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Abstract. Existing LCA-based XML keyword search approaches are
not aware of the significance of using semantics of object to improve
search efficiency and quality during LCA-based computation. In this
paper, we propose a novel object-oriented approach for XML keyword
search. In each step of our approach, i.e., labeling an XML document,
constructing related indexes and searching for relevant LCA nodes, we
use the semantics of object. We theoretically and experimentally show
the superiority our semantic approach over existing approaches.

1 Introduction

XML keyword search is a user-friendly way to query XML database. The most
common way to process XML keyword queries is adopting inverted lists to index
data nodes in an XML document and perform lowest common ancestor (LCA) [4]
based computation with the inverted lists. There are many subsequent works to
either improve the search efficiency of LCA-based approach (e.g., [6]), or improve
the search quality (e.g., [5]). However, all the LCA-based search algorithms only
focus on checking the structural relationship between query keywords, but do
not consider the semantic relationship between them, i.e., the relationship among
object, property and value. Without noticing such information, the LCA-based
computation may perform redundant searches and return less meaningful result,
as discussed in Section 2.2.

In this paper, we propose an Object-Oriented Keyword Search approach,
named OOKS, to process XML keyword queries in data-centric XML data. The
core idea of our approach is to incorporate semantic information, i.e., object,
property and value, into LCA-based keyword search. In particular, we construct
indexes, i.e., inverted lists and relational tables, in an object-oriented manner,
and process XML keyword queries with those indexes in an OO manner as well.

2 Background and Motivation

2.1 Background

The Lowest Common Ancestor (LCA) of a set of nodes S is the common ancestor
of the nodes in S, and does not have a descendant node to also be a common
ancestor of these nodes. In an XML tree, normally we assign a Dewey ID [1]
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to each node and the LCA of a set of nodes has the Dewey ID of the longest
common prefix of the Dewey IDs for these nodes.

For each keyword k, the Dewey IDs of the nodes matching k are stored in an
inverted list. XML keyword search focuses on finding the relevant LCAs of the
inverted lists of all query keywords. A node is an LCA of a set of inverted lists
{I1,..., Im} if this node is the LCA of {u1,...,um} where ui∈Ii for 1≤i≤m.

Example 1. The inverted lists for the keywords in the query {book, XML, au-
thor} are shown in Fig. 3(a). The LCAs of the three lists include 1, 1.1.2, and
1.1.2.19 etc. In particular, node 1 is the LCA of book 1.1.2.1, XML 1.1.2.19.1.1
and author 1.2.2.1.2. ��
Intuitively the correct answer to the query in Example 1 is book 1.1.2.19, but
LCA returns a lot of false answers. To achieve a good search quality, many
improved semantics based on LCA are proposed (e.g., [3][10]). In our approach we
propose a new semantics SLCOA (discussed later) by incorporating object into
SLCA [10]. The SLCA of a set of inverted lists is the LCA node of these inverted
lists which has no descendant to also be an LCA of these lists. In Example 1,
the SLCA of the inverted lists only returns the correct answer 1.1.2.19.
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Fig. 1. An example XML document with Dewey IDs for all nodes

2.2 Motivation

We discuss the problems in existing LCA-based XML keyword search approaches
which motivate our research.

Efficiency Problems
The LCA-based approach may involve redundant inverted list search. For the
example document in Fig. 1, every “book” node corresponds to an object that
contains a property “title”. To process the query {book, title} which finds all
book titles, we actually do not need to scan the inverted list for “title” during
LCA-based computation. For another example, consider a query {book, title,
XML} to find the books with title of “XML”. Suppose there are 100 title ele-
ments, then we have to consider all 100 Dewey IDs in the inverted list of title
during LCA searching, though only one of them matches the value of “XML”.
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Search Quality Problems
Many keyword queries have different interpretations, or say search intentions. A
query {physics} may search for a book with title of “Physics”, or a subject with
name of “physics”. Most existing XML keyword search approaches mix different
interpretations during query processing, and a user may have difficulty in filtering
the mixed results based on his/her search intention. Also using inverted lists,
the existing XML keyword search algorithms cannot perform advanced search
efficiently, such as range search and phrase search.

