
Incorporating Traceability in Conceptual Models

for Data Warehouses by Using MDA

Alejandro Maté and Juan Trujillo

Lucentia Research Group
Department of Software and Computing Systems

University of Alicante
{amate,jtrujillo}@dlsi.ua.es

Abstract. The complexity of the Data Warehouse (DW) development
process requires to follow a methodological approach in order to be suc-
cessful. A widely accepted approach for this development is the hybrid
one, in which requirements and data sources must be accommodated
to a new DW model. The main problem is that the relationships be-
tween conceptual elements coming from requirements and those coming
from data sources are lost in the process, since no traceability is ex-
plicitly specified, consuming additional time and resources. Previously,
we have defined a trace metamodel in order to trace user requirements
to DW conceptual models. In this paper, we complement our approach
by including traceability along the successive refinements performed at
the conceptual level. Therefore, we preserve the existing relationships
between elements, eliminating additional costs derived from performing
the matching process multiple times. We provide an example of how
Query/View/Transformation rules can automate trace generation, and
we also provide a set of guidelines for connecting conceptual elements
coming from requirements with those coming from the data sources.

Keywords: Data warehouses, traceability, conceptual models, user
requirements, data sources, MDA.

1 Introduction

Data Warehouses (DW) integrate several heterogeneous data sources in multi-
dimensional structures (i.e. facts and dimensions) in support of the decision-
making process [5]. Therefore, the development of the DW is a complex process
which must be carefully planned in order to meet user needs. In order to develop
the DW, three different approaches, similar to the existing ones in Software
Engineering were proposed: bottom-up, top-down, and hybrid [3].

The first two approaches ignore at least one source of information for the DW,
leading to failure in DW projects [3]. On the other hand, the third approach (hy-
brid) makes use of both data sources and user requirements [9], solving the in-
compatibilities by acommodating both requirements and data sources in a single
conceptual model. Nevertheless, the acommodation process introduces modifi-
cations, causing the existing traceability by name matching to be lost. Once

M. Jeusfeld, L. Delcambre, and T.W. Ling (Eds.): ER 2011, LNCS 6998, pp. 459–466, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



460 A. Maté and J. Trujillo

traceability is lost, the effort required for validating requirements or performing
changes is increased, and the quality of the result is decreased [12]. The rea-
son is that the developer must repeteadly track down each element through the
different layers involved in the development process, which is time consuming
and error prone. Despite this drawback, aside from our previous contribution in
[7], where we defined a trace metamodel to trace DW requirements to their cor-
responding conceptual elements, the traceability aspect has been overlooked in
DW development. By incorporating traceability, these time consuming and er-
ror prone tasks are minimized, allowing the developer to focus on the conceptual
design of the DW, and improving the quality of the final product.

In this paper, we complement our previous works by including support for the
traceability of conceptual elements through the different Platform Independent
Models (PIM) up to the final conceptual model. We also provide an example of
how trace generation can be automated where possible.

The remainder of the paper is structured as follows. Section 2 presents related
work about traceability and DWs. Section 3 introduces the necessary trace se-
mantics in order to include traceability at the conceptual level in DWs. Section
4 presents the QVT rules for automatic derivation of traces. Section 5 presents
an example of application, in order to show the benefits of our proposal. Finally,
Section 6 outlines the conclusions and further work to be done.

2 Related Work

In this section, we will briefly discuss the existing traceability research, its bene-
fits and problems, and its current status in the DW field. Due to space constraints
we will only describe the most important aspects.

Traditionally, traceability is focused on requirements. Either coming from the
traditional RE [4,10] or following a MDD approach [1,2], requirements are traced
to their lower abstraction level counterparts. Therefore, traceability helps ass-
esing the impact of changes in requirements and rationale comprehension, by
identifying which parts of the implementation belong to each requirement [2].
However, the effort required to manually record the traces, and the lack of stan-
darization, make it difficult to apply traceability to projects. Therefore, there is
a special interest on automating traces.

