) = Revt

cCP (Rt∗
V M) − Rt∗

V M ·
t

Pr
cCP

is maximized or
∂[Pr ofitt

pCP (Prt
cCP)]

∂ Prt
cCP

= 0, the optimal Prt
cCP is found and break. Otherwise

update Prt
cCP based on old price and the percentage change of the net profit.

Step 4: If 0 ≤ rt
i ≤ C̃t

i for all i ∈ P , then break.
Step 5: Now for some cCP, i ∈ P , If rt

i ≤ 0, remove those cCPs from the list
of P . Also for some cCP, i ∈ P , If rt

i ≥ C̃t
i , set rt

i = C̃t
i .

4 Simulation and Discussion

In this section, we focus on evaluating the effectiveness of the proposed resource
allocation games in a HDCF platform. We focus on the case of one pCP and six

202 M.M. Hassan, B. Song, and E.-N. Huh

cCPs in a HDCF platform where at anytime any CP can be a pCP and/or cCP.
Both the non-cooperative and cooperative games, the performance measures are
the social welfare, total profit, cost effectiveness and scalability. The experimental
parameters are shown in Table 2. Using Amazon (EC2) as the example, we
assume the range of production cost of first unit varies from 2$/hr to 3$/hr and
service availability for all provider is 99.95% [14]. For simplicity, we consider
each cCP has almost same amount of VM resource capacity in period t. Also the
evaluation of two resource allocation games were done based on mathematical
simulation, which was implemented in MATLAB 7.0.

Table 2. Parameters Used in the Resource Allocation Games for cCPs

cCPs i Production cost
of first unit per
hr

Learning factor Total capacity

M t
i αi C̃t

i

1 2.8 0.79 300
2 2.7 0.84 302
3 2.0 0.83 305
4 2.3 0.80 304
5 2.9 0.78 303
6 2.4 0.78 301

4.1 Convergence of the Resource Allocation Games

Convergence is a basic requirement that the resource allocated by the cCPs
should converge in each game. In all the experiments, we consider ω = 0.01,
M = 3 and ξ = 0.3. We analyze the behavior of each game based on the VM
resource supplied at the steady state. Fig. 2 depicts the quantity of VM resource
supplied by the six cCPs in each iteration of two games. It demonstrates that the
resource allocation games converge to a steady state after a number of iterations.
As shown in the graph, the non-cooperative game converges fast, while it takes
more iterations for the cooperative game to stabilize. However, the converging
speed does not affect the performance of the games.

4.2 Performance Analysis of Resource Allocation Games

In this subsection, we first evaluate the total profit in the proposed resource
allocation games. Fig. 3 plots the total profit of the pCP in the two resource
allocation games. We can see that the cooperative game generated the highest
total profit (204) as compared to the non-cooperative game (140).

Now we evaluate the social welfare in the resource allocation games. Fig. 4
shows the social welfare in the two resource allocation games. It can be seen that
the social welfare achieved by the non-cooperative game is much higher (135) as
compared to the cooperative game (81). The reason is that the cooperative game
is designed to maximize the total profit in a HDCF platform by trading off the

Game-Based Distributed Resource Allocation in HDCF Platform 203

(a) (b)

Fig. 2. VM resources supplied by each cCP in (a) non-cooperative resource allocation
game and (b) cooperative resource allocation game

Fig. 3. Total profit in each resource al-
location game

Fig. 4. Social welfare of cCPs in each
resource allocation game

social welfare. Now the key discussion here is which approach, the cooperative or
the non-cooperative is better. To compare the performance of these games, we
can use the total utility achieved in a HDCF platform that is the sum of the total
profit and social welfare. For this, we evaluate the total utility in the two games
having different revenue function ω as shown in Fig. 5. Note that larger the ω,
the higher the revenue is for the same quantity of VM resource. It can be seen
that the cooperative game performs well as compared to the non-cooperative
game. Also the cooperative game is cost effective as few low-cost cCPs provide
more VM resources (see Fig. 2 (b)). Hence, we conclude that the cooperative
game provides a cost-effective resource supply to a HDCF platform and thus
admits the best set of cCPs to participate.

Also to evaluate the effect of HDCF system size (scalability) in two games,
we vary the number of cCPs in the HDCF system from 6 to 24 for ω value
0.01. Note that the small ω implies more quantity of VM resource is required

204 M.M. Hassan, B. Song, and E.-N. Huh

Fig. 5. Total utility in a HDCF platform
for each resource allocation game under
different revenue function

Fig. 6. Performance of two resource allo-
cation games in terms of total utility with
different number of cCPs

to obtain the same amount of revenue. And large number of cCPs means they
can supply VM resource with less cost. The result is shown in Fig. 6. We can
see that in cooperative game the total utility increases with the number of cCPs
as compared to the non-cooperative game. Also in steady state, only the cCPs
that provide cost-effective VMs are remained in cooperative game.

5 Conclusions

In this paper, we analyze game theory based optimal VM resource allocation
mechanisms in a HDCF environment. We propose two resource allocation games-
non-cooperative and cooperative. It is shown that desirable outcome (e.g. total
utility, cost effectiveness etc.) cannot be achieved under a non-cooperative envi-
ronment. Under the cooperative resource allocation game, the CPs have a strong
motivation to contribute VM resources. Also, this game is cost-effective and scal-
able as only the collaborators with low-cost participate in a HDCF platform. In
future, we will study the performances of these games in a simulated environment
where hundreds of clouds will dynamically join and leave the federation.

Acknowledgments. This research was supported by the MKE(The Ministry
of Knowledge Economy), Korea, under the ITRC(Information Technology Re-
search Center) support program supervised by the NIPA(National IT Industry
Promotion Agency)” (NIPA-2011-(C1090-1121-0003)

References

1. Bittman, T.: The evolution of the cloud computing market. Gartner Blog Network
(November 2008), http://blogs.gartner.com/thomasbittman/2008/11/03/
theevolution-of-the-cloud-computing-market/

http://blogs.gartner.com/thomasbittman/2008/11/03/theevolution-of-the-cloud-computing-market/
http://blogs.gartner.com/thomasbittman/2008/11/03/theevolution-of-the-cloud-computing-market/

Game-Based Distributed Resource Allocation in HDCF Platform 205

2. Celesti, A., Tusa, F., Villari, M., Puliafito, A.: How to enhance cloud architectures
to enable cross-federation. In: IEEE Intl. Conf. on Cloud Computing, pp. 337–345
(2010)

3. Dodda, R.T., Smith, C., Moorsel, A.: An architecture for cross-cloud system man-
agement. In: Ranka, S., Aluru, S., Buyya, R., Chung, Y.-C., Dua, S., Grama, A.,
Gupta, S.K.S., Kumar, R., Phoha, V.V. (eds.) IC3 2009. Communications in Com-
puter and Information Science, vol. 40, pp. 556–567. Springer, Heidelberg (2009)

4. Rochwerger, B., Breitgand: The reservoir model and architecture for open federated
cloud computing. IBM J. Res. Dev. 53, 535–545 (2009)

5. Buyya, R., Ranjan, R., Calheiros, R.: InterCloud: Utility-oriented federation of
cloud computing environments for scaling of application services. In: Hsu, C.-H.,
Yang, L.T., Park, J.H., Yeo, S.-S. (eds.) ICA3PP 2010. LNCS, vol. 6081, pp. 13–31.
Springer, Heidelberg (2010)

6. Maximilien, E.M., Ranabahu, A., Engehausen, R., Anderson, L.: Ibm altocumulus:
a cross-cloud middleware and platform. In: Proc. of the 24th ACM SIGPLAN
Conference OOPSLA 2009, pp. 805–806 (2009)

7. He, L., Ioerger, T.R.: Forming resource-sharing coalitions: a distributed resource
allocation mechanism for self-interested agents in computational grids. In: Proc. of
the 2005 ACM Symposium on Applied Computing (SAC 2005), pp. 84–91 (2005)

8. Carroll, T.E., Grosu, D.: Formation of virtual organizations in grids: a game-
theoretic approach. Concurr. Comput.: Pract. Exper. 22, 1972–1989 (2010)

9. Khan, S.U., Ahmad, I.: Non-cooperative, semi-cooperative, and cooperative games-
based grid resource allocation. In: Proc. of the 20th Intl. Conf. on Parallel and
Distributed Processing (IPDPS 2006), p. 121 (2006)

10. Wei, G., Vasilakos, A.V., Yao, Z., Xiong, N.: A game-theoretic method of fair re-
source allocation for cloud computing services. J. Supercomput. 54, 252–269 (2010)

11. Jalaparti, V., Nguyen, G.D., Gupta, I., Caesar, M.: Cloud Resource Allocation
Games. Technical Report, University of Illinois (2010),
http://hdl.handle.net/2142/17427

12. Antoniadis, P., Fdida, S., Friedman, T., Misra, V.: Federation of virtualized infras-
tructures: sharing the value of diversity. In: Proc. of the 6th Int. Conf. Co-NEXT
2010, pp. 12:1–12:12. ACM, New York (2010)

13. Goiri, I., Guitart, J., Torres, J.: Characterizing cloud federation for enhancing
providers’ profit. In: IEEE Intl. Conf. on Cloud Computing, pp. 123–130 (2010)

14. Amit, G., Xia, C.H.: Learning Curves and Stochastic Models for Pricing and Pro-
visioning Cloud Computing Services. Service Science 3, 99–109 (2011)

15. Kolda, T.G., Lewis, R.M., Torczon, V.: Optimization by direct search: New per-
spectives on some classical and modern methods. SIAM Review 45, 385–482 (2003)

http://hdl.handle.net/2142/17427

Stream Management within the CloudMiner

Yuzhang Han1, Peter Brezany1, and Andrzej Goscinski2

1 Department of Scientific Computing, Faculty of Computer Science,
University of Vienna, Vienna, Austria
{han,brezany}@par.univie.ac.at

2 School of Information Technology, Deakin University, Geelong, Australia
ang@deakin.edu.au

Abstract. Nowadays cloud computing has become a major trend that
enterprises and research organizations are pursuing with increasing zest.
A potentially important application area for clouds is data analytics. In
our previous publication, we introduced a novel cloud infrastructure, the
CloudMiner, which facilitates data mining on massive scientific data. By
providing a cloud platform which hosts data mining cloud services fol-
lowing the Software as a Service (SaaS) paradigm, CloudMiner offers the
capability for realizing cloud-based data mining tasks upon traditional
distributed databases and other dataset types. However, little attention
has been paid to the issue of data stream management on the cloud
so far. We have noticed the fact that some features of the cloud meet
very well the requirements of data stream management. Consequently,
we developed an innovative software framework, called the StreamMiner,
which is introduced in this paper. It serves as an extension to the Cloud-
Miner for facilitating, in particular, real-world data stream management
and analysis using cloud services. In addition, we also introduce our
tentative implementation of the framework. Finally, we present and dis-
cuss the first experimental performance results achieved with the first
StreamMiner prototype.

Keywords: data analytics, data stream, sensor, service architecture,
service data flow, StreamMiner, CloudMiner.

1 Introduction

Cloud computing is a computing paradigm in which high throughput/performan-
ce IT-related services are provided on demand via the Internet to multiple cus-
tomers on the pay as you use basis [1]. To combine cloud technology with data
mining, we proposed CloudMiner - a cloud-based infrastructure designed to sup-
port on-demand data mining related to traditional business analytics and novel
e-Science analytics [2]. The main functions of CloudMiner are summarized as fol-
lows [3]: (i) it establishes a powerful and flexible cloud environment for executing
data mining tasks via cloud services; and (ii) it simplifies service development,
deployment and publishing.

Y. Xiang et al. (Eds.): ICA3PP 2011, Part I, LNCS 7016, pp. 206–217, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Stream Management within the CloudMiner 207

The first CloudMiner infrastructure prototype operates on traditional databa-
ses scattered in the cloud. Nevertheless, myriad problems in business and e-
Science domains deal with real-time dynamic data, in other words, data streams.
Hence, it is tempting to enhance CloudMiner with the capability of data stream
management and analysis. The following paragraphs of this section analyze the
primary problems faced by general stream management applications as well as
the potential of solving these problems using cloud computing.

1.1 Challenges of Data Stream Management Applications

A data stream is a sequence of data packets continuously sent from one device to
another during a certain period of time. The concept data stream management
refers to all the activities that are related to the construction, transmission,
persistence, and processing of data streams. These activities could bring about
intricate issues. By nature, most data stream management applications face the
challenges which can be characterized as follows.
They require huge computing power: data stream-oriented applications differ
from permanent-data applications in that they deal with data packets avail-
able only for a rather limited time slot. Hence, the packet processing devices of
such applications must be guaranteed with professional-level computing power,
particularly when the processing procedures are complex - like those in genetics
or multimedia production. An apt example would be a Web TV application:
a millisecond of delay in every packet could jeopardize the program’s overall
performance and distort fluent live broadcast into discontinuous frames.
A single stream might be processed by multiple users on different locations in
differing ways: a single stream can yield different results if used by different
users cherishing different intentions. Thus, geographically dispersed users would
wish to establish a virtual organization in which they all have access to the same
source streams as well as the processing results of others. A striking example
refers to the Japan nuclear crisis in 2011. As the situation at the nuclear reactors
deteriorated, several organizations and myriad scientists in different countries
were closely focusing on the updates of environmental data streams gathered
from the reactor surroundings. On this occasion, a virtual organization could,
on the one hand, help them effectively share the raw streams, and on the other
hand allow them to access, validate, and practice further analysis upon the
results of their colleagues.

1.2 Cloud-Enabled Stream Processing

Taking into account the foregoing challenges, we propose to use the cloud tech-
nology to response them. The benefits of combining streams and clouds are
analyzed below.
Clouds provide ample computing power: clouds provide users a virtual computer
with huge and scalable computing power. This responds precisely to stream
processing’s need for compute capability. Besides, the user also benefits from
lowered hardware costs by running her applications on the cloud.

208 Y. Han, P. Brezany, and A. Goscinski

Clouds allow every user to develop distinct applications: as a matter of fact, every
user of a cloud, disregarding her physical location, can deploy her unique cloud
service to address her own need. Therefore, people can develop different stream-
based applications as cloud services, which access the single source stream as well
as output streams from other services. Under this circumstance, by developing
cloud services, every individual concerned with the nuclear reactor crisis, as
mentioned in Subsection 1.1, can do real-time processing on the streams either
coming directly from the reactor environment or generated by other observers’
services.

Moreover, every cloud service can easily invoke other services to run their
program logic as a part of itself. Thanks to this feature, different stream-oriented
applications - encapsulated in cloud services - can share the software tools which
are frequently used in stream processing, such as the Fourier transform and
many data mining tools. Finally, the cloud also simplifies stream transmissions
among applications. As a cloud is a space of full connectivity, any data including
streams can be efficiently transferred among cloud services.

Propelled by these benefits, we propose the cloud-based software framework,
the StreamMiner, which is composed of a dynamic set of interconnected cloud
services. These services extend the CloudMiner in the direction of stream-oriented
functionalities. The relation between the StreamMiner and the CloudMiner il-
lustrated in Fig. 1 is as follows: (i) the CloudMiner (upper left in the figure)
consists of the ServiceCloud and DataCloud; (ii) the StreamMiner includes a
group of services (the light-colored boxes) located in the ServiceCloud; and (iii)
while StreamMiner services utilize existing services (the dark-colored boxes) in
the ServiceCloud, both kinds of services communicate with services in the Dat-
aCloud to access data.

1.3 Contributions and Organization of the Paper

The main contributions of the paper can be characterized as follows. First, to
help users to manage and analyze streams new cloud-based software framework,
called the StreamMiner, which is composed of a dynamic set of interconnected
cloud services, is proposed and elaborated. Second, StreamMiner services are
proposed and the programming language-independent description of each type
of cloud service that is included the framework is formulated. Third, a proof of
concept in the form of its prototype application developed is demonstrated. It is
a public cloud dedicated to data stream sharing and analysis. Fourth, a proof of
performance of the StreamMiner is presented based on the experiments carried
out on the implemented platform.

The rest of this paper is organized as follows. Section 2 expatiates on the
StreamMiner framework, its operation model and workflows, as well as the cloud
services it provides; Section 3 describes the prototype application of the frame-
work together with the technologies underlying the prototype; Section 4 demon-
strates the experimental testing of the performance of the prototype. Moreover,
Section 5 discusses the related work, and finally, Section 6 concludes with a
vision of the future research.

Stream Management within the CloudMiner 209

2 StreamMiner Framework

2.1 Architecture

The StreamMiner allows the user to define hierarchical complex cloud-based
applications, which process sensor-produced data streams. Aiming at a particular
task, each application is essentially a network of interconnected cloud services,
denoted as a production flow. The lower right part of Fig. 1 illustrates a work
scenario of the StreamMiner. It can be recognized in the figure that there are
four types of cloud services forming a single production flow. The names and
functions of these services are as follows.
Management service (MS): one instance of the StreamMiner only employs a
single management service (the MS in the case of Fig. 1), which serves as a
bridge between the user and the world of data streams. All users and other
services must register to it, so that they become visible to one another. The
management service organizes production flows of services according to the user’s
need.

Fig. 1. The CloudMiner and StreamMiner

Production service (PS): a StreamMiner application can have one or more PSs
(PS1 to PS3 in Fig. 1). The production services account for the productive part
of StreamMiner and undertake the major activity of production flows stream
processing. The particular processing task of a PS is defined by the user. Dur-
ing its operation, each PS typically receives the stream produced by other PSs,
processes it, and outputs the resulting stream to other services. Under the coor-
dination of the management service, multiple PSs - as long as they are registered
- can form a production flow to practice complex tasks of data stream manage-
ment and analysis. In the production flow, each PS assumes one sub-task of the
entire production flow process.

210 Y. Han, P. Brezany, and A. Goscinski

Auxiliary service (AuS): a StreamMiner implementation can contain any number
of auxiliary services (in Fig. 1, AuS1 and AuS2), which are computing services
assisting PSs to complete their tasks. After registering to a certain PS, a group
of AuSs expose libraries of algorithms and processing functions to the PS. The
owner PS, in turn, can invoke its AuSs to use their programs during stream
processing. This relationship is reflected in the figure that AuS1 provides certain
data mining libraries to PS1, for instance, for clustering and classification; while
AuS2 offers certain stream processing operations to PS2, such as data buffering
and filtering.

Application service (ApS): a StreamMiner environment also contains one or more
application services (in Fig. 1 the ApS) each of which is connected to certain
production services and users. Typically developed by the end user, an ApS
provides the program logic that analyzes and utilizes the data stream produced
by the PS(s) of a certain or more than one production flow. The utilization
includes storing, visualization, and knowledge exploration upon the incoming
data stream. Only those application services, production services, and users that
are registered to the management service can view one another and cooperate. In
the figure, ApS receives the stream produced by PS3 and generates meaningful
visualization of the stream such as pie charts and histograms for the user.

2.2 StreamMiner Services

The StreamMiner framework is a systematic definition of a complex mechanism,
which can be implemented to build cloud-based stream-oriented applications. To
provide a guide for implementing the framework, we formulate the programming
language-independent description of each type of cloud service enumerated in
Section 2.1. Such description sheds light on (i) the general characteristics of
each service type, and (ii) the details of remote methods this type of service
should provide.

As far as the management service is concerned, this type of service functions
as the single organizer of production flows. As such, it must assume the task
of user/service registration. Thus, a valid implementation of the management
service must include the following remote method to carry out user registration:

Integer registerUS (String username, String password)

Called by the user, the method uploads the user’s private data via the two ar-
guments, and returns her an integer for user ID that is unique in the scope of
the current instance of management service. Another central task of the man-
agement service is production flow construction. To assume this task, a service
implementation must provide the following method:

Integer setupPF (Integer[] service id, String[] desps)

This method is called by the user to indicate which services - represented by
their service IDs - are to be employed in the to-be-established production flow,
and how they should be connected with one another - specified by the argument
desps. It generates and returns a unique ID for the established production flow.

Stream Management within the CloudMiner 211

Besides, the production service is another major service type. For this type
of service, stream transmission is a vital function. Two approaches are defined
for stream transmission among PSs : one is transmission per packet, another
is transmission via connection. One can choose either of them to implement
depending on her particular hardware and software condition.

The packet-oriented approach only applies to the situation that the sending
and receiving PSs reside in the same cloud which features high internal trans-
mission rate. To realize this approach, the method

Boolean receivePacket (String timestamp, String value)

must be implemented by the receiving PS, and then be called by the sending PS.
In the view of the StreamMiner, receiving/processing/sending a data stream is
decomposed into periodical packet receiving/processing/sending operations exe-
cuted throughout a certain time interval. Once called, the method receivePacket,
on the one hand, transmits the packet value and timestamp of the packet; on
the other hand, it notifies the receiver that a packet is to be received.

By contrast, the connection-oriented approach functions in a way that the
sender and receiver located in the same cloud establish a virtual connection
for transmission. The advantage of this approach is that it does not require a
service invocation for every packet sending. Instead, the sender calls the following
method implemented on the receiver only once for transferring an entire stream:

Boolean receiveStream (Integer cache size)

After this method is called, the transmission is performed discontinuously if
no disturbance occurs, and before the method returns, both partners of the
transmission retain a connection. The argument cache size is used to specify the
size of cache the receiver should prepare for stream reception.

Apart from the foregoing ones, the StreamMiner also defines tens of other
service methods for miscellaneous uses. They will be addressed in future publi-
cations.

3 Technology and Application

At the time of writing, a prototype application of the StreamMiner framework
has been developed. It is a public cloud, named the StreamMiner Cloud, dedi-
cated to data stream sharing and analysis. This section starts with introducing
the technologies underlying the StreamMiner Cloud, then describes it in details.

3.1 Cloud Services and Stream Transmission

Administrated by the cloud middleware Nimbus [4], all the cloud services im-
plemented in the StreamMiner Cloud and CloudMiner environment are REp-
resentational State Transfer or RESTful Web services [5]. The RESTful Web
service is characterized by implementing all service-client communication using
HTTP operations. Due to this characteristic, RESTful services display not only

212 Y. Han, P. Brezany, and A. Goscinski

better usability for clients, but lower overhead on client-service communication
in comparison with conventional SOAP Web services. Apart from that, we chose
RESTful services in the hope that all StreamMiner Cloud services can be com-
patible with the worldwide major Web services, such as Twitter, Yahoo, Flickr,
and Ebay, which are also RESTful.

In addition, we chose to take the connection-oriented approach mentioned in
Section 2.2 to implement the production services in the StreamMiner Cloud. In
support of that, a third-party tool, the DataTurbine engine [6], is employed. The
engine is a server-client platform specializing in real-time stream transmission.
In a DataTurbine system, all configured DataTurbine clients can set up virtual
connections and transmit streams among them via a central DataTurbine stream
server. In the StreamMiner Cloud, every production service and application ser-
vice encapsulates a DataTurbine client in its program logic. By calling the client,
cloud services can transmit streams among them via connections, conforming to
the connection-oriented concept.

3.2 A Real-World Application: The StreamMiner Cloud

The StreamMiner Cloud is a tentative application of the StreamMiner frame-
work, aiming at testing the feasibility and practicability of the framework. This
cloud, together with the CloudMiner infrastructure, is located in the GridLab of
the University of Vienna, a computer laboratory dedicated to cloud and high-
performance computing research. The StreamMiner Cloud hosts a central man-
agement service and multiple production/auxiliary services. It reflects the scal-
ability of clouds in that the number of PSs and AuSs can be changed on the fly
according to the users’ demand.

The major goal of the StreamMiner Cloud lies in two respects. First, it enables
stream sharing among users scattered worldwide: any quantity of remote users
and sensors can be connected to the cloud; the users can access any streams
produced by the sensors or other users. Second, it supports stream processing
and analysis: the user can process and analyze streams by defining her own
production flows; in such flows, both existing services or user-developed services
can be included.

The accessibility of the StreamMiner Cloud is realized based on the Web
technology. A Web site is developed where a user can make use of all the functions
of the cloud. Fig. 2 shows a snapshot of the production flow construction page of
the Web site. On this page, the user first chooses all the production services to
include in the production flow - below the label choose production service in the
lower left corner. Then she specifies which of these services should send streams
- below choose data source, and which of them should receive streams - below
choose data sink. Further, the auxiliary services used by this production flow
are selected - below choose auxiliary service, while the production services, to
which these AuSs belong, are chosen - below choose production service in the
lower right corner. Meanwhile, the topology of the constructed production flow
is displayed on the left. This What You See Is What You Get manner simplifies
the process of production flow construction.

Stream Management within the CloudMiner 213

Fig. 2. StreamMiner Cloud Web site

4 Performance Experiments

A series of performance tests were carried out, intended to demonstrate the
performance of the StreamMiner Cloud under various conditions, as well as to
explore limitations of this prototype. All of the tests share the following ex-
periment configuration. First, a number of identical production services and
a DataTurbine server are in use. Each of these components is deployed on a
separate compute node with Intel 2.66GHz quad-core CPU and 3.6GB mem-
ory. Secondly, as for the source data stream, we employ the MOA [7] waveform
generator, which generates waveform-like data sequence with synthesized noise
signals.

In each test, five production services (PS1 to PS5) are employed to construct
five different production flows (PF1 to PF5). All these production flows share the
common precondition. First, PS1 invariably receives the raw stream containing
100 identical data packets sent periodically; each packet consists of eight real
numbers. Second, all PSs within a production flow carry out the same task
upon the received stream, or no task at all. Furthermore, each PFn contains
PS1 to PSn; whereas PSn-1 outputs processed streams to PSn. This means
that, e.g., PF5 is composed of PS1, PS2, ..., PS5 ; PS1 sends streams to PS2,
PS2 to PS3, etc.

4.1 Experiment 1: Transmission Delays

The first experiment seeks to investigate the pure transmission delay incurred
by the StreamMiner Cloud. The transmission delay of a packet in a certain
production flow refers to the total time consumed in transmitting this packet

214 Y. Han, P. Brezany, and A. Goscinski

among the production services of the production flow. This value merely contains
the time of network transmission, but not that of packet processing. In this
experiment PF1 to PF5 are executed one after another, while each production
service in these production flows does not perform any processing task upon
the received stream. This means that PSn receives every packet and sends it to
PSn+1 immediately. Further, the packet transmission delay of every packet is
recorded. Take PF5 as an example: the time difference between the generation
of every packet and its arrival at PS5 is recorded.

Fig. 3. Transmission delay and maximu sending speed

Chart A of Fig. 3 demonstrates the transmission delay in milliseconds of
each packet (indexed from 1 to 100 on the horizontal axis) transmitted in each
production flow. It can be observed that production flows with more services,
such as PF5, tends to suffer from larger delays compared to those with less
services, such as PF2, since the curve of, for example, PF5 is higher than that
of PF2. This behavior is also reflected in Chart B, which illustrates the average
transmission delay of each production flow of 100 packets. As can be seen, the
height of bars shows a linear increment from PF1 to PF5. The occurrence of
the behavior is conceivable: as the number of services increases, packets need
to be transmitted more often, and every transmission no doubt contributes to
the total packet transmission delay of a production flow. Furthermore, all nodes
used in the experiment are identical, resulting in the identical transmission time
between any two of them. All these factors are conducive to the linear increment
of average transmission delay we observed.

4.2 Experiment 2: Transmission and Processing

The second experiment is to explore the relative significance of transmission
delay and stream processing time in each production flow. For this purpose,

Stream Management within the CloudMiner 215

every production service is designed to execute a time-consuming processing
task - the data classification based on an extensive neural network - upon every
received packet. Again, PF1 to PF5 are started separately. When a data packet
has passed through a production service, both the time consumed in transmission
and the time of task execution are recorded. All such records are summed up
into the pie charts shown in Fig. 4. In each pie chart, the processing time of every
production service in PFn is illustrated, together with the length and percentage
of transmission delay in this production flow.

Fig. 4. Transmission delay and processing time

There are two examples of behavior shown in this figure. For one thing, the
processing time contributed by any individual service is nearly constant through
PF1 to PF5, i.e., around 5500 ms. This behavior reflects the fact that every
service is assigned the identical processing task for any packet. For another,
the transmission delay increases from PF1 to PF5. This result is caused by the
same factor affecting the first experiment, namely the more services a production
flow contains, the higher the transmission delay is. Moreover, a decline in the
percentage of transmission delay is observed through PF1 to PF5, where the
percentage decreases from 13% to 6%. This is to say, the more complicated a
production flow is, the less significance the transmission delay presents. This
fact lends support to our initial claim that the StreamMiner should address
complicated compute-intensive tasks.

216 Y. Han, P. Brezany, and A. Goscinski

4.3 Experiment 3: Limitation on Transmission Speed

In the third experiment we try to detect the upper limit in packet sending
speed, namely the highest speed the source stream can send without inflicting
a packet lost. Again, PF1 to PF5 are tested. Chart C of Fig. 3 records the
detected maximum speed of each production flow. For instance, the value 400
of PF2 means, if the stream generator sends a stream faster than 400 packets
per second, then some services in PF2 might fail to receive packets sent by its
sender. A declining trend of the curve, as we observe in the figure, is justifiable,
since PFn contains one more service than PFn-1 and thus requires more time to
let a packet past through. To this end, PFn might not be functional at a speed
which PFn-1 can accept.

5 Related Work

So far, there was only a small number of publications addressing stream data
processing in clouds; we mention three of them. Feng et al. [8] put forward the
concept of elastic stream cloud. As such, a cloud is the datacenter hardware
and software that provides a stream as a service on demand. Based on this,
the characteristics of general-purposed clouds and stream-oriented clouds are
compared. They claim, for instance, that both types of clouds can operate on
100s to 1000s nodes; whereas the former requires no dedicated links between
cloud nodes, but the latter requires low-latency dedicated inter-node links.

Vijayakumar et al. [9] introduce in their work the design of some algorithms
that handle unexpected data rates in cloud-based streaming applications. Aiming
at matching the stream processing rate with the rate of stream arrival, these
algorithms enable an existing streaming application to achieve the optimal CPU
allocation with regard to the incoming data stream.

Kleiminger et al. [10] demonstrate a particularly ingenious approach to adap-
tively balance the workload of a stream processing system. They construct a
combined stream processing system that employs a local stream processor to
handle average loads while using cloud processors when confronted with peak
demand. By doing this, they seek to ensure efficient utilization of resources for
differing workloads, whereas providing stable throughput and reliable processing
of data.

6 Conclusions and Future Work

This work reflects our tentative research endeavor into the intersection of two
promising areas, clouds and data stream management. In the beginning we ex-
plored the requirements of stream management applications. Then, we identified
particular features the cloud displays to satisfy these requirements. In light of
that, we moved to construct the image of a software framework, the Stream-
Miner, which is our approach to combining those two areas. Being on an abstract
level, this framework can be implemented differently by any individual user to

Stream Management within the CloudMiner 217

handle her practical problems. Furthermore, we briefly portrayed the prototype
application of StreamMiner - the StreamMiner Cloud - that is, a public cloud
dedicated to stream sharing and analysis. We also presented an in-depth analysis
of the performance tests carried out on this cloud.

We are confident that this work has opened up a path into a broader realm of
research for further endeavor. Future works can be undertaken in the following
- as well as other directions. (i) The persistence and replay of streams should
be addressed. (ii) The framework should be extended to operate on streams of
different types, for instance, periodic v.s. aperiodic streams. (iii) More research
effort is needed to enhance transmission and processing rates.

References

1. Buyya, R., Broberg, J., Goscinski, A.: Cloud Computing: Principles and
Paradigms. Wiley, Chichester (2011)

2. Perrott, R., Harmer, T., Lewis, R.: e-Science Infrastructure for Digital Media
Broadcasting. Computer, 67–72 (2008)

3. Goscinski, A., Janciak, I., Han, Y., Brezany, P.: The CloudMiner: Moving Data
Mining into Computational Clouds. In: Grid and Cloud Database Management.
Springer, Berlin (2011)

4. Sempolinski, P., Thain, D.: A Comparison and Critique of Eucalyptus, OpenNebula
and Nimbus. In: 2010 IEEE Second International Conference on Cloud Computing
Technology and Science, pp. 417–426 (2010)

5. Laitkorpi, M., Selonen, P., Systa, T.: Towards a Model-Driven Process for Design-
ing ReSTful Web Services. In: IEEE International Conference on Web Services,
pp. 173–180 (2009)

6. Tilak, S., Hubbard, P., Miller, M., Fountain, T.: The Ring Buffer Network Bus
(RBNB) DataTurbine Streaming Data Middleware for Environmental Observing
Systems. In: IEEE International Conference on e-Science and Grid Computing, pp.
125–133 (2007)

7. Bifet, A., Holmes, G., Pfahringer, B., Kranen, P., Kremer, H., Jansen, H., Seidl,
T.: MOA: Massive Online Analysis, a Framework for Stream Classification and
Clustering. In: Journal of Machine Learning Research (JMLR) Workshop and Con-
ference Proceedings (2010)

8. Feng, J., Wen, P., Liu, J., Li, H.: Elastic stream cloud (ESC): A stream-oriented
cloud computing platform for Rich Internet Application. In: 2010 International
Conference on High Performance Computing and Simulation, pp. 203–208 (2010)

9. Vijayakumar, S., Zhu, Q., Agrawal, G.: Dynamic Resource Provisioning for Data
Streaming Applications in a Cloud Environment. In: 2010 IEEE Second Inter-
national Conference on Cloud Computing Technology and Science, pp. 441–448
(2010)

10. Kleiminger, W., Kalyvianaki, E., Pietzuch, P.: Balancing load in stream processing
with the cloud. In: 2011 IEEE 27th International Conference on Data Engineering
Workshops, pp. 16–21 (2011)

Y. Xiang et al. (Eds.): ICA3PP 2011, Part I, LNCS 7016, pp. 218–229, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Security Architecture for Virtual Machines*

Udaya Tupakula1, Vijay Varadharajan1, and Abhishek Bichhawat2

1 Information & Networked Systems Security Research, Department of Computing,
Faculty of Science, Macquarie University, Sydney, Ausralia

{udaya.tupakula,vijay.varadharajan}@mq.edu.au
2 Department of Electronics and Computer Engineering, IIT Roorkee, India

abhibpec@iitr.ernet.in

Abstract. We propose security architecture based on virtual machine monitor to
efficiently deal with attacks on virtual machines. We will show that our model
is capable of detecting suspicious processes running in the virtual machine, can
detect and prevent different types of attacks including zero day attacks by
monitoring the virtual machine traffic and the processes that are generating or
receiving the traffic. The architecture also makes use of sharing information
about the suspicious behaviour among multiple Intrusion detection systems
deployed in different virtual machine monitors. We describe the
implementation of the proposed architecture and present a detailed analysis of
how our architecture can be used to detect zero day attacks.

Keywords: Virtual Machine Monitors, Intrusion Detection, hidden processes.

1 Introduction

The current Internet environment is vulnerable to a range of different types of attacks
[1, 2] such as malware, phishing, spam, and denial of service; several new types of
attacks are appearing on a daily basis. The attackers are able to exploit vulnerabilities
in software such as operating systems and applications as well as inherent weaknesses
in the Internet protocol stack. As a result there is an increased activity of zero day
attacks in the Internet.

Although there are several tools such as intrusion detection systems, honey pots,
antivirus and anti malware, the dynamic nature of the attacks makes it difficult to
detect and prevent attacks. The host based tools have good visibility of internal state
of the monitored system and can detect the attacks more efficiently. However since
the tools are implemented on the monitored system itself, they are vulnerable to
attacks by the attacker. The network based tools detect the attacks by monitoring the
incoming and outgoing traffic from the monitored machines. They have less visibility
into the state of monitored machines but offer high attack resistance. For efficient

* The authors would like to thank Departments of the Prime Minister and Cabinet (PM&C) and

Defence Signals Directorate (DSD), Australia, for their financial support of the research
project on Secure Virtualization Systems. The PM&C and DSD funding should not be taken
to imply endorsement of the content or conclusions of the research project.

 Security Architecture for Virtual Machines 219

detection of attacks, it is desirable for the tools to have good visibility of the
monitored system while at the same time offering high resistance to attacks. Several
limitations of the existing tools can be overcome by implementing the security tools
using Virtual Machine Monitors (VMM) [3]. A VMM is an additional software layer
which has complete control on the physical resources and enables to run multiple
operating systems on a scalable computer. Since the VMM can have complete control
of the resources, good visibility of the internal state of the virtual machines, while
being isolated from the virtual machines themselves, they can be used for improving
the attack detection/prevention efficiency of the security tools. Such VMM based
security tools are sometimes referred to as Virtual Machine Introspection (VMI) tools
[4]. In this paper, we propose security architecture based on virtual machine monitor
to efficiently deal with attacks on virtual machines.

The paper is organized as follows. In Section 2, we propose security architecture
for virtual machine monitor (VMM) based systems and present the operation of our
model. Section 3 presents the implementation and analysis of our architecture. In
particular it illustrates how the architecture has been used to detect Slammer type
attacks and present some performance characteristics. Section 4 presents some of the
related work and Section 5 concludes the paper.

2 Our Model

In this section we will first present an overview of our model and then operation of
our model.

2.1 Overview

Let us consider a scenario where services are provided by the virtual machines
residing on top of virtual machine monitors (VMMs). Our aim in this paper is the
development of an intrusion detection architecture that enables efficient detection and
prevention of different types of attacks on virtual machines and the isolation of the
malicious entities generating these attacks. We will collectively refer to different
types of attacks such as worms, viruses, Trojan horses as malware attacks. The
intrusion detection system (IDS) is integrated into the VMM. In this paper, we will
assume that the VMM is trusted and secure. This is a common trust assumption that is
made with many VMM based systems. This assumption is based on the premise that
compared to operating systems, a VMM is smaller in size and hence in principle can
be designed (and verified) to be secure. If this assumption is not valid, then
vulnerabilities in the VMM can be exploited by the attacker to attack any of the
virtual machines that are running on top of it.

Figure 1 shows the architecture of the IDS system which can be integrated into the
VMM or the host operating system. Since the VMM has complete control on the
physical resources, our model can determine the state of the virtual machines by
monitoring the usage of allocated resources to the virtual machines for intrusions. An
important function of our model is to identify the malicious entity that is generating
the attack traffic and dynamically isolate the malicious entity. The entity can be very
broad such as a compromised virtual machine or an application or a process that is

220 U. Tupakula, V. Varadharajan, and A. Bichhawat

running in a virtual machine. In order to deal with the attacks efficiently, the entity
has to be defined at a fine granular level. If the whole virtual machine is isolated due
to an attack arising from one application, then it can cause denial of service for the
other legitimate applications that are running in that virtual machine.

Our architecture consists of the following components: Entity Validation (EV),
Intrusion Detection Engine (IDE), and Dynamic Analyzer (DA). The Entity
Validation component is used for detection of attack traffic with spoofed source
address, fine granular detection of process (which is generating or receiving traffic in
the virtual machine), secure logging of new entities in the virtual machines. The
Intrusion Detection Engine component is used for detection of known attacks and
detection of suspicious behaviour by monitoring the incoming and outgoing traffic of
virtual machines. Dynamic Analyzer is used for detection of suspicious processes
running in the virtual machine, detection of zero day attacks, fine granular isolation of
malicious entities (processes/applications) that are generating the attack traffic, and
sharing of information about suspicious behaviour and attack signatures between
multiple Analyzers in a distributed environment.

We will now describe how the security architecture is used to detect the intrusions;
we will consider first at the source end, then at the destination.

2.2 Operation at Source

Whenever a new virtual machine is installed on the VMM, the OS Library and
Repository (OSLR) module in the Entity Validation component is initialized with
information on the operating system configuration running in the virtual machine. For
instance, in the case of Windows XP, OSLR is initialized with configuration
information on Windows XP image, its service pack version, Internet Explorer
version, detail of drivers and any additional applications installed on Windows. As
new applications are installed, the OSLR captures information about these
applications when they start interacting with other hosts. The information stored in the

Dynamic
Analyzer

(taint analysis,
hidden process,
IDE policies,

VM/entity
statistics)

IDE
(signature,
anomaly)

Entity
Validation

(OSLR,
Src_addr,

entity)

Physical Devices

Virtual Machines
VM1 VMn

VMM
or Host

OS

Fig. 1. Security Architecture

 Security Architecture for Virtual Machines 221

OSLR is used by the Dynamic Analyzer in defining the attack signatures that are
specific to each virtual machine. In addition, as the information in the OSLR
increases, we can use machine learning techniques such as Bayesian logic to
differentiate between legitimate and suspicious traffic for each application or virtual
machine, which are useful for detecting zero day attacks.

The virtual machine reports the application and the process that is generating the
traffic. The EV logs the packet in the Traffic Store, validates the application (or
process) that generated the traffic and the source IP address of the traffic. The details
of the entity that are recorded in the database are the process name, process ID, user
object, session id and priority of the process. The component Traffic Store keeps a
record of all traffic passing between from and to virtual machines. Depending on the
resources, we can store either the complete packets or hash of the packets. One
approach is to maintain the complete traffic for a certain time period (say for 1 hr or
2hr) and then later only maintain heuristics such as the source, destination, the length
of communication, total bytes sent or received and the protocols used form
communication.

If the record for the application or process exists in the OSLR database, then it is
updated with traffic details. Otherwise a new record is created for the reported entity
and a flag is used to indicate that this is a new record, which can be subsequently
queried by the IDE or the Dynamic Analyzer if the traffic is considered to be
suspicious or malicious.

If the virtual machine has a public IP address, then the entity validation component
ensures that the packet generated by the virtual machine has correct IP address. If
multiple virtual machines are sharing a single IP address then the entity validation
module replaces the private IP address with the shared public IP address. Note that
since the source address of all the packets is validated by the entity validation
component, it is not possible for the virtual machines to generate attack traffic with
spoofed source address. However at this stage, it is still possible to generate attack
traffic with correct source address and we will see later how this is detected and
prevented in our architecture.

Since EV has access to the physical resources, it is able to validate if the process or
application reported by the VM actually generated the packet. If the process reported
by the virtual machine is found in the memory, then the information can be trusted
and the traffic is passed to the IDE. If the source address of the traffic is spoofed or if
the process/application reported by the VM is not found in the memory, then the
virtual machine is considered to be suspicious and reported to the Dynamic Analyzer
for further analysis.

The main goals of the IDE is to ensure that any traffic that is entering or leaving
the VMM does not contain any traffic that is matching with the known attack patterns
and to detect if the incoming or outgoing traffic is suspicious. The relevant security
policies that need to be enforced are determined by the administrator and/or the
Dynamic Analyzer. Since the OSLR has the details of resources allocated to each
virtual machine and applications running on each virtual machine, the Dynamic
Analyzer can use this information to specify security policies by considering the
unique properties of the virtual machine.

We have created a database in the IDE of known attack signatures; this database
will be continually updated as and when new attack signatures are discovered. We

222 U. Tupakula, V. Varadharajan, and A. Bichhawat

have organized the database in such a way that the VMM administrator configures the
attacks per virtual machine. Hence the IDE is used to detect the known attacks in the
incoming or outgoing traffic. However the traffic may also contain zero day attacks.
So the traffic is validated (both at regular intervals and randomly) against statistical
patterns of data. For instance, flooding is a common behaviour [1,2] in most of the
emerging attacks. We use these techniques to identify packets as suspicious in the
following cases: if there is a sudden burst of traffic or if we detect abnormal usage of
resources (such as CPU or network) by a single entity, or random packets to the same
or multiple destinations, packets with spoofed source address, and packets destined to
non standard port numbers. In some cases, there is need for communication between
the anomaly module and OSLR to detect if some of the traffic is suspicious. For
example if a burst of reply packets are generated by the virtual machine the IDE can
query the OSLR to determine the corresponding request packets. If no request packets
were received by the virtual machine, then the suspicious reply packets are considered
to be malicious.

When the CPU is idle, the anomaly based module in the IDE requests the dynamic
analyzer to update the statistical behaviour of the processes in the VM. The dynamic
analyzer applies the Bayesian based learning technique on the OSLR data and updates
the statistical data in anomaly based module to differentiate between legitimate and
suspicious behaviour for each virtual machine. We are not describing this algorithm
here in this paper due to space restrictions. Essentially this algorithm enables the IDE
to capture the dynamic changes for each virtual machine and identify the attacks. The
evaluation process of the IDE works as follows: If the traffic is not matching with any
of the attack signature and found to be legitimate by the anomaly based detection
module, then the traffic is forwarded to the destination. If the traffic is matching with
a known attack signature or found to be suspicious by the anomaly engine then the
virtual machine is considered as suspicious and reported to the Dynamic Analyzer for
further analysis.

The Dynamic Analyzer (DA) performs further analysis on the virtual machine that
is considered suspicious by the EV or the IDE to detect if there is ongoing zero day
attack. Most of the zero day attacks exploit the vulnerabilities in the operating system
and databases by creating buffer overflows, rewriting parts of the memory and manual
jump to addresses. The attacks can also come from hidden processes collecting
sensitive information in an unauthorized manner or generating attack traffic to
random hosts in the Internet. In case of zero day attacks, the attack signatures are
identified by specifying the behaviour of the suspicious entity or by identifying the
similarities of the packets generated by the suspicious entity.

Our architecture provides the following mechanisms in the DA to validate if the
suspicious behaviour of the virtual machine is malicious or benign. First, it validates
if there is any suspicious process running in a virtual machine or if some of the
critical process are not running in the virtual machines. For example, attacks such as
conficker [3] disable important services such as error reporting, auto updates,
windows defender and background intelligent transfer services. The virtual machine is
considered as suspicious if such important services are not running in the virtual
machine. In addition to this there can be some malicious hidden process running in
the virtual machine. The DA queries the virtual machine to report the processes
running in it. When the virtual machine reports the running processes, the DA obtains

 Security Architecture for Virtual Machines 223

the list of processes that are actually running in the memory assigned to the virtual
machine and compares it with the VM report. If there is any variation in the list of
processes reported by the VM and list of processes observed by the dynamic analyzer
then the VM can be considered as malicious. However since the queries are done
during different time intervals there is possibility for some new process to be initiated
or for an existing process to be terminated after the report is generated by the virtual
machine and before the query is performed by the dynamic analyzer. Hence to
minimize risk of false positives and false negatives, if there is variation in the number
of processes then the complete process is repeated. If there is a variation in the
number of processes after repeated validations then the virtual machine is considered
as malicious and the malicious process/entity can be detected by comparing the
process reports.

Now the malicious entity can be dynamically isolated from the virtual machine or
further analyzed in an isolated environment using taint analysis or statistical analysis
to determine the behaviour of malicious entity and identify attack signatures.

Since the dynamic analyzer has access to the physical resources, it can monitor all
the interactions of the malicious entity with other entities in the virtual machine and
how the subsequent packets will be generated by the malicious entity. For example, if
the malicious process is accessing the inputs from the keyboard, then it can be
considered as collecting sensitive information of the user and sending it to the attacker
without the user’s knowledge. Alternatively if the malicious process is generating
some malicious/suspicious packets to one or more destination addresses then it can be
considered as sending attack traffic without user’s knowledge. Now a detailed
analysis of the payload of the outgoing packets is carried out such as what type of
data is being sent and to which destination.

While a decision is being made by the DA on the suspicious virtual machine or
suspicious traffic, we have a choice as to either dropping the packets (pessimistic
approach) or passing or rate limiting the packets (optimistic approach) based on the
characteristics of the packets. Our current implementation uses rate limited transfer of
packets, if the security policies such as validate source address function (src_addr),
and validate hidden processes in virtual machine function (vm_hid_prc) are satisfied.
In this case even if the rate limited traffic is found to be attack traffic, then the
destination host can easily trace the attacking source (since attack traffic has correct
source address) and inform the source DA. Although there can be false positives and
false negatives in this case, the impact will be minimal on legitimate traffic and
significant impact on the attack traffic. For example, since we are rate limiting the
suspicious traffic, this will reduce the impact of the spread of the malware. On the
other hand if the rate limited traffic is legitimate, this will only cause some delays to
the legitimate traffic. However if the suspicious packet exhibits serious properties
such as spoofed source address, sending reply packets without receiving requests
then the packets are dropped. This is because sending packets with spoofed traffic
will eliminate the possibility for the traceback and in other case there is no legitimate
use for sending reply packet for which no request was received. Hence in this case,
attacks can be efficiently detected and prevented with no false positives or false
negatives.

After the analysis, if the DA identifies the suspicious traffic to be malicious, the
architecture identifies the malicious entity that generated the packet by querying the

224 U. Tupakula, V. Varadharajan, and A. Bichhawat

OSLR and isolates the malicious process. Then the dynamic analyzer develops a new
attack signature based on the properties exhibited by the malicious packet/flow and
updates the signature database. This will prevent any other virtual machine sending
similar attack traffic in the future. On the other hand if the suspicious flow is
identified to be benign then the statistical data is updated. This will prevent false
alarms from similar traffic in the future.

2.2 Operation at Destination

Now let us consider how the attacks are detected at the destination IDS in our
architecture. At the receiving end, the traffic destined to the virtual machines is
received by the IDE. The traffic is monitored against security policies of the
destination virtual machine such as known attack signatures and anomaly based
detection. If the traffic does not match with any of the known attack signatures and
identified to be legitimate by the anomaly based module then the traffic is passed to
the Entity Validation component at the destination. If the packet matches with any of
the attack signatures or found to be suspicious then the traffic is reported to the
Dynamic Analyzer at the destination.

The EV logs the traffic in the OSLR in the destination VMM and forwards the
traffic to the appropriate VM. The VM reports the entity that is receiving the traffic
and this is updated in the database. If the reported entity is not found in the memory
allocated to the virtual machine then the virtual machine is considered as suspicious
and reported to the dynamic analyzer for further analysis.

As explained at the source, the DA at the destination uses similar techniques to
detect malicious traffic. It matches with the attack signatures and to validate traffic
that is considered as suspicious. If traffic is matching with the attack signature then
the packet is dropped and there is an option to notify the source IDS. If a notification
is sent to source IDS, the source DA then determines the malicious entity that
generated the attack traffic by querying the OSLR and isolates it from sending similar
packets in the future.

The DA at the destination end checks if there is any suspicious process running in
the destination virtual machine using a similar method as discussed at the source
dynamic analyzer. If a suspicious process is detected in the hosted virtual machine
then it is run in an isolated environment and the suspicious traffic is passed to the
virtual machine. If the suspicious traffic is received by the suspicious process in the
virtual machine and responding to the suspicious traffic by sending attack traffic then
it can be considered as control command to the suspicious process. If no suspicious
process are detected in the hosted virtual machine then the traffic that is considered to
be suspicious can be either dropped, rate limited or forwarded to the destination
virtual machine as before.

If the DA decides to forward the suspicious traffic to the destination then the
virtual machine is considered as suspicious. One of the important reasons to identify
the hosted virtual machine (at the destination) as suspicious in this case is to analyze
the impact of the received suspicious packet on the hosted virtual machine. Hence
future packets from the hosted virtual machine will also be monitored by the DA.

In our architecture, the destination virtual machine will be considered to be
“questionable” until a decision is made on the received suspect packet by the dynamic

 Security Architecture for Virtual Machines 225

analyzer. To minimize the risk of crash of the destination virtual machine, the
dynamic analyzer can copy the image of the destination virtual machine and perform
further analysis in an isolated environment by passing the suspicious traffic to the
isolated virtual machine. Any identified attack signatures via this analysis is used to
update the database in the IDE. In addition the attack signature can also be sent to the
source dynamic analyzer. Moreover the source and destination IDS can share further
information on the suspicious packets which can further help to deal with zero day
attacks. We will see below in Section 3.1 how such sharing of information is useful in
the case of Slammer attacks.

3 Analysis

We have implemented the IDS architecture shown in Figure 1 on Xen Virtual
Machine Monitor. We have conducted performance analysis with varying number of
virtual machines hosted on each physical server and validated against different types
of attacks. We have used Xen 3.1.2 VMM with virtual machines running different
operating systems and applications. The device drivers in Xen have a front end
module which are implemented in the virtual machine and a back end module in the
Dom 0. The guest VM send the packets using the front end drivers and the host
machine sends the packets to the guest virtual machines using the back end drivers.
The policy engine is placed between the front end and back end drivers. In this paper
we present the analysis of our model with slammer attack and some performance
results.

3.1 Slammer Analysis

Here we present a detailed analysis of how our model was able to deal with the
Slammer worm [1] on a virtual machine running unpatched SQL server. Slammer is
an interesting case because it only required a single malicious packet to severely
degrade the service running in many hosts in the Internet during January 2003.
Although several worms have been witnessed during past few years, Slammer, which
exploited the buffer overflow vulnerability in unpatched SQL server and MSDE, is
considered to be one of the fastest spreading worms. The worm achieved the peak
scan rate of 55 million scan within 3 minutes of infection. The attack consisted of a
single UDP packet destined to port number 1434 with the payload size of 374 bytes
and total size including headers was 404 bytes. Following scanning, any machine
which was running un-patched SQL became vulnerable to the worm and started
infecting other vulnerable hosts in the Internet. The other interesting behaviour of the
attack is that it exists as a running process and does not write itself to the disk. In this
section, we use Slammer to illustrate how our architecture can deal with such
sophisticated attacks.

It has to be noted that our model can deal with the emerging attacks such as
conficker [2] and torpig. For example, attacks such as conficker, and torpig perform
several additional activities that can be easily detected as malicious by the IDS
components. For example, the conficker worm disables all the important services in
the windows operating systems security related process. This can be detected by

226 U. Tupakula, V. Varadharajan, and A. Bichhawat

model during validation of the process running in the virtual machine. Even if the
emerging malware uses advanced techniques such as domain flux to evade detection,
the attacks can be detected since all the interactions of the VM are securely logged in
the OSLR. Also since each component of our model deals with different types of
attack behaviour, as the malicious behaviour exhibited by the worms increase, the
attacks can be efficiently detected by our model. Since Slammer is a single packet
attack, the following discussion is applicable to other attacks also.

We captured the traffic from a production SQL server and developed several
statistical policies for the traffic such as max-min-avg for total traffic, protocols at
different layers, port numbers, and packet sizes. We have implemented an unpatched
SQL server on virtual machine and snapshot of the virtual machine is taken for every
30 minutes interval and a maximum of 5 snapshots were maintained. The total count
for anomaly detection module for each virtual machine was set to 1 minute. Now the
UDP traffic containing Slammer worm is sent to the virtual machine running
unpatched SQL server. Let us now discuss how our model detected the attack in
different cases.

As shown in Figure 2, the Slammer attack traffic was destined to the guest machine
(GVM11) which was running unpatched SQL server on VMM1. The malicious UDP
traffic was received by the IDE in host virtual machine on VMM1. Since the traffic
did not match with any of the known attack signature and since it did not exhibit any
anomaly, the packet was passed to the Entity Validation component. Now the packet
is logged in the OSLR and passed to the virtual machine and the entity that was
receiving the packet is the SQL server. As soon as the packet is processed by the
GVM11 it gets infected and starts generating UDP flood. These packets are received
by the Entity Validation component and logged in the OSLR, and the traffic is
validated for the source address and entity. Note that even if a single UDP packet was
generated with spoofed source address, the validate source address function
(src_addr) would raise the flag (flag_VM) and the attack is easily detected by the EV.
However since the source address of the UDP traffic was valid the EV did not detect
any suspicious behaviour and the traffic was forwarded to the IDE. Hence we can
conclude that attack traffic was generated with correct source address. Since the UDP

Fig. 2. Slammer Scenario

Hardware

VMM1

GVM12

Linux

GVM11

SQL
Server1

Dom 0

VMM2

GVM22

Linux

GVM21

SQL
Server2

EV

DA

IDE
Snapshot

GVM21
SQL Server2

Attacking host

Hardware

Dom 0

EV

DA

IDE

 Security Architecture for Virtual Machines 227

traffic did not match with any of the attack signatures, they were passed to the
anomaly detection module. The total count of the traffic was increasing with every
outgoing packet and the packets were randomly validated against some sub modules
of VM statistics (such as packet size (pkt_sze), no of open connections (open_con),
TCP/IP protocols (proto)) and/or Entity statistics (such as entity protocols (ent_proto),
entity port numbers (ent_port)). The flag_VM was enabled when the total traffic was
above the threshold and a report was sent to the Dynamic Analyzer. The debug mode
was enabled for the VM and all the incoming and outgoing traffic from the virtual
machine is monitored by the DA. First the dynamic analyzer validated the number of
processes running in the virtual machine (using (vm_hid_prc) function) to check any
suspicious process in the virtual machine. The DA queried the OSLR and determined
that the entity that was generating the suspicious traffic was SQL server and the
variations in the UDP traffic which will be discussed further enabled the DA to
consider the traffic as malicious and prevent the attack traffic.

Here we present one of the techniques used for the automatic attack signature
detection. The variance function compares the statistical behaviour of the suspicious
entities with the legitimate behaviour and returns the variance of different parameters
in decreasing order. This is followed by similarity function which takes the output of
the variance function and identifies the TOP N similarities as the attack signature. The
attack signature was identified to be UDP traffic destined to port number 1434 by
considering the TOP 2 similarities in the attack traffic. The signature database was
updated with the new attack signature to the SQL server.

Now let us discuss different case scenarios outlining how the attacks were
triggered in our security architecture.

Case 1: The standard port for SQL server assigned by the IANA is 1433 and TCP is
the standard protocol used for the communication. UDP port 1434 is used to report
the dynamically assigned port in case of multiple instances of database running on the
same server. Even if multiple instances of SQL server are running on the server, the
corresponding port can be only used as a request-reply protocol where the remote
client request for the port number of the dynamically assigned port and the
corresponding reply responds with the dynamically assigned port. Hence the requests
can be in the form of 1 or 2 UDP packets and the reply packets can be in 1 or 2
packets. In the case of Slammer there is considerable variation where a single request
will trigger multiple response packets. The statistics of the legitimate SQL server
revel that the ratio of TCP: UDP protocol to be in the order of > 99 : < 1. However
during the attack the ratio of the TCP:UDP protocol was found to be <1: >99.

In some cases, the traffic to port number 1434 was identified as attack traffic. The
statistics of the port number 1434 for incoming: outgoing traffic in a regular situation
was found to be of the order of 1: 2. However during the time of attack, the incoming:
outgoing traffic was found to be <1: >25000. Hence the traffic destined to port
number 1434 was identified to be malicious. The following suspicious cases were also
detected by the anomaly detection module. In some case the UDP traffic was destined
to broadcast address. In some cases, the LAN was congested by the UDP traffic and
the analysis of the network traffic confirmed UDP flood. This was triggered as
suspicious network behaviour. When the packets were destined to a virtual machine

228 U. Tupakula, V. Varadharajan, and A. Bichhawat

that was not running SQL server or MSDE, the UDP traffic was identified to be
malicious since the port 1434 was closed on the destination virtual machine. This
information was shared between the dynamic analyzer and was useful for detecting
the Slammer worm.

Case 2: When the UDP traffic was destined to another virtual machine hosted on
other physical server, the source DA informed the destination DA regarding the
suspicious traffic and forwarded the suspicious UDP traffic. In some cases (GVM22 in
Figure 2) the destination port was closed on the virtual machines that were not
running SQL server or MSDE and in the case where the virtual machine was running
SQL server (GVM21 in Figure 2), since the source analyser has informed the
destination analyser prior to sending the suspicious traffic, the destination analyser
forwarded the UDP traffic to the snapshot of the virtual machine and the snapshot
virtual machine on VMM2 in Figure 2 was infected and started flooding UDP traffic.

3.2 Performance Analysis

We have conducted performance analysis of our model for different components.
Figure 3 shows the average time (in sec) for correlating the network flows observed at
the entity validation module with processes running in the virtual machine. The
results are an average for 10 runs. As the number of virtual machines increase, there is
minor variation in correlation time. Similarly, Figure 4 shows the average time (in
sec) for validation of hidden processes in the virtual machines.

4 Related Work`

Recently there is considerable research interest for developing security tools that are
based on Virtualization. Garfinkel [4] proposed a Livewire intrusion detection system
which makes use of the VMM to obtain the state of the virtual machine and detect in
there is any ongoing attack. Antfarm [5] can be used for the detection of hidden
processes in the virtual machine. Vigilante [6] is a collaborative approach where each
host runs specific software which captures the information regarding the exploit of the
worm and distributes a Self Certifying Alert (SCA) to warn other hosts regarding the
spread of the worm. The end hosts can use the information in the SCA to identify if it
is vulnerable to the worm and apply a host based filter to prevent the worm.

Fig. 4. Hidden process validation Fig. 3. Traffic to process mapping

 Security Architecture for Virtual Machines 229

5 Conclusion

In this paper we have proposed security architecture based on virtual machine monitor
to efficiently deal with attacks on virtual machines. Our model is capable of detecting
suspicious processes running in the virtual machine, can detect and prevent different
types of attacks including zero day attacks by monitoring the virtual machine traffic
and the processes that are generating or receiving the traffic. The architecture also
makes use of sharing information about the suspicious behaviour among multiple
Intrusion detection systems deployed in different virtual machine monitors to detect
the attacks.

References

1. Moore, D., Paxson, V., Savage, S., Shannon, C., Staniford, S., Weaver, N.: Inside the
Slammer worm. IEEE, Security & Privacy 1(4), 33–39 (2003)

2. Shin, S., Gu, G.: Conficker and Beyond: A Large-Scale Empirical Study. In: 26th Annual
Computer Security Applications Conference, Austin, Texas, USA, December 6-10, pp.
151–160. ACM, New York (2010)

3. Smith, J.E., Nair, R.: The architecture of virtual machines. Computer 38(5), 32–38 (2005)
4. Garfinkel, T., Rosenblum, M.: A Virtual Machine Introspection Based Architecture for

Intrusion Detection. In: 10th Network and Distributed System Security Symposium,
California. Internet Society, USA (2003)

5. Jones, S., Arpaci-Dusseau, A., Arpaci-Dusseau, R.: VMM-based Hidden Process Detection
and Identification using Lycosid. In: 4th International Conference on Virtual execution
environments, Seattle, WA, March 5-7, pp. 91–100. ACM SIGPLAN/SIGOPS, USA (2008)

6. Costa, M., Crowcroft, J., Castro, M., Rowstron, A., Zhou, L., Zhang, L., Barham, P.:
Vigilante: End-to-End containment of Internet Worms. In: Proceedings of the 20th ACM
symposium on Operating systems principles, SOSP 2005, Brighton, UK, October 23-26, pp.
133–147. ACM, New York (2005)

Y. Xiang et al. (Eds.): ICA3PP 2011, Part I, LNCS 7016, pp. 230–243, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Fast and Accurate Similarity Searching of Biopolymer
Sequences with GPU and CUDA

Robert Pawłowski, Bożena Małysiak-Mrozek,
Stanisław Kozielski, and Dariusz Mrozek

Institute of Informatics, Silesian University of Technology
Akademicka 16, 44-100 Gliwice, Poland

robertp86@gmail.com, {Dariusz.Mrozek,Bozena.Malysiak,
Stanislaw.Kozielski}@polsl.pl

Abstract. CUDA is an architecture introduced by NVIDIA Corporation, which
allows software developers to take advantage of GPU resources in order to
increase the computational power. This paper presents an approach to accelerate
the similarity searching of DNA and protein molecules through parallel
alignments of their sequences with the use of GPU and CUDA. In order to
optimally align two biopolymer sequences, such as amino acid or nucleotide
sequences, we employ the Smith-Waterman algorithm. We present the optimi-
zation steps leading to achieve a very good efficiency of our implementation on
GPU and we compare results of efficiency tests with other known implementa-
tions. The results show that it is possible to search bioinformatics databases
accurately within a reasonable time.

Keywords: bioinformatics, DNA, proteins, sequence alignment, parallel
computing, GPU, CUDA.

1 Introduction

Biological databases are very valuable tool in the research carried out in bioinforma-
tics, molecular biology and related fields. For example, comparing an unidentified
sequence of nucleotides or amino acids, which was obtained during experimental re-
search, to the known sequences stored in a database, we can conclude about evolutio-
nary relationships of the unidentified sequence, molecular structure encoded by the
sequence, and even the biological role or function of the encoded structure.

The role of biological databases is constantly growing. Over the last few years, the
number of amino acid and nucleotide sequences added to these databases almost
doubles every year [4], [5]. Bioinformatics is constantly looking for more efficient
methods to search the collected information. Due to the inhibition of the growth rate
of CPUs clock speed and the increasing availability of multiprocessor and multicore
systems, it is worth to develop algorithms that work in parallel and collectively in
order to search large databases.

The paper presents the possibility of using the great potential of Graphics Process-
ing Units (GPUs) employing NVIDIA CUDA (Compute Unified Device Architecture)

Fast and Accurate Similarity Searching of Biopolymer Sequences with GPU and CUDA 231

and SIMT architecture (Single Instruction, Multiple Thread) to accelerate the simila-
rity searching in databases collecting DNA/RNA or protein sequences. CUDA has
several unique features that determine its usefulness for this purpose, i.e. availability
and large number of devices supporting this architecture, approachable and well-
documented application programming interface (API), portability and scalability of
developed solutions. With the use of CUDA and SIMT architecture, we have improv-
ed the speed of similarity searching performed with the Smith-Waterman alignment
algorithm, which has a great practical importance, but whose computational comple-
xity does not allow for its widespread use in processing large data repositories.

2 Theoretical Background

2.1 Alignment Algorithm

The algorithm of T.F. Smith and M.S. Waterman [11] finds the most similar, relative-
ly short sections for pairs of compared biomolecular sequences. This allows to capture
conserved sequence motifs and structural mutations arising in the process of evolu-
tion, such as translocations or duplications of fragments of sequences. In contrast to
algorithms that use heuristics, like the most popular BLAST [1], the Smith-Waterman
algorithm is characterized by a higher sensitivity. This results in the ability to detect
more distant similarities in compared sequences.

In order to align two sequences P and Q, the Smith-Waterman algorithm uses the
similarity matrix M (sometimes called alignment matrix). The size of the matrix M is
(p+1)×(q+1), where p and q are the lengths of the matched sequences. Let P(i) and
Q(j), i=2,…,p+1, j=2,…,q+1, are elements of compared sequences P and Q, located
at the position i-1 and j-1, respectively. Then, starting from i=2 and j=2, successive
elements of the similarity matrix M are determined according to the formula:

}0},{max},{max,max{
,11,11

)1)(1(Pil
Nljl

Pkj
Nkik

jiijij GMGMMSM −−+=
∈−≤<∈−≤<−−

, (1)

where:
⎩
⎨
⎧

≠
=

=
)()(,

)()(,

jQiPifM

jQiPifM
S

P

A
ij

, (2)

For the first row and first column of the matrix:

1 1 0i jM M= = . (3)

The MA is an award for matching, and the MP is a penalty for mismatching elements
P(i) and Q(j). Mismatching elements of two sequences are interpreted as the effect of
mutation – substitution in the evolution process. The values of MA and MP can be
chosen arbitrarily or according to one of the known substitution matrix, e.g. PAM or
BLOSUM. The GP is a gap penalty, which results from the possible deletions or
insertions. The GP may be expressed as a constant value or a linear function, e.g.:

P O EG G G n= + , (4)

232 R. Pawłowski et al.

where: GO is a penalty for opening a gap, and GEn is a penalty for gap extension,
proportional to the gap length n; GE is a constant of proportionality. The |GP| means
the absolute value of the GP.

The value of the similarity measure (Score) for aligned pair of sequences is the
highest value in the filled matrix M. The larger the value of the Score, the more two
sequences are structurally similar. The complexity of the Smith-Waterman algorithm
is O(pq). Although modern computers posses a considerable computing power, the
complexity is still too high to apply the Smith-Waterman algorithm as a routine
method for searching large collections of sequences in databases.

2.2 CUDA Programming Model and Architecture of Hardware Accelerator

In graphics cards with CUDA technology the high scalability was achieved by the
hierarchical organization of threads, which are basic execution units. Each thread has
its own index, the vector of coordinates corresponding to its location in one-, two-or
three-dimensional organizational structure called the block. Thread blocks form one-
or two-dimensional structure called the grid. Each thread block is processed by a
Streaming Multiprocessor (SM). The number of available multiprocessor depends on
the graphics card. However, in devices with CUDA 1.1 that was used in our research,
each SM is composed of eight Scalar Processor cores (SP), two special function units,
a multithreaded instruction unit (IU), and high-speed shared memory (Fig. 1).

Each multiprocessor has also access to the on-chip, read-only constant cache that
is shared by all scalar processor cores and speeds up reads from the constant memory
space, and also to the read-only texture cache that is shared by all scalar processor
cores and speeds up reads from the texture memory space. Texture memory is a
special type of memory providing high performance in rendering images.

 Device

 Streaming Multiprocessor n (SM)

 Streaming Multiprocessor 2 (SM)

Streaming Multiprocessor 1 (SM)

 .
 . .

 ...

Scalar
Processor 1

(SP)

Scalar
Processor 2

(SP)

Scalar
Processor m

(SP)

Instruction
Unit
(IU)

Registers Registers Registers

Shared Memory

Constant Cache

Texture Cache

Global Memory

Fig. 1. Architecture of the GPU computing device (based on [9])

Fast and Accurate Similarity Searching of Biopolymer Sequences with GPU and CUDA 233

Multiprocessors employ a new architecture, called SIMT (Single Instruction,
Multiple Thread). In this architecture, a multiprocessor maps each thread to a scalar
processor core, where each thread executes independently with its own instruction
address and register state. The multiprocessor SIMT unit creates, manages, schedules,
and executes threads in groups of 32 parallel threads called warps. Threads in the
warp perform the same instructions, but operate on different data, as it is in the SIMD
architecture. Full performance in SIMT architecture is achieved when all 32 threads
have the same execution path [9].

3 Related Works

Parallel implementation of the Smith-Waterman algorithm using CUDA technology is
relatively new in a scientific literature. One of the first works, which achieved a con-
siderable acceleration, is SW-CUDA [8]. SW-CUDA was implemented on the
NVIDIA GeForce 8800 GTX, reaching an efficiency of 1.8 GCUPS (Giga Cell Up-
dates Per Second). It seems that the burden of this method is the overhead associated
with the determination and use of so-called query-profile. It eliminates the necessity
of free access to the global memory to read the values of the substitution matrix.
Query profile is stored in the texture memory. This generates a significant overhead in
the case of long input sequences, since cache misses may occur very often. These
observations were confirmed by G.M. Striemer and A. Akoglu in [12]. In our paper,
we show that avoiding the overhead caused by the use of query-profiles, and placing
the substitution matrix directly in the texture memory results in higher performance.

One of the most efficient implementation of the Smith-Waterman algorithm for
GPUs with CUDA 1.1 is CUDASW++ 1.0 [6], which reached up to 10 GCUPS on a
single graphics card with NVIDIA GeForce GTX 280. The weak point of the imple-
mentation is that it stores the substitution matrix in the shared memory, which is
affected by occasional conflicts of banks. In the CUDASW++ 1.0, texture memory is
used for buffering reads of sequence elements from a database. However, performed
tests showed that efficiency improvement resulting from the local cache is relatively
small. A better solution is to provide consistent reads from the global memory. Then
the property of local caching of texture memory can be used to achieve other objec-
tives. Moreover, the CUDASW++ 1.0 stores the input sequence in constant memory,
whose size is significantly reduced. As a result, the CUDASW++ 1.0 works for input
sequences no longer than 59 000 elements [6].

At present, the most efficient implementation published for devices with the
CUDA technology in version 1.2 or higher, is CUDASW++ 2.0 [7], reaching about 17
GCUPS on NVIDIA's GeForce GTX 280. In [7] Y. Liu et al. describe a completely
new approach, inspired by the work of Farrar [3], and improved implementation
known from [6]. In the revised implementation, they returned to the idea of query-
profile, which is used in the SW-CUDA, but with the revised organization of the data
structure. Additional efficiency was achieved by the code optimization and storing
four successive elements of compared sequences in 32-bit words. A similar solution is
used in our implementation presented in the following section.

234 R. Pawłowski et al.

4 Implementation of Parallel Alignment on GPU and CUDA

In order to quickly search large repositories of biopolymer sequences we assumed that
the process will be carried out in parallel by threads performing simultaneous
pairwise alignments for a query sequence and successive database sequence. In the
proposed method accelerating the similarity searching of biopolymer chains each pair
of sequences is aligned with the use of the Smith-Waterman algorithm by only one
thread. Therefore, the implemented algorithm will be described as SW-CUDA-STSA
(STSA – Single-Thread-Single-Alignment). We also made the implementation, in
which a pair of sequences is aligned by multiple threads (SW-CUDA-MTSA).
However, performed tests have shown that synchronization of threads performing
single alignment badly affect the performance. In SW-CUDA-STSA particular align-
ments are not dependant on each other in any way, since there is no need to exchange
information between any threads and the synchronization of threads is not necessary.
This has a positive impact on performance. In the following sections we present the
optimization steps leading to achieve a very good efficiency of the SW-CUDA-STSA.

4.1 Calculation of Alignment Matrix

Parallel and independent alignments give us a kind of freedom in determining
elements of the alignment matrix. With such a freedom we can seek a better method
than the simple calculation of the subsequent rows or columns, as in the original
Smith-Waterman method. In order to reduce access demands to the global memory,
which has a low bandwidth, the most preferred method is to perform calculations in
areas, e.g. squares of n × n elements [6]. Given the number of registers available on
our GPU, we decided to calculate areas of 4 × 4 elements. In order to determine the
element values of such an area, it is necessary to know values of 9 elements along the
left and top edge of the area, as shown in Fig. 2a-d.

Assume that successive areas in the alignment matrix are calculated by processing
columns (Fig. 3), and elements of the areas are calculated by processing rows (Fig. 2).
In Fig. 3a we can see that for the first area in the column the values along the top
edge, which are needed in the calculation of the next row, are always equal to 0, and
for next areas in the column (Fig. 3b) they are equal to the last row of the previous
area. The storage of items of the upper edge in the global memory or the shared-
memory would not be a good solution, since the access to the global memory is very
slow and the shared-memory can be affected by conflicts of memory banks.
Therefore, the best solution is to store these values in registers. The value of the
upper-left corner of the area is also transferred between the iterations of the algorithm
by using the register.

The values of the left edge of the area are different for each column of areas and
equal to the values of the last column of the previous column of areas (Fig. 3c and
Fig. 3d). The total number of these values is equal to the length of the sequence
located along the vertical edge of the alignment matrix. It is advisable that, for each
thread matching a pair of sequences, the number was the same, which could easily
arrange for coalesced access to the global memory.

Fast and Accurate Similarity Searching of Biopolymer Sequences with GPU and CUDA 235

Fig. 2. Order of elements determination for a particular area (4 × 4) in the alignment matrix for
the proposed method

Fig. 3. Order of areas determination in the alignment matrix for the proposed method

236 R. Pawłowski et al.

While calculating successive columns of areas, we must always locate the same
sequence, i.e. query sequence, along the vertical edge of the alignment matrix.

4.2 Reducing the Number of Transactions

In Fig. 2 and Fig. 3 we can also observe read and write operations to particular
resources for each phase during the calculation of the alignment matrix.

When calculating values of the alignment matrix by processing areas of 4 x 4
elements, we have limited the number of accesses to the global memory, i.e. 4 reads
and 4 writes for all 16 elements of the matrix area. To these 8 global memory
accesses, we have to add another 8 accesses associated with reading and saving the
data necessary to determine the gap penalty function GP.

In our implementation, data transfers involving the global memory are further
reduced. We just keep the four values that are read or written from/to the global
memory, as values of the 4-byte data type (int or float) in the C language (128-bit
word). Then the transaction mechanism of the CUDA technology ensures that such
128-bit words will be read or written by the warp threads in only two transactions,
rather than four. Provided that the access is coalesced – more threads read or write
subsequent 128-bit words. In summary, in our implementation the number of required
accesses to the global memory is optimized.

4.3 Reducing Idle Time of Threads

In presented implementation of the Smith-Waterman algorithm, each thread performs
single alignment. For concurrent operation of possible large number of threads, it is
necessary to provide a large amount of data at the same time to the memory of the
graphics card. Since threads are executed in blocks, the amount of required data is
very roughly proportional to the number of threads in block. After the whole program
is executed on the graphics card, blocks remain idle for a certain period before they
act, which results from the necessity of transferring a large amount of data.

Idle time when running successive blocks can be effectively reduced by performing
data transfer to the device in batches using streams and properly selecting the number
of threads in the block. During tests, the best results were obtained for 64 threads in
the block and a batch size of approximately 20 MB. The division of data into parts of
appropriate size is completely independent of the length or form of a given query
sequence. Therefore, the division can be made in advance and we can load the divided
data from a file and then store these data in RAM of the host, using them to perform
alignments.

Another problem is related to the organization of data that is transferred to the
device. The vast majority of sequences stored in the database are relatively short.
Very long sequences are usually only a small percentage of the database. This
hypothetical situation is shown very simply in Fig. 4. We must remember that threads
working in a block run concurrently. If for some reason the executed task takes less
time for some threads in the block, these threads will not become a part of another
block. Prematurely terminated threads continue to hold resources, but do not have any
instructions to run. In Fig. 4a an idle interval for a short, sample database sequence is

Fast and Accurate Similarity Searching of Biopolymer Sequences with GPU and CUDA 237

marked with the use of a solid arrow. Therefore, sequences from the database
processed by threads in one block should be of similar length. In this way, the time
between the completion of the fastest and the slowest thread is shorter. We can
achieve this by pre-processing a database through sorting sequences according to their
lengths in descending or ascending order before the data is divided into batches and
set to blocks. For simplicity, let the data packet in Fig. 4a be a subset of sequences
from the database, which is processed by only one block of threads.

As shown in Fig. 4b, after sorting sequences and setting a smaller number of
threads in the block (smaller batches of data) the difference in length between the
longest and the shortest sequence is smaller and the resource locking time is shorter
than for the case presented in Fig. 4a.

4.4 Data Arrangement

Data arrangement and appropriate access to resources of the graphics card signifi-
cantly affect the performance of the algorithm.

Fig. 4. Dependence of sequences length in a set of processed data for the idle time of some
threads in a block: a) entire data set processed at once in one block, b) entire data set divided
into smaller subsets, processed independently. The number of sequences in the subset is
proportional to the number of threads in the block

238 R. Pawłowski et al.

In our implementation, data processed by threads in block (database sequences) are
placed in the global memory, due to their amount. Access to these data can be
enhanced by choosing appropriate structure of their storage in computer's memory
before they are sent to the global memory of the graphics card.

In our solution, we store sequences in a two dimensional array with a row
addressing, as it is presented in Fig. 5. Each cell of the array stores 32-bit words and
the number of cells in row is equal to the number of block threads. Each memory cell
can store four symbols of database sequence, since each symbol takes 8 bits (char
data type in the C language). Particular database sequences are placed in columns of
the array. Consecutive rows store four subsequent symbols of database sequences.
Each column provides a set of data (database sequence) to be processed by a single
thread. If a sequence is shorter than the longest sequence in the array, the sequence is
completed by using arbitrarily chosen empty symbol with the scoring value of 0.

With a row addressing, each thread reads appropriate cell storing four characters of
a sequence. In this way, we implement coalesced reads of data by all threads in a
block. Moreover, in spite of reading only one single symbol of a sequence, threads
read four symbols during a single access to the global memory.

Fig. 5. Arrangement of database sequences in the global memory

4.5 Storing the Input Sequence and the Substitution Matrix

Substitution matrices are widely used in the comparison of two biopolymer sequenc-
es, especially proteins, since they evaluate the conservativeness between two elements
of these sequences. In our solution, a substitution matrix that is used in the alignment
process as well as the given, query sequence, are both stored in the texture memory.
Texture memory is best suited for storing spatial data, and the substitution matrix can
be considered as this sort of data. Input sequence is also placed in texture memory,
since this type of memory is locally cached. When loading element of the sequence or
array into the cache, we also load the neighboring elements. As a consequence, after
reading the first symbol of the query sequence from the texture memory and loading it
into the cache, the next symbol is immediately loaded in the background.

Fast and Accurate Similarity Searching of Biopolymer Sequences with GPU and CUDA 239

6 Efficiency Tests

We tested performance of the developed SW-CUDA-STSA algorithm and we com-
pared its results to results obtained for different publicly available algorithms. The
SW-CUDA-STSA was compared with (1) its sequential, direct implementation of the
Smith-Waterman algorithm, (2) the CUDA-SW++ 1.0 algorithm [6] and running
locally: (3) alignment algorithm for the SSEARCH program in the FASTA package
version 3.5.4.11 [10] and (4) NCBI BLAST algorithm 2.2.23. CUDA-SW++ 2.0 [7] is
currently the most popular published implementation of the Smith-Waterman algo-
rithm, which is dedicated to the SIMT architecture. However, we have selected the
CUDA-SW++ 1.0 to our studies, since the newer version of CUDA-SW++ 2.0
requires devices supporting CUDA technology version 1.2 or higher. The SSEARCH
program is available in two variants. First, basic version has the optimized Smith-
Waterman algorithm, about two times faster than the direct implementation [3], which
also is confirmed by the results of measurements presented in Fig. 6. Second version
is dedicated to Intel processors, possessing the Streaming SIMD Extensions 2 (SSE2)
instruction technology.

Algorithms were evaluated on the basis of test results for 20 given sequences of the
length between 127 and 2 999 amino acids, against the Swiss-Prot 2010_08 database
released on 13 July 2010, consisting of 518 415 records (sequences). For testing
purposes we used Zotac graphics card with the NVIDIA GeForce 8800 GT having:

− 14 multiprocessors SM (96 scalar processor cores, SP),
− 8 192 32-bit registers per multiprocessor, shared between all block threads,
− 16 kB shared memory, physically located in 16 banks with parallel access,
− 8 kB cache for constant memory, attributable to one multiprocessor,
− 6÷8 kB cache for texture memory, attributable to one multiprocessor,
− 512 MB global memory, containing areas of constant memory (64 kB), texture

memory and local memory.

The graphics card that we used in tests supports the CUDA technology version 1.1.
The device was installed on a PC with the Intel Core 2 Quad Q9300 2.5 GHz
processor and 8 GB of RAM, running under the Microsoft Windows 7® 64-bit
operating system. For all tested implementations, measurements were made with the
use of the same BLOSUM62 substitution matrix and the same values of the penalty
for opening a gap (-10) and gap extension (-2).

Fig. 6 shows execution times for various implementations of the Smith-Waterman
algorithm for various lengths of the query sequence. Results presented in Fig. 6 show
that single CPU implementation of the Smith-Waterman alignment algorithm is the
slowest among other tested implementations. On the other hand, the popular BLAST
algorithm appears to be the fastest. The SW-CUDA-STSA presented in the paper is
faster than other implementations, like CUDASW++ 1.0, and slower only than
BLAST. However, BLAST is a heuristic method, oppositely to other tested imple-
mentations that use dynamic programming. In Fig. 6 we can also observe that for all
tested algorithms the execution time grows with the rising length of the given, input
sequence.

240 R. Pawłowski et al.

Fig. 7 shows the efficiency of tested algorithms and their implementations. To
remove the factor of different size of the problem, the measurements in Fig. 7 are
expressed in MCUPS (Million Cell Updates Per Second):

610−××=
t

qp
MCUPS , (5)

where: p and q are the lengths of the matched sequences, and t is the runtime in
seconds.

Conclusions are similar to those presented formerly. In terms of performance, the
SW-CUDA-STSA is second only to the BLAST algorithm and better than competi-
tive CUDASW++ 1.0 and other implementations.

Analyzing the efficiency of tested algorithms presented in Fig. 7 it is also worth
noting that, in contrast to other algorithms, the performance of SW-CUDA-STSA
remains stable regardless the length of the input sequence.

Fig. 6. Execution times for the SW-CUDA-STSA algorithm and referential algorithms for
various lengths of the query sequence

Fig. 7. Efficiency [MCUPS] of the SW-CUDA-STSA algorithm and referential algorithms for
various lengths of the query sequence

Fast and Accurate Similarity Searching of Biopolymer Sequences with GPU and CUDA 241

This is especially visible for short input sequences (up to 300 elements). Constant
performance is achieved by providing data to the GPU device on an almost conti-
nuous basis during ongoing parallel alignments. In the competing solutions, the
measurements were made by first loading the entire database into memory of the
graphics card, and then processing the data. In our implementation, data processing is
carried out in two-stage pipeline – while the first portion of data is processed, another
portion is read, prepared in the RAM of the host, and transferred to the global
memory of GPU device, when needed. Processing delay, resulting from the transfer of
the first batch of data is so small that we have managed to maintain a good perfor-
mance even for short sequences. On the occasion of such a pipelined processing, it
has another important advantage. It allows us to run the algorithm on graphics cards
that do not have enough memory to load and hold the entire database of sequences.

We also calculated the acceleration of particular implementations with respect to
one, chosen implementation. Implementation of the Smith-Waterman algorithm
available in the SSEARCH program can be seen as a universal reference point to
calculate the acceleration of other algorithms. As one of the component program of
the FASTA package, this algorithm was optimized through many years and certainly
takes into account most of the methods to accelerate the implementation of the Smith-
Waterman algorithm for the SISD architecture. The acceleration of particular
implementations referenced to the Smith-Waterman algorithm from the SSEARCH
program is illustrated in Fig. 8.

The results of measurements presented in Fig. 8 show that, for the used hardware
configuration, the SW-CUDA-STSA implementation described in this paper is almost
thirty times faster than the implementation from the basic version of SSEARCH
program and sixty times faster than standard implementation on single CPU. The
implementation from the SSEARCH program using the SSE2 technology has proved
to be only slightly less efficient. Moreover, for shorter input sequences SW-CUDA-
STSA is much more effective than a faster version of SSEARCH. Both algorithms,
SW-CUDA-STSA and SSEARCH SSE2, are about 20% faster than the fastest of the
published versions of the CUDASW++ 1.0.

Fig. 8. Acceleration of the SW-CUDA-STSA algorithm and referential algorithms for various
lengths of the query sequence. The acceleration is relative to the SSEARCH algorithm.

242 R. Pawłowski et al.

Such a good result of our method rises from the independence of working threads,
complete elimination of synchronization, and from the data structure chosen for this
algorithm, which in turn is a consequence of an attempt to reconcile the specific
architecture of graphics cards supporting CUDA technology with the strategy of
dynamic programming.