3 Object-Oriented Indexes

In this section, we present the OO-based indexes used in our approach. The
discussion of object semantics can be found in our technical report [8].

3.1 OO-Dewey ID and Object Tables

Different from existing LCA-based approaches that assign Dewey ID to every
document node, OOKS assigns Dewey ID to object nodes (as well as the root)
only, thus we also call it OO-Dewey ID1. All non-object internal nodes inherit
the Dewey ID of the its lowest ancestor object node. Fig. 2 is the OO-Dewey ID
assignment for the document in Fig. 1, which contains only two object classes,
subject and book. Using OO-Dewey ID labeling, we can significantly reduce the
number of labeled nodes, as shown by comparing Fig. 1 and Fig. 2.
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Fig. 2. Document with OO-Dewey ID assignment (only object nodes are labeled)

We only put the Dewey IDs for non-value document nodes into inverted lists,
and all the inverted lists are built in object-oriented fashion. The object-oriented
inverted lists for “book”, “author” and “about” are shown in Fig. 3(b), where
the traditional inverted lists are shown in Fig. 3(a). Since we only use object
labels, many properties with cardinality of 1 or + to its object, e.g. “author”,
have the same inverted list as the object.

1 For convenience, we still use Dewey ID for OO-Dewey ID in later explanations.
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book 1.1.2.1, …, 1.1.2.19, 1.2.2.1, ...

XML 1.1.2.19.1.1

author 1.1.2.1.2, …, 1.1.2.19.2, 1.1.2.19.3, 1.2.2.1.2, ...

(a) Normal inverted list

book

1.1.1, …, 1.1.19, 1.2.1, ...

book/author

1.1.1, …book/about

(b) OO inverted list

Fig. 3. Inverted lists in normal LCA-based approaches and in our OO approach

Values are put into relational tables. The relational tables are also object-
oriented. For each object class we maintain a table with columns of Dewey ID
and its single-valued properties. We call it object table. For multi-valued property,
e.g., “author”, we maintain an object/property table. The example tables for
“book” in the document in Fig. 2 are shown in Fig. 4(a). The details of object
table construction and problem handling are discussed in [9].

3.2 Other Object-Based Indexes

We assign each type of object and property a numeric ID. We have a hash
table to check whether a keyword refers to an object or a property, and return
the numeric ID correspondingly. We also maintain Object Attachment Bitmap
(OAB) to quickly find by which object classes a given property type is contained,
and Containment Index (CI) to match each value to the objects and properties
containing it. The details of OAB and CI can be found in [8].
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R b
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… …
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Fig. 4. Object tables for book and subject

4 OO Keyword Query Processing

The object-oriented keyword query processing in our approach has four steps:

1. Partition the keywords in the query based on different objects. Ambiguous
queries with different keyword attaching ways are handled.

2. In each partition, filter the Dewey IDs in the corresponding inverted list using
object tables, based on property and value constraints in the partition.
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3. Find the smallest lowest common object ancestor (SLCOA) of the inverted
lists for different partitions.

4. Identify output information and return result using object tables.

4.1 Step 1: Keyword Partitioning

Definition 1. (Keyword Partition) A partition is a group of keywords in a
keyword query that contains one object2, together with a set of properties or prop-
erty/value pairs that belong to the object. We use ( object, [property1[/value1],
property2[/value2]...]) to represent each partition.

In a keyword query, we create a partition for each object involved. E.g., there are
two partitions for the query {subject, XML}, as there are two objects, subject
and book, involved. Then we put the query keywords into the corresponding
partitions. This process is called keyword partitioning. The partitioned query in
this example becomes {(subject), (book, title/XML)}. We design a model-driven
mechanism (shown in our technical report [8]) to partition query keywords.

Generally, there are two phases when we partition the keywords in a query:
attaching each value keyword to properties and objects, and attaching each
unattached property keyword to objects. The keyword attaching is performed
with the CI and OAB. The details of keyword partitioning can be found in
our technical report [8]. It is possible that a query is ambiguous with different
attaching ways for a value keyword or a property keyword. We discuss such
ambiguous cases in our technical report as well.