Our approach, presented in [9], applies MDD, and is sensitive to generate
traces by exploiting transformation logic, thus being less error prone than manual
recording. Therefore, by generating traces simultaneously as conceptual models
are transformed, we provide support for requirements validation, impact change
and automated analysis, while minimizing the drawbacks. While our approach
applies MDA for DW development, other development proposals [3,11] make use
of similar layers, so they could benefit from this approach.

In order to maintain all this information, elements coming from both require-
ments and data sources must be traced while maintaining the semantics of their
relationships, allowing us to support automatic operations over the models.



Incorporating Traceability in Conceptual Models for DWs by Using MDA 461

3 Traceability from PIM to PIM DW Models

As previously stated, we require to trace information from both user require-
ments and data sources up to the final conceptual implementation. First, we will
introduce the trace metamodel and the concepts used for tracing elements along
the PIM models. Then we will describe how these elements will be traced.

In order to trace conceptual elements, up to the final PIM, we require to
include different semantics, in order to differentiate the relationships between el-
ements and support further automatic operations. These semantics are included
in the trace metamodel (we refer the reader to [7] for more information) depicted
in figure 1. The semantic types on which we will focus are:

– Evolution links are included to handle horizontal traceability which takes
care of element changes at the same layer. In our case these links will track
the different versions of each element at each PIM model.

– Overlap and Conflict are used for relating elements coming from both re-
quirements and data sources in different shape. In this case, the developer
will decide which is the correct solution to the conflict. These links are cru-
cial for enabling traceability support, as they record the semantics between
elements coming from data sources and those coming from requirements.

– Rationalization links are included as means of enabling the user to record
his own annotations in the trace model about changes or decisions taken and
provide reconciliated solutions for existing conflicts.

These trace types will be recorded in the different trace models included in our
proposal, as shown in figure 2. In our proposal, first we derive an initial PIM

Fig. 1. Trace metamodel with semantic links for DWs



462 A. Maté and J. Trujillo

Fig. 2. Trace models linking the different PIM models in our DW approach

model from the user requirements represented in the requirements model. This
PIM is refined with the necessary additions, not present at requirements level,
and then it is derived into a mixed, hybrid PIM. The first trace model, labeled as
“a” in figure 2, connects the initial PIM to the hybrid PIM in a pretty straight-
forward manner by means of Evolution traces. This trace model “a” is included
in order to support automatic operations which require to track information
related to requirements.

After we have derived the initial PIM, we first obtain a Platform Specific
Model (PSM) from the data sources, which serves as basis to create a hybrid
PIM model [8]. The hybrid PIM includes conceptual elements from both require-
ments and data sources and is characterized by representing the same concepts
in different versions. In order to relate the different versions, their relationships
are recorded by means of traces in trace model “b”. These traces must be manu-
ally added because typically there is no knowledge about which element coming
from the data sources is the counterpart to an element coming from user re-
quirements. Therefore, we provide a set of guidelines in order to correctly relate
elements in the hybrid PIM: whenever an element coming from requirements is
complementary with its representation coming from data sources, they are re-
lated by means of Overlap links (G1). On the other hand, whenever an element
coming from requirements is contrary to its representation coming from data
sources, they are related by means of Conflict links (G2). In order to solve this
situation, either one of the elements in conflict can be marked as solution, if
it fits the user needs (G3) or, alternatively, the developer can provide a new,
reconciliating element (G4), by means of Rationalization links.

Once the hybrid model has been refined, the desired elements which will be
part of the final implementation are marked, as proposed in [9], and derived
into the final PIM. Evolution traces, recorded in trace model “c” as part of the
derivation into the final PIM, show which elements from the hybrid PIM were
chosen to define the final conceptual model. This way, we can trace which parts
of the final model come from either requirements or data sources, allowing us to
perform impact change analysis as well as other automatic analysis tasks.



Incorporating Traceability in Conceptual Models for DWs by Using MDA 463

After having defined which trace models record the evolution of conceptual
elements at PIM level, we will provide an example of how trace generation can
be automated by means of transformations.

4 Automatic Derivation of Traceability Models in Data
Warehouses

In this section, we will provide an example of how the necessary transformations
can be formally defined to automatically generate the necessary traces. Due to
paper constraints, we will only show one transformation rule as example.