5 Concluding Remarks

The SW-CUDA-STSA described in the paper, although not completely novel,
because it combines already known solutions, has a number of features that result in
increased flexibility of the implementation and further reduction of the execution time
of the Smith-Waterman algorithm.

Designing the implementation, we tried to include the best features of known
solutions, minimizing the costs of the initial data processing and avoiding operations,
which could provide an additional overhead.

We also noticed that there is a stronger dependency between the performance and
the length of the input sequence in the CUDASW++, than in the proposed SW-
CUDA-STSA. CUDASW++ reveals a clear performance decrease especially for short
sequences (Fig. 7), while the proposed SW-CUDA-STSA preserves performance
stability in a wide range of input sequence length. Moreover, the competitive
CUDASW++ 1.0 is limited by the size of constant memory, which stores the input
sequence, and which is only 64 kB in devices with CUDA 1.1. The developed
solution SW-CUDA-STSA theoretically works for any sequence length. The limi-
tation is only the amount of global memory installed on the device, which in our case
is 512MB. This allows us to compare a given sequence even with whole genomes,
making the SW-CUDA-STSA a powerful and effective tool in a post-genome era.

Future works will cover further acceleration of the similarity searching of biomole-
cular sequences by using more efficient GPUs supporting CUDA 2.1 and NVIDIA
Unified Virtual Addressing on 64 bit devices. The algorithm can be also implemented
on clusters with computing nodes containing general purpose GPUs for massive and
parallel scanning of large biological databases. Moreover, currently our development
team works on implementation of heuristic BLAST on GPU-based devices, which
should additionally speed up the similarity searching and allow us to compare whole
genomes to each other, as does the MUMmerGPU [13].

Acknowledgments. This scientific research was partly financed from funds for
science in years 2010-2012 by a research and development project, under Grant No. O
R00 0113 12, and supported by the European Union from the European Social Fund
within the EkDan project.

References

1. Altschul, S.F., et al.: Basic Local Alignment Search Tool. Journal of Molecular
Biology 215, 403–410 (1990)

2. Boyer, M., Skadron, K., Weimer, W.: Automated Dynamic Analysis of CUDA Programs.
University of Virginia, USA (2008),
http://www.nvidia.com/docs/IO/67190/stmcs08.pdf

Fast and Accurate Similarity Searching of Biopolymer Sequences with GPU and CUDA 243

3. Farrar, M.: Striped Smith–Waterman speeds database searches six times over other SIMD
implementations. Bioinformatics 23(2), 156–161 (2007)

4. GenomeNet, http://www.genome.jp/en/db_growth.html
5. Gough, E.S., Kane, M.D.: Evaluating Parallel Computing Systems in Bioinformatics. In:

Proceedings of the Third International Conference on Information Technology: New
Generations, Las Vegas, NV, pp. 233–238 (2006)

6. Liu, Y., Maskell, D., Schmidt, B.: CUDASW++: optimizing Smith-Waterman sequence
database searches for CUDA-enabled graphics processing units. BMC Research
Notes 2(73), 1–10 (2009)

7. Liu, Y., Maskell, D., Schmidt, B.: CUDASW++2.0: enhanced Smith-Waterman protein
database search on CUDA-enabled GPUs based on SIMT and virtualized SIMD
abstractions. BMC Research Notes 3(93), 1–12 (2010)

8. Manavski, S.A., Valle, G.: CUDA compatible GPU cards as efficient hardware
accelerators for Smith-Waterman sequence alignment. BMC Bioinformatics 9, 1–9 (2008)

9. NVIDIA CUDA programming guide 2.3,
http://developer.download.nvidia.com/com-pute/cuda/2_3/
toolkit/docs/NVIDIA_CUDA_Programming_Guide_2.3.pdf

10. Pearson, W.R., Lipman, D.J.: Improved tools for biological sequence analysis.
Proceedings of the National Academy of Sciences 85, 2444–2448 (1988)

11. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. Journal
of Molecular Biology 147, 195–197 (1981)

12. Striemer, G.M., Akoglu, A.: Sequence Alignment with GPU: Performance and Design
Challenges. In: IEEE International Symposium on Parallel & Distributed Processing,
IPDPS, pp. 1–10 (2009)

13. Schatz, M.C., Trapnell, C., Delcher, A.L., Varshney, A.: High-Throughput Sequence
Alignment Using Graphics Processing Units. BMC Bioinformatics 8(474) (2007)

Read Invisibility, Virtual World Consistency
and Probabilistic Permissiveness are Compatible

Tyler Crain2, Damien Imbs2, and Michel Raynal1,2

1 IUF,
2 IRISA,

Université de Rennes 1, France
{Tyler.Crain,Damien.Imbs,Michel.Raynal}@irisa.fr

Abstract. The aim of a Software Transactional Memory (STM) is to discharge
the programmers from the management of synchronization in multiprocess pro-
grams that access concurrent objects. To that end, an STM system provides the
programmer with the concept of a transaction. The job of the programmer is to
design each process the application is made up of as a sequence of transactions.
A transaction is a piece of code that accesses concurrent objects, but contains no
explicit synchronization statement. It is the job of the underlying STM system to
provide the illusion that each transaction appears as being executed atomically.
Of course, for efficiency, an STM system has to allow transactions to execute con-
currently. Consequently, due to the underlying STM concurrency management, a
transaction commits or aborts.

This paper studies the relation between two STM properties (read invisibility
and permissiveness) and two consistency conditions for STM systems, namely,
opacity and virtual world consistency. Both conditions ensure that any transac-
tion (be it a committed or an aborted transaction) reads values from a consistent
global state, a noteworthy property if one wants to prevent abnormal behavior
from concurrent transactions that behave correctly when executed alone. A read
operation issued by a transaction is invisible if it does not entail shared memory
modifications. This is an important property that favors efficiency and privacy.
An STM system is permissive (respectively probabilistically permissive) with re-
spect to a consistency condition if it accepts (respectively accepts with positive
probability) every history that satisfies the condition. This is a crucial property
as a permissive STM system never aborts a transaction “for free”. The paper first
shows that read invisibility, probabilistic permissiveness and opacity are incom-
patible, which means that there is no probabilistically permissive STM system
that implements opacity while ensuring read invisibility. It then shows that read
invisibility, probabilistic permissiveness and virtual world consistency are com-
patible. To that end the paper describes a new STM protocol called IR VWC P.
This protocol presents additional noteworthy features: it uses only base read/write
objects and locks which are used only at commit time; it satisfies the disjoint
access parallelism property; and, in favorable circumstances, the cost of a read
operation is O(1).

Keywords: Asynchronous system, Commit/abort, Opacity, Permissiveness, Se-
rializability, Software transactional memory, Transaction, Virtual world
consistency.

Y. Xiang et al. (Eds.): ICA3PP 2011, Part I, LNCS 7016, pp. 244–257, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Read Invisibility, Virtual World Consistency and Probabilistic Permissiveness 245

1 Introduction

1.1 Software Transactional Memory (STM) Systems

The aim of an STM system is to simplify the design and the writing of concurrent pro-
grams by discharging the programmer from the explicit management of synchronization
entailed by concurrent accesses to shared objects. This means that, when considering
synchronization, a programmer has to concentrate on where atomicity is required and
not on the way it is realized.

More explicitly, an STM is a middleware approach that provides the programmers
with the transaction concept [9,15]. This concept is close but different from the notion
of transactions encountered in databases [4,7,8]. A process is designed as (or decom-
posed into) a sequence of transactions, each transaction being a piece of code that, while
accessing any number of shared objects, always appears as being executed atomically.
The job of the programmer is only to define the units of computation that are the trans-
actions. He does not have to worry about the fact that the objects can be concurrently
accessed by transactions. Except when he defines the beginning and the end of a trans-
action, the programmer is not concerned by synchronization. It is the job of the STM
system to ensure that transactions execute as if they were atomic.

Of course, a solution in which a single transaction executes at a time trivially im-
plements transaction atomicity but is irrelevant from an efficiency point of view. So, an
STM system has to do “its best” to execute and commit as many transactions per time
unit as possible. Similarly to a scheduler, an STM system is an on-line algorithm that
does not know the future. If the STM is not trivial (i.e., it allows several transactions
that access the same objects in a conflicting manner to run concurrently), this intrin-
sic limitation can lead it to abort some transactions in order to ensure both transaction
atomicity and object consistency. From a programming point of view, an aborted trans-
action has no effect (it is up to the process that issued an aborted transaction to re-issue
it or not; usually, a transaction that is restarted is considered a new transaction). Abort
is the price that has to be paid by transactional systems to cope with concurrency in
absence of explicit synchronization mechanisms (such as locks or event queues).

1.2 Consistency Criteria for STM Systems

In databases, the classical consistency criterion for transactions is serializability [14]
(sometimes strengthened in “strict serializability”, as implemented when using the 2-
phase locking mechanism). The serializability consistency criterion involves only the
transactions that commit. Said differently, a transaction that aborts is not prevented
from accessing an inconsistent state before aborting.

In contrast to database transactions that are usually produced by SQL queries, in
an STM system the code encapsulated in a transaction is not restricted to particular
patterns. Consequently a transaction always has to operate on a consistent state. To
be more explicit, let us consider the following example where a transaction contains
the statement x ← a/(b − c) (where a, b and c are integer data), and let us assume
that b − c is different from 0 in all consistent states (intuitively, a consistent state is
a global state that, considering only the committed transactions, could have existed

246 T. Crain, D. Imbs, and M. Raynal

at some real time instant). If the values of b and c read by a transaction come from
different states, it is possible that the transaction obtains values such as b = c (and
b = c defines an inconsistent state). If this occurs, the transaction throws an exception
that has to be handled by the process that invoked the corresponding transaction. Even
worse undesirable behaviors can be obtained when reading values from inconsistent
states. This occurs for example when an inconsistent state provides a transaction with
values that generate infinite loops. Such bad behaviors have to be prevented in STM
systems: whatever its fate (commit or abort) a transaction always has to see a consistent
state of the data it accesses. The aborted transactions have to be harmless.

In order to ensure that aborted transactions are harmless, consistency criteria have
been defined specifically for STM systems. The first criterion aimed at STM systems
is opacity. It was first informally suggested in [3], and then formally introduced and
investigated in [6]. Another criterion, called virtual world consistency [12], has been
designed after opacity. Virtual world consistency also prevents bad behaviors by aborted
transactions, but is strictly weaker than opacity.

1.3 Desirable Properties for STM Systems

Invisible read operation. A read operation issued by a transaction is invisible if it does
not entail the modification of base shared objects used to implement the STM system
[13]. This is a desirable property for both efficiency and privacy.

Base operations and underlying locks. The use of expensive base synchronization op-
erations such as Compare&Swap() or the use of underlying locks to implement an STM
system can make it inefficient and prevent its scalability. Hence, an STM systems should
use synchronization operations sparingly (or even not at all) and the use of locks should
be as restricted as possible.

Disjoint access parallelism. Ideally, an STM system should allow transactions that are
on distinct objects to execute without interference, i.e., without accessing the same base
shared variables. This is important for efficiency and restricts the number or unneces-
sary aborts.

Permissiveness. The notion of permissiveness has been introduced in [5] (in some
sense, it is a very nice generalization of the notion of obligation property [11]). It is
about aborting transactions. Intuitively, an STM system is permissive “if it never aborts
a transaction unless necessary for correctness” (otherwise it is non-permissive). More
precisely, an STM system is permissive with respect to a consistency condition (e.g.,
opacity) if it accepts every history that satisfies the condition.

Some STM systems are randomized in the sense that the commit/abort point of a
transaction depends on a random coin toss. Probabilistic permissiveness is suited to
such systems. A randomized STM system is probabilistically permissive with respect
to a consistency condition if every history that satisfies the condition is accepted with
positive probability [5].

As indicated in [5], an STM system that checks at commit time that the values of the
objects read by a transaction have not been modified (and aborts the transaction if true)
cannot be permissive with respect to opacity.

Read Invisibility, Virtual World Consistency and Probabilistic Permissiveness 247

1.4 Content of the Paper

This paper is on permissive STM systems with invisible reads. It has several
contributions.

• It first shows that an STM system that satisfies read invisibility and opacity cannot
be permissive (or probabilistically permissive).

• The paper then presents an STM system (called IR VWC P) that satisfies read
invisibility, virtual world consistency and probabilistic permissiveness. The IR VWC P
protocol presents additional noteworthy properties.

– It uses only base read/write operations and locks, each associated with a shared
object. Moreover, a lock is used at most once by a transaction at its end (when it
executes an operation called try to commit()).

– It satisfies the disjoint access parallelism property.

2 STM Computation Model and Base Definitions

Processes and atomic shared objects. An application is made up of an arbitrary number
of processes and m shared objects. The processes are denoted pi, pj , etc., while the
objects are denoted X, Y, . . ., where each id X is such that X ∈ {1, · · · , m}. Each
process consists of a sequence of transactions (that are not known in advance).

Each of the m shared objects is an atomic read/write object. This means that the read
and write operations issued on such an object X appear as if they have been executed
sequentially, and this “witness sequence” is legal (a read returns the value written by
the closest write that precedes it in this sequence) and respects the real time occurrence
order on the operations on X (if op1(X) terminates before op2(X) starts, op1 appears
before op2 in the witness sequence associated with X).

Transaction. A transaction is a piece of code that is produced on-line by a sequential
process (automaton), that is assumed to be executed atomically (commit) or not at all
(abort). This means that (1) the transactions issued by a process are totally ordered, and
(2) the designer of a transaction does not have to worry about the management of the
base objects accessed by the transaction. Differently from a committed transaction, an
aborted transaction has no effect on the shared objects. A transaction can read or write
any shared object.

The set of the objects read by a transaction defines its read set. Similarly the set of
objects it writes defines its write set. A transaction that does not write shared objects is
a read-only transaction, otherwise it is an update transaction. A transaction that issues
only write operations is a write-only transaction.

Transaction are assumed to be dynamically defined. The important point is here that
the underlying STM system does not know in advance the transactions. It is an on-line
system (as a scheduler).

Operations issued by a transaction. We denote operations on shared objects in the
following way. A read operation by transaction T on object X is denoted X.readT ().
Such an operation returns either the value v read from X or the value abort. When
a value v is returned, the notation X.readT (v) is sometimes used. Similarly, a write

248 T. Crain, D. Imbs, and M. Raynal

operation by transaction T of value v into object X is denoted X.writeT (v) (when not
relevant, v is omitted). Such an operation returns either the value ok or the value abort.
The notations ∃ X.readT (v) and ∃ X.writeT (v) are used as predicates to state whether
a transaction T has issued a corresponding read or write operation.

If it has not been aborted during a read or write operation, a transaction T invokes
the operation try to commitT () when it terminates. That operation returns commit or
abort.

Incremental snapshot. As in [1], we assume that the behavior of a transaction T can be
decomposed in three sequential steps: it first reads data objects, then does local com-
putations and finally writes new values in some objects, which means that a transaction
can be seen as a software read modify write() operation that is dynamically defined
by a process. (This model is for reasoning, understand and state properties on STM
systems. It only requires that everything appears as described in the model.)

The read set is defined incrementally, which means that a transaction reads the ob-
jects of its read set asynchronously one after the other (between two consecutive reads,
the transaction can issue local computations that take arbitrary, but finite, durations).
We say that the transaction T computes an incremental snapshot. This snapshot has to
be consistent which means that there is a time frame in which these values have co-
existed (as we will see later, different consistency conditions consider different time
frame notions).

If it reads a new object whose current value makes its incremental snapshot incon-
sistent, the transaction is directed to abort. If the transaction is not aborted during its
read phase, T issues local computations. Finally, if the transaction is an update trans-
action, and its write operations can be issued in such a way that the transaction appears
as being executed atomically, the objects of its write set are updated and the transaction
commits. Otherwise, it is aborted.

Read prefix of an aborted transaction. A read prefix is associated with every transaction
that aborts. This read prefix contains all its read operations if the transaction has not
been aborted during its read phase. If it has been aborted during its read phase, its read
prefix contains all read operations it has issued before the read that entailed the abort.
Let us observe that the values obtained by the read operations of the read prefix of an
aborted transaction are mutually consistent (they are from a consistent global state).

3 Consistency Conditions: Opacity and Virtual World Consistency

The opacity consistency condition. Informally suggested in [3], and formally intro-
duced and investigated in [6], the opacity consistency condition requires that no transac-
tion reads values from an inconsistent global state where, considering only the
committed transactions, a consistent global state is defined as the state of the shared
memory at some real time instant. Let us associate with each aborted transaction T its
execution prefix (called read prefix) that contains all its read operations until T aborts
(if the abort is entailed by a read, this read is not included in the prefix). An execution of
a set of transactions satisfies the opacity condition if (i) all committed transactions plus
each aborted transaction reduced to its read prefix appear as if they have been executed
sequentially and (ii) this sequence respects the transaction real-time occurrence order.

Read Invisibility, Virtual World Consistency and Probabilistic Permissiveness 249

Virtual world consistency. This consistency condition, introduced in [12], is weaker
than opacity while keeping its spirit. It states that (1) no transaction (committed or
aborted) reads values from an inconsistent global state, (2) the consistent global states
read by the committed transactions are mutually consistent (in the sense that they can
be totally ordered) but (3) while the global state read by each aborted transaction is
consistent from its individual point of view, the global states read by any two aborted
transactions are not required to be mutually consistent. Said differently, virtual world
consistency requires that (1) all the committed transactions be serializable [14] (so they
all have the same “witness sequential execution”) or linearizable [10] (if we want this
witness execution to also respect real time) and (2) each aborted transaction (reduced
to a read prefix as explained previously) reads values that are consistent with respect to
its causal past only.

As two aborted transactions can have different causal pasts, each can read from a
global state that is consistent from its causal past point of view, but these two global
states may be mutually inconsistent as aborted transactions have not necessarily the
same causal past (hence the name virtual world consistency). This consistency condi-
tion can benefit many STM applications as, from its local point of view, a transaction
cannot differentiate it from opacity.

In addition to the fact that it can allow more transactions to commit than opacity, one
of the main advantages of virtual world consistency lies in the fact that, as opacity, it
prevents bad phenomena (as described previously) from occurring without requiring all
the transactions (committed or aborted) to agree on the very same witness execution.
Let us assume that each transaction behaves correctly (e.g. it does not entail a divi-
sion by 0, does not enter an infinite loop, etc.) when, executed alone, it reads values
from a consistent global state. As, due to the virtual world consistency condition, no
transaction (committed or aborted) reads from an inconsistent state, it cannot behave
incorrectly despite concurrency, it can only be aborted. This is a first class requirement
for transactional memories.

4 Invisible Reads, Opacity and Permissiveness are Incompatible

Theorem 1. Read invisibility, opacity and permissiveness (or probabilistic permissive-
ness) are incompatible.

Proof: Let us first consider permissiveness. The proof follows from a simple counter-
example where three transactions T1, T2 and T3 issue sequentially the following opera-
tions (depicted in Figure 1).

1. T3 reads object X .
2. Then T2 writes X and terminates. If the STM system is permissive it has to commit

T2. This is because if (a) the system would abort T2 and (b) T3 would be made
up of only the read of X , aborting T2 would make the system non-permissive. Let
us notice that, at the time at which T2 has to be committed or aborted, the future
behavior of T3 is not known and T1 does not yet exist.

3. Then T1 reads X and Y . Let us observe that the STM system has not to abort T1.
This is because when T1 reads X there is no conflict with another transaction, and
similarly when T1 reads Y .

250 T. Crain, D. Imbs, and M. Raynal

4. Finally, T3 writes Y and terminates. Let us observe that T3 must commit in a per-
missive system where read operations (issued by other processes) are invisible. This
is because, due to read invisibility, T3 does not know that T1 has previously issued
a read of Y . Moreover, T1 has not yet terminated and terminates much later than
T3. Hence, whatever the commit/abort fate of T1, due to read invisibility, no infor-
mation on the fact that T1 has accessed Y has been passed from T1 to T3: when the
fate of T3 has to be decided, T3 is not aware of the existence of T1.

T2

T3

p1

p2

p3

RX

T1

RX

WX commit

RY

commitWY

commit/abort

Fig. 1. Invisible reads, opacity and permissiveness are incompatible

The strong transaction history P̂O = ({T1, T2, T3},→PO) associated with the previous
execution is such that:

– T3 →PO T2 (follows from the fact that T2 overwrites the value of X read by T3).
– T2 →PO T1 (follows from the fact that T1 reads the value of X written by T2).

Let us observe that this is independent from the fact that T1 will be later aborted
or committed. (If T1 is aborted it is reduced to its read prefix “X.read(); Y.read()”
that obtained values from a consistent global state.)

– Due to the sequential accesses on Y that is read by T1 and then written by T3, we
have T1 →PO T3.

It follows from the previous item that T1 →PO T1. A contradiction from which we
conclude that there is no protocol with invisible read operations that both is permissive
and satisfies opacity.

Let us now consider probabilistic permissiveness. The same counter-example and the
same reasoning as before applies. As none of T2 and T3 violates opacity, a probabilistic
STM system that implements opacity with invisible read operations has a positive prob-
ability of committing both of them. As read operations are invisible, there is positive
probability that both read operations on X and Y issued by T1 be accepted by the STM
system. It then follows that the strong transaction history P̂O = ({T1, T2, T3},→PO)
associated with the execution in which T2 and T3 are committed while T1 is aborted has
a positive probability to be accepted. It is trivial to see that this execution is the same as
in the non-probabilistic case for which it has been shown that this history is not opaque.
From this we have that read invisibility, permissiveness, and opacity are incompatible.

�Theorem 1

Remark 1. Let us observe that any opaque system with invisible reads would be required
to abort T3. When T3 performs the try to commit() operation detecting that its read

Read Invisibility, Virtual World Consistency and Probabilistic Permissiveness 251

of X has been overwritten, it must abort (this is because T3 has no way of knowing
whether or not T1’s read exists at this point, so T3 must abort in order to ensure safety).
From this we have that read invisibility, permissiveness, and opacity are incompatible
in the sense that any pair of properties can be satisfied only if the third is omitted.

Remark 2. The previous proof shows that opacity is a too strong consistency condition
when one wants both read invisibility and permissiveness. Differently, when consider-
ing the previous execution, the virtual world consistency protocol IR VWC P presented
in this paper will abort transaction T1. It is easy to see that the corresponding weak trans-
action history is virtual world consistent: The read prefix “X.readT1(); Y.readT1()” of
the aborted transaction T1 can be ordered after T2 (and T3 does not appear in its causal
past).

5 Step 1: Ensuring Virtual World Consistency with Read
Invisibility

As announced in the Introduction, the protocol IR VWC P is built is two steps. This
section presents the first step, namely, a protocol that ensures virtual consistency with
invisible read operations. The second step (Section 6) will enrich this base protocol to
obtain probabilistic permissiveness.

5.1 STM Interface, Incremental Reads and Deferred Updates

The underlying system on top of which is built the STM system is made up of base
shared read/write variables (also called registers) and locks. Some of the base variables
are used to contain pointer values. As we will see, not all the base registers are required
to be atomic. There is an exclusive lock per shared object.

The STM system provides the process that issues a transaction T with four opera-
tions. The operations X.readT (), X.writeT (), and try to commitT () have been already
presented. The operation beginT () is invoked by a transaction T when it starts. It ini-
tializes local control variables.

The proposed STM system is based on the incremental reads and deferred update
strategy. Each transaction T uses a local working space. When T invokes X.readT ()
for the first time, it reads the value of X from the shared memory and copies it into its
local working space. Later X.readT () invocations (if any) use this copy. So, if T reads
X and then Y , these reads are done incrementally, and the state of the shared memory
may have changed in between. As already explained, this is the incremental snapshot
strategy.

When T invokes X.writeT (v), it writes v into its working space (and does not ac-
cess the shared memory) and always returns ok. Finally, if T is not aborted while it is
executing try to commitT (), it copies the values written (if any) from its local working
space to the shared memory. (A similar deferred update model is used in some database
transaction systems.)

252 T. Crain, D. Imbs, and M. Raynal

5.2 The Underlying Data Structures

Implementing a transaction-level shared object. Each transaction-level shared object
X is implemented by a list. Hence, at the implementation level, there is a shared array
PT [1..m] such that PT [X] is a pointer to the list associated with X . This list is made
up of cells. Let CELL(X) be such a cell. It is made up of the following fields (see
Figure 2).

– CELL(X).value contains the value v written into X by some transaction T .
– CELL(X).begin and CELL(X).end are two dates (real numbers) such that the

right-open time interval [CELL(X).begin..CELL(X).end[defines the lifetime
of the value kept in CELL(X).value. Operationally, CELL(X).begin is the
commit time of the transaction that wrote CELL(X).value and CELL(X).end
is the date from which CELL(X).value is no longer valid.

– CELL(X).last read contains the commit date of the latest transaction that read
object X and returned the value v = CELL(X).value.

– CELL(X).next is a pointer that points to the cell containing the first value written
into X after v = CELL(X).value. CELL(X).prev is a pointer in the other
direction.

It is important to notice that none of these pointers are used in the protocol (Figure 3)
that ensures virtual world consistency and read invisibility. CELL(X).next is required
only when one wants to recycle inaccessible cells. Differently, CELL(X).next will be
used to obtain permissiveness (see Section 6).

0

vinit

0

prev

next

last read

end

begin

value

⊥

PT [X]

⊥

+∞

Fig. 2. List implementing a transaction-level shared object X

No field of a cell is required to be an atomic read/write register of the underlying
shared memory. Moreover, all fields (but CELL(X).last read) are simple write-once
registers. Initially PT [X] points to a list made up of a single cell containing the tuple
〈vinit, 0, +∞, 0,⊥,⊥〉, where vinit is the initial value of X .

Locks. A exclusive access lock is associated with each read/write shared object X .
These locks are used only in the try to commit() operation, which means that neither
X.readT () nor X.writeT () is lock-based.

Variables local to each process. Each process pi manages a local variable denoted
last commiti whose scope is the entire computation. This variable (initialized to 0)
contains the commit date associated with the last transaction committed by pi. Its aim is
to ensure that the transactions committed by pi are serialized according to their commit
order.

Read Invisibility, Virtual World Consistency and Probabilistic Permissiveness 253

In addition to last commiti, a process pi manages the following local variables
whose scope is the duration of the transaction T currently executed by process pi.

– w botT and w topT are two local variables that define the time interval during
which transaction T could be committed. This interval is]w botT ..w topT [(which
means that its bounds do not belong to the interval).
It is initially equal to]last commiti..+∞[. Then, it can only shrink. If it becomes
empty (i.e., w botT ≥ w topT), transaction T has to be aborted.

– lrsT (resp., lwsT) is the read (resp., write) set of transaction T . Incrementally
updated, it contains the identities of the transaction-level shared objects X that T
has read (resp., written) up to now.

– lcell(X) is a local cell whose aim is to contain the values that have been read
from the cell pointed to by PT [X] or will be added to that list if X is written
by T . In addition to the six previous fields, it contains an additional field denoted
lcell(X).origin whose meaning is as follows. If X is read by T , lcell(X).origin
contains the value of the pointer PT [X] at the time X has been read. If X is only
written by T , lcell(X).origin is useless.

Notation for pointers. PT [X], cell(X).next and lcell(X).origin are pointer vari-
ables. The following pointer notations are used. Let PTR be a pointer variable. PTR ↓
denotes the variable pointed to by PTR. Let VAR be a non-pointer variable. ↑ VAR
denotes a pointer to VAR. Hence, PTR ≡ ↑ (PTR ↓) and VAR ≡ (↑ VAR) ↓).

5.3 The readT () and writeT () Operations

When a process pi invokes a new transaction T , it first executes the operation beginT ()
which initializes the appropriate local variables.

The X.readT () operation. The algorithm implementing X.readT () is described in Fig-
ure 3. When pi invokes this operation, if lcell(X) exists, it returns the value locally
saved in lcell(X).value (lines 02 and 13). If lcell(X) has not yet been allocated, pi

does it (line 03) and updates its fields value, begin and origin with the corresponding
values obtained from the shared memory (lines 04-07). Process pi then updates w botT
and w topT as follows.

– The algorithm defines the commit time of transaction T as a point of the time line
such that T could have executed all its read and write operations instantaneously
at that time. Hence, T cannot be committed before a committed transaction T ′

that wrote the value of a shared object X read by T . According to the algorithm
implementing the try to commitT () operation (see line 27), the commit point of
such a transaction T ′ is the time value kept in lcell(X).begin. Hence, pi updates
w botT to max(w botT , lcell(X).begin) (line 08). X is then added to lrstT (line
09).

– Then, pi updates w topT (the top side of T ’s commit window, line 10). If there
is a shared object Y already read by T (i.e., Y ∈ lrsT) that has been written by
some other transaction T ′′ (where T ′′ is a transaction that wrote Y after T read

254 T. Crain, D. Imbs, and M. Raynal

operation beginT ():
(01) w botT ← last commiti; w topT ← +∞; lrsT ← ∅; lwsT ← ∅.

==
operation X.readT ():
(02) if (� local cell associated with the R/W shared object X) then
(03) allocate local space denoted lcell(X);
(04) x ptr ← PT [X];
(05) lcell(X).value← (x ptr ↓).value;
(06) lcell(X).begin← (x ptr ↓).begin;
(07) lcell(X).origin← x ptr;
(08) w botT ← max(w botT , lcell(X).begin);
(09) lrsT ← lrsT ∪X;
(10) for each (Y ∈ lrsT) do

w topT ← min
(
w topT , (lcell(Y).origin ↓).end

)
end for;

(11) if (w botT ≥ w topT) then return(abort) end if
(12) end if;
(13) return (lcell(X).value).

==
operation X.writeT (v):
(14) if (� local cell associated with X) then allocate local space lcell(X) end if;
(15) lwsT ← lwsT ∪X;
(16) lcell(X).value← v;
(17) return(ok).

==
operation try to commitT ():
(18) lock all the objects in lrsT ∪ lwsT ;
(19) for each (Y ∈ lrsT) do w topT ← min

(
w topT , (lcell(Y).origin ↓).end

)
end for;

(20) for each (Y ∈ lwsT) do w botT ← max((PT [Y] ↓).last read,w botT) end for;
(21) if (w botT ≥ w topT) then

release all locks and disallocate all local cells; return(abort) end if;
(22) ct timeT ← select a (random/heuristic) time value ∈]w botT ..w topT [;
(23) for each (X ∈ lwsT) do (PT [X] ↓).end ← ct timeT end for;
(24) for each (X ∈ lwsT) do
(25) allocate in shared memory a new cell for X denoted CELL(X);
(26) CELL(X).value← lcell(X).value; CELL(X).last read← ct timeT ;
(27) CELL(X).begin← ct timeT ; CELL(X).end← +∞;
(28) PT [X]← ↑ CELL(X)
(29) end for;
(30) for each (X ∈ lrsT) do
(31) (lcell(X).origin ↓).last read← max((lcell(X).origin ↓).last read, ct timeT)
(32) end for;
(33) release all locks and disallocate all local cells; last commiti ← ct timeT ;
(34) return(commit).

Fig. 3. Algorithm for the operations of the protocol

Read Invisibility, Virtual World Consistency and Probabilistic Permissiveness 255

Y), then w topT has to be set to ct timeT ′′ if ct timeT ′′ < w topT . According to
the algorithm implementing the try to commitT () operation, the commit point of
such a transaction T ′′ is the date kept in (lcell(Y).origin ↓).end . Hence, for each
Y ∈ lrsT , pi updates w botT to min

(
w topT , (lcell(Y).origin ↓).end (line 10).

Then, if the window becomes empty, the X.readT () operation entails the abort of
transaction T (line 11). If T is not aborted, the value written by T ′ (that is kept in
lcell(X).value) is returned (line 13).

The X.writeT (v) operation. The algorithm implementing this operation is described at
lines 14-17 of Figure 3. If there is no local cell associated with X , pi allocates one (line
14) and adds X to lwsT (line 15). Then it locally writes v into lcell(X).value (line
16) and returns ok (line 17). Let us observe that no X.writeT () operation can entail the
abort of a transaction.

5.4 The try to commitT () Operation

The algorithm implementing this operation is described in Figure 3 (lines 18-34). A
process pi that invokes try to commitT () first locks all transaction-level shared objects
X that have been accessed by transaction T (line 18). The locking of shared objects is
done in a canonical order in order to prevent deadlocks.

Then, process pi computes the values that define the last commit window of T
(lines 19-20). The update of w topT is the same as described in the readT () opera-
tion. The update of w botT is as follows. For each register Y that T is about to write
in the shared memory (if T is not aborted before), pi computes the date of the last
read of Y , namely the date (PT [Y] ↓).last read. In order not to invalidate this read
(whose issuing transaction has been committed), pi updates w botT to max((PT [Y] ↓
).last read, w botT). If the commit window of T is empty, T is aborted (line 21). All
locks are then released and all local cells are freed.

If T ’s commit window is not empty, it can be safely committed. To that end pi

defines T ’s commit time as a finite value randomly chosen in the current window
]w botT ..w topT [(let us remind that the bounds are outside the window, line 22). This
time function is such that no two processes obtain the same time value.

Then, before committing, pi has to (a) apply the writes issued by T to the shared
objects and (b) update the “last read” dates associated with the shared objects it has
read.

a. First, for every shared object X ∈ lwsT , process pi updates (PT [X] ↓).overwrite
with T ’s commit date (line 23). When all these updates have been done, for every
shared object X ∈ lwsT , pi allocates a new shared memory cell CELL(X) and
fills in the four fields of CELL(X) (lines 25-28). Process pi also has to update the
pointer PT [X] to its new value (namely ↑ CELL(X)) (line 28).

b. For each register X that has been read by T , pi updates the field last read to
the maximum of its previous value and ct timeT (lines 30-32). (Actually, this
base version of the protocol remains correct when X ∈ lrsT is replaced by X ∈
(lrsT \ lwsT). As this improvement is no longer valid in the final version of the
try to commitT () algorithm described in Section 6, we do not consider it in this
base protocol.)

256 T. Crain, D. Imbs, and M. Raynal

Finally, after these updates of the shared memory, pi releases all its locks, frees the local
cells it had previously allocated (line 33) and returns the value commit (line 34).

On the random selection of commit points. It is important to notice that, choosing
randomly commit points (line 22, Figure 3), there might be “best/worst” commit points
for committed transactions, where “best point” means that it allows more concurrent
conflicting transactions to commit. Random selection of a commit point can be seen
as an inexpensive way to amortize the impact of “worst” commit points (inexpensive
because it eliminates the extra overhead of computing which point is the best).

Proof of the algorithm for VWC and read invisibility. Due to space limitations, the
proof is not included here. It can be found in [2].

Improving the base protocol described in Figure 3. The base protocol presented pre-
viously can be improved on the following three points: how the useless cells can be
collected, how read operations can be made fast and how serializability can be replaced
by linearizability. Due to space limitations, these improvements are not included here.
They can be found in [2].

6 Step 2: Adding Probabilistic Permissiveness to the Protocol

The final IR VWC P protocol ensures virtual world consistency, read invisibility and
probabilistic permissiveness. It is proved correct. Due to space limitations, this final
protocol is not presented here. It can be found in [2].

7 Conclusion

This paper has investigated the relation linking read invisibility, permissiveness and two
consistency conditions, namely, opacity and virtual world consistency. It has shown that
read invisibility, probabilistic permissiveness and virtual world consistency are compat-
ible. To that end an appropriate STM protocol has been designed and proved correct.
Interestingly enough, this new STM protocol has additional noteworthy features: (a) it
uses only base read/write operations and a lock per object that is used at commit time
only and (b) satisfies the disjoint access parallelism property.

Acknowledgements. This research is part of the TRANSFORM project, a Marie Curie
project funded by the European Community’s Seventh Framework Programme (grant
agreement n◦ 238639), devoted to the theory of software transactional memories. We
also thank Hagit Attiya and Sandeep Hans for their constructive comments on a draft
of this paper.

References

1. Bernstein, P.A., Shipman, D.W., Wong, W.S.: Formal Aspects of Serializability in Database
Concurrency Control. IEEE Transactions on Software Engineering SE-5(3), 203–216 (1979)

2. Crain, T., Imbs, D., Raynal, M.: Read Invisibility, Virtual World Consistency and Permis-
siveness are Compatible. Tech Report #1958, IRISA, Univ. de Rennes 1, France (November
2010)

Read Invisibility, Virtual World Consistency and Probabilistic Permissiveness 257

3. Dice, D., Shalev, O., Shavit, N.: Transactional locking II. In: Dolev, S. (ed.) DISC 2006.
LNCS, vol. 4167, pp. 194–208. Springer, Heidelberg (2006)

4. Felber, P., Fetzer, C., Guerraoui, R., Harris, T.: Transactions are coming Back, but Are They
The Same? ACM Sigact News, DC Column 39(1), 48–58 (2008)

5. Guerraoui, R., Henzinger, T.A., Singh, V.: Permissiveness in Transactional Memories. In:
Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 305–319. Springer, Heidelberg (2008)

6. Guerraoui, R., Kapałka, M.: On the Correctness of Transactional Memory. In: Proc. 13th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP
2008), pp. 175–184. ACM Press, New York (2008)

7. Harris, T., Cristal, A., Unsal, O.S., Ayguade, E., Gagliardi, F., Smith, B., Valero, M.: Trans-
actional Memory: an Overview. IEEE Micro 27(3), 8–29 (2007)

8. Herlihy, M.P., Luchangco, V.: Distributed Computing and the Multicore Revolution. ACM
SIGACT News, DC Column 39(1), 62–72 (2008)

9. Herlihy, M.P., Moss, J.E.B.: Transactional Memory: Architectural Support for Lock-free
Data Structures. In: Proc. 20th ACM Int’l Symposium on Computer Archictecture (ISCA
1993), pp. 289–300 (1993)

10. Herlihy, M.P., Wing, J.M.: Linearizability: a Correctness Condition for Concurrent Objects.
ACM Transactions on Programming Languages and Systems 12(3), 463–492 (1990)

11. Imbs, D., Raynal, M.: Provable STM Properties: Leveraging Clock and Locks to Favor Com-
mit and Early Abort. In: Garg, V., Wattenhofer, R., Kothapalli, K. (eds.) ICDCN 2009. LNCS,
vol. 5408, pp. 67–78. Springer, Heidelberg (2008)

12. Imbs, D., Raynal, M.: A versatile STM protocol with Invisible Read Operations that Satisfies
the Virtual World Consistency Condition. In: Kutten, S., Žerovnik, J. (eds.) SIROCCO 2009.
LNCS, vol. 5869, pp. 266–280. Springer, Heidelberg (2010)

13. Marathe, V.J., Spear, M.F., Heriot, C., Acharya, A., Eisentatt, D., Scherer III, W.N., Scott,
M.L.: Lowering the Overhead of Software Transactional Memory. In: Proc. 1st ACM SIG-
PLAN Workshop on Languages, Compilers and Hardware Support for Transactional Com-
puting, TRANSACT 2006 (2006)

14. Papadimitriou, C.H.: The Serializability of Concurrent Updates. Journal of the ACM 26(4),
631–653 (1979)

15. Shavit, N., Touitou, D.: Software Transactional Memory. Distributed Computing 10(2), 99–
116 (1997)

Parallel Implementations of Gusfield’s Cut Tree

Algorithm

Jaime Cohen1,2, Luiz A. Rodrigues1,3, Fabiano Silva1, Renato Carmo1,
André L.P. Guedes1, and Elias P. Duarte Jr.1

1 Federal University of Paraná, Department of Informatics
Curitiba, Brazil

2 Paraná State University at Ponta Grossa, Department of Informatics
Ponta Grossa, Brazil

3 Western Paraná State University, Department of Computer Science
Cascavel, Brazil

{jaime,larodrigues,fabiano,elias,renato,andre}@inf.ufpr.br

Abstract. This paper presents parallel versions of Gusfield’s cut tree al-
gorithm. Cut trees are a compact representation of the edge-connectivity
between every pair of vertices of an undirected graph. Cut trees have
many applications in combinatorial optimization and in the analysis of
networks originated in many applied fields. However, surprisingly few
works have been published on the practical performance of cut tree al-
gorithms. This paper describes two parallel versions of Gusfield’s cut
tree algorithm and presents extensive experimental results which show a
significant speedup on most real and synthetic graphs in our dataset.

Keywords: Graphedge-connectivity,Cut tree algorithms,MPI,OpenMP.

1 Introduction

A cut tree is an important combinatorial structure able to represent the edge-
connectivity between all pairs of nodes of undirected graphs. Cut trees have many
direct applications, e.g. [21,2,19,23], and algorithms for cut tree construction are
used as subroutines to solve other important combinatorial problems in areas
such as routing, graph partitioning and graph connectivity, e.g. [22,9,18,14].

Despite of the numerous applications of cut trees, few studies were done on
the practical performance of cut tree algorithms. Distributed or parallel imple-
mentations of cut tree algorithms are not available and experimental studies of
such implementations have not yet been published.

This paper describes two parallel versions of Gusfield’s cut tree algorithm and
presents experimental results that show a significant speedup on most real and
synthetic graphs in our dataset.

The sequential Gusfield’s algorithm consists of n− 1 calls to a maximum flow
algorithm and the parallel version optimistically makes those calls in parallel.
Even though the iterations may depend on previous ones, the experiments show
that this a priori assumption rarely affects the performance of the algorithm and

Y. Xiang et al. (Eds.): ICA3PP 2011, Part I, LNCS 7016, pp. 258–269, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Parallel Implementations of Gusfield’s Cut Tree Algorithm 259

a significant speedup can be achieved. The implementations were tested using
real and synthetic graphs representing potential applications.

This paper is organized as follows. In Section 2 we present an overview of
the previous research on cut trees. Section 3 gives basic graph theory definitions
including the definition of cut trees. Section 4 describes Gusfield’s algorithm in
its sequential and parallel versions. Section 5 defines the environment and the
parameters used in the experiments. The results are presented and discussed in
Section 6. Finally, in Section 7, we present the conclusions and future work.

2 Related Work

The concept of cut trees and a cut tree construction algorithm were first discov-
ered by R. E. Gomory and T. C. Hu in 1961 [13]. Another cut tree algorithm
was discovered by D. Gusfield in 1990 [15]. Let us call them GH algorithm and
Gus algorithm, respectively. Both algorithms require the computation of n − 1
minimum s-t-cuts (or, equivalently, maximum flows). We will discuss their dif-
ferences in Section 4. The fastest deterministic maximum flow algorithm, by A.
V. Goldberg and S. Rao [10], runs in time Õ(min{n 2

3 , m
1
2 }m). An extra O(n)

factor gives the worst case time complexity of the best deterministic algorithm
to find a cut tree of a weighted undirected graph.

The only published experimental study on cut tree algorithms is the paper
“Cut Tree Algorithms” by A. V. Goldberg and K. Tsioutsiouliklis [12]. They
compared the GH algorithm and Gus algorithm. They concluded that an opti-
mized version of the GH algorithm is more robust than Gus algorithm, justified
by the fact that at a few instances, Gus algorithm had a much worse running
time. We note, however, that most of those instances belong to synthetic classes
of graphs for which balanced cuts exist by construction. Despite of that, their
implementation of Gus algorithm was the fastest one more times than any of
their implementations of GH algorithm.

3 Definitions

A graph G is a pair (V (G), E(G)) where V (G) is a finite set of elements called
vertices and E(G) is a set of unordered pairs of vertices called edges. A capaci-
tated graph is a graph G associated with a function c : E(G)→ Z+ defining the
capacities of the edges in E(G).

Let G be a capacitated graph. A cut of G is a bipartition of V (G). The cut
induced by a set X ⊂ V (G) is the bipartition {X, X} of V (G) induced by X ,
where X = V (G) − X . The set EG(X, X) = {{u, v} ∈ E(G) : u ∈ X, v ∈ X}
contains the edges that cross the cut {X, X}. The capacity of the cut {X, X} is
c(X, X) =

∑
e∈EG(X,X) c(e).

Let s and t be two vertices of G. An s-t-cut of G is a cut {X, X} such that
s ∈ X and t ∈ X. A minimum s-t-cut is an s-t-cut of minimum capacity. A cut
{{s}, V − {s}} is called a trivial cut. The local connectivity between s and t in

260 J. Cohen et al.

V (G), denoted by λG(s, t), is the capacity of a minimum s-t-cut. Any maximum
flow algorithm for directed graphs can be used to compute the local connectivity
in undirected graphs using the reduction that transforms each undirected edge
into two antiparallel edges.

All Pairs Minimum Connectivity. Consider the problem of finding the local
connectivity between all pairs of vertices of an undirected graph. The naive
solution consists of running

(
n
2

)
maximum flow algorithms, one for each pair of

vertices. R. E. Gomory e T. C. Hu [13] showed that only n − 1 maximum flow
computations are necessary. The solution to the problem consists of constructing
a weighted tree that represents the values of all pairwise local connectivities.

A flow equivalent tree of a graph G is a capacitated tree T with vertex set
V (G) such that for all u, v ∈ V (G) the minimum capacity of an edge on the
path between u and v in T equals the local connectivity λG(u, v), i.e., λT (u, v) =
λG(u, v), for all u, v ∈ V (G).

A cut tree is a flow equivalent tree T such that the cut induced by removing
an edge of minimum weight from the path between u and v is a minimum u-v-cut
of G, for all u, v ∈ V (G). Cut trees are also called Gomory-Hu trees [20].

F

B D

C E

A

5

15

5

5

5
5

15

5

(a) Example of an
undirected weighted
graph and a minimum
A-F-cut

20

15 15A

B D

F

C E

20

15

(b) Cut tree

Fig. 1. Examples of an undirected graph, a minimum cut and a cut tree

Fig. 1(b) shows a cut tree of the graph of Fig. 1(a). Figure 1(a) shows a
minimum cut between vertices A and F induced by the removal of the edge
{C, D} from the tree.

4 Cut Tree Algorithms

Two cut tree algorithms for weighted undirected graphs are known: the Gomory-
Hu’s algorithm [13] and Gusfield’s algorithm [15]. Both algorithms make n− 1
calls to a maximum flow algorithm and they use a divide and conquer approach.
The algorithms differ in their data structure: while the former algorithm con-
tracts the original graph, the latter computes all cuts on the input graph. After
describing Gus algorithm and comparing it with GH algorithm, we discuss the
choice to parallelize Gus algorithm.

Parallel Implementations of Gusfield’s Cut Tree Algorithm 261

4.1 Gusfield’s Algorithm - Sequential Version

The sequential Gus algorithm consists of n−1 iterations, each of them containing
a call to a maximum flow algorithm on the input graph. See the pseudocode in
Algorithm 1. Initially, the tree is a star with all vertices pointing to node 1 (lines
1-2). At each iteration (lines 3-6), the algorithm chooses a different source vertex
s, s ≥ 2. This choice determines the destination vertex t as the current neighbor
of s in the tree. Then, using a maximum flow algorithm, a minimum s-t-cut is
found. The tree is reshaped as follows: every neighbor t′ of t, t′ > s, that sits on
the side of s of the cut gets disconnected from t and gets connected to s. The
algorithm ends when each node from 2 to n has been the source of an iteration.
The implementation of the algorithm is simple and requires no changes in the
maximum flow algorithm. This version of the algorithm finds a flow equivalent
tree. A small change in the algorithm causes it produce a cut tree: in line 8,
allow any neighbor of t that belongs to X to become a neighbor of s.

Algorithm 1. Sequential Gusfield’s Algorithm
Input: G = (VG, EG, c) is a weighted graph
Output: T = (VT , ET , f) is a flow equivalent tree of G
1: for i = 1 to |VG| do
2: treei ← 1

// |VG| − 1 maximum flow iterations
3: for s← 2 to |VG| do
4: t← trees

5: flows ← max-flow(s, t)

6: {X, X} ← minimum s-t-cut
// update the tree

7: for u ∈ VG, u > s do
8: if treeu = t and u ∈ X then
9: treeu ← s

// return the flow equivalent tree
10: VT ← VG

11: ET ← ∅
12: for s← 2 to |VG| do
13: ET ← ET ∪ {s, trees}
14: f({s, trees})← flows

15: return T = (VT , ET , f)

4.2 Parallelization of Cut Tree Algorithms

A parallel solution to the cut tree problem involves two choices: the algorithm
to implement (Gus or GH algorithm) and the level of parallelism to explore.

First, we will argue that Gus algorithm is a better choice for parallelization.
GH algorithm is similar to Gus algorithm but after finding a minimum s-t-cut,
it contracts each side of the cut and recurse on each of the graphs obtained.

The existence of balanced minimum cuts favors the GH algorithm because the
graph size is reduced at each iteration. Most real graphs and graphs generated by
random models such as Erdös-Rényi (ER) model and the preferential attachment
model rarely have balanced cuts. That means not only that the subproblems do

262 J. Cohen et al.

not get much smaller, but also that load balancing among processors does not
occur. Indeed, in our preliminary experiments with the sequential implementa-
tions used in [12], Gus algorithm outperformed GH algorithm on all large real
graphs in our dataset and all graphs generated by the ER model and the BA
model. This can only happen when balanced cuts are rare or nonexistent.

Gus algorithm always executes maximum flow algorithms on the same input
graph. Therefore, each process can simply start with a copy of the graph and no
further transmissions of the input graph are necessary. The interprocess commu-
nication only comprises of source and destination pairs, cuts and connectivity
values. On the other hand, a parallel GH algorithm would require more inter-
process communication because either the graphs or the contracted subsets of
vertices should be sent from the master to the slaves threads or processes.

For all these reasons, it seems that Gus algorithm is more amenable to par-
allelization than GH algorithm. Nonetheless, further research can be done to
explore possible ways to parallelize GH algorithm to produce a faster algorithm
for graphs that contain balanced cuts. A hybrid algorithm is another possibility.

With respect to the level of parallelism to explore, we note that the maximum
flow problem is hard to parallelize. Despite of extensive research on the prob-
lem, experimental studies of parallel max flow algorithms report very modest
speedups [3,16] due to the synchronization requirements. On the other hand,
Gus algorithm can run one sequential maximum flow per thread or process,
without synchronization, and achieve high speedups, as we will see in Section 6.

4.3 MPI Version

MPI has emerged in the early 1990s as a set of libraries for process management
and message exchange in distributed memory architectures [6]. The advantage
of this solution is scalability, because it uses independent computers that can be
easily connected through the network. However, in comparison with OpenMP,
MPI requires a larger reorganization of the code sequence to obtain the parallel
solution, usually based on the master/slave model.

The pseudocode of the MPI implementation appears in Algorithm 2. The mas-
ter process is proc0 and the slaves are proc1, .., procp−1. Each process maintains
a copy of the input graph. We assume that VG = {1, 2, 3, . . . , |VG|}. The master
creates the tasks and sends them to the slaves (lines 5, 15 and 18). Each task
contains the source and the destination nodes, s and t, inputs of the maximum
flow algorithm. When a slave finishes a task, it sends the value of the maximum
flow and the cut to the master. Based on these data, the master may update
the tree if s is still a neighbor of t (line 9). This is done in the same way as
the sequential algorithm. If s and t are not neighbors by the time of processing
the task result, then we say that the task “failed” and another task having s as
the source is produced (line 18). The stop condition of the while loop in line 7
guarantees that |VG| − 1 successful receives are executed.

The structure of the graph influences the number of failed tasks. If the s-t-cut
{X, X} is such that X is small, the tree suffers few changes. The speedup of the
parallel execution depends on the number of tasks that fails.

Parallel Implementations of Gusfield’s Cut Tree Algorithm 263

Algorithm 2. MPI Gusfield’s Algorithm
Input: G = (VG, EG, c), procj processors (0 ≤ j < P)
Output: T = (VT , ET , f) is a flow equivalent tree of G
1: if procj = 0 then // master process
2: for i← 1 to |VG| do
3: treei ← 1
4: for s← 2 to P do
5: send Task(s, trees) to procs−1

6: s← P + 1
7: while s < P + |VG| do

8: receive result s′, t′, flow, {X, X} from procj

9: if trees′ = t′ then // update the tree
10: flows′ = flow
11: for all u ∈ VG, u > s′ do
12: if treeu = t′ and u ∈ X then
13: treeu ← s′
14: if s ≤ |VG| then
15: send a new Task(s, trees) to procj

16: s← s + 1
17: else // failed, try again
18: send Task(s′, trees′) to procj

// Build T as in lines 10-14 of the sequential algorithm
19: return T
20: else // slave processes
21: while more tasks do
22: receive Task(s, t)

23: flow, {X, X} ← MaxFlow(s, t)

24: send s, t, flow, {X, X} to proc0

4.4 OpenMP Version

OpenMP is an API (Application Programming Interface) designed for parallel
programming on shared memory architectures (SMP). This API offers policies
that can be added to code sequences in Fortran, C and C++ which define how
work is shared among threads to be executed on different processors/cores and
how data on shared memory is accessed [6].

The adaptation of Gusfield’s algorithm to OpenMP was done by the paral-
lelization of the main loop which performs the n− 1 calls to the maximum flow
routine. See Algorithm 3. Let k be a predefined maximum number of threads.
The algorithm uses an optimistic strategy and finds k minimum s-t-cuts in par-
allel. Each of these cuts is a candidate for changing the tree. After computing
its s-t-cut, each thread verifies if the destination t is still a neighbor of s in the
tree. If it is not, meaning that the cut of a previous successful thread separated
s from t, then we say that the thread “failed” and another s-t-cut is computed
in order to separate s from its new neighbor. If the thread succeeds in sepa-
rating s from t, it proceeds to update the tree. The test and the operations on
the tree are done inside a critical region, what guarantees the correctness of the
algorithm.

264 J. Cohen et al.

Algorithm 3. OpenMP Gusfield’s Algorithm
Input: G = (VG, EG, c), P the number of processors
Output: T = (VT , ET , f) is a flow equivalent tree of G
1: for i← 1 to |VG| do
2: treei ← 1

// |VG|−1 maximum flow iterations
3: for s← 2 to |VG| in parallel do
4: procj is an idle process
5: succeed← false
6: repeat
7: t← trees

8: procj executes flow, {X, X} ← MaxFlow(s, t)
// omp critical region

9: if trees = t then
10: procj updates the tree
11: succeed← true
12: until succeed

// Build T as in lines 10-14 of the sequential algorithm
13: return T

5 Experimental Setup

The experiments with MPI ran on a cluster with 15 Intel Core 2 Quad 2.4 GHz, 2
Gbyte memory and 4096 Kbyte cache, interconnected by a Gigabit Ethernet net-
work. The experiments with OpenMP used a Quad-Core 2.8 GHz AMD Opteron
workstation with 8 cores, 8 Gbyte memory and 512 Kbyte cache. The code was
written in C language and compiled with gcc (optimization level -O3). Our im-
plementations are based on the push-relabel maximum flow algorithm [11] code
HIPR1, developed by B.V. Cherkassky and A.V. Goldberg [8]. We implemented
the flow equivalent tree version of Gus algorithm.

The dataset was composed of 10 graphs as shown in Table 1. The first four
graphs come from real data: 2 collaboration networks [17,4], a power grid network
[24] and a peer-to-peer network [17]. Two networks were generated by random
models: the Erdös-Rényi (ER) model [5] and the preferential attachment model
[1]. The other 4 graphs are synthetic graphs of different types that have been
used as benchmarks for min cut and cut tree algorithms [7,12].

Table 1. Sizes of the graphs in the dataset

Graph |V | |E|
CA-HepPh 11,204 235,238
GeoComp 3,621 9,461
PowerGrid 4,941 6,594
P2P-Gnutella 10,876 39,994
BA 10,000 49,995

Graph |V | |E|
ER 10,000 49,841
Dblcyc 1,024 2,048
NOI 1,500 562,125
Path 2,000 21,990
Tree 1,500 563,625

1 Owned by IG Systems, Inc. Copyright 1995-2004. Freely available for research pur-
poses.

Parallel Implementations of Gusfield’s Cut Tree Algorithm 265

Speedups were calculated as S = TS/TP , where TS is the time of the sequential
implementation of Gusfield’s algorithm and TP is the execution time in parallel
on P processes. The efficiency was calculated using E = S/P .

6 Experimental Results

Initial tests were performed in order to define the best scheduling strategies for
the tasks. For MPI, the best results were achieved running the master process
and one slave in one machine and the other slaves in individual machines. For
OpenMP, the loop scheduling with best performance was the OpenMP dynamic
scheduling that distributes tasks during runtime in order to balance the load.
All further experiments used these strategies.

Results with MPI. Let P be the number of processes. For P = 2, the algorithm
runs the master and 1 slave process. Because the slave waits for a task, the
execution is sequential and, therefore, S2 ≤ 1 and E2 ≤ 0.50. For P > 2, at
least one of the P − 1 slaves waits while the master tries to update the tree. Let
us approximate the sequential time by Ts = TF + TT , where TF is the time to
compute |V | − 1 maximum flows and TT is the time to update the tree. A lower
bound on the parallel time can be computed by assuming the best case where
the maximum flow work is divided evenly by the P − 1 slave processes. Each
slave takes TF

P−1 time to compute maximum flows and waits idle approximately
TT

P−1 time for new tasks. Therefore, the parallel running time with P processes is
bounded by TP ≥ TF +TT

P−1 . The speedup can be upper bounded by P −1, because

SP =
Ts

TP
≤ TF + TT

TF +TT

P−1

= P − 1.

An upper bound for the efficiency is EP = SP

P ≤ P−1
P .

2 4 6 8 10 12 14 16

0
5

10
15

MPI

núm. de processos

sp
ee

du
p

Graphs

CA−HepPh
Geocomp
Powergrid
P2P−Gnutella
BA
ER
DBLCYC
NOI
PATH
TREE

1 2 3 4 5 6 7 8

0
1

2
3

4
5

6
7

OpenMP

núm. de threads

sp
ee

du
p

Graphs

CA−HepPh
Geocomp
Powergrid
P2P−Gnutella
BA
ER
DBLCYC
NOI
PATH
TREE

Fig. 2. Speedups with MPI e OpenMP

266 J. Cohen et al.

Table 2. MPI results with the running times, speedups (S) and efficiency (E) of each
graph in the dataset

Num CA-HepPh Geocomp Powergrid P2P-Gnutella BA
procs time S E time S E time S E time S E time S E

sequential 475.01 - - 2.25 - - 3.85 - - 65.23 - - 87.71 - -
2 479.93 0.99 0.49 6.45 0.35 0.17 12.31 0.31 0.16 73.24 0.89 0.45 95.49 0.92 0.46
3 283.42 1.68 0.56 2.37 0.95 0.32 4.01 0.96 0.32 36.25 1.80 0.60 47.58 1.84 0.61
4 201.56 2.36 0.59 1.53 1.47 0.37 2.57 1.50 0.37 24.88 2.62 0.66 31.94 2.75 0.69
5 157.89 3.01 0.60 1.17 1.93 0.39 2.04 1.89 0.38 19.01 3.43 0.69 24.04 3.65 0.73
6 143.35 3.31 0.55 0.97 2.32 0.39 1.69 2.27 0.38 16.94 3.85 0.64 21.66 4.05 0.67
7 117.33 4.05 0.58 0.84 2.69 0.38 1.39 2.77 0.40 13.92 4.69 0.67 18.07 4.85 0.69
8 99.64 4.77 0.60 0.79 2.84 0.35 1.24 3.10 0.39 11.73 5.56 0.69 14.42 6.08 0.76
9 87.25 5.44 0.60 0.77 2.94 0.33 1.30 2.96 0.33 10.52 6.20 0.69 12.77 6.87 0.76
10 76.84 6.18 0.62 0.77 2.91 0.29 1.19 3.24 0.32 9.24 7.06 0.71 11.16 7.86 0.79
11 69.05 6.88 0.63 0.69 3.27 0.30 1.01 3.80 0.35 8.25 7.91 0.72 9.87 8.89 0.81
12 63.01 7.54 0.63 0.65 3.48 0.29 1.04 3.69 0.31 7.47 8.73 0.73 8.98 9.77 0.81
13 57.54 8.26 0.64 0.61 3.69 0.28 1.03 3.75 0.29 6.97 9.36 0.72 8.06 10.89 0.84
14 53.50 8.88 0.63 0.57 3.97 0.28 0.99 3.87 0.28 6.27 10.41 0.74 7.41 11.83 0.85
15 49.06 9.68 0.65 0.54 4.14 0.28 0.82 4.70 0.31 5.78 11.29 0.75 6.94 12.63 0.84
16 46.52 10.21 0.64 0.58 3.88 0.24 0.82 4.67 0.29 5.41 12.06 0.75 6.45 13.60 0.85

Num DBLCYC ER NOI PATH TREE
procs time S E time S E time S E time S E time S E

sequential 11.13 - - 104.23 - - 384.84 - - 5.42 - - 236.78 - -
2 13.83 0.81 0.40 109.90 0.95 0.47 385.61 1.00 0.50 7.52 0.72 0.36 237.10 1.00 0.50
3 6.88 1.62 0.54 52.40 1.99 0.66 194.59 1.98 0.66 3.32 1.63 0.54 117.89 2.01 0.67
4 4.66 2.39 0.60 34.82 2.99 0.75 130.75 2.94 0.74 2.22 2.44 0.61 78.53 3.02 0.75
5 3.65 3.05 0.61 26.17 3.98 0.80 99.07 3.88 0.78 1.67 3.25 0.65 58.90 4.02 0.80
6 2.98 3.74 0.62 23.70 4.40 0.73 90.11 4.27 0.71 1.35 4.00 0.67 53.11 4.46 0.74
7 2.52 4.41 0.63 19.30 5.40 0.77 74.08 5.20 0.74 1.16 4.69 0.67 43.45 5.45 0.78
8 2.21 5.04 0.63 16.27 6.40 0.80 63.36 6.07 0.76 0.98 5.54 0.69 36.59 6.47 0.81
9 2.06 5.39 0.60 14.49 7.19 0.80 55.65 6.92 0.77 1.01 5.39 0.60 31.79 7.45 0.83
10 1.84 6.05 0.60 12.75 8.17 0.82 49.59 7.76 0.78 0.89 6.06 0.61 28.07 8.43 0.84
11 1.70 6.55 0.60 11.42 9.13 0.83 44.70 8.61 0.78 0.79 6.86 0.62 25.16 9.41 0.86
12 1.58 7.06 0.59 10.43 10.00 0.83 41.38 9.30 0.77 0.74 7.33 0.61 22.94 10.32 0.86
13 1.44 7.75 0.60 9.53 10.93 0.84 37.81 10.18 0.78 0.67 8.04 0.62 20.91 11.32 0.87
14 1.33 8.38 0.60 8.80 11.84 0.85 35.21 10.93 0.78 0.69 7.81 0.56 19.20 12.33 0.88
15 1.27 8.76 0.58 8.07 12.92 0.86 33.10 11.63 0.78 0.59 9.14 0.61 17.83 13.28 0.89
16 1.19 9.34 0.58 7.63 13.66 0.85 30.37 12.67 0.79 0.56 9.73 0.61 16.50 14.35 0.90

Results of the MPI implementation appear in Table 2 and in Fig. 2. The
running times are the average of 10 runs. Efficiencies for the instances TREE
and ER achieve the upper bound P−1

P for P between 2 and 5 and they are not
far from the maximum for greater values of P .

The speedups are consistently high for all graphs but Powergrid and Geo-

comp which are the easiest instances for the sequential algorithm. The efficiency
drops as the number of fails increases as shown in Fig. 3.

Results with OpenMP. Results for the parallel Gusfield’s algorithm with
OpenMP on a 8-core computer are reported in Table 3 and in Fig. 2. Efficiency
was above 0.50 on most executions.

The best speedup obtained with OpenMP and 8 threads in real graphs was
4.48 and in synthetic graphs was 6.01. The worst speedup in real and synthetic
graphs for 8 threads were 3.18 and 3.73, respectively. We report other posi-
tive results on a 16-core computer where the implementation achieved the best
speedup of 9.4 running 16 threads on the NOI5 graph. An experiment on an ER

Parallel Implementations of Gusfield’s Cut Tree Algorithm 267

Table 3. OpenMP results with the running times, speedups (S) and efficiency (E) of
each graph in the dataset

Num CA-HepPh Geocomp Powergrid P2P-Gnutella BA
threads time S E time S E time S E time S E time S E

1 517.07 - - 2.10 - - 3.03 - - 65.79 - - 87.66 - -
2 314.32 1.65 0.82 1.29 1.63 0.82 1.94 1.56 0.78 44.10 1.49 0.75 44.94 1.95 0.98
3 233.42 2.22 0.74 0.97 2.17 0.72 1.47 2.06 0.69 30.87 2.13 0.71 36.24 2.42 0.81
4 190.77 2.71 0.68 0.80 2.64 0.66 1.20 2.53 0.63 26.31 2.50 0.63 29.71 2.95 0.74
5 173.56 2.98 0.60 0.66 3.19 0.64 1.01 3.00 0.60 21.00 3.13 0.63 27.29 3.21 0.64
6 164.59 3.14 0.52 0.58 3.60 0.60 0.88 3.42 0.57 19.96 3.30 0.55 24.35 3.60 0.60
7 160.22 3.23 0.46 0.52 4.05 0.58 0.82 3.72 0.53 17.93 3.67 0.52 24.08 3.64 0.52
8 162.48 3.18 0.40 0.47 4.48 0.56 0.76 4.01 0.50 18.44 3.57 0.45 23.50 3.73 0.47

Num DBLCYC ER NOI PATH TREE
threads time S E time S E time S E time S E time S E

1 10.12 - - 115.16 - - 585.37 - - 5.60 - - 315.09 - -
2 11.09 0.91 0.46 57.71 2.00 1.00 352.84 1.66 0.83 3.08 1.82 0.91 170.51 1.85 0.92
3 7.83 1.29 0.43 47.71 2.41 0.80 232.72 2.52 0.84 2.16 2.59 0.86 113.66 2.77 0.92
4 4.63 2.18 0.55 38.69 2.98 0.74 166.95 3.51 0.88 1.65 3.39 0.85 92.18 3.42 0.85
5 3.31 3.06 0.61 32.70 3.52 0.70 146.06 4.01 0.80 1.33 4.19 0.84 77.23 4.08 0.82
6 2.77 3.66 0.61 31.96 3.60 0.60 127.23 4.60 0.77 1.17 4.78 0.80 71.38 4.41 0.74
7 2.29 4.43 0.63 27.19 4.23 0.60 129.23 4.53 0.65 1.01 5.52 0.79 69.02 4.57 0.65
8 2.14 4.72 0.59 26.23 4.39 0.55 113.44 5.16 0.65 0.93 6.01 0.75 66.93 4.71 0.59

2
4

6
8

10
12

Multithreaded Gusfield Algorithm (powergrid)

of processors

ru
nn

in
g

tim
e

(s
ec

.)

0.3 1 1.5 1.9 2.3 2.8 3.1 2.9 3.2 3.8 3.7 3.7 3.9 4.7 4.7
speedups

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0

288.3

576.6

864.8

1153.1

1441.4

1729.7

2018

2306.2

2594.5

2882.8

lo
op

 fa
ils

running time
loop fails

(a) Powergrid

1
2

3
4

5
6

Multithreaded Gusfield Algorithm (geocomp2)

of processors

ru
nn

in
g

tim
e

(s
ec

.)

0.3 0.9 1.5 1.9 2.3 2.7 2.8 2.9 2.9 3.3 3.5 3.7 4 4.1 3.9
speedups

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0

162.2

324.4

486.6

648.8

811

973.2

1135.4

1297.6

1459.8

1622

lo
op

 fa
ils

running time
loop fails

(b) Geocomp

Fig. 3. Some graphs with results of the MPI executions. Dots represent real time.
Triangles represent the number of loop fails. The speedups appear on the top margin
of each graph.

graph with 3000 nodes and average degree 5, achieved 9.2 of speedup running
10 threads with 0.92 of parallel efficiency.

The OpenMP implementation is not as scalable as the MPI implementation
because on the multi-core computers loop fails are not the only factor affecting
performance and memory access becomes a bottleneck as the number of threads
increases. Also, since each thread requires its own copy of the graph, memory

268 J. Cohen et al.

usage increases. Our implementation with OpenMP scales well up to 10 to 16
threads depending on the instance.

7 Conclusion

Cut trees are a widely used combinatorial structure. Two sequential cut tree al-
gorithms are known, but no parallel implementation of them has been reported in
the past. This paper presents results of parallel implementations of Gusfield’s cut
tree algorithm using OpenMP and MPI. The results show that parallel versions
of the algorithm can achieve high speedups. The parallel solution is relatively
simple, requiring few changes in the original code, particularly with OpenMP.
While OpenMP allows a greater control over the running threads, MPI provides
more scalability. The implementations are complementary as they can explore
the benefits of multi-core machines and computer clusters.

Future work includes a formal analysis of the running times and the scalability
of the solutions and an experimental comparison of Gusfield’s Algorithm with
Gomory-Hu’s Algorithm. Heuristics to improve efficiencies and the scalability of
the solutions can be explored.

Acknowledgments. This work was partially supported by FINEP through
project CT-INFRA/UFPR. Jaime Cohen was on a paid leave of absence from
UEPG to conclude his Ph.D. and was supported by a Fundação Araucária/SETI
fellowship under Order No. 16/2008. Luiz A. Rodrigues was also supported by
Fundação Araucária/SETI, project 19836. This work was partially supported by
grants 304013/2009-9 and 308692/2008-0 from the Brazilian Research Agency
(CNPq).

References

1. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod.
Phys. 74(1), 47–97 (2002)

2. Backstrom, L., Dwork, C., Kleinberg, J.: Wherefore art thou r3579x?: anonymized
social networks, hidden patterns, and structural steganography. In: Proceedings of
the 16th int’l conference on World Wide Web. WWW 2007. ACM, NY (2007)

3. Bader, D.A., Sachdeva, V.: A cache-aware parallel implementation of the push-
relabel network flow algorithm and experimental evaluation of the gap relabeling
heuristic. In: ISCA PDCS (2005)

4. Batagelj, V., Mrvar, A.: Pajek datasets (2006),
http://vlado.fmf.uni-lj.si/pub/networks/data/

5. Bollobás, B.: Random Graphs, 2nd edn. Cambridge University Press, Cambridge
(2001)

6. Chapman, B., Jost, G., Van der Pas, R.: Using OpenMP: portable shared memory
parallel programming. MIT Press, Cambridge (2008)

7. Chekuri, C.S., Goldberg, A.V., Karger, D.R., Levine, M.S., Stein, C.: Experimental
study of minimum cut algorithms. In: SODA ’97: Proceedings of the eighth annual
ACM-SIAM symposium on Discrete algorithms. pp. 324–333. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA (1997)

http://vlado.fmf.uni-lj.si/pub/networks/data/

Parallel Implementations of Gusfield’s Cut Tree Algorithm 269

8. Cherkassky, B.V., Goldberg, A.V.: On Implementing the Push-Relabel Method for
the Maximum Flow Problem. Algorithmica 19(4), 390–410 (1997)

9. Flake, G.W., Tarjan, R.E., Tsioutsiouliklis, K.: Graph clustering and minimum cut
trees. Internet Mathematics 1(4) (2003)

10. Goldberg, A.V., Rao, S.: Beyond the flow decomposition barrier. J. ACM 45, 783–
797 (1998)

11. Goldberg, A.V., Tarjan, R.E.: A new approach to the maximum-flow problem. J.
ACM 35, 921–940 (1988)

12. Goldberg, A.V., Tsioutsiouliklis, K.: Cut tree algorithms. In: SODA 1999: Proceed-
ings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms. Society
for Industrial and Applied Mathematics, USA (1999)

13. Gomory, R.E., Hu, T.C.: Multi-terminal network flows. Journal of the Society for
Industrial and Applied Mathematics 9(4), 551–570 (1961)

14. Görke, R., Hartmann, T., Wagner, D.: Dynamic Graph Clustering Using Minimum-
Cut Trees. In: Dehne, F., Gavrilova, M., Sack, J.R., Tóth, C. (eds.) WADS 2009.
LNCS, vol. 5664, pp. 339–350. Springer, Heidelberg (2009)

15. Gusfield, D.: Very simple methods for all pairs network flow analysis. SIAM J.
Comput. 19, 143–155 (1990)

16. Hong, B., He, Z.: An asynchronous multi-threaded algorithm for the maximum
network flow problem with non-blocking global relabeling heuristic. IEEE Trans-
actions on Parallel and Distributed Systems 99 (2010)

17. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: Densification and
shrinking diameters. In: ACM Trans. on Knowledge Discovery from Data, ACM
TKDD (2007)

18. Letchford, A., Reinelt, G., Theis, D.: Odd minimum cut-sets and b-matchings
revisited. SIAM Journal on Discrete Mathematics 22(4) (2008)

19. Mitrofanova, A., Farach-Colton, M., Mishra, B.: Efficient and robust prediction al-
gorithms for protein complexes using gomory-hu trees. In: Altman, R.B., Dunker,
A.K., Hunter, L., Murray, T., Klein, T.E. (eds.) Pacific Symposium on Biocom-
puting, pp. 215–226 (2009)

20. Nagamochi, H., Ibaraki, T.: Algorithmic Aspects of Graph Connectivity. Cam-
bridge University Press, New York (2008)

21. Rao, G., Stone, H., Hu, T.: Assignment of tasks in a distributed processor system
with limited memory. IEEE Transactions on Computers 28, 291–299 (1979)

22. Saran, H., Vazirani, V.V.: Finding k cuts within twice the optimal. SIAM J. Com-
put. 24(1), 101–108 (1995)

23. Tuncbag, N., Salman, F.S., Keskin, O., Gursoy, A.: Analysis and network rep-
resentation of hotspots in protein interfaces using minimum cut trees. Proteins:
Structure, Function, and Bioinformatics 78(10), 2283–2294 (2010)

24. Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Na-
ture 393(6684), 440–442 (1998)

Y. Xiang et al. (Eds.): ICA3PP 2011, Part I, LNCS 7016, pp. 270–281, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Efficient Parallel Implementations of Controlled
Optimization of Traffic Phases

Sameh Samra1, Ahmed El-Mahdy1,*, Walid Gomaa1,*,
Yasutaka Wada2, and Amin Shoukry1,*

1 Egypt-Japan University of Science and Technology (E-JUST), Egypt
2 Faculty of Science and Engineering, Waseda University, Japan

Abstract. Finding optimal phase durations for a controlled intersection is a
computationally intensive task requiring O(N3) operations. In this paper we
introduce cost-optimal parallelization of a dynamic programming algorithm that
reduces the complexity to O(N2). Three implementations that span a wide range
of parallel hardware are developed. The first is based on shared-memory
architecture, using the OpenMP programming model. The second
implementation is based on message passing, targeting massively parallel
machines including high performance clusters, and supercomputers. The third
implementation is based on the data parallel programming model mapped on
Graphics Processing Units (GPUs). Key optimizations include loop reversal,
communication pruning, load-balancing, and efficient thread to processors
assignment. Experiments have been conducted on 8-core server, IBM
BlueGene/L supercomputer 2-node boards with 128 processors, and GPU
GTX470 GeForce Nvidia with 448 cores. Results indicate practical scalability
on all platforms, with maximum speed up reaching 76x for the GTX470.

Keywords: parallel processing, high performance computation, traffic phases.

1 Introduction

Traffic control requires real-time adjustment of the traffic signal [1,2] in order to
ensure smooth and safe passage of vehicles. It is a key application in modern cities
and has a strong effect on the quality of life and economy of these cities. However,
optimal traffic control is computationally intractable, NP-hard problem, generally
requiring an exponential order of computational steps. Moreover, traffic control
requires real-time response, as it controls live traffic flows.

This paper focuses on the control of a single traffic intersection, as well as many
independent intersections. This problem asks for obtaining an optimal sequence of
green durations for every possible traffic flow (phase) across the intersection. It is
essentially a sequential decision making problem that requires solution paradigms
such as dynamic programming.

* Currently on-leave from Alexandria University.

 Efficient Parallel Implementations of Controlled Optimization of Traffic Phases 271

With the increasing trend in utilizing multicore in today’s processors, a tremendous
increase in processing power have become possible at the expense of a substantial
change in the programming model. Harnessing this processing power requires
devising explicitly parallel algorithms that match the characteristics of these
processors.

In this paper, we study the utility of modern parallel architectures for the single
traffic intersection problem. A parallel algorithm is developed based on a sound serial
algorithm (developed by Sen and Head [3]). The serial algorithm is based on dynamic
programming, and has time complexity of O(N3) for one intersection, where N is the
net number of discrete time steps that represent the temporal window over which the
global decision making problem is solved. Our parallel algorithm is cost-optimal
achieving a time complexity of O(N3/p), where p is the number of processors. The
paper investigates the implementation of the algorithm on a variety of platforms that
include a multicore server (8-core), a GPU (448-core), and the IBM BlueGene/L
supercomputer (2-node boards, 128 processors). The study identifies the scalability
and the minimum problem size for a given platform, aiding in possible design and
implementation of future traffic control systems on a variety of platforms.

More specifically the paper has the following contributions:

• A parallel cost-optimal control algorithm for a single intersection based on Sen and
Head’s algorithm [3] with:

o A corresponding a shared-memory (OpenMP) implementation.
o A Message-passing (MPI) implementation that incorporates loop reversal,

communication messages pruning, and load-balancing optimizations.
o A Data-parallel (CUDA) implementation that incorporates loop reversal,

efficient use of caches, and efficient assignment of threads to hide latency,
and utilize GPU parallelism.

• Experimental performance evaluation of the above implementations on different
parallel platforms.

The paper is organized as follows: Section 2 briefly reviews related work. Section 3
provides background and definition of the intersection control problem including the
serial intersection algorithm. Section 4 introduces our parallel algorithm and develops
its the time complexity. Sections 5 and 6 explain our message passing and data
parallel implementations, respectively; each section provides necessary background
on the programming model, and the implementation algorithm. Section7 provides the
experimental setup and results. Section 8 concludes the paper.

2 Related Work

In the following, a brief literature survey about parallelization of dynamic
programming and the traffic control problem is given.

GPUs have been used to accelerate the execution of an instance of dynamic
programming called the Smith-Waterman algorithm [4]. In [5, 6, 7] the authors give
different parallel implementations of this algorithm on GPUs.

272 S. Samra et al.

Heunget et al. [8] give a dynamic programming based algorithm for traffic control.
Their approach is decentralized and based on installing local controllers at the
junctions of traffic lights. These controllers are physically and functionally
independent employing fuzzy logic and genetic algorithms to handle the local control
and the learning process, respectively. Coordination is introduced among the local
controllers to derive optimal green time decisions using a global dynamic
programming algorithm. The algorithm is a conventional serial CPU based
implementation. A parallel solution of the traffic control problem is given in [9]. The
authors employ a game-theoretic approach of a fictitious play to iteratively find
coordinated traffic split plan.

The work done in [10] views the traffic control problem as an online optimization
problem that is characterized both as nonlinear and non-convex. The authors
reformulate the problem as a mixed-integer linear programming MILP (an LP
mathematical program where some of the variables have to be integers). MILP solvers
have already been around in the literature. Though, the authors propose an approach
(non-parallel) to reduce the complexity of the MILP optimization problem in order to
increase the real-time feasibility of the optimization problem.

The serial dynamic algorithm we utilize is serial polyadic dynamic programming
algorithm; though computations happen in regular epochs, the communication pattern
is variable and different than existing solutions in the literature.

3 Serial Intersection Algorithm

Algorithm 1 presents the serial algorithm Controlled Optimization of Traffic Phases
(COP) for traffic control given in [3]. First, the basic conventions and notions are
given, followed by the algorithm itself. Let r be a constant integer denoting the
effective clearance is the amount of time necessary to make a safe phase transition.
Let γ be a constant integer denoting the minimum green time. The control/decision
variable xj denotes the amount of green time allocated for stage (phase) j. The state
variable sj represents the total number of discrete time steps that have been allocated
so far after stage j has been completed. The space of all feasible control decisions at
state sj is denoted Xj(sj). The value function and the performance measure at stage j
are v(sj) and f(sj,xj) respectively. T denotes the total number of discrete time steps (the
temporal window over which the decision making problem is solved). This parameter
plays an essential role in the parallel version of the algorithm as will be seen later.

1 procedure COP(T,r,γ)
2 begin
3 Initialize j:= 1, s0:= x0:= v(s0) = 0;
4 for sj = r to T do // running over all possible values of the state variable at stage j
5 begin
6 If sj– r <γ then// the case where the allocated green time is less than the min. threshold (γ)
7 Xj(sj) := {0}; // in such case no green time should be allocated for phase j
8 else
9 Xj(sj) = {0,γ ,γ + 1, … , sj- r};// otherwise, these are the feasible values for green time at
state sj

 Efficient Parallel Implementations of Controlled Optimization of Traffic Phases 273

10 For each xj ∈ Xj(sj) do // choose the best value for the decision variable (green time)
according to the value fn
11 begin
12 If xj == 0 then
13 sj-1:= sj; // phase j is allocated zero time
14 else
15 sj-1:= sj – xj – r;
 // forward recursion, clearly sj = sj-1 + xj + r (for the current suggested value of xj)
16 νj

’(sj,xj):= fj(sj,xj) •vj-1(sj-1); // evaluating the value fn at the particular state sj with the
control variable set to xj

17 end// end for xj
18 xj

*:= argminxjvj
’(sj,xj);// computing the optimal value of the control variable at state sj

19 vj(sj) := vj
’(sj,xj

*);// computing the optimal value fn at state sj given the optimal value of the
control var xj*

20 end // end for sj

21 j:= j + 1; // next stage
22 Repeat the above loop (line 4) until the stopping criterion is satisfied
23 end// end procedure COP

Algorithm 1. Serial Algorithm

Fig. 1. Task Dependence Graph (T=8, γ=4, r=1)

The stopping criterion in line 22 is reached when no change occurs in the value
function for the last ρ stages, where ρ is the total number of phases for the given
intersection. In such a case, no further phase change would incur any difference in the
value function; hence the optimization process is stopped.

The time complexity of calculating the value function in line 16 depends on the
particular choice of the performance measure fj(sj,xj) and the particular
implementation, especially considering the time/space trade-off (for example,
whether or not to use a lookup table to store old values instead of re-computing them).

Let N be the total number of processed time steps per stage (N=T-r+1) and assume
line 16 takes O(m) steps, where m is a function of N that depends on the particular
choice of the performance measure. Then the time complexity of computing each

274 S. Samra et al.

stage j is O(mN2). To compute the complexity of the whole algorithm we need to
compute the maximum possible number of stages. Based on the stopping criterion
mentioned in the previous paragraph and the worst-case scenario that each phase with
non-zero duration takes only 1 time step (γ=1), and assuming zero clearance interval
(r=0), we can have at most ρ N stages. ρ is a constant, hence the total number of
stages is O(N) and the whole algorithm takes O(mN3) computation steps. In our
implementations, we consider the cost function to be the cars queue length as defined
in the COP algorithm [3]. Computing this cost function is O(1), thus the overall
complexity is O(N3).

Fig. 1 shows the task dependence graph of a stage of the serial algorithm described
in the previous section. The figure assumes r=1, T=8, and γ=4. The top row lists the
obtained v(sj) values from the first iteration (j=1). Obtaining these values only depend
on the initial conditions. The middle line shows the required computations v’(s2,x2).
For T higher than 8, the graph can be easily extended to the right to v(T) by:

1) Extending the first row from v(8) to v(T).
2) Extending the second row with T-8 new clusters of v(sj,xj) such that each

cluster corresponds to an sj with entries (sj,0), (sj,γ), (sj,γ+1) ,..., (sj,sj-r).
3) Connect a directed edge from v(sj) to each new v(sj,xj), where lj= sj-r-γ for

sj>r+γ, and lj = 0, otherwise.
4) Similarly, extend the last row from v(8) to v(T).

The v(sj) values are obtained as a reduction operation on the v’j(sj) values. For higher
values of j, the graph would simply require repeating the j=2 portion of the
dependence graph.

4 Shared Memory Parallel Intersection Control Algorithm

Our parallel formulation of the algorithm is to assign processor pj to state sj for j = 1,
... , N. Each processor is, therefore, responsible for computing the v’j(sj,xj) value as
well as the corresponding optimal parameters xj

* and vj(sj). The execution time
complexity for each stage would be O(mN) giving a total parallel time complexity of
O(mN2), which when multiplied with the number of processors N would give the
serial time complexity O(mN3). It is worth noting that an execution time of O(mN log
N) can be achieved using N2 processors. This can be done by requiring each processor
to compute exactly one v’j(sj,xj) value, and this can be done in O(m) time. Then
computing their minimum, that is the vj(sj) value, by arranging the processors into a
balanced binary tree, where at level i of the tree a total of N2/2i different partial
minimum values are computed. The depth of the tree is O(log N), and an upper bound
of computation cost O(N) is needed at each level of the tree. Hence, a total of O(mN
log N) is achieved. However, such algorithm is not cost optimal, since in such a case
the product of the parallel complexity O(mN log N) with the number of processors N2,
giving O(mN3 log N), is not equal to the serial complexity of O(N3). The degree of
parallelism in the problem exceeds the number of cores in commodity1. It is also

1 In the GPU case, more thread is favoured, but the control-flow may not be suitable for data-

parallel nature of the GPU.

 Efficient Parallel Implementations of Controlled Optimization of Traffic Phases 275

worth noting that the latter algorithm will be useful when computing several
intersections in a pipelined fashion.

The shared memory implementation is done by parallelizing the loop at lines 4-20
(Algorithm 1). v(), x*, are designated as shared variables.

5 Message Passing Implementation

The message-passing programming model has the advantage of allowing more
scalability than the shared-memory programming model. This is due to the fact that
shared memory architectures are economically more expensive in addition to the
overhead of memory coherence. On the other hand, message passing programming is
much more complex.

Since the degree of parallelism in the COP algorithm is quite large, and to allow
for scalability studies, we designed the parallel version such that the actual number of
processors can be smaller than the theoretical number of processors identified in our
main parallel formulation. This has introduced the problem of mapping many logical
processors into one physical processor. It is worth noting that simulating parallel
execution of the logical processors lead to very poor results due to the fact of
sending/receiving many unnecessary messages. The communication pattern can
negatively affect the performance by having the processors remaining in idle state for
long periods of time. This case will be discussed after presenting the algorithm.