Example 2. The query {subject, physics} to the document in Fig. 2 is unam-
biguous. We attach the value keyword physics to the object subject with the
implicit property name. The final partition is {(subject, name/physics)}. ��
A special case is that multiple value keywords correspond to the same property
type of the same object class. Then we consider both cases of using one partition
and using multiple partitions for multiple property/value pairs.

Example 3. In the query {Brown, Cole}, both value keywords belong to book/au-
thor. The query is partitioned as {(book, author/Brown, author/Cole)} and
{(book, author/Brown), (book, author/Cole)}. The first interpretation finds the
book co-authored by the two people, while the second interpretation finds the
common information (i.e., subject) of the books written by the two authors. ��
For ambiguous queries, we design an algorithm to rank different interpretations
in [8].

4.2 Step 2: Inverted List Filtering

For a query with keywords partitioned based on objects, we filter the Dewey IDs
in the inverted list for each partition. We consider the three cases regarding the
occurrences of properties and values in each partition separately.
2 We simply refer to object (or property) keyword as object (or property), for short.
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– Case (1): The partition contains only the object. We use the inverted list of
that object.

– Case (2): The partition contains both the object and properties, but no
value. If there is only one property, we use the inverted list for that property.
Otherwise, we take the intersection of the inverted lists for the properties.

– Case (3): Both properties and values appear with the object in the partition.
For the object obj in this partition, we get the Dewey IDs from the object
table Robj based on the constraints on the properties and values.

Inverted list filtering can reduce the size of relevant inverted lists, which makes
later operations on inverted lists more efficient. When there are value keywords
in a query, which frequently happens in practice, the inverted list reduction for
relevant objects is more significant, due to the high selectivity of value keywords
on specific properties.

Example 4. The query {book, XML, subject, name} contains two partitions after
keyword partitioning: {(book, title/XML), (subject, name)}. The first partition
has both property title and value XML with the object book, so by Case (3)
we select the Dewey IDs from Rbook based on title=“XML”. For the second
partition, we just use the inverted list for subject/name. Now we only use two
inverted lists to process this query, while other approaches use five inverted lists
for the five keywords. Furthermore, the inverted list for book contains only a few
Dewey IDs due to the high selectivity on the property title. ��

4.3 Step 3: SLCOA Processing

When a keyword query involves two or more objects, after simplifying the query
with only objects left, we still need to perform an LCA-based computation among
the query objects in the document. We propose a Smallest Lowest Common
Object Ancestor (SLCOA) semantics based on our OO document labeling. The
rationale of finding SLCOA is that we ensure all the relevant LCA nodes found
are object nodes, which are more meaningful as return nodes.

Definition 2. (LCOA of nodes) Given m nodes u1, u2,..., um, node v is
called a Lowest Common Object Ancestor (LCOA) of these m nodes, iff (1) v is
a common ancestor of all these nodes, (2) v is an object node, and (3) v does
not have any descendant object node w which is also a common ancestor of all
these nodes. We denote v as LCOA(u1, u2,..., um).

Proposition 1. The LCA of a set of nodes has the same Dewey ID as the
LCOA of these nodes.

Based on our labeling scheme, each non-object node inherits the Dewey ID of
its lowest ancestor object node. Thus the Proposition 1 holds (detailed proof
is omitted). In the document in Fig. 2, the LCA of two book nodes 1.1.1 and
1.1.19 is the node books 1.1, while the LCOA of the two book nodes is subject
1.1. Obviously the LCOA is more meaningful than the LCA as a result node.
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Definition 3. (LCOA of sets of nodes) Given m keywords k1, k2,..., km,
and m sets of nodes I1, I2,..., Im such that ∀1≤i≤m, Ii stores a list of nodes
matching ki. Node v belongs to the LCOA of the m sets iff ∃u1∈I1, u2∈I2,...,
um∈Im, such that v=LCOA(u1, u2,..., um). We denote v∈LCOA(I1, I2,..., Im).