According to our proposal for developing DWs [9], we use a hybrid approach,
transforming models up to the final implementation by means of QVT rules.
QVT rules specify a transformation by checking for a defined pattern in the
source model. Once the pattern is found, a QVT rule transforms elements from
the source metamodel into the target metamodel. In our case, a QVT which
creates the Evolution link, from the hybrid to the final PIM, between overlapping
bases in the hybrid PIM, is shown in figure 3.

In this QVT, two overlapping bases from the hybrid conceptual model, “b1”
and “b2”, are derived into a base “b3” in the final conceptual model.

On the left hand of the transformation rule, are the source metamodels. In
our case, the sources are the multidimensional profile and the trace metamodel
for DWs. On the upper left hand, we have a dimension “d1” and a base “b1”,
as well as the base level counterpart coming from the data sources, “b2”. On
the lower left hand, we have the traces which record the relationship between

Fig. 3. QVT rule for deriving overlapping bases and creating their Evolution trace link



464 A. Maté and J. Trujillo

multidimensional elements coming from requirements, and those coming from the
data sources. In this case, there is an overlap link between the two previously
mentioned bases, which represents that both bases are complementary.

On the right hand of the transformation rule, are the target metamodels. On
the upper right hand, we have our multidimensional profile, composed by the
resulting dimension and base level. Since the relationship between the bases was
defined as overlap, “b3” will present a combination of attributes from both “b1”
and “b2”. This merge will be performed by the OverlapAttributeMatch rule,
called from the “Where” clause. On the lower right hand, we also have the trace
metamodel, composed by the trace link which tracks the different elements used
for composing the solution. In this case, as the original relationship between
bases was an overlap, both bases are linked as sources of the new base level in
the final PIM and its corresponding attributes.

The “C” at the center of the figure means that the source model is only
checked, whereas the “E” means that the target models are enforced (gener-
ated). With QVT transformations, we can generate the associated traces simul-
taneously as the models are derived, avoiding the introduction of errors due to
manual recording.

Once we have presented how to automate trace generation, we will present a
case study for our proposal.

5 Case Study

In this section, we will present a case study for our proposal, showing how the
traces can be used to relate the different elements in the hybrid PIM. This case
study is inspired from a real world project with another university, and describes
the basic process of our proposal, while making it easier to read the data source
model. Note that the diagrams are presented with our iconography for DWs [6].

A university wishes to improve its educative process. In order to do so, a DW
is designed to store the necessary information for the decision making process.
The initial PIM, part of which can be seen at the left hand in figure 4, is derived
from the users’ requirements and refined with the expected attributes. This
PIM includes 4 dimensions and a single measure. On the one hand, we have the
Subject dimension. A subject is expected to include its code, a name, the credits
and a description of the subject. Furthermore, subjects can be aggregated by
their Type. On the other hand, is the Teacher dimension. A teacher includes a
code, a name and the years of experience he has. Furthermore, teachers can be
aggregated according to their Department, their Faculty or their job Type. The
omitted dimensions in the figure, due to space constraints, are the Student and
the AcademicPeriod dimensions.

As opposed to this initial PIM, the model created from the data sources
(restricted to the most relevant tables) presents a higher number of attributes
and lower readability. Part of this PIM can be seen at the right hand in figure
4. The first dimension is TH SUBJ, which would correspond to the previous
Subject dimension. This dimension includes a code for the subject, as expected,



Incorporating Traceability in Conceptual Models for DWs by Using MDA 465

Fig. 4. Intra-model PIM traces relating conceptual elements from requirements (left)
with elements from data sources (right)

the number of hours of the subject, a starting date, an ending date, a value
which could correspond to the number of credits, and a code for the file of the
subject. Subjects may also be grouped by type, as expected. The next dimension
is TT TEA, corresponding to information about the teachers. The information
recorded for a teacher includes his name and surname, a mark for indicating if
he is active or not, his bank information, address, unit code and a code related
to the accounting. According to the data sources, teachers can be grouped either
by department or by faculty. In this case, if we wished to group them by their
job position, additional elements would be required.