Fig. 2. Processor Assignment Effect on the Task Dependence Graph (T=8,γ=4,r=1)

Fig. 2 illustrates our main idea about the mapping of logical processors into
physical ones, pruning redundant messages. The figure shows an interleaving degree
of 2. The solid arrows show actual communication/messages between processors,
whereas the dashed arrows indicate redundant communication (the messages have
already been sent to the same physical processor). The interleaving of the logical
processors among the available pair of physical processors (the odd-numbered logical
tasks are assigned to physical processor 1 and the even-numbered logical tasks are

276 S. Samra et al.

assigned to physical processor 2) allows for uniform distribution of the messages
among the processors, thereby decreasing idle time and avoiding deadlocks. If logical
processors are to be grouped as contiguous blocks where each block is assigned to
some physical processor, the processors on the left-hand side will only send to
processors to the right side resulting in a serial execution of tasks. Deadlocks are
prevented by executing from left-hand side to right-hand side.

Messages among logical processors that are assigned to the same physical
processor are avoided. For example, P(1) does not send v(1) to the state-decision pair
(7,5) as it is already assigned to the same physical processor P(1). Also, redundant
communication is avoided. For example, P(1) does not send v(1) to P(2) in the
computation of the pair (8,6) since P(1) has already sent the same message to P(2)
when computing the pair (6,4).

1 procedure Solve(rank, p, r, γ)
\\ rank: processor id
\\ p: number of processors
2 begin
3 j := 1; sj_1 := 0; v := 0; \\ v is the
value function
3 while checkStoppingCriteria(v,j-1)
4 begin
5 for sj := r + rank to T step p
6 begin
7 TargetProcIds := {sj + r + γ, … ,Min(sj + r

+ γ + p, T)};
8 if j > 1 then
9 AllToAll v [si][j-1], xj_star[sj][j-1]
10 end
11 end
12 v [sj][j] = Minxj_star (fj(sj,xj) . v [sj_1][j-1])for
all xj in { sj, sj-1, …, , 0};
13 xj_star[sj][j] = xj_star;
14end
15j:=j+1;
16end
17 ReportSolution();

Algorithm 2. MPI Solve

Algorithm 2 gives the pseudo-code of our MPI Solve procedure using MPI
communication method of AllToAll(). AllToAll() send given data to all processors in
the cluster and it is cost optimized to be O(p) only [14]. Each processor executes the
Solve procedure with rank set to the processor’s id. The algorithm proceeds similar to
the serial one till line 4. Line 5 distributes the loop iterations among p processors such
that iteration k is given to processor k - r mod p.

The first stage of computation (j=1) relies on the initial conditions and no message
is communicated among processors. For j>1, line 9 sends the previous stage messages
to the corresponding physical processors (the list of processors in TargetProcIds). It is

 Efficient Parallel Implementations of Controlled Optimization of Traffic Phases 277

worth noting that the number of messages sent is at most p. Also line 9 receives the
previous stage data from corresponding physical processors. The function h(xj) in line
14 is defined as follows:

 h
0 0

Otherwise (1)

The implementation of parallel checkStoppingCriteria procedure differs from the
serial algorithm in that processor with rank p-1 is responsible for checking the
stopping condition when j > ρ. The processor broadcasts its decision to other
processors. Other processors receive the decision from that processor.

It is worth noting that the stopping criteria computational complexity is O(ρ) =
O(1), each computational step requires O(log p) communication steps to broadcast the
decision, therefore it does not interfere with the overall complexity of the
algorithm<O(N3/p). Also, practically, ρ is much smaller than the number of processed
time slots (N); therefore its contribution is negligible.

6 Data Parallel Implementation

General Purpose Graphics Processing Units (GPGPUs) favour data parallel
programming models. OpenCL [11] and CUDA [12] are popular data parallel models
targeting GPGPUs, that are similar; this paper focuses on CUDA being more mature
and easier to program than OpenCL as the latter is targeting diverse GPUs from
different vendors.

In the CUDA programming model, data parallelism is expressed in a form of
Single-Program Multiple Data streams (SPMD) model. A group of programs (i.e.
threads) is executed in a lock-step fashion. Such a group is called ‘warp’ that is of size
32 in current GPUs. Warps are collectively executed on a Streaming Multiprocessor
(SM). In CUDA notation, collections of threads are called ‘thread blocks’. One
noticeable feature of thread blocks is the availability of thread synchronization
operation, as well as shared memory. Thread blocks share global memory with high
bandwidth but of high latency. The latter is potentially hidden using the underlying
multithreading execution engine of the GPU.

Recently, the current generation of CUDA enabled GPUs (code named Fermi)
supports data caches [13]. There are L1 data cache for each SM and one L2 data
cache for global memory. In our algorithm, we, therefore, maximize data reuse to
increase cache hit ratios.

An important performance aspect of our algorithm is load-balancing the stage
iteration loop. Mapping many iterations into a thread is not plausible here as it would
decrease multithreading and, therefore, expose GPU’s high latency. Moreover,
threads will have different control-flow patterns, which are not plausible for the
underlying data-parallel execution engine, resulting in serialization in the execution of
threads. Our algorithm deals with this case by mapping each iteration linearly to
threads; since the warp size is small with respect to the total number of threads, we
only waste negligible cycles (provided N is much bigger than warp size).

CUDA GPUs support memory coalescing, where same memory access from threads
from the same warp is coalesced saving memory bandwidth. To achieve this, the loop
reversal in the earlier algorithm (MPI), in addition to the linear mapping of sj’s into
threads result in all threads having similar data accesses (access the same element v).

278 S. Samra et al.

Another aspect is the high latency of GPUs, which should be hidden by using
multithreading. Generally, the latency results from accessing global memory (100s of
cycles in current GPUs) as well as dependent read-after-writes register operations (10
cycles); since the algorithm optimizes cache performance, the latter smaller latency is
required to hide, which requires number of threads proportional to the latency value.
The algorithm, therefore, assigns each thread to sj; assigning an v’() would result in
higher degree of parallelism by that would be traded off with synchronization among
threads and possibly blocks (for larger T) which would significantly reduce the
regularity of control-flow and synchronization overhead among blocks. Increasing the
number of threads can however increase the number of communication messages
among threads; however, the GPU has high communication bandwidth to global
memory (1 word per 32 instructions on average for the GTX470) that exceeds the
required global memory access (approx. N2 global memory accesses/ N2 computations
= 1 word per operation, where the operation easily exceeds 32 instructions).

The use of data caches in CUDA GPUs allows for reducing the communication
from global memory. Our linear mapping achieves the same interleaving behavior we
utilized in the MPI algorithm, but this time among the blocks, thereby each block
behaves as a faster shared memory parallel subsystem, and the blocks operate in
slower shared memory system.

Algorithm 3 is the data parallel version of the algorithm. The stopping criterion is
similar to Algorithm 3 of the MPI, but thread synchronization is implemented by a
call to a host function, as the ratio of synchronizations to computations is 1 : N,
amortizing the overhead of synchronization.

1 procedure Solve(blockidx, blockwidth, threadidx)
\\ blockidx: block index
\\ blockwidth: number of threads per block
\\ threadidx: thread number within a block
2 begin
3 j:=1;sj_1:=0;ν:=0; \\ν is the value function
4 sj := blockidx × blockwidth + threadidx + r
5 while checkStoppingCriteria(ν,j-1)
6 begin
7 Compute Solution as per lines 6-19 of algorithm1
8 j:=j+1;
9 end
10 if sj = T
11 begin
12 ReportSolution();
13 end
14 end

Algorithm 3. Data Parallel Algorithm

7 Experimental Study

We have implemented the algorithm using three parallel programming models: (1)
OpenMP, which is a shared memory model, (2) MPICH, which is a message passing

 Efficient Parallel Implementations of Controlled Optimization of Traffic Phases 279

model, and (3) CUDA, which is a data parallel model. The platforms used for our
algorithms are the following: OpenMP runs on a machine, named fuji, with two
Quad-Core processor (Intel Xeon), hence an overall of eight processing units (8
cores). MPICH runs over the same fuji machine as well as the IBM supercomputer
BlueGene/L, the latter with 128 processors. The machine used for CUDA is an Intel
Core I7 machine with one quad-core processor, though the algorithm is run using its
GPU which is a GTX470 GeForce Nvidia with 448 cores.

According to the nature of the particular problem we investigate, traffic control,
three input parameters control the workload: the number of phases, and the total
number of discrete time steps T which represents a finite future horizon over which
the optimization algorithm considers for decision making, and the traffic load itself
(for example, the rate of cars entering the intersection). As can be seen from the
parallel algorithm, only T would control the degree of parallelism, hence it is the only
parameter varied in our experiments as seen below. The other parameters would just
add more parallel iterations and hence would scale the obtained curves. Therefore,
they are kept fixed throughout all our experimentation (we have used the values from
the original paper [3]) : the number of phases is 3 and the car generation is scheduled
according to Table 1 in [3]. In the experiments, we vary workload and number of
processors and measure the corresponding execution speed, Intersections/Sec.

Fig. 3. Best Parallel Execution for a Single Intersection

Fig. 3 plots the execution speed (in Intersection/Sec) while changing the number of
‘Time Slots’, N. The ‘Serial’ case represents the serial algorithm run on fuji machine;
with the increase of N, the execution speeds decrease quadratically, reaching 0.1
Intersection/Sec for N = 1024.

The OMP(fuji){8} represents the case of OpenMP algorithm over 8 cores, on the
machine fuji. It shows a speedup of 5 to 6 with respect to the ‘serial’ case, with
increasing of N. The MPI(BG){128} represents the case of MPI algorithm over 128
cores. It shows speedup of 4 to 13 times over the serial case.

0.0009766

0.0039063

0.015625

0.0625

0.25

1

4

16

64

256

128 512 2048

Sp
ee

d,
 In

te
rs

ec
ti

on
/S

ec

N, Time Slots

Serial(fuji)

OMP(fuji){8}

MPI(BG){128}

CUDA(Kokoro)

280 S. Samra et al.

The CUDA(kokoro){448} represents the case for the CUDA algorithm over 448
cores on the machine kokoro. The performance for small N is smaller than all other
cases; this is mainly due to the lack in the number of threads to hide latency and make
sure of GPU parallelism. With increasing N, the GPU significantly improves. The
GPU becomes dominant after N=1024, reaching a speedup factor of 52 over the serial
processor for N=4096.

Fig. 4. Best Execution Speeds with Many Intersections

The analysis above focused on improving the execution time of a single
intersection. However, if processing a single intersection time is not critical, and the
throughput of processing many intersections is critical, simple multiprogramming
would suffice and provide good scalability. Fig. 4 explores that aspect. We still
include the ‘Serial’ case as a baseline reference. The MultiProg(BG){128} and
MultiProg(fuji){8} are scaled up execution of the serial case for each platform using
the maximum available processors; the former using 128 processors, and the latter
using 8 processors. The MultiProgCUDA(kokoro){14} allow for running 14
intersections on the same GPU, each in a single SM. That case combines parallelism
within an intersection, and among other intersections. The results show that CUDA is
up to 76 times faster than the serial case. However, N cannot be 2048 or higher due to
reaching the memory capacity. The CUDA case is up to 5 times faster than the BG.

8 Conclusion

This paper introduced a cost-optimal, parallel version of an optimal traffic control for
an intersection [3]. Given the diversity of existing parallel architectures, the paper
developed three different parallel implementations, using well-known parallel
programming models: shared memory, message passing, and the recently introduced
CUDA data parallel models. Experimentations on typical high-end servers,
BlueGene/L supercomputer, and CUDA GPU, have shown that the parallel algorithm
is scalable on all of the parallel programming models; comparing with the serial
algorithm, speedups up to 76x has been achieved.

0.0009766
0.0039063

0.015625
0.0625

0.25
1
4

16
64

256

128 1024

Sp
ee

d,
 In

te
rs

ec
ti

on
/S

ec

N, Time Slots

Serial(fuji)

MultiProg(BG){128}

MultiProgCUDA(kokoro){1
4}
MultiProg(fuji){8}

 Efficient Parallel Implementations of Controlled Optimization of Traffic Phases 281

CUDA GPU performance is superior to BlueGene/L server. But, on the other hand,
BlueGene/L is more scalable than CUDA GPU.

Future work would target other parallel programming models such as MapReduce
and n-body models. Also, we would extend the algorithm to optimize traffic control
on multiple intersections.

Acknowledgments. The authors would like to acknowledge their fruitful discussions
with Dr Hisham El-Shishiny, manager of IBM Center for Advanced Studies in Cairo.
The authors would like also to acknowledge the support of Mohamed Baddar, from
IBM Center for Advanced Studies in Cairo, who helped with running the developed
codes on IBM BlueGene/L super computer. This work is partially funded by IBM
PhD Fellowship and Faculty Award.

References

1. Zhou, G., Gan, A., Shen, L.: Optimization of Adaptive Transit Signal Priority Using
Parallel Genetic Algorithm. Tsinghua Science & Technology 12(2), 131–140 (2007)

2. Machemehl, R., Shenoda, M.: Development of a Phase-by-Phase, Arrival-Based, Delay-
Optimized Adaptive Traffic Signal Control Methodology with Metaheuristic Search.
Center for Transportation Research, University of Texas at Austin (2006)

3. Sen, S., Head, K.: Controlled optimization of phases at an intersection. Transportation
science 31(1), 5–17 (1997)

4. Waterman, M.S., Smith, T.F.: Identification of common molecular subsequences. J. Mol.
Biol. 147, 195–197 (1981)

5. Manavski, S., Valle, G.: CUDA compatible GPU cards as efficient hardware accelerators
for Smith-Waterman sequence alignment. BMC Bioinformatics 9(2), S10 (2008)

6. Xiao, S., Aji, A.M., Feng, W.: On the Robust Mapping of Dynamic Programming onto a
Graphics Processing Unit. In: International Conference on Parallel and Distributed
Systems, pp. 26–33 (2009)

7. Siriwardena, T.R.P., Ranasinghe, D.N.: Accelerating global sequence alignment using
CUDA compatible multi-core GPU. In: 5th International Conference on Information and
Automation for Sustainability (ICIAFs), pp. 201–206 (2010)

8. Heung, T.H., Ho, T.K., Fung, Y.F.: Coordinated Road-Junction Traffic Control by
Dynamic Programming. IEEE Transactions on Intelligent Transportation Systems 6(3),
341–350 (2005)

9. Cheng, S., Epelman, M.: CoSIGN: A Parallel Algorithm for Coordinated Traffic Signal
Control. IEEE Transactions on Intelligent Transportation Systems 7(4), 551–564 (2006)

10. Lin, S., De Schutter, B., Xi, Y., Hellendoorn, H.: Fast Model Predictive Control for Urban
Road Networks via MILP. IEEE Transactions on Intelligent Transportation Systems
(2011)

11. Stone, J.E., Gohara, D., Shi, G.: OpenCL: A Parallel Programming Standard for
Heterogeneous Computing Systems. Computing in Science & Engineering 12(3), 66–73
(2010)

12. Kirk, D., Hwu, W.: Programming Massively Parallel Processors. Morgan Kaufmann, San
Francisco (2010)

13. NVIDIA CUDA C Programming Guide. 3rd edn. NVIDIA Corporation (2010)
14. Grama, A., Gupta, A., Karypis, G., Kumar, V.: Introduction to Parallel Computing, 2nd

edn. Addison Wesley, Reading (2003)

Y. Xiang et al. (Eds.): ICA3PP 2011, Part I, LNCS 7016, pp. 282–293, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Scheduling Concurrent Workflows in HPC Cloud
through Exploiting Schedule Gaps

He-Jhan Jiang1, Kuo-Chan Huang1, Hsi-Ya Chang2,
Di-Syuan Gu1, and Po-Jen Shih1

1 Department of Computer and Information Science
National Taichung University of Education

No. 140, Min-Shen Road, Taichung, Taiwan
{mice.jiang,ejeu67195,frontpageserver}@gmail.com,

kchuang@mail.ntcu.edu.tw
2 National Center for High-Performance Computing

National Applied Research Laboratories
P.O. Box 19-136, Hsinchu, Taiwan
jerry@nchc.narl.org.tw

Abstract. Many large-scale scientific applications are usually constructed as
workflows due to large amounts of interrelated computation and
communication. Workflow scheduling has long been a research topic in parallel
and distributed computing. However, most previous research focuses on single
workflow scheduling. As cloud computing emerges, users can now have easy
access to on-demand high performance computing resources, usually called
HPC cloud. Since HPC cloud has to serve many users simultaneously, it is
common that many workflows submitted from different users are running
concurrently. Therefore, how to schedule concurrent workflows efficiently
becomes an important issue in HPC cloud environments. Due to the
dependency and communication costs between tasks in a workflow, there
usually are gaps formed in the schedule of a workflow. In this paper, we
propose a method which exploits such schedule gaps to efficiently schedule
concurrent workflows in HPC cloud. The proposed scheduling method was
evaluated with a series of simulation experiments and compared to the existing
method in the literature. The results indicate that our method can deliver good
performance and outperform the existing method significantly in terms of
average makespan, up to 18% performance improvement.

Keywords: HPC cloud, workflow scheduling, distributed gap search.

1 Introduction

Many large-scale scientific and engineering applications are usually constructed as
workflows due to large amounts of interrelated computation and communication.
Common types of workflows can be represented by Directed Acyclic Graphs (DAG)
for describing the inter-task precedence constraints [7]. Each node represents a task

 Scheduling Concurrent Workflows in HPC Cloud 283

which executes a specific program. The number next to each node means the
execution time of the task. The edges represent the dependence between tasks and the
number next to an edge means the inter-task data transmission time. A job scheduler
has to schedule and allocate each task according to the dependence specified in the
workflow definition.

Traditionally, few users have access to high performance computing platforms
for executing large-scale workflows. Now, the situation has changed since the cloud
computing model [23][24] emerged. Cloud computing has been thought as a
promising next-generation computing platform and service model recently. It is
usually divided into three types of services: SaaS (Software as a Service), PaaS
(Platform as a Service), and IaaS (Infrastructure as a Service) [25]. Common
examples of these services include Salesforce.com [26] and Gmail [27] for SaaS,
Google App Engine [28] and Microsoft Azure [29] for PaaS, and Amazon EC2 for
IaaS [30]. Among the various cloud services proposed, HPC cloud service [31][32]
has recently become a promising one. It provides on-demand high-performance
computing services for compute-intensive scientific and engineering applications.
Since multiple workflows from different users might run simultaneously, it
becomes an important issue how to schedule concurrent workflows on HPC cloud
efficiently.

Workflow scheduling in parallel and distributed environments, in general, is a NP-
complete problem [11] [12], therefore many heuristic methods have been proposed
[2][3][6][7][8][9]. Most of them were designed for scheduling a single workflow only.
Recently, several approaches [1][5][13][14][15] have been proposed to deal with
multiple workflow scheduling. In [1] Bittencourt and Madeira proposed an approach to
scheduling multiple workflows on computational grids. In their approach, a Path
Clustering Heuristic (PCH) [10] is used to partition a workflow into several task groups
first, and then the list scheduling heuristic is applied to allocate these task groups onto
processors. During task group allocation, some time gaps may form in the schedules of
each processor. A gap search algorithm was proposed to find suitable gaps for
allocating subsequent task groups [4]. In their approach, the gap search algorithm tries
to allocate an entire task group onto a single time gap. We call it continuous gap search
hereafter in this paper. However, sometimes a big task group cannot fit into any gaps.
To further improve resource utilization and workflow performance, in this paper, we
propose a distributed gap search scheme which can allocate the tasks within the same
group onto different time gaps on different processors. The proposed scheme has been
evaluated with a series of simulation experiments and compared to the continuous gap
search scheme. The results indicate that the proposed distributed gap search scheme
outperforms the previous continuous scheme significantly in terms of average
makespan, up to 18% performance improvement.

The remainder of this paper is organized as follows. Section 2 discusses related
works on workflow scheduling. We describe the PCH and continuous gap search
algorithm [1][4] in section 3. Section 4 presents our distributed gap search scheme.
Section 5 evaluates the proposed distributed scheme and compares it with the
continuous approach. Section 6 concludes this paper.

284 H.-J. Jiang et al.

2 Related Work

Heuristic-based workflow scheduling algorithms usually can be classified into four
types: (1) list-based, (2) clustering-based, (3) duplication-based, (4) level-based. List-
based heuristic approaches [16][17][18] maintain a list of all tasks of a workflow
application according to their priorities and then schedule the tasks based on the list.

The main idea of clustering-based heuristic methods [19] is to reduce communication
delay by grouping the tasks of heavy communication into the same labeled cluster. In
general, a clustering-based heuristic method has two phases: clustering and merging. In
the clustering phase, the original workflow application is partitioned into clusters, and
the merging phase merges the clusters so that the remaining number of clusters equals to
the number of resources.

A duplication-based heuristic method [20] helps a task to transmit the data to the
resource of succeeding task(s) through duplicating the task on the destination
processor. This duplication arrangement can reduce the communication cost from a
task to a successor in order to minimize the overall makespan of the entire workflow.
A level-based heuristic method, e.g. LHBS (Levelized Heuristic Based Scheduling)
[21], divides the workflow into levels of independent tasks. Within each level, LHBS
can use the Greedy, Min-Min, Min-Max, or Sufferage [22] heuristics to map the tasks
onto resources.

Both the method in [1] and our method in this paper adopt a hybrid approach to
workflow scheduling. At the first step a clustering-based scheme is used to partition a
workflow into several task groups. Then, in the second step the list-based heuristic is
applied to allocate these task groups onto processors.

3 PCH and Gap Search

This section introduces the Path Clustering Heuristic (PCH) approach and the gap
search algorithm [1][4]. The entire workflow scheduling process is divided into two
phases. In the first phase, PCH is used to cluster tasks in a workflow into different
groups, and then priorities are assigned to the task groups based on their dependence.
In the second phase, the gap search algorithm is used to allocate each task group onto
a specific processor.

The workflows discussed in this paper can be represented by Directed Acyclic
Graphs (DAG), G (V, E), where:

• V is the set of tasks, tn ∈ V, |V| = number of tasks;
• E is the set of directed edges, en ∈ E, |E| = number of edges.

Each workflow starts at one node, named the front node, and finishes at one node,
named the end node. Each node in the workflow is a task representing a specific job
or program to execute and each edge represents the data dependence between nodes.
Each task starts its execution only after receiving all data from his parent nodes.

The Path Clustering Heuristic (PCH) is a DAG scheduling heuristic which clusters
the tasks into different groups and uses the list scheduling technique to schedule the

 Scheduling Concurrent Workflows in HPC Cloud 285

tasks within a group onto the same resource. PCH focuses on reducing the
communication costs between tasks and has been shown good performance in [1][4].

We first define several node attributes which will be used in the following.

• Computation cost:

,

wi,r : the computation cost of task i on resource r
instructionsi: the amount of instructions in task i
powerr: processing power, in instructions per second.

• Communication cost:

tr

ji
ji bandwidth

data
c

,

,
, =

ci,j: The communication cost between task i and j, using the link between resource r
and t. If r = t, ci,j =0.

• Priority:

succ(ni): the set of immediate successors of task ti.

• Earliest start time:

{ }⎩
⎨
⎧

=
predk

k

ki ESTrTime

rTime
rtEST

),(max

)(
),(

representing the earliest start time of the task on resource k,
where Time(rk) is the time when the resource k is ready for task execution and ∈ ,) as defined in [1].

• Estimated finish time:

k

i
kiki power

nsinstructio
rtESTrtEFT +=),(),(

representing the estimated finish time of task i on resource k.
After allocating the task groups of a single workflow, there are some gaps formed

between the allocated task groups. Therefore, a gap search algorithm [1][4] was
proposed to improve the resource utilization by trying to find the unused gaps to
allocate subsequent task groups from other workflows.

⎪⎩

⎪
⎨
⎧

++=
∈

)(max ,
)(

jji
nsucct

i

i

i Pcw

w
P

ij

, if i is the last task
,otherwise

,if i =1
,otherwise

286 H.-J. Jiang et al.

Figure 1 illustrates an example of how to apply the gap search algorithm [1][4] in
multiple-DAG scheduling. In Figure 1, there are two workflows for scheduling at the
same time. In the first step, PCH is used to cluster the tasks, resulting in four task
groups for the upper DAG and three task groups for the second DAG. Then, the upper
DAG is scheduled first with the traditional list scheduling heuristic. When scheduling
the second DAG, we first calculate the computation cost of each task group, e.g. {A,
B, C, and D}, through summing up the computation costs of all the tasks within the
task group. Then, the gap search algorithm is used to check whether there is a suitable
gap to allocate the task group. A suitable gap for a task group means a gap with a time
period equal to or larger than the computation cost of the task group.

Fig. 1. Example of scheduling two workflows using PCH and gap search

To consider the issue that a gap might dynamically shrink due to the unexpected
slowdown of a resource, the gap search algorithm adopts a security margin
mechanism [4], which calculates the time gap by assuming a specific percentage of
shrink caused by resource slowdown. In this paper, we assume this percentage to be
10%, which means if there is a task group of 90-second computation cost, we have to
find a time gap larger than 100 seconds to accommodate the task group since
100*(100%-10%) = 90.

Algorithm 1 in the following describes the gap search algorithm in details. For a
resource with k tasks already scheduled on it, there are k candidate time gaps to
allocate a subsequent task group. In Algorithm 1, Lines 1 to 9 tries to allocate the task
group into the first time gap, indexed with 0. Lines 10 to 19 iteratively tries to allocate
the task group into the remaining k-1 time gaps until a suitable gap is found. If no
suitable gap is found after trying all k time gaps, the task group will be allocated to
immediately follow the last task on current schedule.

 Scheduling Concurrent Workflows in HPC Cloud 287

As shown in Figure 1, there are some gaps left idle because they are not large

enough to accommodate any task group. To further improve the resource utilization,
we propose a distributed gap search scheme to resolve the issue in the next section.

4 Distributed Gap Search

The original gap search algorithm in [1][4] tries to allocate an entire task group into a
single gap on a specific resource. If a gap cannot accommodate any task group, it is
left idle, resulting in both degraded resource utilization and delayed task completion
time. This section proposes a distributed gap search scheme, which allows for
allocating the tasks of the same group into different gaps on different resources. This

Algorithm 1. gap search (grp, Sr)
Input: grp: the task group to be scheduled
 Sr: current schedule of resource r

 m: number of tasks in grp; tasks are indexed from 1 to m
Output: ggrp,r: the index of the gap found, starting from 0

1: sizegrp,r ← EFT(tgrp
m,r)-EST(tgrp

1,r)
2: k ←number of tasks in Sr
3: if (EST(t1,r)*s_margin) ≥ sizegrp,r then

4: Compute ESTs and EFTs for tgrp
j ∈ grp in the first gap

5:
grp
mt

D ← tasks ahead the gap which depends on tgrp
m

6: if (EST(t1,r)- EST(tgrp
1,r) ≥ sizegrp,r) and

grp
mt

D = ∅ then

7: ggrp,r = 0; return ggrp,r
8: end if
9: end if

10: for i=1 to k-1 do
11: if ((EST(ti+1,r)- EFT(ti,r))* s_margin) ≥ sizegrp,r then

12: Compute ESTs and EFTs on current gap ∀ tgrp
j ∈ grp

13:
grp
mt

D ← tasks ahead the gap which depends on tgrp
m

14: if (EST(ti+1,r)- EST(tgrp
1,r) ≥ sizegrp,r) and

grp
mt

D = ∅ then

15: ggrp,r = i; return ggrp,r
16: end if
17: end if
18: end for
19: ggrp,r =k; return ggrp,r //no gap found

288 H.-J. Jiang et al.

distributed scheme has the potential to further improve resource utilization, leading to
a better workflow execution performance in terms of makespan.

Figure 2 is an example illustrating how the distributed gap search scheme works.
The two workflows to be scheduled in Figure 2 are the same as those in Figure 1,
while the distributed gap search scheme is applied now. In Figure 2, when trying to
allocate the task group {5, 6, 7, 8, 9, 10} from the second workflow, it is found that
no single gaps on any resources can accommodate this task group. In the original gap
search algorithm in [1][4], this task group would then be allocated to the end of the
schedule on resource zero. On the other hand, our distributed gap search scheme
partitions the task group into two subgroups, {5, 6, 7, 8, 9} and {10}, where the first
subgroup can fit into a gap on resource two and the second subgroup can be allocated
onto another resource, in this case resource zero, as shown in Figure 2. This leads to a
better resource utilization and workflow execution performance.

Fig. 2. Example of distributed gap search

Algorithm 2 in the following describes the distributed gap search scheme in details.
Lines 14 to 26 deal with the case that a task group cannot fit into current gap. The
while loop through lines 16 to 25 performs the re-clustering, which partitions the task
group into two subgroups and ensures that the first subgroup can fit into current gap
and contains as more tasks as possible. Lines 19 and 20 allocate the first subgroup
into current gap, while line 21 recursively calls the distributed gap search scheme to
allocate the second subgroup.

 Scheduling Concurrent Workflows in HPC Cloud 289

Algorithm 2. Distributed Gap Search: DGS(grp)

 grp: task group to be scheduled
 G: the set of time gaps on all resources

 Sr: current schedule of resource r

m: number of tasks in grp; tasks are indexed from 1 to m

 1: sort the gaps in G into a list L with a non-decreasing order of beginning
 time

2: k ←number of tasks in Sr
3: EFT(t0,r) ← 0;
4: foreach time gap g in L do
5: r ←the resource where g resides
6: sizegrp,r ← EFT(tgrp

m,r)-EST(tgrp
1,r)

7: sizeg← the time duration of gap g
8: end g← the end time of gap g
9: Compute ESTs and EFTs on current gap ∀ tgrp

j ∈ grp
10:

grp
mt

D ← tasks ahead the gap which depends on tgrp
m

11: if (end g - EST(tgrp
1,r) ≥ sizegrp,r) and

grp
mt

D = ∅ then

12: grp is allocated in current gap g;
13: update Sr;
14: else
15: n = m-1;
16: while n > 0 do
17: sizegrp(1,n),r←EFT (tgrp

n,r)-EST(tgrp
1,r)

18: if (end g - EST(tgrp(1,n)
1,r)) ≥ sizegrp(1,n),r then

19: grp(1,n) is allocated in current gap g;
20: update sr;
21: call DGS(grp(n+1,m)); //recursive call
22: return;
23: else
24: n--;
25: end while
26: end if
27: end foreach
28: compare the schedule ends of all resources and allocate grp onto the end
 of the schedule on resource r which leads to the earliest start time of grp
 compared to other resources. //no gap found update sr;
29: return;

290 H.-J. Jiang et al.

5 Experiments and Discussions

This section presents a series of experiments which compare the proposed distributed
gap search scheme with the original gap search algorithm in terms of average
makespan through simulation studies. We implemented a DAG generator to produce
workflows for the following simulation experiments. The DAG generator works as
follows:

1. It generates a DAG with one front node and one end node.
2. Each DAG contains one to four fork-join structures randomly.
3. Each fork operation produces two or three branches.
4. Each branch contains two to four nodes randomly.
5. The generator can generate DAG’s with different CCR values.
6. It assigns a random weight to each node and edge.

In the following experiments,

1. We simulate a workload with 500 DAGs.
2. Each DAG contains 10 to 50 nodes.
3. Each node has the computation cost ranging from 5 to 20 seconds.
4. Each edge has the communication cost ranging from 5 to 20 seconds.
5. Each experiment was conducted for 20 times and the average makespan value was

calculated.

The following presents the experimental results. Figure 3 shows the performance
results of 500 DAG’s running on 30 resources. Experiments were conducted with
workflows of two different CCR values, 0.1 and 10. Under all the CCR values, the
proposed distributed gap search scheme outperforms the original gap search
algorithm. Figure 4 illustrates that the proposed distributed gap search scheme
delivers better performance through improving the overall resource utilization. Up
to 18% performance improvement can be obtained as shown in the above
experiments.

Fig. 3. Average makespan of 500 DAGs on 30 resources

13
88 17

76

11
34 15

51

0

500

1000

1500

2000

CCR: 0.1 CCR: 10

A
ve

ra
ge

m

ak
es

pa
n

Gap search

Distributed
Gap Search

 Scheduling Concurrent Workflows in HPC Cloud 291

Fig. 4. Resource utilization of 500 DAGs on 30 resources

6 Conclusions

Concurrent workflow scheduling becomes a crucial issue in HPC cloud environments.
This paper deals with this issue through a hybrid scheduling approach. At the first
step, a clustering based PCH approach [1][4] is applied to cluster the tasks within a
workflow into different task groups. At the second step, the list-based scheduling
heuristic is accompanied with a gap search mechanism to allocate the task groups
onto the resources. A distributed gap search scheme is proposed in this paper to
further improve resource utilization and workflow completion time. The proposed
scheme were evaluated with a series of simulation experiments on workflows of
various structures and compared to the continuous gap search algorithm in [1][4]. The
results indicate that the proposed distributed gap search scheme outperforms the
previous continuous approach significantly in terms of average makespan. Up to 18%
performance improvement was obtained in the experiments.

References

1. Bittencourt, L.F., Madeira, E.R.M.: Towards the Scheduling of Multiple Workflows on
Computational Grids. Journal of Grid Computing 8, 419–441 (2009)

2. Kwok, Y.K., Ahmad, I.: Static Scheduling Algorithms for Allocating Directed Task
Graphs to Multiprocessors. ACM Computing Surveys 31(4), 406–471 (1999)

3. Adam, T.L., Chandy, K.M., Dickson, J.R.: A Comparison of List Schedules for Parallel
Processing Systems. Communications of the ACM 17(12), 685–690 (1974)

4. Bittencourt, L.F., Madeira, E.R.M.: Fulfilling Task Dependence Gaps for Workflow
Scheduling on Grids. In: 3rd IEEE International Conference on Signal-Image Technology
and Internet Based Systems, pp. 468–475 (2007)

5. Stavrinides, G.L., Karatza, H.D.: Scheduling Multiple Task Graphs in Heterogeneous
Distributed Real-Time Systems by Exploiting Schedule Holes with Bin Packing
Techniques. Simulation Modelling Practice and Theory, vol 19(1), 540–552 (2011)

6. Bittencourt, L.F., Sakellariou, R., Madeira, E.R.M.: DAG Scheduling Using a Lookahead
Variant of the Heterogeneous Earliest Finish Time Algorithm. In: 18th ‘Conference on
Parallel, Distributed and Network-based Processing, pp. 27–34 (2010)

0.
97

24
1

0.
97

20
1 0.

97
69

8

0.
97

28
5

0.968

0.97

0.972

0.974

0.976

0.978

CCR: 0.1 CCR: 10

Re
so

ur
ce

s
ut

ili
ty

Gap search

Distributed Gap
Search

292 H.-J. Jiang et al.

7. Wieczorek, M., Prodan, R., Hoheisel, A.: Taxonomies of the Multi-Criteria Grid
Workflow Scheduling Problem. In: Grid Middleware and Services, pp. 237–264 (2008)

8. Rahman, M., Ranjan, R., Buyya, R.: Cooperative and Decentralized Workflow Scheduling
in Global Grids. Future Generation Computer Systems 26, 753–768 (2010)

9. Ding, F., Zhang, R., Ruan, K., Lin, J., Zhao, Z.: A QoS-based Scheduling Approach for
Complex Workflow Applications. In: 5th Annual ChinaGrid Conference, pp. 67–73 (2010)

10. Bittencourt, L.F., Madeira, E.R.M.: A Performance-Oriented Adaptive Scheduler for
Dependent Tasks on Grids. Concurrency and Computation: Practice and Experience 20,
1029–1049 (2008)

11. Gary, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-
Completeness. W.H. Freeman and Co, New York (1979)

12. Ullman, J.D.: NP-Complete Scheduling Problems. Journal of Computer and Systems
Sciences 10, 384–393 (1975)

13. Zhao, H., Sakellarious, R.: Scheduling Multiple DAGs onto Heterogeneous Systems. In:
15th Heterogeneous Computing Workshop, 14 pp (2006)

14. Yu, Z., Shi, W.: A Planner-Guided Scheduling Strategy for Multiple Workflow
Applications. In: 37th International Conference on Parallel Processing Workshops, pp. 8–
12 (2008)

15. N’takpé, T., Suter, F.: Concurrent Scheduling of Parallel Task Graphs on Multi-Clusters
Using Constrained Resource Allocations. In: IEEE International Symposium on Parallel
and Distributed Processing, pp. 1–8 (2009)

16. Kwok, Y., Ahmad, I.: Dynamic Critical-Path Scheduling: An Effective Technique for
Allocation Task Graphs to Multi-processors. IEEE Transactions on Parallel and
Distributed Systems 7(5), 506–521 (1996)

17. Sih, G.C., Lee, E.A.: A Compile-Time Scheduling Heuristic for Interconnection-
Constrained Heterogeneous Processor Architectures. IEEE Transactions on Parallel and
Distributed Systems 4(2), 175–186 (1993)

18. EI-Rewini, H., Lewis, T.G.: Scheduling Parallel Program Tasks onto Arbitrary Target
Machines. Journal of Parallel and Distributed Computing 9, 138–153 (1990)

19. Yang, T., Gerasoulis, A.: DSC: Scheduling Parallel Tasks on an Unbounded Number of
Processors. IEEE Transactions on Parallel and Distributed Systems 5(9), 951–967 (1994)

20. Park, G., Shirazi, B., Marquis, J.: DFRN: A New Approach for Duplication Based
Scheduling for Distributed Memory Multi-processor Systems. In: International Conference
on Parallel Processing, pp. 157–166 (1997)

21. Mandal, A., Kennedy, K., Koelbel, C., Marin, G., Mellor-Crummey, J., Liu, B., Johnsson,
L.: Scheduling Strategies for Mapping Application Workflows onto the Grid. In: 14th
IEEE Symposium on High Performance Distributed Computing, pp. 125–134 (2005)

22. Braun, T.D., Siegel, H.J., Beck, N., Bölöni, L.L., Maheswaran, M., Reuther, A.I.,
Robertson, J.P., Theys, M.D., Yao, B., Hensgen, D., Freund, R.F.: A Comparison of
Eleven Static Heuristics for Mapping a Class of Independent Tasks onto Heterogeneous
Distributed Computing Systems. Journal of Parallel and Distributed Computing 61(6),
810–837 (2001)

23. Hofmann, P., Woods, D.: Cloud Computing: The Limits of Public Clouds for Business
Applications. IEEE Internet Computing, 90–93 (November 2010)

24. Wei, Y., Blake, M.B.: Service-Oriented Computing and Cloud Computing: Challenges and
Opportunities. IEEE Internet Computing, 72–75 (November 2010)

 Scheduling Concurrent Workflows in HPC Cloud 293

25. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Konwinski, A., Lee, G.,
Patterson, D.A., Rabkin, A., Stoica, I., Zaharia, M.: Above the Clouds: A Berkeley View
of Cloud Computing. Technical report no. UCB/EECS-2009-28, EECS Department,
University of California, Berkeley (2009)

26. salesforce.com, http://www.salesforce.com
27. Gmail, http://gamil.com
28. Google App Engine, http://code.google.com/intl/en/appengine
29. Microsoft Azure Platform, http://www.microsoft.com/windowsazure/
30. Amazon Elastic Compute Cloud, http://aws.amazon.com/ec2/
31. Akioka, S., Muraoka, Y.: HPC Benchmarks on Amazon EC2. In: 24th IEEE International

Conference on Advanced Information Networking and Applications Workshops, pp.
1029–1034 (2010)

32. Kim, H.: el-Khamra, Y., Jha, S., Parashar, M.: An Autonomic Approach to Integrated HPC
Grid and Cloud Usage. In: 5th IEEE International Conference on e-Science, pp. 366–373
(2009)

Efficient Decoding of QC-LDPC Codes Using

GPUs

Yue Zhao, Xu Chen, Chiu-Wing Sham, Wai M. Tam, and Francis C.M. Lau

Department of Electronic and Information Engineering,
Hong Kong Polytechnic University, Hong Kong

{9901931r,chenxu,encwsham,tamwm,encmlau}@polyu.edu.hk

Abstract. In this work, we propose an efficient quasi-cyclic LDPC (QC-
LDPC)decoder simulatorwhich runsongraphicsprocessingunits (GPUs).
We optimize the data structures of the messages used in the decoding pro-
cess such that both the read and write processes can be performed in a
highly parallel manner by the GPUs. We also propose a highly efficient al-
gorithm to convert the data structure of the messages from one form to
another with very little latency. Finally, with the use of a large number of
cores in the GPU to perform the simple computations simultaneously, our
GPU-based LDPC decoder is found to run at around 100 times faster than
a CPU-based simulator.

Keywords: Belief propagation, CUDA, graphics processing unit (GPU),
low-density parity-check codes, LDPC decoder.

1 Introduction

Low-density parity-check (LDPC) codes were invented by Robert Gallager [6]
but had been ignored for years until Mackay rediscovered them [8]. They have
attracted much attention recently because they can achieve excellent error per-
formance based on the belief propagation (BP) decoding algorithm. Although
the BP decoding algorithm involves intensive computations, it possesses a high
data-parallelism feature. Since GPUs are highly parallel structures with many
processing units they can provide a cheap, flexible and efficient solution of sim-
ulating a LDPC decoder.

In [4,3], the sum-product LDPC decoder and the min-sum decoder have been
implemented with GPUs. Moreover, by combining sixteen fixed-point 8-bit data
to from one 128-bit data, the LDPC decoder in [3] decodes sixteen codewords
simultaneously and achieves a high throughput. The drawback is that the de-
coding process has to be continued until all the codewords have been correctly
decoded or the maximum number of iterations is reached. Although the method
in [3] allows coalesced memory access in either the read or write process, coa-
lesced memory access in both the read and write processes is yet to be achieved.

In this paper, we develop a flexible and highly parallel quasi-cyclic LDPC
(QC-LDPC) decoder simulator running on GPUs. Moreover, the BP decoding
algorithm is implemented with floating-point precision. Our results have shown

Y. Xiang et al. (Eds.): ICA3PP 2011, Part I, LNCS 7016, pp. 294–305, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Efficient Decoding of QC-LDPC Codes Using GPUs 295

that compared with CPU-based simulators, our GPU-based LDPC decoder sim-
ulator improves the speed by around 100 times.

In the remainder of the paper, Section 2 reviews the LDPC codes and the
BP decoding algorithm. Section 3 introduces the GPUs and Section 4 describes
in detail the implementation of the GPU-based LDPC decoder. Section 5 shows
our simulation results and we conclude the paper in Section 6.

2 Review of QC-LDPC Codes and the Belief Propagation
Decoding Algorithm

2.1 QC-LDPC Codes

A binary (N, K) LDPC code is a linear block code defined by a sparse M ×N
parity-check matrix H, where N represents the code length and M = N − K
denotes the number of parity checks. Moreover, the M × N matrix H contains
mostly 0’s and a relatively small number of 1’s. The H matrix of a LDPC code
with row weight 6 and column weight 3 is shown as follows.

H =

⎡⎢⎢⎢⎢⎣
1 1 1 0 0 1 0 1 0 1
1 0 1 1 0 0 1 0 1 1
0 1 0 1 1 1 1 1 0 0
1 0 0 0 1 1 0 1 1 1
0 1 1 1 1 0 1 0 1 0

⎤⎥⎥⎥⎥⎦ (1)

The code rate of the LDPC code is given by R ≥ 1 −M/N and the equality
holds when H is full rank.

In a QC-LDPC code, the parity-check matrix H is composed of square sub-
block matrices (also called sub-matrices) of size p×p [5,12]. We denote the (j, l)th
sub-block matrix of H by I(pj,l) where −1 ≤ pj,l ≤ p − 1 (j = 0, 1, . . . , J − 1;
l = 0, 1, . . . , L − 1), J = M/p and L = N/p. Moreover, I(pj,l) represents (i) a
zero matrix when pj,l = −1, (ii) an identity matrix when pj,l = 0 and (iii) a
circulant permutation matrix obtained by circularly shifting the identity matrix
to the right by pj,l when 1 ≤ pj,l ≤ p− 1. Thus, we can represent a QC-LDPC
code with J block rows and L block columns as

H =

⎡⎢⎢⎢⎣
I(p0,0) I(p0,1) . . . I(p0,L−1)
I(p1,0) I(p1,1) . . . I(p1,L−1)

...
. . .

...
I(pJ−1,0) I(pJ−1,1) . . . I(pJ−1,L−1)

⎤⎥⎥⎥⎦ . (2)

Figure 1 illustrates the structure of a QC-LDPC code with three block rows (i.e.,
J = 3) and four block columns (i.e., L = 4).

2.2 Belief Propagation Algorithm

LDPC codes are most commonly decoded using the belief propagation (BP)
algorithm [10],[11]. Let μn be the initial log-likelihood ratio (LLR) that variable

296 Y. Zhao et al.

m

n

{︷︸︸︷

p

p

Fig. 1. The parity-check matrix of a QC-LDPC code with three block rows (i.e., J = 3)
and four block columns (i.e., L = 4). Each square represents one sub-block matrix of
size p× p and the solid line shows the positions of 1’s in each sub-block matrix.

node n is a “0” to that it is a “1”, i.e.,

μn = ln
[
Pr(cn = 0|yn)
Pr(cn = 1|yn)

]
(3)

Initially, μn is calculated based on the channel parameter N0 and the received
signal yn using μn = (4/N0) · yn [7].

Define N (m) as the set of variable nodes that participate in check node m
andM(n) as the set of check nodes connected to variable node n. At iteration i,
let β

(i)
mn be the LLR messages passed from variable node n to check node m; α

(i)
mn

be the LLR messages passed from check node m to variable node n; and β
(i)
n be

the a posteriori LLR of variable node n. Then the standard BP algorithm can
be described as follows [8,2].

1. Initialization: β
(0)
mn = μn for 0 ≤ n ≤ N − 1 and m ∈ M(n). We set the

iteration number i = 1 and the maximum number of iterations to Imax.
2. Iteration:

(a) Horizontal Step: For 0 ≤ m ≤ M − 1 and for n ∈ N (m), the check-to-
variable messages are updated by

α(i)
mn = 2 tanh−1

⎡⎣ ∏
n′∈N (m)\n

tanh

(
β

(i−1)
mn′
2

)⎤⎦ (4)

where N (m)\n denotes the set N (m) excluding the variable node n.
(b) Vertical Step: For 0 ≤ n ≤ N − 1 and m ∈ M(n), the variable-to-check

messages are calculated by

β(i)
mn = μn +

∑
m′∈M(n)\m

α
(i)
m′n (5)

whereM(n)\m denotes the setM(n) with check node m excluded.

Efficient Decoding of QC-LDPC Codes Using GPUs 297

3. Finally, we compute the a posteriori LLRs β
(i)
n and perform hard decisions.

β(i)
n = μn +

∑
m′∈M(n)

α
(i)
m′n (6)

3 Parallel Computations Using GPUs

3.1 GPU Architecture

A graphics processing unit (GPU) consists of multi-threaded, multi-core pro-
cessors. Its high parallelism and large memory bandwidth offer very good per-
formance for processing computer graphics. Compared with CPU, GPUs are
especially effective when performing intensive and highly parallel computations.
GPUs follow the single-instruction multiple-data (SIMD) paradigm.

Figure 2 shows the architecture of a typical GPU. It contains a number of
multiprocessors called streaming multiprocessors (SMs). The SMs are executing
functions in parallel asynchronously and each SM has a group of stream proces-
sors or cores. The device memory called the global memory can be access by all
SMs, as shown in Fig. 2. There is also on-chip memory called shared memory
shared among cores within each SM. The shared memory has a small capacity
(tens of KB) but it has a low-latency. In our work, the GPU used has 7 stream
multiprocessors (SMs) and each SM contains 48 cores [1]. Moreover, each SM
has a limited shared memory of 48 KB and 768 MB global memory.

4 Implementation of a LDPC Decoder on GPUs

In the BP decoding algorithm, the most computation intensive processes are the
check-node updating and the variable-node updating. In (4), it can be observed
that the computations for each check node is independent of the computations
for other check nodes. Furthermore, the computations performed for all check
nodes are identical, but on different sets of data, so are the computations for the
variable nodes (see (5)). So in the horizontal step of the BP algorithm, we assign
one separate thread to process one check node, which is corresponding to one row
of the parity-check matrix H in (1). Similarly, we assign a separate thread to the
processing for one variable node in the vertical step of the BP algorithm, which
is updating the messages in each column in H. The horizontal step and vertical
step are then mapped onto two separate kernels and are executed alternatively
in one decoding iteration.

An important consideration for an efficient CUDA implementation is to ensure
coalesced global memory access. The accesses (loads and stores) to the global
memory by threads of a half warp (for devices of compute capability 1.x) or of
a warp (for devices of compute capability 2.x) are coalesced into as few as one
transaction when certain access requirements are met [9]. To meet these access
requirement, the global memory should be viewed as aligned segments of 16 and
32 words (a word is 8-byte for float). In a simple coalesced access pattern, the

298 Y. Zhao et al.

SM

...

Device Memory (Global Memory)

Interconnection

Host Interface

GPU

shared memory

...

constant cache

shared memory

...

constant cache

shared memory

...

constant cache

Fig. 2. Hardware architecture of a typical GPU [1]

k -th (k = 0, 1, . . . , 31) thread in a warp accesses the k -th data in a memory
segment. For example, if each data represents a 4-byte floating-point number,
the segment size will be 32×4 = 128 bytes, and the start address of each segment
should be a multiple of 128 bytes.

4.1 Data Structure to Represent the Messages

Each edge in a Tanner graph is associated with two messages — check-to-variable
message and variable-to-check message. Recall that each edge also corresponds
to a non-zero entry in the parity-check matrix H, we only store the non-zero
elements.

Referring to Fig. 3 in which a QC-LDPC code with 3 block rows (J = 3),
4 block columns (L = 4) and a sub-matrix size 6 × 6 (p = 6) is shown, we
first consider the horizontal step which evaluates the check-to-variable messages
based on the variable-to-check messages. As mentioned in the previous section,
we assign M = pJ(= 18) threads to process the M rows. To ensure that coalesced
global memory access can be performed, the M variable-to-check messages in
each block column will be stored in consecutive memory locations to form a
“message segment”. The data structure for the vertical step is similar, and we
denote this check-to-variable message array by Hv. Consequently, the kth (k =
0, 1, . . . , N − 1) thread can access its required data which corresponds to the
data in the kth column of Hv.

Efficient Decoding of QC-LDPC Codes Using GPUs 299

︷︸︸︷︷︸︸︷︷︸︸︷

{
{

︷︸︸︷

{Hv

HT
c

hvmessage piece of length p

message
segment

message
piece
of length
p

hc

message segment

︷︸︸︷

L message segments

{J message segments

Fig. 3. The corresponding message pieces hc and hv, message segments, two-
dimensional arrays Hc and Hv for a QC-LDPC code. The gray squares denote 1′s
in the H matrix. Only 6 sub-matrices are illustrated in detail.

As we have mentioned, the aim of forming the two-dimensional message arrays
Hc and Hv is to facilitate the coalesced global memory access. With the use of
coalesced memory access, different threads will be able to process simultaneously
different column vectors in Hc or Hv. Recall that there are pJ and pL columns in
Hc and Hv, respectively, and that threads are executed in groups of 32 . Thus,
we propose appending γ dummy messages to each message piece, formed by
the variable-to-check messages or check-to-variable messages in one sub-matrix,
such that the number of messages in each modified message piece becomes a
multiple of 32 units . For example, if p = 422, γ can be set to 26 such that
p′ = p + γ = 448 = 32 × 14. Note that the total numbers of threads required
in the horizontal step and the vertical step are now M ′ = p′J and N ′ = p′J ,
respectively. Since the dummy messages are appended to the end of the valid
messages, we can easily control the computations of the threads such that the
dummy messages will not affect the original calculations.

Before the check-node-updating kernel and variable-node-updating kernel, the
data structure should be in H′

c format and H′
v format, respectively. For QC-

LDPC code, the conversion between H′
c and H′

v is just permutation of the
elements, as shown in Fig. 4. Note that during the conversions, the dummy
messages are kept untouched and will not affect the original iteration results.

300 Y. Zhao et al.

C

A

B

D

CBA D

ADC B

p p′
pj−1,l−1

p

dummy data

︷︸︸︷︷︸︸︷

︷︸︸︷︷︸︸︷

a modified message piece h′
v

a modified message piece h′
c

Fig. 4. Conversion of modified message pieces h′
v (in H′

v) and h′
c (in H′

c)

4.2 Decoding Procedures in GPU with the Use of Shared Memory

In the initialization kernel, N ′ = p′×L threads are assigned to compute the initial
LLRs μn based on the received messages and broadcast them to the neighboring
check nodes of each of the variable nodes. The variable-to-check messages in H′

v

format so formed is then converted into H′
c format.

Check-Node-Updating Kernel. In the check-node updating kernel that fol-
lows, each thread processes one column of the H′

c matrix (size L × p′J). To-
tally there are M ′ = p′J threads allocated and L data in each column. First,
the threads load/copy the required data from the global memory to the shared
memory in a coalesced way. Once the data are in the shared memory, they can
be further accessed extremely fast.

At the end of the check-node updating kernel, the updated check-to-variable
messages are copied from the shared memory to the global memory in a coalesced
way. The memory access during storing is the same as the memory access during
loading. Thus the check-to-variable data are still represented in the H′

c structure,
which will be converted to H′

v format by the conversion kernel described below.

Conversion from H′
c to H′

v. Recall that each modified message piece (of size
p′ = p + γ) in H′

c has a corresponding sub-matrix I(pj−1,l−1) (j = 1, 2, . . . , J ;
l = 1, 2, . . . , L) in the parity-check matrix H. Therefore, there is a total of J ×L
modified message pieces in H′

c. In the H′
c-to-H′

v conversion kernel, we assign each
modified message piece with a thread-block and we place J × L thread-block in
a grid. If the number of elements in one modified message piece (i.e., p′) is no
larger than the maximum thread-block size Ωmax (currently equals 1024), we
can assign a sufficient number of threads (e.g., p′ threads) in each thread-block
such that each thread only needs to process one element in the modified message
piece. On the other hand, if the number of elements in one modified message
piece is larger than the maximum thread-block size, each thread must process
multiple elements. In summary, the number of elements to be processed by each
thread depends on the relative size of a thread-block to a modified message
piece.

Efficient Decoding of QC-LDPC Codes Using GPUs 301

As in Sect. 4.1, we denote a modified message piece in H′
c by h′

c and as-
sume that it corresponds to the sub-matrix I(pj−1,l−1). In each thread-block,
the threads load h′

c from the global memory and store them in the shared mem-
ory in a coalesced way. Then, the threads in the same BLOCK look up a table1

and find the corresponding value pj−1,l−1 to be used. Based on pj−1,l−1, each
thread copies one or multiple element(s) in h′

c and saves it/them accordingly in
the modified message piece h′

v in the shared memory. Finally, h′
v is copied from

the shared memory to the global memory in a coalesced way and is stored as
part of H′

v.

Variable-Node-Updating Kernel. The variable-node-updating kernel is sim-
ilar to the check-node-updating kernel. It is worth noting that the initial LLRs
μn, which are stored in the global memory, are also required for updating the
variable-to-check messages.

Conversion from H′
v to H′

c. Since the operations of the H′
v-to-H′

c conversion
kernel is very similar to those of the H′

c-to-H′
v kernel described in Sect. 4.2, they

will not be explained here.

5 Results and Discussions

We compare the results of the proposed GPU-based LDPC decoder with that
of a CPU-based decoder. The CPU-based decoder is developed using C pro-
gramming and the commonly used linked-list approach is employed to store and
link the messages [8]. Details of the CPU and GPU used in our simulations are
presented in Table 1. Note that although there are 8 cores in the CPU, simple
C programming (without parallel computing) allows us to use only one of the
cores. Table 2 shows the characteristics of the QC-LDPC codes under test.

In the following, we fix the number of decoding iterations to be 30 and the
simulation terminates after 100 (codeword) block errors are received.

5.1 Simulation Results

BLER/BER. We plot the bit error rate (BER) and the block error rate (BLER
or the codeword error rate) of Code A and Code C in Fig. 5 when the Eb/N0

ranges from 2.7 dB to 3.3 dB. We observe that the BLER/BER performance
given by the CPU-based decoder and the GPU-based decoder are very close.
It is because both decoders use the same computation algorithm and the same
floating-point precision. The only difference are the noisy vectors being generated
and used as different seeds are used in the two decoders.

We also find that the BER/BLER reduces from Code A to Code E. It is
reasonable because for codes with the same code rate (Code A to Code D), the
1 We store the pj−1,l−1 values as a two-dimensional (J × L) look-up table in the

constant cache of the GPU. The time taken to access the constant cache is extremely
short.

302 Y. Zhao et al.

Table 1. Simulation environments

CPU GPU

Platform Intel Xeon Nvidia GTX460

Number of cores 8 (only one core
used)

7 × 48 = 336

Clock rate 2.26 GHz 0.81 GHz

Memory 8 GB DDR3 RAM 768 MB global memory and
48 KB shared memory

Maximum
Thread-block size

Ωmax

— 1024 threads

Programming
Language

C CUDA C

Table 2. Parity-check matrices of the QC-LDPC codes under test. Each of the sub-
matrices in the parity-check matrices is either the identity matrix or a circulant per-
mutation matrix obtained by circularly shifting the identity matrix.

Code J × L
Sub-matrix size

(p× p)

Parity-Check
Matrix Size
(M ×N)

Number of
Edges (M × L
or N × J)

A 4× 24 422 × 422 1688× 10128 40512

B 4× 24 632 × 632 2528× 15168 60672

C 4× 24 765 × 765 3060× 18360 73440

D 4× 24 1024 × 1024 4096× 24576 98304

E 3× 6 3000 × 3000 9000× 18000 54000

BLER/BER generally improves with the code-length. Code E, even at a Eb/N0

of 2.3 dB, outperforms the other codes because it has a very low code rate (1/2)
and relative long code-length.

Decoding Time. Table 3 shows the number of transmitted codewords and the
simulation times for different codes when the CPU-based and the GPU-based
decoders are used.

We consider the average time for decoding one codeword for the GPU-based
decoder, i.e., tGPU. Similar to the CPU-based decoder, tGPU increases from Code
A to Code D. The reason is that an increasing sub-matrix size p× p (and hence
p′ × p′) creates more computations and hence longer simulation per codeword.
We further find that tGPU for Code E is smaller than all those for Code A to

Efficient Decoding of QC-LDPC Codes Using GPUs 303

2.7 2.8 2.9 3 3.1 3.2 3.3
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
(dB)

B
E

R
 a

nd
 B

LE
R

BER,Code A,CPU
BER,Code A,GPU
BER,Code C,CPU
BER,Code C,GPU
BLER,Code A,CPU
BLER,Code A,GPU
BLER,Code C,CPU
BLER,Code C,GPU

Fig. 5. BER and BLER curves of Code A and Code C. 30 iterations are used for
decoding one codeword.

Code D. Although the number of edges for Code E is larger than that in Code A,
the higher degree of parallel decoding used in Code E allows Code E to produce
a shorter simulation time per codeword compared with Code A.

Finally, we compare the simulation times of the CPU-based decoder and the
GPU-based decoder by taking the ratio tCPU/tGPU. The results in Table 3 in-
dicate that the GPU-based decoder accomplish speedup improvements from 82

Table 3. Comparison of the simulation times using the CPU-based decoder and the
GPU-based decoder. C represents the total number of decoded codewords; T denotes
the total simulation time; t is the average simulation time per codeword and t′ repre-
sents the average simulation time per codeword per edge. Code A to code D are decoded
at a Eb/N0 of 3.2 dB and code E is decoded at a Eb/N0 of 2.3 dB. 30 iterations are
used for decoding one codeword.

Code

CPU GPU Speedup
tCPU/tGPU

CCPU
TCPU

(s)
tCPU

(ms)
t′CPU

(μs)
CGPU

TGPU

(s)
tGPU

(ms)
t′GPU

(μs)

A 4058 1270 313 7.726 3670 14 3.8 0.094 82

B 11664 5350 458 7.548 13388 67 5 0.082 92

C 20046 10950 546 7.435 23738 126 5.3 0.072 103

D 70843 51580 728 7.25 77224 613 7.9 0.08 92

E 1103613 428485 388 7.2 944501 3006 3.2 0.06 121

304 Y. Zhao et al.

times to 121 times compared with the CPU-based decoder. In another simula-
tion, we decode Code C at a Eb/N0 of 3.3 dB until 100 block errors are found.
The CPU-based decoder takes almost 170 hours (more than a week) to com-
plete the simulation while the GPU-based decoder takes only 1.6 hours. The
GPU-based decoder therefore shows a speedup improvement of over 100 times
compared with the CPU-based decoder.

6 Conclusion

In this paper, we have developed a GPU-based QC-LDPC decoder. To reduce
the memory access latency, we have designed efficient data structures to store
the messages passed between the variable nodes and check nodes. These data
structures allow coalesced memory access to the global memory. We have also
developed a highly data-parallel model to implement the BP decoding algorithm.
By using the shared memory more effectively, we reduce the frequency of access-
ing the global memory. Consequently, the decoding time is further reduced. The
proposed GPU-based decoder can decode QC-LDPC codes with long length and
high code rate. Besides, the decoder is flexible and scalable, and can be run on
the latest or even future GPUs which possess more hardware resources than the
current ones. Compared with the traditional CPU-based decoder, results show
that the proposed GPU-based decoder is about 100 times faster. A 170-hour
CPU-based simulation is now reduced to only 1.6 hours when a GPU-based
decoder is used.

Acknowledgements. The work described in this paper was partially supported
by a grant from Huawei Technologies Co. Ltd., China (Project No. H-ZG49).

References

1. The current generation CUDA architecture, code named fermi,
http://www.nvidia.com/object/fermi_architecture.html

2. Chen, J., Dholakia, A., Eleftheriou, E., Fossorier, M., Hu, X.: Reduced-Complexity
decoding of LDPC codes. IEEE Transactions on Communications 53(8), 1288–1299
(2005), doi:10.1109/TCOMM.2005.852852

3. Falcao, G., Silva, V., Sousa, L.: How GPUs can outperform ASICs for fast LDPC
decoding. In: Proceedings of the 23rd International Conference on Supercomputing,
pp. 390–399. ACM, Yorktown Heights (2009),
http://portal.acm.org/citation.cfm?id=1542275.1542330

4. Falcao, G., Sousa, L., Silva, V.: Massive parallel LDPC decoding on GPU. In:
Proceedings of the 13th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, pp. 83–90. ACM, Salt Lake City (2008),
http://portal.acm.org/citation.cfm?id=1345206.1345221

5. Fossorier, M.: Quasicyclic low-density parity-check codes from circulant permuta-
tion matrices. IEEE Transactions on Information Theory 50(8), 1788–1793 (2004),
doi:10.1109/TIT.2004.831841

6. Gallager, R.G.: Low-Density Parity-Check Codes. The MIT Press, Cambridge
(1963)

http://www.nvidia.com/object/fermi_architecture.html
http://portal.acm.org/citation.cfm?id=1542275.1542330
http://portal.acm.org/citation.cfm?id=1345206.1345221

Efficient Decoding of QC-LDPC Codes Using GPUs 305

7. Hu, X., Eleftheriou, E., Arnold, D., Dholakia, A.: Efficient implementations of the
sum-product algorithm for decoding LDPC codes. In: IEEE Global Telecommuni-
cations Conference, GLOBECOM 2001, vol. 2, p. 1036E (2001)

8. MacKay, D.: Good error-correcting codes based on very sparse matrices. IEEE
Transactions on Information Theory 45(2), 399–431 (1999)

9. Nvidia, C.: CUDA C best practices guide version 3.2. Tech. rep., NVIDIA Corpo-
ration (2010)

10. Richardson, T., Shokrollahi, M., Urbanke, R.: Design of capacity-approaching ir-
regular low-density parity-check codes. IEEE Transactions on Information The-
ory 47(2), 619–637 (2001)

11. Richardson, T., Urbanke, R.: Efficient encoding of low-density parity-check codes.
IEEE Transactions on Information Theory 47(2), 638–656 (2001)

12. Tam, W., Lau, F., Tse, C.: A class of QC-LDPC codes with low encoding com-
plexity and good error performance. IEEE Communications Letters 14(2), 169–171
(2010)

A Combined Arithmetic Logic Unit and Memory

Element for the Design of a Parallel Computer

Mohammed Ziaur Rahman

Dept. of Computer Science and Technology
University of Malaya, Kuala lumpur 50603, Malaysia

m.ziaur.rahman@ieee.org, ziaur@um.edu.my

Abstract. Memory-CPU single communication channel bottleneck of
the von Neumann architecture is quickly stalling the growth of computer
processors. A probable solution to this problem is to fuse processing and
memory elements. A simple low latency single on-chip memory and pro-
cessor cannot solve the problem as the fundamental channel bottleneck
will still be there due to the logical splitting of processor and memory.
This paper presents that a paradigm shift is possible by combining Arith-
metic logic unit and Random Access Memory (ARAM) elements at bit
level. This bit level modest ARAM is used to perform word level ALU
instructions with minor modifications. This makes the ARAM cells ca-
pable of executing instructions in parallel. It is also asynchronous and
hence reduces power consumption significantly. A CMOS implementa-
tion is presented that verifies the practicality of the proposed ARAM.

Keywords: Computer Architectures, Parallel Architectures, Memory
Architectures.

1 Introduction

Brains inspired and guided development of computers including von Neumann
computers which have seen a meteoric growth in the past half century. Though
the von Neumann architecture provided sufficient opportunity for growth, it is
still barely compatible with the abilities of human brains. The von Neumann
bottleneck is the single communication channel between memory and processor
as identified by Backus in his Turing award lecture [1]. Significant efforts were
put following Backus’ lecture to overcome this bottleneck. However, liberating
computing from von Neumann bottleneck still remains to be a far fetched goal.

On the other hand the bonanza of von Neumann computing was supported by
Moore’s law that predicts doubling the number of transistors every three years.
However, Moore’s law is about to come to an end as the size of transistors is
approaching molecular dimension. A paradigm shift is necessary if the computing
is to grow at similar pace. Similar conclusion is reached from Amdahl’s law. This
is also recognized by the industry and they shift their focus to multi-core instead
of furthering higher clock speed and instruction level parallelism [2].

The brain is a massively parallel system composed of low performance asyn-
chronous memory and processor cells often simply referred as memory cells.

Y. Xiang et al. (Eds.): ICA3PP 2011, Part I, LNCS 7016, pp. 306–317, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Design of a Combined ALU and Memory Element 307

Brain components or neurons operate at timescales of a milli-seconds or greater.
Biologically inspired computers try to achieve similar results with network pro-
cessors having asynchronous stimulous. However, the core processor architecture
remains unaltered [3].

The massive parallelism available in brain is recognized by early researchers
during 70s and the concept of logic-in-memory came into existence [4]. From
there-on, many different variants of logic-in-memory systems evolved. Computa-
tional RAM (CRAM) is one such system where elementary processing elements
are attached with each column of RAM blocks [5]. Similarly, Processor in Mem-
ory (PIM) arrays are constructed for building a Terasys workstation [6]. The
CRAM and PIM capabilities are quite limited as they integrate single bit pro-
cessors with memory columns. Harnessing the full processing capability requires
merger of individual bit operations which is quite expensive.

On the other hand, due to the advent of billion transistor era, it was con-
ceptualized that RAM can be integrated with processor in a single chip. Thus,
Intelligent RAM (IRAM) is proposed that merges a full processor with conven-
tional dynamic RAM (DRAM) in a chip [7]. It reduces memory access latency
and supports high bandwidth data access to the CPU. However the memory-
CPU logical division is still there and so the von Neumann bottleneck persists.

The present trend in high speed computing measured by the CPU clocks has
also reached to the level from where Amdahl’s law starts playing a significant
role e.g. not much gain is possible by simply increasing the clock rate. Therefore
the future lies with clock-less/asynchronous processors [8].

The asynchronous processors have the potential for construction of low power,
high-speed and reliable processors [8]. It can solve many problems of synchronous
circuits such as usage of worst-case clock cycle, global clock distribution, heat dis-
sipation and noisy behavior due to high interference from simultaneous
switching[9]. Moreover, asynchronous processors will also allow for modular cir-
cuit design as the individual components can be seamlessly integrated due to
the freedom from clock synchronization requirements [5].

On this background, we can summarize the design choices for a futuristic com-
puter architecture to mimic brain characteristics, e.g. it should be asynchronous
and should support cell-level parallel processing capabilities. It is a well paid
trade off to sacrifice individual processing speed for massive parallelism as evi-
dent from the biological example.

An asynchronous, parallel Arithmetic logic and Random Access Memory
(ARAM) element is presented here that follows above mentioned design choices.
A high-level diagram of an ARAM based computer is shown in Figure 1. A
number of ARAM cells are combined into a block having a control unit and a
floating point unit. The ARAM blocks are connected to a public bus available
across applications and individual application level private bus. The application
level private bus is actually a common bus that can be cut-off from another ap-
plication by using transmission gates in-between ARAM blocks. Due to fitting
of applications in a block of ARAM, some ARAM cells may remain unused as
highlighted. The first application should perform supervisory actions and hence

308 M.Z. Rahman

AM AM AM AM AM AM AM AMAMAM AM AM

Application 1
Scheduler Application 2 Application n

AM

AM

Private Data Bus

Public Data Bus

2-way Transmission

Used ARAM

Unused ARAM

Application

Control
Unit FP Unit Control

Unit FP Unit Control
Unit FP Unit Control

Unit FP Unit

Active Control &
FP Unit

Inactive Control &
FP Unit

Fig. 1. A High Level Block Diagram of combined ARAM

is mentioned as a scheduler that will allocate/free memories to/from applications
and supervise their execution. Some applications (e.g. Application 2 in Figure 1)
may be larger than a single ARAM block. They will be extended to adjacent
blocks, however only the controller and FP unit of the first block will be active
for these larger applications. The memory addressing will be relative for each
applications. However, a global addressing will also be active for sharing of data
among the applications. This will take place through a separate public bus as
shown in the figure.

The design works in truly parallel manner for independent memory elements
and unlike CRAM or PIM it incorporates full fledged word-level processing ca-
pability to memories. The memory element is static and hence there is no need to
refresh the memories optimizing power efficiency. As the instruction sets will be
memory-memory only it can significantly reduce number of instructions. Mem-
ory access instructions and cache mechanisms will no longer be required as it
will be immediate. The multi-threaded operations will be running truly concur-
rently as internally each thread will have their own processor and hence it is
not a conventional time-sharing architecture. The fundamental unit of this ar-
chitecture is an ARAM cell. The design of an ARAM cell will be shown to be a
quite simple one having regular architecture and linear interconnection and area
requirements. Thus, it will be quite practical to fabricate in a VLSI chip.

The remainder of the paper is organized as follows. Section 2 presents the
fundamental theoretical basis for combined ALU and RAM cell by the introduc-
tion of recursive Parallel Self-Timed Adder (PASTA) circuit. Section 3 discusses
the transition from PASTA to ARAM with detailed discussion on how a simple
adder can be utilized for general purpose ALU operations with very small in-
crease in control overhead. Section 4 provides CMOS implementation of a single

Design of a Combined ALU and Memory Element 309

MUX MUX

a0 b0Cin

0

MUX MUX

a1 b1

1 01

… … ...

MUX MUX

0 0Cn-1

n n

out

MUX MUX

an-1 bn-1Cn-2

n-1 n-1

Fig. 2. Architecture of PASTA

bit ARAM cell. A performance comparison of ARAM using SPEC2000 program
data is presented in Section 5. Finally, Section 6 draws some conclusions.

2 Theoretical Basis for Parallel Self-Timed Adder

The Asynchronous Arithmetic Logic Unit and Random Access Memory element
(ARAM) is based on recursive circuit of [10] which works in a different mode
than fundamental mode circuits or Muller circuits. The fundamental principle of
recursive Parallel Self-Timed Adder (PASTA) is briefly described here whereas
the complete details can be found in [10].

Let A = (an−1an−2 · · · a0)2 and B = (bn−1bn−2 · · · b0)2 be two n-bit binary
operands. The recursive formula for binary addition of A and B is presented as
follows.

Let Sj
i and Cj

i be the Sum and Carry respectively for ith bit at the jth

recursion. The initial condition for addition is formulated as follows:

S0
i = ai ⊕ bi .

C0
i = aibi .

(1)

The jth iteration for the recursive addition can be found as follows:

Sj
i = Sj−1

i ⊕ Cj−1
i−1 , 0 ≤ i < n . (2)

Cj
i = Sj−1

i Cj−1
i−1 , 0 ≤ i ≤ n . (3)

The recursion is terminated at the kth iteration when the following condition is
met.

Ck
nCk

n−1 · · ·Ck
0 = 0, 0 ≤ k ≤ n . (4)

The correctness and further analysis of the above recursive formulations is proved
in [10]. Its high-level architecture is shown in Figure 2.

The selection signal for 2 input multiplexers will be a single 0 to 1 transi-
tion denoted by SEL. It will initially select the actual inputs during “SEL = 0”
and will switch on to feedback/carry paths for subsequent iterations (SEL = 1).
The feedback paths enable the recursion to continue till the terminating condi-
tion is met. The terminating condition will trigger a signal (TERM) to go high

310 M.Z. Rahman

and hence will indicate completion of the current operation. PASTA is a log-
arithmic complexity adder without any lookahead/prefix computation schema.
This makes it quite fast even though its design is pretty simple. It also runs
in parallel for those number of bits that do not need any carry propagation.
The asynchronous operation ensures that it does not waste any time due to
synchronization.

The feedback path also makes PASTA a volatile memory element. As long as
the condition (SEL = 1) persists, the circuit remembers its present value. In the
next section we discuss how this gentle adder can be used to perform all kinds
of integer and logical operations.

3 Design of ARAM Memory-cum-Logic Units

PASTA was designed to act as an adder circuit. A key feature of PASTA archi-
tecture is the feedback path that gives it memorization capability. Thus, PASTA
can perform both as an adder and a memory element. However, the challenge re-
mains to integrate all other operations that a typical ALU performs. If the circuit
complexity increases significantly to implement the rest, it might be costly and
impractical. However, we will show that the same recursive adder can be used
to perform all integer and logical operations of an ALU. Only a small control
overhead will be involved to achieve this. In this section we will initially show
how the same recursive adder can be used to perform all integer and logical
operations of an ALU. Subsequently, we will discuss about the other category of
instructions i.e. memory access operations and control instructions. Finally we
will discuss about instruction cycles needed for execution of ARAM instructions.

3.1 Logical Operations

During the recursive phase, PASTA has two input signals that change the output
of the circuit. These are carry input (Cin) and the feedback input (Si). These
inputs are actually enabling the circuit to perform as an adder. An interesting
aspect of the architecture is that we can use other input values during the recur-
sive phase to perform different operations than simple addition. This is further
explained as follows.

Not Operation: This complementary output is immediately available from single
bit implementation of PASTA (Si).

Or Operation: Or is logically equivalent to Si = ai⊕bi⊕aibi e.g. Si = ai⊕bi⊕Ci.
Therefore if the feedback uses Ci, Si will hold the result of logical Or operation.
As the (Si, Ci) could not assume the value of (1,1) according to equations (2)
and (3) , the Ci during recursion will be zeroed and hence the operation will
successfully terminate.

And Operation: The implementation of AND operation is a bit tricky even
though it is directly computed by Ci during the initial phase. To retain log-
ical AND in the PASTA memory, the feedback is momentarily broken during

Design of a Combined ALU and Memory Element 311

recursive phase to pass Ci in place of Si while the carry input Cin will be held to
ground. As the Cin is held 0 current input conditions will cause Ci to change to
0. Therefore, to shield the output from present input value and to retain correct
AND output, the circuit will switch on to recursive mode as soon as Ci reaches
0 (indicating end of the AND operation). It is to be noted that due to the delay
calibration in PASTA the current change in input cannot affect the output and
hence it retains the previous stage AND value appropriately.

Xor Operation: As initially Si = ai ⊕ bi, the feedback will use GND during
recursive phase thereby retaining the Xor output. The GND signal will also
drive Ci to low value and recursion will be properly terminated.

Shift Left Logical: This functionality is provided by the fact that shift left is
indeed doubling the value. Therefore single bit shift left is performed by adding
the operand with itself.

Shift Right Logical: This functionality is performed by considering the fact that
right shift operation is the opposite of left shift. Conceptually, it is identical to
left shift with the position of the bits reveresed. Therefore, the carry outputs
from next bit is used instead of carry output from preceding bit as the carry
input in current bit adder. This will reverse the bit positions. The same operand
is once again applied to both ai and bi for right shift operation.

Shift Right Arithmetic: This functionality is performed similar to shift right
logical with the exception that Cin for the rightmost adder block is set to an−1.
Thereby, during recursive phase rightmost bit is properly set to 1 or 0 to perform
the sign extension.

Subtraction: Two’s complement subtraction is performed as usual for common
logic circuits by the equation A + B + 1. Therefore, to perform subtraction 1’s
complement of the 2nd operand is made available in the data bus while Cin for
the least significant adder block is set to 1.

3.2 Memory Access Operations

A key difference of ARAM is its independence from load-store requirements of
conventional processors. The central processing implies data must be transferred
to the CPU before an intended operation is performed. On the contrary, in
ARAM, processing instructions are made available to data cells for the desired
operation. Therefore, load-store instructions will not be required by ARAM.
Memory movement instructions, however will still be necessary. This is easily
realized by addition operation with one operand being the desired data to be
moved and the other being zero.

3.3 Control and Floating Point Operations

There will be a single control unit and Floating Point (FP) unit for a block of
memory. The control instructions will be performed by the control unit after in-
struction decoding for manipulation of Program Counter (PC) and Stack pointer

312 M.Z. Rahman

4

1 1

1 Load

22
6

5
4 1 Load

2 Conditional branch

3 Compare

8

6 3 Compare

4 Store

5 Add8 5 Add

6 And

2012
7 Sub

8 Move (register register)

16

9 Call

10 Return

Fig. 3. The average top 10 instructions of the five SPECint92 programs for 80x86 [2]

(SP). The FP unit will be similarly executing floating point instructions. As high-
lighted in Figure 3, simple instructions use 95% of the CPU time and therefore
separate floating point units will not become a bottleneck for program execution.

3.4 Instruction Cycles

The ALU in memory works in a radically different manner as it moves instruc-
tions to the data rather than making data available to the procecssing unit.
Thus it has distinct advantages for optimizing instruction execution cycles. In
this paradigm, the memory is accessible immediately and hence memory ac-
cess cycles are not required. Therefore, the classical five stage instruction cycles
composed of Instruction Fetch (IF), Decode (ID), Execute (EX), Memory Access
(MEM) and Write-Back (WB) can be reduced to three stage cycles of IF, ID
and EX only. This makes the programs executing faster than conventional com-
puters. Moreover, due to the avoidance of load-store instructions the programs
sizes reduces significantly making them further space and time efficient.

Though we compare ARAM with five stage instruction architectures in terms
of cycles, it should be noted that ARAM is asynchronous and synchronous clock
cycles are not a match for ARAM. The asynchronous cycles will be signalled
by completion signals and hence it will be different for different instructions
and will be faster than synchronous circuits which are adapted for worst case
intstruction cycles. The asynchrnous handshaking using completion detection is
also much simpler than micropipelines introduced by Sutherland [11]. However,
the complete discussion on this matter is out of scope for this paper due to space
limitations and present focus on ALU in RAM related discussions only.

However, this optimization will not be applicable for floating point instruc-
tions. The FP unit inside a memory block will perform floating point instructions
and for the moment we can consider them similar to current CPUs except that
due to their multiplicity with each memory units they will not have any costly
optimization. The three stage instruction cycles will not be applicable to float-
ing point routines and five cycle execution is considered in the later performance
analysis section.

Design of a Combined ALU and Memory Element 313

Overall, considering the chart in Figure 3, it is clear that simple instructions
account for most of the CPU time. Moreover, memory load accounts for 22% and
combined memory instructions (load, store, register-register mov) accounts for
46% or nearly half of all processing time. It is to be noted that though it is based
on integer SPEC-92 profiling, it is indeed representative for average integer and
floating point programs as evident in Section 5.

4 Implementation of ARAM

A Complementary Metal Oxide Semiconductor (CMOS) implementation of the
ARAM single bit cell is shown in Figure 4(a). The implementation is modified
from PASTA to perform all ALU operations as discussed in Section 3. The use
of additional multiplexer at the output (T3) ensures that input is available for
the proper duration with further explanation given in [10].

The termination signal (TERM) following equation (4) can be generated at
word level as shown in Figure 4(d). In addition to the Ci’s, the complement of
INP1 and INP2 signals are also AND-ed together in TERM to ensure that the
termination cannot be accidentally turned on during the initial input selection
phase.

Though TERM signal is the only block where as many as n + 4 interconnec-
tions are needed, it will not create any fan-in problem as all the connections are
parallel. It is also the reason to use inverted logic for Ci’s.

The total number of transistors for single bit ARAM cell is 43 without the
word level completion detection circuit. The TERM will be constructed for a
word of ARAM. Hence for a 64-bit word the total transistors needed is 2820
compared to 384 for a 6T static RAM cell. This is roughly seven times more
than usual SRAM cell. With the additional overhead for extra buses and control
and floating point units the number of transistor/interconnection requirement
will be similarly higher in ARAM. We expect it would not exceed more than ten
times than regular SRAMs. Thus a billion transistor cell can represent 16 MB
of memory compared to 166 MB in SRAMs.

5 Performance Evaluation

ARAM is an asynchronous, parallel logic and memory system and hence head-
to-head comparison with synchronous processors is not possible. Therefore, we
adopt the following strategies to create a fare and conservative comparison be-
tween these two.

1. Equal cycle duration: We assume asynchronous single task execution will
take same time as synchronous single clock cycle. It is to be noted that
asynchronous handshaking is very low overhead and hence single operation
execution will take nearly equal time the function will take for execution.

2. Single process execution: For the sake of benchmarking, we avoid compari-
son with parallel-processing available in ARAM. Thus, the benchmark will

314 M.Z. Rahman

SELECT

x

VDD

VDD

GND

INP1

I0
I1

x
SELECT

x

INP2

I0
I1

x
SELECT

x

I0
I1

x
SELECT

x

M1x0

x0

x0

x1

x1

x1

x0

x1

Si

x0

x0

x1

x1

M2

M3 M4

M5 M6

M7 M8

T1 T2

T3

AND

I0
I1

x

I2

Ci-1

Ci+1

GND

BitOp2BitOp1

Si

Si

Ci

I3

Ci

Data1

NOT

Row1, Col1
Row2, Col2

Row3, Col3

OUT1
OUT2
OUT3

Data1
 Data2

 Data3

Data2

BitOp2BitOp1

0 0
f

ADD
0 1 SHR
1 0 OR
1 1 XOR

T4

T4 Function Table

AND

NOT

(a)

0

1

(b)

0

1

0 1

i

1

2

3 4

(c)

VDD

M2

M6 Mn + 4. . .C0 M5M4 C1 Cn 1

TERM

M1
INP1

INP2

INP2INP1 M3

(d)

Fig. 4. CMOS Implementation of an ARAM cell. (a) Output unit, (b) 2× 1 MUX and
(c) Carry module for a single bit ARAM cell. (d) The completion detection unit for a
word.

Design of a Combined ALU and Memory Element 315

establish a minimum performance that could be reaped from ARAM by a
single process.

3. Pipelined and Non-pipelined ARAM: The pipelined execution ensures in-
struction availability at every cycle thereby improving throughput. How-
ever, it needs branch predictions module in the controller that is going to
increase complexity of the design. For, low-cost embedded solutions branch
predictions and pipelining might not be required.

4. Floating point operation cycles: Floating point operations are assumed to
take equal cycles as of synchronous processors as it is logically separate in
the present design. Hence, 5 cycles are assumed for non-pipelined execution
and 2.5 cycles are assumed for pipelined execution.

The Standard Performance Evaluation Corporation (SPEC) CPU2000 bench-
marking programs are analysed for MIPS performance and the % running pro-
files for different instructions are listed in [2]. An average case integer instruction
uses 1.54 cycles and floating point instruction uses 2.48 cycles for the CPU2000
programs in the mentioned MIPS machine. Using these data total cycles re-
quired per 1000 MIPS instructions and its equivalent for ARAM are computed
following the above mentioned comparison strategies .

The instruction profile comparison and relative performance of MIPS and
ARAM are depicted in Figures 5 and 6. As clarified before, the CPU-memory
bottleneck causes current processors to spend most of the time in memory re-
lated load-store type instructions. This is evident in Figure 5. The gain achieved
by avoiding memory-access cycles is quite significant. For example perlbmk in-
teger benchmark program achieves 10% performance improvement in ARAM
even without any pipelining. On the other hand, with pipelining significant im-
provement is observed in ARAM. The minimum % improvement is 50% with
pipelining while it reaches upto 66% for perlbmk.

Similar trend is observed in floating point benchmark programs with the ex-
ception that the performance improvement is lesser than integer benchmark
programs. This is expected as the FP unit cannot totally avoid load-store in-
structions. In most of the benchmark applications load-FP dominates as the top
overhead nearly equal or greater than ’Add’ instruction. ’Add-FP’, ’store-FP’
and ’Mul-FP’ are the next three expensive floating point operations. Overall
floating point applications will not enjoy equal performance gain as of integer
applications. Nevertheless, with pipelining enabled they can run at least equally
or 25% faster on ARAM.

The above benchmark results are obtained with the conservative assumptions
by not considering any parallelism or clock-cycle reduction due to asynchronous
execution. Even then, the results show that ARAM can run applications much
faster when pipelining is employed. However, the major benefit that ARAM
will bring is parallel execution of separate data-independent processes which is
totally omitted in this analysis. Therefore, the actual performance improvement
by ARAM will be a multiple of the results presented here.