Definition 4. (SLCOA of sets of nodes) A Smallest Lowest Common Object
Ancestor (SLCOA) v of m sets of nodes I1,..., Im is defined as (1) v∈LCOA(I1,...,
Im), and (2) v does not have any descendant w∈LCOA(I1,..., Im).

In this step, we find the SLCOA of the reduced inverted lists for the partitions
in a query. We can use all the existing efficient SLCA computation algorithms
to compute SLCOA, because of Proposition 1.

4.4 Step 4: Result Return

Output Information Identification. Normally a query aims to find the in-
formation of a certain object(s), so we infer the meaningful output information
based on object. We propose rules in [8] to determine what information should
be returned for a keyword query. Generally, we reuse the concept of SLCOA for
output information inference. We check the SLCOA of query objects in the struc-
tural summary of the XML document. If the SLCOA belongs to a new object
class from the objects involved in the query, we will return that SLCOA object.
Otherwise, we will return the object in the query partition without property or
value, or return the object property containing no value in its partition.

Value Extraction. When the output is an object, we access the object table
for that object, and select all the properties and corresponding values based on
the Dewey IDs. If the output is a property, we access the corresponding object
table and get the property value based on both the Dewey ID and the property
name.

4.5 Advanced Search

Inefficient support to range search is a shortcoming for most inverted list based
algorithms. For example, to process a query to find the book with price less than
50, one possible way for existing works is to find all the numeric keywords with
values less than 50 and combine their inverted lists. Obviously it is inefficient.
To perform Phrase search in XML data, existing works have to adopt a similar
technique as in IR [7] to index all phrases, which is very space costly.

OOKS stores values in relational tables. Then the range queries and the phrase
queries can be easily performed by SQL selection.

5 Experiments

5.1 Experimental Settings

All algorithms were performed on a dual-core 2.33GHz processor with 3.5G
RAM. We use three data sets: DBLP (91MB), XMark (6MB), and a real-life
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course data set (2MB)3. We compare OOKS to several existing algorithms, as
mentioned later. We use eight unambiguous meaningful queries for each data set
to evaluate efficiency and search quality. We also test the ability of OOKS to re-
turn results based on different search intentions for ambiguous queries (including
our ranking method). In this paper, we only show the experimental result for un-
ambiguous queries in this paper. The query details and the result for ambiguous
query test and index analysis can be found in our technical report [8].
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Fig. 5. Query processing efficiency comparison

5.2 Efficiency

We compare OOKS with two LCA-based algorithms: Incremental Multiway-
SLCA (IMS) [6] and Indexed Lookup Eager (ILE) [10] for efficiency test. IMS
introduces anchor node semantics to skip redundant node search, while ILE
introduces index to accelerate inverted list scans. They are two representative
approaches to improve SLCA search. We also compare to an IR-style algorithm
XReal [2]. We choose a larger data set (DBLP) and a smaller data set (XMark)
for evaluation. The result is shown in Fig. 5(a) and 5(b). In OOKS, we use ILE
to compute SLCOA.
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Fig. 6. Search precision comparison

3 http://www.cs.washington.edu/research/xmldatasets/data/courses/uwm.xml

http://www.cs.washington.edu/research/xmldatasets/data/courses/uwm.xml


410 H. Wu and Z. Bao

5.3 Search Quality

We evaluate the search quality of OOKS in comparison with other approaches:
SLCA, XSEarch [3] and XReal. Especial to be mentioned is XReal, which is
a ranking based keyword search algorithm. We take top k results from XReal,
where k is the number of expected answers. If there is only 1 expected answer
and the first returned result from XReal is not that answer, we use top 5 results
from XReal to compute precision, instead of returning 0. The recall value is very
high for all approaches, or say all approaches can find the correct answers, but
may introduce false positives as noises. Then we only compare the precision, as
shown in Fig. 6. More explanations of the result are presented in [8].

6 Conclusion

We propose OOKS, a novel object-oriented approach for XML keyword search. In
our approach, we label an XML document, construct related indexes and process
XML keyword queries in an object-oriented way. Compared to some existing
approaches, both query processing efficiency and search quality are improved
in OOKS, as shown in our experiments. Furthermore, by introducing relational
table for values, our approach can perform advanced search more efficiently.
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