Once we have both models in the hybrid PIM diagram, we can manually record
the traces relating their elements, as sketched in figure 4. By recording only once
these relationships, we do not require to repeteadly match each element coming
from the requirements with those in the data sources, avoiding the introduction
of errors in the process.

6 Conclusions and Future Work

In this paper, we have proposed a traceability approach in order to explicitly
specify the relationships between elements at the conceptual level in DWs. We
have shown the necessary trace semantics to record these relationships and have
proposed a set of guidelines, in order to aid with the identification of these
relationships. Furthermore, we have shown how trace derivation and recording



466 A. Maté and J. Trujillo

would be automated and have exemplified the application of the proposal by
means of the case study. The great benefit of our proposal is that the recon-
ciliation task is only performed once per element and is preserved for further
derivations. Therefore, we avoid repeteadly inspecting the data sources in order
to match conceptual elements coming from requirements with those coming from
data sources, diminishing time and resources spent.

Our plans for the immediate future are defining the complete set of QVT
transformations to derive alternative final PIM models and to explore the rela-
tionships between the PSM and PIM levels.

Acknowledgments. This work has been partially supported by the MESO-
LAP (TIN2010-14860) and SERENIDAD (PEII-11-0327-7035) projects from the
Spanish Ministry of Education and the Junta de Comunidades de Castilla La
Mancha respectively. Alejandro Maté is funded by the Generalitat Valenciana
under an ACIF grant (ACIF/2010/298).

References

1. Aizenbud-Reshef, N., Nolan, B., Rubin, J., Shaham-Gafni, Y.: Model traceability.
IBM Systems Journal 45(3), 515–526 (2006)

2. Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., Merlo, E.: Recovering trace-
ability links between code and documentation. IEEE Transactions on Software
Engineering 28(10), 970–983 (2002)

3. Giorgini, P., Rizzi, S., Garzetti, M.: GRAnD: A goal-oriented approach to require-
ment analysis in data warehouses. DSS 45(1), 4–21 (2008)

4. Gotel, O.C.Z., Morris, S.J.: Macro-level Traceability Via Media Transformations.
In: Rolland, C. (ed.) REFSQ 2008. LNCS, vol. 5025, pp. 129–134. Springer,
Heidelberg (2008)

5. Kimball, R.: The data warehouse toolkit. Wiley-India (2009)
6. Luján-Mora, S., Trujillo, J., Song, I.Y.: A UML profile for multidimensional mod-

eling in data warehouses. DKE 59(3), 725–769 (2006)
7. Maté, A., Trujillo, J.: A Trace Metamodel Proposal Based on the Model Driven

Architecture Framework for the Traceability of User Requirements in Data Ware-
houses. In: Mouratidis, H., Rolland, C. (eds.) CAiSE 2011. LNCS, vol. 6741, pp.
123–137. Springer, Heidelberg (2011)

8. Mazón, J., Trujillo, J.: A model driven modernization approach for automatically
deriving multidimensional models in data warehouses. In: Parent, C., Schewe,
K.-D., Storey, V.C., Thalheim, B. (eds.) ER 2007. LNCS, vol. 4801, pp. 56–71.
Springer, Heidelberg (2007)

9. Mazón, J.N., Trujillo, J.: An MDA approach for the development of data ware-
houses. DSS 45(1), 41–58 (2008)

10. Ramesh, B., Jarke, M.: Toward reference models for requirements traceability.
IEEE Transactions on Software Engineering 27(1), 58–93 (2001)

11. Vassiliadis, P.: Data Warehouse Modeling and Quality Issues. Ph.D. thesis, Athens
(2000)

12. Winkler, S., von Pilgrim, J.: A survey of traceability in requirements engineering
and model-driven development. Software and Systems Modeling 9, 529–565 (2010)


	Incorporating Traceability in Conceptual Models for Data Warehouses by Using MDA

	Introduction
	Related Work
	Traceability from PIM to PIM DW Models
	Automatic Derivation of Traceability Models in Data Warehouses
	Case Study
	Conclusions and Future Work
	References