316 M.Z. Rahman

2500

ns

other logical

xor
2000

0
In

st
ru

ct
io xor

or

and

shift
1500

es
pe

r
10

00

shift

return

call

jump

500

1000

m
be

r
of

Cy
cl

jump

cond move

cond branch

load imm

0

500

N
um compare

mul

sub0

add

store

load

4000

4500
other FP

cond mov FP

compare FP

mov reg reg FP

3000

3500

uc
ti

on
s

g g

divFP

mulFP

subFP

addFP

t FP

2500

es
pe

r
10

00
In

st
ru store FP

load FP

other logical

xor

or

1500

2000

N
um

be
r

of
Cy

cl
e

and

shift

return

call

jump

500

1000

jump

cond mov

cond branch

load imm

compare

0

mul

sub

add

store

loadload

Fig. 5. (a) Distribution of integer instructions and (b) distribution of floating point
instructions for MIPS, ARAM-pipelined (y) and ARAM-non-pipelined (n) machines

100
With Pipeline

80

100
Without Pipeline

nc
e

60

rf
or

m
an

20

40

ge
in

Pe

0

20

%
Ch

an
g

40

20

40
gap gcc gzip mcf perlbmk Int. Avg.

(a)

40
With Pipeline

Without Pipeline

0

20
Without Pipeline

nc
e

40

20

0

er
fo

rm
an

60

40

ng
e

in
Pe

100

80

%
Ch

an

140

120

applu art equake lucas swim FP. Avg.

(b)

Fig. 6. Performance comparison of MIPS, ARAM-pipelined and ARAM-non-pipelined
architectures. Figure (a) shows integer and (b) shows floating point benchmark appli-
cation performances.

Design of a Combined ALU and Memory Element 317

6 Conclusion

An asynchronous combined Arithmetic Logic Unit and Random Access Mem-
ory (ARAM) element is presented based on parallel self-timed adder. It is also
presented that all integer arithmetic and logical operations can be performed by
this single adder element. It is not merely a bit-level processing element rather
a word level complete ALU. Thus it supports parallel execution of individual
processes located in separate memory blocks. The CMOS implementation veri-
fied the practicality of the proposed architecture. Though it will consume more
transistors per bit of memory, it is not impractical as the required number of
transistors is still less than 50 supporting a regular layout. The proposed archi-
tecture effectively overcomes the fundamental memory-CPU channel bottleneck
of von Neumann architecture and is a step closer towards biological brains.

References

1. Backus, J.: Can programming be liberated from the von neumann style? a func-
tional style and its algebra of programs. Communications of the ACM 21(8), 613–
641 (1978)

2. Hennessy, J.L., Patterson, D.A.: Computer Architecture: A Quantitative Ap-
proach. Morgan Kaufmann, San Francisco (1990)

3. Furber, S., Brown, A.: Biologically-inspired massively-parallel architectures - com-
puting beyond a million processors. In: International Conference on Application of
Concurrency to System Design, pp. 3–12 (2009)

4. Stone, H.S.: A logic-in-memory computer. IEEE Transactions on Computers, 73–78
(January 1970)

5. Elliott, D.G.: Computational RAM: A memory-SIMD Hybrid. PhD thesis, Univer-
sity of Toronto, Pasadena, California (December 1997)

6. Gokhale, M., Holmes, B., Iobst, K.: Processing in memory: The terasys massively
parallel PIM array. IEEE Computer, 22–31 (April 1995)

7. Patterson, D., Anderson, T., Cardwell, N., Fromm, R., Keeton, K., Kozyrakis, C.,
Thomas, R., Yelick, K.: A case for intelligent ram. IEEE Micro, 34–44 (April 1997)

8. Geer, D.: Is it time for clockless chips? IEEE Computer, 18–19 (March 2005)
9. Paver, N.C.: The design and implementation of an asynchronous microprocessor.

PhD thesis, University of Manchester (1994)
10. Rahman, M.Z.: A recursive approach to the design of parallel self-timed adders.

University of Malaya, Tech. Rep. (2010),
http://web.fsktm.um.edu.my/~zia/TR/PASTA-TR-2010.PDF

11. Sutherland, I.E.: Micropipelines. Communications of ACM 32(6), 720–738 (1989)

http://web.fsktm.um.edu.my/~zia/TR/PASTA-TR-2010.PDF

Y. Xiang et al. (Eds.): ICA3PP 2011, Part I, LNCS 7016, pp. 318–325, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Parallel Implementation of External Sort and
Join Operations on a Multi-core Network-Optimized

System on a Chip

Elahe Khorasani, Brent D. Paulovicks, Vadim Sheinin, and Hangu Yeo

IBM T. J. Watson Research Center
Yorktown Heights, NY 10598, U. S. A.

{elkh,ovicks,vadims,hangu}@us.ibm.com

Abstract. In a commercial Relational Database Management System (RDBMS),
sort and join are the most demanding operations, and it is quite beneficial to im-
prove the performance of external sort and external join algorithms that handle
large input data sizes. This paper proposes parallel implementations of multi-
threaded external sort and external hash join algorithms to accelerate IBM DB2,
one of leading RDBMSs, using an IBM Power Edge of Network (IBM Powe-
rENTM) Peripheral Component Interconnect Express (PCIe) card as an accelera-
tor. The preliminary results show that the proposed parallel implementation of
the algorithms on PowerENTM PCIe card can speed up the DB2 sort and join per-
formance about two times.

Keywords: Sort, Join, Relational Database.

1 Introduction

The RDBMS now form the majority of database management systems. The RDBMS
stores data in the form of a table, and the related data are stored across multiple tables.
Each row of the table is called a record, and each record contains fields which are
columns of the table. A key can be an individual column or a group of columns within
a record and used as a logical way to identify and access a record in a table. The sort
and join operations are classic standard relational database operations, and are the
most demanding operations of RDBMS for building indexes, binary searches, group-
ing, aggregation, etc, and hence obviously it is beneficial to improve performance of
those operators. There have been efforts to implement parallel versions of sort algo-
rithm using multi-core single instruction multiple data (SIMD) processors or hard-
ware accelerators such as graphics processing units (GPUs) [1]-[5]. There also have
been considerable studies on parallel join algorithm, and parallelism was easily ex-
ploited for the high performance hash join operation [6]-[9].

Although a single pass in-memory sort or join operations are the fastest, but not
always the fastest one with limited resources (limited main memory size). To handle
huge input data size, multi-pass operations are more appropriate. External sort algo-
rithm is applicable when the data to be sorted is too large to fit in the primary memo-
ry, and external merge sort is one of the most popular algorithms [10]. Hash join

 Parallel Implementation of External Sort and Join Operations 319

algorithm is commonly used in database systems to implement equijoins efficiently.
In an equijoin operation, equality is an operator to compare key values from two input
tables to generate pairs of matching records. The hybrid hash join algorithm [11] is an
external join operation developed to handle the case where the input tables are too big
to be stored in the available main memory.

The PowerENTM chip [12] is a network-optimized processor system on a chip de-
veloped by IBM. The chip consists of four A2 chiplets where each chiplet has four
64-bit embedded PowerPC A2 cores and 2 MB shared eDRAM L2 cache (8 MB L2
cache per chip), two memory controllers, four 10 GE Ethernet interfaces and five
acceleration engines. Each core supports four hardware threads (sixty four total
threads per chip) which share L1 and L2 caches, and provides memory management
unit (MMU) and separate instruction and data cache controllers and arrays. The five
acceleration engines include Host Ethernet acceleration for network protocol
processing, Compression/Decompression engine, Cryptographic coprocessor, Extens-
ible Markup Language (XML) engine and Regular Expression/Pattern-matching en-
gine. The compression engine works as a coprocessor to the A2 core, and uses Lem-
pel-Ziv (LZ77) compression followed by the Huffman Coding. The compression en-
gine runs at 10 Gbps with the compression ratio between two and five when tested
with various TPC-H tables. The PowerENTM PCIe card is an integrated board design
based on PowerENTM chip intended to be used for software developer platform, and
IBM System X3650 M2 is used as a host for the card.

In this paper, we implemented efficient parallel external sort algorithm and parallel
external hash join algorithm designed to accelerate the performance of DB2 in the
area of external sort and external hash join operations by taking advantage of the fea-
tures of PowerENTM chip. The DB2 code is altered so that the input records are inter-
cepted to feed the sort and hash join processes that runs on an external multi-core
accelerator, where they are implemented in a highly parallel manner and the results
are returned to DB2. Since the speed of a single threaded external sort or join process
is mainly limited by the speed of the processor and speed of data transfer rate to the
external disk, the implemented algorithms are mainly designed to take advantages of
multi-threaded execution, compression and decompression units and 10 GE Ethernet
interfaces.

2 Algorithm Implementation

The external sort and hybrid hash join algorithms are implemented in two passes, and
each pass is implemented using multiple threads to take advantages of multi-core
designs and parallelism at the chip level. The sort and join requests are made by the
sort or join client (DB2), and the records are streamed from DB2 to the accelerator
(PowerENtM PCIe card) through 10 GE interface. The acceleration unit stores records
on the file server after the first pass of the operation through 10 GE interface, and
reads back the records when the second pass of the operation starts. Both the DB2 and
file server are integrated on IBM System X3650 M2 with two Intel Xeon 5500 (Neha-
lem) processors (x3650). The diagram of the implementation is depicted in Figure 1.

320 E. Khorasani et al.

DB2

1) Records

3) Retrieve data

2) Store data

4) Records

File Server

10 GE

Accelerator

Merge Runs /
Join Tables

Sort Runs /
Hash Records

IBM x3650 M2

IBM x3650 M2 (compressed)

(decompressed)

PowerEnTM

DB2

1) Records

3) Retrieve data

2) Store data

4) Records

File Server

10 GE

Accelerator

Merge Runs /
Join Tables

Sort Runs /
Hash Records

IBM x3650 M2

IBM x3650 M2 (compressed)

(decompressed)

PowerEnTM

Fig. 1. Overview of external sort and join implementation

2.1 External Sort Algorithm Implementation

The external sort algorithm is implemented based on the quick sort and merge algo-
rithm. The quick sort algorithm is considered to be one of the simplest and fastest
algorithms, and the algorithm uses a divide-and-conquer method to sort data. The
records to be sorted is segmented into two segments by choosing a comparison ele-
ment (pivot value) so that all records whose key values are less than the pivot value is
assigned to the first segment, and all records whose key values are greater than the
pivot value is assigned to the second segment. The two segments are further seg-
mented recursively using the same procedure until each segment consists of a single
record only. The quick sort algorithm does not perform well when there is huge dis-
crepancy in size between the two newly created segments, and it is important that
each step produces two segments of equal size.

During the first pass, the input records are sent to the accelerator and collected se-
quentially into run buffers allocated in the main memory (typical run buffer size is
512 MB), and the run buffers are sorted concurrently. When each run buffer has
enough records and is ready to be sorted, each run is split into sixteen short, fixed-
length segments sub-runs (32 MB). The sub-runs contain a “sort” record generated
from each input record. Unlike the input record which might be variable length, a
“sort” record is fixed length (multiple of eight bytes in length), and the key values
(possibly multiple keys) are extracted from the input record and translated from float-
ing point, character, decimal, etc values into unsigned integer values and packed into
the sort record. Each sub-run is then quick sorted in parallel by sixteen threads, and
the sixteen sub-runs are merged in parallel by sixteen threads. Using the pointers in
the “sort” records, the Asynchronous Data Mover (ADM), which is one of accelera-
tors on PowerENTM, is used to reorder the original input records into output buffers.

 Parallel Implementation of External Sort and Join Operations 321

The output buffers are passed to the compression engine, and the compressed buffers
are written to the file server. During the second pass, all the runs are retrieved from
the file server and merged. First, the first buffer (64 KB) from each run is read into
memory, and each buffer is passed to the decompression engine. After the decom-
pression is done, the last record in each buffer is examined and the smallest key value
is determined. All the buffers are merged in parallel into a single (sorted) intermediate
buffer. The intermediate buffers are now merged up to the smallest key value found,
and the merged records are returned to the client. The aforementioned process of read
and merge buffers from each run is repeated until the runs are exhausted.

2.2 External Hash Join Algorithm Implementation

The external join algorithm implementation is based on the hybrid hash join algo-
rithm, and partitions input tables to accommodate small memory size. During the first
pass, the input records are sent to the accelerator from a join client. Two different join
clients (a record generator and DB2) are implemented to request join operations and
to stream input records to the join server. For example, the record generator generates
TPC-H tables and streams input records through the 10 GE interface to the join server
implemented on the accelerator, and receives matched records returned by the join
server when the join operation is completed. On the join server, the records streamed
from the join client are collected in hash buffers allocated in the main memory, mul-
tiple threads are implemented to hash the records collected in the hash buffers into a
number of partitions concurrently. The number of partitions is pre-estimated using the
estimated number of build records and estimated size of the records provided by the
join client. Unlike external sort, the join algorithm uses two input tables (build table
and probe table) to join, and each input table is partitioned into the same number of
disjoint partitions using the same hash function one after another. The hash function
converts variable length character strings or four byte key values into four byte hash
codes, and records having hash codes within the same range are partitioned to the
same partition. It was tested and confirmed that the records are uniformly distributed
across the number of partitions. Unbalanced record distribution across the partitions
may diminish the performance of parallelized join operation. The hashed records are
sent to one of output buffers allocated based on the partition number, and the hashed
records are passed to the compression engine when each output buffer is filled with
hashed records. The compressed records are streamed to the file server and temporari-
ly stored until the second pass starts. During the second pass, pairs of partitioned files
(one build partition and one probe partition) are read from the file server to the accele-
rator, decompressed and loaded into the main memory. After a pair of partition is
loaded into the main memory, each partition is sub-partitioned into the same number
of disjoint sub-partitions using a hash function and the smaller sub-partitions are
joined in parallel using multiple threads independently. While hashing a build parti-
tion into sub-partitions, multiple threads creates hash tables (one hash table for each
sub-partition) in the main memory concurrently, and the hash tables are probed con-
currently using multiple threads. Since the hashed records are uniformly distributed

322 E. Khorasani et al.

across number of sub-partitions, the workloads to join each pair of sub-partitions are
evenly distributed among all engaged threads. The joining process of a pair of parti-
tions is repeated until all the partitions are exhausted on the file server.

To reduce the amount of records stored on the file server, during the first pass,
Bloom filter is built while hashing the build records. The Bloom filter is a bit filter
representation of the set of keys which can be queried to check if a key is present. The
corresponding bit for hashed joining key value of record is set while hashing each
build record. Then while hashing probe records, the joining key is hashed using the
same set of hash functions, and the filter is checked to see whether the corresponding
bit was set. Use of Bloom filter reduces the amount of records stored on the file server
and reduces “hash probe” time dramatically.

2.3 DB2 Sort and Hash Join Accelerator

Sort and Hash Join are high demanding processes in terms of resources, and accelerat-
ing them will improve the overall performance of DB2. In our implementation the
DB2 code is altered to export the sort and hash join processes to an external multi-
core accelerator, where they are implemented in a highly parallel manner and the
results are returned to DB2. The DB2’s internal sort (SORT) and hash join (HSJN)
implementations are bypassed. The SORT and HSJN processes are intercepted and
the data flow is directed to and from the accelerator. The changes to the DB2 code are
limited to the SORT and HSJN components and do not affect the rest of DB2. The
interface between the DB2 and the Accelerator is implemented in a shared library.

In the SORT process, the “insert” phase is intercepted and the record data is di-
rected to the accelerator instead of the DB2 routine. When all the data is sent, the
“fetch” routine is intercepted and sorted records are retrieved from the external acce-
lerator instead of the internal buffers that are managed by DB2. Because there is no
sorting or merging in DB2, memory allocation, and managing of temporary tables are
all bypassed. In the HSJN process, the routines that manage build and probe tables
are intercepted and the records for both tables are sent to the accelerator. There is no
intermediate retrieval of matched records from the accelerator. After the last row of
the probe table is sent, and the hash join process is completed by the accelerator, all of
the matched records are retrieved. Similar to the sort process, because DB2 does not
implement the hash join process there is no memory management or temporary stor-
ing of spilled records. Processing of the input table records and returning the results to
the client are not affected.

3 Simulation Results

The simulation results of external sort and hybrid hash join algorithms are compared
in Table 1 - Table 4. Table 1 shows the scalability behavior of the multithreaded ex-
ternal sort algorithm implemented on PowerENTM PCIe card when the number of
threads increases. The relative execution times of sort and merge phases are compared
using up to 32 threads. Table 2 compares performance (sort rate) of external sort algo-
rithm on DB2 and PowerENTM PCIe card. The DB2 uses software compression and

 Parallel Implementation of External Sort and Join Operations 323

the accelerator uses hardware coprocessor to compress/uncompress data. Performance
was measured in number of bytes sorted per second, and relative sort performance is
listed in the table. The results show that the accelerator sorts the input records two
times faster than DB2 sort using a single sort instance. When multiple simultaneous
sort requests are made to the accelerator running multiple concurrent sort instances on
the accelerator, each sort operation finishes each sort request and the aggregated sort
rate measured was about seven times faster than DB2 single sort rate (RDB2) when the
number of sort requests form the client was four. Table 3 compares performance of
external join algorithm executed on the join accelerator using various numbers of
threads. Input table sizes of 26 GB and 30 GB are used for build and probe tables
respectively. The “hash build” is an execution time (TB) to map build records into
number of partitions, and the “hash probe” is an execution time (TP) to map probe
records into the same number of partitions as build partitions. A record generator was
implemented on IBM System X3650 M2 and was used as a join client that requests
external join operation. This implementation is to test the scalability behavior of mul-
tithreaded hash join algorithm when the number of threads increases. The test results
show that most of the speedup is obtained during the second pass for the actual join
process (TJ) which includes both build and probe phases using multiple threads. The
first pass (especially TP) does not scale well as the number of thread increases com-
pared to the second pass. This is not surprising since bloom filter pre-filters out un-
matched probe records without storing the records on the file server to optimize the
first pass of the external hash join operation. Since there were only small number of
matching records between the two input tables (less than one percent of the probe
records were having matching records in the build table), most of the records were
dropped without being stored on the file server and the amount of records stored on
the file server was reduced dramatically. The actual hash probe execution time (TP)
mainly composed of time to receive the input table from the join client, and remains
same regardless of the number of threads being used. Table 4 indicates comparison of
relative performance of DB2 hash join operation without using an acceleration unit
and external join operation being executed on PowerENTM PCIe card. The join server
implemented on the PowerENTM PCIe card uses hardware compression and decom-
pression coprocessors to reduce data size stored on the file server. The test results
show that DB2 hash join operation was accelerated by a factor of two by offloading
the hash join operation to the PowerENTM PCIe card as an accelerator.

Table 1. Test results of external sort algorithm (sort and merge phases) using different number
of threads. TS and TM are execution times measured for each phase using a single thread.

Number of Threads Sort Phase Merge Phase
1 TS TM
2 0.5 x TS 0.5 x TM
4 0.25 x TS 0.26 x TM
8 0.13 x TS 0.13 x TM
16 0.1 x TS 0.07 x TM
32 0.07 x TS 0.05 x TM

324 E. Khorasani et al.

Table 2. Comparison of external sort performance (DB2 vs. accelerator). RDB2 is a sort rate
measured on DB2 without acceleration unit. The compression was turned on both DB2 and
PowerENTM.

Sort Client Sort Accelerator # Sort Requests Sort Rate
DB2 None 1 RDB2
DB2 PowerENTM 1 2.11 x RDB2
DB2 PowerENTM 4 7.22 x RDB2

Table 3. Test results of external join algorithm using different number of threads. TB, TP, TJ
and TTotal are execution times measured for each module using a single thread. TJ includes
execution time for build and probe phase.

Threads Hash Build Hash Probe Join Total
1 TB TP TJ TTotal
2 0.92 x TB 0.93 x TP 0.7 x TJ 0.82 x TTotal
4 0.77 x TB 0.92 x TP 0.36 x TJ 0.59 x TTotal
8 0.64 x TB 0.92 x TP 0.18 x TJ 0.45 x TTotal

16 0.5 x TB 0.88 x TP 0.1 x TJ 0.35 x TTotal
32 0.23 x TB 0.92 x TP 0.05 x TJ 0.22 x TTotal

Table 4. Simulation results comparison of external join algorithm. TPowerEN is total join execu-
tion time measured on PowerENTM.

Join Client Join Accelerator Compression Total Join Time
DB2 PowerENTM Hardware TPowerEN
DB2 None Software 1.89 x TPowerEN

4 Conclusion

The goal of the work was to accelerate DB2 external sort and hash join operations
which cannot be processed using an operation of a single pass due to limitations on
resources (main memory size) to hold the huge input tables. The work was focused on
efficient parallel implementations of external sort and external hash join algorithms
that can execute parallelized operations concurrently as well as alleviate data transfer
overhead created by an operation of multiples pass. An IBM PowerENTM PCIe card
was used as an accelerator, and the acceleration unit was integrated with a host ma-
chine running DB2 as a client. Our experimental results demonstrate that the perfor-
mance of individual phase of external sort and external hash join algorithms scales
really well in the presence of multiple threads. Although the performance improve-
ment of overall external sort and external hash join operation is little bit shy of that of
individual phase due to an overhead, it can be conclude that stand alone external sort
and hash join algorithms are good candidates to be offloaded to the accelerator and
achieve almost by a factor of two acceleration of the DB2 performance with the help
of compression and decompression engine in conjunction with parallel implementa-
tion of the algorithms.

 Parallel Implementation of External Sort and Join Operations 325

References

1. Arefin, A.S., Hasan, M.A.: An Improvement of Bitonic Sorting for Parallel Computing.
In: Proceedings of the 9th WSEAS International Conference on Distributed Computing,
Athens, Greece (2005)

2. Chhugani, J., Nguyen, A.D., Lee, V.W., Macy, W., Hagog, M., Chen, Y.K., Baransi, A.,
Kumar, S., Dubey, P.: Efficient Implementation of Sorting on Multi-core SIMD CPU ar-
chitecture. In: Proceedings of the VLDB Endowment, pp. 1313–1314 (2008)

3. Ramprasad, N., Baruah, P.K.: Radix Sort on the Cell Broadband Engine. In: International
Conference on High Performance Computing, HiPC (2007)

4. Zagha, M., Blelloch, G.E.: Radix Sort for Vector Multiprocessors. In: Proceedings Super-
computing, pp. 712–721 (1991)

5. Satish, N., Harris, M., Garland, M.: Designing Efficient Sorting Algorithms for Manycore
GPUs. In: The 23rd IEEE Internal Parallel and Distributed Processing Symposium, pp. 1–
10 (2009)

6. Azadegan, S., Tripathi, A.: A Parallel Join Algorithm for SIMD Architectures. Journal of
Systems and Software, 265–280 (1997)

7. Lu, H., Tan, K.L., Sahn, M.C.: Hash-based Join Algorithms for Multiprocessor Computers
with Shared Memory. In: Proceedings of the Sixteenth International Conference on Very
Large Database (1990)

8. Garcia, P., Korth, H.F.: Database Hash-Join Algorithms on Multithreaded Computer Ar-
chitectures. In: Proceedings of the third Conference on Computing Frontiers (2006)

9. Martin, T.P., Larson, P.A., Deshpande, V.: Parallel Hash-Based Join Algorithms for a
Shared-Everything Environment. IEEE Transactions on Knowledge and Data Engineer-
ing 6 (1994)

10. Knuth, D.E.: The Art of Computer Programming. Sorting and Searching, vol. 3. Addison-
Wesley, Reading (1973)

11. Dewitt, D.J., Katz, R.H., Olken, F., Shapiro, L.D., Stonebraker, M.R., Wood, D.A.: Im-
plementation Techniques for Main Memory Database Systems. Proceedings of the 1984
ACM SIGMOD International Conference on Management of Data 14 (1984)

12. LaPotin, D.P., Daijavad, S., Johnson, C.L., Hunter, S.W., Ishizaki, K., Franke, H.,
Achilles, H.D., Dumarot, D.P., Greco, N.A., Davari, B.: Workload and Network-
Optimized Computing Systems. IBM Journal of Research and Development 54(1) (2010)

STM with Transparent API Considered Harmful

Fernando Miguel Carvalho1,2,� and Joao Cachopo2

1 DEETC, ISEL/Polytechnic Institute of Lisbon, Portugal
mcarvalho@cc.isel.ipl.pt

2 INESC-ID/Technical University of Lisbon, Portugal
joao.cachopo@ist.utl.pt

Abstract. One of the key selling points of Software Transactional Mem-
ory (STM) systems is that they simplify the development of concurrent
programs, because programmers do not have to be concerned with which
objects are accessed concurrently. Instead, they just have to say which
operations are to be executed atomically. Yet, one of the consequences
of making an STM completely transparent to the programmer is that it
may incur in large overheads.

In this paper, we describe a port to Java of the WormBench bench-
mark, and use it to explore the effects on performance of relaxing the
transparency of an STM. To that end, we implemented, in a well known
STM framework (Deuce), a couple of annotations that allow program-
mers to specify that certain objects or fields of objects should not be
transactified. Our results show that we get an improvement of up to 22-
fold in the performance of the benchmark when we tell the STM frame-
work which data is not transactional, and that the performance of the
improved version is as good as or better than a fine-grained lock-based
approach.

Keywords: Transactional Memory, Benchmark, Performance.

1 Introduction

The lack of realistic benchmarks is one of the factors that has been hampering
the development, testing, and acceptance of Software Transactional Memory
(STM) systems. Many of the developments made on STMs are evaluated on
micro-benchmarks [8], [10], [14] and [16], which are fairly often criticized in
some publications, such as [7]) that question the usefulness of STMs, given their
lack of demonstrable applicability to real-world problems.

On the other hand, applying STMs to larger, more realistic benchmarks, such
as the STMBench7 [12] and the Lee-TM [2] benchmarks, typically shows very
large overheads when compared to the single-threaded sequential version of the
benchmark. These overheads are often attributed to the over-instrumentation
made on these benchmarks by overzealous STM engines that protect each and
every memory access with a barrier that calls back to the STM runtime engine [9].
� This work was supported by FCT (INESC-IDmultiannual funding) through the PID-
DAC Program funds and by the RuLAM project (PTDC/EIA-EIA/108240/2008).

Y. Xiang et al. (Eds.): ICA3PP 2011, Part I, LNCS 7016, pp. 326–337, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

STM with Transparent API Considered Harmful 327

In this paper we tackle both of these problems. First, we describe a port
that we made of the WormBench benchmark [18], from C# to Java. This port
extends the original benchmark in several ways, making it more useful as a
testbed for evaluating STMs. Moreover, our port, which we called JWormBench,
was designed to be easily extensible and to allow easy integration with different
STMs.

The second contribution of this paper addresses the second problem by explor-
ing an extension of Deuce [15] that allows programmers to add annotations to
their programs specifying that certain objects or fields of objects are not shared
among threads, and, therefore, do not need to be instrumented in the same way
as are shared data under the control of the STM, which incur in large overheads.

This contrasts with the generally accepted idea that STMs should be
completely transparent, meaning that programmers just need to specify which
operations are atomic, without knowing which data is accessed within those op-
erations. That is the approach taken by Deuce, which provides a simple API
based on an @Atomic annotation to mark methods that must have a transac-
tional behavior.

Whereas ideally that would be the expected API for an STM, in practice
that proves lead to unacceptable overheads. So, in this paper we claim that
STMs with transparent APIs are harmful, and that, instead, programmers should
have some degree of control on what gets transactified. To show the benefits of
this, we used the JWormBench to evaluate the performance of Deuce with and
without programmer annotations and show a speedup of up to 22-fold, making
the optimized version on par with a very fine-grained lock-based scheme.

In the following section we identify the set of characteristics that we would
like to have in a good benchmark for an STM system, and discuss to what
extent some of the existing benchmarks satisfy those requirements. Then, in
Section 3, we describe in more detail the WormBench benchmark, and the main
differences introduced in our port of that benchmark to Java, which we called
JWormBench. This new benchmark was used to evaluate the performance of
Deuce, and in Section 4 we describe in which tasks the JWormBench operations
instrumented by Deuce spend most of their time and how the new proposed
API for Deuce can reduce some of that time. Section 5 describes the tested
configurations of JWormBench and presents a performance evaluation. Section 6
provides a discussion on alternative approaches to the new API proposed for
Deuce. Finally, in Section 7, we conclude with a discussion of our approach and
results.

2 Benchmarks for STMs

Benchmarks are essential to test and to compare transactional memory (TM)
systems. But, as realistic benchmarks are scarce, TM implementers often re-
sort to micro-benchmarks, which are typically too simple to test their systems
properly, leading to fair skepticism about the relevance of their results and the
applicability of their approaches. Thus, the TM research community is in dire
need of good, realistic benchmarks. But, what makes a benchmark good?

328 F.M. Carvalho and J. Cachopo

Harmanci et al. [13] distinguish two kinds of experimental evaluations for
transactional memory (TM) systems: performance evaluation and semantics
evaluation (debugging/testing/verification). Naturally, a good benchmark should
allow both types of evaluation. On the other hand, Ansari et al. [2] argue that
a TM benchmark should have as desirable features: large amounts of potential
parallelism; several types of transactions; complex contention; and transactions
with a wide range of durations (transaction length) and amount of data accesses
(transaction size).

To the above requirements, we add that a good benchmark should: (1) be flex-
ible enough to allow the integration of new synchronization mechanisms without
requiring changes to its source-code; (2) provide a synchronization mechanism
based on fine-grained locking approach, which may present a good performance
and serves as a reference to achieve by other synchronizations mechanisms and
(3) provide a verification test to validate the semantics of the STM and if the
overall consistency of the benchmark was not broken by any erroneous synchro-
nization.

To address the lack of realistic benchmarks for TM systems, Guerraoui et al.
[12] introduced the STMBench7 benchmark: a benchmark for performance evalu-
ation implemented in Java that models a realistic large scale CAD/CAM applica-
tion. Typically, STMBench7 operations focus on object manipulation and there
are no tasks that apply mathematical functions with different degrees of com-
plexity as exist in other benchmarks, such as STAMP [5] and WormBench [18].
Furthermore, it does not provide a correctness test that is able to verify if an
execution has produced correct results.

STAMP is a benchmark suite that attempts to represent real-world workloads
in eight different applications. Unlike STMBench7, the STAMP applications are
configurable and allow us to vary the level of contention, size of transactions, the
percentage of writes, among other parameters. But this benchmark has several
drawbacks also. First, not all applications make semantic evaluations of the
tested STMs. Second, it is not easy to integrate STAMP applications with some
STM algorithms, such as DSTM[14] and JVSTM[4], because it requires us to
modify its source code and change the type of all memory locations accessed by
a transaction.

In the Java world, LeeTM [2] is an alternative to STMBench7 and it has
many of the desirable properties of an STM benchmark: it is based on a real-
world application and provides a wide range of transaction durations and sizes.
The LeeTM also provides a verifier that validates the correct consistency of the
final data structure. One of the limitations of the LeeTM benchmark, however,
is that it does not allow extending it to new kinds of operations and research
variations of its contention scenarios. Furthermore, there is no possibility of
varying the read/write ratio of the benchmark, because all of the transactions
write something, unlike most applications.

WormBench [18] is a configurable transactional C# application that was de-
signed to evaluate the performance and correctness of TM systems. The idea
behind WormBench is inspired in the Snake game, but in this case the snakes are

STM with Transparent API Considered Harmful 329

worms moving and performing worm operations in a shared world. The Worm-
Bench shares all the benefits of LeeTM, such as providing a verifier algorithm
(correctness test) and a wide range of transaction durations and sizes. But, un-
like LeeTM, it applies a broad diversity of mathematical operations and it is
able to extend to new ones. Moreover WormBench is totally configurable with
regard to: the percentage of update operations; the kind of operations and pro-
portion between them; the maximum execution time or number of iterations;
the contention level and synchronization strategy. In addition, the WormBench
benchmark has a low complexity domain model (compared to STMBench7),
making it easy to understand, and has a simple API. Still, as shown in [18],
despite this simplicity, the WormBench benchmark can still reproduce STAMP
workloads with the same characteristics.

3 JWormBench: A Port of WormBench to Java

The main data structures in the WormBench include worms formed by a body
and a head, moving in a shared world — matrix of nodes. Each node has an
integer value and the total sum of the values of all world’s nodes is the world’s
state. For read-only workloads, the world’s state should remain unchanged by
the execution of the benchmark.

The worms perform worm operations on the nodes under the worms ’s head.
In the WormBench application a worm object is associated with one thread
and is initialized with a stream of worm operations and movements that will
be performed by that thread during the execution of a workload. The tasks
that should be performed atomically are annotated with macros that delimit
the beginning and the end of the atomic block. Then, each synchronization
mechanism should translate those macros to invocations to the corresponding
synchronization API.

The WormBench implementation provides 13 types of worm operations, which
may be grouped in the following categories:

– read-only — Sum, Average, Median, Minimum, and Maximum. Each of these
operations reads all the nodes under the worm’s head, corresponding to
head’s size2 nodes;

– n-reads-1-write — Replace<read-only>With<read-only>. Each of these op-
erations combines two of the read-only operations described in the previous
item: They use the value returned by the first operation to update the node
returned by the second. Each operation makes 2*head’s size2 reads and one
write, updating the world’s state.

– n-reads-n-writes — Sort and Transpose. When these operations are prop-
erly synchronized with other concurrent worm operations, they preserve the
world’s state. Each operation makes the same number of read and write
operations corresponding to head’s size2 nodes.

The worm operation Sort and those ones based on the Median have complexity
O(n2). These algorithms could be implemented with lower complexity, but it
was our intention to provide operations computationally intensive.

330 F.M. Carvalho and J. Cachopo

The JWormBench adds two new features important for the research of new
workloads and evaluation of STM scalability: (1) the ability to specify the pro-
portion between different kinds of operations, and (2) the ability to set the
number of worms independently of the number of threads. Furthermore, the
JWormBench provides a simple API, easy to integrate with any STM implemen-
tation in Java. So, anyone may add a new synchronization mechanism (based
on STM or other), implementing the appropriate abstract types and providing
those implementations to JWormBench via a configuration module. In the same
way you can also extend JWormBench with new kinds of worm operations with-
out modifying the core JWormBench library. A more detailed description about
extending JWormBench is provided in JwormBench’s wiki, which is available
with the source-code repository[6].

To increase the extensibility of JWormBench, we have designed it according
to the inversion of control (IoC) design pattern . Then, to run a workload on
JWormBench we must create an instance of the WormBench class and invoke the
RunBenchmark method. But the WormBench class has dependencies to several
abstract types, whose implementations in turn depend on other abstract types
and so on. So we used Guice as the dependency injection framework1 to auto-
matically resolve and inject dependencies based on a configuration Guice module
(a Java class that contributes configuration information — bindings).

This new architecture promote the implementation and easier integration of
new synchronization mechanisms without the need to interfere and modify the
source code of JWormBench. Also note that this modular design does not add
any additional overhead to the synchronization mechanism during the execution
of the workload and while it is collecting measurements. The additional levels
of indirection imposed by IoC and Guice will just delay the setup and will not
affect the performance analysis.

Finally the JWormBench also provides a correctness test (i.e. sanity check
for the STM system) based on the results accumulated on each threads private
buffer. This buffer stores the difference between the new and the old value of
every node updated by a worm operation. At the end, if we subtract the accu-
mulated differences on each thread’s private buffer to the total value of all nodes,
the result must be equal to the initial sum of nodes’ values.

4 Annotations to Avoid Over-Instrumentation

One of the goals of Deuce is to provide a transparent API, but the approach fol-
lowed in the implementation of this feature incurs in over-instrumentation. This
happens because all memory locations accessed in the context of a transaction
are instrumented, independently of whether those locations are private, or not,
to the transaction.

To explore the overheads caused by over-instrumentation and what may be
gained by having finer grained control over what to instrument, we propose
to extend the Deuce API with two Java annotations — @NoSyncField and
1 Available at: http://code.google.com/p/google-guice/

STM with Transparent API Considered Harmful 331

@NoSyncArray — that can be applied on fields and type declarations, respec-
tively, to avoid over-instrumentation in certain scenarios. In Subsection 4.1 we
describe those scenarios and the reasons to over-instrumentation. Then, in Sub-
section 4.2, we introduce the effects and behavior of the new annotations in the
Deuce framework, avoiding over-instrumentation on the previously described
scenarios.

4.1 Over-Instrumented Tasks

Using profiling analysis we have verified that JWormBench is instrumented by
the Deuce framework in five different accesses to memory locations. Table 1
shows the time spent by each operation accessing each memory location: Coord
— x, y coordinates of worm’s head; Worm — Worm’s coordinate array; Node
— Value of the node; World — World ’s node matrix; local arr — local array
that is auxiliary to the function that defines an operation.

Table 1. Unmodified version of Deuce

Operation Coord Worm Node World local arr Flow
0 Sum 680 410 400 730 0 0
1 Average 1.100 420 440 940 0 10
2 Median 820 1.970 690 1.110 44.570 490
3 Minimum 770 650 410 990 0 0
4 Maximum 790 700 320 800 0 0
11 Sort 1.680 1.310 400 2.100 37.270 210
12 Transpose 1.490 1.170 360 1.580 1.060 130

Table 2. Optimized version of Deuce

Operation Coord Worm Node World local arr Flow
0 Sum 0 0 380 0 0 0
1 Average 0 0 430 0 0 20
2 Median 0 0 750 0 0 530
3 Minimum 0 0 480 0 0 0
4 Maximum 0 0 520 0 0 0
11 Sort 0 0 630 220 0 200
12 Transpose 0 0 320 0 0 100

Tables 1 and 2: distribution of the operation execution time (in milliseconds) accessing
each of the five kinds of memory locations. There is an extra column — Flow — that
collects the time spent in the execution of the control flow of the transactions.

The results depicted in Table 1 show that median, sort and transpose oper-
ations are more time-consuming because they access all kinds of memory loca-
tions. On the other hand, the median and sort operations are so much slower
than the others because their algorithms have complexity O(n2).

These results were collected for JWormBench with Deuce configured to use the
TL2 STM[8] and with just one worker thread. The characteristics of world and
worms are the same as in the workloads for performance evaluation described in
section 5. As we will see, of all the memory locations depicted in Table 1, only
the third location — Node — should be instrumented, as it is the only one that
is shared and updated by concurrent threads.

In Table 2 we present the results collected for an optimized version of Deuce
according to the proposal made in this paper. Comparing the results between
Tables 1 and 2 we can confirm that the third memory location is the only one
where time is spent executing each worm operation (except for sort, which also
wastes time accessing the node matrix of the world). Finally, table 3 shows the
percentage of time due to over-instrumentation, which represents between 80%
and 97% of total execution time of a worm operation.

332 F.M. Carvalho and J. Cachopo

Table 3. Difference between the execution time of each worm operation in unmodified
Deuce framework and the optimized one

Operation Sum Avg Med Min Max Sort Trans

Unmod. 2.220 2.900 49.160 2.820 2.610 42.760 5.660
Optimized 380 450 1.280 480 520 1.050 420
Over-instr 83% 84% 97% 83% 80% 98% 93%

4.2 New Java Annotations for the Deuce API

Our proposal includes two Java annotations — @NoSyncField and @NoSyncArray
— that should be parametrized with a value of the enum type — NoSyncBeha-
vior. This parameter specifies the behavior of the annotated memory location:
Immutable, TransactionLocal or ThreadLocal.

Annotating a field with @NoSyncField(Immutable) has a similar effect on
Deuce framework to the Java final keyword on field declarations. Both make the
Deuce framework to avoid instrumentation when accessing those fields. However
the final keyword has another effect at the Java level, prohibiting changes to the
declared field after its initialization. This behavior could be to much restrictive
for memory locations that are unmodified inside transactions, but are still target
of changes outside them.

Another use of @NoSyncField annotation is to annotate fields that are not
shared among different threads. So these fields could be private to a single trans-
action or to a single thread. In the first case the fields should be annotated with
@NoSyncField(TransactionLocal) meaning that the annotated fields do not
need to be synchronized and therefore do not have to be instrumented. In the
second case the fields should be annotated with @NoSyncField(ThreadLocal)
meaning that the most part of the instrumentation incurred by an STM when
accessing those fields could be attenuated, excepting the undo log that it is still
required to revert the updated data if the transaction aborts.

The effects of the @NoSyncField(TransactionLocal) on Deuce framework
are the same as the @NoSyncField(Immutable), avoiding instrumentation of the
annotated memory locations when they are accessed inside a transaction. They
just differ under the debug mode and in the way how the Deuce framework
verifies if the specified behavior is fulfilled by the transactified program.

The @NoSyncField(ThreadLocal) can be applied on the declaration of mem-
ory locations such as Coord - x, y coordinates of worm’s head. These locations be-
long to coordinate objects identifying nodes of the world that are under the worm’s
head. The x and y fields of these coordinate objects are updated every time a worm
performs a movement. However, a worm has affinity to only one thread and this
means that a worm is just updated by one and always the same thread. There-
fore, these memory locations do not need to be completely instrumented and can
be read and updated in-place avoiding the overhead of maintaining a read set and
write set. However the transactions still need to keep an undo log where they regis-
ter the original values of the updated memory locations. Then, when a transaction
aborts it uses the undo log to revert the data that was updated.

STM with Transparent API Considered Harmful 333

Annotating arrays has an increased challenge in comparison with the same
task applied on fields. One difficulty in achieving this goal it is to find a way
to attach the intention — array elements are immutable, or transaction local,
or thread local — to an array declaration. The Java bytecodes for arrays ma-
nipulation receives an array reference as parameter and not the declared array
variable. Then there is no easy way for the compiler to know the array variable
at the moment it processes a bytecode for array access.

An alternative approach is to attach our intention to the array object in-
stead of the array variable. However this strategy postpones the decision from
compile-time to run-time and will not totally eliminate the unnecessary over-
instrumentation on arrays. As we cannot annotate the array type, then we
adopt a different solution: to annotate the type of the array’s element with the
NoSyncArray annotation. This approach has limitations too and may seem a lit-
tle bit strange because instead of annotating intentions in the array declaration
we propose to do that in the declaration of the type of the array’s element.

The @NoSyncArray(Immutable) can be applied to the type of the array’s
element, whose elements are immutable during the array’s life cycle. Note that
the final keyword for arrays declaration has a distinct effect from that one that
is specified by the @NoSyncArray(Immutable). In the case of the final keyword,
it just avoids the declared variable (array’s reference) from being modified after
its initialization and it does not mean anything about the characteristics of
its elements. While the @NoSyncArray(Immutable) declares that the elements
of the array will not change inside a transaction. This behavior is verified for
memory locations as those ones referred in section 4.1 for Worm’s coordinate
array and World ’s node matrix.

Finally we can also use @NoSyncArray to annotate the declaration of the type
of the array’s elements as: @NoSyncArray(TransactionLocal) or @NoSyncAr-
ray(ThreadLocal), to respectively denote that the array’s elements are private
to a single transaction or to a single thread.

Some worm operations, such as median, sort and transpose need an auxiliary
local array to perform their algorithm. However, these arrays are private to the
transaction, because their references and their elements are not shared across the
boundaries of the function that defines the worm operation. Given that, there is
no concurrent access on these arrays and there is no need to synchronize those
accesses.

5 Performance Evaluation

To evaluate the effect of our approach on the performance and the scalabil-
ity of the JWormBench benchmark, we compared our optimized version of the
Deuce framework both against the released version 1.3.0 and against its current
implementation2. Simultaneously, we also made a comparison with a lock-free
implementation of JVSTM that has recently presented a much better perfor-
mance than Deuce on the STMBench7 benchmark [10]. In our analysis we also
2 Available at: http://code.google.com/p/deuce/

334 F.M. Carvalho and J. Cachopo

include an implementation of a fine-grained lock-based step for JWormBench,
which acquires locks for all the nodes under a worm’s head in a pre-specified
order to avoid deadlocks.

The testing workload has a world ’s size of 512 nodes and 48 worms with a
body’s length of one node and the head’s size varying between 2 and 16 nodes,
corresponding to a number of nodes under the worm’s head between 4 and 256.
The length of the body affects collisions between worms and we are not interested
on that behavior for this analysis. The size of the head directly affects the length
of the transaction read-set and write-set, according to the description made in
section 3.

In terms of worm operations, we have used three different configurations. In
all configurations we maintain the proportion between read-write and read-only
worm operations of 20-80%.The configurations tested are as follows:

1. Combination of read-only and n-reads-1-write worm operations, excluding
operations based on the median operation. So, these worm operations are
not very intensive, having complexity O(n), and the write-set for all read-
write transactions has a length of one.

2. Equals to the previous configuration, but including operations based on me-
dian. So, this configuration is heavier than the previous one, with 4 worm
operations having complexity O(n2).

3. Combination of read-only and n-reads-n-write worm operations. Two of these
operations have complexity O(n2) and the size of the write-set, for read-write
transactions, is equals to the number of nodes under worm’s head — head’s
size2.

Fig. 1. Configuration 1 - read-only and n-reads-1-write worm operations, excluding
median, Configuration 2 - read-only and n-reads-1-write worm operations and Config-
uration 3 - read-only and n-reads-n-write worm operations

The tests were performed on a machine with 4 AMD Opteron(tm) 6168 proces-
sors, each one with 12 cores, resulting in a total of 48 cores. The JVM version
used was the 1.6.0 22-b04, running on Ubuntu with Linux kernel version 2.6.32.

The charts of figure 1 depict the speedup of each synchronization mechanism
over sequential, non-instrumented code. These results show that Deuce 1.3.0 and
Deuce’s current implementation just scale for the first configuration, without
the presence of heavier worm operations, such as median and sort. On the other

STM with Transparent API Considered Harmful 335

hand, our optimization proposal for the Deuce framework scales in the three
scenarios and presents a much better performance than the previous versions:
2 times better in the first configuration and 22 times in both configurations 2
and 3.

In comparison with the fine-grained lock approach, the optimized version of
the Deuce framework has a better performance for configurations 1 and 2, but is
almost equals in performance for configuration 3. The worst performance verified
in configuration 3 may happen because the size of the write-set in this case is
bigger than in the previous ones, increasing the number of conflicts and causing
much more aborted transactions.

The JVSTM presents a similar behavior to that one shown in [10] for the
STMBench7 benchmark. It scales until 16 threads and then it stabilizes. Never-
theless for configurations 2 and 3, the JVSTM has a much better performance
than either Deuce 1.3.0 or Deuce’s current version.

6 Related Work

More recently, Afek et al. [1] propose to solve some cases of over-instrumentation
in Deuce by avoiding access barriers for thread-local memory and by using opti-
mizations that eliminate redundant reads and writes. These optimizations pre-
tend to avoid over-instrumentation in the same way as the annotation @No-
SyncField(TransactionLocal). But the remaining 5 cases that we propose
to resolve with the 5 other forms of annotating memory locations, which are
presented in section 4.2, are not covered by the proposal of Afek. In fact the de-
tection of these 5 cases is not easy to implement via a static analysis as proposed
by Afeck.

Our approach is also distinct from the option of an heterogeneous API as
mentioned in [1], which proposes a specialized STMReadThreadLocal() opera-
tion beyond the generic STMRead(). Unlike the latter, the former assumes that
the read location is thread-local and therefore avoids access barriers. But this ap-
proach is not applicable to the Deuce framework, which follows an homogeneous
API.

The work of Beckman et al. [3] proposes the use of access permissions, via
Java annotations, which can be applied to references, affecting the behavior of
the object pointed by that reference. Besides having a different semantics, access
permissions do not have direct correspondence with the Deuce framework, which
is based on conflicts detection at the fields level. Unlike this work, the use of
the Java annotations @NoSyncField and @NoSyncArray, proposed in our work,
integrates well with how Deuce makes the instrumentation of accesses to fields.

Yoo et al [17] propose a tm waiver annotation to mark a block or function
that would not be instrumented by the compiler for memory access. With a
unique annotation they can cover some of the cases that we propose to avoid
over-instrumentation, except for thread local data. But their solution is more
difficult to manage because it forces the programmer to identify all the blocks
or functions that manipulate the memory locations, whose access do not need

336 F.M. Carvalho and J. Cachopo

to be instrumented. In contrast in our proposal we just have to annotate the
memory location on its declaration.

Our proposal also distinguishes between different behaviors of non-instru-
mented memory locations, allowing us to provide a debug mode in which Deuce
framework validates the consistency of each location according to the behavior
specified by its annotation.

7 Conclusions

STMs are often criticized for introducing unacceptable overheads when com-
pared with either the sequential version or a lock-based version of any realistic
benchmark. Our experience in testing STMs with several realistic benchmarks,
however, is that the problem stems from having instrumentation on memory
locations that are not actually shared among threads. The solution that we ex-
plore in this paper is to give the programmer some mechanisms that allow him to
tell to the STM system that some memory locations are not to be manipulated
transactionally. This approach reduces the transparency of the STM, which is
one of its advantages over lock-based approaches, but it proves to be able to get
huge benefits performance-wise. In fact, we have been able to get a 22-fold im-
provement on the throughput of a realistic benchmark. This result is consistent
with other observations made on benchmarks that use a similar approach (e.g.,
the results of the JVSTM on the STMBench7 reported in [10]).

Actually, not only do we get a huge speedup when we use a less transparent
API, our results show that the STM performs better or as good as a fine-grained
lock-based approach, which is particularly easy to use in JWormBench, but may
not be in other applications. Still, we argue that the lock-based approach is
harder to develop and get right than the use of annotations to identify non-
transactional memory: To implement a lock-based approach, we need not only
to identify the shared resources, as in our approach, but we have to be careful
about getting the locks for all of the accessed resources, and doing it in the
correct order. So, even if we are losing some of the transparency of the STM
approach, we believe that this may be a reasonable tradeoff between easiness of
development and performance.

Finally, another contribution of this work is the JWormBench benchmark,
which, despite being a port of WormBench, has some key differences from it:
(1) Unlike the WormBench, which follows an STM integration approach based
on macros, the JWormBench has a new solution based on inversion of control,
abstract factory and factory method design patterns [11]; (2) the core engine of
the JWormBench benchmark is deployed in a separate and independent library,
whose features can be extended with other libraries; (3) unlike JWormBench,
the WormBench distribution does not implement the correctness test (i.e. sanity
check for the STM system) based on the results accumulated on each thread’s
private buffer; (4) in WormBench it is not easy to maintain the same contention
scenario when varying the number of threads, while in JWormBench the number
of threads is totally decoupled from the environment specification and we can

STM with Transparent API Considered Harmful 337

maintain the same conditions along different numbers of worker threads; (5) the
operations generator tool in JWormBench allows us to specify the proportion be-
tween each kind of operation, which is an essential feature to produce workloads
with different ratios of update operations.

References

1. Afek, Y., Korland, G., Zilberstein, A.: Lowering STM overhead with static analysis.
In: Cooper, K., Mellor-Crummey, J., Sarkar, V. (eds.) LCPC 2010. LNCS, vol. 6548,
pp. 31–45. Springer, Heidelberg (2011)

2. Ansari, M., Kotselidis, C., Jarvis, K., Luján, M., Kirkham, C., Watson, I.: Lee-
TM: A non-trivial benchmark suite for transactional memory. In: Bourgeois, A.G.,
Zheng, S.Q. (eds.) ICA3PP 2008. LNCS, vol. 5022, pp. 196–207. Springer, Heidel-
berg (2008)

3. Beckman, N.E., Kim, Y.P., Stork, S., Aldrich, J.: Reducing stm overhead with
access permissions. In: IWACO, pp. 2:1–2:10. ACM, New York (2009)

4. Cachopo, J., Rito-Silva, A.: Versioned boxes as the basis for memory transactions.
Sci. Comput. Program. 63, 172–185 (2006)

5. Minh, C.C., Chung, J., Kozyrakis, C., Olukotun, K.: STAMP: Stanford transac-
tional applications for multi-processing. In: IISWC 2008 (September 2008)

6. Carvalho, F.M. (2011), https://github.com/inesc-id-esw/JWormBench
7. Cascaval, C., Blundell, C., Michael, M.M., Cain, H.W., Chiras, S., Wu, P., Chat-

terjee, S.: Software transactional memory: why is it only a research toy? Commun.
ACM 51(11), 40–46 (2008)

8. Dice, D., Shalev, O., Shavit, N.: Transactional locking II. In: Dolev, S. (ed.) DISC
2006. LNCS, vol. 4167, pp. 194–208. Springer, Heidelberg (2006)

9. Dragojevic, A., Ni, Y., Adl-Tabatabai, A.-R.: Optimizing transactions for captured
memory. In: SPAA 2009, pp. 214–222. ACM, New York (2009)

10. Fernandes, S.M., Cachopo, J.: Lock-free and scalable multi-version software trans-
actional memory. In: PPoPP 2011, pp. 179–188. ACM, New York (2011)

11. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: Elements of
reusable object-oriented software. Addison-Wesley, Reading (1995)

12. Guerraoui, R., Kapalka, M., Vitek, J.: Stmbench7: a benchmark for software trans-
actional memory. SIGOPS Oper. Syst. Rev. 41, 315–324 (2007)

13. Harmanci, D., Felber, P., Gramoli, V., Fetzer, C.: Tmunit: Testing transactional
memories. In: TRANSACT (2009)

14. Herlihy, M., Luchangco, V., Moir, M.: A flexible framework for implementing soft-
ware transactional memory. SIGPLAN Not. 41, 253–262 (2006)

15. Korland, G., Shavit, N., Felber, P.: Noninvasive concurrency with java stm. In:
MultiProg 2010 (2010)

16. Riegel, T., Felber, P., Fetzer, C.: A lazy snapshot algorithm with eager validation,
pp. 284–298 (2006)

17. Yoo, R.M., Ni, Y., Welc, A., Saha, B., Adl-Tabatabai, A.-R., Lee, H.-H.S.: Kicking
the tires of software transactional memory: why the going gets tough. In: SPAA
2008, pp. 265–274. ACM, New York (2008)

18. Zyulkyarov, F., Cristal, A., Cvijic, S., Ayguade, E., Valero, M., Unsal, O., Har-
ris, T.: Wormbench: a configurable workload for evaluating transactional memory
systems. In: MEDEA 2008, pp. 61–68. ACM, New York (2008)

https://github.com/inesc-id-esw/JWormBench

A Global Snapshot Collection Algorithm with

Concurrent Initiators with Non-FIFO Channel

Diganta Goswami and Soumyadip Majumder

Indian Institute of Technology Guwahati, Guwahati, Assam, India
{dgoswami,s.majumder}@iitg.ernet.in

Abstract. Taking a global snapshot in the absence of a global clock is
a challenging issue in distributed system. The problem becomes more
challenging when the communication channel is a non-FIFO one, due to
the lack of FIFO properties in transmitting messages. Multiple initia-
tors further complicate the situation. In this paper, we present a global
snapshot collection algorithm with multiple initiators in the case of non-
FIFO communication channel. We have shown that the algorithm can
take a unique global consistent snapshot with non-FIFO channel, and
terminates in O(mn2) message complexity where m is the number of
concurrent initiators, and n is the number of processes in the system.

1 Introduction

A distributed computing system comprises of spatially separated processes that
do not share a common memory and solely communicate via messages with
unpredictable delay. Global Snapshot finds its application in many aspect of
distributed system like distributed debugging, termination detection, deadlock
detection etc.

A process consists of an initial state which is followed by a series of events.
An event e of a process is a 5-tuple < Pi, ls

k
i , lsk+1

i , μ, c > which indicates that
process Pi changes its state from lsk

i to lsk+1
i when it sends (receives) a message

μ along incoming (outgoing) channel c. μ and c can be null which signifies that
a transition in local state may happen due to some internal computation despite
of any send or receive event. At any instant, the state of process Pi, denoted by
lsk

i , is the result of the linearly ordered sequence of events executed by Pi. For
an event ei and a process state lsk

i , ei ∈ lsk
i iff ei belongs to the sequence of

events that brings process Pi to the state lsk
i . Whereas, the state of a channel cij

between process Pi and Pj denoted by csij , is actually the set of those messages
which are in transit from Pi towards Pj .

A global state of a distributed system is a collection of local states of processes
and the state of the channels. Notionally, a global state is represented as

GS = { ⋃
i lsi,

⋃
i,j csij}

We can define consistent global state as a cut that divides a time diagram of a
distributed system in two parts in such a way that all receive events that fall in

Y. Xiang et al. (Eds.): ICA3PP 2011, Part I, LNCS 7016, pp. 338–348, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Global Snapshot Collection Algorithm with Concurrent Initiators 339

the left side of the partition; corresponding send events of those messages will
definitely reside on the same side, i.e on the left side of the partition. It may be
possible that a receive event of a message may reside on the right side and its
send event on the left side. This situation doesn’t hamper the consistency of the
snapshot. But whenever a receive event resides at the left side and its send event
on right; the cut as well as snapshot becomes inconsistent. In a consistent global
state, every message that is recorded as received is also recorded as sent and
such a state captures the notion of causality that a message can’t be received if
it was not sent.

In non-FIFO channel, messages are not necessarily received in orderly fashion
i.e a message μk

ij that was sent before a message μk+1
ij , may be received by

process Pj after it received μk+1
ij . The challenge is to identify those messages

that are sent by process Pi to process Pj after the snapshot has been taken,
but received by Pj before it takes the snapshot. If this receive is recorded in the
local snapshot lsj of Pj , then global snapshot will be inconsistent. Most of the
snapshot algorithm assume that at any point of time only one initiator exist in
the system. But any process can initiate a snapshot collection process at any
point of time. There exist significant probability that more than one initiator
initiate the process.

In this paper, we have addressed the problem of taking snapshot in a non-
FIFO channel by multiple concurrent initiators at the same time. Our objective
is to provide a consistent and unique global snapshot to all the initiator. We tried
to propose an algorithm that doesn’t restrict any process to initiate a snapshot
collection process though another process has already initiated a similar task.

2 Related Works

In a seminal paper Chandy and Lamport first provided a marker message based
snapshot collection algorithm that is non-inhibitory in nature and requires FIFO
channels[1]. In [2], Helary incorporated the concept of wave algorithm in Chandy-
Lamport algorithm. In [3], Venkatesan introduced the concept of incremental
snapshot and proposed an efficient algorithm by modifying Chandy-Lamport
algorithm.the system. But these algorithms work for FIFO channels only. In
[4], Lai and Yang came up with a snapshot algorithm for non-FIFO channel.
In[5], Mattern gave an algorithm that was based on vector clock. Different
topology specific algorithms [6][7][8], with non-FIFO channel have also been
proposed.

Above mentioned works on snapshot collection algorithms assume that at any
point of time only one snapshot collection process is active. Koo and Toueg[9],
Spezialetti and Kearns[10] and Prakesh and Singhal[11] have proposed method to
handle multiple initiations in FIFO channel. Koo and Toueg algorithm is block-
ing in nature. The main idea behind Spezialetti-Kearns algoritm is that different
nodes may take local snapshots in response to requests from different initiators,
but the local snapshots are combined to produce a global consistent snapshot.

340 D. Goswami and S. Majumder

Prakash and Singhal[11] permits the full propagation of snapshot requests gener-
ated by all initiators. In [12], Hansdah et al’s proposed a checkpointing algorithm
in non-FIFO channel with multiple initiators. But the algorithm permits only
one instance of checkpointing. In this present scenario, we try to provide a so-
lution to a problem to collect a unique consistent global snapshot with multiple
initiations in non-FIFO channel.

3 Assumption and System Model

Our system consists of n processes, P1, P2..., Pn which are connected to each
other directly or indirectly forming a connected graph. Every two processes are
connected by at least one path. Links are non-FIFO in nature with finite but un-
bounded delay. We assume that despite of link failure this connectivity remains
uninterrupted and processes can withstand fail-stop errors. Every application
message is piggybacked with the current snapshot id and the state of the snap-
shot. In our model any process has equal likely probability to initiate a snapshot
collection and multiple processes can initiate the procedure simultaneously. If a
process has already taken a temporary snapshot, it can’t initiate snapshot until
the snapshot is made permanent.

4 Concurrent Snapshot Collection Strategy

In the present scheme multiple processes can concurrently initiate snapshot. It is
a two phase protocol where a process first takes a temporary snapshot and then
makes the snapshot permanent. Each process Pi maintains a vector sendV ectori

which records the number of messages sent to other processes. Whenever a mes-
sage has been sent by Pi to Pj , sendV ectori[j] is incremented by 1. A process Pi

keeps track of all messages it has received in the counter receiveCounti and last
snapshot id in currSnapidi. Whenever, a message is sent from Pi to Pj , current
snapshot id and the state of the snapshot is appended in the message. When
the appended snapshot id is equal to the receiver’s current snapshot id and re-
ceiver’s snapshot state is permanent, then it receives the message. On receiving
an application message, receiver Pj , increments its receiveCountj by 1. If the
receiver has taken a temporary snapshot, it only includes those messages in its
local snapshot with snapshot id less than current snapshot id of the receiver.
Other messages will not be included in the snapshot. If a message is received
with larger snapshot id then it is kept in the queue until the receiver’s snapshot
id becomes equal to the message’s snapshot id.

When a process Pi wants to initiate a snapshot, it first increases the value of
currSnapidi by 1. It then takes a temporary snapshot. After that it sends snap-
shot request to neighbours. The snapshot request contains the current snapshot
id and the state of the snapshot. The process marks itself as an initiator and
also initialize the concurrent initiator list (concurrenti) with its own id.

A Global Snapshot Collection Algorithm with Concurrent Initiators 341

On receiving a snapshot request a process Pi first checks whether it has already
taken a temporary snapshot with the same snapshot id or not. If it has not taken
a snapshot then it takes a snapshot and unicasts a response to that initiator. The
response contains sendV ectori and receiveCounti. It remembers the process id
of the first snapshot request and also puts an entry in its concurrent initiator
list(concurrenti). If the responder process receives any message with snapshot
id less than the current snapshot id it increments counter transitCounti. If
the process has already taken a temporary snapshot then it will not take a
snapshot but send a ’Dummy-Response’ to all subsequent initiators along with
the information of its first initiator.

On receiving ’Response’ message from Pj , an initiator Pi copies sendvectorj

in the jth row of a matrix sendMatrixi and receiveCountj at the jth entry of a
vector receiveV ectori. On receiving ’Dummy-Response’, an initiator Pi first up-
dates its concurrenti. When an initiator receives n− 1 responses(Response and
Dummy-Response), it first elects a leader from the initiator list (if there is more
than one initiator). The elected leader will be unique throughout the system as
all the initiator will have the same concurrent initiator list (concurrenti) for a
particular snapshot collection process with same snapshot id. Initiators (includ-
ing leader) then send their senMatrix and receiveCount to the leader process
in ‘Compile’ messages. After receiving m such ‘Compile’ messages (m is number
of initiator), it merges the data in its own sentMatrix and receiveV ector, in or-
der to calculate the number of in transit messages for each and every individual
process and puts those value in a vector, transitV ector.

The leader then broadcasts transitV ector to all processes. After a process
receives all in transit messages, the process includes all those messages in the
snapshot and makes the snapshot permanent. Snapshot collection process of the
non-initiator process ends, when it receives all in transit messages. It multicasts
the final snapshot to all initiators. All the initiators, on receiving n − 1 final
snapshot messages assembles those snapshots and generate the global snapshot.
All initiators make their snapshot state permanent and snapshot collection pro-
cedure started by those initiator terminates.

5 Algorithm

5.1 Data Structure

– sendV ectori[1..n] : It holds the individual count of messages that has been
sent by Pi to processes.

– sendMatrixi[1..n][1..n] : It holds the count of messages of that been sent by
all processes.

– receiveCounti : It holds the count of messages that been received by process
Pi.

– receiveV ectori[1..n] It holds the count of messages that been received by all
processes.

342 D. Goswami and S. Majumder

– transitV ectori[1..n] : An entry, transitVector[j] indicates the number of in-
transit messages destined to process Pj .

– intransitCounti : It is used to keep the count of the received message after
a process take a temporary snapshot.

– currSnapidi : It holds the current snapshot id. Whenever a process takes a
snapshot it increment it by one.

– currStatei : It indicates the state of the current snapshot. It may be perma-
nent (P) or temporary (T).

– concurrenti : It holds the ids of the concurrent initiator.
– firstInitiatori : Holds the id of the process whose snapshot request was first

reached to the process.
– receiveT ransiti :It is a flag that indicates whether a process has received

the transitVector.
– initiatori : It is a boolean type of data which indicates whether a Process is

an initiator or not.
– leader : This variable indicates the id of the leader.

5.2 Messages

– Marker : Marker message is sent when a process want to initiate a snapshot
collection procedure.

– Response : Response message is sent by a process to an initiator when
it receives a marker message from that initiator and its snapshot state is
permanent. Response message that has been sent by process Pi, contains
sendV ectori and receiveCounti.

– Dummy-Response : Dummy-Response message is sent by a process to an
initiator when it receives a marker message from that initiator and its snap-
shot state is temporary. Dummy-Response message that has been sent by
process Pi, contains firstInitiatori.

– Compile : An initiator sends compile message to the leader. Compile message
contains send and receive information that has been collected by the initiator
from ‘Response’ messages.

– In-Transit-Count : This message contains the count of all in transit messages
for a particular instance of snapshot collection procedure.

– Final-Response : Final-Response is the actual snapshot message that has
been sent by every process to all initiators at the end of the snapshot collec-
tion event.

5.3 Algorithms

Algorithm 1. Process Pi : On Sending an Application Message mij to
Process Pj

sendV ectori[j]← sendV ectori[j] + 1;
send(mij ,Pi,Pj ,currSnapidi,currStatei);

A Global Snapshot Collection Algorithm with Concurrent Initiators 343

Algorithm 2. Process Pi : On Receiving a Application Message <
mij , Pj , Pi, currSnapidj, currStatej > from Process Pj

if currSnapidj = currSnapidi − 1 then
receive the message;
receiveCounti ← receiveCounti + 1;
if currStatei = T then

put this receive event in the temporary Snapshot;
intransitCounti ← intransitCounti + 1;

if currSnapidj = currSnapidi then
if currStatei = P then

receive the message;

if currStatei = T then
receive the message and don’t put this receive event in the temporary
snapshot ;

receiveCounti ← receiveCounti + 1;

if currSnapidj = currSnapidi + 1 then
queue the message until currSnapidi equals to currSnapidj ;
don’t put this receive event in temporary snapshot;
on relinquishing the message from the queue do
receiveCounti ← receiveCounti + 1;

Algorithm 3. Process Pi : Snapshot Initiation
if currStatei = P then

initiatori ← true;
firstInitiatori ← Pi;
concurrenti ← concurrenti ∪ {Pi};
take a temporary snapshot;
currstatei ← T ;
currSnapidi ← currSnapidi + 1;
responseCounti ← 0;
sendMatrixi[l][m]← −1, for l,m = 1,2..,n;
receiveV ectori[l]← −1, for l = 1,2..,n;
sendMatrixi[i][k] ← sendV ectori[k], for k = 1,2..,n;
receiveV ectori[i]← receiveCounti;
send(Marker,Pi, currSnapidi, currStatei) along all edges e;

344 D. Goswami and S. Majumder

Algorithm 4. Process Pi : On Receiving a Marker <
Marker, Pj , currSnapidi, currStatei > along channel e

if currSnapidj = currSnapidi + 1 ∧ currStatei = P ∧ Pj /∈ concurrent then
take a temporary snapshot;
currSnapidi ← currSnapidj ;
currStatei ← T ;
send(Response,Pi, Pj , sendV ectori, receiveCounti) to initiator Pj ;
firstInitiatori ← Pj ;
concurrenti ← concurrenti ∪ {Pj};
forward the request along all the edge except e;

if currSnapidj = currSnapidi ∧ currStatei = T ∧ Pj /∈ concurrent then
send(Dummy −Response,Pi, Pj , firstInitiatori) to initiator Pj ;
concurrenti ← concurrenti ∪ {Pj};
forward the request along all the channel except e;

Algorithm 5. Process Pi : On Receiving a Response from Process Pj

responseCounti ← responseCounti + 1;
sendMatrixi[j][k]← sendV ectorj [k], for k = 1,2..,n;
receiveV ectori[j]← receiveCountj ;
if responseCounti = n− 1 then

leader← minid{concurrenti};
send(Compile, Pi, leader, sendMatrixi,
receiveV ectori) to leader;

Algorithm 6. Process Pi : On Receiving a Dummy-Response from Process
Pj

responseCounti ← responseCounti + 1;
concurrenti = concurrenti ∪ {firstInitiatorj};
if responseCounti = n− 1 then

leader = minid{concurrenti};
send(Compile, Pi, Pleader, sendMatrixi,
receiveV ectori) to leader;

A Global Snapshot Collection Algorithm with Concurrent Initiators 345

Algorithm 7. Process Pi : On receiving a Compile Message from Process
Pj

sendMatrixi[k][l]← sendMatrixj[k][l], if sendMatrixj [k][l] �= −1, for k,l =
1,2..,n;
receiveV ectori[k]← receiveV ectorj [k],if receiveV ectorj [k] �= −1, for k =
1,2..,n;
Mark Pj ∈ concurrenti as Compiled ;
if all Pk ∈ concurrenti is marked then

transitV ectori[k]←∑n
l=1 sendMatrixi[l][k] − receiveV ectori[k], for k =

1,2..,n;
send(In-Transit-Count,Pi , Pk, transitV ectori) along all the channel e and
to itself ;

Algorithm 8. Process Pi : On Receiving In-Transit-Count Message from
Leader Pj along channel e

if receiveT ransiti = false ∧ currStatei = T then
receiveT ransit← true;
forward the message to all outgoing channel except e;
wait untill transitV ectorj [i] = intransitCounti;
make the temporary Snapshot Permanent ;
send(Final − Snapshot, Pi, Pk, currSnapidi) to all Process Pk,
Pk ∈ concurrenti;
if initiator = false then

currstatei ← P ;
intransitCounti ← 0;
receiveT ransiti ← false;
concurrenti ← φ;

Algorithm 9. Initiator Process Pi : On Receiving n Final-Snapshot Mes-
sage

assemble all the snapshot to produce the global snapshot;
intransitCounti ← 0;
currStatei ← P ;
initiatori ← false;
receiveT ransit← false;
concurrenti ← φ

6 Proof of Correctness

Theorem 1. Concurrent lists at all initiators that exchange information are
identical.

Proof. Each request generated by initiator Pi carries the the initiator id, current
snapshot id, and its state. When this request reaches a processPj , it responses back
to the initiator either using ‘Response’ or ‘Dummy-Response message’. If Pj has
not taken any temporary snapshot, it responses back with ‘Response’ message. If it

346 D. Goswami and S. Majumder

has already taken a temporary snapshot due to a snapshot request from process Pl,
then it responds with a Dummy-response messagewhich also includes the informa-
tion of the first initiator id, Pl. So the information about the concurrent initiator
Pl will reach initiator Pi. Responder Pj puts an entry of the concurrent initiator
Pl in its concurrentj set and then propagate the request to other processes.

When an initiator Pl receives a snapshot request from another initiator Pi,
then also it responses back with a ‘Dummy-Response’ with its own process id
as it has already taken a temporary snapshot by the time being. Process Pl will
put an entry of process Pi in its concurrent list. So eventually both Pi and Pl

know that their initiations are concurrent.
The information about all the concurrent initiators eventually reach to all

initiators either by their own Dummy-Response or by the Dummy-Responses
of the non-initiator process. So, every initiator after receiving at most n − 1
response where n is the number of processes in the system, will get a clear count
of all initiators and that list will be identical throughout the system.

Theorem 2. The Elected Leader is unique.

Proof. The leader amidst the concurrent initiator is chosen from the concurrent
list. The process having minimum process id is elected as leader. As proved
earlier in theorem 1 that the concurrent lists at all initiators that exchange
information are identical, then every process Pi will elected the same process
Pmin : Pmin ∈ concurrenti and Pmin = min{concurrenti}.
Theorem 3. The Collected Snapshot is consistent.

Proof. Due to the non-FIFO nature of the channel while taking snapshot two
cases may occurs.

Case 1 : It may happen that a message that has been sent by Pi before taking
a snapshot, arrives to process Pj after the snapshot request reaches to Pj .
Case 2 : It may also happen that a message that is sent by process Pi after the
snapshot but it reaches process Pj before the snapshot request reaches to Pj .

In case 2, the snapshot taken by process Pj will be inconsistent if the receive event
of the message is included in the snapshot. The local snapshot of process Pi doesn’t
contain the sent event of the message but receive event will exist in the snapshot
of process Pj . So, for consistent snapshot, these post-snapshot messages that ac-
tually come before the snapshot request must not be included in snapshot.

In our proposed algorithm, current snapshot id denoted by currSnapidi and
current snapshot state denoted by currStatei are piggybacked with each appli-
cation message sent by a process Pi. Whenever, Pi takes a snapshot it incre-
ments the snapshot id by 1 and sets the snapshot state as temporary. Messages
send before the snapshot, have numerically lesser value and the state of those
messages are permanent. Whereas, post snapshot messages have the present
snapshot value with snapshot state as temporary until the snapshot is made
permanent. Whenever, Pi sends an application message to Pj with currSnapidi

and currStatei, process Pj checks it with its own currSnapidj and currStatej .
If the currSnapidi is greater than currSnapidj by one then it indicates that

A Global Snapshot Collection Algorithm with Concurrent Initiators 347

the message is sent after taking the snapshot and the snapshot request has not
yet reached Pj . In this case this message is queued until both the snapshot
id becomes equal. This receive event is not included in the local snapshot of
receiver Pj . If both currSnapid is same and the snapshot state of Pj is perma-
nent then it receives the message as it already took part in the snapshot taking
event and made and its snapshot permanent. If both currSnapid is equal but
currStatej and currStatejtemporary, then that receive event is not included in
the snapshot. If currSnapidi is less than currSnapidj then process Pj receives
the message and also put this receive event in the temporary snapshot as this
message was sent before Pi took a snapshot and the sent event is in the local
snapshot of process Pi.

So, we can see that out of order messages are properly discarded and so no
orphan messages are created in the system. A local snapshot is made final when
a process receives all messages that were sent before the snapshot is taken. So
the state of the channel is empty as there is no in transit message in the system.
Hence we can say that the collected snapshot is consistent.

Theorem 4. Snapshots collected by all initiators are unique.
Proof. On receiving all in transit messages a process Pi will sent the final response
to all initiator processes Pk ∈ concurrenti. A unique final response is sent to every
initiator. So the collected snapshot at every initiator will be trivially identical.

7 Complexity Analysis

Our system comprises of n processes. The connectivity among processes can be
assumed as a graph with n nodes and e edges. We assume that m (m ≤ n) num-
ber of processes can simultaneously initiate snapshot collection procedure. When
an initiator process sends a snapshot request (Marker), the request is flooded
within the entire system. Every process propagates the request to other neigh-
bouring processes. In our algorithm, due to one initiation O(n2) such messages
will be generated. So the message complexity of taking temporary snapshot will
take O(mn2) messages.

On receiving the marker, each process will reply back either with actual ‘Re-
sponse’ or ‘Dummy-Response’ to all initiators. So each process will emit m mes-
sages. Overall O(mn) such response messages will be sent. For dissemination
of information, every initiator will send one Compile message to the leader,
resulting O(m) messages. Broadcast of transitV ector will again take O(n2)
messages. After receiving all the in-transit messages each and every process mul-
ticasts the final snapshot to each initiator. So the overall complexity of our algo-
rithm is O(mn2) which is same as Spezialetti-Kearns[10] and Prakash-Singhal[11].
Spezialetti-Kearns and Prakash-Singhal algorithm works under the FIFO assump-
tion. Whereas, we are able to keep the same message complexity under more
generalized non-FIFO assumption. Like Spezialetti-Kearns and Prakash-Singhal
algorithm our algorithm provides a unique snapshot to all initiators. Presence of
a spanning tree will bring down the message complexity by a factor of n as the
broadcast of the snapshot request only generates O(n) messages. So the message

348 D. Goswami and S. Majumder

complexity will dilute to O(mn). We have designed our algorithm in such a way
that it will be useful in repetitive snapshot invocation. The space complexity of the
initiator process is O(n2) where non-initiator has the complexity of O(n) only.

8 Conclusion

We have proposed a global snapshot collection algorithm that can handle con-
current initiation of snapshot collection by multiple nodes. In our algorithm,
non-initiator nodes send their receive and send counts to different initiators.
A leader is selected from the list of concurrent initiators and initiators send
their collected information to the leader. Leader’s responsibility is to calculate
the number of in-transit messages in the system and to inform all nodes. On
receiving all in transit messages a node multicasts its final snapshot to all ini-
tiators. Consistency of the snapshot in non-FIFO channel is preserved by the
piggybacking of snapshot id and snapshot state. Multicasts of final snapshot
response ensures that snapshots collected by every initiator is unique. Unlike
Spezialetti-Kearns and Prakash-Singhal, we have restricted the communication
between initiators by electing a leader that doesn’t require any message exchange
and can be found in O(n) time in worst case.

References

1. Chandy, K.M., Lamport, L.: Distributed snapshots: Determining global states of
distributed systems. ACM Trans. Comput. Syst. 3(1), 63–75 (1985)

2. Hélary, J.-M.: Observing global states of asynchronous distributed applications.
In: Bermond, J.-C., Raynal, M. (eds.) WDAG 1989. LNCS, vol. 392, pp. 124–135.
Springer, Heidelberg (1989)

3. Chandrasekaran, S., Venkatesan, S.: A message-optimal algorithm for distributed
termination detection. J. Parallel Distrib. Comput. 8(3), 245–252 (1990)

4. Lai, T.-H., Yang, T.H.: On distributed snapshots. Inf. Process. Lett. 25(3), 153–158
(1987)

5. Mattern, F.: Virtual time and global states of distributed system. In: Proceddings
of the Workshop on Parallel and Distributed Algorithm, pp. 215–226 (1989)

6. Kshemkalyani, A.D.: A symmetric o(n log n) message distributed snapshot algo-
rithm for large-scale systems. In: CLUSTER, pp. 1–4 (2009)

7. Garg, R., Garg, V.K., Sabharwal, Y.: Scalable algorithms for global snapshots in
distributed systems. In: ICS, pp. 269–277 (2006)

8. Kshemkalyani, A.D.: Fast and message-efficient global snapshot algorithms for
large-scale distributed systems. IEEE Trans. Parallel Distrib. Syst. 21(9), 1281–
1289 (2010)

9. Koo, R., Toueg, S.: Checkpointing and rollback-recovery for distributed systems.
IEEE Trans. Software Eng. 13(1), 23–31 (1987)

10. Spezialetti, M., Kearns, P.: Efficient distributed snapshots. In: ICDCS, pp. 382–388
(1986)

11. Prakash, R., Singhal, M.: Maximal global snapshot with multiple initiators, pp.
334–351 (1994)

12. Kumar, K.P.K., Hansdah, R.C.: An efficient and scalable checkpointing and re-
covery algorithm for distributed systems. In: Chaudhuri, S., Das, S.R., Paul, H.S.,
Tirthapura, S. (eds.) ICDCN 2006. LNCS, vol. 4308, pp. 94–99. Springer, Heidel-
berg (2006)

Y. Xiang et al. (Eds.): ICA3PP 2011, Part I, LNCS 7016, pp. 349–359, 2011.
© Springer-Verlag Berlin Heidelberg 2011

An Approach for Code Compression in Run Time for
Embedded Systems – A Preliminary Results

Wanderson Roger Azevedo Dias1, Edward David Moreno2,
and Raimundo da Silva Barreto1

1 Federal University of Amazonas - Department of Computer Science
Manaus, Amazonas, Brazil

2 Federal University of Sergipe - Department of Computer Science
Aracaju, Sergipe, Brazil

{wradias,edwdavid,xbarretox}@gmail.com

Abstract. Several factors are considered in the development of embedded
systems, among which may be mentioned: physical size, weight, mobility, power
consumption, memory, safety, all combined with a low cost and ease of use.
There are several techniques to optimize the execution time and power
consumption in embedded systems. One such technique is the code compression,
the majority of existing proposals focuses on decompression assuming the code
is compressed in time compilation. This article proposes the development of a
new method of compression and decompression code implemented in VHDL
and prototyped on an FPGA, called MIC (Middle Instruction Compression). The
proposed method was compared with the traditional of Huffman method also
implemented in hardware. The MIC showed better performance compared with
Huffman for some programs MiBench, widely used in embedded systems,
obtaining 17% to less of the logical elements of FPGA, 6% increase in clock
frequency (in MHz) and 42% more in compression codes compared the of using
Huffman method, and allows the compression and decompression at runtime.

Keywords: Instruction compression, Embedded systems, Computational
performance, Power consumption, FPGA.

1 Introduction

Embedded systems are any systems digital are inserted into other systems in order to
add or optimize features [12]. Embedded systems have the task to monitor and/or
control the environment in which it is inserted. These environments may be present in
electronic devices, appliances, vehicles, machinery, engines and many other
applications.

The growing demand for the use of embedded systems has become increasingly
common, prompting the implementation of complex systems on a single chip, called
System-on-Chip (SoC). In this case, the embedded processor is a key component of
embedded computer systems [3]. Today, many embedded processors found in the
market are based on architectures of high-performance (e.g., RISC architectures of 32
bits) to ensure a better computational performance for the tasks to be performed.

350 W.R.A. Dias, E.D. Moreno, and R. da Silva Barreto

Therefore, the design of embedded systems for high-performance processors is not a
simple task.

It is known that many embedded systems are powered by batteries. For this reason,
it is critical that these systems are able to control and manage power, thus enabling a
reduction in energy consumption and control of heating. Therefore, designers and
researchers focused on developing techniques that reduce energy consumption while
maintaining performance requirements. One such technique is the compression of the
code of instructions in memory.

Most of the techniques, methodologies and standards for software development, for
the control and management of energy consumption, do not seem feasible for
development of embedded systems because they possess several limitations of
computing resources and physical. Current strategies designed to control and manage
energy consumption have been developed for general-purpose systems, where the cost
of additional processors or memory are usually insignificant.

The code size increases significantly as the systems become more heterogeneous
and complex. In this sense, there was a high technical level that seeks to compress the
code at compile time and their relief, in turn, is made at run time [13].

The compression technique was developed in order to reduce the size code [10].
But over time, groups of researchers found that this technique could be of great
benefit to the performance and energy consumption in general-purpose systems and
embedded systems [10, 11]. Once the code is compressed in memory is possible on
each request processor get a much larger amount of instructions contained in memory.
So there is a decrease in the activities of transition pins memory access, leading to a
possible increase in system performance and a possible reduction in energy
consumption of the circuit [11].

Likewise, when storing compressed instructions in the cache increases the number
of instructions stored in the same cache and increases its hit rate, reducing search in
main memory, increasing system performance and therefore, reducing energy
consumption.

This article presents the development of a new method of compressing and
decompressing instructions (at runtime), which was implemented in VHDL (Very
High Speed Integrated Circuits Hardware Description Language) and prototyped in a
FPGA (Field Programmable Gate Array). It is called MIC (Middle Instruction
Compression), and we compared it with the traditional method of Huffman which also
implemented in hardware, and it was shown to be more efficient than the Huffman
method from a comparison using the benchmark MiBench [5].

The rest of the paper is organized as follows: Section 2 explains the PDCCM
architecture developed for the MIC method, Section 3 details the description of the
method MIC; Section 4 shows the simulations with benchmark MiBench using
methods MIC and Huffman; Section 5 presents the related work, and finally, Section
6 presents conclusions and ideas for future work.

2 Architectures for Code Compression

In the literature we have found two basic types of architectures for code compression,
CDM and PDC, which indicate the position of the decompressor for the processor and

 An Approach for Code Compression in Run Time for Embedded Systems 351

memory subsystem, as shown in Figure 1. The CDM architecture (Cache Memory
Decompressor) indicates that the decompressor is positioned between the cache and
main memory, while the PDC architecture (Processor Cache Decompressor) places
the decompressor between the processor and cache.

Fig. 1. Architectures for decompression code (a) CDM and (b) PDC [10]

As will be detailed in Section 5, the development of architectures for compression
or decompression de instructions done separately, that is, in most of the work
undertaken is treated just the hardware decompressor because the compression of the
instructions is usually done by modifying the compiler. Thus, the compression is
performed at compile time and decompression is done at run time using a specific
hardware decompression.

To operate the MIC method proposed in this work, it was necessary to develop a
new architecture, and we implemented in FPGA-based hardware, to carry out the
compression and decompression of the instruction code at runtime execution. The
architecture created was entitled PDCCM (Processor Compressor Decompressor
Cache Memory) in which it is shown that hardware compression was inserted
between the cache and main memory and the hardware decompression was inserted
between the processor and memory cache. The PDCCM architecture was
implemented in VHDL and prototyped on a FPGA Cyclone-II model EP2C20F484C7
manufacturer by ALTERA®.

The PDCCM architecture works with instructions size of 32 bits, that is, each line
of instruction cache consists of 4 bytes. Thus, the architecture developed is
compatible with systems using the ARM processor as the core of the embedded
system, because this processor features a set of 32 bits instructions. In PDCCM
architecture, using the MIC method of compression/decompression all instructions
that are saved in the instruction cache will suffer a 50% compression of its original
size.

Figure 2 shows the PDCCM architecture developed to implement the new method
(MIC) of compressing and decompressing instructions in hardware, which consists of
four basic components, and they are:

• LAT (Line Address Table): is a table that has the function for mapping the

addresses of the instructions to a new address into the instruction cache;
• ST (Sign Table): is a table that contains bits that serve as flags for indicating to

the decompressor which pair of bits should be reconstituted, uncompressed;

352 W.R.A. Dias, E.D. Moreno, and R. da Silva Barreto

• Compressor Unit: has the function to compress all the codes of the instructions
that will be saved in the instruction cache. The compressor is started whenever
there is a misses in instruction cache;

• Decompressor Unit: has the function to decompress all the instructions that are
stored and compressed into the instruction cache and will be relayed to the
processor. The decompressor is started whenever there is an access and hit in the
instruction cache.

Fig. 2. PDCCM Architecture

3 Code Compression in Run Time

The MIC method (Middle Instruction Compression) is a compression method created
for reducing 50% the size of instruction codes that are stored in the instruction cache,
and then passing the length of the 32 bits instructions (original size) to 16 bits
(compressed size).

Like the Huffman table used by WOLFE and CHANIN [13], into architecture of
the CCPR, the instruction table and address translation table used by AZEVEDO [2],
into architecture of the IBC, the dictionary of compressed instructions used by
BENINI et al. [3] and the dictionary of codes used by LEKATSAS et al. [8, 9] and
LEFURGY et al. [7], the MIC method also requires additional tables that are used by
components LAT and ST to store the set of flags and the compressed instruction for
mapping the new addresses of the instructions in the compressed cache, respectively.

So even with the addition of tables (ST and LAT) in the MIC method, which initially
are great to the point does not appear to have had a gain in compression because it requires
an additional table equivalent to half the existing cache, and being the compression of
50%, no gain in memory usage, considered as physical resource. Nevertheless, these
tables were added to evaluate the structure of the new architecture and the proposed
method, which raises the option of having run-time compression, being different from
other proposals that are based on the construction of dictionaries at compile time. Right
now the group is working with the MIC in order to remove (or reduce) these additional
tables and thereby obtain more significant results in the near future.

For compression phase, each instruction should be read into memory and saved to
the instruction cache, and it will be split into pairs of bits with each pair consisting of:
00, 01, 10 and 11.

 An Approach for Code Compression in Run Time for Embedded Systems 353

The MIC compressor performs the following logic: pairs with equal values (00 or
11) are replaced by bit 0 (zero) and pairs with different values (10 or 01) are replaced
by bit 1 (one). Then, the bits 00 and 11 in compression are replaced by bit 0 and bits
01 and 10 are replaced by bit 1. So, a couple of bits are reduced to a single bit.

An auxiliary table (ST) is used to store the set of flags of double bits compressed.
Pairs of bits that start with the value 0 (zero), such as 00 or 10 is saved in the ST bit 0
and bits pairs that start with the value 1 (one), such as 11 or 01, is saved in the ST bit
1. It is noteworthy that the mode of address lines of instruction for this architecture is
Big-Endian.

For a better understanding and where possible, the names of components, variables
and input and output pins are similar to those used in the code implemented in VHDL.

3.1 Algorithm for Compression/Decompression with MIC Method

In our FPGA-based prototype, the processor requests an instruction to the cache
through a special pin, which for this implementation was called end_inst_proc
(Current PC). After that, the LAT will be searched whether that the address is
provided by the processor. If the instruction is found into the cache, then LAT signals
with a hit. So, the LAT will provide the new address of the instruction in the
instruction cache, the address of the set of flags in ST instruction and the placement of
double-byte (first or second), that is, where the instruction and flags in the instruction
cache and ST, respectively. All this information is passed to the decompressor unit
which decompresses the instruction and returns the uncompressed form to the
processor through the variable returnD_inst_proc.

The decompression of instruction codes is performed as follows:

• The new address of the instruction that was passed by the LAT, should be located
in the instruction cache and ST;

• The instruction cache and ST return to the decompressor the 16 bits compressed
instruction and 16 bits set of flags;

• If the bit read from the compressed instruction in the instruction cache is 0 (zero),
the pair of bits to be reconstructed is 00 or 11. What defines how is the pair of
bits is the bit flag, that is, if the flag bit is 0 the pair of bits to be reconstructed is
00 and when it is 1, then the pair of bits to be reconstructed is 11;

• But if the bit read from the compressed instruction in the instruction cache for 1
(one), the pair of bits to be reconstructed is 10 or 01. Then, again the flag bit is
the signal that defines how the pair of bits, when it is 0 the pair of bits to be
reconstructed is 10 and if the flag bit is 1, the pair of bits to be reconstructed is
01;

• For each instruction to be decompressed, we analyze the 16 bits instruction saved
in the instruction cache, thus transforming the instructions compressed 16 bits
instructions in 32 bits uncompressed.

Now, if the address provided by the processor is not in the LAT, it means that there is
no such instruction into the instruction cache. In this case, the LAT signal gives a
miss from the instruction cache. The address provided by the processor will be
transferred to the RAM (Random Access Memory), where it will be found and
verified whether or not this instruction. If the search in RAM memory detects a miss,

354 W.R.A. Dias, E.D. Moreno, and R. da Silva Barreto

then the instruction should be fetched in external memory, for example, the HD (Hard
Disk). Now if the fetch process indicates a hit, it means that the instruction is in
RAM. Next, the RAM returns a copy of the instruction in the original format
(uncompressed) to the processor through the variable returnC_inst_proc and
sends another copy to the compressor, which will make the whole process of
compression.

The compression of instruction codes is performed as follows:

• The instruction is placed in RAM, a copy of it is passed to the processor and one
for the compressor;

• The instruction in the compressor is splited into 16 pairs of bits, and each pair is
formed at the moment that is read by the compression function. The beginning of
the instructions coming from the RAM is the mode MSB (most significant bit);

• The compressor always considers what part of the double-byte (first or second)
must be saved in the compressed instruction cache and instruction ST;

• If the pair of bits read for the compression is 00 or 11, then this pair of bits will be
replaced by bit 0 and saved in the instruction cache. Now if the pair of bits read
for 10 or 01, then this pair of bits will be replaced by bit 1 and saved in the
instruction cache;

• The set of flags of ST will be formed through the following logic: if the first bit
of double bits being compressed is 0, then the flag bit saved is 0. Now if the first
bit of double bits being compressed is 1, then the flag bit will be 1 unless;

• After the compressor does all the compression of the original 32 bits instruction
in 16 bits compressed and its bits flags, the compressor will save the double of
bytes (first or second) compressed in the instruction cache and instruction set of
flags in ST;

• The LAT table is updated with the new instruction address saved in the
instruction cache;

• For each instruction that is sought in memory, repeat this process of compression.

It is important to note that this technique of compression/decompression is performed
at runtime, via specific hardware that was prototyped in FPGA. In our hardware
implementation we found that is similar to the work of LEKATSAS in [8, 9], we
found a component that needs only a single cycle for the process of compression or
decompression, and the benefits are shown in the next section.

For an analysis of performance method developed in this project (MIC), we have
implemented in hardware the traditional method of Huffman compression, because it
was used by WOLFE & CHANIN [13] in CCRP architecture and also by BENINI et
al. [3] and LEFURGY et al. [7]. Therefore, comparing the MIC with Huffman allow
for checking the strengths and weaknesses of this new approach to compression code
with a method already used and highly esteemed in scientific community.

4 Simulations with Benchmark MiBench

The benchmark used in the simulations of compression and decompression of MIC
methods and Huffman are programs from MiBench package [5]. It is specifically used
for embedded systems and has different categories, which are in code assembly of

 An Approach for Code Compression in Run Time for Embedded Systems 355

ARM9 processor, as obtained through the IDA Pro tool [15]. The category and
functionality of MiBench benchmark used in the simulations are:

• Dijsktra (Network) is an algorithm that calculates the shortest path in a graph;
• FFT (Telecommunication): is an algorithm that performs the Fast Fourier

Transform which is used in digital signal processing for finding the frequencies
in an input signal;

• MAD (Consumer Device): is an audio decoder MPEG high quality;
• QuickSort (Automotive and Industrial Control): is an algorithm that makes

ordering data;
• SHA (Security): is an algorithm that generates encryption keys for secure

exchange of data and digital signatures;
• Stringsearch (Office): is an algorithm that makes the search for a string in a

selected text.

We have used the instruction set of processor embedded ARM (ARM9 family,
version ARM922T, ISA ARMv4T) to simulate the operation of the compressor and
decompressor from MIC and Huffman algorithms into our PDCCM architecture.
However, the chosen processor (ARM) is the type RISC and instruction set consists
of 32 bits (instruction) which enabled it to be a good platform to simulate the PDCCM
architecture.

The only change needed in the PDCCM architecture for using the Huffman method
was the replacement of ST component by HT (Table Huffman) that contains the tree
of Huffman codes of compressed instructions.

For the simulations of compression and decompression of MIC and Huffman
algorithms were selected the 4.096 (4K) first instructions for each MiBench (due to
physical limitations of the FPGA used for prototyping), obtained by the compiled
code (Assembly) to the embedded processor ARM, forming so the set of instructions
sequences that were used to load a piece of RAM memory and instruction cache. For
more details, see [14].

The stretch of RAM described in VHDL was used in all simulations with the
benchmark MiBench and had fixed size of 4.096 lines of 4 bytes each, thus
accounting for 131.072 bits and the instruction cache has a size of 512 lines of 32 bits
each. Thus, we observe that there is a 8:1 ratio between the sizes of RAM and the
instruction cache.

Table 1 shows the metrics on performance statistics and Table 2 shows the metrics
of time for our PDCCM architecture, using both methods MIC and Huffman to
compression/decompression of the instructions for some programs from MiBench,
executing in FPGA; using both methods compression/decompression MIC and
Huffman of the instructions for some programs MiBench.

Table 1. Statistical Perfornance of FPGA

 Compression Decompression

 MIC Huffman MIC Huffman
Logic elements 1.460 (32%) 1.317 (28%) 3.464 (74%) 4.414 (94%)
Registers 825 (18%) 738 (16%) 1.045 (23%) 1.482 (32%)
Pins 177 (56%) 170 (54%) 177 (56%) 170 (54%)

356 W.R.A. Dias, E.D. Moreno, and R. da Silva Barreto

In Table 1, the compression process, it is possible to observe that the method of
Huffman proved to be a little more computationally efficient in our PDCCM
architecture, being the amount of logic elements, registers and pins between the two
methods not increased from 4% to the method of Huffman. In the process of
decompression, the MIC method showed better results, and the amount of logic
elements, registers and pins were on average approximately 9% less in favor of the
MIC method.

Table 2. Timing Statistics of the FPGA

 Compression Decompression

 MIC Huffman MIC Huffman
Time in the worst case 9.228 ns 9.712 ns 8.632 ns 10.708 ns
Clock in MHz 75.98 MHz 69.88 MHz 68.42 MHz 66.97 MHz
Clock in time 13.257 ns 14.579 ns 14.668 ns 14.900 ns

Table 2 shows that MIC method has better timing in the FPGA for all benchmark

MiBench analyzed. In compression phase, it is observed a difference of 6.1 MHz (the
clock frequency in MHz) more to the MIC method being one of the points that makes
it more efficient than the method of Huffman. The time, in the worst case, for the two
methods was very similar. In decompression, are observed in the clock MHz and time
are quite similar for both methods, and the MIC method has a slight advantage
compared to the method of Huffman (an improvement of 24% Time in the worst case,
3% Clock in MHz, 1.5% Clock in time).

Based on the 4.096 first instructions of benchmark MiBench obtained from
assembly code compiled for ARM platform, observed in Table 3 the MIC method
depressed by 50% the size of instructions, that is, 4.096 lines of the stretch of RAM
used in the simulation, after the compression process has come to occupy only 2.048
lines in instruction cache. Instructions compressed using the Huffman obtained an
average 30% less of compression compared to the size of RAM used in the simulation.

Table 3. Comparasion of the Rate of Compression

MiBench MIC Huffman
Dijsktra 2.048 (50%) 2.622 (36%)

FFT 2.048 (50%) 2.803 (32%)
MAD 2.048 (50%) 3.002 (27%)

QuickSort 2.048 (50%) 3.245 (21%)
SHA 2.048 (50%) 2.785 (32%)

StringSearch 2.048 (50%) 2.913 (29%)
Averages 2.048 (50%) 2.895 (30%)

Finally, based on these results, we find that for PDCCM architecture using the 4.096

first instructions of the benchmark MiBench (Dijsktra, FFT, MAD, QuickSort, SHA and
StringSearch), the MIC method was more efficient in compression, specifically 42%
higher when compared with Huffman method.

 An Approach for Code Compression in Run Time for Embedded Systems 357

5 Related Work

This section lists some researches founded in the literature related to compressed
instruction codes. Table 4 shows a summary of the major existing work involving
code compression and Table 5 the results obtained by the authors of the related work
through the simulations and analysis accomplished.

Table 4. Summary of the Main Existing Work in Code Compression

Author Method Description

Wolfe and
Chanin [13]

Compressed Code
RISC Processor

(CCRP)

• It was the first hardware decompression implemented in a
RISC processor (MIPS R2000);

• First technique to use the failures of access to the cache
mechanism to trigger the decompression.

Azevedo [2] Instruction Based
Compression (IBC)

• The method divides the set of processor instructions in
classes, taking into account the number of occurrences along
with number of elements in each class (static analysis);

• The technique is to group pairs in the format [prefix,
codeword] which replaces the original code.

Benini et al.
[3]

Compression of the
Cache Line

• The unit used by the method of compression is the line of
cache.

Lekatsas et
al. [8, 9]

Grouping by
Characteristics Own

• The method unites the instructions into 4 groups of
characteristics own (immediate jump, quick and
uncompressed);

• The identification of the group is through a sequence of bits;
• The decompressor hardware execute four pipelines at the

same time;
• Has developed a new architecture capable to decompress

one or two instructions per cycle to meet the demand of the
processor.

Lefurgy et al.
[7]

Compression by
Codeword

• The compression technique is based in the coding of the
program by using codes dictionary;

• After compiling the object code is analyzed and the
common sequences of instructions are replaced by
codeword;

• The final code consists of codewords mixed with
uncompressed instructions.

Table 5. Overview of Related Work

Author Platform benchmark Compressi
on ratio

Run
time

Energy
reduction

Wolfe and Chanin
[13]

MIPS
lex, pswarp, matrix25,
yacc, eightq, lloop01,

xlisp, spim
73% --- ---

Azevedo [2]
SPARC

SPECint95
61,4% + 5,89% ---

MIPS 53,6% + 5,89% ---
Benini et al. [3] DLX Ptolomy 72% --- - 30%

Lekatsas et al. [8,
9]

SPARC Compress, diesel, i3d,
key, mpeg, smo

65% - 25% - 28%
Xtensa-1040 65% - 25% ---

Lefurgy et al. [7]
PowerPC

SPECint95
61% --- ---

ARM 66% --- ---
i386 75% --- ---

358 W.R.A. Dias, E.D. Moreno, and R. da Silva Barreto

6 Conclusions and Future Work

This article described a new method of compression, called MIC, which was
prototyped in FPGA, and we proved that it may be feasible for embedded systems that
use RISC architecture.

We did many simulations with some programs from MiBench benchmark and
verified that the MIC method showed the following results, averages values: 17%
reduction in the usage of logic elements into FPGA, 6% higher of frequency (MHz)
for compression and decompression process of instruction code and 42% more
efficient at compression ratio when compared to Huffman method, which also
projected in hardware.

Therefore, analyzing the data obtained through the simulations, despite the large
memory used by the dictionary (ST) of the MIC, we have concluded that the method
developed and presented in this article was computationally more efficient when
compared with the Huffman method.

The simulations used programs for different categories, as follows: Dijsktra, FFT,
MAD, QuickSort, SHA and StringSearch MiBench benchmark for performance
measurements.

So, for the future this technique may become a necessary component in embedded
systems projects, since that using code compression techniques, RISC architectures
can minimize one of their biggest problems, which is the amount of memory to store
programs.

As future work are: perform actual measurements of energy consumption at
PDCCM architecture using MIC and Huffman methods; design and implement a
RISC processor that already has the hardware built-in compressor and decompressor
at its core; testing compression and decompression MIC and Huffman methods using
more programs of MiBench. Furthermore, as a future work we like to suggest parallel
processing into the compression algorithms and to visualize the impact of those new
compression methods in the hierarchy memory and cache performance.

References

1. ARM. Advanced RISC Machines Ltd.: An Introduction to Thumb (March 1995)
2. Azevedo, R.: An architecture for code tablet Dedicated Systems. PhD thesis, Institute of

Computing, University of Campinas, Brazil (June 2002)
3. Benini, L., Macii, A., Nannarelli, A.: Cached-Code Compression for Energy Minimization

in Embedded Processor. In: Proceedings of the International Symposium on Low-Power,
Electronics and Design (ISPLED 2001), Huntington Beach, CA, USA, pp. 322–327
(August 2001)

4. Davis, J., Goel, M., Hylands, C., Kienhuis, B., Lee, E. A., Liu, J., Liu, X., Muliadi, L.,
Neuendorffer, S., Reekie, J., Smyth, N., Tsay, J., Xiong, Y.: Overview of the Ptolemy
Project, ERL Technical Memorandum UCB/ERL, Tech. Report no. M-99/37, Dept. EECS,
University of California, Berkeley (July 1999)

5. Guthaus, M., Ringenberg, J., Ernst, D., Austin, T., Mudge, T., Brown, R.: MiBench: A
Free, Commercially Representative Embedded Benchmark Suite. In: Proceedings of the
IEEE 4th Annual Workshop on Workload Characterization, Austin, Texas, USA, pp. 3–14
(December 2001)

 An Approach for Code Compression in Run Time for Embedded Systems 359

6. Huffman, D.A.: A Method for the Construction of Minimum-Redundancy Codes.
Proceedings of the Institute of Radio Engineers (IRE) 40(9), 1098–1101 (1952)

7. Lefurgy, C., Bird, P., Chen, I.-C., Mudge, T.: Improving Code Density Using Compression
Techniques. In: Proceedings of 30th Annual International Symposium on
Microarchitecture (MICRO 30), Research Triangle Park, NC, USA, pp. 194–203
(December 1997)

8. Lekatsas, H., Henkel, J., Jakkula, V.: Design of One-Cycle Decompression Hardware for
Performance Increase in Embedded Systems. In: Proceedings of the 39th Annual Design
Automation Conference (DAC 2002), New Orleans, Louisiana, USA, pp. 34–39 (June
2002)

9. Lekatsas, H., Wolf, W.: Code Compression for Embedded Systems. In: Proceedings of the
35th Annual Design Automation Conference (DAC 1998), San Francico, California, USA,
pp. 516–521 (June 1998)

10. Netto, E.B.W., Azevedo, R., Centoducatte, P., Araújo, G.: Mixed Static/Dynamic Profiling
for Dictionary Based Code Compression. In: Proceedings of the International Symposium
on System-on-Chip (SoC 2003), Tampere, Finland, pp. 159–163 (November 2003)

11. Netto, E.B.W., Azevedo, R., Centoducatte, P., Araújo, G.: Multi-Profile Based Code
Compression. In: Proceedings of the 41th Annual Design Automation Conference (DAC
2004), San Diego, CA, USA, pp. 244–249 (June 2004)

12. de Oliveira, A.S., de Andrade, F.S.: Embedded Systems - Hardware and Firmware in
Practice, 316 p. Érica, São Paulo (2006)

13. Wolfe, A., Chanin, A.: Executing Compressed Programs on an Embedded RISC
Architecture. In Proceedings of 25th Annual International Symposium on
Microarchitecture (MICRO 25), Portland, Oregon, USA, pp. 81–91 (December 1992)

14. Dias, W.R.A.: Architecture PDCCM in the Hardware for Compression/Decompression of
Instructions in Embedded Systems. M.Sc. Dissertation, Department of Computer Science,
Federal University of Amazonas, Brazil (April 2009)

15. IDA - The Interactive Disassembler, http://www.hex-rays.com (accessed on May
03, 2010)

Optimized Two Party Privacy Preserving

Association Rule Mining Using Fully
Homomorphic Encryption

Md. Golam Kaosar, Russell Paulet, and Xun Yi

School of Engineering and Science
Victoria University, Melbourne, VIC 8001, Australia

{golam.kaosar,xun.yi}@vu.edu.au, russell.paulet@live.vu.edu.au

Abstract. In two party privacy preserving association rule mining, the
issue to securely compare two integers is considered as the bottle neck to
achieve maximum privacy. Recently proposed fully homomorphic encryp-
tion (FHE) scheme by Dijk et.al. can be applied in secure computation.
Kaosar, Paulet and Yi have applied it in preserving privacy in two-party
association rule mining, but its performance is not very practical due to
its huge cyphertext, public key size and complex carry circuit. In this pa-
per we propose some optimizations in applying Dijk et.al.’s encryption
system to securely compare two numbers. We also applied this opti-
mized solution in preserving privacy in association rule mining (ARM)
in two-party settings. We have further enhanced the two party secure
association rule mining technique proposed by Kaosar et.al. The perfor-
mance analysis shows that this proposed solution achieves a significant
improvement.

1 Introduction

1.1 Privacy Preserving Association Rule Mining

Privacy preserving ARM is one of the simplest way of mining data among mul-
tiple data sites without revealing any private information. At the end of mining,
any data site can learn nothing, but its own inputs and the final outcomes. Un-
fortunately, so far not may solutions exist to ensure entire data privacy. Many
privacy oriented applications along with association rule mining is restricted by a
long time open problem of securely comparing two numbers efficiently. Most dis-
tributed data mining solutions require privacy preservation. Privacy preserving
data mining encompasses two goals [20]: (1) achieving privacy requirement and
(2) achieving valid mining result. Sometimes achieving both becomes difficult
since increase of one may decrease the other. Privacy preserving association rule
mining algorithm first was proposed by Agrawal [10] in 2000 which used data
perturbation and reconstruction based solution. After that, many research works
have been performed to preserve the privacy in data mining applications. Privacy
preservation techniques are approached through various methods such as - data

Y. Xiang et al. (Eds.): ICA3PP 2011, Part I, LNCS 7016, pp. 360–370, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Optimized Two Party Privacy Preserving Association Rule Mining 361

perturbation and randomization [3], [21], [19], [4], sensitive data hiding, rule hid-
ing and sanitization [2], [6], [14], [23], [30], data sampling and cryptographic
techniques [16], [25], [8], [9], [31], [28], [17]. Dijk et.al.’s [7] FHE system is
based on Gentry’s lattice based solution [12,13]. To ensure proper functioning
their solution had to evolve from symmetric to asymmetric to somewhat ho-
momorphic to bootstrapable to fully homomorphic solution. The cryptosystem
is inefficient due to its key size and accumulative nature of noise terms within
the ciphertext. Gentry proposes some solutions to alleviate these problems in
[13]. [13] also proposes the technique to reduce the key size. [27] proposes
some improvements in Gentry and Dijk et.al.’s solution. This fully homomor-
phic encryption technique is already proposed to be used in many applications
within this short period of time since its publication such as - in outsourced
computing [11], and secure comparison [18]. Moreover this can be applied in
many applications such as private information retrieval, oblivious transfer, cloud
computing.

Most privacy preserving ARM solutions are incapable to ensure full privacy.
They disclose intermediate results such as total database size. Moreover, the pri-
vacy preservation in two party settings sometimes becomes infeasible for some
solutions. Kaosar et.al. [18] have proposed a secure two party ARM solution
using FHE of [7] which maximizes the data privacy since it does not disclose
any intermediate result. In the solution of two-party distributed horizontally
partitioned database settings, no party can learn anything other than its own
input and the final results. But [18] is inefficient for practical applications. The
identified main reasons are - inefficient nature of of the FHE scheme of [7] due
to complex and inefficient mathematical techniques used in comparing two in-
teger numbers. In this paper, we present number of optimizations compared to
[18] such as - (1) In the server side (in this case site S2), it does not need to
perform encryption operation for its own inputs at all. It only performs some
basic operations on the ciphertexts received from site S1 and returns a resultant
ciphertext of one bit only. (2) In [18] many multiplications and additions of
ciphertexts were required, but in this paper we propose an optimized way to
compare two integers which require few basic operations only. (3) We present
a simplified mathematical technique to compare two integer numbers which re-
duces the overhead drastically.

1.2 Motivation and Problem Formulation

Consider two data sites S1 and S2 possess two horizontally partitioned transac-
tional database DB1 and DB2 of size d1 and d2 respectively, where combined
database DB � �DB1

�
DB2�. Let us also assume, I � �i1, i2,, in� is the

set of unique items, where each transaction T � I. Therefore, any itemset to
be frequently large, its support must be greater than or equal to the minimum
support threshold denoted by s. Similarly for an association rule to be chosen,
its confidence must be greater than or equal to a minimum confidence threshold
denoted by c.

362 M.G. Kaosar, R. Paulet, and X. Yi

The association rule mining algorithm between S1 and S2 must be privacy
preserved. This means that, neither S1 nor S2 should be able to learn anything
other than its own input and the final result (resultant association rules). The
count of each itemset is needed to compare to determine whether in unified
database (DB) that particular itemset becomes globally frequent or not. Con-
sider a simple case where S1 and S2 have count of a particular itemset c1 and
c2 respectively. Their database sizes are d1 and d2 respectively. They want to
securely compute whether that itemset would be frequently large in their com-
bined database or not. In other words, they have to determine the following
inequality securely.

c1 � c2

d1 � d2
�

t

100
(1)

Where, t is the minimum number of times the itemset has to appear in the
combined database DB. Equation 1 can be further expressed as:

c1 � 100� t� d1 � t� d2 � c2 � 100 	 α � β (2)

The left hand side and the right hand side of the Equation 2 are to be computed
by party S1 and S2 respectively. It should be noted that, in [18], S1 transmits
the encrypted count c1 and database size d1 to S2. Therefore, S2 performs the
comparison operation based on �Epk
c1�, Epk
d1�, Epk
c2�, Epk
d2�, Epk
t�� as
opposed to �Epk
α�, β� in case of this solution. In our proposed solution, we
propose an optimized technique to compare α and β in Section 3.1.

As discussed above, FHE of [7] is very inefficient to be implemented in prac-
tical settings. Its operations ’AND’ and ’XOR’ work bit by bit; hence, to use this
for integer operations involves huge amount of computation. We propose, apply
this encryption system to securely compare two integers in such a way that,
second party (S2) does not perform any encryption operation on its own inputs;
as opposed to [18]. S2’s inputs are represented as binary bits; based on its bit
values, it performs some basic operations which essentially generates the correct
outputs similar to [18]. This technique is illustrated in Figure 1 and Algorithm 1
in Section 3.1.

2 Background

2.1 Notations

Following notations will be used in rest of the paper.

�: Concatenation operation.
 : Represents XOR operation between two binary bits. It works for integers

too, where XOR is performed between corresponding bit by bit.
� : Represents AND operation between two binary bits. If a, b � �0, 1�, then ab

is also equivalent to a� b.

Optimized Two Party Privacy Preserving Association Rule Mining 363

X : Represents NOT operation of a binary bit X . It works for integers too,
where values of all the bits of the integer are negated.

� : Represents homomorphic XOR operation between both plaintexts and ci-
phertexts. Operands can be either binary bits or integer numbers.

� : Represents Homomorphic AND operation between both plaintexts and ci-
phertexts. Operands can be either binary bits or integer numbers.

Epk
X� : Represents fully homomorphic encryption of X , using the public key
pk. X can be either binary bit or integer number. If X is integer, it encrypts
each bit of X separately and concatenates together.

Dsk
X� : Represents fully homomorphic decryption of X , using the private key
sk where, X is a ciphertext about a binary bit.

Detail definition of �, �, Epk
X�, Dsk
X� can be found in [7] and [18].

2.2 Some Binary Operations

Integer Addition. Let us consider, two n-bit integer numbers A �
�An�An�1�...�A2�A1� and B � �Bn�Bn�1�...�B2�B1� where, Ai, Bi � �0, 1�. To
add this two integers, every bit in one number is added with corresponding bit
in another number along with the carry bit of previous stage. The summation
result is R, where R � �Rn�Rn�1�...�R2�R1� and carry is Ci for stage i and
C0 � 0. Thus expression of Ri and Ci would be as follows (Detail can be found
in [26]):

Ri � AiBiCi�1 �AiBiCi�1 �AiBiCi�1 �AiBiCi�1 � Ai Bi Ci�1 (3)

Ci � AiBiCi�1 �AiBiCi� 1�AiBiCi�1 �AiBiCi�1

� Ci�1
Ai Bi� �AiBi

(4)

Integer Subtraction. Consider two numbers A and B. Two’s complement of
A � A � 1 [26], which is negative of �A� in two’s complement representation.
Detail is discussed in [18]. Therefore A�B � A�B � 1.

Comparison of Two Integers. Let us consider, two integers A and B needed
to be compared to determine which one is larger. In principle, if two’s compliment
of B is added with A then we get A � B; as presented in previous paragraph.
If the operation is assumed to be of n bit long, then nth bit of the summation
result (say Rn) determines which one is larger or equal. If Rn � 0, then A � B
otherwise A � B.

2.3 Fully Homomorphic Encryption (FHE)

Homomorphic encryption is a special form of encryption, where one can perform
a specific algebraic operation on the plaintext by applying the same or another
one operation on the ciphertext. If X and Y are two numbers, and E and D

364 M.G. Kaosar, R. Paulet, and X. Yi

denotes encryption and decryption function respectively, then homomorphic en-
cryption holds following condition for algebraic operations such as ’+’ and ’�’
respectively:

D�E
X� �E
Y �� � D�E
X � Y �� (5)

D�E
X� �E
Y �� � D�E
X � Y �� (6)

Most homomorphic encryption system such as RSA [24], ElGamal [10], Be-
naloh [5], Paillier [22] etc are either additive or multiplicative, but fully homo-
morphic encryption system can be used for many operations (such as, addition,
multiplication, division etc.) at the same time. Dijk et.al. [7] propose a new
encryption that provides fully homomorphic encryption over integer ciphertext.
This fully homomorphic scheme [7] is a simplification of an earlier work involving
ideal lattices [12]. It encrypts a single bit (in the plaintext space) to an integer
(in the ciphertext space). When these integers are added and multiplied, the
hidden bits are added and multiplied (modulo 2). The symmetric version of the
encryption function is given by c � pq � 2r �m, where p is the private key, q
and r are chosen randomly, and m is the message m � �0, 1�. The decryption is
simply
c mod p� mod 2, which recovers the bit. Hence, when we add or multiply
the ciphertext, the message is manipulated accordingly.

Using the symmetric version of the encryption, it is possible to construct an
asymmetric version which is more useful to the association rule mining appli-
cation, since another party must be able to encrypt in order to use the homo-
morphic property of the encryption system. Detail of the encryption system is
discussed in [7] as well as in [18].

3 Proposed Solution

ARM technique consists of two major parts - (i) Global frequent itemset (say Lg)
generation and (ii) Association rule generation from Lg. To determine frequent
itemset within a database, it is necessary to compare counts of all possible item-
sets. In many research works, some solutions are provided to reduce this number
of candidate itemset, as well as number of comparisons. The Apriori algorithm
[1] is one of the leading algorithms, which determines all frequent itemsets along
with their support counts from a database efficiently. More detail on ARM can
be found in [15,29] and [18]. This section illustrates, how some enhancements
are done on two-party secure ARM proposed in [18].

3.1 ARM with Privacy Preservation

If the Equation 2 can be computed securely, two sites S1 and S2 can com-
pute global frequent itemset (Lg) keeping the privacy preserved. Similarly from
this Lg, association rules also can be computed securely. Detail can be found in

Optimized Two Party Privacy Preserving Association Rule Mining 365

[18]. In Apriori based ARM frequent k-itemset (Lk) is computed from candidate

k � 1�-itemset, where L1 is the all frequent 1-itemset. Each iteration of our
privacy preserving two party ARM algorithm can be summarized in following
major steps assuming there exists Lk:

1: Generate candidate itemset: Each data site computes its local candidate
itemset Ck�1 from Lk.

2: Frequent itemset generation: Two sites exchange information securely to
determine frequent itemset Lk�1 from Ck�1 of S1 and S2. Update: Lg �
Lg

�
Lk�1.

3: Repeat Step 1 and Step 2 until there remain an itemset’s count � t.
4: Compute association rules from Lg.

In this proposed solution we only focus on Step 2; assuming the rest of the steps
are trivial. In Step 2, the itemset counts are needed to be compared securely.
Therefore, the main focus of the solution is simplified into - comparing two
numbers securely (as stated in Equation 2).

Secure Comparison of Two Integers. Let us assume, both S1 and S2 agree
n be the bit length of both α and β. S1 computes Epk
α�, form of which is
a concatenation of n integers. i.e. Epk
α� � α̂ � �an�an�1�...�a1}, where ai

is integer and ai � Epk
αi�, i � 1 to n. S1 sends α̂ to S2. S2 computes B �
β�1 � �Bn�Bn�1�...�B1�, where Bi � �0, 1�, i � 1 to n. To compare the numbers,
S2’s operations are illustrated in Figure 1. It should be noted that, ai, Ri and
Ci are encryption of some bits; represented as an integer. On the other hand, bi

is plain binary digits visible to S2. Instead of encrypting its value, S2 performs
some conditional operations based on the value of bi to deduce Rn. S2 runs
Algorithm 1 and returns Rn to S1.

Fig. 1. S2 computes the final bit to determine comparison result. Result (R) and Carry
(C) are computed based on Equation 3 and 4 respectively.

366 M.G. Kaosar, R. Paulet, and X. Yi

Algorithm 1. S2 computes the resultant bit for comparison
input : α̂, B /* α̂ � �an�an�1�...�a1� and B � β � 1 � �Bn�Bn�1�...�B1�*/
output : Rn /* Rn is the resultant bit of the comparison operation*/

c0 � 0
for i � 1 to n do

if Bi � 0 then
Ri � ai � Ci�1

Ci � Ci�1 � ai

else
Ri � �ai � 1�� Ci�1

Ci � Ci�1 � �ai � 1� � ai

end if
end for
return Ri

S1 decrypts Ri as r � Dsk
Ri�. If r � 0 then α � β, else α � β. S1 shares r
with S2.

Correctness Proof. Let us assumed FHE holds � and � for one bit ciphertext.
It is also proven from Section 2.2 that, nth bit of the result of the summation
operation provides the clue about which number is greater or smaller. Now let
us consider Algorithm 1, S2 modifies the equation of summation and carry based
on the corresponding bit. If Bi � 0 then Equation 3 and 4 can be simplified as:

Ri � ai Bi Ci�1 � ai 0 Ci�1 � ai Ci�1 (7)

Ci � Ci�1
ai Bi� � aiB1 � Ci�1
ai 0� � aix0 � Ci�1ai (8)

Similarly if Bi � 1 then Equation 3 and 4 can be simplified as:

Ri � ai Bi Ci�1 � ai Epk
1� Ci�1

�
ai � 1�� Ci�1 � ai Ci�1 � 1
(9)

At the end of the loop in the algorithm, i becomes equal to n. Therefore Ri � Rn.
In Equation 9, both ai and Ci�1 are ciphertexts of the form m� 2r � pq (basic
ciphertext form of FHE). Therefore a1Ci�1Epk
1� � a1Ci�1�1. Similarly
equation of carry can be simplified as:

Ci � Ci�1
ai Bi� � aiB1 � Ci�1
ai Epk
1�� � aiEpk
1�
� Ci�1 �
ai � 1�� ai � Ci�1
ai � 1� � ai

(10)

Thus, Rn is correctly formed which is a function of ciphertext and plaintext
computed by basic operations supported by FHE.

4 Performance and Security

4.1 Performance Analysis

The number of operations involved in this proposed solution and [18] to perform
one comparison operation securely are discussed as follows:

Optimized Two Party Privacy Preserving Association Rule Mining 367

This solution:
S2 does not need to perform any kind of encryption at all. According to Algo-
rithm 1, number of multiplication and addition operations are n and n respec-
tively. Number of encryptions are also n.

Solution of [18]:
Counts of the particular itemset and the database size is encrypted in both S1

and S2. Therefore, number of encryptions are 2n. To compute total number
of multiplication and addition operations, let us count them according to the
solution of [18]:

– To compute Epk�c1��Epk�c2�
Epk��DB1���Epk��DB2��

into the form of α
β , it requires 6n multi-

plications and 8n additions.
– Secure comparison of two fractional numbers in Section 3.3 involves 600n

multiplications and 800n additions assuming two decimal precision of the
threshold value is considered.

– Secure comparison of two encrypted integers in Section 3.2 involves 6n mul-
tiplications and 10n additions.

Table 1 summarizes the number of different operations involved in comparing
two integers securely. From the performance comparison it is clearly understood
that, our optimized solution demonstrates outstanding performance compared to
the solution of [18]. This is due to (i) mathematical simplification in comparing
two integers, (ii) simplified carry bit expression and (iii) avoidance of encryption
in S2 side. Moreover, the table is about one single comparison operation in the
ARM process. If the whole mining process is considered then the performance
comparison would show a dramatic difference between the two solutions.

Table 1. Performance comparison

Proposed Solution Solution of [18]
Parameter S1 S2 S1 S2

Number of multiplications 0 n 0 	 600n

Number of additions 0 n 0 	 800n

Number of encryptions n 0 n n

Number of decryptions 1 0 1 0

4.2 Security Analysis

The security of our protocol includes security of S1 and security of S2. The
security of S1 means any input from S1 during association rule mining is kept
private from S2 and security of S2 means any input from S2 is kept private
from S1.

In our protocol, any input from S1 is encrypted by the public key of S1, and
only S1 knows the secret key for decryption. If our underlying fully homomorphic
encryption scheme is secure, S2 cannot obtain any information about the input
of S1. Our underlying fully homomorphic encryption, Dijk et.al.s scheme, uses

368 M.G. Kaosar, R. Paulet, and X. Yi

a bootstrapping technique to achieve fully homomorphic property, where the
addition or multiplication of two ciphertexts is implemented by squashing the
two ciphertexts with a very complicated decryption circuit at first and then
adding or multiplying the resultant ciphertexts. Due to bootstrappability, the
relationship between the encryption of the sign bit and the input from S2 is so
random that it is impossible for S1 to guess the input of S2 from the encryption of
the sign bit. Based on this, S2 security can be achieved. In summary, our protocol
secures both S1 and S2, since FHE of [7] is secure, based on approximate GCD
problem.

5 Conclusion

In this paper, we have investigated many ways to improve the previously pro-
posed solution [18] towards the secure two party ARM algorithm. Some of the
achievements are: (i) mathematics behind itemset count comparison is enhanced,
(ii) carry bit expression is much simplified, (iii) encryption in S2 is avoided (iv)
number of multiplication and addition operations between ciphertexts are re-
duced dramatically. However, this two-party solution can be extended for multi-
party too by repeatedly comparing itemset counts among all participants.

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceed-
ings of the 20th International Conference on Very Large Data Bases, pp. 487–499.
VLDB, Santiago (1994)

2. Atallah, M., Elmagarmid, A., Ibrahim, M., Bertino, E., Verykios, V.: Disclosure
limitation of sensitive rules. In: KDEX 1999: Proceedings of the 1999 Workshop
on Knowledge and Data Engineering Exchange, p. 45. IEEE Computer Society,
Washington, DC, USA (1999)

3. Chen, K., Liu, L.: Privacy preserving data classification with rotation perturbation.
In: ICDM 2005: Proceedings of the Fifth IEEE International Conference on Data
Mining, pp. 589–592. IEEE Computer Society, Washington, DC, USA (2005)

4. Chen, K., Liu, L.: A random geometric perturbation approach to privacy-preserving
data classification. Technical Report, College of Computing, Georgia Tech. (2005)

5. Clarkson, J.B.: Dense probabilistic encryption. In: Proceedings of the Workshop
on Selected Areas of Cryptography, pp. 120–128 (1994)

6. Dasseni, E., Verykios, V.s., Elmagarmid, A.K., Bertino, E.: Hiding association
rules by using confidence and support. In: IHW 2001: Proceedings of the 4th In-
ternational Workshop on Information Hiding, London, UK, pp. 369–383. Springer,
Heidelberg (2001)

7. Dijk, M.V., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryp-
tion over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110,
pp. 24–43. Springer, Heidelberg (2010)

8. Duan, Y., Canny, J., Zhan, J.: Efficient privacy-preserving association rule mining:
P4p style. In: IEEE Symposium on Computational Intelligence and Data Mining,
CIDM 2007, March 1-April 5, pp. 654–660 (2007)

Optimized Two Party Privacy Preserving Association Rule Mining 369

9. Evfimievski, A., Srikant, R., Agrawal, R., Gehrke, J.: Privacy preserving mining
of association rules. In: Proceedings of the Eighth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD 2002, pp. 217–228
(2002)

10. El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1984)

11. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: Out-
sourcing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010)

12. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC 2009:
Proceedings of the 41st Annual ACM Symposium on Theory of Computing, pp.
169–178. ACM, New York (2009)

13. Gentry, C., Halevi, S.: Implementing gentry’s fully-homomorphic encryption
scheme. Cryptology ePrint Archive, Report 2010/520 (2010)

14. Gkoulalas-Divanis, A., Verykios, S.V.: Association Rule Hiding for Data Mining.
Springer, Heidelberg (2010) ISBN:9781441965691

15. Han, J., Kamber, M.: Data Mining Concepts and Techniques, 2nd edn. Elsevier
Inc., Amsterdam (2006)

16. Hussein, M., El-Sisi, A., Ismail, N.: Fast cryptographic privacy preserving associ-
ation rules mining on distributed homogenous data base. In: Lovrek, I., Howlett,
R.J., Jain, L. (eds.) KES 2008, Part II. LNCS (LNAI), vol. 5178, pp. 607–616.
Springer, Heidelberg (2008)

17. Kantarcioglut, M., Clifton, C.: Privacy-preserving distributed mining of association
rules on horizontally partitioned data. IEEE Trans. on Knowl. and Data Eng. 16(9),
1026–1037 (2004)

18. Kaosar, M.G., Paulet, R., Yi, X.: Secure two-party association rule mining. In:
Australasian Information Security Conference (AISC 2011), pp. 17–20 (January
2011)

19. Liu, K., Kargupta, H., Ryan, J.: Random projection-based multiplicative data per-
turbation for privacy preserving distributed data mining. IEEE Trans. on Knowl.
and Data Eng. 18(1), 92–106 (2006)

20. Oliveira, S., Oliveira, S.R.M., Zaane, O.R.: Toward standardization in privacy-
preserving data mining. In: Proc. of the 3nd Workshop on Data Mining Standards
(DM-SSP 2004), in conjuction with KDD 2004, pp. 7–17 (2004)

21. Oliveira, S.R.M., Zaane, O.R.: Achieving privacy preservation when sharing data
for clustering. In: Proc. of the Workshop on Secure Data Management in a Con-
nected World (SDM 2004) in conjunction with VLDB 2004, Toronto, Canada, pp.
67–82 (2004)

22. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

23. Ramaiah, B.J., Rama, A.R.M., Kumari, M.K.: Parallel privacy preserving associ-
ation rule mining on pc clusters, pp. 1538–1542 (March 2009)

24. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

25. Rizvi, S., Haritsa, J.R.: Maintaining data privacy in association rule mining. In:
Proceedings of the 28th VLDB Conference, Hong Kong, pp. 682–693 (2002)

26. Saha, A., Manna, N.: Digital Principles and Logic Design. Laxmi Publications
(2008)

370 M.G. Kaosar, R. Paulet, and X. Yi

27. Stehlé, D., Steinfeld, R.: Faster fully homomorphic encryption. In: Abe, M. (ed.)
ASIACRYPT 2010. LNCS, vol. 6477, pp. 377–394. Springer, Heidelberg (2010)

28. Su, C., Sakurai, K.: A distributed privacy-preserving association rules mining
scheme using frequent-pattern tree. In: Tang, C., Ling, C., Zhou, X., Cercone,
N.J., Li, X. (eds.) ADMA 2008. LNCS (LNAI), vol. 5139, pp. 170–181. Springer,
Heidelberg (2008)

29. Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Pearson Edu-
cation, Inc., London (2006)

30. Wu, C.M., Huang, Y.F., Chen, J.Y.: Privacy preserving association rules by us-
ing greedy approach. In: World Congress on Computer Science and Information
Engineering, vol. 4, pp. 61–65 (2009)

31. Yi, X., Zhang, Y.: Privacy-preserving distributed association rule mining via semi-
trusted mixer. Data & Knowledge Engineering 63, 550–567 (2007)

SLA-Based Resource Provisioning for

Heterogeneous Workloads in a Virtualized Cloud
Datacenter

Saurabh Kumar Garg, Srinivasa K. Gopalaiyengar, and Rajkumar Buyya

Cloud Computing and Distributed Systems Laboratory
Department of Computer Science and Software Engineering

The University of Melbourne, Australia
{sgarg,raj}@csse.unimelb.edu.au

Abstract. Efficient provisioning of resources is a challenging problem in
cloud computing environments due to its dynamic nature and the need
for supporting heterogeneous applications with different performance re-
quirements. Currently, cloud datacenter providers either do not offer
any performance guarantee or prefer static VM allocation over dynamic,
which lead to inefficient utilization of resources. Earlier solutions, concen-
trating on a single type of SLAs (Service Level Agreements) or resource
usage patterns of applications, are not suitable for cloud computing envi-
ronments. In this paper, we tackle the resource allocation problem within
a datacenter that runs different type of application workloads, particu-
larly non-interactive and transactional applications. We propose admis-
sion control and scheduling mechanism which not only maximizes the
resource utilization and profit, but also ensures the SLA requirements
of users. In our experimental study, the proposed mechanism has shown
to provide substantial improvement over static server consolidation and
reduces SLA Violations.

1 Introduction

With the increasing popularity of Cloud computing, research centers and enter-
prises have started outsourcing their IT and computational needs to on-demand
cloud services [3].The clouds are typically large scale virtualized datacenters
hosting thousands of servers. While there are several advantages of these virtu-
alized infrastructures such as on-demand scalability of resources, there are still
issues which prevent their widespread adoption in clouds. In particular, for a
commercial success of this computing paradigm, the cloud datacenters need to
provide a better and strict Quality of Service (QoS) guarantees. These guaran-
tees which are documented in the form of Service Level Agreement (SLA) are
crucial, since only then the customers can be confident in outsourcing their jobs
to clouds [19]. Resource provisioning plays a key role in ensuring that the cloud
providers adequately accomplish their obligations to customers while maximiz-
ing the utilization of underlying infrastructure. An efficient resource manage-
ment scheme would require to automatically allocate to each service request,

Y. Xiang et al. (Eds.): ICA3PP 2011, Part I, LNCS 7016, pp. 371–384, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

372 Saurabh Kumar Garg et al.

the minimal resources needed for acceptable fulfillment of SLAs, leaving the sur-
plus resources free to deploy more virtual machines. The provisioning choices
must adapt to changes in load as they occur, and respond gracefully to unantic-
ipated demand surges. For these reasons, partitioning the datacenter resources
among the various hosted applications automatically is a challenging task. Cur-
rent cloud datacenters hosts a wider range of applications with different SLA
requirements[12]. The intrinsic differences among these different workloads fur-
ther make the resource provisioning a challenging task [15]. First, the SLA re-
quirements of different applications are different. The transactional applications
require response time and throughput guarantee, while non-interactive batch
job concerns performance (e.g. completion times). Second, the resource demand
of transactional applications such as Web application tend to be highly unpre-
dictable and busty in nature[4], while of batch jobs can be predicted to a higher
degree[14]. Hence, the satisfaction of complex and different requirements of all
applications makes the goal of utilization maximization while meeting different
types of SLAs far from trivial.

Traditionally, to meet SLA requirements, over-provisioning of resources to
meet worst case demand are used. However, since servers operate most of the
time at very low utilization level, it leads to waste of resources in non-peak times.
This over-provisioning of resources results in extra maintenance costs including
server cooling and administration [8]. Many researchers tried to address these
issues by dynamic provisioning of resources using virtualization, but they focused
mainly on scheduling based on one specific type of SLA or application type such
as transactional workload. Even though computationally intensive applications
are increasingly becoming the part of enterprise datacenter, still research with
mixed types of applications having different SLAs is in infancy. Today, most of
the datacenters run different types of applications on separate VMs without any
awareness of their different SLA requirements such as deadline, which may result
in resource under-utilization and management complexity.

Therefore, in this paper, we present a novel dynamic resource management
strategy that not only maximizes the utilization by sharing resources among mul-
tiple concurrent applications owned by different users, but also considers SLAs of
different types. We handle scheduling of two types of applications i.e., compute
intensive non-interactive jobs and transactional applications, each having differ-
ent types of SLA requirements and specifications. Our strategy makes dynamic
placement decisions to respond to the changes in transactional workload, and
also considers the SLA penalties for making future decisions. To schedule batch
jobs, our proposed resource provisioning mechanism predicts the future resource
availability and schedules the jobs by stealing CPU cycles, which are unutilized
by the transactional applications.

2 Related Work

In this section, we compare our work with the most relevant ones. Meng et al.
[9] proposed a joint-VM provisioning and borrowing approach by exploiting the
statistical multiplexing among the workload patterns. Zhang et al. [20] designed

SLA-Based Resource Provisioning for Heterogeneous Workloads 373

an approach to quickly reassign the resources for a virtualized utility computing
platform using ghost virtual machines (VMs). These works concentrate on fixed
number of VMs, while we have considered variable amount of incoming workload.
Vijayaraghavan and Jennifer [16] focussed on the analysis and resource provi-
sioning for the datacenters’s management workloads which have considerable
network and disk I/O requirements. Singh et al. [13] argue that the workload in
internet applications is non-stationary and consider the workload mix received
by a Web application for their mix-aware dynamic provisioning technique. In
contrast, our work concentrates on handling multiple types of SLA both for
High Performance Computing (HPC) and Web based workloads with a new ad-
mission control policy. Quiroz et al. [12] present a decentralized, robust online
clustering approach for a dynamic mix of heterogeneous applications on Clouds,
such as long running computationally intensive jobs, bursty and response-time
sensitive WS requests, and data and IO-intensive analytics tasks. When com-
pared to our approach, the SLA penalty is not considered and it uses a static
number of VMs. Wang et al. [18] evaluated the overhead of a dynamic alloca-
tion scheme in both system capacity and application-level performance relative
to static allocation. In our work, the idea of dynamic allocation is extended for
multiple types of workloads including HPC and Web. Carrera et al. [4] developed
a technique that enables existing middleware to fairly manage mixed workloads
both in terms of batch jobs and transactional applications. The aim of this pa-
per is towards a fairness goal while also trying to maximize individual workload
performance. But, our aim is to efficiently utilize the datacenter resources while
meeting the different type of SLA requirements of the applications.

The main contributions of this paper lies with the design of an efficient
admission control and scheduling mechanism for Cloud datacenters with the
following salient features: a) adaptive admission control and dynamic resource
provisioning facility, b) considered multiple type of SLAs based on application
requirements, c) integration of mixed/heterogeneous workloads (such as non-
interactive and transactional applications) for better utilization of resources,
and d) variable penalties depending on the type of SLA violation.

3 System Model

3.1 Datacenter Model

We consider a Cloud virtualized datacenter model. Each server is interconnected
with a high-speed LAN network and high bandwidth link to the Internet. The
key components involved in the process of scheduling an application on a VM are:
admission control, VM manager, job scheduler and SLA manager. The admission
control component decides whether the requested VM (for an application) can be
allocated and the QoS requirements can be met with a given number of available
resources. If an application is accepted for execution, SLA is signed and penalty
rates are negotiated with the user. The VM manager will initiate a VM and
allocate it to a server having the required capacity. Job scheduler will schedule
applications on this newly initiated VM. SLA manager monitors the current

374 Saurabh Kumar Garg et al.

SLAs and service level for each accepted application. We consider the two types
of application workloads i.e., transactional and non-interactive batch jobs. Since
both applications have different QoS requirements, different charging models are
used. Transactional applications are offered a set of VMs with varying capacity
to allow the user to choose as per his requirements and they can be charged on
hourly basis. The auto-scaling facility can also be provided if resource demand
exceeds the VM size allocated. In the next section, we discuss the two types of
application workloads considered in this work along with their SLA definitions.

3.2 SLA and Application Models

The transactional workloads include Web applications whose resource demand
can vary with time. On the other hand, for the non-interactive workloads, we
model the HPC compute intensive bag of task applications. Most of the scientific
workloads include mostly independent single-machine jobs (tasks) grouped into
single “bag of tasks” [6]. Thus, it is assumed that there is no data communication
between each task. The SLA model, that is used as the basis for determining the
VM capacity, is discussed in detail below. We consider a discrete-time scenario
in which time is slotted into intervals with equal length (T).

SLA Model for Transactional Workload: A user gives QoS requirements
in terms of response time ti with each transactional application i. This response
time requirement can be translated to CPU power αi needed to achieve this
response time [4]. SLA will be broken if the capacity Cti allocated to the appli-
cation is less than the required capacity at time t. A penalty q will incur if number
of such violation increases beyond a threshold βi. Thus, the net amount the user
needs to pay at the end of the period (T1, T2) would be: r ∗ αi ∗ (T2 − T1)− q, if
r is rate charged. Here, the user can choose three types of penalties:

– Fixed Penalty: The fixed penalty q is charged whenever the cloud provider
fails to fulfil current capacity demand.

– Delay-dependent Penalty: The penalty is proportional to the delay in-
curred by the service provider in returning the capacity. If q’ is the agreed
penalty rate in the SLA and T1 and T2 are the time instants between which
the capacity for the current demand is less than the reserved capacity (ac-
cording to SLA), then the service provider’s penalty due to the user is cal-
culated as: q′ ∗ (T2 − T1).

– Proportional Penalty: This is also a form of delay-dependent penalty,
where the penalty to be credited to a user which is proportional to the dif-
ference between the user’s provisioned capacity C1 and its current allocation
C2. If q’ is the agreed penalty rate per unit capacity per unit time, T1 and
T2 are the respective times when the capacity was requested and allocated,
then the penalty is given as: q′ ∗ (T2 − T 1) ∗ (C1 − C2).

SLA also contains the information regarding auto-scaling option. If the user
choose this facility, when demand for resources increases beyond the initial
requested amount, more resources will be allocated to meet this spike and

SLA-Based Resource Provisioning for Heterogeneous Workloads 375

automatically reduced when demand is decreased to a threshold. The Cloud
provider can charge an additional amount for offering such flexibility.

SLA Model for Non-interactive Batch Jobs: QoS requirements for batch
jobs are deadline and the amount of CPU time allocated. These jobs require
performance based guarantees. Since, the performance of VMs allocated can
vary with the usage of datacenter and we define SLA as the p amount of CPU
Cycles to be provided by the Cloud provider before the deadline d in order to
ensure successful completion of job. Let db be the delay before allocating p CPU
cycles. Then, if the provider fails to complete the given job, following penalty
applies: q = y ∗ db, where y is the penalty rate.

4 Admission Control and Scheduling Policy

As discussed in the earlier sections, we need to consider the requirements of two
different application workloads before accepting the new requests and also while
serving the accepted one. The main idea is to monitor the resource demand
during the current time window in order to make decisions about the server
allocations and job admissions during the next time window. Datacenter resource
allocation is monitored and reconfigured in regular intervals. At a given point
of time, it is assumed that if a host is idle for certain amount of time or not
running any applications, then it will be switched-off. In each scheduling cycle,
admission control and scheduling can perform three functions:

– Admission Control: It decides to accept or reject a new application (trans-
actional or batch) based on present and future resource availability.

– SLA Enforcement: The resource demand of each application is monitored
based on agreed QoS level guaranteed in SLAs. In this step, dynamic re-
source reconfiguration is done to handle the demand bursts of transactional
applications and to meet SLA requirements.

– Auto-Scaling: If the resource demand of any application exceeds the re-
quested (reserved) capacity in the SLA, a new VM instance can be initiated
based on the resource availability and auto-scaling thresholds.

All the above operations depend on the forecasting module which predicts the
future resource availability and the expected resource demand of each applica-
tion. We will discuss the above three functions and methodologies in following
sections. The batch job queue component represents the queue of VMs (corre-
sponding to each batch job) which are waiting for execution.

The batch job queue is sorted based on a threshold time up to which a batch
job can be delayed without any penalty. Let the d be the deadline, MI be the
CPU cycles (Millions of Instructions) required for completion of job, and Cmin

be the Million of Instruction Per Second(MIPS) of smallest standardized VM
offered by the Cloud provider, then the threshold time threshT ime(i) for batch
job i is calculated as : threshT ime(i) = d − MI

Cmin
.

376 Saurabh Kumar Garg et al.

4.1 Forecasting Model

In this paper, we have used an Artificial Neural Network (ANN) based fore-
casting model, which is a multi-layer feedforward network. It had been shown
in literature [17][1] that ANNs perform better than other linear models (e.g.,
regression models), specifically, for more irregular series and for multiple-period-
ahead forecasting. Such neural network techniques has also been used and well
studied in previous works for distributed application scheduling in context of
Grids [5]. It is important to note that it is not our goal here to determine the
best prediction technique. However, our contribution is that if the resource re-
quirements of an application is well predicted, we can maximize the resource
utilization considering different SLA requirements of different applications. In
addition, our scheduling policy is designed to be robust and tolerant towards
the incorrect prediction of the forecasting model.

In this paper, the standard Back Propagation (BP) algorithm is used to pre-
dict the CPU utilization. The forecasting model predicts one day utilization
values of each VMs from one week data from the dataset, with minimum Root
Mean Square Error (RMSE) network. Here, the ANN is modeled with one in-
put layer, one output layer and variable hidden layers between the inputs and
outputs. As all the nodes at each layer are interconnected by weights, a train-
ing algorithm is used to attain a set of weights that minimizes the difference
between the predicted value and the actual output through the network. For a
given resource usage of an application, the model can be tested for accuracy of
prediction by varying the number of hidden layers, training set, and the learning
rate. To avoid the overhead of forecasting, this process occur in offline mode.

The neural network considered in this paper, forecasts the CPU utilization
with minimum RMSE network [10]. In the experiments1, a time series vector of
CPU utilization for one week is given as an input. The number of hidden layers
is varied to tune the performance of the network and through iterations it was
found to be optimum at the value of 5 hidden layers. 80% of the data is considered
for training and at any point of time 24 periods of CPU utilization for every next
5 minutes is forecasted. The learning rate is found to be optimum at 0.1. The
network generates a neural model with minimum MSE (Mean Square Error) and
outputs the minimum of RMSE. The 8064 instances of CPU utilization (About
one month data, recorded on every five minutes) taken from workload traces is
given as the input to the model and the CPU utilization for next one day (288
instances) are predicted.

4.2 Admission Control and Scheduling

In this process, the decision on whether an application can be accepted and
executed based on the available resources and QoS requirements of the applica-
tion. To estimate how much resources will be available, we used ANN forecasting
model (described in the previous section) which predicts future demand of all

1 Please see section 5 for the details of web application workload.

SLA-Based Resource Provisioning for Heterogeneous Workloads 377

accepted applications. If free resources on a host are sufficient to run the appli-
cation, it will be accepted. The scheduling of application is based on following
simple but effective principle:“In initial allocation, for transactional applications,
reserve resources are equivalent to their peak demand. For non-interactive jobs,
scheduler tries to allocate slack of resources remaining on a host which is running
a transactional application. At regular intervals, consolidate those VMs deployed
on hosts which are not running any non-interactive jobs”.

The scheduler always tries to run non-interactive jobs with transactional ap-
plications whose resource demand is highly dynamic. This strategy aims to mini-
mize the SLA violations and network overhead of VM migration. It is clear that,
this strategy is quite different from general approaches used in previous works
where, during migration, multiple types of SLAs are not considered. Each type
of application has different resource demand characteristics and different QoS
requirements. The details of admission control and scheduling for each of them
are described below:

(a) Non-interactive (b) Transactional

Fig. 1. Job Scheduling Scenarios

Non-Interactive Job: The datacenter accepts the request for execution of
a non-interactive batch job only when it can be allocated with the required
amount of CPU capacity before its deadline. At any moment, when a job arrives
for execution, datacenter have some servers running the workload and others
which are switched-off to save the power. Thus, the scheduler first checks the
resource availability of active servers where a Web application is already hosted.
The resource availability on each host are calculated based on the forecasted
server demand. To know whether the job can be successfully executed within
its deadline, the start and completion time of each jobs is estimated based on
resource availability on each host. Figure 1(a) shows the four possible ways a
given job can be scheduled. If the job can be completed before the deadline on
any host then, the job is accepted by the datacenter for execution, otherwise it
will be rejected. SLA is signed between both the user and the provider.

For scheduling, a VM image based on QoS requirement of a given job is
created. The VM is deployed on a server (Sj) where the start time (Exp St) of
job is minimum and with an already hosted Web VM. Thus, for execution the
new HPC VM, it will utilize the slack resources on the server and such VM is
termed as dynamic HPC VM. These HPC VMs are allowed to migrate and the
resources allocated to them are also dynamic. In this case, if on the given host,
there is already one HPC VM is running, then the new VM will be deployed after
the completion of the job on the current VM (as demonstrated in Figure 1(a)).

378 Saurabh Kumar Garg et al.

If no such server is available and the threshold time of job is greater than the
next scheduling interval, then the deployment of VM is delayed and job is queued
up in the batch job Queue. This is done to exploit errors in the resource demand
forecast. If actual demand of the resources is less than forecasted one, then some
HPC job could finish before their estimated completion time. Thus, new VM
can be deployed without switching on to the new servers. If the threshold time
of the job is less than the next scheduling interval, then either it is scheduled
on a server running only the HPC VMs, or a new server which is switched on.
In this case, the VM deployment will be static. Therefore, these VMs are not
allowed to migrate, and the resources allocated to them will not be changed till
the agreed amount (as in SLA) of CPU cycles are used for its execution. These
VMs are called static HPC VM indicated by a different color in Figure 1(a).
This is done to avoid the effects of rescheduling of VMs on the network and on
the other VMs running in the server.

Transactional Applications: A user having a transactional application can
ask for VMs of different standard sizes offered by the Cloud provider. Let the user
request for a VM with capacity Ck. A request is accepted when the datacenter
can schedule the VM with capacity Ck on any server assuming all hosted Web
VMs are running at 100% utilization and without considering resources used by
dynamic HPC VMs. The Web VM is scheduled based on the best-fit manner.
As Figure 1(b) shows, there are four possibilities to deploy the new Web VM.

Algorithm 1. SLA Enforcement and Rescheduling
Input: Current Utilization of VMs and Current Resource Demand
Output: Decision on Capacity Planning and Auto-scaling
Notations: V Mweb−i: VM running Transactional (Web) Applications;
CurResDemand(V Mweb−i): Current Resource Demand; CurAllocResV Mweb−i: Current
Allocated Capacity; ReservedRes(V Mweb−i): Reserved VMs Capacity Specified in SLA; V Mhpc−i:
VM running HPC Application

1: for Each V Mweb−i do
2: Calculate the current resource demand CurResDemand(V Mweb−i)
3: if CurResDemand(V Mweb−i) < CurAllocResV Mweb−i then
4: Reduce the resource capacity of V Mweb−ito match the demand
5: else
6: if CurResDemand(V Mweb−i) ≤ ReservedRes(V Mweb−i) then
7: Increase the resource capacity of V Mweb−i to match the demand
8: Reduce correspondingly the resource capacity allocated to HPC application (V Mhpc−i

) on the same server
9: else
10: if SLA contains Auto-scaling Option then
11: Initiate new VMs and offload the application demand to new VMs
12: end if
13: end if
14: end if
15: end for
16: for Each Batch Job V Mhpc−i do
17: if slack resources available on the server where HPC VM is running then
18: Allocate the slack resources
19: end if
20: Recompute the estimated finish time of the job
21: Reschedule the Batch Job VM if missing the deadline.
22: end for

SLA-Based Resource Provisioning for Heterogeneous Workloads 379

Case 1: If new Web VM is deployed on a server hosting both a dynamic HPC
VM and Web VMs, then the future resources available to the dynamic HPC
VM will get affected. This scarcity of resources will delay the completion time
of HPC job. Thus, the HPC VM will be paused and rescheduled (migrated) to
other servers if the HPC job is missing its deadline after deployment of new
Web VM. The rescheduling of HPC job is done in such a way that the minimum
penalty occurs due to SLA violation.

Case 2 - 4: In these cases, since, while scheduling of new Web application, the
full utilization of resources by other VMs is considered. Therefore, there will not
be any perceptible effect on the execution of other VMs. It can be noted that
in Case 4, since static HPC Vm (denoted by red color) is hosted therefore, the
available resources on the server for executing new Web application will be the
amount of resources unused by HPC VM.

4.3 SLA Enforcement and Rescheduling of VMs

To fulfil SLAs, the regular SLA monitoring of each application is required, since
our initial allocation and admission control is based on the forecasting. The fore-
casting model only gives approximate future resource demand and thus there
may be a time when SLAs are violated. The steps involved during SLA enforce-
ment process is given in Algorithm 1. In every scheduling cycle, scheduler will
do following functions: a) enforce SLAs and b) schedule the jobs from batchjob
Queue, and c) Consolidation. For SLA enforcement, the resource demand for
each transactional application till next scheduling cycle is recalculated (Line
1-2). If any Web VM requires less than the forecasted (currently allocated ca-
pacity) then the extra resources are allocated to HPC VM running on the same
host (Line 3-5 and 20-21). Otherwise, if the Web VM requires more resources
than allocated (≤ promised capacity in SLA), then the resources allocated to
the VM are increased to match the demand (Line 6-7). Correspondingly, the
resources allocated the HPC VM will be reduced (Line 8). If the Web VM re-
quires resource capacity more than specified in SLA, then the decision is taken
based on whether the user has opted for auto-scaling or not (Line 10-15). This
process is repeated for each transactional application. After that, for each HPC
job, their VM capacity is increased if some slack resources is available on the
server where the VM is hosted (Line 17-18). Based on allocated resources to the
HPC VM, the job completion time is recomputed (Line 20). If any HPC job
which is currently running is expected to miss deadline, then its corresponding
VM is migrated and scheduled on another server using strategies discussed in
previous section (Line 21). Similar process is repeated for each HPC job (VM)
in batch job queue. The scheduler consolidates Web VMs which are running on
servers having no HPC VM. If due to consolidation, some Web VMs may be
short of resources, in that case, SLA can be violated.

380 Saurabh Kumar Garg et al.

5 Performance Evaluation

We have simulated a datacenter that comprises of 1500 heterogeneous physi-
cal nodes. Simulation approach gives advantage of repeating the experiments
under similar environment. Thus, it allows the comparison of different schedul-
ing strategies. In addition, it is pretty difficult to gain workload for many real
applications as they are considered in this work. Each node is modelled to have
one CPU core with performance equivalent to 4000 Million Instructions Per Sec-
ond (MIPS), 16 GB of RAM, 10 GB/s network bandwidth and 1 TB of storage.
We have considered for different types of VMs with 1000, 2000, 2500 or 3500
MIPS. The smallest instance will be allocated 1 GB of RAM, 100 Mb/s network
bandwidth and 1 GB of storage. The CPU MIPS ratings are similar to different
Amazon EC2 instance sizes. The users submit requests for provisioning of 500
heterogeneous VMs. Each VM is randomly assigned a workload trace from one
of the servers from the workload data as described in the following section. The
pricing for each VM instance is taken same as used by Amazon EC2 for different
sizes of VM. Even though only four types of VMs are considered, our model can
be easily extended for other types of VM instances.

5.1 Workload Data

For our experiments, we have used two different workloads data, each for transac-
tional and non-interactive applications. For transactional data, data is collected
from CoMon [11], a monitoring infrastructure for PlanetLab (http: //comon.cs.
princeton.edu). The data contains the CPU utilization, memory and bandwidth
usage of more than thousand servers located at about 500 places around the
world. The data has been collected for each five minutes during the period from
the 22nd to 29th of July 2010. The data is interpolated to generate CPU utiliza-
tion for every second. The data satisfy our requirement of transactional appli-
cation and thus have some good number of peak utilization levels and very low
off-peak utilization level: the average CPU utilization is below 50%. For non-
interactive batch jobs, the LCG workload traces from Grid Workload Archive
(GWA) [7] are used. Since this paper focuses on studying the Cloud users with
non-interactive applications, the GWA meets our objective by providing work-
load traces that reflect the characteristics of real applications running on one
VM. From this trace, we obtain the submit time, requested number of VMs, and
actual runtime of applications. Since workload traces do not contain any data
on deadline and penalty rates specified in SLAs, for our evaluation, these are
generated using uniform distribution. The deadline of a non-interactive applica-
tion i is given by: SubT ime(i)+ExeT ime(i)+ExeT ime(i)∗λ, where SubT ime
is submit time and ExeTime is execution time. λ is urgency factor derived from
uniformly distribution(0,2).

5.2 Performance Metrics

The simulations have been run for 10 hours of each workload category to de-
termine the resource provisioning policies that delivers the best utilization, the

SLA-Based Resource Provisioning for Heterogeneous Workloads 381

Fig. 2. Effect on Datacenter Utilization

least number of SLA violation and VM migrations, and accepted maximum user
requests. Two metrics are used to compare the policies: number of hosts uti-
lized and revenue generated. We have compared our resource provisioning policy
MWAP (Mixed Workload Aware Policy) against two other following well known
strategies used in current datacenters:
1. Traditional Approach (aka Traditional): In this approach, during the whole

VMs life cycle, an application will be allocated the capacity of server as
specified in SLA. Thus, VM allocation will not change with time.

2. VM Migration and Consolidation Approach (aka withMigration): This strat-
egy is used in various papers to address the problem of maximizing the uti-
lization of datacenters [2]. In this approach, many VMs are consolidated
based on one server and their usage. If an application demands more server
capacity, either it is migrated or capacity of server assigned to the VM run-
ning the application is increased. Since VMMigration does not consider the
SLA requirements of non-interactive applications, for fair comparison the
VM capacity allocated to each such applications does not change with time.
This reduces the chance of batch application to miss its deadline.

6 Analysis of Results

Although several experiments are conducted by varying different parameters,
due to space constraint, in this section, we discuss only the key results of our
evaluation. All the results are summarized in Figure 2, Table 1 and 2.

Effect on Datacenter Utilization: Since our main objective is to maximize
the utilization of datacenter, first we compare all the techniques based on their
effectiveness in maximizing the datacenter utilization. The datacenter utilization
is indicated by the number of host which are used for a given workload. Thus,
Figure 2, shows how the number of hosts utilized is varied with time to meet the
SLA requirements of applications and complete them successfully. It can be no-
ticed that number of VMs utilized by MWAP policy remains constant with time

382 Saurabh Kumar Garg et al.

and utilized about 60% less number of servers on average. The reason for such a
large difference is that MWAP tries to run VMs of batch jobs by using unutilized
resources of VMs running Web applications. With more batch job submissions,
the number of servers used by the traditional approach has increased from almost
zero to 200. This is due to static allocation of server capacity to VMs based on
SLA requirements. In this case, with the time, number of active servers become
almost constant since enough servers are available to meet the resource demand
of incoming non-transactional workload. In the case of withMigration resource
provisioning policy, there is an increase in the number of servers between T=300
to T=400 due to high volume of batch job submissions. The later due to con-
solidation, withMigration policy reduces the number of server utilized to about
83. This clearly shows the importance of considering resource usage pattern of
different type of applications, which can result in efficient datacenter utilization.
Thus, datacenter can simultaneously serve more users with same server capacity.

Table 1. Effect of SLA consideration on provider and user Parameters

Policy Revenue Revenue VM Migrations SLA Violation Batch Job Completed
(Batch Jobs) Transactional (Transactional)

Traditional 481848 647700 0 0 285
withMigration 31605 623370 267 26 160

MWAP 475732.8 647700 69 0 284

Table 2. Effect of different type of SLA penalties

Penalty Rate Fixed Delay Dependent Proportional
(Penalty$) SLA Violation Penalty($) SLA Violation Penalty($) SLA Violation

Low 87.78063157 6 146.3010526 10 292.6021052 10
Medium 219.4515789 6 365.7526316 10 731.5052631 10

High 438.9031579 6 731.5052631 10 1463.010526 10

Effect on Revenue Generated and SLA Violation: In general, the most
important thing for a Cloud provider is, the profit generated by serving the VM
request of users. Secondly, the Cloud provider wants is to satisfy as many users as
possible by meeting their SLA requirements. Table 1 gives the details of revenue
generated for each type of applications i.e., batch jobs and transactional appli-
cations. The revenue generated from Traditional policy and the proposed policy
MWAP are similar because of zero number of violations both for transactional and
batch jobs. While, withMigration policy results in about 26 SLA violation due to
the migration delays which results in reduction of revenue. The withMigration
policy also results in very low batch job revenue. The reason behind this is mi-
gration delays which results in SLA penalty. Therefore, the consideration of SLA
penalty with VM migration and consolidations plays an important role in dy-
namic resource provisioning, otherwise Cloud provider will incur huge revenue
loss.

Migration overhead and Batch Job Completion: It is well known that VM
migration is not free and it always incur some network and CPU overhead. In this
section, we will show the number of migrations MWAP required to perform in
order to meet the SLA requirements in comparison to withMigration approach.

SLA-Based Resource Provisioning for Heterogeneous Workloads 383

It can be clearly noticed from Table 1, the huge reduction in VM migration by
MWAP policy which results in almost 75% less number of migrations. The with-
Migration policy tries to optimize the utilization by migrating and consolidating
the underutilized VMs which results in very high number of migrations. The mi-
gration overhead causes unnecessary delays in batch job execution which results
in almost 45% (Table 1 : Batch Job Completed) of successful completions before
deadline. This problem can further increase if the number of VMs initiated is
not constant, which is accounted in our MWAP by using intelligent admission
control policy.

Effect of SLAs Types: In this section, we present the further results on the
importance of considering different types of SLA penalties (requirements) along
with dynamic provisioning of VMs within a Cloud datacenter. Since, there is
no SLA violations noticed in the case of MWAP, we have conducted the exper-
iments using withMigration policy to understand the role of different types of
SLA penalties (fixed, delay dependent and proportional) in resource allocation.
For each application, Table 2 summarizes the results with variation of penalty
rate (q) from low to high. The proportional penalty incur almost 50% more in
comparison to other penalties. As the penalty rate is varied, the total penalty in-
curred becomes more and more prominent. Since, in withMigration policy, there
is no consideration of type of SLA penalties, as it results in more number of
SLAs with delay-dependent and proportional penalty, and this further enhances
the penalty. Thus, while doing resource allocation, the provisioning policy should
take into account these penalty types and give priority to the applications with
low penalty rates.

7 Conclusions and Future Directions

In this work, we have proposed a novel technique that maximizes the utilization of
datacenter and allows the execution of heterogenous application workloads, par-
ticularly, transactional and non-interactive jobs, with different SLA requirements.
Our approach dynamically assigns VMs in such a way that SLA signed with cus-
tomer can be met without any penalty. The paper, also describes how the proposed
technique can easily integrate with the admission control and facilities like auto-
scaling offered by the Cloud providers. By extensive performance evaluation, it is
demonstrated that, the proposed mechanism MWAP reduces number of servers
utilized by 60% over other strategies like consolidation and migration with negli-
gible SLA violation. Our proposed mechanism MWAP performs reasonably well
and is easily implementable in a real Cloud Computing environment.

Therefore, we demonstrate that for designing more effective dynamic resource
provisioning mechanisms, it is important to consider different types of SLAs
along with their penalties and the mix of workloads for better resource provision-
ing and utilization of datacenters; otherwise it will not only incur unnecessary
penalty to Cloud provider but can also lead to under utilization of resources.
This motivates further enquiry into exploration of optimizing the resource pro-
visioning techniques by extending our approach to other type of workloads such

384 Saurabh Kumar Garg et al.

as workflows and parallel applications. In future, we also plan to extend our
model by considering the multi-core CPU architectures as well as network and
memory conflicts.

References

1. Azoff, E.: Neural network time series forecasting of financial markets. John Wiley
& Sons, Inc., New York (1994)

2. Beloglazov, et al.: A Taxonomy and Survey of Energy-Efficient Data Centers and
Cloud Computing Systems. In: Zelkowitz, M. (ed.) Advances in Computers. Else-
vier, Amsterdam (2011) ISBN 13: 978-0-12-012141-0

3. Buyya, et al.: Cloud Computing and Emerging IT Platforms: Vision, Hype, and
Reality for Delivering Computing as the 5th Utility. FGCS 25(6), 599–616 (2009)

4. Carrera, D., Steinder, M., Whalley, I., Torres, J., Ayguadé, E.: Enabling resource
sharing between transactional and batch workloads using dynamic application
placement. In: Issarny, V., Schantz, R. (eds.) Middleware 2008. LNCS, vol. 5346,
pp. 203–222. Springer, Heidelberg (2008)

5. Dodonov, E., de Mello, R.: A novel approach for distributed application scheduling
based on prediction of communication events. FGCS 26(5), 740–752 (2010)

6. Iosup, A., Epema, D.: Grid computing workloads: Bags of tasks, workflows, pilots,
and others. IEEE Internet Computing 99(PrePrints) (2010)

7. Iosup, et al.: The grid workloads archive. FGCS 24(7), 672–686 (2008)
8. Kim, J.K., Siegel, H.J., Maciejewski, A.A., Eigenmann, R.: Dynamic resource man-

agement in energy constrained heterogeneous computing systems using voltage
scaling. IEEE Trans. Parallel Distrib. Syst. 19(11), 1445–1457 (2008)

9. Meng, et al.: Efficient resource provisioning in compute clouds via vm multiplexing.
In: Proc. of the 7th Intl. Conf. on Auton. Comp., Washington, DC, USA (2010)

10. Mohammadi, S., Abbasi-Nejad, H.: Forecasting With Matlab.
129.3.20.41/eps/prog/papers/0505/0505001.pdf (2005)

11. Park, K., Pai, V.: CoMon: a mostly-scalable monitoring system for PlanetLab.
ACM SIGOPS Operating Systems Review 40(1), 65–74 (2006)

12. Quiroz, et al.: Towards autonomic workload provisioning for enterprise grids and
clouds. In: Proc. of 10th IEEE/ACM Intl. Conf. on Grid Comp., USA (2009)

13. Singh, et al.: Autonomic mix-aware provisioning for non-stationary data center
workloads. In: Proc. of the 7th Intl. Conf. on Autc. Comp., USA (2010)

14. Smith, et al.: Secure on-demand grid computing. FGCS 25(3), 315–325 (2009)
15. Sotomayor, et al.: Combining batch execution and leasing using virtual machines.

In: Proc. of the 17th Intl. Sym. on HPDC, Boston, MA, USA (2008)
16. Soundararajan, et al.: The impact of mngt. operations on the virtualized datacen-

ter. In: Proc. of the 37th Ann. Intl. Sym. on Comp. Arch., France (2010)
17. Srinivasa, et al.: An efficient fuzzy based neuro-genetic algorithm for stock market

prediction. Intl. Jnl. of Hyb. Intelligent Sys. 3(2), 63–81 (2006)
18. Wang, et al.: Capacity and performance overhead in dynamic resource allocation

to virtual containers. In: Proc. of the 10th IFIP/IEEE Intl. Symp. on Intgd. Net.
Mangt., Munich, Germany (2007)

19. Yeo, C., Buyya, R.: Service Level Agreement based Alloc. of Cluster Resources:
Handling Penalty to Enhance Utility. In: Proc. of the 7th IEEE Intl. Conf. on
Cluster Comp., Boston, USA (2005)

20. Zhang, et al.: Agile resource management in a virtualized data center. In: Proc. of
Ist Joint WOSP/SIPEW Intl. Conf. on Perf. Eng., California, USA (2010)

ΣC: A Programming Model and Language for

Embedded Manycores

Thierry Goubier, Renaud Sirdey, Stéphane Louise, and Vincent David

CEA, LIST, Embedded Real-Time Systems Lab
Mail Box 94, F-91191 Gif-sur-Yvette Cedex, France

name.surname@cea.fr

Abstract. We present ΣC, a programming model and language for high
performance embedded manycores. The programming model is based on
process networks with non determinism extensions and process behavior
specifications. The language itself extends C, with parallelism, compo-
sition and process abstractions. It is intended to support architecture
independent, high-level parallel programming on embedded manycores,
and allows for both low execution overhead and strong execution guar-
antees. ΣC is being developed as part of an industry-grade tool chain
for a high performance embedded manycore architecture.

Keywords: programming model, programming language, embedded
manycores, embedded high performance computing.

1 Introduction

Programming embedded systems is a difficult task and so is parallel program-
ming. Embedded manycores, that is systems-on-chip with over a hundred gen-
eral purpose cores, are full scale parallel machines, typically employing a mix of
shared and local memory, distributed global memory or multilevel cache hierar-
chy, and a network on chip (NoC) to enable communication between cores. Com-
pared to their full scale brethren, they provide a limited amount of memory per
core, no guarantee on memory coherency and are subject to strict dependability
and performance constraints (e.g., guaranteed performance at peak utilization
or close to peak).

As a consequence, developing for those targets suppose handling simultane-
ously the following three difficulties: meeting performance and dependability
requirements subject to limited resources, running correctly large parallel pro-
grams, as well as exploiting efficiently the underlying parallel architectures. To
render this task manageable and cost-effective, we have identified the following
set of requirements for a programming model and language suitable for many-
cores:

– Ability to handle a variety of algorithms, both data flow (streaming) and
control oriented at least from the fields of signal and image processing.

– Familiarity to embedded developers, that is similarity to C and ability to
integrate efficiently with existing C code.

Y. Xiang et al. (Eds.): ICA3PP 2011, Part I, LNCS 7016, pp. 385–394, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

386 T. Goubier et al.

– A compiler able to prove that the final executable is guaranteed to execute
in bounded memory and that any run is reproducible.

– A development tool chain able to support good programming practices, mod-
ularity, encapsulation and code reuse.

– A run time and support microkernel fit for embedded manycores.

The main result described in this paper is a well defined model of computation,
and the ΣC programming language which implements it. The paper is organized
as follows. We first position our model with respect to the embedded models of
computation and parallelism. We then detail the programming model, the lan-
guage and the compilation process, before a short overview of the techniques used
to guarantee execution in bounded memory, as well as the points for compilation
optimization as currently implemented.

2 Related Work

ΣC as a programming model takes place among the numerous works done in the
field of embedded models of computation[1]. The programming model belongs
to the class of Process Networks (PN), or Kahn process networks (KPN)[2].
One of the main trade-off made during the design of ΣC, in this space, is the
amenability to formal analysis, the field being split between models with re-
stricted expressive power for which interesting properties such as deadlock free-
ness and bounded memory are decidable (SDF or Synchronous DataFlow[3],
CSDF or Cyclo-Static DataFlow[4], HDF or Heterochronous DataFlow[5]) and
models with increased expressive power such as the aforementioned process net-
works, Boolean DataFlow (BDF) and others, which come at the cost of Turing-
completeness. The ΣC programming model trade-off consist in increasing the
expressive power above SDF and CSDF while being less general than non de-
terministic process networks or BDF; in that following a similar constructive
approach as [6].

The ΣC programming model is a subset of a process network model of compu-
tation with non deterministic extensions, of sufficient expressive power for most
applications, while maintaining the possibility of tractably performing a formal
analysis, for example using the well-known VASS or Petri net formalisms[7].

As a programming language, ΣC relates to StreamIt[8], Brook[9], XC[10],
and more recently OpenCL[11], all programming languages, either new or ex-
tensions to existing programming languages, able to describe parallel programs
in a stream oriented model of computation (CSP for XC).

ΣC differs by extending C without restrictions on the type of C supported or
changes in the semantics of C apart from the extensions; the ΣC compiler parses
standard C and support computational kernels of any level of complexity and
call depth. It is high-level: no mention of the memory hierarchy or chip layout
is necessary in the source code. It supports proving guaranteed execution in
bounded memory over non-deterministic process network topologies. It supports
stand-alone systems, with no host and no operating system, on an embedded
manycore target with tens of Kbytes of RAM per core and over a thousand cores.

ΣC: A Programming Model and Language for Embedded Manycores 387

The implementation as a programming language extension provides strong type
checking, scoping, modularity and correctness at the source code level.

3 The ΣC Programming Model

3.1 Components

The basic unit of the programming model is called an agent. It is an independent
process, with one thread of execution and its own address space. It communicates
through point to point, unidirectional, typed links behaving as fifos.

Communication through links is done in blocking read, non-blocking write
fashion, and the link buffers are considered large enough. Agents have an inter-
face, that is a list of typed and oriented ports to which links may connect, and
a behavior specification.

An application, for example in figure 1, is a graph of interconnected agents,
with an entry point, the root agent. The graph is static, and does not evolve
through time (no agent creation or destruction, no change to the topology, during
the execution of an application).

Fig. 1. Process network for a Laplacian computation (Huertas-Médioni operator),
showing line (L) and column (C) filter agents

System agents ensure distribution of data and control, as well as interactions
with external devices. Data distribution agents are Split, Join (distribute or
merge data in round robin fashion over respectively their output ports / their
input ports), Dup (duplicate input data over all output ports) and Sink (consume
all data).

3.2 Behavior

The communication behavior of each agent is specified. It is a cyclic state ma-
chine with variable amounts of data. Each transition specifies a fixed or variable
amount of data consumed on in ports, and a fixed or variable amount of data
produced on out ports of this agent. All variable amounts are bounded ranges.

388 T. Goubier et al.

An example is a run length decoding agent with input and output ports of type
unsigned char, described by : {{input[2]}; {output[1:256]}}. This specifi-
cation means that this agent consumes two tokens on its input in one transition,
and then produces 1 to 256 tokens on its output in the second transition, before
looping back.

Data-dependent control in the process graph is introduced through Select
and Merge agents which take, in addition to their data links, a control link
selecting which input or output link is activated. Select and Merge are evaluated
as simulation of execution of the branch not taken (and execution of the branch
taken), so as to ensure correct execution of agents connected to the branch. In
this semantic, a branch not taken is seen as being executed for its environment.

3.3 Designing for Execution Guarantees

As already emphasized, the ΣC programming model has been designed with
amenability to formal analysis in mind, in particular with respect to properties
such as absence of deadlock and memory bounded execution. In essence, for-
mal analysis is performed on the basis of both the topological and behavioral
specifications provided by the programmer.

In particular, being a special case of KPN, the ΣC programming model in-
herits their nice properties with respect to determinism and monotony. This has
interesting consequences on the problem of safely dimensioning the statically
dimensioned communication buffers: as long as one finds a deadlock-free buffer
size solution for all links (preferably small with respect to an adequate objective
function), any other solution with non-smaller buffers is also deadlock-free. This
thus allows one to decouple the problems of proving deadlock-freeness and of
tuning the buffer dimensioning so as to achieve a high level of performance.

At the programming language level (see below), the programming model ap-
pears hierarchical, with behavior specifications and interfaces. This aspect is de-
signed to support hierarchical, divide-and-conquer analysis of minimum buffer
bounds and deadlock-free solutions.

4 The ΣC Programming Language

The ΣC programming language is designed as an extension to C. It adds to
C the ability to express and instantiate agents, links, behavior specifications,
communication specifications and an API for topology building, but does not add
communication primitives. It defines a component model with composition[12],
and enforces strict encapsulation and type checking on components interfaces.

The ΣC language has been designed to allow two levels of execution: off-
line and on-line. The static topology of a ΣC application is handled through
instantiation of components and topology building at compile-time, by executing
off-line parts of the application source code dedicated to that effect. The on-line
level is the application execution on the target hardware.

ΣC: A Programming Model and Language for Embedded Manycores 389

Listing 1. A Line filter prototype

1 agent LineFilter (int width) {

2 interface {

3 in<int > in1;

4 out <int > out1 , out2;

5 spec {in1[width]; out1[width]; out2[width]};

6 }

7 }

4.1 Components

The basic entity in a ΣC program is an agent. It abstracts a programming model
process and so corresponds to an execution unit, with its own address space and
a single thread of execution. It has an interface, describing its communication
ports (direction and type) and the specification of its behavior in the model de-
scribed above. It is written as a C scoping bloc with an identifier and parameters,
containing C unit level terms (functions and declarations), ΣC-tagged sections:
init, map, and exchange functions.

The interface section contains the communication ports description and the
behavior specification. Each port is a direction (in, out or inout), a type (any
C except pointers and functions) and an identifier. Ports may be provided with a
default value (if out or inout) and a sliding window size (if in). Arrays of ports
can be expressed. The behavior specification is a spec espression describing the
behavior as shown on line 5 of listing 1.

The map section contains component instantiation, topology building and ini-
tialization code for the agent. As a ΣC agent in the language is an abstraction,
it has to be instantiated to be part of an application. This is done off-line by
executing the map section of agents. Each agent is then responsible for its ini-
tialization, the instantiation of the agents it contains (an agent is a composite)
and the topology it encapsulates. Two extensions to C are introduced here: a
new keyword for instantiating an agent, and template-like type parametric in-
stantiation for system agents. A topology building API is used here, with two
functions : connect to connect two ports, and preload to preload data in a link.
For an example, see listing 2 for the map code used to build the network of fig-
ure 1. All assignments done to agent state variables in the map section are saved
and integrated in the final executable, allowing for off-line complex initialization
sequences on a per-instance basis.

The ΣC language enforces strict encapsulation: the internals of an agent, and
all its contents (contained agents, links, local ports, etc...) cannot be accessed
from outside that agent.

Exchange functions implement the communicating behavior of the agent. An
exchange function is a C function with an additional exchange keyword, fol-
lowed by a list of parameter declarations enclosed by parenthesis (see line 8 of
listing 3). In the parameter declaration, the type is the name of a port and the

390 T. Goubier et al.

Listing 2. Topology building code

1 subgraph root(int width , int height)

2 {

3 interface { spec {}; }

4 map

5 {

6 ...

7 agent output = new StreamWriter <int >(ADDROUT , width *height);

8 agent sy1 = new Split <int >(width , 1);

9 agent sy2 = new Split <int >(width , 1);

10 agent jf = new Join <int >(width , 1);

11 ...

12 connect (jf.output , output .input);

13 ...

14 for(i=0; i<width ; i++) {

15 agent cf = new ColumnFilter(height);

16 connect (sy1 .output [i], cf.in1);

17 connect (sy2 .output [i], cf.in2);

18 connect (cf.out1 , jf.input [i]);

19 }

20 }

21 }

declarator creates an exchange variable of the type of that port. They can be
used in the code in exactly the same way as function parameters, the direction of
the port (in, out or inout) indicating whether the variable resolves to an input or
an output buffer. An exchange function call is exactly like a standard C function
call, the exchange parameters being hidden to the caller. Exchange variables can
be used as parameters to C function calls without overhead or hidden data copy
in most cases. Listing 3 is an example of an agent implementation.

The agent behavior is implemented as in C, as an entry function named
start(), which is able to call other functions as it sees fit, functions which
may be exchange functions or not. No communication primitives are available
or visible at the function or exchange function level, and it supports exchange
functions calling exchange functions with, however, possible performance effects.

Subgraphs are similar to agents, except that a subgraph implements only
composition, without behavior. As such, a subgraph has only an interface
and a map scope, and subgraph ports have a slightly different meaning: they are
aliases for the ports of internal agents or subgraphs instances.

4.2 System Agents

System agents are special agents implementing data distribution and synchro-
nization, and making it available to the compilation tools for transformation and
optimisation purposes. They are handled through stream-like agents: Split, Dup,
Join, Select, Merge and Sink. Those agents are type generic and take a C type
in parameter when instantiated.

ΣC: A Programming Model and Language for Embedded Manycores 391

Listing 3. The Column Filter agent used in figure 1

1 agent ColumnFilter(int height) {

2 interface {

3 in<int > in1, in2;

4 out <int> out1;

5 spec {in1[height]; in2[height]; out1[height]};

6 }

7

8 void start() exchange (in1 a[height], in2 b[height], out1 c[height]) {

9 static const int

10 g1[11] = { -1, -6, -17, -17, 18, 46, 18, -17, -17, -6, -1},

11 g2[11] = {0, 1, 5, 17, 36, 46, 36, 17, 5, 1, 0};

12 int i, j;

13 for(i=0;i<height ;i++) {

14 c[i] = 0;

15 if(i < height - 11)

16 for(j=0; j < 11; j++) {

17 c[i] += g2[j] * a[i+j];

18 c[i] += g1[j] * b[i+j];

19 }

20 }

21 }

22 }

4.3 Input / Output

Input / Ouput is handled with a special class of agents, identified by the keyword
ioagent, and support type parametrization with a C++ template like syntax.
They provide a way to write agents handling low level system and input / output
tasks as well as drivers or protocol stacks, but interfacing with the ΣC program-
ming model. The tool chain is then open to the possibility of targeting those
agents on dedicated hardware such as DMA engines, IO Processors or different
execution environments.

A sample of such ioagents are implemented to access external memory: those
are the StreamReader, MemReader, StreamWriter and MemWriter ioagents, with
variants allowing for synchronization of memory transfers. Timer ioagents pro-
duce a stream of timed events, allowing for time-based synchronization.

4.4 Software Architecture

Agents and subgraphs can represent any granularity: large processes, thread-size
entities, fine grain parallelism (SIMD-like). It is designed so that the port of a
sequential C program to ΣC may be done by making it a single agent, and
to progressively turn it into a massively parallel implementation by repeated
decomposition in smaller agents and subgraphs.

392 T. Goubier et al.

ΣC supports libraries of ΣC components and the design of carefully crafted
and optimized libraries of algorithms abstracted behind a generic interface, or
parallelism patterns.

Standard C code, even non-reentrant, may be reused and compiled as ΣC
code. C pointer equivalence in exchange functions allow for passing pointers in
standard function calls with no loss of performance or generality.

A standard C back-end is needed for completion of the compilation process;
as such, ΣC is compatible with vector extensions, attributes, pragmas, inline
asm, automatic vectorisation and other specifics of the target ISA and backend
compiler.

5 A Sketch of the ΣC Compilation Process

The ΣC compiler chain is architectured around four passes. The first pass, the
ΣC front-end, performs a lexical, syntactic and semantic analysis of the ΣC
code, and generates preliminary C code for either off-line execution or further
refinement by substitution.

The second pass, the ΣC middle-end, deals with agent instantiation and con-
nection, by compiling and executing the codes generated to that end by the
front-end. Once the application graph is complete, a number of parallelism re-
duction heuristics are applied so as to tailor the application to an abstract spec-
ification of the platform resource capacities. Most system agents are combined
and transformed into shared memory buffers or NoC transfers so as to fit the
system communication and memory architecture. The second pass subsequently
computes a deadlock-free lowest bound of the buffers size for all links (see [13]).

The third pass performs resource allocation at the system level. This en-
compasses computing buffer sizes and construction of a folded (hence finitely
representable) unbounded partial ordering of tasks occurrences (see [14]) as well
as allocation of tasks to computing resources (cores, clusters, etc.) and NoC con-
figuration. Resource allocation can be performed in a feedback-directed fashion
so as to achieve an appropriate level of performance.

The last pass, called the ΣC back-end, is in charge of generating the final C
code as well as the runtime tables which, based on the partial orderings built
by the third pass, make the link with the target execution model. Using the
C back-end tools, the ΣC back-end is also in charge of link edition as well as
loadbuild.

Optimization Points

ΣC is designed with the following three goals when it comes to optimization.
First, rely on a proven, portable, efficient backend compilation toolchain, in
practice, a C compiler and associated tools (linker, assembler).

Secondly, at the process network level, optimize through buffer fusion, rewrit-
ing cascades of Split and Dup as patterned access to data, specifically if the

ΣC: A Programming Model and Language for Embedded Manycores 393

architecture has DMA engines. Another level of optimization is adjusting by re-
duction of the degree of parallelism of the process network graph, by detecting
and replacing specific topologies.

The third design goal for optimization was that performance tuning of perfor-
mance sensitive code on embedded devices is possible in a pragmatic way: ΣC
is sufficiently flexible to allow developers to express parametric parallel code,
where instances execution cycles, buffer sizes and degree of parallelism can be
adjusted with instance parameters, allowing developers to adjust the shape of
the process network to a better match for the target architecture.

6 Evaluation

Two teams, one internal to our lab, one within our industrial partner, are col-
laboratively stress test the language and the model on a first (but wide ranging)
round of applications optimized for the target platform amongst which multi
camera target tracking applications, augmented reality video processing, H264
video encoding, and 4G/LTE channel coding implementations. Our current re-
sults indicate that the level of expressiveness chosen has proven itself so far
appropriate, that is target applications have been designed without encounter-
ing algorithmic constructions that are either clumsy or (worse) impossible to
express.

Potential efficiency concerns are regularly expressed and handled in the course
of the language evolution, without major changes so far. The informal usabil-
ity testing underway has shown that the component model and process model
expressed in ΣC has not been considered a barrier and that developers with a
background in C or SystemC have few difficulties to adapt to it.

Furthermore, the model has proven interesting for designing parallel solution
algorithms to some operational research problems, so we may have a possibility to
retarget the implementation on larger scale, non embedded, parallel systems (or
a large collection of high performance embedded manycores). It has also proved
suitable as a back-end language for higher-level stream processing languages such
as [15], and may be used as a target for source code automatic parallelisation
tools such as Par4All/PIPS[16].

7 Conclusion

We have presented a well formed programming model and ΣC, a programming
language implementing it. This programming model and language have so far
a result on two of our criteria: ability to express a variety of algorithms, and
familiarity to embedded developpers through C compatibility. It has now evolved
through a few iterations, mostly removing unneeded features and adding target
integration, and can now be seen as a stable foundation.

For the remaining three criteria set forth in the introduction, we have shown
that the programming model support formal analysis and computation of a
bounded memory schedule. Implementation details such as the ability to do

394 T. Goubier et al.

in-place data modifications and buffer sharing allow for a strict, memory con-
strained implementation with a dedicated micro-kernel. And the programming
language support type checking, components and reusability.

This language and its compilation tool chain is being industrialized as part of
the technology offering for a many-core architecture jointly developed with one
of our semi-conductor partners.

References

1. Jantsch, A., Sander, I.: Models of computation and languages for embedded system
design. IEE Proc.-Comput. Digit. Tech. 152(2), 114–129 (2005)

2. Kahn, G.: The Semantics of Simple Language for Parallel Programming. In: IFIP
Congress, pp. 471–475 (1974)

3. Lee, E., Messerschmitt, D.: Synchronous Data Flow. Proceedings of the IEEE 75(9),
1235–1245 (1987)

4. Bilsen, G., Engels, M., Lauwereins, R., Peperstraete, J.: Cycle-Static Dataflow.
IEEE Trans. on Signal Processing 44(2), 397–408 (1996)

5. Girault, A., Lee, B., Lee, E.A.: Hierarchical Finite State Machines with Multiple
Concurrency Models. IEEE Trans. on Computer-aided Design of IC & S 18(6),
742–760 (1999)

6. Gao, G.R., Govindarajan, R., Panangaden, P.: Well-behaved dataflow programs
for DSP computation. In: IEEE ICASSP 1992, pp. 561–564 (March 1992)

7. Reutenauer, C.: Aspects Mathématiques des Réseaux de Petri, Dunod (1997)
8. Thies, W., Karczmarek, M., Amarasinghe, S.: StreamIt: A Language for Streaming

Applications. In: Proceedings of CC 2002, Grenoble, France, pp. 179–196 (2002)
9. Buck, I.: Brook Specification v0.2. (2003), http://merrimac.stanford.edu/brook
10. Watt, D.: Programming XC on XMOS Devices. XMOS (2009)
11. Khronos OpenCL Working Group: The OpenCL Specification v1.1 (2011)
12. Lau, K., Wang, Z.: Software Component Models. IEEE Trans. on Software Engi-

neering 33(10), 709–724 (2007)
13. Sirdey, R., Aubry, P.: A Linear Programming Approach to General Dataflow Pro-

cess Network Verification and Dimensionning. Electr. Proceedings in Theorical
Computer Science (to appear)

14. Sirdey, R., David, V.: Système d’ordonnancement de l’exécution de taches cadencé
par un temps logique vectoriel. Patent pending, filling no 1003963 (2010)

15. De Oliveira Castro, P., Louise, S., Barthou, D.: A Multidimensional Array Slicing
DSL for Stream Programming. In: Proceedings of CISIS 2010, pp. 913–918 (2010)

16. Irigoin, F., Jouvelot, P., Triolet, R.: Semantical Interprocedural Parallelization: An
Overview of the PIPS Project. In: Proceedings of ICS 1991, pp. 244–251 (1991)

http://merrimac.stanford.edu/brook

Provisioning Spot Market Cloud Resources to
Create Cost-Effective Virtual Clusters

William Voorsluys, Saurabh Kumar Garg, and Rajkumar Buyya

Cloud Computing and Distributed Systems (CLOUDS) Laboratory
Department of Computer Science and Software Engineering

The University of Melbourne, Australia
{williamv,sgarg,raj}@csse.unimelb.edu.au

http://www.cloudbus.org

Abstract. Infrastructure-as-a-Service providers are offering their un-
used resources in the form of variable-priced virtual machines (VMs),
known as “spot instances”, at prices significantly lower than their stan-
dard fixed-priced resources. To lease spot instances, users specify a max-
imum price they are willing to pay per hour and VMs will run only when
the current price is lower than the user’s bid. This paper proposes a re-
source allocation policy that addresses the problem of running deadline-
constrained compute-intensive jobs on a pool of composed solely of spot
instances, while exploiting variations in price and performance to run ap-
plications in a fast and economical way. Our policy relies on job runtime
estimations to decide what are the best types of VMs to run each job
and when jobs should run. Several estimation methods are evaluated and
compared, using trace-based simulations, which take real price variation
traces obtained from Amazon Web Services as input, as well as an ap-
plication trace from the Parallel Workload Archive. Results demonstrate
the effectiveness of running computational jobs on spot instances, at a
fraction (up to 60% lower) of the price that would normally cost on fixed
priced resources.

Keywords: spot market, virtual clusters, cloud computing.

1 Introduction

The introduction of affordable cloud computing infrastructure has had a major
impact in the business IT community. These resources are also being explored
as a means of accomplishing high performance processing tasks, often present in
areas such as science and finance. However, the use of virtualization and network
shaping have been cited as factors that hinder the viability of these resources for
running compute intensive applications, as opposed to using a dedicated HPC
cluster [1]. Nonetheless, the potential cost savings offered by clouds has led to
an increased adoption of cloud-based virtual clusters, as well as to the practice
of extending the capacity of local clusters using cloud resources in situations of
peak demand [2].

Y. Xiang et al. (Eds.): ICA3PP 2011, Part I, LNCS 7016, pp. 395–408, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.cloudbus.org

396 W. Voorsluys, S.K. Garg, and R. Buyya

The cost to build these virtual clusters highly depends on the type of leased
virtual machines, which are offered via various pricing schemes through separate
“markets”, most notably: the on-demand market, which offers standard VMs at
a fixed cost; and the spot market, which offers unused capacity in the form of
variable price VMs. For example, Amazon EC2 offers biddable virtual machines
(VMs), also known as “spot instances”, for as low as 1

3 of the standard fixed
price for a similar instance. In this fashion, users submit a request that specifies
a maximum price (bid) they are willing to pay per hour and instances associated
to that request will run for as long as the current spot price is lower than the
specified bid. Prices vary frequently, based on supply and demand.

In spite of the apparent economical advantage, an intermittent nature is in-
herent to biddable resources, which may cause VM unavailability. When an out-
of-bid situation occurs, i.e. the current spot price goes above the user’s maximum
bid, spot instances are terminated by the provider without prior notice. How-
ever, this situation can be avoided by bidding slightly higher, thus mitigating
this uncertainty, or by using fault-tolerance techniques such as checkpointing [3].

Virtual clusters can be heterogeneous, when different types of VMs (e.g. with
distinct number of CPU cores) are leased and added to the resource pool. In
this case, the ratio between price and performance of different types of spot in-
stances may not be constant over time, creating opportunities for optimizations.
For example, one could decide how to run a certain compute intensive job by
observing the performance per dollar ratio of two high-CPU EC2 spot instances.
The “c1.medium” instance type has a CPU power of 5 ECUs and the “c1.xlarge”
type has a power of 20 ECUs. One ECU is defined as equivalent to the power
of a 1.0-1.2 GHz 2007 AMD Opteron or 2007 Intel Xeon processor. As the spot
price of each instance type varies, the performance per dollar ratio offered by
each instance type varies accordingly so that, at different periods of time, one
instance type may offer a better ratio than the other. In these situations, if
an application that would normally run using 5 ECUs could provide enough
parallelism, it could run significantly faster on the relatively cheaper 20 ECU
instance. This approach offers extra flexibility to users since they may choose
to assemble a pool of VMs by bidding on resource types that are currently at
a discounted hourly price and then adapt their jobs to run more efficiently on
the new resources. Figure 1 depicts an example scenario of such a virtual cluster
composed of virtual machines of different sizes.

This paper focuses on reducing the costs of building virtual clusters by leasing
spot market resources. Specifically, we propose a resource provisioning and
job scheduling strategy that addresses the problem of dynamically
building a virtual cluster out of low-cost VMs and utilizing them to
run compute-intensive applications. Our main objective is to exploit vari-
ations in price and performance of resources to run applications in a fast and
economical way. Moreover, applications are assumed to be deadline-constrained.
For this reason, our strategy is augmented by a job runtime estimation mecha-
nism that aids in deciding how to allocate jobs in a way that they finish within
their deadlines.

Provisioning Spot Market Cloud Resources 397

1 GB

1
1

CPU cores and their power
(in compute units)

Amount of memory in GB

100
GB

Amount of local disk
storage in GB

HIGH-MEMORY 4X LARGE

68.4 GB

3.25 3.25 3.25 3.25
3.25 3.25 3.25 3.25

HIGH-CPU
MEDIUM

2.5

1.7GB

2.5

350

STD SMALL

1.7GB

1

160

HIGH-CPU X LARGE

7GB

2.5
2.5

2.5
2.5

2.5
2.5

2.5
2.5

1690

STD SMALL

1.7GB

1

160

STD SMALL

1.7GB

1

160

HIGH-CPU
MEDIUM

2.5

1.7GB

2.5

350

STD SMALL

1.7GB

1

160

STD SMALL

1.7GB

1

160

1690

(a) (b)

(c)

Legend

Fig. 1. A virtual cluster is dynamically assembled out of inexpensive cloud-based re-
sources, e.g. Amazon EC2 spot instances. (a) VMs of appropriate sizes have to be
chosen, depending on the immediate requirements of running applications; (b) the
cluster is able to scale to much larger capacities; (c) VMs are replaced by different
types as application requirements change.

Our results show that it is possible to run a stream of computational jobs
by solely utilizing spot instances. Especially, we have quantified the effect of
the accuracy of runtime estimation on the monetary cost. We have found out
that less accurate estimations usually lead to higher costs (in the case of over
estimations) or more missed deadlines (in the case of under estimations).

The Contributions of This Work Are:

– A novel system architecture that enables the creation of cloud-based virtual
clusters solely by utilizing low-cost spot instances. Our system allows orga-
nizations that do not have a local cluster to run streams of computational
jobs in a fast and economical way;

– A resource provisioning strategy that decides when to request spot instances
to accommodate incoming jobs, as well as which instance type to request.

– An information mechanism that aids decision-making by providing runtime
estimates;

The rest of this paper is organized as follows: Section 2 describes related lit-
erature; Section 3 describes the proposed architecture; Section 4 details the
mechanisms that composed our resource allocation policy; Section 5 presents
experimental results and their discussion; finally Section 6 concludes the paper.

2 Related Work

With the increasing popularity of cloud infrastructure, many organizations have
started looking into the exploitation of cloud resources rather than maintaining

398 W. Voorsluys, S.K. Garg, and R. Buyya

their own in-house cluster facilities, which are expensive to maintain. In this
section we present the most relevant works that consider similar scenarios and
compared them to our contribution.

2.1 Cloud-Based Virtual Clusters

Research on building virtual clusters using cloud resources can be generally di-
vided into two categories: (1) techniques to extend the capacity of in-house clus-
ters at times of the peak demand, and (2) assembling resource pools using only
public cloud resources and using them to run compute intensive applications.
For instance, Assuncao et al [2] have evaluated a set of well known scheduling
policies, including backfilling techniques, in a system that extends the capacity
of a local cluster using fixed-priced cloud resources. Similarly, Mattess et al [4]
have evaluated policies that offload extra demand from a local cluster to a re-
source pool composed by Amazon EC2 spot instances. In contrast to these works,
our system model does not consider the existence of a local cluster, instead all
resources are cloud-based spot instances.

2.2 Use of Variable Pricing Resources

A few recently published works have touched the subject of leveraging variable
pricing cloud resources in high-performance computing. Andrzejak et al. [5] have
proposed a probabilistic decision model to help users decide how much to bid
for a certain spot instance type in order to meet a given monetary budget or
a deadline. The model suggests bid values based on the probability of failures
calculated using a mean of past prices from Amazon EC2. It can then estimate,
with a given confidence, values for a budget and a deadline that can be achieved
if the given bid is used.

Yi et al. [3] proposed a method to reduce costs of computations and providing
fault-tolerance when using EC2 spot instances. Based on the price history, they
simulated how several checkpointing policies would perform when faced with
out-of-bid situations. Their evaluation has shown that checkpointing schemes,
in spite of the inherent overhead, can tolerate instance failures while reducing
the price paid, as compared to normal on-demand instances.

3 System Model of a Cloud-Based Virtual Cluster

We consider a scenario where an organization is interested in building a dynamic
cluster using cloud resources. We have assumed that resources are to be leased
exclusively from one cloud provider, such as Amazon EC2, even though our
proposed solution can be extended to support multiple providers.

Resources are virtual machines, instantiated according to a previously config-
ured template, which defines the capacity required (or “instance type” in Ama-
zon EC2 terminology) as well as the operating system and software stack details
(i.e. Amazon Machine Image). A job scheduling and middleware system, called

Provisioning Spot Market Cloud Resources 399

Broker, is responsible for receiving job requests from users, creating a suitable
VM pool, and managing the QoS of jobs, i.e. ensuring that jobs finish within the
deadline.

Jobs are submitted by local users of the organization. A job request must
contain information such as: the task(s) to be executed (e.g. binary files or
scripts), the number of required processors, the amount of memory needed, total
runtime estimation, and a deadline.

The system model we define in this work has two main components: a Broker
(job scheduling and middleware); and a cloud provider-side VM management
infrastructure that we term as the “cloud manager”. A graphical representation
of the modeled system components is presented on Figure 2.

Broker Component: Computational job execution is managed by the Bro-
ker, which takes the responsibility of receiving job submissions and assembling
a pool of cloud spot instances on behalf of the organization. The broker ob-
tains all available information about a job and uses that information to perform
scheduling decisions.

More specifically, the broker manages the following activities: i) Job man-
agement: job admission, job execution, job failures, and monitoring of job QoS
constraints; ii) Virtual cluster management: bidding, instance selection, instance
requesting and termination,

Cloud Provider Model: Spot instance management activities are performed
by the cloud provider. For this component, we assume a similar cloud model as
the one described by Yi et al. [3], which reflects how the spot market currently
works in the Amazon Cloud. More specifically, the model considers the following
characteristics:

– Clients submit a spot instance request, specifying how many instances are
needed, an instance type, and up to how much they are willing to pay per
instance/hour (bid);

– The system provides spot instances whenever the client’s bid is greater than
the currently advertised price; on the other hand, it terminates instances
that do not meet the current spot price, immediately without any notice,
when a client’s bid is less than or equal to the current price.

– The system does not charge the last partial hour when it stops an instance,
but it charges the last partial hour when the termination is initiated by the

Cloud Manager

query price

request VM

cancel request

terminate VM

Request
manager

Instance
pricing

Datacenter
manager

Accounting

Broker

Runtime
estimation

Price
forecasting

Task
duplication

Task
scheduling

Virtual
Cluster

manager

Job
admission

Fig. 2. Modeled architecture: Client (broker) and server (cloud) side components

400 W. Voorsluys, S.K. Garg, and R. Buyya

client (the price of a partial hour is considered the same as a full hour). The
price of each instance/hour is the spot price at the beginning of the hour.

In summary, the cloud manager is responsible for the following tasks: i) Re-
quest management: admission control based on bids, and serving valid requests;
ii) Spot instance management: new instance requests, terminations due to out-
of-bid situations, and billing of hourly charges.

4 Cost-Effective Resource Provisioning and Scheduling
Policy

The Broker is equipped with a VM provisioning and job scheduling policy, which
composes the core contribution of this work. The following steps are involved in
allocating each incoming job to a virtual machine. These activities are described
in Algorithm 1.

– When a job is submitted, it is inserted into a list of unscheduled jobs
[Line 3].

– At each scheduling interval, the algorithm uses a runtime estimation method
to predict the runtime of the job on each available instance type [Line 6].

– The broker then attempts to allocate the job to an idle, already initiated,
VM with enough time before a whole hour finishes [Lines 7-10].

– If unsuccessful, it decides whether the allocation decision can be postponed,
based the maximum time the job can wait so that the chance of meeting the
deadline is increased [Lines 11-16].

– If the job cannot be postponed, it attempts to allocate it to a VM that is is
expected to become idle soon. Runtime estimates of all jobs running on the
VM are required at this step [Lines 18-24];

– If the job still cannot be allocated, the algorithm will decide whether to
extend a current lease or to start a new one. This decision is made based on
information about the estimated runtime of the incoming job on each VM
type [Lines 18-24].

– The algorithm then checks if there are still idle VMs, which are then matched
to non-urgent jobs that have been postponed in previous iterations [Lines
26-32]. Idle VMs are the ones that have been flagged to be terminated when
the next whole hours finishes.

– Finally, for each job that was allocated to a VM in the current iteration, a
correction event is scheduled to trigger at the time the job is expected to
finish [Line 33-35]. This event, if necessary, will then activate the estimation
correction and rescheduling mechanism, which corrects the estimation and
reinserts all jobs allocated to the affected instance into the list of unscheduled
jobs.

These steps are conducted in regular intervals (time t, which can be defined based
on the arrival rate of jobs). In this work, we have set t to 10 seconds, so that our al-
gorithm operates in on-line fashion, especially to guarantee that jobs with a tight

Provisioning Spot Market Cloud Resources 401

input : available instance types types
while true do1

while currentT ime < NEXT SCHEDULE TIME do2
Receives incoming jobs and inserts in the list LJ3

vms← all VMs currently in the pool;4
foreach Job j ∈ LJ do5
erts← compute estimated runtime of j on each type ∈ types;6
decision← FindFreeSpace(j, vms);7
if decision.allocated = true then8

AllocateJobToVM(j, decision.vm);9
continue;10

mwt← compute maximum wait time for j;11
if CanPostpone(j) then12

Delay allocation of j by mwt;13
Add j to list LNU of non urgent jobs;14
Remove j from LJ ;15
continue;16

extendDecision = ComputeLeaseExtensions(j, vms);17
newDecision = ComputeCostForANew(j);18
if extendDecision.cost <= newDecision.cost then19

trigger lease extension;20
AllocateJobToVM(j, extendDecision.vm);21

else22
newVM ← LeaseNewVM();23
AllocateJobToVM(j, newVM);24

update state of VMs;25
if there are idle VMs and LNU is not empty then26

foreach Job j ∈ LNU do27
decision← FindFreeSpace(j, idlevms);28
if decision.allocate = true then29

AllocateJobToVM(j, decision.vm);30
remove j from LNU ;31
add j to LJ32

foreach Job j ∈ LJ do33
if j.isAllocate = true then34

dispatch correction and rescheduling event at time now + j.ert35

clear LJ36
NEXT SCHEDULE TIME = NEXT SCHEDULE TIME + t;37

Algorithm 1. Resource provisioning and job scheduling algorithm

402 W. Voorsluys, S.K. Garg, and R. Buyya

deadline are given to opportunity to start as soon as possible. Still, the use of
techniques such as job postponing, runtime estimation and delayed termination
of idle instances ensures that the policy keeps a holistic view of the workload.

Details of the various steps performed by our algorithm, such as runtime es-
timation and correction, rescheduling, and job speedup characteristics are given
in following sections.

4.1 Estimating Job Runtimes
In order to circumvent inaccurate user-supplied estimations, especially harmful
in backfilling schedulers, several works have proposed methods to predict job
runtimes, where the system computes the estimated runtime of a job and uses
it in place of a user-supplied estimate. Although complex methods have been
proposed, Tsafir [6] has observed that “even extremely trivial algorithms (e.g.
using the average runtime of two preceding jobs by the same user) result in
significant improvement”.

Although we do not make use of backfilling techniques in this work, our moti-
vation to employ runtime estimates is similar to those schedulers: improve system
utilization, especially important because there is a minimum cost involved for
each new VM added to the pool. Due to an hourly billing fashion, assumed
in this work to reflect practices of cloud computing providers, every VM runs
for a minimum of one hour. Therefore, relying solely on user provided runtimes
(mostly over-estimated) might lead to unnecessary requests.

In our scenarios, runtime predictions aid the decision-making process in the
following ways: i) the broker can decide whether to add new resources to the pool
based on the expected time that currently busy VMs would be free; ii) along
with information about current instance prices, it is possible to estimate the cost
to run a job on a given instance type, thus increasing the chances of meeting
monetary constraints.

Previous studies have shown that the “one size fits all” notion does not apply
to runtime estimation of job runtimes. For this reason, we have implemented 5
different methods, especially because no method has been shown to work well in
all scenarios [6]. A detailed discussion of each of these methods is presented in
the evaluation section of this paper.

4.2 Estimation Correction and Rescheduling
We have equipped the broker with a correction and rescheduling mechanism,
which activates whenever a job is detected to have been running longer than
expected, regardless of which runtime estimation method has provided the esti-
mate. Whenever a job starts running, a correction event is scheduled to trigger
immediately after the moment the job should have finished. If, at that moment,
the job is still running, a correction operation is performed. The broker sim-
ply assumes a new estimate that is equal to double the old estimate, and the
job remains allocated to the current VM. All other affected jobs, i.e. the ones
scheduled to the same instance, which might be delayed, are resubmitted to the
scheduler for rescheduling.

Provisioning Spot Market Cloud Resources 403

4.3 Job Moldability and Speedup Considerations

We assume jobs to be moldable, i.e. they can execute on any number of processing
units, but restricted to a single VM. We model instance types as to contain one
or more processing units, assumed to be equal to the amount of EC2 compute
units of each available instance type. Each job runs on a single instance, and
each instance can only run one job at a time.

To determine the runtime of a job in a particular number of compute units, we
use Downey’s analytical model for job speedup [7]. Downey’s model requires two
parameters: the average parallelism A and an approximation to the coefficient
of variance of parallelism σ. To generate values for A and σ, we have used the
model of Cirne & Berman [8], which has been shown to capture the behavior
of a range of user jobs. Generated values were added as parameters to each job
originally present in the LCG workload trace. We assume that these values are
known by the users who submit the jobs, thus they can be used by the resource
provisioning strategies.

5 Performance Evaluation

In this section, we evaluate the proposed resource allocation and scheduling pol-
icy using trace-driven discrete event simulation which is implemented using the
CloudSim framework [9]. The overall objective of our experiments is to quantify
the performance of our proposed policy based on three metrics: monetary cost,
system utilization, and deadline misses. Since our proposed policy aims at mini-
mizing the cost of building virtual clusters, the monetary cost of such activity is
considered as the main metric. System utilization indicates how long instances
remain idle before they are terminated. Deadline misses refers to the number of
submitted jobs which did not finish within the specified deadline; this is a metric
directly related to user satisfaction.

In a first scenario, the policy is compared with two base provisioning policies:
worst-case and best-case resource provisioning. In the worst-case provisioning,
the broker provisions only on-demand fixed-price instances but schedules jobs on
the most efficient machines types for each job. This provisioning is very similar
to the current solutions for building virtual cluster using cloud resources [4]. The
best-case resource provisioning is a hypothetical lower bound devised to evaluate
the cost-effectiveness of the proposed policy.

In a second experimental scenario, the effects of various runtime estimation
on the proposed policy are evaluated to understand which runtime estimation
method should be used for a given workload.

Virtual Machine Types: As stated earlier, our resource provisioning strategy
aims at choosing the most efficient instance type to run a job. Five instance types
were used in our experiments. They were modeled directly after the characteris-
tics of available standard and high-CPU Amazon EC2 types. The types available
to be used are M1.SMALL (1 ECU), M1.LARGE (5 ECUs), M1.XLARGE (8
ECUs), C1.MEDIUM (5 ECUs), C1.XLARGE (20 ECUs).

404 W. Voorsluys, S.K. Garg, and R. Buyya

Workload: The chosen job stream was obtained from the LHC Grid at
CERN [10], and is composed of grid-like embarrassingly parallel tasks. A to-
tal of 100,000 jobs were submitted over a period of seven days of simulation
time. This workload is suitable to our experiments to due to its bursty nature
and for being composed of highly variable job lengths. These features require
a highly dynamic computation platform that must serve variable loads while
maintaining cost efficiency. Originally, this workload trace did not contain infor-
mation about user-supplied job runtime estimates and deadlines. User runtime
estimates were generated according to the model of Tzafrir et al. [11]. A job’s
maximum allowed runtime corresponds to the runtime estimate multiplied by a
random multiplier, uniformly generated between 1.5 and 4. Consequently, the job
deadline corresponds to its submission time plus its maximum allowed runtime.

5.1 Comparison with Best-Case and Worst-Case Scenarios

In this section, we compare our proposed scheduling policy with other base
policies. Based on information from the workload trace (actual job length and
parallelism parameters A and σ), we have computed how much would be the
best possible cost that could be achieved to run all 100,000 jobs using the most
efficient instance type for each job, considering multiple pricing schemes. The
most efficient match for a job depends on its maximum speedup, the job’s length
and the instance’s cost per hour. As a general rule, short jobs or jobs that provide
little or no parallelism run more efficiently on less powerful, cheaper instances;
whereas longer jobs (execution time in the order of hours) that provide good
parallelism are more suitable for high-CPU instances, which provide a lower
cost per ECU.

Table 1 lists the costs that would be obtained in both best-case and worst-case
resource provisioning scenarios. Particularly, the cost of $2790.28 corresponds to
the best possible. Therefore, the aim of any resource provisioning strategy is to
obtain a cost as close as possible to this value.

Our proposed policy, when running with the “Recent Average” estimation
method was able to obtain an improvement of about 60% over the worst case
provisioning policy and just 23% worse than the best case.

Table 1. Total cost compared with two base policies

Instance type Percentage of jobs Worst-case Best-case Proposed Policy
M1.SMALL (1 ECU) 6.646% $1114.62 $371.54 NA1

C1.MEDIUM (5 ECUs) 84.564% $6942.38 $2314.13 NA
C1.XLARGE (20 ECUs) 8.790% $313.84 $104.61 NA

Total: $8370.84 $2790.28 $3628.25

1 We report individual percentage of jobs that ran on each instance type only for
the deterministic scenarios (worst-case and best-case) as an indication of the bias
towards high-cpu instances. These values are not necessarily meaningful of how the
policy allocates jobs in practice, where the total cost is the metric that really matters.

Provisioning Spot Market Cloud Resources 405

5.2 Effect of Different Runtime Estimation Methods

We now describe in detail the 5 runtime estimation schemes and compare their
effects on the following metrics: monetary cost, number of deadline misses, and
system utilization. All values presented correspond to an average of 30 simulation
runs. Each run is set to start at a random point in time, uniformly chosen between
March 1st, 2010 and February 1st, 2011. These dates correspond to the available
price traces obtained from Amazon EC2.

In the “Actual runtime” approach, the actual job length, as per the workload
trace, is supplied to the allocation algorithm; while the “Actual runtime with er-
ror” approach consists of using the actual length slightly modified by a random
percentage between 0 and 10%. Naturally, these two approaches are not real as
they are based on information that would normally not be available in prac-
tice. They are included here for comparison purposes. However, should a nearly
perfect estimation method be available, say in a highly controlled environment
where detailed information about the workload characteristics is known, we can
then foresee that our proposed allocation algorithm would perform well, as these
two strategies yield the best results.

The “User Supplied” approach assumes the job length to be the value informed
by the user at job submission. Based on previous observations that user-supplied
estimated runtimes are mostly over estimated, we have also devised the “Fraction
of User Supplied” approach, that uses a value equal to 1

3 of original value as the
job length.

The “Recent Average” approach consists of using the average runtime of two
jobs completed prior to the submission of an incoming job by the same user. If not
enough information is available to compute the estimated length of an incoming
job, i.e. less than two jobs have completed at the time of decision-making, the
estimation is assumed to be given by the “User Supplied” method.

We conducted two sets of experiments. In first set, our strategy was not equipped
with the correction and rescheduling mechanism, described on section 4.2. In these
experiments, once the strategy made a decision based on a runtime estimate, jobs
would remain allocated to the instance chosen on the first decision. This resulted
in an excessive amount of deadline misses, especially when using the “Recent Av-
erage” estimation method, as can be see on Figure 3. This fact is due to under
estimations, that caused many jobs to be allocated to the same instances. Once a
certain job that was expected to finish at a certain time did not finish, all other
jobs would be delayed. By adding correction and rescheduling, the strategy was
able to virtually eliminate the occurrence of deadline misses.

Figures 4(a), and 4(b) show the effect of changing the runtime estimation
component on the total monetary cost, and system utilization respectively. These
results correspond our second set of experiments, which were collected after the
correction and rescheduling mechanism was implemented.

Results demonstrate that, contrary to our early belief, precise information does
not necessarily translates into more efficient allocation, especially in terms of cost.

406 W. Voorsluys, S.K. Garg, and R. Buyya

This fact can be observed in the comparison between the “Actual runtime” and
“Actual runtime with error” methods, where the latter performs better. Based
on observations of the simulation logs, we can attribute this difference to moder-
ate over-estimations, that cause more instances to be requested, which are reused
often by short jobs. On the other hand, the exact estimates provided by the op-
timal method cause the allocation system to request fewer instances and also to
terminate instances more often. Incoming jobs then cause more new instances to
be requested, which are then more likely to remain idle if the job that triggered
the request was a short one. This fact can be confirmed by observing the system
utilization under the effects of the “Actual runtime” method (90%) and “Actual
runtime with error” (96%).

In term of deadline misses, runtime estimations methods that tend to over-
estimate provide better results. However, excessively over-estimated runtimes were
shown to increase costs significantly, as they cause a much higher number of in-
stances to be requested, especially more expensive instances. Although these
instances are sometimes reused by other jobs, in most cases the allocation

0

10

20

30

40

50

60

Actual runtime Actual runtime
with error

Recent Average User Supplied Fraction of User
Supplied

Pe
rc

en
ta

ge
 o

f d
ea

dl
in

e
m

is
se

s

Runtime estimation method

Fig. 3. Deadline misses before the correction and rescheduling mechanism was
introduced

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Actual runtime Actual runtime
with error

Recent Average User Supplied Fraction of
User Supplied

C
os

t (
do

lla
rs

)

Runtime estimation method

(a)

0

20

40

60

80

100

120

Actual runtime Actual runtime
with error

Recent Average User Supplied Fraction of
User Supplied

U
til

iz
at

io
n

(%
)

Runtime estimation method

(b)

Fig. 4. Effect of different runtime estimation methods; (a) on monetary cost, and (b)
on system utilization

Provisioning Spot Market Cloud Resources 407

algorithm will choose to create new instances, by mistakenly considering that in-
coming jobs are long, thus requiring more powerful instances to complete their
execution within their deadlines. This observation can be inferred from the re-
sults obtained by the “User Supplied” and “Fraction of User Supplied” estimation
methods, also presented on 4(a); both methods tend to provide excessively over-
estimated runtimes.

We have also observed that good system utilization alone does not necessarily
translates into lower costs. For example, by using the “Recent Average” esti-
mation method, our strategy could achieve a better cost than “User Supplied”,
but the utilization was significantly lower. The key aspect to observe in this
scenario is the importance of choosing the correct type of instances for each job.
Smaller instances, even when not utilized efficiently, have less impact on the
final cost, than larger and more costly instance, which must be used efficiently
to compensate for their cost.

In conclusion, in our scenarios, slightly over-estimated runtimes have shown
to be beneficial. On the other hand, excessively over-estimations are ineffective
because of the bias towards larger and costly instances. Under-estimations have
shown to increase the chance of deadline misses, but they are not as ineffective,
as they can be corrected and affected jobs can be rescheduled. In any case, we
can conclude that accurate estimations help in achieving lower costs.

6 Conclusions and Future Work

Building dynamic virtual clusters using cloud resources is an effective way of
saving in monetary cost. This paper has provided a cost-effective solution to
provision a virtual cluster using spot market cloud resources to run computa-
tional jobs having a deadline as a QoS constraint. To address this challenge, a
resource allocation and job scheduling policy, which takes into account varia-
tions in price and performance of cloud resources and aims at choosing the most
efficient virtual machines for deadline-constrained jobs. We have evaluated the
performance of the proposed policy, by comparing it to worst-case and best-case
scenarios. An improvement of up to 60% in cost has been obtained in comparison
with the worst-case, and the policy has performed close to the best-case.

We have also evaluated 5 runtime estimation methods and their effects on the
policy performance. For the given workload, we have concluded that more accu-
rate estimation methods provide significantly superior results, when compared
to methods that excessively over-estimate runtimes.

As future work, we will integrate our proposed solution into real cloud sched-
ulers, and evaluate further performance benefits of our approach. We will also
tackle the problem of jobs failures and delays due to the intermittent nature of
spot instances, by applying fault tolerance techniques such as workload migra-
tion, checkpointing and task duplication.

408 W. Voorsluys, S.K. Garg, and R. Buyya

References

1. Hill, Z., Humphrey, M.: A Quantitative Analysis of High Performance Computing
with Amazon’s EC2 Infrastructure: The Death of the Local Cluster? In: Proceed-
ings of the 10th IEEE/ACM International Conference on Grid Computing (October
2009)

2. de Assuncao, M.D., di Costanzo, A., Buyya, R.: Evaluating the Cost-Benefit of
Using Cloud Computing to Extend the Capacity of Clusters. In: Proceedings of the
18th ACM International Symposium on High Performance Distributed Computing.
HPDC 2009. ACM, New York (2009)

3. Yi, S., Kondo, D., Andrzejak, A.: Reducing Costs of Spot Instances via Check-
pointing in the Amazon Elastic Compute Cloud. In: 2010 IEEE 3rd International
Conference on Cloud Computing, pp. 236–243. IEEE, Los Alamitos (2010)

4. Mattess, M., Vecchiola, C., Buyya, R.: Managing Peak Loads by Leasing Cloud
Infrastructure Services from a Spot Market. In: Proceedings of the 10th IEEE
International Conference on High Performance Computing and Communications,
pp. 180–188. IEEE Computer Society, Los Alamitos (2010)

5. Andrzejak, A., Kondo, D., Yi, S.: Decision Model for Cloud Computing under SLA
Constraints. Technical report, INRIA (2010)

6. Tsafrir, D.: Using inaccurate estimates accurately. In: Frachtenberg, E.,
Schwiegelshohn, U. (eds.) JSSPP 2010. LNCS, vol. 6253, pp. 208–221. Springer,
Heidelberg (2010)

7. Downey, A.B.: A Model For Speedup of Parallel Programs. Technical report, Berke-
ley, CA, USA (1997)

8. Cirne, W., Berman, F.: A Model for Moldable Supercomputer Jobs. In: Proceedings
of the 15th International Parallel and Distributed Processing Symposium. IEEE
Computer Society, Los Alamitos (2001)

9. Buyya, R., Ranjan, R., Calheiros, R.: Modeling and Simulation of Scalable Cloud
Computing Environments and the Cloudsim Toolkit: Challenges and Opportuni-
ties. In: Proceeding of the International Conference on High Performance Comput-
ing & Simulation, HPCS 2009, pp. 1–11. IEEE, Los Alamitos (2009)

10. Feitelson, D.: Parallel workloads archive,
http://www.cs.huji.ac.il/labs/parallel/workload

11. Tsafrir, D., Etsion, Y., Feitelson, D.G.: Modeling User Runtime Estimates. In:
Feitelson, D.G., Frachtenberg, E., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP
2005. LNCS, vol. 3834, pp. 1–35. Springer, Heidelberg (2005)

http://www.cs.huji.ac.il/labs/parallel/workload

A Principled Approach to Grid Middleware

Status Report on the Minimum Intrusion Grid

Jost Berthold1, Jonas Bardino2, and Brian Vinter2

1 Department of Computer Science, University of Copenhagen, Denmark
berthold@diku.dk

2 eScience Center, University of Copenhagen, Denmark
{bardino,vinter}@nbi.dk

Abstract. This paper provides an overview of MiG, a Grid middleware
for advanced job execution, data storage and group collaboration in an
integrated, yet lightweight solution using standard software.

In contrast to most other Grid middlewares, MiG is developed with a
particular focus on usability and minimal system requirements, applying
strict principles to keep the middleware free of legacy burdens and overly
complicated design. We provide an overview of MiG and describe its
features in view of the Grid vision and its relation to more recent cloud
computing trends.

1 Introduction

The Grid computing vision of Foster and Kesselman [9] in the late ’90s promised
to substantially facilitate access to remote computing and storage resources.
However, today’s Grid middlewares in practical use only provide a somewhat
reduced model. “The Grid” falls short on expectations. Today’s large-scale Grid
systems demand considerable expertise from the user, maintenance is staff-
intensive, and they tend to seclude their user base to a few privileged scientists.
As a consequence, potential users turn away from Grid solutions today, and in-
creasingly spend subsidies on dedicated hardware (for instance, GPGPUs). We
argue that the reason for this disappointing reality is excessive middleware com-
plexity and inapt prioritisation in its development. The Minimum intrusion Grid
(MiG) started in 2004 [18] to address a number of shortcomings in existing Grid
middlewares, and follows a principled approach free of inherited legacy burdens.
First, MiG’s principle is to minimise requirements for both users and resource
providers in a Grid. Second, MiG offers more than a simple “job-shop” system: it
provides a complete working environment with not just computational power but
also storage, collaboration software (Wiki, forum and version control repository)
and an integrated web portal that can even encapsulate whole workflows. In this
paper, we give an overview of MiG, discuss its design principles and realisation,
and present its advanced features for group collaboration and resource sharing.
We argue for a revival of the Grid vision in view of the current cloud computing
trend. Presenting the advanced key features of MiG, we point out that the Grid
vision goes far beyond cloud ideas, and how a principled Grid middleware can
be realised in a flexible and user-friendly manner.

Y. Xiang et al. (Eds.): ICA3PP 2011, Part I, LNCS 7016, pp. 409–418, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

410 J. Berthold, J. Bardino, and B. Vinter

2 Background and Motivation

2.1 Grid Vision and Grid Practice

When the term of Grid computing was coined in the late ’90s by Foster and
Kesselman [9], Grid was envisioned as much easier to use than conventional
large-scale computing. The Grid promised transparency and single entry points
to powerful parallel computing resources (computational Grids) and storage
(data Grids), organised in easily managed abstract entities (Virtual Organisa-
tions). However, implemented Grid systems exposed a continuously decreasing
ambition, towards a substantially reduced model for the sake of reliability and
system management. And yet, using one of the existing Grid middlewares (for
instance, NorduGrid ARC [6], gLite [10] or EGI [5]) which inherit code base and
paradigms from the Globus Toolkit [8] still has a number of problems:

– Even simple Grid system services are very complex to administrate. As a
survey of Grid middleware support mailing lists shows, middleware configu-
ration is extremely intricate and requires considerable internal knowledge.

– A common practical problem is to reliably provide special software packages
for particular users. The usual solution, manual installation and maintenance
of all software on all computing resources, is error-prone, cumbersome, and
totally unsatisfactory against the original Grid ideas.

– Despite it being the key feature of Grid systems, granting and obtaining
access to Grid resources usually involves manual work and human factors.
As a result, Grid users are more often than not privileged scientists who rely
on good administrator contacts and support to suit their computing needs.

– Virtual Organisations should improve this but often create middleware incom-
patibilities by proprietary X.509 certificate extensions. More important,
implementations of virtual organisationsmerely provide administrative group-
ing, not working environments and collaboration support.

Reasons for this unfortunate development include, among others, the inherent
danger of large-scale multinational projects to produce overly complex architec-
tures and to focus on aspects of minor interest to users. For instance, large parts
of the ARC [6] middleware deal with monitoring, accounting and user roles for
access control. In contrast, ARC’s solution for providing software on computing
resources has remained strikingly ad-hoc after years in production. The primary
focus of a useful Grid middleware should be ease of use for resource users and
resource providers, and maximised resource usage (including harvesting spare
cycles). Besides, Grid should go beyond a mere “job shop”. Users should profit
from advanced middleware features tailored to better collaboration.

2.2 The Cloud Vision – A Better Grid?

Far more recent, yet substantially related to Grid, is the fashion of cloud comput-
ing – alas, a cloudy subject with a range of definitions. A restrictive one comes

A Principled Approach to Grid Middleware 411

from Berkeley, limiting the term to flexible virtualised infrastructure provision-
ing (IaaS) [2]. In line with this is the widespread understanding of “cloud” as
providing full user control over an entire virtual machine (as opposed to running
jobs in a pre-existing setup), fostered by Amazon’s “Elastic Cloud Computing”
(EC2) platform (the breakthrough in cloud computing of modern imprint in
late 2006). We favour a slightly broader definition by the National Institute
of Standards and Technology (NIST), which also subsumes software and plat-
form services, and emphasises that “configurable computing resources [..] can
be rapidly provisioned and released with minimal management effort or service
provider interaction.” [14]

Be it virtual hardware or a software setup, cloud computing is characterised by
minimal setup and maintenance effort, and user self-service. In essence, the goals
of convenience and resource usage are the same as in Grid, and when realised
merely through virtual machines, one can indeed argue that the cloud ideas are
a commercialised and reduced variant of the earlier academic Grid vision. The
main reduction lies in virtual organisations and group collaboration, an essential
goal of Grid but completely missing from cloud computing as of today.

3 Overview of the Minimum Intrusion Grid

3.1 System Architecture
GRID

browser

script

XML-RPC

ssh

cURL

ssh
cURL

ssh
cURL

Resource

Resource

Resource

User

User

User

User
python

library

Fig. 1. Abstracted MiG Architecture

A bird’s eye perspective on the MiG
system (in Fig. 1) shows its central
motivation: to virtualise user access
to resources. The Grid system acts
as a gateway between users and re-
sources that provide storage or com-
puting capabilities.

This gateway itself can be composed of replicated server instances that coor-
dinate job execution and introduce failover safety. Users access the system via
different methods, all based on secured HTTP. Communication from resources
to a server uses secure HTTP as well, while a server uses SSH to address re-
sources. The HTTP interface provides job submission and management, server
file space, virtual organisations (VGrids) with shared file and web space, and
means to provide and manage resources and software.

3.2 MiG Design Principles and Rationale

MiG was developed with a principled approach to follow the original Grid vision,
and to address the issues observed in other Grid middlewares. This led to a
number of principles and goals, ranging from technical implementation principles
over architectural requirements to usability.

Non-intrusive Software Installation. The first and foremost design goal of MiG
is to reduce software complexity and to avoid legacy burdens of any kind. Re-
sources and users must be able to join and use the Grid with minimal software

412 J. Berthold, J. Bardino, and B. Vinter

requirements. Experiences with other Grid middlewares show that large instal-
lations on the resource side create compatibility problems and – contrary to
the Grid philosophy – require more centralised administration and maintenance.
Likewise, new users may be unwilling or unable to install a large software.

Minimal Dependencies. Typical production Grid systems carry heavy burdens
of legacy code and suffer from incompatibilities. Use of many different languages
and tools complicates maintenance and hampers porting software to new plat-
forms. MiG was designed to reduce maintenance requirements, and to automate
maintenance operations whenever possible. This relates to the choice of imple-
mentation language as well as the tool requirements.

The distribution aspects of the entire system are based on secure HTTP com-
munication. For the user, MiG only requires an X.509 user certificate from a
trusted CA and a standards-compliant web browser (or other HTTP software).
MiG resources require secure HTTP (cURL [4]), SSH, and a standard shell –
system interfaces that can safely be assumed stable. Basing all functionality on
standard software and few commonly used protocols/ports maximises MiG fire-
wall compliance, and enables the server to update all software (scripts) on the
resource without manual intervention. The MiG server software is based on the
widespread Apache HTTP server and written in widely portable Python.

Fault Tolerance. Failing machines or processes within the Grid should not stop
users or resources from using the Grid. If a resource crashes, the middleware
should be responsible for recovering and repeating any lost jobs. The MiG de-
sign includes a concept of distributed communicating servers, where all data are
replicated several times for failover safety, while keeping clear responsibilities for
consistency. Jobs are replicated and quickly rescheduled by servers upon failure.

Anonymity of users and resources. Job submission in most Grid systems involves
direct communication between the submitting client and potential execution
resources. In such a design, a resource provider can theoretically monitor Grid
usage of all users by their incoming execution requests. In the MiG design, the
mediating servers can completely shield users and resources from one another
if desired (but with server audit logs to trace any abuse). Assuming sufficient
job throughput, it is not possible for a resource owner to identify the user who
submitted a particular job. Likewise, resources can be provided in an anonymised
fashion. This is particularly desirable in industrial Grid usage where the same
resources might provide services for competing companies.

Straightforward Comfortable Usage. In analogy to the system related principle
of minimal intrusion, a Grid system should support the user in a straightforward
manner. The MiG middleware helps beginners by hiding complex features and
providing reasonable defaults for any optional feature.

Advanced Support for Group Collaboration. It has been stated [7] that the essence
of Grid is collaboration in virtual organisations, so a Grid middleware should
provide appropriate tools especially for this task. MiG provides a wide range of
user-controlled collaborative structures and tools, to truly enable collaborating
virtual organisations and improve the overall Grid usability.

A Principled Approach to Grid Middleware 413

(a) Job Management (b) File Browser

(c) Job Submission Interface (d) Simple Built-in Editor

Fig. 2. MiG Browser Interface Screenshots

3.3 Browser-Based Interface

The central user interface to a MiG system is the web browser. Users are authen-
ticated and authorised by an X.509 certificate installed in their browser, and can
then access all functionality through a single portal. The MiG design carefully
avoids transferring any temporary “proxy” credentials to servers or resources.

As Figure 2 illustrates, users should experience MiG as a multiuser worksta-
tion with a system account and pre-installed software. The interface to submit-
ting and managing jobs is shown in Figures 2(a) and 2(c). Figures 2(b) and
2(d) demonstrate another essential component of the “workstation” view: the
user’s home directory on the server and how to manipulate files from within
the browser. Some folders are shared with other users (based on virtual organ-
isations), and are seamlessly integrated in the home directory; a custom icon
indicates the sharing. We will explain some key features shown in the menu on
the left in detail subsequently (VGrids, Resources, and Runtime Env.s).

3.4 How MiG Executes Grid Jobs

Efficient job execution by resources is the primary Grid functionality, realised
in MiG in a uniform, straightforward and server-centric manner. Contrary to
Globus based Grids, MiG job requests are submitted to a Grid job queue handled
by one or more MiG servers from start to finish. There is no direct communication
between the user and the resource where the job ends up executing and the user
can safely go offline as soon as the job is queued.

414 J. Berthold, J. Bardino, and B. Vinter

Simple Job Specification. Figure 2(c) shows the simple graphical interface
with individual fields to specify requirements and actions for a Grid job. While
this HTML form is the default interface, users can also directly use the internal
job specification language mRSL, a simple line-delimited text format. Compared
with richer standards such as JSDL or RSL [1, 8], mRSL is simplistic but suffi-
cient. A job specification includes a list of commands to execute, input and out-
put files, and a range of other (optional) properties: hard resource requirements
like node and CPU count, soft requirements like memory and disk consumption
and wall-clock time limits, and a retry counter for failover scheduling.

Grid Job Scheduling in MiG. Production Grids typically have a long queue of
waiting jobs, as there are often more jobs than execution slots. In MiG, pending
jobs are stored on servers until a resource becomes available. Resources actively
request jobs from a server (pull scheduling), and the server selects the best-fitting
job according to a configurable scheduling policy. This allows for scheduling jobs
across multiple physical resources to optimise throughput.

Scheduling in MiG is guided by the job’s software requirements, user-provided
memory and disk limits, node and CPU count, and by the execution history of
the resource. A number of scheduling algorithms are implemented and deliver
good throughput on average while preventing starvation. Apart from the classical
variants FIFO, Random and First-Fit, MiG implements a Best-Fit scheduler that
avoids occupying oversized resources, a Fair-Fit scheduler which additionally
prioritises jobs that have waited longer, and a scheduler based on a Vickrey
auction [3], which lays grounds for a pay-per-use “Grid economy” of resources.

3.5 Software Deployment

In order to run anything but trivial jobs on a Grid resource, one typically needs
special software. Requirements beyond the basic Grid system have to be be
negotiated between users and resources, typically realised in Grid systems by
the concept of Runtime Environments [12]. A runtime environment in MiG is a
data structure that describes system properties – for instance, a special numeric
software library, or special hardware – and specifies environment variables to
be used in job scripts that require them – for instance, a variable containing
necessary compiler flags, the install location, or the path to an executable tool.
When a resource provides this library, the owner adds the respective runtime
environment to the resource’s specification and assigns values to these environ-
ment variables. Any MiG user can define runtime environments, but they cannot
be modified (only deleted) after creation – redefinitions would cause inconsis-
tencies. And, well-understood, there is no guarantee that any resource in the
system implements a particular runtime environment.

Dedicated computing resources usually have their own native software pack-
age management system, which only privileged users can use. Users often have
to manually intervene and ask a resource owner to install the necessary software,
a typical productivity bottleneck in today’s production Grids. To address this
issue, a mechanism was developed to automatically install software on-demand

A Principled Approach to Grid Middleware 415

from a software catalogue hosted on the MiG servers. The software catalogue
in MiG uses the Zero Install [16] packaging system to support installation and
automatic maintenance of pre-packaged software on resources. When a resource
provides the ZeroInstall runtime environment, a job can install and use packaged
software in a secure and controlled way, instead of using a native installation.
Runtime environment specifications are automatically generated from Zero In-
stall package descriptions, making the entire process transparent to the user.

4 MiG Features beyond the “Job-Shop”

4.1 VGrids: Virtual Organisations in MiG

In early 2000, Virtual Organisations (VOs) were stated by Foster [7] as the origi-
nal “Grid problem”, motivation for developing the Grid concept altogether. The
term Virtual Organisation describes dynamically evolving groups of users that
belong to distinct administrative domains, but want to share resources (com-
pute power, storage, software etc.) for a specific purpose. Flexible and dynamic
resource sharing across administrative domains is the core of Grid technology.

VGrid

User

Job

Resource

Storage
Node

Execution
Node

1..**

1..*

*

participates

participates

O
w

ne
r

M
em

be
r im

plem
ents

requires

executes

defines

submits

Owner

Sub-VGrid

1

*

*

* *

*

*

*
*

*

1 1
1..* *

* *
*

1..*
* *

Runtime
Environment

Fig. 3. MiG E/R Model

The MiG system models Virtual Or-
ganisations as VGrids [11]. As the MiG
E/R model in Figure 3 shows, VGrids are
hierarchical and act as an organisational
entity to define the relationship between
resources and users, and among users.
Since the model relies on VGrids, it in-
cludes a default VGrid which includes all
users and where any resource can (but
does not have to) participate by default.

All services are managed via VGrids:
Jobs execute inside a VGrid where the submitter is a member, execution nodes
of a resource contribute compute power to members of one or more particular
VGrids, and storage nodes expose a specified directory on the resource to mem-
bers of the VGrids that they have signed up to. Each VGrid also provides a
shared folder for members on the server. VGrids are easy to create and manage
using the MiG web interface. Furthermore, VGrid operations (adding members
or owners, creating sub-structures) are entirely user controlled, enabling ad-hoc
VGrid formation and efficient collaboration without administrative hurdles. As
we are going to see next, this VGrid concept allows MiG to lift resource pro-
visioning to user level, and VGrids can also provide cloud storage services and
advanced workflow integration.

4.2 Resource Management

Any MiG user can add a resource to the Grid through a simple HTML form, by
specifying its properties: hardware and software specifications (CPUs, memory,
disk size) and login details for the user account that executes the Grid jobs.
After submitting the form, the resource is added to the default VGrid.

416 J. Berthold, J. Bardino, and B. Vinter

Different levels of resource trust can thus be modelled with different VGrids.
The default VGrid is open to anyone and thus has the lowest level of trust.
Resource owners configure which VGrids their resources should participate in
as an execution or/and storage resource. Respectively, VGrid owners need to
accept the resources into their VGrids before jobs can be executed (to prevent
job hijacking). The entire process requires no Grid administrator intervention.

4.3 Storage in MiG

One of the distinctive features of MiG in comparison to other Grid middlewares is
the concept of a central user home directory. This is part of the MiG philosophy
of the Grid being a virtual workstation: users store their files in their home
directory and reference them with relative file names in jobs, and each VGrid
provides shared file space which is only visible to VGrid members. The central
home directory can be accessed in the MiG web interface through a graphical file
manager with context menu and a simple text editor, as shown in Figure 2(d).
Optionally, it can even be securely mounted into a user’s local file system through
an SSHFS interface, to allow transparently working with MiG home files locally.

As useful and intuitive it may be to have files in a centralised MiG home
directory, space limitations and privacy policies may prevent users from storing
all data there. Jobs can specify external locations for input and output files
(via common protocols like HTTP(S), SCP, or (S)FTP), and classified data can
be stored in MiG in special VGrid-restricted storage nodes. For each VGrid in
which a storage node participates, a directory on the node is securely mounted
into the shared VGrid folder in the MiG servers’ file system via SSHFS.

4.4 Advanced VGrid Features for Group Collaboration

Apart from being a fundamental concept to structure access levels and entities in
MiG, VGrids also provide advanced services for group collaboration and resource
sharing to their users. MiG servers host shared private folders and classical
collaboration software for every VGrid, including public and private web pages,
a wiki, a web forum, and a version control system. All this is integrated into the
server middleware and browser interface, again in view of the browser being the
primary desktop for all activities.

The VGrid web pages and shared folders can be used to realise specific work-
flows where conceptually similar Grid jobs are submitted frequently and require
a custom setup carried out by VGrid owners. As an example, consider a workflow
where scientific applications are implemented in a special-purpose language that
requires a custom compiler, but the compiled executables can be run on various
resources by means of a pre-packaged runtime library. In such a case, a VGrid
can be used to provide a dedicated compilation resource, and other resources
can use a runtime environment for execution – the whole compilation/execution
workflow can be encapsulated in custom HTML forms in the VGrid web space.

We have successfully implemented this workflow encapsulation in two proto-
types: one for the McStas neutron raytracing simulator [13] and one for a general

A Principled Approach to Grid Middleware 417

Matlab setup using a license-limited Matlab compiler [17]. Both prototypes ex-
pose the described workflow of compilation and iterated execution, followed by
a post-processing step in case of the McStas software.

To encapsulate the job workflow logics in the VGrid web pages using HTML
forms and javascript has clear advantages in usability: no additional authenti-
cation is required, and the easy interface for non-experts hides all uninteresting
boilerplate code for Grid operation. For the implementor, two other advantages
exist: Scientific expert software like the McStas compiler and post-processor is
sometimes complicated to set up. In our setup, maintenance can be reduced to
only a few dedicated resources that provide the special parts, and the compiled
McStas simulation code is ISO C99. The Matlab software setup is easy, but a
license is required; in our case only for the dedicated compilation resource.

5 Current Status and Future Directions

MiG started as a proof-of-concept implementation, but became an ongoing suc-
cess over the last years, thanks to its sage architecture. At the time of writing, our
group is operating a MiG installation connecting several compute clusters and
special resources based on Cell-based game console and Screen saver software.
The system is used for scientific projects in combinatorial genome research, bib-
liometric analysis, medical imaging, and for teaching purposes. MiG is actively
maintained, the latest additions include an improved browser interface, a re-
mote memory library to enable computing resources with limited memory and
disk [15], and running virtual machines as interactive Grid jobs.

Development is underway for improving the virtual machine support. One es-
sential ingredient is a light-weight VNC client that runs inside a browser (based
on javascript and websockets), to realise the MiG goal of minimal installation
requirements. Together with MiG’s browser-based interface and the storage re-
source concept realising cloud storage, the virtual machine support is the final
step towards cloud-style IaaS – virtualised resources – embedded in Grid.

6 Conclusions

Grid computing has come of age in the past years, yet its practical incarnations
somewhat fall short of the initial vision. We have presented MiG, a Grid mid-
dleware that follows rigid principles derived from the original Grid literature
and shortcomings observed in existing systems. The stated MiG principles prove
useful as a general touchstone for any Grid middleware, and the presentation of
MiG demonstrates that such a design is feasible and useful in practice. Especially
MiG’s advanced features for group collaboration, and in general its VGrid-centric
design, are key features for more flexibility and user self-service than usual job-
shop Grid systems can provide. The more recent trend of cloud computing has
given important impulses to the Grid community, as it advances modern vir-
tualisation techniques and the idea of a consequently consumption-based Grid
economy. A principled Grid approach should incorporate modern virtualisation

418 J. Berthold, J. Bardino, and B. Vinter

techniques in its services, to realise a strict superset of the cloud vision in terms
of stability, user-friendliness, and self-managed virtual collaboration.

Availability. MiG is open source software released under GNU GPL-2. More
information and MiG code can be found at http://www.migrid.org.

References

1. Anjomshoaa, A., Brisard, F., Drescher, M., Fellows, D., Ly, A., McGough, S., Pul-
sipher, D., Savva, A.: Job Submission Description Language (JSDL) Specification,
V.1.0. Tech. Rep. GFD.136, Grid Forum (2008)

2. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee,
G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud computing.
CACM 53, 50–58 (2010)

3. Brandt, F., Wei, G.: Vicious strategies for vickrey auctions. In: Müller, J.P., Andre,
E., Sen, S., Frasson, C. (eds.) Proceedings of Autonomous Agents 2001. ACM, New
York (2001)

4. cURL. Open Source Software, http://curl.haxx.se/
5. European Grid Infrastructure, http://www.egi.eu
6. Ellert, M., Grønager, M., Konstantinov, A., Kónya, B., Lindemann, J., Livenson, I.,

Nielsen, J.L., Niinimäki, M., Smirnova, O., Wäänänen, A.: Advanced resource con-
nector middleware for lightweight computational Grids. Future Generation Com-
puter Systems 23, 219–240 (2007)

7. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the Grid: Enabling scalable
virtual organizations. Intl. J. of High Perf. Computing Appl. 15(3), 200–222 (2001)

8. Foster, I.: Globus toolkit version 4: Software for service-oriented systems. J. of
Computer Science and Technology 21(4), 513–520 (2006)

9. Foster, I., Kesselman, C. (eds.): The Grid: Blueprint for a New Computing Infras-
tructure. Morgan Kaufmann, San Francisco (1999)

10. gLite Grid Computing Middleware, http://glite.web.cern.ch/glite/
11. Karlsen, H.H., Vinter, B.: VGrids as an Implementation of Virtual Organizations

in Grid Computing. In: Enabling Technologies: Infrastructures for Collaborative
Enterprises (WETICE 2006). IEEE Press, New York (2006)

12. Keahey, K., Doering, K., Foster, I.T.: From Sandbox to Playground: Dynamic Vir-
tual Environments in the Grid. In: Buyya, R. (ed.) Proceedings of Grid Computing
(GRID 2004). IEEE Press, New York (2004)

13. Lefmann, K., Willendrup, P.: McStas, a Neutron Ray-trace Simulation Package,
http://neutron.risoe.dk

14. Mell, P., Grance, T.: The NIST Definition of Cloud Computing (Draft). Tech. Rep.
800-145, National Institute of Standards and Technology (NIST) (2011)

15. Rehr, M., Vinter, B.: The User-Level Remote Swap Library. In: High Performance
Computing and Communications (HPCC 2010). IEEE Press, New York (2010)

16. Leonard, T., et al.: Zero Install, a decentralised cross-distribution software instal-
lation system. Software under LGPL (2003-2011), http://www.0install.net

17. MathWorks: The Matlab CompilerTM ,
http://www.mathworks.com/products/compiler

18. Vinter, B.: The Architecture of the Minimum intrusion Grid (MiG). In: Broenink,
J.F., Roebbers, H.W., Sunter, J.P.E., Welch, P.H., Wood, D.C. (eds.) Communi-
cating Process Architectures (CPA 2005). IOS Press, Amsterdam (2005)

http://www.migrid.org
http://curl.haxx.se/
http://www.egi.eu
http://glite.web.cern.ch/glite/
http://neutron.risoe.dk
http://www.0install.net
http://www.mathworks.com/products/compiler

Performance Analysis of Preemption-Aware

Scheduling in Multi-cluster Grid Environments

Mohsen Amini Salehi, Bahman Javadi, and Rajkumar Buyya

Cloud Computing and Distributed Systems (CLOUDS) Laboratory,
Department of Computer Science and Software Engineering,

The University of Melbourne, Australia
{mohsena,bahmanj,raj}@csse.unimelb.edu.au

Abstract. In multi-cluster Grids each cluster serves requests from ex-
ternal (Grid) users along with their own local users. The problem arises
when there is not sufficient resources for local users (which have high
priority) to be served urgently. This problem could be solved by pre-
empting resources from Grid users and allocating them to the local users.
However, resource preemption entails decreasing resource utilization and
increasing Grid users’ response time. The question is that how we can
minimize the number of preemptions taking place in a resource sharing
environment. In this paper, we propose a preemption-aware scheduling
policy based on the queuing theory for a virtualized multi-cluster Grid
where the number of preemptions is minimized. Simulation results in-
dicate that the proposed scheduling policy significantly decreases the
number of virtual machine (VM) preemptions (up to 22.5%).

1 Introduction

Resources provisioning for user applications is one of the main challenges in the
Resource sharing environments. Resource sharing environments enable sharing,
selection, and aggregation of resources across several Resource Providers (also
called clusters in this paper), which are connected through high bandwidth net-
work connections. Nowadays, heavy computational requirements, mostly from
scientific communities, are supplied by these resource providers. Examples of
production-level resource providers include DAS-2 [5].

Virtual Machine (VM) technology has emerged to enable another style of re-
source management based on the lease abstraction. Due to advantages of this
form of management for resource sharing environments [8], we consider a virtu-
alized multi-cluster environment in this paper. Typically, in large-scale resource
sharing environments (e.g. InterGrid [3]) computational resources in each clus-
ter are shared between external (Grid) users and local users. Hence, resource
provisioning in resource sharing environments is done for two different types of
users, namely: local users and Grid users. Local users (hereafter termed local
requests), refer to users who ask their local cluster for resources. Grid users
(hereafter termed Grid requests) are those users who send their requests to a
gateway to get access to larger amount of resources. Typically, local requests
have priority over Grid requests in each cluster [3]. In other words, the organiza-
tion that owns the resources would like to ensure that its community has priority

Y. Xiang et al. (Eds.): ICA3PP 2011, Part I, LNCS 7016, pp. 419–432, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

420 M.A. Salehi, B. Javadi, and R. Buyya

access to the resources. In this circumstance, Grid requests are welcome to use
resources if they are available. Nonetheless, Grid requests should not delay the
execution of local requests.

In our previous research [2], we proposed preemption of Grid requests in favor
of local requests to remove this contention. We demonstrated that preemption
decreases waiting time for local requests. However, the side-effects of preemption
is twofold:

– From the system owner perspective, preemption imposes a considerable over-
head to the underlying system and degrades resource utilization. This over-
head is more notable in circumstances that VMs are used for resource
provisioning [8].

– From the Grid user perspective, preemption increases the response time of
the Grid requests.

Therefore, the main problem we are dealing with in this research is how to
decrease the number of preemptions that take place in a multi-cluster Grid
environment.

In this paper, we propose a preemption-aware scheduling policy for a virtual-
ized multi-cluster Grid that distributes Grid requests amongst different clusters
in a way that the number of preemptions minimizes. The proposed policy is
based on the stochastic analysis of routing in parallel non-observable queues.
This policy is not dependent to the availability information of the clusters and
does not impose any overhead to the system. In summary our paper makes the
following contributions:

– Proposing analytical queuing model based on the routing in parallel non-
observable queues.

– Adapting the proposed analytical model to a preemption-aware scheduling
policy.

– Evaluating the proposed scheduling policy under realistic workload models.

We consider this problem in the context of InterGrid. In the InterGrid each re-
quest has a type, number of VMs, duration, and the deadline (optional). We con-
sider several types of Grid requests in InterGrid. These Grid requests can broadly
be classified as Best-Effort (BE) and Deadline-Constraint (DC) requests. BE
Grid requests can be preempted in favor of local requests. If there is not enough
resources to start BE requests, they are scheduled in the first available time-slot.
DC Grid requests cannot be preempted if the deadline is tight. Additionally, DC
requests are rejected if there is not enough resources for them to start. BE Grid
requests can be either Cancelable: which can be started at any time and is ter-
minated in the case of preemption; or Suspendable: which can be started at any
time and is rescheduled in later time-slot in the case of preemption. DC Grid
requests can be Migratable: which are sent to another cluster inside the same
Grid in the case of preemption; or Non-preemptive: which cannot be preempted
at all. We also consider local requests of a cluster as Non-preemptive requests [2].

The rest of this paper is organized as follows: Proposed analytical queu-
ing model is described in Section 2 which is followed by the preemption-aware

Performance Analysis of Preemption-Aware Scheduling in Multi-cluster Grid 421

scheduling policy in Section 3. Performance of the proposed policy is reported
in Section 4. Then, in Section 5 related research work are introduced. Finally,
conclusion and future works are provided in Section 6.

2 Analytical Queuing Model

In this section we describe the analytical modeling of preemption in a multi-
cluster Grid environment based on routing in parallel queues. This section is
followed by proposing a scheduling policy in IGG (gateway) built upon the an-
alytical model provided in this part.

The queuing model that represents a gateway along with several non-dedicated
clusters (i.e. clusters with shared resources between local and Grid requests) is
depicted in Figure. 1. According to this figure, there are N clusters in a Grid
where each cluster j receives requests from two independent sources. One source
is a stream of local requests with arrival rate λj and the other source is a stream
of Grid requests which are sent by the gateway with arrival rate Λ̂j . The gate-
way receives Grid requests from other peer gateways [3] (G1,..,Gg in Figure 1).
Therefore, Grid request arrival rate to the gateway is Λ = Λ̄1 + Λ̄2 + ... + Λ̄g

where g indicates the number of gateways that potentially can send Grid re-
quests to the gateway. Submitted local requests to cluster j must be executed
on cluster j unless the requested resources is occupied by another local request
or a non-preemptable Grid request. The first and second moment of service time
of local requests in cluster j are τj and μj , respectively. On the other hand, a
Grid request can be allocated to any cluster but it might get preempted later
on. We consider θj and ωj as the first and second moment of service time of
Grid requests on cluster j, respectively. For the sake of clarity, Table 1 gives
the list of symbols we use in this paper along with their meaning. Indeed, the
analytical model aims at distributing the total original arrival rate of Grid re-
quests (Λ) amongst clusters. In this situation if we consider each cluster as a
single queue and the gateway as a meta-scheduler that redirects each incoming
Grid request to one of the clusters, then the problem of scheduling Grid requests
in the gateway can be considered as a routing problem in distributed parallel
queues.

Fig. 1. Queuing model for resource provisioning in a Grid with N clusters

422 M.A. Salehi, B. Javadi, and R. Buyya

Table 1. Description of symbols used in the queueing model

Symbol Description

N Number of clusters
Mj Number of computing elements in cluster j where 1 ≤ j ≤ N
Λ̄j Original arrival rate of Grid requests to cluster j

Λ̂j Arrival rate of Grid requests to cluster j after load distribution

Λ =
∑g

i=1 Λ̄i =
∑N

j=1 Λ̂j

θj Average service time of a Grid request on cluster j
ωj Second moment of Grid requests service time on cluster j

γj = θj · Λ̂j

Rj Average response time of Grid requests on cluster j
λj Arrival rate of local requests to cluster j
κj Arrival rate of local requests plus Grid requests to cluster j
τj Average service time of local requests on cluster j
μj Second moment of local requests service time on cluster j
ρj = τj ·λj

mj =
Λ̂j

κj
ωj +

λj

κj
μj

uj Utilization of cluster j (= γj + ρj)
rj Average response time of local requests on cluster j
ηj Number of VM preemptions that happen in cluster j
T Average response time of all Grid requests
Tj Average response time of Grid requests on cluster j

Considering the mentioned situation, the goal of the scheduling in the gateway
is to schedule the Grid requests amongst the clusters in a way that minimizes the
overall number of VM preemptions in a Grid. Therefore, our primary objective
function can be expressed as follows:

min
N∑

j=1

ηj (1)

However, minimizing the response time of requests is easier than the number of
preemptions in such a system. Furthermore, more researches have been under-
taken in similar circumstances to minimize the response time.

The most related research has been carried out by Li [6]. He has analyzed the
load distribution problem in a cluster in the presence of two types of requests
namely, local (dedicated) and Grid (generic) requests. Nonetheless, Li’s goal of
optimization is minimizing the response time of Grid (generic) requests whereas
our goal is minimizing the overall number of preemptions. The other significant
difference is that Li has solved the problem for a single cluster whereas our
problem is in the context of a multi-cluster Grid. Li has mentioned the analysis
of a multi-cluster system as a future direction of his work. From this perspective,
our research can be considered as the future work of Li’s research.

Although there are even more differences between our problem and the prob-
lem investigated by Li, we believe that this analysis can still be modified and
applied to solve our problem. More specifically, from the results of some initial
experiments as well as results of our previous research [2] we noticed an asso-
ciation between response time and number of VM preemptions in the system.
To assess the strength of association between response time and number of VM
preemptions we performed regression analysis between the two factors. Result
of the regression analysis shows a positive correlation between number of VM
preemptions in a cluster and response time of Grid requests (regression equation:

Performance Analysis of Preemption-Aware Scheduling in Multi-cluster Grid 423

R = 3.09 + 0.012η where R and η indicate the response time of Grid requests
and number of VM preemptions). The regression analysis acknowledges that de-
creasing response time can be also applied for the purpose of minimizing the
number of VM preemptions. Details of the modified analysis is discussed over
the next paragraphs.

To minimize the average response time of Grid requests we should minimize:

T =
1
Λ

N∑
j=1

Λ̂j ·Tj (2)

where the constraint is: Λ̂1 + Λ̂2 + ... + Λ̂N − Λ = 0. The response time of Grid
requests for each cluster j (Tj) is worked out based on Equation 3 by assuming
each cluster j as an M/G/1 queue [6]:

Tj =
1

1 − ρj

(
θj +

κjmj

2(1 − uj)

)
(3)

Lagrange multiplier method is used to minimize Equation 2. By solving the above
minimization problem, input arrival rate of each cluster is calculated based on
the Equation 4:

Λ̂j =
(1 − ρj)

θj
− 1

θj

√
(1 − ρj)(ωj(1 − ρj)) + θjλjμj

2θj(1 − ρj)z + (ωj − 2θ2
j)

(4)

where z is the Lagrange multiplier.
Considering that Λ = Λ̂1 + Λ̂1 + ... + Λ̂N , then z can be calculated using the

following Equation:

N∑
j=1

1
θj

√
(1 − ρj)(ωj(1 − ρj)) + θjλjμj

2θj(1 − ρj)z + (ωj − 2θ2
j)

=
(N∑

j=1

(1 − ρj)
θj

)
− Λ

(5)

In fact, Equation 5 expresses the relation between different parameters of the
system in which z is unknown. By solving Equation 5 for all clusters and working
out z, Equation 4 can be solved. However, finding a generic closed form solution
in Equation 5 for finding z is impossible. Nonetheless, a numerical solution can
be found by searching z in range of [lb,ub] using a bisection algorithm [6]. For
this purpose, considering that Λ̂j ≥ 0 and from Equation 4 we can infer that:

z ≥ λjμj

2(1 − ρj)2
+

θj

(1 − ρj)
(6)

Therefore, for all 1 ≤ j ≤ N the lower bound (lb) of the interval is:

lb =
N

max
j=1

(
λjμj

2(1 − ρj)2
+

θj

(1 − ρj)

)
(7)

424 M.A. Salehi, B. Javadi, and R. Buyya

If we define φj(z) according to Equation 8:

φj(z) =
1
θj

√
(1 − ρj)(ωj(1 − ρj)) + θjλjμj

2θj(1 − ρj)z + (ωj − 2θ2
j)

(8)

and considering Equation 5, then we have:

N∑
j=1

φj(lb) ≥
(N∑

j=1

(1 − ρj)
θj

)
− Λ (9)

The upper bound also can be worked out based on Equation 10. ub can be
reached by doubling lb up until the condition is met.

N∑
j=1

φj(ub) ≤
(N∑

j=1

(1 − ρj)
θj

)
− Λ (10)

If condition in Equation 9 is not met, then we have to decrease lb by removing
clusters which are heavily loaded. Load of a cluster j is comprised of local re-
quests that have been arrived and Grid requests which are already assigned to
the cluster. The load can be calculated as follows.

ψj =
λjμj

2(1 − ρj)2
+

θj

(1 − ρj)
(11)

For the sake of simplicity, in Equation 12 we have assumed that ψ1 ≤ ψ2... ≤ ψN .

k∑
j=1

φj(ψk) ≥
(k∑

j=1

(1 − ρj)
θj

)
− Λ (12)

It is worth mentioning that values bigger than k would not receive any Grid
request from the gateway (i.e. Λ̂k+1 = Λ̂k+2 = ... = Λ̂N = 0).

3 Preemption-Aware Scheduling Policy

In this section we discuss how the analysis mentioned in previous section can be
adapted as the scheduling policy for Grid requests inside IGG.

In fact, the analysis provided in Section 2 was based on some widely used
assumptions. However, some of these assumptions do not hold for case of the
multi-cluster that we are investigating. In the analysis we assumed that:

– each cluster was an M/G/1 queue. However, in InterGrid we are investigating
each cluster as a G/G/Mj queue.

– all requests needed one VM. However, in InterGrid we consider requests that
need several VMs for a certain amount of time.

– local requests could preempt Grid requests. However, in InterGrid not all Grid
requests are preemptable. In fact, if the Grid request is Non-Preemptable, it
cannot be preempted by local requests.

Performance Analysis of Preemption-Aware Scheduling in Multi-cluster Grid 425

– each queue is run in FCFS fashion. However, in order to improve the re-
source utilization we consider conservative backfilling method in the local
schedulers.

Considering the above differences, we do not expect that the preemption-aware
scheduling policy performs optimally. In fact, we are trying to examine how
efficient the above analysis would be by substituting the above assumptions
with some approximations.

To adapt the analysis in a way that covers requests that need several VMs we
modify the service time of Grid requests on cluster j (θj) and local requests on
cluster j (τj) in the following way:

θj =
v̄j · d̄j

Mjsj
(13)

τj =
ζ̄j · ε̄j

Mjsj
(14)

where v̄j and d̄j show the average number of VMs needed and average duration
of Grid requests. ζ̄j and ε̄j show the average number of VMs needed and average
duration of local requests. Finally, sj shows the processing speed in cluster j.
This change also affects second moment of service time for both local and Grid
requests. We can use coefficient of variance (CV = StDev/Mean) to obtain the
modified second moment. Assuming that CV is given, the second moment of
service time for Grid and local requests on cluster j is calculated according to
Equation 15 and 16, respectively.

ωj = (αj · θj)2 + θ2
j (15)

μj = (βj · τj)2 + τ2
j (16)

where αj and βj show the CV of Grid requests and local requests service time
on cluster j respectively. The preemption-aware scheduling policy (PAP), which
is built upon analysis of Section 2, is shown in the form of pseudo-code in Algo-
rithm 1. According to Algorithm 1, at first ψ is calculated for all clusters. Then,
in steps 3 to 9, to exclude the heavily loaded clusters, clusters are sorted based
on the ψ value in the ascending order. Then, the value of k is increased up until
condition defined in Equation 12 (step 6) is met. ub is found by starting from
2· lb and is doubled up until condition in step 12 is met. Steps 14-19 show the
bisection algorithm mentioned in Section 2 for finding proper value for z. Finally,
in steps 20 and 21 the arrival rate to each cluster is determined. Steps 22 and
23 guarantee that clusters k + 1 to N, which are heavily loaded, do not receive
any Grid request.

4 Performance Evaluation

4.1 Experimental Setup

We use GridSim a discrete event simulator, to evaluate performance of the
scheduling policies. We consider a Grid with 3 clusters with 32, 64, and 128

426 M.A. Salehi, B. Javadi, and R. Buyya

Algorithm 1. Preemption-Aware Scheduling Policy (PAP)
Input: Λ̄j ,θj ,ωj ,λj ,τj ,μj , for all 1 ≤ j ≤ N .
Output: (Λ̂j) load distribution of Grid requests to different clusters, for all

1 ≤ j ≤ N .
1 for j ← 1 to N do

2 ψj =
λjμj

2(1−ρj)2
+

θj

(1−ρj)
;

3 Sort (ψ);
4 k ← 1;
5 while k < N do

6 if
∑k

j=1 φj(ψk) ≥
(∑k

j=1

(1−ρj)

θj

)
− Λ then

7 break;
8 else
9 k ← k + 1;

10 lb← ψk;
11 ub = 2 ∗ lb;

12 while
∑k

j=1 φj(ub) >

(∑k
j=1

(1−ρj)

θj

)
− Λ do

13 ub = 2 ∗ ub;

14 while ub− lb > ε do
15 z ← (lb + ub)/2;

16 if
∑k

j=1 φj(z) ≥
(∑k

j=1

(1−ρj)

θj

)
− Λ then

17 lb← z;
18 else
19 ub← z;

20 for j ← 1 to k do

21 Λ̂j =
(1−ρj)

θj
− 1

θj

√
(1−ρj)(ωj(1−ρj))+θjλjμj

2θj (1−ρj)z+(ωj−2θ2
j)

;

22 for j ← k + 1 to N do

23 Λ̂j = 0;

nodes with homogeneous computing speed sj = 1000 MIPS for all clusters.
Each cluster is managed by an LRM and a conservative backfilling scheduler.
Clusters are interconnected using a 1000 Mbps network bandwidth. We assume
all nodes of each cluster as a single core with one VM. The maximum number
of VMs in the generated requests of each cluster does not exceed the number of
nodes in that cluster. We consider size of each VM, 1024 MB [10]. The overhead
time imposed by preempting VMs varies based on the type of Grid leases in-
volved in preemption [8]. For Cancelable leases the overhead is the time needed
to terminate the lease and shutdown its VMs. This time is usually much lower
than the time needed for suspending or migrating leases [8]. In our experiments,
suspension time (ts) and resumption time (tr) are 160 and 126 seconds, respec-
tively [8]. The time overhead for transferring (migrating) a VM with similar
configuration is 165 seconds [10].

Performance Analysis of Preemption-Aware Scheduling in Multi-cluster Grid 427

Baseline Policies. For the sake of comparison, we evaluate the proposed
scheduling policy (PAP) against other two policies which are described below:

– Round Robin Policy (RRP): In this policy IGG distributes Grid requests
between different clusters of a Grid in a round-robin fashion with a deter-
ministic sequence. Formally, this policy is demonstrated as Λ̂j = Λ/N

– Least Rate Policy (LRP): In this policy the rate of Grid requests submitted
to each cluster has inverse relation with arrival rate of local requests to
that cluster. In other words, clusters that have larger rate of incoming local
requests would be assigned less number of Grid requests by IGG. Formal
presentation of the policy is as Λ̂j = (1 − λj∑

N
j=1 λj

)·Λ
We have also implemented PAP with the following details:

– We assumed that in step 14 of Algorithm 1 the precision is 1 (ε = 1).
– In Equations 15 and 16, to work out the second moment of service time for

local and Grid requests, we assumed that in all clusters αj = βj = 1 (i.e.
CV of service time for both Grid and local requests is 1).

– We believe that users mostly request for Suspendable and Nonpreemptable
types. Therefore, in the experiments we consider: BE-Suspendable:40%; BE-
Cancelable:10%; DC-Nonpreemptable:40%; and DC-Migratable:10%. These
request types are uniformly distributed in Grid requests.

Workload Model. In the experiments conducted, DAS-2 workload model [5]
has been configured to generate two-day-long workload of parallel requests. This
workload model is based on the DAS-2 multi-cluster in the Netherlands.

We intend to study the behavior of different policies when they face workloads
with different characteristics. More specifically, we study situations where Grid
requests have:

– different number of requested VMs: In this case for Grid requests, we keep
average duration=30 minutes and average arrival rate=1.0.

– different request duration: In this case for Grid requests, we keep average
number of VMs=3.0 and average arrival rate=1.0.

– different arrival rate: In this case for Grid requests, we keep average number
of VMs=3.0 and average duration=30 minutes.

Each experiment is performed on each of these workloads separately for 30 times
and the average of the results is reported. To generate these workloads, we modify
parameters of DAS-2 model. Local and Grid requests have different distributions
in each cluster. Based on the workload characterization [5], the inter-arrival time,
request size, and request duration follow Weibull, two-stage Loguniform, and
Lognormal distributions, respectively. These distributions with their parameters
are listed in Table 2.

4.2 Experimental Results

Number of VM Preemptions. As mentioned earlier, both resource own-
ers and users benefit from fewer VM preemptions. From the resource owner

428 M.A. Salehi, B. Javadi, and R. Buyya

Table 2. Input parameters for the workload model

Input ParameterDistributionValues Grid Requests Values Local Requests
No. of VMs Loguniform (l = 0.8, 1.5 ≤ m ≤ 3, h = 5, q = 0.9)(l = 0.8,m = 3, h = 5, q = 0.9)

Request Duration Lognormal (1.5 ≤ a ≤ 2.6,b = 1.5) (a = 1.5,b = 1.0)
Inter-arrival Time Weibull (0.7 ≤ α ≤ 3,β = 0.5) (α = 0.7, β = 0.4)

Pone N/A 0.2 0.3
Ppow2 N/A 0.5 0.6

perspective, fewer preemption leads to less overhead for the underlying system
and improves the utilization of resources. From the user perspective, however,
preempting Grid leases has different impacts based on the lease types. For Sus-
pendable and Migratable leases, preemption leads to increasing completion time.
For Cancelable leases preemption results in terminating that lease. Since users
of different lease types have distinct expectation from the system, it is not easy
to propose a common criterion to measure user satisfaction. Nonetheless, all
types of leases Grid users suffer from lease preemption. Therefore, we believe
that the number of VM preemptions in a Grid is a generic enough metric to ex-
press Grid users’ satisfaction. In this experiment we report the number of VMs
getting preempted by applying different scheduling policies. As we can see in all
sub-figures of Figure 2, the number of VMs preempted almost linearly increases
by increasing the average number of VMs (Figure 2(a)), duration (Figure 2(b)),
and arrival rate of Grid requests (Figure 2(c)).

In all casesPAPoutperforms other policies speciallywhen the average number of
VMs increases orwhendurationofGrid requests increases.Nonetheless,weobserve
less difference between the PAP and two other policies when the inter-arrival time
of Grid requests increases (Figure 2(c)). In all cases the difference between PAP
and other policies become more significant when there is more load in the system
which shows the efficiency of PAP when the system is heavily loaded. In the best
situation (in Figure 2(b) where the averageduration ofGrid requests is 55minutes)
we observe that PAP results in around 1000 (22.5%) less VM preemptions.

Avg Number of VMs

N
o.

 V
M

s
P

re
em

pt
ed

4.003.753.503.253.002.752.50

3000

2500

2000

1500

1000

policy

RRP

LRP
PAP

(a)

Avg Duration of Grid Requests (min)

N
o.

 V
M

s
P

re
em

pt
ed

605040302010

4500

4000

3500

3000

2500

2000

1500

1000

policy

RRP

LRP
PAP

(b)

Arrival Rate of Grid Requests (1/min)

N
o.

 V
M

s
P

re
em

pt
ed

2.001.751.501.251.00

8000

7000

6000

5000

4000

3000

2000

1000

policy

RRP

LRP
PAP

(c)

Fig. 2. Number of VMs preempted by applying different policies. By modifying (a)
the average number of VMs, (b) the average duration, and (c) the arrival rate of Grid
requests.

Resource Utilization. Time overhead due to VM preemptions leads to resource
under-utilization. Therefore, we are interested to see how different scheduling poli-
cies affect the resource utilization. Resource utilization is defined as follows:

Performance Analysis of Preemption-Aware Scheduling in Multi-cluster Grid 429

Utilization =
computationT ime

totalT ime
(17)

where:

computationT ime =
|L|∑
i=1

v(li)· d(li) (18)

where |L| is the total number of leases allocated, v(li) is the number of VMs in
lease li, d(li) is the duration of lease li.

In this experiment we explore the impact of preempting VMs on the resource
utilization as a system centric metric. In general, resource utilization resulted
from applying PAP is better than other policies as depicted in Figure 3. However,
the difference is more remarkable when the average number of VMs or arrival rate
of Grid requests increases (Figures 3(b) and 3(c)). We observe that PAP, which
causes fewer preemptions, results in better resource utilization. In Figure 3(b),
we can see that in all policies resource utilization becomes almost flat when
Grid requests become long (more than 40 minutes). The reason is that when
requests become long, the useful computation time dominates the overhead of
VM preemptions. We can infer that VM preemption does not significantly affect
resource utilization when requests are long (more than 40 minutes).

Avg Number of VMs

U
ti

liz
at

io
n

4.003.753.503.253.002.752.50

0.280

0.275

0.270

0.265

0.260

0.255

0.250

policy

RRP

LRP
PAP

(a)

Avg Duration of Grid Requests (min)

U
ti

liz
at

io
n

605040302010

0.29

0.28

0.27

0.26

0.25

policy

RRP

LRP
PAP

(b)

Arrival Rate of Grid Requests (1/min)

U
ti

liz
at

io
n

2.001.751.501.251.00

0.350

0.325

0.300

0.275

0.250

policy

RRP

LRP
PAP

(c)

Fig. 3. Resource utilization resulted from different policies. By modifying (a) the aver-
age number of VMs, (b) the average duration, and (c) the arrival rate of Grid requests.

Average Response Time (ART). We are interested in ART metric to see
how the investigated scheduling policies affect response time of Best-Effort Grid
requests. In fact, this metric measures the amount of time on average a Best-
Effort lease should wait beyond its ready time to get completed. ART in each
cluster is calculated based on the Equation 19.

ARTj =
∑

l∈Δ(cl − bl)
|Δ| (19)

where Δ is the set of Best-Effort leases. cl and bl show completion time and
ready time for lease l, respectively. Then, ART over all clusters is the weighted
average ART in each cluster.

According to the results in Figure 4, we conclude that PAP results in better
ART for Grid requests. However, unlike the previous experiments, the response

430 M.A. Salehi, B. Javadi, and R. Buyya

time does not decrease significantly when the duration of the Grid requests
increased (Figure 4(b)). The reason is that when the requests become longer, the
duration and waiting times of requests normally become more dominant factor in
response time comparing with the waiting times imposed because of preemption.
Therefore, the number of VM preemptions is not significantly effective on average
response time of the leases, particularly, when the average duration of leases is
long.

We also conclude that ART does not change significantly by increasing the
average number of VMs in the Grid requests (Figure 4(a) after 3.5) or their
inter-arrival time (Figure 4(c) after 1.6). In fact in both cases by increasing
average number of VMs of the Grid requests or their inter-arrival, more Deadline-
Constraint Grid requests and even more local requests get rejected. This makes
more places for other requests to fit in. Therefore, ART does not increase or even
slightly decrease. For instance, in Figure 4(c), where the arrival rate for Grid
requests is more than 1.6, we experience 13.5% improvement in ART.

Avg Number of VMs

A
ve

ra
ge

 R
es

po
n

se
 T

im
e

(m
in

)

4.003.753.503.253.002.752.50

30

29

28

27

26

25

policy

RRP

LRP
PAP

(a)

Avg Duration of Grid Requests (min)

A
ve

ra
ge

 R
es

po
n

se
 T

im
e

(m
in

)

605040302010

70

60

50

40

30

20

10

policy

RRP

LRP
PAP

(b)

Arrival Rate of Grid Requests (1/min)

A
ve

ra
ge

 R
es

po
n

se
 T

im
e

(m
in

)

2.001.751.501.251.00

34

33

32

31

30

29

28

27

26

25

policy

RRP

LRP
PAP

(c)

Fig. 4. Average response time resulted from different policies. By modifying (a) the
average number of VMs, (b) the average duration, and (c) the arrival rate of Grid
requests.

5 Related Work

Assuncao et al. [3] have proposed adaptive partitioning of the availability times
between local and Grid requests in each cluster. Each cluster submits its avail-
ability information to the IGG periodically. Therefore, there is a communica-
tion overhead between IGG and clusters for submitting availability information.
Hence, there is a possibility that the availability information be imprecise.

Huedo et al. [9] have investigated the usage of multiple meta-schedulers to
make loosely coupled connection between Grids. They use Gridway to migrate
jobs from a remote cluster when the job does not get the expected processing
power. However, they do not discuss how we can prioritize organization level
requests versus requests coming from other Grids.

Haizea [8] is a lease scheduler which schedules a combination of advanced
reservation and best effort leases. Haizea preempts best effort leases in favor
of advance reservation requests. Sotomayor et al. [8], have also investigated the
overhead time imposed by preempting a lease in Haizea. By contrast, we propose
a scheduling policy to decrease the number of preemptions in the system.

Performance Analysis of Preemption-Aware Scheduling in Multi-cluster Grid 431

Scojo-PECT [7] is a preemptive scheduler that aims at making a fair share
scheduling between different job classes of a Grid. The approach is applying
coarse-grain time sharing and suspending VMs on disk. However, the authors
do not consider the overhead of suspending VMs on disk in their evaluations.
The main difference with our work is the goal of scheduling. We minimize the
number of VM preemptions whereas Sodan et.al’s goal is fair share scheduling.

Amar et al. [1] have added preemption to cope with the non-optimality in
on-line scheduling policies. The preemption policy prioritize jobs based on their
remaining time as well as the job’s weight. Our research is different with this
work in the sense that they do not consider the lease based resource provisioning.
Moreover, we try to minimize the number of preemption in a Grid where several
types of Grid requests coexist.

Kettimuthu et al. [4] proposed a preemption policy, which is called Selective
Suspension, where an idle job can preempt a running job if the suspension factor
is adequately more than running job. The authors do not specify how to minimize
the number of preemptions, instead, they decide when to do the preemption.

6 Conclusions and Future Work

In this research we proposed a preemption-aware scheduling policy (PAP) in
IGG, as a virtualized multi-cluster resource sharing environment, that mini-
mizes the side-effects of VM preemptions. Experimental results indicate that
PAP resulted in up to 1000 less VM preemptions (22.5% improvement) compar-
ing with other policies in a two-day-long workload. This decrease in number of
VM preemptions improves the utilization of the resources and decreases average
response time of the Grid requests (up to 13.5%). We believe that our policy
is extensively applicable in lease-based Grid/Cloud resource providers where re-
quests with higher priority coexist with other requests. A nice application is in
Cloud (IaaS) providers where there is certain priorities between different users;
and resource owners tend to minimize the number of VM preemptions. In fu-
ture we plan to investigate how IGG can consider deadline and other QoS issues
in its scheduling. Another extension would be considering co-allocation of the
incoming Grid requests on different clusters to further decrease the number of
preemptions.

References

1. Amar, L., Mu’alem, A., Stößer, J.: The power of preemption in economic online
markets. In: Altmann, J., Neumann, D., Fahringer, T. (eds.) GECON 2008. LNCS,
vol. 5206, pp. 41–57. Springer, Heidelberg (2008)

2. Amini Salehi, M., Javadi, B., Buyya, R.: Resource provisioning based on leases
preemption in intergrid. In: Proceeding of the 34th Australasian Computer Science
Conference (ACSC 2011), Perth, Australia, pp. 25–34 (2011)

3. de Assunção, M.D., Buyya, R.: Performance analysis of multiple site resource pro-
visioning: Effects of the precision of availability information. In: Sadayappan, P.,
Parashar, M., Badrinath, R., Prasanna, V.K. (eds.) HiPC 2008. LNCS, vol. 5374,
pp. 157–168. Springer, Heidelberg (2008)

432 M.A. Salehi, B. Javadi, and R. Buyya

4. Kettimuthu, R., Subramani, V., Srinivasan, S., Gopalsamy, T., Panda, D.K.,
Sadayappan, P.: Selective preemption strategies for parallel job scheduling. Intl.
Journal of High Performance Computing and Networking 3(2/3), 122–152 (2005)

5. Li, H., Groep, D.L., Wolters, L.: Workload characteristics of a multi-cluster super-
computer. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2004.
LNCS, vol. 3277, pp. 176–193. Springer, Heidelberg (2005)

6. Li, K.: Optimal load distribution in nondedicated heterogeneous cluster and grid
computing environments. J. System Architecture 54, 111–123 (2008)

7. Sodan, A.: Service control with the preemptive parallel job scheduler scojo-pect.
Journal of Cluster Computing, 1–18 (2010)

8. Sotomayor, B., Keahey, K., Foster, I.: Combining batch execution and leasing using
virtual machines. In: Proceedings of the 17th International Symposium on High
Performance Distributed Computing, New York, NY, USA, pp. 87–96 (2008)

9. Vázquez-Poletti, J.L., Huedo, E., Montero, R.S., Llorente, I.M.: A comparison
between two grid scheduling philosophies: Egee wms and grid way. Multiagent
Grid Syst. 3, 429–439 (2007)

10. Zhao, M., Figueiredo, R.: Experimental study of virtual machine migration in
support of reservation of cluster resources. In: Proceedings of the 3rd International
Workshop on Virtualization Technology in Distributed Computing, pp. 5–11. ACM,
New York (2007)

Y. Xiang et al. (Eds.): ICA3PP 2011, Part I, LNCS 7016, pp. 433–442, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Performance Evaluation of Open Source Seismic Data
Processing Packages

Izzatdin A. Aziz, Andrzej M. Goscinski, and Michael M. Hobbs

School of Information Technology, Faculty of Science and Technology,
Deakin University, Australia

{ia,amg,mick}@deakin.edu.au

Abstract. In many businesses, including hydrocarbon industries, reducing cost
is of high priority. Although hydrocarbon industries appear able to afford the
expensive computing infrastructure and software packages used to process
seismic data in the search for hydrocarbon traps, it is always imperative to find
ways to minimize cost. Seismic processing costs can be significantly reduced
by using inexpensive, open source seismic data processing packages. However,
hydrocarbon industries question the processing performance capability of open
source packages, claiming that their seismic functions are less integrated and
provide almost no technical guarantees for one to use. The objective of this
paper is to demonstrate, through a comparative analysis, that open source
seismic data processing packages are capable of executing the required seismic
functions on an actual industrial workload. To achieve this objective we
investigate whether or not open source seismic data processing packages can be
executed using the same set of seismic data through data format conversions,
and whether or not they can achieve reasonable performance and speedup when
executing parallel seismic functions on a HPC cluster. Among the few open
source packages available on the Internet, the subjects of our study are two
popular packages: Seismic UNIX (SU) and Madagascar.

Keywords: High performance computing, open source seismic data processing
packages, Seismic data processing, Seismic UNIX, Madagascar.

1 Introduction

The overall process of discovering hydrocarbon traps, starting with geological
exploration through to seismic data processing, is very expensive and time consuming
[1]. Seismic data consists of signal reflection points which are acquired during a
typical geological mapping operation of the Earth Subsurface. The processing of
seismic data is computationally exhaustive and includes activities such as: signal
amplitude adjustment, noise filtering and geometrical correction of the multitude of
seismic signal reflection points. The computational time required to process a large
real-world seismic dataset may take up to 6 months to complete. In this scenario the
shortage of oil and gas production relies on how soon seismic data could be
computationally processed. The ability for an oil and gas company to perform seismic
computation at higher speeds would provide a considerable advantage over
competitors, in the race to discover new hydrocarbon reservoirs.

434 I.A. Aziz, A.M. Goscinski, and M.M. Hobbs

Currently, hydrocarbon industries have been using specialized commercial
software packages to perform seismic processing, running on high performance
computer (HPC) clusters. Such specialized commercial software packages are very
expensive [2]. According to [3], commercial seismic data processing software
packages are priced at 3.15 Million USD for 5 licenses for a 5 year term. An
alternative approach to commercial software packages is through the use of open
source seismic data processing packages.

Sequences of seismic functions are used by geophysicists on seismic datasets for
analysis and interpretation. Core seismic functions are available in both commercial
and open source packages. However, commercial software packages contain seismic
functions arranged in an integrated form featuring enhanced graphical layout. In this
paper, we performed seismic data processing based on the sequences of seismic
functions as recommended in [4]. Although a number of guidelines to process seismic
data have been written by geophysicists, the sequences of seismic functions
recommended in [4] have served as a credible reference for the Society of Exploration
Geophysics (SEG).

Open source seismic data processing packages provide a vast collection of seismic
computational functions, which are consistently being enhanced and improved by the
geophysical community [5]. The constant improvement made by researchers from the
geophysical community allows updated research outcomes to be embedded into the
packages. SU and Madagascar are among the most popular open source seismic data
processing packages available on the Internet [5],[6]. Both packages have been widely
used by academics and researchers as learning aids and analysis tools [7],[8].

To date there is no indication that a comparative study to evaluate the performance
of SU and Madagascar executing on a HPC cluster has been conducted. The goal of
this paper is to report on the outcomes of a comparative study and performance
evaluation of how the open source seismic data processing packages, SU and
Madagascar, execute a sequence of seismic functions on a HPC cluster. The
significance for carrying out a comparative and performance evaluation study on open
source seismic data packages executing on a HPC cluster are as follows. First, we
would like to investigate whether the open source seismic data processing packages
are able to execute a representative dataset using a complete sequence of seismic
functions on a HPC cluster. Second, we would like to demonstrate the ability of SU
and Madagascar to be executed on a HPC cluster.

The rest of the paper is organized as follows. Section 2 reviews related work in this
area. Section 3 introduces the sequence of seismic functions that are part of both
packages, SU and Madagascar, and also a basic required set of functions in commercial
packages. Section 4 describes the performance evaluation which includes data format
conversions, execution and results’ analysis and discussion. In section 5, we conclude
the paper by providing the research outcomes and some insight into our future work.

2 Related Work

The hydrocarbon industry has little confidence in using open source seismic data
processing packages as a cheaper substitute for industrial scale seismic processing
[10]. This is due to the perception that open source packages are just a collection of
seismic functions without appropriate the function integration and support as expected

 Performance Evaluation of Open Source Seismic Data Processing Packages 435

in commercial software packages [6]. Although minor, this perception diminishes the
confidence level of the majority of hydrocarbon industries towards open source
seismic data processing packages, without knowing the full potential of the powerful
seismic functions possess [11]. Therefore it is important to demonstrate the ability of
open source seismic data processing packages to execute industrial scale seismic
computational processes using functions provided by the open source packages.

Performance evaluation of SU has been carried out on Beowulf clusters [12].
However, the evaluation only included a single seismic function; the noise filtering
function. Furthermore, the work did not demonstrate a complete set of seismic data
functions which limits to a judgement on the capability and performance of open
source seismic data processing packages.

Functionality wise, both SU and Madagascar possess similar sets of seismic
processing functions [8],[13], which can easily be compared through their user
manuals and source code. Having similar sets of seismic functions, SU and
Madagascar, will then allow us to perform a comparable performance study. One
disadvantage is that each package only accepts its own specific data format. Although
efforts have been made by the Society of Exploration Geophysics (SEG) to
standardize the seismic data format by using the SEGY format (which is to be used
for all seismic data processing packages) [15], yet producers of seismic packages tend
to design their own specific formats that better suit their applications. However,
format conversions from SEGY, into SU and Madagascar formats is possible by
executing specific format conversion functions provided by both packages when
dealing with each datasets, respectively.

Seismic datasets vary in sizes depending on the granularity of details embedded in
the dataset [14]. For instance, a seismic dataset with higher array dimensions
increases the data size significantly. A full scale seismic dataset used by the
hydrocarbon industry ranges from 3 TBytes up to 1 PBytes in size [16]. The ability of
seismic dataset to be decomposed into smaller sets, with fewer dependencies on each
other, allows data parallel computation to be carried out on a HPC cluster.

3 Sequence of Seismic Functions

The comparative study of both packages’ execution was carried out using the seismic
functions shown in Table 1. Among many geophysical functions available in open
source seismic data processing packages, we have chosen the functions represented in
table 1 because they are the common actions required for industrial grade processing
of seismic data as recommended in [4]. Table 1 shows 8 seismic computational
functions labelled F1 up to F8 and their corresponding descriptions. Both SU and
Madagascar are equipped with these computational functions. These functions have to
be executed in the specific order as shown in table 1.

The most computationally exhaustive seismic function is the Post-Stack Time
Migration, F8. Each signal reflection1 points needs to be geometrically corrected to
provide an accurate signal reading.

1 Signal reflection is used during seismic data acquisition operation to geologically map the

Earth subsurface [8].

436 I.A. Aziz, A.M. Goscinski, and M.M. Hobbs

Table 1. Sequence of seismic functions

Function (F) Function Name Description of Each Function
F1 AGC Adjust signal’s amplitude and power
F2 Muting Eliminate extraordinary signal that do not match with

primary signal reflections
F3 Noise Filtering Removing low pass frequency noise due to signal’s

refraction and reverberations
F4 Static Correction Correction of signal reflection arrival time due to

transmitter and receiver displacements.
F5 Velocity Filter Removal of signal’s near surface noise due to air

coupling effects
F6 NMO Removal of offset2 dependency for each signal travel

time
F7 Seismic Trace

Stacking
Increases Signal to Noise Ratio by stacking of all signal
travel time recording with zero offset values

F8 Post-Stack Time
Migration

Geometrical correction on signal reflectivity to give its
true signal reflection point

According to [6], 1 PBytes of industrial scale seismic data took at least a month to
compute using F8 on a large HPC cluster of 128 nodes, with 1024 cores processors.

4 Performance Evaluation

In order to achieve our goal to perform a comparative and performance evaluation study
on open source seismic data packages, SU and Madagascar, we have set two tasks. The
two tasks replicate the steps of real world industrial work to process seismic datasets.

The first task is to perform seismic data format conversions. The original fragment
of seismic data that we have obtained is in the SEGY3 format. Each seismic data
processing package, such as SU and Madagascar, uses a specific data format with
different structures and memory arrangement. SU data is arranged in binary
sequences, whereby Madagascar data is structured in an array of 1, 2 or higher
dimensions. Format conversion from SEGY into SU and Madagascar seismic data
formats is necessary prior to performing any seismic data computation for both
packages. In this first task, we perform a study on the conversion between seismic
data formats, SEGY into SU and Madagascar, and measure the processing time taken
to accomplish each format conversion and dataset sizes of converted inputs.

The second task is to perform a comparison of the sequential and parallel execution
on both packages, SU and Madagascar, on a common dataset. The performance study
was carried out on a HPC cluster running both a sequential and parallel version of
each package using the same seismic dataset following the same sequence of seismic
functions. The parallel CPU execution time of both packages, SU and Madagascar,
are benchmarked with the sequential execution time. Both packages’ performance and
speedup were then compared.

2 Offset in seismology refers to the displacement of the signal source and receivers. The

constant displacement of both source and receiver causes a signal reflection point reading to
overlap with its previous recording [17].

3 SEGY format is the most dominant seismic data format [9]. Released by the Society of
Exploration Geophysicist (SEG) in 1975, hence the name SEGY; it is an open format
controlled by a technical committee.

 Performance Evaluation of Open Source Seismic Data Processing Packages 437

The outcome of performing these two tasks is to show that open source packages,
such as SU and Madagascar, are capable of providing high performance computation
of seismic data processing on HPC clusters. Additionally, it will show that the
performance of different open source packages, such as SU and Madagascar, vary
even though both are executed using the same dataset, infrastructure and functions.

4.1 SU and Madagascar Seismic Data Format

Table 2 shows the comparative analysis of both packages data formats, SU and
Madagascar.

Table 2. Comparative study of Madagascar and SU file formats [7],[8],[13]

Data Format Madagascar Seismic UNIX

Header

Called the meta-information, describes
the whole dataset in an ASCII character.
Header may reside in a separated file
from the actual seismic segment or in
one file in a stream.

Called the header, it consists of 240
bytes of binary header describing the
seismic segment following it. This
header appears before each binary data
segment.

Data Sequence

Contains seismic traces in binary value
arranged in an array hypercube
dimension. Data can be of any type such
as integer, real or complex, based on the
machine the application is executed.

Contains series of seismic traces written
in one of the 4 possible types of 32
binary float formats. The type binary
float data is created based on the
machine that SU is executed on.

Generic
example of
data sequence

Meta-information data data…

Header data Header data ...

The Madagascar data format consists of two segments, which are the meta-

information and data segment. The meta-information describes the basic information
about the dataset, and the data segment contains the actual seismic data in the form of
a binary sequence. SU data formats are structured similarly to the Madagascar format.
The header file in SU contains basic descriptions of the data, similar to the meta-
information segment in Madagascar. The header file in SU and meta-information in
Madagascar contain the followings elements; the name of the program and the source
from where the data was originally created; the size of data in bytes and the data type.

The Madagascar file format consists of an extra parameter which is the number of
array elements and its dimension. This extra information is used by Madagascar
memory management to support arrays with 2, 3 or higher dimensions, where as SU
data is arranged in a series of seismic traces. Madagascar’s format imposes less
restriction on the arrangement of the header and data segment.

4.2 Seismic Data Conversion

The seismic data used in this experiment is a representative4 portion of a real world
readings obtained from an oil and gas company5. The size of the dataset is 122

4 According to the company, a representative data size is such that can be used for processing

yielding significant geological result.
5 The name of this company is not disclosed due to privacy concern and because the

hydrocarbon reservoir is still subject to a revisit in the future.

438 I.A. Aziz, A.M. Goscinski, and M.M. Hobbs

GBytes in size. The initial data format is in SEGY. Format conversions were carried
out to obtain SU and Madagascar data formats prior to executing the seismic
functions in a sequential and a parallel computing environment. The data format
conversion process was carried out sequentially on a single node of 8 cores processor.
However, the sequential algorithm used only runs on a single core. Table 3 shows that
the initial seismic data took 72 minutes to convert to the SU format. The data size
after conversion into SU format is 122 GBytes, which is comparable to the initial data
size. Note however, that there is a small difference in data size between SU and
SEGY formats.

Table 3. Execution of seismic data conversions for format of packages; SU and Madagascar

Seismic Data Format
Conversion

Conversion Execution Time
(minutes)

Data Size after conversion
(GBytes)

SEGY SU 72 122

SEGY Madagascar 63 115

The SEGY data is 3.6 Mbytes more than the SU data size. This is due to the fact

that the SEGY data structure consists of 2 segments, the header segment and the
seismic trace segment. The header segment is approximately 3600 bytes in size
containing the description6 of the SEGY data. The SU data structure does not have a
separate header segment as such in SEGY and Madagascar. In fact the header
segments in SU are joined together before each data sequence segment. This explains
the minor difference of 3.6 Mbytes between both SU and SEGY formats. Table 3
shows that the initial seismic data took 63 minutes to convert to the Madagascar
format. The data size after conversion from SEGY format into the Madagascar format
is reduced to 115 GBytes, which is due to the fact that the Madagascar format is
structured with less complexity and uses a contemporary memory arrangement
approach [5].

4.3 Tests and Results

Both sequential and parallel executions were performed on the Deakin University
Computer Cluster. The cluster consists of 20 physical nodes with each consisting of an
Intel based dual 1.6 Gigahertz CPU. Each CPU in a node is made of quad core
processors, which makes a total of 8 cores of processor per node. Each node is allocated
8 Gigabytes of memory. These nodes are interconnected by a 10 Gigabit Infiniband
network. The computer cluster runs on Centos Linux operating systems and uses SUN
Grid Engine version 6.1 to perform job queuing and management. The computer cluster
is deployed as such that 10 physical nodes are used to support 20 virtual nodes and the
remaining 10 act as physical nodes. The data storage system uses the RAID 5
technology through a 3Gbps data access7 with a rotational speed of 1500 rpm.

6 Description of SEGY data was discussed thoroughly in [8].
7 Data is stored in a compressed form and real time decompression took place when data is

accessed for processing. Therefore accessing data in the storage for read has been reduced to
only small blocks.

 Performance Evaluation of Open Source Seismic Data Processing Packages 439

The tests were designed such that each function F1 up to F8 in the specified
sequence was executed for both open seismic data processing packages, SU and
Madagascar. Both packages execute firstly on a single node to provide the sequential
performance. The sequential execution only uses a single core processor of a node.
Subsequently, both packages were executed in parallel on 2, 4, 6, 8, and 10 nodes
using all 8 CPU cores from each node.

The execution of the seismic functions by each package uses the previously
converted respective dataset (from section 3.3). Since the seismic dataset that we
used can be decomposed8 into smaller sets, this allows us to perform data
parallelization. To obtain better performance, jobs were created to match the
maximum number of CPU cores on each node, for each execution. For instance, 2
nodes consist of 16 CPU cores, therefore 16 threads were created when executing in
parallel. A maximum of 80 threads were created when executing on 10 nodes with 80
available CPU cores. A one to one computational mapping of each thread with each
CPU core was applied. Table 4 summarizes the test result of both sequential and
parallel executions of the SU and Madagascar packages on the same dataset in their
respective data format.

Table 4. Sequential and Parallel executions of seismic functions for SU and Madagascar

Function
(F)

Seismic Data Processing CPU Execution Time (in Minutes)

 SU (Number of Nodes) Madagascar (Number of Nodes)

 Seq. 2 4 6 8 10 Seq. 2 4 6 8 10
F1 21 16 10 6 8 8 25 12 6 4 6 5
F2 32 21 13 8 7 9 24 15 7 3 4 6
F3 179 96 54 29 22 18 182 87 31 12 12 10
F4 62 38 26 17 13 15 95 42 18 7 7 8
F5 481 312 179 84 67 59 378 196 93 32 18 21
F6 541 341 210 92 76 81 219 184 83 39 21 18
F7 16 7 5 4 3 3 28 7 5 5 6 7
F8 9312 6215 4126 2319 1852 1603 7825 4652 2073 1291 1025 983

Total 10644 7046 4623 2559 2048 1796 8776 5195 2316 1393 1099 1058

The total sequential execution time for SU is 10644 minutes, which is

approximately 7 days, while Madagascar consumed 8776 minutes, approximately 6
days, to complete the seismic functions F1 up to F8. The obvious similarity is that
both took longer execution time to complete function F8. As expected, based on [17]
and [18], Post-Stack Time Migration is a computationally exhaustive process. Each
binary sequence in the dataset needs to be computed, and therefore took a long time to
complete. Figure 1 shows the comparative CPU execution performance for both SU
and Madagascar.

8 A master-slave approach was use to perform data parallelization on the cluster, in which each

slave node is allocated equal portion of seismic data to be processed and return to the master
node when processing is completed.

440 I.A. Aziz, A.M. Gosc

Fig. 1. Number of no

Figure 1 shows that
improvement when more no
faster processing time as co
for the test is when executin
for both packages, SU and M

Figure 2 shows the spee
of seismic functions from 1
nodes could give better r
Madagascar shows better sp
executing at 10 nodes.

Fig. 2. Nodes

A near-linear speedup r
nodes for both packages, S
of 6.30 was achieved wh
observation, the job dissem
each node was processing t
approximately the same tim
was experiencing a conside
linear speedup was achieve
nodes (shown in Figure 2
between nodes exists in this

9 Each node consists of 8 CPU

of 8 GBytes of cache mem
memory access time to the p

10644

7
8776

0

2000

4000

6000

8000

10000

12000

1

1.00 1.51
2

1.00 1.69

3

0

2

4

6

8

10

12

0 2

S
pe

ed
up

Time (min)

cinski, and M.M. Hobbs

odes against CPU execution time for SU and Madagascar

both packages demonstrated significant performa
odes were added. However, in all runs, Madagascar sho

ompared to SU. It is also observed that the best performa
ng on 10 nodes. CPU executionspeedup [12] was measu
Madagascar, to execute the seismic functions.
edup of SU and Madagascar when executing the seque
1 up to 10 nodes. It shows that executing on more than
results in terms of speedup and CPU execution ti
peedup of 8.29, as compared to SU’s speedup of 5.93 w

s execution speedup for both SU and Madagascar

result was achieved when executed with 2 nodes up t
SU and Madagascar, while a super linear9 speedup read
hen executing with 6 nodes by Madagascar. From
mination for each node was equally distributed; theref
the same portion of data size and completed processing

me. With the sequential experiment, it appears that the
erable I/O load. This overhead may be the reason why ne
ed by the Madagascar experiment between 2 nodes up t
2), since little overhead in terms of I/O communicat
s computation.

U cores and a total of 8 GBytes of available RAM. The collec
mory may have caused locality of reference, hence reduces
primary storage disk significantly.

7046

4623

2559 2048 1796

5195

2316
1393 1099 1058

2 4 6 8 10

SU

Madagasc

2.30

4.16
5.20 5.93

3.79

6.30
7.99 8.29

4 6 8 10 12
No. of Nodes

Linear

SU

Madaga

No. of Node

ance
ows
ance
ured

ence
n 10
me.

when

to 8
ding
our

fore
g at
test
ear-
to 8
tion

ction
the

car

scar

es

 Performance Evaluation of Open Source Seismic Data Processing Packages 441

It is also observed that in the seismic functions’ computation, all segments of the
threads were gathered from each node and consolidated at the end of the
parallelization process. Therefore, the more nodes were added, the more the threads
consolidation process needs to done at the end of the whole processing period. This
explains the trivial additional improvement of speedup reading for both packages
when reaching the end of the whole processing period.

5 Conclusion

Hydrocarbon industries appear to be capable of affording the expensive software
packages and even more costly computing infrastructures required to process seismic
datasets. However, the reduction of costs is the aim of many hydrocarbon industries.
One of the approaches to decrease cost is through reduction of seismic data
processing and computational overheads. Reduction of costs in seismic data
processing can be achieved by using either open source seismic data processing
packages SU and Madagascar, because they incur practically no cost to use, and
exploit the power of parallel processing.

The goal in this paper was to demonstrate the capability of open source packages,
SU and Madagascar, to execute a sequence of seismic functions representing the
actual industrial work process. We succeeded in this by conducting two sets of tasks.
First, the investigation of the problem, whether or not open source seismic data
processing packages can be executed using the same set of seismic data through data
format conversions. Second, whether or not they can achieve reasonable performance
and speedup when execute parallel seismic functions on a HPC cluster.

The first task, to convert the original seismic data format into the respective format
of SU and Madagascar, was successfully conducted and measured. The conversion
was done using the seismic format conversion function provided by both packages.
We now know that data format conversion for both packages, SU and Madagascar is
possible and took at least 63 minutes for a 122 GBytes of seismic dataset. We
successfully completed the second task, which was to conduct a performance
evaluation on both packages by deploying them on a HPC cluster and executing a
sequence of seismic functions in a sequential and parallel environment, using the
same dataset with the respective package data formats.

To our knowledge, this paper is the first attempt to compare and contrast between
open source seismic data processing packages, SU and Madagascar, by replicating
industrial grade processing on a representative real world seismic dataset. The focus of
this paper is on the computational analysis of processing seismic data on a HPC
cluster. Therefore, the geophysical outcome of processing such as the accuracy of
identifying hydrocarbon traps in the Earth subsurface is outside the scope of this paper.

The performance results show that good speedup can be achieved by using open
source seismic data processing packages when executing on a HPC cluster in a
parallel system. With achieving such a result it is hoped that the hesitation held by the
hydrocarbon industries towards the capabilities of open source seismic data
processing packages could be alleviated.

It has been demonstrated in this paper that open source seismic data processing
packages are capable of being executed on a HPC cluster. In future work we would
like to explore an approach where seismic data processing can be tested and deployed

442 I.A. Aziz, A.M. Goscinski, and M.M. Hobbs

on a more scalable and larger distributed computing environment, which is not viable
through HPC clusters. Executing on a more scalable distributed computing
environment has the potential to reduce the computational cost of seismic data
processing even further.

References

1. Argonne National Laboratory: Laser Oil & Gas Well Drilling: Using high-power lasers to
drill for gas & oil (2010)

2. Jianwei, M., Plonka, G., Chauris, H.: A New Sparse Representation of Seismic Data Using
Adaptive Easy-Path Wavelet Transform. IEEE Journal of Geosciences and Remote
Sensing 7(3) (2010)

3. Sesimic Micro Technology Inc.: Cost, Saving and Analysis Results (2010),
http://www.seismicmicro.com/roi/roi_sample.htm

4. Yilmaz, O.: Seismic Data Analysis. Society of Exploration Geophysicists 1 and 2 (2001)
ISBN 1560800941

5. Sergey, F., Felix, H., Paul, S.: Reproducible Research in Computational Geophysics. RSF
School and Workshop, Vancouver (2006)

6. Ibrahim, N.A.: Expert Interview Session. Senior Geophysicist PETRONAS Research Sdn
Bhd. (2010)

7. Cohen, J.K.: The New SU User’s Manual. Colorado School of Mines Center for Wave
Phenomena. The Society of Exploration Geophysicists 3(107) (2002)

8. Izzatdin A.A., Goscinski, A.: The Study of Seismic UNIX in Relation to Reflection
Seismology Models. School of Information Technology Technical Report TR C10/2.
Deakin University Australia (2010)

9. Barry, K.M., Cavers, D.A.: Recommended standards for digital tape formats. Journal of
Geophysics 40(2), 344–352 (1975)

10. Glenn, C., Igor, M., Shannon, B.: Towards a Comprehensive Open-source System for
Geophysical Data Processing and Interpretation. Canadian Society of Exploration
Geophysicists (CSEG) Recorder (2007)

11. Glenn, C., Igor, M.: Integrated software framework for processing of geophysical data.
Journal of Computer and Geosciences 32(6), 767–775 (2006)

12. Abdul, A.I., Thayalan, S., Nazleeni, H., Hasan, M.H., Mazlina, M.: Parallelization of
Noise Reduction Algorithm for Seismic Data on a Beowulf Cluster. IJCSNS International
Journal of Computer Science and Network Security 10(1) (2010)

13. Izzatdin A.A., Goscinski, A.: The Study of Madagascar Seismic Data Processing Package
in Relation to Reflection Seismology Models. School of Information Technology
Technical Report TR C10/5. Deakin University Australia (2010)

14. Izzatdin, A.A., Goscinski, A., Hobbs, M.: A Comparative Study of Open Seismic Data
Processing Packages. School of Information Technology Technical Report TR C11/2.
Deakin University Australia (2011)

15. Michael, W.N., Alan, K.F.: SEGY Rev 1 Data Exchange Format. Society of Exploration
Geophysicists Technical Committee. SEG Technical Document Release 1.0 (2002)

16. Lin, D.: Optimizing Data Storage and Management for Petrel Seismic Interpretation and
Reservoir Modeling: A White Paper for Upstream Oil and Gas Data Managers. Storage
Systems Schlumberger Information Solutions (2009)

17. Telford, W.M., Gelbert, L.P., Sherff, R.E., Keys, D.A.: Applied Geophysics. Cambridge
University Press, Cambridge (1990)

18. Scales, J.A.: Theory of Seismic Imaging. Samizdat Press, Golden Colorado (1997)

Y. Xiang et al. (Eds.): ICA3PP 2011, Part I, LNCS 7016, pp. 443–452, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Reputation-Based Resource Allocation in
Market-Oriented Distributed Systems

Masnida Hussin, Young Choon Lee, and Albert Y. Zomaya

Center for Distributed and High Performance Computing,
School of Information Technologies

The University of Sydney
NSW 2006, Australia

mhus9339@uni.sydney.edu.au,
{young.lee,albert.zomaya}@sydney.edu.au

Abstract. The scale of the parallel and distributed systems (PDSs), such as
grids and clouds, and the diversity of applications running on them put reliabili-
ty a high priority performance metric. This paper presents a reputation-based
resource allocation strategy for PDSs with a market model. Resource reputation
is determined by availability and reliable execution. The market model helps in
defining a trust interaction between provider and consumer that leverages de-
pendable computing. We also have explicitly taken into account data staging
and its delay when making the decisions. Results demonstrate that our approach
significantly increases successful execution, while exploiting diversity in tasks
and resources.

Keywords: Dynamic resource allocation, resource reputation, market model,
reliable performance.

1 Introduction

Parallel and distributed computing systems (PDSs) provide efficient resource sharing
in tackling large-scale problems [1, 2]. However, their heterogeneity in resource and
administration hinders their effective use. Due to the fact that each administrative do-
main has its own resource usage pattern [3, 4] an evaluation of the resource behavior
varies. Also, the information of resource availability and performance in the scheduler
is time delayed and potentially inaccurate [5]. Such unpredictable and imprecise re-
source behavior inherently results in unreliable task execution. The resource allocation
problem is further complicated when each task needs input data for execution. Thus,
resource allocation requires dependable communication links for transferring the data.
In order to select trustworthy resources, our resource allocation approach incorporates
a market model. The model for PDSs [6, 7] involves the definition of a computational
market in which resource providers and consumers interact without a prior knowledge
of underlying schedules. We focus on designing a reputation-based resource allocation
strategy with a market model for which the decision is made taking into account condi-
tions of scalability, heterogeneity and dynamism.

444 M. Hussin, Y.C. Lee, and A.Y. Zomaya

Specifically, our approach is capable of dealing with a wide variety of resource be-
haviors and performance fluctuations for improving system reliability. The trustwor-
thiness of resource primarily relies on the resource’s reputation where the degree of
reputation significantly helps in allocation decisions in terms of reliable performance.
We do not explicitly consider monetary factor to assign the task into the suitable re-
source. It is because the amount of ‘money’ could not be sufficient for evaluating the
reliability of services [5]. With the market model it helps define a trust interaction
between providers and consumers that creates benefit (incentives) for encouraging
both parties to remain interacting. Our task scheduling approach also considers link
capacity during data transmission for making optimal decisions. The proposed ap-
proach has been evaluated in a simulated large-scale computing environment. It sig-
nificantly contributes to providing good-quality allocation decisions.

The reminder of this paper is organized as follows. A review of related work is
presented in Section 2. In Section 3 we describe the models used in the paper. Section
4 details our reputation-based resource allocation strategy. Experimental settings and
performance metrics are presented in Section 5. In Section 6 we present the experi-
mental results. Finally, conclusions are made in Section 7.

2 Related Work

In large-scale distributed systems with heterogeneous and dynamic resources, perfor-
mance modeling/prediction techniques are often adopted for various reasons including
reliability. Reputation is a good way of motivating compositions in such systems to
interact and collaborate with previously unknown and potentially malicious entities
for providing reliable performance. The concept of reputation in task scheduling and
resource allocation is popular in P2P networks [8] and also has been applied to com-
putational grids and clouds for reliable services (e.g., [9-11]). The concept of trust in
resource behavior for dealing with variability and instability of compute nodes was
proposed in [8-10], where reputation is defined based on various factors, such as prior
performance, network capacity and resource availability. These approaches have
demonstrated the effectiveness in maximizing successful execution; however, the
efficacy of the approaches in dealing with system dynamicity is limited to a certain
level.

Inspired by the stability of interaction in real markets, market model have been
studied as a metaphor for resource allocation in distributed systems [6, 7, 12, 13]. It is
a promising platform to accomplish efficient resource sharing and allows an
organization of limited resources to overcome resource scarcity. The work in [6] pro-
posed incentive-based resource scheduling that optimizes incentives for providers and
consumers; and this scheduling leads to a sustainable market. It uses a price-adjusting
algorithm in order to gain fair allocation profit in all active providers. However, the
communication overhead is ignored. Another approach to realize the optimal resource
allocation is using a utility-based optimization scheme [7]. The model uses a two-
level market solution with three types of agent: user, resource and service. Agents
perceive supply and demand in the market through a price-directed algorithm. The
utility of resource allocation is used to solve the scheduling problem where user prefe-
rences and benefits of service are summarized by the utility. While most resource

 Reputation-Based Resource Allocation in Market-Oriented Distributed Systems 445

allocation approaches with a market model deal with pricing and payment issues, our
approach performs resource allocation solely focusing on suitability between resource
reputation and processing requirement while considering network capacity for en-
hancing dependable computing.

3 Models

3.1 System Model

The target system used in this work consists of a set S of r resource sites (Fig. 1) that
are loosely connected by a communication network, and each has a data repository
and several compute nodes given as nj where j = {1, 2…, x}. The bandwidth between
any two individual sites varies corresponding to realistic network; thus the inter-site
communications are heterogeneous. Nodes within the same site are fully intercon-
nected through a high-bandwidth network. It is also assumed that the nodes are able to
access the local data repository within a negligible amount of time.

Compute node

Scheduler

Resource site

Data repository

Users

Intra-site
Inter-site

Fig. 1. System Model

Each node contains multiple processor cores with a shared cache module. The
speed of cores in node nj is homogenous and expressed in terms of million instruc-
tions per second (MIPS). Thus, the processing capacity of each node PCj is defined as
total number of tasks completed within some observation period, L divided by total
speed of cores. It is assumed that the performance of a node in terms of processing
capacity and communication capacity fluctuates. Therefore, the accurate (actual) ex-
ecution time of a task ExeT on a particular node is difficult, if not impossible, to de-
termine a priori. We assume that the number of tasks to be scheduled at a given time
is more than the number of available nodes. Hereafter, the terms node and resource
are used interchangeably.

3.2 Application Model

We model tasks that are assumed independent from each other. Since workload traces
obtained from the actual systems that are publicly available in the Parallel Workload
Archive [14], tasks in these traces are characterized as follows. (i) Submission time,
arv: the timestamp at which a task arrives to the system queue, (ii) Requested time, rt:
the estimated time of task execution that is expected by a user and (iii) Wall clock
time, wct: the amount of time that the task has run in the system.

446 M. Hussin, Y.C. Lee, and A.Y. Zomaya

Each task ti requires a different processing capacity for its completion; and this de-
termines the priority of that task. We synthetically assign the priority to a given task
that determines based on rt and wct. The priority of a task ti is set to high if its wct is
at least 70% of rt. If wct is at most 20% of rt, the priority is considered as low. Oth-
erwise, the task is set to medium priority. The task requires input data (file) before the
execution that is located in either local or remote data repository. Once a task assign-
ment is made, its file will be transferred to the node on which that task is assigned to.
Therefore, a task is associated with two types of constraint in its processing, i.e.,
processing requirement and expected data transfer time ftr; that is defined as budget
bgi and simply given by (wct/rt) + ftr. Note that input data and file in our work are
interchangeable since these resources do not incur any database details.

3.3 Market Model

Our market model (Fig. 2) does not consider the pricing scheme, hence providers and
consumers (trust) interaction concerns resource dedication and performance stability
for successful execution. The market interaction establishes suitability and matching
between consumer’s requirement and provider’s service. Consumers acquire re-
sources according to a computing competence (reputation), and providers recommend
computing services that suit to consumers’ requirement (budget). The model also
involves issues in optimizing benefit (incentive) for providers and consumers. We
identify a successful execution as an incentive for a consumer and market-strength as
an incentive for providers. Clearly, the consumer may want to strive for maximum
satisfaction (total number of successful executions or meet deadlines). More formally,

∑
⎩
⎨
⎧

=

≤
=

1 0

1
;

i otherwise
i

rt
i

ExeTif
where

i
onsatisfacti ωω

 (1)

Providers Consumers

Successful execution Market strength

Reputation Budget

Market (trust) interaction

Fig. 2. Market Model

We introduce market-strength that denotes the capability of computing services of
provider relative to competitive offerings. The provider has better market-strength
relative to other providers if most of its nodes demonstrate good reputation. It is im-
portant for provider to highlight its reliability in services due to the consumer may not
want their tasks mapped onto resources that are owned by unreliable entity. In this
work, there is no extra cost or penalty applied to the provider if performance goal
considering deadline constraint is not met. It is because the information of reputation
is sufficient to measure and value the resource for future relationship.

 Reputation-Based Resource Allocation in Market-Oriented Distributed Systems 447

4 Reputation-Based Resource Allocation

4.1 Formation of Resource Reputation

For the sake of reliability, the resource expresses its valuation of processing as a func-
tion of a computing competence (resource reputation). The reputation helps identify
the suitability for a given task that concerns with its processing capacity and prior
performance. The prior performance PPj of a node j is defined as summation of suc-
cess rate (satisfaction/L) and the resource availability rate av_t. Then, the resource
reputation rrepj is computed by the prior performance of nj divided by its processing
capacity (i.e., PPj / PCj). For each provider, the average reputation value over all its
nodes indicates its market strength.

4.2 The Suitability between Resource and Task

The consumer-provider relationship is established once a task is assigned to a re-
source. In our approach, the reliability of task execution primarily is the key determi-
nant in the value of that relationship. To maximize the incentives (i.e., success rate,
market strength), the fitness value between resource nj and task ti is analysed. That is:

jrrepibgjrrepibgfitval −+=

(2)

A task is assigned to a resource that gives the highest fitval that is guaranteed to ac-
complish the execution to limit of its reputation. If there are two or more resources
suitable for a task, the resource with the highest reputation value is chosen. The fitval
contributes to the improvement of reliable execution if the processing capacity is
actually realized.

4.3 Incorporation of Data Staging

Once an allocation decision has been made, the input data required by a task is staged
(duplicated) into the node on which the task executes. The input data can be exists at a
remote data repository, hence, its staging affects task execution to a certain degree
due to heterogeneous communication links. Since a task only starts its execution when
the required file is successfully transmitted to the node, the scheduling takes into ac-
count computing priority and link capacity. We incorporate an insertion scheme into
the task scheduling in order for a task to be scheduled into the time slot between two
consecutively scheduled tasks. For a given task, its start time of processing might be
affected by the fluctuation in link capacity; more specifically, delay in data transmis-
sion (i.e., tc = latency/bandwidth). Hence, we adopt a two-step queuing model
(Fig. 3). In the priority-based scheduling, tasks are primarily scheduled and grouped
according to their computing priority pr; i.e., high (h), medium (m) or low (l). The
tasks in each priority are queued by their arrival time (in sequence, ars). File-based
(re)scheduling is then carried out in the way that scheduled tasks are further inspected
with respect to their tc for possible rescheduling. This rescheduling is merely for the
task in each pr without affecting tasks in other priorities. The task with minimum tc is
scheduled first. This repeats until no further improvements in the schedule is possible.

448 M. Hussin, Y.C. Lee, and A.Y. Zomaya

l ars(3)

tc=0.7
l ars(2)

tc=0.5
l ars(1)

tc=0.6
m ars(1)

tc=0.8
m ars(3)

tc=0.4
m ars(2)

tc=0.4
h ars(1)

tc=0.8
h ars(2)

tc=0.4

time, t

(b)

Fig. 3. The Two-step Queuing (a) Priority-based scheduling (b) File-based scheduling

5 Experimental Methodology

5.1 Experimental Settings

Log workloads extracted from the Parallel Workload Archive (PWA) [14] were used
in our simulations. We have selected two trace sets: SDSC Blue and HPC2N. Our
simulation used 5000 jobs from both workload traces after excluding trace job entries
that have a negative run time. In our simulation system, there are 5 to 10 providers
and each contains a varying number of compute nodes ranging from 4 to 10. The
number of processor cores ranges from 2 to 8 with an interval of 2. The number of
cores in a node is might vary from that in other nodes. Its speed is selected in the
range of 500 and 1000MIPS. Estimated file transfer time is selected randomly from
the following set: {0.01, 0.5, 1.0, 3.5, 5.0, 7.5, 10.0, 12.5}. Resource availability av_t
is random and uniformly distributed within the range of 20% to 80%. We induce two
network settings for inter-site communication. Specifically, the bandwidth and latency
are randomly generated from a uniform distribution ranging from the following sets;
Setting 1: {50 to 100} and {0.1 to 1}, and Setting 2: {10 to 50} and {0.01 to 1}, re-
spectively. We varied the (average) inter-arrival times of jobs by multiplying the job
submission times included in the trace files by the inverse of a load factor. This factor
is increased by 0.1 increments from a low to a maximum value for 5000 jobs.

5.2 Performance Metrics

• Successful execution rate: It is defined as satisfaction /L, particularly to measure
the degree of reliable execution for dealing with various priority tasks.

• Utilisation rate: We define the utilization rate of a resource as RU = busyj / (busyj
+ idlej) where busyj is the total time when the node nj is busy for servicing tasks
and idlej is total idle time of nj, respectively.

• Relative match: This is used to measure the degree of suitability between task and
resource for each allocation decision. It varies between 0 and 1 where 0 means
conditional match and 1 means perfect match. It is given in Eq. 3. The decision is
identified as α if fitval is more than average fitval (fitave); otherwise it is β.

 Reputation-Based Resource Allocation in Market-Oriented Distributed Systems 449

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

=
+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

=
−= ∑∑

J

i

J

i
relMatch

11
βαβα

 (3)

6 Experimental Results

We first study how the performance of our algorithm (Reputation-RA) is influenced
by network performance and job characteristics. The experiments have been con-
ducted with two schemes: reputation with insertion (R2Q) and reputation without
insertion (REDF). With REDF, tasks are sorted by their deadline (i.e., earliest dead-
line first) without considering the rescheduling. Those algorithms are evaluated with
each of Setting1 and Setting2. Then, Reputation-RA is compared with extended ver-
sions of Utility-RA [6] and Incentive-RA [7]. Since Reputation-RA concerns input
data, we have revised both algorithms to fit into our model. In the comparison, their
equilibrium prices are obtained only when the communication link between providers
for transferring the input-data is established. The Setting1 is used for this comparison.

6.1 Impact of Scheduling with Variability of Network Capacity

The pattern of performance fluctuation in Fig. 4 does not significantly differ as ob-
served to be about 5%. There is a tendency of reliability growth towards variability on
the communication links in HPC2N and SDSC Blue workload traces. However, the
system performance advantage of R2Q-Setting1 over other policies is huge particular-
ly in Fig. 4(b). The effectiveness of R2Q and REDF in gaining better performance is
presented in Fig. 5. Specifically, R2Q-Setting1 still outperforms others. Interestingly,
the performance shows different patterns as the load increases. The traces from
HPC2N illustrate that relative match reduces linearly while the SDSC Blue is shown
an exponential reduction curve, and relatively high in relMatch reaching nearly 90%.
It is demonstrated that reputation-based allocation is able to work in such workload
scenarios; this is particularly true in heavy loads. Results in Fig. 5(b) clearly show
that REDF-Setting1 and R2Q-Setting2 have comparable performance with the differ-
ence being small (about 2% on average). It is because the larger bandwidth in REDF-
Setting1 enables more input loads to be accurately matched. But, the rescheduling
scheme in R2Q-Setting2 has given much more benefit for the market strength (Fig. 6).

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1 0.2 0.3 0.4 0.5 0.6
Load factor

su
cc

es
sf

u
l e

xe
cu

tio
n

 r
at

e

R2Q-Set 1 REDF-Set 1
R2Q-Set 2 REDF-Set 2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6
Load factor

su
cc

es
sf

u
l e

xe
cu

tio
n

 r
at

e

R2Q-Set 1 REDF-Set 1
R2Q-Set 2 REDF-Set 2

(a) (b)

Fig. 4. Successful execution rate (a) HPC2N workload. (b) SDSC Blue workload.

450 M. Hussin, Y.C. Lee, and A.Y. Zomaya

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1 0.2 0.3 0.4 0.5 0.6
Load factor

re
la

tiv
e

m
at

ch

R2Q-Set 1 REDF-Set 1
R2Q-Set 2 REDF-Set 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1 0.2 0.3 0.4 0.5 0.6
Load factor

re
la

ti
ve

 m
at

ch

R2Q-Set 1 REDF-Set 1
R2Q-Set 2 REDF-Set 2

(a) (b)

Fig. 5. Relative match (a) HPC2N workload. (b) SDSC Blue workload.

0.35
0.37
0.39
0.41
0.43
0.45
0.47
0.49
0.51
0.53

1 2 3 4 5 6 7 8 9 10
Resource ID

av
er

ag
e

m
ar

ke
t s

tre
ng

th

REDF-Set 1 R2Q-Set 2

Fig. 6. Market strength of providers for SDSC Blue workload (Load factor =0.3)

6.2 Comparing Market-Based Resource Allocation Approaches

We enhance the analysis of the SDSC Blue Horizon as it meets our objective in that it
contains the variability in task traces. Fig. 7(a) shows that all approaches have reached
their success rate more than 50%. Notwithstanding this observation, it can be seen
that results of Reputation-RA is very close to Utility-RA under least loads, and com-
parable with Incentive-RA under heaviest loads. It is because the pricing strategy in
both approaches tends to deliver better performance at a particular load factor. Appar-
ently, when we reduce av_t (approximately equal to 30%) there is significant degrada-
tion in success rate as shown in Fig. 7(b). Although the experiment ran on the
high-bandwidth (Setting1), the degree of resource availability does influence those
approaches to maintain reliable execution. Although payment agreement was not
considered, Reputation-RA still showed good results that turned out to be the perfect
allocation more than 52% on average, as shown in Fig. 8(a). Fig. 8(b) clearly illu-
strates the utilization rate do not significantly differ and the discrepancy of RU among
the algorithms is small about 10% on average. In addition, the benefit of using a mar-
ket-oriented distributed system for maximizing the resource utilization was not appar-
ent – less than 80%. This is mainly because a resource with a good offer (i.e., less
price or high availability) is more popular to be chosen to accommodate the input load
that affects the results.

 Reputation-Based Resource Allocation in Market-Oriented Distributed Systems 451

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6
Load factor

su
cc

es
sf

u
l e

xe
cu

tio
n

 r
at

e

Reputation-RA Incentive-RA Utility-RA

0.2

0.3

0.4

0.5

0.6

0.7

0.1 0.2 0.3 0.4 0.5 0.6
Load factor

su
cc

es
sf

u
l e

xe
cu

tio
n

 r
at

e

Reputation-RA Incentive-RA Utility-RA

(a) av_t = 20% - 80% (b) av_t = 30%

Fig. 7. Successful execution rate under different resource allocation approaches

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1 0.2 0.3 0.4 0.5 0.6
Load factor

re
la

tiv
e

m
at

ch

Reputation-RA Incentive-RA Utility-RA

0.4

0.5

0.6

0.7

0.8

0.1 0.2 0.3 0.4 0.5 0.6
Load factor

u
til

is
at

io
n

 r
at

e

Reputation-RA Incentive-RA Utility-RA

(a) Relative-match (b) Utilization rate

Fig. 8. Performance comparisons with different resource allocation approaches

7 Conclusion

The emergence of distributed computing infrastructures with heterogeneous resources
and diverse processing requirements has much increased the importance of reliable
performance/execution. In this paper, we have presented a reputation-based resource
allocation approach in a market-oriented distributed system for reliable execution.
Our approach is devised in a way that actively adapts and deals with performance
fluctuations and variability in resource capacity. Based on results from our extensive
experiments, the approach has demonstrated a substantial positive effect on reliable
performance under different workload conditions. We have confirmed that the incor-
poration of reputation factor into resource allocation is an effective means to ensure
reliable performance in dynamic heterogeneous computing environments.

References

1. Lee, Y.C., Zomaya, A.Y.: Scheduling in grid environments. In: Rajasekaran, S., Reif, J.
(eds.) Handbook of Parallel Computing: Models, Algorithms and Applications, pp. 21.1–
21.19. CRC Press, Boca Raton (2008)

2. Czajkowski, K., Foster, I., Kesselman, C.: The Grid: Blueprint for a New Computing In-
frastructure. Morgan Kaufmann, San Francisco (2003)

452 M. Hussin, Y.C. Lee, and A.Y. Zomaya

3. Eymann, T., Konig, S., Matros, R.: A Framework for Trust and Reputation in Grid Envi-
ronments. Journal Grid Computing 6(3), 225–237 (2008)

4. Hussin, M., Lee, Y.C., Zomaya, A.Y.: ADREA: A Framework for Adaptive Resource Al-
location in Distributed Computing Systems. In: 11th Int’l Conf. on Parallel and Distributed
Computing, Applications and Technologies (PDCAT), pp. 50–57 (2010)

5. Dabrowski, C.: Reliability in Grid Computing System. Concurrency and Computation:
Practice and Experience 21(8), 927–959 (2009)

6. Xiao, L., Zhu, Y., Ni, L.M., et al.: Incentive-Based Scheduling for Market-Like Computa-
tional Grids. IEEE Transaction on Parallel and Distributed Systems 19(7), 903–913 (2008)

7. Chunlin, L., Layuan, L.: A Utility-based Two Level Market Solution For Optimal Re-
source Allocation In Computational Grid. In: Proc. of the 34th Int’l Conf. on Parallel
Processing (ICPP), Washington (2005)

8. Damiani, E., Vimercati, S.D.C.d., Paraboschi, S., et al.: A Reputation-based Approach for
Choosing Reliable Resources in Peer-to-Peer Networks. In: Proc. of the 9th ACM Conf. on
Computer and Communications Security, Washington, DC, USA, pp. 207–216 (2002)

9. Sonnek, J., Chandra, A., Weissman, J.B.: Adaptive Reputation-based Scheduling on Unre-
liable Distributed Infrastructures. IEEE Transaction on Parallel and Distributed Sys-
tems 18(11), 1551–1564 (2007)

10. Liang, Z., Shi, W.: A reputation-driven scheduler for autonomic and sustainable resource
sharing in Grid computing. Journal Parallel and Distributed Computing 70(2), 111–125
(2010)

11. Hwang, K., Kulkareni, S., Hu, Y.: Cloud Security with Virtualized Defense and Reputa-
tion-based Trust Management. In: 8th IEEE Int’l Conf. on Dependable, Autonomic and
Secure Computing, Chengdu, China, pp. 717–722 (2009)

12. Casavant, T.L., Kuhl, J.G.: A Taxonomy of Scheduling in general-purpose Distributed
Computing Systems. IEEE Transaction on Software Engineering 14(2), 141–154 (1988)

13. Shetty, S., Padala, P., Frank, M.P.: A Survey of Market-based Approaches to Distributed
Computing. University of Florida, Florida (2003)

14. PWA: Parallel workloads archive,
 http://www.cs.huji.ac.il/labs/parallel/workload/logs.html

Y. Xiang et al. (Eds.): ICA3PP 2011, Part I, LNCS 7016, pp. 453–459, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Cooperation-Based Trust Model and Its Application in
Network Security Management

Wu Liu1, Hai-xin Duan1, and Ping Ren2

1 Network Research Center of Tsinghua University Beijing, P.R. China
2 School of Economics & Management, Chongqing Normal University, P.R. China

liuwu@ccert.edu.cn

Abstract. This paper presents a User Cooperation Trust Model (UCTM) which
not only encourages the good behavior liberally, but also punishes those
minatory behaviors decisively. In this model, a malicious user will be kicked
out from the network system and refused from accessing resources of the
network automatically when the user's reputation is lower than some threshold.

Keywords: Trust, Computer Network, Security Management, User Behavior.

1 Introduction

Reputation system [1][2] emerges as a viable solution for evaluating the
trustworthiness of users in some environments such as online e-commerce markets
and communities. The basic idea of reputation system is to have a mechanism for
rating the users’ behaviors on various aspects, a way for collecting these ratings from
other users, and a method for computing the reputation values of the target users. The
reputation system can achieve two benefits: first, to stimulate the users to provide
good quality of services [10]; Second, to restrain bad behaviors which would blemish
the profit of sincere users [11].

In our opinion, a reputation system is mainly composed of two components: one is
the system architecture, which could be centralized or distributed; the other one is the
reputation model which is considered as the core component. In this paper, we
propose a User Cooperation Trust Model (UCTM), which not only encourages the
sincere users to behave well continuously, but also punishes the adversaries
immediately.

2 Related Work

Reputation system has become a hot research issue in the past few years, and there is
a rapidly growing literature on the theory and application of reputation systems.
Josang[2] and Marti[3] have made concrete surveys of reputation systems in the field
of online services and P2P systems. In this section, we introduce some typical
reputation systems.

454 W. Liu, H.-x. Duan, and P. Ren

eBay[4] is a popular auction site that allows sellers to list items for sale, and buyer
to bid for these items. The so-called Feedback Forum on eBay gives buyers and seller
the opportunity to rate each other as negative, neutral or positive (i.e. -1,0,1) after
completion of transactions. eBay collects all the ratings and calculates the reputation
values. The total reputation value of each user is the percentage of positive ratings
compared with the total ratings[2]. Josang[5] developed and evaluated the beta
reputation system for e-commerce markets based on β distribution by modeling
reputation as posterior probability given a sequence of experiences. Xiong[6]
presented the PeerTrust reputaton system for peer-to-peer electronic communities. It
includes a coherent adaptive trust model for quantifying and comparing the
trustworthiness of peers based on the feedback of transactions. EigenTrust[7] is a
global history-based reputation system, which uses a distributed algorithm similar to
PageRank[8] to compute a global reputation value for every user using individual
transaction rating weighted by the reputation value of the recommend users[3].

The limitations of these reputation models include:

(1) They deal with users’ behaviors separately, and do not take the continuance of
their behaviros into consideration. Take the eBay system’s reputation model as
example, the reputation value of a user who provides 100 good services and that
of a user who provides only 1 good service are both 100%, which is unfair to
these users who have continuously provided good services for a long time.

(2) These reputation models do not punish the bad behaviors decisively, which leaves
the opportunities for the adversaries to gain unwarrantable profit by taking bad
behaviors. For example, a user could provide 99 good services at the beginning
and then provide a bad service, which computes his reputation value as 99%, but
other users might not be able to distinguish the difference between 100% and
99%, and accept them both as dependable.

3 User Cooperation Trust Model (UCTM)

In this section, we introduce the proposed reputation model: User Cooperation Trust
Model (UCTM). We would like to give three principles that guide the design of this
model firstly, and then we describe the reputation model in detail.

3.1 Design Principle

 Encouragement Principle: The first goal of UCTM is to encourage the users to
provide good services all the time. If a user provides good services continuously,
his reputation should be higher than that of who provides good services
brokenly.

 Punishment Principle: The second goal of UCTM is to reduce the minatory
behaviors such as providing bad services, in order to protect the profit of sincere
users. If a user performs some minatory behavior, he should be punished
immediately by reducing his reputation rapidly.

 Restriction Principle: combining the above principles with authentication and
access control technology to restrict users action

Cooperation-Based Trust Model and Its Application in Network Security Management 455

3.2 The Reputation Model

In UCTM, reputations are represented in two levels: local and global reputation.
Local reputation represents each individual user’s direct experience of transactions
with other users and the global reputation is the result by aggregating multiple local
reputations from different recommenders.

Let jiR , denotes the local reputation resulting from direct experiences of user i on

user j. For the kth transaction, we define the transaction rating k
jir , as follows:

k
jir , ∈(0,1], if the result of the transaction is good in some extent; And rk

i,j =0, if the

result is bad.

⎩
⎨
⎧

=
Fail

Success
rk

ji 0

(0,1]
, (1)

The local reputation is updated based on the rating of the last transaction as follows.

⎩
⎨
⎧

∈−+
=

= −]1,0()1(

00

,,
1

,

,
, k

ji
k
ji

k
ji

k
ji

ji rrr

r
R

λλ
 (2)

Where λ , a value between 0 and 1, is called the history factor, which reflects the

weight of history transactions in relation with the last one. λ ≈1 means the history
experiences have very high importance and the last transaction has little influence in
the reputation evaluation; λ ≈0 means the history experiences are merely forgotten.

k
jir , is the rating of the kth transaction.

As the proposed reputation model intends to encourage the users to continuously
provide good services, we introduce the concept of Latest Continuous Times of Good
Service (LCTGS) and Permanence Function (PF).

3.2.1 User Behavior Inspiritment Factor in the Reputation Model
Definition 1. Latest Continuous Times of Good Service (LCTGS) is an integer
variable which records the times of good service that a user continuously provides
recently.

⎩
⎨
⎧

+−
=

on transactinat uccess1)1(

on transactinat ailed0
)(

th

th

SnLCTGS

F
nLCTGS (3)

For example, assuming the rating set of A to B is {1, 0.8, 0, 0.9, 0.4, 1},

LCTGS(1)=1，LCTGS(2)=2，LCTGS(3)=0，
LCTGS(4)=1，LCTGS(5)=2，LCTGS(6)=3
If the 7th rating is 0, then LCTGS(7)=0
Else if the 7th rating is greater than 0, then LCTGS(7)=LCTGS(6)+1=3+1=4

456 W. Liu, H.-x. Duan, and P. Ren

Definition 2. Permanence Function(PF) is a monotonic increase function which
maps the user’s Latest Continuous Times of Good Service (LCTGS) to a real value
between [0, 1].

()P F f L C T G S= (4)

The Permanence Function should have the following mathematical properties:

a. f(a)<f(b), whenever 0<a<b.
b. f(0)=0, and lim () 1

x
f x

→∞
=

In this paper, we choose the normalized inverse tangent function as the Permanence
Function:

)(2/

)()(

aatan

aatanaLCTGSatan
PF

+
+−=

π
 (5)

3.2.2 The Reputation Model
From the view of user i, the global reputation of user j can be calculated as follows.

N

RR
PFRT

N

l
jlli

jiji

∑
=+⋅−= 1

,,

,,)1(ωω
(6)

Where N is the number of recommenders. is called the recommendation factor.
If ≈1, then the direct experience between user i and user j is not taken into
consideration, while ≈0 means that user i just believes his own experience. And RF
is the noise restriction factor which will discussed in § 4.2.3

After the Global Reputation jiT , is calculated, user i will decide whether to

transaction with user j based on the trust policy:

⎩
⎨
⎧ ≥

otherwiseDistrust

TTifTrust ji ,
 (7)

Where T is a predefined threshold or the value of the current transaction.

4 Simulation Detail

We implement a simulation framework to emulate a P2P file sharing system. This
simulation framework is developed on the basis of RePast[9], which is a multi-agent
simulation toolkit. The simulation is based on discrete time ticks. At each tick, every
user is supposed to participate in a transaction with another user and rate each other
after the transaction is completed. Although the proposed reputation model is
simulated in a distributed manner in this paper, it could also be implemented in
centralized systems.

Cooperation-Based Trust Model and Its Application in Network Security Management 457

In the simulation, each user can act as one of the three roles in a transaction:
Requester, Provider and Recommender. The Requester asks for services, the Provider
responds to these requests, and the Recommender is responsible for providing
reputation values about both Requester and Provider.

The process of a transaction is depicted in Fig.1.

Step1. The Requester firstly sends QueryService(SERVICE) messages to other
users in the system.

Step2. The Providers that has the requested service respond the request by
replying QueryResult(SERVICE) messages.

Step3. The Requester chooses one of the provides and send
QueryReputation(PROVIDER) messages to the recommenders.

Step4. The Recommenders reply the Provider’s reputation value by sending
ReputationValue(PROVIDER) messages.

Step5. The Requester aggregates the collected reputation values and valuates the
trustworthiness of the Provider.

Step6. If the Provider is considered to be creditable, the Requester sends a
RequestService(SERVICE) message to the Provider. Otherwise, the Requester
chooses another Provider and repeats this process from Step3.

Fig. 1. Transaction Process

458 W. Liu, H.-x. Duan, and P. Ren

Step7, 8, 9. The Provider also estimates the Requester’s trustworthiness by the
same operation as described in Step3, 4, 5.

Step10. If the Requester is considered creditable, the Provider sends a
AcceptServiceRequest(SERVICE) message to the Requester. Otherwise, he rejects
the service request.

Step11, 12. The Requester and Provider complete the transaction with each other.
Step13, 14. After completion of the transaction, the Requester and Provider rate

each other according to the result of the transaction.

5 Simulation Results

The objective of this simulation is to evaluate the effectiveness of the UCTM against
the three bad behaviors (traitorous, malicious and collusive). In this scenario, the
percentages of traitorous, malicious and collusive users vary from 5% to 10%.

Fig. 2 shows the Successful Transaction Percentage and Average Reputation
Value of each type of users with 85% sincere users, 5% traitorous users, 5%
malicious users and 5% collusive users, and Fig. 9 shows the Successful Transaction
Percentage and Average Reputation Value of each type of users with 70% sincere
users, 10% traitorous users, 10% malicious users and 10% collusive users. We could
observe from these figures that the sincere users could participate in more
transactions, get more good services and accumulate higher reputations by providing
good services than the adversary users.

Fig. 2. Successful Transaction Percentage and Average Reputation Value with 10% malicious,
10% traitorous and 10% collusive users

Cooperation-Based Trust Model and Its Application in Network Security Management 459

6 Conclusion

In this paper, we first propose a new reputation model: User Cooperation Trust Model
(UCTM), which not only encourages the user to provide good services continuously,
but also punishes the minatory behaviors immediately. Then we develop a simulation
framework to measure the effectiveness of our model, and the results show that the
proposed reputation model can effectively resist against the common minatory
behaviors.

Acknowledgments. This work is supported by grants from the National Natural
Science Foundation of China (Grant No. 60203044, 90412010) , China 863 Project
#2008BAH37B04 and Chongqing Science & technology Commission Program
(CSTC2011AC2143).

References

1. Resnick, P., Kuwabara, K., Zeckhauser, R., Friedman, E.: Reputation systems.
Communications of the ACM 43(12), 45–48 (2000)

2. Josang, A., Ismail, R., Boyd, C.: A survey of trust and reputation systems for online
service provision. Decision SupportSystem 43(2), 618–644 (2007)

3. Marti, S., Garcia-Molina, H.: Taxonomy of trust: categorizing p2p reputation systems.
Computer Networks 50(4), 472–484 (2006)

4. eBay. The world’s online marketplace, http://www.ebay.com/
5. Josang, A., Ismail, R.: The beta reputation system. In: Proceedings of the 15th Bled

Conference on Electronic Commerce, pp. 324-337 (2002)
6. Xiong, L., Liu, L.: PeerTrust: supporting reputation-based trust for peer-to-peer electronic

communities. IEEE Transactions on Knowledge and Data Engineering 16(7), 843–857
(2004)

7. Kamvar, S.D., Schlosser, M.T., Garcia-Molina, H.: The EigenTrust algorithm for
reputation management in p2p networks. In: Proceedings of the 12th International
Conference on World Wide Web, pp. 640–651. ACM, New York (2003)

8. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: bringing
order to the web, Technical Report, Database Group (1998)

9. Repast Homepage, http://repast.sourceforge.net/
10. Rasmusson, L., Jansson, S.: Simulated social control for secure internet commerce. In:

New Security Paradigms Workshop, pp. 18–26. ACM, New York (1996)
11. Adar, E., Huberman, B.A.: Free riding on gnutella, Technical Report (2000)

Y. Xiang et al. (Eds.): ICA3PP 2011, Part I, LNCS 7016, pp. 460–469, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Performance Evaluation of the Three-Dimensional
Finite-Difference Time-Domain(FDTD) Method on

Fermi Architecture GPUs

Kaixi Hou, Ying Zhao, Jiumei Huang, and Lingjie Zhang

Information Centre, Beijing University of Chemical Technology, Beijing, China
{houkx,zhanglj}@grad.buct.edu.cn,
{zhaoy,huangjm}@mail.buct.edu.cn

Abstract. GPUs excel at solving many parallel problems and hence
dramatically increase the computation performance. In electrodynamics and
many other fields, FDTD method is widely used due to its simplicity, accuracy,
and practicability. In this paper, we applied the FDTD method on the Fermi
Architecture GPUs, the latest product of NVidia, for a better understanding of
Fermi's new features, such as the double precision support and improved
memory hierarchy. Then we make a comparison between the strategies using
the shared memory, the traditional optimization method on GPUs, and using L1
cache. Next, the paper provides insights into the disparity of these two
strategies. We demonstrate that parallel computations only using L1 cache can
reach the similar or even better performance as the traditional optimization
method using the shared memory does when the dataset is not too large or the
frequency of repeated use of the related data is low.

Keywords: Fermi, finite-difference time-domain, shared memory, l1 cache.

1 Introduction

The finite-difference time-domain (FDTD) method, which was introduced by Kane
Yee in his seminal 1966 paper [1], has already become one of the most important
methods to obtain numerical solutions of Maxwell's equations in electromagnetics.
Since about 1990, FDTD computational electromagnetics modeling has gained rapid
popularization and been used successfully in many related fields, such as wireless
communication simulation, radar signature technology, mobile phone safety studies,
etc. [2] Despite many merits of FDTD formulation -not least its simplicity and
accuracy- it is unbearable for most of us that significant computational resources
including both of the CPUs and memory would be tied up with the tedious routine
computation for an undetermined length of time.

Because of the fine discretization of the spatial and temporal domain in FDTD
simulation, a whopping amount of memory resources and time would be consumed
for the iterative computation after that. On the other hand, with the development of
GPU and the introduction of CUDA [4], developers now can enjoy their novel
scientific fruits and the benefits from the massively parallel architectural features of
GPU co-processors [3]. In this context, the parallelization and acceleration of FDTD
using GPU has become a hotspot in recent years.

 Performance Evaluation of the Three-Dimensional FDTD Method 461

Developers barely had time to calm down from the excitement of the promotion of
their studies and scientific researches with GPU computing than NVidia Corporation
released its next-generation GPU products, which use a creative new GPU computing
architecture called "Fermi" [5]. Fermi changes the number of Stream Processors (SP,
they are now called CUDA cores) per Stream Multiprocessors (SM), extends the
cache size and completes the memory hierarchy. Also coupled with the continuous
improvement of the underlying computing units, such as ECC support, more shared
memory, faster context switching, and many more [8], Fermi has great difference
compared with the NVidia’s previous G80 and GT200 GPUs.

When optimized FDTD processes are needed on traditional GPUs, there are two
main impediments: (a) the explicit use of shared memory and (b) the additional effort
involved in design of data arrangement and efficient memory configuration. In this
article, it is assumed that the readers have previously studied FDTD method. Then,
the paper shifts the emphasis to the FDTD parallelization on Fermi and the
performance analysis and comparison.

The rest of this paper is organized as follows. Frist, we briefly introduce the
background of the FDTD method and the corresponding parallelization in section 2.
Section 3 presents the simulation model. Performance analysis and comparison
between two optimization strategies are described in detail in section 4. The last
section is the conclusion of the paper and expectation.

2 Background

2.1 A Brief Overview of the FDTD Method

In this section we will make a brief introduction of the FDTD method based on
3-dimension Maxwell electromagnetic equations to help readers understand the
parallel mechanism to be used in our experiments. For detailed discussions about the
FDTD method, readers should refer to [2] to get detailed information.

Maxwell’s curl equations in linear, isotropic, non-dispersive and lossy materials
are given by ∂∂ 1 1

 (1)

∂∂ 1 1
 (2)

where is known as the electric field, is the magnetic field, µ is the magnetic
permeability, ε is the electrical permittivity.

Due to the independency of and sources -- electric current density and
equivalent magnetic current density -- and the influence from the media, and

 are used to substitute original and with the help of the material
parameters σ and , which represent the electric conductivity and equivalent
magnetic loss respectively. Then six coupled scalar equations in Cartesian coordinates
can be written out, in which the values of and are interdependent causing great

462 K. Hou et al.

trouble for scientists. Yee algorithm and the famous Yee Cell [1] giving a second-
order both in time and space FDTD method to Maxwell’s curl equations, according to
this, the algorithm interleaves the values of and at a discrete point in the grid
known as Yee Cell and at a discrete point in time. The spatial structure of the
electrical and magnetic fields can be compared to an intertwined double mesh [6],
where each component of x-y-z directions is circulated by four different

components and vice versa. So together with the introduction of the ∆ time

difference, the and components can be calculated at staggered time intervals
respectively, for example, we first compute the values at α time and then the

values at a half time interval shift α Δ can be computed consequently.

Along with the notation of , , ∆ , ∆ , ∆ , ∆ and semi-implicit
approximation, we then have, taking the x-component of the electrical field for example,

| , ,
1 , , Δ2 , ,1 , , Δ2 , ,

| , ,
Δ, ,1 , , Δ2 , ,

·
| , , | , ,Δ | , , | , ,Δ | , , (3)

Similar equations about the and components of other directions can be derived in
the same way. The key point, however, is that we can compute at any point of the
space using the known values of and from previous known time period, which
ensures that each value of and does not rely on its neighbors in the same period.

2.2 Parallelization of FDTD Method on Fermi Architecture GPUs

From the discussion above, we will naturally improve our FDTD programs to the
direction of parallelization and thus the computation efficiency would be accelerated,
though not to the same extent. In order to achieve reasonable parallelization and good
performance, one should have a good understanding of Fermi architecture GPUs and
CUDA (Compute Unified Device Architecture) programming model. Due to the fact
that CUDA has been widely used in the parallel computing domain [14], the extent
we introduce this part is limited to enabling readers to gain a better understanding of
some new features that related to our experiment of Fermi architecture.

Despite many improvements of the novel Fermi architecture GPUs, such as ECC
support, more shared memory, faster context switching, and many more [8], we will
focus on the new cache hierarchy. As NVidia realized the significance of both shared
memory and cache, Fermi provides for programmers a new memory hierarchy with
configurable 64kB L1 cache / shared memory, which can be configured as either
larger 48kB shared memory or opposite larger 48kB L1 cache. The following
hierarchical graph explains this architecture.

 Performance Evaluation of the Three-Dimensional FDTD Method 463

Fig. 1. Fermi’s dual warp scheduler and memory hierarchy

As above Figure 1 shows, Fermi adopts dual warp scheduler to enable diverse
warps to be served concurrently. The waiting time when one warp needs to read
memory can be utilized rationally using this mechanism of the model of dual-issue.
By doing so, Fermi can take sufficiently advantages of the hardware.

When memory access happens during the instruction execution, threads have two
ways to offset the memory access latency. The first is the traditional but widespread
method having the data, to be used in the block, stored in the shared memory. The
number of memory access --one of the bottlenecks of the GPU's computing
performance-- can be reduced efficiently along with the introduction of the
intermediate shared memory. But everything has gains and losses; the complexity of
data organization rises correspondingly. On the other hand, according to [4], both of
the L1 cache and shared memory are from the same on-chip memory leading to same
access speed. Furthermore, the adoption of L1 cache rather than shared memory will
not enhance the complexity of the program. In our experiment, two programs based
on shared memory or L1 cache are developed for testing their performance.

3 Method

This section will focus on setting up a simulation in preparation for the following
performance analysis.

3.1 Simulation Model

This experiment will set up a three-dimensional field (128 128 128 2)
where the inside electrical fields and the magnetic fields are changed with time. Ideal
electric conductors are assumed to exist at the boundaries of the region. In order to
stimulate the outgoing radio waves, suppose the electric component is at the
center of the grid changing as differential Gaussian function with time going by.
Electric fields curled around magnetic fields at varying points in time can be obtained
as indicated in Figure 2 of the simulation field.

464 K. Hou et al.

Fig. 2. The simulation field and the excitation source

As the excitation source plays a very important role in effective FDTD simulation
[10], choosing the right source seems significant. The pure Gaussian, the differential
Gaussian and the modulated Gaussian are in common use as the excitation pulses in
simulation experiments [11]. Here, the differential Gaussian pulse was adopted along
the z-axis based on its having no zero-frequency component. The differential
Gaussian pulse function is given by, exp 4

 (4)

where we take value 5.0 10 s of to ensure that all of the positive pulses are
received. In order to generate one pulse as soon as possible, τ related to the wave
length is set to 4.0 10 s.

According to some scientific experiment results, numerical errors might be
detected due to the inappropriate choice of ∆ , ∆ , ∆ , and ∆ . So here is Courant
stability limit as shown in the following inequality (5). Δ 11Δ 1Δ 1Δ

(5)

In the inequality, c is the light speed and we take 0.005m as the value of step length
of the differential process (Δ Δ Δ). Thus the value 9.6289 10 s of Δ
can be computed. For more detailed information about Courant stability limit, please
refer to [2].

3.2 Implementation in CUDA

In the following section, we will extend our simulation model to the CUDA
programming model.

Block Partition of the Model. According to the product instruction, the maximum
number of threads per block in M2050 is 1024. However, we adopt 512 () threads
per block in the experiment based on the consideration of compatibility and divisibility.

 Performan

Fig. 3. (a) The block partition
memory

As Figure 3(a) indicates
Each block has 512 threads
or the magnetic field. So t
electrical field and half the

Using Shared Memory. A
complexity of the code. Ev
optimize our programs, he
following sections, we will
Formula (3), we can find
field or of the magnetic fi
order to reduce memory
corresponding data from th
that threads distributed on
blocks, as shown in Figure

In the figure shown, the
is 272) and it needs to pre-
data from its own location
is used to make sure all the
next step is to compute the
magnetic field.

As said above, we can s
shared memory will increa
However, if only non-Fe
shared memory becomes
performance.

nce Evaluation of the Three-Dimensional FDTD Method

n of the simulation model and (b) Loading areas for the sha

, the three-dimensional space is partitioned to 4096 bloc
 to calculate the corresponding values of the electrical fi

there are 4096×512×2 threads, half of which compute
magnetic field, doing their own job in parallel.

After all, the use of shared memory might increase
ven though we are reluctant to use the shared memory
ere we first adopt the shared memory method and in
l compare this mechanism with that using L1 cache. Fr
out that each component value, whether of the electr
eld, would be used 4 times during the calculation. So
access, each thread is first supposed to load its o
e global memory to the shared memory. It should be no

n the surfaces also need to load data from neighbor
3(b).
dark cube indicates current executing block (the block’
-fetch all the related data to the shared memory includ
and the light-colored areas. Then __syncthread() funct

e needed data have been loaded to the shared memory. T
e all the new values regarding the electrical field and

see clearly that the data partitioning introduced by use
ase the difficulty of design and the complexity of cod
ermi architecture GPU cards are available, the use

the only solution for the optimization of the para

465

ared

cks.
field

the

the
y to
the

rom
rical
o in
own
oted
ring

s id
ding
tion
The
the

e of
des.
e of
allel

466 K. Hou et al.

4 Performance Analysis and Comparison between Using Shared
Memory and L1 Cache

First, we have compared the CPU and GPU implementations of the FDTD with
different iteration times. The running time we measured includes the memory
allocation, CPU computing or kernel execution in GPU, and results saving. We have
conducted the experiments for 10 trials and the average performance is reported in the
following Table 1. The experiment test bed was the HP ProLiant SL390s G7 Server
[9] including 2.4-GHz Intel Xeon Processors E5620 with 24 GB of memory and Tesla
M2050 GPUs [15]. Red Hat Enterprise Linux 6 and NVidia CUDA version 3.2 are
used in the development environment.

Table 1. The average execution time (in seconds) of GPU and CPU approach for different
iterations times

 Iteration times

100 500 1000 5000 10000
Test
bed

CPU 186.482 924.762 1750.825 8896.725 17852.855

GPU 16.936 84.501 170.545 846.036 1698.05

We can see from the table that the GPU approach using the shared memory can

help developers obtain about 10 times speedup.
As mentioned in the previous sections, in order to reduce the total number of the

global memory access, the shared memory is widely used on GPU computation as a
method of traditional optimization strategy for the sake of GPU’s parallel
performance and efficiency. However, in such a case, developers would have some
special problems to address requiring the low-level background knowledge of the
hardware and also some careful consideration of coalesced memory accesses [13].

Fig. 4. Comparison of kernel execution time within 2000 iterations between strategies using
shared memory and L1 cache respectively

 Performan

As can be seen from Fig
L1 cache strategy rather tha
in the front part. However
generate cumulative effect w
lot in FDTD simulation. Fo
will be accumulated to near

When the shared memo
__syncthread() method afte
This results in the synchron
is not associated with the s
to-be-used” data can be ach
proves. However, we still h
cache.

Here are some other exa
about the sum of squares w
When using shared memo
conflicts in shared memor
algorithm for curve-fitting
following figures show, w
advantages when the data si

Fig. 5. The comparison betw
Levenberg-Marquardt

Taking the matrix multi
with the help of the shared
the execution time and at th
algorithm for matrix mul
accesses retrieving and outp
suitable under this scenario
that when the dataset is not
memory may not come with
for using the shared memor
been adjusted to the logarith

nce Evaluation of the Three-Dimensional FDTD Method

gure 4 above, the running time of GPU program adopt
an the shared memory is slightly faster than its counterp
r, we should not belittle the difference, because it wo
when the iteration times are large enough, which happen

or example, the disparity of 3s per iteration from this fig
rly 2 hours after 2000 iterations.
ory is introduced into the implementation, we tend to
er all the data required are loaded into the shared memo
nization delay [7]. On the other hand, the use of L1 ca
synchronization delay. In Fermi, the prefetching of “so
hieved on hardware. That is what the last FDTD exam

have to pay attention to the property of generality using

amples for observing this difference. The first exampl
which can be easily implemented and highly paralleliz
ory strategy, we adopt addition tree to avoid the b
ry. The second one is a parallelized Levenberg-Marqu
g, including lots of matrix related operation. As

we can clearly see that using L1 cache can exhibit
ize is not too large.

een the two strategies of the algorithms of sum of squares

iplication [4] as an example, when the matrices are ti
 memory, the parallel computation can dramatically low

he same time increase the performance. Traditional para
ltiplication requires so many repeated global mem
putting the necessary data that only use of L1 cache is
o. However, from the following Figure 6(a), we can le
t too large, making use of L1 cache rather than the sha
h low performance. As the data volume grows, the bene
ry can manifest themselves. Note that the y-axis scale
hmic.

467

ting
part
ould
ns a
gure

add
ory.

ache
oon-
mple
g L1

e is
zed.
ank
uart
the
its

and

iled
wer
allel

mory
not

earn
ared
efits
has

468 K. Hou et al.

Fig. 6. (a) Using s

The reason why the L
gradually decreasing cache
miss values can be obtained

Then we can get the cur
that the L1 cache hit ratio
when the L1 cache misses
has to reload the needed d
performance of the GPU co

5 Conclusions and F

In this paper, we first an
calculation on Fermi arch
evaluated the performance o
work has shown that the
similar or even better perfo
shared memory does when
of the related data is low.
which will be optimized by
clear the hierarchy of the
stored on the shared mem
developers focus on the lo
storage on the low-level dev

In condition of smaller s
the data to be used into L
shared memory. With the g
more scatteredly in differe
when the data is needed
performance. However, in t
assignment and the size of
determined by programm

hared memory Vs. L1 cache and (b) L1 cache hit rate

1 cache strategy was defeated is probably because
e load hit ratio. The L1 global load hit and L1 global l
d from the NVidia’s compute visual profiler [12].
rve of L1 cache hit ratio from Figure 6(b), which indica

keeps decreasing with the matrix size rising. That me
happen in the tendency of rapidly increasing, the syst

data to the cache pipeline which make an impact on
omputing.

Future Work

nalyzed the precision and accuracy of double-precis
hitecture GPUs when applying FDTD method. Then
of FDTD method on the new Fermi architecture GPU. T
parallel computation only using L1 cache can reach

formance as the traditional optimization method using
the dataset is not too large or the frequency of repeated
In the design and implementation of parallel algorith

y using shared memory, people have to take efforts to m
memory architecture and rearrange the way the data

mory to avoid the bank conflicts. Using L1 cache h
ogic of the algorithm rather than the manner of the d
vices (shared memory, global memory, etc.).
cale of input data sets, the Fermi architecture can pre-fe

L1 cache which can obtain similar access speed with
growth of the data sets, the pre-fetched data are distribu
ent cache lines and hence the probability of cache m
for computing, would increase leading to some loss
the strategy of using shared memory optimization, the d
the loaded data in shared memory will have already b

mers. In this situation, computing programs can

the
load

ates
eans
tem
the

sion
we

This
the
the
use

hms,
make

a is
help
data

etch
the

uted
miss,
s of
data
been
still

 Performance Evaluation of the Three-Dimensional FDTD Method 469

effectively load the data into the high-speed shared memory without worry about the
increase of data sets.

In future research, we are expected to find the specific relation of the scale of
dataset between using L1 cache and the shared memory to reach the possible peak
performance. And then more different algorithms will be introduced to compare the
optimization method between L1 cache and shared memory. After all, we want to
maximize the efficiency of the L1 cache and decrease the complexity of the code.

This paper was supported by the National Basic Research program of China (973
program) (Grant no.2011CB706900).

References

1. Kane, S.Y.: Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s
Equations in Isotropic Media. IEEE Transactions on Antennas and Propagation (1966)

2. Allen, T., Susan, C.H.: Computational Electrodynamics: The Finite-Difference Time-
Domain Method, 3rd edn. Artech House Inc., MA (2005)

3. John N., Ian B., Michael G., Kevin S.: Scalable Parallel Programming with CUDA. Queue,
40–53 (2008)

4. NVIDIA Corporation: NVIDIA CUDA C Programming Guide: Version 4.0 (2011)
5. Next Generation CUDA Architecture, Code Named Fermi,

http://www.nvi-dia.com/object/fermi_architecture.html
6. Mehmet, F.S., Ihab, E-K., David, A.B., Shawn-Yu, L.: A Novel FDTD Application

Featuring Open MP-MPI Hybrid Parallelization. In: Proceedings of International
Conference on Parallel Processing, Montreal, Quebec, Canada, pp. 373–379 (2004)

7. Hong, S., Kim, H.: An analytical model for a GPU architecture with memory-level and
thread-level parallelism awareness. In: Proc. ISCA, pp. 152–163 (2009)

8. NVIDIA Corporation: NVidia Fermi Compute Architecture Whitepaper Version 1.1
9. Hewlett-Packard Development Company: HP ProLiant SL390s G7 2U half width Server

Maintenance and Service Guide
10. Jun, L., Tian, Y., Tong, L.: Analysis of the Electromagnetic Characteristics of Coplanar

Waveguide by FDTD Method. Testing and Diagnosis (2009)
11. Wenhua, Y.: Electromagnetic Simulation Techniques Based on the FDTD Method, pp. 84–

85. John Wiley and Sons Inc., Chichester (2009)
12. NVIDIA Corporation: Compute Visual Profiler User Guide (2010)
13. Phuong Hoai, H., Tsigas, P., Anshus, O.J.: The Synchronization Power of Coalesced

Memory Accesses. IEEE Transactions on Parallel and Distributed System, 939–953 (2010)
14. CUDA Zone, http://www.nvidia.com/object/cuda_home_new.html
15. Tesla GPU Computing Solutions for Data Centers,

http://www.nvidia.com/object/preconfigured-clusters.html

Y. Xiang et al. (Eds.): ICA3PP 2011, Part I, LNCS 7016, pp. 470–480, 2011.
© Springer-Verlag Berlin Heidelberg 2011

The Probability Model of Peer-to-Peer Botnet
Propagation

Yini Wang, Sheng Wen, Wei Zhou, Wanlei Zhou, and Yang Xiang

Deakin University, Victoria 3125, Australia
{yiniwang,wsheng,weiz,wanlei.zhou,yang}@deakin.edu.au

Abstract. Active Peer-to-Peer worms are great threat to the network security
since they can propagate in automated ways and flood the Internet within a very
short duration. Modeling a propagation process can help us to devise effective
strategies against a worm’s spread. This paper presents a study on modeling a
worm’s propagation probability in a P2P overlay network and proposes an
optimized patch strategy for defenders. Firstly, we present a probability matrix
model to construct the propagation of P2P worms. Our model involves three
indispensible aspects for propagation: infected state, vulnerability distribution
and patch strategy. Based on a fully connected graph, our comprehensive model
is highly suited for real world cases like Code Red II. Finally, by inspecting the
propagation procedure, we propose four basic tactics for defense of P2P
botnets. The rationale is exposed by our simulated experiments and the results
show these tactics are of effective and have considerable worth in being applied
in real-world networks

Keywords: Botnet, Worms, Peer-to-Peer, Propagation probability.

1 Introduction

Nowadays, P2P botnets are widely believed to be one of the most serious dangers in
the Internet since it is not easy for them to be detected and taken down. Botnets have
evolved from the Slapper Worm in 2003 which was the first P2P worm, to the Storm
Worm [2] which is the most wide-spread P2P bot currently. Today, P2P worms are
becoming more complicated and sophisticated.

In order to take an effective countermeasure to prevent the propagation of P2P
worms to the greatest extent, we must understand the propagation mechanism. In
recent years, some papers [3-5] have discussed the spreading model and approaches
used by P2P worms. Fan and Xiang [3] used a logic matrix approach to model the
spreading of P2P worms. It presented two different topologies: a simple random graph
topology and a pseudo power law topology. The research studied their impacts on a
P2P worm’s attack performance and analyzed related quarantine strategies for these
two topologies. This paper adopts two constants of logic type (True or 1, False or 0)
as the value of matrix variables. This 0-1 matrix stands for the propagation ability of
nodes, that is whether they can allow the virus to spread or not. In the real word,

 The Probability Model of Peer-to-Peer Botnet Propagation 471

however, according to the definition of Peer-to-Peer networks, two nodes in a P2P
network are absolutely connected even if the probability of the connection’s existence
is very small. Hence, a node always can propagate the virus to other node with a
certain probability in a P2P fashion. Taking Code Red II [6] as an example, the
probability of the virus propagating to the same class A IP address is 3/8; to the same
class A and B IP address is 1/2; and to the random IP address is 1/8. Therefore, the
model in [3] has great limitations and is not in accordance with real virus instances.
Furthermore, in the classical simple epidemic model [7-10], the authors considered
only two statuses of all hosts: susceptible and infectious. However, in the propagation
of P2P worms, the paramount objective is to find an optimized patch strategy to
minimize the scale of a P2P botnet.

Thus, we are motivated to model a probability prototype for P2P worm
propagation. It concerns three key factors: infected state, vulnerability distribution
and patch tactic. To the best of our knowledge, there are few papers refer to the
propagation probabilities of each node in the network. The goal of this research is to
find the most effective defense against P2P botnet. The major contributions of this
paper are as follows. 1) A probability matrix model is proposed to construct a
propagation model of P2P worms; 2) Three key factors common to all worms are
introduced to describe their propagation in this comprehensive model; 3) Based on the
concept of a fully connected graph, our model adopts real propagation probabilities
from Code Red II, which suits real world cases better; 4) The most significant
contribution is that we successfully summarize four basic tactics in response to a
worm outbreak, which are each very promising for the future defense of P2P botnets.

The rest of the paper is organized as follows. In Section 2, we survey related work.
In Section 3, we describe the proposed probability propagation model. Next, we
conduct an analysis and deduce the result for obtaining an optimized patch strategy in
Section 4. Section 5 performs an evaluation. Finally, the conclusion and future work
are present in Section 6.

2 Related Work

In the area of epidemiology, models [5-15] like deterministic epidemic models and
stochastic propagation models have been used to study the propagation process of
worms.

A. Deterministic Epidemic Model

The traditional deterministic epidemic models [7, 8] are Susceptible-Infectious (SI)
models, in the sense that all hosts can have only one of two states: susceptible or
infectious. These classical simple models are based on an assumption: an infected
host can infect any other susceptible nodes with an equal possibility. However, it is no
longer suitable for worm modeling since most worms propagate through the internet
and have different propagating probabilities.

Staniford et al. [9] presented a random constant spread model (RCS) for the Code-
Red I v2 worm. It is essentially the above classical simple epidemic model allowing
for the infection rate to be constant, and without considering the patching cases. On
the basis of the simple epidemic model, Zou et al. [5] proposed a two-factor model

472 Y. Wang et al.

which improves the classical simple models. It introduced human countermeasures in
patching, the removal of hosts from both infectious and susceptible population, and
considered the infectious rate as a variable but not a constant. Additionally, models
from Z. Chen et al. [11] and Y. Wang et al. [12] took into account the time taken to
cause an infection from spreading the virus from one infected host to other hosts.

B. Stochastic Epidemic Model

The stochastic epidemic model is based on the theory of stochastic processes. K.R.
Rohloff et al. [13] presented a stochastic density-dependent Markov jump process
propagation model for RCS (Random constant Scanning) worms, drawn from the
field of epidemiology [14, 15]. Sellke et al. [16] built up a stochastic branching
process model to characterize the propagation of worms using a random scanning
approach. It developed an automatic worm containment tactic for preventing the
worm propagation beyond its early states.

Nevertheless, all existing models are based on a linear structure or a one-to-many
hierarchy. Thus, these modes are not applicable to topology-aware worms and cannot
describe the spreading of P2P worms.

3 Theoretical Propagation Model

In this section we present a probability propagation model used to estimate the
optimized patch strategy.

A. Topology Propagation Matrix (TPM)

The traditional representation of a P2P network employs a directed graph to model the
topology. We propose an alternate representation using an n by n square matrix P
with elements tij to indicate a P2P overlay network consisting of n peers. We consider
that two peers in a P2P network are connected even if the probability of the
connection’s existence is very small, thereby making node i and j immediate
neighbors. In this matrix, each element tij represents a propagation probability of
spreading worms from node i to node j under the condition of node i being infected.
We term such kind of matrix the topology propagation probability matrix (TPM) of
the P2P overlay network, as shown in (1).

]1,0[),(0)(

......

......

......

1

11

∈===
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
= ∑

=
×

n

j
ijijijij

nnnn

ij tjitNNpt

t

t

t

P

(1)

Each row of the TPM represents a propagation probability from one infected peer to
other peers. Each column of the TPM represents a propagation probability from
infected peers to a target peer. We assume one peer cannot propagate the worm to
itself, so the probability of self-propagation is zero.

B. Propagation Probability

Considering the propagation process between two peers under the real condition,
worms could be spread from node i to node j via one or more intermediate nodes. We
assume that worm’s propagation from node i (Ni) to node j (Nj) via and only via k

 The Probability Model of Peer-to-Peer Botnet Propagation 473

intermediate nodes in a network consisting of n peers, which is denoted by tij
(k). It is

defined in (2). Ni bar represents the nodes excluding node Ni. It means we will not
consider the propagation cycles in the spreading path.

njninkttNNNpt
imnm

m
mj

k
im

k

ii
k

j
k

ij ,...,1,,...,1,]2,1[)(
,

1

)1()1()()(==−∈== ∑
≠=

=

−−
∪

(2)

Since Ni self-propagation via k nodes is meaningless in the real world, we let the
value of propagation probability be zero; namely tij

(k) =0 when i=j. We introduce a
function γ to conduct the iterated procedure. It is defined in (3):

PPPPPPPPPP
k

k •===•⋅⋅⋅••=
+

)()(,)()(10

1

γγγγ
(3)

Operation ● is the traditional matrix multiplication. Subsequently, the TPM can be
represented by the following equation when worm’s propagation is via and only via k
intermediate nodes, as in (4).

)(

......

......

......

)(

)(

)(
11

)(P

t

t

t

P k

nn

k
nn

k
ij

k

k γ=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

×

(4)

It is possible that there may be more than one path for worms to spread from one peer
to another peer. So we assume that worm’s propagation from node i (Ni) to node j (Nj)
is at most via k intermediate nodes and is denoted by tij

(k)’. It is defined in (5):

njninkttttt
k

m

m
ijij

k
ij

k
ij

k
ij ,...,1,,...,1,]2,1[

2

)()1()()'1()'(==−∈+=+= ∑
=

− (5)

C. Three Key Factors

In a P2P overlay network, there are three significant factors for a worm’s propagation:
infected state, vulnerability distribution and patch strategy. For the infected state, this
represents if the peer has been infected or not. Vulnerability distribution reflects the
situation of vulnerable peers in the topology. Patch strategy provides a cure approach
for infected peers. After being patched, infected peers cannot be infected again.

C.1 Infected State Probability Vector (S)

An initial infected state probability vector (S) can be defined as in (6). Here, one
represents an infectious peer that can propagate worms with a probability of one. Zero
means a peer is healthy without the ability to propagate the worms.

[] niorsssssS i
T

ni1,10,,...,...2,1 ===

(6)

We firstly assume every peer in the TPM is vulnerable. Therefore, in the propagation
process, each intermediate node can be infected and become infectious so that the
infected state in the TPM is variable. After the worm propagates via k nodes, an
update S can be defined as shown in (7):

[][]),...,1(0,)&()1()1()1()(nisPSSS i

T
k

L
kTkk =≥•= −−− γ

(7)

474 Y. Wang et al.

&L indicates a new logic AND operation of a column vector A and a matrix B, called
Left Logic AND. The result of A &L B is a new logic matrix of the same dimension as
B. Each element in the new matrix is the result of the product of the corresponding
elements ai and bij from each column of matrix B. It is defined in (8):

nnnnnnn

iji

n

nnnn

ij

n

L

baba

ba

baba

b

b

b

a

a

BA

××
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⋅⋅
⋅

⋅⋅
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

...

......

...

......

......

......

...&

1

11111111
(8)

In real-world worms it is observed that an infected peer can propagate worms and a
vulnerable peer can also be infected to become a new infectious node for future
propagation with a certain probability. Therefore, except for the initial state of S, each
element of any updated S is the probability denoted by a real value, which is not
simply zero or one. Consequently, the TPM can be represented by the following
equation when worm’s propagation is via and only via k intermediate nodes, as in (9).
Ps

(k) represents the infected scale of the network under the infected state (S) after the
worm spread via k intermediate nodes.

)&()1()1()(−−= k
sL

kk
s PSP γ (9)

C.2 Vulnerable Distribution Vector (V)
In real-world conditions, the vulnerability of a peer is an objective fact. Therefore, a
healthy peer without any vulnerability cannot become infectious in the worm’s
propagation process. On the basis of this fact, we need to consider the vulnerability
distribution in the TPM. A vulnerable distribution vector (V) is defined in (10). For an
element in V, the value of one represents that a peer is vulnerable. Zero means that the
peer is healthy without any vulnerability.

[] niorvvvvvV i
T

ni1,10,,...,...2,1 === (10)

After considering the vulnerability distribution vector, the TPM can be represented by
the following equation when the worm propagates via and only via k intermediate
nodes, as in (11). Psv

(k) represents the infected scale of the network under the
vulnerable distribution (V) after the worm spread via k intermediate nodes.

)&()1()(T
R

k
s

k
sv VPP −= γ (11)

We define &R to indicate a new logic AND operation of a column vector A and a
matrix B, called Right Logic AND, which is different from Left Logic AND. The result
of A &R B is a new logic matrix of the same dimension as B. Each element in the new
matrix is the result of the product of the corresponding elements aj and bij from each
row of matrix B. It is defined in (12):

[]

nn

nnnn

jij

nn

n

nnnn

ijR

abab

ab

abab

aa

b

b

b

AB

×
× ⎥

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⋅⋅
⋅

⋅⋅
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

...

......

...

...

......

......

......

&

11

1111

1

11
(12)

 The Probability Model of Peer-to-Peer Botnet Propagation 475

C.3 Patch Strategy Vector (Q)

An infected peer can be cured to become a healthy node, which cannot spread worms
to other peers again. Therefore, we need to remove these nodes from the propagation
process in time. We define a patch vector Q in (13). For each element in Q, the value
of one represents that a peer has been patched and become to a healthy node. A value
of zero indicates that a peer is still vulnerable.

[] niorqqqqqQ i
T

ni1,10,,...,...2,1 === (13)

After considering the patch strategy vector, the TPM can be represented by the
following equation when the worm propagates via and only via k intermediate nodes,
as in (14). We define & to indicate a new logic AND operation between two elements.
The definition for & operation is shown in Table 1.

))&(&()1()(TT
R

k
sv

k
svq QVPP −= γ (14)

Table 1. Truth table for new logic and operation

VT QT VT&QT
1 1 0
0 1 0
1 0 1
0 0 0

4 Propagation Ability and Quarantine Ability

In real world scenarios, attackers expect to control a significant proportion of the P2P
overlay network to enable the worm’s propagation. The topology’s propagation
ability (PA) is related to the number of peers that the worm can propagate to with high
probability. In consideration of more than one path for the propagating worm, we
adopt a modified P’svq to represent a sum of probabilities for the worm’s propagation
between two peers with at most k intermediate nodes. It is defined in (15):

∑
−

=

=
2

1

)('
k

i

i
svqsvq PP

(15)

In order to evaluate the PA of a topology, we assume an ability threshold δ to estimate
each peer’s PA. If an element t’ij of P’svq is greater than or equal to δ, then the value of
PA(t’ij) is equal to one, or else it is equal to zero. The number of times PA is equal to
one is defined as x in (16). Consequently, a large value of x indicates a strong PA of
the topology.

∑∑
= =

=
|

1

||

1

'
n

i

n

j
ijtx

(16)

476 Y. Wang et al.

Table 2. PA and QA in 90% vulnerability distribution (V=90%)

 Q1(10%) Q2(20%) Q3(10%) Q4(20%)
S1(10%) (12840,147160) (11560,148440) (12880,147120) (11640,148360)
S2(20%) (25840,134160) (22690,137040) (25920,134080) (22960,137040)
S3(10%) (12920,147080) (11440,148560) (12960,147040) (11520,148480)

S4(20%) (26080,133920) (23120,136880) (26080,133920) (22880,137120)

Table 3. PA and QA in 90% vulnerability distribution (V=70%)

 Q1(10%) Q2(20%) Q3(10%) Q4(20%)

S1(10%) (10080,149920) (9010,150990) (10160,149840) (9040,150960)

S2(20%) (20080,139920) (17520,142480) (19680,140320) (18640,141360)

S3(10%) (10120,149880) (9170,150830) (10160,149840) (8800,151200)

S4(20%) (20140,139860) (17680,142320) (20240,139760) (17760,142240)

On the contrary, defenders focus on the quarantine ability (QA) of a P2P overlay

network. The QA is related to the number of peers with low infected probability in the
topology. Likewise to the definition of the TPM, we define R to represent an infected
probability matrix, as in (17).

njnink

t

tt

Np

NpNNp
NNpr

r

r

r

R n

k

k
kj

n

k

k
ik

k
ij

k
j

k
i

k
i

k
jk

j
k

i
k

ij
k

nn

k
ij

k

k

,...,1,,...,1,]2,1[

)(

)()(
)|(

......

......

......

1

)(

1

)()(

)(

)()()(

)()()(

)(

)(

)(
11

)(

==−∈

===
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
∑

∑

=

=
(17)

When considering more than one path for a single peer being infected, we adopt a
modified infected probability matrix R’ to represent the sum of infected probabilities.
It is defined in (18):

∑
−

=

=
2

1

)('
k

i

iRR

(18)

In order to evaluate the QA of a topology, we assume an ability threshold θ to
distinguish each peer’s QA. If an element rij of R’ is greater than or equal to θ, then the
value of QA(rij) is equal to one, or else it is equal to zero. The number of times QA is
equal to zero is defined as y in (19). Therefore, a large value of y indicates a strong
QA of a topology.

∑∑
= =

−=
n

i

n

j
ijrny

1 1

2

(19)

For attackers, a reasonable distribution strategy for infectious peers results in a high
PA of a P2P network. Similarly, an effective patch strategy for defenders will lead to
a high QA of a P2P network. Therefore, the paramount objective of this paper is to

 The Probability Model of Peer-to-Peer Botnet Propagation 477

discover patch strategies that can significantly suppress the propagation function of a
P2P botnet.

Table 4. PA and QA in different percentage of patching nodes (V=90%)

 Q1(10%) Q2(20%) Q3(30%) Q4(40%) Q5(50%) Q6(60%)
S1

(10%)
(12840,
147160)

(11560,
148440)

(7760,
152240)

(6840,
153160)

(5640,
154360)

(4640,
155300)

S2

(20%)
(25840,
134160)

(22690,
137040)

(15680,
144320)

(13680,
146320)

(11520,
148480)

(9040,
150960)

5 Simulation Experiments

Our implementation is in MATLAB. It assumes there are a total of 10,000 peers
(computers) belonging to a P2P overlay network under consideration. Therefore, the
TPM is represented by a 10,000 by 10,000 square matrix P and its initial state is
defined according to the propagation probability of Code Red II. We divide matrix P
into 10,000 partitioned matrixes AijBxy and each of them is a 100 by 100 square
matrix. Matrix P and AijBxy are shown as follows.

100100

100,1001,100

100,111

100100

100,1001,100

100,111

...

......

...

...

......

...

××
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
BABA

A

BABA

BA

BABA

BA

BABA

P

ijij

ij

ijij

xyij

xyxy

xyij

xyxy

We define p(AijBxy) to represent the propagation probability from one peer with A
class IP i and B class IP x to another peer with A class IP j and B class IP y. Thus, if
i=j and x=y, then p(AijBxy)=1/2; if i=j and x≠y, then p(AijBxy)=3/8; or else,
p(AijBxy)=1/8. We assume the P2P overlay network consists of n peers, and the
connection probability of two random nodes is 1/n. Therefore, according to the
Multiplication Rule, the TPM’s propagation probability is n-k·γk(P) when the worm’s
propagation is at most via k intermediate nodes.

In our simulation experiment, we analyze the impact of changing the matrix
dimensionality used in the experiments and find that a larger dimension will not
produce significantly different results. In order to show these results clearly, we
choose reasonable network sizes (5000 nodes) and examine them under different
scenarios. There are two scenarios for the vulnerability distribution: 90% and 70% of
the total peers respectively. We also arrange two scenarios for in infectious nodes
(10% and 20%), which follow a Uniform or Gaussian distribution. Additionally,
patched nodes are also grouped in 10% and 20%, which similarly follow a Uniform or
Gaussian distribution.

There are 5 iterations of the TPM. We show the results from these experiments in
Table 2, Table 3 and Table 4. Each item in the tables represents the pair of PA and QA
under a Sx and Qx (x∈ [1, 4]).

478 Y. Wang et al.

1) Infectious Node Rate VS. Patching Node Rate
Based on the results from Table 2 and Table 3, firstly we focus on S and Q under the
same distribution. The blocks include (S1, S2; Q1, Q2), (S1, S2; Q3, Q4), (S3, S4; Q1, Q2)
and (S3, S4; Q3, Q4). We find that the best strategy for both S and Q in each block are
in Sx 20% (x=2,4) and Qy 10% (y=1,3). Even though Q targets a large rate of patching,
this strategy is helpless to improve QA. This indicates that the attacking effect is more
sensitive to the percentage of infectious nodes than defending effect.

20% 30% 40% 50% 60%
-8000

-6000

-4000

-2000

0

2000

4000

6000

8000

Patching Rate

D
iff

er
en

ce
s

Differences of PA and QA

Differences of PA (S=10%)

Differences of DA (S=10%)
Differences of PA (S=20%)

Differences of DA (S=20%)

the most economic
patching rate

Fig. 1. Differences of PA and QA

2) Uniform Distribution VS. Gaussian Distribution
Based on the results from Table 2 and Table 3, secondly we focus on S and Q under
the same infectious nodes rate and patching nodes rate. The blocks include (S1, S3; Q1,
Q3), (S2, S4; Q2, Q4), (S1, S3; Q2, Q4) and (S2, S4; Q1, Q3). We find that all th strategies
are similar, which indicates that the distribution of nodes has less impact on PA and
QA.

3) Vulnerability Rate in the topology
Based on the results from Table 2 and Table 3, thirdly we focus on the impact on PA
and QA with an independent V. Each item in Table 2 outperforms the ones in Table 3,
which leads us to a conclusion that a greater number of vulnerable nodes in the
topology will benefit attackers (PAxy (V=90%) > PAxy (V=70%) & QAxy(V=90%) >
QAxy (V=70%), x,y∈ [1, 4]).

4) Patching Rate
Fourthly, based on the results from Table 4 we focus on the most economic patching
rate. As long as the patching rate increases, PA increases monotonously while QA
decreases gradually. However, the larger the patching rate, the greater the economic
impact will be in real world. We compare each pair of patching rates and identify
their differences in Fig.1. We clearly see that the most economic patching rate is 30%,
because any larger rate can only bring a limited increase to QA. We believe this
conclusion is valuable, particularly with respect to economical and industrial benefits.

 The Probability Model of Peer-to-Peer Botnet Propagation 479

6 Conclusion and Future Work

This paper presents a probability model of Peer-to-Peer botnet propagation for finding
an optimized patch strategy so that defenders can prevent the bots spreading in a
reasonable and economic approach. Firstly, we present a probability matrix model to
construct the propagation model of P2P worms. This comprehensive model involves
three indispensible aspects for propagation. Based on a fully connected graph, our
model suits real world cases like Code Red II. The most significant contribution is
that we successfully summarize four basic strategies in response to a worm outbreak,
which are each very promising for the future defense of P2P botnet.

There are some limitations in our paper. Firstly, we did not use a real data set to
model the propagation procedure and provide a more accurate patching rate for
defense attackers effectively. Secondly, there are some other parameters that should
be involved such as the impact of the number of nodes in a topology. In the future, we
plan to model our propagation probability theory by using a real data set and provide
a more comprehensive proof for our patching strategy.

References

1. Arce, I., Levy, E.: An analysis of the slapper worm. IEEE Security & Privacy Magazine 1,
82–87 (2003)

2. Holz, T., Steiner, M., Dahl, F., Biersack, E., Freiling, F.: Measurement and mitigation of
peer-to-peer-based botnets: a case study on storm worm. In: The 1st Usenix Workshop on
Large-Scale Exploits and Emergent Threats, San Francisco, USA, pp. 1–9 (April 2008)

3. Fan, X., Xiang, Y.: Modeling the propagation of Peer-to-Peer worms. Future Gener.
Comp. Sy. 26, 1433 (2010)

4. Yu, W.: Analyze the worm-based attack in large scale P2P networks. In: 8th IEEE
International Symposium on High Assurance Systems Engineering, pp. 308–309. IEEE
Press, Tampa (2004)

5. Zou, C.C., Gong, W., Towsley, D.: Code Red worm propagation modeling and analysis.
In: 9th ACM Conference on Computer and Communications Security, Washington, pp.
138–147 (2002)

6. CAIDA Analysis of Code-Red,
http://www.caida.org/research/security/code-red/

7. Bailey, N.T.: The Mathematical Theory of Infectious Diseases and its Applications. Hafner
Press, New York (1975)

8. Frauenthal, J.C.: Mathematical Modeling in Epidemiology. Springer, New York (1980)
9. Staniford, S., Paxson, V., Weaver, N.: How to own the internet in your spare time. In: The

11th USENIX Security Symposium, San Francisco, pp. 149–167. ACM, CA (2002)
10. Andersson, H., Britton, T.: Stochastic Epidemic Models and their Statistical Analysis.

Springer, New York (2000)
11. Chen, Z., Gao, L., Kwiat, K.: Modeling the spread of active worms. In: IEEE INFOCOM,

pp. 1890–1900 (2003)
12. Wang, Y., Wang, C.: Modeling the effects of timing parameters on virus propagation. In:

WORM 2003, Washington, DC, USA, pp. 61–66 (2003)

480 Y. Wang et al.

13. Rohloff, K., Basar, T.: Stochastic behavior of random constant scanning worms. In: The
14th ICCCN, San Diego, CA, USA, pp. 339–344 (2005)

14. Daley, D.J., Gani, J.: Epidemic Modelling: An Introduction. Cambridge University Press,
Cambridge (1999)

15. Andersson, H., Britton, T.: Stochastic Epidemic Models and their Statistical Analysis.
Springer, New York (2000)

16. Sellke, S., Shroff, N.B., Bagchi, S.: Modeling and automated containment of worms. In:
DSN 2005, pp. 528–537 (2005)

A Parallelism Extended Approach for the

Enumeration of Orthogonal Arrays

Hien Phan1, Ben Soh1, and Man Nguyen2

1 Department of Computer Science and Computer Engineering,
LaTrobe University, Australia

2 Faculty of Computer Science and Engineering, University of Technology,
Ho Chi Minh City, Vietnam

Abstract. Orthogonal Array plays an important role in Design of Ex-
periment and software testing. The most challenging aspect of Orthogo-
nal array is the enumeration problem, that is for given parameter sets, we
want to count exactly how many isomorphism classes exist. Enumeration
of orthogonal array usually requires huge effort needed to complete its
computation. There are several algorithms that have been proposed for
enumeration of orthogonal array, however, there exists ineffective paral-
lelism approach for handling this problem.

In this paper, we present a step-by-step parallelism extending ap-
proach for enumeration of orthogonal array. The experiments show that
this proposed approach could get an relative speedup efficiency of up to
128 processes and a great dynamic load balancing between computing
processes.

1 Introduction

Orthogonal array (OA) plays an important role in the field of Design of statistic
experiment. An OA of strength t, OA(N ; r1 · r2 · · · rn; t), is an N × n array
whose ith column contains ri different factor-levels so that, for any t columns,
every t -tuple of levels appear equally often in the array. Suppose with all n ri

factors, there are m si distinct factor sizes s1 > s2 > · · · > sm and exactly ai

factors with si levels, we usually use a reduced symbol OA(N ; sa1
1 · sa2

2 · · · sam
m ; t)

for representing an OA. The collection of the number of rows N , factor-levels
sa1
1 · sa2

2 · · · sam
m and strength t is the parameter set or design type for an OA.

Two orthogonal arrays are said to be isomorphic if one can be obtained from
the other by a sequence of row permutations, column permutations and permu-
tations of symbols in each column. We call the collection of all arrays that can
be obtained from a parent array by permuting rows, columns, or factor-levels is
an isomorphism class.

The most challenging aspect of Orthogonal array is the enumeration problem,
that is for given parameter sets, we want to count exactly how many isomor-
phism classes exist. In other words, enumeration of orthogonal arrays (EOA)
of a parameter set is to generate exactly an array from every equivalent class
defined by the equivalence relation isomorphism.

Y. Xiang et al. (Eds.): ICA3PP 2011, Part I, LNCS 7016, pp. 481–493, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

482 H. Phan, B. Soh, and M. Nguyen

One of the major characteristics of enumeration of orthogonal array is the
huge effort needed to complete its computation. Therefore, a parallel method
for solving EOA could allow us to reduce the execution time significantly and
generate new results using the power of high performance computing system.
Several serial algorithms have been proposed for enumeration of orthogonal ar-
ray of strength t, however there exists ineffective parallelism approach to this
problem.

In this paper we propose a step-by-step parallelism approach for enumera-
tion of orthogonal array based on an enumeration algorithm named Minimum
Complete Set (MCS) proposed on [SEN10]. Among several serial algorithms for
EOA, we choose MSC algorithm as a foundation algorithm to compute for EOA
in parallel as it is the first proposed algorithm could address general OAs of
given strength, run-size, and level-numbers of the factors so far.

1.1 Major Contribution

The parallel algorithm presented in this paper efficiently handles the computing-
intensive nature of the EOA problem and has an efficient speedup even when
hundreds of processes are used to run the algorithm. The proposed parallel
algorithm is a parallelization of the efficient and general method of enumerating
of orthogonal array of Eric, Pieter and Man Nguyen [SEN10]. We proposed an
idea for reusing all lex-least orthogonal arrays with size of k columns to extend
and enumerate concurrently all lex-least orthogonal arrays with size of k + 1
columns. In other words, all arrays of a new column will be enumerated from
all generated arrays of the previous columns, not from scratch. This saves the
cost for regenerating old arrays of previous size, especially when the number of
previous columns is huge. Moreover, with using previous arrays as inputs, some
efficient data parallelism strategy for each extending step could be applied and
get significant speedup results.

To enable efficient and scalable parallelization, a dynamic load balancing
method is proposed. In particular, a dynamic or runtime work-sharing method
[DOS+07] in combination with a stack splitting procedure [FM87] guarantees a
minimal idle time of each process. As a result, we achieve a significant dynamic
load balancing where execution time is always nearly identical between processes
take part in computation.

With some specific parameter sets, enumeration of OA could generate a lot
of outputs. It is highly desirable to have an efficient way for parallelism writing
those outputs to storage systems. A minor contribution of this paper is that we
propose to use MPI IO for allowing many processes writing concurrently output
matrices to a single file.

The rest of this article is organized as follows: Section 2 presents an overview
about the MCS algorithm for enumeration of orthogonal array. In Section 3,
a step-by-step extending parallelism approach for enumeration of orthogonal
array will be proposed. Detail of this implementation will be given on Section
4. Results of the experiment will be presented on section 5. And finally, some
conclusion will be discussed in Section 6.

A Parallelism Extended Approach for the Enumeration of Orthogonal Arrays 483

2 Background

There are some serial algorithms for EOA but most of them are just applied
for some special parameter sets, such as OAs of strength 2 [TGM00]. In 2010
MSC algorithm which is proposed by Eric, Pieter and Man [SEN10] is the first
EOA algorithm that could handle general OAs of given strength, run-size, and
level-numbers of the factors. The use of generalized parameter is the key reason
why we use MSC algorithm as a foundation algorithm to parallel the computing
for EOA. A detailed description of the MSC algorithm can be found on [SEN10].
For completeness, we briefly describe the MSC algorithm in some detail below
before specifying how it can be turned into an efficient parallelism approach.

2.1 Serial MCS Algorithm

The MSC algorithm generates LMC matrices as representatives for all noniso-
morphism class. We first present the definition of LMC matric:

LMC Matrix. Lexicographically less comparison, a comparison metric of two
arbitrary orthogonal arrays with the same specific design type, has been firstly
proposed in [Ngu05].

For two vectors u and v of length L, we say u is lexicographically less than v,
written u < v, if there exists an index j = 1, 2, ..., L− 1 such that u[i] = v[i] for
all 1 ≤ i ≤ j and u[j + 1] < v[j + 1].

Let F = [c1, ..., cd], F
′

= [c
′
1, ..., c

′
d] be any pair of fractions where ci, c

′
i are

columns. We say F is column-lexicographically less than F
′
, written F < F

′
,

if and only if there exists an index j ∈ {1, ..., d − 1} such that ci = c
′
i for all

1 ≤ i ≤ j and cj+1 < c
′
j+1 lexicographically.

The smallest matrix of an isomorphic class which corespondents to a specific
design type will be called lexicographically minimum in column (LMC)matrix
and it is the only representative of this isomorphic class.

Backtracking for Finding LMC Matrix. The serial MCS algorithm uses
backtrack search strategy to construct new orthogonal arrays and check whether
every new generated orthogonal array is LMC. In particular, it will generate
and extend column by column until it reaches the target column size S. We
summarize the outline of the MCS algorithm as below:

On the outline above, X = [x1, x2, ..., xn] is an orthogonal array with n
columns. The MCS algorithm uses the backtracking approach to put new values
for cells on the appended column. After appending completely a new column
to create a new orthogonal array, it will check whether the new one is LMC
matrix. If not, it will backtrack to search for another new orthogonal array. If
yes, it will call MCS algorithm recursively to continue appending new columns
until it reaches the target column size S.

484 H. Phan, B. Soh, and M. Nguyen

Input: An orthogonal array X = [x1, x2, ..., xn], n
if IsComplete(X) then

process X
end if
if IsExtendible(X) then

for all extension X ′ = [x1, x2, ..., xn, x′] of X do
if IsNewOA(X ′) then

if IsLexLeast(X ′) then
MCS(X ′, n + 1)

end if
end if

end for
end if

Algorithm 1. MCS algorithm

2.2 Two Key Properties of Serial MCS Algorithm

We are interested in two important properties of MCS algorithm that can help
us to turn the algorithm to a parallelism approach. Firstly, the key idea of MCS
algorithm is it just remains arrays only if they are of a LMC form that can
be tested locally and comprehensively. The isomorphism testing performed on
single arrays has the advantage that it permits a distribution of the calculation
over several processors. Secondly, an important property of the MCS algorithm
is that an LMC array of column size k is guaranteed to be an extension of
exactly one preceding LMC array of column size k − 1. The outcome of this
characteristic is all LMC arrays of column size k can be generated by extending
LMC arrays of column size k − 1.

3 A Step by Step Extending Parallelism Approach for
EOA

Note that the MCS algorithm allows for generation from scratch when called
with the root column parameter n = t, extending column by column until reach-
ing the target column of size S. Such characteristic is an issue that need to be
taken into account. Suppose that we want to generate for the next level S + 1
after finishing generation at level S, in this case we must restart the procedure
again from scratch and regenerate temporary levels. Obviously, this is a waste
of time and cost since we do not reuse any result in the previous step. Looking
back two important properties of MCS algorithm above, we could see that all
LMC arrays of column size S +1 can be generated by extending LMC arrays of
column size S.

That is a great motivation for us to propose a novel step-by-step parallelism
approach forEOA based on the above important characteristic of MCS algo-
rithm. The main idea is that we divide the generation of LMC arrays in sepa-
rated small steps. At each step, we just extend concurrently all LMC matrices

A Parallelism Extended Approach for the Enumeration of Orthogonal Arrays 485

of column size k from all LMC matrices of column size k−1. All LMC matrices
of column size k will be stored and reused for the next step.

Assume that we want to enumerate all LMC matrices of OA(N ; sa1s
1 · sa2s

2 · · ·
s

ams
m ; t) with having S columns: S = a1s + a2s + ... + ams . In particular, our pro-

posed method for enumeration of orthogonal array of strength t could be described
as follows:

1. At the initial stage, using the original serial algorithm MCS to generate
all LMC matrices OA(N ; sa10

1 · s
a20
2 · · · s

am0
m ; t) of an initial column size

k0 = a10 + a20 + ... + am0

2. The data parallelism strategy is applied to generate all LMC matrices of
OA(N ; sa1

1 · sa2
2 · · · sam+1

m ; t) with column size k = a1 + a2 + ... + am + 1 from
all LMC matrices of OA(N ; sa1

1 · sa2
2 · · · sam

m ; t) with column size k − 1 =
a1 + a2 + ... + am. All results will be stored and reused in the next step.

3. The step-by-step extending phases continue until the all the LMC matrices of
the target column size S are reached or there are no LMC matrix generated
at an arbitrary column size kend (kend < S).

With the proposed approach, we have some advantages. Most importantly, with
the reusing of LMC matrices, all LMC arrays of each level will be generated
precisely one time and all new LMC arrays of a new size will be enumerated
from all LMC generated arrays of the previous column size, not from scratch.
It saves the cost for regenerating old objects of previous size, especially when
number of column size S is huge. Moreover, reusing all LMC arrays of previous
column size as inputs gives us a great chance to apply proper data parallelism
strategies and could get an efficient speedup in each extending step (see more
detail in Section 5).

4 Parallel Computing for Each Small Extending Step

In each step of our proposed approach, we generate concurrently all LMC arrays
of column size k from all LMC arrays of size k−1. The parallelism computing will
be applied in such every small step. We discuss about the parallel implementation
of each step in this section.

Our previous parallel implementation have used a simple and inefficient
method for dynamic load balancing and hence, the algorithm only achieves
speedup with 8 processes in the best case [PSN10]. However, in this paper we
propose a better dynamic load balancing scheme.

4.1 Drawback of Previous Work with Master-Slave Load Balancing
Method

The input of every extending phase is all LMC arrays of size k - 1. We use
a process rank 0 as a work manager or a master for reading these inputs from

486 H. Phan, B. Soh, and M. Nguyen

a single file and after that work manager will deliver matrix inputs to other
processes for computing outputs. The unbalanced workload of individual pro-
cesses will often lead to the unbalanced termination times of the processes. In
our previous work [PSN10] we use a simple dynamic load balancing method
named master-slave to balance the workload between computing processes. In
particular, master sends an input matrix to every other process named worker
each time. Worker process after finishing of extending for an input will request
the master process for a new input. If master still has available inputs, it will
send a new input for request worker. This request-respond process continues
until master has no input and hence, the parallelism computing will terminate.
However since time consuming to extend completely each input is highly differ-
ent, we just could get a balanced load balancing when using up to 8 processes.
To improve the balance between computing worker, we need to break the com-
putation for an input matrix into smaller pieces and use an proper scheme to
deliver these smaller pieces to other processes. Hence, a dynamic work-sharing
method [DOS+07] in combination with a stack splitting procedure [FM87] has
been implemented to guarantee a balanced workload between processes.

4.2 Convert MCS Algorithm by Using Stack Data Structure

In our new approach, each process executes the computation for an input matrix
at a time by calling MCS algorithm for that input. To break the computation for
an input matrix into smaller pieces, we have to convert the MCS algorithm to a
new form that can easily break the computation for an input matrix into smaller
tasks. Since MCS algorithm is a backtracking search algorithm, the conventional
approach is converting the MCS algorithm into backtracking search form with
stack data structure. With input in a form of matrix, the MCS algorithm ap-
pends a new column for that input. It puts in succession new values for each
cell, from the first cell to the last cell of the new column. Since each cell could
get more than one possible value, the MCS algorithm continues searching with
the first possible value and the rest of possible values of current cell is stored
properly by using the stack data structure. In particular, the constituent values
from the first cell to that possible value of current cell construct a new candidate
part of column. We push this new candidate part into the local stack of the
process. When backtracking, the candidate path on top of the stack is popped
and it becomes data for the search for the next cell. This work continues until
the stack is empty.

By using a local stack for storing the temporal candidate parts of the new
column on each process, we could break the computing into smaller tasks by
splitting the current stack into two different smaller stacks. In particular, after
a certain of time, for instance d seconds, we might cut off c candidate paths of
the stack, group them as a work chunk. We send this work chunk to another idle
process and after that, continue the computing with the rest of the stack. This
idea will be explained clearly in next subsection below.

A Parallelism Extended Approach for the Enumeration of Orthogonal Arrays 487

Input: An orthogonal array X = [x1, x2, ..., xn], n

repeat
if Have been computing over d seconds AND size of stack ≥ 2*c then

{c is chunk size}
Cut off c candidate paths at the bottom of the current stack and group them as
a work chunk
Send the work chunk to the work manager process

else
Pop a candidate path on the top of the stack
Use this candidate path as input to generate possible values for next cell
if there are several possible values for next cell then

for all possible value of the next cell - except the first value do
Append every possible value of the next cell to the current candidate path
to form a new candidate path
Push the new candidate path to the stack

end for
Continue process with the first value of next cell
if reaching the last cell to form a new OA X ′ then

if IsLexLeast(X ′) then
write X’ to output file

end if
end if

end if
end if

until the stack is empty ;

Algorithm 2. MCS algorithm with stack data structure

4.3 Work Sharing Method for Dynamic Load Balancing

To get a better dynamic load balancing between computing processes, we need a
proper method for redistributing the workload. In this paper we use a dynamic
load balancing named work-sharing method [DOS+07] in combination with a
stack splitting procedure [FM87] to guarantee a minimal idle time of each pro-
cessor.

Work sharing method is similar to master-slave method in that they use a
work manager process to service work releases and work requests, and to detect
termination. However, in contrast to master-slave method in which manager
just sends every input matrix at the time to balance the workload, work sharing
method balances the workload using a globally shared work queue, which is
contained and managed by the work manager. This shared work queue contains
unexplored candidate paths. Work in the shared queue is grouped into units
of transferable work called chunks and the chunk size, c, parameter defines the
number of candidate paths contained within a chunk.

In our implementation of work sharing method, for each process, after every
fixed d duration time, if the local stack grows to be larger than two chunks, it will
send a chunk of its local work to the work manager, allowing the surplus work
to be performed by other processes that have become idle. Worker manager
receives that chunk and store it into the shared queue. When a process has
exhausted the work on its local stack, it sends a request to the work manager
and gets another chunk of unexplored candidate paths from the shared queue of

488 H. Phan, B. Soh, and M. Nguyen

if process id = 0 then
{being a work manager process}
CREATE a work-queue to store work chunks sending from workers
CREATE an idle-queue for workers waiting chunks
READ all LMC matrices of from input file
repeat
WAIT for receiving a work request or a chunk of work from an arbitrary
process
if receive a work request then

if still having some input matrix available then
SEND a new input matrix for the request process

else
{have no input matrix left}
if work-queue is not empty then

POP a chunk on the top of work-queue out and send it to the request
process

else
{No input matrix and no work chunk to send, puts the request worker to
idle-queue}
ENQUEUE the request process into idle worker queue

end if
end if

else
{receive a work chunk}
if the idle-queue is not empty then

DEQUEUE the idle-queue to get an idle process, send a received chunk to
that idle process

else
PUT the received chunk into work-queue

end if
end if
until there are no more input AND work-queue is empty AND idle-queue is full ;
SEND FINISH signal to all other process

else
{being a worker process}
CREATE a local stack
repeat
SEND a request for a new input to master
RECEIVE a work-return from work manager
if work-return is just a new input matrix then

PUSH the initial value 0 to the local stack
CALL MCS algorithm to extend a new column to that input with current
local stack

else
{receive a work chunk together with a new matrix input}
PUSH c candidate paths of the received chunk to the local stack
CALL MCS algorithm to extend a new column to that input with current
local stack

end if
until receive FINISH signal from master ;

end if

Algorithm 3. Small-step extending parallelism algorithm

the master manager. In case of no work is immediately available in the shared
queue, the process has to wait either for more work to become available or for
all other processes to reach an agreement that the computation has ended.

A Parallelism Extended Approach for the Enumeration of Orthogonal Arrays 489

Note that both chunk size c and duration time d are system parameters
and could be modified according to different hardware and parameter sets of
OA. Since the parallel performance of our work sharing implementation de-
pends heavily on the speed with which the manager is able to service requests,
the manager does not participate in the computation. We specify the parallel
computing algorithm for each small extending step in Algorithm 3 and MCS
algorithm with stack structure in Algorithm 2.

4.4 MPI Implementation

In our implementation, we use MPI as a tool to implement work sharing method.
The work manager process, a process with rank 0, posts a nonblocking
MPI Irecv() function for each worker in the computation. A response from
an worker could be either a work release or a work request. When receiving a
response from an arbitrary worker, work manager will separate them by mes-
sage tag. When a worker sends a work chunk to the work manager, the work
manager push the chunk into the work queue in case of no idle worker, otherwise
it sends immediately the work chunk to the first idle worker in the idle queue.
In case of a worker requesting a work chunk it sends a work request message to
the manager and waits for a response. If the work manager has no input matrix
and its work queue is empty, it adds the process to the idle queue and services
the request once more work chunk becomes available. When the manager detects
that all processes have become idle and no work is available in the work queue, it
knows that the computation has terminated and it sends all processes a FINISH
message.

All worker processes write output matrices concurrently to a single file. In
writing output matrices, the order of generated output is not a concern in our
algorithm. After generating a new output, worker just writes new result to the
end of the output file. This process could be done with the support of the shared
pointer subroutine MPI File iwrite shared() of MPI IO [Mes97].

5 Experimental Evaluation

Our work has been executed on the Hercules cluster of La Trobe university,
Australia. The cluster has 24 node AMD four-core/dual cpu servers, including
1 server as a control node (resulting in 177 cores for computation) with 32 GB
RAM per CPU. There is a high speed infiniband interconnect with network
switch and Gigabit Ethernet connection to the network, in addition to 1 TB
disk space per node.

5.1 Experiments for Small Extending Step

To evaluate the efficiency of the approach in parallel computing for each small
extending step, we first try to do an experiment having the same parameter set

490 H. Phan, B. Soh, and M. Nguyen

with previous work [PSN10]. For more detail, at the initial stage, the Extend-
column algorithm is used to generate all 89 lex-least-matrices of OA(72; 3 ·24; 3).
After that, those 89 lex-least matrices of OA(72; 3 · 24; 3) have been chosen as
inputs for enumerating all non-isomorphism class of OA(72; 3 · 25; 3). On each
run, we collect the maximal execution time. We choose c = 4 and d = 7 (seconds)
in these experiments. To easily compare, we show new results along with previous
results [PSN10] in Table 1.

Table 1. Execution time

Number of processes Execution time Previous work

2 (1 + 1) 476.9’ 465.9’
4 (1 + 3) 160.5’ 156.23’
8 (1 + 7) 68.9’ 79.6’

16 (1 + 15) 32.7’ 57.45’
32 (1 + 31) 17.6’ none
64 (1 + 63) 10.7’ none
128 (1 + 127) 5.9’ none

Since in our experiments, we always need at least two processes (one as a
work manager and at least one as a worker) for every parallelism experiment, we
are more concerned with the relative speedup factor of the algorithm. We initial
the experiments with number of processes is two. The formula for the relative
speedup is given as follows: Speedup(p) = T (p)

T (2p) The result is given in Table 2.

Table 2. Relative speedup

Number of processes Relative speedup Previous work

4 (1 + 3) 2.97 2.98
8 (1 + 7) 2.33 1.97

16 (1 + 15) 2.11 1.38
32 (1 + 31) 1.85 none
64 (1 + 63) 1.64 none
128 (1 + 127) 1.80 none

In previous work [PSN10], because of inefficiency of dynamic load balancing
scheme, the number of processes could be used was just 16 processes. However, in
our experiments with new approach, the number of processes have been doubled
up to 128. Moreover, the relative speedup is really high which nearly equal to 2
even if we double the number of processes up to 128. This outcome shows the
significant efficiency of the proposed parallelism approach.

A Parallelism Extended Approach for the Enumeration of Orthogonal Arrays 491

5.2 Dynamic Load Balancing

Using stack splitting procedure, our method has gained a great deal of load
balancing, in which the execution times are nearly identical between all processes.
This could be seen in the Figure 1.

Fig. 1. Comparison execution time of 32-processes experiment of previous work and
current work

Fig. 2. Execution time of 128 processes from computing OA(72; 3 · 25; 3)

Another significant finding is that when using 128 processes for computing,
the dynamic load balancing works extremely well. This could be seen in this
diagram Figure 2

Looking at the two diagrams and the speedup results, we could infer that the
work sharing load balancing method in combination with stack splitting method
could get a significant speedup when we double up the number of processes up
to 128, whilst maintaining a good dynamic load balancing between computing
processes.

492 H. Phan, B. Soh, and M. Nguyen

5.3 Impact of Duration Time d and Chunk Size c

Table 3 and table 4 show the execution time of the algorithm when we use 32
process with vary of duration time d and chunk size c. To identify the impact
of chunk size in the execution time, we have fixed the value of duration time
(d = 7) and varied the chunk size c. Similarly, by fixing the chunk size c = 4,
we are able to focus on the impact of duration time d in the execution time.
Table 3 shows that when we increase duration time from d = 7 to d = 23, the
execution time doesn’t change a lot. It shows that duration time d might not
significantly affect execution time. However, when we increase the value of chunk
size c, the execution time increases dramatically. This fact shows that very large
chunk sizes reduce the number of chances for cutting of the local stack, and
hence decrease the number of chances for performing load balancing, leads to
poor work distribution.

In fact, the choice of duration time d and chunk size c could vary and depend
on the parameter sets of OA and the number of input matrices. We should
choose system parameter d and c carefully to be able to get an optimization
performance.

Table 3. Execution time using 32 processes (fix c = 4) vs duration time

Duration time d Execution time

7 18.7’
11 17.5’
15 18.6’
19 18.95’
23 21.3’

Table 4. Execution time using 32 processes (fix d = 7) vs chunk size

Chunk size c Execution time

2 16.8’
4 17.6’
6 21.3’
8 27.75’
10 54.9’

6 Conclusion and Future Work

In this paper, we have proposed a new efficient dynamic load balancing method
for parallel computing EOA based on a step-by-step extending approach. There
are some important online repositories of OA that are published so far such as a
number of OA strength 2, 3 and 4 have been discovered by Eric, Pieter and Man
on 2010 [SEN10]. However, there are still rooms for discovering. For instance,

A Parallelism Extended Approach for the Enumeration of Orthogonal Arrays 493

the existence of OA(72; 32 · 2t; 3) with t ≥ 13 is still an open case for us so
far [Ngu08]. In fact, constructing such the OA(72; 32 · 2t; 3) with t ≥ 13 is a big
challenge since it requires a very huge computing work. Therefore, a parallelism
method for enumeration of such orthogonal array could be a good solution since
it allows us to reduce the execution time significantly and generate new results
using the power of high performance computing system. This will be the main
theme in our next article Enumeration of OA(72; 32 · 2t; 3) with t ≥ 13.

References

[DOS+07] Dinan, J., Olivier, S., Sabin, G., Prins, J., Sadayappan, P., Tseng, C.-
W.: Dynamic load balancing of unbalanced computations using message
passing. In: IEEE International Parallel and Distributed Processing Sym-
posium, IPDPS 2007, pp. 1–8 (March 2007)

[FM87] Finkel, R., Manber, U.: Diba distributed implementation of backtracking.
ACM Trans. Program. Lang. Syst. 9, 235–256 (1987)

[Mes97] Message-Passing Interface Forum. MPI-2.0: Extensions to the Message-
Passing Interface, ch 9. MPI Forum (June 1997)

[Ngu05] Nguyen, M.: Computer-algebraic methods for the construction of designs
of experiments. Ph.D. Thesis, Technische Universiteit Eindhoven (2005)

[Ngu08] Nguyen, M.V.M.: Some new constructions of strength 3 mixed orthogo-
nal arrays. Journal of Statistical Planning and Inference 138(1), 220–233
(2008)

[PSN10] Phan, H., Soh, B., Nguyen, M.: A step-by-step extending parallelism ap-
proach for enumeration of combinatorial objects. In: Hsu, C.-H., Yang,
L.T., Park, J.H., Yeo, S.-S. (eds.) ICA3PP 2010. LNCS, vol. 6081, pp.
463–475. Springer, Heidelberg (2010)

[SEN10] Schoen, E.D., Eendebak, P.T., Nguyen, M.V.M.: Complete enumeration
of pure-level and mixed-level orthogonal array. Journal of Combinatorial
Designs 18(2), 123–140 (2010)

[TGM00] Tsai, P.-W., Gilmour, S.G., Mead, R.: Projective three-level main effects
designs robust to model uncertainty. Biometrika 87(2), 467–475 (2000)

Author Index

Aalsalem, Mohammed Y. II-153
Abawajy, Jemal II-165, II-235, II-245,

II-266
Abdelgadir, Abdelgadir Tageldin II-225
Abramson, David I-1
Adorna, Henry II-99
A. Hamid, Isredza Rahmi II-266
Ahmed, Mohiuddin II-225
Albaladejo, José II-343
Anjo, Ivo II-1
Araújo, Guido I-144
Arefin, Ahmed Shamsul II-375
Arshad, Quratulain II-153
Athauda, Rukshan II-175
Atif, Muhammad I-129
Aziz, Izzatdin A. I-433

Backes, Werner I-27
Bahig, Hatem M. II-321
Bahig, Hazem M. II-321
Baldassin, Alexandro I-144
Bardino, Jonas I-409
Based, Md. Abdul II-141
Bellatreche, Ladjel I-158
Beńıtez, César Manuel Vargas II-363
Benkrid, Soumia I-158
Berretta, Regina II-375
Berthold, Jost I-409
Bichhawat, Abhishek I-218
Brezany, Peter I-206
Buyya, Rajkumar I-371, I-395, I-419
Byun, Heejung II-205

Cabarle, Francis George II-99
Cachopo, João I-326, II-1
Carmo, Renato I-258
Carvalho, Fernando Miguel I-326
Chang, Hsi-Ya I-282
Chang, Rong-Guey I-93
Chen, Chia-Jung I-93
Chen, Xu I-294
Chen, Yi II-54
Chu, Wanming I-54, I-117
Chung, Chung-Ping I-80

Chung, Tai-Myoung II-74
Cohen, Jaime I-258
Colin, Jean-Yves II-89
Crain, Tyler I-244
Crespo, Alfons II-343
Crolotte, Alain I-158
Cuzzocrea, Alfredo I-40, I-158

da Silva Barreto, Raimundo I-349
David, Vincent I-385
de Macedo Mourelle, Luiza II-387,

II-399
de Sousa, Leandro P. II-215
Dias, Wanderson Roger Azevedo I-349
Dinh, Thuy Duong I-106
Domı́nguez, Carlos II-343
Duan, Hai-xin I-182, I-453
Duarte Jr., Elias P. I-258, II-215
Duato, José II-353
Duggal, Abhinav I-66

El-Mahdy, Ahmed I-270
Ewing, Gregory II-33

Faldella, Eugenio II-331
Fathy, Khaled A. II-321
Fernando, Harinda II-245
Folkman, Lukas II-64
França, Felipe M.G. II-14
Fürlinger, Karl II-121

Gao, Fan II-131
Garcia Neto Segundo, Edgar J. II-399
Garg, Saurabh Kumar I-371, I-395
Ghazal, Ahmad I-158
Gomaa, Walid I-270
Gopalaiyengar, Srinivasa K. I-371
Goscinski, Andrzej M. I-206, I-433
Goswami, Diganta I-338
Goubier, Thierry I-385
Gu, Di-Syuan I-282
Guedes, André L.P. I-258

Hackenberg, Daniel I-170
Han, Yuzhang I-206

496 Author Index

Haque, Asrar Ul II-24
Haque, Mofassir II-33
Hassan, Houcine II-343, II-353
Hassan, Mohammad Mehedi I-194
He, Haohu II-54
Hobbs, Michael M. I-433
Hou, Kaixi I-460
Huang, Jiumei I-460
Huang, Kuo-Chan I-282
Huh, Eui-Nam I-194
Hussin, Masnida I-443

Imbs, Damien I-244
Inostroza-Ponta, Mario II-375
Izu, Cruz II-276

Jannesari, Ali I-14
Javadi, Bahman I-419
Jiang, He-Jhan I-282
Jozwiak, Lech II-14

Kaneko, Keiichi I-106
Kaosar, Md. Golam I-360
Katoch, Samriti I-66
Khan, Javed I. II-24
Khan, Wazir Zada II-153
Khorasani, Elahe I-318
Khreishah, Abdallah II-109
Kim, Cheol Min II-196
Kim, Hye-Jin II-186, II-196
Kozielski, Stanis�law I-230
Kranzlmüller, Dieter II-121
Kwak, Ho-Young II-196

Lau, Francis C.M. I-294
Lee, Cheng-Yu I-93
Lee, Junghoon II-186, II-196
Lee, Young Choon I-443
Lei, Songsong II-43
Leung, Carson K. I-40
Li, Hongjuan I-2
Li, Keqiu I-2
Li, Shigang II-54
Li, Xiuqiao II-43
Li, Yamin I-54, I-117
Li, Yongnan II-43
Liljeberg, Pasi II-287
Lim, Hun-Jung II-74
Lima, Carlos R. Erig II-363
Lin, Tzong-Yen I-93

Liu, Wu I-453
Lopes, Heitor Silvério II-363
Louise, Stéphane I-385

Majumder, Soumyadip I-338
Ma�lysiak-Mrozek, Bożena I-230
Marco, Maria II-343
Mart́ınez–del–Amor, Miguel A. II-99
Mathieson, Luke II-375
McNickle, Don II-33
Md Fudzee, Mohd Farhan II-235
Mjølsnes, Stig Fr. II-141
Molka, Daniel I-170
Moreno, Edward David I-349
Moscato, Pablo II-375
Mrozek, Dariusz I-230
Müller, Matthias S. I-170

Nakechbandi, Moustafa II-89
Nedjah, Nadia II-14, II-387, II-399
Nery, Alexandre Solon II-14
Nguyen, Man I-481
Nicácio, Daniel I-144
Ninggal, Mohd Izuan Hafez II-165

Park, Gyung-Leen II-186, II-196
Pathan, Al-Sakib Khan II-225, II-255
Paulet, Russell I-360
Paulovicks, Brent D. I-318
Pawlikowski, Krzysztof II-33
Paw�lowski, Robert I-230
Peng, Shietung I-54, I-117
Peng, Yunfeng II-54
Pérez–Jiménez, Mario J. II-99
Petit, Salvador II-353
Phan, Hien I-481
Pranata, Ilung II-175
Pullan, Wayne II-64

Qin, Guangjun II-43
Qu, Wenyu I-2

Radhakrishnan, Prabakar I-66
Ragb, A.A. II-321
Rahman, Mohammed Ziaur I-306
Ramı́rez-Pacheco, Julio C. II-255
Raynal, Michel I-244
Ren, Ping I-453
Rivera, Orlando II-121
Rodrigues, Luiz A. I-258

Author Index 497

Sahuquillo, Julio II-353
Salehi, Mohsen Amini I-419
Samra, Sameh I-270
Santana Farias, Marcos II-387
Scalabrin, Marlon II-363
Schöne, Robert I-170
Serrano, Mónica II-353
Seyster, Justin I-66
Sham, Chiu-Wing I-294
Sheinin, Vadim I-318
Shi, Justin Y. II-109
Shih, Po-Jen I-282
Shoukry, Amin I-270
Silva, Fabiano I-258
Sirdey, Renaud I-385
Skinner, Geoff II-175
So, Jungmin II-205
Soh, Ben I-481
Song, Biao I-194
Song, Bin II-312
Stantic, Bela II-64
Stojmenovic, Ivan I-2
Stoller, Scott D. I-66
Strazdins, Peter I-129
Sun, Lili II-54

Taifi, Moussa II-109
Tam, Wai M. I-294
Tan, Jefferson II-131
Tenhunen, Hannu II-287
Tichy, Walter F. I-14
Toral-Cruz, Homero II-255
Tucci, Primiano II-331
Tupakula, Udaya I-218

Varadharajan, Vijay I-218
Vinter, Brian I-409
Voorsluys, William I-395

Wada, Yasutaka I-270
Wang, Pingli II-312
Wang, Yini I-470
Wang, Yi-Ting I-80
Wen, Sheng I-470
Weng, Tsung-Hsi I-80
Westphal-Furuya, Markus I-14
Wetzel, Susanne I-27
Wu, Jianping I-182

Xiang, Yang I-470, II-153
Xiao, Limin II-43
Xu, Thomas Canhao II-287

Yao, Shucai II-54
Yeo, Hangu I-318
Yi, Xun I-360
Yoo, Jung Ho II-300

Zadok, Erez I-66
Zhang, Gongxuan II-312
Zhang, Lingjie I-460
Zhao, Ying I-460
Zhao, Yue I-294
Zheng, Ming I-182
Zhou, Wanlei I-470
Zhou, Wei I-470
Zhu, Zhaomeng II-312
Zomaya, Albert Y. I-443

	Title
	Table of Contents
	ICA3PP 2011 Keynote
	Keynote: Assertion Based Parallel Debugging

	ICA3PP 2011 Regular Papers
	Secure and Energy-Efficient Data Aggregation with Malicious Aggregator Identification in Wireless Sensor Networks
	Introduction
	Related Work
	System Model
	Secure and Energy-Efficient Data Aggregation with Malicious Aggregator Identification
	Aggregation Commitment
	Aggregation Verification
	Theoretical Analysis on Communication Overhead
	Discussion

	Simulation Evaluation
	Conclusions
	References

	Dynamic Data Race Detection for Correlated Variables
	Introduction
	Problem Description

	Related Work
	Race Detection for Correlated Variables
	Inferring Correlated Sets and Computational Units
	Adapting the Lockset Algorithm
	Calculating a Computational Unit's Lockset
	Happens-Before Analysis – Hybrid Race Detector

	Evaluation
	Detecting Extended Data Races

	Conclusion and Future Work
	References

	Improving the Parallel Schnorr-Euchner LLL Algorithm
	Introduction
	Preliminaries
	Parallel LLL Reduction
	Motivation and Approach
	Improved Parallel LLL Reduction
	Scalar Product Part
	Orthogonalization Part
	μ-Update and Size-Reduction Part
	Using Sequences of Reduction Parameters

	Experiments
	Setup
	Results

	Future Work
	References

	Distributed Mining of Constrained Frequent Sets from Uncertain Data
	Introduction
	Background
	Mining Frequent Sets from Uncertain Data
	Mining Frequent Sets That Satisfy User Constraints

	Our Proposed Distributed Mining System
	Finding Constrained Locally Frequent Sets
	Finding Constrained Globally Frequent Sets

	Experimental Results
	Conclusions
	References

	Set-to-Set Disjoint-Paths Routing in Recursive Dual-Net
	Introduction
	Recursive Dual-Net
	Set-to-Set Disjoint-Path Routing in RDN
	Concluding Remarks
	References

	Redflag: A Framework for Analysis of Kernel-Level Concurrency
	Introduction
	Design
	Instrumentation and Logging
	Lockset Algorithm
	Block-Based Algorithms
	Algorithm Enhancements
	Filtering False Positives and Benign Warnings

	Evaluation
	Related Work
	Conclusions
	References

	Exploiting Parallelism in the H.264 Deblocking Filter by Operation Reordering
	Introduction
	Background
	H.264 Deblocking Filter
	Related Work

	Algorithm
	Analysis of Data Dependencies
	Proposed Deblocking Order

	Analysis
	Architectural Requirements
	Conclusion and Future Work
	References

	Compiler Support for Concurrency Synchronization
	Introduction
	Related Work
	Background
	The Proposed Priority Scheduling Algorithm
	Algorithm
	Priority Assignment
	PS on TM Pathologies

	Experimental Results
	Setup
	Results

	Conclusion
	References

	Fault-Tolerant Routing Based on Approximate Directed Routable Probabilities for Hypercubes
	Introduction
	Related Works
	Preliminaries
	Directed Routable Probabilities
	Fault-Tolerant Routing Algorithms
	Naive Algorithm ADRP0
	Improved Algorithm ARDP1

	Performance Evaluation
	Time Complexity
	Computer Experiment
	Discussion

	Conclusion
	References

	Finding a Hamiltonian Cycle in a Hierarchical Dual-Net with Base Network of p -Ary q -Cube
	Introduction
	The Hierarchical Dual-Net
	Topological Properties of HDN
	Hamiltonian Cycle Embedding
	Concluding Remarks
	References

	Adaptive Resource Remapping through Live Migration of Virtual Machines
	Introduction
	Related Work
	Heterogeneity-Aware Schedulers
	Heterogeneity-Aware Applications
	Comparison with ARRIVE-F

	Framework
	Assumptions
	Performance Modeling
	Migration Prediction
	Migration Decisions

	Implementation
	Experimental Results
	Experimental Platform
	Applications
	Comparison of Predicted and Actual Execution Times
	Framework Overheads

	Compute Farm Throughput
	Experiment 1
	Further Experiments

	Conclusions and Future Work
	References

	LUTS: A Lightweight User-Level Transaction Scheduler
	Introduction
	Related Work
	Overview
	Scheduling Transactions

	LUTS-Based Heuristics
	CILUTS
	CTLUTS
	HASHLUTS

	Experimental Results
	Speedup
	Overhead
	Discussion

	Conclusion
	References

	Verification of Partitioning and Allocation Techniques on Teradata DBMS
	Introduction
	Related Work
	Background
	Validation on Teradata
	Teradata Description
	Experiments
	Implementation and Testing Joint and Sequential Approaches

	Conclusion
	References

	Memory Performance and SPEC OpenMP Scalability on Quad-Socket x86 64 Systems
	Introduction
	Related Work
	Test Systems
	Benchmarks
	Microbenchmarks
	SPEC OMPM2001

	Results
	Memory Latency
	Memory Bandwidth
	SPEC OMPM2001 Scaling with Multiple Cores
	SPEC OMPM2001 Scaling with Multiple Sockets or NUMA Nodes
	SPEC OMPM2001 Performance Comparison

	Conclusions
	References

	Anonymous Communication over Invisible Mix Rings
	Introduction
	Related Work
	Our Solution
	Structure
	Topology
	Anonymous Communications

	Attacks and Defense
	Anonymity Evaluation
	Performance Analysis
	Conclusion
	References

	Game-Based Distributed Resource Allocation in Horizontal Dynamic Cloud Federation Platform
	Introduction
	Mathematical Problem Formulation
	Resource Allocation Games in a HDCF Platform
	Non-cooperative Resource Allocation Game
	Cooperative Resource Allocation Game

	Simulation and Discussion
	Conclusions
	References

	Stream Management within the CloudMiner
	Introduction
	Challenges of Data Stream Management Applications
	Cloud-Enabled Stream Processing
	Contributions and Organization of the Paper

	StreamMiner Framework
	Architecture
	StreamMiner Services

	Technology and Application
	Cloud Services and Stream Transmission
	A Real-World Application: The StreamMiner Cloud

	Performance Experiments
	Experiment 1: Transmission Delays
	Experiment 2: Transmission and Processing
	Experiment 3: Limitation on Transmission Speed

	Related Work
	Conclusions and Future Work
	References

	Security Architecture for Virtual Machines
	Introduction
	Our Model
	Overview
	Operation at Source
	Operation at Destination

	Analysis
	Slammer Analysis
	Performance Analysis

	Related Work`
	Conclusion
	References

	Fast and Accurate Similarity Searching of Biopolymer Sequences with GPU and CUDA
	Introduction
	Theoretical Background
	Alignment Algorithm
	CUDA Programming Model and Architecture of Hardware Accelerator

	Related Works
	Implementation of Parallel Alignment on GPU and CUDA
	Calculation of Alignment Matrix
	Reducing the Number of Transactions
	Reducing Idle Time of Threads
	Data Arrangement
	Storing the Input Sequence and the Substitution Matrix

	Efficiency Tests
	Concluding Remarks
	References

	Read Invisibility, VirtualWorld Consistency and Probabilistic Permissiveness are Compatible
	Introduction
	Software Transactional Memory (STM) Systems
	Consistency Criteria for STM Systems
	Desirable Properties for STM Systems
	Content of the Paper

	STM Computation Model and Base Definitions
	Consistency Conditions: Opacity and Virtual World Consistency
	Invisible Reads, Opacity and Permissiveness are Incompatible
	Step 1: Ensuring Virtual World Consistency with Read Invisibility
	STM Interface, Incremental Reads and Deferred Updates
	The Underlying Data Structures
	The readT() and writeT() Operations
	The try_to_commitT() Operation

	Step 2: Adding Probabilistic Permissiveness to the Protocol
	Conclusion
	References

	Parallel Implementations of Gusfield’s Cut Tree Algorithm
	Introduction
	Related Work
	Definitions
	Cut Tree Algorithms
	Gusfield's Algorithm - Sequential Version
	Parallelization of Cut Tree Algorithms
	MPI Version
	OpenMP Version

	Experimental Setup
	Experimental Results
	Conclusion
	References

	Efficient Parallel Implementations of Controlled Optimization of Traffic Phases
	Introduction
	Related Work
	Serial Intersection Algorithm
	Shared Memory Parallel Intersection Control Algorithm
	Message Passing Implementation
	Data Parallel Implementation
	Experimental Study
	Conclusion
	References

	Scheduling Concurrent Workflows in HPC Cloud through Exploiting Schedule Gaps
	Introduction
	Related Work
	PCH and Gap Search
	Distributed Gap Search
	Experiments and Discussions
	Conclusions
	References

	Efficient Decoding of QC-LDPC Codes Using GPUs
	Introduction
	Review of QC-LDPC Codes and the Belief Propagation Decoding Algorithm
	QC-LDPC Codes
	Belief Propagation Algorithm

	Parallel Computations Using GPUs
	GPU Architecture

	Implementation of a LDPC Decoder on GPUs
	Data Structure to Represent the Messages
	Decoding Procedures in GPU with the Use of Shared Memory

	Results and Discussions
	Simulation Results

	Conclusion
	References

	ICA3PP 2011 Short Papers
	A Combined Arithmetic Logic Unit and Memory Element for the Design of a Parallel Computer
	Introduction
	Theoretical Basis for Parallel Self-Timed Adder
	Design of ARAM Memory-cum-Logic Units
	Logical Operations
	Memory Access Operations
	Control and Floating Point Operations
	Instruction Cycles

	Implementation of ARAM
	Performance Evaluation
	Conclusion
	References

	Parallel Implementation of External Sort and Join Operations on a Multi-core Network-Optimized System on a Chip
	Introduction
	Algorithm Implementation
	External Sort Algorithm Implementation
	External Hash Join Algorithm Implementation
	DB2 Sort and Hash Join Accelerator

	Simulation Results
	Conclusion
	References

	STM with Transparent API Considered Harmful
	Introduction
	Benchmarks for STMs
	JWormBench: A Port of WormBench to Java
	Annotations to Avoid Over-Instrumentation
	Over-Instrumented Tasks
	New Java Annotations for the Deuce API

	Performance Evaluation
	Related Work
	Conclusions
	References

	A Global Snapshot Collection Algorithm with Concurrent Initiators with Non-FIFO Channel
	Introduction
	Related Works
	Assumption and System Model
	Concurrent Snapshot Collection Strategy
	Algorithm
	Data Structure
	Messages
	Algorithms

	Proof of Correctness
	Complexity Analysis
	Conclusion
	References

	An Approach for Code Compression in Run Time for Embedded Systems – A Preliminary Results
	Introduction
	Architectures for Code Compression
	Code Compression in Run Time
	Algorithm for Compression/Decompression with MIC Method

	Simulations with Benchmark MiBench
	Related Work
	Conclusions and Future Work
	References

	Optimized Two Party Privacy Preserving Association Rule Mining Using Fully Homomorphic Encryption
	Introduction
	Privacy Preserving Association Rule Mining
	Motivation and Problem Formulation

	Background
	Notations
	Some Binary Operations
	Fully Homomorphic Encryption (FHE)

	Proposed Solution
	ARM with Privacy Preservation

	Performance and Security
	Performance Analysis
	Security Analysis

	Conclusion
	References

	SLA-Based Resource Provisioning for Heterogeneous Workloads in a Virtualized Cloud Datacenter
	Introduction
	Related Work
	System Model
	Datacenter Model
	SLA and Application Models

	Admission Control and Scheduling Policy
	Forecasting Model
	Admission Control and Scheduling
	SLA Enforcement and Rescheduling of VMs

	Performance Evaluation
	Workload Data
	Performance Metrics

	Analysis of Results
	Conclusions and Future Directions
	References

	ΣC: A Programming Model and Language for Embedded Manycores
	Introduction
	Related Work
	The ΣC Programming Model
	Components
	Behavior
	Designing for Execution Guarantees

	The ΣC Programming Language
	Components
	System Agents
	Input / Output
	Software Architecture

	A Sketch of the ΣC Compilation Process
	Evaluation
	Conclusion
	References

	Provisioning Spot Market Cloud Resources to Create Cost-Effective Virtual Clusters
	Introduction
	Related Work
	Cloud-Based Virtual Clusters
	Use of Variable Pricing Resources

	System Model of a Cloud-Based Virtual Cluster
	Cost-Effective Resource Provisioning and Scheduling Policy
	Estimating Job Runtimes
	Estimation Correction and Rescheduling
	Job Moldability and Speedup Considerations

	Performance Evaluation
	Comparison with Best-Case and Worst-Case Scenarios
	Effect of Different Runtime Estimation Methods

	Conclusions and Future Work
	References

	A Principled Approach to Grid Middleware
	Introduction
	Background and Motivation
	Grid Vision and Grid Practice
	The Cloud Vision – A Better Grid?

	Overview of the Minimum Intrusion Grid
	System Architecture
	MiG Design Principles and Rationale
	Browser-Based Interface
	How MiG Executes Grid Jobs
	Software Deployment

	MiG Features beyond the ``Job-Shop''
	VGrids: Virtual Organisations in MiG
	Resource Management
	Storage in MiG
	Advanced VGrid Features for Group Collaboration

	Current Status and Future Directions
	Conclusions
	References

	Performance Analysis of Preemption-Aware Scheduling in Multi-cluster Grid Environments
	Introduction
	Analytical Queuing Model
	Preemption-Aware Scheduling Policy
	Performance Evaluation
	Experimental Setup
	Experimental Results

	Related Work
	Conclusions and Future Work
	References

	Performance Evaluation of Open Source Seismic Data Processing Packages
	Introduction
	Related Work
	Sequence of Seismic Functions
	Performance Evaluation
	SU and Madagascar Seismic Data Format
	Seismic Data Conversion
	Tests and Results

	Conclusion
	References

	Reputation-Based Resource Allocation in Market-Oriented Distributed Systems
	Introduction
	Related Work
	Models
	System Model
	Application Model
	Market Model

	Reputation-Based Resource Allocation
	Formation of Resource Reputation
	The Suitability between Resource and Task
	Incorporation of Data Staging

	Experimental Methodology
	Experimental Settings
	Performance Metrics

	Experimental Results
	Impact of Scheduling with Variability of Network Capacity
	Comparing Market-Based Resource Allocation Approaches

	Conclusion
	References

	Cooperation-Based Trust Model and Its Application in Network Security Management
	Introduction
	Related Work
	User Cooperation Trust Model (UCTM)
	Design Principle
	The Reputation Model

	Simulation Detail
	Simulation Results
	Conclusion
	References

	Performance Evaluation of the Three-Dimensional Finite-Difference Time-Domain(FDTD) Method on Fermi Architecture GPUs
	Introduction
	Background
	A Brief Overview of the FDTD Method
	Parallelization of FDTD Method on Fermi Architecture GPUs

	Method
	Simulation Model
	Implementation in CUDA

	Performance Analysis and Comparison between Using Shared Memory and L1 Cache
	Conclusions and Future Work
	References

	The Probability Model of Peer-to-Peer Botnet Propagation
	Introduction
	Related Work
	Theoretical Propagation Model
	Propagation Ability and Quarantine Ability
	Simulation Experiments
	Conclusion and Future Work
	References

	A Parallelism Extended Approach for the Enumeration of Orthogonal Arrays
	Introduction
	Major Contribution

	Background
	Serial MCS Algorithm
	Two Key Properties of Serial MCS Algorithm

	A Step by Step Extending Parallelism Approach for EOA
	Parallel Computing for Each Small Extending Step
	Drawback of Previous Work with Master-Slave Load Balancing Method
	Convert MCS Algorithm by Using Stack Data Structure
	Work Sharing Method for Dynamic Load Balancing
	MPI Implementation

	Experimental Evaluation
	Experiments for Small Extending Step
	Dynamic Load Balancing
	Impact of Duration Time d and Chunk Size c

	Conclusion and Future Work
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

